
Chapter 9
Conclusion

This thesis has presented a framework for the information dynamics of distributed
computation in complex systems. We summarise the main contributions of this work
in Sect. 9.1, and suggest directions for future exploration in Sect. 9.2.

9.1 Summary of Main Contributions

The results presented in this thesis have upheld the hypothesis in Sect. 1.1 that with
the ability to describe and locally quantify distributed computation in terms of infor-
mation storage, transfer and modification, we will be better able to understand
distributed computation in nature and its sources of complexity. In this section, we
describe our contribution to the fundamental understanding of distributed computa-
tion in complex systems.

9.1.1 Framework for the Information Dynamics of Distributed
Computation

The primary contribution of this thesis is the first complete framework to quantify the
information dynamics of distributed computation. That is, the framework quantifies
computation in terms of the component operations on information: storage, transfer
and modification. The framework has a particular focus on the dynamics of these
operations on a local scale in space and time within a system.

There are three key properties of the framework which underpin its novelty:

1. With an information-theoretic basis, the framework captures non-linear effects
and is applicable to any type of dynamic process (i.e. including both discrete
and continuous valued states);
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2. The approach is directly relevant to the language in which distributed compu-
tation in complex systems is normally described, via the concepts of memory,
communications and processing, since these directly map to the operations of
information storage, transfer and modification;

3. The framework focuses on the local dynamics of these operations on infor-
mation. While averaged or system-wide measures have their place in providing
summarised results, the local focus in space and time is vital for understanding
the nature of each measure and providing insights about system behaviour that
averaged measures cannot.

In the next three Sects. (9.1.2–9.1.4), we will describe the specific contributions
made regarding each individual operation on information. Many of the measures
presented in this framework are original contributions; all of the measures discussed
are examined on a local scale here for the first time.

Incorporating the measures together in a single framework allowed us to provide
insights that would not be possible with separate investigation. For example, we
demonstrated how the component operations interrelate in the computation of the next
state of a given variable. We also found that establishing the context of the past history
of the destination was at the heart of the perspective of distributed computation, and
was critical for accurate quantification of each operation on information. Also, the
use of a single framework allowed us to provide broader insights into the fundamental
nature of distributed computation, e.g. regarding cellular automata as described in
Sect. 9.1.5.

9.1.2 Measuring Information Storage

We described how information storage is quantified in terms of either total storage
(via the existing measure excess entropy) or the amount of storage currently in use
(via the new measure active information storage). We presented the first localisation
of both measures, allowing us to contrast the insights they provide on distributed
computation. We also made clear the manner in which information storage in a
distributed computation can be implemented using an agent’s environment as the
storage medium.

9.1.3 Measuring Information Transfer

We described how information transfer is quantified using the existing measure trans-
fer entropy. We introduced a number of variants to this measure in order to capture
subtly different concepts; most notably, we introduced the complete transfer entropy
to measure information transfer taking into account how the given source interacts
with other causal sources in acting on the destination. We described how to measure
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the transfer entropy on a local scale in time and space, allowing us to provide insights
on how its parameters should be set, describe the relationship between its variants,
and demonstrate its alignment with the popularly understood notion of information
transfer (see Sect. 9.1.5). We also showed how properly establishing the past history
of the destination was critical to separating information storage and transfer.

Additionally, we described the differentiation between the concepts of information
transfer and causal information flow. The distinctions revealed here are particularly
pertinent because of the large degree of confusion surrounding these concepts in the
literature. This result was only possible using our local perspective, which including
localising the existing information flow measure.

9.1.4 Measuring Information Modification

We described how information storage and transfer are combined in the operation
of information modification, and introduced the measure separable information to
quantitatively identify non-trivial information modification events on a local scale
within a system.

We also outlined how to quantify information destruction within a distributed
system, introducing a measure for information destruction. Using localisations of
both these measures, we described the distinction between the concepts of informa-
tion modification and destruction.

9.1.5 Quantitative Understanding of Information Dynamics in CAs

Our framework provided the first direct quantitative evidence for several important
long-held conjectures regarding the facilitation of computation in cellular automata
(CAs) via emergent structures. That is, we showed that blinkers implement infor-
mation storage, moving particles (gliders and domain walls) are dominant informa-
tion transfer agents, and particle collisions are information modification events. This
demonstrated that our quantitative framework aligned with the popularly-understood
concepts of memory, communication and processing.

CAs are a critical proving ground for any theory regarding the nature of distrib-
uted computation [1, 2], and these results suggest significant implications for our
fundamental understanding of distributed computation and the dynamics of com-
plex systems. The importance of our application to CAs is underlined because
many other natural and artificial systems have been observed to process infor-
mation using similar emergent coherent structures [3, 4]. We also emphasise
that these insights were only possible using the local perspective introduced for
these concepts here.

The application of the framework to CAs aligned well with other methods of
spatiotemporal filtering for complex structure (e.g. [5–9]). Obviously, filtering of
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coherent structure is not a new concept. However, our work is distinct in that
it provides several different profiles of the system corresponding to each type of
computational structure (and indeed one view for each information transfer channel
or direction). This approach allows more refined filtering, and is unique in providing
quantitative evidence regarding the computational role of these emergent structures.
Furthermore, this approach is distinct in that it: provides continuous rather than dis-
crete values (like [7] and [9]); does not follow an arbitrary spatial preference (unlike
[6] and [9]) but rather the flow of time only; is automatically obtained (unlike the
approaches manually crafted for specific CA rules in [5, 10]) and like [7] does not
require a new filter for every CA (though the probability distribution functions must
be recalculated individually). Finally, by focussing on these operations on informa-
tion it highlights subtly different parts of emergent structure to other filters (generally
highlighting less of the structure).

9.1.6 Measuring Computational Properties in Phase Transitions in
Networks

We presented the first analysis of information dynamics in order-chaos phase tran-
sitions in networks, finding that information storage and transfer were maximised
near the critical phase of two different network types. While the finite-sized systems
exhibited approximate phase transitions, we described reasons why this interesting
result might be expected to be generalised in similar1 order-chaos phase transitions.

The results were of particular interest because of the network models chosen for
study: random Boolean networks (RBNs, a model of gene regulatory networks) and
a model of cascading failures. In particular, the use of RBNs was important as they
had been a focus for conjecture that computational properties were maximised near
the critical phase (in alignment with the edge of chaos hypothesis). More generally,
we revealed several interesting ways in which underlying network topology drives
information dynamics. Indeed, several leading authors in network science suggest
that dynamics are the next frontier in this domain [11–13], so the promising results
from information dynamics here are notable in suggesting it as a generally-applicable
candidate for further investigation.

9.1.7 Methodology for Studying Coherent Information Structure

We also demonstrated that the maximisation of information storage and transfer
near order-chaos phase transitions is not a universal result that can be expected
from any type of system exhibiting ordered and chaotic variants (in particular CAs).

1 Similar phase transitions being those with transitions controlled by a single order-chaos parameter,
whether those transitions cause a discontinuous or smooth change in properties.
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Instead, we observed that coherent information structure is a defining feature of com-
plex computation and presented a methodology for studying coherent information
structure. Importantly, our approach identifies both clear and “hidden” coherent
structure in complex computation, most notably reconciling conflicting interpreta-
tions of the complexity in CA rule 22.

9.1.8 Demonstrated Application Areas for Information Dynamics

Finally, we demonstrated the utility of the framework for information dynamics in
two key application areas. Together, these showed its flexibility to different data types
and ability to provide useful insights to practical problems.

We presented a method for inferring directed interregional information structure
in multivariate data sets, e.g. time-series brain imaging data. The method is unique in
combining the features of directional, non-linear, model-free analysis, on a regional
level, capturing the results of interaction of multiple sources, and being robust to
relatively small data sets. We demonstrated the efficacy of the method by applying it
to an fMRI data set, revealing a tiered information structure that correlates well with
the cognitive task the subjects were performing.

We also reported the first use of the transfer entropy as a fitness function for
guiding self-organisation. This example demonstrated that the approach can induce
the emergence of useful coherent information structure in a system, which could
only be revealed by examining local information dynamics.

9.2 Directions for Future Work

Certainly there are ways in which the experiments reported here can be directly
expanded for deeper analysis. For example, we described in Sect. 6.3 several ways
in which the analysis of the phase transition in RBNs could be expanded, including
investigating the effects of noise. There are also several directions outlined in Sect. 7.4
in which our analysis of coherent information structure should be pursued further,
in particular in examining other measures of structure in the information state-space
and the relationship of coherent information structure to overall complexity.

In addition to revisiting these experiments though, new work is required to build
on the achievements of this thesis in both theoretical and practical directions.

Arguably the most important direction for theoretical work is to investigate the
relationship between the topology of networks and their information dynamics.
As discussed in Chap. 6, most leading authors in network science suggest that [11–
13] the next great leaps in that field will be produced from understanding time-series
dynamics and how they are coupled with network topology. We described the manner
in which the research landscape suggests that the dynamics of distributed computa-
tion has the potential to be the widely-anticipated framework of choice for the study
of time-series dynamics in networks. Two key reasons for this are: that the approach

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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is generic and can be applied to any type of time-series dynamics; and that the lan-
guage of computation pervades description of the time-series dynamics of networks.
We have demonstrated important preliminary results in applying our framework to
analyse computation in networks in Chap. 6. More work is required here though,
in particular a thorough investigation of how information dynamics are imparted
from underlying network topology. Such investigations will establish for example
whether special topologies such as small-world and scale-free networks are distin-
guished from others by their computational properties, and how local topological
structures [14] relate to local computational capabilities.

Further theoretical work is also required to establish how the framework for
information dynamics relates to other approaches and fields, and to clarify the
measurement of several important concepts in distributed computation. A primary
example here is to establish the relationship with ε-machines and statistical complex-
ity from computational mechanics [7, 15–19]. Certainly the relationship between
excess entropy and statistical complexity is well-established [18, 20–22] (indeed
the excess entropy originated in computational mechanics). The perspective of dis-
tributed computation here would be novel in considering how information storage
and transfer together related to the overall statistical complexity. This would involve
focussing on the light-cone formulation of computational mechanics, which consid-
ers how the next state of an agent (and its causal descendants) depends on the causal
contributors to that agent [17]. Another interesting direction for exploration would
be to examine whether the framework for distributed computation can be usefully
altered to apply to the underlying internal causal states of the variables in a distribu-
tion computation. Similarly, just as computational mechanics is exploring measuring
information storage in quantum computation (e.g. the quantum excess entropy [23]),
our framework should be extended for application to distributed quantum compu-
tation. Also, we note work considering quantifying interaction structures [24]: i.e.
investigating kth order statistical dependencies between variables that cannot be
reduced to dependencies between k − 1 of them. New work is required to quantify
similar interaction structures in the context of distributed computation (i.e. exam-
ining how many source information sources are irreducibly interacting to produce
an outcome). This work should also establish how this is related to the distributed
operations on information (especially information modification), and whether the
concept can be quantified on a local scale in space and time.

We have demonstrated a number of promising practical results in the applications
of the framework to date demonstrated in this thesis (e.g. in Chap. 8). That being said,
there is much more scope for quantifying computation and producing both interesting
and useful insights in applying the framework in practical settings. Such appli-
cations will not only provide useful insights in the domain under consideration, but
also build momentum for further use of the approach.

A key application area will be computational neuroscience. In this domain there
is an abundance of time-series imaging data, and powerful capability for compu-
tational analysis, yet the road forward to specifically understand distributed com-
putation in the brain is unclear. As explored in Sect. 8.2, information dynamics
offers potential for ground-breaking insights in providing analysis of space-time

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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information patterns, and revealing how the brain is computing. We have demon-
strated utility of the approach in this context by revealing directed information
structure supporting a cognitive task in Sect. 8.2; future work will include applying
our method to other cognitive tasks. We will also examine other data types, par-
ticularly those with shorter time scales which allow more direct conclusions about
neuronal interactions. Furthermore, we will seek to expand the application of infor-
mation dynamics here, in particular in examining information storage and modifi-
cation in addition to transfer. Similarly, we will examine the information dynamics
on a local scale in time as well as space in brain-imaging data. This could lead
to the identification of travelling coherent information structures in the cortex (as
described in [25]). The local perspective will also address questions such as “how
much information is transferred from region A to B at time t?”, specifically revealing
the information dynamics associated with particular cognitive tasks. We will explore
whether this direct approach to revealing space-time information interactions can
improve on inferences of shared information such as those in [26]. Additionally, we
will investigate the use of the framework to infer effective networks [27] on the level
of individual variables (e.g. voxels) rather than regions. Building on the use of the
transfer entropy alone (e.g. [28, 29]), this could be performed using the inference
method described in Appendix E to determine the sources contributing to a node’s
computation of its next state.

Another important application area will be in guiding self-organisation. As
described in Sects. 2.5 and 8.3, we that a promising approach to this type of
system design is the use of measures of the information dynamics of distributed
computation. This is primarily because any task we wish the system to solve involves
a distributed computation, so focussing our guidance on providing the fundamen-
tal building blocks of the computation is a direct way to allow that computation
to emerge. We reported preliminary results indicating that evolving to maximise
information transfer on local links can lead to the emergence of useful coherent
information structure on a global level. Future work will include examining the use
of information dynamics to guide other types of self-organised systems, e.g. collec-
tive motion or flocking. An interesting domain will be examining how information
dynamics can guide network topology, for example whether our understanding of
the information dynamics of cascading failures in Chap. 6 can be applied to design
power grids to avoid these events. From a theoretical perspective, this scope of our
work in guided self-organisation needs to be significantly expanded to consider infor-
mation storage and modification also, and to establish what types of properties can
usefully produced by processes of evolution or adaptation to maximise each of them.
More importantly, the approach needs to investigate how the information dynamics
can be used together to guide the emergence of universal computation.2 Intricate
tasks will require such arbitrarily-complex computation (facilitated by bidirectional

2 Indeed, whether these measures can be used to determine the capability of a distributed system
for universal computation, or capability of other levels of computational complexity [16], needs to
be established.

http://dx.doi.org/10.1007/978-3-642-32952-4_8
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information transfer, storage structures and modification events) as distinct from
computation that exhibits only one type of operation.
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