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Preface

In the spring of 2009 in Cargèse, Corsica, we organized a school titled ‘Tides in
Astronomy and Astrophysics’ with the support of CNRS (Centre National de la
Recherche Scientifique), which brought researchers and students together and ap-
proached the theme of tides from as many directions as we could, offering lectures
of a few hours each. This book is the outcome. We hope it will prove useful to a
wide variety of readers.

The book focuses on the fundamental theories of tides at different scales of the
universe—from tiny satellites to whole galaxies—and on the most recent develop-
ments. It also attempts to place the study of tides in a historical perspective.

We are grateful to Springer’s Editorial Board for welcoming the book to the
Lecture Notes in Physics series. We wish to express our thanks as well to the labo-
ratory SYRTE (Systèmes de Référence Temps-Espace, Observatoire de Paris) and
to CNRS and its staff, especially Victoria Terziyan who helped to coordinate the
spring school.

J. Souchay
S. Mathis

T. Tokieda
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Chapter 1
Tides: A Tutorial

Tadashi Tokieda

Abstract These notes, from a course I gave at a CNRS school in Cargèse in March
2009, have the aim of quickly letting non-experts pick up a physical intuition and a
sense of orders of magnitude in the theory of tides. ‘Tides’ include ocean tides as
well as tidal effects in astronomy. The theory is illustrated by a variety of back-of-
the-envelope problems, some of them surprising, all of them simple.

1.1 What These Notes Do

The reader is asked to refer to, and sooner or later to memorize, the data listed in
Section 1.2. These data allow performing order-of-magnitude estimates in all the
illustrative

Problems, which are boxed against a grey background

. . . and whose solutions are proposed under the line.

Section 1.3 is a review of elementary material on gravitation. I tried to archive
a sampling of neat factoids from the classical literature that are no longer always
reproduced in the modern. The theory of tides proper is in 1.4 and 1.5, emphasizing
ocean tides. 1.6 explores applications to astronomy.

However, the attitude adopted in these notes is an applied mathematician’s, rather
than an oceanographer’s or an astronomer’s: we want to form an intuition for the
principles and to estimate orders of magnitude on toy problems. Predictions of
day-to-day ocean tides subject to accidental features of sea floors and coastlines
are outside our program: nor Laplace’s tidal equations (1776), nor mapping of co-
tidal lines (Whewell, –1836), nor harmonic analysis of tidal records (Kelvin, 1867–)
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are touched upon,1 let alone progress in the last half-century thanks to large-scale
computing and satellite technology. Tout cela est prodigieusement conté dans les
chapitres suivants de ce livre. . .

Technical terms are underlined on their first appearance.

Throughout the notes, an indicator (PIC1 �) means please look at the picture
marked PIC1 on one of the plates on a later page, (� PIC∞) at PIC∞ on an
earlier page.

1.2 Reference Data

Earth � Moon � Sun �

radius R� = 4× 10 7

2π
m R� ≈ 1

4
R� R� ≈ 100R�

mass M� ≈ 6× 1024 kg M� ≈ 1

80
M� M� ≈ 1

3
× 106 M�

density ρ� ≈ 5.5ρwater ρ� ≈ 3.3ρwater ρ� ≈ 1.4ρwater

distance Earth-Moon D� ≈ 60R�
distance Earth-Sun (1 A.U.) D� ≈ 1

4
× 105 R�

density of water ρwater = 103 kg/m3

gravitational constant ≈ 2

3
× 10−10 N m2/kg2

gravitational acceleration at sea level g = GM�
R2�

≈ 10 m/sec2

weight of a small apple ≈ 1 N

speed of light in vacuo c ≈ 3× 108 m/sec

1 year ≈ π × 107 sec, with |error|< 0.4 %

(alternatively ≈ 107.5 sec, with |error|< 0.25 %)

From now on, we shall use the reference data all the time, everywhere.

1Except here.
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Problem 1.21 Which looks wider to a terrestrial observer, the Sun or the full Moon?

We use the reference data to estimate their apparent angular diameters:

2R�
D� ≈ 2 · 100

1
4 × 105

= 8× 10−3 radian, or just under
1

2
degree

2R�
D� ≈ 2 · 1

4
60

= also just under
1

2
degree

which is a memorable round number (1 degree is the width of a finger at the end of
an outstretched arm). This coincidence of apparent diameters is responsible for the
occurrence of total eclipses.

Problem 1.22 How strong is the gravitational attraction between the Earth and the
Moon?

We use the reference data to estimate

GM�M�
D2� = GM�

602R2�
· 1

80
M� = g · 1

602 · 80
·M�

≈ 10 · 1

48 · 6× 103
· 6× 1024 ≈ 2× 1020 N,

yet another memorable round number. Sometimes the trick of rewriting with the aid
of g spares us parades of decimals.

1.3 Gravitation

1.3.1 Why 1/r2?

Why does the gravitational attraction F(r) vary like 1/r2?
Imagine a point mass, which generates a vector field of gravitational force in

the space surrounding it. Let us consider the flux of this field through a sphere of
radius r centered at the mass (PIC1 �).

If we take any two concentric spheres of different radii, then the fluxes through
these spheres must be the same, since we are assuming no other source/sink of
gravitation in the vacuum between the spheres (PIC2 �). So

F(r) · 4πr2 = const �⇒ F(r)∝ r−2 in R
3.

The same argument works in any dimension.2

2Mathematically we have rediscovered the Green’s function for the Laplacian in R
n.
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Theorem 1.3.11 In R
n, the force of gravitational attraction due to a point mass

varies like F(r) ∝ r1−n. The potential varies like r2−n in dimension n �= 2, like
log r in dimension n= 2.

Problem 1.3.12 An infinite line on which mass is distributed uniformly (� PIC3).
How does the attraction F by the line depend on the distance r from the line? The
same problem for an infinite uniform plane (� PIC4).

For the line, we are solving the attraction problem effectively in dimension n= 2, so
F(r) ∝ r−1. For the plane, effectively n = 1 and F(r)∝ ± const, i.e. the attraction
does not depend on how distant we are from the plane, though of course it changes
sign from one side of the plane to the other.

1.3.2 Attraction by a Spherical Shell

Theorem 1.3.21 Inside a spherical shell on which mass is distributed uniformly,
the force of gravitational attraction is zero.3

Proof (� PIC5) The attraction toward right is

rn−1 dΩ

cosα
· r1−n = dΩ

cosα
.

Likewise, the attraction toward left is dΩ/ cosα. These cancel each other, and such
a cancelation occurs in every direction. �

Theorem 1.3.22 Outside a spherical shell, the attraction is as if the shell’s entire
mass were concentrated at its center.4

Proof (� PIC6) Take P ′ to be ‘inverse’ of P with respect to the sphere, such
that OP′ · OP = radius2 = OX2. By similar triangles OPX and OXP′, we have
P ′X/PX = OX/OP. Since by symmetry the overall attraction acts along OP only,
we may consider

(mass element) · (attraction per unit mass) · (component along OP)

= P ′Xn−1 dΩ

cosα
· 1

PXn−1
· cosα =OXn−1 dΩ · 1

OPn−1
.

But OXn−1 ∫ dΩ is the mass of the sphere. �

3The zero-gravity conclusion is equally valid for the inside of a uniform ellipsoidal shell; by ‘shell’
is meant a region bounded between similar concentric (not confocal) ellipsoids.
4Outside an ellipsoidal shell the result is more complicated.
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Fig. 1.1
Newton (1643–1727)

These are propositions LXX, LXXI in book I of Newton’s Principia.

Remark 1.3.23

(1) A similar idea proves that the attractions by the two shaded slices (PIC7 �) are
equal.

(2) These are theorems in potential theory, about any field whose potential u is
harmonic, ∇2u= 0.

Digression 1.3.24 What do you think of the position of the Sun on this British pound
note?

The Sun would be at the center if F(r)∝ r (harmonic oscillator).

Problem 1.3.25 An infinitely long uniform cylindrical shell (PIC8 �). How does the
attraction F by the cylinder depend on the distance r from the cylinder’s axis?

The effective dimension is n= 2 . F(r)= 0 inside, F(r)∝ r−1 outside.

Beware: it is not the case that the attraction by a body is always directed toward
its center of mass.

Problem 1.3.26 Along which direction does a uniform rod AB attract a given point P ?

(PIC9 �) We have x = h tan θ , dx = h sec2 θ dθ , while h sec θ = r . The attraction by
dx is∝ dx/r2 = dθ/h, i.e. the contribution to the attraction is distributed uniformly in
the angle θ . Hence the attraction on P is along the bisector of the angle APB subtended
by the rod. This bisector does not pass through the center of mass unless P happens to
lie on the perpendicular bisector of AB.

In the next problem, a nice property of conic sections allows us to describe the
levels surfaces of the potential, equipotentials.
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Problem 1.3.27 What are the equipotentials of the attraction by the rod?

Through P draw an ellipse of foci A, B . By the focal property of the ellipse, a light
ray from A to P reflects and goes to B . Hence, at P , the angle bisector of APB is
perpendicular to the ellipse. The equipotentials, which at every point are perpendicular
to the attraction, are ellipsoids of revolution all having A, B as foci.

In case the attraction by a body is always directed toward some fixed point, we
can prove the little-known converse to theorems above, using the expansion which
will be introduced in Section 1.3.5:

Theorem 1.3.28 Suppose there exists a point O such that, at every location outside
the body, the body’s attraction on that location is directed toward O .5 Then O is
the body’s center of mass, and the moments of inertia about all axes through O are
equal, i.e. the body is ‘inertially spherical’ around O .

1.3.3 Attraction by a Solid Ball

This can be treated by ‘onionifying’ the solid ball as a layered assembly of spherical
shells (� PIC10).6

In particular, as far as the gravitational field outside is concerned, solid balls with
rotationally symmetric mass distribution can be replaced by points at their centers.
This is why celestial mechanics started off as such a clean subject.

Problem 1.3.31 (� PIC11) Frictionless tunnels are dug in various directions through
a planet of uniform density ρ. Drop stones in the tunnels. How does the stone’s period
of oscillation depend on the direction of the tunnel? What would the period be if the
planet had the average density of the Earth?

Write V = volume of the unit ball. At the instant depicted in (� PIC12), only the
inner ball attracts the stone. For every axis x,

x-component of attraction= GρV rn

rn−1
· x
r
=GρV x,

so along this axis

d2

dt2
x =−GρV x,

which represents a harmonic oscillator. Since GρV is independent of the tunnel, the
period 2π/

√
GρV (= √3π/Gρ ≈ 84 min for the Earth, n = 3) is the same for all

tunnels and all amplitudes (� PIC13,14,15).

5A weak hypothesis, only about the line of attraction passing through O , nothing about the size of
attraction.
6Principia book I, proposition LXXIV.
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Problem 1.3.32 Check directly that the caressing orbit (� PIC15) has the claimed
period.

Balancing the centrifugal force and the attraction,

v2

r
= GρV rn

rn−1
�⇒ period= 2πr

v
= 2π/

√
GρV .

1.3.4 Legendre Polynomials

In many problems in potential theory, the expression

1√
D2 − 2Dd cos θ + d2

= 1

D

[

1− 2
d

D
cos θ +

(
d

D

)2
]−1/2

arises, cf. Section 1.3.5. The parameters d and D will be shown to have natural
interpretations that make d�D, so we are led to expand the expression in powers
of d/D. We define the coefficients by

[· · ·]−1/2 =
∑

n�0

Pn(cos θ)

(
d

D

)n

and call them Legendre polynomials.7 The memorable, and the most important, low-
degree Legendre polynomials are

P0(z)= 1, P1(z)= z, P2(z)= 3z2 − 1

2
, P3(z)= 5z3 − 3z

2
, · · · .

(Alas, the memorable pattern does not continue.) It can be shown that in general

Pn(z)= 1

2nn!
dn

dxn
(
z2 − 1

)n ∀n� 0,

degPn(z)= n, Pn(1)= 1. Please familiarize yourself with their graphs (PIC16�).

Fig. 1.2
Legendre (1752–1833)

7Traditionally they are defined as solutions to a certain ODE that crops up when we try to separate
∇2u= 0 in spherical polar coordinates. The definition chosen here is equivalent to the traditional
one, but it is better motivated and easier to use for us.
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The portrait of Adrien Legendre shown above is a famous one reproduced in
many books. It recently came to light that this was a portrait of another, Louis,
Legendre, cf. Notices of the AMS 56 (2009) 1440–1443.

1.3.5 Approximation Formulae for Bodies of Arbitrary Shape

As we saw in Sections 1.3.2 and 1.3.3, when the body is rotationally symmetric,
its attraction is the same as that by a point mass. MacCullagh’s formulae below
give next-order corrections to the attraction when the body is no longer rotationally
symmetric.

(i) The potential of a body in the far field.
(PIC17 �) Notation: M mass of the body; I1, I2, I3 its principal moments
of inertia around the center of mass O; I its moment of inertia around the
axis OP . Then minus the potential at P divided by G, acting on a unit
mass, is
∫

dM

XP
=
∫

dM

D
[· · ·]−1/2 = 1

D

∫
dM

{

1+ cos θ
d

D
+ 3 cos2 θ − 1

2

(
d

D

)2
+ · · ·
}

(cf. Section 1.3.4 for the expansion of [· · ·]−1/2). The term cos θd/D gives 0 on
being integrated. On the other hand,

3 cos2 θ − 1

2
= 3(1− sin2 θ)− 1

2
= 1− 3

2
sin2 θ,

so the above integral gives

M

D
+ I1 + I2 + I3 − 3I

2D3
+ · · · .

In the ‘inertially spherical’ case I1 + I2 + I3 − 3I = 0, and all the higher-order
terms vanish, too.

(ii) The potential between two far bodies.
Notation as in (PIC18 �).

−potential

G
= MM ′

D
+ M(I ′1 + I ′2 + I ′3 − 3I ′)

2D3
+ M ′(I1 + I2 + I3 − 3I

)

2D3
+ · · · .

Fig. 1.3
MacCullagh (1809–1847)
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1.4 Tides—Static Picture

1.4.1 Plan

Why do tides exist?
Imagine two coconuts floating together near an attracting body (� PIC19). They

feel a slight difference in the force of attraction, because one of them is slightly
closer to, and the other one is slightly farther from, the attracting body. If we subtract
the average attraction, then we see (� PIC20).

This, in a nutshell, is what the tidal effect is: difference, or derivative, in the
attraction. The attraction varies like inverse square in the distance from the body,
therefore the tidal effect, its derivative, varies like inverse cube. Qualitatively, the
tidal effect is present as soon as the graph of the force as function of the distance is
concave; the specific form F(r)∝−1/r2 is sufficient but not at all necessary.

Still, there are many other things we need to understand, for dynamic responses
of a system to tidal effects can be tricky. For example: surely, as do the majority of
textbooks since Newton (1687), we guess the (exaggerated) shape of the ocean to
look like (PIC21 �)?. . . Well, that guess is wrong.

The right prediction looks rather like (PIC22�).8 This ‘paradox’ is one example
among many of the characteristics about tides we try to understand in these notes.

Here is the plan we shall follow:

Theory of tides

• generating force for tides—static picture
• response of the ocean to this force—dynamic picture

}

neglecting dissipation

• effects of dissipation, astronomical applications, etc.

Pictorial Convention In all the pictures, the body that is exerting the attraction,
called

primary,

will be depicted on the right, while the body that is subjected to the attraction, called

secondary,

will be depicted on the left. In reality, everybody is attracting everybody all at
once; ‘primary’ and ‘secondary’ are mere labels to clarify whose tidal influence
on whom we are studying. Confusingly, primary and secondary can swap from
one problem to the next, e.g. for ocean tides (1.4.3, 1.6.3) the Moon is primary
and the Earth secondary, whereas for tidal locking (1.6.2) it is the other way
around.

A good complementary reading is J. Lighthill, Ocean Tides from Newton to
Pekeris, Israel Academy of Sciences and Humanities, 1995.

8It goes without saying that the observed tides of the real ocean are enormously complicated and
do not resemble either of these pictures. But we are saying that, if we take the simplest model, of
a spherical Earth covered by a sheet of ideal fluid, subjected to the dynamics of the Earth and the
Moon, then the picture is (PIC22 �) rather than (PIC21 �).
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1.4.2 Tidal Potential and Tidal Force

Let us figure out the tidal potential, then the tidal force, by making the picture of
Section 1.4.1 quantitative.

We write the potential as

Utide =Ucf +Upr

where the three U s account for tidal force, centrifugal force, and attraction by the
primary, in energy per unit mass. Since we are calculating the tidal effect of the
primary at a given location in space like the black dot • of (PIC23�), the attraction
by the secondary is irrelevant to us. Let us erase the secondary (PIC24 �). Then
our • is in orbit around the primary, so

orbital centrifugal acceleration≈−GM

D2
�⇒ Ucf = GM

D2
d cos θ.

Next,

Upr =−GM

D
[· · ·]−1/2 =−GM

D

{

1+ cos θ
d

D
+ 3 cos2 θ − 1

2

(
d

D

)2

+ · · ·
}

(cf. 1.3.4 for the meaning of [· · ·]−1/2 and its expansion in terms of Legendre poly-
nomials). In the last sum { }, the constant 1 is immaterial for the potential and
cos θd/D is canceled by Ucf. Altogether

Utide ≈−GM

D3
d2 3 cos2 θ − 1

2
,

whence a formula often quoted in the literature for the representative tidal force per
unit mass

F =− ∂

∂ d
Utide

∣
∣
∣
d=r,θ=0

≈ 2
GM

D3
r .

F varies like D−3 in the distance D from the primary. A quicker way to derive
this formula is that the attraction varies like inverse square, while the tidal force is
the small difference in the attraction over a displacement �D ≈ −r , i.e. it arises
essentially as the derivative of D−2:

F ≈ ∂

∂D

GM

D2
·ΔD ≈ 2

GM

D3
r.

(Recall the ‘nutshell’ comment in Section 1.4.1.)
Now

3 cos2 θ − 1

2
= 1

2

(

3
1+ cos 2θ

2
− 1

)

= 3

4
cos 2θ + 1

4
.

The last term 1/4, independent of θ , cannot deform the sphere. Rewriting Utide with
the aid of g =Gm/r2 (gravitational acceleration on the surface of the secondary),
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we finally obtain the part utide of the tidal potential responsible for deforming the
sphere, as

utide =−3

4

M

m

(
r

D

)3
d2

r
g cos 2θ

in energy per unit mass. Hence the tidal force f per unit mass that deforms the
sphere has components (PIC25 �)

fvert =− ∂

∂d
utide

∣
∣
∣
d=r =

3

2

M

m

(
r

D

)3

g cos 2θ,

fhoriz = 1

d

∂

∂θ
utide

∣
∣
∣
d=r =−

3

2

M

m

(
r

D

)3

g sin 2θ,

which over the surface of the secondary give the picture (PIC26 �). We see that
the effect of the tidal force is to stretch the secondary in the primary’s direction and
to squeeze it in the transverse directions, in the shape of a rugby ball. The direction

of f varies as a function of θ whereas its magnitude
√
f 2

vert + f 2
horiz does not. We

name and retain for future use the key ratio

f

g
= 3

2

M

m

(
r

D

)3

.

Problem 1.4.21 Estimate f/g for the Earth (secondary) under the influence of the
Moon (primary).

f

g
= 3

2

M�
M�
(
R�
D�
)3
≈ 3

2
· 1

80
·
(

1

60

)3
≈ 8.6× 10−8,

which is tiny.

If the ellipticity of the Moon’s orbit (PIC27 �) is taken into account, it turns
out that f/g varies between 7.5 × 10−8 at the apogee and 10−7 at the perigee.
Nevertheless, this tiny ratio produces the majestic ocean tides that wash the Earth.

1.4.3 Shape of the Ocean

Imagine an ocean that covers the secondary (PIC28 �).

−utide|d=r = gh �⇒ h(θ)= 3

4

M

m

(
r

D

)3

r cos 2θ = 1

2

f

g
r cos 2θ.

Spinning this about the line directed toward the primary (rightward in the pictures),
we obtain the rugby-ball shape of the ocean as deformed by the primary’s tidal force
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(PIC29 �). The reader is reminded that θ is the angle measured from this line, not
colatitude from the North Pole. But on the side of the secondary facing the primary,
θ happens to represent latitude. (PIC30 �) shows that, as the secondary rotates on
its axis, a point on a given latitude θ traces a circle and attains h of the low tide at×.
This h also equals h at •. The upshot is that h has the common value of

minh= 1

2

f

g
r cos

(

2 · π
2

)

=−1

2

f

g
r

for all latitudes θ . Clearly �h(θ) = h(θ) − minh, and we have9 cos 2θ − 1 =
2 cos2 θ . The daily amplitude of the tide �h(θ) as a function of the latitude θ is

�h(θ)= f

g
r cos2 θ.

It is proportional to the key ratio f/g.

Problem 1.4.31 At what latitude on the Earth does the daily amplitude of the tide
attain its maximum? minimum? Estimate these amplitudes.

Using f/g from Problem 1.4.21,

max
θ

�h(θ)= f

g
R� ≈ 8.6× 10−8 · 4× 107

2π
≈ 0.5 m at the equator (θ = 0, π),

min
θ

�h(θ)= 0 at the poles (θ = π/2).

So far we have pretended that the Earth’s axis of rotation was perpendicular to
the plane of the Moon’s orbit. In reality the axis is tilted (PIC31 �): this produces
two unequal high tides, ‘small’ high tide and ‘big’ high tide, and brings the low tides
nearer the ‘small’ high tide (PIC32 �).

The axial tilt β varies between 17° and 29° owing to the precession of the Moon’s
orbit. Since the lunar revolution (period≈ 27+1/3 days) goes in the same direction
as the terrestrial rotation (period = 24 hours), at a given location on the Earth a high
tide arrives every

1

2

(

24+ 24

27+ 1/3

)

≈ 12 hours 26 minutes,

and this arrival gets delayed by 52 minutes (= twice the above number − 24 hours)
per day.

The behavior of a real ocean tides depends sensitively on local geography. The
largest �h in the world is observed in the Bay of Fundy (Canada), where it attains
17 m.

9Undoing an earlier trigonometric transformation of Section 1.4.2.
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1.4.4 What About the Sun?

Problems 1.4.21 and 1.4.31 examined the Moon’s tidal influence. Let us estimate
how the Sun’s influence compares with it. In view of the expression for the key ratio
f/g in Section 1.4.2,

�h�
�h� = f�

f� = M�
M�

(
D�
D�
)3

≈
1
80

1
3 × 106

· 4003 ≈ 2.4.

Thus, the influence of the Sun is modest but far from negligible.
(� PIC33) When the three bodies (Sun, Earth, Moon) become aligned, the lunar

and solar tides strengthen each other; this is spring tide, and the configuration is

called syzygy.10 In contrast, they weaken each other when the three bodies form a
right angle; this is neap tide, and the configuration is called quadrature.

1.5 Tides—Dynamic Picture

1.5.1 Forced Oscillator

It is time to return to the ‘paradox’ of Section 1.4.1 (PIC34 �).
A preparatory discussion on the relative motion between the Moon (primary) and

the Earth (secondary). Normally, over a time-scale of a day, we think of the Moon
as stationary and of the Earth as rotating on its axis. The ocean as a whole rotates
with the Earth:11 after all, if instead the ocean were stationary and the solid Earth
rotated underneath it, the sea floor would be swept by the water at a mad speed of
4× 107 m/day≈ 1666 km/hour. In the (non-inertial) frame in which the Earth and
the ocean are together stationary, it is the Moon that runs around them—once a day,
and retrograde. Until the end of Section 1.5 we shall work in this frame.12 With the
preparation out of the way, back now to the ‘paradox’.

What will happen if, in the absence of the revolving primary, the ocean on the
stationary secondary is put in the state (PIC35 �) and released? It will oscillate
as in (PIC36 �), with some period Tfree. In the presence of the primary, the tidal
effect exerts a periodic external forcing, with some period Text, and the oscillating
ocean responds to it by modifying its behavior.

Theorem 1.5.11

Text > Tfree �⇒ oscillator’s response in phase with external forcing.
Text < Tfree �⇒ · · · out of phase · · ·

10Etymology: syzygy < Greek σύζυγoς (spouse) < ζυγóς (yoke), cf. conjugate < Latin jugum.
11We are modeling a spherical Earth covered by a sheet of ideal fluid, cf. footnote 8 in 1.4.1.
12As does the human society, which insists that the Moon and the Sun rise in the east and set in the
west. Actually most of this motion is caused by us spinning from west to east.
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The conclusions can be checked by a home experiment. Hang a pendulum from a
pivot, and wriggle the pivot horizontally. If this external wriggling is slow compared
with the free oscillation of the pendulum (Text > Tfree), then we observe the in-phase
response (� PIC37). If the external wriggling is fast (Text < Tfree), then we observe
the out-of-phase response (� PIC38).

Proof The governing ODE

d2

dt2
x +
(

2π

Tfree

)2

x = f exp

(

i
2π

Text
t

)

is solved by

x(t)= f
( 2π
Tfree

)2 − ( 2π
Text

)2 exp

(

i
2π

Text
t

)

.

The coefficient in front of exp has the same sign as f if Text > Tfree, the opposite
sign if Text > Tfree. �

1.5.2 Free Oscillation of the Ocean

To apply Theorem 1.5.11 to the tide, we estimate Tfree for the free oscillation of the
ocean, following Airy’s canal theory (1845).

Imagine digging a canal of depth H all the way along the equator (� PIC39).
Let a hump of water, collapsing under its own weight, propagate as a wave along
this canal, as in (� PIC40).

Theorem 1.5.21 The speed of propagation of this wave is
√
gH .

Proof (� PIC41) Within a narrow slab of width �x, the conservation of volume
says

∂

∂t
h�x =H ·

(

v+ �v

2

)

−H ·
(

v− �v

2

)

�⇒ ∂h

∂t
=H

∂v

∂x
.

(� PIC42) The equation of momentum per unit mass for a block of water of
height 1 says

∂

∂t
1 ·�x · v = g

(
H + �h

2

)
�x − g

(
H − �h

2

)
�x

�x

�⇒ ∂v

∂t
= g

∂h

∂x
.

Out drops ∂2h/∂t2 = gH∂2h/∂x2, a wave equation with the propagation speed√
gH . �
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Fig. 1.4
Airy (1801–1892)

Problem 1.5.22 Why do waves arrive with their fronts parallel to the beach?

Because the dependence: speed =√gH causes the wave front to turn (� PIC43).

Problem 1.5.23 Why do waves get steeper as they approach a beach and eventually
break (PIC44 �)?

Because the profile of a wave strains as the depth of water varies. Say a wave passes
over an underwater ‘step’. In (PIC45 �) the front of the wave moves faster than the
rear �⇒ the wave gets stretched and flatter. In (PIC46 �) the rear of the wave moves
faster than the front �⇒ the wave gets squeezed and steeper.

For H = average depth of the ocean ≈ 4 km, we find

√
gH ≈

√
1

100
· 4 km/sec≈ 700 km/hour

(only a bit slower than a jet plane). At this speed the wave tours half of the canal,
i.e. half-circumference of the Earth, and the water humps due to the tide exchange
their positions, in

1
2 · 40000

700
≈ 30 hours= Tfree.

As regards Text, it is easy: the Moon runs from one side of the Earth to the other
side, retrograde, in Text ≈ 12 hours.

Text < Tfree implies, by Theorem 1.5.11, that the response of the ocean must be
out of phase with the tidal force, which means (PIC47 �).13

13In order to have the in-phase picture (PIC48 �), we would require a deeper ocean H > 20 km.
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Fig. 1.5
Roche (1820–1883)

Remark 1.5.24

(1) Tfree of the oscillation of a spherical sheet of water of depth 4 km, which is more
realistic than that in a canal, turns out to be ≈24 hours.14 Thus the out-of-phase
inequality Text < Tfree is satisfied with margin to spare.

(2) Our estimate of Tfree is sensible: when a major earthquake strikes Chile,
Japan receives a tsunami approximately 24 hours later (and vice versa), the
tsunami having crossed the Pacific, which extends about half-way around the
Earth.

(3) The oceanographers are interested in the ocean tides, but the astronomers are
more interested in the tidal response of a solid crust. The latter response is
(PIC49 �) rather than (PIC50 �) because, of the elastic waves in the crust,
even the slowest15 travels at ≈1 km/sec, which implies the in-phase inequality
Tfree ≈ 5.5 hours < Text. The amplitude of such a tide is of the order of 0.5 m
on the equator.

1.6 Astronomical Applications

1.6.1 Tidal Tearing

What holds us on the ground (PIC51�)? It is g. If the tidal force f per unit mass of
the primary becomes ‘a few times’ g of the secondary (PIC52�), then the particles
on the secondary can no longer hold together. Whereupon the secondary begins to
be torn apart by the tidal force of the primary. . . .

The Roche limit (1848) is the proximity within the primary at which this tearing
begins. Roughly speaking, there exists a critical distance DRoche such that

f

g
= 3

2

M

m

(
r

DRoche

)3

≈ ‘a few times’

�⇒ DRoche ≈ ‘a few times’

(
M

m

)1/3

r = ‘a few times’

(
P

ρ

)1/3

R.

In the last equality we used m∼ ρr3, M ∼ PR3.

14A hump spreads and propagates as a ring and meets as a new hump on the antipodes.
15Rayleigh wave (1885).



1 Tides: A Tutorial 23



24 T. Tokieda

Alternative interpretation: DRoche is attained when the amplitude of the tide �h

of Section 1.4.3 exceeds the radius r of the secondary.
Let us estimate what ‘a few times’ should mean. (� PIC53) An angel deposits

a pair of coconuts in contact (each with parameters m, r , ρ) at the distances D ± r

from the primary. Will the coconuts detach themselves?
The gravitational cohesion between the coconuts is Gm2/(2r)2. Competing

against this, the force of detachment due to the tide is

attraction|D−r − attraction|D+r ≈ ∂

∂D

(
GMm

D2

)

· (−2r)

= 4GMm

D3
r,

which is 2m times the representative tidal force F per unit mass of Section 1.4.2.
Therefore the detachment begins at

DRoche =
(

16
M

m

)1/3

r ≈ 2.5

(
M

m

)1/3

r.

Thus, ‘a few times’ should be between 2× and 3×.

Example 1.6.11 Instances of tidal tearing include: the formation of planetary rings
and, in more recent history, the fragmentation of the comet Shoemaker-Levy 9 as it
approached Jupiter (July 1992).

1.6.2 Tidal Locking

Why does the Moon always show the same face to us?
Imagine a barbell (secondary) in circular orbit around M (primary), at angular

frequency ω = ϕ̇ (PIC54 �). ω is determined by the condition that, in a circular
orbit, the centrifugal force and the attraction balance:

(Dω)2

D
= GM

D2
�⇒ ω=

√
GM

D3
.

The Lagrangian may be written down in terms of the parameters given in
(PIC54 �). We have

kinetic energy= 1

2
m
(
Ḋ2+ + (D+ϕ̇+)2 + Ḋ2− + (D−ϕ̇−)2),

potential energy=−GMm

(
1

D+
+ 1

D−

)

and from geometry

D± ≈D ± � cosψ Ḋ± ≈∓�ψ̇ sinψ�⇒
ϕ± ≈ ϕ ± �

D
sinψ ϕ̇± ≈ ω± �

D
ψ̇ cosψ.

(�/D)2 being neglected as high order, the approximate Lagrangian comes out to be

L= kin− pot≈ 3mD2ω2 +m�2(ψ̇2 − 4ωψ̇ cos2 ψ + 3ω2 cos2 ψ
)
.
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The Euler-Lagrange equation

∂L

∂ψ
− d

dt

∂L

∂ψ̇
= 0

reads

(2ψ̈)+ 3ω2 sin(2ψ)= 0,

which is the equation of pendulum motion. The frequency of small oscillations of
this pendulum is

√
3 times the frequency of the orbital revolution. With dissipation,

any motion of the barbell asymptotes to the unique equilibrium ψ = 0.
Now suppose a secondary (e.g. Moon) revolves around a primary (e.g. Earth).

Typically the secondary is not ‘inertially spherical’. We can think of a barbell as
its toy model. Then on the orbital revolution a tidal oscillation gets superposed
(PIC55 �). With dissipation, the oscillation asymptotes to ψ = 0, i.e. settles in
the radial direction to the primary, and so the secondary ends up getting locked with
its face toward the primary.

This is a tidal effect. Indeed, in constant gravity (zero derivative in the attraction)
there is no torque restoring the barbell to face the primary (PIC56 �).

Examples 1.6.21 Instances of tidal locking include: mutual locking of Pluto and
Charon and, in more recent history, stabilization of artificial satellites (to keep them
facing the Earth), notably Gemini 11 and 12 (1966).

1.6.3 Tidal Dissipation

As discussed in Section 1.5.1, in the absence of any tidal force, the ocean would
rotate together with the solid Earth underneath as a single rigid body (PIC57 �)
�⇒ no dissipation.

In the presence of the Moon and its tidal force (PIC58 �), the ocean is ‘held
in place’ and rubs the solid Earth, which is rotating underneath �⇒ dissipation,
another effect of the tide.

Let us estimate the rate of tidal dissipation.
We distinguish two kinds of angular momentum involved in this phenomenon:

the one carried by the secondary (e.g. Earth)’s rotation about its own axis, which we
call spin angular momentum, and the other carried by the revolution of the primary

(e.g. Moon) around the secondary,16 which we call orbital angular momentum. The
spin a.m. and the orbital a.m. are respectively

I ψ̇ and L=D×mredDφ̇

where we define mred =Mm/(M +m), the so-called reduced mass.
The tidal torque τ due to the primary acts on the secondary’s spin a.m. and does

work at the rate

Ė = τ
(
ψ̇ − φ̇

)= I ψ̈
(
ψ̇ − φ̇

)
.

16More precisely, the revolution of the primary and the secondary around each other.
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The details of the dissipation are so complex that it is impracticable to estimate Ė

from first principles. But we can estimate Ė once we measure observationally the
values of various parameters on the right-hand side of this equation. These stand for:
ψ̇ = how fast the secondary rotates about its axis, ψ̈ = how this rotation is being
decelerated,17 and φ̇ = how fast the primary revolves around the secondary. It will
be helpful to note in addition that, since a month lasts approximately 30 days,18 we
have for the Earth-Moon pair

φ̇

ψ̇
≈ 1

30
.

Problem 1.6.31 Estimate the tidal dissipation on the Earth by the Moon.

I ≈ 2

5
M�R2� ≈ 2

5
· 6× 1024 ·

(
4× 107

2π

)2
≈ 1038 kg m2

ψ̇ = 2π

24 · 60 · 60
≈ 7.3× 10−5 sec−1 (childhood knowledge)

ψ̈ ≈−4.6× 10−22 sec−2 (observational data).

Neglecting φ̇/ψ̇ � 1,

Ė ≈ I ψ̈ψ̇ ≈−3.7× 1012 J sec−1 ≈−1.2× 1020 J year−1.

This is double the consumption of electricity in the world≈−6.1×1019 J year−1,
according to the CIA data of 2005.19

I have been told that an astonishing 1/3, or some such fraction, of this dissipation
takes place in the Bering Sea and the Sea of Okhotsk.

Digression 1.6.32 Sometimes we hear that the Coriolis force makes water spin one
way or the other as it drains down a sink. Estimate how significant the Coriolis force
is.

The Coriolis force per unit mass of water is 2ψ̇×v. A natural standard for comparison
is g, which the water also feels. From a sink of depth h water drains at speed v =√2gh
by Torricelli’s law (1643). Hence, taking h≈ 0.1 m,

2ψ̇ × v

g
≈
√

8h

g
ψ̇ ≈ 2× 10−5,

which is utterly invisible. The phenomenon is dominated by irregularities in the build
of the sink and by random initial conditions of the water.

17ψ̈ < 0 because the friction on the sea floor by the ‘tidally held’ ocean slows down the secondary’s
rotation.
18Lest the astronomers complain: anomalistic, draconic, sidereal, synodic. . . . For our approximate
purposes here it does not matter which, they are all a little under 30 days.
19Julius Caesar IV. iii. 218–219 may come to some people’s mind.
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We take up another consequence of tidal dissipation that affects the fate of a
system consisting of a primary revolving around a secondary.

Tidal dissipation brakes the secondary’s spin a.m. I ψ̇ . Meanwhile, the total a.m.
of the system I ψ̇ +L is conserved. To compensate, the orbital a.m. L grows. As it
orbits around faster,20 the primary must drift away from the secondary (PIC59 �),
along a spiral.

Let us estimate the rate at which the primary drifts away from the secondary.
Refer again to (PIC58 �).

In quasi-circular orbit,

mred
(
Dφ̇
)2

D
≈ GMm

D2
�⇒ D ≈ L2

GMmmred
.

On account of the conservation of total a.m. we have L̇=−I ψ̈ , which implies

Ḋ =−2D2φ̇I ψ̈

GMm
≈−2

φ̇

ψ̇

D2

GMm
Ė =−2

φ̇

ψ̇

Ė

mutual attraction
.

Ė < 0 tells us that Ḋ > 0 .

Problem 1.6.33 Estimate Ḋ� for the Earth-Moon pair. What are we led to conclude
if we extrapolate naively into the past?

Using Ė from Problem 1.6.31 and the size of the mutual attraction from Problem 1.22,

Ḋ� ≈−2 · 1

30
· −1.2× 1020

2× 1020
≈ 0.04 m year−1 = 4 cm year−1.

This is how fast the Moon is drifting away from the Earth. So

−D�
Ḋ� ≈ 60 · 4×107

2π
0.04

≈ 1010 years

in the past, the Moon must have been in contact with the Earth.

Our estimate of Ḋ� is consistent with observational data, yet our naive extrapola-
tion leads to double the geological estimate of the age of the Earth-Moon pair. The
error is imputable to our linear extrapolation: the tidal dissipation was more efficient
when the Moon was nearer the Earth.

For controversies surrounding other methods of estimating the age, I recommend
T. W. Körner, Fourier Analysis, Cambridge UP, 1988, chapters 56, 57, 58.

Examples 1.6.34 Where does the energy dissipated by the tide go? It heats up the
secondary. Tidal heating is dramatic when a tidal force periodically kneads a small

20And since simultaneously the Earth is spinning slower, we terrestrials have the impression that
the Moon is orbiting all the faster. Halley was the first to notice this (1695).
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secondary in resonance, e.g. Io : Europa : Ganymede (4 : 2 : 1 resonance) around
Jupiter, driving on Io the most violent volcanism in the solar system.

1.6.4 Visit to the Horizon

Can we visit the horizon of a black hole without being torn apart by its tidal force?
To answer this question, we prepare one concept.

(� PIC60) Imagine an astro-tourist in the gravitational field of a black hole.
Initially she is at a distance D0 from the black hole and launches herself with an
outward speed v0. Will she be able to escape to infinity? At the start, her energy was

1

2
mv2

0 −
GMm

D0
.

At the end, if she manages to escape to infinity with no residual speed to spare, then
her energy will be

1

2
m02 − GMm

∞ = 0.

It follows that the escape requires the inequality

D0 �
2GM

v2
0

.

In other words, if the astro-tourist starts with D0 < 2GM/v2
0 , she will exhaust her

momentum before reaching infinity and will fall back toward the black hole. But v0
available is at most the speed of light c. Therefore

DSch = 2GM

c2
= 2GM�

c2

M

M�

≈ 2 · 2
3 × 10−10 · 2× 1030

(3× 108)2
≈ 3× 103 M

M� in meters,

called the Schwarzschild radius (1915),21 represents the size of the horizon, from
the interior of which nothing, not even light, can escape.22

Fig. 1.6
Schwarzschild (1873–1916)

21He wrote this paper while serving on the Russian front in WWI, a year before he died. The other
paper he wrote in the same year supplied a quantum explanation of the Stark effect.
22A rigorous calculation using general relativity yields the same expression 2GM/c2 for DSch.
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Problem 1.6.41 What are the Schwarzschild radii of the Earth, the Moon, the Sun?

Approximately 1 cm, 0.1 mm, 3 km.

It remains to relate the Schwarzschild radius to the Roche limit. To visit the
horizon without being hurt, the astro-tourist would like the representative tidal force
F per unit mass of Section 1.4.2 to be Ng�, with N = 2 or 3 at most. At the horizon,

F
Ng� =

2 GM

D3
Sch

d

Ng� where d = your diameter

= 2GM�
(3× 103)3g�

d

N

(
M�
M

)2

≈ 2 · 2
3 × 10−10 · 2× 1030

27× 109 · 10

d

N

(
M�
M

)2

≈ 109 d

N

(
M�
M

)2

.

This ratio is maintained within � 1 provided

M �
√

109 d

N
M� ≈ 3× 104M�

for the choice d ≈ 2 m, N = 2. A relatively painless visit to the horizon is possible
provided the black hole is massive enough.

The center of our Galaxy is said to have mass ≈ 4 × 106M�. Its horizon, at
DSch ≈ 0.01 A.U., is a possible tourist attraction.

(� PIC∞)



Chapter 2
Investigations of Tides from the Antiquity
to Laplace

Vincent Deparis, Hilaire Legros, and Jean Souchay

Abstract Tidal phenomena along the coasts were known since the prehistoric era,
but a long journey of investigations through the centuries was necessary from the
Greco-Roman Antiquity to the modern era to unravel in a quasi-definitive way many
secrets of the ebb and flow. These investigations occupied the great scholars from
Aristotle to Galileo, Newton, Euler, d’Alembert, Laplace, and the list could go on.
We will review the historical steps which contributed to an increasing understanding
of the tides.

2.1 Introduction

In the Western world, the first questionings about the ebb and flow date back to
the 4th century B.C., when learned people of Greece began to acquire a precise
knowledge of motions in the sea thanks to travels mainly driven by conquests.
They raised basic questions such as: ‘What causes this wide, periodic, breathing-
like motion?’ ‘Why is it so small in the Mediterranean unlike in large oceans?’ The
phenomenon was disconcerting, for it is extremely regular in time and irregular in
space. From that time to Newton and Laplace, explanations of the tidal phenomena
were numerous, sometimes contradictory, often ingenious. They constitute an ad-
venture of the human thought, which we will analyse in this chapter. In particular
we will try to illustrate: when the origin of the tidal phenomena was discovered;
how the mathematical and physical tools to describe the tides were developed; how
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the scientists succeeded in solving a problem which at the beginning had utterly
bewildered them.

The concept of tide has two facets. First, we can consider the tidal force, which
arises any time an extended body A is subject to the gravitation of another body B .
The tidal force exists even in case A is a rigid body and not capable of deformation.
Second, we can consider the effects of the tidal force exerted by B on deformable
parts of A, for example ocean tides due to the combined gravitational tidal torque
exerted by the Moon and the Sun on the bulk of the oceans. Another example is the
terrestrial tides, due to the elasticity of the Earth’s crust, ordinarily not perceptible
but technically observable since the end of the 19th century. In our study, we will
focus on the concept of tidal force rather than that of tidal deformation, even if it
was via observations of the latter that the scientists have finally understood the real
cause of the former.

We have divided our study chronologically. In the first section we discuss ob-
servations of tides from the Antiquity to the beginning of the 17th century. We
show that learned people of the Antiquity and of the Middle Ages already had a
good inkling of the nature and the behavior of ocean tides, and that hypotheses con-
cerning their origin proliferated. In the 17th century several theories dominated the
debates, which had little in common with one another. We describe in particular
the theories by three great scientists: Kepler, Galileo, and Descartes. One section
will be devoted entirely to Newton. We give details on his explanation of tides in
his Philosophiae Naturalis Principia Mathematica (Principa for short), published
in 1687. This work, based on a succession of geometric considerations, evaluates
among other things the amplitude of the tidal force, and is regarded as the start-
ing point of the true explanation of tides. Another section deals with the works of
Daniel Bernoulli, Euler, and d’Alembert: in a relatively short span of time around
1740, these scientists improved the calculations of tidal effects exploiting then new,
very efficient tools of calculus.

We conclude our history with the monumental work of Laplace, which was elab-
orated over a period of more than half a century. Laplace’s work, supported by the
tool of spherical harmonics, is the foundation of the modern theory of tides. A more
complete study of the tides from the antiquity to modern times was done by D.E.
Cartwright [2].

2.2 Study of Tides in the Antiquity1

The first precise recorded observations of tides go back to the Antiquity, outside
the Mediterranean where the ebb and flow phenomena are negligible and cannot be
easily detected. Greek mathematicians listened to travelers, often involved in mili-
tary conquests, to form their description of oceanic tides. Among them, Nearchus,2

1We make an important use of the work of P. Duhem [8, 9].
2Born in Crete around 360 B.C., he participated in the expedition of Alexander the Great, being
in charge of a fleet of 120 vessels, transporting 10 000 people. He was in charge of establishing a
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Fig. 2.1 Poseidonios
(135–50 B.C.)

around 325 B.C., reported on tides of the Indian Ocean, whereas Pytheas,3 an ad-
venturer from Marseille, mentioned tides of the Atlantic during his trip from Gades
in southern Spain to Brittany, 340–325 B.C. Pytheas noticed the fundamental cor-
relation between ascending tides and the full Moon. The geometer Eratosthenes
(276–194 B.C.)4 carefully studied the flows inside the strait of Sicily. He pointed
out that their frequency was nearly half a day, with a positive peak corresponding
to the instant when the Moon is in the meridian or anti-meridian direction, and a
negative peak when the Moon is close to the horizon. Around 150 B.C. Seleucos,
a native of the Red Sea, pushed further the analysis of tides. He noticed that their
amplitudes get all the greater as the declination of the Moon is larger.

Poseidonios5 (Fig. 2.1) (135–50 B.C.), as a member of the Stoic school, was an
adept of the Aristotelian conception of the universe, an imperfect sublunar world and
a perfect supralunar one. For him the behavior of tides, governed by unexplained
powers, confirmed the importance of the Moon in human destiny. This argument
prevailed until the Middle Ages. In addition to the observation of the half-diurnal
frequency of tides, Poseidonios recognized that their amplitudes (associated with
what we call nowadays the tidal coefficient) are strongly linked with the phases of
the Moon, being maximal during the syzygies (new or full Moon), minimal during
the quadratures (when the Earth-Moon and Earth-Sun directions are perpendicular).

new maritime route between the Indus and the Persian Gulf. His achievements were described by
Strabo in Geography (vol. XV).
3One of the oldest scientific explorers. His accounts and astronomical observations were used later
by Eratosthenes and Hipparchus.
4Astronomer, geographer, philosopher, and mathematician, well known for his measurements of
the Earth radius by studying shadows produced by the mid-day Sun at Cyrene and Alexandria.
5Geographer and historian, he was keen on measurements (meridian length, height of the atmo-
sphere, distance to celestial bodies). He wrote treatises in physics and meteorology.
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Fig. 2.2 Strabo
(58 B.C.–25 A.C.)

The geographer Strabo (58 B.C.–25 A.C.) (Fig. 2.2), who compiled the scien-
tific knowledge of his times, emphasized the results obtained by Poseidonios. He
mentioned that his predecessor recognized that oceanic tides undergo three kinds
of motion, each related to an astronomical cycle: diurnal, monthly, and yearly. He
also showed how Poseidonios understood that each time the elevation of the Moon
reaches about 30°, the sea begins to rise progressively to reach a peak when the
Moon crosses the meridian plane. Moreover Strabo reports that Poseidonios ob-
served annual variations with peaks of amplitude around the equinoxes.

Supplementing these observations Pliny the Elder6 (23–79 A.C.) made a remark-
ably precise discovery: he revealed a time lag between the instant when the Moon
crosses the meridian/anti meridian and the instant when the tide reaches its maxi-
mum.

As the above enumeration shows, the Ancients knew the main characteristics of
tides with remarkable accuracy and perspicacity. Nevertheless, a physical explana-
tion remained to be found. Seleucos accepted the idea that the Earth rotates around
its axis. He explained that this rotation creates a whirlwind which is modified by the
presence of the Moon. The resulting effect is an activation of the oceanic motion.
From his side, Poseidonios explained that the Moon had a larger influence than the
Sun: the Sun, as a powerful fire, destroys all the vapor it creates at the surface of
the ocean; the Moon, an attenuated fire, cannot vaporize the fluid masses and thus
favors the ebb and flow. The Sun has no direct effect on the tides, but an indirect one
as it lights the Moon, which in its turn acts on the oceans.

As far as we can gather from the surviving testimonies, Arab scholars did not add
substantial knowledge or theory dealing with the tides. But as in the other fields of
astronomy and mathematics, they played a key role in the transmission of scientific
knowledge from the Greeks to the Western countries. The astronomer and astrologer

6Roman author, naturalist, and philosopher, he wrote Naturalis Historia, an encyclopedia of much
of the knowledge of his time, the largest single work to have survived from the Roman empire to
the present day, encompassing botany, zoology, astronomy, geology, and mineralogy.
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Abu Maishar al-Bakhli (787–896), more often called Albumasar (787–886),7 men-
tioned the three kinds of cycles accompanying the tides (semi-diurnal, fortnightly,
and semi-annual) as well as the leading effect of the Moon as pointed out by Posei-
donios. But in contrast with his Greek predecessor, he did not believe that moonlight
was the cause of tides. Indeed two facts were difficult to explain according to the
theory of Poseidonios: the existence of a peak of amplitude during a diurnal cycle
when the Moon is located in the anti-meridian direction, and a maximum of the
peak during a monthly cycle when the Moon is in conjunction with the Sun. Both
cases correspond to a total absence of Moon light, which contradicts the theoretical
foundations above.

Albumasar suggests an alternative explanation. As an astrologer ready to ascribe
supernatural powers to celestial bodies, he says the Moon possesses a ‘virtue’ hav-
ing the power of driving oceanic motions. The sea itself does not have the capacity to
be disturbed under the influence of the moonlight, enhanced by the solar light. The
cause of tides should be extrinsic to the sea and, after sieving various alternative
explanations, he reaches the conclusion that the Moon is responsible of the uprising
of oceanic masses, thanks to its own virtue. He supposes that the Sun too possesses
a similar, though attenuated, virtue. Finally, Albumasar explains (correctly) that the
lack of significant tidal phenomena in some basins comes from the their configura-
tion, and not from a limitation of the lunar effect.

2.3 Variety of Theories in the Middle Ages

The medieval knowledge about tides came essentially from the writings of Pliny the
Elder, until the Albumasar was translated into Latin in 1140. But it is worth mention-
ing the contribution of the Venerable Bede (about 672–735)8 one whose interesting
features is that it addresses the unexplored tides along the coasts of Great Britain.
Bede made very valuable and accurate observations, remarking for instance that the
maximum of the tide does not occur at the same time in various harbors along the
coast, even when these harbors are located along the same meridian. This constitutes
the first recognition of what is nowadays called the ‘harbor establishment law’. It
proves that Bede’s perception of ebb and flow was particularly sharp, at an epoch
when science generally stagnated. In contrast with these realistic observations, some
original theories were proposed by other scholars. Paul Diacre (720–748), studying
the maelströms in the North Sea, remarked that the direction of a whirlpool changed
when the tide is reversed: therefore he attributed the tides to some abysses swallow-
ing, then regurgitating, the oceanic masses.

7Persian astrologer, astronomer, and Islamic philosopher, he wrote a number of practical manuals
on astrology that profoundly influenced the Muslim intellectual history.
8English monk at the Northumbrian monastery of St. Peter at Monkwearmouth. Well known as
author and scholar, and for The Ecclesiastical History of the English People. In The Reckoning of
Time, he deals with ancient and medieval views of cosmos, including explanations of astronomical
phenomena.
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In the 4th century, the philosopher and philologist Macrobe (about 370–430)
imagined that the ocean had four arms crossed by big currents and that the tides orig-
inate from the conflict between these currents. This theory was popularized seven
centuries later by the philosopher, mathematician, and naturalist Abelard de Bath
(1080–1160), known for his interest in the Arab culture. None of these explana-
tions involves the Moon or the Sun. A little later, we come back to a more convinc-
ing explanation of the nature of tides thanks to a professor of theology, Guillaume
d’Auvergne (1190–1249), who reinstated the determining influence of the Moon at
the center of the discussion. His explanation looks very close to the true one: will-
ing to introduce some astrological principle involving the influence of the Moon, he
proposed that the sea gets elevated toward the Moon which acts like a conductor,
a disconcerting analogy with magnetism: when the Moon is ascending, it attracts
the fluid as a magnet attracts iron when lifted. One of the interesting points in Guil-
laume d’Auvergne’s conception of tides is the foreboding of gravitational attraction,
another in the rejection of swallowing or regurgitating of fluid masses: the oceanic
mass remains constant and the elevation is due to an agitation created by the Moon.
Nevertheless, Guillaume d’Auvergne shows an ignorance of the semi-monthly cy-
cle: he believes that a maximum of the tide occurs each month during the full Moon,
attributing the lunar action to its lighting; he does not mention the symmetric case
of the new Moon, when the satellite presents its dark face toward us.

Albert the Great (about 1200–1280) proposed similar explanations. For him, the
Moon is doubly responsible for the tides. First it is a body of humid nature and
so has the ability to attract the oceanic fluid as a magnet attracts iron. Second its
brightness creates a heat which leads to the formation of a bulge—some kind of
bubbling. He added that the water could be attracted only because of the salinity
of the sea. St. Thomas Aquinas (1224–1274) still clung to the idea that the Moon
possesses some virtue which gives it the capacity to stimulate motion inside fluids.
Thus, the 12th and 13th centuries saw many theories dealing with the formation
of tides, broadly based on two postulates. The first says that the Moon has some
virtue; the second says that the Moon acts through its light. Either way, such theories
face severe inconsistencies. For instance, how can the Moon cause the second semi-
diurnal tide when it is located in the anti meridian direction, at a position where
its influence should be minimum in terms of power, brightness, or heat? According
to some audacious theorists, such as Robert Grosseteste (1175–1253),9 the power
of the Moon, when it is below the horizon, is maintained through the reflection
of its light on the celestial sphere. This theory, though highly hypothetical, was
supported by many contemporary physicists, such as Roger Bacon (1214–1294).
Also, inconsistencies with astrological principles arose: the idea that moonlight acts
on oceans by a kind of bubbling is against the principle that the Moon is a humid
body cooling down and condensing any vapor. Physicists of the Paris school such
as Jean Buridan (1202–1363) hesitate to select one out of these many theories.

In summary, the main difficulties in the theory of tides during the Middle Ages
were as follows.

9English scholar, bishop of Lincoln. He showed deep interest in geometry and optics.
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• Precise observations of tidal mechanisms by Greek and Arab scholars had been
forgotten, replaced by obscurantism or wrong beliefs. For instance some theories
defend the idea of a monthly cycle for the maximum amplitude instead of the real
semi-monthly one.

• The fallacious idea that tides are due to alternating swallowing and regurgitating
of water competed the correct idea that oceanic masses remain constant and that a
bulge is produced at some place, balanced by a mass deficiency at another place.

• The problem of the geographical variations of tides is unsolved. In particular the
following questions do not find any answer. Why are the tides so strong at some
coastal locations and nearly non-existent at others? Why is the diurnal inequal-
ity (difference of maximum amplitudes between successive semi-diurnal tides)
clearly present at some locations like the Red Sea, while it does not appear at
others like the Atlantic?

• Does the Moon have an influence? If yes, how to characterize this influence?
In terms of its light? Or of some virtue? And how to explain the maximum of
the tide when the Moon is lying on the anti-meridian, at its maximum angular
distance below the horizon?

• What is the exact role of the Sun? Does it directly raise the water mass by heating?
Or does it act indirectly by reflection off the Moon?

• How can we explain the various periods linked to the tides? If the interpretation
of the semi-diurnal cycle can be found, what is the cause of the fortnightly and
the semi-annual cycles?

2.4 Tides in the Renaissance and the 17th Century

In the Renaissance and especially in the 16th century, the developments of the the-
ory of tides come largely from physicians and astrologers. Their main aim was to
establish a link between celestial bodies and phenomena occurring on the Earth.
For that aim they made a clear choice between the various explanations prevailing
at the end of the Middle Ages and enumerated at the end of the last section. For
them the water mass remains constant; tides are obviously caused by the action of
the Moon and less predominantly by the Sun; these two bodies do not produce their
action through their light but through a specific virtue, which is comparable to the
attraction between a magnet and iron.

2.4.1 Renaissance

In the beginning of the 16th century, a physician of Sienna, Lucius Bellantius, ex-
plains that the rays with which the Moon attracts the oceanic masses are not light
rays, as can be proved during the conjunctions (new Moon), when the Moon shows
us its dark face. For him the Moon acts through virtual rays, in the same way as a
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magnet attracts iron. Another physician, Frederik Grisogono (1472–1538)10 insists
on the modulating influence of the Sun, which in some cases enhances, in others
attenuates, the action of the Moon. His intuition is amazingly close to reality. The
total tide can be divided into two components, one due to the Moon, the other due to
the Sun. They both produce a swelling of the oceanic volume, maximum at the point
of the oceanic surface closest to that body, and also at the antipodal point. Grisogono
supposes that each of the Moon and the Sun distorts the sea to form an ellipsoid of
revolution, whose major axis is oriented toward it. This helps to explain how twice a
month, in the full and the new Moon (syzygies) when the two major axes coincide,
the amplitude of the tide is maximum. Such ideas from physicians and astrologers
spread rapidly, the majority of them supporting the ‘magnetic model’ of attraction.
Jules César Scalinger (1484–1558) claimed that just as iron is moved by a magnet
without any physical contact, so the sea can be moved by the presence of a ‘no-
ble body’ such as the Moon. The English scholar and physician William Gilbert
(1544–1603), who undertook pioneering studies in electrostatics and magnetism,
discovered that the Earth acts like a giant magnet. He also adhered to the idea that
the Moon does not act through its light but through forces analogue to the magnetic
one.

2.4.2 Kepler’s Views

Kepler (1571–1630) agreed with Scalinger’s conception and with the magnetic anal-
ogy. Of gravitational phenomena he had a remarkable visions, which opened the
path to Newton. First, though himself an occasional astrologer, he was a fierce op-
ponent to the astrological principle according to which the Moon attracts the sea by
their common humid nature. He defended the concept of a mutual gravity depend-
ing on the sizes of the bodies involved. He explicitly claims that if the Earth ceased
its attraction of the oceanic masses, the latter would instantaneously rise toward the
Moon. For him gravity is a mutual disposition to join between bodies sensitive to
each other. For instance he presumes that if two stones were placed at a little mutual
distance apart and far from any other body, they should undergo a mutual attraction,
leading to a junction in some intermediary location. Notice that we cannot qualify
this attraction as ‘universal’, because for Kepler the two bodies concerned must be
of such nature as to favor attraction. The concept of gravity-driven tides were ap-
preciated among some of Kepler’s contemporaries, and by the beginning of the 17th
century his ideas had spread quite a lot, even if they encountered opponents such as
the mathematician, philosopher, theologian, and astronomer Pierre Gassendi (1592–
1655) who rejected the idea that the Sun could have any action on tides, still arguing
that the action of the Moon comes from its humid nature. Another strong opponent

10Also mathematician, physicist, astronomer, born at Zadan in Croatia and educated at Padova.
In addition to Commentaries on Euclid’s Elements, he developed an important theory of tides,
published in Venice in 1528.
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Fig. 2.3 Galileo Galilei
(1564–1642)

to Kepler’s views was Galileo Galilei (Fig. 2.3) (1564–1642) who expressed his as-
tonishment that such a ‘free and subtle spirit’ (Kepler’s) could defend the idea of
any power of the Moon on the water, thus betraying attachment to some occult and
childish principles.

2.4.3 Galileo: An Original Concept

Galileo’s opposition to Kepler’s explanations was motivated by the fact that he him-
self developed a theory based on new principles of mechanics, very different from
all those already described. The fourth day of his Dialogues Concerning the Two
Chief World Systems [11] (published 1632) is devoted to the problem of tides, and
gives a full account of his approach starting from the combination of the Earth’s ro-
tation around its axis and its orbital motion around the Sun. This theory could have
been imported from the work of Celio Calcagnini11 (1479–1541) published posthu-
mously at Basel in 1544. Galileo’s explanations relies on the analogy between the
tides and the motion of water inside a vessel. When the vessel is accelerated or de-
celerated, the inertia inclines the surface of water toward the back or front side of
the vessel. For him, the tidal motions of the oceans follow the same laws, governed
by a varying acceleration of the water coming from the combination of the Earth’s
diurnal rotation plus its annual revolution around the Sun. According to this the-
ory, if only one of these motions existed and not the other, the ocean would be in
equilibrium.

These motions, when combined, produce the same kind of displacements as that
of water in a vessel. For a given point at the circumference of the Earth, the two
velocities due to the rotation and the revolution sometimes add together, sometimes
subtract from each other (Fig. 2.4). Therefore the water masses are displaced al-
ternately along the oriental and occidental coasts, causing a diurnal tide. Thus for

11Italian humanist and scientist from Ferrara, in his time a reputed astronomer.
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Fig. 2.4 Theory of tides
according to Galileo: the
ecliptic plane is supposed to
coincide with the equator.
Rotational and orbital
motions are added in A,
substracted in B

Galileo the origin of tides must be found exclusively from the combination of var-
ious terrestrial motions, and has no link at all with the influence of the Moon or of
the Sun. In retrospect this theory does not look realistic. Nevertheless, the reality of
the effect suggested by Galileo deserves some attention.

For him the two motions of rotation and revolution sometimes are added, some-
times substracted. Thus the points on the surface acquire a non-uniform velocity, im-
plying an activation of water motion. Note that Galileo’s idea can be associated with
the concept which enabled the scholars of the Antiquity to explain the non-uniform
motion of the Sun, the Moon, and the planets in the sky through a combination of
motions with the help of a deferent and epicycles.

Souffrin [25] analysed this effect, illustrated in Fig. 2.5: the acceleration of a
given point M at the surface of the Earth can be divided into two components: the
first, γ1, is the centripetal acceleration of the center of the Earth with respect to
the Sun, due to the orbital motion, with angular velocity Ω ; the second, γ2, is the
centripetal acceleration due to the rotational motion of the Earth around its center of

Fig. 2.5 Theory of tides according to Galileo: M is a point on the Earth surface, T the Earth
center, S the Sun, r the Earth radius, d the radius of the Earth orbit, supposed circular. Ω is the
angular velocity of the orbital motion, Ω +ω the angular velocity of the rotational motion



2 Investigations of Tides from the Antiquity to Laplace 41

mass, with angular velocity Ω +ω. Thus the total acceleration of M can be written
as12

γM = γ1 + γ2 =−Ω2 du− (ω+Ω)2rn (2.1)

Since u= cosωtn− sinωtt, the decomposition of γM along n, t gives

γM = γn + γt =−
(
Ω2d cosωt + (ω+Ω)2r

)
n+Ω2d sinωtt (2.2)

Thus the acceleration γM for a given point of the Earth has a normal component
γn and a tangential component γt . The normal component has no significant effect,
for it acts in the same direction as gravity and is negligible in comparison. The
tangential component, though of very small size also, acts perpendicularly to gravity
and can have a visible effect. This tangential component Ω2d sinωt comes solely
from the orbital motion. Because of the diurnal rotation, it is alternately directed
eastward or westward.

Galileo’s mistake comes from a misunderstanding of the orbital motion of the
Earth. As Newton will show a little less than a century later, the Earth is kept in its
orbit by the gravitational attraction of the Sun which acts on all terrestrial matters,
the liquid part as well as the solid part. To a first approximation the water as well as
the basins are subject to equal gravitational attractions Ω2d of the orbital motion.
But the equality is exact only at the center of the Earth and not elsewhere, which
constitutes the basis of the explanation of tides by Newton. The water and the basins,
attracted in the same manner by the Sun, ‘fall’ toward it together: the relative motion
between the water and the basins does not exist.

Of course Galileo did not know Newton’s law of gravitation. No more than Ke-
pler and other contemporaries was he able to understand the orbital motions of the
planets. For him the revolution of the Earth is given naturally: it exists without any
cause, guided by an imaginary physical principle. Consequently Galileo relied on
purely kinematical principles and never adopted a dynamical one. Nothing and no-
body could induce him to doubt his solution from the combination of the two Earth
motions. Despite his misunderstanding, his will to develop a mechanical theory of
tides was fundamentally new and his contribution was essential.

2.5 Descartes and His Theory of Vortices

In his Principles of Philosophy published in 1644 [7], Descartes (Fig. 2.6) (1596–
1650) proposes an alternative theory of tides, relatively independent of the prede-
cessors. He is convinced that everything in the universe is governed solely by the
laws of motion, and that vacuum does not exist: as soon as vacuum arises, it gets
filled with subtle matter organized in a system of vortices. This principle is applied
to the solar system. The Sun occupies the center of the main vortex, and its proper

12Our method of proof, based on accelerations and vectors, is not that of Galileo who works with
velocities only. But it is a faithful translation of his idea.
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Fig. 2.6 René Descartes
(1596–1650)

rotation (discovered at the beginning of the 17th century) is transmitted to the vortex
itself, which transports the planets on their orbit. Each planet is at the center of its
own vortex. Their proper rotations lead to the rotation of these secondary vortices
which transport the satellites in their revolutions (Fig. 2.7).

Thus, the Moon is transported by the Earth’s vortex. Starting from this statement,
Descartes built up an intricate theory where the Moon, despite being transported by
the Earth’s vortex, does not move at the same velocity. This creates an obstacle and
perturbs the symmetric flow of subtle matter, causing a displacement of the Earth’s
center with respect to the Earth’s vortex. Because of the presence of the Moon, the

Fig. 2.7 The System of the World according to Descartes (from Le Monde ou Traité de la lumière,
ed. Adam et Tannery, Paris, 1974). ABCD is the vortex of subtle material generated by the proper
rotation of the Earth EFGH, with center T . 1, 2, 3, 4 represent the sea, and 5, 6, 7, 8 the atmosphere.
Because of the presence of the Moon in B , the center M of the vortex does not coincide with T .
The tides result from a differential pressure exerted by the vortex matter on the sea
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Fig. 2.8 Issac Newton
(1642–1724)

vortex material surrounding the Earth cannot flow freely. Consequently it exerts a
differential pressure at the surface of the oceans, giving rise to tides.

In addition Descartes explains the existence of two tides per day from the drift
between the center of the Earth and the center of the main vortex. Astonishingly,
according to his views, the low tides arise when the Moon is located in the meridian
and anti-meridian directions, which is opposite what happens in reality. Moreover,
Descartes attributes the geographical variations of the high tides along a given coast
to the fact that the Earth is not entirely covered by oceans. For him time delays are
caused by various factors, such as the form of the coasts, the varying depths of the
oceans, the influx from the rivers, as well as the action of winds. These intuitions
were valid, for we know today that all these elements have to be taken into account
in order to construct accurate tide tables. For Descartes, the semi-monthly period
as well as the alternation of large and low tidal amplitudes linked with it come
from the non-circularity of the Earth’s vortex. All these considerations let us think
that his theory of tides, though unrealistic, attests to a remarkable view of mind.
In any case it relies on statements which have never been explained or verified, as
the existence of vortices, the drift between the center of the Earth and the center
of the main vortices, etc. Despite these negative aspects Descartes’s explanations
became very popular during his life, in particular among his French disciples. In his
Geographia Generalis, the German geographer Bernard Varenius (1622–1650) [26]
adopts Descartes’s theory as the preferred one among various others, and this will
helped its popularization.

2.6 Newton and the Gravitational Attraction: A Giant Step

In 1687, Isaac Newton (Fig. 2.8) (1642–1727) published his Philosophiae Naturalis
Principia Mathematica (Principia for short) [23], which revolutionized our percep-
tion of the Universe. In Principia, Newton set out the law of gravitation and the
three fundamental laws of motion: the principle of inertia, the principle of the rate
of change of momentum, and the law of action-reaction, showing that the behavior
of celestial bodies is deducible from these laws. One of the tremendous results of his
theory was an explanation of the tidal phenomena. For Newton, the oceanic tides are
explained by mechanical principles, as Galileo wanted them to be. Moreover they
are a consequence of an attraction at a distance, following Kepler’s intuition.
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Fig. 2.9 The perturbing forces on the lunar motion (Fig. 121 of Principia, vol. I). S is the Sun,
T the Earth, P the Moon with orbit CABD. The attraction of the Sun on the Earth is represented
by the segment NS and the attraction of the Sun on the Moon by the segment LS, which can be
divided into two parts: LM and MS

How did Newton reach the explanation of the tides, after explaining the orbital
motion of the Earth around the Sun and that of the Moon around the Earth? In fact,
his success came from a deep investigation of the orbital motion of the Moon, taking
into consideration the departure of its trajectory from an exact ellipse, which was
due to the gravitational perturbations of the Sun. In particular he observed the drift of
the lunar nodes with respect to the ecliptic, with a 18.6 y period. Extrapolating these
solar perturbations he guessed that they should also influence the oceanic masses.

2.6.1 The Solar Perturbation on the Orbital Motion of the Moon

As mentioned above, the tide was analysed by Newton when he was determining
the perturbation by the Sun on the Moon orbiting around the Earth. We refer to
Proposition 66 of Principia, vol. I. In order to solve the problem, Newton used the
law of parallelogram of forces, well known since the 16th century when it was
popularized by the Dutch engineer, mathematician, and philosopher Simon Stevin
(1548–1620) and clearly set out by the mathematician Pierre Varignon (1654–1722)
in his treatise New Mechanics published posthumously (1725). Newton’s way of
thinking is clearly shown in Fig. 121 of the Principia (see Fig. 2.9). It represents
the Sun S, the Moon P, the Earth T, with their mutual distances SP, ST, PT. Newton
represents the attraction by the Sun on the Earth (respectively on the Moon) by
SN (respectively SL). The attraction SL itself is decomposed into two components:
one, SM in the Sun to Earth direction, another one ML in the direction parallel to
the Earth-Moon segment. One of the subtleties of Newton’s proof is that he depicts
the points N and T as coincident, although they have different statuses: T represents
the position of the Earth and has a physical meaning, whereas N is used to measure
the attraction SN exerted by the Sun, and has a mechanical meaning. From the law
of gravitation and by calling FSP (respectively FST) the forces exerted by the Sun
on the Moon (respectively on the Sun)we have, using modern notations:

SL= FSP = GMS

SP2
, SN= FST = GMS

ST2
(2.3)
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Fig. 2.10 The tidal force when the Moon is in quadrature. Because it is very far from S, P is
considered as coinciding with L, and the attraction LS by the Sun on the Moon is practically equal
to the attraction NS by the Sun on the Earth. The tidal force is represented by LN, equal to PT. It
is added to the attraction of the Moon by the Earth

therefore

SL

SN
= ST2

SP2
, SL= ST3

SP2
(2.4)

Thus the Sun acts on the Earth with the force FST represented by SN and on the
Moon with the force FSP represented by SL. The length and the direction of the
two segments are not the same, and these differences characterize the difference of
attraction exerted by the Sun. To determine how the Sun perturbs the orbital motion
of the Moon around the Earth, Newton searches which part of SL has a real effect.
He remarks that if the accelerations SN and SM are equal, they will change nothing
in the relative motion of the two bodies P and T, because they will bring the same
attraction, both in amplitude and direction. Thus only the component NM plays a
role in the difference of attraction and consequently in the perturbation of the orbital
motion of the Moon around the Earth. We must also take into account the component
ML, in such a way that finally the perturbing forces exerted by the Sun are reduced
to the two segments NM and LM. In modern notation, this way of thinking should be
equivalent to calculating the difference between the vectors LS and NS. In the proof
above, Newton has just revealed the presence of a solar tidal force, i.e. a differential
force which is not due to the total gravitational attraction by the Sun on the Moon,
but rather to the difference of attractions by the Sun on the Moon and the on Earth.
This is a fundamental discovery in the theory of tides.

2.6.1.1 Case of Quadrature

In quadrature (when ST and TP are perpendicular) the sketch is simplified
(Fig. 2.10). M coincides with T, and the lengths of SP and ST can be treated as
equal, given the large distance ST from the Sun to the Earth. Moreover we have
LM= PT, and LM is oriented along the direction from the Moon to the Earth (Prin-
cipia, vol. I, Proposition 66). We conclude that the tidal force Ftidal is reduced to its
component PT, and that the ratio of its amplitude to the attraction of the Earth by
the Sun is given by (Principia, Proposition 66, Corollary 14)

Ftidal

FST
= PT

ST
, Ftidal = FST × PT

ST
= GMS × PT

ST3
(2.5)
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Fig. 2.11 The tidal force when the Moon is in opposition. It is represented by the segment LN,
obtained by difference between the attraction LS by the Sun on the Moon and the attraction NS by
the Sun on the Earth. Thus the tidal force is in opposition to the attraction of the Moon by the Earth

Thus in this particular case of quadrature we are in presence of a remarkable equiv-
alence between the lengths of the segments representing the forces and the physical
distances.

Moreover, applying Kepler’s third law to the orbital motion of the Earth, we get

ω2
EST= GMS

ST2
, ω2

EST3 =GMS (2.6)

where ωE is the angular velocity, or mean motion, of the Earth. In Newton’s era, the
distance ST from the Earth to the Sun was not known with accuracy. From the last
two equations we get

Ftidal = ω2
EPT (2.7)

Now we can evaluate the ratio of the tidal force to the attraction FPT exerted by
the Earth on the Moon:

FPT = GME

PT2
= ω2

MPT (2.8)

where ωM is the angular velocity, or mean motion, of the Moon, and (Principia,
vol. I, Corollary 17)

Ftidal

FPT
= ω2

E

ω2
M

(2.9)

2.6.1.2 Conjunction and Opposition

When the Moon P is in conjunction with the Sun (Fig. 2.11), L and M coincide. The
Moon being closer than the Earth to the Sun, it is subject to a larger gravitational
attraction. Newton shows that in this case the perturbing force by the Sun on the
Moon is NM = 2 PT. This can be found from the equation

SM= SL= ST3

SP2
(2.10)

with SP= ST− PT. Expanding to the first order we have

SM= ST3

ST2(1− PT/ST)2
≈ ST+ 2 PT= ST+NM (2.11)
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Therefore, to a first approximation NM = 2 PT. The tidal force NM is twice bigger
than in the case of quadrature.

In a similar and symmetric way, when the Moon is in opposition we can easily
prove that SM= ST− 2 PT≈ ST−NM. We still have NM ≈ 2 PT. In conclusion,
in syzygies (new Moon and full Moon) the perturbing force exerted by the Sun on
the Moon has the same value (2 PT) and is directed in the direction opposite to that
of the gravitational attraction exerted by the Earth on the Moon.

Thanks to this ingenious way of geometrical representation of the attraction,
Newton could calculate the two components LM and NM of the perturbing force
of the Sun on the orbital motion of the Moon, not only in the special cases of syzy-
gies and quadratures but also at any position of the Moon on its orbit. This helped
Newton to study in detail the characteristics of the lunar motion, showing in par-
ticular that the Moon is accelerated on its orbit from the quadratures towards the
syzygies, and that the lunar nodal line13 undergoes a linear retrogradation.

2.6.2 Ocean Tides

After studying the perturbations exerted by the Sun on the orbital motion of the
Moon, Newton in vol. I, Proposition 66, Corollary 19 shows how to apply the same
principle to the terrestrial phenomenon of the tides.

2.6.2.1 Analogy Between the Lunar Motion and the Ocean Tides

The fundamental idea consists in substituting for the Moon a set of fluid bodies,
then to replace this set by a continuous fluid ring inserted in a canal surrounding
the Earth. Under the gravitational attraction of the Sun, the fluid inside the canal
undergoes the same kind of gravitational perturbation as the Moon in its orbit, that
is to say an acceleration during the syzygies (for the part of fluid oriented in the
direction of the Sun and in the opposite direction) and a deceleration during the
quadratures (for the part of fluid in the directions perpendicular to the direction of
the Sun). This alternating motion gives rise to the tidal phenomena. Thus, thanks
to the analogy with the lunar orbital motion, Newton understands that the various
parts of the terrestrial globe, located at different distances of the Sun, are subject to
different attractions by the Sun, which in their turn cause the oceanic motions.

2.6.2.2 Agreement with the Observed Characteristics of Ocean Tides

In Principia, vol. III, Proposition 24, Newton returns to the problem of ocean tides.
Here the Moon no longer plays the role of a test body whose irregularities of motion

13The intersection of the orbital plane of the Moon with the plane of the ecliptic.
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Fig. 2.12 The tidal ellipsoid and the diurnal inequality (Fig. 2 of Principia, vol. III). Under the
effects of the tidal forces, the oceans change their global shape in an ellipsoid whose semi-major
axis is directed toward a fictitious body delayed three hours with respect to the real body. Pp is the
rotation axis, AE the equator, Ff a parallel. When the body is at a given declination, the two diurnal
tides in F and f do not have the same amplitude: this characterizes the diurnal inequality

reveal the effects of the differential gravitational attraction exerted by the Sun, but
as another celestial body providing the same kind of effects on the oceans. His
clear objective goes beyond identifying the origin of tides, to explaining the actual
tidal phenomena observed along the coasts. Attention is paid to their periodicities,
amplitudes, and characteristics as a function of the relative positions of the Moon
and the Sun.

Newton asserts that under the action of a celestial body (the Moon or the Sun),
the sea at any instant takes the shape of an ellipsoid whose major axis is oriented
toward the body. We have mentioned that 16th-century physicians and astrologers
had already guessed at this phenomenon intuitively. Newton gives a full justifica-
tion of the phenomenon, showing that it arises from a symmetry in the tidal force.
As the Earth rotates, points on its surface pass alternately through the locations of
maximum and minimum elevation of the water.

This explains the succession of low and high tides (Fig. 2.12). Moreover, Newton
can explain the monthly periodicity of the tides: during the syzygies, the major
axes of the ellipsoids due to the Moon and to the Sun are aligned, leading to the
addition of the raising of the sea level, whereas during the quadratures, these axes
are perpendicular and the effects at the sea level cancel, leading to an attenuation of
the high tides. Newton also remarks that the maximum amplitude of the tides varies
according to the distance of the perturbing body, which itself varies because of the
ellipticity of its orbit around the Earth. In short, Newton fully explained the various
periodicities of the tides, confirming the coherence and the validity of his theoretical
assumptions.

By assuming that the seas are distorted into the figure of an ellipsoid, Newton
accomplishes a significant step, that of adopting a simple figure of equilibrium, in
the same way as he did to express the deformation of the Earth undergoing the
effects of its rotation. Following this rotation, the ellipsoid moves in such a way that
its major axis always points toward the perturbing body.
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2.6.2.3 Remaining Questions

Nevertheless, this basic theoretical model faced several problems when confronted
with the observations. First, there are significant time delays between the occur-
rence of the diurnal tides and the transit of the perturbing body at the meridian or
at the anti-meridian. Second, the maxima of tides do not correspond exactly to the
syzygies, as predicted by the theory. Third, the amplitudes of tides strongly change
depending on the harbors where they are measured, even when the harbors are sep-
arated by short distances. Fourth, the diurnal inequality, i.e. the difference of ampli-
tudes between successive high tides, does not show up significantly in observations,
whereas theoretical calculations predict them to be large.

In fact the most important factor leading to these discrepancies between theoret-
ical statements and observations lies on the fact that Newton’s results are presented
in the frame of a static theory: it is necessary to construct a dynamic theory in which
the influence of the Coriolis force and the resonance phenomena are taken into ac-
count.

Nevertheless, even after recognizing the lack of perfect agreement between his
theoretical investigations and the observations, Newton kept the explanations above,
mentioning for example that the oceanic motions are delayed by the friction of the
bottom of the basins. Notice that this phenomenon of inertia has been fully explored
and validated in the 20th century to explain the secular deceleration of the proper
rotation of the Earth. Thus in various places of his work, we see that Newton adheres
to the idea of the inertia of oceans which necessitates further investigations. For
instance he explains the absence of diurnal inequality as well as the presence of time
delays between coastal points, by flow effects that conserve perturbing oscillations
for some duration, in the same way as water moved in a vessel.

2.6.2.4 Calculation of the Solar Tide

After the periodicities of tides were explained and a hypothesis was made about
their time delay, an important challenge remained to be undertaken by Newton: it
consisted in starting from the tidal force exerted by the perturbing body (the Moon
or the Sun) and deducing the amplitude of the ebb and flow. This could be done for
the Sun, thanks to the previous calculations presented previously, of the tidal force
exerted by the Sun on the Moon’s orbital motion. But it could not be done for the
Moon, because its mass was unknown. Thus in a first step, Newton attempted to
calculate only the amplitude of the solar tides. Rather than trying to find a final for-
mula, he proceeded by successive numerical approximations gathered in Principia,
vol. III, Propositions 25 and 36. We saw in Eq. (2.9) that the ratio of the tidal force
Ftidal exerted by the Sun on the Moon to the force of attraction FTP exerted by the
Earth on the Moon in quadrature could be expressed as

Ftidal

FPT
= ω2

E

ω2
M

= T 2
M

T 2
E

= 1/178.725 (2.12)
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where TM = 27.32d and TE = 365.25d are the sidereal periods of revolution of the
Moon and of the Earth. Once this result is obtained, it can be used to calculate the
solar tide at the surface of the Earth, still in the case of quadrature. In particular it
is possible to calculate the ratio of this solar tide to the gravitational acceleration g.
Two facts are used for this purpose:

– Since the Moon being 60 times more distant from the center of the Earth than a
point on the surface, g/FPT = 602 = 3600.

– As the tidal force exerted by the Sun is directly proportional to the distance PT
between the point considered and the center of the Earth, this tidal force F ′tidal on
the surface of the Earth is 60 times smaller than the same tidal force Ftidal at the
distance of the Moon: F ′tidal = Ftidal/60.

Hence the ratio F ′tidal/g is

F ′tidal

g
= 1

60× 3600× 178.725
= 1

38 604 600
(2.13)

This is the ratio for points on the surface of the Earth in quadrature, i.e. located
at 90° with respect to the direction of the Sun. As seen previously, for points in
conjunction with the Sun, i.e. for which the Sun is at zenith or at nadir, the ratio is
twice bigger. Notice that in quadrature the tidal force is pushing the surface toward
the bottom whereas in conjunction it raises the surface toward the attracting body,
the Sun. Therefore, the amplitude of the total acting tidal force is 3 times bigger
than the amplitude calculated above, that is to say g/12 868 200.

The next step consists in calculating the elevation of water under the sole action
of the Sun. To simplify, Newton considers a fictitious Earth completely covered by
oceans, and having the same density. Then he uses the same kind of trick as the one
he used to calculate the bulging of the Earth under the centrifugal acceleration due
to the rotation: he considers two channels filled with a homogeneous fluid extending
radially from the center of the Earth to the surface, one in the direction of the Sun,
the other in the direction perpendicular (Fig. 2.14). The first channel is longer, for the
tidal force is substracted from the gravity, whereas in the second channel it is added.
Assuming proportionality between the bulging of the surface and the perturbing
force, he first remarks that the centrifugal force which is 289 times smaller than g

at the equator leads to a difference of 27.7 km (in fact 85 472 Paris feet) between
the equatorial radius (semi-major axis) and the polar radius (semi-minor axis) of the
bulging Earth. By analogy, following the same proportionality, the solar tidal force
being 12 868 200 times smaller than g will create a difference of level of 60 cm
between a point in quadrature and another point in conjunction with the Sun.

2.6.2.5 Ratio of the Lunar Tide to the Solar Tide and the Mass of the Moon

The mass of the Moon being unknown, Newton cannot calculate directly the am-
plitude of the lunar tides. In Principia, Proposition 37, he considers the inverse
problem: knowing the amplitude of the tides as a function of the relative positions



2 Investigations of Tides from the Antiquity to Laplace 51

of the Moon and the Sun, is it possible to calculate their respective attractions on
the oceans and to deduce the mass of the Moon? The basic hypothesis is that the
height of the tides caused by each body is proportional to the size of its tidal action.
Close to the equinoxes, the two bodies are located on the equatorial plane and dur-
ing an equinoctial syzygy, the height of the tide is maximal because the actions of
the two bodies are maximal and added together. Thus the height of the tide hsyz. can
be written

hsyz. =A(M + S) (2.14)

where M and S are respectively the actions of the Moon and the Sun, and A is a co-
efficient of proportionality. About seven days after the syzygy, when the Moon is in
equinoctial quadrature, the actions of the Moon and of the Sun must be substracted
from each other. Moreover the Moon is no longer on the equator, its declination δ

being roughly 23° (if we neglect the inclination of the lunar orbit with the ecliptic).
This diminishes the strength of its action, the coefficient of diminution being cos2 δ.
This correction concerns only the semi-diurnal tides, as it will be shown by Laplace.
Thus in this case the height of the tide is

hquad. =A
(
M cos2 δ− S

)
(2.15)

From the last two equations, we find
hsyz.

hquad.
= M/S + 1

cos2 δ(M/S)− 1
= μ+ 1

μ cos2 δ − 1
(2.16)

where μ=M/S is the ratio of the action of the Moon to that of the Sun. With this
formula it is theoretically possible to calculate μ from the observations of the tides
at a given point to the surface of the Earth and in specific configurations (syzygy or
quadrature). Equation (2.16) is not exactly that given by Newton, for he took into
account the age of the tides, which led him to underestimate the action of the Sun.
To apply this formula, he studied the observations made at Bristol harbor, during the
days close to the equinoxes, in spring and autumn: he remarked that the tidal range,
i.e. the difference of level between the high tide and the low tide, amounted to 45 feet
during the syzygies and to 25 feet during the quadratures. From this observational
data he concludes that the action of the Moon is 4.4815 times larger than that of
the Sun. The value is off by a factor of 2: we know today that the true value is
2.18. The reasons for the discrepancy are first that the quality of the observations of
tides is doubtful and second that dynamical effects are not taken into account, the
calculations being made in the frame of a static model. Newton did not have at that
time the mathematical tools that would have enabled him to tackle them. Laplace,
at the end of the 18th century, will undertake Newton’s calculations with substantial
improvements leading to a ratio, much closer to the true value, of μ= 2.35.

Nevertheless, using his value, Newton could give for the first time an estimate
of the mass of the Moon. First proved that the tidal force exerted by the perturbing
body (M or S) is proportional to its mass and to the inverse of the cube of its distance
to the Earth. Thus by using the same notations as previously the ratio of the tidal
force exerted by the Moon to that exerted by the Sun is given by

FM

F ′tidal
= MMoon

PT3
× ST3

MSun
= ρMoonR

3
MoonST3

ρSunR
3
SunPT3

(2.17)
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where ρMoon and RMoon (respectively ρSun and RSun) stand for the density and the
radius of the Moon (respectively of the Sun). Moreover, calling αMoon and αSun the
apparent diameters of the Moon and of the Sun,

αMoon = 2RMoon

PT
, αSun = 2RSun

ST
(2.18)

These apparent diameters, varying as an inverse function of the distance (PT or
ST), were already known with a very good accuracy in Newton’s time, thanks to
various astrometric measurements done for a little less than one century, since the
first refractor by Galileo around 1610. On average we have αMoon = 31′16′′.5 and
αSun = 32′12′′, which immediately give αSun/αMoon = 1.0296. From the equations
above we get

FM

F ′tidal
= α3

Moon

α3
Sun

× ρMoon

ρSun
,

ρMoon

ρSun
= α3

Sun

α3
Moon

× FM

F ′tidal
(2.19)

Newton deduced the ratio FM/F ′tidal = 4.4815 from the records of tides at Bristol.
This led to ρMoon/ρSun = 4.891. The next step is to determine ρSun/ρEarth. Indeed,
by using Kepler’s third law and the value of g, we have

GMSun = ω2
EarthST3, g = GMEarth

R2
Earth

(2.20)

hence

ρSun

ρEarth
= ω2

EarthST3R3
Earth

gR2
EarthR

3
Sun

= ω2
EarthREarthST3

gR3
Sun

(2.21)

Finally, with αSun = 2RSun/ST we find

ρSun

ρEarth
= 8ω2

EarthREarth

gα3
Sun

(2.22)

In Newton’s time all the quantities on the right-hand side of this equation were
known with very good relative accuracy. The radius of the Earth had been set
by Picard at REarth = 6732 km, while g = 9.81 ms−2, ωEarth = 2π/TEarth with
TEarth = 365.25d , the value of αSun having been given previously. From the jux-
taposition of the values found for ρMoon/ρSun and ρSun/ρEarth, a calculation gives
ρMoon/ρEarth = 11/9 (Principia, vol. II, Proposition 37, Corollary 3). Thus, for
Newton the Moon is slightly denser than the Earth. The ratio of the mass of the
Moon to that of the Earth is obviously

MMoon

MEarth
= ρMoonR

3
Moon

ρEarthR
3
earth

(2.23)

From determination both of the apparent diameter and of the parallaxes of the
Moon, it is possible to provide the ratio RMoon/REarth which, according to New-
ton is 1/3.65. Finally he arrives at the mass ratio

MMoon

MEarth
= 11

9
× 1

3.653
= 1

39.79
(2.24)
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This is roughly twice bigger than the true value of 1/81. Newton over-estimated the
mass of our satellite by a factor of 2, but recall that we are in presence of the first
calculation of the mass of the Moon.

2.6.3 Assessment of Newton’s Contribution

From his various calculations detailed in the previous sections, Newton demon-
strated one of the most impressive consequences of his law of gravitation, a full
explanation of the phenomenon of tides, through the differential gravitational action
of the Sun and of the Moon on a particle on the surface of the Earth. These results
were rapidly recognized throughout England as a real triumph of his theoretical in-
vestigations. This can be seen from the presentation of Principia by Edmund Halley
(1656–1742) to King James in 1697, during which Halley singled out Newton’s
work on tides, explaining that his illustrious contemporary solved for the first time
the mysterious problem of the ebb and flow.

Nevertheless, as it is well known, the diffusion of Newton’s work and of his law
of gravitation encountered strong opposition. Among opponents we find Huygens
(1629–1695) who, while recognizing the unquestionable advances made by Newton,
could not subscribe to his conception of gravity. The main trouble is with action at a
distance: Huygens was not convinced that celestial bodies show a natural tendency
for mutual attraction. This is confirmed by a letter to Leibnitz in 1690, in which he
concedes that he cannot accept the reasons given by Newton on his theory of the ebb
and flow as well as on other theories based on the principle of gravitational attraction
[12]. Huygens’s opinion is widely shared by scholars in France and other countries
of the continent. Newton himself was disconcerted by the idea that a matter at rest
can act on another matter without mutual contact. In Principia (vol. II, book III,
scholium) he remarks that he explained celestial phenomena as well as terrestrial
ones (tides) thanks to his law of gravitation without being able to assign a cause of
this law.

Let us summarize the characteristics of Newton’s theory of tides.

• Nowadays this theory is regarded as a by-product of his law of gravitation, but
at that time it was taken by his supporters as an emblematic confirmation of his
general theory of gravitation, including all the new fundamental tools of physics:
law in 1/r2, calculus, geometrical combination of forces, etc.

• Newton did not tackle head-on the problem of ocean tides. This problem came
gradually to his mind after he studied in detail the inequalities of the lunar orbital
motion due to the perturbing gravitational action of the Sun, which in fact is based
on the same dynamical principle as that which raises the ocean mass and causes
the tides.

• Newton’s tricky geometrical reasoning where he represents the attractions by seg-
ment lengths judiciously chosen allow him to quantify in a simple way the solar
tidal force.
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• Thanks to his theory of tides, and by fitting the results of his calculations to ob-
servational records of tidal range, Newton could make an estimate of the mass of
the Moon relatively to that of the Earth. Moreover, his results explain such well-
established characteristics as the presence of two tides per day and the variation
of the tidal range according to the lunar phase with extrema during syzygies and
quadratures.

• Newton understood perfectly the principle and the origin of tidal forces but his
explanations about their consequences are imperfect, essentially because his con-
ception of tides is static and in consequence he did not include the dynamical
approach of the oceanic motions. Nevertheless his results mark a turning point
and will be fully exploited by his successors like Daniel Bernoulli, Euler, and
d’Alembert, and in a quasi-modern form by Laplace at the end of the 18th cen-
tury.

2.7 Theory of Tides and Analytical Calculations Around 1740

For half a century after Newton, no substantial study on the subject appeared to
improve or complete it. But during this same period, mathematics was progress-
ing, notably thanks to the contributions of Leibniz, Jacob and Johann Bernoulli,
l’Hôpital, and Varignon. All these mathematicians participated in the birth and the
development of calculus. Whereas Newton showed a complex geometrical reason-
ing, these new tools allowed the development of analytical studies related to me-
chanics and more specifically to celestial mechanics. At the same time, the meta-
physical opposition raised by the principle of Newton’s action at a distance was
gradually abandoned in the light of the obvious improvements it brought for the res-
olution of various problems. To illustrate this evolution, we can mention a testimony
from Daniel Bernoulli (1700–1782) in 1740, who presents gravitation as an incom-
prehensible and essential principle that the famous Newton has so well established
and that his contemporaries could no longer reject, without harming sublime knowl-
edge and fortunate discoveries of the century. People spoke less of the ‘absurdity’ of
gravitational attraction, and accepted the concept as it was, only preoccupied with
investigating its consequences.

At the same time, a lot of systematic observations of tides were being carried
out. In the period from 1700 to 1720, Jacques Cassini (1677–1756), a staunch sup-
porter of Descartes’s theory of vortices, gathered and discussed tidal observations
in French harbors, Le Havre and Dunkerque (1701–1702), Lorient (1711–1712 and
1716–1719) and principally Brest (171–1716) [3, 24]. In the middle of the 18th
century, the quasi-totality of scholars recognized the essential correctness of New-
ton’s explanations, but they sometimes emphasized their insufficiencies. Marquise
de Châtelet (1706–1749), in her commentaries on Principia [14] published posthu-
mously in 1756, explained that people in her time knew that the tides are caused by
the inequalities of the action of the Moon and of the Sun on the Earth; she added
that Newton had established the mechanism of this cause so well that nobody could
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express any doubt on its validity. But she also pointed out that the famous scholar
(Newton) did not investigate deeply enough the details of the important subject of
tides.

In order to encourage scientists to investigate the problem more deeply, the
French Académie des Sciences proposed in 1738 the precise elucidation of the
tides as a prize to be awarded by the Académie in 1740. Four works received this
prize. Three of them were based on the theory of gravitation. They were submitted
by Daniel Bernoulli (Fig. 2.13) (1700–1782), Euler (1707–1785), and MacLaurin
(1698–1746). The remaining one, by Cavalleri [4], was based on Descartes’s theory
of vortices, and must surely be, according to Laplace, the very last work dealing
with this theory and considered by the Académie. MacLaurin’s work entitled De
causa physica fluxus and refluxus maris [22] is based on proofs of geometrical type.
It presents remarkable theorems on the attraction of spheroids, but paradoxally of-
fers few developments on the ocean tides. The two other works, entitled Traité sur le
flux et du reflux de la mer by Bernoulli [1] and Inquisto physica in causam fluxus ac
refluxus maris by Euler [10] both represent the real beginning of analytical studies
on the subject of tides. These two works fully exploit Newton’s calculations but in
addition benefit from the drastic improvement accomplished at the beginning of the
18th century in the fields of calculus and of analytical mechanics. Thanks to these
advantageous new tools, the two authors did not have to solve the problem of ocean
tides by similitude with the problem of the lunar orbital motion perturbed by the
tidal action of the Sun, as Newton did. They could directly tackle the resolution of
the problem in the frame of terrestrial mechanics.

2.7.1 Prize of the Académie of 1740 for Bernoulli

Daniel Bernoulli’s work honored by the prize of the Académie is entirely in the lin-
eage of Newton. He deals with three major problems. The first, the most important
according to Bernoulli himself, concerns the elevation of the ocean surface under the
attraction of a perturbing body, the Sun. For that purpose he used exactly the same
procedure as Newton. But his calculations were much clearer. The second concerns
the exact time and amplitude of the high (or low) tides at any point on the surface of
the Earth under the combined gravitational action of the two bodies (the Moon and
the Sun). The calculations allow him to establish for the first time a tide table. The
third concerns the estimation of the mass of the Moon. To this end, he did not follow
the same procedure as Newton, based on the height of the tides, but an alternative
one based on the interval of time separating successive high (low) tides one day after
the other. Marquise de Châtelet, in her Commentaires des Principes Mathématiques
de la Philosophie Naturelle [14] offers a very clear analysis of Bernoulli’s treatise,
following his arguments one by one, and often in a more understandable form. One
of the fundamental principles of Bernoulli is that the attraction of the Earth by the
Sun is rigorously equal to the centrifugal force coming from the revolution of the
Earth, if we consider the Earth as a whole. If we consider locally a particle closer
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Fig. 2.13 Daniel Bernoulli
(1700–1782)

to the Sun than the center of the Earth, the centrifugal acceleration will be the same
whereas the attraction will be stronger. This leads to the characterization of the tidal
force which can be regarded as the difference between the attraction of the perturb-
ing body (the Sun) and the centrifugal force.

2.7.1.1 Calculation of the Elevation of Water

The most important question tackled by Bernoulli concerns the amplitude of the
tides caused by the Sun. For that aim, he starts from the following hypotheses:

– The Earth at rest is spherical, completely covered by the sea, a thin fluid layer.
– Unlike Newton’s hypothesis, the Earth is heterogeneous and made of concentric

layers, each having its own density. A law of variation of density as a function of
depth is given.

– At anytime the figure of equilibrium of the Earth undergoing the action of the
perturbing body (here the Sun) is an ellipsoid, whose the major axis is directed
toward the perturbing body.

Thus calculating the amplitude of the tides amounts to measuring the difference
between the semi-minor and the semi-major axes of the ellipsoid. Following the
same reasoning as Newton, Bernoulli imagined two channels, one directed toward
the Sun and the other in a perpendicular direction (Fig. 2.14). In the first the tidal
force is against the gravity, whereas in the second it increases it. The solution of the
problem of the elevation of water is given by the equality of pressure at the bases of
the channels. The problem is complicated by the fact that the ellipsoidal deformation
alters the gravity of the Earth at any of point of the surface: in order to solve this
additional difficulty, Bernoulli initiates subtle analytical calculations giving a model
of self-gravity of the Earth. The height difference β between a high tide and the
corresponding low tide is equal the difference above between the lengths of the two
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Fig. 2.14 Calculation of the amplitude of the solar tide with the equilibrium of two channels
(Fig. 1 of Sect. V of the Commentaires aux Principes Mathématiques of la Marquise du Châtelet
[14]). The two channels are directed one toward the Sun, the other in a direction perpendicular to
the Sun, and join at the center of the Earth

channels. In the case of the simplified hypothesis of a homogeneous Earth with an
ocean surrounding it and having the same density, Bernoulli gets

β = 15

4
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R3
Earth

d3
S

REarth (2.25)

where MSun and MEarth are the mass of the Sun and of the Earth, dS is the distance
ST from the Earth to the Sun, and REarth is the Earth radius.

In the first half of the 18th century, dS was not known with good accuracy. But
by using Kepler’s third law it is possible to substitute for it the angular velocity ωE

of the Earth around the Sun. Indeed we have the two relationships

GMSun = ω2
Earthd

3
S, GMEarth = ω2

Moond
3
M (2.26)

where ωMoon and dM are the angular velocity of the Moon around the Earth and the
distance between the Moon and the Earth. Substituting these into Eq. (2.25), we get

β = 15
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This formula enables Bernoulli to find the same numerical value as Newton,
with β ≈ 60 cm. But this value is obtained with the simplified model of oceans
described above (a homogeneous Earth surrounded by an ocean with the same den-
sity). Bernoulli is convinced that the value is too small compared with what is ex-
pected from the observations of tides. Therefore he expounds various hypotheses
about the interior of the Earth, considering for instance the case it is empty, or the
case the density of an internal layer is proportional, or inversely proportional, to its
radius. In some cases, with a density profile judiciously chosen, he succeeded in
obtaining a value of β significantly larger than the value above. This profile corre-
sponds to an increase of density with the depth of the layer, which is quite realistic.

Nevertheless, Bernoulli’s calculations are something ambiguous and erroneous:
first he believes that only a small part of the oceanic mass is moved by the attraction
of the perturbing body, insisting that the Earth as a whole cannot be deformed;
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Fig. 2.15 The height of water ζ of a tidal ellipsoid is measured with respect to the initial spherical
surface (when the water is at rest), with radius R. Ψ is the geocentric zenithal distance enabling
one to define the position of the body S (Moon or Sun)

second, his calculations based on an equilibrium characterized by the ellipsoidal
figure with equality of pressures at the bases of the two channels rely on the opposite
hypothesis of a global deformation of our planet. There is a contradiction between
the method of calculation and the model of the Earth chosen. This was pointed by
d’Alembert in his Reflexions sur la Cause Générale des Vents in 1746 [5].

Nevertheless, though clumsy and erroneous, Bernoulli’s approach deserves great
interest. First it acknowledges the discrepancy between Newton’s value for the am-
plitude of tides and the significantly larger amplitudes observed in various harbors.
Second it inaugurates to some extent the concept of the internal structure of the
Earth, based on a decomposition in layers with a gradual variation of density [6].
This new concept will be fully used a few years later by Clairaut in his study of
the figure of the Earth, by Bouguer in 1749 in a study of the variation of ampli-
tude and location-dependent direction of gravity on the surface of the Earth, and by
d’Alembert and Euler in their works on the precession of equinoxes.

Bernoulli used geometrical arguments to show that when the perturbing body
is at zenith, the elevation of water is twice the size of the depression when it is
on the horizon, which is the result found by Newton. Moreover he states that each
body (Moon or Sun) acts on the sea independently. In a first step, he makes the
approximation that the two celestial bodies move on the celestial equatorial plane,
with constant angular velocity. Under their combined action, the height of water
with respect to the surface of the sea at rest (Fig. 2.15) is given by

ζ = βS

(

cos2 ψS − 1

3

)

+ βM

(

cos2 ψM − 1

3

)

(2.28)

where ψS and ψM are the zenithal angular distances of the Sun and the Moon, βS
and βM are the differences between the semi-major and semi-minor axes of the
ellipsoid representing the equilibrium tide for the Sun and the Moon (Fig. 2.16).
Assuming βS/βM known, Bernoulli uses a formula derived from Eq. (2.28) to cal-
culate the exact instant of the high tide during a lunar cycle. For that purpose he
corrected his results by taking into account that the relative motions of the Moon
and of the Sun are elliptical and inclined with respect to the equator. Finally he
could construct the first theoretical tide tables, which proved satisfactory for any
harbor where dominant tides have a semi-diurnal frequency. Finally, an important
step in Bernoulli’s calculations is the ratio of the lunar action to the solar one. We
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Fig. 2.16 Combined action of the Moon and the Sun. We are in the equatorial plane. S is the Sun,
represented by the angle ψS . L is the Moon, represented by the angle ψL. MNM′N′ is the oceanic
surface in the case of no deformation. Each body (Moon or Sun) deforms the water surface in
an ellipsoid whose semi-major axis is directed toward it. The combination of the two ellipsoids
generates a high tide in M and M ′ and a low tide in N and N ′

saw that Newton’s value of 4.48 was deduced from a comparison of the heights of
tides during syzygies and quadratures. These values obtained in various harbors are
not taken in a ‘free sea’: they show big variations and have consequently a large
uncertainty. In contrast Bernoulli proposed an alternative method on the occurrence
of tides, which seemed for him much easier to estimate.

Everyday the tides are delayed due to the fact the average time interval between
two transits of the Moon at a given meridian is 24h50mn. But during syzygies, this
interval is shorter (24h35mn) than during quadratures (25h25mn). These differences
come from various combinations between lunar and solar tides and enable one to
determine the ratio between the action of the Moon and of the Sun. By averaging
over various tidal observations, Bernoulli gets a value of 2.5 for this ratio. From this
new determination, he could get an updated value of the density and the mass of the
Moon, respectively 5/7 (≈ 0.71) and 1/70 of those of the Earth, these two values
being much closer to the true values (respectively 0.60 and 1/81) than Newton’s
ones.

2.7.2 Prize of Académie of 1740 for Euler

A second work honored by the prize of the Académie des Sciences in 1740 was
by Euler (Fig. 2.17), who deepened several points of Newton’s theory, from which
he borrowed the definition of tidal force as the difference between the gravitational
force exerted by an external body (the Moon or the Sun) on a point on the surface of
the Earth, and this same gravitational force exerted at the center of the Earth. Euler
established in a very modern way the analytical expression of the tidal force, which
led him to deduce the formula of the radial and tangential components at the point
considered. These formulas can be regarded as definitive.
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Fig. 2.17 Leonhard Euler
(1707–1783)

Euler modeled the Earth as a spherical undeformable globe surrounded by an
oceanic layer with limited thickness. Then, exploiting his formula, he defined the
figure of equilibrium of the Earth subject to the effect of tides. He showed that at
first order this figure is really an ellipsoid, as had been suggested without proof by
Newton and Bernoulli. Moreover Euler did not have to rely on the artificial concept
of two perpendicular channels joined at their bases. Instead, he found his inspiration
in an idea already proposed by Huygens: the ocean surface is at rest on the condi-
tion that it is perpendicular to the direction of the vertical, as materialized by the
plumbline.

2.7.2.1 Analytical Expressions for the Tidal Force

Euler establishes the expressions of the radial and tangential components of the tidal
force in Chap. II, par. 24–27 of a work entitled ‘On the lunisolar forces which put
the oceans in motion’. Referring to Fig. 2.18, the gravitational force exerted by the
Sun at the center C of the Earth and at any point M are given respectively by

GMSun

d2
ux,

GMSun

l2
ul (2.29)

The tidal force F is given by the difference between these two forces. Calling α

the angle between SC and SM, the components of F are

Fx = GMSun

l2
cosα − GMSun

d2
, Fy =−GMSun

l2
sinα (2.30)

Fx =GMSun

(
d − x

l3
− 1

d2

)

, Fy =−GMSun
y

l3
(2.31)

Then Euler decomposes Fx and Fy into a radial and tangential components

Fr =−Fx cosψ + Fy sinψ (2.32)

Ft = Fx sinψ + Fy cosψ (2.33)
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Fig. 2.18 Analytical
expression of the tidal forces.
S is the Sun, C the center of
the Earth, M a point on the
Earth for which the tidal force
is determined. r , l, d stand
respectively for the distances
CM, MS, CS

In view of

l =
√
(d − x)2 + y2, sinα = y

l
, cosψ = x

r
, sinψ = y

r
(2.34)

these give

Fr =− GMSun

(d2 − 2dx + r2)3/2

(
(d − x)x

r
− y2

r

)

+ GMSunx

d2r
(2.35)

and

Ft = GMSun

(d2 − 2dx + r2)3/2

dy

r
− GMSuny

d2r
(2.36)

Using the expansion

(
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(2.37)

it follows (Chap. II, art. 27, Fig. 15) that

Fr = GMSun

d3
√
x2 + y2

(

y2 − 2x2 + 3

2

x

d

(
3y2 − 2x2)

)

(2.38)

Ft = GMSun

d3
√
x2 + y2
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3xy + 3
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d
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(2.39)

These are the formulas established by Euler. To find the modern formula, we can
introduce the angle ψ . Then

Fr = GMSun

d2

(
r

d

(
3 cos3 ψ − 1

)+ 3

2

r2

d2

(
5 cos3 ψ − 3 cosψ

)
)

(2.40)

Ft = GMSun

d2

(
r

d
(3 cosψ sinψ)+ 3

2

r2

d2
sinψ

(
5 cos2 ψ − 1

)
)

(2.41)

Thus the analytical results obtained by Euler are very clear and give a quasi-
definitive form to the expression of the tidal force.

2.7.2.2 Figure of Equilibrium and Tangential Component

A second part of Euler’s investigations, particularly interesting, concerns the form
of the surface of equilibrium of the oceanic mass under the combined gravitational
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Fig. 2.19 Figure of equilibrium under the action of the tidal force: (a) deviation of the vertical
under the influence of the tangential component of the tidal force, (b) the figure of equilibrium of
the fluid layer at each point is perpendicular to the vertical. It is defined by the inclination i of the
vertical with respect to the geocentric direction of M

action of the Moon and the Sun. In paragraphs 34 to 38 of Chap. 3, Euler explains
that this form depends on the role of the tangential component of the tidal force.
Making use of a statement first given by Huygens, Euler considers that the surface
of the fluid is in equilibrium when at each point it is perpendicular to the direction of
the gravity. The tidal forces modify slightly the direction of the vertical with respect
to the geocentric direction of reference (Fig. 2.19): the tangential component Ft of
the tidal force is responsible of the deviation i of the vertical line, which at first
order can be calculated in a straightforward manner:

i ≈ tan i = Ft

g + Fr

≈ Ft

g
(2.42)

By taking into account the constraint that the total mass of water remains constant,
Euler gets the general formula of the surface of equilibrium (Chap. II, art. 36)

r =R + GMSun

dg

[
R2

d2

(
3 cos2 ψ − 1

2

)

+ R3

d3

(
5 cos3 ψ − 3 cosψ

2

)]

(2.43)

where R is a reference radius and r is the radius form the center to the point con-
sidered at the surface of the ellipsoid, from which the angle ψ is measured. This
expression by Euler constitutes a determining step toward a modern and accurate
theory of the tides. The quantity ζ = r −R is the height of the equipotential repre-
sented by the surface of the ellipsoid. The right-hand side, when multiplied by g, is
the tidal potential. The expressions (3 cos2 ψ − 1)/2 and (5 cos3 ψ − 3 cosψ)/2 are
called the Legendre polynomials of 2nd and 3rd degree respectively. They were in-
troduced by Legendre (1752–1833) around 1780 and appear in Laplace’s equations,
studied below. By using the equality g =GMEarth/R

2, Eq. (2.43) can be rewritten,
at the first order in R/d ,

r =R + MSun

MEarth

R3

d3
R

3 cos2 ψ − 1

2
(2.44)

that is to say

r = b+ β cos2 ψ (2.45)
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Fig. 2.20 Jean Le Rond
d’Alembert (1717–1783)

with

β = 3

2

MSun

MEarth

R3

d3
R, b=R − β

3
(2.46)

This is the equation of an ellipse with semi-major axis b and with difference β

between the semi-major and semi-minor axes. From these calculations Euler proves
what Newton and Bernoulli supposed without proof: at first order, the figure of
equilibrium of the oceans under the action of the Sun or the Moon is an ellipsoid.
Moreover the amplitude of β , which can be interpreted as the amplitude of the tides,
is 2.5 times smaller than that found by Bernoulli, in the case of a homogeneous
model of the Earth. The results by Euler are exact when neglecting the self-gravity of
the oceans. The great advantage of Euler’s method is that the solution is available for
an oceanic surface layer surrounding a solid Earth, whereas in Bernoulli’s method,
relying on the equality of pressure at the bases of two perpendicular channels, the
whole Earth (including the oceans) must be homogeneous and fluid.

2.8 D’Alembert and His ‘Reflexions sur la Cause Générale des
Vents’

D’Alembert (Fig. 2.20) (1717–1783) did not publish a specific work dealing with
oceanic tides but his report entitled Réflexions sur la Cause Générale des Vents,
submitted in 1746 to the Royal Academy of Sciences of Berlin, and published in
1747 [5], deals with several important points related to the tides. One of the subjects
of great interest concerns the characteristics of regular winds in the tropical areas
of the Earth. His aim is to study how the tidal forces exerted both by the Moon and
the Sun on the atmosphere of the Earth can be regarded as the origin of winds on its
surface. He tried to start from the calculation of the atmospheric tides and to infer
in some detail the velocity distribution of the winds.

Some remarkable studies are included in the first part of the work. Two of them
can be retained as emblematic of a totally new approach to the problem: the first is
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Fig. 2.21 Determination of
the figure of equilibrium of
the fluid layer by d’Alembert
(Fig. 3 of Réflexions sur la
Cause Générale des Vents)

the determination of the surface of equilibrium of a given fluid surface layer when
it is subjected to a given external force. The consequence is the production of an
oscillation around a figure of equilibrium. D’Alembert calculates the eigenmodes
of this oscillation. The second study is oriented toward the question of self-gravity
of a deformed fluid layer. This can be naturally applied to the problem of ocean
tides. On this topic, d’Alembert completes the work of his predecessors, making the
link between Euler’s and Bernoulli’s results. In the following we present the main
features of these two studies.

2.8.1 Mechanics of Surface Layer of Fluid

D’Alembert does not show any interest on the global deformation of the Earth as
Newton and Bernoulli did. In contrast he analyses in detail the deformation of a thin
fluid layer surrounding the Earth considered as an undeformable spherical globe. In
that sense his method is similar to Euler’s.

2.8.1.1 Figure of Equilibrium of the Fluid Layer

Here d’Alembert makes use of the same mathematical formalism both for the tidal
force and for the centrifugal force due to the rotation. For both, only the tangen-
tial component of the force has an effect on the figure of equilibrium (Fig. 2.21).
Moreover these tangential components have the same structure. They can both be
expressed by an equation of the type Ft = φ cosψ sinψ . In the case of the tidal
force, ψ stands for the zenithal distance of the perturbing body and φ stands for
φ = 3GMSunREarth/d

3, where MSun is the mass of the Sun, REarth is the Earth ra-
dius and d is the distance from the body to the Earth. In the case of the centrifugal
force ψ is the latitude and φ = ω2REarth where ω is the rotational angular velocity
of the Earth. D’Alembert found the same results as Euler but in a more straight-
forward manner, thanks to the use of polar coordinates instead of rectangular ones.
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The steps of his argument are similar: after determining the inclination of the grav-
ity under the effect of the tangential component, he finds the difference β between
the semi-major and semi-minor axes of the ellipsoid as

β = φREarth

2g
(2.47)

In the particular case of tides, this gives

β = 3

2

MSun

MEarth

R3
Earth

d3
REarth (2.48)

Then the mass conservation enables him to give the expression of the deformation
(Fig. 2.21).

2.8.1.2 Oscillation of the Fluid Layer

D’Alembert’s investigations are not restricted to the determination of the figure of
equilibrium of the fluid layer, in the frame of a static theory. He wants to deal with
a much more difficult problem: what is the law of displacement of the various parts
of the fluid? For that purpose he determines the interval of time �t necessary for a
given particle to go from the initial spherical surface to the new ellipsoidal one. In
a second step he compares �t with the interval of time �θ necessary for the same
particle to fall from a height a above the surface when undergoing the acceleration
of gravity g. By considering that the period of oscillation of the particle is T = 4�t ,
and with a = 1/2g�θ2, his calculations lead to the formula T = 2πREarth/

√
6gh,

where h is the depth of the fluid layer. With respect to this equation d’Alembert
makes the interesting remark: T does not depend on the gravity but only of the
parameters REarth and h. This confirms for the first time the existence of a proper
oscillation mode of the fluid, even when forcing is absent. About half a century later
Laplace will reinforce this result, inaugurating a long series of similar works.

2.8.2 Self-gravity of the Fluid Surface Layer

A second remarkable study of d’Alembert’s concerns the self-gravity of a fluid sur-
face layer. When this layer is deformed, it creates gravitational changes, increas-
ing or decreasing its own initial deformation. D’Alembert’s argument relied on
MacLaurin’s and Daniel Bernoulli’s calculations. In art. 49, he shows that to de-
termine the figure of equilibrium of the fluid layer by taking into account its self-
gravity, all we have to do is to multiply the perturbing force by a factor

ρ = 1

1− 3
5
δ
�

(2.49)

where δ is the density of the fluid layer and � is the mean density of the Earth
considered as a solid body. Then the self-gravity of the fluid layer is expressed in a
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rather simple way, by inserting this law in the tidal force. The difference between
the semi-major and semi-minor axes of the deformable ellipsoid becomes

β = 3

2(1− 3
5
δ
�
)

MSun

MEarth

R3

d3
R (2.50)

D’Alembert suggested that this formula, validated by Laplace half a century later,
could enable one to deduce the unknown mean density δ if one takes β from obser-
vations of tides, for instance by measuring the difference of height between the low
and high tides at a given point of the sea. Nevertheless this kind of measurement
is particularly delicate because d’Alembert does not take into account dynamical
phenomena which act on the figure of equilibrium. Laplace will make appropriate
adjustments in 1790, remarking that the determination of δ/� will be more efficient
when studying long periodic tidal components, less apt to affect the equilibrium
tide.

Here, one of d’Alembert’s important conclusions is that the self-gravity of a fluid
layer accentuates the amplitude of the tides. But with the real ratio δ/�= 1/5.5, the
calculations above lead to a small increase of 13 % of the amplitude of the tides due
to the self-gravity. This value remains rather small, in comparison to the amplitudes
of resonant phenomena in harbors that exhibit significantly larger effects. Finally,
notice that when the auto-gravity of the sea is not taken into account we get Euler’s
equation (2.48). And when considering the fictitious case in which the sea has the
same density as the Earth, we find

β = 15

4

MSun

MEarth

R3

d3
d (2.51)

which fits with the expression found by Daniel Bernoulli. Therefore D’Alembert’s
expressions are completely in accordance with his two contemporaries.

2.9 Laplace’s Masterpiece

Pierre Simon de Laplace (Fig. 2.22) (1749–1827) is just 25 years old when he begins
his work on tides in 1774. In his introduction, when presenting the theories of his
predecessors (Newton, Daniel Bernoulli, Euler, and d’Alembert) he points out their
lack of validity when they are confronted with real observed tides. He proposes a
complete renewal of the theoretical concepts, emphasizing the necessity to solve
in a much more rigorous way what he considers as ‘one of the most complex and
interesting problems of the whole physical astronomy’. In 1825, after half a century
of personal investigations on the subject of tides, he mentions that the motion of fluid
covering a planet was a almost entirely new topic when he undertook its treatment
in 1774. This terse comment seems excessive if we recall that Newton gave the
definition of the tidal force, Euler found its precise formulation, and if we recall the
calculations on the static tide by Bernoulli, Euler, and d’Alembert, as well as of the
study by this last author of the oscillation and self-gravity of a fluid layer.
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Fig. 2.22 Pierre-Simon de
Laplace (1749–1829)

However, Laplace’s comment rings quite true if we remark that all these pre-
decessors, though broadly explaining the phenomena related to tides, were unable
to propose an adequate model describing their effects. Laplace is in fact the first
scientist to construct a mathematical model of tides. Moreover for that purpose he
invented specific mathematical tools to handle the dynamical equations.

Laplace tackled the problem of tides in four successive memoirs, and gave a syn-
thetic presentation of his calculations in his Traité de Mécanique Céleste (book IV,
vol. II; book XIII, vol. V) [19, 21]. The first two memoirs, written in 1775 and
1776 and published in 1778 and 1779 [15, 16], are entitled Recherches sur plusieurs
points du Système du Monde. They are devoted to theoretical aspects, accompanied
with general equations and a particular study of the influence of the bathymetry of
the sea on the oceanic tides. In the third memoir entitled Traité du flux et du reflux,
written in 1790 and published in 1797 [18], Laplace proposes a theoretical study of
the observations, in particular those recorded by Jacques Cassini at the beginning
of the 18th century and gathered in a treatise on tides by Lalande in 1781 [13]. The
contents of these memoirs are presented again by Laplace in a very clear and syn-
thetic way in his book IV of Traité de Mécanique Céleste, published in 1799 [19]. In
particular he makes full use of results acquired in 1782 on the spherical harmonics
[17]. The fourth memoir, also entitled Traité du flux et du reflux de la mer, written
in 1818 and published in 1820 [20], is devoted to observations organized by himself
in harbor of Brest. At last in the book XIII of Traité de Mécanique Céleste, written
in 1824 and published in 1825 [21], Laplace analyse as set of observations carried
out at Brest from 1807 to 1822.

2.9.1 Development of Analytical Mechanics

Before taking a look at Laplace’s capital contribution to the theory of tides, it is
worth making a brief summary of the then recent developments in the fields of an-
alytical mechanics, from which Laplace could build his theoretical investigations.
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First of all, we recall that in 1755 Euler published memoirs where he established the
general equations of hydrostatics and hydrodynamics, whatever the compressibility
of the fluid. By generalizing the ideas of Clairaut, developed in 1743 on the occasion
of his researches on the figure of the Earth, Euler introduced the notion of pressure
and gave the general condition of equilibrium of a fluid by showing that the pres-
sure counterbalances at each point the effect of the acceleration. He established the
general equation of motion of the fluid with respect to an absolute reference frame,
introducing the internal force of pressure −∇p and the external force f in such a
way that

ργ =−∇p+ f (2.52)

where ρ is the density and γ the acceleration. Euler also introduced the local equa-
tion of the conservation of mass, which characterizes the fact that the variation of
mass inside a given volume of fluid is equal to the mass flux through the surface
bounding the volume:

∂ρ

∂t
+ divρv= 0 (2.53)

Together with the concept of pressure, Euler introduced also the concept of poten-
tial, although the evolution of this concept through his work is rather vague and
progressive. As soon as 1736, he defines a function μ whose the differential is ex-
act: dμ=−P dx−Qdy−R dz, where P , Q and R are the rectangular components
of the force per mass unit. In 1743, Clairaut showed the importance of such an ex-
pression in the equilibrium of a fluid mass and also proved that it must be an exact
differential form. He added that the expression above represents the ‘effort’ of the
gravity. This concept is close to the notion of work. Clairaut also showed that the sur-
face of equilibrium of a fluid is given by setting the integral of P dx +Qdy +R dz
to a constant. The notion of potential, in a latent state, was finalized in 1774 and
1776 by Lagrange who showed that the gravitational attraction derives from a po-
tential Ω and that the components of the force can be obtained by calculating the
partial derivatives of this potential. He added that this way of representation of the
forces can prove extremely advantageous by its simplicity and its generality. Finally
we mention that also in 1774 Lagrange introduced the use of spherical coordinates,
which Laplace used extensively later.

2.9.2 The Equations of 1775 and 1776

In 1775, Laplace uses the general equations of the hydrodynamics set up by Euler,
to apply them to the Earth, in spherical coordinates. As his predecessors he models
the ocean as a uniform fluid layer with variable depth, covering entirely a spherical,
solid and undeformable Earth. The fluid is supposed incompressible. Laplace makes
an essential hypothesis which simplifies noticeably his calculations: he remarks that
the depth of the oceanic layer is small compared with the Earth radius. This implies
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Fig. 2.23 Laplace equations in 1776. Equation (6) characterize the mass conservation. Equa-
tions (7) and (8) are the dynamic equations. Laplace uses l for the depth of the layer, y for its
deformation, n for the angular velocity of the Earth. The Earth radius is chosen to be the unit of
length and u and v are horizontal displacements. B� and C� correspond to the self-gravity

Fig. 2.24 Reference frame
and parameters of the Laplace
dynamical equations. M is
represented by its spherical
coordinates: the colatitude θ ,
the longitude λ, counted
positively eastward l. ω is the
vector rotation of the Earth

that the real large scale motions of the fluid are quasi-horizontal. In other words, the
vertical velocity can be neglected, all the particles belonging to the same vertical
line having a priori the same velocity. Then the general problem of tides can be
treated by retaining only the tangential components, as a 2-dimensional problem.
This fundamental simplification, known as the long wave approximation, will be
fully used in later geophysical studies. Laplace kept on working on his equations
inside his memoirs of 1776 (Fig. 2.23) and 1790, and his Mécanique Céleste, vol. IV,
until he gave a precise and definitive formulation, which still stands nowadays.

Let θ and λ denote the colatitude and the longitude of a particle of the fluid layer
at depth h, vθ and vλ the respective North-South and East-West components of the
horizontal velocity v of the particle with respect to the Earth (Fig. 2.24). ζ is the
radial deformation of the fluid layer, ω is the angular velocity of the Earth, g is the
gravity, V is the tidal potential and Φ is the potential of self-gravity of the fluid layer.
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With this notation, the dynamical equation and the equation of mass conservation
are written with respect to a reference frame linked to the Earth

∂v
∂t
+ 2ω ∧ v=−g∇ζ +∇V +∇Φ (2.54)

∂ζ

∂t
+ divhv= 0 (2.55)

The pressure at a given point of the fluid is the sum of two terms

p = p0 + pζ (2.56)

where p0 is the hydrostatic pressure and pζ the additional pressure due to the defor-
mation of the oceans. As the vertical accelerations due to the tides are very small in
comparison to the gravity, the additional pressure pζ results only from the weight
of the water column undergoing the deformation

pζ = ρgζ (2.57)

ρ being the density of the fluid.
The hydrostatic pressure p0 is counterbalanced by the gravity of the Earth com-

bined to the force due to the rotation in such a way that these terms do not take
part in the dynamical equations. In spherical coordinates, the preceding equations
become

∂vθ

∂t
− 2ω cos θvλ =−1

a

∂

∂θ
(gζ − V −Φ) (2.58)

∂vλ

∂t
+ 2ω cos θvθ =− 1

a sin θ

∂

∂λ
(gζ − V −Φ) (2.59)

∂ζ

∂t
+ 1

a sin θ

(
∂

∂θ
(hvθ sin θ)+ ∂

∂λ
(hvλ)

)

= 0 (2.60)

2.9.3 Conservation of Mass

The way Laplace takes into account the conservation of mass differs significantly
from his predecessors: it does not involve a global conservation of the ocean sup-
posed to cover the whole Earth and whose surface shape changes from a sphere to an
ellipsoid. Instead Laplace’s calculations express conservation locally. The starting
point is the equation given by Euler in 1755

∂ρ

∂t
+ divρv= 0 (2.61)

Then Laplace substitutes a variable surface density ρ(h+ ζ ) for a constant volume
density ρ, h being variable in space but constant in time:

∂ρ(h+ ζ )

∂t
+ divρ(h+ ζ )v= 0 (2.62)
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As ζv has a 2nd-order amplitude, and taking into account that ρ is constant, this can
be rewritten

∂ζ

∂t
+ div(hv)= 0 (2.63)

This equation expresses the fact that the mass flux through the walls of a column of
water is compensated for by variations in the height of the column.

2.9.4 Complementary Acceleration due to the Rotation of the Earth

One of the most essential improvements offered by the two Eqs. (2.58) and (2.59)
is the presence of the components with the factor 2ω cos θ . They signal the exis-
tence of a complementary acceleration in a rotating frame, later called the Coriolis
acceleration. They imply a deviation of the motions at the surface of the rotating
Earth. Laplace’s predecessors considered that the sole effect of the rotation of the
Earth was to displace the ellipsoid of the equilibrium tides. In the introduction to his
memoir of 1755, Laplace remarked the error of this simplified hypothesis, noticing
that the change in the relative position of the Moon and the Sun at the surface of
the seas is not the unique effect coming from the rotation of the Earth. This was
already pointed out by MacLaurin in his treatise about the ebb and flow, but without
any calculation. Laplace completed his remark with the following reasoning: the
velocity of a particle of fluid remains the same when staying in the same parallel, its
angular velocity increases or decrease according to its distance to the equator, and it
drifts in meridian as it moves in parallel. The important fact is that the amplitude of
the changes due to this effect is of the same order as the gravitational action of the
two perturbing bodies. MacLaurin must not be considered as the only predecessor
to mention the effect above. Galileo, in 1632, studied it in the problem of a bullet
launched along a meridian, and Hadley, in 1735, when interpreting the deviation of
trade winds westward. But Laplace was the first scientist to propose a quantitative
analysis far before Coriolis (1792–1843).

2.9.5 A Decisive Innovation: Spherical Harmonics

In 1782, Laplace invented what turned out to be a decisive tool for tackling problems
of tidal phenomena: spherical harmonics [17]. They occupy a fundamental place in
his work dealing with terrestrial dynamics, notably by leading to a rewriting of his
dynamical equations in a more elegant manner. In his memoir of 1790 (art. 2 and 3)
he already amends his notation, by introducing the spherical harmonics of order 2 in
the expression of the tidal potential and by taking into account in a simple manner
the self-gravity of the fluid layer. But the mathematical expressions of the potential
as well as of the dynamical equations reach their full maturity in the Mécanique
Céleste (vols. III and IV) of 1799.
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Fig. 2.25 Coordinates of a celestial body in the sky. M is the zenith of a surface point, with colat-
itude θ and longitude λ (counted positively eastward). A is a point corresponding to the direction
of the celestial body (Moon or Sun), with declination δ and right ascension α. H is the hour angle
of the intersection of the orbit with the equator. The angle between the ‘meridian’ of the body and
the meridian of the surface point is given by H − α = ωt + λ− α

2.9.6 Tidal Potential

In vol. III, art. 23, Laplace establishes the definitive expression for the tidal potential
V exerted by a perturbing body (Fig. 2.25):

V = Gmp

d

(
r2

d2
P2(cosψ)+ r3

d3
P3(cosψ)+ r4

d4
P4(cosψ)

)

(2.64)

where d is the distance of the perturbing body from the center of the Earth, mp its
mass, ψ the geocentric angle of zenithal distance, r the radius of the Earth and Pn

are the Legendre polynomials defined by

Pn(x)= 1

2nn!
dn[(x2 − 1)n]

dxn
(2.65)

Thus the first Legendre polynomials are

P0(x)= 1, P1(x)= x, P2(x)= 3x2 − 1

2
, P3(x)= 5x3 − 3x

2

P4(x)= 35x4 − 30x2 + 3

8
(2.66)

This expression of the tidal potential is very close to the expression of the deforma-
tion of an oceanic layer as given by Euler in 1740. Thanks to classic relationships
in a spherical triangle, Laplace can replace cosψ by a function of the colatitude
θ and the longitude λ of the point considered on the surface of the Earth, and of
the equatorial coordinates of the perturbing body, i.e. its right ascension α and its
declination δ:

cosψ = cos θ sin δ + sin θ cos δ cos(ωt + λ− α) (2.67)
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By inserting this expression in the tidal potential, Laplace shows that it can be writ-
ten naturally as a combination of functions called spherical harmonics Yn(θ,λ):

V (θ,λ)= V2Y2(θ, λ)+ V3Y3(θ, λ)+ · · · =
∞∑

n=2

VnYn(θ,λ) (2.68)

Here the coefficients Vn themselves can be written as functions of the spherical
harmonics Yn(δ,ωt − α)

2.9.7 Potential for Self-gravity

Thanks to their various properties, especially of orthogonality, spherical harmonics
form a basis in which any surface function can be expanded. Thus Laplace expands
the deformation of the fluid layer ζ(θ, λ) in spherical harmonics

ζ(θ, λ)=
∞∑

n=0

ζnYn(θ,λ) (2.69)

With the help of this expansion Laplace finds a simple and subtle expansion of the
potential for self-gravity of the fluid layer (vol. III, art. 11; vol. IV, art. 2)

Φ(θ,λ)=
∞∑

n=0

ΦnYn(θ,λ) (2.70)

with

Φn = 3gρw
ρe

ζn

2n+ 1
(2.71)

where ρw and ρe are the density of water and the mean density of the Earth. A re-
markable point of the formula above is that each component of degree n of this
potential is expressed as a function only of the corresponding degree of deforma-
tion ζn. Therefore each spherical harmonics can be treated separately, according to
their degree.

2.9.8 Dynamical Equations with Spherical Harmonics

In his Mécanique Céleste (book III, art. 3) Laplace rewrites the equations of mo-
tion of a fluid particle, which are similar to those given in 1776, by relying on a
completely new approach which expands in spherical harmonics all the parameters
concerned. This approach is extremely general and valid at each degree of the har-
monics, which can be treated independently. They are shown in Fig. 2.26.
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Fig. 2.26 Laplace equations
in 1799. μ corresponds to
cos θ . The potential V ′ is the
combination of the tide
potential V and the potential
of self-gravity Φ of the fluid
layer

2.9.9 Oscillation of the Fluid Layer in Case of a Static Earth

In 1799, after much effort, Laplace succeeded in making progress on the difficult
problem already raised by d’Alembert, that of determining the oscillation of the
fluid layer in the case of a static Earth. In that specific case, the three Eqs. (2.58),
(2.59), (2.60) can combine to give one equation in ζ . By differentiating the equation
of mass conservation (2.63) and using the fact that h is constant, Laplace gets

∂2ζ

∂t2
+ h

a

[
1

sin θ

∂

∂θ

(

sin θ
∂vθ

∂t

)

+ 1

sin θ

∂

∂λ

(
∂vλ

∂t

)]

= 0 (2.72)

and, by replacing the partial derivatives of the velocities by their expressions from
(2.58) and (2.59),

∂2ζ

∂t2
= h

a2
�t(gζ − V −Φ) (2.73)

where �t denotes the tangential Laplacian given by

�t = 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂λ2
(2.74)

Equation (2.73) was found by Laplace as early as 1776. But it took further 20 years
for Laplace to find way of solving this complex equation. Once more thanks to the
spherical harmonics, he found a way out, as it shown in Mécanique Céleste (vol. IV,
art. 2). Each term in the equation is expressed with the help of spherical harmonics,
and by use of their remarkable property

�tYn =−n(n+ 1)Yn (2.75)

Equation (2.73) becomes equivalent to a set of equations for different degrees n:

∂2ζn

∂t2
=−n(n+ 1)

h

a2
(gζn − Vn −Φn) (2.76)

with

Φn = 3gρw
ρe

ζn

2n+ 1
(2.77)

Laplace gets

∂2ζn

∂t2
+ n(n+ 1)

(

1− 3ρw
(2n+ 1)ρe

)
gh

a2
ζn = n(n+ 1)

h

a2
Vn (2.78)
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This represents the equation of an oscillation forced by the tidal potential Vn. For
n= 2, and by setting the tidal potential to zero, we have

∂2ζ2

∂t2
+ 6

(

1− 3ρw
5ρe

)
gh

a2
ζ2 = 0 (2.79)

This represents an oscillation of the fluid layer, with characteristic period

T = 2πa
√

6gh(1− 3ρw
5ρe

)

(2.80)

This corresponds exactly to the eigenmode of oscillation found by d’Alembert. But
Laplace generalized the work for all degrees of the spherical harmonics.

2.9.10 Hydrostatic Equilibrium

In his Mécanique Céleste (vol. IV, art. 12), Laplace remarks that his equations re-
cover in a simpler manner his predecessors’ results on another fundamental topic:
the equilibrium tide. A simple hypothesis is adopted that the surface of the sea takes
the form induced by the instantaneous forces acting on it, in other words the veloc-
ities and their derivatives are ignored. With this hypothesis, the value of the defor-
mation ζ of the fluid layer can be determined immediately for arbitrary depth and
density of the sea. Indeed the equation becomes

g∇ζ =∇V +∇Φ (2.81)

or after integration

ζ = V +Φ

g
(2.82)

This formula says that equipotentials are equivalent to equipressures. It shows the
advantageous of working with potential, which quickly yields the static deforma-
tion. Expanding in spherical harmonics and recalling

Φn = 3gρw
ρe

ζn

2n+ 1
(2.83)

we get, for each harmonic of degree n,

ζn = 1

(1− 3
2n+1

ρw
ρe
)

Vn

g
(2.84)

When self-gravity is neglected, this formula is very close to that given by Euler in
1740. Truncating the expression at the second order, we get

V = 3Gmpa
2

2d3

(

cos2 ψ − 1

3

)

(2.85)
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and

ζ = 3

2(1− 3
5
ρw
ρe
)

mpa
4

med3

(

cos2 ψ − 1

3

)

(2.86)

which now corresponds to the formula given by d’Alembert. Laplace is interested
in the hypothesis of hydrostatic equilibrium in order to show that it conflicts with
the observations. He showed that when the Moon and the Sun are in conjunction
in the summer solstice, when their declination is maximal, the hypothesis implies
that the excess of water at midday high tide over the following low tide should be
roughly 8 times bigger than the excess of midnight high tide over the following low
tide, whereas the observations show these excesses to be of the same size.

2.9.11 Three Species of Oscillation

An extremely important contribution of Laplace’s study concerns the special struc-
ture of the tidal potential: he showed that this potential generates three different
kinds of oscillations, for which he studied the influence of bathymetry of the oceans.
His research on this topic began in the memoirs of 1775 and 1776 (art. 25–28), then
in Mécanique Céleste (art. 4–10). He shows that when restricting to the degree 2
of spherical harmonics, the leading term, the tidal potential exerted by an external
body is

V = 3Gmpa
2

2d3

(
(
cos θ sin δ+ sin θ cos δ cos(ωt + λ− α)

)2 − 1

3

)

(2.87)

where the parameters are either local, like colatitude θ and longitude λ, or related
to the ephemerids of the perturbing body, as celestial coordinates α and δ, ωt being
the sidereal angle of rotation of the Earth. By expanding (2.87) and combining the
terms, we find

V = Gmpa
2

d3

(
3 sin2 δ − 1

2

)(
3 cos2 θ − 1

2

)

+ 3Gma2

d3
sin θ cos θ sin δ cos δ cos(ωt + λ− α)

+ 3Gma2

4d3
sin2 θ cos2 δ cos 2(ωt + λ− α) (2.88)

This modern way of writing the expressions is not exactly the same as Laplace’s
one, but strictly equivalent. It shows the symmetry between θ , δ, and between λ,
ωt − α. The distance d of the external body (Moon or Sun) as well as its equatorial
coordinates α and δ vary relatively very slowly with respect to the diurnal variable
ωt . This led to the conclusion by Laplace that the three terms of the potential V
in Eq. (2.88) give rise to three different species of oscillation. He mentions that the
three species mix without interacting and can be studied separately.
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2.9.11.1 Oscillations of the First Species

The oscillations of the first species do not depend on the longitude of the surface
point, but vary as a function of the orbital parameters of the perturbing body: they
have a zonal structure. Among these oscillations figure monthly and fortnightly
components for the Moon, annual and semi-annual ones for the Sun. The ampli-
tudes of these oscillations do not depend on the bathymetry of the oceans.

2.9.11.2 Oscillations of the Second Species

These have a quasi-diurnal period (close to 24h50mn for the Moon, 24h00mn for the
Sun) due to the presence of the argument ωt with diurnal frequency. Their ampli-
tudes are modulated by the orbital motion of the body. The amplitude is zero when
this body is on the celestial equator and gets all larger as the declination gets high.
This occurs during the solstices for the Sun and twice a month for the Moon.

In theory, when the declination is maximal, the oscillations should generate a
large difference of amplitude between successive high tides occurring on the same
day. This is in fact contrary to what is observed in various harbors of the Atlantic,
where these two tides show approximatively the same amplitudes. Laplace discov-
ered that these oscillations depend on the depth of the seas and vanish if the depth is
constant. As early as 1775 he expressed his satisfaction in observing his predictions,
mentioning that this agreement constituted one of the main accomplishments of his
research.

2.9.11.3 Oscillations of the Third Species

They are the most prominent in harbors of the Atlantic. Their period is semi-diurnal
(close to 12h25mn for the Moon, 12h00mn for the Sun) and their amplitudes are also
modulated by the relative celestial motion of the celestial body. The amplitude is
maximum when the body lies on the celestial equator. Laplace sought the condition
in which these oscillations vanish and found that this requires an ocean of infinite
depth.

2.10 Methodology, Organization, and Analysis of Observations

The numerous calculations by Laplace on the influence of bathymetry and his re-
search on the necessary conditions for the oscillations of second and third species
to vanish reach some limits. The impossibility of explaining the variety of tides by a
direct deterministic calculation led him, in his memoir of 1790, then in Mécanique
Céleste (vols. IV and XIII), to fully exploit observational data and to develop semi-
empirical methods.
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Thus, if Laplace must be considered as the founder of the dynamical theory of
tides, his activities in this field were not restricted to theoretical studies. He was
also concerned by more practical aspects and was at the origin of the development
of systematic observations of the tides. When in 1790 he sought to determine the
local laws of the ebb and flow using a semi-empirical method, the only observations
available were those carried out between 1711 and 1716 at Brest harbor and those
on Lalande’s initiative in 1777. Laplace remarked that they were too vague and
incomplete to enable a fruitful analysis. Then he exhorted the scientific community
to undertake tidal measurements with ‘the same care as astronomical observations’.

In 1803, with the help of Pierre Lévêque and Alexis de Rochon, he participated
in a commission in charge of the planning of tidal observations. Memoir on the
observations it is important to carry out on the tides in different harbors of the
Republic was written on this occasion. It establishes an extremely precise protocol
of observations, underlying the fact that if earlier the observations guided the theory,
now the theory guides the observations. In 1806, following this memoir, a long series
of observations was undertaken at Brest. Laplace in Mécanique Céleste (vol. XII)
analysed the data from 16 years of observations (1807–1822) and in 1843 the Bureau
des Longitudes published the observations from 1807 to 1835.

2.10.1 Semi-empirical Methods Based on Partial Flows

Whereas the purely theoretical expressions of the tidal potential established by
Laplace reached a quasi-definitive status and incurred few modifications until now,
his semi-empirical methods were rather complex and merely gave a starting point
for the development in the 19th and 20th centuries. Laplace was aware of why his
calculations are not satisfactory: tides are modified by the distribution of continents
and oceans, irregularities of the ocean depths, the positions and the slopes of shores,
currents, the drag of water. It is true that for these reasons tides have no direct and
simple relationship with the tidal potential. But they should obey some laws. Laplace
established a principle that should give access to local tides laws and is still used up
to the present. It relies on two basic ideas:

• The tidal potential can be decomposed as a series of sinusoidal terms with vari-
ous periodicities. This decomposition explains the modulation of tidal waves ac-
cording to the characteristics of the lunar and solar orbital motions (variations of
declination, of distance, of longitude). In his decomposition, Laplace introduced
a significant number of waves, which are found later in the decompositions used
by Lord Kelvin in 1867, Darwin in 1883, and Doodson in 1921.

• Despite numerous perturbations listed above, tides conserve something of their
periodicities. In other words, the sea is subject to the same periods as those of
the forcing tidal potential: each wave of this potential generates a partial sea flow
itself expressed by a sinusoidal function with the same period. The coefficients
and phases of the partial flows are modified differently for each harbor and for
each wave. The total sea flow at a given point is reconstructed as the sum of the
individual partial flows, using the principle of superposition.
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2.10.2 Determination of the Amplitudes and Phases of the Partial
Flows

The determination of the parameters acting on the water height is possible only from
observations. Laplace’s method tries to employ a shrewd combination of observa-
tions to disentangle the phenomenon being studied. For instance, for the characteri-
zation of the semi-diurnal tides, high and low tides were recorded in the vicinity of
solstitial and equinoctial syzygies or quadratures. In vol. IV, Laplace uses Cassini’s
observations from the beginning of the 18th century, refined by observations that
he himself organized at Brest between 1807 and 1822. He gathered more than 6000
observations for the purpose. Thus he could determine the fundamental parameters
(coefficients and phases) which take part in the diurnal and semi-diurnal oscillations,
and find a very good agreement between his semi-empirical formula and observa-
tions. In particular he could show that, under the effect of the terrestrial rotation
and of various perturbations listed above, the amplitude of the diurnal flow in Brest
harbor is reduced by a factor of 1/3 compared with the value predicted by the theo-
retical equilibrium tide, whereas the semi-diurnal flows is multiplied by a factor of
16. Pushing further the treatment of observations, Laplace sought to put in evidence
the flow depending on the lunar potential of degree 3, that is to say involving 1/d4

M .
His semi-empirical method was powerful indeed.

2.10.3 Determination of the Ratio of Lunar/Solar Tides

Finally, Laplace could attempt a fresh estimate of the ratio μ of the amplitude of
the lunar tide to that of the solar tide. We saw that in 1687 Newton had set the
value μ= 4.5 by using the height of tides in Bristol harbor, and that later Bernoulli
lowered this value to μ = 2.5 by using the precise times of high tides instead of
their height. Then in 1749 d’Alembert and Euler lowered the value further to 2.33
thanks to the study of the precession-nutation of the Earth. Finally Laplace found
the value 2.35 and concluded that ‘the agreement of values found by various means
is remarkable’. This ratio also enabled him to calculate the mass of the Moon, for
which he found 1/75 of the mass of the Earth, very close to the real fraction of 1/81.

2.10.4 Laplace and Atmospheric Tides

On the margin of his research about the oceanic tides, it is worth mentioning that
Laplace was also interested in atmospheric tides. The subject had already been ini-
tiated by Daniel Bernoulli and d’Alembert: Laplace explained that the gravitational
influence of the Moon and the Sun generates in the atmosphere periodic motions
similar to the oceanic ones but extremely weak. The barometer variation he cal-
culated theoretically should be of the order of 0.6 mm of mercury (80 Pa). These
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variations are too small to explain the strange variations of the barometer, with a
12-hour period and 1.5 mm amplitude observed in the 18th century in tropical ar-
eas, in particular by Lamanon in 1785 during La Perouse expedition (1785–1788).
Laplace concluded that these variations should be due to thermal forcing. In 1825,
using the analysis of 8 years of pressure measurements at the Observatoire de Paris,
he tried to show the existence of atmospheric tides with a lunar origin: he found an
oscillation of 0.055 mm of mercury, but emphasized that his results are not statisti-
cally convincing. The existence of such a tide was demonstrated for the first time in
1842, from observations on the island of St. Helens.

2.11 Conclusion on Laplace’s Work

Laplace’s work is a landmark in the study of tides. We can condense our discursive
text above on his contributions into three bullet points.

• The origin of the tides and the ultimate outcome of Newton’s ideas. Instead of the
generating force of tides, Laplace used the fruitful tidal generating potential, and
pioneered the use of the spherical harmonics.

• Even more fundamental, the establishment of a dynamical theory of tides. By
neglecting the vertical velocity in the fluid layer, Laplace establishes the gen-
eral equation of the dynamics of water in the oceans, which to this day remains
the basis of tidal theory. He highlighted the Coriolis force and the fact that each
oscillation of the tidal potential generates a partial flow with the same period
which, mixed with various local perturbations, gives a great variety of geography-
dependent tidal behaviors.

• The organization of an observational network, with a very precise protocol. In
parallel he developed a method of analysis of observations.

From these various point of view, Laplace can be considered as the true founder
of the modern science of ocean tides.

2.12 Overall Conclusion

Since the first ideas on the influence of the Moon put forward by the Ancients, until
the mathematical work of Laplace, the improvements of the theory of tides have
been considerable. But why did it take such a long time to solve the problem? Three
reasons can be found.

• First, solving the problem necessitated the discovery of the universal law of grav-
itation, so had to wait Newton.

• Second, tides mingle two causes, a deterministic and precise law of gravitation
and perturbations by local environments. To understand the tides, we had to sep-
arate the two causes. Newton took the first step by giving the tidal force. Laplace
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took the second step, by showing that the sea flows in each harbor have the same
periodicities as the tidal potential but with phases and amplitudes depending on
the local characteristics of each site.

• Third, mathematical tools had to be invented, not only calculus but also spherical
harmonics and the equations of fluid mechanics. By the end Laplace’s career, all
the tools are ready and provide the theoretical basis for the future.

After Laplace, improvements continued. Several of them are:

– The increase of the observations, in particular thanks to the floating tide gauges
invented in 1843 by Rémi Chazallon (1802–1872).

– Understanding that tides result largely from resonances of basins to astronomical
excitations: pioneering work by John William Lubbock and William Whewell in
1830–1840, then by Rollin Harris in 1897.

– Refining the harmonic expansion of the tidal potential: 91 terms for George Dar-
win in 1883, 378 for Doodson in 1921, and 12 935 for Hartmann and Wenzel in
1995.

– Understanding that tides concern only oceanic masses but also the solid part of
the Earth: elastic deformations.

– Last but not least, fantastic computing tools that integrate the dynamical equa-
tions, replacing the partial integrations done by George Biddell Airy, Lord Kelvin,
Henri Poincaré, Carl Gustav Rossby, and others.

In addition to the numerical modeling of tides, the problem today consists in
dealing with the tides in a global way to determine the motions of a deformable
Earth, partially covered by oceans, containing a fluid core and subject to the action
of external bodies.
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Chapter 3
Oceanic Tides

Bernard Simon, Anne Lemaitre, and Jean Souchay

Abstract The phenomena of tides are a matter of common experience: ocean tides
under the influence of the Moon and the Sun, differences of the surface level of the
oceans reaching several meters, following well-established cycles. In the present
chapter we propose a first step in the general and classical mathematical formula-
tions of the tidal potential and tidal force. Then we apply this formulation to the
concrete case of the lunisolar ocean tides at a given point of the surface of the sea.
At the end we give a review of various tidal manifestations all around the world.

3.1 Introduction

It is a well-established fact that the origin of the tides is the gravitational action of
the Moon and the Sun on objects bound to the Earth [21], but the tidal generating
force should not be confused with the gravitational attraction exerted by each of
these bodies on the water particles. The tidal generating force is actually the differ-
ence between this attraction and what the attraction would be if the particle were
located at the center of the Earth. Indeed, the centrifugal force resulting from the
orbital motion of the Earth (around the center of mass of the Earth-Moon system or
of the Earth-Sun system) is the same at every point of the Earth, while the gravita-
tional attraction varies with the proximity of the celestial bodies according to where
the particle is positioned on the surface of the Earth. At the center of mass of the
Earth, these two forces balance exactly. Since the Earth radius is small compared
with the distance to the Moon (and a fortiori to the Sun), to a first approximation for
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someone on the Earth surface the magnitude of the force is the same as if the body
(Sun or Moon) were at the zenith or the nadir. This explains the semi-diurnal tide
(two high tides and two low tides per day). During the day, a maximum force oc-
curs when the Moon crosses the upper semi-meridian and another maximum when
it crosses the lower semi-meridian, the minimum occurring when it crosses the hori-
zon (attractive and centrifugal forces are then nearly opposite). However, owing to
the inclination of the axis of the Earth’s rotation relative to the axis of the Earth’s or-
bit, the two extrema are generally not equally pronounced, and sometimes, at higher
latitudes, the Sun or the Moon never set or rise (polar night). In this case, a maxi-
mum disappears and the resulting type is diurnal (one maximum and one minimum
per day). This qualitatively explains some aspects of the tide as described in the pre-
ceding paragraph: the generative force of the tide entails diurnal and semi-diurnal
components.

In his dynamic theory presented to the Académie Royale des Sciences in 1790,
Laplace introduced the concept of tidal generating potential [12]. He was the first to
treat the tide as a problem of dynamics of water masses and not as a static problem.
According to his dynamic theory, the sea response to the tidal generating force takes
the form of extensive waves crossing the oceans with a velocity depending essen-
tially on depths. Moreover, like any wave phenomenon, these waves are reflected,
refracted, and diffused according to the nature of the propagation medium and the
shape of ocean basins. It follows that the observed tide at any point is the result of
the superposition of elementary waves which come from all parts of the ocean, each
of them being subject, during its travel, to different propagation conditions. All these
components can obviously interfere with one another, resulting in strengthened or
attenuated amplitudes according to frequencies.

The hydrodynamic equations of this phenomenon, first formulated by Laplace
[13], cannot be easily solved even with modern computing tools available, but they
remain the basis of all subsequent developments. Above all, they allow establishing
a formula, known as ‘Laplace equation’, applicable to tidal predictions and based
on two principles. The first one is that a water mass undergoing a periodic force is
subject to a periodic oscillation with the same frequency. The second one is that the
total motion of a system subject to small forces is equal to the sum of the elementary
motions created by each force.

These two principles express the assumption of the oceans’ linear response to the
action of the tidal generating force. It turns out that this assumption is well verified
in the case of Brest harbor, where tidal observations were used by Laplace to test
his theory. The tidal generating force being divided as a sum of elementary periodic
forces, the Laplace equation implies that the tide may itself be decomposed into os-
cillations of similar periods. The assumption of linearity is not inconsistent with the
fact that two parameters, the proportionality factor and the phase shift between the
tidal component and corresponding power generator, may depend on the frequency.
These parameters also depend on hydraulic conditions of wave propagation, differ-
ent from one point to another, and in practice must be determined experimentally by
analysis of available observations.

The main interest of the Laplace theory lies in its ability to provide a practical
method for prediction of high and low tides, known as ‘Laplace method’. In 1839,
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the hydrographer Chazallon [4] published the first precise scientific timetable of
tides based on this method. In this timetable hours and heights of high and low
tides at Brest were calculated. For other harbors, they were obtained using time
differences and amplitude factors. The Laplace equation has remained the basis of
calculation of tides in France for over 150 years. Before the advent of computers, no
competing method could indeed claim to provide better accuracy for the calculation
of the tide at Brest. However, because of the assumption of linearity, the Laplace
equation could not claim to be universally applicable. In fact, they have never been
used to calculate the tides at other places than Brest.

Subsequently, we must note the works of two Englishmen, William Whewell [24]
(1794–1866) and George B. Airy [1] (1801–1892) [2], who were particularly inter-
ested in the propagation of the tidal wave, the first in oceans, the second in canals
and rivers, taking friction into account. But we must wait until the late 19th century,
with the contribution of Sir William Thomson, better known as Lord Kelvin (1824–
1907), to note a real progress in the calculation of tidal predictions [23]. In 1867, the
British Association for the Advancement of Science (BAAS) set up a committee to
promote the improvement and widespread implementation of the harmonic analysis
of tides. The report of this committee was written by Kelvin himself. Some other
reports appeared on this subject, but the major contribution was the paper published
in 1883 by George H. Darwin (1845–1912) [5]. This paper presents the precise har-
monic expansion of the tidal potential, which has been universally used up to the
present day as the basis of most studies on tides. Today, the tidal harmonic com-
ponents are designated by the names assigned by Darwin. In addition, methods of
calculation, developed and adapted to the means of that era, were often transposed
without changes, even with the technological evolution of computers. However, this
development, based on an ancient lunar theory in which all elements are referred
to the orbit, was not entirely satisfactory because it is not purely harmonic: it was
necessary to introduce correction factors to account for slow changes in the compo-
nents, mainly due to the slow retrograde motion of the orbit of the Moon. The long-
term variations associated with these correction factors can be regarded as constant
over periods of the order of one year. Calculated over many years, these factors are
available as published tables [22]. The use of these tables is not quite satisfactory
for modern computing, but was very useful for manual calculation. That is probably
why Darwin remained popular, while as early as 1921 more satisfying purely har-
monic expansions such as those proposed by Arthur T. Doodson (1890–1968), were
available. Doodson [9] published in the Proceedings of the Royal Society an expan-
sion based on the lunar theory proposed by Brown in 1919 [3]. This new expansion,
digital and purely harmonic, provides many more terms than those presented by Dar-
win and does not require correction factors. Thus tables for these factors were no
longer necessary and automatic processing could be greatly improved to come into
practical use in the late 1950s. Other expansions, more complete or more accurate,
have been proposed since. However, for practical applications in tidal calculations,
they do not bring significant progress with respect to the Doodson expansions which
remain the reference.
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3.2 Basic Mathematical Tidal Theory

In this section we consider the general case of a celestial body orbiting a non rigid
planet P . This will give rise to a deformation of this planet. The hypothesis is that
this deformation is proportional to the force, to the stress itself. This is why our
fundamental aim is to calculate the force exerted on each point P of the planet
surface, due to the presence of the celestial body.

Let M be the mass of the non-rigid planet, R its mean radius. O is the position of
its center of mass, chosen as origin of the coordinates x, y, z. The celestial orbiting
body is regarded as a point mass m, with position Q. While orbiting around O it
deforms the planet, and a surface element of the planet is denoted by a position P,
at a distance r �R from the center O .

We introduce the following vector and scalar notation:

r=OP= (x, y, z), a point on the surface of the planet of mass M

r = ‖r‖, its norm

d=OQ= (u, v,w), the position of the perturbing body of mass m

d = ‖d‖, its norm

�= ‖QP‖, the distance between Q et P

3.2.1 Tidal Potential

The potential V calculated at the point P due to the presence of the orbiting body
with mass m is given by

V (x, y, z)=−G
m

�
where �2 = d2 + r2 − 2dr cosψ (3.1)

with r · d= rd cosψ and G the gravitational constant.
Let us expand this expression:

V (x, y, z)=−G
m

d

(

1+
(
r

d

)2

− 2

(
r

d

)

cosψ

)− 1
2

=−G
m

d

∑

n≥0

(
r

d

)n
Pn(cosψ). (3.2)

Then, if we assume that R� d ,

V (x, y, z)= V0 + V1 + V2 + · · · (3.3)

�−G
m

d

(

1+
(
r

d

)

P1(cosψ)+
(
r

d

)2

P2(cosψ)

)

(3.4)

where Pn represents the Legendre polynomial of degree n.
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• V0 is a constant term with respect to (x, y, z) and can be dropped,

V0 =−G
m

d
, (3.5)

• V1 is the potential corresponding to a system of two masses orbiting around their
center of mass,

V1 =−G
m

d

(
r

d

)

P1(cosψ)=−G
mr

d2
cosψ, (3.6)

• V2 is the first part corresponding to the tidal deformation, which is studied in
detail in this chapter,

V2 =−G
m

d

(
r

d

)2

P2(cosψ)=−G
mr2

d3

1

2

(
3 cos2 ψ − 1

)
. (3.7)

The next term in the expansion would be:

V3 =−G
m

d

(
r

d

)3

P3(cosψ)=−G
mr3

d4

1

2

(
5 cos3 ψ − 3 cosψ

)
. (3.8)

Let us rewrite the amplitude factor A2 in V2:

A2 = G
mr2

d3
= GM

r2

m

M

r3

d3
r = gξ, (3.9)

where g = GM

r2 is the gravity at the surface of the planet of mass M , and ξ = m
M

r3

d3 r

depends on the position and mass of the perturbing body.
We recall that the planet is rotating. Consequently it makes sense to speak of its

equator and P can be positioned with its latitude ϕ measured from this equator, and
an angle of longitude λ varying with the rotation of the planet. In a similar way
the orbiting point mass can be positioned through variable coordinates which are its
latitude δ and its longitude λ′.

Now we can introduce the spherical coordinates:

x = r cosϕ cosλ, y = r cosϕ sinλ, z= r sinϕ,
u= d cos δ cosλ′, v = d cos δ sinλ′, w = d sin δ.

(3.10)

They allow us to write:

cosψ = cosϕ cosλ cos δ cosλ′ + cosϕ sinλ cos δ sinλ′ + sinϕ sin δ

= cosϕ cos δ
(
cosλ cosλ′ + sinλ sinλ′

)+ sinϕ sin δ

= cosϕ cos δ cos
(
λ− λ′

)+ sinϕ sin δ, (3.11)

and consequently,

P2(cosψ)= 1

2

(
3 cos2 ψ − 1

)

= 1

2

(
3 sin2 ϕ − 1

)1

2

(
3 sin2 δ− 1

)+ 3

4
cos2 ϕ cos2 δ cos 2

(
λ− λ′

)

+ 3

4
cos 2ϕ cos 2δ cos

(
λ− λ′

)
. (3.12)
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3.2.2 Tidal Force

From the tide potential V2 we can extract the expression for the corresponding tidal
force per unit of mass, F2, due to the presence of the external body situated at
(u, v,w) and acting on the surface point P with coordinates (x, y, z):

F2(x, y, z)=−∇V2(x, y, z)=∇W2(x, y, z)=
(
∂W2

∂x
,
∂W2

∂y
,
∂W2

∂z

)

. (3.13)

For that purpose, let us rewrite W2 in terms of x, y and z:

W2(x, y, z)= G
mr2

d3

1

2

(
3 cos2 ψ − 1

)

= G
m

d5

1

2

(
3r2d2 cos2 ψ − r2d2)

= G
m

d5

1

2

(
3(xu+ yv+ zw)2 − d2(x2 + y2 + z2)). (3.14)

It is now easy to calculate the three partial derivatives

∂W2

∂x
= G

m

d5

(
3(xu+ yv+ zw)u− d2x

)

= G
m

d5

(
3rd cosψu− d2x

)
,

∂W2

∂y
= G

m

d5

(
3rd cosψv− d2y

)
,

∂W2

∂z
= G

m

d5

(
3rd cosψw− d2z

)
,

and the corresponding force per unit of mass, F2, acting on P due to Q

F2 = G
m

d3

(

3r cosψ
d
d
− r
)

. (3.15)

We can already analyse the first term, depending on ψ .

• ψ = 0 when r and d are aligned: in this configuration, F is maximal and points
toward the perturbing body.

• ψ = π when r and d are anti-aligned: in this configuration, F is again maximal
but points away from the perturbing body.

Extrapolating these remarks to any point on the surface, we can say that the
deformation at any point P of the surface of the planet is instantaneous and directly
proportional to the tidal force which creates it. In the case of a deformable planet
(like the Earth), the external surface is deformed in such a way that it corresponds
to an equipotential surface.
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3.3 Expression of the Tidal Potential for the Earth

Here we apply the mathematical principles of the previous section to express the
tidal potential V2(P) or the associated force function W2(P)=−V2(P), exerted by
an external body (Moon, Sun, planet) with mass m on a point P of the Earth [c??].
P is classically labeled by its spherical coordinates (r, ϕ,λ), with respect to the
terrestrial equator, where ϕ is the latitude and λ the terrestrial longitude, r being the
distance from the center O of the Earth to P.

The position of the perturbing body is given, as before, by its declination δ with
respect to the celestial equator and by its longitude λ′, which we replace by its hour
angle H defined by H = λ′ − λ.

Then the potential W2(P) is given by:

W2(P)= Gm
r2

d3

9

4

(

sin2 ϕ − 1

3

)(

sin2 δ − 1

3

)

+ Gm
r2

d3

3

4
sin 2ϕ sin 2δ cosH

+ Gm
r2

d3

3

4
cos2 ϕ cos2 δ cos 2H (3.16)

=W zonal
2 +W tesseral

2 +W sectorial
2 . (3.17)

We can decompose W2 into three terms, named zonal, tesseral and sectorial,
which are characterized in the next section, where we make a large use of [c??].

3.3.1 Zonal Part of the Tidal Potential

Let us start with the zonal term, W zonal
2 :

W zonal
2 = Gm

r2

d3

9

4

(

sin2 ϕ − 1

3

)(

sin2 δ − 1

3

)

. (3.18)

This term is called long period or low frequency because it does not contain the
hour angle H , which is by far the highest-frequency variable. Its variations come
from the squares of the sines of the declination (sin2 δ) of the perturbing body
(Moon, Sun, planet) around the Earth, which in reality vary slowly. It introduces
a period which is half the time of the relative revolution of the perturbing body, i.e.
roughly 14 days in the case of the Moon and 6 months in the case of the Sun. Given
the extremal values reached by the declinations, 28◦30′ for the Moon and 23◦27′ for
the Sun, the last factor is always negative.

The factor (sin2 ϕ − 1
3 ) vanishes at latitudes such that sinϕ = ±1/

√
3, i.e. at

latitudes 35◦16′N and 35◦16′S. The locus where this term vanishes are parallels
(lines of equal latitude). Taking into account that one factor is always negative, it
follows that the long-period term of potential is always positive for latitudes between
35◦16′N and 35◦16′S and negative elsewhere.

The partition in zones of latitude of this part of the potential, as it is shown in
Fig. 3.1, justifies the terminology of zonal potential.



90 B. Simon et al.

Fig. 3.1 Zonal distribution
of the long period component
of the tidal potential

Fig. 3.2 Tesseral distribution
of the diurnal component of
the tidal potential

3.3.2 Tesseral Part of the Tidal Potential

The second term W tesseral
2 is given by:

W tesseral
2 = Gm

r2

d3

3

4
sin 2ϕ sin 2δ cosH. (3.19)

It is called diurnal, for it contains H with period of roughly one day, regardless
of the celestial body m being considered. Its nodes are the meridians normal to
the direction of the perturbing body, and the equator (Fig. 3.2). It gives a tesseral
structure of equipotential lines, whose sign changes with the declination. The period
in the hour angle is approximately 24 hours for the Sun and 24 h 50 min for the
Moon. The declination δ and parallax 1/r vary very slowly in comparison to this
diurnal frequency.

Thus they act as modulations on the diurnal term. The diurnal local maximum
is reached when the perturbing body crosses the upper or lower meridian of the
observer. The maximal extrema on the Earth are reached at latitudes 45°N and 45°S
when δ is itself at its maximum value (23◦27′ for the Sun and 28◦30′ for the Moon).
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Fig. 3.3 Sectorial
distribution of the
semi-diurnal component of
the tidal potential

The potential is zero for the points at the equator (ϕ = 0◦) and at the poles (ϕ = 90◦)
or when the declination δ of the orbiting body (Moon, Sun or planet) is zero.

3.3.3 Sectorial Part of the Tidal Potential

Finally the third term W sectorial
2 is given by:

W sectorial
2 = Gm

r2

d3

3

4
cos2 ϕ cos2 δ cos 2H. (3.20)

It is called semi-diurnal, for it contains 2H , with period of roughly 12 h for the Sun
and 12 h 25 min for the Moon. Its nodes are the meridians located at 45° of longitude
eastward or westward of the meridian containing the perturbing body. These nodes
divide the Earth into four sectors. The sectorial potential is positive in the section
containing the great circle of the perturbing body and its opposite, and negative in
the other two sections.

This is the reason for which it presents a sectoral distribution (Fig. 3.3) over
the Earth. This component has two maxima and two minima per day, due to the
periodicity of cos 2H . The maximal extrema are reached at the equator (ϕ = 0◦),
when the declination of the body (δ) is zero. The semi-diurnal part of the potential
is zero at the poles (ϕ = 90◦).

3.3.4 Components of the Local Tidal Force

The local tidal force F = (Fr ,Fϕ,Fλ) at a given position P can be deduced by
simple differentiation of the tidal potential along the three local coordinate axes:
the first direction is zenital, the other two directions are horizontal, respectively in
the North-South and East-West directions. Let us recall that H = λ′ − λ, and then
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Table 3.1 Trigonometric functions appearing in the expansions of the local tidal force according
to the three rectangular directions and the three tidal families

Family Factor Vertical North-South East-West

Zonal 9
4 Gm r

d3 2(sin2 ϕ − 1
3 )(sin2 δ − 1

3 ) sin 2ϕ(sin2 δ − 1
3 ) 0

Tesseral 3
4 Gm r

d3 2 sin 2ϕ sin 2δ cosH cos 2ϕ sin 2δ cosH sinϕ sin 2δ sinH

Sectorial 3
4 Gm r

d3 2 cos2 ϕ cos2 δ cos 2H − sin 2ϕ cos2 δ cos 2H 2 cosϕ cos2 δ sin 2H

∂W2
∂λ
=− ∂W2

∂H
. Thus we have, with a relationship similar to Eq. (3.15) but adapted to

spherical coordinates:

F=∇W2 =
(
∂W2

∂r
,

1

r

∂W2

∂ϕ
,

1

r cosϕ

∂W2

∂λ

)

. (3.21)

Consequently we have three trigonometric functions: vertical or ∂W2
∂r

, North-

South or 1
r
∂W2
∂ϕ

, East-West or 1
r cosϕ

∂W2
∂λ

, for each tidal family (zonal, tesseral, sec-
torial). The nine resulting trigonometric functions characterizing the tidal force are
summarized in Table 3.1.

Notice that the deviations of the vertical n1 and n2 along the two horizontal axes
(North-South and East-West) are immediately derived from

n1 ≈ tann1 = 1

rg

∂W2

∂ϕ
(3.22)

and

n2 ≈ tann2 = 1

rg cosϕ

∂W2

∂λ
. (3.23)

3.4 Doodson Expansion of the Tidal Potential

The Doodson expansion is based on the theory of the orbital motion of the Moon
proposed by Brown (1919) [3], which describes the motion of the Moon in ecliptic
coordinates. Brown provided harmonic expansions of the mean longitude, latitude,
and the average horizontal parallax of the Moon in a series of trigonometric func-
tions whose arguments are linear in the mean time.

3.4.1 Previous Expansions of the Lunisolar Potential

The expressions of the lunisolar potential given by Laplace [13] in the form of
Eqs. (3.18), (3.19) and (3.20) and their derivatives are not directly suitable for the
analysis of tidal phenomena because the term 1/d3 as well as the trigonometric
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functions containing δ and H exhibit very complicated time-variations due the com-
plexity of the orbital motions of the Earth around the Sun and of the Moon around
the Earth.

Laplace already had the idea of expanding the Moon and Sun potentials in sinu-
soidal functions whose arguments are linear in time. Each term of such an expansion
can be understood as the potential of a fictitious body describing a uniform circular
motion in the equatorial plane, generating an elementary tidal component with the
period of revolution of the fictitious body, and with amplitude and phase depending
on the harbor considered. Assuming that the ocean’s response is a linear function
of the period of revolution of the Sun and the Moon for diurnal components on
one hand and semi-diurnal on the other (i.e. in narrow frequency ranges), Laplace
was able to avoid resorting to a purely harmonic expansion. He also showed how
to make the potential expansion in a form of purely harmonic components, taking
into account the main inequalities of the Moon. Then he deduced the corresponding
expressions, independently of any assumption on each component amplitude and
phase.

Kelvin [23] and Darwin [6] in 1883 [5] continued Laplace’s work by improving
the harmonic expansion of the tidal potential. Darwin’s expansions were the starting
point for the harmonic method of calculating tides which have then been used uni-
versally [8]. However, the Moon orbital theory available at that time did not allow
Darwin to find a comprehensive expansion of the potential. In particular, defects in-
duced by the motion of the lunar nodes were regarded as disturbances requiring the
use of correction factors called nodal factors. In 1921, Doodson remedied this situ-
ation and published a purely harmonic expansion containing those 386 components
whose amplitude coefficient exceeds 10−4 of the leading one. All the expansions
of the tidal potential published after Doodson’s have shown an excellent agreement
with them. In the following we explain in detail the principles of construction for
Doodson’s series of the tidal potential.

3.4.2 Doodson’s Constant

In the expression of the potential W2 in Eq. (3.16) or in Table 3.1, the trigonometric
functions are multiplied by the factor 3

4Gm(r2/d3), where r and d are respectively
the distances of P and of the perturbing body (Moon, Sun, planet) to the center O of
the Earth. Therefore it seems judicious to introduce a constant scaling factor close
to it [c??].

A natural way of doing this is to replace d by its mean distance c, that is to say its
averaged value during a revolution, and to replace r by a radius ȧ such that the vol-
ume of the sphere of radius ȧ is the same as the volume of the Earth. Consequently

ā = 3
√
a2b (3.24)

where a and b are respectively the semi-major and semi-minor axis of the Earth
(considered as an ellipsoid with a circular equator).
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Then we can define the general Doodson’s constant D:

D = 3

4
Gm

(
ā

c

)3

, (3.25)

and for the Moon and for the Sun, also called the Doodson’s constants:

DM = 3

4
GmM

(
ā

cM

)3

, DS = 3

4
GmS

(
ā

cS

)3

. (3.26)

Thus the ratio of these two constants is

DS

DM

= mS

mM

× c3
S

c3
M

≈ 0.4590. (3.27)

This shows why the influence of the Moon on the tides is roughly twice bigger than
that of the Sun.

With the help of the Doodson’s constant given by Eq. (3.25), Eqs. (3.18), (3.19)
and (3.20) for the potential can be rewritten as

W zonal
2 = 3D

c3

d3

(

sin2 ϕ − 1

3

)(

sin2 δ− 1

3

)

, (3.28)

W tesseral
2 =D

c3

d3
sin 2ϕ sin 2δ cosH, (3.29)

W sectorial
2 =D

c2

d3
cos2 ϕ cos2 δ cos 2H. (3.30)

3.4.3 Basic Principle

The three tidal potentials in Eqs. (3.28), (3.29), (3.30) depend on the latitude ϕ

which is constant for a given point P, and on astronomical expansions involving the
position of the perturbing body through the variables H , δ, and d . The principle is to
truncate the complete expansion to get linear functions of time to approximate the
motions, on suitable timescales. Doodson performed this calculations for specific
variables which are defined in the next section.

3.4.4 Six Fundamental Variables

The choice of six variables, which over a span of a century may be regarded as linear
functions of time, was made by Doodson on the basis of the accumulated results in
fundamental astronomy. These variables are:

• τ is the hour angle of the mean Moon shifted by 180°: τ =HM + 180◦.
• s is the mean tropic longitude of the Moon (‘selene’ is Greek for the Moon).
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Table 3.2 Main variables involved in the tidal potential with definitions, rates, periods

Variable Period definition Hourly angle Period

t = t ′ − h mean solar day 15◦.0000000 1 d

t ′ = t + h sidereal day 15◦.0410686 0.997270 d

τ = t − s mean lunar day 14◦.4920521 1.035050 d

s tropic month 0◦.5490165 27.321582 d

h tropic year 0◦.0410686 365.242199 d

p rev. mean perigee of Moon 0◦.0046418 8.847 y

N ′ rev. of lunar nodes 0◦.0022064 18.613 y

ps rev. of perihelion of Earth 0◦.0000020 20.940 y

s −N mean draconitic month 0◦.5512229 27.21222 d

s − p mean anomalistic month 0◦.5443747 27.55455 d

s − h mean synodic month 0◦.5079479 29.53059 d

s − 2h+ p evection 0◦.4715211 31.812 d

h− ps mean anomalistic year 0◦.0410667 365.25964 d

h− p 0◦.0364268 411.78471 d

2(s − h) 1◦.0158958 14.76530 d

• h is the mean tropic longitude of the Sun (‘helios’ is Greek for the Sun).
• p is the mean tropic longitude of the lunar perigee.
• N ′ = −N is the mean tropic longitude of the ascending lunar node with respect

to the ecliptic. The sign is changed because N is the only variable decreasing with
time.

• ps is the mean tropic longitude of the Earth perihelion.

All these variables as well as elementary combinations of them are presented
together with their period definition (referring to some well-defined astronomical
cycle), their hourly angle, and their period, in Table 3.2.

3.4.5 Preliminary Expansions of Astronomical Trigonometric
Functions

3.4.5.1 Lunar Motion

To a first approximation, the orbit of the Moon is quasi-elliptic. However this is too
rough when we require more accuracy on its orbital motion, which is especially the
case when computing the lunar tidal potential. In fact two main irregularities must
be taken into account, respectively called evection and variation.

The evection arises because the Sun crosses twice a year the projection of the
semi-major axis of the Moon on the ecliptic (if we neglect the slow motion of the
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lunar perigee). This results in a gravitational excitation of the eccentricity, its fre-
quency being (ṡ − ṗ) − 2(ḣ− ṗ) = ṡ − 2ḣ+ ṗ. The variation arises because the
eccentricity of the Moon is modified during the syzygies, when the three bodies
(Sun, Earth, Moon) are in conjunction. These two irregularities, due to the perturb-
ing gravitational action of the Sun in the framework of a three body problem, well
known as the main problem, affect the ratio c/d and the longitude λM , as well as
the classical formula of the elliptic motion. We thus have [18]

cM

dM
= 1+Cell. cos(s − p)+Cev. cos(s − 2h+ p)+Cvar. cos(2s − 2h)

= 1+ 0.0549 cos(s − p)+ 0.010 cos(s − 2h+ p)+ 0.008 cos(2s − 2h)

which gives
(
cM

dM

)3

= 1+ 0.1647 cos(s − p)+ 0.030 cos(s − 2h+ p)+ 0.024 cos(2s − 2h)

(3.31)

and

λM = ṡ0t +C′ell. sin(s − p)+C′ev. sin(s − 2h+ p)+C′var. sin(2s − 2h)

= ṡ0t + 0.110 sin(s − p)+ 0.023 sin(s − 2h+ p)+ 0.011 sin(2s − 2h).

In order to use these expansions inside the tidal potential, a last step consists in
expressing the declination of the Moon as a function of λM :

sin δM = sin ε sinλM = 0.398 sinλM (3.32)

where ε is the obliquity of the Earth (ε = 23◦27′). It follows that:

sin2 δM = 0.0792(1− cos 2λM) (3.33)

cos2 δM = 0.921+ 0.0792 cos 2s − 0.036 cosN

+ 0.036 cos(2s −N)+ · · · (3.34)

sin 2δM = 2 sin δM cos δM = 0.764 sin s + · · · (3.35)

3.4.5.2 Solar Motion

In the case of the Sun, the unperturbed elliptic motion is quite acceptable:
cS

dS
= 1+ eEarth cos(h− ps)= 1+ 0.0167 cos(h− ps) (3.36)

which gives
(
cS

dS

)3

= 1+ 0.0502 cos(h− ps)+ · · · (3.37)

and, for the longitude,

λS = ḣ0t + 0.0335 sin(h− p)t. (3.38)



3 Oceanic Tides 97

The expression for cos2 δS involves the same coefficients as for the Moon in
Eq. (3.34):

cos2 δS = 0.921+ 0.0792 cos 2h+ · · · (3.39)

3.5 Tidal Spectrum

Now that we have obtained the necessary expansions of the trigonometric functions
of astronomical angles involved in the tidal potential W2, it is possible to express
each part of W2 (sectorial, tesseral, zonal) as a combination of sinusoidal functions
whose arguments are expressed themselves as combinations of the Doodson’s vari-
ables.

3.5.1 Characterization of the Semi-diurnal Waves

The semi-diurnal (or sectorial) waves come from the sectorial part of the potential
given by Eq. (3.30).

3.5.1.1 Lunar Sectorial Part

In the case of the Moon, HM = τ − 180◦, and by using the expansion of (cM/dM)3

and cos2 δM respectively given by Eqs. (3.31) and (3.34), we get:

(
W sectorial

2

)
M
=D

(
cM

dM

)3

cos2 ϕ cos2 δM cos 2HM, (3.40)

=DM cos2 ϕ
[
1+ 0.165 cos(s − p)+ 0.030 cos(s − 2h+ p)

+ 0.024 cos(2s − 2h)+ · · ·]

× [0.921+ 0.0792 cos 2s + · · ·] cos 2τ. (3.41)

The result is an infinite number of terms which show frequencies symmetrically
distributed on both sides of the half lunar-day frequency. The leading oscillation is
obviously 0.921D cos2 ϕ cos 2τ . It is classically called the M2 wave and its period is
the mean lunar day, that is to say 12h25min14s. The following biggest wave is called
N2 with argument 2τ + (s − p) associated with a symmetrical wave with much
smaller amplitude and argument 2τ − (s − p). Another big wave is named K2M

with argument 2τ + s which corresponds to the sidereal day. The index M stands
for ‘Moon part’, as this wave is also present in the case of the solar part.
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3.5.1.2 Solar Sectorial Part

In a way similar to what was done above for the lunar part, we take into account that
the hour angle of the Sun is HS = τ + s − h and we use the expansions of (cS/dS)3

and cos2 δS respectively given by Eqs. (3.37) and (3.39). We get:

(
W sectorial

2

)
S
=DS

(
cS

dS

)3

cos2 ϕ cos2 δS cos 2HS (3.42)

=DS cos2 ϕ
[
1+ 0.0502 cos(h− pS)+ · · ·

]

× [0.921+ 0.0792 cos 2h+ · · ·] cos(2τ + 2s − 2h). (3.43)

The leading wave with argument 2τ + 2s − 2h has a half mean solar-day period,
that is to say exactly 12h00min00s and is called S2. Other main oscillations are called
elliptic or declinational because they come either from the ellipticity of the Earth
orbit or from the declination of the Sun. The leading waves of the first category are
named R2 and T2 with respective symmetrical arguments 2τ + 2s − 2h− (h− pS)

and 2τ + 2s − 2h+ (h− pS), those of the second category have arguments 2τ +
2s − 2h+ 2h (named K2S) and 2τ + 2s − 2h− 2h.

3.5.2 Characterization of the Diurnal Waves

The diurnal (or tesseral) waves come from the sectorial part of the potential given
by Eq. (3.29).

3.5.2.1 Lunar Tesseral Part

Still by taking HM = τ − 180◦, and by using the expansion of (cM/dM)3 and
sin 2δM respectively given by Eqs. (3.31) and (3.33), we get

(
W tesseral

2

)
M
=DM

(
cM

dM

)3

sin 2ϕ sin 2δM cosHM (3.44)

=−DM sin 2ϕ
[
1+ 0.165 cos(s − p)+ 0.030 cos(s − 2h+ p)

+ 0.024 cos(2s − 2h)+ · · ·]

× [0.0764 sin s + · · ·] cos τ. (3.45)

In contrast with the semi-diurnal part, a leading oscillation with no symmetrical
counterpart does not exist because the mean value of sin 2δM is zero (there is no
constant part in the second term of the right hand side). Thus the leading oscillations
are the two symmetrical declinational waves K1M which corresponds to the sidereal
day with argument τ + s and period 23h56min04s, and O1 with argument τ + s and
period 23h49min10s.
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3.5.2.2 Solar Tesseral Part

By analogy with the lunar part and taking into account that HS = τ + s−h we have:

(
W tesseral

2

)
S
=DS

(
cS

dS

)3

sin 2ϕ sin 2δS cosHS

=DS sin 2ϕ
[
1+ 0.052 cos(h− pS)+ · · ·

]

× [0.0764 sinh+ · · ·] cos(τ + s − h). (3.46)

As for the Moon we find the term K1 (called here K1M) with a sidereal day period,
and argument τ + s (or t + h), coming from the combinations of the terms with
argument h and τ + s − h and its symmetric counterpart, with argument τ + s − 2h
(or t − h).

3.5.3 Characterization of the Long Periodic Waves

The long periodic (or zonal) waves come from the zonal part of the potential given
by Eq. (3.28).

3.5.3.1 Zonal Lunar Part

The lunar zonal part is written

(
W zonal

2

)
M
= 3DM

c3
M

d3
M

(

sin2 ϕ − 1

3

)(

sin2 δM − 1

3

)

. (3.47)

By using the expansions of (cM/dM)3 and cos2 δM from Eqs. (3.31) and (3.34)
and after combining the trigonometric functions,

c3
M

d3
M

(

sin2 δM − 1

3

)

= c3
M

d3
M

(
2

3
− cos2 δM

)

=−0.254− 0.0792 cos 2s + 0.036 cosN + 0.036 cos(2s −N)

− 0.049 cos(s − p)+ · · · (3.48)

Thus the main zonal lunar oscillation has an argument 2s and a semi-monthly
(fortnightly) period 13.66 d. It is called Mf (Moon, fortnightly). The second most
important term is named Mm (Moon, monthly) with argument s − p which corre-
sponds to the anomalistic month.
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3.5.3.2 Zonal Solar Part

The solar zonal part is written

(
W zonal

2

)
Sun = 3DSun

c3
S

d3
S

(

sin2 ϕ − 1

3

)(

sin2 δS − 1

3

)

. (3.49)

We use the expansion

c3
S

S3
M

(

sin2 δS − 1

3

)

= c3
S

d3
S

(
2

3
− cosS δS

)

=−0.254− 0.0792 cos 2h− 0.0128 cos(h− p)+ · · ·
(3.50)

The dominant term here is a semi-annual wave with argument 2s and period
182.62 d and an annual one with argument h−pS corresponding to the anomalistic
year with period 365.26 d.

3.5.4 Catalogue for the Lunisolar Potential

Of course it is possible to expand the lunisolar potential into an infinite series of
sinusoidal terms. The number of terms taken into account expresses the level of
truncation. George Darwin (1883) kept 91 terms, Doodson [9] kept 378 terms, and
Hartmann and Wenzel [11] kept 12 935 waves in their catalogue, called HW95,
including 1 483 waves due to the direct planetary effects. These last authors did
their calculations with DE200 numerical ephemerids of the planets and the Moon,
between the years 1850 and 2150.

In Table 3.3 we present the principal tidal waves. We have separated the lunar
waves form the solar ones. The coefficients are those coming from Doodson’s ex-
pansion, very close to those calculated by Darwin. In practice, only their relative
magnitudes are considered.

This table requires some comments:

• The coefficients of Sa and S1 are very weak: these components should not be in-
cluded because there exist other more important components which are not men-
tioned. They are introduced to take into account the annual and diurnal height
variations of tidal observations, of meteorological origin.

• As already mentioned, the components K1 and K2, sometimes called ‘sidereal
components’ since their periods equal respectively the sidereal day and the half-
sidereal day, are present in both the solar potential and the lunar potential. For all
studies concerning these components, the coefficients to consider are the sum of
the coefficients coming from both sources.

• The constant terms obviously do not intervene in the tide. The long period com-
ponents are usually very weak. They are often masked by noise of meteorological
origin and are not easily detected in tidal observations. Only components Sa and
Ssa, reflecting seasonal variations in the sea level can generally be identified.
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Table 3.3 Main components of the lunisolar tides

Symbol Name Angular speed/hour Periodicity Coefficient ×105

MOON

M0 constant term 0.00000000 50458

Mm monthly 0.54437468 27.55455017 days 8253

Msf variational 1.01589576 14.76529408 days 1367

Mf bimonthly 1.09803304 13.66079044 days 15640

2Q1 elliptic 2d order 12.85428623 28.00622177 hours 952

Q1 main elliptic 13.39866092 26.86835670 hours 7206

ρ1 evectional 13.47151452 26.72305298 hours 1368

01 lunar principal 13.94303560 25.81934166 hours 37689

M1 elliptic minor 14.49669396 24.83324814 hours 2961

K1 declinational 15.04106864 23.93446922 hours 36232

J1 elliptic 2d order 15.58544332 23.09847641 hours 2959

OO1 lunar 2d order 16.13910168 22.30607414 hours 1615

2N2 elliptic 2d order 27.89535487 12.90537453 hours 2300

μ2 variational 27.96820848 12.87175751 hours 2777

N2 main elliptic 28.43972956 12.65834808 hours 17391

NU2 evectional maj. 28.51258316 12.62600422 hours 3302

M2 lunar mean 28.98410424 12.42060089 hours 90812

λ2 evectional min. 29.45562532 12.22177410 hours 669

L2 elliptic min. 29.52847892 12.19161987 hours 2567

K2 declinational 30.08213728 11.96723461 hours 7852

M3 43.47615636 8.28040123 hours 1188

SUN

constant term 0.000000000 23411

Sa annual 0.041068640 365.24218966 days 1176

Ssa semi-annual 0.082137280 182.62109375 days 7245

P1 solar principal 14.95893136 24.06588936 hours 16817

S1 radiational 15.00000000 24.00000000 hours −423

K1 declinational 15.04106864 23.93446922 hours 16124

T2 elliptic major 29.95893332 12.01644897 hours 2472

S2 solar mean 30.00000000 12.00000000 hours 42286

R2 elliptic minor 30.04106668 11.98359585 hours 437

K2 declinational 30.08213728 11.96723461 hours 3643

• The diurnal main components are K1, O1, P1, Q1, and the main semi-diurnal
ones are M2, S2, K2, N2. They contain the main part of the tidal signal energy
and are the only waves generally taken into account in the first approximation for
quick studies.
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3.6 Tidal Behavior and Predictions Around the World

In terms of tidal prediction, through Doodson’s work in particular, the harmonic
method has provided a practical, precise and potentially universal tool. It is not
fundamentally different from Laplace’s method for it too relies on a theoretical for-
mulation including a number of fixed parameters which must be determined ex-
perimentally by analyzing the available observations. For a good accuracy, these
observations must extend over a sufficiently long time. Generally, a year of hourly
measurements is necessary to achieve the accuracy required for the purposes of nav-
igation. Moreover the results are useful only for the site where observations have
been made.

A more ambitious approach, based on the hydrodynamics of ocean basins, had
been proposed since a long time ago, by such pioneers as Bernoulli, Whewell,
Poincaré, and Harris. However given the complexity of bathymetry and coastlines,
it was not possible to obtain an accurate solution to the problem of tide modeling
until powerful computing resources came into existence. Analytical solutions are
nevertheless capable of explaining qualitatively the main features of tide propaga-
tion, for example the existence of amphidromic points. However it was the develop-
ment of numerical methods, becoming possible with the ever improving computers,
that really allowed progress in this direction. In particular, the work of the German
specialist Hansen (1949) has been the source of new attempts to solve the Laplace
equation for the real ocean [10].

It should be noted that altimetry from satellite tracking and geodesy have created
new needs for an elaborate knowledge of tides and have led to a renewed interest
in world ocean modeling. In particular, satellite altimetry, which measures the sea-
level with a quasi-centimeter accuracy, has enabled the development of much more
realistic tidal models by assimilating always more abundant data.

3.6.1 Global Characteristics

Laplace described the tides as ‘the most difficult problem of all celestial mechanics’.
The complexity of this phenomenon lies primarily in its description. The more we
want to refine it, the more we realize that some empirical rules can be established
from partial observations, which can only be coarsely generalized. It is very difficult
indeed to detect a temporal ‘rhythm’ in tidal phenomena. It is even theoretically
impossible because, in contrast to common belief, the tides are not periodic: there
is no period after which the height variations repeat exactly the same way. Indeed,
there are periods after which the same conditions are almost fulfilled, the best known
being the Saros, equal to 223 lunar months, or 6585.32 days. After this time interval,
the Moon, the Sun are nearly in the same relative positions and their orbital elements
are also nearly the same. It follows that the tidal generating force takes nearly the
same value. This does not mean that the Saros is a period of tides: after several
Saros, the resemblance with the initial tide diminishes further and further.
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Fig. 3.4 Tidal amplitudes of oceans worldwide

3.6.2 Tide Amplitudes in the Oceans

Besides the difficulties of temporal description of the tides, a spatial description
presents another set of difficulties. In terms of height first, the geographical distri-
bution of amplitudes in the oceans (Fig. 3.4) seems to follow no obvious a priori
pattern. However, we can note that the highest amplitudes are mainly located on
continental shelves around the continents, or in shallow seas such as the English
Channel. These amplitudes are very weak in semi-enclosed seas of small size (Sea
of Japan, Caribbean, Baltic, Mediterranean). Apart from these qualitative observa-
tions implying the effect of depth and size of oceanic basins, no general rule can be
established.

3.6.3 Tide Characterization

As we have shown in the previous section, the tides are mainly due to the superpo-
sition of a diurnal component (daily maximum and minimum height) and a semi-
diurnal component (two maxima and two minima per day). Nevertheless, the relative
importance of these two components varies geographically, defining types, accord-
ing to a more or less conventional classification:

• a semi-diurnal type characterized by a negligible component of the diurnal tide,
• a semi-diurnal type with diurnal inequality: the semi-diurnal component is domi-

nant but is modified by the diurnal one,
• a mixed type: the diurnal component dominates, but is modified by the semi-

diurnal one,
• a diurnal type: the semi-diurnal component is negligible.
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Fig. 3.5 Types of the dominating tides in the oceans all around the world

The distribution of these 4 types of tide in the ocean worldwide (Fig. 3.5) shows
that no general rule can be established, apart the observation that the semi-diurnal
type is dominant in the Atlantic, the other types appearing only when the semi-
diurnal amplitude is low.

3.6.4 Amphidromic Points

Another feature of the tide is its mode of spreading. The crests of each wave com-
ponent propagate around points called amphidromic points.1 These points occur
because of the combined action of the Coriolis force and the interference with
oceanic basins, seas, and bays. Each tidal component is at the origin of a differ-
ent amphidromic system. Amphidromic points for a tidal constituent (diurnal, semi-
diurnal, etc.) is characterized by the property that there is almost no vertical motion
of the oceanic mass from tidal action. Nevertheless tidal currents can appear when
water levels on two sides of the amphidromic point are not the same. This leads to a
well-defined wave pattern called an amphidromic system.

In the example of a semi-diurnal pattern spread in the Atlantic Ocean shown in
Fig. 3.6, each line, called co-tidal line, indicates the position of the crest of the wave
at a given hour, referred to the transit of the Moon at the Greenwich meridian. We
can note for example that the wave progresses from south to north along the coasts
of Europe, but from north to south along the North American coast. The rotation

1‘Amphidromic’ derives from the Greek words amphi (around) and dromos (running).
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Fig. 3.6 Co-tidal lines in
Atlantic Ocean

around an amphidromic point does not seem to follow any general rule: for exam-
ple, the two major networks of the South Atlantic rotate in opposite directions. These
co-tidal lines, representing the average semi-diurnal tide, does not exactly match the
actual tide. Amphidromic points are not absolutely fixed, and it would be wiser to
speak of amphidromic area. In addition, the diurnal component propagates very dif-
ferently: the corresponding number of amphidromic points is approximately half in
the case of the semi-diurnal component. All these tidal characteristics, with gradu-
ally more precise and abundant data, have long been subject to questions, hypotheses
(often fallacious), theoretical developments, and scientific studies conducted with
the help of technologies becoming more sophisticated and more adequate in partic-
ular thanks to the innovation of artificial satellites and powerful computers.

3.6.5 Tidal Curves

The graph versus time of sea level measurements or predictions at a given surface
point of the ocean is called a tidal curve. As an example, we show in Fig. 3.7 the
tidal curve obtained from observations at Brest of the semi-diurnal tide for one day
time span. Each minimum of the curve is called low tide and each maximum high-
tide. From the low tide to the high tide, the sea level rises during the flow phase,
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Fig. 3.7 Tidal curve observations at Brest

and decreases from high to low during the ebb phase. The difference between the
high tide level and the low tide one is called the tidal range, not to be confused with
the amplitude, which is the norm of a sinusoidal function. Nevertheless the word
‘amplitude’ is sometimes used for the tide, for which it means ‘half the tidal range’.
The heights are referred to a reference level which often comes from a nautical
chart.

Figure 3.8 shows another example of the semi-diurnal tide curve deduced from
a prediction for roughly thirty days. At the times of new and full Moon, the lunar-
and solar-induced ocean bulges line up (and add up) to produce tides having the
highest monthly tidal range (i.e. the highest high tide and the lowest low tide): they
are called the spring tides. In the opposite case, at the first and third quarter phases
of the Moon, the Sun’s pull on the Earth is at right angles to the Moon’s pull. At
this time tides have their minimum monthly tidal range (i.e. unusually low high
tide and unusually high low tide). These are called the neap tides or fortnightly
tides.

Changes in tidal range are generally recorded from a minimum (neap tide) to a
maximum (spring tide). The alternative phases of increasing and decreasing tidal
ranges are called respectively revival and waste. The time interval between one
phase as a full Moon or a new Moon, and the tidal extremum which follows im-
mediately, is called the age of the tide.
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Fig. 3.8 Semi-diurnal tides with range variations during one month at Brest

3.6.6 Tidal Curves According to Tidal Types

As mentioned before, the distinction between types of tides is somewhat conven-
tional. A classification into three types is often suggested, but the classification in
four types corresponding already defined in Sect. 3.6.3 (see Fig. 3.5) is proposed
hereafter, where we show in Fig. 3.9 four different tidal behaviors on the Earth.

3.6.6.1 Semi-diurnal Tide (Casablanca, Morocco)

This type of tide has been presented before (Fig. 3.8). It exhibits every day two
high tides and two low tides of nearly the same level, with nearly equal tidal ranges
throughout the daytime. This type of tide dominates in the Atlantic, especially in
Europe and Africa. However, as has been noted above, other types of tide are likely
to be encountered.

3.6.6.2 Semi-diurnal Tide with Diurnal Inequality (Vung Tau, Vietnam)

During a lunar day, two relatively small tidal ranges are followed by two larger tidal
ranges, or vice versa. The difference between large and small tidal ranges, called
the diurnal inequality, is maximized when the declinations of the Moon and the Sun
are themselves close to their maximum. The diurnal inequality is also observed on
European coasts, although the tide is characterized as semi-diurnal, for the diurnal
inequality is small. However, it may be very important in many ports in the Pacific
and Indian Oceans.
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Fig. 3.9 The four types of tides: examples of Casablanca (semi-diurnal), Vung Tau (semi-diurnal
with diurnal inequality), Qui Nhon (mixed) and Do Son (diurnal)

3.6.6.3 Mixed Tide (Qui Nhon, Vietnam)

Mixed tide is characterized by the succession of a semi-diurnal type and a diurnal
type during a lunar month. This type of tide is common in Indonesia, Indochina,
on the coasts of Siberia, and Alaska. It is also found in the Atlantic Ocean and the
Caribbean Sea.

3.6.6.4 Diurnal Tide (Do Son, Vietnam)

Diurnal tide presents only one high tide and one low tide per lunar day, with a tidal
range varying with the declinations of the Moon and the Sun. This type of tide,
rather uncommon, is observed mainly in the Pacific Ocean: in Siberia (with very
large ranges), in Alaska and also in Southeastern Asia.

3.6.7 Tides in Shallow Water

When propagating through shallow water, almost all primitively sinusoidal deep-
water offshore tides are deformed. The periodic components, issued from the gen-
erating force, combine themselves through nonlinear processes, creating harmonics
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Fig. 3.10 Shallow water tidal waves in the Channel at Portsmouth (above) and in the North Sea at
Hoek Van Holland (below)

which can propagate independently. The tidal curves observed in the English Chan-
nel and the North Sea coasts (Fig. 3.10) are typical examples of tidal curves after a
long progression of the tidal wave over a shallow shelf.

The propagation in estuaries exhibits other examples of distortion of the tidal
wave in shallow water. This kind of deformation is related to the laws of hydro-
dynamics, which states that the speed of a hydraulic wave is proportional to the
square root of the depth. In deep water, the difference of magnitude does not alter
the speed of propagation. On the contrary in shallow water, the peak of the wave
moves faster than the trough, so that a wave crest tends to overtake the preceding
wave. The example of the Gironde estuary in Fig. 3.11 is telling of such a behavior.

In extreme cases it forms a bore, a water bar moving upstream along a river. This
phenomenon is present in many estuaries of major rivers. The height of the bar can
reach several meters, especially in the estuary of the Amazon, the Hoogly and Indus
rivers in India and the Tsien Tang in China.
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Fig. 3.11 Tidal curves in the Gironde estuary

3.6.8 Spectral Characteristics of Tides

The tidal spectrum, despite being the result of a calculation, is really an objective
mode of representation of tidal phenomena, independent of any theory. It is partic-
ularly suited to tidal studies. It is not necessary to give an exact definition of the
spectrum. It only matters that it represents the amplitude, or energy, as a function of
frequency.

In Fig. 3.12 we present the spectra at two points of the Loire estuary. They are
characterized by a low resolution, which means that there is an imperfect separa-
tion of adjacent frequencies. The comparison between the two spectra shows the
evolution of the structure from the mouth of the river to upstream. These examples
show that the main characteristic of the tidal spectrum is split into separate, regu-
larly spaced clusters. The main group is the semi-diurnal one (two cycles per lunar
day).

It is worth noting that the energy increases as the frequencies decreases. A sig-
nificant noise originates from atmospheric influences. Figure 3.12 shows also the
increase of the number of harmonics when the tidal wave progresses from the mouth
of the Loire to Nantes, located one hundred miles upstream. The upstream spectrum
shows presence of energy in high frequencies. Indeed, only the first 3 groups (di-
urnal, semi-diurnal, and third-diurnal) represent the bulk of the astronomical tide
issued directly from the actions of the Moon and the Sun. Other groups appear dur-
ing the progress of the tidal waves in shallow waters.
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Fig. 3.12 Semi-diurnal tidal spectrum at Saint-Nazaire at the mouth of the Loire estuary and at
Nantes, about 100 km upstream

After analyzing more than 120 years of almost continual observations, the spec-
tral signature at high resolution of the semi-diurnal group in Brest (Fig. 3.13) ex-
hibits thin, well separated components, justifying (retrospectively) the representa-
tion of tide as harmonic series. An even better illustration is given in Fig. 3.14,
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Fig. 3.13 High resolution semi-diurnal spectrum at Brest

Fig. 3.14 High resolution M2 group
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Fig. 3.15 Model of tidal currents around the island of Batz (France)

which presents the expansion of the spectrum close to the M2 component. The main
components, clearly identified, are named after Darwin (or Doodson).

3.6.9 Tidal Currents

We can consider that any tide is an oscillation similar to a swell. In both cases, water
molecules approximately describe closed trajectories in a vertical plane. However,
unlike swell, the tide wavelength is always greater than the depth. In a homogeneous
and deep ocean, tidal motions affect the whole depth of water. All molecules of a
given vertical plane describe extremely flattened orbits. The vertical motion is the
tide, whereas the horizontal motions, incomparably more prominent, constitute the
tidal currents.

In a density stratified ocean, internal tidal waves are created, especially near con-
tinental slopes. They change the vertical structure of currents. In extreme cases, as
in the Strait of Gibraltar, for instance, the currents caused by these internal waves,
mainly semi-diurnal, may be opposite in direction between the surface and the bot-
tom. Moreover the energy dissipation of tides is mainly due to current friction at the
bottom. The study of currents may be conducted with the same tools as the study of
tides, but it is more difficult at least for two reasons: first, because of the large spatial
variability of their characteristics from one point to another and, second, because of
the much more important influence of atmospheric factors. Strong tidal currents in
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some areas justify their study in order to provide valuable help to sailors, which
constitutes an important activity of hydrographic offices. Figure 3.15 shows results
of the modeling of tidal currents around the island of Batz (France). It comes from a
navigation aid document, particularly useful in some areas where tidal currents are
sometimes violent.
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Chapter 4
Precession and Nutation of the Earth

Jean Souchay and Nicole Capitaine

Abstract Precession and nutation of the Earth originate in the tidal forces exerted
by the Moon, the Sun, and the planets on the equatorial bulge of the Earth. Discov-
ered respectively in the 2nd century B.C. by Hipparcus and in the 18th century by
Bradley, their existence and characteristics were deduced theoretically by Newton
for the precession and by d’Alembert for the nutation. After a historical review we
explain, both in an intuitive manner and by simple calculations, the gravitational
origin and the main characteristics of the precession-nutation. Then we describe in
detail two fundamental theories, one using the Lagrangian formalism, the other the
Hamiltonian one. A large final part is devoted to successive improvements of the
precession-nutation theory in the last decades, both when considering the Earth as a
rigid body and when taking into account the small effects of non-rigidity.

4.1 Introduction

Among various astronomical phenomena that have their origin in the lunar and solar
tides, the precession of the equinoxes exhibit a very small effect on the time-scale of
a human life. Yet it was discovered as early as the 2nd century B.C. by Hipparcus,
who was comparing the positions of the stars in his era to those recorded by his pre-
decessor Timocharis, about 150 years earlier. In Chap. 2 of volume III of Almagest,
Claudius Ptolemy reports the work of Hipparchus on the length of the year1: the
most surprising fact for him was that when the return of the Sun at an equinox is
measured, 1 year amounted to a little less than 365+ 1/4 days, whereas when this

1No writing by Hipparcus survives. According to O. Neugbauer in A History of Ancient Mathemat-
ical Astronomy, he lived between 190 and 120 B.C., whereas Ptolemy lived between 100 and 170.
The observations attributed to Timocharis seem to date back to a period between 300 and 270 B.C.
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return is compared to the fixed stars, he found it a little longer than this value. From
this observation, Hipparcus deduced that the celestial sphere itself (with the stars
fixed on it) was undergoing a slow motion with respect to the equinoxes, and vice
versa.

A physical explanation of the precession had to wait for more than eighteen cen-
turies, until Newton (1642–1727). In Philosophiae Naturalis Principia Mathemat-
ica published in 1687, he understood for the first time that the Earth was flattened
oblately and that the precession was caused by the gravitational torque exerted by an
external body (the Moon or the Sun), owing to this flattened asymmetry with respect
to the direction of the external body. Newton tackles the problem of the motion of the
axis of rotation of a spheroid in Corallaries 18, 20, 21, 22 of Proposition 66 of Prin-
cipia, as an application of the three-body problem. First, he studies the motion of a
satellite revolving around a planet and perturbed by the Sun. Second, he replaces the
satellite by a fluid ring, composed of infinitely many independent particles. Third,
he replaces the fluid ring by a rigid one, fixed to a homogeneous sphere. The rigid
ring, which represents the equatorial bulge, imparts to the sphere its own motion.
Newton shows that the nodal line of the equatorial plane of the sphere (containing
the ring) with respect to the orbital plane of the planet around the Sun undergoes a
retrograde motion, due to the gravitational perturbation of the Sun. Thus precession
was explained for the first time. Later on, Newton observed that, for the Earth, the
precessional motion contains two components, due to the Moon and to the Sun, and
that the ratio of the amplitudes of the two components is the same as the ratio of the
forces they exert in the phenomena of tides. He evaluates this ratio to be 4.5.

More than half a century later, in 1747, James Bradley (1693–1762), after ob-
serving for a period of roughly 20 years the transit of zenithal stars at Kew and
Wansted, remarked that the polar axis traces, in addition to the by then well-known
precession, a small loop of 18.6-year period, with an amplitude close to 9′′, that is
to say far beyond the capacity of detection with the naked eye.2

Just after this discovery, d’Alembert (1717–1783) realized that the 18.6-year pe-
riod corresponds exactly to the period of retrogradation of the nodes of the lunar
orbit with respect to the ecliptic. Then he elaborated in barely a year a complete
theory of the Earth’s rotation, improving Newton’s calculations of precession by
correcting a substantial number of errors and approximations, and by making full
use of the new mathematical tools of calculus. He succeeded in proving the exis-
tence and the nature of the nutation loop, showing that it originates from exactly the
same cause as the precession. His book, entitled Recherches sur la Précession des
Equinoxes et sur le Nutation de l’Axe de la Terre dans le Système Newtonien and
published in 1749, must be considered as the first treatise dealing with a complete
theory of the precession-nutation of the Earth. It opens the path to a new era of

2The discovery of nutation, following that of aberration, by Bradley, is officially recorded in a
memoir as a letter to Lord Macclesfield, his protector and friend, later President of the Royal
Society 1752–1764. Bradley’s memoir, dated 31 December 1747, was read at the Royal Society on
14 February 1748, and published later in the Philosophical Transactions.
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Fig. 4.1 Geometric proof of
the cancellation of the torque
exerted by an external body S

over the sphere tangential to
the ellipsoid (from [16])

increasingly refined theories of the Earth’s rotation, which we will describe in the
following.3

4.2 A Simple Geometric Explanation

In this section we show how the precession mechanism can be explained in a simple
geometric way, following the exposition in Danjon [16], from Newton’s calcula-
tions. We suppose here (Fig. 4.1) that the Earth is an ellipsoid of revolution, homo-
geneous and flattened at the poles. What is the effect of the solar attraction on the
orientation of its axis of rotation in space? It is easy to show that the effect involves
both a force, responsible for the orbital motion of the Earth around the Sun, and also
a torque, which tends to make the equator coincide with the ecliptic.

4.2.1 Precession-Nutation due to the Sun

First we can show that the attraction of the Sun on the mass included in the sphere
centered in C, and internally tangential to the ellipsoid is reduced to a force. For this
let us figure out that we cut the sphere by a plan containing the center S of the Sun
and the axis of the Earth. A and B represent two ranges of material, identical, nor-
mal to the plan of figure, and symmetrical with respect to the center C (Fig. 4.1). Of
course the two gravitational forces

−→
f1 and

−→
f2 exerted by the Sun on these ranges are

not equivalent, neither in amplitude, nor in direction. Their effects can be replaced
by a force positioned at the center C and a torque perpendicular to the plan of figure.
Now we can consider two other ranges of material A′ and B′, symmetrical respec-
tively to the ranges A and B with respect to the plan crossing C and perpendicular to
the direction CS. If we reduce in the same manner as above the gravitational attrac-
tion exerted by the Sun on A′ and B′, we observe that the resulting force is equal to
that of the ranges AB, whereas the resulting torque is exactly the opposite. As the

3Notice that Newton in his Principia predicted the semi-annual and semi-monthly nutations which
their small amplitude rendered undetectable at his time.
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Fig. 4.2 Geometric proof of
the existence of a torque
exerted by an external body S

on an ellipsoid (from [16])

total mass of the sphere can be completely decomposed into such groups as A, B,
A′, B′, we conclude that the resulting torque on the sphere is zero.

In contrast, this is not the case of the torque exerted on the part of the ellipsoid ex-
terior to the sphere, generally called the equatorial bulge. Here the symmetry which
ensured the annihilation of the torques does not generally exist. A simple geomet-
ric argument proves that fact. Let us consider (Fig. 4.2) two point like elements of
material V and W located at the surface of the Earth on the equator itself, symmet-
rical with respect to C. Then it is possible to decompose the gravitational force f1
exerted by the Sun on V into two other ones: ϕ1, parallel to CS and ϕ′1 towards the
direction of the center CV. In the same way it is possible to decompose the force f2
into two sub-components ϕ2 and ϕ′2. The forces f1 and f2 are obviously inverse to
the square of the distances CV and CW to the Sun. As a consequence it is also easy
to prove that the forces ϕ1 and ϕ2, parallel one to each other, are proportional to
the inverse of the cube of these distances. Therefore the torque due to the action of
the Sun on V has an amplitude larger than the torque due to this same action on W.
As a conclusion the resulting torque is represented by a vector perpendicular to the
plane of figure and oriented backward. It tends to make a rotation of the segment
VW clockwise, in such a way that the obliquity, i.e. the angle between the ecliptic
and the equator planes, decreases.

We can remark that for two particular cases, the resulting torque exerted in the
elements of material V and W is equal to zero: when the line CS is along the equa-
torial plane, or when it is perpendicular to that plane. The first case occurs during
the equinoxes, and the second one never occurs. Indeed these two cases correspond
respectively to a declination of the Sun δSun = 0° and δSun = 90°, whereas the dec-
lination of the Sun varies in the range ±23°27′. Following the fact that the result-
ing torque vanishes for the two values of the declination above, it follows that the
torque reaches its maximum for a value included between these two extrema. In
summary we can conclude that the Sun exerts on the Earth considered as an homo-
geneous ellipsoid a torque varying with its declination. This torque is zero during
the equinoxes, maximum during the solstices. The moment of this torque is located
along the equator, and tends to decrease the obliquity.

It is easy to construct a vector which verifies those properties: let us con-
sider (Fig. 4.3) a constant vector M1 in the equatorial plane directed towards the
equinox γ , and a second one M2 with the same amplitude and symmetric of M1 with
respect to the line CU, itself perpendicular to the solar hour circle (the great circle
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Fig. 4.3 Decomposition of
the external torque M into
two components: a fixed M1
and a moving M2 with the
same amplitude and
symmetric with respect to the
CU line (from [16])

Fig. 4.4 Motion of the
celestial pole P under the
effect of the solar torque
(from [16])

containing the poles and passing through the line CS). Then the resultant vector M=
M1 +M2 satisfies the properties above: its amplitude is zero during the equinoxes,
maximum during the solstices and it corresponds to the moment of a torque leading
to a decrease of the obliquity. As a consequence it is interesting to study the action
of the solar torque by analyzing independently the effects of M1 and M2.

4.2.1.1 Effect of M1: Precessional Motion

The first moment M1 tends to impart a rotation around Cγ . In the same time, the
Earth undergoes a rotation around its instantaneous axis of rotation (which at first
approximation can be considered as coinciding with the axis of figure). This angular
velocity is represented by a vector v oriented towards the pole P (Fig. 4.4). Thus the
perturbation caused by the solar attraction due to the first component M1 tends to
move P closer to the equinox γ . In other words; the instantaneous pole of rotation
is moving in such a way that its velocity v remains tangent to the hour circle of
the equinox γ . At the same time, this hour circle remains tangent at P to a small
circle centered in Q, the ecliptic pole, in such a way that the angle ĈQP= ε, where
ε is the obliquity. In summary v is oriented towards the tangent common to the two
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Fig. 4.5 Loops traced by the celestial pole under the effect of the precession added to the semi-an-
nual and fortnightly nutation components. The leading component with period of 18.6 years is not
included in this simplified model (from [16])

circles. As a result P describes the small circle above, the obliquity ε remaining
constant. The motion of both P and γ is uniform and retrograde. In the same time,
the celestial equator undergoes a rotation around the diameter MM′ perpendicular
to the hour circle Pγ , and the point γ retrogrades along the ecliptic with an angular
velocity of 15′′.8/year. In parallel P undergoes its circular motion with an angular
velocity of 15′′.5× sin ε = 6′′.3/year.

4.2.1.2 Effect of M2: Semi-annual Nutational Motion

The instantaneous effect of the torque with moment M2 is the following one: if the
torque acts alone, the velocity of P on the celestial sphere should be included in the
hour circle of the fictitious point towards the moment M2. This point moves on the
equator and it accomplishes two complete tropical revolutions during one tropical
year. As can be verified when referring to Fig. 4.3, it is opposed to γ during the
equinoxes and coincides with it during the solstices. As a result, the velocity vector
of P undergoing the effect of M2 moves around P in the plane tangent to the celestial
sphere in P, accomplishing two revolutions per year. In conclusion:

– the displacement of the pole P under the effect of M2 is characterized by a peri-
odic orbit, very close to a circle, with radius 0′′.55, with a 6-month period;

– this nutation of P is naturally accompanied both by a periodic displacement of
γ along the ecliptic, with amplitude 1′′.3, and a periodic variation of the obliq-
uity, with amplitude 0′′.55. This obliquity is maximum during the equinoxes and
minimum during the solstices.

4.2.1.3 Combined Precession-Nutation Motion

Now that we have characterized individually the solar precession caused by M1 and
the solar nutation caused by M2 we can combine the two effects: they result in a
cycloidal motion of the pole P in the celestial sphere, represented in Fig. 4.5. The
turning back points correspond to the equinoxes, when the amplitude of the two
torques M1 and M2 added together is zero.
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4.2.2 Precession-Nutation due to the Moon

All that has been demonstrated above for the Sun can be repeated by analogy for
the Moon. We know that the perturbing forces involved are proportional both to the
mass of the perturbing body and to the inverse of the cube of its distance. Knowing
the ratios between the masses and the distances of the Sun and the Moon, we can
conclude that the amplitude of the lunar torque is roughly 2.2 times that of the Sun.
As a consequence, the lunar precession in longitude, i.e. the linear retrogradation of
the point γ along the ecliptic due to the sole action of the Moon, reaches roughly
2.2 times that due to the Sun, that is to say 2.2× 15′′.8= 34′′.6 per year.

Concerning the nutation, by analogy with the semi-annual nutation coming from
the moment M2 due to the Sun, the corresponding moment due to the Moon gives
birth to a nutation with period half that of the tropical revolution of the Moon
(27.5 days). The amplitude of this semi-monthly (also called fortnightly) nutation
is much smaller than the semi-annual one due to the Sun. The point γ oscillates
around its mean (precession) motion with a 0′′.2 amplitude (instead of 1′′.3) and
in the same time its obliquity can be increased or decreased by 0′′.09 (instead of
0′′.55). The corresponding displacement of the pole P in the celestial sphere is a
small circle with amplitude 0′′.09.

Therefore, taking into account the effect of the Moon alone on the combined pre-
cession and nutation leads, as it is the case for the Sun, to a cycloidal motion of the
pole (Fig. 4.5). In that case, this motion is characterized by 27 arches per year (27
is the number of lunar half-period cycles during one year). In fact this basic repre-
sentation of the lunar nutation has been established with the implicit and simplified
idea that the Moon is moving along the ecliptic, which is not the case, for its orbit
presents an inclination of roughly 5° with respect to this last plane. Moreover the
Moon’s orbit is not fixed: its ascending node with respect to the ecliptic is precessing
in the retrograde direction, with a 18.6 years period. The effect of this retrograda-
tion is to create another nutation component, much larger than the semi-monthly
one explained above. This component is often called the principal nutation. It is
characterized by an elliptical loop (close to a circle) with 9′′ amplitude described
by the pole of rotation with respect to the celestial sphere, in this same 18.6 years
period. As a direct consequence, the obliquity is varying with this same amplitude
of 9′′ and the γ point is undergoing an oscillation with an amplitude of roughly 18′′
alternatively in the prograde and retrograde direction along the ecliptic.

4.2.3 Global Motion of the Pole of Rotation in Space

Following all the leading effects described above, the main components of the com-
bined gravitational torque exerted by the Moon and the Sun on the equatorial bulge
of the Earth are:

– a linear retrograde displacement of the γ point (the ascending node of the ecliptic
on the celestial equator) which was traditionally called the luni-solar precession
in longitude with amplitude 34′′.6+ 15′′.8= 50′′.4 per year
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Fig. 4.6 Parametrization for
the study of the
precession-nutation motion of
the Earth.
�0 = (O,x0, y0, z0) is a fixed
inertial coordinate system;
�′ = (O,x′, y′, z′) is fixed to
the Earth. �= (O,x, y, z) is
an intermediate coordinate
system (from [16])

– an elliptical loop of lunar origin with amplitude roughly 9′′ described in a pro-
grade sense in 18.6 years.

– a quasi-circular loop of solar origin with amplitude 0′′.55 described in a prograde
sense in a half year period.

To these motions we must add the semi-monthly nutation loop already described
above and a series of smaller nutational oscillations coming from secondary compo-
nents in the perturbing function due in particular to the irregularities in the relative
orbital motion of the Moon and the Sun around the Earth; the number of these com-
ponents depends of course on the truncature limit for their amplitudes.

4.3 A Basic Mathematical Proof of the Precession-Nutation
Phenomena

As we saw in the previous section, the lunisolar precession and nutation are due
to the action, on the oblate Earth, of the torque exerted both by the Moon and the
Sun on the Earth assimilated to an ellipsoid flattened at the equator. Since Euler’s
pioneering work, we know how to deal with the motion of a body around its center
of gravity subject to a torque. Following the exposition in Danjon [16] we give the
expression for the lunisolar torque acting on the Earth as a function of the celestial
coordinates of the Sun and the Moon. Then we present the classic Euler equations
for the rotational motion of our planet. The integration of the equations will furnish
both the lunisolar precession and the main nutation components.

4.3.1 Reference Frames and Parametrization

In this subsection we define the rectangular reference systems which enable one to
characterize the rotation of our planet, O being its center (Fig. 4.6):
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Fig. 4.7 Parameters involved
in the calculations. O is the
Earth barycenter. A is a point
in the Earth. r is the distance
OA. S is the Sun barycenter.
ρ and a are respectively the
distances AS and OS
(from [16])

– �0 = (O,x0, y0, z0) is constructed in such a way that (O,x0) and (O,y0) are two
fixed directions in the ecliptic, considered as fixed in first approximation, (O, z0)

being directed towards the ecliptic pole.
– �′ = (O,x′, y′, z′) is fixed with respect to the Earth, in such a way that the axes
(O,x′) and (O,y′) are located in the equator, and (O, z′) is oriented towards the
pole of figure. We choose these axes in such a way that they coincide with the
principal axes of inertia of the Earth.

– � = (O,x, y, z) is a third rectangular coordinate system insuring the link be-
tween the two previous reference frames �0 and �′: the (O,x) axis is ori-
ented toward the ascending node of the ecliptic with respect to the equator,
(O, z)= (O, z′) has been defined previously, and (O,y) completes the triad. We
call A, B , C respectively the moments of inertia of the Earth with respect to these
three rectangular axes.

Thus the rotation of the Earth is defined by a set of 3 angles, called Euler’s angles
(Fig. 4.6):

ψ = x̂0x

ϕ = x̂x′

ε = ẑ0z

4.3.2 Expression of the Tidal Torque

Now let us name x, y, z the rectangular coordinates in � of an element A of the
Earth with infinitesimal mass dm, and XS , YS , ZS the coordinates of the Sun in �.

The distances OS, OA, AS are respectively noted a, r , ρ (Fig. 4.7). Let us call
M� the mass of the Sun, and G the constant of gravitation. Therefore, the gravita-
tional force exerted by the Sun per mass is

f = GM�
ρ2

(4.1)
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By using the vectorial notation this force is expressed as:

GM�
ρ3

−→
AS= GM�

ρ3
−→
AO+ GM�

ρ3
−→
OS (4.2)

Here we can already notice that the torque with respect to O due to the first
component at the right-hand side of this equation is zero. Therefore we can let it
aside. The amplitude of the second component can be rewritten

GM�a
ρ3

= GM�
a2

+GM�a
[

1

ρ3
− 1

a3

]

(4.3)

The first component at the right hand side of Eq. (4.3) corresponds to an acceler-
ation independent on the position of A on the Earth. Integrated over the whole Earth,
it is the acceleration of the orbital motion of the Earth. The second component has
a small amplitude, because of the relatively very close values of a and ρ. We can
write

1

ρ3
− 1

a3
= a3 − ρ3

a3ρ3
= (a − ρ)(a2 + aρ + ρ2)

ρ3a3
≈ 3(a − ρ)

a4
(4.4)

and

GM�a
[

1

ρ3
− 1

a3

]

≈−3GM�
a3

(ρ − a) (4.5)

In first approximation, we can regard a as constant, which means that the orbital
motion of the Earth is a circle with radius a. Moreover, according to Kepler’s third
law,

GM� = 4π2a3

T 2
= n2a3 (4.6)

Then the combination of (4.5) and (4.6) gives

GM�
[

1

ρ3
− 1

a3

]

≈−3n2(ρ − a) (4.7)

Still in first approximation, we can consider that ρ and a are parallel (Fig. 4.7). Thus
we have

ρ − a =−r cosα =−xXS + yYS + zZS

a
(4.8)

α standing for the angle ÂOS, x, y, z and XS , YS , ZS representing respectively
rectangular coordinates of A and S in � Finally, the elementary perturbing force
applied to the element of mass dm is given by

dF = 3
n2

a
(xXS + yYS + zZS)dm (4.9)

This force is parallel to OS. Its components along the three equatorial axes are re-
spectively (XS/a)dF , (YS/a)dF and (ZS/a)dF .



4 Precession and Nutation of the Earth 125

4.3.3 Expression of the Solar Torque

Now we can express the moment of the torque coming from the elementary force
dF on A:

d �M =
⎛

⎝
dLS

dMS

dNS

⎞

⎠= dF

a

⎛

⎝
x

y

z

⎞

⎠∧
⎛

⎝
XS

YS
ZS

⎞

⎠ (4.10)

which gives, after projection on the axes (O,x), (O,y) and (O, z):

dLS = dF

a
(yZS − zYS), dMS = dF

a
(zXS − xZS)

dNS = dF

a
(xYS − yXS)

(4.11)

By combining (4.9) and (4.11), and after integration, we deduce the total torque
exerted on the whole Earth:

LS = 3n2

a2

∫
(xXS + yYS + zZS)(yZS − zYS)dm (4.12.1)

MS = 3n2

a2

∫
(xXS + yYS + zZS)(zXS − xZS)dm (4.12.2)

NS = 3n2

a2

∫
(xXS + yYS + zZS)(xYS − yXS)dm (4.12.3)

The expansion of the expressions at the right hand side of these three equations is
considerably simplified when using the following properties:
∫

x dm=
∫

y dm=
∫

zdm=
∫

xy dm=
∫

xzdm=
∫

yzdm= 0 (4.13)

∫
(
y2 + z2)dm=A,

∫
(
x2 + z2)dm= B,

∫
(
x2 + y2)dm= C (4.14)

∫
(
y2 − z2)dm= C −B,

∫
(
z2 − x2)dm=A−C

∫
(
x2 − y2)dm= B −A

(4.15)

where A, B , C are the moments of inertia of the Earth with respect to the space-
fixed axes (O,x), (O,y), (O, z). By taking into account all these equations, we
finally get the following simplified expressions for the three components:

LS = 3n2 YSZS

a2
(C −B), MS =−3n2ZSXS

a2
(C −A)

NS = 3n2XSYS

a2
(B −A)

(4.16)
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Here we still make an approximation consisting in assuming that A = B, which
means implicitly that the Earth is rigorously axisymmetric with respect to the (0, z)
axis. Thus the equations above become

LS = 3n2 YSZS

a2
(C −A), MS =−3n2ZSXS

a2
(C −A), NS = 0 (4.17)

The Sun is moving along the ecliptic plane (O,x0, y0). Then it is possible to replace
the celestial rectangular coordinates XS , YS , ZS of the Sun by their expression as
function of its distance a =OS from the Earth, of its ecliptic longitude λ� counted
from γ (Fig. 4.6) and the obliquity ε, taking into account the rotation with angle ε

from the ecliptic to the equatorial frames:

XS = a cosλ�, YS = a cos ε sinλ�, ZS = a sin ε sinλ� (4.18)

Inserting these expressions in (4.17) we get

LS = 3n2(C −A) cos ε sin ε sin2 λ� = 3n2

4
(C −A) sin 2ε(1− cos 2λ�) (4.19)

MS =−3n2(C −A) sin ε sinλ� cosλ� =−3n2

2
(C −A) sin ε sin 2λ� (4.20)

NS = 0 (4.21)

4.3.4 Expression for the Lunar Torque

By analogy with the calculations carried out above for the Sun, we can start from
Eqs. (4.16) to calculate the components of the moment of the torque exerted by the
Moon on the Earth by

– replacing XS , YS and ZS by the rectangular coordinates XM , YM , ZM of the
Moon

– replacing the scaling factor n2 by the corresponding one n′2 related to the orbital
motion of the Moon around the Earth

Indeed, calling M◦ the mass of the Moon and a′ its semi-major axis, we have

GM� = n2a3, GM◦ = n′2a′3 (4.22)

which gives

n′2 = n2
(
a

a′

)3(
M◦
M�

)

(4.23)

Still here, we consider at first approximation that the orbital motion of the perturbing
body (the Moon) is circular, with radius a′, and a/a′ = 388.93. Moreover:

M◦
M�

= M◦
M⊕

M⊕
M�

=
(

1

81.3

)

×
(

1

332 946

)

≈ 1

27 068 500
(4.24)
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where M⊕ stands for the mass of the Earth. Finally this gives n′2 = kn2 with k =
2.174. The next step consists in expressing the rectangular coordinates XM , YM , ZM

of the Moon as a function of its distance a′ from the Earth’s barycenter, the ecliptic
longitude of the Moon λM , the longitude ΩM of the Moon’s ascending node of its
orbit with respect to the ecliptic, the inclination of its orbit iM with respect to the
ecliptic, and the obliquity ε. These expressions are more complex for the Moon than
for the Sun, because by contrast to the Sun, which is moving along the ecliptic, our
satellite is moving along an orbit inclined with iM ≈ 5° with respect to this plane.
Through classical geometrical transformations we get easily:

XM = a′ cosλM (4.25.1)

YM = a′ sinλM cos ε− a′ sin ε sin iM sin(λM −ΩM) (4.25.2)

ZM = a′ sinλM sin ε+ a′ cos ε sin iM sin(λM −ΩM) (4.25.3)

Finally, by substituting these coordinates of the Moon to that of the Sun in Eq. (4.17)
and by neglecting the components in i2M , we find:

LM = 3

4
n′2(C −A)

× [sin 2ε(1− cos 2λM)+ 2 sin iM cos 2ε
(
cosΩM − cos(2λM −ΩM)

)]

(4.26.1)

MM =−3

2
n′2(C −A)

× [sin ε sin 2λM − sin iM cos ε
(
sinΩM − sin(2λM −ΩM)

)]

(4.26.2)

NM = 0 (4.26.3)

Then the total lunisolar torque with components L, M , N is obtained by combina-
tion of the components: L = (LS + LM,MS +MM,NS + NM). We note that the
component along (O,x) contains a constant term, with amplitude

Lconst. = 3

4
(C −A)

(
n2 + n′2

)
sin 2ε = 3

4
(C −A)(1+ k)n2 sin 2ε (4.27)

4.3.5 Equations for the Rotational Motion of the Earth

Now we have an explicit formulation of the lunisolar torque exerted on the Earth,
we apply the fundamental equation related to the angular momentum σ :

(
dσ

dt

)

�0

= (L)�0 (4.28)

In the moving body-fixed frame �′, this equation becomes
(

dσ

dt

)

�′
+ (ω ∧ σ )�′ = (L)�′ (4.29)
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Let us define the Earth’s rotation vector ω with coordinates ω= (ω1,ω2,ω3) in �′.
In matrix notation, we have

σ =
⎛

⎝
A 0 0
0 B 0
0 0 C

⎞

⎠

⎛

⎝
ω1
ω2
ω3

⎞

⎠=
⎛

⎝
Aω1
Bω2
Cω3

⎞

⎠ (4.30)

Thus the combination of (4.29) and (4.30) leads to
⎛

⎜
⎝

A dω1
dt

B dω2
dt

C
dω3
dt

⎞

⎟
⎠+
⎛

⎝
ω1
ω2
ω3

⎞

⎠∧
⎛

⎝
Aω1
Bω2
Cω3

⎞

⎠=
⎛

⎝
L′
M ′
N ′

⎞

⎠ (4.31)

where L′, M ′ and N ′ are the components of L in �′.
Projected along the axes of the body-fixed frame �′ corresponding to the princi-

pal axes of inertia, these equations give, still considering that A= B:

A
dω1

dt
+ (C −A)ω2ω3 = L′ (4.32)

A
dω2

dt
− (C −A)ω1ω3 =M ′ (4.33)

C
dω3

dt
=N ′ (4.34)

Moreover the components L′, M ′ and N ′ of the lunisolar torque in �′ are related
to the corresponding ones L, M and N in � through a rotation with angle ϕ around
(O, z)= (O, z′) (cf. Fig. 4.6):

L= L′ cosϕ −M ′ sinϕ (4.35)

M = L′ sinϕ +M ′ cosϕ (4.36)

A combination of Eqs. (4.32), (4.33), (4.35) and (4.36) gives immediately the
following set of differential equations:

A

(
dω1

dt
cosϕ − dω2

dt
sinϕ

)

+ (C −A)ω3(ω1 sinϕ +ω2 cosϕ)= L (4.37)

A

(
dω1

dt
sinϕ + dω2

dt
cosϕ

)

− (C −A)ω3(ω1 cosϕ −ω2 sinϕ)=M (4.38)

C
dω3

dt
=N (4.39)

Now we consider the components ωx , ωy and ωz of the rotation vector with re-
spect to the equatorial non rotating frame�. They can be expressed by the following
elementary rotations:

ωx =−dε

dt
, ωy = dψ

dt
sin ε, ωz = dϕ

dt
− dψ

dt
cos ε (4.40)
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At the same time, these components are also deduced from ω1, ω2 and ω3 in �′ by
the rotation with angle ϕ:

ωx = ω1 cosϕ −ω2 sinϕ, ωy = ω1 sinϕ +ω2 cosϕ (4.41)

After derivation of the equations above we get easily:

dω1

dt
cosϕ − dω2

dt
sinϕ = dωx

dt
+ωy

dϕ

dt
(4.42)

dω1

dt
sinϕ + dω2

dt
cosϕ = dωy

dt
−ωx

dϕ

dt
(4.43)

Substituting the transformations of Eqs. (4.42) and (4.43) in Eqs. (4.37) and (4.38)
leads to the following equations:

A

[
dωx

dt
+ωy

dϕ

dt

]

+ (C −A)ωzωy = L (4.44)

A

[
dωy

dt
−ωx

dϕ

dt

]

− (C −A)ωzωx =M (4.45)

C
dωz

dt
= C

dω3

dt
=N = 0 (4.46)

Then replacing ωx , ωy and ωz by their values in function of ε, ϕ and ψ thanks to
(4.40), and after combination of terms,

−Ad2ε

dt2
− (C −A) sin ε cos ε

(
dψ

dt

)2

+C sin ε
dϕ

dt

dψ

dt
= L (4.47)

A sin ε
d2ψ

dt2
− (C − 2A) cos ε

(
dψ

dt

)(
dε

dt

)

+C
dϕ

dt

dε

dt
=M (4.48)

d2ϕ

dt2
− d2ψ

dt2
cos ε+ dψ

dt

dε

dt
sin ε = 0 (4.49)

The third equation is equivalent to dωz/dt = 0, which means that the component
of the vector rotation along the figure axis (O, z) is constant. Moreover we know
that the rates dψ/dt and dε/dt are very small in comparison to dϕ/dt , and also
that the expressions d2ψ/dt2 d2ψ/dt2 and dψ/dt × dε/dt are negligible at first
approximation. Therefore the system of Eqs. (4.47) to (4.49) can be simplified to

C sin ε
dψ

dt

dϕ

dt
= L (4.50)

C
dε

dt

dϕ

dt
=M (4.51)

d2ϕ

dt2
= 0 (4.52)

where L (respectively M) is the sum of a solar contribution LS (respectively MS )
and a lunar one LM (respectively MM ), given by Eqs. (4.19) and (4.26.1) (respec-
tively (4.20) and (4.26.2)). The integration of both Eqs. (4.50) and (4.51) will nat-
urally give the theoretical expression of the precession-nutation in longitude ψ and
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in obliquity ε. The lunisolar precession in longitude, which is the linear variation
ψ1t of ψ comes from the constant part L0 of L:

L0 = L0
S +L0

M =
3

4
n2(C −A) sin 2ε+ 3

4
n′2(C −A) sin 2ε

= 3

4

[
n2(1+ k)

]
(C −A) sin 2ε (4.53)

Inserting this value in Eq. (4.50) we get

ψ1 = 3

2

n2(1+ k)

ϕ̇

(C −A)

C
cos ε (4.54)

The physical parameter (C−A)/C characterizes the relative difference between the
moments of inertia C along the figure axis, and A perpendicular to it: it is called the
dynamical ellipticity, in the case A= B considered here. A priori all the quantities
at the right hand side of this equation are known with very good accuracy, excepted
this last parameter. n is the mean motion of the Earth: n = 2πrd./y. Moreover
n/ϕ̇ = Ts.d./Ty = 1/366.24 where Ts.d. is the period of a sidereal day and Ty is
the period of the sidereal revolution of the Earth. The obliquity ε can be considered
as constant when not taking into account the small variations Δε calculated in the
following and due to the nutation ε ≈ 23°26′21′′, which gives cos ε ≈ 0.9174. On
the other side, the lunisolar precession ψ1 is well known and determined with high
precision from observational data. Its value is set at ψ1 = 50′′.37/y. Therefore a
remarkable fact is that from (4.54) we can deduce theoretically the value of the
dynamical flattening (C −A)/C from the value of ψ1 determined observationally.

C −A

C
= 2

3

ψ1

n

φ̇

n

1

1+ k

1

cos ε

= 2

3
× 50.37

360× 3600
× 366.24

1+ 2.74
× 1

0.9174
= 1

306.8
(4.55)

Noting Δψ and Δε the nutations respectively in longitude and in obliquity, that is
to say the periodic components of ψ and ε, we have, from (4.50) and (4.51),

C sin εϕ̇
dΔψ

dt
= L

per.
S +L

per.
M (4.56)

Cϕ̇
dΔε

dt
=M

per.
S +M

per.
M (4.57)

where the symbol per. stands fore the periodic part of each corresponding compo-
nent of the torque.

By substituting to L
per.
S , Lper.

M , Mper.
S , Mper.

M their expressions in Eqs. (4.19),
(4.26.1) (4.20) and (4.26.2) we find

dΔψ

dt
=−3

2

n2

ϕ̇

(
C −A

C

)

cos ε cos 2λ� − 3

2

kn2

ϕ̇

(
C −A

C

)

cos ε cos 2λM

+ 3

2

kn2

ϕ̇

(
C −A

C

)
cos 2ε

cos ε
sin iM

[
cosΩM − cos(2λM −ΩM)

]
(4.58)
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dΔε

dt
=−3

2

n2

ϕ̇

(
C −A

C

)

sin ε sin 2λ� − 3

2

kn2

ϕ̇

(
C −A

C

)

× [sin ε sin 2λM − sin iM cos ε
(
sinΩM − sin(2λM −ΩM)

)]
(4.59)

Finally we can separate the nutations in longitude coming from the solar and
lunar parts:

Δψ =ΔψSun +ΔψMoon, Δε =ΔεSun +ΔεMoon (4.60)

with

ΔψSun =−3

4

n2

ϕ̇

(
C −A

C

)

cos ε
sin 2λ�

n
(4.61)

ΔψMoon = 3

2

kn2

ϕ̇

(C −A)

C

[
sin iM cos 2ε

sin ε

sinΩM

Ω̇M

− cos ε sin 2λM
2n′

− sin iM cos 2ε

sin ε

sin(2λM −ΩM)

2n′ − Ω̇M

]

(4.62)

And for the nutation in obliquity

Δε =ΔεSun +ΔεMoon (4.63)

with

ΔεSun =−3

4

n2

ϕ̇

(
C −A

C

)

sin ε
cos 2λ�

n
(4.64)

ΔεMoon = − 3

2

kn2

ϕ̇

(C −A)

C

[

sin iM cos ε
cosΩM

Ω̇M

− sin ε cos 2λM
2n′

− sin iM cos ε
cos(2λM −ΩM)

2n′ − Ω̇M

]

(4.65)

Numerically this gives

Δψ =−17′′.16 sinΩM − 1′′.263 sin 2λ� − 0′′.205 sin 2λM

− 0′′.034 sin(2λM −ΩM) (4.66)

Δε = 9′′.17 cosΩM + 0′′.548 cos 2λ� + 0′′.089 cos 2λM
+ 0′′.018 cos(2λM −ΩM) (4.67)

In this section we have explained in a simplified manner, following Danjon
[16] the various steps which lead to the theoretical expressions of the combined
precession-nutation of the Earth in space, that is to say the motion of its figure axis
in space, when undergoing the lunisolar torque. For that purpose we have made
several approximations:

– We neglected the variations of distance of the perturbing bodies (Moon and Sun)
considering that their relative motion is circular.

– We assumed that the Earth is axisymmetric (A= B), whereas in reality the Earth
is triaxial, although the relative difference of moments of inertia (A− B)/C is
much smaller than the difference (C −A)/C.
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– We considered here the Earth as a rigid body whereas in reality we must take into
account several effects of non-rigidity: those due to the elastic mantle with a fluid
outer core and a solid inner core as well as the influence of the oceans and the
atmosphere, which can no more be neglected in comparison with the accuracy of
modern observations.

– We neglected 2nd-order terms in Eqs. (4.47), (4.48) and (4.49).
– We did not take into account the gravitational effects of the planets which, al-

though being considerably much smaller than the lunisolar ones, are not negligi-
ble when compared with up-to-date observational accuracy.

– The problem has been considered in the Newtonian framework while we must
take into account the geodetic precession and geodetic nutation which are a time-
dependent rotation of the geocentric celestial reference system (GCRS) with re-
spect to the barycentric celestial reference system (BCRS) due to General relativ-
ity.

– All our calculations were done with a small precision, to 3 significant digits.

It is clear that all these simplifications, although allowing a straightforward and
clear demonstration, are not satisfactory as soon as a good accuracy is requested. In
the following we describe how the theory of the precession-nutation was pushed to
a remarkable precision thanks to recent developments, and in particular by taking
into account all the corrections mentioned above.

4.4 Alternative Theories of Precession-Nutation for a Rigid
Earth Model

Best modeling the precession-nutation of the real Earth supposes at first step a very
accurate determination of this motion when considering the simplified case of a
rigid Earth. This will serve as a basis for a more complete and accurate theory in-
cluding geophysical, atmospheric and oceanic contributions. After pioneering works
done by Woolard [79] and Kinoshita [37, 38] to elaborate a very complete theory
for rigid Earth precession-nutation, the drastic improvement of observational tech-
niques such as VLBI, reaching the sub-milliarcsecond accuracy during the 1980’s
required new investigations to develop theories available up to the same level of
precision. Competitive works appeared in the 1990’s to accomplish this challenge.
They consisted essentially in an improvement of the already well established theo-
ries mentioned above: Kinoshita’s theory based on Hamiltonian formalism with the
help of canonical variables [39, 65–67]. Woolard’s theory based on the equivalent
principles of the theorem of angular momentum and Lagrangian equations [4, 5, 54].
In the following we describe the theoretical basis of these two theoretical ways of
calculation.

The latter approach was used also by Capitaine et al. [12] with a new param-
eterization replacing the traditional Euler angles (see Sect. 4.4.1.1); this refers to
the CIP (Celestial intermediate pole) and the CIO (Celestial intermediate origin) as
introduced by the IAU 2000 Resolutions (see Sect. 4.4.1.6).



4 Precession and Nutation of the Earth 133

Fig. 4.8 Parametrization of
the rotation of a rigid body
with Eulerian variables.
�0 = (O,X0, Y0,Z0) is a
fixed inertial reference frame
and �= (O,X,Y,Z) is the
body fixed moving reference
frame. The obliquity θ is the
angle between the axes
(O,Z0) and (O,Z). The
precession ψ enables one to
determine the position of the
nodal line (O,γ ) between the
body fixed equatorial plane
(O,X,Y ) and the fixed
reference plane (O,X0, Y0).
The angle of proper rotation
φ enables one to determine
the position of the prime
meridian (O,X,Z) with
respect to the nodal axis
(O,γ ) (from [79])

4.4.1 Dynamical Equations of the Rotation of the Rigid Earth
with Lagrangian Formalism

All the calculations in this chapter are taken from Woolard [79]. The most classical
way to represent the rotation of the rigid Earth with respect to a fixed reference frame
is done through the Eulerian angles (Fig. 4.8). The two reference frames necessary
for the calculations are an inertial one �0 = (O,X0, Y0,Z0) where O stands for
the center of mass of the Earth, and a body-fixed one � = (O,X,Y,Z) in such a
way that (O,Z) is directed towards the axis of maximum moment of inertia C of
the Earth, also defined as the figure axis. (O,X) is oriented towards a point on the
equator of figure and (O,Z) completes the triad. The three axes (O,X), (O,Y ), and
(O,Z) coincide respectively with the principal axes of inertia of the Earth, namely
A, B and C, with A<B <C.

4.4.1.1 Eulerian Parametrization

The Eulerian angles can be defined as follows (Fig. 4.8):

• θ , the obliquity angle (or simply the obliquity) represents the inclination of the
equator of figure with respect to the fixed plane (P0)= (O,X0, Y0). It is generally
reckoned positively.

• ψ , the precession angle, is defined in the fixed plane (O,X0, Y0) between a ref-
erence point γ0 on (P0) and the line (O,γ ) along which the equator of figure
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(O,X,Y ) crosses the plane (P0). For the sake of simplicity we can make γ0 co-
inciding with (O,X0). Therefore we can write ψ = γ0γ .

• φ, sometimes called the proper rotation, is the angle between the axes (O,γ ) and
(O,X).

Thus the position of the axis of figure of the Earth in space is given by the set of
the three angles (ψ, θ,φ).

4.4.1.2 Euler Kinematical Equations

The rotational motion of the Earth, considered as a rigid body, about its center of
mass with respect to �0 is the combination of three independent rotations:

– a rotation at rate ψ̇ around Z0.
– a rotation at rate θ̇ around the moving line of the node (0, γ ) of the equator of

figure on the fixed plane (P0).
– a rotation at rate φ̇ around the axis of figure.

These three individual rotations compound into a resultant rotation vector ω

around the instantaneous axis of rotation passing through the center of mass O.
Its amplitude ω is the angular velocity around this axis. Therefore the position of
the axis of rotation with respect to the Earth-fixed coordinate system � is given
at any instant by the coordinates (ω1,ω2,ω3) of the rotation vector ω, which are
linked to the derivatives of the Eulerian angles through a system of equations called
the Euler’s kinematical equations. These are

ω1 =−θ̇ cosφ − ψ̇ sin θ sinφ (4.68)

ω2 = θ̇ sinφ − ψ̇ sin θ cosφ (4.69)

ω3 = ψ̇ cos θ + φ̇ (4.70)

And reciprocally, this can be written:

ψ̇ sin θ =−ω1 sinφ −ω2 cosφ (4.71)

θ̇ =−ω1 cosφ +ω2 sinφ (4.72)

φ̇ = ω3 + cot θ(ω1 sinφ +ω2 cosφ) (4.73)

4.4.1.3 Lagrange Formalism

A straightforward way to determine the equations of the rotational motion consists
in applying Lagrange’s equations. The kinetic energy of the Earth is expressed in
the following classical form:

T = 1

2

(
Aω2

1 +Bω2
2 +Cω2

3

)
(4.74)
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Now we choose the Eulerian angles ψ , θ and φ as the generalized coordinates qi
(i = 1,2,3). Then the Lagrangian function is

L= T +U = 1

2

(
Aω2

1 +Bω2
2 +Cω2

3

)+U (4.75)

where U is the force function (potential) representing the lunisolar perturbing po-
tential, which will be explicated in Sect. 4.4.3. The system can be considered as
conservative, so that Lagrange equations can be applied:

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= 0 (4.76)

which gives, after expansion [79]:

A
dω1

dt
+ (C −B)ω2ω3 = sinφ

sin θ

(

cos θ
∂U

∂φ
− ∂U

∂ψ

)

− cosφ
∂U

∂θ
(4.77)

B
dω2

dt
− (C −A)ω1ω3 = cosφ

sin θ

(

cos θ
∂U

∂φ
− ∂U

∂ψ

)

+ sinφ
∂U

∂θ
(4.78)

C
dω3

dt
+ (B −A)ω1ω2 = ∂U

∂φ
(4.79)

These equations are generally called the Euler’s dynamical equations

4.4.1.4 Method of Variation of Parameters

The external forces that act to affect the rotational motion of the Earth are so com-
paratively small that the equations of motion may be integrated efficiently by the
method of variation of parameters: in a first step we determine a simplified solution
that would occur were the external forces to vanish (U = 0). Then the solution is
approximatively modified (through the parameters involved) to get the motion in
actual conditions. As we have already mentioned we consider that

A−B

C
� C −A

C
(4.80)

so that, at first approximation, the set of Eqs. (4.77) to (4.79) becomes, taking into
account that ∂U

∂φ
= 0, due to the symmetry:

dω1

dt
+
(
C −A

A

)

ω2ω3 =− sinφ

A sin θ

∂U

∂ψ
− cosφ

A

∂U

∂θ
(4.81.1)

dω2

dt
−
(
C −A

A

)

ω1ω3 =− cosφ

A sin θ

∂U

∂ψ
+ sinφ

A

∂U

∂θ
(4.81.2)

ω3 = cte. (4.81.3)

According to the method of variation of parameters, we first consider that U =
0. Therefore the right-hand side of Eqs. (4.81.1) and (4.81.2) reduces to zero and
putting

μ= C −A

A
ω3 (4.82)
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leads to the trivial equations:

dω1

dt
+μω2ω3 = 0 (4.83.1)

dω2

dt
−μω1ω2 = 0 (4.83.2)

ω3 = cte. (4.83.3)

with the obvious solutions

ω1 = f0 cosμt + g0 sinμt (4.84.1)

ω2 = f0 sinμt − g0 cosμt (4.84.2)

where f0 and g0 are constants of integration. Thus, we show from these equations
that when external forces vanish (U = 0), and by accepting the condition of ax-
isymmetry (A = B), the axis of rotation of the Earth describes with respect to the
Earth-fixed reference frame � a motion circular and uniform around the axis of fig-
ure, represented by the axis (O,Z). This motion, called the free polar motion, is
described with a frequency μ= (C −A/C)ω3.

The second step in the method of variation of parameters consists in adopting the
same kind of formalism as in (4.84.1) and (4.84.2) for ω1 and ω2 but by replacing
the constants f0 and g0 by functions f and g depending on time:

ω1 = f cosμt + g sinμt (4.85.1)

ω2 = f sinμt − g cosμt (4.85.2)

Inserting these expressions in Eqs. (4.81.1) and (4.81.2) enables to determine f

and g by quadrature:

f = f0 −
∫ (

sin(φ +μt)

A sin θ

∂U

∂ψ
+ cos(φ +μt)

A

∂U

∂θ

)

dt (4.86.1)

g = g0 +
∫ (

cos(φ +μt)

A sin θ

∂U

∂ψ
− sin(φ +μt)

A

∂U

∂θ

)

dt (4.86.2)

Then the combination of Eqs. (4.71), (4.72) and (4.73) with (4.86.1) and (4.86.2)
gives the variations of the Eulerian angles which determine the position of the axis
of figure in space:

sin θ
dψ

dt
=−f sin(φ +μt)+ g cos(φ +μt) (4.87.1)

dθ

dt
=−f cos(φ +μt)− g sin(φ +μt) (4.87.2)

dφ

dt
= ω3 − cos θ

(
dψ

dt

)

(4.87.3)

The last equation can be rewritten, using Eq. (4.82), as

d(φ +μt)

dt
= C

A
ω3 − cos θ

(
dψ

dt

)

(4.88)
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4.4.1.5 The Motion of the Axis of Figure in Space

Equations (4.87.1) and (4.87.2) can be transformed into a more advantageous form,
by substituting the expressions of f and g given by Eqs. (4.86.1) and (4.86.2) in the
right-hand side, and after differentiating both members with respect to t . We find

d

dt

(

sin θ
dψ

dt

)

= (φ̇ +μ)
dθ

dt
+ 1

A sin θ

∂U

∂ψ
(4.89)

d

dt

(
dθ

dt

)

=−(φ̇ +μ) sin θ
dψ

dt
+ 1

A

∂U

∂θ
(4.90)

Using Eq. (4.88) and after re-combination, we finally obtain the derivative of the
two precession-nutation angles:

dθ

dt
=− 1

Cω3 sin θ

∂U

∂ψ
+ A

Cω3

d

dt

(

sin θ
dψ

dt

)

+ A

Cω3
cos θ

dψ

dt

dθ

dt
(4.91)

dψ

dt
= 1

Cω3 sin θ

∂U

∂θ
− A

Cω3

d

dt

(
dθ

dt

)

+ A

Cω3
cos θ

(
dψ

dt

)2

(4.92)

4.4.1.6 Modern Parametrization Based on IAU 2000 Resolutions

The Euler dynamical equations and the method of variation of parameters described
in the previous sections have been used by Capitaine et al. [12] for a modern semi-
analytical resolution (analytical representation with numerical coefficients) of the
precession-nutation equations based on the CIO based parameters.

The celestial and terrestrial intermediate origins (CIO and TIO respectively),
have been defined as origins on the equator of the CIP, based on the concept of
the “non-rotating origin” [25] when the CIP moves in space and in the Earth, re-
spectively. Their kinematical property provides a very straightforward definition of
the Earth’s diurnal rotation based on the Earth Rotation Angle (ERA) along the
equator of the CIP (Celestial Intermediate Pole) between those two origins, which
is linearly related to UT1. The ERA replaces the third Euler angle φ from the nodal
axis (O,γ ).

The CIP is defined as being the intermediate pole, in the transformation between
the celestial and terrestrial systems, separating nutation from polar motion by a spe-
cific convention in the frequency domain. That convention is such that (i) the GCRS
(Geocentric Celestial Reference System) CIP motion includes all the terms with pe-
riods greater than 2 days in the GCRS (i.e. frequencies between −0.5 cycles per
sidereal day (cpsd) and +0.5 cpsd); (ii) the ITRS (International Terrestrial Refer-
ence System) CIP motion, includes all the terms outside the retrograde diurnal band
in the ITRS (i.e. frequencies less than −1.5 cpsd or greater than −0.5 cpsd).

The CIO based precession-nutation parameters consist in the GCRS coordinates
of the CIP unit vector, either in their polar form, E and d , or their rectangular form,
X = sind cosE, Y = sind sinE (see Fig. 4.9); they contain precession and nuta-
tion of the CIP, frame bias between the equator and equinox frame at J2000.0 and



138 J. Souchay and N. Capitaine

Fig. 4.9 Parametrization of
the precession-nutation of the
equator using the CIO (σ )
based parameters: the
coordinates of the CIP unit
vector (either E and d , or
X = sind cosE,
Y = sind sinE)

the GCRS, plus the cross terms between precession and nutation [9, 10]. Y and X

replace respectively the first and second Euler angles, θ and ψ .
The CIO (Celestial Intermediate Origin) based precession-nutation equations for

a rigid axially symmetric Earth are as follows [12]:

−Ÿ + (C/A)�Ẋ = LΣ/A+ F ′′ (4.93.1)

Ẍ+ (C/A)ΩẎ =MΣ/A+G′′ (4.93.2)

Ω being the mean Earth’s angular velocity, LΣ and MΣ the equatorial components
of the torque referred to Σ (such that ΣN =Σ0N ), and F ′′, G′′ functions of X, Y
and of their first and second time derivatives.

4.4.2 Dynamical Equations of the Rotation of the Rigid Earth
with Hamiltonian Formalism

An alternative way to construct a theory of the rotation for a rigid Earth model con-
sists in starting from Andoyer variables [1] instead of Eulerian angles. One of the
advantages of such a choice comes from the fact that Andoyer variables are canon-
ical. Thus it is rather easy to apply a perturbation theory based on canonical trans-
formations to the rotational motion, and to separate precessional from nutational
motion, or, in other words, secular perturbations from periodic ones [38]. Moreover
it is easy to treat separately the motion of the figure, rotation and angular momentum
axes.

4.4.2.1 Andoyer Angles Parametrization

We start from the two reference frames, the inertial one �0 = (O,X0, Y0,Z0) and
the Earth-fixed one � = (O,X,Y,Z) as defined previously. We call L the angular
momentum vector of the Earth. The plane (P0) has the same meaning as in the pre-
vious section, whereas (PL) stands for the plane perpendicular to L. The Andoyer
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variables consist in 3 action variables (L,G,H) and 3 angle variables (l, g,h) de-
fined as follows (Fig. 4.10):

Action variables
They are defined with respect to the angular momentum vector.

• G is the amplitude of the angular momentum vector L
• L is the component of L along the axis (O,Z)

• H is the component of L along the axis (O,Z0)

From these definitions we can already introduce two angles which play a funda-
mental role in the theory: I is the inclination of L with respect to (O,Z0) and J its
inclination with respect to (O,Z) in such a way that

L=G cosJ, H =G cos I (4.94)

Notice that I represents the obliquity of the axis of angular momentum with respect
to the inertial axis (O,Z) and must not be confused with the classical obliquity, i.e.
the angle between the axis of figure and the basic plane (P0) (generally the ecliptic).

Angle variables
As in the case of the Eulerian angles they enable one to give the orientation of �

with respect to�0, but with the intermediary of the plane (PL) which is not involved
in this first case.

• h is the angle measured along the reference plane (P0) between the fixed point
γ0 and the node Q of (PL) with respect to (P0). Notice that it represents the
angle of precession but for the equator of angular momentum (PL) instead of the
precession ψ of the equator of figure.

• g is the angle along the equator of angular momentum (PL) between Q defined
previously and the ascending node P of the equator of figure with respect to (PL).

• l is the angle along the equator of figure between the ascending node P and the
Earth-fixed origin axis (O,X).

4.4.2.2 Relationships Between Eulerian and Andoyer Variables

In Fig. 4.10 we represent the reference planes and axes defined together with the
Eulerian angles and Andoyer action and angles. The relationships between these
two set of variables can be derived from the spherical triangle (P,Q,γ ) defined
previously. These are

cos θ = cos I cosJ − sin I sinJ cosg (4.95.1)
sin(ψ − h)

sinJ
= sin(φ − l)

sin I
= sing

sin θ
(4.95.2)

In the case of the Earth, the angle J is very small. Its amplitude does not ex-
ceed 1′′. This means that the angular momentum axis is nearly coinciding with the
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Fig. 4.10 Parametrization of
the rotation of a rigid body
with Andoyer variables with
respect to the fixed inertial
reference frame
�0 = (O,X0, Y0,Z0). The
three angle variables l, g, h
enable one to determine the
body fixed reference frame
�= (O,X,Y,Z) with
respect to �0. The three
action variables are L and H ,
respectively projections of the
vector angular momentum L
on the body fixed axis (O,Z)

and the inertial axis (O,Z0),
and G, the norm of L
(from [38])

figure axis. Therefore at the first order in J we can write from the two equations
above

ψ = h+ J

sin I
sing +O

(
J 2) (4.96.1)

θ = I + J cosg+O
(
J 2) (4.96.2)

φ = l + g − J cot I sing +O
(
J 2) (4.96.3)

4.4.2.3 Andoyer Variables Referred to the Fixed and Moving Ecliptics

In practical case, the inertial reference frame �0 is defined in such a way that the
(O,X0) axis is directed towards the fixed mean equinox of a reference epoch T0 (for
instance J2000.0), the plane (P0) = (O,X0, Y0) coinciding with the mean ecliptic
of T0. For the study of the rotation of the Earth, it is convenient to adopt instead
of �0 a moving reference frame �̄ = (O, X̄, Ȳ , Z̄) in such a way that the plane
(P̄ )= (O, X̄, Ȳ ) coincides to the moving ecliptic of the date, (O, Z̄) being directed
towards the axis of this ecliptic, and (O, X̄) towards the departure point as defined
by Kinoshita [38]. Now we can define the motions of the moving ecliptic of date
with respect to the fixed ecliptic of epoch through the set of two variables πe and
Πe: they stand respectively for the inclination and the longitude of the node of (P̄ )

with respect to (P0).
Kinoshita [38] showed that it is possible to transform the variables h, I , and

g referred to the fixed plane (P0) into a corresponding set of variables h′, I ′ and
g′ referred to a slightly moving reference plane (P̄ ), in such a way that the old
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set of canonical variables (l, g,h,L,G,H) is transformed in a new canonical one
(l′, g′, h′,L′,G′,H ′). If H designates the Hamiltonian of the system of the rota-
tional motion of the rigid Earth, the new Hamiltonian, called K , satisfies

Gdg +H dh−H dt =G′ dg′ +H ′ dh′ −K dt (4.97)

with

G′ =G, H ′ =G cos I ′ (4.98)

We can remark that the variables l and L do not depend on the reference frame:
l′ = l, and L′ = L The new Hamiltonian becomes

K =H +E (4.99)

with

E =H ′(1− cosπe)
dΠe

dt

+G sin I ′
[

dΠe

dt
sinπe cos

(
h′ −Πe

)− dπe
dt

sin
(
h′ −Πe

)
]

(4.100)

4.4.2.4 Hamiltonian of the System and Canonical Equations of the Rotational
Motion

According to Kinoshita [37, 38], the Hamiltonian K for the rotational motion of the
rigid Earth referred to the slightly moving reference frame �̄ defined in the previous
section is

K = F0 +E +U (4.101)

• F0 represents the kinetic energy of the rotational motion. It is written

F0 = 1

2

(
sin2 l

A
+ cos2 l

B

)
(
G2 −L2)+ 1

2C
L2 (4.102)

• E is the complementary Hamiltonian component due to the change of reference
frame as explained in the previous section.

E =H ′(1− cosπe)
dΠe

dt

+G sin I ′
[

dΠe

dt
sinπe cos

(
h′ −Πe

)− dπe
dt

sin
(
h′ −Πe

)
]

(4.103)

• U is the disturbing potential for the rotational motion due to the external bodies
(Moon, Sun and planets). An exhaustive study of the determination of U will be
given in the next section.
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4.4.2.5 Equations of Motion

The equations of motion of the rotation of the rigid Earth are directly derived from
the property of canonicity of the adopted Andoyer variables (l, g′, h′,L,G,H ′). For
the sake of simplicity, the prime symbols are removed from the variables, and in the
moving reference frame �̄, the canonical equations can be written

d

dt
(L,G,H)=− ∂K

∂(l, g,h)
(4.104.1)

d

dt
(l, g,h)= ∂K

∂(L,G,H)
(4.104.2)

4.4.2.6 Precession-Nutation of the Axis of Angular Momentum

In the scope of this chapter dealing with the precession-nutation motion, we essen-
tially focus on the two variables h and I which represent respectively the precession
angle and the obliquity of the axis of the plane perpendicular to the angular momen-
tum vector. We have already explained that I is defined starting from the canonical
variables through the relationship H =G cos I . In addition we call Δh and ΔI the
periodic variations h and I . By writing W the determining function defined by

W =
∫
(
U

per
1 +U

per
2

)
dt (4.105)

where Uper
1 and U

per
2 stand for the periodic parts of respectively U1 and U2, we have

Δh=−∂W

H
= ∂W

∂I

∂I

∂H
=− 1

G sin I

∂W

∂I
(4.106)

ΔI = 1

G

(

− 1

sin I
ΔH + cot IΔG

)

= 1

G

(
1

sin I

∂W

∂h
− cot I

∂W

∂g

)

(4.107)

4.4.2.7 Precession-Nutation of the Figure Axis

The nutation of the figure axis (Δψf ,Δεf ) are directly deduced from the geomet-
rical relationships (4.96.1) and (4.96.2) linking the axis of angular momentum and
the axis of figure4:

Δψf =Δh+Δ

[
J sing

sin I

]

+O
(
J 2) (4.108)

Δεf =Δθ =ΔI +Δ[J cosg] +O
(
J 2) (4.109)

4The reader must pay attention to the sign conventions: here ψ and h as well as ε and I have
the same signs. This follows the classical geometrical rules of a positive sign in the trigonomet-
ric (counter clockwise) sense, whereas for conventional astronomical rules ψ and ε are counted
positively in the clockwise sense.
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with

Δ

(
J sing

sin I

)

= 1

sin I
(singΔJ + J cosgΔg)− J sing

sin2 I
ΔI

= 1

G sin I

[
∂W

∂g
sing−W cosg

]

(4.110)

and

Δ(J cosg)= 1

G

[
∂W

∂g
cosg +W sing

]

(4.111)

These two last expressions are called the Oppolzer terms.

4.4.3 The Determination of the Disturbing Potential U

As seen in Sects. 4.4.1 and 4.4.2, whatever be the theory used to determine the
rotational motion, and more precisely the precession-nutation of the Earth, it neces-
sitates the precise calculation of the disturbing potential U exerted by the external
body (Moon, Sun, planet). This disturbing potential can be represented by expansion
in spherical harmonics of first order (U1) and second one (U2) [69]

U =U1 +U2 (4.112)

with

U1 = GM

r3

[
2C −A−B

2
P2(sin δ)+ A−B

4
P 2

2 (sin δ) cos 2αE)

]

(4.113)

U2 =
∞∑

n=3

GMMEa
n
E

rn+1

×
[

JnPn(sin δ)−
n∑

m=1

Pm
n (sin δ)(Cn,m cosmαE + Snm sinmαE)

]

(4.114)

where αE stands for the geocentric longitude of the perturbing body as measured
from a prime meridian on the Earth5 and δ its declination. M is the mass of the
perturbing body, r its distance from the center of the Earth. Jn, Cnm and Snm are the
coefficients of the geopotential, which characterize the repartition of mass inside the
Earth. P j

i are the Legendre polynomials of degree i and order j .

4.4.3.1 Use of Ecliptic Coordinates

The reference plane to measure the precession-nutation motion being the ecliptic
of the date, it is convenient to express the Legendre polynomials P2(sin δ) and

5αE must not be confused with the classical right ascension α measured from an equinox.
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P 2
2 (sin δ) cos 2α as a function of the ecliptic longitude λ and latitude β of the per-

turbing body. Kinoshita et al. [40] showed how this step is possible trough the inter-
mediary of the modified Jacobi polynomials. After expansion, we find [38]:

P2(sin δ)= 1

2

(
3 cos2 J − 1

)
[

1

2

(
3 cos2 I − 1

)
P2(sinβ)

− 1

2
sin 2IP 1

2 (sinβ) sin(λ− h)− 1

4
sin2 IP 2

2 (sinβ) cos 2(λ− h)

]

+ sin 2J

[

−3

4
sin 2IP2(sinβ) cosg

− 1

4

∑

ε=±1

(1+ ε cos I )(−1+ 2ε cos I )P 1
2 (sinβ) sin(λ− h− εg)

−
∑

ε=±1

1

8
ε sin I (1+ ε cos I )P 2

2 (sinβ) cos(2λ− 2h− εg)

]

+ sin2 J

[
3

4
sin2 IP2(sinβ) cos 2g

+ 1

4

∑

ε=±1

ε sin I (1+ ε cos I )P 1
2 (sinβ) sin(λ− h− 2εg)

− 1

16

∑

ε=±1

(1+ ε cos I )2P 2
2 (sinβ) cos 2(λ− h− εg)

]

(4.115)

The same kind of expansion as a function of I , J , the coordinates λ, β and the
Andoyer variables l, g, h is done for the expression P 2

2 (sin δ) cos 2αE which takes
place in the part of the potential, depending on the triaxiality in Eq. (4.113).

Analytically, Woolard [79] and Kinoshita [38] showed that it is possible for the
Moon as well as for the Sun to express the functions P2(sinβ), P 1

2 (sinβ) sin(λ−h)

and P 2
2 (sinβ) cos 2(λ − h) etc. as Fourier series with arguments Θν themselves

combination of the five Delaunay arguments, which are

– l the mean anomaly of the Moon
– l′ the mean anomaly of the Sun
– Ω the longitude of the node
– F = λM −Ω , where λM is the mean longitude of the Moon
– D = λM − λS , where λS is the mean longitude of the Sun.

Kinoshita and Souchay [39] as well as Souchay et al. [67] generalized this kind
of formulation by introducing the mean longitudes of the planets (excepted Nep-
tune whose influence is negligible) when including the direct and indirect planetary
perturbations, as well as a the general precession on longitude pA.

In these works, Θν are written

Θν = i1l + i2l
′ + i3F + i4D+ i5Ω + i6λMe + i7λVe + i8λEa

+ i9λMa + i10λJu + i11λSa + i12λUr + i13pA (4.116)
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Thus we can adopt a generic formula for the expansions used:

1

2

(
a

r

)3(
1− 3 sin2 β

)=
∑

ν

A0
ν cosΘν (4.117.1)

(
a

r

)3

sinβ cosβ sinλ=
∑

ν

A1
ν cosΘν (4.117.2)

(
a

r

)3

sinβ cosβ cosλ=−
∑

ν

A1
ν sinΘν (4.117.3)

(
a

r

)3

cos2 β cos 2λ=
∑

ν

A2
ν cosΘν (4.117.4)

(
a

r

)3

cos2 β sin 2λ=−
∑

ν

A2
ν sinΘν (4.117.5)

4.4.3.2 Generic Formula for the Expressions of the Potential U

According to (4.113) the determination of U presupposes the knowledge of
( a
r
)3P2(sin δ) and ( a

r
)3P 2

2 (sin δ) cos 2αE . Kinoshita [38] has shown that these ex-
pressions can be conveniently expanded in the following form:

(
a

r

)3

P2(sin δ)= 3

2

(
3 cos2 J − 1

)∑

ν

Bν cosΘν

− 3

2
sin 2J

∑

ε=±1

∑

ν

Cν(ε) cos(g − εΘν)

+ 3

4
sin2 J

∑

ε=±1

∑

ν

Dν(ε) cos(2g − εΘν) (4.118)

and
(
a

r

)3

P 2
2 (sin δ) cos 2αE

=−9

2
sin2 J

∑

ν

Bν cos(2l − εΘν)

− 3
∑

ρ=±1

sinJ (1+ ρ cosJ )
∑

ε=±1

∑

ν

Cν(ε) cos(g + 2ρl − εΘν)

− 3

4

∑

ε=±1

∑

ρ=±1

(1+ ρ cosJ )2
∑

ν

Dν(ε) cos(2g + 2ρl − εΘν) (4.119)

in which

Bν =−1

6

(
3 cos2 I − 1

)
A0
ν −

1

2
sin 2IA1

ν −
1

4
sin2 IA2

ν (4.120)
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Cν(ε)=−1

4
sin 2IA0

ν +
1

2
(1+ ε cos I )(−1+ 2ε cos I )A1

ν

+ 1

4
ε sin I (1+ ε cos I )A2

ν (4.121)

Dν(ε)=−1

2
sin2 IA0

ν + ε sin I (1+ ε cos I )A1
ν

− 1

4
(1+ ε cos I )2A2

ν (4.122)

4.4.4 Generic Formula for the Expressions of the Nutations Δψ
and Δε

Once the potential U has been expressed as a Fourier series the nutations are de-
termined in a straightforward manner by simple integration and partial derivatives
with respect to I and h, following Eqs. (4.105), (4.106) and (4.107) [38]

• Nutation of the angular momentum axis.
For the angular momentum the nutations in longitude ΔψAM and in obliquity

ΔεAM are given by

ΔψAM =Δh=− 1

G sin I

(
∂W

∂I

)

+O(J )= k
∑ Eν

Nν

sinΘν (4.123)

with

Eν =
[

A0
ν −

1

2
A2
ν

]

cos I − cos 2I

sin I
A1
ν (4.124)

and

ΔεAM =ΔI = 1

G sin I

(
∂W

∂h

)

+O(J )= k

sin I

∑
i5
Bν

Nν

cosΘν (4.125)

where i5 is the coefficient of Ω in the argument Θν (see Eq. (4.116)) and Nν = Θ̇ν .
k is a scaling factor given by

k = 3
GM

a3ωE

2C −A−B

2C
= 3

GM

a3ωE

Hd (4.126)

where M is the mass of the perturbing body, a the semi-major axis of its orbit (in the
case of the solar potential, M is the mass of the Sun and a the semi-major axis of the
Earth), and ωE the sidereal angular velocity of the Earth. Hd = (2C −A− B)/2C
is called the dynamical ellipticity of the Earth.6 We will discuss below how it is
determined from the precession deduced from observations.

• Nutations of the figure axis.
The nutations in longitude Δψf and in obliquity Δεf of the figure axis of the

Earth are deduced from the Oppolzer terms whose expressions have already been

6In the case of axisymmetry, Hd = (C −A)/C.
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given in Eqs. (4.110) and (4.111). We have, at the first order in J [38]:

Δψf =ΔψAM + 1

G sin I

(
∂W

∂g
sing−W cosg

)

(4.127)

=ΔψAM + k

sin I

∑

ν

∑

ε=±1

εCν(ε)

ng − εNν

sinΘν (4.128)

Δεf =ΔεAM − 1

G

(
∂W

∂g
cosg+W sing

)

(4.129)

=ΔεAM + k
∑

ν

∑

ε=±1

Cν(ε)

ng − εNν

cosΘν (4.130)

4.5 Modern Precession-Nutation Theories for a Rigid Earth
Model

Face to the tremendous improvement by an order 2 or 3 of the precision in the de-
termination of the coefficients of nutation thanks to the VLBI technique, it became
necessary, at the end of the 1980’s, to construct a new rigid Earth nutation model
with an extreme accuracy, at the level of the sub-milliarcsecond (mas). During the
1990’s several groups undertook this work, which was reckoned as fundamental.
These efforts lead to the a definitive publication of the three different models called
SMART97 [5], RDAN97 [54] and REN2000 [67]. These three models based on
different theoretical foundations give very close results for the nutation coefficients
when each of them is compared to the others [64]. The level of truncature for each
coefficient of the related series of nutation in the three works was set at least to
0.1 µas instead of 0.1 mas, that is a factor 1000, with respect to the previous series
constructed by Kinoshita [38] about two decades earlier. This new truncature level
required to take into account more than one thousand components of nutation in-
stead of the 106 ones in this last paper. It forced also the authors above to include
new kinds of contribution, which although being very small, cannot be ignored. Af-
ter giving a brief review of the way of construction of the three kinds of series of
nutation above, we present in detail each of these second-order contributions

The three nutation series SMART97, RDAN97, and REN2000 differ by the
methodology used for their construction. Nevertheless they give all very close re-
sults for precession-nutation of the three axes concerned: the axis of angular mo-
mentum, the axis of rotation and the axis of figure. All the related theories use the
analytical solution VSOP87 [3] for the motion of the Sun and the planets, and the
analytical solution ELP2000 [15] for the orbital motion of the Moon.

• For the construction of SMART97, Bretagnon et al. [5] used an iterative an-
alytical method based on Eulerian dynamical equations, already described in
Sect. 4.4.1.3. They also used a numerical integration to test the validity of the
analytical developments, finding a remarkable agreement, of 16 µas for ψ and
8 µas for ε.
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• For RDAN97, Roosbeek and Dehant [54] used the torque approach. The La-
grangian equations expressing the rigid Earth response to the torque induced by
the external bodies, as seen in Sect. 4.4.1, are solved analytically. In order to vali-
date and further test their analytical model, they have also computed a benchmark
series called RDNN97 built from the DE403/LE403 ephemerids [68] and from a
numerical integration. Their comparison between RDAN97 and RDNN97 shows
that, in the time domain, the maximum difference is 62 µas for Δψ and 29 µas
for Δε, whereas in the frequency domain they are respectively 6 µas and 4 µas.

• For REN2000, Souchay et al. [67] up-dated the theory set up by Kinoshita [38]
based on Hamiltonian equations and described in details in Sect. 4.4.3. Souchay
[64] compared also the analytical nutation given by this series with numerical
integration. The r.m.s. of the residuals do not exceed 5 µas both for Δψ sin ε and
Δε.

The three independent models of nutation for a rigid Earth model mentioned
above show a remarkable agreement both between themselves (at the level of 1 µas
for the amplitude of each individual coefficient) as with numerical integration of
the equations of motion. We can conclude that any of these models is well suited to
serve as a basis for a more sophisticated theory of nutation involving a real Earth
with non rigid aspects.

Note that an iterative semi-analytical method based on Eulerian dynamical equa-
tions similar to that of Bretagnon (1997) was proposed [12] for integrating the equa-
tions directly as functions of the coordinates of the CIP in the GCRS.

4.5.1 The Construction of a Highly Accurate Rigid Earth
Precession-Nutation Model

The construction of a highly accurate rigid Earth precession-nutation model requires
a very accurate determination of the dynamical ellipticity of the Earth as well as the
investigation of second-order contributions which cannot be neglected anymore, as
given the level of truncature (0.1 µas) of the Fourier series of nutation. They can be
enumerated as:

– the direct planetary effects
– the indirect planetary effects
– the effects of the triaxiality of the Earth
– the contributions due to second-order geopotential (J3, J4)
– the crossed-nutation effects
– the J2 and planetary tilt effects
– the geodetic precession



4 Precession and Nutation of the Earth 149

4.5.1.1 The Observed Precession and the Determination of the Dynamical
Ellipticity of the Earth

The fit between the observed value of the lunisolar precession in longitude and its
theoretical formula allows the determination of the dynamical ellipticity of the Earth
Hd = (2C −A−B)/2C which is the fundamental parameter for the calculation of
the potential U in Eq. (4.113), and as a consequence for the calculation of the ampli-
tude of all the nutation coefficients. The general precession in longitude pA up-dated
by Williams [78] is 5028′′.7700/cy, which represents a −0′′.3266/cy correction
with respect to a previous value adopted by the IAU 1976 General Assembly [41].
As it was explained by Kinoshita and Souchay [65], this very accurate value com-
ing from modern observations, in particular from VLBI data, and established with
respect to the moving ecliptic of the date, includes not only the lunisolar precession,
but also a combination of second-order effects. These are a spin-orbit coupling ef-
fect in the Earth-Moon system (0′′.380/cy), the effects due to the J4 geopotential
(−0′′.0026/cy), to the direct planetary gravitational influence (−0′′.0321/cy), to the
geodetic precession as given by Barker and O’Connell [2]. This geodetic precession,
also called the De Sitter precession is the relativistic rotation of the geocentric fixed
celestial system with respect to the barycentric one. Its amplitude is 1′′.9194/cy
[78].

Moreover, the difference due to the adoption of a fixed ecliptic or a moving eclip-
tic, called planetary precession amounts to 11′′.8745/cy. All these contributions
must be removed from the observed value of the general precession in longitude pA,
to isolate the sole lunisolar contribution ψA with respect to a fixed ecliptic. We find
ψA = 5040.6445′′/cy. Now ψA is also given by the following formula [65]:

ψA =ψMoon
A +ψSun

A

= 3Hd

((
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M◦ +M⊕

)(
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M� +M◦ +m⊕
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�

)

S0

))

cos εA

(4.131)

where M�, M⊕ and M◦ are respectively the masses of the Sun, the Earth and the
Moon, nE and nM the mean motions of the Earth-Moon barycenter and of the Moon,
and � the sidereal angular rate of rotation of the Earth. M0 and S0 are quantities
coming directly from computations of the lunisolar potential. They are respectively
the constant terms in the expressions 1

2 (
a
r
)3(1− 3 sin2 β) for the Moon and for the

Sun, where λ, β and r are the ecliptic coordinates of the perturbing body (Sun or
Moon) with respect to the moving equinox and ecliptic of the date (for the Sun
β ≈ 0).

The correspondence between ψA as deduced from the observational value of pA,
at the left hand side of Eq. (4.131), and its theoretical expression at the right hand
side enables to determine Hd given its status of sole unknown parameter. In fact each
of the nutation theories above is associated by its own estimation of Hd . Bretagnon
et al. [4] in SMART97 find Hd = 0.0032737668 while Souchay and Kinoshita [66]
in REN2000 have Hd = 0.0032737548 and Roosbeek and Dehant in RDAN97 have
Hd = 0.0032737674.
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4.5.1.2 The Main Lunar Terms

The major contribution to the nutation, as considering the importance of the effect
and the number of coefficients, comes from the Main Problem of the Moon, that is
to say from the three-body problem involving the Moon orbiting around the Earth
in a quasi-Keplerian motion greatly perturbed by the Sun [15]. As a consequence
the influence of the planetary perturbations on the Moon’s orbit are treated inde-
pendently and will be considered later. Thus the only arguments entering in the
expansions of the angles Θν are the Delaunay’s arguments l, l′, F , D and Ω . The
leading nutation components are those with arguments Ω and 2Ω and respective
periods 18.6 y and 9.3 y [67]: Δψ = −17′′.2805921 sinΩ + 0′′.2090296 sin 2Ω
and Δε = 9′′.22289220 cosΩ − 0′′.0903611 sin 2Ω . For the nutation figure axis of
the rigid Earth, Souchay et al. [67] find 583 coefficients in longitude and 486 in
obliquity, when adopting a truncature level of 0.1 µas.

4.5.1.3 The Main Solar Terms

The main solar terms are those due to the quasi-Keplerian motion of the Earth. In
other words, it comes from the expansions of the geocentric ecliptic coordinates
of the Sun λ�, β� ≈ 0 and r� involved in the expression of the solar potential
given by Eqs. (4.113) and (4.115) following classical expansions of a/r� and λ�
as a function of the eccentricity of the Earth. These terms, with arguments Θν lin-
ear combinations only of the five Delaunay’s arguments in Eq. (4.116), must be
separated from those with arguments Θν including also the mean longitude of the
planets, which are coming from the perturbations of the planets and are called in-
direct planetary effects (see Sect. 4.5.1.5). The larger term in the category of the
main solar terms is the semi-annual one, with period 182.621 days (see Eqs. (4.66)
and (4.67)); its amplitude is Δψs.a. =−1′′.317090 sin(2F −2D+2Ω) in longitude
and Δεs.a. = 0′′.573034 cos(2F − 2D+ 2Ω) in obliquity.

4.5.1.4 The Direct Planetary Effects

Like the Moon and the Sun, the planets induce also nutations of the Earth’s axes.
Vondrak [70] calculated for the first time these direct influences of the planets on the
nutation, showing that they could reach the 0.1 mas level for individual components.
Independently of the three theories considered here, Williams [78] calculated all
the coefficients related to the direct influence of the planets, up to 0.5 µas, both
for Δψ cos ε and for Δε. At this level of truncature he found 1, 103, 26, 22, 5
and 1 terms respectively for Mercury, Venus, Mars, Jupiter, Saturn and Uranus, the
influence of Neptune being negligible. Exhaustive tables of the direct influences of
the planets included in REN2000 can be found in Souchay and Kinoshita [66] which
show a perfect agreement with Williams [78]. The argument of each component
is a linear combination of the longitude of the Earth λEa, of the longitude of the
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perturbing planet considered and of the general precession in longitude pA. The
leading terms in longitude and obliquity are by far due to Venus and Jupiter. They
are, in µas:

Δψ = 215.0 sin(3λVe − 5λEa − 2pA)+ 84.6 sin(λVe − λEa)

− 50.4 sin(4λVe − 6λEa − 2pA)+ 34.9 sin(2λVe − 4λEa − 2pA)

+ 35.0 sin(2λVe − 2λEa)− 106.2 sin(2λJu + 2pA)+ 33.4 sinλJu

(4.132)

Δε = 93.2 cos(3λVe − 5λEa − 2pA)− 21.9 sin(4λVe − 6λEa − 2pA)

+ 15.1 cos(2λVe − 4λEa − 2pA)+ 46.0 cos(2λJu + 2pA) (4.133)

4.5.1.5 The Indirect Planetary Effects

The indirect planetary effects, first pointed out and estimated by Vondrak [71, 72]
originate from the small perturbations of the planets on the orbital motion of the
Moon around the Earth and of the Earth around the Sun. These perturbations affect
the relative ecliptic coordinates λ and β of the body causing the nutation (the Moon
or the Sun). In their turn, these little changes cause a change in the perturbing po-
tential exerted by the body. In REN2000 [67] the corresponding terms of nutation
can be recognized easily by the nature of their arguments, as a linear combination
of the Delaunay variables l, l′, F , D and Ω , of the general precession in longitude
pA and of the mean longitudes of the planets λMe, λVe etc. At high frequency the
indirect planetary effects due to Moon are dominated by two components with ar-
guments −lM + 2F + 2Ω + 18λVe − 16λEa and lM + 2F + 2Ω − 18λVe + 16λEa
and the same amplitude of 14.1 µas in Δψ . Moreover for a 100 y time interval, the
peak-to-peak amplitude of these planetary effects are of the order of 1 mas both for
the Moon’s and the Sun’s parts.

4.5.1.6 The Crossed Nutation Effects

When computing the coefficients of nutation at first order, through the intermedi-
ary of P2(sin δ) as expressed in Eq. (4.115), the obliquity angle I as well as the
longitude λ of the perturbing body are determined without taking into account the
nutations. In fact, they must be replaced respectively by I+ΔI and λ−Δh. In other
words, the nutation itself causes a slight modification of the position of the equator
which in its turn provokes a slight modification of the potential U exerted by the
perturbing body and in the determining function W given by Eq. (4.105), which
results in crossed nutation effects when applying Eqs. (4.106) and (4.107). They
concern 68 components for Δψ and 40 components for Δε, up to 0.1 µas [67]. The
leading contribution concerns the component with argument 2Ω resulting from the
crossed nutations of the leading term with argument Ω . It amounts to 1.220 mas for
Δψ and −0.238 mas for Δε.
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4.5.1.7 The J2 Tilt Effects

The J2 tilt effect comes from the particular perturbation on the motion of the Moon
around the Earth due to the shape of the Earth, i.e. its equatorial bulge. These per-
turbations involving J2 modify in their turn the potential exerted by the Moon on
the Earth. This change in the potential generates some additional second-order con-
tributions which affect in a significant manner the leading nutation coefficients of
lunar origin, with arguments Ω and 2Ω .

4.5.1.8 The Planetary Tilt Effect

This effect was pointed out by Williams [78]: the orbit planes of the planets have
small inclinations with respect to the ecliptic plane. As a consequence of the plan-
etary attractions, the ecliptic planes moves. The Moon’s mean plane of orbital pre-
cession follows the moving ecliptic closely, but not perfectly. This motion causes a
1′′.4 tilt of the plane of orbital precession to the ecliptic. This result in an additional
torque on the oblate Earth.

4.5.1.9 Effects due to the Triaxiality of the Earth

The triaxiality of the Earth is characterized by the relative difference (B − A)/C

between the moments of inertia along the principal axes perpendicular to the fig-
ure axis. Were the Earth perfectly axisymmetric, the triaxiality is zero. For the real
Earth we have (B − A)/(2C − A− B) = 0.0033536. The triaxiality takes part in
the perturbing potential U2 through the expression (A− B/4)× P 2

2 (sin δ) cos 2αE
in Eq. (4.113). The presence of the component cos 2αE with semi-diurnal period
combined with long periodic components in P 2

2 (sin δ) results after integration in
quasi-semi-diurnal terms of nutation. They are listed in Souchay and Kinoshita [66]
up to 0.1 µas. Two reasons lead to the relatively small values of the nutations due to
the triaxiality: first the smallness of the ratio above; second the fact that when car-
rying out the integration according to Eq. (4.105) a large frequency value appears
at the denominator, due to the very high semi-diurnal frequency. This contribution
is dominated by 3 coefficients at periods 0.518 d, 0.500 d, 0.499 d with respective
arguments 2Φ − 2F − 2Ω , 2Φ − 2F + 2D − 2Ω and 2Φ , where Φ is the angle
of sidereal rotation of the Earth. The respective amplitudes are 27.1 µas, 12.5 µas,
−37.8 µas for Δψ and 11.0 µas, 4.7 µas and 15.0 µas for Δε. Note that the largest
coefficient originates both from the influence of the Moon and of the Sun. At last
the combination of these sinusoidal terms with very close frequencies leads to a
beating.

4.5.1.10 Effects due to Second-Order Potential J3

The second order geopotential coefficient J3 acts on the second order poten-
tial exerted by the Moon with the intermediary of the component J3P3(sin δ) in
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Eq. (4.114). Because of the scaling factor (J3/J2)× (aE/aM) which characterizes
the amplitudes of the corresponding nutations with respect to the first order ones
depending on J2 , these amplitudes are comparatively much smaller. 17 coefficients
both for Δψ and Δε are found larger than 0.1 µas [27, 66]. This contribution is char-
acterized by a very large set of frequencies, the smallest period being 6.8 d, and the
largest one 20935 y. The leading coefficient, in mas, is −0.105 sin(−lM + F +Ω)

for Δψ and −0.1089 cos(−lM + F +Ω) for Δε.

4.6 Modern Nutation Theory for a Non-rigid Earth Model

The nutation is almost entirely due to the torques resulting from the gravitational
action of celestial bodies on the equatorial bulge of the Earth. At first approxima-
tion, one can use as a proxy, the so called rigid Earth nutation series representing
the action of the torques on a hypothetical rigid Earth, having the same moments
of inertia and high order moments as the real Earth. This rigid Earth nutation has
been largely discussed in the previous sections. Nevertheless, with the appearance
of modern observational techniques, and particularly the VLBI (Very Long Base-
line Interferometry) in the early 1980’s the precision of estimates obtainable for the
Earth orientation parameters, among which the nutation (Δψ,Δε), has increased
greatly. This fact, combined with the increasing volume and longer time span of the
data sets available, has made it possible to estimate the amplitudes of a significantly
larger number of nutation components and a much accurate value of the precession
rate. Face with these developments, the rigid-Earth nutation theory, starting from the
early 1980’s, could no more match the accuracy of observations. In other words, the
various effects due to the non rigidity of the Earth, such as changes in matter dis-
tribution, atmospheric pressure variations, oceanic motions, frictions between the
core and the mantle, etc., although remaining all relatively small, could no more be
neglected in view of the quality of observational data.

4.6.1 Definition of Prograde and Retrograde Circular Nutations

In order to deal with non-rigid Earth nutations, experts in this topic, as geophysi-
cians, introduce the concept of prograde and retrograde circular components of nu-
tation. In the following, we present their definition. Generally astronomers are con-
cerned with the lunisolar nutations in longitude Δψ and in obliquity Δε as a Fourier
series in the form

Δψ =
∑

ν

ΔψνI sinνΩ0t +ΔψνO cosνΩ0t (4.134)

Δε =
∑

ν

ΔενI cosνΩ0t +ΔενO sinνΩ0t (4.135)
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where ΔψνI and ΔψνO are, respectively, the in-phase and out-of-phase coeffi-
cients of the nutation in longitude, and ΔενI and ΔενO in obliquity. Here Ω0 =
7.292115 × 10−5 rad/s stands for the mean sidereal angular rotation rate. Notice
that the out-of-phase components are generally very small with respect to the in-
phase ones, for they characterize dissipative processes. Moreover we have shown
in Eq. (4.116) that the frequency Θν = νΩ0 is a combination of fundamental astro-
nomical arguments.

Once the formula above have been established, the in-phase parts of the compo-
nents of Δψ and Δε for any particular frequency Θν = νΩ0 constitutes an elliptical
nutation, whereas the out-of-phase parts constitutes another one. In their turn, these
paired elliptical nutations can be resolved into two circular components, one rep-
resenting a uniform rotation of the figure axis around an inertial (space-fixed) axis
in the prograde sense, and the other, in the retrograde sense. The combination of
the two prograde and retrograde circular nutations results respectively in the com-
plex components η(pro) and η(ret). This is materialized by the following relationships
[45]:

η(pro) =−1

2
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|ν|ΔψνI sin εA

)
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η(ret) =−1

2

(

ΔενI + ν

|ν|ΔψνI sin εA

)

− i

2

ν

|ν|
(

ΔενO − ν

|ν|ΔψνO sin εA

)
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where εA is the mean obliquity.

4.6.2 Early Non-rigid Earth Nutation Theories

The earliest nutation theories started from the Earth as a rigid ellipsoid [38, 79]. We
have seen previously that in this approximation only the Earth’s principal moments
of inertia and the amplitude and frequency of the tidal force are important. In pio-
neer works dealing with non-rigidity, Jeffreys and Vicente [35, 36] and Molodensky
[50] greatly extended these results by including the effects of a fluid core (already
introduced by Poincaré [53]) and of the elasticity within the mantle. They found dif-
ferences from rigid Earth results of as much as 0.02′′ for both the principal nutation
with period 18.6 y and the leading nutation of solar origin, with semi-annual period.
In comparison with the precision of the observations in the 1970’s these effects
could no more be neglected. These analytical theories take into account a simpli-
fied model of core and mantle deformation computed from a spherical non-rotating
shell. Shen and Manshina [59], in a numerical way, as well as Sasao et al. [55],
analytically, started from these previous works to include more complete dynamical
and structural models of fluid core.
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4.6.3 The Nutation Series of Wahr

The nutation series of Wahr [74] has been the standard of reference for roughly 20
years. It was adopted by the International Astronomical Union (IAU) as the basic
nutation series named the IAU 1980 nutation [58]. It was computed by solving the
equations for the field of displacements produced by the action of the tide generat-
ing potential (TGP) throughout the Earth, as applied to an oceanless elastic, ellip-
soidal Earth model derived on the assumption of a hydrostatic equilibrium. Wahr
theory can be considered as a further extension of the previous investigations men-
tioned above, with accounting more completely for the Earth’s ellipticity and rota-
tion. For that purpose he used techniques developed by Smith [62] and Wahr [73].
The first author described the linearization of infinitesimal motion for a rotating,
slightly elliptical, self-gravitating, elastic, hydrostatically prestressed and oceanless
Earth. Wahr [73] demonstrated that the forced motion of a rotating Earth could be
expanded as a decoupled sum of normal modes of the Earth. On the opposite of
what was done previously, elliptical and rotational effects were considered by Wahr
[74, 75] to compute the rotational motion.

Wahr adopted a model of Earth interior called the model 1066A of Gilbert and
Dziewonski [24], based on the assumption of a hydrostatic equilibrium. In order
to compute semi-analytically the nutation coefficients, Wahr [73] established a for-
mula expressing the transfer function between a given coefficient for the rigid Earth
model, with frequency ω, and the corresponding non rigid Earth coefficient. The
ratio between these two coefficients is given by η(a,ω)/ηr(ω) so that

η(a,ω)

ηr(a,ω)
− 1

=
[

B0 + (ω− 0.927Ω)

[
B1

ω1 −ω
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ω2 −ω
+ 1.06
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×
[
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][
ω

�
+ 3.28× 10−3

]
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where B0, B1 and B2 are frequency-independent constants. ω1 and ω2 are the eigen-
frequencies of the Chandler Wobble (CW) and the Free Core Nutation (FCN) re-
spectively. � is the frequency of the sidereal rotation of the Earth.

Soon after its establishment, the predictions of the Wahr theory have been found
to differ from VLBI observational data by much more than the uncertainties in the
data itself. Face to this unsatisfactory result, an empirical series, called IERS96
series, constructed on the basis of some corrections to leading nutation coeffi-
cients from O–C discrepancies, was established, giving close agreement to the data
[28, 49]. This series was still improved further by Shirai and Fukushima [60, 61],
noticeably by introducing an estimated exponentially decaying free core nutation
amplitude. As in Wahr [74] these two empirical series express the nutation ampli-
tudes in terms of a resonant formula for the transfer function.
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4.6.4 Further Improvements

An exhaustive review of all the improvements done in the fields of non rigid Earth
nutation was done by Mathews et al. [48]. An important step towards a better geo-
physical accounting of nutation was taken successively by Gwinn et al. [26] and
Herring et al. [29, 30], finding that a value higher than approximatively 5 % than
that scheduled by the hydrostatic equilibrium state is needed for the dynamical el-
lipticity of the fluid core to close a gap of approximatively 2 mas (milliarcseconds)
found between the observed nutation and the IAU 1980 values. This concerns the
in phase part of the amplitude of the annual retrograde nutation. In parallel some
studies were devoted to the computation of the effects of the ocean tides [57, 76] as
well as those coming from the mantle anelasticity [77].

Alternative theoretical investigations start from the torque equations for the el-
lipsoidally stratified deformable Earth and its core. First developed by Molodensky
[50] they were improved by Sasao et al. [55] and generalized by Mathews et al.
[46, 47]. They are well suited for taking into account the dynamics of the inner
core. In the last work, the torque equations and an accompanying kinematical equa-
tion reduce to a set of simultaneous linear algebraic equations. Such formula are
very efficient to take into account the nonhydrostatic ellipticity and the use of an
electromagnetic coupling at the core mantle boundary explaining the residuals of
approximatively 0.4 mas remaining in the out-of-phase part of the retrograde annual
component after taking into account anelasticity and ocean tides effects.

An independent approach was developed abundantly and exhaustively by Getino
and Ferrandiz [21–23], starting from the same canonical equations as Kinoshita
[38]. These authors introduced modified canonical variables to apply the theory to
a non rigid Earth model taking into account an elastic mantle, a FOC (fluid outer
core), a SIC (solid inner core) and a delay in the elastic response of the Earth with
oceanic corrections. Although a final model with observations based on this work
would have offered a better fit with the observations, as the IERS96 nutation se-
ries did previously, Mathews et al. [48] underlined the lack of explicit information
concerning the fit of several parameters and their physical interpretation.

4.6.5 The Normal Modes of the Rotation of the Earth

To determine an accurate non rigid Earth nutation theory, it looks fundamental to
know the normal modes of free rotational motions of the Earth as well as the eigen-
frequencies σα which are associated with these normal modes. We will see later in
Sect. 4.7.1 that those eigenfrequencies play a leading role in the transfer function
from rigid Earth to non rigid Earth nutations. The principal normal modes acting
as resonance modes in the transfer function are enumerated below. The list is not
exhaustive: a quasi-infinite list of other normal modes exist, as the elastic vibration
modes, which should not bring wobble components.
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4.6.5.1 The Chandler Wobble (CW)

The only normal mode concerning the rigid Earth (in the approximation of the
axisymmetric case) has already been described in Sect. 4.4.1.4. It is called the free
polar motion or Eulerian free wobble. If the Earth were perfectly rigid, the fre-
quency of this free wobble should be (C − A/C)� (where � already defined in
Sect. 4.6.3 is the mean sidereal rotation rate), and its period C/C − A = 305 d.
Chandler identified for the first time this free wobble from observational data in
1891, fixing its period to 14 months. The difference was soon interpreted as due to
the deformability of the Earth [42], as well as the existence of a fluid core [34, 53]
Much more recently, Smith and Dahlen [63] showed that the pole tide produced by
the oceans should bring also a significant contribution. The amplitude of the Chan-
dler wobble is variable, never exceeding 1′′.

4.6.5.2 The Retrograde Free Core Nutation (RFCN)

The free core nutation (FCN) is a normal mode of the Earth, associated with the
existence of a rotating ellipsoidal fluid core inside a rotating elastic mantle. It oc-
curs due to the excitement of a mis-alignment of the instantaneous rotation axes of
the core and the mantle. More precisely the non spherical shape of the core-mantle
boundary (CMB) has the consequence that any rotational motion of the fluid core
relative to the mantle, with the core’s rotation axis inclined to the symmetry axis of
the CMB, causes imbalance of fluid pressure on the boundary, and a resultant torque
which tends to bring the two axes into alignment. For the PREM model of the Earth
[19], the theoretical FCN period, computed for an Earth in hydrostatic equilibrium,
is 458 sidereal days in the retrograde direction. By analyzing the nutation ampli-
tudes determined from VLBI observations, it has been shown that the FCN period
is around 432 sidereal days [17, 26]. Moreover, analyses of gravimetric recordings
in the diurnal frequency band also give a FCN period around 430 sidereal days [51].
The significant difference between the theoretical and observational values above
can be explained by the increase of about 5 % of the core flattening with respect to
the hydrostatic equilibrium value [26] One characteristic of the FCN is its variable
amplitude and phase.

4.6.5.3 The Prograde Free Core Nutation (PFCN)

In the early 90’s, several authors have shown that the presence of a solid inner core
(SIC) gives rise to another diurnal wobble mode which corresponds to a prograde
nutation [46, 47], De Vries and Wahr [18]. These last authors refer to this new
mode as the free inner core nutation (FICN), whereas it is also sometimes called
the prograde free core nutation (PFCN) Mathews and Shapiro [45]. Mathews et al.
[47] found that the relation between the wobble motion of the fluid outer core and
the mantle, in this mode, are very close to that in the already well known retrograde
FCN.
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4.6.5.4 The Inner Core Wobble (ICW)

The last free motion taking part in the transfer function is the inner core wobble
(ICW). First mentioned by Mathews et al. [46, 47], it is predominantly a rotation of
the figure axis of the inner core relative to the mantle. Moreover it would reduce to
the free wobble of the solid inner core (SIC) if the forces between the SIC and the
rest of the Earth could vanish.

4.7 The IAU 2006/2000 Precession Nutation

The IAU 2006/2000 Precession-nutation [10, 13] is composed of the IAU 2000
nutation and the IAU 2006 precession that replaced the precession component of
the IAU 2000 precession-nutation. That component consisted only in corrections,
δψA =−0.29965′′/century and δωA =−0.02524′′/century, to the precession rates
(in longitude and obliquity referred to the J2000.0 ecliptic), of the IAU 1976 pre-
cession and hence did not correspond to a dynamical theory [11].

4.7.1 The IAU 2000 (MHB2000) Nutation

The present conventional model of nutation adopted by the International Astronom-
ical Union in 2000, called MHB2000, has been developed by Mathews et al. [48].
It is based on the REN2000 rigid Earth nutation series [67] of the axis of figure.
The rigid Earth nutation was transformed to the non rigid Earth nutation by apply-
ing the MHB2000 transfer function to the full REN2000 series of the corresponding
prograde and retrograde nutations and then converting back into elliptical nutation
components. This transfer function is based on the solution of the linearized dynam-
ical equations of the wobble-nutation problem and makes use of estimated values of
seven of the parameters appearing in the theory called the BEP (Basic Earth Param-
eters).

The BEP were preliminary defined by Mathews et al. [46]. They consist of el-
lipticities e, eF and eS , and the mean equatorial moments of inertia A, AF , and AS

of the Earth, the fluid outer core (FOC), and the solid inner core (SIC). Other BEP
are compliance parameters κ , γ , ζ , β . . . which represent the deformabilities of the
Earth and of its core regions under different kinds of forcing. Another BEP is the
density ρF of the FOC at the inner core boundary (ICB). Others BEP character-
ize the gravitational coupling between the SIC and the rest of the Earth. They are
obtained from a least-squares fit of the theory to an up-to-date precession-nutation
VLBI data set Herring et al. [32]. The MHB2000 model improves the IAU 1980
theory of nutation by taking into account the effects of mantle unelasticity, ocean
tides, electromagnetic couplings produced between the FOC and the mantle as well
as between the SIC and the FOC [8]. Moreover it takes in consideration non linear
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terms which have hitherto been ignored in previous formulations. The axis of ref-
erence, often called axis of figure is the axis of maximum moment of inertia of the
Earth in steady rotation (ignoring time dependent deformations).

4.7.1.1 Analytical Formulation in MHB2000

At the basis of the formulation, consider a forced or free nutation having an angular
frequency of τ cycles per sidereal day (cpsd) in space, 1 cpsd corresponding to the
mean sidereal rotation period with angular velocity Ω . This nutation itself corre-
sponds to a wobble of the Earth’s mantle, which is a circular motion of its rotation
axis around its geometric axis, with frequency σ cpsd with respect to an Earth-fixed
frame. Thus we have σ = τ −1. The amplitude m̄(σ ) of this wobble, the amplitudes
m̄F (σ ) and m̄S(σ ) of accompanying wobbles relative to the mantle of the FOC and
the SIC, as well as the amplitudes n̄S(σ ) of the effect of the polar axis of the SIC
from that of the mantle are the dynamical variables of the wobble-nutation problem
on the frequency domain. According to Mathews et al. [46, 47] the amplitude η̄(σ )

of the nutation associated with the wobble of frequency σ cpsd is related to m̄(σ )

by

η̄(σ )=− m̄(σ )

1+ σ
(4.139)

It follows that the transfer function T (σ, e) from the amplitude for the rigid Earth
to that for the non rigid Earth is the same for the wobble and the corresponding
nutation. It is presented as a resonance expansion of the form

T (σ, e)=R +R′(1+ σ)+
∑

α

Rα

σ − σα
(4.140)

where the resonance frequencies σα are associated with four normal modes de-
scribed in Sect. 4.6.5: the Chandler wobble (CW) the retrograde free core nutation
(RFCN), the prograde free core nutation (PFCN) due to the presence of an elliptical
solid inner core, and a free wobble of the inner core (ICW). Mathews et al. [48]
modified in some extent this formula and adopted a generalized transfer function
expressed in the form

T (σ, e/eR)= eR − σ

eR − 1
.NO

(
1+ (1+ σ)

) 4∑

k=1

Nα

σ − σα
(4.141)

with

N0 = Hd

HdR

= e/1+ e

eR/1+ eR
(4.142)

where Hd is the dynamical ellipticity of the Earth, already defined earlier, and HdR

its value in the rigid case.
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4.7.1.2 Mantle Anelasticity Effects

Mantle anelasticity causes a small frequency-dependent phase lag in the Earth’s
response to periodic forcing besides altering the magnitude of the response. This
anelasticity is characterized by the presence of a complex and frequency dependent
shear and bulk moduli for each point of the mantle. The compliances appearing
in nutation theory are computed initially for an elastic Earth model, such as the
Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson [19] by
integrating the equations of tidal deformation, together with small contributions as
the compliances coming from the Earth’s ellipticity, the Coriolis force due to the
Earth rotation, the differential rotations of the FOC and the SIC with respect to the
mantle [7]. The anelasticity contributions to the compliances at a given excitation
frequency are then computed from the same deformation equations, by evaluation
of the changes in deformations resulting from the variations of the shear modulus
μ(r) as studied by Wahr and Bergen [77].

4.7.1.3 Electromagnetic Coupling

The presence of an internal magnetic field influences the Earth’s nutation through
the effects of electromagnetic torques at the boundaries of the fluid core. Electro-
magnetic coupling is a consequence of the Lorentz force, which represents the force
experienced by current-carrying matter in the presence of a magnetic field. The in-
teraction between a magnetic field that crosses the outer core boundaries and the
motion of conducting matter on either side of these boundaries induces an elec-
tric current, which locally perturbs the magnetic field. An increase of the Lorentz
force opposes relative motion across the outer core boundaries, thereby coupling
the motion of the inner core, outer core and mantle. Buffett et al. [8] calculated
these effects on nutation by combining a solution for full hydrodynamic response
of the fluid core. The coupling of the fluid outer core (FOC) to the mantle and the
solid inner core (SIC) is described by two complex constants KCMB and K ICB that
characterize the electromagnetic torques at the core-mantle boundary (CMB) and
the inner core boundary (ICB). Predictions for KCMB and K ICB are compared with
estimates inferred from observations of the Earth’s nutation. The estimate of KCMB

can be explained by the presence of a thin conducting layer at the base of the mantle
whose conductance has been estimated. The value of K ICB can be explained with a
mixture of dipole and non dipole components.

4.7.1.4 Ocean Tides Effects

Ocean tides affect nutations through changes in the inertia tensors of the Earth as
well as its core regions due to the loading of the crust. Another cause is the con-
tribution to the global angular momentum of the Earth. Ocean tidal motions in the
diurnal band of frequencies are influenced by the FCN resonance. Wahr and Sasao
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Table 4.1 Principal terms of nutation Δψ and Δε in the theory MHB2000 [48]

Argument Period day Δψ sin(′′) Δψ cos(′′) Δε sin(′′) Δε cos(′′)

Ω 6798.384 −17.206416 0.0033338 0.001537 9.205233

2Ω 3399.192 0.207455 −0.001369 −0.000029 −0.089749

l′ 365.260 0.147587 0.001181 −0.000192 0.007387

2F − 2D + 2Ω 182.621 −1.317090 −0.001369 −0.000458 0.573034

l′ + 2F − 2D + 2Ω 121.749 −0.051682 −0.000052 −0.000017 0.022438

2F + 2Ω 13.661 −0.227641 0.000279 0.000137 0.097846

2F +Ω 13.633 −0.038730 0.000038 0.000032 0.020073

l + 2F + 2Ω 9.133 −0.030146 0.000082 0.000037 0.012902

[76] have first made theoretical estimates of the contributions from ocean tides to
nutation amplitudes, using as inputs the retrograde FCN eigenfrequency from Wahr
[75] and tide heights from ad hoc models [52, 56]. To evaluate the role of the angu-
lar momentum h̄ carried by the ocean tidal current it is enough to introduce it in the
dynamical equations of the angular momentum. In MHB2000, values of h̄ are taken
from Chao et al. [14]. In fact accurate computation of the ocean angular momentum
from ocean tide maps is difficult because of large contributions coming from small
areas where the ocean is very deep.

4.7.2 The MHB2000 Nutation Series

The MHB2000 series of nutation includes 678 lunisolar terms and 687 planetary
terms which are expressed as ‘in-phase’ and ‘out-of-phase’ components, together
with their time-variations. That model is expected to guarantee an accuracy of about
10 µas for most of his terms. In Table 4.1 we show the principal terms of nutation
Δψ and Δε, with their argument, their period, their in-phase and out-of-phase am-
plitudes. As already calculated roughly in Eqs. (4.66) and (4.67) of Sect. 4.3.5, the
largest terms have a 18.6 y period for the lunar contribution and a semi-annual pe-
riod for the solar contribution, with respective arguments the longitude of the node
of the Moon Ω and 2λEarth = 2F − 2D + 2Ω . The respective in-phase amplitudes
are 17.206′′ and 1.317′′ for Δψ , 9.205′′ and 0.573′′ for Δε.

In Table 4.2 we represent the differences between the amplitudes of the principal
terms nutation for a non rigid Earth model, taken from MHB2000 [48], and for
a rigid Earth model, taken from REN2000 [67]. These differences reach 74 mas
in Δψ and 23 mas in Δε, for the leading term with argument Ω . They are also
very important (40 mas and 20 mas) for the semi-annual component with argument
2F − 2D+ 2Ω .
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Table 4.2 Differences between the amplitudes of the principal terms in Δψ and Δε obtained from
the non-rigid Earth theory MHB2000 [48] and the rigid Earth theory REN2000 [67]

Argument Period day Δψ sin(mas) Δψ cos(mas) Δε sin(mas) Δε cos(mas)

Ω 6798.384 74.1760 2.9560 1.5408 −22.6769

2Ω 3399.192 −1.5742 −0.0757 −0.0323 0.5877

l′ 365.260 22.0841 1.1817 −0.1924 7.5220

2F − 2D + 2Ω 182.621 −39.6154 −1.3696 −0.4587 19.6988

l′ + 2F − 2D + 2Ω 121.749 −1.7443 −0.0524 −0.0174 0.8189

2F + 2Ω 13.661 −6.1301 0.2796 0.1374 2.9250

2F +Ω 13.633 −0.8772 0.0380 0.0318 0.6603

l + 2F + 2Ω 9.133 −0.5633 0.0816 0.0367 0.2928

4.7.3 The IAU 2006 (P03) Precession

The IAU 2006 precession [10, 33] provides improved polynomial expressions up to
the 5th degree in time t , both for the precession of the ecliptic (previously named
“planetary precession”) and the precession of the equator (previously named “luni-
solar precession”).

The precession of the equator was derived from the dynamical equations express-
ing the motion of the mean pole about the ecliptic pole. The convention for separat-
ing precession from nutation, as well as the integration constants used in solving the
equations, has been chosen in order to be consistent with the IAU 2000A nutation.
This includes corrections for the perturbing effects in the observed quantities.

In particular, the IAU 2006 value for the precession rate in longitude is such that
the corresponding Earth’s dynamical flattening is consistent with the MHB value for
that parameter. This required applying a multiplying factor to the IAU 2000 preces-
sion rate of sin εIAU2000/ sin εIAU2006 = 1.000000470 in order to compensate for the
change (by 42 mas) of the J2000 mean obliquity of the IAU 2006 model with respect
to the IAU 2000 value (i.e. the IAU 1976 value). Moreover, the IAU 2006 preces-
sion includes the Earth’s J2 rate effect (i.e. J̇2 = −3× 10−9/century), mostly due
to the post-glacial rebound, which was not taken into account in the IAU precession
models previously.

The contributions to the IAU 2006 precession rates for the 2nd order effects,
the J3 and J4 effects of the luni-solar torque, the J2 and planetary tilt effects, as
well as the tidal effects are from Williams [78], and the non-linear terms are from
MHB2000.

The geodetic precession is from Brumberg et al. [6], i.e. pg = 1.919883′′/cy. It
is important to note that including the geodetic precession and geodetic nutation in
the precession-nutation model ensure that the GCRS (Geocentric celestial reference
system) is without any time-dependent rotation with respect to the BCRS (Barycen-
tric celestial reference system).
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4.7.4 The Agreement of the IAU 2006/2000 Precession-Nutation
with Highly Accurate VLBI Observations

The accuracy with which Earth orientation in general and precession-nutation in
particular can be determined as a function of time has increased tremendously over
the three past decades, due to the advances in the VLBI technology, in techniques
of data analysis, and also to the expanding volume of data over a lengthening time
span. VLBI (Very Long Baseline Interferometry) can be considered as the most
powerful technique to measure the Earth Orientation Parameters (EOP) [31]. These
parameters are related to the changes of the position of the Earth’s rotation axis or
more precisely the axis of the celestial intermediate pole (CIP) with respect to its
crust, so-called polar motion, and with respect to inertial space, i.e. the precession-
nutation motion. One additional EOP is related to changes in the rotation rate of the
Earth, and is usually expressed as the difference between UT1 and the time standard
UTC (Universal Time Coordinate).

The VLBI technique measures the differential arrival times of radio-signals from
extragalactic radio-sources, which provide in particular the most stable definition
of inertial system currently available, as it is materialized by the successive up-
dates of the ICRS [43, 44]. A classical VLBI session uses a set of four to eight
radio telescopes, with separations of several thousands of kilometers, which make a
large amount of measurements of time delays and delay rates from usually 20 to 40
extragalactic radio-sources. Of the various factors which limit the accuracy of the
determination, one of the most important is the atmospheric contribution to group
delays, especially the part due to water vapor which is the most difficult to estimate
reliably [20].

Nevertheless with the basic and well reckoned assumption that rigid Earth nuta-
tion is modeled with an optimal accuracy (at the level of 1 µas), the VLBI observa-
tions allow a very accurate determination of the non rigid effects of the Earth on the
largest nutation coefficients. Herring et al. [32] showed that the analysis of over 20
years of VLBI data yields estimates of the nutation amplitudes with standard devi-
ations of ≈5 µas for the nutations with periods smaller than 400 days. They show
that at this level of uncertainty, the estimated amplitudes are consistent with the IAU
2006/2000 precession-nutation model which has been described previously.

Figure 4.11 shows the differences O–C (observed-calculated) between the over-
all nutations components dX and dY determined from combined VLBI sessions and
the same nutations calculated from the series MHB2000. The remarkable agreement
at the level of a few 0.1 mas (a few 100 µas) is clearly shown after 1995, whereas the
residuals are much larger before that date. This is clearly due to a drastic improve-
ments of the quality VLBI observations around this date. Notice a very dominant
systematic oscillation in the residuals: it is interpreted as the retrograde Free Core
Nutation (RFCN) whose origin has been explained in Sect. 4.6.5. In Fig. 4.12 we
show the residuals after eliminating empirically this systematic oscillation, taking
into account its changes in amplitude and phase. The very flat residuals enable to
conclude that the general agreement between the theoretical and observational data
is remarkable.
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Fig. 4.11 O–C difference between the celestial motion of the pole dX and dY observed from
VLBI sessions and the theoretical motion calculated from the IAU 2006/2000 precession-nutation
model (credit: IVS OPA Analysis Center, Observatoire de Paris)

Fig. 4.12 O–C difference between the celestial motion of the pole dX and dY observed from
VLBI sessions and the theoretical motion calculated from the IAU 2006/2000 precession-nutation
model. The curves correspond to those in Fig. 4.10 after the FCN signal has been empirically
subtracted (credit: IVS OPA Analysis Center, Observatoire de Paris)
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Chapter 5
Tides on Satellites of Giant Planets

Nicolas Rambaux and Julie Castillo-Rogez

Abstract The discovery of the satellites of the giant planets started in 1610 when
Galileo Galilei pointed his telescope toward Jupiter. Since then observations from
Earth- and space-based telescopes and outstanding in-situ observations by several
space missions have revealed worlds of great richness and extreme diversity. One
major source of energy driving the evolution of these satellites is the gravitational
pull exerted by their planets. This force shapes and deforms the satellites and the
resulting dissipation of mechanical energy can heat their interiors and drive spec-
tacular activity, such as volcanic eruptions, as for Io or Enceladus. In addition, tides
drive orbital evolution by circularizing the satellites’ orbits and synchronizing their
rotational motions.

5.1 Introduction

The giant planets of the solar system, Jupiter, Saturn, Uranus, and Neptune, have
many satellites. So far, astronomers have identified 168 giant-planet satellites1: 66
of Jupiter, 62 of Saturn, 27 of Uranus, and 13 of Neptune. All these satellites dis-
play a large variety of dynamical configurations and geophysical properties that
have been studied by continual ground-based telescopic observations and dedicated
space missions Voyager, Pioneer, Galileo, and Cassini-Huygens sent by NASA and
ESA, with international participation. Pioneer and Voyager achieved in the 70s and
80s a formidable trip across the outer solar system. They sent the first images of
the satellites surfaces, revealing an extraordinary geological richness. Then, Galileo

1See the regularly update of satellite’s number at IMCCE web service http://www.imcce.fr/hosted_
sites/saimirror/Nomenclaf.html.

N. Rambaux (B)
IMCCE, Observatoire de Paris, CNRS UMR 8028, Université Pierre et Marie Curie,
UPMC - Paris 06, 77 avenue Denfert-Rochereau, 75014 Paris, France
e-mail: Nicolas.Rambaux@imcce.fr

J. Castillo-Rogez
Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109, USA
e-mail: julie.c.castillo@jpl.nasa.gov

J. Souchay et al. (eds.), Tides in Astronomy and Astrophysics,
Lecture Notes in Physics 861, DOI 10.1007/978-3-642-32961-6_5,
© Springer-Verlag Berlin Heidelberg 2013

167

http://www.imcce.fr/hosted_sites/saimirror/Nomenclaf.html
http://www.imcce.fr/hosted_sites/saimirror/Nomenclaf.html
mailto:Nicolas.Rambaux@imcce.fr
mailto:julie.c.castillo@jpl.nasa.gov
http://dx.doi.org/10.1007/978-3-642-32961-6_5


168 N. Rambaux and J. Castillo-Rogez

Table 5.1 Parameters characterizing outer planet satellites; a denotes the semi-major axis, e the
eccentricity, Porb the orbital period and Prot the rotational period, GM the gravity mass, R the
radius, and H the equilibrium tide of the satellites. Source: JPL (Jet Propulsion Laboratory) Solar
System Dynamics website http://ssd.jpl.nasa.gov. The period of rotation is indicated with a “C”
when the rotation is chaotic [120]. The rotational period of Nereid is not accurately determined but
certainly in the range 0.8–3 days [96]

Body a

(km)
e Porb

(days)
Prot
(days)

GM
(km3 s−2)

R

(km)
H

(m)

Io 421800 0.0041 1.769 1.769 5959.916 1821.6 3118.8

Europa 671100 0.0094 3.551 3.551 3202.739 1560.8 776.7

Ganymede 1070400 0.0013 7.155 7.155 9887.834 2631.2 500.7

Callisto 1882700 0.0074 16.69 16.69 7179.289 2410.3 89.2

Mimas 185539 0.0196 0.942 0.942 2.5026 198.20 3662.0

Enceladus 238037 0.0047 1.370 1.370 7.2027 252.10 1577.1

Tethys 294672 0.0001 1.888 1.888 41.2067 533.00 2903.5

Dione 377415 0.0022 2.737 2.737 73.1146 561.70 960.6

Rhea 527068 0.0010 4.518 4.518 153.9426 764.30 574.2

Titan 1221865 0.0288 15.95 15.95 8978.1382 2575.50 102.0

Hyperion 1500934 0.0232 21.28 C 0.3727 135.00 10.0

Iapetus 3560851 0.0293 79.33 79.33 120.5038 735.60 2.0

Phoebe 12947913 0.1634 550.30 0.45 0.5532 106.60 0.004

Miranda 129900 0.0013 1.413 1.413 4.4 235.8 1857.3

Ariel 190900 0.0012 2.520 2.520 86.4 578.9 1082.6

Umbriel 266000 0.0039 4.144 4.144 81.5 584.7 441.5

Titania 436300 0.0011 8.706 8.706 228.2 788.9 118.4

Oberon 583500 0.0014 13.46 13.46 192.4 761.4 50.9

Triton 354759 0.0000 5.877 5.877 1427.6 353.4 1.7

Nereid 5513818 0.7507 360.13 < 3 2.06 170 0.02

(1993–2003) and Cassini (2004-today) were dedicated to the Jupiter and Saturnian
systems, respectively, performing extensive observations and permitting a greater
understanding of the relationships between planets, rings, and satellites. Here, we
focus on large regular satellites with radii larger than 100 kilometers. The satellites’
main physical and dynamical properties are gathered in Table 5.1. Figure 5.1 repre-
sents the satellites as a function of their relative sizes, densities, and distance to the
parent-planet expressed in planetary radius. The sizes of the satellites range from
2631.2 km for Ganymede (larger than Mercury) to 106.6 km for Phoebe. Satellite
densities reflect their internal composition ranging from 3.6 g cm−3 for Io, dom-
inated by silicates and a large metallic core, to 0.97 g cm−3 for water-dominated
Tethys. Intermediate densities reflect variations in the relative fractions of ice, sil-
icates, and porosity. The rock mass fraction determines in part the amount of tidal

http://ssd.jpl.nasa.gov
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Fig. 5.1 Satellite density as a function of the distance to the parent-planet (expressed in planetary
radius). The relative size of the satellites is respected but is not to scale with the distance. From
left to right and top to bottom: Io, Europa, Ganymede, Callisto; Mimas, Enceladus, Tethys, Dione,
Rhea, Titan, Hyperion, Iapetus; Miranda, Ariel, Umbriel, Titania, Oberon; Triton. The satellites
Phoebe and Nereid are not represented because they are far from their planets (215 Saturn’s radii
and 223 Neptune’s radii, respectively)

dissipation expected in these objects, as ice is generally more dissipative than sili-
cates.

From Table 5.1 and Fig. 5.1, we can see that most satellites are close to their
parent-planets and thus may experience significant tidal stressing. The tidal force
results from the amplitude of the gradient of the external gravitational field be-
tween the sub-planet and the anti-planet hemispheres. This tidal force distorts the
satellite, if it is not rigid, so that the amplitude of the equilibrium tide is expressed
through [79]

H =Rs

Mp

Ms

(
Rs

d

)3

(5.1)

where Rs and Ms are the radius and mass of the satellite, Mp is the mass of the
planet, and d is the distance between the satellite and its parent-planet. Here, the
amplitude is expressed for a particle where the tide-generating body is at the zenith.
The equilibrium tide represents the ratio between the external gravitational poten-
tial and the gravity of the body. The displacement at the surface is obtained by
multiplying H by the secular Love number that represents the ability of the body
to deform when in hydrostatic equilibrium (see Sects. 5.4 and 5.5). In the case of a
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homogeneous body this factor, labeled h2, is equal to 5/2. It decreases with increas-
ing concentration of the density toward the center of the object. The tidal bulge H

increases with the size of the object and decreases with the distance to the primary.
The equilibrium tide is 3.6 km for Mimas, then around 3 km for Io and Tethys, and
then decreases to a few meters for those small satellites located beyond 10 planetary
radii, as shown in Table 5.1.

The planet is also subject to an equilibrium tide exerted by its satellites. The com-
bined planet and satellite tides drive the evolution of the satellite’s orbit, making it
contract or expand depending on the dissipation within each body. For most satel-
lites, the tides lead to orbit circularization. If the satellite is close to its parent-planet,
then the orbit evolves toward the planet’s equatorial plane, whereas for distant satel-
lites subject to little dissipation the equilibrium plane is intermediate between the
planet’s equatorial and orbital planes [87]. In addition, the tides raised on the satel-
lites lead to despinning. Most large satellites (apart from Phoebe and Nereid) are in
synchronous spin-orbit resonance, i.e. the orbital and rotational periods are equal on
average. As a consequence, the satellites show on average the same face toward the
planet, like the Moon toward the Earth.

For a satellite in spin-orbit synchronous resonance, the secular part of the tidal
potential elongates the body along the planet-satellite axis. In cooperation with the
centrifugal potential this flattens the poles of the satellite; the resulting equilibrium
figure is then a triaxial ellipsoid. Under the assumption of hydrostaticity, the equi-
librium figure brings information on the density structure of the body. Departure
from hydrostaticity may inform on the geophysical and dynamical evolution of the
object (e.g. fossil shape, mass anomalies, etc.).

The periodic part of the tidal potential deforms the body continuously and leads
to solid friction within the material. The amount of friction is a function of the
orbital eccentricity. The consequences of that process can be spectacular, such as
volcanic activity as observed on Enceladus or Io. Other outstanding signatures of
tides can be found on the surface of Europa, related to faults and cycloid cracks.
The heating resulting from tidal friction is also believed to play a role in the origin
and/or preservation of subsurface oceans in Europa, Ganymede, Titan, Triton ([49]
and references therein). Callisto is far from Jupiter so the tidal dissipation in that
object is small. However, the presence of an internal ocean has been suggested based
on Galileo’s magnetometer data. Its long-term preservation is explained by slow
heat loss [69]. Oceans inside Rhea, Titania, Oberon have been suggested but this
is still debated, in absence of observational constraints [49]. These geological and
geophysical consequences are described in many very good reviews on satellites
(e.g. [16, 49, 87, 105]; and the book on icy satellites by Grasset et al. [38]).

This chapter is divided in four sections following this introductory Sect. 5.1.
In Sect. 5.2, we outline a simple version of the tidal theory that is a toy model
useful for conveying the main concepts and illustrating the consequences of tidal
friction. Section 5.3 describes the influence of the tides on the dynamical evolution
of satellites. The equilibrium figure of a satellite resulting from tidal distortion is
described in Sect. 5.4, and in Sect. 5.5 we describe and discuss the consequences of
tidal dissipation in icy satellites.
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5.2 Tidal Potential

The historical developments leading to the modern formulation of tidal modeling
can be found in Chap. 2 of the present volume. The modern treatment of the solid
body tides began with a seminal series of papers written by Darwin [19, 20]. Since
this pioneering work, tidal modeling has been extensively explored in the literature
(e.g. [35, 37, 51, 55, 65, 72–74]). Recent laboratory measurements of the response of
planetary materials to cyclic forcing (e.g. [67] for a review) has lead to reviewing the
tidal theory (e.g. [28, 29, 31]). Traditionally, the tidal theory is developed from the
tide-generated disturbing potential into Fourier series, and a dissipative component
is related to each term. Here, for the sake of simplicity, we follow the approach of
MacDonald [65], in which dissipation is modeled in the form of a constant phase
lag. However one has to keep in mind that this approach implicitly assumes a certain
rheology for the material (response to stress) that can lead to unphysical situations
(see the review in [31] and [29]).

Now, we outline the main aspects of the tidal theory used in this chapter. The
giant planets and their natural satellites are not point-mass bodies, as generally as-
sumed in ideal mechanical systems, and they deform under the gravitational ac-
celeration of external bodies. For a satellite S of radius Rs , the mean gravitational
acceleration due to the planet P is the vector GMpSP/SP 3 where G is the gravita-
tional constant and Mp the mass of the perturbing body, i.e. the parent-planet in the
present case. For each element of the satellite M the relative distance between the
element and the planet is the vector MP. Consequently the net tidal acceleration gT

experienced by the element is

gT =GMp

(
MP
MP 3

− SP
SP 3

)

. (5.2)

It is a differential acceleration. By setting SP = d and SM = x the vector position
of an element in the satellite, MP may be decomposed as MP= SP− SM= d− x,
leading to the approximation for small values of |x|

MP−3 ≈ d−3
(

1+ 3
d
d
.
x
d

)

. (5.3)

Injecting this expression into Eq. (5.2), we obtain

gT = GMp

d3

(
3(x.e)e− x

)
, (5.4)

where e= d/d is the unit cosine vector. The Cartesian expression of the tidal force
in the rotating reference frame of the satellite is then

gT = GMp

d3
(2xp,−yp,−zp). (5.5)

The gravitational force is then stronger on the xp direction that points toward the
perturbing body and negative in the yp and zp directions. This tidal acceleration
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Fig. 5.2 Geometry of the
tidal problem in the body
reference frame (ex , ey, ez).
d is the vector pointing
towards the disturbing body
and r is the vector pointing
towards the perturbed body.
Rs targets at the surface of the
body

implies that the satellite is elongated in the direction towards the planet and flattened
in the perpendicular direction.

The tidal acceleration can be expressed through a tidal potential defined by

gT =∇UT (5.6)

where the tidal potential UT is

UT = GMp

2d3

(
2x2

p − y2
p − z2

p

)
(5.7)

in Cartesian coordinates, or

UT = GMp

d

(
Rs

d

)2 3 cosγ ′2 − 1

2
(5.8)

in spherical coordinates. The parameter γ ′ is the angle between the position vectors
d and x as shown in Fig. 5.2. The last factor in the previous expression corresponds
to the Legendre polynomial of degree 2, and the tidal potential is then written in
synthetic form as

UT = GMp

d

(
Rs

d

)2

P2
(
cosγ ′

)
. (5.9)

The Legendre polynomial of degree 2 results from the development performed in
Eq. (5.3). The development at higher order in |x| leads to the introduction of higher
degrees in the Legendre polynomial, and the generalized potential is then expressed
as

UT = GMp

d

∞∑

l=2

(
Rs

d

)l
Pl

(
cosγ ′

)
. (5.10)

The non-rigid satellite is distorted by the tidal potential. According to the degree-
2 development in the potential, the satellite is elongated in two opposite directions.
The resulting bulge follows the tidal acceleration and, in the case of an elastic body,
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the bulge lies along the relative direction of the distorted satellite to the perturbing
planet, as shown by Eq. (5.5). However, if the distorted material is not purely elastic,
then the tidal bulge is offset with respect to the satellite–planet axis, i.e., the response
of the material to stress is delayed as a consequence of internal friction. This phase
lag with respect to the position of the tide-generating body induces dissipation inside
the system, and the tidal bulge modifies the gravitational potential of the satellite.
For small deformations a linear theory may be assumed, for which the tidal response
of the distorted body is proportional to the external tidal potential evaluated at the
surface. The coefficient of proportionality is called the dynamic Love number and it
depends on the density and rheological structure of the body, and of the frequency
of the excitation. Therefore, the dynamic Love number is different at each degree l,
and the additional potential of the distorted satellite at a point r in space is then
equal to

U = GMp

d

+∞∑

l=2

kl

(
Rs

r

)l+1(
Rs

d

)l
Pl

(
cosγ ′

)
(5.11)

(e.g. [29, 57]). The ratio (Rs/r)
(l+1) comes from the Dirichlet theorem for external

potential r > Rs . As a consequence, the external potential decreases quickly as a
function of distance. For example, in the case of Miranda, the medium-sized satellite
closest to Uranus, the ratio (Rs/r) is equal to 0.0018 and the error in the potential
truncated at degree 2 is around 1/50. We then limit the description of the potential
to the second degree; the simplified potential U is then

U = k2
GMp

Rs

(
Rs

r

)3(
Rs

d

)3

P2
(
cosγ ′

)
. (5.12)

In this potential, the quantities (Rs/d)
3, γ ′ are related to the tide-raising potential

whereas the (Rs/r)
3 quantity represents the response of the satellite’s potential at

degree 2 (Eq. (5.11)).
In the case of a rigid homogeneous body, the Love number k2 may be expressed

as

k2 = 3/2

1+ 19μ
2ρgRs

(5.13)

where μ is the rigidity, ρ the density, g is the surface gravity acceleration, and Rs is
the radius of the body. It is customary to introduce the dimensionless rigidity μ̃

μ̃= 19μ

2ρgRs

(5.14)

that represents the ratio of the elasticity to the cohesive force of the body’s self-
gravity. For small icy satellites the dimensionless rigidity μ̃ is of the order of 102

and the rigidity dominates. The Love number can be thus simplified as

k2 ∼ 3

19

ρgRs

μ
(5.15)
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Fig. 5.3 Love number k2 for
different interior models
assumed for Ganymede (from
Moore and Schubert [76]).
The solid line represents
models without an internal
ocean, whereas the thickness
of the ocean is equal to
200 km (dotted line), and
20 km (dashed line). Each
model is shown for two
different assumptions on the
value of the mean rigidity of
the ice: μ= 109 Pa and
μ= 1010 Pa

whereas for a fluid body μ̃ is equal to zero and the Love number is simply

k2 = 3

2
. (5.16)

However, most satellites are not homogeneous, with radial variations in composition
and temperature (and also possibly in porosity in the smaller representatives). In this
case, the Love numbers are smaller than the values predicted by Eqs. (5.15)–(5.16)
and numerical integration is required to estimate these parameters (e.g. [13, 76, 112]
and references therein). In addition, some large satellites like Europa, Ganymede,
Callisto, and Titan might hold an internal ocean beneath their surface. In this case the
tidal Love numbers increase toward the fluid limit as illustrated in Fig. 5.3 coming
from Moore and Schubert [76].

When the tide-raising body located at d and the perturbed body disturbed by
the potential r are the same, then r coincides with d in the elastic case. In the in-
elastic case, the vector r is out of phase with respect to d due to friction created
by the motion of defects in the material. There are two main approaches for in-
troducing into the equations the delay due to friction. The first approach proposed
by Darwin [19, 20] and implemented by Kaula [57], Efroimsky and Williams [29],
Ferraz-Mello et al. [31] is in four steps. (i) The tidal potential is developed in the
form of Fourier series by expressing explicitly r and d, (ii) then, for each term of the
series, a phase lag is introduced, and (iii) the gradient of the potential is computed
with respect to the position of r, and finally (iv) d is replaced by r. This scheme
is described and discussed in details in Efroimsky and Williams [29]. The phase
lag ε is determined by the inelasticity of the body material and is a function of the
forcing frequencies. The second approach is presented below in more details. This
approach has the advantage to be simple, because the tidal lag is represented by
a time delay Δt . This approach is however limited by the fact that the dissipation



5 Tides on Satellites of Giant Planets 175

factor, labeled Q, and the time delay Δt are linked through the following relation-
ship that assumes that the object behaves like a Maxwell body, i.e.

Δt = (ωQ)−1 (5.17)

with ω is the synodic (or tidal) forcing frequency. However, according to laboratory
measurements the frequency-dependence of the dissipation factor depends on the
forcing frequency to the power α with α between 0.1 and 0.5 (see [67]). Keeping this
limitation in mind, the lag is introduced by a Taylor development of d= r(t −Δt)

for each frequency, that leads to

d∼ r(t)−Δt
dr(t)
dt

. (5.18)

Therefore, d can be seen as the position of r(t) with a time delay Δt in the past
relatively to the coordinate system linked to the body, and the tidal bulge is dragged
by the rotation of the body.

The phase shift between the action and the response of the body leads to energy
dissipation due to friction that can be expressed through the dissipation factor Q in-
troduced in Eq. (5.17) [65]. The dissipation factor is defined as the maximum energy
E stored during one cycle over the energy dissipated ΔE during that cycle [37]

Q= 2π
E

ΔE
. (5.19)

This definition is related to the damped harmonic oscillator model and the limi-
tation of this analogy has been discussed in Greenberg [39] and Efroimsky and
Williams [29].

The potential, Love number, and dissipation factor have been defined for a satel-
lite deformed by a tide-raising planet. These expressions are still valid in the case of
a planet deformed by a satellite by substituting all satellite parameters by planet pa-
rameters and the planet parameters by those corresponding to the tide-raising body
(satellite or the Sun). However, in the case of giant planets, the power law equa-
tion (5.17) is not applicable because the full dynamics of the atmospheric response
to the tide raising potential must be accounted for (e.g. [52]).

5.3 Tidal Dynamics

5.3.1 Introduction

Tidal interaction implies an evolution in the rotational motion and orbital parameters
of satellites mainly due to the transfer of angular momentum between the satellite’s
orbit and planet’s rotation as well as energy dissipation inside the satellite. The equi-
librium configuration for an isolated two-body problem is a satellite in synchronous
spin-orbit resonance and a circular orbit [87]. For a moon around the giant planet,
the mutual gravitational interactions with the other satellites lead to equilibrium
states close to this equilibrium configuration, as for example in the case of Io, for
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which the Laplace resonance sustains a non-zero eccentricity and then a high dis-
sipation regime as discussed below. Here we describe the tidal interaction between
isolated body and we do not introduce the effect of the orbital resonances.

5.3.2 Transfer of Angular Momentum

The tidal potential generates a tidal bulge on the perturbed body. In the purely elastic
case the tidal bulge is always aligned toward the perturbing body and, by symmetry,
the resulting torque is null. Consequently, there is no transfer of angular momentum
between the two bodies. In the inelastic case, the bulge is offset with respect to the
direction between the satellite and the perturbing body and the resulting tidal torque
drives an exchange of angular momentum.

A simple description of the angular momentum transfer can be investigated by
considering a system composed of two rotating bodies, P and S, orbiting around a
center of mass G, in circular orbit, and isolated in space. Here, we assume that P
is a planet of mass Mp larger than the mass of the second body Ms , the satellite.
The total angular momentum H of this system is the sum of the planet’s angular
momentum Hp and the satellite’s angular momentum Hs ,

H=Hp +Hs . (5.20)

The planetary angular momentum is expressed in the barycentric reference frame of
this system as

Hp =MpGP∧ vp + IpΩp (5.21)

where GP is the direction vector between G and P , vp is the orbital velocity of the
planet around the center of mass, Ip the tensor of inertia of the planet, and Ωp its
rotational velocity. Similarly, the angular momentum of the satellite is expressed as

Hs =MsGS∧ vs + IsΩs (5.22)

where the indices s refer to the satellite. By using the barycenter definition of G, we
simplify the expression of the total angular momentum as

H=MsPS∧ vs + IpΩp + IsΩs . (5.23)

Consequently, the angular momentum is composed of the rotational angular mo-
mentum of each body with the satellite’s orbital angular momentum around the
planet but with the barycentric velocity. By assuming that the spins are normal to the
orbital planes the vectorial equation is expressed as a scalar equation, where Cp and
Cs are the polar moments of inertia of each body. In addition, for circular orbits, the
velocity vs can be simply expressed as vs = an with a the orbital radius and n the
mean motion. Here we assume that the orbit of the satellite and the spin of the planet
are rotating in the same sense. Triton is in a retrograde orbit, so vs is then equal to
−an. Table 5.2 presents physical parameters of the planets and satellites considered
in this chapter. It appears that the rotational angular momenta of the planets and the
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Table 5.2 Parameters of giant planets

Giant planet Radius (km) Mass (1024 kg) Prot

Jupiter 71398 1898.6 9h55m27.3s

Saturn 60330 568.46 10h39m22.4s

Uranus 26200 86.832 17.24 ± 0.01 h

Neptune 25225 102.43 16.11 ± 0.01 h

orbital angular momenta are much larger than the rotational angular momenta of the
satellites by four to five orders of magnitude. Equation (5.23) is then simplified as

H =Msa
2n+CpΩp (5.24)

that is a constant function of the motion for the isolated two body problem. This
equation shows the relationship between the variation of the semi-major axis of the
satellite (contained also in n through Kepler’s third law) and the rotation of the
planet.

To obtain the relationship between the semi-major axis and rotational rates, we
derive Eq. (5.24),

Ms

d(a2n)

dt
+Cp

dΩp

dt
= 0. (5.25)

However, the derivation of the first term on the right-hand side is not straightfor-
ward, because a and n are related through Kepler’s third law n2a3 =G(Mp+Ms)�
GMp . After introducing Kepler’s third law and expressing n as a function of a, the
variation of the semi-major axis a is directly related to the variation of the rotational
velocity of the planet through

1

a

da
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=−2
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MpR2
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Mp
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)(
Rp
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)2 1

n

dΩp

dt
(5.26)

or
da

dt
∝−a1/2 dΩp

dt
. (5.27)

The satellite’s semi-major axis and the planet’s angular velocity evolve in opposite
directions, that is the planet’s angular velocity decreases if the satellite’s orbit ex-
pands, and vice-versa due to the transfer of angular momentum between the orbit
and the rotation. In the case of Triton, which is in retrograde orbit, the sign of the
right-hand side is positive meaning that acceleration in the spin corresponds to an
expansion of the orbit, and deceleration in the spin implies a contraction of the orbit.
The evolution of the Triton dynamics is described in Correia [18].

The variation in the planet’s angular velocity can be computed from the gravi-
tational torque exerted by the satellite on the offset planetary bulge. The rotational
HR
p angular momentum of the planet is equal to the torque applied to the planet

dHR
p

dt
= T. (5.28)
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As HR
p = CpΩp , under the assumption that the spin vector is aligned along the

polar axis ez and Cp is assumed to be constant, we have
dΩp

dt
= 1

Cp

Tz. (5.29)

The vectorial torque is the cross-product of the radial vector between the centers of
mass of the planet and of the satellite with the tidal force resulting from the tidal
potential ∇U expressed in Eq. (5.12):

dΩp

dt
= Ms

Cp

(r∧∇U)z. (5.30)

By using the potential equation (5.12) and Q defined in Eq. (5.17), we obtain the
relation

dΩp

dt
=−3

2

(
k2

Q

)

p

GM2
s R

5
p

Cpa6
sign(Ωp − n) (5.31)

where the sign represents the effect of the torque braking the spin of the planet and
leading to spin synchronization (because here the orbit is assumed to be circular).
Combining Eqs. (5.26) and (5.31) with Ωp > n, we obtain the final expression of
the evolution of the orbital motion of the satellite due to the tides raised in the planet
(e.g. [37]):
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or
da

dt
∝
(
k2

Q

)

p

a−11/2. (5.33)

So far these equations have been developed for a circular orbit. If the eccentricity is
non-zero, the tides raised by the satellites on the planets increase the orbital eccen-
tricity of the satellite as shown by Jeffreys [55], Goldreich [35]. By expanding the
tidal potential U , Eq. (5.12), in Fourier series and then working out the equations of
orbital element variations, the evolution of the eccentricity is derived as [37]
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ne. (5.34)

The effect is to increase the eccentricity because for almost satellites we are in the
case where Ωp > n, i.e., outside the synchronous orbit (where Ωp = n). In this case,
the impulse due to the planetary tidal bulge on the satellite is larger at the periapsis,
increasing the apoapses distance and then the eccentricity.

5.3.3 Tides Raised on the Satellites

5.3.3.1 Introduction

The consequences of the tides acting on the planet have been described in the pre-
vious section and now we tackle the question of the tides acting on the satellites.
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These drive despinning and generally lead to synchronization of the satellite’s rota-
tion with its orbital motion in a time shorter than the age of the solar system. Besides,
the orientation of the satellite’s spin converges toward an equilibrium value called
the Cassini state that is generally close to the normal to the orbital plane ([10, 17];
see review in [18, 87]).

Exceptions are Phoebe and Nereid that are too far from their parent-planets, more
than 200 planetary radii (Table 5.1). Also, Hyperion stands out as the only satellite
presenting a chaotic rotation due to its strong non-spherical shape [120].

Other consequences of the tides raised on the satellites include circularization of
the orbits and contraction or expansion of the semi-major axes, depending on the
relative amounts of dissipation inside the planet and in the satellite and if orbital
resonances are present [87].

5.3.3.2 Despinning

The initial spin rate of the main satellites is estimated to be a few hours (e.g. [87]).
However, at present time most satellites are rotating synchronously (see Table 5.1).
Spin rate evolution is the consequence of the tides raised in the satellite by the
parent-planet gravitational potential. This torque may be computed from Eq. (5.31),
in which the orbit of the satellite is assumed to be circular, in the equatorial plane of
parent-planet, and the obliquity is equal to zero (e.g. [31, 35, 65])

Γ = 3
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)6

sign(Ωs − n). (5.35)

This torque acts to despin the satellites on a relatively short timescale, of a few
million years. The evolution of the angular momentum yields

dCsΩs

dt
= Γ (5.36)

and

dΩs
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=−3

2

(
k2

Q

)

s

GM2
pR

5
s

Csa6
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and by introducing the Love number defined in Eq. (5.15)

dΩs

dt
=−45

76

(
ρsR

2
s

μsQs

)

n4sign(Ωs − n). (5.38)

The damping timescale is then estimated to be equal to [87]

τ ≈ 76

45

(
ΩsμsQs

ρsR2
s

)
1

n4
. (5.39)

Here, Qs is the dissipation factor, Cs the polar moment of inertia, ρs the mean den-
sity, and μs the mean bulk modulus of the satellite. For typical values of Qs = 100
and μs = 1010 Pa, we infer from Eq. (5.39) that the despinning timescale decreases
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when the satellite’s size increases. After the tidal modeling of MacDonald [65] the
resulting satellite despinning time is around a few million years, except for the
distant Iapetus whose despinning timescale is of the order of the age of the solar
system due to the large distance from Saturn [1]. However, more realistic mod-
els of dissipation gives for Iapetus a despinning time around 0.9 Gyr [13]. This
leads to the general observation that the consequences of tidally-induced stressing
may significantly vary from one modeling framework to another, and this is par-
ticularly the case for the MacDonald approach and the more elaborate modeling
developed by Efroimsky and Williams [29] or Ferraz-Mello et al. [31] based after
[19, 20].

In the case of a circular orbit, the final spin state is at the exact synchronous
resonance. However, if the orbit is eccentric the final rotational period is slightly
larger than the orbital period. For the tidal model based on [65] the spin frequency
is expressed as [63, 119]

Ωe
s = n

(

1+ 19

2
e2
)

. (5.40)

The spin frequency is larger than the orbital frequency, because the tidal torque is
larger at the periapsis and leads to a positive torque on the satellite that accelerates
its spin rate.

5.3.3.3 Spin-Orbit Resonance

Most large satellites are in synchronous resonance with a non-zero eccentricity. The
mechanism leading to the capture of the satellites in spin-orbit resonance is the
gravitational torque exerted by the parent-planet on the asymmetrical shapes of the
satellites. Therefore Eq. (5.36) becomes

dCsΩs

dt
+ 3

2

(
a

d

)3

n2(Bs −As) sin 2γ = Γ (5.41)

where the second term on the left-hand side represents the restoring torque. The
angle γ is the orientation of the satellite’s long axis relative to the direction of the
satellite to the planet (e.g. [36]). The stability criterion for capture into resonance is
that the average tidal torque must be smaller than the maximum possible restoring
torque due to the parent-planet [36]. This is expressed as

∣
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. (5.42)

By using the expression of the tidal torque equation (5.35) and for a small eccen-
tricity, we obtain the constraint on the triaxiality of the satellite (B − A)/C for
synchronization to occur:

Bs −As

Cs

>
1

Cs

(
k2

Q

)

s

R5
s

G
. (5.43)
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Therefore if the permanent asymmetrical bulge (Bs −As) is large enough the satel-
lite can be captured into synchronous resonance. It appears that for most satellites
the hydrostatic value of (Bs −As) (Sect. 5.4) is always larger than the critical value,
implying systematic capture in resonance, as observed in nature. However, the di-
rection of the long axis of the satellite is slightly shifted from zero at the pericenter
because of the balance between the non-zero tidal torque and the permanent torque
[123]. That offset in the direction of the satellite is relatively small. For example,
in the case of Enceladus the shift is estimated at a maximum 0.57 degrees [92].
Measuring such a small displacement is challenging, even with an orbiter, but the
required measurement accuracy may be achieved with an in situ tracking device,
such as a transponder. In addition, it has been suggested that a transient regime may
occur. Indeed, since the figure axis is shifted, the shape of the satellite may relax by
creep in order to adjust to the external potential resulting in the satellite’s rotating
slightly faster than the synchronous rotation to maintain an equilibrium orientation,
and implying a non-synchronous motion of the surface [41, 121]. While there is no
direct evidence for such a motion from Voyager and Galileo images, the interpre-
tation of tidally-induced tectonic patterns at Europa seems to support this scenario
([42], [44, Sect. 5.5.5]).

5.3.3.4 Satellite Orbital Evolution

The rotational equilibrium configuration of most satellites is the synchronous spin-
orbit rotation regime, since the despinning time is generally shorter than the age of
the solar system. In this case, on average, the tidal bulge of the satellite is aligned
with the gravitational force of the planet. As a consequence, there is no transfer of
angular momentum between the satellite’s orbit and rotation. However, if the satel-
lite has a non-zero orbital eccentricity, it is deformed more strongly at the periapsis
than at the apoapsis leading to a time-varying tidal potential called radial tides. In
addition, the long-axis of the satellite oscillates around its mean value because the
velocity of the orbital motion varies along the elliptical orbit [79]: it accelerates
at the periapsis and decelerates at the apoapsis according to Kepler’s second law.
This oscillation is called the optical libration. Its amplitude is equal to twice the
eccentricity, and it leads to a second time-varying potential term called librational
tides. Due to the radial and librational tides, the orbital energy is still transferred
between the satellite’s orbit and rotation, which affects the satellite’s orbit over long
timescales [35].

Here, the energy source is the orbital energy −GMsMp/2a whose dampening
by the tidal dissipation decreases the semi-major axis. As the orbit angular mo-
mentum Msna

2
√

1− e2 is conserved, the decrease in the semi-major axis a is as-
sociated with a decrease in the eccentricity e leading to the circularization of the
orbit. The temporal evolution of the semi-major axis and eccentricity have been
expressed by Goldreich and Soter [37] for a satellite not involved in any orbital
resonance:
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We note that the semi-major axis and eccentricity evolution rates are negative lead-
ing to a decrease of both quantities as long as the eccentricity is non-zero. As the
evolution of the eccentricity is faster than the evolution of the semi-major axis
(which depends on e2), the orbit is circularized well before the semi-major axis a is
significantly modified.

The combined evolution of the semi-major and eccentricity result in the combi-
nation of the tides raised on the planet, Eqs. (5.32) and (5.34), and the tides raised
on the satellite, Eqs. (5.44) and (5.45) for satellites outside orbital resonances. The
tides raised on the satellites lead to a decrease in both the semi-major axis and eccen-
tricity, whereas the tides raised on the planet lead to an increase of both quantities,
since all major satellites of the giant planets evolve beyond the synchronous orbit
(defined by the distance to the primary at which the orbital period equals the ro-
tation period of the planet, Ωp = n). The orbital evolution of the satellites around
the same parent-planet depends on their semi-major axes, sizes, material properties,
and thermal evolution. Consequently, the satellites cross many orbital resonances, as
for example Dione and Enceladus that are currently in 2:1 resonance or the Galilean
satellites, Io, Europa, Ganymede, that are in 4:2:1 resonance (the Laplace resonance
discussed in more details below). Resonance crossing leads to an additional transfer
of angular momentum (e.g. [71]) that strongly influences the orbital evolution of
the satellites. In addition, when the satellites are in orbital resonances, eccentricity
pumping prevails over the circularization of the orbit, which further sustains tidal
heating inside the satellites as discussed in Sect. 5.5.

Tidal dissipation also affects the inclinations of the satellites orbits. The equilib-
rium configuration depends on the distance of the moon to the parent-planet [87]. If
a moon is close to its planet, the orbital precession is mainly driven by the oblateness
of the planet, and the equilibrium orbital plane coincides with the equatorial plane
of the planet. This is the case for the majority of the satellites and thus explains why
these objects have a small inclination (usually around 1 degree or less). On the other
hand, if the moon is far from its planet, the orbital precession may be dominated
by the action of the Sun, in which case the equilibrium orbital plane coincides with
the mean orbital plane of the planet (i.e. the orbital plane of the Sun seen from the
planet). In the intermediate position, the equilibrium plane is between the equatorial
and orbital planetary planes, as seen for example in the case of Iapetus [117].

5.3.3.5 Measurements of Tidal Accelerations

Measurement of the dissipation in giant planet systems through the tracking of nat-
ural satellite orbital motion started about one century ago with de Sitter [24]. The
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method consists in fitting astrometric measurements of the satellites positions ob-
served over long periods with orbital model including the tides. However, assessing
the influence of the tides on the orbital motions of the satellites is complex because
the satellites orbits are perturbed by mutual gravitational attraction with other satel-
lites as well as by the non-spherical shape of the parent-planet. Consequently, the
determination of the tides requires accurate numerical models that account for the
many dynamical perturbations expected over long duration observations, in order
to decorrelate the various dynamical effects (long periods with secular effects due
to the tides). Such studies have been performed by Lainey et al. [61, 62] on the
Galilean and Saturnian satellites.

For the Galilean system, the accelerations due to the tides have induced a cumu-
lative shift in the satellite orbital positions of 55 km, −125 km and −365 km for
Io, Europa, and Ganymede, respectively over the past 116 years analyzed by Lainey
et al. [61]. This means that Io’s orbit is contracting, while the orbits of Europa and
Ganymede are expanding.

The orbital motions of Io, Europa, and Ganymede are driven by the Laplace
resonance, i.e. their mean motions are related through (e.g. [40]):

n1 − 3n2 + 2n3 = 0 (5.46)

where 1, 2, 3 correspond to Io, Europa, and Ganymede, respectively and n is the
mean motion. This resonance results in the excitation of the satellites eccentricities
and is thus instrumental in maintaining significant tidal dissipation in Io and Europa.
However, since these satellites are evolving in opposite directions, it is expected that
they would eventually escape from the Laplace resonance [61, 97].

In addition, from the determination of the semi-major axis evolution of these
satellites Lainey et al. [61] could infer the ratios k2/Q characteristic of Jupiter and
Io. The relationship between the semi-major axis and the eccentricity evolution rates
with k2/Q are shown in Eqs. (5.32), (5.34), (5.44), and (5.45). The tides within Eu-
ropa and Ganymede are not measurable because of the orbital correlations caused by
the Laplace resonance. The tides related to Callisto are negligible because the satel-
lite is too far from Jupiter (H = 89.2 meters for Callisto whereas it is 3119 meters
for Io, see Table 5.1). The k2/Q ratio for Io is then equal to 0.015± 0.003, which
is consistent with the value inferred from heat flow mapping. Such a result implies
that Io’s interior is close to thermal equilibrium and that the heat flow radiated at the
surface is mainly due to tidal heating [61].

Jupiter’s k2/Q is equal to (1.102± 0.203)× 10−5 [61]. On top of this, geophys-
ical model of Jupiter’s interior that yields the value of k2 leads to the determination
of Jupiter’s dissipation factor. Gavrilov and Zharkov [34] predicted a value of 0.379
implying a Q factor of (3.56± 0.66)× 104. This value is close to the lower bound
on Q determined from the tidally-induced orbital migration of the satellites over the
age of the solar system that is in the range 6× 104 <Q< 2× 106 [123]. The dissi-
pation determined by Lainey et al. [61] is consistent with the dissipation models of
Jupiter. This result shows that dissipation within giant planets is much stronger than
anticipated for the past four decades.

A similar study performed by Lainey et al. [62] for the Saturnian system lead to
the determination of Saturn’s (k2/Q) equal to (2.3± 0.7)× 10−4. This value is one
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order smaller (so larger dissipation) than the usual value estimated from theoretical
arguments [83]. In addition, Lainey et al. [62] found that the orbit of Mimas moves
toward Saturn at a rate of da/dt =−(15.7±4.4)×10−15 au/days. It is not possible
to derive directly Mimas’ k2/Q from that rate as was done for Io because the satellite
is in resonance with Tethys and also interacts with the Saturnian rings.

The measurement of the tides expressed in the Saturnian system brings new in-
formation on the understanding of this system. For example, Enceladus presents
plumes and heat emerging from the south pole. The associated energy is estimated
to be about 15.8± 3.1 GW [45]. Meyer and Wisdom [71] using an obsolete ancient
determination of Saturn’s k2/Q pointed out that this power can not be produced
from tidal dissipation because it is then inconsistent with the long-term preserva-
tion of Enceladus’ eccentricity [71]. However, by taking into account the additional
transfer of angular momentum resulting from the 2:1 resonance with Dione [71]
and the new k2/Q value, Lainey et al. [62] explained both the observed heat and
the preservation of Enceladus’ eccentricity. In addition, in that framework, Saturn’s
dissipation factor is inconsistent with the scenario assuming that the moons formed
outside the synchronous orbit and then migrated to their current positions. A re-
cent model of accretion of the moons inside and at the outer edge of Saturn’s rings
appears more consistent with the observed dissipation as well as geological obser-
vations and satellite surface composition [14, 62].

In summary, astrometric measurements have led to a quantification of the dissi-
pation inside Jupiter and Saturn by combining accurate modern numerical models
and a historical astrometric record spanning more than one century. The dissipa-
tion in the Uranian and Neptunian systems has not been estimated at this time. The
strong correlation due to the Laplace resonance makes it more difficult to infer the
tidal dissipation in Europa and thus complementary methods are required to deter-
mine that parameter, for example, through accurate characterization of the satellite’s
rotation, as shown by Rambaux et al. [92] for Enceladus, or by direct measurement
of the gravity field and surface displacement [116]. Both of these techniques require
in situ observations, with a dedicated orbiter or surface tracking instruments (e.g.
beacons, very broad-band seismometer).

5.4 Static Tides and the Shape of the Moons

5.4.1 Introduction

The secular shapes of major satellites in synchronous rotation can be well ap-
proximated by a triaxial ellipsoid under the assumption of hydrostatic equilibrium
[6, 21, 125]. This shape results from the deformation of the body in response to
the centrifugal and tidal forces. The tidal force acts to elongate the moon along the
parent-planet-satellite direction. This is due to the synchronous resonance as the
satellites keep the same face towards the parent-planet. The centrifugal force acts
to flatten the satellite’s shape along its rotation axis. The combination of these two
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forces leads to a triaxial shape because the parent-planet generating the tidal force is
usually in the equatorial plane of the satellite. The amplitude of the resulting distor-
tion depends on distribution of mass inside the body. Hence shape data can be used
to obtain information on the interior.

In practice, the forces shaping the satellites present a secular and a periodic com-
ponent. The consequences of the periodic component are discussed in the next sec-
tion. Here, we focus on the time-independent (secular) contribution of the forces
and the resulting equilibrium shape of the satellite, i.e., when the satellite’s shape
had time to relax to an equilibrium ellipsoid with the long axis pointing toward the
parent-planet and the short axis aligned with the rotating axis.

The steady rotational potential determining the equilibrium shape is

Uc = Ω2
s r

2

3

(
P20(cos θ)− 1

)
(5.47)

where the potential acts at a point located at (r, θ, λ) with r the radial component, θ
the colatitude, and λ the longitude. The parameter P20 is the Legendre polynomial
at degree 2 and order 0. Due to the axial symmetry, the potential is independent
from the longitude λ. Ωs is the mean angular rotation of the satellite and is equal to
the mean motion due to the synchronous rotation. The tidal potential is expressed in
spherical coordinates as in Eq. (5.8) that we recall here
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Here, the tidal potential contains both a secular and a periodic component in the
development of the radial distance d and in the orientation angle γ ′. The secular
part in d is obtained by assuming that the orbit of the satellite is circular; the secular
part of the orientation is evaluated for an equatorial orbit and assuming that the
moon is in exact spin-orbit synchronous rotation. Thus the angle γ ′ is expressed by

cosγ ′ = sin θ cosλ. (5.49)

Combining the centrifugal and tidal potentials results in
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s R
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4
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. (5.50)

5.4.2 Moments of Inertia

The secular potential equation (5.50) entails a permanent deformation of the satel-
lite. The induced potential at the surface Rs of the satellite is assumed to be linear in
φ2 with a coefficient of proportionality, the secular Love number labeled here as kf :

δφ2 = kf φ2. (5.51)

The secular Love number is equal to 3/2 for a homogeneous body in hydrostatic
equilibrium. Its value decreases as density increases with depth (see Sect. 5.2).
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The response of the satellite to the secular potential induces a potential that can
be developed in spherical harmonics to degree 2 as:

δφ2 = GM

a

∞∑

n=0

(
a

r

)n+1 n∑

m=0

(Cn,m cosmλ+ Sn,m sinmλ)Pn,m(sinϕ) (5.52)

and the identification between the potential equations (5.51) and (5.52) of each
degree-2 term leads to the relation

C20 =−5

6
kf q (5.53)

C22 = 1

4
kf q, (5.54)

where we have introduced the dimensionless parameter q = Ω2
s R

3
s

GMs
corresponding

to the ratio of the centrifugal to the gravitational potential at the equator. The C22
coefficient is a purely tidal term, whereas C20 can be decomposed into a component
induced by the centrifugal potential (1/3) and another one from the tidal potential
(1/2). The relations (5.53) and (5.54) can be simply combined as

C20 =−10

3
C22. (5.55)

As noticed by Moore et al. [77], this relation indicates that the body responds to the
sum of the time-averaged centrifugal and tidal potentials and there is no additional
deviation from spherical symmetry. This relation is often shortly assimilated as a
consequence of the hydrostatic equilibrium. However, in order to assess the equi-
librium state of the object it is necessary to compare its shape and gravity data, as
discussed in more details below.

If the body is in hydrostatic equilibrium, another step toward understanding its in-
terior comes from the Radau-Darwin approximation. The gravitational coefficients
C20 and C22 are related to the satellite’s principal moments of inertia A, B , C (with
C >B >A) through [122]

C20 =−2C − (B +A)

2MR2
, (5.56)

C22 = B −A

4MR2
(5.57)

and the axial moment of inertia C/MR2 can be deduced from the Radau-Darwin
approximation for hydrostatic bodies [79]:

C

MR2
= 2
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[
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4− kf

1+ kf

)1/2]

. (5.58)

In theory, the inferred moment of inertia is a simple function of the internal mass
distribution inside an object.

In practice, satellites shapes and interiors depart from hydrostaticity due to mass
concentrations, large variations in topography at various scales, or even sometimes
a fossil bulge relic of an earlier stage in the evolution of the object. That bulge may
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be acquired before a moon became locked in spin-orbit resonance or during the
tidal migration of the satellite. A famous example is Saturn’s satellite Iapetus that
presents a large equatorial bulge frozen when the object had a rotation period of 16
hours that strongly differs from its current 80 day rotation period [12]. In the case
of endogenic sources of non-hydrostaticity (e.g. mass anomalies, stress associated
with internal activity, such as convection) the impact on the gravity and shape is
expressed at degrees higher than two [33].

5.4.3 Satellite Shapes

Under the assumption of hydrostatic equilibrium the shapes of synchronous satel-
lites may be approximated as triaxial ellipsoids with principal axes denoted (a, b, c),
where a is the long axis pointing toward the parent-planet, c the short axis along the
polar axis, and b the intermediate (equatorial) axis. The proportional factor between
the excitation and the radial response of the satellite is determined by the fluid Love
number, hf , defined as [78, 116]

u= hf
φ2

g
(5.59)

where u is the vertical tidal surface displacement and g is the gravitational acceler-
ation at the satellite’s surface. If the body is in hydrostatic equilibrium, then hf is
related to kf by the following relationship (e.g. [125])

hf = kf + 1. (5.60)

Therefore, a strengthless and homogeneous body is characterized by kf equal to
3/2 and hf to 5/2. As for kf , the Love number hf depends on the density profile.
Departure from the equality (5.60) implies that the object is not in hydrostatic equi-
librium, a crucial piece of information on the evolution of the object. Indeed, the
ability of an object’s shape to relax or to preserve non-hydrostatic anomalies over
the long term is a function of the maximum temperature reached within the object
and the mechanism driving heat transfer.

The Love number hf may be deduced from the principal axes of the ellipsoid
through [22, 125]
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, (5.61)
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, (5.62)

c=Rs
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6
qhf

)

(5.63)

neglecting terms of order 2 in q . Thus, by determining kf from gravity data, it is
possible to estimate the principal axis of a given satellite in hydrostatic equilibrium.
Comparison with actual shape data, if available, leads to constraints on the departure
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of hydrostaticity of the object and then on its internal and surface evolution. In
addition, these relations imply that

(a − c)= 4(b− c) (5.64)

assuming that higher orders in the parameter q can be neglected.

5.4.4 Gravity and Shape Observations

5.4.4.1 Observational Methods

The gravity field of a satellite is measured by accurately tracking the trajectory of a
spacecraft approaching the object and accounting for orbital perturbations acting on
the spacecraft. Accurate measurement of the spacecraft’s position is inferred from
the shift in the radio signal Doppler frequency tracked from Earth’s ground stations.
The requirement in the accuracy of the Doppler shift is a few hundred meters per
second.

The determination of the gravity field, and especially the C20 and C22 coeffi-
cients, requires enough flybys distributed in equatorial and polar orbits in order to
determine each coefficient independently and verify whether the hydrostaticity as-
sumption (5.55) applies to the object. When the gravity data are too sparse, it is
still possible to determine the gravity field by assuming the relation (5.55). Such
approach imposes a strong constraint on the geophysics of these bodies that has to
be kept in mind during the interpretation of the data. The gravity data reduction
technique is described in [98] review on the Galilean satellites, and in [60] for the
Saturnian satellites.

The global shape of a satellite is determined by combining the various limb pro-
files of wide-angle images and then searching for an ellipsoid that can match these
observations [22, 109, 110], or by using an altimeter such as Cassini’s RADAR
altimeter for Titan [124]. The gravity and topography fields can be combined to in-
fer constraints on the interior, such as non-hydrostatic anomalies. However, shape
and gravity observations have been obtained only for a few bodies: Io, Europa,
Ganymede, Callisto by the Galileo spacecraft and Enceladus, Rhea, and Titan by
the Cassini spacecraft (see Table 5.3).

5.4.4.2 Galilean Satellites

The density of Io is relatively high (3.530 g cm−3) indicating that this satellite is
primarily rocky. Europa also presents a high density 3.013 g cm−3 but its surface
is totally covered with ice, suggesting the presence at depth of a large rocky core.
Ganymede and Callisto have lower densities consistent with an ice mass fraction
around 30 %. Magnetometer data suggest that the three icy satellites shelter deep
oceans beneath their icy surfaces [98]. This hypothesis is also supported by the
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Table 5.3 Gravity data provided by the Galileo (a) and Cassini (b) missions. (a) Schubert et al.
[98], (b) MacKenzie et al. [66]. Rhea is not in hydrostatic equilibrium and the Radau-Darwin
approximation can not be applied, (c) Iess et al. [53]. The data for the gravity field of Enceladus
are not available at this time

Satellites C20(10−6) C22(10−6) C/MR2 kf

Io(a) −1859.5±2.7 558±0.8 0.37824±0.00022 1.3043±0.0019

Europa(a) −435.5±8.2 131.5±2.5 0.346±0.005 1.048±0.0020

Ganymede(a) −12753±2.9 38.26±0.87 0.3115±0.0028 0.804±0.018

Callisto(a) −32.7±0.8 10.2±0.3 0.3549±0.0042 1.103±0.035

Rhea(b) −931±12 237.0±4.5 − −
Titan(c) −31.808±0.404 9.983±0.039 0.3414±0.0005 1.0097±0.0039

geological record and can be explained by thermal evolution models ([9, 49, 59, 86,
98] and references therein).

The gravity fields of the Galilean satellites have been determined during the
Galileo mission that dedicated 4–5 flybys to each satellite (see a review in [98]).
As Galileo performed 4 equatorial flybys and 1 polar flyby of Io, Anderson et al. [4]
managed to decorrelate the C20 from the C22 coefficients. In the case of Ganymede
even with the equatorial and orbital flybys [2], it is not possible to decorrelate the
two coefficients and the relationship (5.55) has to be assumed [98]. Indeed, the grav-
ity field of Ganymede includes components of degree and order 4 due to mass con-
centration that could be detected by disk-cap mass anomaly modeling [85]. The sit-
uation is even worse in the case of Europa and Callisto because the gravity passes at
these objects where all in near equatorial orbit, so that only C22 could be determined
[3, 5]. However, the gravity field of Callisto presents a non-zero S22 coefficient sug-
gesting that an anomaly (interior, surface) may affect its potential [5].

At first order, the shape data available for the Galilean satellites are mostly con-
sistent with ellipsoids in hydrostatic equilibrium [5, 98]. As a consequence, con-
straints on the density profile may be obtained from inferring the secular Love
number kf from C22 through Eq. (5.54) and the Radau-Darwin equation (5.58).
Results displayed in Table 5.3 indicate that the satellites are not homogeneous be-
cause their C/MR2 values are smaller than 0.4, i.e. the upper limit corresponding
to a homogeneous spherical body. Models of these satellites matching both their
axial moments of inertia C/MR2 and mean densities indicate that Io, Europa, and
Ganymede present a core enriched in rock, while Callisto is partially differentiated
([98] and references therein).

5.4.4.3 Saturnian Satellites

The gravity and topography of the Saturnian satellites have been inferred from ob-
servations obtained by the Cassini-Huygens mission that arrived in the system on
July 1st, 2004. The Cassini orbiter performed several flybys of all major satellites
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but only a few of these flybys have been dedicated to radio science tracking that en-
ables gravity field measurement. So far, only the gravity fields of Titan, Enceladus,
and Rhea have been obtained to degree two. For the other medium-sized satellites,
only the mass has been determined from radio tracking of Cassini, so far (see a
review in [60]).

Titan has a particular place in the family of the Saturnian satellites. It is the
largest with a radius of 2575 km, i.e. 3.4 times the radius of Rhea (764 km) and it is
the only moon with a thick atmosphere, which is composed mainly of Nitrogen and
Methane. This thick atmosphere precludes the direct observation of Titan’s surface,
and only Cassini RADAR, VIMS (Visual and Infrared Mapping Spectrometer), and
the in-situ Huygens probe that revealed a fascinating world revolving around rich
geological features such as dunes, channels, lakes, impact craters, and putative cryo-
volcanos. The gravity and topography measurements bring constraints on Titan’s
interior, which will help assess the relative contribution of endogenic activity and
atmospheric processes to the evolution of the surface.

The gravity field of Titan has been determined by Iess et al. [53] based on four
dedicated gravity science flybys by Cassini. In an earlier study based on 3 flybys,
Rappaport et al. [94] inferred the gravity field to degree two and found the ratio of
C20/C22 to be different from the −10/3 value expected for an object in hydrostatic
equilibrium. However, by using one more flyby and introducing the degree 3 coef-
ficients, Iess et al. [53] inferred C20/C22 around −10/3, hence demonstrating the
importance of including higher degree terms in the inversion of gravity data. So Ti-
tan’s quadrupole field is consistent with that expected for a hydrostatically relaxed
body shaped by tidal and rotational potentials. By applying the Radau-Darwin ap-
proximation, Iess et al. inferred Titan’s polar moment of inertia C/MR2 equal to
0.3414± 0.0005. This information, combined with the mean density, is an impor-
tant constraint on interior models. The relatively large value of Titan’s C/MR2 (as a
reference, Ganymede’s mean moment of inertia is equal to ∼ 0.3115 [98]) suggests
that it is only partially differentiated, and that its core may contain a large fraction
of water, either in the form of ice mixed with rock [7] or as water of hydration, i.e.
water trapped in the silicate structure [11, 32].

In addition, the topography of Titan has been measured by radar altimetry data
[124]. These authors determined a ratio of (a−c)/(b−c)≈ 2.2 that differs from the
hydrostatic equilibrium inferred by [53] from their gravity data under the assump-
tion of hydrostatic equilibrium. Thus Titan appears more flattened than predicted
for a hydrostatically relaxed body. Nimmo and Bills [81] suggested that the discrep-
ancy could be related to large lateral variations in the icy shell thickness. Choukroun
and Sotin [15] showed that this difference might be imputed to meteorological and
chemical processes acting on the icy surface as part of a methane-ethane substitu-
tion cycle. Therefore, this result highlights the importance of clearly separating the
hydrostatic contribution of the shape resulting from the secular tidal potential in or-
der to quantify the non-hydrostatic contributions due, in this case, to atmospheric
processes.

Another Saturnian satellite of major interest is Enceladus, due to its active south
polar region that may be associated with a liquid water reservoir [91, 106]. Only
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three gravity passes have been dedicated to Enceladus. While the results are not
available at this time, the preliminary data indicate that the gravity field of Enceladus
contains a non-negligible degree-three component [26]. These authors reported that
the degree 2 coefficients dominate, as expected for a synchronous satellite, but the
C20 and C22 present a small departure from the values predicted under the assump-
tion of hydrostatic equilibrium. In addition, the C30 is negative, corresponding to
a negative gravity anomaly at the south pole. The interpretation of these results is
currently under investigation and will reveal crucial information on Enceladus’ icy
shell structure.

The third Saturnian satellite for which gravity measurements have been per-
formed is Rhea, although the limited dataset (only one pass) makes it difficult
to infer robust constraints on the interior of the object. Still, it appears that, like
in the case of Enceladus, Rhea’s gravity field contains a degree-three component
[66, 82]. These authors suggested that the source of that component is the impact
basin Tirawa. The mass anomaly associated with the large crater induced a reorien-
tation of the moon’s principal axes in order to minimize the rotational energy so that
the smallest principal axis moment of inertia is oriented toward the parent-planet,
while the largest principal axis moment of inertia presents a small angle from the
normal to the orbit, following the Cassini states [87]. More gravity passes of Rhea
are required in order to better understand the relationship between its gravity field
and topography.

Thomas [108] published the triaxial shapes measured for 20 Saturnian satellites
from limb profiles. The global shape of Rhea matches a hydrostatic figure; while
for Mimas, Enceladus, and Tethys the degree 2 shapes are not consistent with hy-
drostatic equilibrium [82, 108]. Consequently, lateral variations in topography or
internal structure (e.g. mass concentrations) need to be accounted for in the inter-
pretation of the gravity measurements as these features can bear a non-negligible
signature at high-degree spherical harmonics [82].

5.5 Internal Stress

5.5.1 Introduction

In the previous section, we focused on the constant part of the tidal potential that
determines a satellite’s triaxial shape. We now focus on the time-varying potential
induced by eccentricity, obliquity, or physical librations (i.e. oscillations superim-
posed on the uniform rotation component, e.g. [46, 93]). This source of stress has
profound impact on the interior and surface of the satellite. The deformation of the
satellite results in friction within the material resulting in the satellite’s response
being out of phase with respect to the tidal forcing. This friction generates heating.
When the tidal heat production exceeds the amount of heat that can be transferred to
the satellite’s surface, partial melting of the material ensues, and volcanism becomes
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the more efficient vector of heat [77]. The most spectacular expression of tidal heat-
ing is certainly the active volcanism on Io (Sect. 5.5.3). In the case of icy bodies,
cryovolcanism acts at lower temperature, as observed on Enceladus, and suggested
for Titan, Triton, Miranda, and Ganymede (Sect. 5.5.4). Also, the stress incurred by
the periodic tidal distortion of a satellite’s surface can lead to fracturing and drive
tectonic activity (Sect. 5.5.5).

5.5.2 Tidal Heating from Mechanical Energy Dissipation

There are two approaches for the computation of tidal heating in satellites. The first
one consists in computing the heat produced at each point of the body by using the
strain-stress tensor resulting from the tidal distortion. This method has been em-
ployed in a series of paper (e.g. [89, 99, 112]) and it enables the quantification of
the heat production in each part of the body. However modeling realistic, radially
and laterally heterogeneous bodies with this method requires sophisticated numeri-
cal codes. In this chapter we focus on another, simpler approach that applies at the
global scale of the object, but is equivalent to the former. It is based on the compu-
tation of the work performed by the tides (e.g. [118]).

The dissipated energy is equal to the work rate of the tidal force. That work rate is
equal to the scalar product of the tidal force ρ∇U (where ρ is the material density
and U the tidal perturbed potential defined in Sect. 5.2) and the velocity v of an
element of the body integrated over the volume:

dE

dt
=−
∫

body
ρv.∇U dV. (5.65)

The volume integral can be transformed into a surface integral by assuming that the
interior is incompressible and homogeneous. Then we obtain

dE

dt
=−ρ

∫

body
U v.ndS (5.66)

by Gauss’ theorem. Here n is the normal to the surface and the quantity v.n is the
rate at which the surface is elevated. The phase lag between the potential U and the
elevation of the surface is then introduced as

ζ = h2
U ′

g
(5.67)

where h2 is the dynamic Love number quantifying the deformation of the object
(integrated over its radius) and U ′ is the tidal potential lagged because of friction
inside the body. Then, after computing the tidal potential and averaging over the
orbital period (short period), tidal dissipation is found as (e.g. [31, 50, 65, 89, 99,
119])

dE

dt
=−21

2

k2

Q

R5
s n

5

G
e2. (5.68)
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Fig. 5.4 Global view of
Jupiter’s moon Io taken by
Galileo in September 1997.
This composite image has
color enhanced in order to
highlight different regions
such as big red ring of Pele
volcano at the bottom left.
The dark spot close to the
center of the image was a
new distinctive structure
illustrating the ongoing
activity on Io
(http://photojournal.jpl.nasa.
gov/catalog/PIA01667),
courtesy of NASA

This expression applies to a satellite in synchronous spin-orbit resonance with neg-
ligible obliquity, orbital inclination, as well as physical libration. The general ex-
pression taking into account these additional perturbations can be found in Wisdom
[119] and Levrard [63]. The power of 5 applying to the moon’s radius and mean
motion implies increased heating in large satellites and/or satellites close to their
parent-planets. In addition, the amount of dissipated energy depends on the orbital
eccentricity (e2). This dependency is related to the source of the tidal work being
the radial and diurnal tides presented in Sect. 5.3.3.4. The contribution of the li-
brational tides is 4/3 larger than the contribution of the radial tides and the sum
of the two contributions leads to the factor 21/2. Finally, the energy rate depends
on the ratio k2/Q that is function of the capacity of the satellite interior to deform
and dissipate mechanical energy, which is itself a function of the forcing frequency
(Sect. 5.3).

5.5.3 A Hot Satellite: Io

The spacecraft Voyager 1 revealed in 1979 a unique volcanic world, Io, with active
lava flows, volcanic plumes several hundred kilometer high, and a young surface
devoid of impact craters [68, 101]. The Galileo image displayed in Fig. 5.4, shows
Io in false color in order to enhance the different geological structures, where the
white and gray features represent sulfur dioxide frost, whereas the bright red and

http://photojournal.jpl.nasa.gov/catalog/PIA01667
http://photojournal.jpl.nasa.gov/catalog/PIA01667
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black features are related to recent volcanic activity. In addition, Galileo detected
eruptions and identified a recent ring of reddish material deposits around an area
called Tvashtar Catena [58, 68].

Io’s thermal emission has been inferred from Galileo’s data between 1.2 W m−2

and 3 W m−2 [95, 115] and the global power has been found between 50 and
125 TW. For comparison, Earth’s global dissipation budget is around 3.3–4 TW
[30], i.e., 25 times smaller. In comparison, other internal heat sources (accretional,
radiogenic heating and specific gravitational energy) are several orders of magni-
tude less significant and insufficient to drive partial melting leading to volcanic
activity. This scenario was predicted by Peale et al. [90] a few weeks before the
arrival of Voyager and developed in more details by, e.g. Moore [77]. The source
of energy is related to tides raised by Jupiter on Io that are big due to Io proxim-
ity (421 000 km to compare with the Earth-Moon distance of 384 000 km), large
Jupiter’s mass (300 times the Earth’s mass), and a relatively high Io’s eccentricity
(0.0041). For illustration, the elevation of Io’s surface due to the diurnal tides is
3eh2H [16] where e is the eccentricity, h2 the surface Love number, and H the
equilibrium amplitude defined in Eq. (5.1) leading to a surface elevation of about
300 meters height.

It could be surprising that Io kept a non-zero eccentricity because the effect of
tides is to circularize the orbit. The eccentricity may be separated in two terms:
a free and a forced eccentricity (e.g. [40]). The free eccentricity depends on the
initial condition and it is damped to a very small value around 10−5 as expected
from tidal theory [40]. The forced eccentricity is related to the Laplace resonance
Eq. (5.46), and the eccentricity of Io is then pumped by the resonance with Europa
and Ganymede that allows the preservation of a non-zero eccentricity until today
[40, 88, 121].

This huge amount of energy poses the problem of the transfer of energy from
the interior of Io to the surface and the moon’s thermal equilibrium. Moore [75]
investigated the question of energy transfer by studying convection in a partially
molten core and he deduced that the heat that can be transferred is one order lower
than the observed flux. This suggests that Io is either out of thermal equilibrium or
another heat transport mechanism is taking place. Indeed, the recent determination
of Io’s dissipation factor determined by Lainey et al. [61] leads to a heat flux equal
to 2.24 ± 0.45 W m−2 that is within the range of the observed surface heat flux.
In addition, the (k2/Q) values for Io and Jupiter suggest that Io is close to ther-
mal equilibrium with the energy produced by tidal dissipation being radiated at the
surface.

The tidal heating on Io is very unique due to its spectacular consequences that
can be seen from Earth (e.g. [115]). However, tidal heating also plays a role on other
satellites like Europa where it contributes to the preservation of a deep ocean be-
neath the icy shell [47, 84, 104, 111]. Ganymede and Miranda may have encountered
past resonances that have enhanced their eccentricities and increased their tidal heat
budget leading to a possible phase of resurfacing of these satellites (e.g. [23, 100]).
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Fig. 5.5 Global view of
Enceladus taken by Cassini
space mission. The south pole
presents the famous plumes
of water ice burst into the
Saturnian system
(http://photojournal.jpl.nasa.
gov/catalog/PIA12733),
courtesy of NASA

5.5.4 Cryovolcanism

Tidal heating can lead to an exotic form of volcanism called cryovolcanism, where
the volcano erupts liquid or vapor phases of volatile elements such as water ([54]
and references therein). The Voyager’s observations of Geyser on Neptune’s moon
Triton [102] or active plumes at the south pole of Enceladus observed by Cassini
spacecraft (Fig. 5.5) [91, 106] may suggest that this process, that has no equivalent
on Earth, could be widespread in the icy satellites of the outer solar system. How-
ever, the existence of cryovolcanism on icy satellites is still debated, as for example
in the case of Titan where some cryovolcanic-looking features may actually have
a tectonic origin [16, 54, 64, 80, 103]. Nevertheless, signatures of past cryovolcan-
ism have been identified on Europa and Ganymede by the Galileo mission and on
Miranda from Voyager imaging (e.g. a review [16]).

Like for Io, Enceladus’s cryovolcanism is certainly driven by tidal dissipation
[107]. The amount of energy dissipated within Enceladus has been measured by
Cassini’s Composite Infrared Spectrometer at 5.8± 1.9 GW [106] and updated at
15.8± 3.1 GW by Howett et al. [45]. Based on the latest measurements of Saturn’s
dissipation factor, Enceladus is certainly in thermal equilibrium [62]. For Triton,
Geyser-like plumes of 8 km height have been observed by Voyager 2 [102] and the
mechanism driving the plumes appears to be recent cryovolcanism that could also
explain some enigmatic features and the young age of the Triton’s surface [16].

http://photojournal.jpl.nasa.gov/catalog/PIA12733
http://photojournal.jpl.nasa.gov/catalog/PIA12733
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Fig. 5.6 Cycloidal cracks at
the surface of Europa (from
Hoppa et al. [44])

5.5.5 Tidally Driven Tectonics

Tidal stressing leads to surface fractures at various scales, some of which may run
along the entire surfaces of icy satellites. By studying these structures geologists can
deduce properties of the surface layer such as its thickness and thermal structure. In
addition, the patterns displayed by the geological fractures can reveal key informa-
tion on the tidal history of the satellites, such as their orbital evolution, reorientation
of the outer shell as consequence of decoupling, or non-synchronous rotation of the
icy shell (see review in [16], and [56]). Helfenstein and Parmentier [43] first pointed
out a correlation between global-scale lineaments patterns and tidal stress in Voy-
ager images for Europa. Since then, three types of tectonic features induced by tidal
stress have been identified: lineaments, cycloidal cracks, and strike-slip faults (see
a review in [8] and references therein). Similar geological structures have recently
been identified on Enceladus and Triton, whereas Ganymede and Miranda show past
evidence of active tectonics [16].

The icy crust is generally modeled as an elastic layer overlying the tidally de-
formed body and the tidal stress σ is computed following the formalism developed
by Vening-Meinisz [114], Melosh [70]. Compressive stresses are defined when σ

is positive and tensional stresses when σ is negative. Fracturation occurs when the
tensile stress exceeds the tensile strength of the crust. Then the cracks propagate
following the ever-changing stress field and stop where the tensile stress becomes
insufficient. Each source of the time-varying potential presents a different stress
field whose pattern can be compared against tectonic patterns. Matching the com-
puted field stress with surface cracks can help identify the origin of the tidal stress
source and constrain the elastic properties of the crust. For example Fig. 5.6 shows
cycloidal cracks on Europa’s surface, observed by Voyager [101]. These cycloidal
structures have been interpreted as the geological consequence of diurnal variations
in the tidal stress field [44].

5.6 Conclusion

Tides rhythm the evolution of giant planets satellites like the tides on Earth rhythm
the flux and reflux on coasts. Their actions lead to despinning and endogenic activ-
ity, such as spectacular volcanism on Io and Enceladus. Tides also bear a signature
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in satellites shapes that may be measured if these objects are in hydrostatic equi-
librium. However, each satellite also appears to be unique, making the investigation
of these systems so fascinating. Many questions are still open and some of them
are still under development thanks to the Cassini space mission that has been pro-
viding astonishing results. ESA’s JUpiter ICy moons Explorer, JUICE, under devel-
opment [25] will visit the Jupiter system in the next decades (2028) and especially
Ganymede and Europa. Even the tidal theory is under an active reevaluation mo-
tivated by new laboratory experiments [67] allowing to introduce a more complex
rheological response of satellites [13, 27]. In addition, the tidal theory has to intro-
duce the presence of a subsurface ocean, expected in some satellites, that could lead
to increased dissipation energy [113].
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Chapter 6
Recent Developments in Planet Migration
Theory

Clément Baruteau and Frédéric Masset

Abstract Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent protoplan-
etary disc. One of the key quantities to assess the migration of embedded planets
is the tidal torque between the disc and the planet, which has two components: the
Lindblad torque and the corotation torque. We review the latest results on both com-
ponents for planets in circular orbits, with special emphasis on the various processes
that give rise to a large corotation torque and those contributing to its saturation. The
additional corotation torque could help address the shortcomings that have recently
been exposed in models of planet population synthesis. We also review recent re-
sults concerning the migration of giant planets that carve gaps in the disc (type II
migration) and the migration of sub-giant planets that open partial gaps in massive
discs (type III migration).

6.1 Introduction

The extraordinary diversity of extrasolar planetary systems has challenged our un-
derstanding of how planets form and how their orbits evolve as they form. Among
the many processes contemplated thus far to account for the observed properties
of extrasolar planets, the gravitational interaction between planets and their par-
ent protoplanetary disc plays a prominent role. Considered for a long time as the
key ingredient in shaping planetary systems, planet–disc interactions, which drive
the well-known planetary migration (drift of a planet’s semi-major axis during the
lifetime of the gaseous disc), have recently been judged by many as being over-
emphasised. On one hand, observational data show evidence for vigorous migration
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in many planetary systems, as attested by the existence of hot Jupiters, Neptunes,
and Super-Earths (the recently discovered Kepler-20 planetary system, with copla-
nar rocky and icy planets alternating at periods less than 80 days [31], provides a
good example), or by the existence of many mean-motion resonances. On the other
hand, there is also compelling evidence that other processes are capable of alter-
ing the orbits as dramatically as planet–disc interactions (the existence of highly-
eccentric or retrograde planets is an example). Also, although many systems seem
to have undergone orbital migration, many others display planets at distances from
their star that are of same order of magnitude as the distances of the planets in our
Solar System to the Sun. One may be tempted to conclude from this that theories of
planet–disc interactions are overrated, to the point that they could be just ignored in
scenarios of formation of planetary systems. Yet, as will be detailed in the following
sections, the facts below are difficult to circumvent:

• Each component of the torque exerted by the disc on a planet is so large that it can
halve or double the planet’s semi-major axis in a time that is usually 2 or more
orders of magnitude shorter than the lifetime of the protoplanetary disc.

• These torque components do not cancel out. The residual torque amounts to a
fair fraction of each torque component, so that one should in general expect that
planet–disc interactions have a strong effect on planet orbits over the lifetime of
the disc.

The central difficulty in planetary migration theories lies precisely in predict-
ing the value of the residual torque. In addition to being a fair difference between
several large-amplitude torques, it is very sensitive to the disc properties near the
planet’s orbit (e.g. density, temperature profiles). This by no means implies that the
total torque is negligible, but it helps understand why migration theories are slowly
maturing.

One of the main purposes of this review is to provide the reader with an up-
to-date presentation of the state of planet–disc interactions, with emphasis on the
torque formulae that govern the migration of low-mass planets. The reasons for this
special emphasis are three-fold:

• Low-mass planets are the most critical in planetary population synthesis, as they
potentially undergo the fastest migration.

• The sensitivity of detection methods has increased to a point where we can find
a plethora of Neptune-sized planets or below, which exclusively underwent the
migration processes typical of low-mass planets during their formation.

• The subject has been the focus of significant efforts in the recent past.

The torque acting on a low-mass planet in circular orbit can be decomposed into
two components: (i) the differential Lindblad torque, arising from material passing
by the planet at supersonic velocities, which is deflected and therefore exchanges
angular momentum and energy with the planet, and (ii) the corotation torque, arising
from material slowly drifting with respect to the planet, in the vicinity of its orbit.
The differential Lindblad torque has been extensively studied from the early times of
planetary migration theories, and is known in much greater detail than the corotation
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torque. In fact the corotation region, which has been under intense scrutiny over the
last five years, has proved to have a much more complex dynamics than previously
thought. In particular, the value of the corotation torque depends sensitively on the
radiative properties of the gas disc, and may exhibit large values when the gas is
radiatively inefficient (as is generally expected in regions of planet formation). In
addition to this complexity, new problems emerge as the computational resources
render tractable the task of simulating a planet embedded in realistic discs, namely
3-dimensional discs invaded by turbulence.

This review is organised as follows. After a brief description of the physical
model and notation in Sect. 6.2, we present in Sect. 6.3 the migration of low-mass
planets (type I migration). We detail some recent results on the differential Lindblad
torque in Sect. 6.3.1, and we put special emphasis on the recent developments on
the corotation torque in Sect. 6.3.2. The migration of gap-opening planets is then
examined in Sect. 6.4, with type III migration in Sect. 6.4.2, followed by type II
migration in Sect. 6.4.3. Finally, in Sect. 6.5, we discuss some recent themes related
to planet–disc interactions, such as the discovery of massive planets at large orbital
separations, and recent models of planetary population synthesis. Most sections end
with a summary of their content.

6.2 Physical Model and Notation

In most of the following we shall consider 2-dimensional discs, considering verti-
cally averaged or vertically integrated quantities where appropriate. At the present
time, most of the recent investigation on the migration of low-mass planets has been
undertaken in 2 dimensions (with a list of exceptions that includes, but is not re-
stricted to [3, 12, 23, 24, 47, 86, 87, 104, 113]), and much insight can be gained
into the mechanisms of the different components of the torque exerted by the disc
on the planet through a 2-dimensional analysis. It should be remembered, however,
that 2-dimensional results are plagued by the unavoidable use of a softening length
for the planet’s gravitational potential, which fits a two-fold purpose:

• It mimics the effects of the finite thickness of a true disc, by lowering the magni-
tude of the planet’s potential well.

• In numerical simulations, it avoids the potential divergence at the scale of the
mesh zone.

For this reason, the reader should bear in mind that the ultimate torque expressions
should be sought by means of 3-dimensional calculations, and that 2-dimensional
calculations are only used in a first step to elucidate the mechanisms that contribute
to the torque. At the time of writing this manuscript, most of the physics of the
torque in 2 dimensions is fairly well understood, which is why we put special em-
phasis on the 2-dimensional analysis.

We consider a planet of mass Mp orbiting a star of mass M$ with orbital fre-
quency Ωp . We denote by q the planet-to-primary mass ratio. The planet is assumed
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to be on a prograde circular orbit of semi-major axis a, coplanar with the disc, so
that we do not consider in this work eccentric, inclined, or retrograde planets. The
protoplanetary disc in which the planet is embedded is modelled as a 2-dimensional
viscous disc in radial equilibrium, with the centrifugal acceleration and the radial
acceleration related to the pressure gradient balancing the gravitational acceleration
due to the central star. We use P to denote the vertically integrated pressure, and s

to denote (a measure of) the gas entropy, which we express as

s = P

Σγ
, (6.1)

where Σ is the surface density of the gas and γ the ratio of specific heats Cp/Cv .
We denote with T the vertically averaged temperature. We assume in most of what
follows that the surface density and temperature profiles are power laws of radius,
with indices α and β , respectively:

Σ ∝ r−α (6.2)

and

T ∝ r−β . (6.3)

The disc pressure scale length is H = cs/Ω , with Ω the gas orbital frequency and
cs the sound speed. We define the disc aspect ratio by h=H/r . When T is a power
law of radius, so is h, with an index f dubbed the flaring index:

h∝ rf , (6.4)

which satisfies β = 1−2f . In almost all studies of planet–disc interactions, the disc
is modelled with a stationary kinematic viscosity ν, aimed at modelling the disc’s
turbulent properties. We will consider that ν can be written as ν = αvH

2Ω [102],
with αv denoting the alpha viscous parameter associated with the turbulent stresses
in the disc.

We will also make use of Oort’s constants. The first Oort’s constant scales with
the shear of the flow,

A= 1

2
r
dΩ

dr
, (6.5)

while the second Oort’s constant scales with the vertical component of the vorticity
of the flow ωz:

B = 1

2r

d(r2Ω)

dr
= ωz

2
. (6.6)

Whenever used, A and B are implicitly meant to be evaluated at the planet’s orbital
radius.

The governing equations of the flow are the equation of continuity, the Navier-
Stokes equations and the energy equation (except when dealing with isothermal
discs, as specified below), together with the closure relationship provided by the
equation of state, which is that of an ideal gas. We do not reproduce these governing
equations here, but refer the interested reader to, for example, [14, 18, 22, 24, 69,
91].
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Fig. 6.1 Disc’s surface
density perturbed by a
low-mass planet. Streamlines
in the frame corotating with
the planet are over plotted by
solid curves. The set of
streamlines that librate with
respect to the planet delimits
the planet’s horseshoe region

6.3 Migration of Low-Mass Embedded Planets: Type I
Migration

Up until recently, type I migration referred to the regime of migration of low-mass
planets that could be tackled through a linear analysis [48, 104]. Recently, however,
[89] have shown that one of the torque components, namely the corotation torque,
can become non-linear at all planetary masses, provided the disc viscosity is suffi-
ciently small. We shall nevertheless still qualify type I as the migration of low-mass
planets, up to a threshold mass that we shall specify in Sect. 6.4.1. We entertain
below the two components of the tidal torque: the differential Lindblad torque and
the corotation torque. In the following, we address the properties of type I migration
by a direct inspection of the tidal torque Γ , where the planet migration rate ȧ is
given by

2BaȧMp = Γ. (6.7)

6.3.1 Differential Lindblad Torque

The differential Lindblad torque accounts for the exchange of angular momentum
between the planet and the trailing density waves (spiral wakes) that it generates
in the disc (see illustration in Fig. 6.1). The density waves propagating inside the
planet’s orbit carry away negative angular momentum, and thus exert a positive
torque on the planet, named the inner Lindblad torque. Similarly, the spiral den-
sity waves propagating outside the planet’s orbit carry away positive angular mo-
mentum, which corresponds to a negative torque on the planet (the outer Lindblad
torque). The angular momentum of a planet on a circular orbit scales with the square
root of its semi-major axis. The inner Lindblad torque thus tends to make the planet
move outwards, while the outer Lindblad torque tends to make it move inwards. The
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residual torque, called differential Lindblad torque, results from a balance between
the inner and outer torques. In the absence of viscosity, the angular momentum taken
away by the wakes is conserved until wave breaking occurs, resulting in the forma-
tion of a shock and the deposition of the wave’s energy and angular momentum to
the disc [34]. The impact of non-linearities induced by the planet’s wakes, which in
particular lead to the formation of a gap about the planet’s orbit, will be described
in Sect. 6.4.1.

The one-sided and differential Lindblad torques can be evaluated in different
manners:

1. In a fully analytic manner upon linearization of the flow equations [32]. In this
framework, waves propagate away from Lindblad resonances with the planet
[108], and they constructively interfere into a one-armed spiral pattern [85],
which begins where the Keplerian flow is supersonic with respect to the planet
[34]. One-sided Lindblad torques are then evaluated as the sum of the torques
arising at each Lindblad resonance. The locations of Lindblad resonances are
shifted with respect to their nominal location (given by the condition of mean-
motion resonance with a test particle) by pressure effects. In particular, reso-
nances with high azimuthal wavenumber have accumulation points at ±2H/3
from the planetary orbit, instead of accumulation at the orbit. This provides a
torque cutoff [2, 33], which can only be evaluated approximately [1]. This ren-
ders fully analytic methods of Lindblad torque calculations only approximate.

2. The torque can be evaluated by solving numerically the linearised equations of
the flow. This approach was initially undertaken by [48], and recently revisited
by [88] and [91].

3. An intermediate approach may be used, in which one solves numerically linear
equations obtained by an expansion of the flow equations in H/r , where H is
the disc thickness [104].

Figure 6.2 illustrates a number of properties of the Lindblad torque that provide
some insight into its scaling with the disc and planet parameters. In this figure, the
torque value has been obtained through the use of analytical formulae similar to that
of [110] (Eqs. (3) to (7) therein), except for the introduction of a softening length
for the planet’s potential, and for the minor correction consisting of the introduction
of a factor Ω/κ in the forcing terms (see [76], after their Eq. (13); κ denotes the
horizontal epicyclic frequency). This figure shows that the torque undergoes a sharp
cutoff past a peak value, which is found to be of order mmax ∼ (2/3)(r/H). Also,
the dashed line shows that, up to the cutoff, the one-sided Lindblad torque approx-
imately scales with m2—as expected from the WKB analysis of [33]—from which
we infer the one-sided Lindblad torque, summed over m, to scale approximately
as m3

max, i.e. as (r/H)3. Besides, the torque naturally scales with the disc’s surface
density and with the square of the planet mass, and dimensional arguments further
imply that it ought to scale as:

Γ0 =Σq2Ω2a4/h3, (6.8)

which is indeed the scaling of the one-sided Lindblad torque [110].
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Fig. 6.2 Torques at individual outer Lindblad resonances (diamonds) and inner Lindblad reso-
nances (triangles), in absolute value. Results are obtained for a disc with aspect ratio H/r = 0.02,
and with a softening length ε = 0.5H for the planet potential. Torques are normalised to the torque
value given by Eq. (6.8). Stars show the average value of the inner and outer Lindblad torques at a
given azimuthal wavenumber m, and the dashed line illustrates its m2 dependence at small m

Figure 6.2 also shows that there exists an asymmetry between the outer and inner
torques, the former being systematically larger than the latter. The reasons for this
asymmetry are examined in depth in [110]. The relative asymmetry is found to scale
with the disc thickness: in thinner discs, the relative asymmetry of the inner and
outer torque is smaller (which can be understood as due to the accumulation points
of the inner and outer resonances lying closer to the orbit). As a consequence, the
differential Lindblad torque scales with:

Γref =Σq2Ω2a4/h2. (6.9)

The asymmetry between the inner and outer torques also depends upon:

• The temperature gradient, since it affects the location of Lindblad resonances, and
therefore the magnitude of the forcing potential at a given resonance [108]. For
instance, a steeper (decreasing) temperature profile decreases the disc’s angular
frequency (by increasing the magnitude of the radial pressure gradient), which
shifts all Lindblad resonances inwards. Outer resonances get closer to the planet
orbit, which strengthens the outer torque, whereas inner Lindblad resonances are
shifted away from the planet orbit, which decreases the inner torque. The net
effect of a steeper temperature gradient is therefore to make the differential Lind-
blad torque a more negative quantity. In the same vein, a shallower temperature
gradient would shift all Lindblad resonances outwards, making the differential
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Lindblad torque a more positive quantity. The differential Lindblad torque may
become positive for positive temperature gradients [110].

• The surface density gradient, which affects the location of Lindblad resonances in
the exact same way as the temperature gradient, but now also because the torque
at a given Lindblad resonance directly scales with the underlying surface density
[108]. A steeper (decreasing) density profile naturally increases the magnitude of
the inner torque compared to that of the outer torque, but this effect is mostly
compensated for by an inward shift of all Lindblad resonances (just like when
steepening the temperature profile, as described above). It implies that the differ-
ential Lindblad torque is quite insensitive to the density gradient near the planet
location.

• The disc’s self-gravity, which also impacts the location of Lindblad resonances,
essentially by changing the wave’s dispersion relation [9, 98].

An accurate determination of the asymmetry between the inner and outer torques
yields a dimensionless factor to be put in front of Γref to give the expression for the
differential Lindblad torque. This issue has triggered a lot of theoretical efforts in
the last three decades, and it is not completely solved yet. As of the writing of this
review, the two main results are:

• An expression obtained by solving numerically the linearised equations of the
flow in 2 dimensions with a softened planet potential, in discs with arbitrary gra-
dients of surface density and temperature [88, 91]. It takes the form:

ΓL

Γref
=−(2.5+ 1.7β − 0.1α)

(
0.4

ε/H

)0.71

, (6.10)

with α and β defined in Eqs. (6.2) and (6.3). The expression in Eq. (6.10) is most
accurate for softening lengths ε ∼ 0.4H .

• An expression obtained by a semi-analytic method for globally isothermal,
3-dimensional discs with arbitrary gradients of surface density [104]:

ΓL

Γref
=−(2.34− 0.10α). (6.11)

We note that Eqs. (6.10) and (6.11) exhibit a similar behaviour (for the case β = 0,
exclusively contemplated by [104]), that is to say a constant term of similar magni-
tude, and a weak dependence on the surface density gradient. Yet, the latter de-
pends strongly on the softening length, as can be noticed by comparing to the
2-dimensional, unsmoothed, globally isothermal expression also provided by [104]:

ΓL

Γref
=−(3.20+ 1.47α). (6.12)

This raises the question of whether the dependence on the temperature gradient,
in a 3-dimensional disc, would be as steep as that of Eq. (6.10). Thus far this is
an unanswered question, even if recent numerical simulations seem to indicate that
the dependence of the differential Lindblad torque on the temperature gradient in
a 3-dimensional disc is comparable to that of a 2-dimensional disc with a smooth-
ing length ε � 0.4H [15]. We also comment that self-gravity slightly enhances the
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amplitude of the differential Lindblad torque by a factor approximately equal to
(1+Q−1

p ), with Qp the Toomre Q-parameter at the planet’s orbital radius [9].
Unless the disc has a temperature profile that strongly increases outward, the dif-

ferential Lindblad torque is a negative quantity which, by itself, would drive type I
migration on timescales shorter than a few ×105 yrs for an Earth-mass object in a
disc with a mass comparable to that of the Minimum Mass Solar Nebula [110]. Note
however that Eqs. (6.10) and (6.11) have been derived under the assumption that the
profiles of surface density and temperature are power laws of the radius. Local vari-
ations in the disc’s temperature and/or density profiles, due for example to opacity
transitions [76] or to dust heating [36] may change the sign and magnitude of the
differential Lindblad torque. An approximate generalisation of the Lindblad torque
expression, valid in non-power law discs, has been derived by [68] for 2-dimensional
discs with a softening length ε = 0.6H . This expression reads:

ΓL

Γref
=−(2.00− 0.16α+ 1.11β − 0.80

[
β+2 − β−2

])
, (6.13)

where

β2 = h
d2 logT

d(log r)2
, (6.14)

and where a quantity with a ± subscript is to be evaluated in r = a ±H/5. Obvi-
ously, if the temperature profile is a power-law of radius, one has β+2 = β−2 = 0, and
Eq. (6.13) reduces to a standard linear combination of α and β .

The differential Lindblad torque has also been investigated in strongly magne-
tised, non-turbulent discs. The case of a 2-dimensional disc with a toroidal magnetic
field has been studied by [105] through a linear analysis. She found that the differ-
ential Lindblad torque is reduced with respect to non-magnetised discs (as waves
propagate outside the Lindblad resonances at the magneto-sonic speed (c2

s +v2
A)

1/2,
with vA the Alfvén speed, rather than the sound speed cs ). Additional angular mo-
mentum is taken away from the planet by the propagation of slow MHD waves in a
narrow annulus near magnetic resonances. These results were essentially confirmed
by [29] with non-linear 2D MHD simulations in the regime of strong toroidal field
(the plasma β-parameter, β = c2

s /v
2
A, was taken equal to 2 in their study). More re-

cently, 2D and 3D disc models with a poloidal magnetic field were investigated by
[81] with a linear analysis in the shearing sheet approximation. While the differen-
tial Lindblad torque is reduced similarly as with a toroidal magnetic field, extraction
of angular momentum by slow MHD and Alfvén waves is found to occur in 3 di-
mensions only.

We sum up the results presented in this section.

• The differential Lindblad torque corresponds to the net rate of angular momentum
carried away by density waves (wakes) the planet generates in the disc at Lindblad
resonances.

• The sign and magnitude of the differential Lindblad torque arise from a slight
asymmetry in the perturbed density distribution associated to each wake.
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• The differential Lindblad torque is a stationary quantity, largely independent of
the disc’s turbulent viscosity. Alone, it would drive the migration of Earth mass
embedded planets in as short a time as a few ×105 yrs in typical protoplanetary
discs.

6.3.2 Corotation Torque

The other component of the tidal torque, the corotation torque, has long been ne-
glected in studies of planetary migration. Firstly, it was shown to have a lower
absolute value than the differential Lindblad torque for typical (decreasing) radial
profiles of the disc’s surface density [104]. Secondly, this torque component, for
reasons that will be presented at length in Sect. 6.3.3, should tend to zero after a fi-
nite time in an inviscid disc (the corotation torque is said to “saturate”). However, as
indicated by [109], some amount of turbulence should prevent the corotation torque
from saturating, and in the last decade the asymptotic value of the torque at large
time in the presence of dissipative processes has been tackled either analytically
[5, 65], by means of numerical simulations [66], or both [70, 92]. Besides, it was
discovered by [86] that in radiative discs, the corotation torque could, under certain
circumstances, be so large and positive that it could largely counteract the differ-
ential Lindblad torque, thereby leading to outward planetary migration. This was
subsequently interpreted as a new component of the corotation torque arising from
the disc’s entropy gradient [8, 69, 88, 91].

The corotation torque on low-mass planets is usually linked to the so-called
horseshoe drag, which corresponds to the exchange of angular momentum between
the planet and its horseshoe region. The planet’s horseshoe region encompasses the
disc region where fluid elements are on horseshoe streamlines with respect to the
planet orbit (see Fig. 6.1). We therefore start by explaining the concept of horseshoe
dynamics and horseshoe drag.

6.3.2.1 Horseshoe Dynamics

In the restricted three-body problem (RTBP), it is useful to write the Hamiltonian
of the test particle in the frame that corotates with the secondary. In this frame, the
potential does not depend explicitly on time and the Hamiltonian H is therefore
conserved. It reads:

H =E −ΩpL, (6.15)

where E is the total energy of the test particle as seen in an inertial frame centred
on the primary, and L its angular momentum. The Hamiltonian of Eq. (6.15) is usu-
ally called the Jacobi constant. A sketch of the lines of constant Jacobi value when
the kinetic energy is zero (E therefore exclusively amounts to the potential energy),
named zero velocity curves (ZVC), reveals the existence of a horseshoe-like region
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Fig. 6.3 Left: streamlines in the vicinity of an Earth-mass planet embedded in a disc with
H/r = 0.05. The softening length of the potential is ε = 0.6H . The thick lines show the sepa-
ratrices of the horseshoe region (the frontiers between the dashed streamlines that exhibit horse-
shoe-like motion and the solid ones corresponding to circulating material with respect to the planet
orbit). A few arrows show the flow’s direction with respect to the planet. The horizontal dashed
line shows the corotation radius, where the angular velocities of the disc and the planet are equal.
Right: effective potential at the corotation radius, as a function of azimuth

encompassing the secondary’s orbit [80]. Furthermore, in the limit of a small sec-
ondary’s mass, the trajectory of the guiding centre of the test particle in this area is
shown to have a radial displacement from the orbit that is twice that of the associated
ZVC [80], so that the guiding centre of a test particle can also exhibit a horseshoe-
like motion in the vicinity of the orbit. In a similar fashion, a gas parcel in a disc
with pressure can exhibit a horseshoe-like motion, very similar to that of the RTBP.
There are, however, important differences between these two cases. Firstly, in the
RTBP, the test particle can exhibit epicyclic motion on top of its global horseshoe-
like trajectory. In the horseshoe region of a low mass planet, where no shocks are
present, the gas parcels cannot cross each other’s orbits, and therefore essentially
follow nearly circular streamlines far from the planet. Secondly, the width of the
horseshoe region is quite different in the two cases. It is much more narrow, for the
same planetary mass, in the gaseous case than in the RTBP. Also, it has a different
scaling with the planetary mass in the two cases: in the RTBP, the width of the horse-
shoe region scales with the cube root of the planetary mass, whereas in the gaseous
case, provided the planet mass is not too large (we will specify how large below),
it scales with the square root of the planet mass. To understand the reasons for this
difference, we depict in the left-hand panel of Fig. 6.3 the streamlines in the vicinity
of the coorbital region of a low-mass planet. The planet is located at radius r = 1,
and azimuth ϕ = 0. The separatrices of the planet’s horseshoe region are depicted by
thick curves. We see that, quite to the contrary of the RTBP, there is no equivalent to
the Roche lobe region around the planet (no circulating fluid material bound to it).
Another difference is that the fixed point (or stagnation point) at which the separa-
trices intersect lies on the orbit (whereas in the RTBP, they intersect at the Lagrange
points, away from the orbit, on a line joining the central star and the planet [80]).
The azimuth of the stagnation point corresponds to the azimuth where, at corotation,
the effective potential (the sum of the gravitational potential and fluid enthalpy) is
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minimum. This is illustrated in the right panel of Fig. 6.3. The sign and value of the
stagnation point’s azimuth is closely related to the asymmetry of the inner and outer
wakes generated by the planet [90]. Note that there may be several stagnation points
near the planet’s corotation radius, depending on the softening length of the planet’s
potential [14].

Assuming that the fluid motion is in a steady state in the vicinity of the planet,
we may use a Bernoulli invariant in the corotating frame [14, 71, 73]. This invariant
can be cast as:

BJ = v2

2
+ η+Φ − 1

2
r2Ω2

p, (6.16)

where v is the fluid velocity in the corotating frame, η the fluid’s specific enthalpy,
Φ the sum of the star’s and the planet’s gravitational potentials, and Ωp the planet’s
angular frequency. Equating the value of the Bernoulli invariant at the stagnation
point (where by definition v = 0), and far from the planet on a separatrix, one finds
the following expression for the half-width xs of the planet’s horseshoe region, away
from the planet:

xs ∝
∣
∣Φp + η′

∣
∣1/2
s

, (6.17)

where Φp is the planetary potential and η′ the perturbation of the gas specific en-
thalpy introduced by the planet. The s subscript on the right hand side of Eq. (6.17)
means that these variables are to be evaluated at the stagnation point. When the
planet mass is sufficiently small, the streamlines are found to be in good agreement
with those inferred from the linear expansion of the perturbed velocity field. Note
that this does not imply that the corotation torque is in general a linear process. As
was shown indeed by [89], the torque exerted by the coorbital material on the planet
eventually becomes non-linear, no matter how small the planet mass is, provided
dissipative effects are sufficiently small. However, the fact that important non-linear
processes take place in this region hardly affects the streamlines themselves. In this
low-mass regime, the stagnation point has therefore a location independent of the
planet mass, necessarily at the corotation radius. In that case, the effective perturbed
potential Φp + η′ scales with the planet mass (Mp), and Eq. (6.17) implies that

xs ∝M
1/2
p . This is no longer true when the location of the stagnation point depends

on the planet mass. In particular, in the high-mass regime, the planet gravity domi-
nates over the perturbed enthalpy, and the situation resembles that of the RTBP. The
Bernoulli invariant at the inner and outer stagnation points (which are L1-like and
L2-like, respectively) is dominated by the planetary potential term and so scales as
Mp/RH , where RH = a(Mp/M$)

1/3 is the planet’s Hill radius. In the high-mass
region, the width of the horseshoe region therefore scales with the cubic root of the
planet mass, as in the RTBP [73].

Lastly, another important difference between the RTBP and the case of a low-
mass embedded planet is that of the U-turn timescale. Firstly, it should be noted
that the expression U-turn timescale is ambiguous, for it depends on the horseshoe
streamline under consideration. The closer to corotation, the longer it takes to per-
form a horseshoe U-turn, and the U-turn time reaches its minimum value close to
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the separatrix. It is usually this minimum value that is meant by the ambiguous ex-
pression U-turn timescale. Note that the corotation torque nearly reaches a constant
value (notwithstanding saturation considerations, that we shall contemplate later)
after this timescale, as it corresponds to the fluid elements that most contribute to
the torque, because their angular momentum jump is the largest, and because their
mass flow-rate is large.

In the RTBP, the U-turn timescale is of the order of the dynamical timescale τdyn,
i.e. a planet orbital period. If one regards, in a crude approximation, the case of a
low-mass embedded planet as an expurgated version of the RTBP, where most of
the initial horseshoe streamlines are made circulating, and where only those lying
close to corotation keep their horseshoe character, one expects the U-turn timescale
in this case to be significantly longer than the dynamical timescale. This is indeed
the case: the U-turn timescale is approximately hpτlib [8], with hp the disc’s aspect
ratio at the planet’s orbital radius, and where τlib is the libration timescale, i.e. the
time it takes to complete a closed horseshoe trajectory. The libration timescale reads

τlib = 8πa

3Ωpxs
. (6.18)

An alternate, equivalent expression for the U-turn timescale is τU-turn ∼ τdynH/xs ,
which is corroborated by numerical simulations in which one monitors the advec-
tion of a passive scalar. This expression shows that the U-turn timescale can indeed
be longer than the dynamical timescale by a significant factor, as xs can be much
smaller than H for deeply embedded, low-mass objects.

We sum up the results presented in this section:

• The coorbital region of a low-mass embedded planet in a gaseous disc exhibits a
horseshoe-like region.

• This region is much more narrow than in the restricted three-body problem, and
its radial width scales with the square root of the planetary mass.

• The stagnation points are located at the corotation radius. There is no equivalent
to the Roche lobe region for low-mass objects.

• The horseshoe U-turn timescale is significantly longer than the dynamical
timescale.

6.3.2.2 Horseshoe Drag: An Overview

Far from the horseshoe U-turns in the vicinity of the planet, a fluid element or test
particle essentially follows a nearly circular orbit, and therefore has a nearly constant
angular momentum. When it reaches a U-turn, a fluid element is either sent inward
or outward, thereby crossing the planet orbit. It does so by exchanging angular mo-
mentum and energy with the planet. The torque resulting from the interaction of the
planet with all the fluid elements in the course of performing their horseshoe U-turn
is called horseshoe drag [109].

Upon insertion of the planet in the disc, it takes some time to establish the horse-
shoe drag, namely a time of the order of the horseshoe U-turn timescale [89]. This



214 C. Baruteau and F. Masset

Fig. 6.4 Time evolution of the total torque (sum of the differential Lindblad torque and corotation
torque) on a Mp = 10−6M$ planet mass embedded in an inviscid isothermal disc. The black curve
(bottom x-axis) shows the torque evolution over 2000 planet orbits, while the grey curve (top
x-axis) focuses on the evolution over the first 100 planet orbits. The dashed line shows the value
of the differential Lindblad torque, and the dotted curve highlights the corotation torque predicted
with a linear analysis. Taken from [68]

is illustrated in Fig. 6.4, which displays the time evolution of the total torque on
a Mp = 10−6M$ mass planet embedded in a thin (h = 0.05) isothermal disc with
uniform density profile. The disc is inviscid in this example. Once established (af-
ter ∼ 30 planet orbits in our example), the horseshoe drag remains approximately
constant over a longer timescale, which corresponds to the time it takes for a fluid
element to drift from one end of the horseshoe to the other (that is, about half a
libration time, given by Eq. (6.18)). The value of the horseshoe drag that exists be-
tween the horseshoe U-turn time, and half the horseshoe libration time, is called
the unsaturated horseshoe drag. Beyond this stage, subsequent U-turns may cause
further time evolution of the horseshoe drag depending on the disc viscosity, which
will be described in Sect. 6.3.3. In the particular case depicted here, where the disc
is inviscid, the horseshoe drag eventually saturates (it cancels out) after a few libra-
tion timescales. Until Sect. 6.3.3, we focus on the properties of the fully unsaturated
horseshoe drag.

6.3.2.3 Horseshoe Drag in Barotropic Discs

A hint of the torque exerted by the coorbital material on the planet can be obtained
by the examination of the perturbed surface density. Nonetheless, this examination
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Fig. 6.5 Perturbed surface density in the coorbital region of an Earth-mass planet in a disc with
h= 0.05 and α = 0 (uniform background surface density). The planet is located at r = 1, ϕ = 0.
The solid curves show the separatrices of the planet’s horseshoe region. In order to remove the
planet’s wakes and to render this map more legible, we have subtracted the density perturbation
obtained in a situation where no corotation torque is expected (namely α = 3/2, as will be shown
below). This cancellation is imperfect, however, as the wakes of the two cases are not strictly
identical

is rather difficult, because the density perturbation in the planet’s coorbital region is
very small, typically one or two orders of magnitude smaller than the density per-
turbation associated to the wakes. Yet, as can be seen in Fig. 6.5, an approximate
subtraction of the wakes density perturbation reveals two regions of opposite signs:
a region of positive perturbed density ahead of the planet (φ > 0) and a region of
negative perturbed density behind the planet (φ < 0), which both yield a positive
torque on the planet. The sign of the perturbed density in the coorbital region de-
pends on the background density profile, here it is uniform (α = 0). The largest per-
turbations can be seen to originate near the downstream separatrix in either case (the
outer separatrix at negative azimuth, and the inner separatrix at positive azimuth),
but the perturbation is spread radially and extends much beyond the horseshoe re-
gion. This is to be expected on general grounds: in a barotropic disc, where the gas
pressure depends only on its mass density, any disturbance near corotation excites
evanescent pressure waves, which extend typically over the disc pressure length
scale (here H = 0.05a).

Even if some insight into the corotation torque can be gained by the examination
of the perturbed density maps, a much more useful quantity is the vortensity (the
ratio of the vertical component of the vorticity to the surface density, also known
as potential vorticity), which is materially conserved away from shocks in inviscid,
barotropic, 2-dimensional discs. This is illustrated in Fig. 6.6. Ward [109] has evalu-
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Fig. 6.6 Advection of vortensity in the horseshoe region of an embedded, low-mass protoplanet.
As in previous panels, the planet is at r = 1, ϕ = 0, and the separatrices of the planet’s horseshoe
region are depicted by white curves. The unperturbed disc’s vortensity decreases with radius. The
(high) vortensity in the inner side of the horseshoe region (at ϕ < 0, r < 1) is brought to the outer
side (at ϕ < 0, r > 1) by the outward U-turns behind the planet. Similarly, the (low) vortensity in
the outer side of the horseshoe region (at ϕ > 0, r > 1) is brought to the inner side (at ϕ > 0, r < 1)
by the inward U-turns ahead of the planet

ated the torque exerted on the planet by test particles embarked on horseshoe motion,
by making use of the Jacobi invariant of these particles (see Sect. 6.3.2.1). A similar
calculation can be performed for fluid motion, provided one uses a Bernoulli invari-
ant by adding the enthalpy to the Jacobi constant [14, 71]. In both cases one finds
that the horseshoe drag has the following expression:

ΓHS = 8|A|B2a

[∫ xs

−xs

(
Σ

ωz

∣
∣
∣
∣
F

−Σ

ωz

∣
∣
∣
∣
R

)

x2 dx

]

, (6.19)

where x denotes the radial distance to the planet orbit. In Eq. (6.19), the subscript
F indicates that the (inverse of) the vortensity Σ/ωz has to be evaluated away from
the planet, in Front of the latter (φ > 0), and the subscript R indicates that it has
to be evaluated at the Rear of the planet, away from it (φ < 0). The integral in
Eq. (6.19) is usually called the horseshoe drag integral, and in a barotropic disc it
can be simplified to yield the following expression [14, 70, 91]:

ΓHS = 3

4
ΣV Ω2

px
4
s , (6.20)
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where the quantity V , called the (inverse) vortensity gradient for short, is defined
by

V = d log(Σ/B)

d log r
, (6.21)

and can be recast as 3/2−α for density profiles that can be approximated as power-
law functions of radius over the radial width of the planet’s horseshoe region. In
Eq. (6.20), all terms are to be evaluated at the planet’s orbital radius. This equation
shows that in 2-dimensional barotropic discs, the horseshoe drag cancels out when
the surface density profile decreases locally as r−3/2, while it is positive for density
profiles shallower than r−3/2. For density profiles strongly increasing outward, the
horseshoe drag can be sufficiently positive to counteract the (negative) differential
Lindblad torque, and therefore stall the migration of low-mass planets [74]. Such
density jumps may be encountered near the star’s magnetospheric cavity, or near
the inner edge of a dead zone, across which the disc’s effective turbulence decreases
outward (the dead zone refers to the region near the midplane of protoplanetary
discs that is sandwiched together by partially ionised surface layers).

The horseshoe drag expression in Eq. (6.20) exclusively holds in the case of
barotropic discs. Those, naturally, are an idealised concept, and true discs have a
more complex physics, which yields a more complex expression for the corotation
torque. However, in any case, as we shall see, a common component of the corota-
tion torque is given by Eq. (6.20), so that baroclinic effects yield additional terms to
this expression.

We sum up the results presented in this section. In 2-dimensional barotropic
discs, where the gas pressure only depends on the surface density:

• The horseshoe drag is powered by the advection of the fluid’s vortensity along
horseshoe streamlines inside the planet’s horseshoe region.

• It is proportional to the inverse vortensity gradient across the horseshoe region
(that is, the quantity 3/2+ d logΣ/d log r for power law discs). It can therefore
be negative, zero, or positive depending on the surface density gradient across the
horseshoe region. For typical discs density and temperature profiles, its magni-
tude is smaller than that of the (negative) differential Lindblad torque.

6.3.2.4 Horseshoe Drag in Locally Isothermal Discs

A long considered framework, both in analytical and numerical studies is that of
locally isothermal discs, in which the temperature is a fixed function of radius. No
energy equation is considered in this case, but the flow is no longer barotropic: the
pressure becomes a function of the density and position (through the temperature).
The vortensity is no longer materially conserved. Its Lagrangian derivative features
a source term arising from misaligned density and pressure gradients, or misaligned
temperature and density gradients [60]:

D

Dt

( �ωz

Σ

)

= ∇Σ ×∇P
Σ3

= ∇Σ ×∇T
Σ2

. (6.22)
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Fig. 6.7 Vortensity field in the coorbital region of a low-mass planet (left) and radial profile of
vortensity at φ = +0.5 rad (right), 30 orbital periods after the insertion of the planet. The disc
has no background vortensity gradient, and a flat aspect ratio H/r = 0.05. Thin stripes of vorten-
sity of opposite signs are clearly visible at the downstream separatrices. One can also see a mild
production of vortensity in the wake, which fades away as one recedes from corotation, because
of the winding of the wake and because fluid elements move faster away from corotation. Con-
trary to the adiabatic case that we shall present in Sect. 6.3.2.5, the vortensity cut is not singular
at the separatrix, as can be seen in the right panel. The radial resolution in the run presented is
9.3× 10−5a

As the temperature gradient has a radial direction and sensibly the same magnitude
everywhere in the coorbital region, the strength of the source term depends on the
density gradient: wherever the azimuthal density gradient is large, the source term
is large. This occurs at the tip of the horseshoe U-turns where we have a strong
azimuthal density gradient owing to the density enhancement in the planet’s imme-
diate vicinity. The time derivative in Eq. (6.22) can be expressed as a derivative with
respect to the curvilinear abscissa s along the streamline:

D

Ds

( �ωz

Σ

)

= ∇Σ ×∇T
vΣ2

, (6.23)

where v is the norm of the fluid velocity in the corotating frame, where we have
used ds = v dt . As the fluid stagnates in the vicinity of the stagnation point (i.e.
v can be arbitrarily small, provided one chooses a streamline sufficiently close to
the stagnation point), the source term of Eq. (6.23) formally diverges in the vicinity
of the stagnation point. The total amount of vortensity created, integrated over the
horseshoe streamlines, however, remains finite. Figure 6.7 shows a vortensity map in
the vicinity of a low-mass planet for a disc with α = 3/2 (no background vortensity
gradient) and β = 1 (uniform aspect ratio).

Thus far there is no rigorous mathematical proof that the horseshoe drag expres-
sion of Eq. (6.19) still holds in locally isothermal discs, as all demonstrations of that
expression rely on the existence of a Bernoulli invariant, which does not exist in
the locally isothermal case. Yet, data from numerical simulations suggest that this
expression is still valid in that regime. Assuming its validity from now on, we in-
fer that the horseshoe drag must exhibit a dependence on the temperature gradient.
The rational for this being that the outgoing vortensity, accounted for by the horse-
shoe drag integral, includes the vortensity produced in the vicinity of the planet,
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which depends on the temperature gradient. 2-dimensional numerical simulations
have confirmed the existence of an additional component of the corotation torque
that depends on the temperature gradient [6, 14, 91]. The sign and value of this
temperature-related corotation torque have a complex, and rather steep dependence
with the softening length of the planet’s potential [14]. Indeed, the topology of the
horseshoe region depends heavily on the softening length: at large softening lengths,
only one X-stagnation point is observed at corotation, in the planet vicinity, whereas
at low softening lengths, two X-stagnation points are usually observed at corotation,
on either side of the planet [14, 90]. The vortensity produced along a streamline de-
pends on the path followed by the streamline. This situation is therefore much more
complex than in the barotropic case or the adiabatic case that we present below, in
which the existence of invariants under certain circumstances allows to get rid of
the dependence on the actual path followed by fluid elements during their U-turns.
Quite ironically, the locally isothermal case, which has served as a standard frame-
work for more than two decades, is very difficult to tackle analytically.

The steep dependence of the temperature related corotation torque on the soften-
ing length appeals for a 3-dimensional study of this torque, which is not plagued
by softening issues. Such study has been undertaken by [15], who find a lin-
ear dependence of the 3-dimensional horseshoe drag on the temperature gradient
β =−d logT/d log r , as steep as the dependence on the vortensity gradient V given
by Eq. (6.20).

6.3.2.5 Horseshoe Drag in Adiabatic Discs

In the previous sections, the set of governing equations of the fluid did not include
an energy equation, and the disc temperature, which was set as a prescribed function
of radius, did not evolve in time. The first calculations undertaken with an energy
equation were those of [79] and [86]. The former were devised in the shearing sheet
framework, so that no net torque could be experienced by the planet, owing to the
symmetry properties of the shearing sheet. Still, these authors found that radiative
cooling could significantly affect the perturbed surface density pattern associated
with the wakes, thus changing the magnitude of the one-sided Lindblad torque.
Paardekooper and Mellema [86] considered a planet in a 3-dimensional disc, with an
energy equation and thermal diffusion, and nested grids around the planet to achieve
a very high resolution. They found that the migration of a low-mass planet could be
reversed in sufficiently opaque discs, under the action of the corotation torque. The
same result was in particular obtained in the adiabatic limit, which we are now going
to focus on, as thermal diffusion yields an additional complexity, not needed at this
stage. We will take thermal diffusion and other dissipative processes into account in
Sect. 6.3.3.

It was soon realised that the results of [86] were due to a new component of
the corotation torque, linked to the entropy gradient [8, 88]. This is illustrated in
Fig. 6.8, in which we compare the torque results for 69 different random disc profiles
(the density slope α being a random variable uniformly distributed over the interval
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Fig. 6.8 Torque difference between the adiabatic and locally isothermal cases, given by Eq. (6.24),
as a function of the entropy gradient (right panel), at early times (linear stage, triangles) and during
the horseshoe drag stage (diamonds). The quantity S in x-axis is defined in Eq. (6.30). Results
have been obtained with calculations with random values of the surface density slope (−α) and
temperature slope (−β), shown in the left plot. The total number of runs is 138

[−3/2,+3/2], and the temperature slope β being an independent random variable
uniformly distributed over the interval [−2,+2]). Each calculation has a smoothing
length of the planet’s potential ε = 0.3H , and an aspect ratio at the planet location
hp = 0.05.

For each pair of α and β , we ran two calculations: a locally isothermal one, and
an adiabatic one with a ratio of specific heats γ = 1.4. The torque difference, dubbed
adiabatic torque excess, is then obtained by:

�Γ entr
HS = Γad − Γiso

γ
. (6.24)

The correction of the isothermal torque Γiso by a factor γ−1 is necessary as both
the differential Lindblad torque and the barotropic part of the horseshoe drag (the
vortensity-related corotation torque) scale with the inverse square of the sound
speed, which turns out in the adiabatic case to be cadi

s = ciso
s γ 1/2. The right part

of Fig. 6.8 shows a clear one-to-one relationship between the adiabatic torque ex-
cess and the entropy gradient, irrespective of the individual values of α and β , which
justifies the name entropy-related corotation torque given to the adiabatic torque ex-
cess. This torque is shown in two different regimes: the linear regime, soon after the
insertion of the planet in the disc, and the horseshoe drag regime, reached after a
longer timescale, as discussed in previous sections. As pointed out by [88], the non-
linear corotation torque can be much larger (in this example, by a factor of about 5)
than its linear counterpart, depending on the planet’s softening length.

An interpretation of the entropy-related corotation torque was given soon after
its discovery by [8] and [88]. Although this early interpretation was shown not be
quite correct when the horseshoe drag expression in the adiabatic case was worked
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Fig. 6.9 Surface density perturbation in the planet’s coorbital region of an adiabatic disc (left) and
perturbation of entropy (right). The sign of the density lobes is opposite that of the entropy lobes.
In addition to the lobes, the left plot also shows the wake, saturated in this representation. The
background entropy profile increases with radius in this example

out subsequently, we describe it here briefly as the mechanism on which it is based
allows for a clear understanding of the correct origin of the entropy torque.

In an adiabatic disc, the entropy is materially conserved along the path of fluid
elements, as long as they do not cross shocks, in a strict analogy with vortensity
for barotropic flows. If we assume, for instance, a disc that has a positive radial
entropy gradient prior to the planet insertion, outward horseshoe U-turns (behind the
planet) bring to the outer side of the horseshoe region the low entropy of the inside.
Similarly, inward horseshoe U-turns (ahead of the planet) bring to the inner side of
the horseshoe region the high entropy of the outside. As the disc maintains a pressure
equilibrium, the relative variations of the pressure across the coorbital region can be
neglected, so that the surface density features relative variations opposite to that of
the entropy, by virtue of the first order expansion of Eq. (6.1):

γ
δΣ

Σ
+ δs

s
= δP

P
≈ 0. (6.25)

As a consequence, two lobes of perturbed surface density appear in the horseshoe
region [8, 45, 47, 88], that both yield a torque of same sign. These two lobes are
shown in Fig. 6.9.

The early interpretations identified the entropy related torque as the torque aris-
ing from the above density lobes. This explanation was appealing at first, because it
gives the correct sign for the entropy related corotation torque, and the correct or-
der of magnitude: [8] performed an approximate, horseshoe-drag like integration to
evaluate the impact of these lobes on the torque, whereas [88] performed an approx-
imate direct summation. Both results were in rough agreement with the magnitude
of the adiabatic torque excess, at least for the value of the potential softening length
used in these studies. Yet, this explanation of the entropy torque quickly turned out
not to be fully satisfactory, for the following reasons:

• Numerical explorations performed at different smoothing values showed that the
entropy torque was approximately scaling as ε−1, down to very low values of the
smoothing length (ε ∼ 0.05H ). This apparent divergence of the entropy torque
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at low smoothing was incompatible with a scaling of the torque in x4
s , since the

half-width xs of the horseshoe region remains finite in the limit of a vanishing
softening length [90].

• The saturation of the entropy torque was also problematic. We will examine sat-
uration processes in detail in Sect. 6.3.3, but for our purpose it suffices to know
that the corotation torque always saturates in inviscid discs, that is to say tends to
zero after a few libration timescales (as we have seen in Fig. 6.4). Therefore, one
could devise a setup with an inviscid disc and finite thermal or entropy diffusion,
which would forever maintain the same entropy perturbation within the horse-
shoe region (finite thermal diffusion is required in order to avoid phase mixing of
entropy, as we shall see in Sect. 6.3.3.2). As expected, the entropy related coro-
tation torque is found to saturate as the disc is inviscid, while the (approximate)
same density lobe structure is maintained within the horseshoe region [70]. This
implies the density lobe structure would exert a torque at early times, but not at
late times, which is contradictory.

• Finally, as we have seen in Sect. 6.3.2.3, the density perturbation responsible for
the corotation torque is not bound to the horseshoe region, but can extend fur-
ther radially by the excitation of evanescent waves. In the barotropic case, the
vortensity-related horseshoe drag is actually fully accounted for by an evanescent
density distribution within the coorbital region. In the adiabatic case, attributing
the entropy torque (i.e. the whole difference between an adiabatic and an isother-
mal calculation) to the density lobes was therefore tantamount to assuming that
the evanescent wave structure in the coorbital region was the same in the adiabatic
and isothermal cases, which is not obvious.

The identification of a convenient invariant of the flow for adiabatic discs with
uniform temperature profile allowed [69, 70] to demonstrate that the horseshoe drag
expression was exactly the same as that of the barotropic case, given by Eq. (6.19).
In this case, the evaluation of the horseshoe drag amounts again to a budget of the
vortensity entering or leaving the vicinity of the planet on horseshoe streamlines. An
important consequence of this is that the torque due to the density lobes must not
be incorporated manually, separately, into the corotation torque expression, and the
whole problem of determining the horseshoe drag amounts to an evaluation of the
vortensity distribution within the horseshoe region. Before we clarify this point, we
stress that the vortensity distribution within the horseshoe region has the following
features:

• Since the flow is baroclinic, vortensity is not materially conserved along stream-
lines. However, contrary to the locally isothermal case, the existence of a flow
invariant in adiabatic discs with flat temperature profile allows an estimate of the
vortensity acquired by a streamline during a U-turn, independently of its actual
path [69].

• The vortensity created over the interior of the horseshoe region is very small, and
has no impact on the torque, because it has same sign on both sides of the planet
[69, 91].
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Fig. 6.10 Vortensity map in the coorbital region of an Earth-mass planet embedded in an adia-
batic disc with H = 0.05 at the orbital radius of the planet (left), and radial profile of vortensity
at φ = 0.5 rad. (right), 60 orbital periods after the insertion of the planet in the disc. The grid
resolution and disc gradients are the same as in Fig. 6.7 (α = 3/2, β = 0). The vortensity peak has
a much more compact profile than that of Fig. 6.7. This is to be expected as we have a singular
vortensity sheet in the adiabatic case, and a continuous one, peaked at the separatrix, in the locally
isothermal case

• The main difference arises from a (formally) singular production of vortensity
(or vorticity) on downstream separatrices, due to the entropy discontinuity at this
location (which results from the entropy advection within the horseshoe region).
This (formally) singular production of vortensity is readily apparent in the source
term of Eq. (6.22), and is illustrated in Fig. 6.10. It can be evaluated analytically
either using the flow invariant introduced in [69], or directly using Eq. (6.22) as
in [91]. The first approach is self-contained and yields the amount of singular
vortensity as a function of the flow properties at the stagnation point. The second
is not restricted to flat temperature profiles, but it requires knowledge of the fluid
velocity along horseshoe streamlines, which depends on the exact geometry of the
horseshoe region, much like in locally isothermal discs discussed in Sect. 6.3.2.4.

We now clarify the contribution of the density lobes to the corotation torque. The
corotation torque is directly related to the density perturbation within the corotation
region, which can be written as

δΣ

Σ
= 1

γ

(
δP

P
− δs

s

)

, (6.26)

where, counter to Eq. (6.25), we shall not assume δP = 0. The pressure perturbation
δP can be shown to satisfy a second-order partial differential equation [69], with
solution of the form:

δP

P
= γK ∗ δu

u
, (6.27)

where u= s1/γ ×Σ/ωz, K ∝ exp(−|x|/H) is a Green kernel normalised to unity
(
∫
K(x)dx = 1, with x the radial distance to the planet orbit), and H is the
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local pressure scale height. Further denoting the inverse vortensity by l = Σ/ωz,
Eqs. (6.26) and (6.27) yield

δΣ

Σ
=K ∗

(
δl

l
+ 1

γ

δs

s

)

− 1

γ

δs

s
. (6.28)

The first term on the right-hand side of Eq. (6.28) corresponds to the perturbed
surface density associated to evanescent pressure waves (like in the barotropic case,
where it reduces to K ∗δl/ l), and the second term to the density lobes resulting from
entropy advection. Since the convolution by the unitary function K in Eq. (6.28)
does not change the linear mass of the perturbation (

∫
δΣ(x)dx), the corotation

torque is the same as if, in the expression for the density perturbation in Eq. (6.28),
the convolution product were actually discarded [69]. In the barotropic case for in-
stance, this leads to the torque expression given by Eq. (6.19). In the adiabatic case,
it shows that, counter-intuitively, the density lobes exert no net corotation torque.
This further explains why, akin to the barotropic case, the calculation of the coro-
tation torque comes to evaluating the vortensity distribution within the horse shoe
region. Since the main difference in the vortensity field between the adiabatic and
barotropic cases is the appearance of a singular sheet of vorticity at the downstream
separatrices, and given that the magnitude of this sheet scales with the entropy gra-
dient, this singular vorticity sheet can be unambiguously identified as the origin of
the entropy-related torque.

Upon evaluation of the magnitude of the vorticity sheet at the separatrices, [69]
inferred the following expression for the entropy-related corotation torque:

�Γ entr
HS =−1.3S

ε/H
ΣΩ2

pq
2a4h−2, (6.29)

where the above expression has been derived in the framework of a flat tempera-
ture profile, and assuming a ratio of specific heats γ = 1.4. In Eq. (6.29), all disc
quantities are to be evaluated at the planet’s orbital radius, and the quantity S is
defined by

S = 1

γ

d log s

d log r
, (6.30)

and can be recast as [β + (γ − 1)α]/γ for surface density and temperature pro-
files that can be approximated as power-law functions of radius over the planet’s
horseshoe region.

Considering discs with arbitrary temperature profiles, [91] also evaluated the pro-
duction of vortensity at downstream separatrices, which required estimating the ve-
locity along streamlines through a fit of numerical simulations. Unlike [69], they
manually added the torque contribution from the density lobe structure. In the end,
the latter remains small compared to the torque contribution from the singular sheet
of vorticity. This explains why, overall, the derivations of the entropy-related coro-
tation torque by [69] and [91] are in broad numerical agreement, within 30 %.

The generalisation to an arbitrary temperature profile of Eq. (6.29) cannot be
tackled fully analytically, much as in the locally isothermal case. Yet, Eq. (6.24)
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shows that the adiabatic corotation torque is the sum of the entropy related term,
given by Eq. (6.29), and the locally isothermal corotation torque (corrected by a
factor γ ). The latter is itself made up of two terms, as we have seen in Sects. 6.3.2.3
and 6.3.2.4. The corotation torque is therefore, in a general situation, the sum of
three terms:

• The vortensity related torque, proportional to the vortensity gradient, and given
by Eq. (6.20).

• The temperature related torque, proportional to the temperature gradient, dis-
cussed in Sect. 6.3.2.4.

• The entropy related torque, proportional to the entropy gradient, given by
Eq. (6.29).

It can be observed that there are only two degrees of freedom for the disc pro-
files (the density and temperature gradients α and β , or the vortensity and entropy
gradients V and S , etc.), so that for a specific setup one may simplify the torque
expression as a linear combination of the two independent parameters. This simpli-
fication is not desirable, however, because it blurs the distinct physical origin and
characteristic of each of the three terms. Besides, one can disentangle these three
terms by varying parameters such as the smoothing length ε or the ratio of specific
heats γ . Any simplification of the torque expression is thus highly setup dependent.

Finally, we summarise the main message to take away about the corotation
torque.

• In all cases it features a term that scales with the gradient of vortensity across
the horseshoe region, given by Eq. (6.20). It has one or two additional terms,
depending on whether an energy equation is taken into consideration. The first of
those scales with the temperature gradient, and if an energy equation is included,
there is a second one that scales with the entropy gradient.

• In all cases the corotation torque comes from the vortensity distribution in the
horseshoe region. The additional contributions arise from the vortensity created
by the temperature gradient and/or the entropy gradient.

6.3.3 Saturation Properties of the Horseshoe Drag

We have described in Sect. 6.3.2 the physical origin and properties of the corotation
torque in inviscid discs, with a special emphasis on the fully unsaturated horseshoe
drag, which is the maximum value the corotation torque may take. This value is
obtained about one horseshoe U-turn timescale after the planet insertion in the disc,
and is maintained over about half a libration timescale. Its sign and magnitude are
determined by the gradients of vortensity, temperature and entropy across the horse-
shoe region.

In the absence of diffusion processes, after about half a libration timescale, the
vortensity and entropy advected along the downstream separatrices of the horseshoe
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region reach the planet again, undergo another U-turn, and phase mixing starts to oc-
cur. Vortensity and entropy are progressively stirred up within the horseshoe region,
and the horseshoe drag oscillates with time with a decreasing amplitude, as shown
in Fig. 6.4. The horseshoe drag ultimately cancels out as both vortensity and entropy
get uniformly distributed after several libration times [70, 92]. This is known as the
horseshoe drag saturation.

Diffusion processes (viscosity, thermal diffusion) may maintain respectively the
vortensity and entropy gradients across the horseshoe region, and thus sustain the
horseshoe drag to a non-vanishing value. We review below the saturation proper-
ties of the horseshoe drag in barotropic discs (Sect. 6.3.3.1) and in radiative discs
(Sect. 6.3.3.2).

6.3.3.1 Saturation Properties of the Vortensity-Related Horseshoe Drag
in Barotropic Viscous Discs

In barotropic discs, the horseshoe drag saturates as vortensity is strictly advected
along horseshoe streamlines. Viscosity acting as a diffusion source term in the
vortensity equation can sustain a non-zero vortensity gradient across the horse-
shoe region. The vortensity-related horseshoe drag then attains a steady-state value,
which arises from a net exchange of angular momentum between the horseshoe
region and the rest of the disc [65, 66]. This steady-state value depends on how
the viscous diffusion timescale across the horseshoe region (τvisc) compares with
the horseshoe libration timescale (τlib) and the horseshoe U-turn timescale (τU-turn).
Denoting by νp the kinematic viscosity at the planet location, τvisc ∼ x2

s /νp . The
libration timescale is given by Eq. (6.18), and the U-turn timescale is typically a
fraction H/r of the libration timescale [8].

For the corotation torque to remain close to its maximum, fully unsaturated value
in the long term, the inequality

τU-turn ≤ τvisc ≤ τlib/2 (6.31)

should be verified. When the second inequality is satisfied, the vortensity at the up-
stream separatrices is kept stationary, which prevents phase mixing of vortensity
within the horseshoe region [5, 65]. When the first inequality is satisfied, vortensity
is approximately conserved along U-turns, which maximises the effective vorten-
sity gradient across the horseshoe region [66, 70, 92]. Taking xs ∼ 1.1a

√
q/hp (as

measured with a planet softening length ≈ 0.6H ), inequality (6.31) may be cast as

0.32q3/2h
−7/2
p ≤ αv,p ≤ 0.16q3/2h

−9/2
p , (6.32)

where αv,p and hp denote the disc’s alpha viscosity and aspect ratio at the planet
location, respectively. The alpha viscosity for which the corotation torque takes its
maximum value can be approximated as 0.16q3/2h−4

p [7].
The saturation properties of the corotation torque are illustrated in Fig. 6.11 for a

2 Earth-mass planet embedded in a thin (hp = 0.05) viscous disc. The background
temperature profile is uniform, and the surface density decreases as r−1/2. The
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Fig. 6.11 Top: steady-state torque on a Mp = 6 × 10−6M$ planet mass embedded in a thin
(h= 0.05) disc for various alpha viscous parameters at the planet location. In this series of runs,
α = 1/2 and β = 0. Different saturation regimes of the corotation torque are illustrated, depend-
ing on how the viscous timescale across the planet’s horseshoe region (τvisc) compares with the
horseshoe U-turn timescale (τU-turn) and the libration timescale (τlib). The final torque value in an
inviscid case, which reduces to the differential Lindblad torque, is shown by a dashed line. The
fully unsaturated total torque (differential Lindblad torque plus fully unsaturated horseshoe drag)
in an inviscid run is depicted by a dotted line. Bottom: vortensity distribution inside the planet’s
horseshoe region for the three alpha viscosities shown by squares in the top panel (viscosity in-
creases from left to right). The separatrices of the horseshoe region are depicted by solid curves,
and the planet position by a filled circle

top panel displays the steady-state torque at different alpha viscosities (a constant
kinematic viscosity ν was used in the simulations). The left-hand term in inequal-
ity (6.32) is ≈ 1.7 × 10−4, while the right-hand term in ≈ 1.7 × 10−3, and it is
clear from Fig. 6.11 that the corotation torque is maximum between these two alpha
viscosities. When the viscosity is small enough so that τvisc � τlib, viscosity is inef-
ficient at restoring the vortensity gradient across the horseshoe region, and the horse-
shoe drag takes very small values (it saturates). At very large viscosities, such that
τvisc � τU-turn, the corotation torque plateaus at its value in the linear regime [89].
The vortensity distribution inside the horseshoe region for each saturation regime
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is shown in the bottom panels of Fig. 6.11. In the left panel, αv,p ∼ 10−6, and the
steady-state vortensity distribution within the horseshoe region is uniform, result-
ing in a vanishing corotation torque. In the middle panel, αv,p ∼ 10−4 maintains a
maximum vortensity contrast between the rear and front parts of the planet, with
the consequence that the corotation torque is close to its fully unsaturated value.
In the right panel, αv,p ∼ 10−2 imposes the initial (unperturbed) vortensity profile
along the horseshoe U-turns, and the horseshoe drag therefore reduces to the linear
corotation torque.

All attempts to capture analytically the saturation of the corotation torque have
been carried out using a simplified streamline model that assumes the drift of the
coorbital material with the velocity of the unperturbed disc, and which does not re-
solve spatially nor temporally the U-turns. This model was proposed in [65] and
in a more formal manner in [70], where a numerical implementation of it is also
described. All analytic works on the corotation torque saturation, whether they pro-
vide an asymptotic torque value [65, 70, 92] or they capture the time dependence
of the torque in an inviscid disc [111] make use of this simplified model. Solving
for the torque asymptotic value in this simplified advection-diffusion model can be
tacked in a variety of ways. One such way consists of neglecting the azimuthal vari-
ation of the vortensity so as to reduce the advection-diffusion problem essentially
to a 1-dimensional radial problem. This is the approach of [65] and [92]. These two
works are quite different in their assumptions, and suffer from orthogonal restric-
tions:

• Masset [65] exclusively contemplates the case of a disc with flat profiles of sur-
face density and kinematic viscosity, so that his results must be rescaled by hand
to apply to a general case. The approach used in this work considers the global
angular momentum budget of the trapped horseshoe region, and relies upon the
evaluation of the viscous friction of the disc on the separatrices. It also takes into
account the viscous drift of material across the horseshoe region.

• Paardekooper et al. [92] consider a disc with an arbitrary surface density gradient,
and directly use the horseshoe drag integral of Eq. (6.19). Their model assumes
no radial drift of disc material across the horseshoe region.

Quite remarkably, these two approaches yield the exact same result, which can be
cast either in terms of Airy functions [65] or in terms of Bessel functions [92].

One can also solve the advection-diffusion equation satisfied by the fluid’s
vortensity in 2 dimensions, the solution being exact in the limit of a small viscos-
ity. In this limit, the problem amounts to an alternation of convolutions (viscous
diffusion of vortensity between two successive horseshoe U-turns) and reflections
(mapping of vortensity—or, vortensity conservation—from one tip of the horseshoe
region to the other during a U-turn). This is the approach of [70], who also discard
the possible radial drift of disc material across the horseshoe region. The depen-
dence thus obtained—Eq. (119) of [70]—is broadly the same as that of [65] and
[92], but reproduces more closely the results from numerical simulations. We note
that the decay of the torque value found at large viscosity (see Fig. 6.11), which
corresponds to a decay towards the linear corotation torque value [89], has not yet



6 Recent Developments in Planet Migration Theory 229

been described analytically in a self-contained manner. Masset and Casoli [70] and
Paardekooper et al. [92] use an ad-hoc reduction factor, either with one free param-
eter [70] or two free parameters [92], the value of the free parameters being inferred
from numerical simulations.

In summary, in barotropic discs, vortensity essentially obeys an advection-
diffusion equation in the coorbital region. When the viscous diffusion timescale
across the horseshoe region is:

• Long compared to the libration period, vortensity is progressively stirred up and
the corotation torque ultimately saturates (tends to zero).

• Short compared to the libration period, but long compared to the horseshoe U-turn
time, the corotation torque is close to its fully unsaturated, maximum value.

• Short compared to the horseshoe U-turn time, the corotation torque tends to its
value predicted in the linear regime.

6.3.3.2 Saturation Properties of the Horseshoe Drag in Radiative Discs

Much as in barotropic discs, the estimate of the asymptotic corotation torque
value in radiative discs amounts to the determination of the vortensity distribution
within the horseshoe region at later times. There is an additional complexity, how-
ever, due to the fact that this is no longer an advection-diffusion problem, but an
advection-diffusion-creation problem, as vortensity is created during the U-turns
(see Sect. 6.3.2.5, and in particular Fig. 6.10). Furthermore, the amount of vorten-
sity created depends on the entropy distribution, as was explained in Sect. 6.3.2.5.
This analysis was undertaken by [92] in the case of a unitary thermal Prandtl number
(the viscosity ν and thermal diffusion χ have same value). A corotation torque ex-
pression was proposed by these authors, as a result of a fit of numerical simulations.
Under the assumption of a unitary Prandtl number, the parameter space to be ex-
plored is 1-dimensional, and for a (common) value of ν and χ , the radiative torque
is found to saturate more easily than the barotropic torque. This is interpreted by the
authors as due to the fact the entropy-related corotation torque is essentially due to a
unique streamline, where the advection speed is maximal (that of the separatrices).

To relax the assumption of a unitary Prandtl number, one may assume that the
torque dependence upon viscosity or thermal diffusion have the same shape, which
allows to propose a formula with two independent parameters ν and χ , which can
then be validated by checking its accuracy with numerical simulations. This is the
approach adopted by [92]. Another solution consists in using a streamline model
such as the one outlined in Sect. 6.3.3.1. This is the approach of [70]. As the vorten-
sity is now determined by an advection-diffusion-creation problem, one needs to
amend the barotropic model of Sect. 6.3.3.1 by adding the creation of vortensity
during the U-turns, which is determined by the entropy field. Therefore, prior to the
determination of the vortensity distribution, an analysis of the entropy distribution
at later times is required. This preliminary determination can be done easily, be-
cause the entropy obeys an advection-diffusion problem formally equivalent to the
vortensity distribution in the barotropic case, in which one replaces the vortensity
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with the entropy, and the viscosity ν with the thermal diffusion χ . Once the entropy
distribution within the horseshoe region is known, the vortensity distribution at late
times is obtained, which allows, upon the use of the horseshoe drag expression of
Eq. (6.19), for an expression of the corotation torque as a function of viscosity and
thermal diffusivity, and which can be checked a posteriori against numerical simu-
lations.

The corotation torque expressions, as a function of viscosity and thermal diffu-
sivity, are given by Eqs. (161)–(164) of [70], or by Eqs. (52)–(53) of [92].

6.3.4 Type I Migration in Turbulent Discs

We have examined in the previous sections the properties of planet–disc interactions
assuming viscous discs, described with a stationary kinematic viscosity aimed at
modelling their turbulent transport properties. Because the corotation torque may
play a dramatic role in the orbital evolution of low-mass planets, and its magnitude
is intimately related to diffusion processes taking place within the planet’s horseshoe
region, it is relevant to determine how turbulence may impact type I migration.

Turbulence in protoplanetary discs can have a variety of origins. These include
hydrodynamic instabilities, such as Rossby-wave instabilities [60], the global baro-
clinic instability [44, 61], the sub-critical baroclinic instability [51], planetary gap
instabilities [57, 58] (which we will discuss in Sect. 6.4.2), or the Kelvin-Helmholtz
instability triggered by the vertical shear of the gas as dust settles into the mid plane
[43]. Convective instability might also be relevant in the inner parts of massive discs,
and it would be interesting to examine its impact on type I migration. Perhaps the
most likely source of turbulence in protoplanetary discs is the magnetohydrody-
namic (MHD) turbulence resulting from the magnetorotational instability (MRI)
[4]. It relies on the coupling of the ionised gas to the weak magnetic field in the
disc. Ionisation may occur in the vicinity of the central object due to the star’s
irradiation, or further out in the disc layers, most probably through the UV back-
ground or cosmic rays. It is currently debated which regions of planet formation
near the disc mid plane are sufficiently ionised (‘active’) to trigger the MRI, and
which ones remain neutral (which is usually referred to a ‘dead zone’). In the lat-
ter case, some transport of angular momentum would still be present through the
propagation of waves induced by MHD turbulence in the disc’s upper layers [28].
The alpha viscous parameter associated to MHD turbulence is typically in the range
[5× 10−3− 5× 10−2] in active regions, while being about two orders of magnitude
smaller in dead zones.

The properties of type I migration in weakly magnetised turbulent discs have
been investigated in a couple of studies. Nelson and Papaloizou [84] performed
3D simulations of locally isothermal discs fully invaded by MHD turbulence. They
found that the running time-averaged torque on a fixed protoplanet experiences
rather large-amplitude oscillations over the reduced temporal range over which the
simulation could be run, and that its final value differs quite substantially from the



6 Recent Developments in Planet Migration Theory 231

Fig. 6.12 Perturbation of the disc’s density by an embedded planet. Left: adiabatic 2-dimensional
disc. The density lobes within the coorbital region, which arise from the advection of entropy, help
identify the (tiny) radial width of the planet’s horseshoe region. Middle: case of an isothermal 2D
disc with turbulence induced by stochastic stirring. Right: case of an isothermal 3D disc invaded by
MHD turbulence due to the MRI (the density in the disc mid plane is displayed). In the middle and
right panels, the turbulent density perturbation is comparable to the perturbed density associated
to the planet’s wakes. Images taken from [6, 7, 10], respectively

torque value expected in viscous disc models. Similar results were obtained by [82],
who allowed the planet orbit to evolve. A primary reason for the observed differ-
ence between the viscous torque and the time-averaged turbulent torque is that the
3D MHD simulations were not converged in time. This was suggested by [7], who
considered 2D isothermal discs subject to stochastic forcing, using the turbulence
model originally developed by [50]. They showed indeed that when time-averaged
over a sufficiently long time period, which may be as long as a thousand orbits,
both the differential Lindblad torque and the corotation torque behave very simi-
larly as in equivalent viscous disc models. These results were essentially confirmed
by the 3D MHD simulations by [10], who adopted a locally isothermal disc model
with a mean toroidal magnetic field, in which non-ideal MHD effects and vertical
stratification were neglected (see illustration in Fig. 6.12). Similar agreement was
obtained by [106] with vertical stratification. Nonetheless, [10] found an additional
corotation torque with moderate magnitude in their 3D MHD simulations, related to
the presence of a mean toroidal magnetic field. The existence and properties of this
additional corotation torque have been explored by [35] in 2D weakly magnetised,
non-turbulent disc models, in which the effects of turbulence are modelled by vis-
cous and magnetic diffusivities. They find that the additional corotation torque can
take large values, and even exceed the differential Lindblad torque, depending on
the disc’s viscous and magnetic diffusivities, and the amplitude of the background
magnetic field.

The aforementioned results were for embedded planets with a horseshoe radial
width that is a moderate fraction of the disc’s pressure scaleheight, the latter being
the typical size of turbulent eddies. The existence of horseshoe dynamics and a coro-
tation torque is unknown for planets with a horseshoe region width that is a small
fraction of the turbulent eddy size. In this case, it is possible that turbulence acts
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more as a source of random advection of vortensity through the horseshoe region,
rather than diffusion.

6.4 Migration of Gap-Opening Planets: Type II and III
Migration

The disc response to a low-mass planet has been studied in details in Sect. 6.3, where
we have focused on the two components of the type I migration torque. The aim of
this section is to examine the range of planet masses that is relevant to type I migra-
tion in Sect. 6.4.1, and to give a concise description of planet–disc interactions for
planets that are massive enough to significantly perturb the disc’s mass distribution
(Sects. 6.4.2 and 6.4.3).

6.4.1 Shock Formation and Gap-Opening Criterion

The wakes generated by a planet in a disc carry angular momentum as they prop-
agate away from the planet. This angular momentum is eventually deposited in the
disc through some wave damping processes, which leads to redistributing the disc
mass. An efficient wave damping mechanism relies on the non-linear wave evolu-
tion of the wakes into shocks [34]. The (negative) angular momentum deposited by
the inner wake decreases the semi-major axis of the fluid elements in the disc region
inside the planet’s orbit (the inner disc). Similarly, the (positive) angular momentum
deposited by the outer wake increases the semi-major axis of the fluid elements in
the outer disc.

The distance ds from the planet where the planet-generated wakes become shocks
is given by [26, 34]:

ds ≈ 0.8

(
γ + 1

12/5

q

h3

)−2/5

H(a), (6.33)

where γ is the gas adiabatic index, and a denotes the planet’s semi-major axis.
As the magnitude of the one-sided Lindblad torque peaks at ∼ 4H(a)/3 from the
planet’s orbit, a linear description of the differential Lindblad torque thus fails when
|ds | ∼ 4H(a)/3. This condition can be recast as q ∼ 0.3h3 for γ = 5/3. When
|ds | ≤ 2H(a)/3, wakes turn into shocks within their excitation region. Fluid ele-
ments just outside the planet’s horseshoe region are pushed away from the planet
orbit after crossing the wakes, which directly affects the planet’s coorbital region
by inducing asymmetric U-turns [67]. Horseshoe fluid elements therefore get pro-
gressively repelled from the planet orbit after each U-turn, and the planet slowly
depletes its coorbital region. The equilibrium structure (width, depth) of the annular
gap the planet forms around its orbit is determined by a balance between gravity,
viscous and pressure torques [17].
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Shock formation and its damping efficiency are very sensitive to the disc’s viscos-
ity, and gap-opening results from a balance between (i) a planet mass large enough
to induce shocks where the wake excitation takes place, and (ii) a viscosity small
enough to maximise the amount of angular momentum deposited by the shocks in
the planet’s immediate vicinity:

1. The first condition reads |ds | ≤ 2H(a)/3, which corresponds to q ≥ 1.5h3 for
γ = 5/3. It means that the planet’s Bondi radius rB =GMp/c

2
s , where the pres-

sure distribution is most strongly perturbed by the planet, as well the planet’s
Hill radius become comparable to the local pressure scaleheight. This is known
as the thermal criterion for gap opening [55].

2. The second condition, known as the viscous criterion, can be expressed as q ≥
40/R, where R = a2

pΩp/ν is the Reynolds number1 [13, 53].

The above two conditions for gap-opening have been revisited by [17], who provide
a unified criterion that takes the form

1.1

(
q

h3

)−1/3

+ 50αvh
2

q
≤ 1, (6.34)

where we have written the disc’s kinematic viscosity ν = αvh
2a2Ω [102], and

where in Eq. (6.34) h and αv are to be evaluated at the planet’s semi-major axis. An
illustration of the smallest planet mass opening a gap according to criterion (6.34)
is shown in Fig. 6.13, where it is clear that the gap-opening mass increases with
increasing disc viscosity and aspect ratio. Assuming h ≈ 0.05, which may be typ-
ical of planet forming regions, the gap-opening mass is in the Saturn-mass range
for regions with low turbulent activity (dead zones, with typically αv ∼ 10−4), and
is in the Jupiter-mass range in regions where αv ∼ 10−2. Note that when disc self-
gravity is included, the gap-opening criterion of Eq. (6.34) should involve the ef-
fective planet mass, that is the sum of the planet and circumplanetary disc masses,
rather than the planet mass alone.

Prior to a depletion of their coorbital region due to shock formation at the wake’s
excitation region, planets with increasing mass experience a flow transition in their
immediate vicinity. The flow passes from a low-mass planet configuration described
in Sect. 6.3.2.1 and Fig. 6.3, to a high-mass configuration, where fluid elements may
become trapped inside a circumplanetary disc around the planet. This flow transi-
tion is accompanied by a rapid increase in the half-width xs of the horseshoe re-
gion, from a fluid-dominated regime (where xs ∝ (q/h)1/2) to a gravity-dominated
regime (where xs ∼ RH ∝ q1/3) [73]. This rapid increase yields a significant in-
crease in the corotation torque, as the latter scales as x4

s . This effect is found to

1Although traditionally dubbed Reynolds number essentially for dimensional considerations, this
ratio has little to do with the dimensionless ratio that must be considered to assess whether a flow
is laminar or turbulent. If one regards the planet as an obstacle in the sheared Keplerian flow, it
would be more appropriate to consider as a characteristic scale the size of its Roche lobe or ∼ xs ,
and as a characteristic velocity 2|A|xs .
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Fig. 6.13 Minimum
planet-to-primary mass ratio
leading to gap-opening as a
function of the disc’s alpha
viscous parameter (x-axis)
and aspect ratio (y-axis) at
the planet’s semi-major axis.
This minimum mass is
calculated numerically using
criterion (6.34)

be most significant for planet-to-primary mass ratios q ∼ 0.6h3 [73], which cor-
responds to 20 Earth-mass planets in h = 0.05 discs. It may contribute to further
slowing down, or even reversing the migration of growing planets before they carve
a gap around their orbit [24, 73].

6.4.2 Partial Gap-Opening: Type III Migration in Massive Discs

So far, we have addressed the properties of planet migration through a direct analysis
of the tidal torque, the latter being directly proportional to the migration rate, see
Eq. (6.7). This approach is valid for low-mass planets that do not open a gap, for
which migration has a negligible feedback on the tidal torque (note that a weak,
negative feedback slightly decreases the magnitude of the entropy-related horseshoe
drag [69]). Nevertheless, migrating planets that open a partial gap around their orbit
experience an additional corotation torque due to fluid elements flowing across the
horseshoe region [71]. If for instance the planet migrates inwards, fluid elements
circulating near the inner separatrix of the horseshoe region enter the horseshoe
region, and execute an outward U-turn when they reach the vicinity of the planet.
Upon completion of the U-turn, these fluid elements leave the horseshoe region as
the planet keeps migrating, and end up circulating in the outer disc. Consequently,
the mass distribution within the horseshoe region may become asymmetric, as the
horseshoe region adopts approximately a trapezoidal shape in the azimuth-radius
plane [71]. As a consequence, in the case of an inward migrating planet, there is
more mass behind the planet than ahead of it, owing to the partial depletion of the
asymmetric horseshoe region. This point is illustrated in the left panel of Fig. 6.14.
Similarly, if the planet migrates outwards, fluid elements circulating near the outer
separatrix may embark on single inward U-turns across the horseshoe region.
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Fig. 6.14 Left: illustration of the flow asymmetry ahead of and behind a Saturn-mass planet under-
going rapid inward runaway migration. Right: type III planetary migration seen as a feedback loop.
The latter remains stable if the open-loop transfer function A ×B < 1, or δm<Mp . From [67]

Assuming steady migration at a moderate rate (this point will be clarified below),
the additional corotation torque experienced by the planet due to the orbit-crossing
flow is, to lowest order in xs/a,

Γcross = 2πaȧΣs × 4Baxs, (6.35)

where Σs is the surface density at the inner (outer) horseshoe separatrix for a planet
migrating inwards (outwards). The term 2πaȧΣs in the right-hand side of Eq. (6.35)
is the mass flux across the horseshoe region. The second term (4Baxs ) is the amount
of specific angular momentum that a fluid element near a horseshoe separatrix ex-
changes with the planet when performing a horseshoe U-turn. Note that the above
expression for Γcross assumes that all circulating fluid elements entering the coor-
bital region embark on horseshoe U-turns, whereas a fraction of them may actually
become trapped inside the planet’s circumplanetary disc. Since Γcross is proportional
to, and has same sign as ȧ, migration may become a runaway process. We now dis-
cuss under which circumstances a runaway may happen.

The planet and its coorbital material (which encompasses the horseshoe region,
with mass Mhs, and the circumplanetary disc, with mass Mcpd) migrate at the same
drift rate, ȧ, which we assume to be constant. The rate of angular momentum change
of the planet and its coorbital region includes (i) the above contribution Γcross to the
corotation torque, and (ii) the tidal torque that, for planets opening a partial gap,
essentially reduces to the differential Lindblad torque ΓLR:

2Baȧ(Mp +Mcpd +Mhs)= 2πaȧΣs × 4Baxs + ΓLR. (6.36)

Equation (6.36) can be written as

2BaȧM̃p = 2Baȧδm+ ΓLR, (6.37)

where M̃p =Mp +Mcpd corresponds to an effective planet mass, and where δm=
4πaxsΣs −Mhs is called the coorbital mass deficit [71]. It represents the difference
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Fig. 6.15 Occurrence for type I, II and III (runaway) migrations with varying the planet-to-pri-
mary mass ratio (bottom x-axis) and the disc-to-primary mass ratio at the planet location (left
y-axis). The disc’s aspect ratio is h = 0.05 and its alpha viscosity is αv = 4 × 10−3. The right
y-axis shows the Toomre Q-parameter at the planet location. The upper part of the plot is limited
by the gravitational instability limit (dashed line). From [71]

between (i) the mass the horseshoe region would have if it had a uniform surface
density equal to that of the separatrix-crossing flow, and (ii) the actual horseshoe
region mass.

The migration rate of a partial gap-opening planet, given by Eq. (6.37), can be
described as a feedback loop [67]. This is illustrated in the right panel of Fig. 6.14,
where the loop input is the differential Lindblad torque, and its output is the mi-
gration rate. When δm < M̃p , the feedback loop remains stable. The drift rate in
this case is not strictly a type I nor a type II migration rate. It is rather a type I rate
enhanced by coorbital effects. No special name has been assigned to this kind of
migrating regime. When δm > M̃p , the feedback loop gets unstable, and migration
enters a runaway regime, which can be either inward or outward. The drift rate as
a function of the disc mass undergoes a bifurcation [67], and this regime is called
runaway type III migration [71, 96, 97].

Runaway migration is based on the planet’s ability to build up a coorbital mass
deficit by opening a gap. It does not apply to low-mass planets, for which δm� M̃p .
It does not apply to high-mass planets neither, which open a wide, deep gap, so that
the surface density of the separatrix-crossing flow is too small to produce a signifi-
cant mass deficit. It rather concerns intermediate-mass planets, marginally satisfying
the gap-opening criterion in Eq. (6.34), in massive discs (the larger the disc mass, the
larger the density of the orbit-crossing flow). Its occurrence is illustrated in Fig. 6.15
for a disc with aspect ratio h= 5 % and alpha viscosity αv = 4× 10−3, where we
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see that runaway migration may be particularly relevant to Saturn-mass planets in
massive discs (with a Toomre-Q parameter at the planet’s orbital radius typically
less than about 10). Bear in mind, however, that the occurrence for runaway migra-
tion is sensitive to the values of h and αv, since they affect the planet’s ability to
open a partial gap. Also, note that the criterion for runaway migration features the
effective planet mass M̃p , sum of the planet mass and the circumplanetary disc mass.
The occurrence for runaway migration is therefore sensitive to the mass distribution
inside the circumplanetary disc, which may be significantly affected by the assumed
physical modelling, e.g. whether gas accretion on the planet is taken into account
[21], the inclusion of self-gravity [114], or the treatment for the gas thermodynam-
ics [95]. It may also be affected by grid resolution effects in numerical simulations
[25, 95].

The simple model described above helps understand the condition for migra-
tion to enter a runaway regime. However, since it assumes steady migration (that
is, constant ȧ), this model is no longer valid when migration actually enters the
runaway regime, where the migration rate increases exponentially over a time com-
parable to the horseshoe libration period. A more general approach can be found
in [67, 71, 96]. As long as the orbital separation by which the planet migrates over
a libration period remains smaller than the radial width of the planet’s horseshoe
region, Γcross remains approximately proportional to ȧ (slow runaway regime). At
larger migration rates (fast runaway regime), Γcross reaches a maximum and slowly
decreases with increasing ȧ [71] (see also Fig. 16 in [67]). The precise dependence
of Γcross with ȧ in this fast runaway regime is intrinsically related to the evolution
of the mass coorbital deficit, and therefore to the planet’s migration history. The or-
bital evolution of planets subject to runaway type III migration is therefore difficult
to predict. Numerical simulations find that, depending on the resolution of the gas
flow surrounding the planet, the timescale for inward runaway type III migration
can be as short as a few 102 orbits [19, 71].

The sign of Γcross is dictated by the initial drift of the planet. Runaway migration
can therefore be directed inwards or outwards, depending on the sign of ȧ before the
runaway takes place. In particular, migration may be directed outwards if, despite
the coorbital region being partly depleted, a (positive) horseshoe drag remains strong
enough to counteract the (negative) differential Lindblad torque. Outward runaway
migration could thus be an attractive mechanism to account for the recent discov-
ery of massive planets at large orbital separations (which we will further discuss
in Sect. 6.5.1). Simulations [67, 71, 97] however show that, despite the expected
increase in the mass of the orbit-crossing flow as the planet moves outwards (for
background surface density profiles shallower than r−2), the mass coorbital deficit
cannot be retained indefinitely. The increase in the mass of the circumplanetary disc,
and the strong distortion of the flow within it at large migration rates, lead the planet
to eventually lose its coorbital mass deficit, and the sense of migration is found to
reverse.

Type III migration has been recently revisited in low-viscosity discs (αv ≤
a few×10−4). Depending on the disc mass, the edges of the planet-induced gap may
be subject to two kinds of instabilities. In low-mass discs, gap edges are unstable to
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vortex-forming modes [52, 58, 60]. They lead to the formation of several vortices
sliding along the gap edges, which merge and form large-scale vortices. When they
pass by the planet, these vortices may embark on horseshoe U-turns and exert a large
corotation torque on the planet, with the consequence that the planet can be scattered
inwards or outwards [56]. When the fluid’s self-gravity is taken into account, only
a fraction of the large-scale vortices actually embark on horseshoe U-turns, the rest
of the vortices keeps on sliding along the gap edges. This provides a periodic, inter-
mittent corotation torque on the planet. Depending on the relative strengths of the
vortices embarking on inward and outward U-turns, this mechanism acts much like
an intermittent type III migration regime. In massive self-gravitating discs (stable
against the gravitational instability), vortex-forming modes are replaced by global
edge modes, which excite spiral density waves [57]. A decreasing radial profile of
the Toomre-Q parameter favours edge modes at the gap’s outer edge. The periodic
protrusion of edge mode-induced density waves near the gap’s outer edge provides
a periodic source of (positive) corotation torque on the planet, and induces an in-
termittent type III migration regime. Numerical simulations by [59] show that edge
modes can sustain outward migration, until the planet leaves its gap.

We briefly sum up the main results of this paragraph:

• Migrating planets experience an additional corotation torque due to fluid elements
flowing across the horseshoe region, and embarking on horseshoe U-turns. It is
proportional to the planet’s migration rate at small migration rates, which gives a
positive feed back on migration. When the feedback loop diverges, the migration
type is known as type III migration.

• The planet and its circumplanetary disc feel an effective corotation torque that
is proportional to the coorbital mass deficit, defined through Eq. (6.37). The oc-
currence of a runaway feedback (i.e. of type III migration) corresponds to the
coorbital mass deficit exceeding the mass of the planet and its circumplanetary
disc. This applies to planets opening a partial gap around their orbit in massive
protoplanetary discs.

• The orbital evolution of planets undergoing type III migration is sensitive to
the time evolution of the coorbital mass deficit, which makes it difficult to pre-
dict. Numerical simulations show that runaway migration operates on very short
timescales, typically in 100 to 1000 planet orbits.

6.4.3 Deep Gap-Opening: Type II Migration

Planets massive enough to clear their coorbital region and open a deep gap around
their orbit (see illustration in Fig. 6.16) enter the migration regime called type II mi-
gration. Such planets satisfy the gap-opening criterion given by Eq. (6.34). Assum-
ing, for instance, a protoplanetary disc with aspect ratio ∼ 5 % and alpha viscosity
αv ∼ 10−2, type II migration typically applies to planets more massive than Jupiter
orbiting Sun-like stars. Compared to the type I and type III migration regimes de-
scribed previously, the amplitude of the corotation torque is much reduced due to
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Fig. 6.16 Gap opened by a
Jupiter-mass planet orbiting a
Sun-like star

the clearing of the planet’s coorbital region, and the differential Lindblad torque
balances the viscous torque exerted by the disc. The net torque on the planet can
be written as a fraction CII of the viscous torque due to the outer disc [16]. This
factor CII features the time-dependent fraction of gas fgas remaining in the planet’s
coorbital region.

The particular case with fgas going to zero corresponds to what is usually referred
to as standard type II migration regime. Its timescale can be approximated as

τII ≈ 2r2
o

3ν(ro)

(

1+ Mp

4πΣ(ro)r2
o

)

, (6.38)

where ν denotes the disc’s kinematic viscosity, Σ the surface density of the disc
perturbed by the planet, and ro is the location in the outer disc where most of the
planet’s angular momentum is deposited. It can be approximated as the location of
the outer separatrix of the planet’s horseshoe region, which, for gap-opening plan-
ets, is ro ≈ a + 2.5RH [73]. The first term on the right-hand side of Eq. (6.38) cor-
responds to the viscous drift timescale at radius ro, and the second term features the
ratio of the planet mass to the local disc mass at radius ro. Two migration regimes
can therefore be distinguished:

1. Disc-dominated type II migration. When the planet mass is much smaller than
the local disc mass (by which we refer to the quantity 4πΣ(ro)r

2
o ), the planet

behaves much like a fluid element that the disc causes to drift viscously. The
planet’s migration timescale then matches the disc’s viscous drift timescale
≈ 2r2

o/3ν(ro) [54]. In this migration regime, called disc-dominated type II mi-
gration, the planet remains confined within its gap. Should the planet migrate
slightly faster than the disc near its orbit, the increased inner Lindblad torque
due to the planet getting closer to the gap’s inner edge would push the planet
outward. Conversely, should the planet migrate at a slower pace than the (local)
disc, the increased outer Lindblad torque would push the planet back inward.
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The timescale for the disc-dominated type II migration regime, τII,d, can be re-
cast as

τII,d ≈ 4.7× 104 yrs×
(

αv

10−2

)−1(
h

0.05

)−2(
M$

M�

)−1/2(
ro

5 AU

)3/2

, (6.39)

where αv and h are to be evaluated at ro.
2. Planet-dominated type II migration. When the planet mass becomes comparable

to, or exceeds the local disc mass, the orbital evolution of a gap-opening planet
is no longer dictated by the disc alone. The inertia of the planet slows down its
orbital migration [41, 103], and in the limit when the planet mass is large com-
pared to the local disc mass, the planet enters the so-called planet-dominated
type II migration regime, whose timescale τII,p reads

τII,p ≈ τII,d ×
(

Mp

4πΣ(ro)r2
o

)

, (6.40)

with τII,d given by Eq. (6.39), and where the planet to local disc mass ratio reads

Mp

4πΣ(ro)r2
o
≈ 200

(
Mp

M�

)(
Σ(ro)

150 g cm−2

)−1(
ro

5 AU

)−2

. (6.41)

In self-gravitating discs, the distinction between the planet- and disc-dominated
type II migration regimes should involve the comparison between the local disc
mass and the effective planet mass M̃p , that is the sum of the planet and circum-
planetary disc masses. Related to this point, we comment that the planet and its cir-
cumplanetary disc migrate at the same drift rate. When its self-gravity is included,
the protoplanetary disc torques both the planet and the circumplanetary disc. How-
ever, if self-gravity is discarded, as is usually the case in numerical simulations, the
protoplanetary disc can only torque the planet, and the circumplanetary disc remains
a passive spectator of the migration. In this case, the planet must exert an additional
effort to maintain the planet and circumplanetary disc joint migration. Put another
way, the circumplanetary disc artificially slows down migration when self-gravity
is discarded. To avoid this artificial slowdown, [19] showed that, in simulations dis-
carding self-gravity, the calculation of the torque on the planet must exclude the ma-
terial inside the circumplanetary disc. In addition, migration rates with and without
self-gravity can be in close agreement, provided that the mass of the circumplane-
tary disc is added to that of the planet when calculating the gravitational potential
felt by the protoplanetary disc.

In the early stages of their formation and orbital evolution, most massive gap-
opening planets should be subject to disc-dominated type II migration, and migrate
on a timescale comparable to the disc’s viscous timescale. Note from Eq. (6.38)
that this corresponds to the shortest migration timescale a gap-opening planet can
get. Depletion of the protoplanetary disc, or substantial migration towards the cen-
tral object, should, however, slow down migration as the planet’s inertial mass be-
comes comparable to the local disc mass. It is nonetheless interesting to note from
Eq. (6.39) that in the early stages of the disc evolution, type II migration can be
relatively fast in the disc’s turbulent parts. This may make difficult the maintenance
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of massive planets at reasonably large orbital separations from their host star. Ad-
ditional mechanisms, like the effect of stellar irradiation on the disc’s density and
temperature profiles near the planet’s orbit (formation of shadow regions near the
gap’s inner edge, and irradiated ‘puffed up’ regions near the gap’s outer edge) [42]
could help slow down type II migration.

Gap formation and type II migration are intimately related to the disc viscosity
in laminar viscous disc models, and a few studies have investigated their properties
in MHD turbulent discs [83, 93, 112]. These studies have considered 3-dimensional
magnetised disc models, where vertical stratification and non-ideal MHD effects
were discarded for simplicity. They found that the structure of the annular gap
opened by a massive planet in fully MHD turbulent discs is essentially in line with
the predictions of viscous disc models with a similar alpha viscous parameter near
the planet location. Gaps in turbulent discs tend, however, to be wider than in vis-
cous discs [83, 112]. Some other differences arise between turbulent and viscous
disc models, particularly in the vicinity of the planet, where magnetic field lines
are compressed and ordered at the location of the wakes and the circumplanetary
disc. The connection between the circumplanetary and protoplanetary discs through
magnetic field lines can cause magnetic braking of the circumplanetary material
[93], which may help increase gas accretion onto the planet [93, 112].

Before leaving this section, we comment that the overall properties of planet–disc
interactions with gap-opening planets remain essentially unchanged when taking the
disc’s vertical stratification into account, and therefore the 2-dimensional approxi-
mation is valid. Nonetheless, different structures in the flow circulating around the
planet in two- and 3-dimensions, and the related accretion rate onto the planet, may
affect the planet’s migration rate (see e.g. [25]).

We summarise the results described in this section:

• Planets massive enough to open a wide and deep annular gap around their orbit
are subject to type II migration.

• When the local disc mass (roughly speaking, the mass interior to the planet or-
bit) remains large compared to the planet mass, the planet migration timescale
corresponds to the viscous drift timescale (disc-dominated type II migration).

• When the planet mass becomes comparable to, or exceeds the local disc mass,
migration is slowed down by the planet’s inertia (transition to planet-dominated
type II migration).

6.5 Planet Migration Theories and Observed Diversity
of Exoplanets

The properties of planet–disc interactions have been examined in details in the pre-
vious sections, with a particular emphasis on the expected migration rate for planets
with different masses. The migration rate is intimately related to the disc’s physical
properties (e.g. mass, sound speed, cooling properties, turbulent stresses) near the
planet location, which underlines that the modelling of protoplanetary discs plays
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as much of an important role as planet–disc interaction theories in predicting the
evolution of planetary systems. We continue our exposition with a brief discussion
of several aspects of planet–disc interactions which could account for the observed
diversity of (extrasolar) planets.

6.5.1 Massive Planets at Large Orbital Separations

Amongst the recent discoveries of exoplanets, particularly exciting is the observa-
tion by direct imaging of about 10 massive exoplanets located at separations ranging
from 10 to 200 AU from their host star (e.g. [49, 63]). Most of these planets are so
far observed to be the only planetary companions of their host star. Yet, it is possi-
ble that their present location results from a scattering event with another massive
companion on a shorter-period orbit. A remarkable exception is the HR 8799 plan-
etary system. It comprises four planets with masses evaluated in the range [7− 10]
Jupiter masses, and estimated separations of 14, 24, 38 and 68 AU [64]. The plan-
ets are close to being in mutual mean-motion resonances, and it seems likely that
planet–disc interactions could have played a major role in shaping this planetary
system. We discuss below the relevance of planet–disc interactions to account for
massive planets at large orbital separations.

6.5.1.1 Outward Migration of a Pair of Massive Resonant Planets

In the standard core-accretion scenario for planet formation, it is difficult to form
Jupiter-like planets in isolation further than ∼ 10 AU from a Sun-like star [39, 99].
As we have seen in Sect. 6.4, planets in the Jupiter-mass range orbiting Solar-type
stars are expected to open an annular gap around their orbit. If a partial gap is
opened, outward runaway type III migration could occur under some circumstances,
but as we have discussed in Sect. 6.4.2, numerical simulations indicate that it is dif-
ficult to sustain this outward migration in the long term. If the planet opens a deep
gap, inward type II migration is expected. It is therefore unlikely that a single mas-
sive planet formed through the core-accretion scenario within ∼ 10 AU of its host
star could migrate to several tens of AUs.

A notable exception to this generally expected trend has been recently proposed
by [20], based on a migration mechanism originally studied by [72]. This mecha-
nism relies on the joint migration of a pair of resonant massive planets embedded in
a common gap. In this mechanism, the innermost planet is massive enough to open
a deep gap and migrate inwards on a timescale comparable to that of type II mi-
gration. The outermost, less massive planet migrates inwards at a larger pace while
carving a partial gap around its orbit. If both planets open overlapping gaps, and
maintain a mean-motion resonance between their orbits, their joint migration could
proceed outwards. The global picture is the following: as the inner planet is more
massive, the torque it experiences from the inner disc (inner Lindblad torque) is
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larger than the (absolute value of the) torque the outer planet experiences from the
outer disc (outer Lindblad torque). To maintain joint outward migration in the long
term, the fluid elements outside the common gap must be funnelled to the inner disc
by embarking on horseshoe trajectories. Otherwise, material would pile up at the
outer edge of the common gap, much like a snow-plough, and the torque balance as
well as the sense of migration would eventually reverse. An illustration of the joint
outward migration mechanism is shown in Fig. 6.17.

The migration reversal described above requires an asymmetric density profile
within the common gap. It is thus sensitive to the disc’s aspect ratio and viscosity,
which enter the gap-opening criterion. It is also sensitive to the mass ratio of the
two planets. If the outer-to-inner planets mass ratio is too small, the density contrast
within the common gap will be too large to affect the evolution of the innermost
planet (the gas density near the outer planet’s orbit remains too large to signifi-
cantly decrease the outer Lindblad torque acting on the inner planet). Conversely,
if the outer-to-inner planets mass ratio is too large, the Lindblad torques imbalance
will favour joint inward migration. By changing the planets mass ratio during joint
migration, gas accretion onto the planets could affect the possibility of sustaining
outward migration in the long term. This issue requires further investigation, and
accurate modelling of the gas accretion processes onto Saturn sized planets.

We also mention that the joint outward migration scenario has been recently dis-
cussed in the context of the Solar System [107]. Inward migration of Jupiter in
the primordial Solar nebula down to≈ 1.5 AU, followed by joint outward migration
with Saturn to the current location of both planets (the “Grand tack”) would truncate
the disc of planetesimals interior to Jupiter’s orbit at about 1 AU. The subsequent
formation of the terrestrial planets is found to occur with the correct mass ratio be-
tween Earth and Mars, and would also account for the compositional structure of
the asteroid belt [107].

6.5.1.2 Migration of Planets Formed by Gravitational Instability

An alternative to the core-accretion formation scenario involves the fragmentation
of massive protoplanetary discs into clumps through the gravitational instability.
Gravitational instability (GI) may typically occur at separations larger than 30 to
50 AU from a central (Sun-like) star, if the Toomre-Q parameter approaches unity
and the disc’s cooling timescale becomes of order the dynamical timescale (e.g.
[30, 100]). While several massive planets could form by fragmentation of a massive
disc at several tens of AUs from their star, they are unlikely to stay in place. The
tidal interaction with the gravito-turbulent disc they are embedded in should rapidly
bring planets formed by GI to the disc’s inner regions [11, 77, 115], in a timescale
comparable to that of type I migration [11]. The orbital evolution of a single Jupiter-
mass planet embedded in a gravito-turbulent disc (where the planet is supposed to
have formed by GI) is illustrated in Fig. 6.18, where we see that the planet migrates
from 100 to 20 AU in typically less than 104 yrs.
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Fig. 6.18 Jupiter-mass planet embedded in a gravito-turbulent disc. After setting up a quasi
steady-state gravito-turbulent disc with (gravito-turbulent) shock heating balancing disc cooling
(parametrised here by a simple β-cooling function, see [11]), simulations were restarted with in-
serting a Jupiter-mass planet at 100 AU. The left panel shows the disc’s surface density three orbits
after restart, the planet being located at x ∼ −50 AU, y ∼ 60 AU. The right panel displays the
time evolution of the planet’s orbital separation in 8 different restart simulations with varying the
azimuth of the planet prior to its insertion in the disc. Taken from [11]

Investigation is under way to determine the evolution of planets formed by GI
when they reach the inner parts of protoplanetary discs. The latter should be too hot
to be gravitationally unstable, and other sources of turbulence, such as the magne-
torotational instability, could prevail, changing the background disc profiles as well
as the amount of turbulence. It is thus possible that the rapid type I migration of
planets formed by GI slows down in the disc inner parts and results in the formation
of a gap. Gap-opening may also occur if significant gas accretion occurs during the
planets fast inward migration [115]. Planet–planet interactions, which may result in
scattering events, mergers or captures in resonance, should also play a prominent
role in shaping planetary systems formed by GI.

6.5.2 Planet Population Syntheses

Planetary astrophysics is undergoing an epoch of explosive growth, driven by the ob-
servational discoveries of more than 750 exoplanets over the past two decades. Out-
standing progress in detection techniques have uncovered planetary systems very
different from ours. Since the discovery of the first Hot Jupiter [75], radial velocity
surveys have made possible the detection of Earth-like planets, some in the habitable
zone of their star [94]. Transit space missions CoRoT and KEPLER are digging out
hundreds of close-in extrasolar planets, some in exotic environments (like Kepler-
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16 b, the first circumbinary exoplanet discovered [27]). Direct imaging has revealed
the existence of massive giant planets located at several tens of AU from their star.

Such diversity provides an exciting opportunity to test our theories for the forma-
tion and evolution of planetary systems. By coupling theoretical models of planet
formation and migration, and of disc evolution, planet population syntheses estimate
the statistical distribution of exoplanets according to their mass, semi-major axis,
and eccentricity, which they compare to observed distributions [37, 39, 40, 78, 101].
At the moment, models of planet population syntheses are not able to reproduce
the statistical properties of extrasolar planets. For instance, they predict a deficit of
super-Earths and Neptune-like planets with orbital periods less than 50 days, while
observations have revealed a significant number of exoplanets in this range of mass
and period [38]. The origin for this discrepancy can be found in uncertain prescrip-
tions for the minimum core mass for the onset of gas accretion [37], as well as in
the modeling of type I migration. The difficulty raised by the excessively rapid in-
ward type I migration, predicted by the long-time reference torque formula by [104],
was circumvented by introducing a reduction factor in front of this torque formula.
Population syntheses models tried to constrain this factor to reproduce the statisti-
cal properties of detected exoplanets. This reduction factor was found to range from
0.01 to 0.1. We note however that the introduction of this reduction factor to provide
planetary population synthesis in agreement with the statistics of detected extraso-
lar planets is ad hoc, and that there is no reason to expect that the type I migration
drift rates are systematically overestimated in theoretical studies by a factor 10 to
100. Rather, as we emphasised throughout this manuscript, type I migration is very
sensitive to the disc’s density and temperature profiles near the planet orbit. Large
slopes of mass density and/or temperature, over a limited radial range, may reverse
the tidal torque exerted on the planet. This, in turn, may create “planetary traps” at
the points where the tidal torque cancels out (much like what was contemplated by
[74] for the case of a positive surface density gradient), which can stop incoming
protoplanets, depending on their mass. The number and location of these traps may
vary as the disc evolves. This view of type I migrating objects subject to several
traps on their way to the star [36, 62] sounds more compatible with the state of mi-
gration theories than an ad hoc reduction factor. This has motivated recent works
to produce accurate, yet simple formulae for type I migration [68, 70, 92]. These
formulae include a description of the corotation torque in discs with arbitrary vis-
cosity and thermal diffusion, and corrections to the Lindblad torque for discs with
non power-law profiles. Their incorporation into models of planet population syn-
thesis will hopefully provide a better comprehension of the diversity of observed
exoplanets.

6.6 Conclusions

We have reviewed the recent progress made in understanding planet–disc interac-
tions, and the properties of planetary migration driven by such interactions. We
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have focused on the migration of growing protoplanets (type I migration), which
has been the subject of intensive investigation over the past five years. Being for
a while the second-place actor of planet migration theories, the corotation torque
has been shown to play a prominent role in realistic protoplanetary discs, where it
can slow down, stall, or reverse type I migration. This review is especially aimed
at giving a comprehensive, detailed description of the mechanisms responsible for
the corotation torque. The type II and type III migration regimes for gap-opening
planets are also reviewed and discussed in the context of observed exoplanets. Being
aimed at migration of planets on circular orbits, this review has set aside interesting
recent developments on the tidal interactions of eccentric or inclined planets with
their discs. We have also focused essentially on the mechanisms that drive the mi-
gration of a single planet in a disc, and we have therefore excluded most results
about the migration of several planets. For a recent review covering these topics, the
reader is referred to [46]. This list of restrictions of the present review stresses that
the research on planet–disc interactions is a very active branch of planet formation,
with a growing body of avenues. We finally reiterate the plea made in the introduc-
tion: planetary migration is not overrated. The tremendous value of each of the tidal
torque components exerted on a given planet, associated with the great sensitivity
of these torques to the underlying disc structure, appeals for a detailed knowledge
of the properties of protoplanetary discs, and significant efforts toward an accurate
determination of each torque component. This also reasserts tidal interactions as a
prominent process in shaping planetary systems.
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96. Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary
migration—II. Inward migration of massive planets. Mon. Not. R. Astron. Soc. 386, 179–
198 (2008). doi:10.1111/j.1365-2966.2008.13046.x
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Chapter 7
Tides in Planetary Systems

Stéphane Mathis, Christophe Le Poncin-Lafitte, and Françoise Remus

Abstract The Solar system is the seat of many interactions between the Sun, the
planets and their natural satellites. Moreover, since 1995, a large number of extra-
solar planetary systems has been discovered where planets orbit around other stars,
sometimes very close to them. Therefore, in such systems, tidal interactions are one
of the key mechanisms that must be studied to understand the celestial bodies’ dy-
namics and evolution. Indeed, tides generate displacements and flows in planetary
(and in the host star) interiors. The associated kinetic energy is then dissipated into
heat because of internal friction processes. This leads to secular evolution of or-
bits and of spins with characteristic time-scales that are intrinsically related to the
properties of dissipative mechanisms, those latters depending both on the internal
structure of the studied bodies and on the tidal frequency. This lecture is aimed
to review the must advanced theories to study tidal dynamics in planetary systems
and the different tidal flows or displacements that can be excited by a perturber,
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the conversion of their kinetic energy into heat, the related exchanges of angular
momentum, and the consequences for systems evolution.

7.1 Introduction

The Solar system is the seat of many interactions between the Sun, the planets and
their natural satellites. Moreover, since 1995, a large number of extrasolar planets
has been discovered and characterised (see [105]). In such planetary systems, bodies
can orbit close to the others and thus tidal interactions are one of the key physical
processes that must be studied to understand orbital and rotational evolution. This
evolution is crucial for the habitability question, whether systems could host the
development of life; determining factors are the presence of liquid water and of
a protective magnetosphere which are closely linked to the values of the planets’
orbital elements and rotation rate.

To answer to such important planetary problematics, we have thus to study in de-
tails the action of tides. Then, once a given two-body or multiple system is formed,
its fate is determined by the initial conditions and the mass ratio between its com-
ponents. Through tidal interaction between each of them, the system evolves either
to a stable state of minimum energy (where all spins are aligned, the orbits are
circular and the rotation of each body is synchronised with the orbital motion) or
the companion tends to spiral into the parent body. Indeed, by converting kinetic
energy into heat through internal friction, tidal interactions modify the orbital and
rotational dynamics of the components of the considered system and their internal
structure through internal heating [1, 7, 27, 28, 34, 53, 54, 71, 73]. This mecha-
nism depends sensitively on the internal structure (rocky, icy or fluid) and dynam-
ics of the perturbed body (asynchronism, orbital eccentricity and inclination, obliq-
uity).

In this context, the main goal of this lecture is to give a detailed review on tidal in-
teractions modeling in planetary (and in the host star) interiors. First, in Sect. 7.2, we
summary the most general derivation of the tidal potential and the related evolution
equations for orbital elements and spins where dissipative processes are introduced.
Then, in Sect. 7.3, we show how the properties of the tidal dissipation are strongly
related to bodies’ internal structure. We thus review such dissipative processes first
in fluid regions, then in solid or icy ones, and finally at their interfaces. Next, in
Sect. 7.4, we conclude.

7.2 Advanced Tidal Dynamics

In celestial mechanics, one of the main approximation done in the modeling of tidal
effects (star-innermost planet or planet-natural satellites interactions) is to consider
the tidal perturber as a point mass body. However, a large number of extrasolar
planets orbiting very close to their parent stars have been discovered during the past
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Fig. 7.1 System of two extended bodies A & B. RA and RB are the respective mean radius of A
and B while DAB is the distance between their respective center of mass. εA and εB are the conical
angles with which each perturber is seen from the center of mass of the perturbed body. When
Ri

DAB
� 1 with i = A or B the i body could be considered as a ponctual mass perturber. (Taken

from Mathis and Le Poncin-Lafitte [77]; courtesy Astronomy & Astrophysics)

decade (see [105]). Moreover, in the Solar System, Phobos around Mars and the
inner natural satellites of Jupiter, Saturn, Uranus and Neptune are very close to their
parent planets. In such cases, the ratio of the perturber mean radius to the distance
between the center of mass of the bodies can be not any more negligible compared
to unity (cf. Fig. 7.1). In that situation, neglecting the extended character of the
perturber may to be relaxed, so the tidal interaction between two extended bodies
must be solved in a self-consistent way with taking into account the full gravitational
potential of the extended perturber, generally expressed with some mass multipole
moments, and then to consider their interaction with the tidally perturbed body. In
the literature, not so many studies have been done [8–11, 44, 49, 72] and this is the
reason why we here first choose to introduce one of the most general formalism to
treat tidal dynamics, which is based on the results obtained by [44] and [77].

7.2.1 Gravitational Potentials

7.2.1.1 Multipole Expansion of the External Gravitational Field of an
Extended Body

First, let us consider some matter distribution, corresponding to a body A, in an
inertial reference frame.

The Newtonian gravitational potential of this body, V A(t,x) (where t is the clas-
sical time and x the current position vector), is obtained by solving the Poisson
equation

∇2V A(t,x)=−4πGρA(t,x) with lim|x|→∞V A(t,x)= 0, (7.1)
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Fig. 7.2 Spherical
coordinates system associated
to the equatorial reference
frame RE : {OA,XE,YE,ZE}
of an extended body A; we
have r≡ (r, θ,ϕ) and
rAB ≡ (rAB, θAB, ϕAB) where
rAB, θAB and ϕAB are the
coordinates of the center of
mass of the potential
extended perturber B. RA is
the equatorial radius of A.
(Taken from Mathis and
Le Poncin-Lafitte [77];
courtesy Astronomy &
Astrophysics)

ρA(t,x) being its density. This leads to the expression for |x| ≥RA

V A(t,x)=G

∫

A

ρA(t,x′)
|x− x′| d3x′, (7.2)

where RA is the equatorial radius of A. Following [44] and [77], the final multipolar
expression for V A for |r| ≥RA is then obtained:

V A(t, r)=G

∞∑

lA=0

lA∑

mA=−lA
MlA,mA

YlA,mA(θ,ϕ)

rlA+1
, (7.3)

where we introduced the gravitational moments in the physical space

MlA,mA =
4π

2lA + 1

∫

MA

rlAY ∗lA,mA
(θ,ϕ)dMA, (7.4)

with MA is the mass of A and dMA = ρAr
2 dr sin θ dθ dϕ, and the usual spherical

harmonics

Yl,m(θ,ϕ)=Nl,mP
|m|
l (cos θ) exp[imϕ]

with Nl,m = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

(7.5)

with the classical Legendre Polynomials (Pm
l ). The spherical coordinates (r, θ,ϕ)

have been introduced (see Fig. 7.2) and (l,m) are the usual quantum numbers. Fi-
nally, z∗ is the complex conjugate of a given complex number z.

One should note the symmetry property of MlA,mA :

MlA,−mA = (−1)mAM∗
lA,mA

. (7.6)
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Moreover, MlA,mA could be represented in its polar form

MlA,mA = |MlA,mA | exp[iδMlA,mA], (7.7)

where the following identities are obtained from Eq. (7.6)
{ |MlA,−mA | = |MlA,ma |,

Arg(MlA,−mA)=mAπ −Arg(MlA,mA)=mAπ − δMlA,mA .
(7.8)

Using the classical symmetry property concerning spherical harmonics given in
Eq. (7.5), V A(t, r) could also be expressed with the associated Legendre polyno-
mials:

V A(t, r)=G

∞∑

lA=0

lA∑

mA=0

P
mA
lA

(cos θ)

rlA+1

[
ClA,mA cos(mAϕ)+ SlA,mA sin(mAϕ)

]
, (7.9)

where the usual coefficients ClA,mA and SlA,mA are given by:
{
ClA,mA =NlA,mA(2− δmA,0)Re(MlA,mA),

SlA,mA =−2NlA,mA(1− δmA,0)Im(MlA,mA).
(7.10)

The expression of MlA,mA and δMlA,mA are then deduced for mA ≥ 0:

|MlA,mA | =
1

NlA,mA

√[
ClA,mA

(2− δmA,0)

]2

+
(
SlA,mA

2

)2

(1− δmA,0)
2, (7.11)

δMlA,mA =−Arctan

[
(1− δmA,0)(2− δmA,0)

2

SlA,mA

ClA,mA

]

. (7.12)

In the general case, the gravitational moments are expanded as:

MlA,mA =M
SA
lA,mA

+M
TA
lA,mA

. (7.13)

M
SA
lA,mA

and M
TA
lA,mA

are respectively those in the case where A is isolated (without
any perturber) and those induced by the tidal perturber(s).

One can identify some special values of MlA,mA relevant for the gravitational
field of a body A. The trivial one is its mass, MA

M0,0 =
√

4πMA. (7.14)

Furthermore, we know that the external field of an axisymmetric body A can be
expressed as a function of the usual multipole moment JlA

1 (see e.g. [104])

V A(t, r)= GMA

r

[

1−
∑

lA>0

JlA

(
RA

r

)lA
PlA(cos θ)

]

; (7.15)

1They are driven by two types of deformation. The first one is those induced by internal dynamical
processes such that rotation (through the centrifugal acceleration) and magnetic field (through the
volumetric Lorentz force). The second one is the axisymmetric permanent tidal oval shape due to
a companion in close binary or multiple systems.
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using Eq. (7.3), we identify in a straigthforward way:

V A(t, r)=G

[
MA

r
+

∞∑

lA=0

MA
JlA ;lA,0

YlA,0(θ,ϕ)

rlA+1

]

(7.16)

where

MA
JlA ;lA,0 =M

SA
lA,0

+M
TA
lA,0

=−JlAMAR
lA
A

NlA,0
. (7.17)

We can now focus on the second type of gravitational interaction, namely the tides
between two extended bodies.

7.2.1.2 Determination of the Tidal Potential

Let us now introduce an accelerated reference frame, i.e. (t,Xi
A), associated with a

body A which is related to a global inertial frame through the transformation

xi = ziA(t)+Xi
A, (7.18)

ziA(t) being the arbitrary motion of the local A-frame. The equations of motion with
respect to the local A-frame reads (see [26]):

∂ρA

∂t
+ ∂(ρAv

i
A)

∂Xi
A

= 0, (7.19)

∂(ρAv
i
A)

∂t
+ ∂

∂X
j

A

(
ρAv

i
Av

j

A + t ij
)= ρA

∂V A
eff

∂Xi
A

, (7.20)

where ρA(t,XA)≡ ρA(t, zA) is the mass volumic density expressed in the local A-
frame, viA being the velocity with respect to this frame while t ij denotes the stress
tensor (note that we have adopt the Einstein’s summation convention).

The following effective potential appears

V A
eff(t,XA)=

N∑

B=1

V B(t, zA +XA)− V A
ext(t, zA)− d2zA

dt2
·XA, (7.21)

where

V A
ext(t,XA)=

∑

B �=A

V B(t,XA), (7.22)

the considered body A being tidally interacting with N − 1 perturbing extended
bodies B; V B is the potential of each body B different from A. The last term of
Eq. (7.21) represents the inertial effects on the accelerated local frame A. This ef-
fective potential can be split into the potential of A given in Eq. (7.3) and a tidal
potential, V A

T , as follows:

V A
eff = V A + V A

T , (7.23)
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the tidal part being given by

V A
T (t,XA)= V A

ext(t, zA +XA)− V A
ext(t, zA)− d2zA

dt2
·XA. (7.24)

Following [44] and [77], the general multipolar expression of the tidal potential
for |r| ≤RA is then obtained. It is then recast in its general spectral form, using that
V A

T is real and expanding it in the spherical harmonics for |r| ≤RA:

V A
T (t, r, rAB)=

∑

B �=A

G

∞∑

lA=0

lA∑

mA=−lA

[
AI;lA,mA(t, rAB)

+AII;lA,mA(t, rAB)
]
rlAYlA,mA(θ,ϕ), (7.25)

where the coefficients AI;lA,mA and AII;lA,mA are respectively given by:

AI;lA,mA = (−1)lA
4π

2lA + 1
(1− δlA,0)(1− δlA,1)

×
∞∑

lB=0

lB∑

mB=−lB
γ
lA,mA
lB,mB

(
MB

lB,mB

)∗ Y ∗lA+lB,mA+mB
(θAB, ϕAB)

r
lA+lB+1
AB

(7.26)

and

AII;lA,mA =−
1

MA

4π

3
δlA,1

∞∑

l′A=1

l′A∑

m′A=−l′A

∞∑

lB=0

lB∑

mB=−lB
(−1)l

′
A+1(2l′A + 2lB + 1

)

× γ
l′A,m′A
lB,mB

(
MA

l′A,m′A

)∗(
MB

lB,mB

)∗
γ

1,mA
l′A+lB,m′A+mB

×
Y ∗
l′A+lB+1,m′A+mB+mA

(θAB, ϕAB)

r
l′A+lB+2
AB

. (7.27)

We have introduced rAB, θAB and ϕAB the coordinates of the center of mass of the
extended perturber B (see Fig. 7.2) and the following coupling coefficient

γ
l,m
j,k = γ

j,k
l,m

=
√

2l + 1

(l +m)!(l −m)!
2j + 1

(j + k)!(j − k)!

×
√
[(l + j)− (m+ k)]![(l + j)+ (m+ k)]!

4π[2(l + j)+ 1] . (7.28)

The respective physical meanings of terms I and II are identified. Term I corresponds
to the gravitational interaction of B with A, while term II is the acceleration respon-
sible for the movement of the center of mass of A. In the case of a ponctual mass
perturber B, we recall that we get (see for example [80]):

V A
T (t, r, rAB)= V B(t, r, rAB)− V A

orb(t, r, rAB) (7.29)
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Fig. 7.3 Inertial Reference, Orbital and Equatorial rotating frames (RR, RO and RE;T) and as-
sociated Euler’s angles of orientation. (Taken from Mathis and Le Poncin-Lafitte [77]; courtesy
Astronomy & Astrophysics)

where

V B(t, r, rAB)=G
MB

|r− rAB| and V A
orb(t, r, rAB)=G

MB

rAB

(

1+ rAB · r
r2

AB

)

,

(7.30)

MB being its mass.
The more general form of the tidal potential being derived, we now express

AI;lA,mA and AII;lA,mA as a function of the Keplerian orbit elements of the per-
turber B. Here, we take into account the relative inclinations of the spin of each
body with respect to the orbital plane. It is then necessary to define three reference
frames, represented in Fig. 7.3, all centered on the center of mass of the considered
body A, OA:

• an inertial frame RR : {OA,XR,YR,ZR}, time independent, with ZR in the di-
rection of the total angular momentum of the whole system LTotal = LOrbital +
LBodyA+∑k LBodyBk

which is a first integral (we are studying here the two bod-
ies interaction between A and each potential perturber Bk with k ∈ �1,N�).

• an orbital frame RO : {OA,XO,YO,ZO}. We define here three Euler angles to
link this frame to RR : {OA,XR,YR,ZR}:
– IB, the inclination of the orbital frame with respect to (OA,XR,YR);
– ωB, the argument of the pericenter;
– Ω∗

B, the longitude of the ascending node.
Let us finally define the last three quantities associated to the elliptic elements of
body B’s center of mass: aB, the semi major axis, eB, the eccentricity and M̃B,
the mean anomaly with M̃B ≈ nBt , nB being the mean motion.
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• a spin equatorial frame RE;T : {OA,XE,YE,ZE}. This frame is rotating with the
angular velocity, ΩA. This frame is linked to RR : {OA,XR,YR,ZR} by three
Euler angles:
– εA, the obliquity, i.e. the inclination of the equatorial plane with respect to the

reference plane (OA,XR,YR);
– ΘA, the mean sideral angle where ΘA = dΩA/dt . This is the angle between

the minimal axis of inertia and the straight line due to the intersection of the
planes (OA,XE,YE) and (OA,XR,YR);

– φA, the general precession angle.

The Kaula’s transform is then used to explicitly express all the generic multipole
expansion in spherical harmonics in term of Keplerian elements. Using the results
derived by [52], the following identity is obtained:

Yl,m(θAB, ϕAB)

rl+1
AB

= 1

al+1
B

l∑

j=−l

l∑

p=0

∑

q

κl,j d
l
j,m(εA)

×Fl,j,p(IB)Gl,p,q(eB) exp[iΨl,m,j,p,q ], (7.31)

where the κl,j coefficients are given by:

κl,j =
√

2l + 1

4π

(l − |j |)!
(l + |j |)! . (7.32)

dlj,m(εA) is the obliquity function which is defined as follow for j ≥ m (see Ta-
ble 7.1):

dlj,m(εA)= (−1)j−m
[
(l + j)!(l − j)!
(l +m)!(l −m)!

] 1
2
[

cos

(
εA

2

)]j+m[
sin

(
εA

2

)]j−m

× P
(j−m,j+m)
l−j (cos εA), (7.33)

the P (α,β)
l (x) being the Jacobi polynomials. The value of the function for indices j

which do not verify j ≥m are deduced from

dlj,m(π + εA)= (−1)l−j dl−j,m(εA) (7.34)

or from their symmetry properties:

dlj,m(εA)= (−1)j−mdl−j,−m(εA)= dlm,j (−εA). (7.35)

On the other hand, one should note that: dlj,m(0)= δjm.
The inclination function, Fl,j,p(IB) (see Table 7.2), is defined in a similar way:

Fl,j,p(IB)= (−1)p
[

4π

2l + 1

(l + j)!
(l − j)!

] 1
2

Yl,l−2p

(
π

2
,0

)

dll−2p,j (−IB), (7.36)

where

Yl,m

(
π

2
,0

)

=
[

2l + 1

4π

] 1
2 [(l −m)!(l +m)!] 1

2

2l[(l −m)/2]![(l +m)/2]! cos

[

(l −m)
π

2

]

; (7.37)
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Table 7.1 Values of the
obliquity function d2

j,m(ε) in
the case where j �m

obtained from Eq. (7.33) (see
[77])

j m d2
j,m(ε)

2 2 (cos ε
2 )

4

2 1 −2(cos ε
2 )

3(sin ε
2 )

2 0
√

6(cos ε
2 )

2(sin ε
2 )

2

1 1 (cos ε
2 )

4 − 3(cos ε
2 )

2(sin ε
2 )

2

1 0 −√6 cos ε(cos ε
2 )(sin ε

2 )

0 0 1− 6(cos ε
2 )

2(sin ε
2 )

2

Table 7.2 Values of the
inclination function
F2,j,p(I ). Values for indices
j < 0 can be deduced from
Eq. (7.38) (see [77])

j p F2,j,p(I )

0 0 3
8 sin2 I

0 1 − 3
4 sin2 I + 1

2

0 2 3
8 sin2 I

1 0 3
4 sin I (1+ cos I )

1 1 − 3
2 sin I cos I

1 2 − 3
4 sin I (1− cos I )

2 0 3
4 (1+ cos I )2

2 1 3
2 sin2 I

2 2 3
4 (1− cos I )2

Table 7.3 Values of the
eccentricity function
G2,p,q (e) (see [77])

p q p q G2,p,q (e)

0 −2 2 2 0

0 −1 2 1 − 1
2 e+ · · ·

0 0 2 0 1− 5
2 e

2 + · · ·
0 1 2 −1 7

2 e+ · · ·
0 2 2 −2 17

2 e2 + · · ·
1 −2 1 2 9

4 e
2 + · · ·

1 −1 1 1 3
2 e+ · · ·

1 0 (1− e2)−3/2

moreover, the following symmetry property is verified:

Fl,−j,p(IB)=
[

(−1)l−j (l − j)!
(l + j)!

]

Fl,j,p(IB). (7.38)

The eccentricity functions Gl,p,q(eB), are polynomial functions having e
q
B for

argument (see [52, 63] for their detailed properties). Their values for usual sets
{l, p, q} are given in Table 7.3. In the case of weakly eccentric orbits, the summation
over a small number of values for q is sufficient (q ∈ �−2,2�).
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Finally, the phase argument is given by

Ψl,m,j,p,q = (l − 2p+ q)M̃B +Φl,m,j,p,q

(
ωB,Ω

∗
B,ΘA, φA

)
, (7.39)

where

Φl,m,j,p,q = (l − 2p)ωB + j
(
Ω∗

B − φA
)−mΘA + (l −m)

π

2
. (7.40)

This is also written as

Ψl,m,j,p,q = σl,m,p,q(nB,ΩA)t +ψl,m,j,p,q

(
ωB,Ω

∗
B, φA

)
, (7.41)

where we have defined the tidal frequency

σl,m,p,q = (l − 2p+ q)nB −mΩA (7.42)

and

ψl,m,j,p,q = (l − 2p)ωB + j
(
Ω∗

B − φA
)+ (l −m)

π

2
. (7.43)

The Kaula’s transform thus allows us to express each function of rAB, i.e. of
(rAB, θAB, ϕAB), as a function of the Keplerian relative orbital elements of B in
the A-frame. Applying Eq. (7.31) to AI;lA,mA and AII;lA,mA respectively given in
Eqs. (7.26) and (7.27), we obtain:

AI;lA,mA = (−1)lA
4π

2lA + 1
(1− δlA,0)(1− δlA,1)

×
∞∑

lB=0

lB∑

mB=−lB
γ
lA,mA
lB,mB

∣
∣MB

lB,mB

∣
∣ exp
[−iδMB

lB,mB

] 1

a
lA+lB+1
B

×
lA+lB∑

j=−(lA+lB)

lA+lB∑

p=0

∑

q

κlA+lB,j d
lA+lB
j,mA+mB

(εA)FlA+lB,j,p(IB)

×GlA+lB,p,q(eB) exp[−iΨlA+lB,mA+mB,j,p,q ] (7.44)

and

AII;lA,mA =−
1

MA

4π

3
δlA,1

∞∑

l′A=1

l′A∑

m′A=−l′A

∞∑

lB=0

lB∑

mB=−lB
(−1)l

′
A+1(2l′A + 2lB + 1

)

× γ
l′A,m′A
lB,mB

∣
∣MA

l′A,m′A

∣
∣ exp
[−iδMA

l′A,m′A

]∣
∣MB

lB,mB

∣
∣ exp
[−iδMB

lB,mB

]

× γ
1,mA
l′A+lB,m′A+mB

1

a
l′A+lB+2
B

l′A+lB+1∑

r=−(l′A+lB+1)

l′A+lB+1∑

s=0

∑

u

κl′A+lB+1,r

× d
l′A+lB+1
r,m′A+mB+mA

(εA)Fl′A+lB+1,r,s (IB)Gl′A+lB+1,s,u(eB)

× exp[−i Ψl′A+lB+1,m′A+mB+mA,r,s,u
], (7.45)

where as in Eq. (7.13) MB
lB,mB

=M
SB
lB,mB

+M
TB
lB,mB

and MA
lA,mA

=M
SA
lA,mA

+M
TA
lA,mA

.
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Like in [126, 130], the tidal potential can be splitted into two components. The
first one, V A

T;1(r, rAB), is stationary (i.e. the tidal frequency vanishes: σ = 0). It
corresponds to the axisymmetric permanent deformation induced by B. In the case
of a ponctual mass perturber and of a system where all the spins are aligned, Zahn
[126, 130] shown that V A

T;1 = −GMB
a3

B

1
2 (1 − e2

B)
−3/2r2P2(cos θ). Then, the second

component is the time dependent part of the perturbation, V A
T;2(t, r, rAB), for which

σ �= 0.

7.2.1.3 The Two Bodies Interaction Potential

Finally, we define the mutual gravitational interaction potential2 of two bodies A
and B is defined as:

VA−B(t, rAB)=
∫

MA

V B(t, r, rAB)dMA. (7.46)

Following once again [44] and [77], the following multipolar expansion is ob-
tained:

VA−B =G

∞∑

lA=0

lA∑

mA=−lA

∞∑

lB=0

lB∑

mB=−lB
MA

lA,mA
MB

lB,mB
(−1)lAγ lA,mA

lB,mB

× YlA+lB,mA+mB(θAB, ϕAB)

r
lA+lB+1
AB

. (7.47)

Finally, using the Kaula transformation given in Eqs. (7.31), (7.32) and (7.39) as
previously done for V A

T , VA−B is expressed as a function of the obliquity (εA), and
of the Keplerian orbital elements of B (aB, eB and IB):

VA−B =G

∞∑

lA=0

lA∑

mA=−lA

∞∑

lB=0

lB∑

mB=−lB
MA

lA,mA
MB

lB,mB
(−1)lAγ lA,mA

lB,mB

× 1

a
lA+lB+1
B

(lA+lB)∑

v=−(lA+lB)

lA+lB∑

w=0

∑

b

κlA+lB,vd
lA+lB
v,mA+mB

(εA)FlA+lB,v,w(IB)

×GlA+lB,w,b(eB) exp[i ΨlA+lB,mA+mB,v,w,b]; (7.48)

this interaction potential contains all multipole-multipole couplings.
Since all type of gravitational potentials have been examined, we now study the

dynamics of a system of extended bodies.

2The denomination of VA−B as a potential is not very pertinent since it has the dimension of the
product of a mass by a potential. However, we keep it to stay coherent with [44].
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7.2.2 Equations of Motion

7.2.2.1 External Gravitational Potential of a Tidally Perturbed Body

The goal of this section is to derive the external gravitational potential of a tidally
perturbed extended body A by an extended body B. This potential is the sum of the
structural self-gravitational potential of A, V A

S (t, r), and of Ṽ A
T (t, r, rAB), the tidally

induced gravitational potential corresponding to the response of A to the perturbing
potential V A

T (t, r, rAB):

V A
ext(t, r, rAB)= V A

S (t, r)+ Ṽ A
T (t, r, rAB) (7.49)

with the following definition for VS

V A
S (t, r)=G

∞∑

lA=0

mA∑

lA=−mA

M
SA
lA,mA

YlA,mA(θ,ϕ)

rlA+1
(7.50)

where M
SA
lA,mA

are the multipole moments of A in the case where it is not tidally
perturbed by any other body, in other words, in the case it is isolated. By definition
the external gravitational potential is harmonic; therefore V A

ext(t, r, rAB) verifies the
Laplace equation:

∇2V A
ext(t, r, rAB)= 0 if |r| ≥RA, (7.51)

that directly leads to the same equation for Ṽ A
T (t, r, rAB):

∇2Ṽ A
T (t, r, rAB)= 0 if |r| ≥RA. (7.52)

Following [23, 24, 62, 81], we use the classical Love numbers, kA
lA

, which allow
us to characterise the response of the body A to the tidal perturbation [70]. The
boundary conditions for Ṽ A

T (t, r, rAB) are:
⎧
⎪⎨

⎪⎩

Ṽ A
T

(
t, |r| → 0, rAB

)= 0,

Ṽ A
T

(
t, |r| =RA, rAB

)=
∑

lA

kA
lA
VlA
(
t, |r| =RA, rAB

)
, (7.53)

where VlA is the lthA spherical harmonic of V A
T (t, r, rAB).

We recall that V A
T (t, r, rAB) has been expanded as follow for |r| ≤ RA (see

Eq. (7.25))

V A
T (t, r, rAB)=G

∑

lA,mA

[
AI;lA,mA(t, rAB)+AII;lA,mA(t, rAB)

]
rlAYlA,mA(θ,ϕ).

(7.54)

Using the well-known properties of the Laplace’s equation, we search the solution
for Ṽ A

T where |r| ≥RA of the form

Ṽ A
T (t, r, rAB)=G

∞∑

lA=0

lA∑

mA=−lA
M

TA
lA,mA

(t, rAB)
YlA,mA(θ,ϕ)

rlA+1
. (7.55)
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Inserting Eqs. (7.54) and (7.55) into Eq. (7.53), the final solution of Ṽ A
T is then

derived

M
TA
lA,mA

=M
TA;I
lA,mA

(t, rAB)+M
TA;II
lA,mA

(t, rAB), (7.56)

where MTA;I
lA,mA

and M
TA;II
lA,mA

are given by
⎧
⎨

⎩

M
TA;I
lA,mA

= kA
lA
AI;lA,mAR

2lA+1
E ,

M
TA;II
lA,mA

= kA
lA
AII;lA,mAR

2lA+1
E .

(7.57)

The response of the body A, which is described by the Love numbers, is the
adiabatic one. However, it is well known that an elastic as well as a fluid body
reacts to the tidal perturbation with a damping and a time delay which are due to
the internal friction and diffusivities (in other words to the viscosity, ν, and the
thermal diffusivity, K , in a non-magnetic body). That allows us to transform the
mechanical energy into thermal one which leads us to the dynamical evolution of
the studied system (cf. Fig. 7.4). Therefore, we introduce a complex impedance,
ZTA(ν,K;ΨL), with its associated argument, δTA(ν,K;ΨL)

ZTA(ν,K;ΨL)=
∣
∣ZTA(ν,K;ΨL)

∣
∣ exp
[
iδTA(ν,K;ΨL)

]
(7.58)

which describes this damping. We thus substitute the complex Love number

k̃A
lA
= kA

lA
|ZTA | exp[iδTA ] (7.59)

to kA
lA

in the Eq. (7.57) (see [45]); L corresponds to the indices of the considered

tidal Fourier’s mode.3 The different modellings that can be adopted for ZTA and δTA

will be extensively discussed in Sect 7.3.
Using Eqs. (7.44) and (7.45), the expression of MTA;I

lA,mA
and M

TA;II
lA,mA

are obtained

M
TA;I
lA,mA

= (−1)lA
4π

2lA + 1
kA
lA
R

2lA+1
A (1− δlA,0)(1− δlA,1)

×
∑

lB,mB,j,p,q

∣
∣ZTA;lA,mA,LI(ν,K;ΨlA+lB,mA+mB,j,p,q)

∣
∣
∣
∣MB

lB,mB

∣
∣γ lA,mA

lB,mB

× 1

a
lA+lB+1
B

κlA+lB,j d
lA+lB
j,mA+mB

(εA)FlA+lB,j,p(IB)GlA+lB,p,q(eB)

× exp[i�TA;lA,mA,LI ], (7.60)

where

�TA;lA,mA,LI = δTA;lA,mA,LI(ν,K;ΨlA+lB,mA+mB,j,p,q)−ΨlA+lB,mA+mB,j,p,q

− δMB
lB,mB

(7.61)

with LI = {lB,mB, j,p, q},

3Note that each tidal Fourier’s mode have its own dissipation rate as it as been shown by Zahn
(1966–1977).
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M
TA;II
lA,mA

=− 1

MA

4π

3
kA
lA
R

2lA+1
A δlA,1

∑

l′A,m′A,lB,mB,r,s,u

(−1)l
′
A+1(2l′A + 2lB + 1

)

× ∣∣ZTA;lA,mA,LII(ν,K;Ψl′A+lB+1,m′A+mB+mA,r,s,u
)
∣
∣γ

l′A,m′A
lB,mB

∣
∣MA

l′A,m′A

∣
∣

× ∣∣MB
lB,mB

∣
∣γ 1,mA

l′A+lB,m′A+mB

1

a
l′A+lB+2
B

κl′A+lB+1,rd
l′A+lB+1
r,m′A+mB+mA

(εA)

× Fl′A+lB+1,r,s (IB)Gl′A+lB+1,s,u(eB)�TA;lA,mA,LII exp[i �TA;lA,mA,LII ],
(7.62)

where

�TA;lA,mA,LII = δTA;lA,mA,LII(ν,K;Ψl′A+lB+1,m′A+mB+mA,r,s,u
)

−Ψl′A+lB+1,m′A+mB+mA,r,s,u
− δMA

l′A,m′A
− δMB

lB,mB
(7.63)

with LII = {l′A,m′A, lB,mB, r, s, u}. Moreover, MB
lB,mB

= M
SB
lB,mB

+ M
TB
lB,mB

4 and

MA
lA,mA

=M
SA
lA,mA

+M
TA
lA,mA

.

As for V A
T , Ṽ A

T can be splitted into two components. The first one Ṽ A
T;1(r, rAB) is

stationary. It corresponds to the permanent component V A
T;1 for which the tidal fre-

quency (σ ) vanishes. The second component Ṽ A
T;2(t, r, rAB) is the time-dependent

one that corresponds to V A
T;2 for which σ �= 0.

Finally the external potential of A is thus written in its more compact and general
form for |r| ≥RA

V A
ext(t, r, rAB)=G

∞∑

lA=0

lA∑

mA=−lA
MA

lA,mA
(t, rAB)

YlA,mA(θ,ϕ)

rlA+1
, (7.64)

where

MA
lA,mA

=M
SA
lA,mA

+M
TA
lA,mA

=M
SA
lA,mA

+M
TA;I
lA,mA

+M
TA;II
lA,mA

. (7.65)

7.2.2.2 Disturbing Function

The goal of this section is to derive the disturbing function, RA−C, due to a tidally
perturbed body A, acting on a body C of which dynamics is studied and which can
be different from the perturber body B (see Fig. 7.4).

First, the disturbing function is related to the mutual gravitational interaction
potential (cf. [21, 114, 115]) through:

RA−C(t, rAC)=− 1

MC
VA−C; (7.66)

the sign being due to the potentials convention adopted here.

4The tidal multipole moments of B due to A can be derived using the same methodology and
substituting A to B for the perturber and vice-versa.
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Fig. 7.4 Classical tidal dynamical system. The extended body B is tidally disturbing the extended
body A which adjusts itself with a phase lag δTA due to its internal friction processes. The dy-
namics of a third body C (different from B or not) is then studied. ΩA, nB, nC are respectively
the spin frequency of A, and the respective mean motions of B and C. (Taken from Mathis and
Le Poncin-Lafitte [77]; courtesy Astronomy & Astrophysics)

Using the definition of VA−C given in Eq. (7.47), we deduce the explicit spectral
expansion of RA−C in spherical harmonics

RA−C =− G

MC

∞∑

lA=0

lA∑

mA=−lA

∞∑

lC=0

lC∑

mC=−lC
MA

lA,mA
MC

lC,mC
(−1)lAγ lA,mA

lC,mC

× YlA+lC,mA+mC(θAC, ϕAC)

r
lA+lC+1
AC

. (7.67)

The MA
lA,mA

, MC
lC,mC

are respectively the mass multipole moments of the body A and
of the body C, while rAC, θAC and ϕAC are the spherical coordinates of the center of
mass of the body C in the A-frame (cf. Fig. 7.2). Then, using the Kaula’s transfor-
mation given in Eqs. (7.31), (7.32) and (7.39), RA−C is expressed as a function of
the obliquity (εA) and of the Keplerian orbital elements of C (aC, eC and IC)

RA−C =− G

MC

∞∑

lA=0

lA∑

mA=−lA

∞∑

lC=0

lC∑

mC=−lC
MA

lA,mA
MC

lC,mC
(−1)lAγ lA,mA

lC,mC

× 1

a
lA+lC+1
C

(lA+lC)∑

v=−(lA+lC)

lA+lC∑

w=0

∑

b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)

×GlA+lC,w,b(eC) exp[iΨlA+lC,mA+mC,v,w,b]. (7.68)

Here, three types of gravitational interaction are treated in our formalism (see
also Eq. (7.65)). To describe them, one has first to consider the two causes of the
multipolar behaviour of the gravitational potential of a body. The first is due to its
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internal structure and dynamics. In the case of a solid body, it is due to its proper
asymmetry while in the case of a fluid mass, the internal dynamical processes such
as rotation or magnetic field will break the ideal spherical hydrostatic symmetry of
the body. The second is the deformation of the body due to its response to the tidal
perturbation exerted by the perturber(s). In the case studied here, it is the response
of the body A to the perturbation exerted by B computed in the previous section.
Therefore, we split here the k-indexed mass multipole moments of each body as in
Eq. (7.13):

Mk
lk,mk

=M
Sk
lk,mk

+M
Tk

lk,mk
, (7.69)

where MSk
lk,mk

is the self-structural contribution of the body while MTk

lk,mk
is the tidal

one.
The three type of gravitational interaction are thus identified. The first is the inter-

action between the structural mass multipole moments of each body, MSk
lk,mk

M
Sk′
lk′ ,mk′

with k �= k′; one should note that {lA = 0,mA = 0} − {lC = 0,mC = 0} is the clas-
sical interaction between MA and MC, MC being the mass of C. The second corre-
sponds to the mixed interaction between the structural and the tidal mass multipole

moments, MSk
lk,mk

M
Tk′
lk′ ,mk′ . The third is the interaction between the tidal mass mul-

tipole moments of each body, MTk

lk,mk
M

Tk′
lk′ ,mk′ . Therefore, the disturbing function

could be splitted into three terms

RA−C =RA−C;S−S(t, rAC)+RA−C;S−T(t, rAC)+RA−C;T−T(t, rAC), (7.70)

where RA−C;S−S is the disturbing function associated to the structure-structure in-
teraction, RA−C;T−S is associated to the tide-structure interaction and RA−C;T−T is
associated to the tide-tide interaction.

Inserting Eq. (7.69) into Eq. (7.68), the respective Fourier expansions of
RA−C;S−S, RA−C;S−T and RA−C;T−T are obtained

RA−C;S−S =− G

MC

∞∑

lA=0

lA∑

mA=−lA

∞∑

lC=0

lC∑

mC=−lC
M

SA
lA,mA

M
SC
lC,mC

(−1)lAγ lA,mA
lC,mC

× 1

a
lA+lC+1
C

∑

v,w,b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)GlA+lC,w,b(eC)

× exp[iΨlA+lC,mA+mC,v,w,b], (7.71)

RA−C;T−S =− G

MC

∞∑

lA=0

lA∑

mA=−lA

∞∑

lC=0

lC∑

mC=−lC

(
M

SA
lA,mA

M
TC
lC,mC

+M
TA
lA,mA

M
SC
lC,mC

)

× (−1)lAγ lA,mA
lC,mC

1

a
lA+lC+1
C

∑

v,w,b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)

×GlA+lC,w,b(eC) exp[iΨlA+lC,mA+mC,v,w,b] (7.72)

and
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RA−C;T−T =− G

MC

∞∑

lA=0

lA∑

mA=−lA

∞∑

lC=0

lC∑

mC=−lC
M

TA
lA,mA

M
TC
lC,mC

(−1)lAγ lA,mA
lC,mC

× 1

a
lA+lC+1
C

∑

v,w,b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)GlA+lC,w,b(eC)

× exp[iΨlA+lC,mA+mC,v,w,b]. (7.73)

This classification of the three different types of interaction allows to explicitly
generalise the classical case where the only considered extended body is the tidally
perturbed one, A, while B and C are considered as ponctual masses. In this case, the
interaction are restricted to the classical gravitational interaction between M

SA
lA,mA

,

M
TA
lA,mA

, MB, the mass of B, and MC.
By now, to lighten the equations, the tidal multipole moments of C are ignored.

In a practical case, they have to be derived using Eqs. (7.60)–(7.62) and taken into
account. The disturbing function RA−C is thus reduced to the two first interactions:
the respective structural moments of body A and of body C and the structural mo-
ments of body C with the tidal moments of body A. The Fourier expansion of the
disturbing function is thus given by:

RA−C =RA−C;S−S +RA−C;T−S =
∑

lA,mA,lC,mC,v,w,b

RlA,mA,lC,mC,v,w,b(t, rAC),

(7.74)

where

RlA,mA,lC,mC,v,w,b =RS−S;lA,mA,lC,mC,v,w,b(t, rAC)

+RT−S;lA,mA,lC,mC,v,w,b(t, rAC) (7.75)

with

RS−S;lA,mA,lC,mC,v,w,b

=− G

MC
M

SA
lA,mA

M
SC
lC,mC

(−1)lAγ lA,mA
lC,mC

× 1

a
lA+lC+1
C

∑

v,w,b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)GlA+lC,w,b(eC)

× exp[iΨlA+lC,mA+mC,v,w,b] (7.76)

and

RT−S;lA,mA,lC,mC,v,w,b

=− G

MC
M

TA
lA,mA

M
SC
lC,mC

(−1)lAγ lA,mA
lC,mC

× 1

a
lA+lC+1
C

∑

v,w,b

κlA+lC,vd
lA+lC
v,mA+mC

(εA)FlA+lC,v,w(IC)GlA+lC,w,b(eC)

× exp[i ΨlA+lC,mA+mC,v,w,b]. (7.77)
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Using Eq. (7.56), the Tide-Structure interaction disturbing function is expanded as

RT−S;lA,mA,lC,mC,v,w,b

=
∑

lB,mB,j,p,q

RI;LI(t, rAC)+
∑

l′A,m′A,lB,mB,r,s,u

RII;LII(t, rAC), (7.78)

where RI;LI and RII;LII respectively correspond to the M
TA;I
lA,mA

and M
TA;II
lA,mA

contri-

bution to the external gravitational potential of the tidally perturbed body A, V A
T .

7.2.2.3 Dynamical Equations

The external potential of the tidally perturbed body A by a body B being now well
understood and known, our purpose here is to derive the dynamical equations for the
evolution of the angular velocity (the angular momentum in term of Andoyer’s vari-
ables) and the obliquity of A (εA) under the action of the gravitational interaction
with a body C which could be different from the perturber B and of the Keplerian
orbital elements of this third body (aC, eC and IC). To achieve this aim, we follow
the method adopted by [22–24] who used the mutual interaction potential for the
variation of the Andoyer’s variables and the disturbing function of the orbital ele-
ments. Here, gravitational interactions between B and C are not taken into account.

Beginning with the Andoyer’s variables (cf. [2]), we respectively get the evolu-
tion of the total angular momentum, LA = IAΩA, IA being the inertia momentum
of A

dLA

dt
= ∂ΘAVA−C, (7.79)

and of the obliquity (εA)

LA
d

dt
cos εA =−∂φAVA−C − cos εA∂ΘAVA−C. (7.80)

Next, the classical equations of orbital evolution are given by the Lagrange’s plane-
tary equations (cf. [12]):

daC

dt
= 2

nCaC
∂MCRA−C, (7.81)

deC

dt
=−
√

1− e2
C

nCa
2
CeC

∂ωCRA−C + 1− e2
C

nCa
2
CeC

∂MCRA−C, (7.82)

dIC

dt
=− 1

nCa
2
C

√
1− e2

C sin IC

∂Ω∗
C
RA−C + cos IC

nCa
2
C

√
1− e2

C sin IC

∂ωCRA−C.

(7.83)
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7.2.2.4 When Is it Necessary to Go Beyond the Punctual Mass Approximation
for the Tidal Potential?

Here, our goal is to quantify the term(s) of the disturbing function due to the non-
ponctual behaviour of the perturber B and to compare it to the one in the ponctual
mass case.

To achieve this aim, some assumptions are assumed. First, we adopt the
quadrupolar approximation for the response of A to the tidal excitation by B. Thus,
we assume that lA = 2 so that RII;LII = 0. Then, we consider the simplified situation
where the body of which dynamics is studied is the tidal perturber; therefore B= C
and we get

RI;LI =−
G

MB

4π

5
kA

2 R
5
A

∣
∣ZTA;2,mA,LI(ν,K;Ψ2+lB,mA+mB,j,p,q)

∣
∣
[
γ

2,mA
lB,mB

]2∣∣MB
lB,mB

∣
∣2

× 1

a
2(2+lB+1)
B

[κ2+lB,j ]2
[
d

2+lB
j,mA+mB

(εA)
]2[

F2+lB,j,p(IB)
]2[

G2+lB,p,q(eB)
]2

× exp
[
iδTA;2,mA,LI(ν,K;Ψ2+lB,mA+mB,j,p,q)

]
. (7.84)

On the other hand, since we are interested in the amplitude of RI;LI , we focus on its
norm (|RI;LI |). Finally, as we know that the dissipative part of the tide is very small
compared to the adiabatic one (see [126]), we can assume that |ZTA | ≈ 1 in this first
step.

Let us first derive the term of |RI;LI | due to the non-ponctual term of the gravi-
tational potential of B, which has a non-zero average in time over an orbital period
of B, 〈V B

N−P〉TB(r) = 1/TB
∫ TB

0 V B
N−P(t, r)dt that corresponds to the axisymmetric

rotational and permanent tidal deformations (see [130]) (the same procedure can of
course be applied to the non-stationary and non-axisymmetric deformations, but we
choose here to focus only on 〈V B

N−P〉TB to illustrate our purpose). Then, as the con-
sidered deformations of B are axisymmetric, we can expand them using the usual
gravitational moments of B (JlB ) as

V B(r)= GMB

r
+ 〈V B

N−P

〉
TB
, (7.85)

where

〈
V B

N−P

〉
TB
=G
∑

lB>0

(
M

SB
lB,0
+M

TB
lB,0

)YlB,0(θ,ϕ)

rlB+1
(7.86)

with

M
SB
lB,0
+M

TB
lB,0
=−JlBMBR

lB
B

NlB,0
. (7.87)

Then, we obtain
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∣
∣R

JlB
I;LI

(aB, eB, IB, εA)
∣
∣= G

MB

4π

5
kA

2 R
5
A

[
γ

2,mA
lB,0

]2∣∣MSB
lB,0
+M

TB
lB,0

∣
∣2

× 1

a
2(2+lB+1)
B

[κ2+lB,j ]2
[
d

2+lB
j,mA

(εA)
]2[

F2+lB,j,p(IB)
]2

× [G2+lB,p,q(eB)
]2
. (7.88)

On the other hand, the term of |RI;LI | associated to MB, namely the disturbing
function in the case where B is assumed to be a ponctual mass, is given by
∣
∣RMB

I;LI
(aB, eB, IB, εA)

∣
∣

= G

MB

4π

5
kA

2 R
5
AMB

1

a6
B

[κ2,j ]2
[
d2
j,mA

(εA)
]2[

F2,j,p(IB)
]2[

G2,p,q(eB)
]2
.

(7.89)

For this first evaluation of the ratio |RJlB
I;LI
|/|RMB

I;LI
|, we focus on the configuration of

minimum energy. In this state, the spins of A and B are aligned with the orbital one
so that εA = IB = 0 (that leads to j =mA and p = (2−mA + lB)/2) and the orbit
is circular (eB = 0). Then, we consider:

EmA,lB =
|RJlB

I;LI
(aB,0,0,0)|

|RMB
I;LI

(aB,0,0,0)| . (7.90)

Using Eqs. (7.88)–(7.89), we get its expression in function of JlB and of (RB/aB):

EmA,lB =
1

4π

[
1

N 0
lB

γ
2,mA
lB,0

γ
2,mA
0,0

κ2+lB,mA

κ2,mA

F
2+lB,2, lB2

(0)

F2,2,0(0)

]2

J 2
lB

(
RB

aB

)2lB
. (7.91)

As it has been emphasised by [127, 130], the main mode of the dissipative tide
ruling the secular evolution of the system is mA = 2. We thus define ElB such that

ElB = E2,lB =
[

1

3
F

2+lB ,2, lB2
(0)

]2

J 2
lB

(
RB

aB

)2lB
, (7.92)

which can be recast into

log(ElB)= 2

[

log

[
1

3
F

2+lB,2, lB2
(0)

]

+ logJlB − lB log

(
aB

RB

)]

. (7.93)

Finally, keeping only into account the quadrupolar deformation of B (J2), we get:

log(E2)= 2

[

log

(
5

2

)

+ logJ2 − 2 log

(
aB

RB

)]

. (7.94)

This gives us the order of magnitude of the terms due to the non-ponctual behaviour
of B compared to the one obtained in the ponctual mass approximation. It is di-
rectly proportional to the squared J2, thus increasing with ε2

Ω (where εΩ =Ω2
B/Ω

2
c

with Ωc =
√

GMB
R3

B
) in the case of the rotation-induced deformation and with ε2

T

(where εT = q(RB/aB)
3 where q =MA/MB) in the tidal one, while it increases
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Fig. 7.5 LogE2 in function of aB/RB for J2 = 10−3 (red dashed line), 10−2 (purple long-dashed
line), 10−1 (blue solid line). The non-ponctual terms have to be taken into account for strongly
deformed perturbers (J2 ≥ 10−2) in very close systems (aB/RB ≤ 5) while they decrease rapidly
otherwise. (Taken from Mathis and Le Poncin-Lafitte [77], courtesy Astronomy & Astrophysics)

as (RB/aB)
4. Therefore, as it is shown in Fig. 7.5, the non-ponctual terms have to

be taken into account for strongly deformed perturbers (J2 ≥ 10−2) in very close
systems (aB/RB ≤ 5) while they decrease rapidly otherwise. This corresponds for
example to the case of internal natural satellites of rapidly rotating giant planets as
Jupiter and Saturn J2 ≈ 1.4697 · 10−2 for Jupiter and J2 ≈ 1.6332 · 10−2 for Saturn;
(see [41] and references therein). In the case of close Hot-Jupiters which are already
synchronised (because of the tidal dissipation the rotation period is close to the or-
bital one), the rotation period is larger than 2 days (50 hours) that is roughly 5 times
slower than Jupiter’s rotation (10 hours). In this case, the flattening of Hot-Jupiter is
less important and their J2 should be of the same order of the Earth’s value (i.e. J2
runs from 10−4 to 10−3). Then, the relative effect of the non-ponctual terms is less
important. The situation may be different in the earliest evolutionary stages of those
systems.

7.2.2.5 The Classical Two-Body Case with a Punctual Tidal Perturber

We now focus on binary systems (B = C) close enough for the tidal interaction
to play a role, but we also consider that the companion is far (or small) enough
to be treated as a point mass (i.e. aB ≥ 5RA, where RA is the mean A radius;
cf. Sect. 7.2.2.4). We then are allowed to assume the quadrupolar approximation,
where we only keep the first mode of the potential, lA = 2:

V A
T (r, θ,ϕ, t)

=Re

[
2∑

mA=−2

2∑

j=−2

2∑

p=0

∑

q∈Z
VmA,j,p,q(r)P

mA
2 (cos θ)eiΦ2,mA,j,p,q (ϕ,t)

]

, (7.95)
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where

Φ2,mA,j,p,q(ϕ, t)=mAϕ +Ψ2,mA,j,p,q(t). (7.96)

The functions VmA,j,p,q(r, θ) may be expressed in terms of the Keplerian ele-
ments (the semi-major axis aB of the orbit, its eccentricity eB and its inclination IB)
and the obliquity εA of the rotation axis of A, as

VmA,j,p,q(r)= (−1)mA

√
(2−mA)!(2− |j |)!
(2+mA)!(2+ |j |)!

× GMB

a3
B

[
d2
j,m(εA)F2,j,p(IB)G2,p,q(eB)

]
r2. (7.97)

If we simplify the expansion of the potential in the case where spins are aligned and
perpendicular to the orbital plan, where obliquity εA and orbital inclination IB are
zero, Eq. (7.95) reduces to the expression of the potential given by Zahn [130].

Then, the evolution equations of the semi-major axis (aB), of the eccentricity
(eB), of the inclination (IB), of the obliquity (εA) and of the angular velocity (ΩA)
given in Sect. 2.3.3 become [32, 77, 94]:

dLA
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=−8π
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dt
= 1
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where function HmA,j,p,q(eB, IB, εA) is expressed as

H2,mA,j,p,q(eB, IB, εA)=
√

5

4π

(2− |j |)!
(2+ |j |)! d

2
j,mA

(εA)F2,j,p(IB)G2,p,q(eB).

(7.103)

Note that these expressions are valid for high eccentricities if enough terms are
considered in the expansion (see [106]).

The mass redistribution due to the tide is thus at the origin of a tidal torque of
non-zero average which induces an exchange of angular momentum between each
component and the orbital motion. As shown by previous equations, this tidal torque
is proportional to the tidal dissipation kA

2 /Q (see [23, 24]), where

kA
2 =
∣
∣̃kA

2

∣
∣ (7.104)

(see Eq. (7.59) for the k̃A
2 definition) is the Love number that describes the adiabatic

response of A to the tidal excitation [70] and

Q= |Imk̃A
2 |

|̃kA
2 |

(7.105)

is the tidal quality factor, which scales as the inverse of the ratio of the energy
losses during an orbital period to the total energy of the system [39]. For a perfectly
adiabatic response to the tidal excitation, A will be elongated in the direction of the
line of centers, inducing a torque with periodic variations of zero average, so that
no secular exchanges of angular momentum will be possible (see [94, 126]). Next,
if dissipative processes are taken into account, the deformation of A presents a time
delay �t with respect to the tidal forcing, which may be measured also by the tidal
lag angle 2δ or equivalently by the quality factor Q (see [31, 34]):

sin[�t × σ2,mA,p,q ] = sin
[
2δTA(σ2,mA,p,q)

]

= 1

Q(σ2,mA,p,q)
. (7.106)

Thus, the tidal bulge is no more aligned with the line of centers, as shown in Fig. 7.4.
The resulting tidal angle is at the origin of a torque of non-zero average which causes
exchange of spin and orbital angular momentum between the components of the
system [127].

Then, if the considered two-body system is isolated, two evolutions are possible.
In the most common case, provided the system does not loose angular momentum,
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it tends to a state of minimum energy in which the orbits are circular, the rotation of
the components is synchronised with the orbital motion, and the spins are aligned.
From previous dynamical equations one may derive the characteristic times of syn-
chronisation, circularisation and spin alignment:

1

tsync
=− 1

ΩA − nB

dΩA

dt
=− 1

IA(ΩA − nB)

dLA

dt
, (7.107)

1
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=− 1
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dt
, (7.108)

1
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=− 1
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dt
= 1
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d(cos εA)

dt
, (7.109)

1
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=− 1
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dIB

dt
= 1

IB sin IB

d(cos IB)

dt
. (7.110)

However, in very close systems, such final state cannot be achieved: instead, the
secondary spirals toward the primary and may be engulfed by it [48, 69].

7.3 Tidal Dissipation Mechanisms in Planetary Systems

7.3.1 The Tidal Kinetic Energy Dissipation: The Driver of Systems
Evolution

As it has been emphasised in the previous section, the tidal interaction can be broken
down in two steps. First, if we adopt an ideal adiabatic view of the action of the tidal
potential exerted by the secondary on the primary, this latter becomes elongated
along the line of centers. However, dissipative processes that convert the tidal kinetic
energy into heat, such as viscous friction and heat diffusion, have to be taken into
account (see Fig. 7.6). Then, the response of the studied body to the tidal excitation
presents a delay (the tidal lag), which translates into the tidal angle between the tidal
bulge and the line of centers. Those tidal delay and angle are thus directly related to
the dissipative mechanisms and their dependence on the tidal frequency. Therefore,
to predict the fate of a binary system, one has to identify and to model the dissipative
processes achieving the conversion of kinetic energy into thermal energy that take
place in fluid and solid layers and at their interfaces, from which one can derive the
characteristic times of circularisation, synchronisation and spins’ alignment.

7.3.2 Tidal Dissipation in Fluid Bodies

While stars are fluid bodies, planets host gaseous and liquid layers: the deep en-
velopes of giant planets, as well as the internal core, the atmosphere and the possible
ocean of telluric ones (see Figs. 7.7 and 7.8). Therefore, one has to obtain a com-
plete understanding of flows that are tidally excited and dissipated in such regions
in planetary systems.
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Fig. 7.6 The tidal energy dissipation: first, the gravitational tidal potential energy generates tidal
flows with a given kinetic energy. Next, the internal friction, related to the internal structure proper-
ties of the studied body, dissipates this kinetic energy into heat. This process leads to the evolution
of the system (by modifying its spins and orbital properties) and change the internal structure of
its components by tidal heating [68]

Fig. 7.7 Internal structure of main-sequence stars as a function of their mass represented using
Kippenhahn diagram: stellar masses are given in the horizontal axis while the fraction in mass
and the position of convection zones (cloudy regions) and of radiation zones are given along the
vertical axis (adapted from Kippenhahn and Weigert [56], courtesy Springer). Very low-mass stars
are entirely convective. Next, as the stellar mass grows the radiative core becomes more and more
important. Finally, a transition occurs because hydrogen is converted into helium through the CNO
cycle and a convective core takes place with an external radiative envelope

7.3.2.1 Type of Fluid Tides

Two types of tides operate in stars5 and in fluid planetary layers: the equilibrium
and dynamical tides. On one hand, the equilibrium tide designates the large-scale
flow induced by the hydrostatic adjustment of studied fluid layers in response to

5See also the lecture in this volume on stellar tides by J.-P. Zahn.
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Fig. 7.8 Top: internal structure of telluric planets in the Solar system and of the Moon. Bottom:
internal structure of gaseous giant planets (Jupiter & Saturn) and of icy giant planets (Uranus &
Neptune) in the Solar system (see [3, 35, 41, 42]). (Courtesy NASA/JPL-Caltech)

the gravitational force exerted by the companion [126, 127]. On the other hand, the
dynamical tide corresponds to the fluid eigenmodes that are excited by the tidal po-
tential. Let us now detail the different types of eigenmodes that should be studied in
stellar and fluid planetary regions. First, if Fig. 7.9 is considered, four characteristic
frequencies are introduced: the Alfvén frequency (ωA = B√

μρr sin θ , where B is the
field amplitude and μ is the magnetic permeability), the inertial frequency (2Ω), the
Brunt-Väisäla frequency (N ), and the Lamb frequency (fL). These delimit the fre-
quency domain of corresponding Alfvén waves (ω < ωA), inertial waves (ω < 2Ω),
gravity waves (for which ω <N and that are also called internal waves), and acous-
tic waves (ω > fL); these are respectively driven by the magnetic tension force,
the Coriolis acceleration, the buoyancy force and the compressibility of the studied
layers. If we now focus on low-frequency waves, inertial waves are propagating in
convective regions while internal waves are propagating in stably stratified regions.
For these latters, if considered frequencies are of the same order of magnitude that
the Alfvén and the inertial frequencies, these become gravito-inertial waves if we
add the action of the Coriolis acceleration to the one of buoyancy and magneto-
gravito-inertial waves if the magnetic field is taken into account. In this picture,
tidal excitation is mostly efficient for low-frequency eigenmodes, thus for inertial
and internal waves. Moreover, for acoustic waves, which are high-frequency waves,
the action of tides is only a perturbation. Therefore, one has to focus on inertial and
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Fig. 7.9 Main wave types in stellar interiors and in fluid planetary layers. Tidal interactions ex-
cite low-frequency waves such as inertial waves in convective regions and gravito-inertial waves
in stably stratified zones (and associated magneto-inertial and magneto-gravito-inertial waves if
magnetic fields are taken into account); high-frequency acoustic waves are only perturbed by the
tidal potential. (Adapted from Mathis and de Brye [75], courtesy Astronomy & Astrophysics)

on gravito-inertial waves to study the dynamical tide respectively in convective and
in stably stratified regions.

Next, dissipative processes that convert kinetic energy of tidally excited fluid
velocities into heat have to be identified.

First, stellar and planetary convective layers host strong turbulent flows because
of the high value of the Reynolds number in such celestial bodies. In such regions,
the action of turbulence on the tidal flows (the equilibrium tide and the dynami-
cal tide, i.e. the inertial waves excited by the tidal potential) can be modelled as
a viscous force with a turbulent viscosity coefficient (see for example [37, 127]).
This implicitly assumes that the respective length scales of tidal and convective
flows allow to distinguish one from the other. Such rough modeling has now been
confirmed using direct numerical simulations of the interaction between an highly
turbulent convection and a tidal velocity (see for example [91, 92]; note that in these
works, the prescription given by Zahn [127] where the turbulent viscosity scales
linearly with the tidal period (and thus the inverse of the tidal frequency) has been
confirmed). So, in convective regions, the kinetic energy of tidal flows is dissipated
into heat because of the turbulent viscous friction.

Next, in stably stratified stellar and planetary regions, the dynamical tide (i.e. the
gravito-inertial waves) is dissipated through viscous and thermal diffusions (see for
example [38, 41]). Then the ratio between the viscous and the radiative damping
is govern by the Prandtl number (Pr = ν/K , where ν and K are respectively the
viscosity and the thermal diffusivity). Moreover, [128] has demonstrated that the
dissipation of the equilibrium tide in stellar radiation zones can be neglected.

Finally, planetary interiors host solid/fluid interfaces. There, viscous friction oc-
curs that contributes to the dissipation of tides kinetic energy.
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Fig. 7.10 Dissipative processes acting in solar-type stars (left) and in massive stars and in Jupiter
(and Saturn)-type giant planets (right). CE, RE, CC, RC are respectively convective and radiative
envelopes and cores. Note that for giant planets, a rocky/icy core could exist [3, 35, 41, 42]

All of this underlines the importance of the internal structure of the studied bod-
ies, because each stellar or planetary layer dissipates the kinetic energy in function
of its fluid or solid nature and of its stability with respect to the convective instability
for fluid regions. A summary of the dissipation mechanisms that contribute to the
tidal friction in liquid and gaseous regions is given in Fig. 7.10.

7.3.2.2 The Fluid Equilibrium Tide

Let us first consider the equilibrium tide. As it has been explained in previous sec-
tions, the studied component adjusts in a quasi-hydrostatic way when this is sub-
mitted to the tidal potential exerted by the companion. Then, a large-scale flow in
phase with the tidal potential is excited as a response to such structural adjustment
with an amplitude scaling with the tidal frequency; this is the equilibrium tide (see
for example [50, 94, 126, 130]). Since the tidal force is derived from a potential, the
density is constant on an isobar, which is also an equipotential of the total potential
(the sum of the self-gravitation potential and of the tidal one). Then, by definition
of the equilibrium tide, the tidal deformation and the related structural variables
(the total gravitational potential and the density) and the equilibrium tide velocity
field are time-independent in a frame rotating with the studied Fourier component
of the tidal potential; because of that property, the equilibrium tide velocity field is
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Fig. 7.11 Top-left: 3-D view of the total (poloidal and toroidal) adiabatic equilibrium tide velocity
field (white arrows). The red and orange arrows indicate the direction of the primary’s rotation
axis and the line of centers respectively. Top-right: Representation of this velocity field at the
surface of the primary (black arrows); the color-scaled background represents the normalised tidal
potential intensity (blue and red for the minimum and maximum values respectively). Bottom-left:
View of the velocity field (white arrows) in its equatorial plane of symmetry; the color-scaled
background represents the velocity value (black and orange for the minimum and maximum values
respectively). Bottom-right: View of the velocity field (white arrows) in its meridional plane of
symmetry; the color-scaled background represents the velocity value (black and purple) for the
minimum and maximum values respectively. (Taken from Remus et al. [94], courtesy Astronomy
& Astrophysics)

divergence-free (see [94]) contrary to the claim of [33, 110]. It is also important to
point that since this velocity field represented in Fig. 7.11 verifies the momentum
equation in this rotating frame, the Coriolis acceleration must be taken into account
in its derivation (the equilibrium tide velocity field has thus both a poloidal and a
toroidal components). Next, the view of the equilibrium tide we gave above is an
adiabatic view, and we must now introduce the associated friction mechanism. For
the equilibrium tide this is the turbulent friction in convective regions that will act to
convert its kinetic energy into heat (note that [128] has demonstrated that its dissipa-
tion in stably stratified regions is negligible). Then, the interaction between turbulent
convective flows and the equilibrium tide velocity field has to be examined. From
now on, two main assumptions are made: first, we consider that the respective scales
of the turbulent convection and the equilibrium tide are different enough to be sep-
arated; next, we assume that the action of the turbulent convection on the tidal flow
can be modelled as a viscous force, where the used viscosity is a “turbulent viscos-
ity” which is enhanced compared to the molecular viscosity of the plasma. Since
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the adiabatic equilibrium tide has both poloidal and toroidal components, so does
the related viscous force that sustains a secondary toroidal flow, called the “con-
vective” or dissipative equilibrium tide, in quadrature with the tidal potential. By
redistributing the density, this velocity field leads to a “dissipative” perturbation of
the gravitational potential that drives the secular evolution of the orbit and the spins
of the system components.

To describe the dissipation of the kinetic energy of the adiabatic equilibrium tide,
namely its amplitude and its dependence on the tidal frequency, the key physical in-
gredient is the assumed prescription for the turbulent viscosity coefficient. Then, two
different regimes can be drawn: the “slow tide” and “fast tide” regimes. In the first
one, the orbital period of the perturber is longer that the characteristic convective
turn-over time. Then, the turbulent friction can be efficient to dissipate the kinetic
energy into heat. Conversely, in the fast tide regime, the orbital period is shorter that
the characteristic convective turn-over time and the turbulent friction losses part of
its efficiency to convert the kinetic energy into heat, leading to a saturation of the
associated energy dissipation. The way in which the dissipation becomes less effi-
cient when the tidal period becomes shorter remains one of the unsolved question in
the treatment of the equilibrium tide. Two main prescriptions have been given today
in the literature: those by Zahn [127, 131] and by Goldreich and Keeley [37]. In the
first one the turbulent viscosity scales linearly with the tidal period while in the sec-
ond one this scales as the squared tidal period. The most efficient way to probe such
prescriptions on the action of turbulence is then to used three-dimensional numeri-
cal simulations of highly turbulent convective flows submitted to a periodic forcing,
which is often modelled as a shear that oscillates with time. The most recent nu-
merical simulations have been achieved with such set-up in Cartesian coordinates
[90–92] that tends to confirm the prescription by Zahn [127]. In a near future, more
simulations have to be computed in order to reach flows that are more turbulent and
to take into account the spherical (ellipsoidal) geometry of the problem. For the mo-
ment, one can at least conclude that the viscous dissipation of the equilibrium tide
varies as the product of the tidal frequency (on which depends the velocity field)
with the frequency dependence of the turbulent viscosity. In the case of the linear
prescription given by Zahn [127], we shall note that in the fast tide case the turbu-
lent viscosity scales as the inverse of the tidal frequency, leading to a constant tidal
dissipation, while in the slow tide regime the turbulent viscosity is constant, so that
the dissipation scales here with the tidal frequency (see in Fig. 7.12).

To conclude this part on the equilibrium tide, we shall note that in a near future
both the differential rotation and the magnetic field have to be taken into account
since they modify at the same time the equilibrium tide velocity field, the convective
flows and the associated turbulence properties.

7.3.2.3 The Fluid Dynamical Tide: Inertial and Gravito-Inertial Waves

• Inertial waves
Once the equilibrium tide has been studied, it is then necessary to focus on the

dynamical tide, i.e. the eigenmodes of the studied body, which are excited by the
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Fig. 7.12 The two regimes of the turbulent dissipation of the equilibrium tide according to the
prescription by Zahn [127]. As long as the local convective turn-over time remains shorter than the
tidal period (tconv < Ptide), the turbulent viscosity νt (in black dashed line) is independent of the
tidal frequency, and the inverse quality factor k2/Q (in red continuous line) varies proportionally
to the tidal frequency (σl) (so does also the tidal lag angle). When tconv > Ptide, νt varies propor-
tionally to the tidal period, whereas k2/Q does no longer depend on the tidal frequency. νt and
k2/Q have been scaled by the value they take respectively for tconv/Ptide → 0 and →∞. (Taken
from Remus et al. [94], courtesy Astronomy & Astrophysics)

tidal potential. To achieve this aim, let us first consider convective zones in stellar
and planetary interiors. In those regions, if we neglect magnetic field, two type of
waves are propagating: the acoustic and the inertial waves. However, as it has been
explained above acoustic waves are high-frequency waves and are thus only weakly
perturbed by the tidal potential. This is not the case of inertial waves for which the
Coriolis acceleration is the restoring force. Then, inertial waves can be efficiently
coupled with the tidal potential (see [51, 83–87, 97, 124, 125]). Such coupling can
then lead to an important tidal dissipation in the convective envelopes of low-mass
stars and giant planets and in the convective cores of stars and telluric planets. Be-
cause of inertial waves properties, the necessary condition to get such dissipation is
that the tidal frequency is such that |σT | ∈ [0,2Ω], where from now on σT is the
tidal frequency.

Let us now examine the properties of tidally excited inertial waves. First, two
configurations can occur in stellar and planetary interiors; first, the tidal potential
can be coupled with inertial waves that propagate in a full sphere (case of an en-
tirely convective star or fluid planet or of a stellar convective core); next, inertial
waves can propagate between concentric spheres with stress-free or no-slip bound-
ary conditions depending on if we are studying stellar or planetary interiors (case
of the convective envelopes of low-mass stars and of giant planets if those have an
heavy element rocky or icy core). Because of the cylindrical geometry related to the
Coriolis acceleration, boundary conditions then strongly influence the excited flows
and the related dissipation.
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Fig. 7.13 A: Density perturbation (left) and radial and latitudinal components (right) of a tidally
excited retrograde inertial mode with |m| = 2. The mode amplitude and the wavevector remain
relatively uniform over much of the planet and rise sharply toward the surface; this rise is most
striking near the critical latitude θc = arcos(σT /2Ω) marked by straight lines (Ω is the planet
rotation). (Taken from Wu [124], courtesy The Astrophysical Journal.) B: Viscous dissipation of
such inertial waves excited by the tidal potential in a fully convective planet and the associated
value of the tidal quality factor Q as a function of the tidal frequency for an Eckman number
E = ν/ΩR2 = 10−7, where ν is the viscosity and R the radius of the studied planet. (Taken from
Wu [125], courtesy The Astrophysical Journal)

The “Full Sphere” Configuration The first case of entirely convective sphere
has been studied for example by Wu [124, 125] (Fig. 7.13). In this work, the orig-
inal solution for inertial waves in a full sphere with a constant density derived by
Bryan [15] has been generalised to the stratified case. This leads to global modes
which then couple to the tidal potential as in the academic case of a forced oscilla-
tor. To study the dissipation of their kinetic energy, the same assumptions that in the
case of the equilibrium tide (i.e. the spatial scales separation between the convective
flows and the tidal inertial waves and the modeling of the friction using a viscous
force with a turbulent viscosity) are assumed. Numerous resonances between eigen-
modes and the tidal potential are obtained and identified. Then, the main important
properties to study is the related amplitude of the dissipation and its dependence
on the tidal frequency. First, the tidal dissipation can be increased by several or-
der of magnitudes when a resonance is encountered compared to the case of the
equilibrium tide. Next, the main difference with the equilibrium tide is the strong
dependence on the tidal frequency of the tidal dissipation because of the resonances.

The Cored Configuration The second case of inertial waves propagating in
spherical shells has been studied in [84] for the planetary case and in [85] for the
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Fig. 7.14 A: High-resolution calculation (E = 10−9) of the tidal response of a uniformly rotating
planet with an internal core. The r.m.s. velocity of the total tide (equilibrium and dynamical) is
plotted in a meridional slice through the convective region (the velocity scale is linear, black rep-
resenting zero). Attractors with associated inertial wave beams can be identified. The forcing tidal
frequency is chosen to be near the peak of an inertial mode resonance. (Taken from Ogilvie and Lin
[84], courtesy The Astrophysical Journal.) B: Production of short inertial waves by scattering of
the equilibrium tide off the core at critical latitudes to explain results obtained by Ogilvie and Lin
[84]. (Taken from Goodman and Lackner [40], courtesy The Astrophysical Journal.) C: Viscous
dissipation of such inertial waves excited by the tidal potential as a function of the tidal frequency
for an Eckman number E = 10−7; the dotted line corresponds to Q = 105. (Taken from Ogilvie
and Lin [84], courtesy The Astrophysical Journal)

stellar case. Then, because of the conflict between the spherical geometry of the
problem and the one related to the Coriolis acceleration, the propagation of iner-
tial waves becomes more complex (Fig. 7.14). First, inertial waves propagate along
characteristic rays that are inclined to the rotation axis at a certain angle, which
depends on the wave frequency. This angle is necessary preserved in reflections of
the waves from boundaries so that a beam is focused of defocused in such a reflec-
tion. When propagating in such spherical annulus (in opposite to the first full sphere
case), inertial waves are therefore focused onto attractors where an intense dissipa-
tion occurs [83, 96, 99, 100]. Then, [82] demonstrated mathematically that the mean
dissipation rate associated with waves attractors (in a simplified wave equation) be-
comes independent of the viscosity in the limit of very small Eckman number (i.e.
for very small viscosity). This constitutes a remarkable behaviour compared for ex-
ample to the case of the equilibrium tide dissipation, which is directly proportional
to the viscosity. In the complete global modeling by Ogilvie and Lin [84], a similar
behaviour is observed in the limit of small viscosity and obtained solutions indicate
that the dissipation is typically concentrated along the rays that emanate from the
critical latitude on the inner boundary (see also [97]). Goodman and Lackner [40]
have proposed a physical interpretation of such phenomena: using WKB methods,
they demonstrate the production of short inertial waves by scattering of the equilib-
rium tide off the core at critical latitudes. The tidal dissipation rate associated with
these waves scales as the fifth power of the core radius. They also find that even if
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the core of rock or ice is unlikely to be rigid, Ogilvie and Lin’s mechanism should
still operate if the core is substantially denser than its immediate surroundings.

As a partial conclusion, we must point that the viscous dissipation of inertial
waves are one of the most important processes to take into account in stellar and in
planetary interiors. Let us now draw some perspectives on what should be done to
improve the modeling of such processes. First, as in the case of the equilibrium tide,
the differential rotation and the magnetic field have to be taken into account. First,
convective flows are those that establish the differential rotation that depends both
on radius and on latitude in convective regions [13]. Next such regions host dynamo
generated magnetic fields [14] that are generated because of the simultaneous action
of differential rotation and of convective turbulence that are themselves modified
by the magnetic field because of the Lorentz force feed-back in the momentum
equation. Then, inertial waves propagation and dissipation will be modified both
by the differential rotation and the magnetic fields. Moreover, the dissipation may
be modified both by corotation resonances between inertial waves and the sheared
rotation (see also the case of gravito-inertial waves) and by the Ohmic heating that
constitute supplementary dissipation sources.

Inertial Waves Instabilities Finally, it is important to point the possibility of tidal
inertial waves’ related instabilities. In the case of inertial waves, main instabilities
can come for the interaction with differential rotation (see also the case of gravito-
inertial waves) and from the tidal elliptic instability. This latter corresponds to the
astrophysical version of the generic elliptical instability, which affects all rotating
fluids with elliptically-deformed streamlines [55, 57, 58, 66]. In the astrophysical
case, the origin of such elliptic instability is a resonance between inertial waves
in rotating stars and planets and the tidal wave, i.e. the underlying strain field re-
sponsible for the elliptic deformation [118]. This instability is able to generate and
sustain large-scale flows (for example the so-called spin-over mode) that superpose
to basic flows such that differential rotation or convection in planetary and in stellar
interiors (see Fig. 7.15). Then, as in the case of inertial waves, viscous forces can
act to dissipate the generated kinetic energy that leads to potential important evo-
lution of the considered system. Recent studies of the tidal elliptic instability have
been recently achieved in the context of binary stars [67], planetary cores [17, 18]
and extra-solar planetary systems [19]. Then, interesting behaviour of this instabil-
ity have been isolated. First, this can develop both in convective or stably stratified
regions (where inertial waves become gravito-inertial because of the supplemen-
tary stabilising buoyancy force) [18, 43, 64, 65]. In the case of convective regions,
the elliptic instability can thus develop with a growth-rate that diminishes with the
intensity of the convection; thus, the flow generated with the tidal instability can
superpose to the convective one. Next, such tidal flow may play an important role in
the induction of a magnetic field leading to a “tidal dynamo” [46, 59] in planetary
interiors and may be in stellar ones. This last point constitutes one of the must impor-
tant question to examine in a near future to see a possible impact of tidal interactions
on celestial bodies magnetic activity. Finally, we must point that the dissipation re-
lated to the elliptic instability depends on boundary conditions that are applied (see
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Fig. 7.15 Spin-over mode of the tidal elliptic instability observed in the laboratory (A) and com-
puted in numerical simulations (B). (Adapted from Cébron [16, 17], courtesy D. Cébron and
Physics of the Earth and Planetary Interiors)

Sect. 7.3.4), that can lead to important differences between no-slip boundary con-
ditions (in planetary cores of telluric planets and at the interface between a central
core and a surrounding fluid envelope in giant planets) and stress-free conditions (as
at giant planets’ and stars’ surfaces).

• Internal waves

Let us now consider the case of stably stratified zones in stellar and planetary in-
teriors. As it has been described in Sect. 7.2.2.1, gravity (and gravito-inertial waves)
are propagating in such regions. These are excited at the border with adjacent con-
vective regions both by turbulent movements, and in the case where there is a close
companion, by pressure fluctuations induced by tidally excited inertial waves (for
example those of inertial waves attractors in the case of external convective en-
velopes). Then, in the case of binary or multiple systems, gravito-inertial waves will
be forced in stellar radiation zones and in stably stratified planetary layers (for ex-
ample in non-convective layers just below the surface of giant planets in our solar
system or of giant extra-solar planets, where those layers can be created because of
the heating of the surface by the close star, and in stably stratified regions in tel-
luric planets). Then, the displacement as in the case of convective regions is the sum
of the equilibrium tide and of the dynamical tide, which are here gravito-inertial
waves. Let us now consider the properties of the tidal dissipation related to gravito-
inertial waves. We must here recall that the main dissipative mechanism acting on
such waves is the thermal diffusion. Then, as in the case of inertial waves, the tidal
dissipation can be increased by several orders of magnitude compared to the one of
the equilibrium tide, in particular in resonances that occur for gravity waves has it
has been shown by [84, 85, 88, 101–103, 107, 109, 129]. Moreover, because of such
increase of the tidal dissipation during resonances, its behaviour is highly dependant
on the tidal frequency (see Fig. 7.16).

Let us now discuss the modification of gravito-inertial waves propagation by ro-
tation and magnetic field. First, for the rotation, gravito-inertial waves propagation
will strongly depends on the value of the tidal frequency compared to the inertial
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Fig. 7.16 A: Tidal dissipation by gravito-inertial waves in a solar-type star and the corresponding
quality factor as a function of the tidal frequency computed by Ogilvie and Lin [85]. (Courtesy
the Astrophysical Journal.) B: Breaking of large-amplitude tidally excited internal waves at the
center of a solar-type star computed by Barker and Ogilvie [4]. There, waves deposit their angular
momentum that can accelerates the center of the star and makes evolve the orbit of the planetary
companion. (Courtesy Monthly Notices of the Royal Astronomical Society)

frequency (2Ω) where we recall that Ω is the rotation of the studied body. First, in
the super-inertial regime (σT > 2Ω), gravito-inertial waves are propagating in the
whole sphere. However, in the sub-inertial one (σT < 2Ω), waves become trapped
in an equatorial region, propagating only above a given so-called critical colatitude
[74, 78] (see Fig. 7.17). Such kind modification of gravito-inertial propagation is
very important for their coupling with tidal-induced displacements in adjacent con-
vective regions. Moreover, has it has been discovered by [108, 120–123], the Cori-
olis acceleration can lead to the so-called “tapping in resonnance” where retrograde
and prograde waves exert respectively a negative and an positive torques that act
to block the studied system in a resonant state where the tidal dissipation is very
efficient. Then, the tidal dissipation is also dependent on the rotation rate and the
associated Coriolis acceleration. Next, for example in the case of solar-type stars,
gravito-inertial waves propagation is modified by the presence of magnetic field, for
example at the bottom of the convective envelope. Then, waves becomes magneto-
gravito-inertial waves where the Lorenz force has to be taken into account. Such
waves have been studied for example by Mathis and Brye [75, 76]. First, waves
excited with frequencies close to the Alfvén frequency will be vertically trapped.
Then, as in the gravito-inertial case, an equatorial trapping can occur depending
both on ωA and 2Ω .

As in the case of inertial waves, we can conclude that the tidal dissipation will be
strongly dependent on the tidal frequency, on the rotation and of potential impact of
magnetic fields.

Interactions with Shear Flows and Instabilities Finally, let us discuss the in-
teraction of the dynamical tide with differential rotation with the dynamical tide in
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Fig. 7.17 We consider here a solar-twin star with an external convective envelope and a radia-
tive core. The rotation profile in this latter is flat (i.e. Ω =Ωm = 430 nHz) for r ∈ [0.2R,0.7R],
where R is the stellar radius. In the central region, Ω increases until Ω = 5Ωm at the cen-
ter. Coloured regions correspond to those where gravito-inertial waves are propagative while
black regions correspond to “dead” zones for waves propagation. We choose three frequencies
(σ = {500,750,1000} nHz) that shows that for frequency below 2Ωm equatorial trapping phe-
nomena appear. The white line corresponds to the critical surface (the critical latitude in the case
of uniform rotation) at the level of which the wave propagation regime changes. The central region
is always a non-propagative region because of the central rapid rotation

stably stratified layers. First, as it has been explained by Goldreich and Nicholson
[38, 41], gravity waves can transfer angular momentum only if these are damped
by a dissipative mechanism (which is mostly the thermal diffusion) or if these meet
corotation resonances during their propagation (i.e. if we consider a “shellular” rota-
tion that depends only on r , radii where Ω(rc) is proportional to the tidal frequency).
Let us first examine the thermal diffusion effect: an important point is that the ther-
mal damping depends on the prograde or retrograde behaviour of the wave because
of the Doppler shift. Then, in the case of a differentially rotating body, the synchro-
nisation of each layer will progress from the surface to deeper regions [41]. Let us
now focus on corotation region, which are also called the critical layers. There, these
are strong interactions between internal waves and the shear of the differential rota-
tion. We can summarise such type of exchanges as follows: first, if the studied layer
is stable with respect to the shear instabilities, waves deposit their angular momen-
tum, the damping rate being dependant on the so-called Richardson number, which
compares the strength of the stabilisation by the stratification and the destabilisation
by the shear gradient; then, if the layer is already turbulent, internal waves can be
reflected and transmitted by such layers with an amplitude greater than their initial
one because waves take energy for the turbulent flows. In this context, it is important
to study the possible instabilities that could affect internal waves dynamics. First, if
waves are excited with a large amplitude, waves will break and then, these could
overturn the stable stratification (see for example [4, 5] and Fig. 7.16 for dynamical
tide dynamics at the center of solar-type star). Then, even for weak amplitude, in-
ternal waves can undergo parametric instabilities where a “parent” wave give birth
to “daughter” waves that could be then also dissipated [119]. Thus, as in the case
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of inertial waves, the interaction with the differential rotation as well as their own
instabilities could strongly modify the value of the tidal dissipation.

7.3.3 Tidal Dissipation in Rocky or Icy Planetary Regions

As it has been shown in previous sections, the tidal potential is able to excite several
types of velocity fields in fluid stellar and planetary layers leading to possible high
values of the quality factor Q, which is function of the tidal frequency both for the
equilibrium and the dynamical tides. However, planets (and their associated natural
satellites) are composed of both fluid and solid layers, and tidal dissipation in these
latters and at the fluid-solid interfaces should also be treated.

In this sense, the treatment of what is often called “the bodily tide”, in other word
the solid tide, has been one of the first studies of tidal dissipation using continuum
mechanics (see for example [70]). These studies were of course motivated by the
Earth case where tidal interactions with both the Moon and the Sun have to be taken
into account [81]. In solid layers, tidal physical mechanisms are similar to those
occurring in fluids. First, a solid equilibrium tide is generated that consists on a
permanent large-scale displacement (with a zero velocity field that constitutes a dif-
ference with the fluid case). In an adiabatic modeling, this displacement is allowed
by the elasticity of the material and directed along the line of centers (see the right
panel of Fig. 7.18). However, as in the fluid case, solid layers host dissipation be-
cause of their anelasticity and the tidal energy is dissipated into heat, leading at the
same time to internal heating, to a net applied torque, and to a small delay between
the tidal bulge and the line of centers. This anelasticity, which is often modelled
as a viscous behaviour that adds to the elasticity as in the Maxwell’s body model,
depends on the intrinsic properties of the considered material (for example silicates
or ices), which are described by its rheology [79]. This latter is given by the consti-
tutive equation that links the strain tensor (ε) to the stress tensor (σ ). Under small
deformations (as tidal perturbations), it is customary to assume that the strain-stress
relationship is linear, and materials that obey this law are called Hookean materials.
If we also assume that they are isotropic and incompressible, the Hooke’s law states
then that: σ = μ̃(σT )ε, where μ̃ is the complex shear modulus (also called rigidity,
which measures the stiffness of the material) which depends on the tidal frequency
(σT ). Its real and imaginary parts represent respectively the energy storage and the
energy losses of the system. Moreover, thanks to the correspondence principle (see
[6, 79]), one can calculate the tidal dissipation and the associated quality factor Q
for any linear rheology.

Such type of computation has already been performed for the Moon [89],
for rocky core of giant planets [29], for icy natural satellites (see for example
[116, 117]), and for telluric extrasolar planets as Earth-like planets or Super-
Earths [45].

Such type of solid tide occurs for example in a two-layer planet with an inter-
nal rocky part and an external fluid envelope as studied by [29, 93] (see Fig. 7.18).
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Fig. 7.18 Left: Two-layer model of planetary internal structure (body A of mass MA rotating at
angular velocity Ω) formed by an internal rocky core surrounded by a fluid envelope perturbed
by a companion (body B of mass MB orbiting around A with mean motion n). Rc and Rp are
respectively the core and the planetary radii, ρo and ρc the densities of the fluid envelope and of
the core, and μ is the shear modulus of the core. Right: purely elastic tidal displacement in the solid
core free of fluid envelope; the red and orange arrows indicate respectively the symmetry axis of
the planetary core and the direction of the companion. (Taken from Remus et al. [93]; courtesy
Astronomy & Astrophysics)

This corresponds to the cases of a telluric planet with an external ocean or atmo-
sphere or a gaseous or icy giant planet with a potential rocky/icy core born during
the planetary formation [41, 42]. According to such models, the resulting solid tidal
dissipation can reach values greater by several orders of magnitude than those due to
fluid tidal velocities described in previous sections, for realistic values of viscoelas-
tic parameters (see Figs. 7.19 and 7.20 for the solid cores of Jupiter- and Saturn-like
planets). Observational measurements of tidal dissipation in our Solar system, from
astrometry for example (see [60] for Jupiter, and [61] for Saturn confirmed by re-
alistic scenario of natural satellites formation [20]), provide precious constraints to
discriminate one tidal process from an other. Indeed, each process present proper
characteristics: for example, the study of the tidal frequency-dependence of solid
dissipation shows a smooth behaviour (Fig. 7.20) compared to the case of inertial
and gravito-inertial waves where the dissipation varies of several orders of magni-
tude (cf. Sect. 7.3.2). Some other behaviours can be shared by different mechanisms
as the sensitivity to the size of the solid cores that is shared by both the core’s tidal
dissipation and the inertial waves fluid one. This shows how this becomes crucial to
get constraints on the size of the rocky core of giant planets from observations and
theoretical predictions. Moreover, this large values, as in the fluid case, shows the
strong need to go beyond phenomenological prescriptions [30, 31].

7.3.4 Boundary Conditions

As it has been shown previously, tidal interactions excite flows (i.e. the equilibrium
tide, the dynamical tide, and fluid movements that result from their instabilities).
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Fig. 7.20 Dependence to the perturbative strain pulsation ω of the tidal quality factor Q̂eff Jupiter-
like (red solid line) and Saturn-like (blue dashed line) giant planets. Note that the curves are rep-
resented with a logarithmic scale. The red and blue dotted lines correspond to the mean value of
Q̂eff = {(3.56± 0.56)× 104, (1.682± 0.540)× 103} (for Jupiter and Saturn respectively) deter-
mined by Lainey et al. [60, 61]. Their zone of uncertainty is also represented in the corresponding
color. The blue dots correspond to the values (obtained by Lainey et al. [61]) of the dissipation
induced in Saturn by Enceladus, Thetys, Dione and Rhea with their respective error bars. We recall
the values of Rp = {10.97,9.14} (in units of RΦ

p , the Earth radius), Mp = {317.8,95.16} (in units

of MΦ
p , the Earth mass), Mc = {6.41,18.65} ×MΦ

p , and Rc = {0.15,0.26}Rp . We take for the vis-

coelastic parameters G= {2.73,6.51} × 1010 (Pa), and η= {8.65× 1013,2.50× 1014} (Pa · s) for
Jupiter and Saturn respectively. (Adapted from Remus et al. [93]; courtesy Astronomy & Astro-
physics)

Then, depending on the internal structure of the studied body, boundary conditions,
and particularly at the surface and near solid/fluid interfaces (in planetary interiors)
should be examined carefully. Indeed, boundary layer strongly sheared flows can
develop there, that may lead to a strong dissipation. Let us first consider the case of
the surface of stars or of planets. Tassoul and Tassoul [111–113] have proposed that
Eckman boundary layers take place and lead to an important viscous dissipation.
However, following [95, 98], we must point that such boundary constitutes a free
surface with stress-free boundary conditions for the velocity field and thus that the
dissipation related to associated boundary layers will be very weak. However, if
we now consider the solid/fluid interfaces, we are in the case of no-slip boundary
conditions that correspond to the classical Eckman boundary layers (see Fig. 7.21)
where a strong viscous dissipation may occur, particularly if the studied region is
turbulent. As a partial conclusion on boundary flows, one has thus to remember that
solid/fluid regions (at the top of rocky/icy cores of giant planets and at boundaries
of liquid cores in telluric planets) may host strong viscous dissipation while this will
not be the case below the surface of stars or planets with a fluid envelope. At solid-
fluid boundaries, we must also point that couplings between the fluid dynamical tide
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Fig. 7.21 Schematic view of
Eckman boundary layers that
can be important at
boundaries of planetary cores.
(Taken from Rieutord and
Zahn [98] in which details
concerning boundary velocity
fields b1 and b2 are given,
courtesy The Astrophysical
Journal)

(inertial or gravito-inertial) and the (an)-elastic tide in solid regions must be studied
in a near future since these may modify the related tidal dissipation.

7.3.5 Hierarchy Between Dissipative Physical Processes and the
Associated Obtained States

In this review, we have tried to give a complete review of dissipative processes act-
ing on tidally excited velocity fields in stellar and in planetary interiors. It is thus
interesting at that point to draw a hierarchy between the intensity of the related
dissipations. First, for fluid regions, dynamical tides (inertial and gravito-inertial
waves) as well as related instabilities (the elliptic instability for inertial waves and
the convective and parametric instabilities for internal waves) lead to a stronger dis-
sipation that can dominate by several order of magnitude the one associated to the
equilibrium tide. Next, if we study planetary interiors, we have isolated that tidal
dissipation in rocky/icy regions can dominate the one in fluid regions depending
on their respective size. Remember also, that each type of tidal dissipation have a
different dependence on the tidal frequency that can be constrained by observations
to unravel the action of the different physical mechanisms. Finally, it is important
to recall that once one have identified all the dissipation processes and derived the
associated torques as shown in Sect. 7.2.2, equilibrium states for orbital and spin
properties can be obtained (see for example [22–25] for telluric planets) and com-
pared to observational constraints obtained on our Solar system and on exoplanetary
systems.

7.4 Conclusion

In this lecture, we have tried to give the must complete picture of tidal interactions
in planetary systems. In the first section, we have summarised the most general
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formalism to model tidal dynamics and we have shown the crucial dependence of
systems’ evolution on dissipative mechanisms that convert the kinetic energy of tidal
flows into heat. Next, we have described the important diversity of mechanisms that
take place in stellar and planetary interiors. We have given their main properties,
namely their relative amplitude and their dependence on the internal structure and on
the tidal frequency that can be very complex. This shows how it is now necessary to
study tidal interactions with a good description of the bodies’ internal structure and
to go beyond the rough approximations that are often adopted to describe systems’
evolution due to tidal interactions.
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Chapter 8
Stellar Tides

Jean-Paul Zahn

Abstract To a first approximation, a binary star behaves as a closed system; there-
fore it conserves its angular momentum while evolving to its state of minimum ki-
netic energy, where the orbits are circular, all spins are aligned, and the components
rotate in synchronism with the orbital motion. The pace at which this final state is
reached depends on the physical processes responsible for the dissipation of the tidal
kinetic energy. For stars with an outer convection zone, the dominant mechanism is
presumably the turbulent dissipation acting on the equilibrium tide. For stars with
an outer radiation zone, the major dissipative process is radiative damping operating
on the dynamical tide.

I shall review these physical processes, discuss uncertainties in their present treat-
ment, describe the latest developments, and compare the theoretical predictions with
the observed properties concerning the orbital circularization of close binaries.

8.1 Introduction

A fundamental property of isolated mechanical systems is that they conserve their
total angular momentum while they evolve. This is true in particular for binary stars,
and star-planet(s) systems, as long as one can ignore the angular momentum that is
lost by the winds or by gravitational waves. Through tidal interaction, kinetic energy
and angular momentum are exchanged between the rotation of the components and
their orbital motion. In general, as we shall see, the system evolves toward an equi-
librium state of minimum kinetic energy, in which the orbit is circular, the rotation
of both stars is synchronized with the orbital motion, and their spin axes are perpen-
dicular to the orbital plane. How rapidly the system tends to that state is determined
chiefly by the strength of the tidal interaction, and therefore by the separation of the
two components: the closer the system, the faster its dynamical evolution. But it also
depends strongly on the efficiency of the physical processes that are responsible for
the dissipation of kinetic energy into heat.
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Provided these dissipation processes are understood well enough, the observed
properties of a binary system can deliver important information on its evolutionary
state, on its past history, and even on the conditions of its formation. The first step
is thus to identify these physical processes, and one may wonder why this has not
been seriously undertaken until the 1990s, while the tidal theory as such had already
reached a high degree of sophistication, starting with the pioneering work of Dar-
win [2]. The reason can be found in Kopal’s classical treatise, where he declares
from start that he is interested only in ‘dynamical phenomena which are likely to
manifest observable consequences in time intervals of the order of 10 or 100 years,
and if so, tidal friction can be safely ignored’ [14].

But stars live much longer than us human beings, and this is why we shall con-
sider here changes in the properties of binary systems that span their evolutionary
time scale; we shall discuss in particular the circularization of their orbits, which is
both easy to observe and easy to interpret. We shall deal mainly with binary stars,
although much of what follows may be applied also to star-planet systems. In the
latter case, however, owing to the stark contrast between the mass of the star and
that of the planet, the system may not reach the equilibrium state mentioned above,
as we shall see in the next section.

8.2 Equilibrium States

To seek such equilibrium states, we follow here the method introduced by Hut [11].
Consider a binary system whose components (star or planet) are characterized by
their mass (M1,M2), moment of inertia (I1, I2), and rotation vector (Ω1,Ω2). Their
orbits around the center of mass have an eccentricity e and the sum of their semi-
major axes is a. The total angular momentum vector of the system is given by

L= h+ I1Ω1 + I2Ω2, (8.1)

where h designates the orbital momentum, with

h2 =G
(M1M2)

2

M1 +M2
a
(
1− e2). (8.2)

If one ignores the loss of angular momentum through winds or gravitational waves,
L remains constant and it defines an inertial frame perpendicular to it; with respect
to that plane, the orbital plane is inclined by an angle i. The Cartesian projections
of h on the inertial frame are chosen such that

h= (h sin i,0, h cos i). (8.3)

The total mechanical energy of the system (kinetic + gravitational) amounts to

E =−GM1M2

2a
+ 1

2
I1|Ω1|2 + 1

2
I2|Ω2|2. (8.4)
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A state of equilibrium is achieved when this E reaches a minimum under the con-
straint of fixed angular momentum, say L=L0. Such a state satisfies the variational
equations

∂

∂xi
E + λ · ∂

∂xi
L= 0, (8.5)

where λ= (λx, λy, λz) is the Lagrangian multiplier, and where the xi represent the
nine parameters a, e, i, and Ω1,k , Ω2,k (k = x, y, z).

The next step is to derive these nine variational equations:

G
M1M2

a
+ (λx sin i + λz cos i)h= 0, (8.6)

(λx sin i + λz cos i)
e

(1− e2)
h= 0, (8.7)

(λx cos i − λz sin i)h= 0, (8.8)

Ω1,k + λk =Ω2,k + λk = 0, k = x, y, z. (8.9)

It is easy to check that this system has a unique solution, where the orbits are cir-
cular (e = 0), the rotation axes are perpendicular to the orbital plane (i = 0), and
where the rotation of the two components is synchronized with the orbital mo-
tion: Ω1 =Ω2 = ω, with the orbital angular velocity ω obeying Kepler’s third law
ω2 =G(M1 +M2)/a

3.
The angular momentum of these equilibrium states may be expressed as a func-

tion of the orbital frequency:

L=
[
G2(M1M2)

3

(M1 +M2)

]1/3

ω−1/3 + (I1 + I2)ω, (8.10)

which has a minimum for

ω2 = ω2
cr =
[(

1

3(I1 + I2)

)3
G2(M1M2)

3

(M1 +M2)

]1/2

(8.11)

where

L= Lcr = 4

[
(I1 + I2)

27

G2(M1M2)
3

(M1 +M2)

]1/4

. (8.12)

No equilibrium state can exist below the critical value Lcr: for L< Lcr the system
evolves with ever increasing orbital frequency (see Fig. 8.1), and this may eventually
lead to its coalescence [11]. This occurs when the orbital angular momentum is less
than 3 times the rotational angular momentum of the two components. In practice,
this can only occur in very close systems, when the mass ratio is small enough:

M2

M1
<

3I1

M1R
2
1

(
R1

a

)2

. (8.13)

This the case for transiting planets, as was shown by Levrard et al. [20]. But here we
shall deal mainly with close binary stars, for which L> Lcr, and these will evolve
towards a stable equilibrium state (located on the continuous line in Fig. 8.1).
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Fig. 8.1 Angular momentum
of the equilibrium states of
binary systems: stable
equilibria are drawn in
continuous line, unstable
equilibria in dotted line. No
equilibrium state can be
achieved below the critical
value Lcr

8.3 The Equilibrium Tide

We begin with the most simple concept: that of the equilibrium tide, where one
assumes that the star under consideration is in hydrostatic equilibrium, and that, in
the absence of dissipation mechanisms, it adjusts instantaneously to the perturbing
force exerted by its companion (star or planet).

8.3.1 A Crude Estimate of the Tidal Torque

For simplicity, let us assume that the orbit is circular. When the rotation of the star is
synchronized with the orbital motion, the tidal bulges are perfectly aligned with the
companion star; their elongation δR1 and mass δM1 are easily estimated, neglecting
numerical factors of order unity:

δM1

M1
≈ δR1

R1
≈ (f2 − f1)

GM1/R
2
1

≈ M2

M1

(
R1

d

)3

, (8.14)

where d is the distance between the two components, and f1 and f2 the forces that
are exerted on the tidal bulges, as shown in Fig. 8.2. However, when the rotation
is not synchronized, any type of dissipation causes a lag α of the tidal bulges, with
respect to the line of centers, and the star then experiences a torque Γ which tends
to drag it into synchronism:

Γ ≈ (f2 − f1)R1 sinα ≈−δM1

[
GM2R1

d3

]

R1 sinα =−GM2
2

R1

(
R1

d

)6

sinα.

(8.15)
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Fig. 8.2 Tidal torque. When the star under consideration rotates faster than the orbital motion
(Ω >ω), its mass distribution is shifted by an angle α from the line joining the centers of the two
components, due to the dissipation of kinetic energy. Since the forces applied to the tidal bulges
are not equal (f1 > f2), a torque is exerted on the star, which slows it down and therefore tends to
synchronize its rotation with the orbital motion (Ω→ ω)

The tidal angle α is a function of the lack of synchronism, since it vanishes for
Ω→ ω, Ω being the rotation rate and ω the orbital angular velocity. In the simplest
case, called the weak friction approximation, α is a linear function of the lack of
synchronism: α = (Ω − ω)δt , where δt is the time lag of the tidal bulge, and is
thus constant in this approximation. That angle depends also on the strength of the
physical process that is responsible for the dissipation of kinetic energy, which may
be measured by its characteristic time tdiss, with α inversely proportional to that
time. This leads us to

α = (Ω −ω)

tdiss

R3
1

GM1
, (8.16)

where we have rendered α non-dimensional by introducing the most ‘natural’ time,
namely the dynamical (or free-fall) time (GM1/R

3
1)
−1/2.

Inserting this expression of α in (8.15) we obtain the tidal torque

Γ =− (Ω −ω)

tdiss
q2MR2

(
R

d

)6

, (8.17)

where q =M2/M1 is the mass ratio between secondary and primary components.
From here on, when there is no ambiguity, we shall drop the index 1 from R1
and M1.

The weak friction law (8.16) is applicable to fluid bodies, such as stars and gi-
ant planets, assuming that the dissipation is of viscous nature, and that the viscosity
does not depend on the tidal frequency, namely on (Ω − ω). (As we shall see later
on, this condition is not necessarily fulfilled.) In that case the correct expression
for the tidal torque, which one derives from the full equations governing the prob-
lem, is precisely of the form given above (Eq. (8.17)). From it, we may draw the
synchronization time tsync:

1

tsync
=− Γ

I (Ω −ω)
= 1

tdiss
q2MR2

I

(
R

a

)6

, (8.18)

where I is the moment of inertia of the star; here the torque has been averaged over
the orbit, whose semi-major axis is a. We shall see later on how the dissipation time
tdiss may be evaluated.
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Since the instantaneous orbital velocity varies along an elliptic orbit, so does
also the torque applied to the primary. This has the effect of changing the orbital
eccentricity, at a rate given by the circularization time

1

tcirc
=−d ln e

dt
= 1

tdiss

(

9− 11

2

Ω

ω

)

q(1+ q)

(
R

a

)8

, (8.19)

again in the weak friction approximation; the companion star contributes a similar
amount. Note that in binary stars, synchronization proceeds much faster that cir-
cularization, because the angular momentum of the orbit is in general much larger
than that stored in the stars (IΩ�Ma2ω); this is not necessarily true in star-planet
systems, as we have seen in Sect. 8.2. One verifies that the eccentricity decreases
near synchronization, but not for fast rotation: it was Darwin [2] who first pointed
out that the eccentricity actually increases when Ω/ω > 18/11.

8.3.2 Turbulent Convection: The Most Powerful Mechanism for
Tidal Dissipation

The dissipation time tdiss, which determines the tidal torque and hence the dynamical
evolution of the binary system, is often treated as a free parameter, to be adjusted by
the observations. We prefer to derive it from the physical processes that convert the
mechanical energy of the tide into heat. The first of such processes that comes into
mind is viscosity. But in stellar interiors, the viscosity due to microscopic processes
is very low: it amounts typically to ν ≈ 10–103 cm2 s−1. Therefore the (global) vis-
cous timescale R2/ν is much longer than the age of the Universe.

Radiative damping is more efficient: the dissipation time is then of the order of
the Kelvin-Helmholtz time: tKH =GM/RL, where L is the luminosity of the star.
But (R/a) is raised to such a high power in (8.18) and (8.19) that tsync—and tcirc
even more so—easily exceed the life-time of the star.

However viscosity still plays a key role in those regions of stars and planets that
are the seat of turbulent convection. There the kinetic energy of the large scale flow
that is induced by the tide cascades down to smaller and smaller scales, until it
is dissipated into heat by viscous friction. The force which acts on the tidal flow
may then be ascribed to a ‘turbulent viscosity’ of order νt ≈ vt�, where vt is the
r.m.s. vertical velocity of the turbulent eddies, and � their vertical mean free path (or
mixing-length). The tidal dissipation time introduced in (8.18) scales as the global
convective time:

1

tdiss
= 6λ2

tconv
where tconv =

[
MR2

L

]1/3

; (8.20)

the quantity λ2 is determined by a summation of νt over the whole star

λ2

tconv
= 4176

35
π
R

M

∫
x8ρνt dx, (8.21)
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where ρ is the density and x = r/R the normalized radial coordinate. This ex-
pression is approximate: it applies to a star with a thick convection zone, and
it was established assuming that the whole luminosity is carried by convection
[32, 44].

The convective dissipation time is very short: tconv = 0.435 yr in the present Sun,
and for this reason turbulent convection is the most powerful dissipation mechanism
acting on the equilibrium tide [44]. It works particularly well in stars possessing an
outer convection zone, such as solar-type stars. Assuming that the whole heat flux
is carried by convection and that the star is fully convective, λ2 = 0.019α4/3, with α

(not to be confused with the tidal lag introduced above) being the classical mixing-
length parameter [47].

In stars with a convective core, tidal dissipation due to turbulent convection is
considerably reduced, since it scales as (rc/R)7 with the radius rc of that core [44].
Furthermore, in such cores the convective turnover time easily exceeds the tidal
period, and therefore the straightforward definition of the turbulent viscosity taken
above, i.e. νt ≈ vt�, can no longer be applied, as we shall see next.

8.3.3 Which Prescription for Fast Tides?

When the local convective turnover time tover = �/vt exceeds the tidal period Ptide,
it seems appropriate to replace the mean free path by the distance that turbulent
eddies are traveling during, say, half a tidal period. The turbulent viscosity is then
given by

νt = vt�min[1,Ptide/2tover], (8.22)

ignoring numerical coefficients of the order of unity [44]. This reduction occurs
mainly in the deepest layers of a convection zone, since the convective turn-over
time increases roughly as the 3/2 power of depth.

The same problem was addressed somewhat later by Goldreich and Nicholson
[5], when they estimated the tidal damping in Jupiter. They remarked that ‘though
the largest convective eddies move across distances of order �Ptide/tover in a tidal
period, they do not exchange momentum with the mean flow on this time scale.’
Assuming that the Kolmogorov spectrum applies to convective turbulence, they re-
tained in that spectrum only the eddies whose turnover time (or life time) is less than
a tidal period; in that case, the turbulent viscosity scales as

νt = vt�min
[
1, (Ptide/tover)

2]. (8.23)

They concluded that ‘tidal interactions between Jupiter and its satellites have played
a negligible role in the evolution of the latters’ orbits.’

The question of which of these prescriptions should be applied has long been
considered as Achilles’ heel of tidal theory. One could even question the validity of
the very concept of turbulent viscosity, since we know that stratified convection is
hardly a diffusive process: the transport of heat and momentum is partly achieved
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Fig. 8.3 Turbulent viscosity acting on a tidal flow in a stellar convection zone. The vertical com-
ponent of that viscosity was determined by Penev et al. [30] by applying an oscillating large-scale
shear on a numerical simulation of turbulent convection; it decreases with the forcing frequency f .
The result (in solid line) is compared here with several prescriptions that have been proposed for
the loss of efficiency of turbulent friction when the tidal period becomes shorter than the convective
turn-over time

by long-lived plumes, and it is not easy to predict how these will interact with the
large scale tidal flow.

I believe that the question will be settled through high resolution numerical sim-
ulations of turbulent convection. A first step has been taken by Penev et al. [30, 31],
who studied the dissipation of a large-scale shear flow, varying periodically in time,
when it is imposed on a 3-D convection simulation. They followed the method out-
lined by Goodman and Oh [9] to derive the viscous stress tensor. They confirmed
that convection acts indeed as a turbulent viscosity on such a flow, since the off-
diagonal components of the viscous tensor are one order of magnitude smaller than
the diagonal components. They also observed that the vertical component of that
tensor is about twice that of the horizontal components, due to the anisotropy of tur-
bulent convection. Moreover, as can be seen in Fig. 8.3 borrowed from their article,
they found that this turbulent viscosity decreases as f−1, where f is the forcing
frequency, which is here lower than the convective frequency. Hence they validated
the first recipe (8.22) quoted above, although it remains to be seen whether their
result holds in more realistic, hence more turbulent regimes.

It thus appears that turbulent dissipation operates in two regimes, depending on
how the tidal period compares with the local convective turn-over time, which in
a convection zone varies with depth by several orders of magnitude. To ensure a
smooth transition between these two regimes, one may take

νt = vt�

[

1+
(

2tconv

Ptide

)2]−1/2

, (8.24)
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Fig. 8.4 The two regimes of turbulent dissipation (Eq. (8.24)). As long as the local convective
turn-over time remains shorter than the tidal period (tconv < Ptide), the turbulent viscosity νt (in
black dashed line) is independent of the tidal frequency, and the inverse quality factor k2/Q (in red
continuous line) varies proportionally to the tidal frequency (σl) (so does also the tidal lag angle).
When tconv > Ptide, νt varies proportionally to the tidal period, whereas k2/Q does no longer
depend on the tidal frequency. νt and k2/Q have been scaled by the value they take respectively
for tconv/Ptide → 0 and →∞ (from Remus et al. [32], courtesy A&A)

as illustrated in Fig. 8.4. In the upper part of a convective envelope, where the con-
vective turnover time is shorter than the tidal period, neither νt nor tdiss depend on
the tidal period; the tidal dissipation varies proportionally to the tidal frequency (cf.
Eq. (8.21)), and the tidal bulge has a constant time lag: this is what has been called
the weak friction approximation [12]. But in the opposite case, when the life span
of the convective eddies exceeds the tidal period, which is likely to occur at the base
of convection zones, the tidal torque is independent of the tidal frequency; so are
also the tidal lag angle and the quality factor Q which will be discussed next. Note
that these two regimes still persist once the summation of νt over depth has been
performed in (8.21).

8.3.4 The Quality Factor

In planetary sciences one often prefers to characterize the tidal dissipation by a
dimensionless quality factor Q defined as

Q−1 = 1

2πE0

∮ (

−dE

dt

)

dt, (8.25)
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where E0 is the maximum energy associated with the tidal distortion and the integral
is the energy lost during one complete cycle [7]. This is equivalent to specify the
tidal angle, since α = 1/(2Q).

This quality factor Q is always combined with the Love number k2, which mea-
sures the mass concentration in the star; in a homogeneous body k2 = 3/2. In
fluid bodies, such as stars with convection zones or giant planets, the tidal torque
is given by a summation over the star of the turbulent viscosity, as we have seen
above in Sect. 8.3.2, and Q is related to the coefficient λ2 we have introduced there
(Eq. (8.21)):

k2

Q
= 4

λ2

tconv

(
R3

GM

)

(ω−Ω). (8.26)

Usually Q is treated as a positive quantity, and the sign of the tidal torque is imposed
according to that of (ω−Ω).

We see that the quality factor Q depends both on intrinsic properties of the star
(or the planet) and on the degree of synchronism, and this fact is often overlooked
when comparing the Q of different planets or satellites in the solar system. If, as it
has been suggested (cf. [29]), the circularization period of late-type binary stars is
roughly consistent with Q = 106, it means that λ2 is inversely proportional to the
tidal frequency (ω−Ω), hence that the turbulent viscosity is reduced according to
the first prescription (8.22). If one chooses instead the quadratic reduction (8.23), as
done in the paper quoted above, Q scales as the tidal frequency.

8.3.5 Beyond the Weak Friction Approximation

When the turbulent viscosity depends on the tidal period, the weak friction approx-
imation no longer applies, and Hut’s elegant method can no longer be applied to
determine the tidal torque. It is then necessary to break the tidal potential in its mul-
tiple Fourier components, of frequencies σ = (jω−mΩ), and to sum up the torques
exerted by each of these. Keeping only the second order spherical harmonics of the
potential, and up to second order terms in eccentricity e, which is sufficient for many
purposes, one has

U = GM2

a

(
r

a

)2{
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2
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2
e2 + 3e cosωt + 9
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2
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e2

2
cos(4ω− 2Ω)t

]}

. (8.27)

Each component of the tidal potential produces a tidal flow of frequency σ =
[jω−mΩ], which experiences a different turbulent viscosity νt , since it depends on
the tidal frequency (cf. Sect. 8.3.3). This is reflected in the coefficient λ2 introduced
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above in (8.21), which takes a different value λm,l for each tidal frequency. In a star
with a deep outer convection zone, such as a late-type main-sequence star or a red
giant, this parameter varies approximately as

λm,l = 0.019α4/3
(

3160

3160+ η2

)1/2

with η= [jω−mΩ]tconv, (8.28)

where tconv is given in (8.21) and α is the familiar mixing-length parameter.
The equations governing the orbital evolution of the binary system then take the

following form, to second order in e and assuming for simplicity that all spins are
aligned [47]:

d lna

dt
=− 12
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)8(
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, (8.29)

d ln e
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(8.30)

plus similar contributions of the secondary star (we recall that q =M2/M1). Note
that we have added here the contribution of the axisymmetric part of the perturbing
potential (which varies also in time when the orbit is eccentric, and yields the term
in λ0,1). The angular velocity of the primary star obeys

d

dt
(IΩ)= 6

tconv
q2MR2

(
R

a

)6(

λ2,2[ω−Ω]

+ e2
{

1

8
λ2,1[ω− 2Ω] − 5λ2,2[ω−Ω] + 49

8
λ2,3[3ω− 2Ω]

})

,

(8.31)

and likewise for the secondary star. One verifies that the total angular momentum is
conserved, i.e. that

d

dt

[
GM1M2

(M1 +M2)1/2
a1/2(1− e2)1/2 + I1Ω1 + I2Ω2

]

= 0. (8.32)

Equation (8.32) reduces to (8.18) and (8.31) to (8.19) when all λm,j → λ2, in the
weak friction approximation.
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8.4 Confronting the Theory of the Equilibrium Tide
with the Observations

Having identified the most efficient dissipation mechanism, namely turbulent con-
vection acting on the equilibrium tide, we shall now examine how well it accounts
for the observed properties in binary stars involving at least one component possess-
ing an outer convection zone. We shall treat in turn the case of solar-type binaries
on the main-sequence, that of such binaries during their pre-main sequence phase,
and finally that of binaries in which one component has evolved to the giant stage.

8.4.1 Solar-Type Binaries on the Main Sequence

Applying Eq. (8.19) to a binary of equal components of solar mass and age tage, one
finds that its orbit should be circular if its period is less than about

Pcirc = 6

(
tage

5 Gyrs

)3/16

days. (8.33)

To obtain this result we assume that the rotation is synchronized with the orbital
motion, and that the eccentricity decreased from e = 0.30, a typical value for non-
circularized binaries, to e = 0.02, taken as detection threshold for the eccentric or-
bits.

Koch and Hrivnak [13] were the first to compare this theoretical prediction with
the distribution e(P ) of field binaries drawn from Batten’s catalogue of spectro-
scopic binaries, and they found them to be compatible, although the transition pe-
riod Pcirc between circular and elliptic orbits was rather poorly defined, as one may
expect with such a sample mixing stars of different mass and age.

But the fact that the transition period is a slowly increasing function of age should
be observable, by measuring the eccentricity of coeval cluster binaries. Such a trend
was found indeed by comparing the results of several surveys [3, 17, 26]. This in-
cited Mathieu and Mazeh [21] to suggest that the determination of Pcirc could serve
to evaluate the age of a cluster. However for M67, a cluster of about solar age, they
found that the transition period was between 10.3 and 11 days, well above the pre-
dicted 6 days, suggesting that tidal dissipation was about 20 times more efficient
than inferred from the mixing-length theory.

Recently Mathieu et al. [22] gave a summary of the beautiful work accomplished
over more than a decade by several dedicated teams (Fig. 8.5). They found that the
transition period for circularization increases with age beyond 1 Gyr, but that it is
more or less constant for younger stars, around Pcirc ≈ 7–8 days. It thus appears that
two different mechanisms are at work, one operating on old binaries, and another
that circularizes the young binaries even on the PMS.
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Fig. 8.5 Transition periods
for circularization, below
which the binary orbits are
circularized, are displayed vs.
age for six coeval stellar
samples: PMS [25], Pleiades
[26], Hyades [3], M67 [17],
NGC 188 [22] and Galactic
halo stars [18]. Note the near
constancy of this period
below 1 Gyr, at about
Pcirc ≈ 8 days, and its
increase with age beyond.
(From Mathieu et al. [22];
courtesy ApJ)

8.4.2 Orbital Circularization During the Pre-Main-Sequence
Phase

The rate at which orbits are circularized depends strongly on the radius of the star:
according to (8.19) −d ln e/dt ∝ R8. Therefore one expects that most of this cir-
cularization should occur on the PMS, where the stellar radius is much larger than
later on the main-sequence. This suggestion was first made by Mayor and Mermil-
liod [23], and I verified it with L. Bouchet by integrating Eqs. (8.30)–(8.32) which
describe the tidal evolution of solar-type binaries, starting at the birthline defined
by Stahler [36, 37]. Since on the PMS the convective turnover time can exceed the
orbital period, it will also exceed the period of most Fourier components present
in the tidal perturbation (cf. (8.28)), and therefore one must take into account the
reduction of the turbulent viscosity, as was discussed in Sect. 8.3.5.

The result is displayed in Fig. 8.6, for a binary consisting of two solar-mass stars.
The initial conditions were taken as R = 4.79R�, e = 0.3, (Ω/ω)= 3, and the or-
bital period P was chosen such that the eccentricity would drop to 0.005 when the
binary reaches the zero age main-sequence (ZAMS). The rotation quickly synchro-
nizes with the orbital motion (in less than 105 yrs), but thereafter the tidal torque
weakens because the convection zone retreats, while the star keeps contracting;
therefore the rotation speeds up again to about (Ω/ω) = 2 at the ZAMS, with our
choice of initial conditions. Once the star has settled on the MS, synchronization
proceeds unhindered, and is achieved by an age of 1 Gyr. The eccentricity first in-
creases, as long as (Ω/ω) > 18/11 (cf. Eq. (8.19)), and then it steadily decreases
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Fig. 8.6 Evolution in time of
the eccentricity e, the orbital
period P and of the ratio
between rotational and orbital
frequencies (Ω/ω), for a
system with two components
of 1 M�. The initial period
has been chosen such that the
eccentricity would decrease
from 0.300 to 0.005 when the
binary reaches the zero age
main-sequence (indicated by
the arrow). (From Zahn and
Bouchet [49]; courtesy A&A)

to reach its final value e = 0.005 at the ZAMS. Little circularization occurs there-
after on the MS. Angular momentum is transferred from the rotation to the orbit,
which explains why the orbital period increases from 5 to 7.8 days. This final pe-
riod depends rather weakly on the mass of the components, and it represents thus
the transition period for circularization, in the absence of other tidal braking mech-
anisms.

This transition period agrees remarkably well with the properties of late type
binaries younger than 1 Gyr, including the PMS stars, and thus there is little doubt
that the circularization in these stars is due to the action of the equilibrium tide
early on the PMS. The main uncertainties in the theoretical prediction are the initial
radius Ri (Pcirc scales as Ri to the power 15/16) and the recipe used to reduce
the turbulent viscosity when the tidal period becomes shorter than the convective
turnover time. We took here the linear prescription (8.22); with the other, quadratic
prescription (8.23) the predicted transition period would be substantially shorter,
contrary to what is observed.

It is important to note that binaries in their early MS stage may be circularized
while still not synchronized, which may seem paradoxical since the synchroniza-
tion time (8.18) is much shorter than the circularization time (8.19). It stresses the
necessity of following the whole tidal evolution of a given binary, starting from
‘reasonable’ initial conditions.

8.4.3 Circularization of Binaries Evolving off the Main-Sequence

Another clever test for the tidal theory was performed by Verbunt and Phinney [40],
who chose for that a sample of wide binaries containing a giant star, because they
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Fig. 8.7 Observed
eccentricities of binaries
including a giant component
vs. the change in eccentricity
predicted by the tidal theory,
invoking the equilibrium tide
with turbulent dissipation in
the convection zone
(Verbunt [40], courtesy
A&A). In the upper panel the
giant components are
assumed to be on the
asymptotic giant branch;
some corrections have been
applied to obtain the result of
the lower panel (see text)

wanted to avoid what they call the ‘troublesome problem of pre-main sequence cir-
cularization’ that we just discussed. Moreover, in such binaries the tidal period ex-
ceeds the convective turnover time, so that there is no need to worry about reducing
the turbulent viscosity. They considered 29 binaries with giant components in sev-
eral galactic clusters, whose age and distance are well established. They integrated
the circularization equation (8.19) for these binaries from the MS to their present
location in the HR diagram, and presented the result in the form −� ln e/f , where
� ln e is the change in eccentricity, and f a factor that depends on the convection
theory used to calculate the turbulent dissipation. For the classical mixing-length
treatment that was employed in Sect. 8.3.2, f is of order unity.

Figure 8.7 displays the observed eccentricity of these binaries (each individ-
ually labeled by a letter) as a function of the predicted drop in eccentricity
−� ln e (or rather log[−� ln e/f ] to accommodate the wide range of results). For
log[−� ln e/f ]> 0), the orbit should be circularized, whereas it should remain el-
liptic for log[−� ln e/f ] < 0. Phinney and Verbunt first assumed that all their bi-
naries are presently on the asymptotic giant branch (core helium burning), because
they stay there 10 times longer than previously on the red giant branch (shell hydro-
gen burning).

The result is shown in the upper panel: the great majority of binaries complies
with the theoretical prediction, displaying circular orbits for log[−� ln e/f ]> 0 and
eccentric obits for log[−� ln e/f ]< 0. However there are 4 notable exceptions: bi-
nary ‘a’ has kept an eccentricity of 0.30, while its orbit should still be circular, and
binaries ‘A’, ‘B’, ‘y’ have circular orbits, where these should be elliptic. Phinney
and Verbunt concluded that binary ‘a’ must still be ascending the red giant branch,
thus avoiding circularization, and that the other 3 binaries may have undergone an
exchange of matter, which very efficiently circularizes the orbit, and therefore that
they should have an evolved companion, such as a white dwarf. After these adjust-
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ments, the 4 binaries are no longer exceptions, as can be seen in the lower panel;
moreover, the fact that the transition from circular to elliptic orbits occurs in the
vicinity of log[−� ln e/f ] ≈ 0 confirms that the parameter f is indeed of order
unity, thus validating the theory of the equilibrium tide with turbulent dissipation.

Two years later Landsman et al. [16] announced that the secondary of S1040
in M67, the binary labeled ‘A’, is indeed a white dwarf, confirming the brilliant
conjecture of Verbunt and Phinney that it must have experienced an episode of mass
exchange.

We may thus conclude that turbulent viscosity acting on the equilibrium tide
explains most observations, with the important exception of the circularization of
main-sequence binaries older than about 1 Gyr, for which it seems that we have to
seek another dissipation mechanism. A plausible candidate for that is the dynamical
tide, which we shall examine next.

8.5 The Dynamical Tide

Due to its elastic properties, a star can oscillate in various modes: acoustic modes,
internal gravity modes, inertial modes, where the restoring force is respectively the
compressibility of the gas, the buoyancy force in stably stratified regions, and the
Coriolis force in the rotating star. If their frequency is low enough, these modes can
be excited by the periodic tidal potential; the response is called the dynamical tide.

8.5.1 Gravity Modes Excited by a Close Companion

The modes that have received most attention so far are the tidally excited gravity
modes; associated with radiative damping, they have first been invoked for the tidal
evolution of massive main-sequence binaries [45]. For these modes, the restoring
force is provided by the buoyancy, whose strength is measured by the buoyancy
frequency N , given by

N2 = gδ

HP

[(
∂ lnT

∂ lnP

)

ad
− d lnT

d lnP
+ ϕ

δ

d lnμ

d lnP

]

, (8.34)

using classical notations, and μ being the molecular weight (δ =−(∂ lnρ/∂ lnP)T,μ
and ϕ = (∂ lnρ/∂ lnμ)T,P are unity for perfect gas).

The modes that are most excited are those whose frequency is close to the tidal
frequency, and these are of high radial order: typically they have more than 10 or 20
radial nodes in the radiation zone, because their wavelength scales as λr ∝ rσ/N ,
and because the tidal frequency σ , of the order of days−1, is much lower than the
buoyancy frequency N , of the order of 1 hour−1. See Fig. 8.8 for a typical exam-
ple of such modes, in a 4 M� star of 94 Myr. Dissipation has been neglected, and
therefore the mode is an adiabatic standing wave; note that it is evanescent in the
convective core, where N2 ≈ 0.

These gravity modes couple with the periodic tidal potential in the vicinity of the
convective core, whereas their damping occurs mainly near the surface, because the
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Fig. 8.8 Gravity mode of period 4 days in a 4 M� star of 94 Myr. Only the horizontal displacement
ξh is shown, scaled such that the radial component ξr = 1 at the surface; it has 20 radial nodes. The
insert focuses on the region close to the convective core, where the eigenfunction displays strong
oscillations due the steep composition gradient. The effect of rotation is neglected (from Hasan et
al. [10], courtesy A&A)

thermal damping rate, which scales roughly as the cube of the temperature, is much
higher there than in the deep interior. The angular momentum drawn from the orbit
is deposited near the surface, and hence it is the surface layers that are synchronized
first with the orbital motion. As was emphasized by Goldreich and Nicholson [6],
this synchronization is further sped up because the local tidal frequency experienced
by the fluid entrained in the differential rotation, σ = 2Ω(r)−2ω, tends to zero, and
so does also the radial wavelength λr , as we have seen above, thus enhancing the
damping.

At low enough tidal frequency, the tidal wave is completely damped (meaning
that is has become a pure propagating wave), and one can use the WKB treatment
to evaluate the total torque applied on the star [45]. For the synchronization time
(assuming uniform rotation) one finds

1

tsync
=− d

dt
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∣
∣
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and likewise for the circularization time, assuming that synchronization has already
been achieved:
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(
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)21/2

; (8.36)

the companion star contributes a similar amount. E2 is a parameter measuring the
coupling between the tidal potential and the gravity mode: it depends sensitively on
the size of the convective core, and thus on the mass of the star. Its expression is
given in Zahn [45]; it has been tabulated by Claret and Cunha [1] for various stellar
models, as shown in Fig. 8.9; for a 10 M� ZAMS star, it is E2 ≈ 10−6.

This theory was initially developed for pure gravity modes, and as such it was
strictly applicable only to non-rotating stars. It was later extended by Rocca [34]
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Fig. 8.9 Tidal parameter E2 characterizing the strength of the dynamical tide, cf. (8.35) and (8.36).
It is displayed here on a logarithmic scale, as a function of mass (in solar units), near the ZAMS.
The solid line reports the results of earlier computations by Zahn [45]. The insert shows the de-
pendence of E2 on the relative size of the convective core (from Claret and Cunha [1]; courtesy
A&A)

to (uniformly) rotating stars; she showed that taking the Coriolis force into account
modifies only slightly the results presented above.

8.5.2 Circularization of Massive Binaries

Giuricin et al. [4] were the first to compare the predictions of the tidal theory with the
properties of early-type binaries, thus possessing an outer radiation zone. Applied
to binaries with two identical components of mass between 2 and 15 M�, Eq. (8.36)
predicts a transition value of R/a ≈ 0.25 for the normalized radius, i.e. the radius
expressed in units of semi-major axis.1 This value is in good agreement with the

1This value depends little on mass [46]; if it were translated into tidal periods, the transition periods
would spread between 1 to 2 days, depending on mass, which explains why it is preferable to use
R/a for the observational test.
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Fig. 8.10 Eccentricity e vs. normalized radius R/a for early-type binaries (spectral types O, B, F)
listed in Batten’s catalogue (from Giuricin et al. [4]; courtesy A&A)

Fig. 8.11 Left panel: e cosω vs. relative radius R/a for detached eclipsing binaries in the SMC.
Right panel: same for the LMC, full dots based on V lightcurves, open dots based on R lightcurves.
Data from MACHO and OGLE surveys. (From North and Zahn [27]; courtesy A&A)

observed distribution of eccentricities vs. fractional radius displayed in Fig. 8.10,
although many binaries are circular for R/a < 0.25.

A similar investigation was recently carried out on eclipsing binaries which had
been detected in the Magellanic Clouds during the MACHO and OGLE campaigns
[27]; the results are shown in Fig. 8.11. Here again the e vs. R/a distribution
strongly suggests a transition value of R/a = 0.255, in excellent agreement with
theory. However an important fraction of binaries are circular at lower fractional
radius: it is as if there were two populations of binaries, one complying with the
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predictions above, and the other experiencing another, more efficient tidal damping.
Histograms of the eccentricity distribution at given R/a confirm that impression,
and so does also a much wider survey carried out by Mazeh et al. [24].

On may wonder why the binaries in the Magellanic Clouds behave so similarly
to those in our Galaxy: they have lower metallicities, and therefore somewhat larger
convective cores, and one would expect that these differences be reflected in the
coefficient E2. However the radii differ too, and the two effects compensate each
other such that the predicted transition periods are very nearly the same.

8.5.3 Resonance Locking in Early-Type Binaries

A decade ago, Witte and Savonije [41, 42] revisited the theory of the dynamical
tide, by making full account of the Coriolis force. Instead of projecting the forced
oscillations on spherical functions, they solved the governing equations directly in
two dimensions (r, θ ), for various values of the angular velocity Ω and of the tidal
frequency σ = jω − 2Ω in the rotating frame. When the orbit is circular and the
star rotates in the same sense as the orbital motion, only one retrograde mode can be
excited at σ = 2ω− 2Ω . But when the orbit is elliptic, many other tidal frequencies
appear: σj = jω−2Ω with |j | = 1,3, etc. (see Sect. 8.3.5), and both retrograde and
prograde modes can be excited. Therefore it is very likely that a binary undergoes
some resonances during its evolution, both because the tidal frequency shifts in the
course of synchronization, and because the eigenfrequencies are affected by the
structural changes of the stars.

In earlier works [6, 34, 45], the effect of resonances on tidal evolution was largely
ignored on the belief that stars would move quickly through such resonances, since
their width �σ is inversely proportional to their amplitude. But Witte and Savonije
[42] pointed out that this is not necessarily true, and that a binary can be trapped
into a resonance, for elliptic orbits. Retrograde and prograde modes exert torques of
opposite sign, and when they balance each other, they may lock the star into such
resonances. Moreover, structural changes also can conspire to favor such locking.
The consequence is that circularization is sped up by such resonances, as demon-
strated by several specific cases they have studied. The results are rather sensitive
to the initial conditions, which may explain the observations mentioned above con-
cerning the Magellanic Clouds binaries, namely that for the same orbital period (or
fractional radius), some binaries are circular while the others are not, as if there were
two tidal damping mechanisms.

8.5.4 Resonance Locking in Late-Type Binaries

Let us come back to the late-type main-sequence binaries. We have seen that turbu-
lent dissipation of the equilibrium tide, at least in its present state, cannot explain the
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circularization observed in binaries older than 1 Gyr. This incited Terquem et al. [39]
and Goodman and Dickson [8], to examine whether the dynamical tide could not be
responsible for the observed circularization. Both teams invoked radiative damping
as dissipation mechanism, as had been done previously for early-type stars. But here
such damping is rather weak, because the oscillation modes are evanescent in the
convection zone, where thermal dissipation would be strongest. Therefore, contrary
to what has been found in early type stars, oscillations modes can enter in resonance
at very low tidal frequency, i.e. very close to synchronization. This means that one
has to deal with modes which have up to thousand radial nodes, which puts a serious
burden on the numerical work, as experienced by Terquem et al.; they restricted their
exploration to the vicinity of 3 orbital periods, but included turbulent dissipation in
the convection zone, where the modes are evanescent. On the contrary, Goodman
and Dickson chose a semi-analytical WKB approach, much as in Zahn [46].

Though their quantitative results differ somewhat, the conclusions of the two
teams agree, namely that the dynamical tide cannot account for the circularization
of the oldest late-type binaries; comparing the predicted transition periods, one sees
that it is less efficient than the equilibrium tide.

The problem was re-examined shortly after by Witte and Savonije [43], who
anticipated that here also resonance locking could play an important role. Instead
of performing the direct 2D calculations as for the early-type binaries, given the
high order of the modes, they used the so-called ‘traditional approximation’, which
retains only the radial component of the rotation vector. The r and θ variables then
separate again, as in the non-rotating case, the horizontal functions being the so-
called Hough functions [35], which contrary to the spherical harmonics depend also
on the rotation rate. The tidal torque is displayed in Fig. 8.12, as a function of the
forcing frequency.

Today this process of resonance locking in the dynamical tide thus appears as the
most efficient process, on the main-sequence, among all that have been explored.
When starting with quasi-synchronous or super-synchronous stars, the predicted
transition period is a slowly increasing function of age; for 5 × 109 yrs, this pe-
riod is about 7 days, thus higher than that predicted by the equilibrium tide (6 days).
But even so, the theoretical predictions are well below the observed ones, unless
one allows for very slow, and rather unrealistic initial rotation (such as a period of
100 days). Let us recall that below 1 Gyr the observations agree very well with the
transition period derived for the PMS circularization through the equilibrium tide,
as we have seen in Sect. 8.4.2

8.6 Tidal Damping Through Inertial Modes

While gravity modes propagate only in stably stratified regions, there is another type
of modes, the inertial modes, that are able to propagate also in neutrally stratified
convection zones. They owe their existence to the Coriolis force, and hence their
frequency, in the frame of the rotating star, is bound by the inertial frequency 2Ω .
They may thus be excited by the tidal potential, much as the gravity modes, provided
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Fig. 8.12 Tidal torque versus forcing frequency σ̄ , scaled by the break-up frequency Ωc , in a
binary of two 1 M� stars, showing the resonances with prograde g-modes (σ̄ > 0), retrograde
g-modes (σ̄ < 0), and inertial modes (−2Ω < σ̄ < 0). (From Savonije and Witte [35]; courtesy
A&A)

the tidal frequency is less than the inertial frequency 2Ω . These modes have received
little attention so far, until very recently.

Recently Ogilvie and Lin [29] have studied numerically the rôle of these inertial
modes in damping the tides, in a solar-type star. The results are depicted in Fig. 8.13.
One sees that their contribution (left panel), through their viscous dissipation in the
convection zone, can be as large as that of the gravito-inertial modes in the radiation
zone (right panel). The dashed lines show the effect of switching off the Coriolis
force, and the dotted line, in the left panel, that of increasing the turbulent viscosity
by a factor 10. Note that Ogilvie and Lin opted for the quadratic reduction of that
turbulent viscosity (Eq. (8.22)), which probably underestimates the contribution of
the equilibrium tide.

A remarkable property of these inertial modes is that their peak amplitude, at
resonance, does not depend on the strength of the viscosity, as can be seen in the left
panel of Fig. 8.13. This is because these modes are described in the inviscid limit
by an equation that is spatially hyperbolic, and hence their characteristic rays are
focused on wave attractors, where most of viscous dissipation occurs, and whose
thickness scales in such a way as to render the dissipation independent of viscosity,
as explained in detail by Ogilvie and Lin.

8.7 Conclusion and Perspectives

The reader may wonder why I made no attempt here to reconcile the theoretical
predictions for the synchronization of the binary components with their observed
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Fig. 8.13 Dissipation rate Q′, defined in (8.25) and (8.26), as a function of the tidal frequency ω̂

normalized by the rotation frequency Ω . The solar model has a spin period of 10 d. Left: Q′ from
the viscous dissipation of inertial modes in the convection zone. Right: Q′ from the excitation
of Hough modes in the radiative zone. The dashed lines show the effect of omitting the Coriolis
force, hence reducing the dissipation to that of the equilibrium tide. The turbulent viscosity has
been reduced according to prescription (8.23). The dotted lines show the result of increasing that
turbulent viscosity by a factor of 10. (From Ogilvie and Lin [29]; courtesy ApJ)

surface rotation. The reason is that in most cases the tidal torque acts mainly on
the outermost part of the star, which is thus synchronized much more rapidly than
the interior; therefore the interpretation of the surface rotation requires modeling the
transport of angular momentum within the star, in particular where it proceeds at the
slowest rate, i.e. in the radiation zones. This is a difficult task that only now begins
to be undertaken seriously (cf. [38, 48]), but I am confident that we will see much
progress in solving this problem in a not too distant future.

To summarize this review, the two tidal dissipation processes that have received
most attention so far are turbulent friction acting on the equilibrium tide, which was
first described in the 60s [44], and radiative damping on the dynamical tide, which
was identified in the 70s [45]. These processes operate respectively in convection
zones and in radiation zones, and they have been quite successful in explaining
the observed orbital circularization of binary stars. This is particularly true for the
early-type MS binaries, for which we have now at our disposal very large samples
gathered during the OGLE and MACHO campaigns: their transition period is pre-
cisely defined and it agrees extremely well with that predicted by the theory of the
dynamical tide, which is thus validated. However many of these binaries are circu-
larized well above this transition period, as if they had experienced another, more
efficient tidal dissipation mechanism. A plausible explanation for this behavior is
that these binaries have undergone several episodes of resonance locking, as was
described by Witte and Savonije [41, 42].

On the other hand, the equilibrium tide damped by turbulent dissipation accounts
very well for the properties of binaries containing a red giant, as was demonstrated
by Verbunt and Phinney [40]. It also explains the transition period of about 8 days
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observed in late-type binaries that are younger than about 1 Gyr: the explanation
is that these have been circularized during the PMS phase, when they were much
larger and fully convective. The only serious discrepancy today seems to be the be-
havior of late-type main-sequence binaries older than 1 Gyr, whose transition period
increases with age and is higher than that predicted when applying straightforward
the theory of the equilibrium tide. Here again one may invoke the dynamical tide
with resonance locking in the radiative core of these stars, as was shown by Witte
and Savonije [43].

Their mechanism appears thus highly promising, and it ought to be further ex-
plored. For instance, one should take into account that the tidal torque is applied
primarily to specific regions: the outer convection zone in late-type MS stars and
the outermost part of the radiation zone in early-type stars. These regions are syn-
chronized more quickly than the rest of the star, and therefore differential rotation
develops in their radiation zone. This has the effect of increasing the thermal damp-
ing, since the local tidal frequency tends then to zero as the tidal wave approaches
the synchronized region, as I explained in Sect. 8.5.1.

For late-type binaries, a highly interesting alternative is offered by the damping
of inertial waves in their convective envelope, which is being explored by Ogilvie
and Lin [29]. This process is likely to play an important role also in giant planets
[28]. The difficulty in studying these waves is that they require highly resolved 2D
numerical calculations, since the so-called traditional approximation is no longer
applicable to render the problem separable.

Work is in progress on several other points, and I shall quote only a few. Kumar
and Goodman [15] have studied the enhanced damping of the oscillations triggered
in tidal-capture binaries, due to non-linear coupling between the eigenmodes, which
is extremely strong in such highly eccentric orbits. Rieutord [33] is examining the
possibility that the so-called elliptic instability may occur in binary stars; this in-
stability is observed in the laboratory when the fluid is forced to rotate between
boundaries that have a slight ellipticity, and it leads to turbulence [19]. Even the
equilibrium tide in late-type binaries is being revisited [32], solving at last the irri-
tating problem of the ‘pseudo-resonances’ encountered in Zahn [44].

To conclude, I am very pleased to witness this revival of the theory of stellar
tides; it owes much to the discovery of extrasolar planets and to the wide surveys
mentioned above, which I didn’t anticipate forty-five years ago. . .
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Chapter 9
Tides in Colliding Galaxies

Pierre-Alain Duc and Florent Renaud

Abstract Long tails and streams of stars are the most noticeable traces of galaxy
collisions. However, their tidal origin was recognized only less than 50 years ago
and more than 10 years after their first observations. This review describes how the
idea of galactic tides has emerged thanks to advances in numerical simulations, from
the first simulations that included tens of particles to the most sophisticated ones
with tens of millions of them and state-of-the-art hydrodynamical prescriptions.
Theoretical aspects pertaining to the formation of tidal tails are then presented. The
third part turns to observations and underlines the need for collecting deep multi-
wavelength data to tackle the variety of physical processes exhibited by collisional
debris. Tidal tails are not just stellar structures, but turn out to contain all the com-
ponents usually found in galactic disks, in particular atomic/molecular gas and dust.
They host star-forming complexes and are able to form star-clusters or even second-
generation dwarf galaxies. The final part of the review discusses what tidal tails can
tell us (or not) about the structure and the content of present-day galaxies, including
their dark components, and explains how they may be used to probe the past evo-
lution of galaxies and the history of their mass assembly. On-going deep wide-field
surveys disclose many new low-surface brightness structures in the nearby Universe,
offering great opportunities for attempting galactic archeology with tidal tails.

9.1 Preliminary Remarks

The importance of tides on bodies in the Solar System has been understood and
quantified for many decades. The various contributions in this Volume reflect the
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maturity of this field of research. Advances in the appreciation of the role of tidal
effects on planet/stellar evolution are also remarkable. As far as the extragalactic
world is concerned, the situation is paradoxical. Whereas the effects of tidal forces
are spectacular—they alter the morphology of the most massive galaxies and may
lead to the total destruction of dwarf satellite galaxies—it is only in the 1970s that
tides were recognized as actors of galactic evolution. Observations of jet-like struc-
tures, antennas, bridges, and plumes occurred well before they were interpreted as
“tidal tails”. Only the first numerical simulations of galaxy mergers convinced the
community about the real nature of these stellar structures, although the straight-
forward consideration that galaxies are flaccid bodies could have lead to this con-
clusion much earlier. It is however true that the bulges generated by the Moon and
the Sun on the Earth’s oceans, which were interpreted as the result of tides soon
after the laws of gravity were established, do not resemble the gigantic appendices
that emanate from some galaxies, despite the similarity of their origins. What seems
obvious now was not 50 years ago.

Having said that, it would be misleading to claim that tidal forces are the only ac-
tors of galactic morphological transformations. In fact, the fraction of mass involved
in material that is tidally affected is relatively small. Other physical processes such
as violent relaxation are more important in shaping galaxies. The nuclear starbursts
often associated with galaxy mergers are not directly induced by tidal forces. Fur-
thermore, not all the collisional debris found around mergers are, strictly speaking,
of tidal origin. With these preliminary remarks, we wish to make it clear that this
review specifically focuses on tides in colliding galaxies and is not an overview
of interacting galaxies and associated phenomena. For a more general insight on
galaxy-galaxy collisions and mergers, the reader is referred to the somewhat old but
comprehensive reviews of Sanders and Mirabel [193] and Schweizer [196], dealing
with observations, and Struck [215], more focused on simulations.

We will first present the historical context of the discovery of tails around galax-
ies, and detail how the role of tides became evident. The tremendous progress in the
numerical modeling of tidal tails is detailed before a more theoretical and analyti-
cal approach to the formation of tidal tails is presented. In the following sections,
we investigate the physical properties of tidal tails, emphasizing what deep multi-
wavelength observations bring to their study. We then make a close-up on the tails,
looking at their sub-structures: from young stars and star clusters to tidal dwarf
galaxies. Finally, we examine what tidal features may tell us about galaxies: what
they are made of, and how and when they were formed. We hope to convince the
reader that tails are not only aesthetic add-ons in images of colliding galaxies but
may be used to address fundamental questions of astrophysics.

9.2 Historical Context

In the late 1920s, the observational power of 100-inch (2.5 m) class telescopes al-
lowed Hubble to determine the existence of apparently isolated nebulae outside of
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our Milky-Way [118]. These so-called “island universes” became of prime impor-
tance in the discovery of the expansion of the Universe, thanks to redshift measure-
ments. Rapidly, many more extra-galactic objects have been classified as galaxies
and sorted according to their morphology, following the famous Hubble pitch fork
diagram.

9.2.1 Discovery of Peculiarities

In the preface of his Atlas of Peculiar Galaxies, Arp [5] noted that “when looked
at closely enough, every galaxy is peculiar”. While most of the luminous galaxies
could be classified as either elliptical, spiral or barred-spiral, it appeared that more
and more peculiar morphologies would not fit into these three families. Number of
photographic plates of individual systems have been published and revealed twisted
shapes and/or faint extensions outside of the central regions of the galaxies (e.g. [76,
128, 241, 252]). These features have been detected in many other objects gathered
in atlases and catalogues [5, 233, 234, 255, 256]. This contradicted the persistent
idea that the intergalactic space was entirely empty ([254]; see also the discussion
in [95] and references therein).

It rapidly appeared that many of these peculiar galaxies were actually double
or multiple galaxies, i.e. pairs or small groups, observed close to each other. Re-
ally interacting galaxies have been told apart from optical pairs, for which apparent
closeness is due to projection effects ([111]; see also [252]). The major signatures
of interaction were the detection of long (∼ 101−2 kpc) and thin (∼ 1 kpc) filaments
either connecting two galaxies or pointing away from them. The former have been
named bridges and the latter, tails. This clearly distinguished them from the spiral
arms which are located in the more central regions of disk galaxies. However, a con-
fusion persisted because it was noted that tails are sometimes (but not always) in the
continuation of spiral arms [180]. Although being faint and thus often difficult to ob-
serve, these filaments appear bluer than the disks themselves, suggesting that they
host ongoing star formation [2, 254]. But the exact reasons for such morphological
features remained opened to debate over the entire 1960 decade.

9.2.2 A Controversial Scenario

Zwicky [253] proposed that collisions of galaxies would enhance the supernovae
activity, by increasing the probability of chain explosions. These blasts could then
sweep out or eject the galactic material away from the nuclei. With a favorable
geometry, such events could even act as “launchers of galaxies”, and thus account
for the intergalactic filamentary structures. However, this scenario failed to explain
the thinness of the filaments and the connection to other galaxies, so that it has
rapidly been ruled out [180].
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Fig. 9.1 NGC 3561 (left) has been seen by Arp [9] as a spiral galaxy having ejected two luminous
jets of matter. An high surface brightness object, called “Ambartsumian’s knot”, can be seen at the
tip of the southern jet at the bottom-edge of this image. In the case of M 51 (right), the companion
is situated at the tip of a spiral arm of the main galaxy. Images from the Atlas of Peculiar Galaxies
by H. Arp, available in the NASA/IPAC Extragalactic Database, Level 5

Another explanation for the formation of bridges took jets into account [2, 6, 7,
9]. When a massive galaxy ejects a fraction of its matter (gaseous, stellar or both)
from its nucleus, a symmetrical pair of jets is formed but rapidly slowed down by
the high densities encountered along its path.1 This would create an overdensity at
the tip of the jets that could condense and form a small companion galaxy [202].
All together, the main galaxy, its companion and one of the jets would constitute the
interacting pair and the bridge. The absence of galaxy at the end of the second jet
(i.e. the tail) was explained by either the escape of the companion to the intergalactic
medium, its rapid dissolution, or a delayed formation that has not taken place yet
[8]. Illustrative examples of this scenario are NGC 3561 (“the guitar”) and M 51
(“Whirlpool galaxy”), as shown in Fig. 9.1. However, Holmberg [113] noted that the
condensation of the gravitationally bound companion galaxy would be very unlikely
when the jets reach a velocity higher than the escape velocity, which seems to be true
in most of the cases. Such an activity from the nuclei of massive galaxies led some
authors to classify galaxies with connecting “jets” as radio-galaxies (see e.g. [3]).

1According to Arp [8], the same mechanism would account for the creation of spiral arms in
rotating galaxies.
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Meanwhile, tides have been considered as a possible cause for the filaments: a
close passage of one galaxy next to another would lead to different gravitational
forces over the spatially extended galaxies: the side of the first galaxy facing the
second is more attracted than the opposite side. These differential forces would then
significantly deform the shape of the galaxies and could even trigger an exchange
of some of their stars [112, 139, 217, 250–252]. The pioneer numerical works that
addressed this question concluded that, under precise circumstances, tidal structures
looking like bridges and tails could form during the close encounter of two galaxies
[140, 244].

However, the tidal origin of the tails has been intensively discussed. Vorontsov-
Vel’Yaminov [231] argued that the elongation of the tails (sometimes up to a few
×100 kpc, see [161]) was too large to be produced by tides. He added that close
pairs of galaxies were not systematically linked to the existence of filaments, and
concluded that tails and bridges shared the same origin as the more classical spi-
ral arms. Others followed the same line of arguments and evoked magnetic (or
magnetic-like, see [232]) fields to explain the narrow shape of the tails (see e.g.
[47, 250]). Tubes of magnetic lines forming at the same time as the galaxy itself
would propagate a wave that would trigger the condensation of gas along them.
Such an hypothesis would explain the presence of knots of high surface brightness
along the tails, as already detected by e.g. Burbidge and Burbidge [46]. Further-
more, Gershberg [91] noted that a collision between two galaxies would heat up the
gas too much (∼ 107 K) to form a thin structure and ruled out this scenario as a pos-
sible cause of creation of filaments. Arp [5] summarized the debate by suggesting
that forces other than pure gravitation should be at stake in the shaping of peculiar
galaxies and their intergalactic structures.

9.2.3 Tidal Origin

The major breakthrough came in the early 1970s, in the newly-born era of comput-
ers. Thanks to a series of numerical experiments, Toomre and Toomre [226] showed
that the brief but intense tidal forces arising during the encounter of two disk galax-
ies would be sufficient to create structures as long and thin as the tails referenced
in the catalogues. They extended the works of Pfleiderer [179] and Tashpulatov
[217, 218] by considering a bound companion galaxy on an very eccentric orbit, as
well as disks inclined with respect to the orbital plane. In their study, a single galaxy
is represented by a point-mass surrounded by rings of test particles whose masses
are zero. When two of such galaxies are set on a given orbit, the central point-mass
follows Kepler’s law of motion. The test particles feel the net gravitational potential
and thus, their motion is affected by both point-masses. However, in this method
called restricted simulation, the mass-less test particles themselves do not affect the
gravitational field of the galaxy.

Toomre and Toomre [226] noted that close passages could induce a deformation
of the disk(s), possibly leading to the creation of bridges and/or tails. By varying
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Fig. 9.2 Restricted simulation of the Mice galaxies (NGC 4676) from Toomre and Toomre [226].
The two tails that exhibit very different shapes and thickness have been successfully reproduced
numerically by considering tidal interaction only. Images of the real galaxies are shown in Fig. 9.3,
second panel, and Fig. 9.7, panel 4

several parameters of the problem such as the inclination of the disks or the eccen-
tricity of the orbit, they have shown that gravitation only was enough to reproduce
the structures observed in interacting systems (see Fig. 9.2). This showed the way
to many other numerical experiments [80, 129, 137] and allowed to conclude on the
tidal origin of several observed features [58, 214, 245].

Since then, gravitational tides have been considered as the major cause of the
creation of filaments in interacting galaxies. That is why such features are often
referred to as tidal structures.

An examination of the peculiar galaxies with the new light shed by numerical ex-
periments on tides revealed that most of these galaxies would fit into an evolutionary
sequence (see Fig. 9.3), called Toomre’s sequence [225]. Each step represents a dy-
namical stage in the evolution of interacting galaxies toward the final coalescence
of the merger.2 With time going, the tidal features created by the first encounters
slowly vanish into the intergalactic medium or are captured back by their galaxy.
Note however that relics of the tails remain visible for several 109 yr [212].

9.2.4 Forty Years of Numerical Simulations

In order to retrieve the steps of the Toomre’s sequence and to better understand the
role of each parameter involved in interacting galaxies, an important amount of work
has been conducted by many authors since the very first (non-numerical) computa-
tions in the early 40 s. At that time, Holmberg [112] used the light and the property
of the decay of its intensity as r−2 as a proxy for gravitation. He set a pair of two
“nebulae”, each made of 37 light-bulbs, and computed the equivalent gravitational
acceleration by measuring the intensity of the light thanks to galvanometers at sev-
eral positions. This ingenious method allowed him to spot the creation of “spirals”

2Note that the position of some of the galaxies in the sequence has been recently discussed thanks
to new numerical models (see e.g. [126]).
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Fig. 9.3 The Tommre’s sequence represents the supposed evolution of interacting galaxies. It
starts with the early phases, when progenitors have just begun to interact, shows intermediate
stages and finishes with the coalescence phase. From left to right, top: NGC 4038/39 (the Anten-
nae), NGC 4676 (the Mice), NGC 3509, NGC 520; bottom: NGC 2623, NGC 3256, NGC 3921,
NGC 7252 (the Atoms for Peace). Images from the Atlas of Peculiar Galaxies by H. Arp, available
in the NASA/IPAC Extragalactic Database, Level 5

during a close encounter. But it is in the numerical era that most of the progresses
have been done.

Despite their success in reproducing observed systems, the restricted simulations
of Toomre and Toomre [226] lacked the orbital decay due to dynamical friction. The
problem was solved when considering self-consistent (“live”) galaxies, i.e. models
where all the particles interact with each other (e.g. [90, 239]). However, the cost of
such computations was very high at that time. That is why tree-codes [20, 99] and
multipole expansions techniques [228, 240] have been introduced to decrease the
computation time, or equivalently to increase the reachable resolution.

Barnes [12] presented the first simulation of self-consistent multi-components
galaxies. He showed that the presence of a dark-matter halo increases significantly
the dynamical friction, thus favoring the merger of the galaxies.

In the same time, Hernquist and Katz [102] gathered the tree-code method and
the smooth particle hydrodynamics (SPH) technique [92, 146] to treat both the grav-
itation and the hydrodynamics within a particle-based code. In SPH simulations, the
physical properties of the particles are smoothed over a kernel of finite size, centered
on the particle itself. Thanks to this Lagrangian approach, SPH does not suffer from
the limitations of grid codes [110], i.e. mainly the waste of computational power
in areas of nearly vacuum, an omnipresent situation in the case of galaxy mergers.
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In a similar way, the so-called “sticky-particle” method considers clouds as colli-
sionless particles. When two clouds are in a close encounter, they loose energy via
dissipation, mimicking an inelastic collision [169].

Following this idea, Noguchi and Ishibashi [173] proposed a galaxy model made
of two types of particles: gaseous clouds and stars. When such a galaxy interacts
with a point-mass encounter, these authors found the cloud-cloud collisions to be
more frequent, and considered this as a burst of star formation (mostly at the times
of the pericenter passages of the progenitor galaxies). Mihos et al. [154–156] took
one step further by considering the interstellar media (ISM) of both galaxies and
monitored their interaction to characterize the formation of stars. They took advan-
tage of the dissipative nature of their models to show that the merger phase could
take place up to twice faster than in gas-free simulations.

Since then, a lot of flavors of these methods has been widely applied to many
topics. Some improvements also appeared, to speed up the computation and thus to
allow higher resolutions (see e.g. [60]). More and more hybrid codes take advantage
of multiples methods (e.g. [26, 201]) to increase accuracy and speed-up.

Recently, the adaptive mesh refinement (AMR) technique has been used for mod-
eling a merger of two gas-rich galaxies at high resolution [132, 220]. AMR codes
combine the power of the Lagrangian approach where dense regions are highly re-
solved, and the continuous description of the ISM on grids (e.g. [87, 175, 219]). The
computational domain is meshed on a (usually Cartesian) grid, which is refined at
the regions of interest, typically those of highest densities. Two different snapshots
of a numerical model using the AMR technique are shown in Fig. 9.4 and Fig. 9.11
(left panel).

As seen in the literature since Toomre and Toomre [226], simulations of interact-
ing galaxies can follow two approaches:

• the systematic exploration of a large volume of the parameter space, with the
goal of understanding the influence of certain parameters on the evolution of the
merger and its stellar population (see e.g. [96, 125, 165, 174, 210, 235]). Among
them, the GalMer project [63] gathers ∼ 1000 SPH simulations of mergers and
the associated star formation histories, and makes them publicly available on-
line.3 With such databases, the simulations can be interpreted statistically, thus
strengthening the physical conclusions.

• the simulation of specific, observed galaxies in order to bring new lights when in-
terpreting the observations (see e.g. [12, 14, 21, 64, 71, 105, 126, 156, 185, 220]).
Several pairs of interacting galaxies have been numerically reproduced (see an
example in Fig. 9.4) by putting the effort on finding a set of parameters that best
describe the pair, generally by trial-and-error. Intuition and experience play an
important role in such a study. However, this process has recently been automa-
tized thanks to new numerical tools: these codes make a series of restricted, fast
simulations (“à la Toomre and Toomre”) and slightly modify one parameter of the
initial conditions at each iteration, to improve the match with observational data

3http://galmer.obspm.fr/.

http://galmer.obspm.fr/
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Fig. 9.4 Numerical simulations of the Antennae galaxies (NGC 4038/39) within four decades.
From top to bottom: restricted simulation of Toomre and Toomre [226]; first self-consistent simu-
lation of the Antennae by Barnes [12]; hydrodynamic run of Mihos et al. [156]; recent models with
SPH by Karl et al. [126] and with AMR by Teyssier et al. [220]. Improvements in both the tech-
niques and the set of parameters allowed the models to get closer and closer to the observational
data (see Fig. 9.7, panel 6)
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(see for example Identikit by Barnes and Hibbard [19], Barnes [15], and AGC
by Smith et al. [207]). Genetic algorithms have also been implemented to opti-
mized the search of the parameters (see the MINGA code by Theis and Kohle
[221], Theis and Spinneker [222]). This way, a large range of parameters can be
covered very quickly to find which set best matches the observational data. How-
ever because the simulations are restricted, they do not account for the orbital
decay of the galaxies due to dynamical friction, which represents an important
limitation for such methods, in particular when multiple collisions occur. Starting
from the set of parameters suggested by such fast codes and fine-tuning them in
self-consistent re-runs could be a good compromise.

The simulation of interacting galaxies is not limited to pairs. However, numerical
models of observed (compact) groups of galaxies are still very rare, due to the diffi-
culty to set a consistent scenario for an entire group. Each galaxy-galaxy interaction
has to take place in a system already perturbed by the previous interactions, such
that the mass and the orbit of the progenitor are to be re-evaluated constantly during
the evolution of the group. (Some attempts have been made in the case of Stephan’s
Quintet, see [119, 187]).

While they face an increasing need of resolution and accuracy, these state-of-the-
art numerical methods can efficiently provide a solution to the questions raised by
observations at higher and higher resolution. Simulations of interacting galaxies still
represent an important part of the numerical work done in astrophysics. The models
of individual galaxies are regularly updated to fit the most recent theories on galaxy
formation and evolution and include better descriptions of the physical processes.
Nowadays, the research on interacting galaxies is mainly threefold:

• The cosmological approach, mostly based on the Λ Cold Dark Matter (CDM)
theory, focuses on galaxy formation through repeated accretion of satellites (e.g.
[50, 170]). In particular, this hierarchical scenario describes the formation of el-
liptical galaxies as remnants of a merger but also provides clues on the dynamical
status and evolution of groups of galaxies.

• A growing number of works focus on the central region of mergers. The for-
mation of active galaxy nucleus (AGN) and the associated feedback is inten-
sively discussed, as well as the pairing of black holes in mergers (see e.g.
[28, 59, 135, 168, 204], among many others).

• The stellar populations of the interacting galaxies and the properties of the star
clusters and the dwarf galaxies they may contain is also a widely covered topic
(e.g. [36, 64, 238]). In this respect, the tides play an important role on the physics
of these subsystems. This last point will be further developed in the following
sections.

9.3 Theory of the Tidal Tail Formation in Interacting Galaxies

After having reproduced numerically some of the extragalactic tidal structures ob-
served in the Universe, several physical and mathematical descriptions of the phe-
nomenon have been proposed to better understand the tides at galactic scale. The
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complexity of the task comes from the diversity of possible configurations, which
translates into a large number of parameters. In this section, we review the role of
the first order parameters and illustrate their respective effects thanks to numerical
simulations of interacting galaxies. A mathematical description of the tidal field is
also presented.

9.3.1 Gravitational Potential and Tidal Tensor

By definition, the tides are a differential effect of the gravitation. Let’s consider a
galaxy, immersed in a given gravitational field. At the position of a point within the
galaxy, the net acceleration can be split into the effect from the rest of the galaxy
aint, and the acceleration due to external sources aext. The latter can itself be seen as
a part common to the entire galaxy (usually the acceleration of the center of mass),
and the differential acceleration, that differs from point to point within the galaxy.
In other terms, the net acceleration at the position rP, in the reference frame of the
center of mass of the galaxy (which lies at the position rg), is given by

a(rP)= aint(rP)+
[
aext(rP)− aext(rg)

]
. (9.1)

For small δ = rP − rg with respect to rg, one can develop at first order and get

a(rP)= aint(rP)+ δ daext, (9.2)

which also reads
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or simpler

aiP = aiint(rP)+ δj ∂
j aiext, (9.4)

when using Einstein’s summation convention. The effect of the external sources on
the galaxy are described by the term

T ji ≡ ∂j aiext, (9.5)

which is the j , i term of the 3× 3 tensor T called tidal tensor [185]. Such a tensor
encloses all the information about the differential acceleration within the galaxy.
Therefore, the (linearized) tidal field at a given point in space is described by the
tensor evaluated at this point.

Note that the tidal tensor is a static representation of the tidal field: the net effect
on the galaxy also depends on its orbit in the external potential, or in other words, on
the variations of intensity and orientation of the tidal field. This can be accounted
for by writing to pseudo-accelerations (centrifugal, Coriolis and Euler) in the co-
rotating (i.e. non-inertial) reference frame, or by the means of a time-dependent
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effective tidal tensor in the inertial reference frame. For simplicity, in the following
we focus on static, purely gravitational tides and refer the reader to Renaud et al.
[188] for more details.

Because the acceleration aext derives from a gravitational potential ϕext, one can
write

T ji =−∂j ∂iϕext =−∂i∂jϕext = T ij . (9.6)

(Several examples of tidal tensors of analytical density profiles are given in [186],
see also the Appendix B of [184].) It is important to note that these considerations
are scale-free and applies to any spatially extended object, such as galaxy clusters,
galaxies, star clusters, stars, planets, etc.

For example, let’s consider the Earth-Moon system and compute the tidal field
with the Moon as source of gravitation. It can been seen from the Earth as a point-
mass, and yields a potential of the form

ϕext =−GM

r
, (9.7)

with r =
√
x2
i + x2

j + x2
k . The components of the tidal tensor are

T ij = GM

r5

(
3xixj − δij r2) (9.8)

where δij = 1 if i = j and 0 otherwise. When computed at the distance d along the
i-axis (i.e. for r = d and xj = xk = 0), the tidal tensor becomes

T(d,0,0)= GM

d3

⎛

⎝
2 0 0
0 −1 0
0 0 −1

⎞

⎠ . (9.9)

The signs of the diagonal terms (which are, in this case, the eigenvalues because the
tensor is written in its proper base) denotes differential forces pointing inward along
the i-axis, and outward along the other two axes. A rapid study of the differential
forces around the Earth (see Fig. 9.5) shows indeed, that they point toward the Earth
along the axes perpendicular to the direction of Moon. One speaks of a compressive
effect. Along the Earth-Moon axis however, the differential forces point away from
the planet: the effect is extensive.

9.3.2 Compressive Tides

Back to the general case, it follows from Eq. (9.6) that any tidal tensor is symmetric.
Because it is also real-valued, it can be set in diagonal form, by switching to its
proper base. In this case, three eigenvalues {λi} denote the strength of the tides
along the associated eigenvectors. The trace of the tensor (which is base-invariant)
reads

Tr(T)=
∑

i

λi =−∂i∂iϕext =−∇2ϕext, (9.10)
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Fig. 9.5 Gravitational attraction (black, dotted line) of the Moon on the Earth, and the differential
forces (grey). The tidal effect appears to be extensive in A and C, while it is compressive in B
and D

which can be connected to the local density ρ thanks to Poisson’s equation:

Tr(T)=−4πGρ ≤ 0. (9.11)

The condition on the sign of the trace implies that it is impossible to compute si-
multaneously three strictly positive eigenvalues. Remains the cases of two, one or no
positive eigenvalues, as mentioned by Dekel et al. [61]. For two or one positive λ’s,
the tidal field is called (partially) extensive, like e.g. in our Earth-Moon example.
When all three eigenvalues are negative, the tides are (fully) compressive. By notic-
ing that T is minus the Hessian matrix of the potential, one can show that a change
of curvature of the potential implies a change of sign for T. Therefore, compressive
tides are located in the cored regions of potentials only, and never in cusps.

Note that a compressive mode (three negative λ’s) implies that the local density
due to the source of gravitation is non-zero. Although such a situation does not exist
with point-masses, it can occurs when considering extended mass distributions, like
e.g. for galaxies embedded in a dark matter halo.

The duality of compressive/extensive tidal modes plays a role in the formation,
early evolution and dissolution rates of star clusters. It has been noted that observed
young clusters were preferentially found in the regions of compressive tides (see
[185], in the case of the Antennae galaxies), and a compressive mode would slow
down the dissolution of young globulars [188].

9.3.3 Formation of Tidal Tails and Bridges

In isolation, a galaxy keeps its material, which is made of dark matter, stars, gas and
dust, bound thanks to the gravitation. However, when it moves in an external poten-
tial, created for instance by neighbor galaxies, it can experience gravitational forces
which are different from one side of the galaxy to the other. In other words, the
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galaxy is plunged in a tidal field. As a result, its material undergoes deforming ef-
fects that re-arrange the individual components of the galaxy. On the one hand, when
this material was initially distributed in an (almost) random way in phase-space (as
opposed to e.g. sharing a common velocity pattern), the net tidal effect does not
translate into a clear global change for an entire region of the galaxy. Therefore,
such tides are difficult to detect. On the other hand, when large scale, regular pat-
terns exists in the distribution of the galactic material in phase-space (e.g. a disk),
the tides have a similar impact on stars that already lied in the same region of phase-
space. All these stars are affected the same way and thus, the effect is much more
visible. In the end, a given tidal field is easier to detect when it affects a regular, or-
ganized distribution of matter, than when it applies to isotropic structures. This is the
reason why tidal features like tails and bridges are well visible around disk galaxies
where the motion is well-organized, and merely inexistent in ellipticals, which yield
much more isotropic distributions of positions and velocities. This last point can be
extended to all structures with a high degree of symmetry (halos, bulges, and so on),
as opposed to axisymmetric components like disks.

As a consequence, the tidal structures gather the matter that occupy a well-
defined region in phase-space. Figure 9.6 (top row) shows the N -body toy-
simulation of an encounter between a composite galaxy (disk+ bulge+ dark matter
halo) and a point mass. Particles being part of one of the tails are tagged so that it is
possible to track them back in time to their initial position in the disk. As mentioned
above, these particles are distributed in a more or less confined region of phase-
space at the time of the pericenter passage of the intruder, so that their individual
motions are re-organized in a similar way. It is interesting to note that they cover a
wide range of radii in the disk and thus, because of the differential rotation, the zone
they occupy before the interaction is far from being symmetrical.

When the same experiment is repeated with an elliptical galaxy (Fig. 9.6, bot-
tom row), the velocities are distributed almost isotropically and thus, no structure is
created by the tidal field. As a conclusion, strong galactic tidal bridges and tails are
formed from the material of disks galaxies. Note that the experiment we conducted
above applies to any mass element, and thus can be, in principle, extended to both
the gaseous and stellar components of a galaxy.

In the case of a flyby, the galaxies do not penetrate in the densest regions of their
counterpart, do no loose enough orbital energy to become bound to each other, and
thus they escape without merging. However, when the exchange of orbital angular
momentum (through dynamical friction) is too high, the mean distance between the
progenitors rapidly decreases (as a damped oscillation) before they finally merge,
forming a unique massive galaxy. On the external regions of the merger, the tidal
tails (if they exist) expand in the intergalactic medium and slowly dissolve. Because
the tails are generally long-lived, they can indicate past interactions, as discussed in
Struck [215]. As a result, tidal features can point to interacting events, even when
what has caused their creation (i.e. a counterpart progenitor) has disappeared in a
merger or has flown away.

Note that D’Onghia et al. [65] followed an approach based on the quasi-resonant
theory to describe the response of disk to a tidal perturbation. Their analytical for-
malism gives a good match with numerical experiments.
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Fig. 9.6 Top: morphology of a disk galaxy, seen face-on, during its coplanar interaction with a
point-mass (mass ratio = 1), before the interaction (left), at pericenter (middle) and after (right).
The dashed line indicates the trajectory of the point-mass (from top to bottom). The black dots tag
a subset of particles that are situated in one of the tidal tails at t = 500 Myr. Bottom: same but for
an elliptical galaxy. No tidal structures are visible

9.3.4 Gas Dynamics

The response of the gas to a galactic interaction can be seen as either an outflow
or an inflow. For distant, non-violent encounters, a large fraction of the hot gas
(T > 103 K) can be tidally ejected into the intergalactic medium, thus forming broad
gaseous tails and/or halos around galaxies (see e.g. [132]). It has been noted that
while the least bound material would expand widely, more bound structures could
easily fall back into the central region of the galaxies within less than ∼ 1 Gyr [105,
106].

During a first, distant passage, some galactic material is stripped off thanks to
the transformation of the orbital energy of the progenitor galaxies. As a result, and
because of dynamical friction, the interacting pair becomes more and more concen-
trated and can, under precise conditions (see e.g. [239]), experience other passage(s)
and finally end as a merger [17]. During such a second, closer interaction, tidal
forces can induce shocks covering a large fraction of the galactic disk, which gives
the gas a significantly different behavior than that of the stars [169]. In particular,
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when stellar and gaseous bars form, the symmetry of the galaxy is broken: gravi-
tational torques remove the angular momentum of this gaseous structure [51] and
make it fall onto the nucleus of the merger (< 1 kpc, see e.g. [16, 103, 153, 172]).
Such an inflow fuels the central region of the merger and participates in the nuclear
starburst [13, 166, 210] often observed as an excess of infrared light or a strong nu-
clear activity [89, 136, 144, 209, 248]. At large radii in a disk, one gets the opposite
effect: the gravitational torques push the material to the outer regions. This outflow
enhances the formation of the tails already formed by the tidal field itself [32].

Note that star formation in mergers is also considered to be triggered by en-
ergy dissipation through shocks [14]. This is, however, quite sensible to the orbital
parameters of the galaxies. Details about merger-induced starbursts are out of the
scope of the present document. The reader can find a mine of information on this
topic in Hopkins et al. [114], Robertson et al. [191], Di Matteo et al. [63], Cox et al.
[56], Hopkins et al. [115], Teyssier et al. [220] and references therein.

Interestingly, Springel and Hernquist [211] showed that the collision between
two gas-dominated disks could form a spiral-like galaxy instead of an elliptical one,
as one could expect. In this case, a significant fraction of the gas is not consumed
by the burst of star formation induced by the merger. Through conservation of the
angular momentum, dissipation transforms the gaseous structure into a star-forming
disk [115]. Owning that the gas fraction in galaxy increases with redshift (as sug-
gested by Faber [81], Lotz et al. [145]), this last point sheds light on the formation
history of low-redshift spiral galaxies.

9.3.5 Influence of the Internal and Orbital Parameters

The details on the formation of tidal structures are adjusted by several parameters
that mainly concern the orbit of the galaxies, i.e. the way one sees the gravitational
potential of the other. Because an analytical study of the influence of these param-
eters is very involved, many authors conducted numerical surveys to highlight the
trends obtained from several morphologies.

9.3.5.1 Spin-Orbit Coupling

In their pioneer study, Toomre and Toomre [226] already mentioned the influence of
the spin-orbit coupling of the progenitors. For simplicity, let’s consider two galaxies
A and B separated by a distance rAB, and whose disks lie in the orbital plane. The
norm of the velocity of an element of mass of the galaxy A situated at a radius r ,
relative to the galaxy B is rABΩ ∓ rω, where Ω denotes orbital rotational velocity
and ω the (internal) rotation speed of the galaxy A (i.e. the spin). The sign of the
second term depends on the alignment of ω with Ω . For a prograde encounter,
the spin (ω) and the orbital motion (Ω) are coupled (i.e. aligned). Therefore, the
relative velocity is lower (rABΩ− rω) than for a retrograde encounter (rABΩ+ rω)
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and the net effect of the tides is seen for a longer period of time. As a result, the
structures formed during prograde encounters are much more extended than those
of retrograde passages.

Although this conclusion can be exported to inclined orbits, the strongest re-
sponses of the disks are seen for planar orbits, i.e. with a zero-inclination. The
highly inclined configurations, called polar orbits, give generally birth to a single
tail, as opposed to the bridge/tail pairs [116]. In short, because an observed tidal
effect does not only depend on the strength of the differential forces, but also on the
duration of their existence, long tails are associated with prograde configurations.

9.3.5.2 Mass Ratio

Another key parameter is the mass ratio of the progenitors. In the hierarchical sce-
nario, the galaxies form through the repeated accretion of small satellites (see e.g.
[213], and references therein), and interactions between a main galaxy and num-
ber of smaller progenitors would occur more or less continuously. It is usual to
distinguish the major mergers where the mass ratio is smaller than 3:1 (i.e. almost
equal-mass galaxies), from the minor mergers involving a larger ratio (e.g. 10:1).
In the last case, tidal tails are generally thin and small, while the same features are
more extended and survive for a longer time in major mergers [167].

The dependence of the structure of the remnant of the interaction (disky or boxy
elliptical, as opposed to more symmetric galaxies) on the mass ratio of the progen-
itors has been extensively debated but is not directly connected to the tidal activity,
and thus is out of the scope of this review (see [16, 17, 39, 40, 100, 101, 165, 195],
for much more details).

9.3.5.3 Impact Parameter

During the interaction, the impact parameter plays an indirect role: a close, pene-
trating encounter will drive one galaxy deep inside the high density regions of the
other, which implies a strong dynamical friction (see e.g. [27]). In this case, the sep-
aration of the progenitors after such a passage would be much smaller than for a
more distant encounter.

Furthermore, a close passage generally corresponds to a significant tidal strip-
ping. This situation occurs repeatedly for satellites orbiting within the halo of major
galaxies [183]. Only the densest satellites can survive such a disruption [200], while
more fragile object would be converted into stellar streams [123, 150, 178], as ob-
served in the local Universe [120].

However, the mass captured by a more massive companion (mass ratio close to
1:1) seems to be higher for short pericenter distances, as noted by Wallin and Stuart
[235]. The lost of material into the intergalactic medium is also higher under these
circumstances.



344 P.-A. Duc and F. Renaud

9.3.5.4 Dark Matter Halo

In addition to the effect of orbital parameters, several authors noted the role played
by the dark matter halo of the progenitor on the morphology of the merger, mainly
the length of the tails. E.g. Dubinski et al. [66] showed that long, massive tidal tails
are associated with light halos, while the deep potential created by more massive
ones would prevent the creation of extended structures. Note that, for a given mass,
a dense halo appears to be more efficient in retaining the stellar component bound
[157]. An important conclusion of this work was that galaxies exhibiting striking
tails are likely to have relatively light halo (i.e. a dark to baryonic mass ratio smaller
than ∼ 10 : 1).

However, Springel and White [212] qualified this by stating that the important
parameter is in fact the ratio of escape velocity to circular velocity of the disk, at
about solar radius (see also [67]). Therefore, even massive halos (e.g. mass ratio
40 : 1) can allow the growth of tails, provided the kinetic energy of the disk material
is high enough to balance the depth of the gravitational potential of the massive dark
matter halo. See Sect. 9.6.3 for more details.

9.3.6 Rings, Ripples, Shells, and Warps

Although they are the most visible structures formed during galactic interactions, the
tidal tails and bridges are not the only signatures of encounters. Other mechanisms
(not directly of tidal origin) lead to disrupted morphology. We briefly mentioned
them here, for the sake of completeness.

• Shells or “ripples” describe the arcs and loops showing sharp edges in the enve-
lope of galaxies. They originate from the collision between a massive galaxy and
a small companion, 10 to 100 times lighter [182]. The material of the satellite
is spread by an extensive tidal field in the potential well of the primary, along a
given orbit of low-angular momentum (see [10], and references therein). A sharp
ridge forms near the turnaround points of the orbit. The multiplicity of the shells
corresponds to an initial spread in energy, leading to several possible radii for the
ridges.

• A ring galaxy forms from the head-on collision between a large disk and a com-
pact, small perturber [86, 223]. The density wave created by the collision empties
the central region of the disk and forms a ring in radial expansion ([147], see also
[4] for an observational and theoretical review).

• Warped disks can be created by gravitational torques due to an infalling satellite
galaxy (mass ratio ∼ 10 : 1, see [117, 189]). Note that warps and bending insta-
bilities can also form through the torques exerted by a misaligned dark halo, or
via accretion of matter [11, 122, 190].
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9.3.7 Differences with Tides at Other Scales

The galactic tides are a purely gravitational effect, which means that they rely on
scale-free quantities like the relative mass of the galaxies, the inclination of the
orbits, their relative velocities and so on. Therefore, the conclusions presented above
can be applied to any scales, from planetary to cosmological. If true in principle,
this statement must be qualified because the requirements of the galactic-type tides
themselves do not exist at all scales.

In the case of planetary tides, for example in the Earth-Moon system, the source
of gravity does not penetrate in the object experiencing tides, and is generally situ-
ated at a distance large enough that it can be approximated by a point-mass. Further-
more, the binding energy of a solid and/or dense body like a planet is much higher
than those of the galaxy on its stars. That is, the planetary tidal effects are weaker
than the galactic ones. Note however that both the planetary and the galactic tides
can destroy an object, like the comet Shoemaker-Levy 9 pulled apart by Jupiter’s
tidal field, or dwarf galaxies that dissolves in the halo of a larger galaxy, generally
forming streams.

Another major difference arises from the periodicity of the motion. While a bi-
nary star or a planet is orbiting in a regular, periodic way, the galaxies show more
complex trajectories, highly asymmetric, and rarely closed (because of high velocity
dispersion and/or orbital decay). As a consequence, the tides at stellar or planetary
scales can be seen as a continuous, or at least periodic effect, while they are rather
well-defined in time and never occur twice the same way at galactic scales.

Therefore, the tidal effects seen at planetary or stellar scales, like the deforma-
tion of the oceans, atmospheres or external stellar envelops strongly differ from
their equivalent phenomena in galaxies. At intermediate scale, the star clusters share
properties of both tidal regimes. When orbiting an isolated galaxy, they undergo
rather regular tidal effects and can, by filling their Roche lobe, evacuate stars through
the Lagrange points. As a result, some globular clusters exhibit tidal tails, as seen in
observations and reproduced by simulations (see e.g. [24, 83, 134], and references
therein).

9.4 Multi-wavelength Observations of Tidal Tails

Tidal tails have originally been discovered on deep photographic plates (see
Sect. 9.2.1) revealing the optical light emitted by stars. This monochromatic, black
and white, view hides the variety of components and physical processes hosted by
collisional debris. Their multi-wavelength observation and analysis were boosted
in the 90s [194]. We present here an overview of the recent colorful view of tidal
tails.

The average optical color of tidal tails is consistent with the bulk of their stellar
population being older than the interaction, and originally born in the disk of the
parent galaxies. Tidal tails however host bluer regions, whose light is dominated
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by OB-type stars. Given the life time of OB stars (less than 10 Myr) and the typ-
ical dynamical age of tidal tails (100 Myr), the young stellar component has been
formed in-situ. These giant star-forming complexes are usually compact and appear
detached from the rest of the tails, explaining why they were once believed to be
ejected galaxies (see Sect. 9.2.2). Knots of star-formation are responsible for the
bulk of the ultraviolet emission also emitted by tidal tails. Star formation is partially
hidden by dust cocoons. Heated dust causes the infrared emission of tidal tails. The
formation of stars requires the presence of gas. The main reservoir is atomic hydro-
gen, detected through the emission of the radio 21 cm hyperfine line; it hosts pockets
of molecular gas in which stars are born and that are detectable in the millimetric
domain, using emission lines of molecules such as carbon monoxide.

This section emphasizes the importance of multi-wavelength observations for
studies of the physical properties of tidal tails, especially those formed during major
mergers.

9.4.1 Where the Mass Is: Atomic Hydrogen in Tidal Tails

One of the first galaxies to have been fully mapped at 21 cm is the Antennae galaxies
([229], see also our Fig. 9.7, panel 6). These early observations obtained with the
Westerbork Synthesis Radio Telescope (WSRT) revealed that about 70 % of the total
amount of hydrogen in the galaxy pair is distributed along the optical tidal tails. For
comparison, tidal tails account for only a few percent of the stellar component of
colliding galaxies. The HI gas appears as the most massive ingredient of tidal tails
and is thus one of its best tracer.

Furthermore, since the HI component is almost always more extended than the
stellar disk (by a factor 2–5, depending on the morphological type of the parent
galaxy), it is less gravitationally bound than the stellar disk. As a consequence,
gaseous tails are more easily produced than stellar ones. Hibbard [104] used the
Very Large Array (VLA) to carry out one of the first systematic study of HI in pairs
of galaxies. Observing systems of the so-called Toomre sequence (see Fig. 9.3), he
was able to reconstruct the evolution of the gaseous component during a merger. To-
gether with numerical simulations, these data show how part of the gas is stripped,
forming the tidal tails, while a fraction of it sinks into the central regions, sometimes
via a bar and fuels there a nuclear starburst or an active galactic nucleus. Finally, ob-
servations of the 21 cm HI line have the additional advantage of providing the radial
velocity over large scales. As emphasized in Sect. 9.3.5, a large variety of orbital
parameters and corresponding models should be explored to reproduce the mor-
phology of interacting systems. Having the complete radial velocity field restricts
the parameter space. Tidal tails are too diffuse to allow spectroscopic measurements
in the optical regime except in compact HII regions. Emission line regions are how-
ever not numerous enough in tidal tails to allow a correct sampling of the velocity
field, contrary to the HI probe.
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Fig. 9.7 A sample of interacting systems covering the various stages of major mergers, from the
initial phases of the encounter (top left), to the last ones and formation of a relaxed object (bottom
right). The gaseous component (atomic hydrogen) is superimposed on true color optical images of
the galaxies, showing the distribution of the young and old stars. See Table 9.1 for details on the
data

9.4.2 When Components Are Missing: HI Without Optical
Counterparts; Stellar Tails Without Gas

Since the pioneer HI observations mentioned above, numerous colliding systems
have been mapped with the WSRT, the VLA, the Australia Telescope Compact Ar-
ray (ATCA) or the Giant Metrewave Radio telescope (GMRT). In a vast majority of
cases, there is a very good match between the HI and the stellar components. The
old stellar components and gas perfectly overlap, whereas young stars are formed at
the HI peaks. In a few rare cases, an offset is observed between the gas and the stars
(see e.g. System 8 in Fig. 9.7). The origin of the star/gas offset is debated: it may
be due to different initial distributions of both components (e.g. [107]) or additional
processes that act on one component and not the other. For instance, ram pressure
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Table 9.1 Observed systems and sources of data

ID Name Sources

1 M81/M82/NGC 3077 HI: VLA Yun et al. [249]; optical: DSS; Hα : KPNO/36 in

2 NGC 2992/93 HI: VLA Duc et al. [72]; optical: CTIO/SSRO (Courtesy
D. Goldman); Hα : ESO/NTT

3 Stephan’s Quintet HI: VLA Williams et al. [242]; optical: HST (NASA); Hα :
Calar Alto/2.2 m (Courtesy J. Iglesias)

4 The Mice (NGC 4676) HI: VLA Hibbard and van Gorkom [106]; optical: HST
(NASA); Hα : CFHT

5 The Guitar (Arp 105) HI: VLA Duc et al. [70]; optical: CFHT; Hα : CFHT

6 The Antennae (NGC 4038/39) HI: VLA Hibbard et al. [108]; optical: NOAO/AURA/NSF
(B. Twardy); Hα : CFHT + Palomar/1.5 m

7 The Atom for Peace HI: VLA (Belles et al. [23]); optical: ESO/WFC; Hα :
KPNO/2.1 m

8 NGC 2623 (Arp 243) HI: VLA (Courtesy J. Hibbard); optical: HST/NASA/ESA
(A. Evans); Hα : CFHT

9 NGC 4694 HI: VLA Duc et al. [74] (Courtesy VIVA Collaboration); op-
tical: ESO/NTT; Hα : KPNO/0.9 m

due to the interaction with the intergalactic medium might strip the HI gas further
away [152].

Meanwhile, blind HI surveys have disclosed the presence of numerous inter-
galactic, filamentary, HI structures apparently devoid of stars (see the review by
[45], and references therein). Some may be of tidal origin. Spectacular examples
are visible in the M81 group of galaxies (see System 1 in Fig. 9.7). Looking at the
optical image of the M81 field, it might be difficult to infer that the three visible
main galaxies are involved in a tidal interaction. The HI map of the same region
provides a different picture and reveals a complex network of tails and bridges con-
necting the three galaxies. The HI Rogues gallery compiled by J. Hibbard4 exhibits
similar cases, emphasizing the role of HI as the most sensitive tracer of on-going
tidal interactions.

As a matter of fact, this may be a too simple picture. Recently the optical regime
had its revenge: with the availability of sensitive, large field of view CCD cameras,
the surface brightness limit reached in the optical has gained several magnitudes.
Diffuse light up to 29 mag arcsec−2 can be probed [85, 158]. In the nearest systems
for which individual stellar counts are possible (with current technologies, in the
Local Group), limits of 32 mag arcsec−2 are reachable [151]. At these limits, the
most massive HI tails do exhibit a stellar counterpart. This is likely the case for
the M81 group [164], and many other interacting galaxies with available ultra-deep
optical images [75]. An example of a newly discovered optical tidal tail, discovered
as part of the Atlas3D survey [48] is shown in Fig. 9.8 (top panel).

4http://www.nrao.edu/astrores/HIrogues/.

http://www.nrao.edu/astrores/HIrogues/
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Fig. 9.8 Examples of a gas-poor and gas-rich tidal tails: NGC 5557 (top, [75]) and NGC 4254
(bottom, [69]), The HI component is superimposed in blue on optical images. For both systems, the
tails result from an encounter with a massive galaxy, which has merged in the case of NGC 5557 or
just flied by for NGC 4254. The tidal tails of NGC 5557 are best visible in the optical as extremely
low surface brightness structures, whereas the HI emission is patchy and concentrated towards a
few optical condensations. The tail of NGC 4254 has no optical counterpart and was once believed
to be part of a dark galaxy, known as VirgoHI21

HI intergalactic structures without any stars are thus much less frequent than once
believed. A few of them however have escaped an optical detection. The Magellanic
Stream in the local group is the most famous of them. This HI structure is the largest
tidal tail detected in the Local Group [171]. It has long been attributed to a tidal
interaction between the Magellanic Clouds and possibly our Milky Way (e.g. [52]).
However the absence of stars along the stream5 was used to claim that this structure
might in fact result from ram-pressure [163]. Indeed, ram-pressure only acts on
the gas. The HI is stripped along filaments that may be mistaken with tidal tails.

5Though, a stellar component has been found associated to the Magellanic Bridge.
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Instances of long HI tails, likely of ram pressure origin, may be found in the Virgo
cluster [49]. However, flybys, i.e. collisions at high velocity which do not result in a
merger, might as well produce tails without any stars, provided that the companion is
massive enough to grasp gas from the target galaxy but resulting gravitational forces
too weak to drag the stars [69]. Such tails are of tidal origin but could themselves
be mistaken with filaments created by ram-pressure. According to a more exotic
scenario, star-less intergalactic HI clouds might reveal the presence of so-called
“dark galaxies”, i.e. galaxies embedded in a massive dark matter halo that would
contain very few baryons, only in the form of gas (see the proceedings of IAU
symposium 244 dedicated to dark galaxies and [160]). An example of such objects
is VirgoHI21, near the spiral NGC 4254 shown in Fig. 9.8 (bottom panel). The
elongated cloud exhibits a strong velocity gradient, as if it was rotated and moved by
an unseen dark component. But here again, such a velocity field might be explained
by streaming motions generated by a tidal collision [22, 69].

It is not unlikely that the isolated HI clouds found in deep surveys such as the
Arecibo Legacy Fast ALFA Survey (ALFALFA, [130]) are simply collisional de-
bris. Finally, another interpretation has recently gained popularity: the clouds and
filaments around galaxies might divulge accretion of gas from so-called cold fila-
ments. Simulations and some theoretical models emphasize the key role of external
accretion of gas in the evolution of distant galaxies [62]. Primordial accreted clouds
should be devoid of stars and have a low metallicity, whereas the metallicity of tidal
debris should be high. This characteristic provides a method to disentangle tidal and
cosmological origins for starless gas clouds. In practice the measurement of element
abundances is extremely difficult for objects with no optical counterpart.

Stellar tails without any gas are rather common around massive galaxies. Usu-
ally such streams are rather narrow and associated with tidally disrupted satellites.
The gas of the progenitors might have been stripped, evaporated or consumed well
before the satellites were destroyed by their giant hosts. Stellar streams are reg-
ularly discovered in our own Milky Way: the Sagittarius and Monoceros streams
are among the most famous ones [25, 121, 247]. Numerical simulations show how
a satellite might be stripped of its stars, wrap around the main host galaxy before
eventually falling in (e.g. [149]). A spectacular example of a disrupted dwarf in the
halo of a spiral galaxy is shown in Fig. 9.9.

9.4.3 Sparse Components: Molecular Clouds, Dust, and Heavy
Elements

If old stars and HI gas are the main components of the mass budget of tidal tails,
they are far from being the only ones. In fact collisional debris contain all the usual
constituents of the interstellar medium of galaxies. A key ingredient is obviously the
molecular gas in which stars are formed. Braine et al. [42] reported the first detection
of carbon monoxyde at the tip of two tidal tails. Surveys of colliding galaxies with
HI-rich tidal tails lead to several other detections [41, 141, 205]. Follow-up CO(1-0)
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Fig. 9.9 Faint stellar streams wrapping around the spiral galaxy NGC 5907, seen edge-on. They
are most probably due to a disrupted small dwarf spheroidal satellite. Such minor collisions are
quite common around galaxies, including around our own Milky Way. Courtesy of R.J. Gabany in
collaboration with Martínez-Delgado et al. [148]

mapping with interferometers has been achieved in a few systems [142, 236]. CO
clouds were detected towards local HI peaks (and HII regions), with observed H2/HI

mass ratio ranging from 0.02 to 0.5. This supports the hypothesis that the molecular
gas has been formed locally out of collapsing HI clouds [42]. However the later-on
CO mapping of entire tidal tails revealed the presence of molecular clouds outside
the HI peaks, leaving open the possibility that the molecular component (or part of
it) might have been directly stripped form the colliding galaxies at the same time as
the HI and stellar components [74, 143].

The detection of CO at the tip of tidal tails indirectly reveals that heavy elements
are present in that environment. The oxygen abundance could be determined in HII
regions located along the tails (e.g. [237]). Typical values are between one third
and half solar, even at distances of 100 kpc from the parent galaxies. For compari-
son, abundances in the very outskirts of isolated spiral galaxies range between one
tenth to one third solar [43, 84]. The disk of spiral galaxies usually exhibit a strong
metallicity gradient, with a possible flattening in the outmost regions [43]; no such
gradient has yet been measured in tidal tails [131].

The presence of cold dust in tidal tails has been first disclosed on far-IR images
obtained with the ISO satellite [243]. Dust continuum emission in collisional debris
has later-on been mapped by Spitzer [29, 206] and more recently by Herschel. Fur-
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thermore the star-forming regions along tidal tails also exhibit mid-infrared emis-
sion features associated to polycyclic aromatic hydrocarbon (PAH) grains [29, 109].

How did tidal tails acquire their metal-enriched components? Local stellar feed-
back during in-situ star formation episodes contribute to the metal production. How-
ever the onset of star-formation in collisional debris is likely too recent and the star-
formation rates too small (see below) to explain the measured abundances in heavy
elements. Another hypothesis is a global enrichment of the interstellar/intergalactic
medium by stellar superwinds or enhanced AGN activity in the core of the merging
galaxies. Nuclear outflows might eject metal-enriched matter (in particular dust) up
to large distances, as observed for instance in M82 (System 1 in Figs. 9.7 and 9.10).
Alternatively, radial gas mixing during galactic collisions might account for the lack
of metallicity gradients in tidal tails and the presence of dust at large galactocentric
distances, as recently shown by numerical simulations of mergers [192].

9.5 Structure Formation in Tidal Tails

9.5.1 Star Formation

As mentioned in the previous section, tails contain all the necessary ingredients for
the onset of star-formation, in particular molecular gas and dust, and indeed young
stars are often observed in collisional debris.

A census of star-forming regions in tidal tails has been carried out using a variety
of tracers, such as the ultraviolet [29, 208], Hα [34, 227] or mid-infrared emission
[30, 206]. These tracers may be combined to further constrain the star formation
history (see composite image on Fig. 9.10). Star-forming regions in collisional de-
bris may consist of extremely compact and tiny knots with star formation rate (SFR)
as low as 0.001 M�/yr (see examples at the tip of the tails of systems 3, 6 and 8 in
Fig. 9.10) or giant complexes with SFR reaching 0.1 M�/yr (see systems 5, 7 in
Fig. 9.10).

A few studies have detailed the star-formation process in tidal tails, from the
observational and theoretical point of view (e.g. [77]). Tidal objects are a priori
a special environment simultaneously characterized by (a) the same local chemi-
cal conditions as in spiral galaxies (ISM composition, metallicity), (b) the lack of
an underlying massive stellar disk, like dwarf irregular and low surface brightness
galaxies, (c) the kinematical conditions typical of mergers, i.e. an enhanced gas tur-
bulence and possibly shocks. Does then star-formation in collisional debris obey the
rules that prevail (a) in regular massive disks, (b) in low-metallicity dwarfs, charac-
terized by a low star-formation efficiency (SFE, the ratio between the star-formation
rate and molecular gas content), (c) in the central regions of mergers where de-
viations from the so-called Kennicut-Schmidt relation (a correlation between the
star-formation rate per unit area and the gas surface density) have been measured
[57]? The SFE estimated in several tidal objects favors the first hypothesis: its value
is close to that usually measured in galactic disks [31, 41].
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Fig. 9.10 Star formation in a sequence of merging galaxies. The displayed systems are the same
as in Fig. 9.7. The contours of the HI 21 cm emission are superimposed on a composite image
combining light emission from three tracers of on-going or recent star-formation: the ultravio-
let (blue), the Hα line emission (green) and the mid-infrared (red). The most active star-forming
regions belong to the so-called tidal dwarf galaxies

Therefore, with respect to star-formation, tidal tails do not appear as exotic
objects. The properties of the pre-enriched interstellar medium inherited from
their parent galaxies govern their star-formation capabilities rather than the violent
episode at their origin or the large-scale (intergalactic) environment in which they
now evolve.

9.5.2 Star Cluster Formation

Galaxy mergers do not only enhance star-formation. The increase of the gas pres-
sure during mergers triggers the formation of star clusters as well. The Hubble Space
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Fig. 9.11 Formation of stellar structures in high-resolution numerical simulations of major merg-
ers. Left: after the first pericentric passage, with the hydrodynamical AMR code RAMSES [220].
Right: at the merger stage, with a sticky-particle code [37]. On the electronic version of this figure,
gas is rendered in green, young stars in blue and old stars in magenta/brown. Both models show
the formation of stellar objects (rendered in yellow/white): compact knots with properties similar
as Super Star Clusters, or more massive, extended structures resembling Tidal Dwarf Galaxies

Telescope has revealed the presence of a large population of young Super Star Clus-
ters (SSCs) in nearby merging systems, including along tidal tails (see [197], for
a review). The most massive of them are believed to evolve into globular clusters
(GCs), thus making mergers a possible origin of GCs. Numerical simulations at high
resolution support this hypothesis [37]. Figure 9.11 presents two different models
that were able to form SSCs. Globally, the cluster formation rate follows the star-
formation rate. The infant mortality of SSCs less than 10 Myr after their formation
appears however to be very high. SSCs in particular suffer from sudden gas loss due
to feedback effects that alter their dynamical stability. There are special locations
in merging systems, where local compressive tidal modes might contribute to (at
least partially) protect them and increase their life-time [186]. Large volumes (up
to 10 kpc wide) of compressive modes have been located in the tidal tails of major
mergers, with an intensity comparable to that found in the central regions. But the
lower gas density and turbulence in such an environment do not seem to particularly
favor the formation of SSCs in tails. Note that attempts to connect hydrodynami-
cal simulations of star-cluster formation with a semi-analytical formalism of tidal
shocks have recently been made [133].

9.5.3 Formation of Tidal Dwarf Galaxies

Tidal tails host the most massive structures that may be born during galaxy mergers:
the Tidal Dwarf Galaxies (TDGs). As indicated by their name, TDGs have the mass
of classical dwarf galaxies, i.e. above 108 M�. They have originally been detected
on optical images as prominent and generally blue (thus star-forming) condensa-
tions at the end of tidal tails. Follow-up radio observations revealed that they were
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associated with massive HI clouds (see [68], for a recent review on TDGs). De-
tailed kinematical studies of the ionized, HI or molecular gas indicate that TDGs
are gravitational bound entities that are kinematically decoupled from their parent
galaxies. They exhibit velocity curves that are typical of rotating objects. In practice,
the kinematical study of tidal tails suffers from strong projection effects: tidal tails
are highly curved filaments; when seen edge-on, several components of the tail may
be projected along the same line of sight. This creates an artificial velocity gradient
that may be mistaken with a genuine rotation curve. Projection effects are especially
critical near the end of tidal tails where most TDGs are precisely located [34].

Numerical simulations have provided clues on the formation mechanism of tidal
dwarf galaxies (see examples in Fig. 9.11). Several scenarios have been proposed:

• growth of condensations born following local gravitational instabilities in the stel-
lar component [18] or in the gaseous component [238],6

• multiple mergers of super star clusters [82],
• formation and survival of massive star clusters thanks to the fully compressive

mode of tidal forces ([186], see above),
• formation of massive gas clouds in the outskirts of colliding disks, following the

increased gas turbulence, that become Jeans-unstable and collapse once in the
intergalactic medium [77],

• accumulation and collapse of massive gaseous condensations at the end of the
tidal tails, following a top-down scenario [73].

In the context of this review, we detail here the latter scenario as it grants to the
shape of tidal forces a key role in the formation of TDGs. In the potential well of disk
galaxies, constrained by extended massive dark matter halo (see Sect. 9.6.3), the
tidal field carries away the outer material, while keeping its high column density—
the radial excursions are constant, as illustrated in Fig. 9.12. Gas may pile up at
the tip of tidal tails before self-gravity takes over and the clouds fragment and col-
lapse. Toy models show that the local shape of the tidal field plays the key role in
structuring tidal tails and enabling the formation of TDGs.

The presentation of the long term evolution and survival of TDGs is behind the
scope of this review. Details on the predictions of numerical simulations and obser-
vations of old TDGs may be found in Duc et al. [68].

9.6 Tidal Structures as Probes of Galaxy Evolution

Tidal tails, and more generally the fine structures that surround galaxies (stellar
streams, rings, bridges, shells) are among the least ambiguous signposts of galaxy
evolution. Indeed, whereas other galactic properties such as the presence of spiral

6Wetzstein et al. [238] claimed that the clumps formed in N-body models that do not include gas
are numerical artifacts.



356 P.-A. Duc and F. Renaud

Fig. 9.12 The effect of tidal
forces on the potential well
corresponding to an extended
dark matter halo. Amplitude
of the radial excursions of
matter as a function of the
initial radius in a numerical
model made of concentric
annuli. Above a certain
distance, it becomes constant,
enabling an accumulation of
gas in tidal tails, the seed of
tidal dwarf galaxies. Adapted
from Duc et al. [73]

structures, bars, warps or even starbursts, may be accounted for by secular and in-
ternal evolution, the formation of stellar filaments can only be explained by a past
collision between galaxies. Numerical cosmological simulations predict the forma-
tion of many such structures (see among many others [124, 176]). However, their
census and interpretation face a number of issues.

• Fine structures are faint, with typically optical surface brightness fainter than
26 mag arcsec−2, HI gas column densities below 1019 cm−2, and thus difficult
to observe. Nevertheless, the current generation of optical surveys as well as deep
blind HI surveys have now the required sensitivity to detect a significant fraction
of the large number of fine-structures predicted by numerical models of galaxy
evolution.

• The properties of the fine structures depend on the properties of the parent galax-
ies: a wet merger (a collision involving gas-rich galaxies) will generate gaseous
streams; stars from hot stellar systems (early-type galaxies) will not make long
tidal tails. Prograde encounters produce more narrow tidal tails. Conversely, by
studying the shape and inner characteristics of collisional debris, one may learn
about the properties of their ancestors.

• Fine structures may be short lived. It takes a few 100 Myr to form a long tidal tail
and a similar time to destroy them: tidal material may be dispersed or fall back at
a rate that depends on the distance to the parent galaxy, from a few hundred Myr
[53] up to a few Gyr [105]. Conversely the discovery of a tidal tail around an
object might provide an age estimate of the last major merger event. With the
support of a numerical model of the collision, one may even reconstruct the his-
tory of the collision (or at least have a model consistent with it) and predict its
future.

• Fine structures are fragile and quickly react to their environment. For instance,
in clusters of galaxies, tidal tails appear more diffuse as the interaction with the
additional potential well of the cluster will accelerate the evaporation of their
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stars. As a consequence tidal tails should be less visible in dense environments
and larger stellar halos are expected there, which is indeed observed [158].

Such issues might be addressed by combining predictions from numerical simu-
lations and observations. We present below examples of the use of tidal structures
as probes of galaxy evolution and the mass assembly of galaxies.

9.6.1 Determining the Merger Rate Evolution with Tidal Tails

Early deep observations with the Hubble Space Telescope revealed that distant
galaxies (z > 1) seemed to be much more morphologically perturbed than local
galaxies [1, 93, 97], supporting the idea that a smaller, denser and younger Universe
favored galaxy-galaxy collisions. Since then, many studies based on deep surveys,
such as the one illustrated in Fig. 9.13, have tried to quantify the evolution of the
merger rate as a function of time, without in fact reaching a consensual value. A va-
riety of methods have been used, based on:

• the census of close galaxy pairs (e.g. [127, 138]). The method assumes that galax-
ies observed in pairs are physically linked and doomed to merge.

• the identification of perturbed kinematics using Integral Field Spectroscopy. The
method has been recently used as part of the IMAGES [246], MASSIV [55], SINS
[203] and AMAZE/LSD [94] surveys at redshifts of 0.6, 1.3, 2 and 3 respectively.
This method is very time consuming and may only be applied to limited samples.

• the census of morphologically perturbed galaxies showing for instance aniso-
tropies in their stellar distribution (e.g. [54]). This requires a reliable algorithm to
automatically measure the degree of perturbation.

• the direct detection of tidal tails (e.g. [44]), which, as argued earlier, is likely the
most direct technique.

However a few remarks need to be made at this stage: first, the most massive com-
ponent of tidal tails formed in major mergers is by far the atomic hydrogen. As
mentioned before, HI surveys might disclose collisional debris that are hardly vis-
ible in the optical. Unfortunately, the current technology and antennas sensitivity
limit the detection of the 21 cm emission line to redshifts less than 0.3. In the more
distant Universe, tidal tails may only be observed through the emission of their
stars. Intrinsic dimming with redshift as well as band shifting make them less and
less visible and bias surveys in favor of UV emitting, star forming structures. Other
difficulties arise at high redshift. The gas fraction of galaxies was higher and their
gaseous disks more unstable. Prominent star forming condensations formed in the
disk may be mistaken with either multiple nuclei of merging galaxies or even con-
densations within tidal tails [79]. Among these “clumpy” galaxies, only a fraction
of them (for instance the so-called “tadpoles” systems) may be genuine interacting
systems [78]. One usual hypothesis when counting the number of tidally perturbed
systems is that disk-disk collisions at low and high redshift produce similar exter-
nal structures. However if the colliding progenitors are the gas-rich clumpy disks
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Fig. 9.13 The Hubble Ultra Deep Field, showing several tidally perturbed distant galaxies. The
evolution of the fraction of collisions as a function of redshift is the subject of strong debates.
Credit: NASA/ESA

mentioned above, the mutual interaction between their clumps (which have masses
comparable to that of dwarf galaxies) might prevent the formation of tidal tails [38].
Thus, when trying to measure the evolution of the past merger rate by looking at the
level of tidal perturbations, one should keep in mind that distant tidally interacting
galaxies might differ from those observed in the Local Universe.

A last word of caution: when comparing the merger rate at low and high redshift,
it is assumed that the fraction of galaxies involved in a tidal interaction is well
known in the nearby Universe (and considered not to exceed a few percent, see
[162]). However even tidal tails from past major mergers might have been missed at
z= 0 because of their low surface brightness. Indeed, the extremely deep mapping
of the Andromeda region, in the Local Group, has revealed an extremely faint stellar
bridge between M31 and M33 [151], suggesting that the two spirals are involved
in a tidal collision. Prominent tidal tails of very low-surface brightness were also
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recently discovered around apparently relaxed massive ellipticals [75]. An example
is shown on the top panel of Fig. 9.8. Such observations indicate that, in the local
Universe, the fraction of tidally interacting galaxies is likely underestimated: serious
issues plague the determination of the merger rate even at low redshift.

9.6.2 Determining the Mass Assembly History of Galaxies
with Tidal Tails

The existence of a tidal tail unambiguously establishes the occurrence of merger
event in the past history of the host galaxy. Therefore, the census of the collisional
debris might, in principle, constrain the recent mass assembly of nearby galaxies.
Now that surface brightness limits of unprecedented depth may be reached with
the current generation of optical cameras with large-field of view, this method of
galactic archeology might be very powerful. However, it faces a number of issues:

• The frequency of tidal features, and degree of tidal perturbation (which one would
like to link to other properties of the parent galaxies to constrain their mode of for-
mation), is difficult to quantify. Tidal indexes proportional to the degree of mor-
phological asymmetries have been introduced (e.g. [216]); most often however,
more subjective “fine structure” indexes determined by eye are used to classify
merging pairs or more evolved systems [198, 199].

• Not all collisions and mass accretion events produce tidal tails. The method is
biased against mergers involving hot, pressure supported, galaxies. Indeed tidal
forces most efficiently act on (rotating) disks. This indirectly means that tidal tails
trace wet mergers rather than dry ones.

• Tidal features fade with time, either because they fall back onto their progenitors
or evaporate into the intergalactic medium. Their detectability, and the ability to
trace back past merging events, strongly depend on the surface brightness limit
achieved by the observations.

• The destruction rate of tidal features depends on the environment. Dense environ-
ments such as galaxy clusters contribute to erase collisional debris [216]. Tidal
tails may also be destroyed during successive merger events.

As a consequence, it might be difficult to probe collisions older than a few Gyrs.

9.6.3 Constraining the Distribution of Dark Matter with Tidal Tails

Tidal tails might not only tell us about the baryonic content of their parent galaxies
and how it reacted to the environment; they are as well insightful to constrain the
structure and distribution of the most massive component of galaxies: dark matter
(DM). Rotation curves of galaxies reveal how much gravitational matter is located
within the radius at which velocities are measured but do not constrain the extent
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and 3D shape of the dark matter halo. The halo of CDM models is very extended, at
least 10 times the optical radius. The rotation curve cannot be easily probed at these
large distances. Tidal tails produced during major mergers have however sizes that
can exceed 100 kpc, reaching the outskirts of the dark matter halos: tails are thus
a priori a convenient tool to probe the structure of cosmological halos. Numerical
simulations have been used to study the effect of the size of the DM halo on the
shape of tidal tails. Apparently contradictory results have been obtained, claiming or
not a dependence with the halo mass, size, concentration or spin [66, 67, 157, 212].

The shape of the DM halo, its triaxiality and presence of sub-halos might be
probed by smaller, thiner tidal tails from minor mergers that wrap around galaxies.
Those found around the Milky Way, such as the Sagittarius stream, are the target of
numerous studies (e.g. [98, 150, 177, 230]).

While no direct correlation between the size of the DM halo and the size of tidal
tails has yet been established, the internal structure of tidal tails might be connected
to the DM extent. Bournaud et al. [33] argued that the massive condensations at the
tip of tidal tails, associated with TDGs, cannot be formed if the halo of the parent
galaxy is truncated. Duc et al. [73] provided a toy model showing that in the case
of a truncated halo, the tidal material is stretched along the tidal tails, preventing
its collapse and the formation of massive sub-structures. When the halo is large
enough, this stretching does no longer occur beyond a certain distance, and apparent
massive condensations near the tip of the tail might form TDGs (see Fig. 9.12).
The observation of TDGs is thus consistent with the extended dark matter halos
predicted by the CDM theory.

If large DM halos seem to be required to form TDGs and shape the inner struc-
tures of tidal tails, tails should themselves not contain large quantities of dark matter.
Indeed the current picture of DM makes them collisionless particles distributed in a
hot halo on which tidal forces have little impact. The tidal material originates from
the disk, which is predicted to contain almost no DM. In practice, the DM content
of tidal tails is difficult to probe. However in some special circumstances, it may be
measured using the traditional method of rotation curves. Tidal dwarfs are gravita-
tionally bound systems; their DM content may thus simply be derived determining
their dynamical mass and subtracting it from the luminous one (consisting of HI,
H2, stars and dust). This exercise has been carried out for a few systems ([35, 74],
Belles et al. [23]). Even if the error bars are large, these measurements yield reli-
able dynamical to luminous mass ratios of 2–3. Assuming that the CDM theory is
correct, one should conclude that TDGs (and thus the galactic disks) contain non-
conventional dark matter, likely traditional baryonic matter which has not yet been
detected by existing surveys. A possible candidate is molecular gas not accounted
for by CO observations. The observations of dust in the far infrared by the Planck
satellite supports the hypothesis of an unseen, dark, component in the gaseous disk
of galaxies, which might contribute to the global budget of the missing baryons in
the Local Universe [181]. Alternatively, CDM might be wrong, as claimed by sev-
eral groups who push for modified gravity. Modified Newtonian Dynamics (MOND)
has retrieved the rotation curves of galaxies, including TDGs, without the need of
a dark matter halo [88, 159]. Numerical simulations of galactic collisions in the
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MOND framework have been carried out: they also reproduce the long tidal tails
made with classical Newtonian dynamics [224]. The main difference is the absence
of dynamical friction during the collision, which contributes to extend the time scale
of the collision, and decrease the probability of a final coalescence.

9.7 Conclusions

It is an undeniable fact that tidal forces and the formation of tidal tails are overall a
second-order process in galaxy evolution. The fraction of stars expelled in the inter-
galactic medium is low, at most a few percent in major mergers. The fraction of gas
is more important, but the bulk of the gaseous reservoir is funneled into the central
regions. Collisional debris may host star-forming regions, but their contribution to
the total star formation rate is minimal. Clearly, most of the activity occurs in the
more central and nuclear regions where starbursts and/or AGN fueling are triggered.
However, one of the aims of the present review is to emphasize the idea that tidal
debris can provide insightful information about the properties of galaxies, the same
way as garbage in trash cans tells us much about the way of life of their owners.

The presence of tidal features is an unambiguous proof that a major/minor merger
occurred in the recent past, and that at least one of the colliding galaxies had a stellar
and/or gaseous disk. The converse is not true though, as not all collisions produce
prominent tidal features. Determining when the merger took place is less straight-
forward. However, numerical simulations done in cosmological context will soon
be able to constrain the survival time of collisional debris and thus give predic-
tions on their age. Comparisons between observations and simulations should then
allow us to reconstruct the mass assembly of galaxies. The current generation of
wide field-of-view cameras and the on-going extremely deep surveys of the nearby
Universe detect numerous new tidal features of very low surface brightness, offer-
ing interesting prospects to galactic archeology. At high redshift, the census of tidal
perturbations is much more complex, not only because of dimming and band shift-
ing issues, but also because distant galaxies are much more gas-rich and therefore
are intrinsically irregular. This makes the separation between secular and external
effects rather ambiguous.

Multi-wavelength surveys have revealed the presence in collisional debris of all
the constituents of regular galaxies though with different proportions: young and old
stars, atomic gas, molecular gas, even possibly dark gas, heavy elements, and dust.
Star formation seems to proceed there in a similar way as in isolated spiral disks,
despite the very different environment at large scale.

Tidal tails may in principle be used even to probe some fundamental aspects
of physics, including, of course, the properties of tidal forces but also the laws of
gravitation, as shown by recent experiments with modified gravity. The fact that tidal
forces can be compressive and for instance contribute to the stability of star clusters
whereas they are usually associated with destruction processes has only recently
been understood. The shape of the tidal tensor explains why massive tidal dwarf



362 P.-A. Duc and F. Renaud

galaxies may be formed only within an extended dark matter halo. A theoretical
study on the nature and the role of tidal forces in galaxies remains largely to be
done and might provide further surprises.
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