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Supervisor’s Foreword

In early 1990s, Chris Langton created the term ‘‘computation at the edge of
chaos’’. In doing so, he not only dissected computation into its three primitive
functions: the transmission, storage, and modification of information, but also
opened the way to study computation in the most generic form—information-
theoretically. Moreover, a challenge was thrown out: how does one explain
emergence of computation in a dynamic setting, and how is it related to complexity
of the system in point?

It is a pleasure to introduce Dr. Joseph Lizier’s thesis ‘‘The local information
dynamics of distributed computation in complex systems’’. This work is not shy of
taking on and meeting Langton’s challenge: it goes to the heart of the phenomenon
of computation, uncovers and analyses information-theoretic roots of each of the
primitives, and brings these parts back together in a multiplicity of ways, revealing
different shapes that coherence and complexity may take.

The dissertation leads us through complex, diverse, and dynamic domains that
share an intricate fabric of computation: cellular automata (CA), random Boolean
networks, brain’s cortical networks, heart- and breath-rate interactions in sleep
apnoea, modular robotic systems, cascading failures in power grids, etc. It reveals
inner workings of these systems through their coherent use of memory (‘‘active
information storage’’), communications (‘‘information transfer’’), and processing
(‘‘information modification’’).

Specifically, the active information storage is introduced, quantifying the
information storage component that is directly in use in the computation of the
next state of a process. The obtained profiles of local active information storage in
CA provide evidence that blinkers and background domains are dominant infor-
mation storage processes in these systems, and reveal that local storage may
sometimes misinform the observer when the computation is dominated by some
other primitives.

Significantly, the work introduces a measure of local information transfer,
applied to CA for filtering coherent structures—the measure provides the first
quantitative evidence for the long-held conjecture that particles (both gliders and
domain walls) are the dominant information transfer agents in CA. This is further
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developed into a novel method for interregional brain connectivity analysis, using
multivariate extensions to the mutual information and transfer entropy. This
method is distinguished in using asymmetric, multivariate, information-theoretical
analysis, which captures not only directional and non-linear relationships, but also
collective interactions.

Bringing storage and transfer together in state-space diagrams, this dissertation
distinguishes complex computation via coherent structure in local information
dynamics profiles, and identifies both clear and ‘‘hidden’’ coherent structure via
the state-space diagrams of the local information dynamics.

Building up on these measures, the study investigates the well-known phase
transition between ordered and chaotic behavior in Random Boolean Networks,
demonstrating maximisations in information storage and information transfer on
either side of the critical point—thus, explaining the phase transition in terms of
the intrinsic distributed computation.

Touching on the subject of causality, the work contrasts transfer entropy and
information flow, which can be used separately to quantify information transfer
and causal information flow respectively, and shows that causal information flow
is a primary tool to describe the causal structure of a system, while information
transfer can be used to describe the emergent computation in the system.

Subsequently, information modification is quantified at each spatiotemporal
point in a system—via separable information, a novel measure which locally
identifies events where separate inspection of the sources to a computation is
misleading about its outcome (as the points where ‘‘the whole is greater than the
sum of the parts’’).

In summary, the work presented in this dissertation forms a new sub-field—
‘‘information dynamics’’. It enables a rigorous characterization of diverse com-
putation processes on a local spatiotemporal scale within a system, and the results
provide important insights into the fundamental nature of distributed computation
and the dynamics of complex systems.

After reading this thesis, no longer may one entertain a singular view on
complexity or hope to measure the latter with a single static measure—instead one
needs to consider information dynamics within a rich multi-faceted space, where
each primitive (storage, transfer, and modification) becomes a separate dimension.
Thus, complexity acquires shapes and trajectories defined by these axes, while
coherence can be quantitatively studied via suitably defined state-diagrams.

I have no doubt that this study is at the forefront of the fundamental research
that will eventually lead to a comprehensive information- and computation-theoretic
framework unifying multiple complex physical, biological, social, and technological
systems.

Sydney, 7 July 2012 Mikhail Prokopenko
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Chapter 1
Introduction

“Although they (complex adaptive systems) differ widely in their physical attributes, they
resemble one another in the way they handle information. That common feature is perhaps
the best starting point for exploring how they operate.” Gell-Mann, 1994 [1].1

The nature of distributed computation has long been a topic of interest in complex
systems science, physics, artificial life, bio- and neuroinformatics. In all of these
relevant fields, distributed computation is generally discussed in terms of memory,
communication, and processing:

• Memory refers to the storage of information by an agent or process to be used in
its future. It has been investigated in coordinated motion in modular robots [2], in
the dynamics of inter-event distribution times [3], and in synchronisation between
coupled systems [4].

• Communication refers to the transfer of information between one agent or process
and another. It has been shown to be of relevance to biological systems (e.g. dipole-
dipole interaction in microtubules [5], and in signal transduction by calcium ions
[6]), social animals (e.g. schooling behaviour in fish [7]), and agent-based systems
(e.g. the influence of agents over their environments [8], and in inducing emergent
neural structure [9]).

• Processing refers to the combination or modification of stored and/or transmitted
information into a new form. It has been discussed in particular for biological
neural networks and models thereof [10–13] (where it has been suggested as a
potential biological driver), and also regarding collision-based computing (e.g.
[14, 15], and including soliton dynamics and collisions [16]).

Distributed computation is any process conducted by multiple agents or entities
that involves these operations on information. Notable examples include: the time
evolution of discrete dynamical systems such as cellular automata [17], information
processing in the brain [18], gene regulatory networks computing cell behaviours
[19], flocks or schools computing their collective heading [7], ant colonies computing
the most efficient routes to food sources [20], or collective behaviour in artificial
self-organised systems [2].

1 With the use of “they”, Gell-Mann was referring to complex adaptive systems; the term was
inserted by this author in parentheses here for clarity.

J. T. Lizier, The Local Information Dynamics of Distributed Computation 1
in Complex Systems, Springer Theses, DOI: 10.1007/978-3-642-32952-4_1,
© Springer-Verlag Berlin Heidelberg 2013
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Indeed, these operations exist in all systems, whether or not the system was explic-
itly designed to compute or appears to be performing any useful function: this is
referred to as intrinsic computation [21, 22]. It is why the universe can be seen to
be computing its own future, as per Lloyd [23]: “What does the universe compute?
It computes itself.” This understanding of intrinsic computation also underpins why
“information is physical and physics is information” [24].

Significantly, these three operations on information are formally primitive func-
tions of Turing universal computation [25]:

• information storage,
• information transfer (or transmission), and
• information modification.

These operations are particularly important from a theoretical perspective in
complex systems science, where they are the subject of a number of important
conjectures regarding the fundamental nature of distributed computation and its
relationship to emergent complex behaviour. One focus of such discussion is the
dynamics of computation, i.e. the manner in which computations unfold in time and
are distributed across space. This focus considers computation in cellular automata
(CAs) [26, 27] in particular, and the manner in which information manipulation is
said to be facilitated by interaction of emergent coherent structures known as par-
ticles. Conjecture holds that stationary particles (blinkers) implement information
storage, moving particles (gliders and domain walls) implement information trans-
fer, and particle collisions implement information modification. These conjectures
are used to interpret computation not only in CAs, but in other systems where ana-
logues of these coherent structures interact (e.g. in the brain [18]). Also, emergent
complex behaviour has been postulated to be associated with the capability to sup-
port universal computation [25, 28, 29], with maximum capacity for these primitive
functions said to occur near order-chaos phase transitions [10, 30]. This is generally
referred to as the edge of chaos hypothesis [25, 31].

Yet despite the obvious theoretical and practical importance of these primitive
operations on information, we have no framework for either quantifying them indi-
vidually, quantifying their dynamics more specifically, or understanding how they
interact to give rise to distributed computation. It is particularly noteworthy that
this is also despite significant interest in and an abundance of general measures of
complexity of computation in the literature (e.g. [32–36]).

The lack of such a framework is a serious impediment to our ability to understand
distributed computation and the nature of complex behaviour. On a practical level,
this limits the extent to which complex systems science can provide insights into the
dynamics of computation in the systems described above, e.g. in measuring when
and where information is transferred in the brain during cognitive tasks. It also limits
the extent to which complex systems science can provide insights about computation
that can be compared across systems. Furthermore, this leaves us without the required
tools to design desired distributed computation in artificial self-organised systems,
which is known to be a difficult task [37].
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1.1 Hypothesis and Objectives

The hypothesis of this thesis is that if we can describe and quantify distributed
computation in terms of information storage, transfer and modification, then we will
be better able to understand distributed computation in nature and its sources of
complexity.

Our primary objective then is to define a complete framework that quantifies the
fundamental operations of information storage, transfer and modification in distrib-
uted computation. We will establish proper definitions for each, and clarify their
relationships with similar concepts (e.g. how information transfer is distinct from
causal effect). In particular, we seek to quantify these operations on a local scale in
space and time in order to describe the dynamics of computation. We will refer to
this as a framework for the information dynamics of distributed computation.
We introduce the term information dynamics as “the study of operations on infor-
mation by agents in distributed computation, and the dynamics of these operations
on a local scale in space and time”.

The framework will be used to provide insights into the fundamental nature of dis-
tributed computation, and how information is manipulated in complex systems. We
will apply the framework to sample theoretical systems, such as cellular automata.
We expect the framework to provide quantitative evidence for the well-known con-
jectures regarding the role of emergent coherent structures in computation in CAs.
We will also seek to describe how the information dynamics interrelate to produce
distributed computation, and the conditions under which such computation can be
described as complex. For example, we will investigate whether these operations are
indeed maximised in order-chaos phase transitions.

We will apply the framework to systems of practical interest, in particular natural
systems, in order to explore our assertion that it can answer meaningful ques-
tions about the computation they are undertaking. In particular, we will explore the
assertion that local information dynamics can provide more detailed insights than
averaged measures. A typical question where local information dynamics could pro-
vide new insights is “when and how much information is transferred between two
brain regions?”

Finally, we will attempt to use the framework to guide the design of artificial
self-organised systems. We will explore the assertion that viewing the goal of the
system as a distributed computation will allow significant new insights to be gained
from our framework.

1.2 Approach

Our approach is based in complex systems science: the study of large collections
of (generally simple) entities, where the global behaviour is a non-trivial result of
the local interactions of the individual elements. Viewing the global behaviour of
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complex systems as being the result of a distributed computation between the indi-
vidual elements is becoming increasingly popular (as per the opening quote from
Gell-Mann [1] and e.g. [25, 26, 38, 39]).

Cellular automata have been an important focus for this perspective as model
systems offering a range of dynamical behaviour, including supporting complex
computations and the ability to model complex systems in nature [26]. Impor-
tantly from our perspective, there is very clear qualitative identification of emergent
structures representing information storage, transfer and modification therein (e.g.
[25, 26]). CAs are a critical proving ground for any theory on the nature of distributed
computation: significantly, Von Neumann was known to be a strong believer that “a
general theory of computation in ‘complex networks of automata’ such as cellular
automata would be essential both for understanding complex systems in nature and
for designing artificial complex systems” ([26] describing [40]). For these reasons,
we select CAs as the primary domain for experimentation with our framework here.

In quantifying information storage, transfer and modification, we will of course be
taking the Shannon perspective of information theory [41–43]. While this theory
has traditionally been associated with signal processing, information is naturally
the language of computation, and the theory has been increasingly used to study
complex systems, e.g. [32, 34, 44, 45]. Importantly, the use of information theory
means that our measures capture non-linear effects, and are generic and portable
between application domains. This means that we can use the same measures and
language to examine theoretical computing systems, computation in neural networks,
gene networks computing their attractor, and many other systems.

We also highlight the importance of our focus on the particular three operations
of information storage, transfer and modification as three axes of complexity. Our
approach thus covers all of the distributed operations on information. Crucially,
the approach is directly relevant to the concepts of memory, communication and
processing which as we describe above are the terms with which computation is
normally described. This means we can talk about distributed computation to subject
matter experts in many disciplines, and concretely answer meaningful questions
about their systems. For example, describing when and to what extent information
is transferred between two brain regions, or where and how much information is
stored in a given gene regulatory network. These types of concrete insights are more
relevant to these subject matter experts than abstract notions of how complex their
system is.

Finally, we emphasise the novelty and utility of our focus on the local scale or
dynamics within the system. This means studying the manner in which information-
theoretic averages are locally distributed in space and time in the dynamics of the
system. Several authors have suggested that a complex system is better characterised
by studies of its local dynamics than by averaged or overall measures (e.g. [39, 46]),
yet the local dynamics of complex systems have received relatively little exploration.
Certainly the dynamics of information storage, transfer and modification in distrib-
uted computation have not been explored. Quantifying and understanding distributed
computation will necessitate studying these information dynamics and their inter-
play on a local scale in space and time. This will show how the computation unfolds
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Table 1.1 Measures of information manipulation studied in the framework for the information
dynamics of distributed computation

Measure Concept under measurement

Information storage (Chap.3)

Excess entropy Total storage
Active information storage* Storage in use
(Temporal) entropy rate Remaining uncertainty (complementary to storage)

Information transfer (Chap.4)

Apparent transfer entropy Single source-destination transfer
Conditional transfer entropy* Transfer considering other sources
Complete transfer entropy* Transfer considering all other causal sources
Collective transfer entropy* Transfer from a multivariate source
Multivariate transfer entropy* Transfer from a multivariate source to a multivariate destination
Information flow Causal effect

Information modification (Chap.5)

Separable information* Non-trivial information modification
Information destruction* Destroyed information

The original measures introduced in this thesis are marked with the symbol *. The primary measures
used for each concept are shown in bold

through time, and the dynamics of how separate agents interact to achieve a collec-
tive task. Averaged or system-wide measures by definition cannot do this, and for
these reasons we assert that the local perspective will provide greater insights into
complex systems.

1.3 Contributions of this Thesis

In this thesis, we present the first complete framework to quantify each of the
information dynamics or component operations of distributed computation. For
each operation, we discuss a number of measures to quantify subtly different concepts
(see Table 1.1), e.g. for information storage we separately consider total storage and
the amount of storage that is actively in use. Many of these measures are original
contributions (marked with * in Table 1.1); others have been previously introduced
by other authors. For all of the measures, this thesis is the first presentation and
application of them on a local scale in space and time in distributed computation,
in order to specifically investigate the dynamics of computation. This is also the first
quantitative investigation of how the component operations interrelate to produce
distributed computation.

Importantly, our application of the local measures to cellular automata provides
the first quantitative evidence for long-held conjectures regarding the facili-
tation of distributed computation by emergent coherent structures in CAs.
That is, we show that blinkers are the dominant information storage entities, par-
ticles (gliders and domain walls) are the dominant information transfer agents, and

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_5
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particle collisions are the dominant information modification events. This demon-
strates correspondence between our quantitative framework and the popularly-
understood notions of memory, communication and processing. These results then
have significant implications for our fundamental understanding of distributed
computation and the dynamics of complex systems. This is because many other
systems in nature (e.g. the opening and closing of stomatal apertures [47]) and those
evolved to solve specific tasks (e.g. CAs evolved for a density classification task
[48]) process information using similar emergent coherent structures. The applica-
tion also demonstrates the large extent to which local measures provide insights that
their averages cannot, with a particular use being filtering spatiotemporal dynamics
to highlight coherent structure.

We also resolve the relationships between key complementary concepts for
each operation, i.e.: total information storage and storage actively in use; informa-
tion transfer and causal effect; and information modification and destruction. The
distinctions revealed between information transfer and causal effect are particularly
pertinent because of the large degree of confusion surrounding them in the literature
(e.g. being directly equated in [49, 50]). The relationships could only be revealed
using the appropriate quantification of the concepts identified here, coupled with our
focus on local dynamics.

Furthermore, we use the framework to provide quantitative evidence for the con-
jecture that the computational capabilities of information storage and (coherent)
transfer are maximised near the critical or complex state in certain order-chaos
phase transitions.2 Notably, we reconcile conflicting views of whether information
transfer is maximised or at an intermediate level in such transitions by examin-
ing two complementary measures. Specifically, we find that information transfer is
observed to be maximised in our experiments if one examines sources in isolation,
but is observed to grow into the chaotic regime if one accounts for the interaction
of sources (see apparent and complete transfer entropy respectively in Table 1.1).
Importantly however, we show that such maximisations are not universally the case
(in alignment with [22]), in particular for more complicated “transitions”.3

Observing that coherent information structure (e.g. particles in CAs) is a defining
feature of complex computation, we present a methodology for studying coherent
information structure. This consists of state-space diagrams of the local infor-
mation dynamics and a measure of structure in these diagrams. Crucially, we note
that identifying coherent structure requires the local perspective. The methodology
identifies both clear and “hidden” coherent structure in complex computation, most
notably reconciling conflicting interpretations of the complexity in CA rule 22.

We demonstrate the utility of the framework in a number of crucial application
areas. We study computation in networks using several models: random Boolean

2 The type of phase transitions we are interested in are those with respect to a single order-
chaos order parameter. In particular, we examine the approximate phase transitions in finite-size
random Boolean networks as a function of connectivity. These networks are known to exhibit a true
discontinuous phase transition in the infinite-size limit [51].
3 An example here is CAs, where despite much conjecture there is no known smooth single-
parameter phase transition between ordered and chaotic rules.
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networks or RBNs (models of gene regulatory networks, GRNs), and cascading fail-
ures. We find maximisations of the information dynamics through order-chaos phase
transitions in these systems, in alignment with popular conjectures, and find rela-
tionships between information dynamics and underlying topological structure. This
is a particularly important application, since current opinion suggests that the next
breakthroughs in network science will require understanding dynamics on networks
[52–56]. This application demonstrates that information dynamics is a key candidate
framework in this domain.

We also demonstrate the applicability of information dynamics to computational
neuroscience, which is significant since understanding computation in the brain is a
holy grail of complex systems science. In particular, we present a method for inferring
directional, interregional information structure in multivariate data sets. The method
is novel in providing the combined features of directional, non-linear, model-free
analysis, which detects collective interactions, is applicable at the regional level and
to relatively small data sets. We demonstrate the utility of the method by applying it
to an fMRI data set, finding a tiered information structure which correlates well with
the cognitive task the subjects were performing. This successful application indicates
much scope for future investigation of information dynamics in this domain.

Finally, we present initial findings from using information dynamics to guide the
design of self-organised systems. We demonstrate that this approach can result in
the emergence of useful coherent information structure. These results could only
be interpreted using our highly-illustrative investigation of computation in cellular
automata. The results provide impetus for further investigation of how to harness our
framework for system design.

1.4 Structure of the Thesis

We begin by discussing the current state of knowledge regarding computation in
complex systems in Chap. 2. This chapter is intended to provide relevant background
material on the two main theoretical bases of our approach, complex systems science
and information theory, as well as to provide a deeper understanding of our motivation
to quantify the information dynamics of distributed computation. Of primary impor-
tance, we discuss computation in cellular automata, the most significant complex
system for exploring theoretical notions of distributed computation. This discussion
establishes current qualitative understanding of computation in complex systems. We
also discuss computation in networks, and its relevance to guiding self-organisation.

Subsequently in Chaps. 3–5, we consider each component operation on informa-
tion in turn, and describe how to quantify each locally in a spatiotemporal system.
In order to demonstrate the alignment of these measures with popularly-understood
qualitative notions of computation, we measure each of these information dynamics
at every point in space-time in several important CAs. This also demonstrates that
the local measures provide useful spatiotemporal filters for coherent structure.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_5
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The first operation explored is information storage in Chap. 3. Here, we focus on
measures of total information storage and storage actively in use in a computation. We
provide the first quantitative evidence that blinkers (and to a lesser extent background
domains) are the dominant information storage structures in CAs.

In Chap. 4, we describe how to quantify information transfer, in particular demon-
strating subtle differences in the notion depending on whether one considers how
the source couples with other sources in acting on the information destination. We
provide the first quantitative evidence that particles in CAs are the dominant infor-
mation transfer entities. We also clarify the relationship between the similar concepts
of information transfer and causal effect.

We then describe the manner in which information storage and transfer are com-
bined in the operation of information modification in Chap. 5. Significantly, we
provide the first quantitative evidence that particle collisions in CAs are the domi-
nant non-trivial information modification events. We also demonstrate the distinction
between the concepts of information destruction and modification.

With the measures of the framework in place, we begin to apply it to several
salient examples in Chaps. 6–8.

In Chap. 6, we measure the information dynamics through phase transitions in
several notable network models: random Boolean networks (RBNs), and a model of
cascading failures. We report maximisations of information storage and (coherent)
transfer near the critical phase, in alignment with much conjecture on this topic.

Subsequently, in Chap. 7 we observe that such maximisation is not universally
the case, but conjecture that coherent information structure is a defining feature of
complex computation. We present a methodology for using information dynamics
to study coherent information structure, and show that this methodology identifies
both clear and “hidden” coherent structure in complex computation.

We then apply the framework to a number of biological and bio-inspired data sets
in Chap. 8. This is done to illustrate the utility of the framework, and in particular the
local perspective of information dynamics. We use information dynamics to develop a
method for inferring directional, interregional information structure in brain imaging
(fMRI) data. Also, we demonstrate the utility of information transfer as a generic
fitness function in the domain of guided self-organisation, by showing that it leads
to the emergence of coherent information structure (akin to particles in CAs).

Finally, we summarise the insights gained from this thesis in Chap. 9 and discuss
directions for extending our explorations of the information dynamics of complex
systems in the future.
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Chapter 2
Computation in Complex Systems

Complex systems science is the study of large collections of (generally simple)
entities, where the global behaviour is a non-trivial result of the local interactions
of the individual elements [1]. This approach seeks a fundamental understanding
of how such collective behaviour results from these interactions between simple
individuals. In particular, it seeks to gain and apply this understanding across many
different disciplines, examining both natural and man-made systems as apparently
diverse as insect colonies, the brain, the immune system, economies and the world
wide web [2]. Complex behaviour is often described as incorporating elements of
both order and disorder (or chaos), and these elements can be seen in all of the above,
e.g. path-following (order) versus exploration (disorder) in ant foraging.

While no common framework has been established for analysis of time-series of
dynamics in complex systems science [1], increasingly “the notion of computation
is being imported to explain the behaviour of” these complex systems [2]. To the
lay reader, the concept of computation may seem rather distinct from these fields,
yet the application is well-reasoned since the interactions between individuals can
be seen as communication or signalling, and the system as a whole as processing
information in determining its collective behaviour via a distributed computation.

The most prominent example of the use of the notion of computation to explain
complex behaviour is with respect to cellular automata (CAs). CAs are discrete
dynamical systems which are known to support complex computation, and have
been used to model complex systems in nature. Their computation is qualitatively
understood in terms of emergent coherent structures which are widely accepted to
embody information storage, transfer and modification. Indeed this understanding is
used to explain the computational function of similar emergent structures in neural
circuits [3] and in plants [4]. Crucially however, quantitative evidence for such under-
standing is notably absent.

A quantitative understanding of the dynamics of these operations on information
could provide a common analytic framework for complex systems, and would have
important ramifications for the whole field. For example, insights into network topol-
ogy in nature (e.g. [5, 6]) have been some of the greatest contributions of complex
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systems science, however it is widely acknowledged [2, 7–9] that understanding the
dynamics of networks is the “next frontier” [8]. In particular, “the main challenge
is understanding the dynamics of the propagation of information…in networks, and
how these networks process such information” [9]. Another prominent example are
attempts to guide the design of self-organised systems using an understanding of how
they structure information [10]. Here we suggest that the task under design can be
considered as a distributed computation, with an opportunity then for a framework
for information dynamics to provide quantitative insights to such design.

Information theory provides the logical platform for our investigations, since
information is the language of computation. Indeed, information theory has proven
successful in analysing complex systems [1], initially through studies of characteris-
ing order-disorder continua as well as measuring complexity. It has many important
features (e.g. being mathematically abstract) that give it the potential to become a
leading framework for analysis and design of complex systems. Yet what we con-
sider to be the most important of these features, the ability to analyse the information
dynamics of distributed computation, is not yet properly established.

This chapter is used to introduce the reader to the two foundations of our
work, complex systems science in Sect. 2.1 and information theory in Sect. 2.2.
We will introduce the basic information-theoretic concepts used here, in particu-
lar the approach to studying information dynamics on a local scale in space and
time. The chapter is also used to strongly highlight the need for quantitative insights
into the information dynamics of computation in complex systems, and to introduce
several relevant models that are analysed in later chapters. In Sect. 2.3 we describe
the current state of understanding of distributed computation in cellular automata,
the most important domain for theoretical discussions of this concept. We introduce
the reader to network science in Sect. 2.4, highlighting the opportunities for a theory
of information dynamics to complement this understanding of static structure. As an
illustration, we describe an important model used in later analysis: random Boolean
networks (RBNs). Finally, we discuss the use of complex systems science and infor-
mation theory to design self-organised systems in Sect. 2.5. These examples make
the opportunity to contribute a framework for the information dynamics of distributed
computation in complex systems abundantly clear.

2.1 Complex Systems

Complex systems science is concerned with the study of systems which have two
key characteristics [1]:

• They are composed of many simple elements;
• The elements interact in a non-trivial fashion.

Non-triviality of the interaction is particularly important to this definition. Prokopenko
et al. [1] state that systems with a huge number of components interacting triv-
ially are the domain of statistical mechanics, while those with precisely defined and
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constrained interactions are the domains of fields such as chemistry and engineering.
Complex systems science however is concerned with the overlap of these, where
non-trivial interaction of a large number of elements leads to intricate non-linear
dynamics, violating classical (i.e. linear) assumptions. Complex systems science is
important because of the prevalence of these characteristics in natural and man-made
systems, and the challenge they present to traditional linear analysis.

Typically, computer simulation is used as the primary tool for the study of such
systems. Here agent-based modelling [11, 12] considers the elements of the system
as black boxes whose behavioural rules we know but whose internal structure we
do not care about. The global behaviour of the system is allowed to emerge from
the interaction of these simulated agents, modelling such emergence in the real-
world system. Agent-based modelling has been described as “the most important
conceptual tool introduced by complexity science” [11].

In one sense, the title complex captures the difficult nature of analysis of these
systems. In another sense, it also captures the essence of their interesting nature.
This is because the interaction of the elements on a microscopic level can give rise to
sophisticated organisation of the system at a macroscopic level. Put another way, they
can exhibit global behaviour which is interesting but not an obvious consequence of
the local interactions. This is referred to as emergent behaviour [2].

Some authors go further in their definitions for complex systems. For example,
Mitchell [2] proposes a complex system to be: “a system in which large numbers
of components with no central control and simple rules of operation give rise to
complex collective behaviour, sophisticated information processing, and adaptation
via learning or evolution.” There is no question that these terms are an essential
part of our understanding of complex systems, but the extent to which some of
these terms (e.g. adaptation) are necessarily part of complex systems or complex
behaviour is debatable [1]. In the next sections, we discuss some of these related
concepts. Subsequently, we consider the motivation for studying complex systems
in more depth.

2.1.1 Order, Disorder and Phase Transitions

The underlying nature of complex systems in non-linear dynamics provides a very
strong link to chaos theory (e.g. see [13]); indeed this field can be seen as one of the
forerunners to complex systems science.1 Complex systems theory is subtly different
from chaos theory however: while chaos theory focuses on apparent randomness
arising from very simple systems, complex systems science focuses on emergent
global behaviour or organisation from non-trivial distributed interactions.

Importantly, complex systems are typically described as combining elements
of order and randomness2 to create truly intricate behaviour [11]. For example,

1 For introductions to the beginnings of complex systems science, see [2, 11, 12, 14].
2 In the sense of chaotic behaviour.



16 2 Computation in Complex Systems

economies involve regulation and a perception of rational behaviour at the same
time as wide variation in individual behaviours and unforeseen fluctuations in mar-
ket dynamics.

Indeed, truly complex behaviour is neither completely ordered, nor completely
random. Ordered systems are perfectly structured and therefore simple to predict
[11]. Completely disordered systems cannot be predicted at all on an individual
level, but prediction of average behaviour is not only possible but trivial. Complex
systems on the other hand embody a duality between dependence and independence
of their components, making prediction of them possible but non-trivial. Such obser-
vations are generalised by some authors in suggesting that complex behaviour occurs
at a phase transition between ordered and chaotic behaviour (generalised in the edge
of chaos hypothesis [15, 16]). Certainly there are many order-chaos phase transi-
tions (in particular when they are dictated by a single order-chaos parameter) where
complexity has been measured in some way to be maximised in the transition, e.g.
maximisation of co-operative behaviour among ants at intermediate levels of ant
density [17]. However, suggestions that such transition properties are universal, or
that complex computation only occurs at such transitions in all systems3 are strongly
criticised in [18, 19].

2.1.2 Self-Organisation

The intricate link between the concepts of self-organisation and complex systems is
shown by the phrasing “no central control” in Mitchell’s definition [2] above.

A system is considered to be self-organised where it demonstrates two key features
(see [20–22]):

• An increase in organisation (structure and/or functionality);
• Dynamics not guided by any centralised or external control agent.

These principles are generally accepted, although there remains some contention
about their specific details. This includes how to quantify organisation (which differs
between [20–22]), as well as the nature of external control and the extent to which it
could be permitted.

Regardless of these specifics, it is clear that the global organisation in such systems
result from distributed and localised interaction between the elements of the system;
for example, in a school of fish individuals moderate their movement with reference
to immediate neighbours rather than that of a central fish or of the whole school [23].
As such, self-organisation is a popular focus within complex systems science.

Related here is the concept self-organised criticality, where a system self-
organises to a critical state near an order-chaos phase transition, and is stable to
perturbations away from this state [24, 25]. Scale-free phenomena (or fractal or

3 Particularly those with less well-defined or more complex transitions.
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self-similar structure), where properties of agents or event sizes or inter-event dis-
tribution times follow a power-law, are a signature of these critical states.

2.1.3 Motivation for Studying Complex Systems

Motivations for studying complex and self-organised systems can be somewhat
divided between science, or attempts to understand such systems, and engineering,
or attempts to design or manipulate such systems for our own benefit.

Developing an understanding of complex systems is of immense importance,
because such systems are widely distributed throughout nature. For example, Léveillé
et al. state that understanding how “neurons cooperate to control behavioural
processes is a fundamental problem in computational neuroscience” [26]. Other
prominent examples include swarm behaviour [27], ant foraging [28], and heart beats
[29]. Furthermore, complex behaviour arises in man-made systems, e.g. the internet
[30] and city size distributions [25]. Complex systems science is very much an inter-
disciplinary field, both in terms of application domains and analytical approaches.

There are many open questions which require addressing before we can properly
claim to have full understanding of the dynamics of these systems, including how
such systems arise and how to classify types of systems and behaviour. Of prime
importance is the common acceptance of how to quantify the concept of complex-
ity, and sub-concepts such as self-organisation and emergence. Notions of compu-
tation are increasingly being used to describe complex systems; we will consider
this perspective in relation to cellular automata in Sect. 2.3 (once we have estab-
lished the required information-theoretical background). Also, fully understanding
the dynamics of evolution (e.g. see [31]) is particularly important, because complex
self-organised systems in nature have typically evolved over millions of years to
address problems that are simple to state but hard to solve [28].

As such, engineering can and should take inspiration from these systems (e.g. as
in [32]). This is particularly true because traditional engineering designs are finding
their limitations in many situations: they are centralist, subject to single points of
failure, have low tolerance to errors, are incapable of adapting to new situations, and
scale poorly with problem size. As systems become more and more complex (with
trends towards higher system densities and integration) new approaches need to be
found. Sensor networks and robotic systems are two particular domains requiring
innovative distributed approaches (e.g. [23, 33, 34]).

Not surprisingly then, in architecting solutions to address these issues, designers
are looking to self-organised multi-agent systems. In general, this is because they
display the key benefits of [23]:

• adaptability to change;
• robustness to failure and damage; and
• a high level of scalability.
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Therefore, the ability to design self-organised systems is highly desirable in order to
exploit these benefits. However as we describe in Sect. 2.5 most current approaches
are ad-hoc (e.g. with genetic algorithms), either being specifically tailored to the
given problem or not associated with a more widely used theoretical framework.

Indeed, this is part of the wider issue that complex systems science itself “lacks a
common formal framework for analysis” [1]. The key goal of this science is to find
general principles underlying classes of complex systems, and tools applicable across
many systems from different domains. Certainly there have been successes here;
arguably the greatest amongst these being the study of the topology or graph-theoretic
properties of networks (see Sect. 2.4). With respect to time-series dynamics though,
there is certainly a need for a widely accepted, rigorous and complete theoretical
framework to be used. In the next section we describe information theory and its
application to quantifying computation as a key candidate approach here.

2.2 Information Theory

Approaches considering computation and information are growing in popularity as
candidate frameworks for the analysis and design of complex systems [1, 2, 35].
because commonalities in the handling of information Information theory is the lan-
guage of computation and is at the centre of these approaches, which we describe
in this section. We begin with an outline of the basic measures of information
theory in Sect. 2.2.1. In Sect. 2.2.2 we then describe how these average measures
can be extended to local dynamics in space and time, which is a key approach
for this thesis. We also describe how to apply the measures to continuous vari-
ables in Sect. 2.2.3. We present support for the application of information the-
ory to complex systems in Sect. 2.2.4, and describe several instances where infor-
mation theory has already proven to be a useful framework for the design and
analysis of complex systems. This leads us to highlight the opportunity for the estab-
lishment of a framework for quantifying the information dynamics of computation
in complex systems.

2.2.1 Information-Theoretic Measures

Information theory was introduced by Shannon [36] to describe the transmission of
information, incorporating concepts of reliability and efficiency. The basic concept
of information theory is the communications channel, formed from an information
source (which produces messages and encodes them onto a noisy and error prone
channel) and a receiver (which decodes the channel’s output in attempting to retrieve
the original message). Information-theoretic quantities are formed by treating the
specific messages x produced by the source as random variables X over a probability
distribution function (PDF) p(x) of the set of possible messages. Here we present the
important information-theoretic quantities (see [37, 38] for further details). While
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we introduce the quantities in discrete form in this section, we describe extensions
to continuous variables in Sect. 2.2.3.

The fundamental quantity is the Shannon entropy, which represents the average
uncertainty associated with any measurement x of a random variable X (units in bits):

HX = −
∑

x

p(x) log2 p(x). (2.1)

Specifically, this quantifies the average number of bits needed to encode the
random variable X , and can thus be seen as the information content of the particular
message. This information content, or the “informative” nature of a message, can be
interpreted as how surprising or unlikely its event was [39]. The Shannon entropy
can also be interpreted as the level of diversity in the source [1].

The joint entropy of two (or more) random variables X and Y is a generalisation
to quantify the uncertainty of the joint distribution of X and Y :

HX,Y = −
∑

x,y

p(x, y) log2 p(x, y). (2.2)

The conditional entropy of X given Y is the average uncertainty that remains
about x when y is known:

HX |Y = −
∑

x,y

p(x, y) log2 p(x | y), (2.3)

= HX,Y − HY . (2.4)

Note that we have:
p(x | y) = p(x, y)/p(y). (2.5)

The mutual information between X and Y measures the average reduction in
uncertainty about x that results from learning the value of y, or vice versa:

IX;Y =
∑

x,y

p(x, y) log2
p(x, y)

p(x)p(y)
. (2.6)

= HX + HY − HX,Y , (2.7)

= HX − HX |Y = HY − HY |X . (2.8)

From other perspectives, the mutual information can be said to measure how much
information X and Y have in common, or how much information knowing the value
of x tells one about the value of y on average. It can also be stated as the deviation of
X and Y from independence (i.e. the Kullback–Leibler divergence of p(x, y) from
p(x)p(y) [38]).

The mutual information can be generalised to a set of more than two vari-
ables as the multi-information or integration [40]. The multi-information is a
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measure of the deviation from independence of the G components in the system
X = {X1, X2, . . . , XG}:

IX = IX1;X2;...;XG =
⎛

⎝
G∑

g=1

HXg

⎞

⎠ − HX1,X2,...,XG . (2.9)

The multi-information of a set Z = {X, Y} can be expressed iteratively in terms
of the multi-information of its components individually and the mutual information
between those components:

IZ = IX + IY + IX;Y. (2.10)

The conditional mutual information between X and Y given Z is the mutual
information between X and Y when Z is known:

IX;Y |Z =
∑

x,y,z

p(x, y, z) log2
p(x | y, z)

p(x | z)
. (2.11)

IX;Y |Z = HX |Z − HX |Y,Z = HY |Z − HY |X,Z . (2.12)

It can also be stated as the average common information between X and Y that was
not contained in Z . This is the only valid “three-term entropy” [38] (though any of
X , Y or Z can be joint variables). It is important to note that the three term expression
can defy our intuition. In particular, though we might naively expect the conditional
mutual information IX;Y |Z to always be smaller than the mutual information IX;Y ,
it is also possible for IX;Y |Z to be larger. As described in [38], an example is where
X , Y and Z are the input, noise and output from a binary symmetric channel. If
the noise and input are independent IX;Y = 0, but we will find that IX;Y |Z > 0
because knowing the output provides us with some information about the previously
unknown relationship between the input and noise.

The channel capacity is the maximum amount of information that a received
signal Y can contain about a signal X transmitted through the channel. Since the
information that the received signal contains about the transmitted signal is repre-
sented by their mutual information, channel capacity is specifically defined as the
maximum mutual information for the channel over all distributions of the transmitted
signal:

C(p(y | x)) = max
p(x)

IX;Y . (2.13)

This renders channel capacity as asymmetric and causal (in contrast to mutual
information) [41]. Also in contrast to mutual information, it is a property of the
channel itself rather than a property of the dynamics for a specific interaction over
the channel.

The entropy rate is the limiting value of the rate of change of the joint entropy
over k consecutive states of X , (i.e. measurements x (k) of the random variable X (k)),
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as k increases [39]:

HμX = lim
k→∞

HX (k)

k
= lim

k→∞ H ′
μX (k), (2.14)

H ′
μX (k) = HX (k)

k
. (2.15)

The entropy rate can also be expressed as the limiting value of the condi-
tional entropy of the next state of X (i.e. measurements xn+1 of the random
variable X ′) given knowledge of the previous k states of X (i.e. measurements
x (k)

n = {xn−k+1, . . . , xn−1, xn}, up to and including time step n, of the random
variable X (k)):

HμX = lim
k→∞ HX ′|X (k) = lim

k→∞ HμX (k), (2.16)

HμX (k) = HX (k+1) − HX (k) . (2.17)

We note that while these limiting values exist as k → ∞ for stationary processes
(e.g. see [37]), there is no guarantee that such limits exist for non-stationary processes.

Grassberger [42] first noticed that a slow approach of the entropy rate to its
limiting value was a sign of complexity. Formally, Crutchfield and Feldman [39]
use the conditional entropy form of the entropy rate (2.16)4 to observe that at a
finite block size k, the difference HμX (k)− HμX represents the information carrying
capacity in size k-blocks that is due to correlations. The sum over all k gives the total
amount of structure in the system, quantified as excess entropy5 (measured in bits):

EX =
∞∑

k=0

[
HμX (k) − HμX

]
. (2.18)

The excess entropy can also be formulated as the mutual information between the
semi-infinite past and semi-infinite future of the system:

EX = lim
k→∞ EX (k), (2.19)

EX (k) = IX (k);X (k+) (2.20)

where X (k+) is the random variable (with measurements x (k+)
n+1 = {xn+1, xn+2, . . . ,

xn+k}) referring to the k future states of X (from time step n + 1 onwards). This
interpretation is known as the predictive information [43], as it highlights that
the excess entropy captures the information in a system’s past which can be used to

4 HμX (k) here is equivalent to hμ(L − 1) in [39]. This means the sum in Eq. (2.18) starts from
k = 0 as equivalent to L = 1.
5 The excess entropy was labelled the “effective measure complexity” by Grassberger in [42].
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predict its future. This is significant as it is explicitly consistent with the interpretation
of the excess entropy as the amount of structure or memory in the system.

2.2.2 Localising Information-Theoretical Measures

Information-theoretic variables are generally defined and used as an average uncer-
tainty or information. We are interested in considering local information-theoretic
values, i.e. the uncertainty or information associated with a particular observation
of the variables rather than the average over all observations.6 Local measures within
a global average are known to provide important insights into the dynamics of non-
linear systems [45]. Indeed, the ability to investigate time-series dynamics of complex
systems provides an important connection from information theory to dynamical sys-
tems theory or non-linear time-series analysis (e.g. see [46, 47]). Importantly, only
local information-theoretic measures can describe the dynamics of computation, since
they alone can describe how information is being manipulated at each step in time.
In this section we define how to obtain these local values and describe their meaning.

We use the mutual information as an illustrative example, though note that the
derivation applies equally to the other terms defined in Sect. 2.2.1. The (average)
mutual information defines the average information in X about Y or vice-versa;
localisations consider how much information is conveyed by specific observations
or realisations xn and yn of the variables X and Y at time step n.7

First, we note that the mutual information IX;Y is defined in Eq. (2.6) as a sum over
all possible state tuple observations {xn, yn}, weighted by the probability p(xn, yn)

of observing each such tuple. This probability p(xn, yn) is operationally equivalent
to the ratio of the count of observations c(xn, yn) of {xn, yn}, to the total number of
observations N made: p(xn, yn) = c(xn, yn)/N . To precisely compute this proba-
bility, the ratio should be composed over all realisations of processes of the observed
variables (as described in [50]); realistically however, estimates will be made from
a finite number of observations. Subsequently, we replace the count by its definition

6 Local information-theoretic measures are known as point-wise measures elsewhere [44].
7 Appendix A describes two different approaches that have been presented to quantifying partial
localisations of the mutual information I (xn; Y ) [48]. The partial localisation I (xn; Y ) considers
how much information I (xn; Y ) a specific value xn at time step n gives about what value Y might
take. We note this is distinct from the full localisations i(xn; yn) that we consider here; this quantifies
the amount of information conveyed by a specific value xn about the specific value yn that Y
actually takes at time step n (or vice-versa). Our interest lies in these full localisations i(xn; yn),
as they quantify the specific amount of information involved or manipulated in the dynamics of
the computation at time step n with the given realisation {xn, yn}. Appendix A demonstrates that
there is only one approach to quantifying full localisations i(xn; yn) that fulfils both additivity and
symmetry properties.

We also note that a similar approach to “localising” information-theoretic values is by using
sliding windows of observations (e.g. [49]). While this does provide a more local measure than
averaging over all available observations, it is not local in the same sense as the term is used here
(i.e. it does not look at the information involved in the computation at a single specific time step).
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c(xn, yn) = ∑c(xn ,yn)
g=1 1, leaving the substitution p(xn, yn) =

(∑c(xn ,yn)
g=1 1

)
/N into

Eq. (2.6):

IX;Y = 1

N

∑

xn ,yn

⎛

⎝
c(xn ,yn)∑

g=1

1

⎞

⎠ log2
p(xn, yn)

p(xn)p(yn)
. (2.21)

The log term may then be brought inside this inner sum:

IX;Y = 1

N

∑

xn ,yn

c(xn ,yn)∑

g=1

log2
p(xn, yn)

p(xn)p(yn)
. (2.22)

This leaves a double sum running over each actual observation g for each possible
tuple observation {xn, yn}. This is equivalent to a single sum over all N observations:

IX;Y = 1

N

N∑

n=1

log2
p(xn, yn)

p(xn)p(yn)
. (2.23)

It is clear then that the mutual information measure is an average (or expectation
value) of a local mutual information at each observation:

IX;Y = 〈i(xn; yn)〉n ; (2.24)

i(xn; yn) = log2
p(xn, yn)

p(xn)p(yn)
. (2.25)

Note that by convention we use lower-case symbols to denote local values through-
out this thesis.

The measure is local in that it is defined at each time step n. This method of forming
a local information-theoretic measure by extracting the log term from a globally aver-
aged measure is applicable to any of the aforementioned information-theoretic vari-
ables. For example, the conditional mutual information IX;Y |Z in Eq. (2.11) can also
be expressed as the average of a local conditional mutual information i(xn; yn | zn)

at each observation n:

IX;Y |Z = 〈i(xn; yn | zn)〉n ; (2.26)

i(xn; yn | zn) = log2
p(xn | yn, zn)

p(xn | zn)
. (2.27)

We also note that local mutual information values (including conditional ones) can
be negative. This occurs where in Eq. (2.25) for example, p(xn, yn) < p(xn)p(yn);
i.e. there is more uncertainty p(xn | yn) in xn given yn than there was uncer-
tainty p(xn) in xn independently of knowing yn . These negative values are actually
quite meaningful, and can be interpreted as there being negative information in the
value of yn about xn . We could also interpret the value yn as being misleading or
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misinformative about the value of xn , because it had lowered our expectation of
observing xn prior to that observation being made in this instance. Importantly, it is
not possible for local entropies h(xn) = − log2 p(xn) to become negative.

The technique has been used (less explicitly) for the local excess entropy [50], the
local statistical complexity [50, 51], and the local information [52]. Despite some
interest from these authors [50–52], relatively little exploration has been made into
the dynamics of these local information measures in complex systems, and certainly
none has been made into the local dynamics of information storage, transfer and
modification.

2.2.3 Information-Theoretic Measures of Continuous
Variables

The information-theoretic measures in Sect. 2.2.1 are defined for discrete variables X
and Y . In the discrete domain, measuring the relevant PDFs p(x), p(y) and p(x, y)

from a set of observations {x, y} ∈ {X, Y } is straightforward. This is not the case
for continuous variables X and Y . While it is possible to define the information-
theoretic measures in integral form (see Chap. 9 of [37]), this requires the PDFs to
be well-defined on the range of X and Y which is not the case for a finite number of
samples.

A simple approach to handling continuous variables is to discretise the observa-
tions. One can then apply the relevant standard information-theoretic calculation to
the discretised values. However with a slight increase in effort, one can remain in the
continuous regime and so maximise the incorporation of the subtle features of the
data into the calculations.

To do so in computing the transfer entropy8 Schreiber [53] recommends using
kernel estimation to estimate the required probabilities. This recommendation was
used for example to compute transfer entropy in signal transduction by calcium ions
in [54]. Kernel estimation relies on the notion that the given measure is necessarily
an average of the local values of the measure in time (as per Sect. 2.2.2) rather than
over all possible state transition tuples [47, 53]. First, the approach assumes that
the required PDFs can be defined for each observation n ∈ [1, N ] in our set. For
example, for the mutual information IX;Y the approach assumes that the PDFs for
each observation ( p̂r (xn, yn), p̂r (xn) and p̂r (yn)) can be defined, with the measure
computed as an average over local values:

IX;Y = 1

N

N∑

n=1

log2
p̂r (xn, yn)

p̂r (xn) p̂r (yn)
. (2.28)

8 The transfer entropy is arguably the most important measure used in this thesis. As such, recom-
mendations on approaches to compute it will be followed for other measures also for consistency.
The transfer entropy will be introduced in Chap. 4

http://dx.doi.org/10.1007/978-3-642-32952-4_4


2.2 Information Theory 25

The method then computes the probabilities for each observation n ∈ [1, N ] by
counting the number of “similar” observations; the similarities are calculated using
a kernel function � to judge “similarity” and a resolution r . For example, the prob-
ability of an observation (xn, yn) is estimated as:

p̂r (xn, yn) = 1

N

N∑

n′=1

�

(∣∣∣∣

(
xn − xn′
yn − yn′

)∣∣∣∣ − r

)
. (2.29)

By default � is the step kernel (�(x > 0) = 0, �(x ≤ 0) = 1), and the norm | · | is
the maximum distance. This combination results in p̂r (xn, yn) being the proportion
of the N values which fall within r of {xn, yn} in both dimensions X and Y . Other
choices for the kernel � and the norm | · | are possible. Conditional probabilities may
be defined in terms of their component probabilities following Eq. (2.5). Importantly,
a mutual information computed by kernel estimation is a slightly different quantity
to one measured on discrete values: here the quantity measures the average reduction
in uncertainty about predicting x within r that results from learning the value of y
within r .

We note the existence of various techniques that attempt to improve upon kernel
estimation, e.g. introducing optimisations in time or attempting to reduce errors. The
most relevant of these are the techniques of Kraskov et al. [55, 56] for estimating
the mutual information. This approach uses two specific enhancements designed to
reduce errors when handling a small number of observations. The first is the use
of Kozachenko-Leonenko estimates [57] of log-probabilities via nearest-neighbour
counting; the second is to use a fixed number K of nearest-neighbours in the joint
probability space (see [55, 56] for further details). This can be thought of as a kernel-
estimation type technique, with a dynamically altered kernel width to adjust to the
density of samples in the vicinity of any given observation. These adjustments smooth
out errors in the PDF estimation. They also alter the meaning of the measure to being
the information one learns from y about predicting the value of x within the nearest
K values of {x, y}.

2.2.4 Reasons for Application to Complex Systems

Information theory is gaining popularity as an analytic tool for complex systems
[1, 2, 58]. At first glance, obvious areas of its applicability lie in characterising
order and disorder, since these have clear parallels to the concept of entropy [2]. The
reasons for its application go beyond this however.

This highly abstract nature of information theory means that it makes no assump-
tions about the system. The only requirement for the application of information
theory is probability distributions [21], which are generally accessible as they are
a natural way of describing the dynamics of complex systems. This also means
information-theoretic tools can handle stochastic as well as deterministic systems
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[21]. The generality offered by information theory is crucial in complex systems
analysis, where systems from all realms and varieties of science are candidates for
investigation. Such generality means that analytic tools developed for one system
are applicable to other superficially unrelated systems; this is a key goal of complex
systems science.

Furthermore, information theory provides definitions which can be formulated
mathematically, and its theoretical basis is well-developed, sound and stable [1].
Also, it captures non-linear relationships which we know to be a vital feature for any
tool in complex systems science. Prokopenko et al. [1] claim that application of infor-
mation theory to complex systems simply involves identification of the appropriate
information channels, followed by computation of the relevant measures.

We must however note some arguments against the application of information
theory here. Gibson [59] claimed that information theory was not applicable to
natural systems as the environment does not send messages to living systems or
agents. It is generally accepted now however that information theory does not need
explicit messages on which to operate; its applicability comes in examining proba-
bility distributions of agent states and implicit messaging or influences. This is akin
to the notion of intrinsic computation [19, 60]. Another criticism is that information-
theoretic measures typically require a large amount of data in order to be accurately
calculated. This is true to an extent, however modern computing tools (e.g. PCs) can
handle typical data sets and generate meaningful results with ease, and techniques
such as those of Kraskov et al. [55, 56] discussed in Sect. 2.2.3 have reduced the data
size requirements.

From our perspective, information is the language of computation, so any attempt
to characterise the dynamics of distributed computation, or to describe complex
systems in these terms, must necessarily involve information theory. This is best
captured by Gell-Mann [35]: “Although (complex adaptive systems) differ widely
in their physical attributes, they resemble one another in the way they handle infor-
mation. That common feature is perhaps the best starting point for exploring how
they operate.” This statement alludes to three important features of the information-
theoretical perspective: its generality, focus on computation, and the known useful
insights it produces. We will discuss the known useful insights it produces in the
next sub-sections.

2.2.4.1 Examples of Information-Theoretic Analysis of Complex Systems

Information theory has already proven to be a useful framework for the design and
analysis of complex self-organised systems [1]. As suggested above, it has been
used to characterise order and disorder. Obviously the Shannon entropy can be used
for this purpose, but this can be misleading (e.g. returning high values for periodic
processes). More sophisticated is the use of the entropy rate in order to measure
uncertainty in the context of the system’s past, e.g. [19, 39].

Information theory has also been applied to the notoriously difficult task of
attempting to measure complexity [1]. Various perspectives used here include the
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amount of information required to describe or predict the system or time required
to implement it, or richness of the dynamics. General intuition is that completely
statically ordered processes (with fixed states) and completely disordered or random
process (with completely unpredictable states) have least complexity [11] and most
perspectives aim to capture this. One common theme is the uncertainty (entropy) of
system specific measures (e.g. perturbation avalanches in boolean networks [61]), or
more generally the variance in information-theoretic measures (e.g. the variance of
the input entropy with time [62]). Also, the Tononi-Sporns-Edelman (TSE) complex-
ity [40] measures the extent to which a set of variables exhibit both global integration
and at the same time functional segregation. It can be analytically related to spatial
formulations of the excess entropy [63, 64].

Perhaps most prominent though is the statistical complexity [20, 65, 66]. Found in
the study of computational mechanics, it attempts to capture the computational effort
required to model complex behaviour. Formally, it is the uncertainty in the internal
state of a minimal state machine (known as an ε-machine) that can statistically
mimic a given process. This internal state is known as a causal state; two (possibly
observationally different) states of a system have an equivalent causal state if the PDF
of their future states is statistically equivalent. The ε-machine can be constructed
for single agents, for system-wide collections of agents, or with a hybrid approach
known as the light-cone formulation. The light-cone formulation forms causal states
between past and future light cones centred at a given time step for a given agent. A
past light-cone is the set of states of that agent and others that are causal ancestors
of the given space-time point. A future light-cone contains the corresponding causal
descendants.

A popular application of information theory has been the investigation of order-
chaos phase transitions and whether measures of complexity are maximised in these
transitions. These are effectively quantitative studies of the edge of chaos hypothesis
[15, 16], which suggests that complexity is maximised in order-chaos phase transi-
tions and in particular that computational properties are maximised there. For exam-
ple, information-theoretic measures of complexity are demonstrated to be maximised
at a critical phase in the construction of self-organised impact boundaries in [32],
reflecting phase transitions established using task-specific measures. Other exam-
ples that suggest maximisations of information-theoretic measures of complexity in
such phase transitions include [17, 67]. Some of the most relevant work regarding
of the edge of chaos hypothesis considers cellular automata (these are discussed in
Sect. 2.3.3). Importantly, other information-theoretic studies [19, 68] have demon-
strated that there is no universal complexity trend through such phase transitions
(in particular for more complicated phase transitions), and that computation can and
does take place elsewhere on the order-chaos continuum.

With measures for complexity in place, measuring self-organisation as a change
in complexity follows its definition in Sect. 2.1.2 and is typical, e.g. [20–22]. This
is done for example by Shalizi et al. [20] using the statistical complexity. Similarly,
complexity measures are also useful in quantifying emergence, e.g. see [50, 66].

Information theory has also been applied to the analysis of topological structure.
Although such structure is static and contains no time-series dynamics, the measures
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are made on “observations” of the structure at each node or link in the network. For
example, the amount of information the degree of nodes on either end of a given link
have in common is considered in [69, 70].

Also, information-theoretic measures are being increasingly used to guide the
design of artificial self-organised systems. This approach is discussed in detail in
Sect. 2.5.

2.2.4.2 Information Dynamics of Computation in Complex Systems

It is important to observe that the applications described above go well beyond
measuring only order and disorder, but address the nature of computation in
complex systems. Many focus on the overall complexity of such computation.
Our interest is in the information dynamics supporting such complex computa-
tion: how information is stored, transferred and modified in the system. Such
concepts are considered most prominently in cellular automata, the most impor-
tant venue for discussions of computation in complex systems. As we will dis-
cuss in detail in Sect. 2.3, a clear qualitative understanding of the dynamics of
information in cellular automata has been established, but never validated with
quantitative measures.

The lack of a definitive framework for these operations on information has impacts
beyond cellular automata and across complex systems science. Their importance is
underlined in that each of these operations has been considered in various complex
systems settings. Information storage is considered a crucial part of the dynamics of
human brain networks [71], synchronisation between coupled systems [72], coordi-
nated motion in modular robots [73], and in the dynamics of inter-event distribution
times [74]. Information transfer is manifested in “information cascades” spreading
across schools of fish [75], said to give rise to self-organisation via dipole-dipole
interactions [76], and optimum efficiency of information transmission is said to
underpin order-chaos phase transitions in ant foraging [17]. Information modifica-
tion is a key operation in collision-based computing models (e.g. [77, 78], including
soliton dynamics and collisions [79]), as well as in biological neural networks and
models thereof [80–83]

However, the lack of clearly established measures for these information dynam-
ics has led to unanswered speculation on their role in complex computation. This is
particularly true regarding information transfer, e.g. the conflicting suggestions that
transfer is maximised in complex dynamics at a phase transition between ordered
and chaotic behaviour [17, 67], or alternatively is at an intermediate level with max-
imisation leading to chaos [15, 84]. This lack of clarity has also led to the concepts
of information transfer and causal effect sometimes being unfortunately directly
equated, e.g. [85–87]. It also extends to the study of dynamics on networks, where
as we will discuss in Sect. 2.4 understanding information transfer “is one of the most
important open problems in science” [2].

Certainly there are good candidate measures for some of these concepts, notably
the excess entropy [39] for measuring information storage (see Eq. (2.18)) and
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transfer entropy for information transfer (to be discussed in Chap. 4). However, their
local dynamics have not been investigated, nor have they been demonstrated to align
with accepted instances of these concepts in the dynamics of computation (see com-
putation in CAs in Sect. 2.3.3). While brief explorations of local information-theoretic
values values have been made (see Sect. 2.2.2), there is no established approach to
studying the information dynamics of computation that aligns with dynamical sys-
tems theory. In particular, we have no understanding of how the component operations
of information dynamics relate to each other. What we seek here are not simply more
complexity measures, but a methodology to explain the dynamics of how complex
distributed computation occurs.

In the following sections, we discuss in more detail the need for a framework for
information dynamics in a number of specific application domains: cellular automata,
the dynamics of networks, and guided self-organisation.

2.3 Cellular Automata

Cellular automata (CAs) are an important general class of models, since they sup-
port complex computation and provide the ability to model complex systems in
nature [88]. They are the most important domain for the study of distributed com-
putation, as the subject of a large amount of related work regarding the nature of
computation in complex systems (e.g. [15, 51, 52, 62, 88–95]). Significantly, Von
Neumann was known to be a strong believer that “a general theory of computation in
‘complex networks of automata’ such as cellular automata would be essential both
for understanding complex systems in nature and for designing artificial complex
systems” ([88] describing [96]). We select CAs for experimentation here for these
reasons and because there is very clear qualitative observation of emergent structures
representing information storage, transfer and modification therein (e.g. [15, 88]).

In this section, we describe the mechanics of CAs in Sect. 2.3.1, then discuss
interpretations of complex behaviour and emergent structures in CAs in Sect. 2.3.2.
We explore the perspective of computation within CAs and outline opportunities for
providing quantitative insights on the nature of such computation in Sect. 2.3.3. The
reader is introduced to several of the important CA rules investigated in this thesis
in Sect. 2.3.4. We also describe existing techniques for filtering emergent structure
in CAs in Sect. 2.3.5, outlining how the ability to filter such structure from a compu-
tational perspective would provide a novel contribution.

2.3.1 Functionality of Cellular Automata

CAs are discrete dynamical lattice systems. They consist of an array of cells which
each update their discrete state as a function of the states of a fixed number of
spatially neighbouring cells using a uniform rule. These updates occur synchronously

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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in discrete time. Although the behaviour of each individual cell is very simple, the
(non-linear) interactions between all cells can lead to very intricate global behaviour.
As such, CAs have become a classic example of self-organised complex behaviour.
Of particular importance, CAs have been used to model real-world spatial dynamical
processes, including fluid flow, earthquakes and biological pattern formation [88].

The neighbourhood used as inputs to a cell’s update rule at each time step is
usually some regular configuration. In 1D CAs, this means the same range r of
cells on each side and includes the current state of the updating cell. One of the
simplest variety of CAs—1D CAs using binary states, deterministic rules and r = 1
neighbour on either side—are known as the Elementary CAs, or ECAs. As such,
the parent nodes which determine xi,n+1 (the value of node Xi at time n + 1) in an
ECA are {xi−1,n, xi,n, xi+1,n}. The past light-cone of xi,n+1 is then made up of these
nodes, their parents, and so on. The future light-cone of xi,n+1 consists of the nodes
it has a direct causal effect on, i.e. {xi−1,n+2, xi,n+2, xi+1,n+2}, the nodes they have
a direct causal effect on, and so on.

Example evolutions of ECAs from random initial conditions may be seen in
Fig. 2.1 for the examples we discuss in Sect. 2.3.4. For more complete definitions of
CAs, including the definition of the Wolfram rule number convention for specifying
update rules, see Ref. [92].

2.3.2 Complex Behaviour in Cellular Automata

Wolfram [89, 92] sought to classify CA rules in terms of their asymptotic behaviour
in time. He proposed four classes of asymptotic behaviour: I. Homogeneous state;
II. Simple stable or periodic structures; III. Chaotic aperiodic behaviour; IV. Com-
plicated localised structures, some propagating. This classification has been highly
influential on subsequent research due to the parallels (for discrete state and time
systems) with our knowledge of dynamical systems. Here classes I and II represent
ordered behaviour, and class III represents chaotic behaviour. Class IV represents
complex behaviour and is considered to lie between the ordered and chaotic classes.

The analogy to dynamical systems is taken further in considering the state-space
of the global state X of the CA, and the attractors9 and transient paths10 in this
space [62]. This discrete state-space is analogous to Poincaré’s phase portrait in
continuous dynamics. Ordered CAs are said to exhibit short transient paths with
high convergence to attractors. Chaotic CAs exhibit long transient paths with low

9 An attractor is a single global state xn = {. . . , xi−1,n, xi,n, xi+1,n, . . .} or periodic sequence of
global states that a CA (generally considering fixed sizes) can reach after a finite number of time
steps but then never leave (unless some stochasticity is introduced into the dynamics).
10 A transient is a path of global states that a CA could traverse before reaching an attractor. For
deterministic CAs, two or more transient paths can converge on the same next state, but a given
state cannot diverge via multiple transient paths to more than one next state. A CA of finite size C
cells must reach an attractor after a finite number of time steps (since there are a finite number bC

of possible global states, where b is the base or number of possible discrete states for each cell).
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(a) 54 (b) 110 (c) 18

(d) 22 (e) 30 (f) φ

Fig. 2.1 Example time-evolutions of states of several important CA rules from random initial
conditions. All rule numbers follow the Wolfram rule number convention [92], except rule φ which
is an r = 3 CA evolved to classify the density of initial states (see Sect. 2.3.4). Black cells are in the
“1” state, white cells are in the “0” state. Time increases down the page for all CA plots: one row
represents one time slice xn of the states of each cell in the CA. Note: the first row shown here is
typically for some time n > 0 (NB: (a)–(c) Reprinted with permission from J. T. Lizier et al. [97].
Copyright 2010, American Institute of Physics. (d)–(e) are reprinted from Ref. [98] with permission
of Springer.)

convergence to attractors. In contrast, complex CAs are observed to exhibit maximal
uncertainty in the length of transient paths.

Much conjecture remains as to whether Wolfram’s classes are quantitatively dis-
tinguishable however (e.g. see [99]). Regardless of this however they certainly pro-
vide an interesting qualitative analogy to dynamical systems.

More importantly, the approach seeks to characterise complex behaviour in terms
of emergent structure in CAs: particles, gliders, blinkers, domains and domain walls.
Qualitatively, a domain may described as a set of background configurations in a CA,
for which any given spatially-extended configuration will update to another such
configuration in the set in the absence of any disturbance. Domains are formally
defined within computational mechanics [94] as spatial process languages in the
CA. Particles are qualitatively considered to be elements of coherent spatiotempo-
ral structure which disturb background domains. Gliders are particles which repeat
periodically in time while moving spatially, while repetitive non-moving particle
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(a) (b)

Fig. 2.2 Example of filtering of CA rule 110: a raw states; b local statistical complexity [51] of
these states, which clearly highlights gliders and blinkers against the background domain. These
diagrams were produced using the CimulA package [100], then rotated to have cells across and
time down the page (matching Fig. 2.1)

structures are known as blinkers.11 Formally, particles are defined within compu-
tational mechanics as a boundary between two domain regions [94]; as such, they
can also be termed as domain walls, though this is typically used with reference
to aperiodic particles.

These emergent structures are more clearly visible when the CA is filtered in some
way, e.g. see local statistical complexity [51] applied to ECA rule 110 in Fig. 2.2.
We discuss techniques for such filtering in Sect. 2.3.4. First, we need to understand
how distributed computation is studied and measured in CAs.

2.3.3 Computation in Cellular Automata

CAs can be interpreted as undertaking distributed computation: it is established
that “data represented by initial configurations is processed by time evolution” [89].
Indeed, any time evolution of the CA represents an intrinsic computation [19, 60] in
determining its own future and ultimate attractor state and phase, in the same way
that the universe “computes itself” [101].

As such, computation in CAs has been a popular topic for study (see [88]), with a
particular focus in observing or constructing (Turing) universal computation in cer-
tain CAs. An ability for universal computation is defined to be where “suitable initial

11 Of course, blinkers can be considered to be vertical or non-moving gliders, while both are
particles.
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configurations can specify arbitrary algorithm procedures” in the distributed comput-
ing entity, which is capable of “evaluating any (computable) function” [89]. Wolfram
conjectured that all class IV complex CAs were capable of universal computation
[89, 90]. He went on to state that prediction in systems exhibiting universal compu-
tation is limited to explicit simulation of the system, as opposed to the availability of
any simple formula or “short-cut” [89, 90]. He drew parallels to undecidability in the
halting problem for universal Turing machines which are echoed by Langton [15]
and Casti [102]. Casti extended the analogy to undecidable statements in formal sys-
tems (i.e. Gödel’s Theorem). The undecidability is also linked back to the maximal
uncertainty in transient lengths for complex or critical behaviour in other systems
(e.g. see [103]). The capability for universal computation has been proven for several
CA rules, through the design of rules generating elements to (or by identifying ele-
ments which) specifically provide the component operations required for universal
computation: information storage, transmission and modification. Examples here
include most notably the 2D rule known as the “Game of Life” [104] and ECA rule
110 [105]; also see [106] and discussions in [88].

The focus on elements providing information storage, transmission and modifica-
tion pervades discussion of all types of computation in CAs (e.g. see also “collision-
based computing” in [78, 107]). Wolfram claimed that in class III CAs information
propagates over an infinite distance at a finite speed, while in class IV CAs infor-
mation propagates irregularly over an infinite range [90]. Langton [15] hypothesised
that complex behaviour in CAs at the edge of chaos exhibited the three component
operations required for universal computation. He suggested that the more chaotic a
system becomes the more information transmission increases, and the more ordered
a system becomes the more information it stores. Complex behaviour was said to
occur at a phase transition between these extremes requiring an intermediate level
of both information storage and transmission. He suggested for example, that inter-
mediate levels of information transmission can support large correlation lengths, but
if information propagates too well, coherent information decays into noise.

Importantly, Langton elaborates [15] that transmission of information means that
the “dynamics must provide for the propagation of information in the form of signals
over arbitrarily long distances”. He goes on to suggest that particles form the basis
of information transmission, since they appear to facilitate communication about
the dynamics in one area of the CA to another area. To complete the qualitative
identification of the elements of computation in CAs, he also suggested that blink-
ers formed the basis of information storage, and collisions between propagating
(particles) and static structures (blinkers) “can modify either stored or transmitted
information in the support of an overall computation” or decision process about
the dynamics. He also made rudimentary attempts at quantifying the average infor-
mation transfer (and to some extent information storage), via mutual information.12

Recognising the importance of the emergent structures to computation, several exam-
ples exist of attempts to automatically identify CA rules which give rise to particles

12 However as discussed in Chap. 4 this is a symmetric measure not capturing directional transfer.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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and gliders, e.g. [62, 108], suggesting these to be the most interesting and complex
CA rules.

Several authors however criticise the aforementioned approaches of attempting
to classify CAs in terms of their generic behaviour or “bulk statistical properties”,
suggesting that the wide range of differing dynamics taking place across the CA
makes this problematic [88, 94]. Related here is that, despite Langton’s hypothesis
and the introduction of useful measures of the complexity of CA rules (e.g. [19, 51,
62]), there is no established phase transition dictated by a single order-chaos parame-
ter in CAs [19]. Also, Gray suggests that there there may indeed be classes of CAs
capable of more complex computation than universal computation alone [99]. More
importantly, Hanson and Crutchfield [94] criticise the focus on universal computa-
tional ability as drawing away from the ability to identify “generic computational
properties”, i.e. a lack of ability for universal computation does not mean a CA is
not undertaking any computation at all.

Alternatively, these studies suggest that analysing the rich space-time dynam-
ics within the CA is a more appropriate focus. As such, references [88, 94] and
others have analysed the local dynamics of intrinsic or other specific computation,
focusing on the computational roles of emergent structures. They align with Lang-
ton’s observations of blinkers storing information, particles facilitating the transfer
of information and collisions facilitating the information modification or processing.
Notable examples here include: the method of applying filters from the domain of
computational mechanics by Hanson and Crutchfield [94]; and analysis using such
filters to analyse CA rules selected via evolutionary computation to perform clas-
sification tasks by Mitchell et al. [93, 109]. Also relevant are studies which deeply
investigate the nature of particles and their interactions, e.g.: particle types and their
interaction products identified for particular CAs in [109–112], rules established for
their interaction products in [113], and studies of “collision-based computing” in
[78, 107].

This perspective of the computational roles of emergent structures is important
not only for our theoretical understanding of the nature of distributed computation,
but is also important on a practical level. This is because it has been used to explain
the computational function of similar propagating coherent emergent structures and
their interactions in neural circuits [3] and in the opening and closing of stomatal
apertures in plants [4].

Despite such interest, there is no quantitative evidence to support these conjec-
tures about the role of emergent structures in computation in CAs. Simply quantifying
the average information dynamics in CAs would be novel itself; we are not aware
of any previous direct measurement of information storage, transfer or modifica-
tion in CAs.13 However measuring averages will not suffice: e.g. a coincidence of

13 Langton’s use of mutual information in [15] is a symmetric measure not capturing directional
transfer. As we will describe in Sect. 3.1, Grassberger inferred the excess entropy to be infinite
in some CAs under certain circumstances by studying trends of the entropy rate [42, 114]. The
study did not make any direct measurements of the excess entropy apart from these inferences,
and focussed on collective excess entropy. Crutchfield and Feldman measure the excess entropy

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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high information transfer in CAs with gliders would not mean that gliders are the
information transfer agents. Providing such evidence requires the ability to quantify
the information dynamics of computation on a local scale in space and time within
the CA. It is only the local scale that will explicitly show the computational roles
of the emergent structures. Yet there is no complete framework that locally quanti-
fies the individual information dynamics of distributed computation within CAs or
other systems. In this thesis we will provide such a framework in Chaps. 3–5, and
use to it to describe how the component operations of computation interact to give
rise to emergent complex behaviour. We expect this framework to highlight blinkers
and domain regions as dominant information storage processes, particles (including
gliders and domain walls) as information transfer, and particle collisions as infor-
mation modification. This will make a significant contribution to our fundamental
understanding of the nature of distributed computation.

2.3.4 Examples of Distributed Computation in CAs

In this thesis, we will examine the computation carried out by several important ECA
rules:

• Class IV complex rules 110 and 54 [92], both of which exhibit a number of glider
types and collisions. See raw states in Fig. 2.1a, b, and a filtered view of the gliders
in rule 110 in Fig. 2.2. ECA rule 110 is the only proven computationally universal
ECA rule [105].

• Rules 22 and 30 as representative class III chaotic rules [92] (see Fig. 2.1d, e).
• Rules 18 as a class III rule which contains domain walls against a chaotic back-

ground domain [91, 94] (see Fig. 2.1c).

While these ECAs are not computing any particular human understandable task, the
intrinsic computation they are undertaking is of interest.

We also examine a CA carrying out a “human-understandable” computational
task. φpar is a 1D CA with range r = 3 (Wolfram rule number 0xfeedffdec1aaeec0-
eef000a0e1a020a0). It resulted from an evolutionary computation experiment by
Mitchell et al. [93, 109] which aimed to classify whether an initial CA configuration
had a majority of 1’s or 0’s by reaching a fixed-point attractor of all 1’s for the former
or all 0’s for the latter. This CA rule achieved a success rate above 70 % in its task.
An example run of this CA can be seen in Fig. 2.1f. The CA appears to have evolved
to carry out this computation using blinkers and domains for information storage,
gliders for information transfer and glider collisions for information modification.
The computation has been interpreted as follows [93, 109]. The CA exhibits an ini-
tial emergence of domain regions of all 1’s or all 0’s storing information about local
high densities of either state. Where these domains meet, a checkerboard domain

(Footnote 13 continued)
in spatially-extended blocks in various CAs in an ensemble study in [19], however this is not an
information storage since the measurement is not made temporally.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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propagates slowly (1 cell per time step) in both directions, with the gliders at the
leading edge transferring information regarding a soft uncertainty about the density
in this part of the CA. Some “certainty” is provided where the checkerboard encoun-
ters a blinker boundary between 0 and 1 domains, which stores information about
a hard uncertainty in that region of the CA. This results in an information modifi-
cation event where the domain on the opposite side of the blinker to the incoming
checkerboard is concluded to represent the higher density state, and is allowed to
propagate over the checkerboard domain. Because of the greater certainty attached to
this decision, this new information transfer occurs at a faster speed (3 cells per time
step); it can overrun checkerboard regions, and in fact collisions of opposing types of
this strong propagation give rise to the (hard uncertainty) blinker boundaries in the
first place. The final configuration is the result of the interactions in this distributed
computation.

In all of these CAs we expect a framework for local information dynamics to
quantitatively confirm these qualitative observations of the computational roles of
emergent structure. This will provide a deeper understanding of computation than
single or generic measures of bulk statistical behaviour, from which conflict often
arises in attempts to provide classification of complex behaviour. In particular, we
seek clarification on the long-standing debate regarding the nature of computation
in ECA rule 22.

Suggestions that rule 22 is complex include the difficulty in estimating the metric
entropy (i.e. temporal entropy rate) for rule 22 in [42], due to “complex long-range
effects, similar to a critical phenomenon” [114]. This effectively corresponds to an
implication that rule 22 has contains an infinite amount of collective memory (see
Sect. 3.1). Also, from an initial condition of only a single “on” cell, rule 22 forms
a pattern known as the “Sierpinski Gasket” [92] which exhibits clear self-similar
structure. Furthermore, rule 22 is a 1D mapping of the 2D Game of Life CA (known
to have the capability for universal computation [104]) and in this sense is referred
to as “life in one dimension” [115], and complex structure in the language generated
by iterations of rule 22 has been identified [116]. Also, we report here that we have
investigated the C1 complexity measure [117] (an enhanced version of the variance of
the input entropy [62]) for all ECAs, and found rule 22 to clearly exhibit the largest
value of this measure (0.78 bits to rule 110’s 0.085 bits). Similarly, the statistical
complexity [20, 51, 65] measure is larger for rule 22 than rules 54 and 110 (at 4.22,
3.80 and 3.91 bits respectively).14

On the other hand, suggestions that rule 22 is not complex include its high sensi-
tivity to initial conditions and perturbations leading to Wolfram and Grassberger clas-
sifying it as class III chaotic [92, 114]. Gutowitz and Domain [95] claim this renders
it as chaotic despite the subtle long-range effects it displays, further identifying its
fast statistical convergence, and exponentially long and thin transients in state space
(see [62]).

14 Measured using the CimulA package [100] over 600 time steps of 100000 cells, with light cone
depths of 3 time steps.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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Importantly, no coherent structures (particles, collisions, etc.) are found for rule
22 using a number of filters (e.g. local statistical complexity [51]). This reflects the
paradigm shift to an examination of local dynamics rather than generic, overall or
averaged analysis. In our approach, we seek to combine this local viewpoint of the
dynamics with a quantitative breakdown of the individual elements of computation,
and will investigate the computation of rule 22 in this light.

2.3.5 Filtering Structure in Cellular Automata

Measuring the local information dynamics of computation at each space-time point
in a CA will create spatiotemporal profiles which can be viewed as a method of
filtering the CA. As previously suggested, several methods already exist for filtering
the important structural elements (i.e. particles) in CAs [51, 52, 62, 94, 118, 119].
These will provide an important basis for comparison to our spatiotemporal profiles.

The earliest methods were hand-crafted for specific CAs (relying on the user
knowing the period of background domains) by Grassberger [118, 119]. Later meth-
ods can be automatically applied to any given CA, including finite state transducers
to recognise the regular spatial language of the CA using ε-machines by Hanson and
Crutchfield [94, 120]. Helvik et al. use local information (i.e. local spatial entropy
rate) [52]. Wuensche displays executing rules with the most frequently occurring
rules filtered out [62]. Shalizi et al. use local statistical complexity (via the light-cone
formulation) and local sensitivity [51]. All of these successfully highlight particles
against the background domain. Note the use of several local information-theoretic
measures here (since only local measures, not averages, provide values at every
spatiotemporal point).

Obviously, filtering is not a new concept, however the ability to separately filter
each of the information dynamics of computation would be novel. Most importantly,
it would be the first quantitative study of the dynamics of each of these computa-
tional operations within the CA. In potentially separating the emergent structures
representing each of the information dynamics, this would provide the first quantita-
tive evidence for their computational roles. It would also show how these operations
interrelate to give rise to complex behaviour, in comparison to other filters which give
only a single view of where that complexity occurs. This would allow a more refined
investigation than single measures, and should reveal interesting differences in the
parts of the emergent structures that are highlighted. Furthermore, these measures
will be generally applicable to any multivariate time-series, unlike some of the filter-
ing measures here (e.g. spatial ε-machines [94, 120] and spatial entropy rate [52])
which are only applicable to lattice systems.15

15 Lattice systems are those with a regular spatial ordering for their agents or variables, typically
being placed on a one or two-dimensional array.
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2.4 The Dynamics of Networks

Complex systems science has been particularly successful in the study of network
topology (e.g. see [30, 121]), where the key concepts of small-world [5, 7] and
scale-free [6, 122, 123] structures have attracted an enormous amount of attention.
In particular, this is because both such topologies are found to be widespread amongst
naturally occurring and man-made systems. Small-world topologies balance fixed
and random network structures to provide both short path length and high clustering
(or from another perspective, provide high global and local efficiency of commu-
nication [124]). That small-world networks represent a balance between fixed and
random structures resonates with observations that complex systems balance ordered
and chaotic properties (see Sect. 2.1.1). Scale-free topologies display a distribution
of the degree of nodes (i.e. number of connections to other nodes) that is inversely
proportional to the degree (sometimes called a 1/ f distribution). The arising of scale-
free topologies can be explained via the principle of “preferential attachment” [6,
122]—that new nodes introduced to the system preferentially make connections to
nodes in proportion to their existing number of connections (because connections
to well-connected nodes will prove more rewarding in some sense). A scale-free
distribution is highly structured, and is considered to be a signature of self-organised
criticality (see [24, 25]).

Yet the time-series behaviour or dynamics on networks have received less attention
and are “much less well understood” [9]. There is a deep need for fundamental
insights into network dynamics, and how these are related to the underlying structure
[125]. Indeed Barabási, who introduced the concept of preferential attachment, states
that “we need to tackle the next frontier, which is to understand the dynamics of the
processes that take place on networks” [8]. Similarly Watts, who introduced the
small-world networks concept, states that “next to the mysteries of dynamics on a
network—whether it be epidemics of disease, cascading failure in power systems,
or the outbreak of revolutions—the problem of networks that we have encountered
up to now are just pebbles on the seashore” [7].

To some degree, the time-series dynamics of state-space trajectories and damage
spreading are established, e.g. [126–129]. However, Barabási states that a major
problem here is the diversity of types of dynamical process, and wonders whether
“these dynamical processes share some common characteristics? I suspect that such
commonalities do exist; we just have not yet found the framework to unveil their
universality” [8]. He goes on to suggest that if such a framework were to be found,
then “combined with the universality of the network topology, we may soon have
something that could form the foundation of a theory of complexity” [8].

We believe that the abstract nature of information theory places it as an ideal
candidate for investigating and comparing dynamics across different network types,
and revealing their commonalities. In particular, the information dynamics of com-
putation align with the way many authors talk about dynamics on networks. This
is underlined by Mitchell [9] who suggests that “the main challenge is understand-
ing the dynamics of the propagation of information…in networks, and how these
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networks process such information.” Later, Mitchell also states that “understanding
the ways in which information spreads in networks is one of the most important open
problems in science” [2].

These views are echoed in several studies which have investigated the propagation
and the processing of information in networks, in particular reporting maximisations
of these properties at (approximate) phase transitions between ordered and chaotic
regimes. Solé and Valverde [67] investigated the effect of varying the message gen-
eration rate in a model of computer networks, finding phase transitions maximising
the number of packets actually delivered and the mutual information in the status of
random node pairs. They infer that information transfer is maximised at the critical
state. Kinouchi and Copelli [80] investigated varying the “branching ratio” (effec-
tively an activity level) in a network of excitable elements, finding phase transitions
maximising the dynamic range of the element’s output, and inferring a maximisation
of information processing at criticality. The spread of information was investigated
in [130] under a number assumptions of average diffusion behaviour in a stochastic
network model, finding better spread of information in scale-free rather than com-
pletely random networks. These investigations align with much conjecture regarding
computational properties being maximised at the edge of chaos between ordered and
chaotic behaviour, e.g. [15, 16, 103].

We are particularly interested in investigating the information dynamics of ran-
dom Boolean networks (RBNs) ([16], and see [131]), in part because of the power
in their generality as discrete dynamical network models with a large sample space
available. Also, they have a well-known phase transition from ordered to chaotic
dynamics, in terms of length of transients in phase space with respect to average
connectivity or activity level. We are also motivated by their popularity as models
of Gene Regulatory Networks (GRNs). Perhaps most importantly, there have been
several recent attempts to study the computational properties of RBNs (in particu-
lar information transfer) since they are useful generalised models of computation in
networks. Here, Ribeiro et al. [132, 133] measure mutual information in the states of
random node pairs as a function of connectivity in the network, and Rämö et al. [61]
measure the uncertainty (entropy) in the size of perturbation avalanches as a function
of an order parameter. Both find maximisation near the critical point, claiming that
their results imply maximisation of information propagation in this regime.

We are also interested in investigating the information dynamics of cascading
failure events [134, 135]. These are local failures that trigger avalanche mechanisms
with large effects over the whole network (e.g. catastrophic blackouts in power grids
[134, 136] and global failure in financial markets [125, 137]). Similar to studies of
damage spreading or perturbation avalanches on networks (e.g. [129, 138]), inves-
tigations of this concept consider how information spreads on the network; indeed:
“the phenomena of cascading failures emphasises the need to understand information
spreading and how it is affected by network structure” [2]. Often these cascades or
avalanches are directly identified with information transfer (e.g. waves of directional
change in schooling fish are referred to as “information cascades” [75]). Certainly
information transfer is an integral part of cascade dynamics, but the relationship
may not be as trivial as a one-to-one mapping. More generally, our interest lies in
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examining the way the network intrinsically processes information during these
extreme events. Make no mistake: during cascading failures, the network is in fact
computing its new stable state (attractor), so understanding this computation can help
understand the dynamics here.

While the aforementioned quantitative studies of computation on networks are
interesting, they do not directly measure the information dynamics claimed; e.g.
none of the purported measures of information transfer properly measure directed,
dynamic flows of information. Measures of model or task specific properties (e.g. in
[61, 67, 80, 130]) are qualitatively appealing but give no insights into the underlying
quantitative nature of the information dynamics, while mutual information between
random pairs of nodes (by Ribeiro et al. [132] and Solé and Valverde [67]) measures
dynamic correlation across the collective which may result from an information
transfer but is not a measure of it. We also note the more generic measures of “infor-
mation transfer” and “efficiency in transporting information” presented in [69, 124]
respectively, however they are static measures of structure rather than measures of a
directed, dynamic flow of information.16

A framework for the information dynamics of distributed computation would
allow significant insights into computation in networks. In particular, it could be
used to produce satisfactory quantitative insights into whether the computational
properties of networks are indeed maximised near order-chaos phase transitions. It
could also clarify the relationship between damage spreading and information trans-
fer. Furthermore, such a framework would be used to provide quantitative answers
on how network structure gives rise to computational properties.

In this section, we introduce RBNs as an important model of time-series dynamics
on networks. RBNs are illustrative of complex systems perspectives in this domain.
A model for cascading failures on networks will be introduced in Sect. 6.2.1. These
two models will be used in Chap. 6 to study the nature of information dynamics in
networks and phase transitions.

2.4.1 Random Boolean Networks as a Model of Dynamic
Network Behaviour

Random Boolean networks (RBNs) are a class of generic discrete dynamical network
models. They are particularly important in artificial life, since they were proposed
as models of gene regulatory networks by Kauffman [16]. Indeed Boolean networks
have been successfully used to model various GRNs (e.g. the regulatory network
controlling metabolism in E. coli [139, 140] and the cell-cycle regulatory network
of fission yeast [141]). They are also useful as generalised models of computation in
networks. See also [131] for another thorough introduction to RBNs.

16 The work in [69] is part of an interesting trend towards the use of information-theoretic measures
to study network topology, e.g. see also [70]. Though information-theoretic, since these measures
study topology rather than time-series dynamics they remain out of scope here.

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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An RBN consists of N nodes in a directed network structure. The nodes take
Boolean state values, and update their state values in time as a deterministic function
of the state values of the nodes from which it has incoming links. The network
topology (i.e. the adjacency matrix) is determined at random, subject to whether the
in-degree for each node is constant or stochastically determined given an average
in-degree K (giving a Poissonian distribution). It is also possible to bias the network
structure, e.g. toward scale-free degree distribution [142]. Given the topology, the
deterministic Boolean function or lookup table by which each node computes its
next state from its neighbours is also decided at random for each node, subject to a
probability p of producing “1” outputs (p close to 1 or 0 gives low activity, close to
0.5 gives high activity). The nodes here are heterogeneous agents: there is no spatial
pattern to the network structure (indeed there is no inherent concept of locality
from a global perspective), nor do the nodes have the same update functions.17

Importantly, the network structure and update functions for each node are held static
in time (“quenched”). In classical RBNs (CRBNs), the nodes all update their states
synchronously.18

It is worth noting that CAs are a sub-class of RBNs, with lattice-style ordering
of the nodes and their connections, and homogeneous update rules [127]. So in a
similar fashion to CAs, note that the synchronous nature of CRBNs, their Boolean
states and deterministic update functions give rise to a global state X for the network,
with deterministic transient trajectories through a state-space ultimately leading to
either fixed or periodic attractors in finite-sized networks [127] (and see Sect. 2.3.2).
Effectively, the transient is the period in which the network is computing its steady
state attractor.

RBNs are known to exhibit three distinct phases of dynamics, depending on their
parameters: ordered, chaotic and critical. The characteristics of these phases are
similar to those described for CAs (see Sect. 2.3.2). At relatively low connectivity (i.e.
low degree K ) or activity (i.e. p close to 0 or 1), the network is in an ordered phase,
characterised by high stability of states and strong convergence of similar macro
states in state space. Alternatively, at relatively high connectivity and activity, the
network is in a chaotic phase, characterised by low stability of states and divergence
of similar macro states. In the critical phase (described as the edge of chaos [15]),
there is percolation in nodes remaining static or updating their values, and uncertainty
in the convergence or divergence of similar macro states. The phase is also associated
with large correlation lengths [103], similar to complex behaviour in CAs.

This phase transition is typically quantified using a measure of sensitivity to ini-
tial conditions, or damage spreading. We will describe a measure for this purpose in
Sect. 6.1.1. It is important to note that (as per all many-body phase transitions, e.g. in

17 Though, of course either of these can arise at random.
18 There has been some debate about the best updating scheme to model GRNs [143], and variations
on the synchronous CRBN model are known to produce different behaviours. However, the relevant
phase transitions are known to exist in all updating schemes, and their properties depend more on
the network size than on the updating scheme [144]. As such, the use of CRBNs is justified for
ensemble studies such as ours [128].

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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the Ising model [145]) RBNs only exhibit a phase transition with truly discontinuous
changes in system properties with continuous changes in parameters in the infinite-
size limit [132]. Finite-size networks exhibit approximate phase transitions with: a
continuous change in system properties with respect to parameters [132], variation
in these properties over network realisations (which becomes lower at larger net-
work sizes) [61, 132], and a shift of the critical point to a region centred on larger
connectivities [144].

Much has been speculated on the possibility that gene regulatory and other bio-
logical networks function in (or evolve to) the critical regime (see [131]). It has been
suggested that computation occurs more naturally with the balance of order and chaos
there [15], possibly with information storage, propagation and processing capabili-
ties maximised [16]. This is of course generalised in the “edge of chaos” hypothesis
[15]: that systems exhibiting critical dynamics in the vicinity of a phase transition
maximise their computational capability (see earlier discussion in Sect. 2.3.3). Here
we seek to improve on previous attempts to measure these computational properties,
with a thorough quantitative study of the information dynamics in RBNs.

2.5 Guided Self-Organisation

The principle of self-organisation is well known to offer the advantages of flexi-
bility, robustness and scalability over centralised systems [73]. As such, it is often
employed in the design of artificial systems for which these traits are desirable. Most
self-organised solutions are currently designed in an ad-hoc manner, since the fun-
damental nature of self-organisation remains poorly understood. Some designers use
an approach specifically tailored to the problem, e.g. [34]. More generally, designers
use a genetic algorithm (GA) or programming (GP) approach, with fitness func-
tions measuring specific achievement of the task required of the system (task-based
evolution), e.g. [146].

Task-based evolution, this incumbent method of designing self-organised sys-
tems, can be impractical. Hand-crafting fitness functions for every task can be time-
consuming and tedious, and requires specialised human understanding of the task.
It has the potential to under-specify the problem (thereby solving a different task) or
perhaps over-specify it (leading to an inflexible design). Also, the intelligent designer
may not be completely sure of how to measure performance of the required task, or
this may be difficult (e.g. measuring speed may require extra sensors). Coupling
evolution with learning can be helpful, however specifying rewards for reinforce-
ment learning suffer the same problem regarding measurement of the task [147].
Furthermore, if the initial task-based fitness landscape is flat and features no gra-
dients, task-based evolution has no foothold around which to begin designing a
solution. Finally, evolution often delivers intricate solutions of which (human) sys-
tem managers cannot understand the inner workings: this is particularly undesirable
for critical systems where maintenance or prediction of behaviour is required.
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As an alternative, the concept of guided self-organisation proposes the use
of information-theoretic measures to guide the emergence of required informa-
tion processing structure in self-organised systems [10]. This perspective has been
prompted by observations of complexity to grow or necessary information-theoretic
structure to emerge during task-based evolution. For example, growth of complex-
ity has been observed during evolution in artificial life (ALife) simulation envi-
ronments, e.g.: by measuring “physical complexity” in Avida [31], and under cer-
tain conditions by measuring neural (TSE) complexity of evolved agents in Poly-
World [148–150]. Looking at evolution for particular tasks, Prokopenko et al. [151]
observed coordination (measured as excess entropy, see Eq. (2.18)) to increase in
snake-like robots evolved for maximum velocity, and [152] observed a decrease
in entropy in a swarm evolved for coordinated motion. Also, Ay et al. [153]
observe that predictive information (see Eq. (2.20) with k = 1) is maximised for an
autonomous robot exhibiting behaviour that is both “explorative and sensitive to the
environment”.

These observations suggest that such information-theoretic measures could be
used themselves to guide self-organisation. This idea is fundamentally based on the
theory that information structure is vital to the emergence of self-organised intelli-
gence [154]. The concept could provide a consistent framework for the evolutionary
design of self-organised systems, using template-based evolution for fundamental
computational tasks that underpin the system goal. In theory, this approach would
be able to produce useful structure where task-based evolution faces initially flat
task-based fitness landscapes, perhaps serving as a platform from which to launch
better-equipped task-based evolution. Furthermore, it may provide solutions which
are simpler for humans to understand in terms of the underlying information dynam-
ics. Perhaps most important is the potential for this approach to provide insight into
the emergence rather than engineering of intelligence [154], and thereby facilitate
unsupervised learning.

Several examples of successful guided self-organisation using information-
theoretic measures exist in the literature. An interesting example is the concept of
empowerment presented by Klyubin et al. [155, 156]. This concept refers to an agent’s
self-perception of its influence over the environment and is measured as the channel
capacity of an agent’s perception-action loop. Maximisation of empowerment has
been shown to induce a necessary structure in an agent’s behaviour, and indeed such
maximisation has been suggested to be an intrinsic selection pressure.19 Sporns and
Lungarella [157] have evolved hand-eye co-ordination to grab a moving object using
maximisation of neural (TSE) complexity. Interestingly, they demonstrated that this
solution contained more intrinsic diversity than solutions from task-driven evolution;
the increased diversity may afford greater flexibility to the system. Prokopenko et
al. [73] were able to evolve fast-moving snake-like robots using maximisation of the
excess entropy (see Eq. (2.18)) as an information-theoretic measure of co-ordination.

19 The justification or otherwise of the suggestion that natural evolution is driven by the intrinsic
forces of information processing is irrelevant to whether information-driven design can be used as
a successful tool for artificial systems.
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Also, Sperati et al. [158] have observed interesting periodic behaviour and complex
structure in groups of robots which were evolved to maximise their mutual infor-
mation. Note that the “guiding” could be through learning rather than evolution,
e.g. the concept of “homeokinesis” [147, 159] which seeks to develop information
structure in an agent by having it adapt to minimise the error of an internal model of
its behaviour.

We suggest that utilising an understanding of distributed computation is a
key approach for guided self-organisation using information-theoretical measures.
Fernández and Solé [103] observe that since biological systems perform computa-
tions, there is an evolutionary pay-off in nature for this capability. There is good
reason to expect this in artificial systems too, since any task we wish the system to
achieve involves some form of computation. Indeed, Von Neumann believed that an
understanding of distributed computation in CAs “would be essential …for design-
ing artificial complex systems” ([88] describing [96]). To be specific, we suggest
that the information dynamics of distributed computation provide the most intuitive
basis here. As previously discussed, these information dynamics are the primitive
functions of Turing universal computation, i.e. information storage, transfer and
modification. As such, using a framework for distributed computation allows us to
target the design toward the computational requirements of the task at hand, i.e.
selecting either the most relevant computational function as the fitness function, or
balancing the functions in a more sophisticated manner. Indeed, this perspective will
provide insights to the related field of unconventional computation, which specif-
ically seeks to design systems with greater capabilities than traditional computers
[160]. Importantly, using such a framework provides a basis through which to under-
stand the computation carried out by the solution. Also, guiding a system toward
the building blocks of distributed computation is an intuitive way to facilitate the
emergence of collective intelligence.

Information transfer is an important candidate fitness function to be investigated
here. It has been conjectured that information transfer can give rise to interesting
behaviour and induce necessary structure in a multi-agent system [73]. One inspi-
ration of this viewpoint is the aforementioned concept of empowerment [155, 156],
which has been shown to induce necessary structure in an agent’s behaviour. This
concept is relevant here since it alludes to information transfer in being quantified
as the channel capacity between an agent’s actuators and sensors through the envi-
ronment. Also, several authors have attributed a key role to information transfer
in facilitating the emergence of complex computation near the critical dynamics
of order-chaos phase transitions [15, 17, 67]. Some have inferred maximisation of
information transfer in the critical state [17, 67], however evidence has not yet been
provided from a directed, dynamic measure of information transfer. Also, informa-
tion transfer is said to be manifested in “information cascades” spreading across
schools of fish [75]. Such mechanisms are biologically crucial, because they can
transmit information at a faster speed than that of an incoming predator, with such
computational capability providing an evolutionary advantage. We will investigate
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the manner in which information transfer can be harnessed in approaches to guided
self-organisation in Sect. 8.3.

2.6 Opportunity to Quantify the Information Dynamics
of Distributed Computation

In this chapter we have described complex systems, and the growing extent to which
the perspective of distributed computation (using measures of information theory) is
being used for the analysis and design of these systems. We have focussed on three
specific domains (cellular automata, network dynamics and guided self-organisation)
in order to describe current understanding of distributed computation. Each of these
cases highlighted the specific need for and opportunity to provide a framework to
quantify the information dynamics of distributed computation in complex systems.
In particular, they have highlighted the need for these operations to be quantified on
a local scale in space and time. We hypothesise that if we can describe and quantify
distributed computation in terms of information storage, transfer and modification,
then we will be better able to understand distributed computation in nature and its
sources of complexity.

For CAs in particular, such a framework has the potential to quantitatively confirm
the computational role of emergent structures, making a fundamental contribution to
our understanding of the nature of distributed computation. As such, CAs will be used
as the primary application area to study the measures we propose for this framework in
the coming chapters. We emphasise that our approach is not to quantify computation
or overall complexity, nor to identify universal computation or determine what is
being computed. It is simply intended to quantify the component operations in space-
time. We will examine how these operations interact in order to give rise to complex
computation.

Similarly, we will investigate whether these information dynamics are maximised
in order-chaos phase transitions. Phase transitions in networks provide a particularly
important application area for these investigations. Furthermore, this framework has
the potential to provide widely-anticipated insights into the dynamics in networks,
and how these relate to topology, in a manner that can be compared across network
types and address concepts of general interest (e.g. information transfer).

Crucially, considerations of information storage [72–74], transfer [75, 76, 161]
and modification [79, 80, 83] extend well beyond these central application areas.
We believe that the development of such a framework, and the insights it would
provide from these application areas, would have significant impact on the whole of
complex systems science. Importantly, it would be relevant in both analysis (e.g. in
computational neuroscience as we demonstrate in Sect. 8.2), and design (i.e. in the
context of guided self-organisation as we show in Sect. 8.3). In the next chapter we
will begin describing our original contribution of this framework by considering the
operation of information storage.

http://dx.doi.org/10.1007/978-3-642-32952-4_8
http://dx.doi.org/10.1007/978-3-642-32952-4_8
http://dx.doi.org/10.1007/978-3-642-32952-4_8
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Chapter 3
Information Storage

Information storage is considered an important aspect of the dynamics of many
natural and man-made processes, for example: in human brain networks [1] and arti-
ficial neural networks [2], synchronisation between coupled systems [3], coordinated
motion in modular robots [4], and in the dynamics of inter-event distribution times
[5]. The term is still often used rather loosely or in a qualitative sense however, and
as yet we do not have a good understanding of how information storage interacts
with information transfer and modification to give rise to distributed computation.

In this chapter we outline methods to quantify information storage in distributed
computation.1 We define the concept as the information in an agent or variable’s past
that can be used to predict its future. We describe how total storage is captured by the
existing measure excess entropy in Sect. 3.1, and introduce active information storage
in Sect. 3.2 to capture the amount of storage that is currently in use. In particular we
focus on describing how these measures can be used to quantify information storage
on a local scale in space-time in distributed computation (in Sects. 3.1.2 and 3.2.1).
Our perspective of distributed computation is important, providing the perspective
that information can not only be stored internally by an agent, but also stored in its
environment for later retrieval.

We present the first application of local profiles of both measures to cellular
automata in Sect. 3.3. As hypothesised in Sect. 2.3 these applications provide the
first quantitative evidence that blinkers are the dominant information storage entities
there. This result is significant in marrying these quantitative measures of information
storage with the popularly-understood qualitative notion of its embodiment in dis-
tributed computation. The application also demonstrates the manner in which these
two measures of information storage are distinct but complementary.

1 The methods and results in this chapter were first reported in [6, 7].
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3.1 Excess Entropy as Total Information Storage

Discussion of information storage or memory in CAs has often focused on periodic
structures (particularly in construction of universal Turing machines), e.g. [8]. How-
ever, information storage does not necessarily entail periodicity. The excess entropy
(Eqs. 2.18, 2.19) more broadly encompasses all types of structure and memory by
capturing correlations across all lengths of time, including non-linear effects. The
predictive information formulation of the excess entropy in Eq. (2.19) (i.e. as the
information from a system’s past that can be used to predict its future) makes explicit
that it is a measure of the total information storage in a system. In this section, we
describe how the excess entropy is used to measure single-agent and collective infor-
mation storage in Sect. 3.1.1. We also discuss how information storage in an agent’s
environment in a distributed computation increases its information storage capacity
beyond its internal capability. subsequently in Sect. 3.1.2 we describe how the excess
entropy can be localised in time and space.

3.1.1 Single-Agent and Collective Excess Entropy

We use the term single-agent excess entropy (or just excess entropy) to refer to
measuring the quantity EX for individual agents X or cells Xi using their one-
dimensional time series of states. This is a measure of the average memory for each
agent.

The predictive information form Eq. (2.20) EX (k) = IX (k);X (k+) , shows that the

maximum excess entropy is the information capacity in sequences of k states X (k).
In ECAs for example, this is 2k bits. In the limit k → ∞, this becomes infinite.
Mathematically then, the information stored by a single agent can be larger than the
information capacity of a single state. Where the agent takes direct causal influence
from only a single past state (as in CAs), the meaning of its information storage
being larger than its information capacity is not immediately obvious. For instance, a
cell in an ECA could not store more than 1 bit of information in isolation. However,
the cells in a CA are participating in a distributed computation: cyclic causal paths
(facilitated by bidirectional links) effectively allow cells to store extra information
in neighbours (even beyond the immediate neighbours), and to subsequently retrieve
that information from those neighbours at a later point in time.While measurement
of the excess entropy does not explicitly look for such self-influence communicated
through neighbours, it is indeed the channel through which a significant portion of
information can be communicated. This self-influence between semi-infinite past
and future blocks being conveyed via neighbours is indicated by the curved arrows
in Fig. 3.1a. It is akin to the use of stigmergy (indirect communication through the
environment, e.g. see [9]) to communicate with oneself. Indeed, because information
may be stored and retrieved from one’s neighbours, an agent can store information
regardless of whether it is causally connected with itself.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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(a) (b)

Fig. 3.1 Measures of single-agent information storage in distributed systems. a Excess entropy:
total information from the cell’s past that can be used to predict its future. b Active information
storage: the information storage that is currently in use in determining the next state of the cell. The
stored information can be conveyed directly through the cell itself or via neighbouring cells. (NB:
This figure is reprinted from [7] with permission of Elsevier.)

Information storage exceeding single-state information capacity is then a perfectly
valid result. Indeed in an infinite CA, each cell has access to an infinite number of
neighbours in which to store an infinite amount of information that can later be used
to influence its own future. Since the storage medium is shared by all cells though,
one should not think about the total memory as the total number of cells N multiplied
by this amount (i.e. to give N EX ).

The average total memory stored in a collective of agents (e.g. a set of neigh-
bouring cells in a CA) is properly measured by the collective excess entropy. It
is measured as temporal excess entropy of the agents using their two-dimensional
time series of states. It is a joint temporal predictive information, i.e. the mutual
information between the joint past X(k) and future X(k+) of the agents:

EX = lim
k→∞ IX(k);X(k+) , (3.1)

This collective measurement takes into account the inherent redundancy in the
shared information storage medium (which N EX does not). Collective excess
entropy could be used for example to quantify the “undiscovered collective memory
that may present in certain fish schools” [10].

As described in Appendix B, Grassberger found divergent collective excess
entropy for several CA rules, including rule 22 [11, 12].2 This infinite amount of col-
lective memory implies a highly complex process, since in using strong long-range
correlations a semi-infinite sequence “could store an infinite amount of information
about its continuation” [13]. On the other hand, infinite collective excess entropy can

2 Lindgren and Nordahl [13] also measured excess entropy (referred to as effective measure com-
plexity) for some ECAs. They measured spatial excess entropies however, and we note that it is
only temporal excess entropies which are interpretable as information storage from our perspective
of distributed computation.
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also be achieved for systems that only trivially utilise all of their available memory
(see Appendix B). In attempting to quantify local information dynamics of distrib-
uted computation here, our focus is on information storage for single agents or cells
rather than the joint information storage across the collective. Were the single-agent
excess entropy found to be divergent (this has not been demonstrated), this may be
more significant than for the collective case. This is because it would imply that all
agents are individually strongly utilising the resources of the collective in a highly
complex process.

Our focus is however on locally quantifying information storage in both time
and space. We hypothesise this will provide much more detailed insights than sin-
gle ensemble values into information storage structures and their involvement in
distributed computation.

3.1.2 Local Excess Entropy

The local excess entropy is a measure of how much information a given agent is
currently storing at a particular point in time. To derive it, note that (as per Sect. 2.2.2)
the excess entropy of a process is actually the expectation value of the local excess
entropy for the process at every time step [14].3 Using the predictive informa-
tion formulation,4 the local excess entropy eX (n + 1) of a process is simply the
local mutual information between the semi-infinite past and future at the given time
step n + 1:

EX = 〈eX (n + 1)〉n , (3.2)

eX (n + 1) = lim
k→∞ i(x (k)

n ; x (k+)
n+1 ), (3.3)

eX (n + 1) = lim
k→∞ log2

p(x (k)
n , x (k+)

n+1 )

p(x (k)
n )p(x (k+)

n+1 )
. (3.4)

Recall from Sect. 2.2.1 that the semi-infinite past x (k)
n runs up until the previous

time step n, while the semi-infinite future x (k+)
n+1 runs from the next time step n + 1

onwards. The limit k → ∞ is an important part of this definition [carried over from
Eq. (2.19)], since correlations at all time scales should be included in the computation
of information storage. Since this is not computationally feasible in general, we retain
the following notation for finite-k estimates:

3 This is as per Shalizi’s original formulation of the local excess entropy in [14], however our
presentation is for a single time-series rather than the light-cone formulation used there.
4 Certainly the formulation of entropy rate overestimates in Eq. (2.18) could be used to directly
form alternative localisations e′

X also, and in the limit k → ∞ their averages EX will be the same.
However, only the local formulation from the predictive information captures the total information
stored at a particular temporal point, which is our quantity of interest here.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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EX (k) = 〈eX (n + 1, k)〉n , (3.5)

eX (n + 1, k) = i(x (k)
n ; x (k+)

n+1 ), (3.6)

= log2
p(x (k)

n , x (k+)
n+1 )

p(x (k)
n )p(x (k+)

n+1 )
, (3.7)

eX (n + 1) = lim
k→∞ eX (n + 1, k). (3.8)

The notation is generalised for lattice systems (such as CAs) with spatially-ordered
agents to represent the local excess entropy for cell Xi at time n + 1 as:

e(i, n + 1) = lim
k→∞ log2

p(x (k)
i,n , x (k+)

i,n+1)

p(x (k)
i,n )p(x (k+)

i,n+1)
, (3.9)

= lim
k→∞ e(i, n + 1, k). (3.10)

Local excess entropy is defined for every spatiotemporal point (i, n) in the system
(where i is a spatial index and n is a time index). Note that the collective excess
entropy EX can also be localised, but only in time, to have eX(n + 1, k).

While the average excess entropy is always positive, the local excess entropy may
in fact be positive or negative, meaning the past history of the cell can either positively
inform us or actually misinform us about its future. An observer is misinformed where
the semi-infinite past and future are relatively unlikely to be observed together as com-
pared to their independent likelihoods. In other words, an observer is misinformed
when the observed future is conditionally less likely given the observed past than

without considering the past. In this situation we have p(x (k+)
n+1 | x (k)

n ) < p(x (k+)
n+1 )

making the denominator of Eq. (3.4) greater than the numerator, and giving a negative
value for eX (n + 1).

3.2 Active Information Storage as Storage in Use

The excess entropy measures the total stored information which will be used at some
point in the future of the state process of an agent. This information will possibly
but not necessarily be used at the next time step n + 1. Since the dynamics of
computation unfold one step at a time, we are quite interested in how much of the
stored information is actually in use at the next time step when the new process value
is computed. As we will see in Chap. 5, this is particularly important in understanding
how stored information interacts with information transfer in information processing.
As such, we derive active information storage AX as the average mutual information
between the semi-infinite past of the process X (k) and its next state X ′, as opposed
to its whole (semi-infinite) future:

http://dx.doi.org/10.1007/978-3-642-32952-4_5
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AX = lim
k→∞ AX (k), (3.11)

AX (k) = I (X (k); X ′). (3.12)

We use AX (k) to represent finite-k estimates. The active information storage is
represented in Fig. 3.1b. Of course, one could also define a collective active infor-
mation storage AX.

3.2.1 Local Active Information Storage

Following Sect. 2.2.2, the local active information storage aX (n + 1) is then a
measure of the amount of information storage in use by the process at a particular
time-step n + 1. It is the local mutual information between the semi-infinite past of
the process and its next state:

AX = 〈aX (n + 1)〉n , (3.13)

aX (n + 1) = lim
k→∞ aX (n + 1, k), (3.14)

AX (k) = 〈aX (n + 1, k)〉n , (3.15)

aX (n + 1, k) = lim
k→∞ log2

p(x (k)
n , xn+1)

p(x (k)
n )p(xn+1)

, (3.16)

= lim
k→∞ i(x (k)

n ; xn+1). (3.17)

As for the excess entropy, note that we have retained notation for finite-k estimates
here.

Again, we generalise the measure for agent Xi in a lattice system as:

a(i, n + 1) = lim
k→∞ log2

p(x (k)
i,n , xi,n+1)

p(x (k)
i,n )p(xi,n+1)

, (3.18)

= lim
k→∞ a(i, n + 1, k), (3.19)

We note that the local active information storage is defined for every spatiotempo-
ral point (i, n) in the lattice system. We have A(i, k) = 〈a(i, n, k)〉n . For systems of
homogeneous agents where the PDFs are estimated over all agents, it is appropriate
to average over all agents also, giving:

A(k) = 〈a(i, n, k)〉i,n . (3.20)

The average active information storage will always be positive (as for the excess
entropy), but is limited by the amount of information that can be used in the next state.

http://dx.doi.org/10.1007/978-3-642-32952-4_2


3.2 Active Information Storage as Storage in Use 59

This is, it is bounded above by the average information capacity of a single state (e.g.
log2 b bits where the agent only takes b discrete states). The local active information
storage is not bound in this manner however, with larger values indicating that the
particular past of an agent provides strong positive information about its next state.
Furthermore, the local active information storage can be negative, where the past
history of the agent is actually misinformative about its next state. Similar to the
local excess entropy, an observer is misinformed where the probability of observing
the given next state in the context of the past history, p(xn+1 | x (k)

n ), is lower than
the probability p(xn+1) of observing that next state without considering the past.

3.2.2 Active Information Storage and Entropy Rate

The average information required to predict the next state for agent X is simply
the single cell entropy HX (Eq. (2.1)). We use the mutual information expansion
of Eq. (2.8) to express this entropy in terms of the active information storage and
entropy rate estimates5:

HX ′ = IX ′;X (k) + HX ′|X (k) , (3.21)

HX ′ = AX (k) + HμX (k). (3.22)

Logically, we can restate this as: the information to compute or predict a given
state is the amount predictable from its past (the active memory) plus the remaining
uncertainty after examining this memory.

This equation makes explicit our interpretation of information storage in distrib-
uted computation. It is the information in the past that is observed to contribute to
the computation of the next state. Whether this information is actually causal for that
next state, either directly or indirectly through neighbouring agents, is irrelevant for
this perspective.6

3.2.2.1 Relationship in Local Notation

This relationship can be expressed in local notation also. By way of preliminaries,
we represent the local entropy as:

h X (n + 1) = h(xn+1) = − log2 p(xn+1), (3.23)

5 These equations are correct not only in the limit k → ∞ but for estimates with any value of k ≥ 1.
6 The distinction between causal effect and the perspective of computation is explored in Chap. 4.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_4
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and in local lattice notation as:

h(i, n + 1) = h(xi,n+1) = − log2 p(xi,n+1). (3.24)

We have HX = 〈h X (n)〉n , H(i) = 〈h(i, n)〉n and in homogeneous systems
H = 〈h(i, n)〉i,n .

Also, the local temporal entropy rate estimate is represented as:

hμX (n + 1, k) = h(xn+1 | x (k)
n ) = − log2 p(xn+1 | x (k)

n ). (3.25)

The estimate is only completely accurate in the following limit:

hμX (n + 1) = lim
k→∞ − log2 p(xn+1 | x (k)

n ). (3.26)

In local lattice notation we can express the estimates as:

hμ(i, n + 1, k) = h(xi,n+1 | x (k)
i,n ) = − log2 p(xi,n+1 | x (k)

i,n ). (3.27)

Again, we have HμX (k) = 〈hμX (n, k)〉n , Hμ(i, k) = 〈hμ(i, n, k)〉n and in homo-

geneous systems Hμ(k) = 〈hμ(i, n, k)〉i,n . Importantly, since p(xn+1 | x (k)
n ) ≤ 1

the local temporal entropy rate hμX (n + 1, k) ≥ 0.
Then, the relationship between the entropy, active information storage and entropy

rate can be expressed in local notation:

h X (n + 1) = aX (n + 1, k) + hμX (n + 1, k), (3.28)

h(i, n + 1) = a(i, n + 1, k) + hμ(i, n + 1, k). (3.29)

3.2.2.2 Excess Entropy in Terms of Active Information Storage

It is also possible to express the excess entropy in terms of estimates of the active
information storage. We rearrange Eq. (3.22) to get HμX (k) = HX ′ − AX (k), and
then substitute this into Eq. (2.18), getting:

EX =
∞∑

k=0

[AX − AX (k)] . (3.30)

This expression shows that the excess entropy is the sum of underestimates of the
active information storage at each finite history length k ≥ 0.

This relationship is displayed graphically in Fig. 3.2 in a similar fashion to the
plot for the excess entropy in terms of entropy rates in [15].7 Note that A(k) is non-

7 Note that our sum and the plot start from k = 0, unlike the expressions and plots in [15] which
start from L = 1. The difference is that we have adopted k = L − 1 (as per footnote 4 on p. 4) to

http://dx.doi.org/10.1007/978-3-642-32952-4_2


3.2 Active Information Storage as Storage in Use 61

Fig. 3.2 Active information
storage convergence: a plot
of estimates AX (k) versus
history length k as they con-
verge to the limiting value
AX . The shaded area is the
excess entropy E . (NB: This
figure is reprinted from [7]
with permission of Elsevier.)

decreasing with k; this is because increasing the time examined in history widens
the scope of temporal correlations that the measure can capture.

3.3 Local Information Storage in Cellular Automata

In this section, we evaluate the local measures within sample runs for the CA rules
described in Sect. 2.3.4. To do so, we estimate the required probability distribution
functions from CA runs of 10,000 cells, initialised from random states, with 600 time
steps retained (after the first 30 time steps were eliminated to allow the CA to settle).
Alternatively, for φpar we used 1,000 cells with 1,000 time steps retained. Periodic
boundary conditions were used. Observations taken at every spatiotemporal point
in the CA were used in estimating the required probability distribution functions,
since the cells in the CA are homogeneous agents. All conclusions were confirmed
by multiple runs from different initial states, and all CA plots were generated using
modifications to [16].

In this section we discuss the key results here:

• that one should use as large a history length k as possible to adequately measure
information storage (Sects. 3.3.1 and 3.3.2);

• the dominant storage entities in CAs are blinkers and domains (Sect. 3.3.2);
• negative information storage at particles represents the misinformation conveyed

by the storage there (Sect. 3.3.3);
• local entropy rate highlights the location of moving particles (Sect. 3.3.7); and
• we discuss minor information storage phenomena (Sects. 3.3.4—3.3.6).

(Footnote 7 continued)
keep a focus on the number of steps k in the past history, which is important for our computational
view.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Fig. 3.3 Active information
storage A(k) versus history
length k for ECA rule 110
(after [7])
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3.3.1 Appropriate History Lengths

As previously stated, these measures are only completely correct in the limit k → ∞,
however this limit is not computationally achievable. A logical question is what
history length k is reasonable to use, noting that setting k = 1 is something of a
default approach (e.g. for the excess entropy in [17]).

Figure 3.3 presents the average active information storage A(k) in CA rule 110 as
a function of history length k. In particular, we observe that using too small a value for
k (e.g. k < 5 in Fig. 3.3) can lead one to substantially underestimate the information
storage. Even in a system as apparently simple as a CA, the default k = 1 is clearly
inadequate. Obviously in measuring information storage one wants to capture all of
the temporal correlations and so use k → ∞. However, the selection of k is limited
not only by the amount of history available to examine, but also by the number of
observations available for probability distribution function estimation. If k is made
too large, the mutual information will be artificially inflated due to under-sampling.

One simple recommended heuristic is to select k to have at least three times as
many samples as possible state configurations [18], which would suggest keeping
k ≤ 19 here. More formally however, we select k to have at least M samples on
average for each observation in the typical set of state configurations [19, 20]. The
typical set refers to the set of state configurations where the “sample entropy is
close to the true entropy” of that joint state [19], and can be thought of as the set
of state configurations likely to be encountered frequently enough to contribute to
that entropy. For k length blocks of binary variables, the size of the typical set can
be approximated as 2hμk . For our purposes with A(k), we are considering k length
blocks plus the next state, so calculate the typical set for our state configurations as
2hμ(k+1). With hμ = 0.18 estimated using k = 16 for rule 110 (see Table G.1 in
Appendix G), we find the size of the typical set grows much more slowly with k
than the set of possible state configurations. This means that fulfilling a desire for
M > 10 for reasonable accuracy is easily fulfilled for rule 110 and most other rules
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using k ≤ 18. Indeed, it is only for rules with hμ → 1 (e.g. rule 30, see Table G.1 in
Appendix G) that M even approaches 10 with k ≤ 18; for most rules k ≤ 18 results
in a much larger average number of samples M >> 10 and therefore larger accuracy.
We elect to continue our CA investigations with the more strict condition k ≤ 16
however, since this satisfies the M > 10 condition for all ECAs for the measures we
consider in later sections (since these measures consider a higher-dimensional joint
space of k + 3 variables).

Figure 3.3 suggests that the majority of the information storage for rule 110 is
captured with k ≥ 7 or so, however this examination of the average values of A(k)

does not show explicitly why this is the case. Furthermore, these average values tell
us nothing about whether blinkers are dominant information storage structures, and
if so whether the information storage in them has been captured at these history
lengths. To understand these issues, we begin to examine the information storage on
a local scale in the next section.

3.3.2 Periodic Blinker and Domain Processes as Dominant
Storage

We begin by examining the local profiles for rules 54 and 110, which are known to
contain regular gliders against periodic background domains. For the CA evolutions
in Figs. 3.4a and 3.5a, the local profiles of e(i, n, k = 8) are displayed in Figs. 3.4b
and 3.5b, and the local profiles of a(i, n, k = 16) in Figs. 3.4c and 3.5c.8

It is quite clear that positive information storage is concentrated in the vertical
gliders or blinkers, and the domain regions. As expected, these results provide quan-
titative evidence that the blinkers are the dominant information storage entities.
This is because the cell states in the blinkers are strongly predictable from their past
history, since they are temporally periodic. It is only the local profiles that demonstrate
the strong information storage at these entities though. That the domain regions for
these rules also contain significant information storage should not be surprising,
since these too are periodic and so their past does indeed store information about
their future. In fact, the local values for each measure form spatially and temporally
periodic patterns in these regions, due to the underlying periodicities exhibited there.

Yet the local active information storage and local excess entropy yield subtly
different results here. While a(i, n, k = 16) indicates a similar amount of stored
information in use to compute each space-time point in both the domain and blinker
areas, e(i, n, k = 8) reveals a larger total amount of information is stored in the
blinkers. For the blinkers known as α and β in rule 54 [22] this is because the temporal
sequences of the centre columns of the blinkers (0–0–0–1, with e(i, n, k = 8) in the
range 5.01–5.32 bits) are more complex than those in the domain (0–0–1–1 and
0–1, with e(i, n, k = 8) in the range 1.94–3.22 bits), even where they are of the
same period. In principle, we could define a threshold iB to differentiate between the

8 Sub-figures (e)–(i) of these figures will be discussed in later chapters.



64 3 Information Storage

(a) (b) (c) 

(d) (e) (f)

(g) (h) (i)

Fig. 3.4 a Local information dynamics in rule 54 (35 time steps displayed for 35 cells, time
increases down the page for all CA plots). All profiles are discretised into 16 levels, with blue for
positive values and red for negative. b Local excess entropy, max. 11.79 bits, min. −12.35 bits;
c Local active information, max. 1.07 bits, min. −12.27 bits; d Local temporal entropy rate, max.
13.20 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell to the right, max. 7.93 bits, min.
−4.04 bits, f one cell to the left, max. 7.93 bits, min. −4.21 bits; Local complete transfer entropy:
g one cell to the right, max. 9.22 bits, min. 0.00 bits, h one cell to the left, max. 9.48 bits, min.
0.00 bits; i Local separable information, max. 8.40 bits, min. −5.27 bits. Note that the quantities in
(e)–(i) will be described in later chapters. (NB: Fig. 3.4a, c, e, f and i Reprinted with permission
from Lizier et al. [21] Copyright 2010, American Institute of Physics.)
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 3.5 a Local information dynamics in rule 110 (55 time steps displayed for 55 cells). Cells are
coloured blue for positive values and red for negative. b Local excess entropy, max. 10.01 bits, min.
−10.35 bits; c Local active information, max. 1.22 bits, min. −9.21 bits; d Local temporal entropy
rate, max. 10.43 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell to the right, max.
9.99 bits, min. −5.56 bits, f one cell to the left, max. 10.43 bits, min. −6.01 bits; Local complete
transfer entropy: g one cell to the right, max. 9.99 bits, min. 0.00 bits, h one cell to the left, max.
10.05 bits, min. 0.00 bits; i Local separable information, max. 5.47 bits, min. −5.20 bits (black).
(NB: Fig. 3.5a, c, e, f and i Reprinted with permission from Lizier et al. [21] Copyright 2010,
American Institute of Physics.)
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blinkers and domain using the local excess entropy. Note that we have the total stored
information e(i, n, k = 8) > 1 bit in these regions due to the distributed information
storage supported by bidirectional communication (as discussed in Sect. 3.1). This
mechanism supports these periodic sequences being longer than two time steps (the
maximum period a binary cell could sustain in isolation).

As another rule containing regular gliders against a periodic background domain,
analysis of the raw states of the density classification rule φpar in Fig. 3.6a pro-
vides similar results for e(i, n, k = 5) in Fig. 3.6b and a(i, n, k = 10) in Fig. 3.6c
here. One distinction is that the blinkers here contain no more stored information
than the domains, since they are no more complicated. Another distinction is
that the profiles of active information storage and excess entropy are more sim-
ilar here than for the other rules: this is because the domain patterns here are
very simple (with a period of at most 2), so a(i, n, k = 10) detects almost all
of the total information storage that is used in the future (the excess entropy)
here even though it only examines a single future step. Importantly, we con-
firm the information storage capability of the blinkers and domains in this human
understandable computation.

To further investigate the appropriate history length k for use with the information
storage measures, we examine the profiles of a(i, n, k = 1) and a(i, n, k = 7) for
rule 110 in Fig. 3.7. As per the low average value for A(k = 1) in Figs. 3.3, 3.7b
demonstrates that the use of k = 1 is inadequate here since it does not capture the
strong information storage in the gliders and domain regions that we see for the
profiles with k = 16. On the other hand, Fig. 3.7c shows that the use of k = 7 does
capture most of this strong information storage (compare to k = 16 in Fig. 3.5c),
in alignment with the average value for A(k = 7) approaching the limiting value
in Fig. 3.3. This is because the blinker and domain regions for rule 110 are both of
period 7. To understand why setting k at this period is effective, consider first an
infinite temporally periodic process with period p. The next state of that process
is completely predictable from its (infinite) past. In fact, the number of past states
an observer must examine to correctly determine the next state is limited by p (as
per the synchronisation time in [23]). Using k > p − 1 does not add any extra
information about the next state than is already contained in the p − 1 previous
states. However, using k < p − 1 may not provide sufficient information for the
prediction. Using k = p − 1 is a sufficient (Markovian) condition for infinitely
periodic processes. Where a process contains punctuated periodic sequences (e.g.
the periodic blinkers and domains in a single cell’s time series here), setting k = p−1
will capture the information storage related to the period of these sequences and
is a useful minimum value. However, it will still ignore important longer-range
correlations (e.g. encountering one type of glider in the near past may be strongly
predictive of encountering a different type of glider in the near future). There is no
general limit on the range of such self-influence, so in theory the limit k → ∞ should
be taken in measuring these quantities. This is why k = 7 captures much, but not all
of the active information storage for rule 110.
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 3.6 a Local information dynamics in r = 3 rule φpar (86 time steps displayed for 86 cells).
Cells are coloured blue for positive values and red for negative. b Local excess entropy, max.
11.76 bits, min. −10.35 bits; c Local active information, max. 1.52 bits, min. −9.41 bits; d Local
temporal entropy rate, max. 10.92 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell
to the right, max. 10.45 bits, min. −8.06 bits, and f three cells to the right, positive values only,
max. 9.24 bits, min. −8.60 bits; Local complete transfer entropy: g one cell to the right, max.
10.43 bits, min. 0.00 bits, and h three cells to the left, max. 10.86 bits, min. 0.00 bits; i Local separable
information, max. 29.26 bits, min. −18.68 bits
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(b) (c)(a)

Fig. 3.7 Local active information storage with short history lengths in rule 110. a 35 time steps
displayed for 35 cells, time increases down the page for all CA plots. Cells are coloured blue for
positive values and red for negative. b With k = 1, max. 0.24 bits, min. −0.21 bits; c with k = 7,
max. 1.22 bits, min. −5.04 bits. (NB: Fig. 3.7a Reprinted with permission from Lizier et al. [21]
Copyright 2010, American Institute of Physics.)

3.3.3 Negative Informative Storage as Misinformation
at Particles

Negative values of a(i, n, k = 16) for rules 54 and 110 are also displayed in Figs. 3.4c
and 3.5c. Interestingly, negative local components of active information stor-
age are concentrated in the travelling glider areas (e.g. γ+ and γ− for rule 54
[22]), providing a good spatiotemporal filter of the glider structure. This is
because when a travelling glider is encountered at a given cell, the past history
of that cell (being part of the background domain) is misinformative about the
next state, since the domain sequence was more likely to continue than be inter-
rupted. For example, see the marked positions of the γ gliders in Fig. 3.8. There
we have p(xn+1 | x (k=16)

n ) = 0.25 and p(xn+1) = 0.52: since the next state
occurs relatively infrequently after the given history, that history provides a mis-
informative a(n, k = 16) = −1.09 bits about the next state. This is juxtaposed with
the points four time steps before those marked “x”, which have the same history
x (k=16)

n but remain part of the domain. There we have p(xn+1 | x (k=16)
n ) = 0.75

and p(xn+1) = 0.48 giving a(n, k = 16) = 0.66 bits, quantifying the positive
information storage there.

Note that the points with misinformative storage are not necessarily those
selected by other filtering techniques as part of the gliders. For example, the finite
state transducers technique from computational mechanics (using left to right spa-
tial scanning by convention) [24] would identify points 3 cells to the right of
those marked “x” as part of the γ+ glider. While that technique has the perspec-
tive of spatial pattern recognition, we take the temporal perspective of unfolding
computation.
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Fig. 3.8 Close up of raw
states of rule 54. “x” and “+”
mark some positions in the γ+
and γ− gliders respectively.
Note their point of coincidence
in collision type “A”, with “∗”
marking what initially appears
to be the collision point and
“o” marking the subsequent
non-trivial information mod-
ification as detected using
s(i, n, k = 16) < 0 (see
Chap. 5). (Reprinted with per-
mission from Lizier et al. [21]
Copyright 2010, American
Institute of Physics.)

The local excess entropy also produced some negative values around travel-
ling gliders (see Figs. 3.4b and 3.5b), though these were far less localised on the
gliders themselves and less consistent in occurrence than for the local active infor-
mation storage. This is because the local excess entropy, as measure of total infor-
mation storage into the future, is more loosely tied to the dynamics at the given
spatiotemporal point. The effect of a glider encounter on e(i, n, k) is smeared
out in time, and in fact the dynamics may store more positive information in
total than the misinformation encountered at the specific location of the glider.
For example, parallel glider pairs in Fig. 3.4b have positive total information stor-
age, since a glider encounter becomes much more likely in the wake of a previous
glider.

3.3.4 Particles Create New Information Storage

There is also strong positive information storage in the “wake” of the more complex
gliders in rule 110 (e.g. see the glider at top left of Fig. 3.5b, c). This indicates that
while the leading edge of the gliders cause the cell states to become unpredictable
from their past, the subsequent activity (before a domain pattern is established) is
predictable given the glider encounter. The leading edge of the gliders can thus be
seen to store information in the cell about its new behaviour. The presence of this
information storage is shown by both measures, although the relative strength of the
total information storage is again revealed only by the local excess entropy. We will
observe a similar creation of new information storage by domain walls in rule 18 in
Sect. 3.3.6.

http://dx.doi.org/10.1007/978-3-642-32952-4_5
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3.3.5 Structured Information Storage in Domain of Rule 18

There is also interesting information storage structure in ECA rule 18, which contains
domain walls against a seemingly irregular background domain. The local profiles for
e(i, n, k = 8) and a(i, n, k = 16) are plotted in Fig. 3.9b, c for the raw states of rule 18
displayed in Fig. 3.9a. In contrast to rules 54 and 110, the background domain for rule
18 contains points with both positive and negative local active information storage.
Considering these components together, we observe a pattern to the background
domain of spatial and temporal period 2 corresponding to the period-2 ε-machine
generated to recognise the background domain for ECA rule 18 by Hanson and
Crutchfield [25]. Every second site in the domain is a “0”, and contains a small
positive a(i, n, k = 16) (≈0.43 to 0.47 bits); information storage of this primary
temporal phase of the period is sufficient to predict the next state here. The alternate
site is either a “0” or a “1”, and contains either a small negative a(i, n, k = 16)

at the “0” sites (≈−0.45 to − 0.61 bits) or a larger positive a(i, n, k = 16) at the
“1” sites (≈0.98 to 1.09 bits). Information storage of the cell being in the alternate
temporal phase is strongly in use or active in computing the “1” sites, since the “1”
sites only occur in the alternate phase. However, the information storage indicating
the alternate temporal phase is misleading in computing the “0” sites since they occur
more frequently with the primary phase. Indeed, encountering a “0” at the alternate
sites creates ambiguity in the future (since it makes determination of the phase more
difficult) so in this sense it can be seen as detracting from the overall storage. The
background domain should contain a consistent level of excess entropy at 1 bit to
store the temporal phase information, and this occurs for most points.9 Again, this
resembles a smearing out of the local periodicity of the storage in use, and highlights
the subtle differences between the excess entropy and active information storage.

3.3.6 Misinformation and New Storage Creation
by Domain Walls

The domain walls in rule 18 are points where the spatiotemporal domain pattern is vio-
lated. Strong negative components of the local active information storage reveal
the temporal violations, which occur when the domain wall moves or travels into
a new cell and the past of that cell cannot then predict the next state successfully.
This misinformation is analogous to our observations for regular gliders in rules 54
and 110 in Sect. 3.3.3. Importantly, these negative values of a(i, n, k = 16) (which
are less than −2.5 bits) are much stronger than those in the background domain,
and are strongly localised on the domain walls. Again, the negative components
of a(i, n, k = 16) appear to be a useful filter for moving coherent spatiotemporal
structure.

9 The exceptions are where long temporal chains of 0’s occur, disturbing the memory of the phase
due to finite-k effects.
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 3.9 a Local information dynamics in rule 18 (67 time steps displayed for 67 cells). Cells are
coloured blue for positive values and red for negative. b Local excess entropy, max. 4.62 bits, min.
−8.65 bits; c Local active information, max. 1.98 bits, min. −9.92 bits; d Local temporal entropy
rate, max. 11.90 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell to the right, max.
11.90 bits, min. −7.44 bits, f one cell to the left, max. 11.90 bits, min. −7.30 bits; Local complete
transfer entropy: g one cell to the right, max. 13.48 bits, min. 0.00 bits, h one cell to the left, max.
12.48 bits, min. 0.00 bits; i Local separable information, max. 1.98 bits, min. −14.37 bits. (NB:
Fig. 3.9a, c, e, f and i Reprinted with permission from Lizier et al. [21] Copyright 2010, American
Institute of Physics.)
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The local excess entropy profile on the other hand contains both positive and
negative values (Fig. 3.9b) for the domain walls. As per the results for gliders, these
negative values are less specifically localised on the domain walls than observed for
a(i, n, k). The strong positive values of e(i, n, k = 8) are observed to occur where the
domain wall makes several changes of direction during the k steps but is somewhat
stationary on average. This is because a domain wall encounter is much more likely
in the wake of previous domain wall movement than elsewhere in the CA. This has
analogies to both the new information storage creation by gliders in Sect. 3.3.3, and
the storage in stationary blinkers in Sect. 3.3.2.

3.3.7 Local Temporal Entropy Rate Highlights Moving Particles

The local temporal entropy rate profiles hμ(i, n, k) are displayed in Fig. 3.4d for rule
54, Fig. 3.5d for rule 110, Fig. 3.6d for rule φpar and Fig. 3.9d for rule 18. Clearly
these local temporal entropy rate profiles are useful spatiotemporal filters for
moving emergent structure, since they highlight all of the moving particles in
each system.

In fact, these profiles are quite similar to those of the negative values of local active
information storage.10 This is not surprising since hμ(i, n, k) and a(i, n, k) are seen
to be complementary in Eq. (3.28). Where a(i, n, k) is negative, hμ(i, n, k) must be
strongly positive since the local single cell entropy h(i, n) averages close to 1 bit for
these examples. That is, where the information storage a(i, n, k) is misinformative
about the next state of a cell, there is a high uncertainty hμ(i, n, k) in this next state
given its past history.

Similarly, hμ(i, n, k) only highlights moving particles: as we have already seen,
stationary coherent elements such as blinkers are information storage entities for
which there is little to no uncertainty in the next state given the past.

In deterministic systems such as CAs, any extra information hμ(i, n, k) about
the next state must come from the neighbouring cells. The temporal entropy rate
therefore represents a collective information transfer from the neighbours in
deterministic systems. Importantly though, it cannot identify individual sources of
information transfer: this will be investigated in Chap. 4.

3.3.8 Absence of Coherent Information Storage Structure

Finally, we examine ECA rule 22, suggested to have infinite collective excess entropy
[11, 12] but without any known coherent structural elements [26]. For the raw states
of rule 22 displayed in Fig. 3.10a, the profiles of e(i, n, k = 8) and a(i, n, k = 16)

are shown in Fig. 3.10b, c. While storage is certainly observed to occur, these plots

10 Recall though from Sect. 3.2.2 that hμ(i, n, k) itself is never negative.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 3.10 a Local information dynamics in rule 22 (67 time steps displayed for 67 cells). Cells are
coloured blue for positive values and red for negative. b Local excess entropy, max. 4.49 bits, min.
−8.76 bits; c Local active information: max. 1.51 bits, min. −8.17 bits; d Local temporal entropy
rate, max. 9.68 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell to the right, max.
9.68 bits, min. −7.05 bits, f one cell to the left, max. 9.68 bits, min. −7.10 bits; Local complete
transfer entropy: g one cell to the right, max. 10.68 bits, min. 0.00 bits, h one cell to the left, max.
10.68 bits, min. 0.00 bits; i Local separable information, max. 5.03 bits, min. −14.44 bits. (NB:
Fig. 3.10a, c and f are reprinted from [27] with permission of Springer.)

provide evidence that there is no coherent structure to the information storage
for rule 22. This is another clear example of the utility of examining local information
dynamics over ensemble values.

We note that the chaotic rule 30 produces profiles with a similar lack of coherent
structure (see Fig. 3.11b, c).
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 3.11 a Local information dynamics in rule 30 (67 time steps displayed for 67 cells). Cells are
coloured blue for positive values and red for negative. b Local excess entropy, max. 0.59 bits, min.
−0.79 bits; c Local active information: max. 0.54 bits, min. −0.87 bits; d Local temporal entropy
rate, max. 1.87 bits, min. 0.00 bits; Local apparent transfer entropy: e one cell to the right, max.
1.87 bits, min. −4.95 bits, f one cell to the left, max. 1.81 bits, min. −2.74 bits; Local complete trans-
fer entropy: g one cell to the right, max. 3.81 bits, min. 0.00 bits, h one cell to the left, max. 6.13 bits,
min. 0.00 bits; i Local separable information, max. 2.81 bits, min. −6.90 bits. (NB: Fig. 3.11a, c and
f are reprinted from [27] with permission of Springer.)



3.4 Summary 75

Table 3.1 Local measures relevant to information storage

Measure Local definition Equation number

Excess entropy eX (n + 1, k) = i(x (k)
n ; x (k+)

n+1 ) Eq. (3.3)

Active information storage aX (n + 1, k) = i(x (k)
n ; xn+1) Eq. (3.17)

Entropy rate hμX (n + 1, k) = h(xn+1|x (k)
n ) Eq. (3.25)

Table 3.2 Examples of emergent structures in cellular automata with specific information storage
properties

aX (n) > 0 eX (n) > iB eX (n) < iB

Blinkers, stationary domain walls
(Sects. 3.3.2 and 3.3.6)

Periodic domain (Sect. 3.3.2)

aX (n) < 0 Gliders, moving domain walls (Sects. 3.3.3 and 3.3.6)

3.4 Summary

In this chapter we have introduced and contrasted the local excess entropy and local
active information storage in Sects. 3.1 and 3.2. Their definitions are displayed in
Table 3.1. We have demonstrated that they provide complementary insights into
information storage dynamics, because the excess entropy measures total storage
while the active information storage measures storage in use in computing the next
state. As such, their results are often similar in general, but do reveal subtly different
aspects of the dynamics.

Importantly, in Sect. 3.3 we showed that both provide the first quantitative evi-
dence that blinkers and domains are dominant information storage entities in cellular
automata. In particular, the excess entropy revealed that the blinkers in the CAs inves-
tigated here stored more information in total. (See a summary of the application to
CAs in Table 3.2). While both measures provide useful insights, the local active
information storage is the most useful in a real-time sense, since calculation of the
local excess entropy requires knowledge of the dynamics an arbitrary distance into
the future.11 Also, it also provides the most specifically localised insights, including
highlighting moving elements of coherent spatiotemporal structure.

Furthermore as hinted by its relationship with the temporal entropy rate, the focus
of the active information storage on computation of the next state of a process is partic-
ularly important in understanding how stored information interacts with information
transfer in information processing. This being said, it is not capable of identifying

11 As described in footnote 4 on p. 4, while there are alternative formulations of the local excess
entropy which can be computed from past observations alone, they cannot be interpreted as the total
information storage at the given time point. A similar concept would be the partial localisation (see
Appendix A) I (x (k)

n ; X (k+)), which quantifies how much information from the past is likely to be
used in the future.
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the information source of moving coherent structures; for this, we turn our attention
to measuring information transfer in the next chapter.
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Chapter 4
Information Transfer

Information transfer is widely considered to be a vital component of complex
non-linear behaviour in spatiotemporal systems, for example in: particles in cel-
lular automata (CAs) [1–7], self-organisation caused by dipole-dipole interactions
in microtubules [8], soliton dynamics and collisions [9], wave-fragment propaga-
tion in Belousov-Zhabotinsky media [10], waves of turning movement in flocking
or schooling behaviour [11], solid-state phase transitions in crystals [12], influence
of intelligent agents over their environments [13], and inducing emergent neural
structure [14].

As described in Sect. 2.2.4.2, the very nature of information transfer in complex
systems is a popular topic itself, for example in the conflicting suggestions that
information transfer is maximised in complex dynamics [15, 16], or alternatively
at an intermediate level with maximisation leading to chaos [5, 17]. Yet while the
literature contains many measures of complexity (e.g. [6, 18]), quantitative studies
of information transfer are comparatively rare.

Defining information transfer as the dependence of the next state of the receiver
on the previous state of the source [19] is typical, though it is incomplete accord-
ing to Schreiber’s criteria [20] requiring the definition to be both directional and
dynamic. Here, in theory we accept Schreiber’s definition [20] of (predictive) infor-
mation transfer as the average information contained in the source about the next
state of the destination that was not already contained in the destination’s past. This
definition results in the measure for information transfer known as transfer entropy
[20], quantifying “the statistical coherence between systems evolving in time” in a
directional and dynamic manner.

However, neither this nor other suggested measures of information transfer have
been applied to specific channels or at specific spatiotemporal points in a CA,1 nor
quantitatively demonstrated that particles (either gliders or domain walls) are in fact

1 A rudimentary attempt was made via mutual information in [5], however we show that this is a
symmetric measure not capturing directional transfer. We also note the inferences made regarding
the spread of information in ECAs [21], however the use of spatial excess entropy (or effective
measure complexity) here also remains a symmetric measure of statically shared information.

J. T. Lizier, The Local Information Dynamics of Distributed Computation 79
in Complex Systems, Springer Theses, DOI: 10.1007/978-3-642-32952-4_4,
© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-32952-4_2


80 4 Information Transfer

information transfer entities. We hypothesise that application of a measure of local
information transfer into each spatiotemporal point in CAs would reveal particles as
the dominant information transfer entities. This would demonstrate that the measure
captures popularly-understood, recognised instances of information transfer, and is
a key requirement for it to be accepted as measuring this concept in practice. We
note that these instances are local in space and time and to be investigated require a
local measure of information transfer.

Here then, we derive a measure of local information transfer from the transfer
entropy in Sect. 4.1.2 The local transfer entropy provides spatiotemporal profiles of
information transfer, useful analytically in highlighting or filtering “hot-spots” in the
information channels of the system. The local transfer entropy also facilitates close
study of different forms and parameters of the averaged measure, in particular the
importance of conditioning on the past history of the information destination. We
also use it to investigate how the measure can condition on other information sources,
in order to account for information transfer resulting from the interaction of multiple
sources. Importantly, through these applications the local transfer entropy provides
insights that its average cannot. We also demonstrate the manner in which information
transfer combines with information storage in determining the computation of the
next state of a variable.

Crucially, the local transfer entropy is shown in Sect. 4.2 to reveal particles as
the dominant information transfer entities in CAs. These results have wide-ranging
implications in supporting the validity of the transfer entropy itself, as well as for
the real-world systems mentioned earlier. This is due to the power of CAs as model
systems and the obvious analogy between particles in CAs and coherent spatiotempo-
ral structures and hypothesised information transfer entities in other systems. These
include known analogues of particles in physical processes such as pattern formation
and solitons [4, 24], and also waves of conformational change are said to perform
signalling in microtubules [8].

Finally, we demonstrate in Sects. 4.3 and 4.4 that information transfer is depen-
dent on, though distinct from, the concept of causal information flow, which should
be considered separately as a useful notion in its own right.3 This finding is impor-
tant because measures for both predictive transfer [20] and causal effect [26] have
been inferred to capture information transfer in general, and measures of predictive
transfer have been used to infer causality [27–30] with the two sometimes (prob-
lematically) directly equated (e.g. [31–36]). We also describe the conditions and
parameter settings under which a variant of the transfer entropy converges with the
information flow.

We suggest that information flow should be used first wherever possible in order
to establish the set of causal information contributors for a given destination variable.
Subsequently, the transfer entropy measure may be used to quantify the concept of
information transfer from these causal sources (only) to the destination in order to
study emergent computation in the system.

2 The local transfer entropy and results of its application to CAs were first reported in [22, 23].
3 The local information flow and results of its application to CAs were first reported in [25].
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4.1 Transfer Entropy as Predictive Information Transfer

The quantitative definition of the transfer entropy has not yet been unified with the
accepted specific instances of information transfer (e.g. particles in CAs). These
instances are local in space and time and to be investigated require a local measure
of information transfer. In this section, we present the transfer entropy, comment on
the parameter settings required with it and contrast it to related measures. We then
introduce local transfer entropy, in order to unify the apparently correct quantitative
formulation of information transfer with qualitatively accepted specific instances of
this concept.

4.1.1 Transfer Entropy

Mutual information IY ;X has been something of a de facto measure for information
transfer between Y and X in complex systems science in the past (e.g. [6, 15, 37]).
A major problem however is that mutual information contains no inherent direc-
tionality. Attempts to address this include using the previous state of the “source”
variable Y and the next state of the “destination” variable X ′ (known as time-lagged
mutual information IY ;X ′ ). However, Schreiber [20] points out that this ignores the
more fundamental problem that mutual information measures the statically shared
information between the two elements.4

To address these inadequacies Schreiber introduced transfer entropy [20] (TE),
the deviation from independence (in bits) of the state transition (from the previous
state to the next state) of an information destination X from the previous state of an
information source Y :

TY→X (k, l) =
∑

wn

p(wn) log2
p(xn+1 | x (k)

n , y
(l)
n )

p(xn+1 | x (k)
n )

. (4.1)

Here n is a time index, wn represents the state transition tuple {xn+1, x (k)
n , y(l)

n },
x (k)

n and y
(l)
n represent the k and l past values of x and y up to and including time n.

Schreiber points out that this formulation is a truly directional, dynamic measure
of information transfer, and is a generalisation of the entropy rate to more than
one element to form a mutual information rate. That being said it remains a mea-
sure of observed (conditional) correlation rather than direct effect. In fact, the TE is a
non-linear extension of a concept known as the “Granger causality” [38], the nomen-
clature for which may have added to the confusion associating information transfer
and causal effect. Importantly, as an information-theoretic measure based on observa-
tional probabilities, the TE is applicable to both deterministic and stochastic systems.

The TE can be viewed as a conditional mutual information I (Y (l); X ′ | X (k)) [39]
(see Eq. (2.11)), casting it as the average information contained in the source about

4 The same criticism applies to equivalent non information-theoretic definitions such as that in [19].
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the next state X ′ of the destination that was not already contained in the destination’s
past X (k):

TY→X (k, l) = IY (l);X ′|X (k) = HX ′|X (k) − HX ′|X (k),Y (l) . (4.2)

This could be interpreted (following [40] and [37]) as the diversity of state tran-
sitions in the destination minus assortative noise between those state transitions and
the state of the source.

Similarly, we note that Schreiber’s original description can be rephrased as the
information provided by the source about the state transition in the destination. That
x (k)

n → xn+1 (or including redundant information x (k)
n → x (k)

n+1) is a state transition

is underlined in that the x (k)
n are embedding vectors [41], which capture the underlying

state of the process.
We generalise the notation for lattice systems (such as CAs) with spatially-ordered

agents to represent the transfer entropy from an information source Xi− j to an infor-
mation destination Xi (i.e. information transfer across j cells to the right) as:

T (i, j, k, l) =
∑

wn

p(wn) log2

p(xi,n+1 | x (k)
i,n , x (l)

i− j,n)

p(xi,n+1 | x (k)
i,n )

. (4.3)

Again, wn represents the state transition tuple
{

xi,n+1, x (k)
i,n , x (l)

i− j,n

}
. Where the

agents in the lattice system are homogeneous and the PDFs are estimated over all
agents, it is appropriate to average over all agents i also to obtain T ( j, k, l).

In most cases we consider systems where only the previous state of the source is a
causal contributor to the destination (e.g. CAs). For these systems we use l = 1
and simply drop it from the notation TY→X (k) from here on.5 Note however
that all of the following equations in this chapter may be formed with l > 1 if
appropriate.

The TE has already been widely used to analyse information transfer, for exam-
ple in interactions in the stock market [42], food webs [43], EEG signals [44], and
biochemicals [45]. However, there are a number of features and perspectives of this
measure which require addressing for our study of distributed computation. These
include the appropriate past history lengths k to use, and how to include interac-
tions of multiple sources. We consider these in the following sections (including the
remainder of Sect. 4.1).

4.1.1.1 Conditioning on an Infinite History Length

It is important to note that the destination’s own historical values can indirectly
influence it via the source or other neighbours: this may be mistaken as an independent

5 This aligns with Sect. 4.4.2 which demonstrates that in accurately capturing information transfer
we should only examine causal sources here.
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transfer of information from the source here. This can be facilitated in systems with
cyclic causal paths (e.g. the bidirectional causal links in CAs). Such self-influence
is a non-travelling form of information (in the same way as standing waves are to
energy); it is essentially static and can be viewed as the trivial part of information
transfer. In the context of distributed computation, it is recognisable as the active
information storage and this is made explicit in:

TY→X (k) = IY ;X ′|X (k) = IX ′;{Y,X (k)} − IX ′;X (k) , (4.4)

= IX ′;{Y,X (k)} − AX (k). (4.5)

Conditioning on the destination’s history x (k)
i,n serves to eliminate the active infor-

mation storage from the transfer entropy measurement. Yet any self-influence trans-
mitted prior to these k values will not be eliminated; we generalise comments on the
entropy rate in [20] to suggest that taking the asymptote k → ∞ is most correct for
agents displaying non-Markovian dynamics (when considering their time-series in
isolation). Just as the excess entropy and active information storage require k → ∞
to capture all information storage, accurate measurement of the TE requires k → ∞
to eliminate all information storage from being mistaken as information transfer.
The most correct form of the transfer entropy to measure information transfer
is then:

TY→X = lim
k→∞

∑

wn

p(wn) log2
p(xn+1 | x (k)

n , yn)

p(xn+1 | x (k)
n )

. (4.6)

Computation at this limit is not feasible in general, so we retain TY→X (k) for
estimation with finite-k though of course recommend the use of as large a k as is
practical.6 For the lattice form in Eq. (4.3) we write T (i, j) and T ( j) in this limit.
This recommendation of using as long a value of k as possible is important because
in most applications (e.g. to characterise information flow in sensorimotor networks
[14] and with respect to information closure [46]) the TE has been applied with a
default value of k = 1.

4.1.1.2 Related Information Transfer Style Measures

We note the similar information current [47], which measures changes in spatial
information and does so on a local scale in space and time. This measure is inter-
pretable as an information contribution between the right and left segments of a
system only for those exhibiting deterministic mechanics. Furthermore, in consider-
ing spatial information it is only defined for lattice systems, where it either measures
information contribution from the right side of the system to the left (or vice-versa)
but not from an arbitrary source to an arbitrary destination. As such, it remains out

6 See the discussion regarding practical values of k being limited by the number of available
observations for the active information storage in Sect. 3.3.1.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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of scope for our investigation of information transfer between a specific source and
destination in general multivariate systems.

We also note the close relationship between the transfer entropy and Massey’s
directed information [48]; in Appendix C we describe the subtle differences between
the two measures and why the TE is the most appropriate measure of information
transfer in distributed computation.

Furthermore, we note that damage spreading or indeed the uncertainty in perturba-
tion avalanche or cascade size have been suggested [11] and used [49] to infer infor-
mation transfer. While information transfer is likely to be an integral part of cascade
dynamics, measuring it as such is problem-specific, cannot be used on observations
alone, and cannot resolve the contribution of multiple sources. We will investigate
the relationship of information transfer (using the TE ) to such cascades in Sect. 6.2.

4.1.2 Local Transfer Entropy

Using the technique described in Sect. 2.2.2,7 we observe that the TE is an average
(or expectation value) of a local transfer entropy at each observation n, i.e.:

TY→X = 〈tY→X (n + 1)〉 , (4.7)

tY→X (n + 1) = lim
k→∞ tY→X (n + 1, k), (4.8)

TY→X (k) = 〈tY→X (n + 1, k)〉 , (4.9)

tY→X (n + 1, k) = log2
p(xn+1 | x (k)

n , yn)

p(xn+1 | x (k)
n )

. (4.10)

The local transfer entropy quantifies the information contained in the source yn

about the next state of the destination xn+1 at time step n + 1, that was not contained
in the past of the destination x (k)

n . The measure is local in that it is defined at each
time n for each destination element X in the system and each causal information
source Y of the destination. For example, the local transfer entropies at time step
n + 1 from two different causal sources Y1 and Y2 to a destination X are indicated
in Fig. 4.1, along with the active information storage for X .

The local TE may also be expressed as a local conditional mutual information:

tY→X (n + 1, k) = i(yn; xn+1 | x (k)
n ). (4.11)

Similarly, we can write the local time-lagged mutual information as i(yn; xn+1).
For lattice systems such as CAs, we represent the local transfer entropy from Xi− j

to Xi (i.e. across j cells to the right) at time n + 1 as t (i, j, n + 1):

7 As discussed in Sect. 2.2.2, a “local” transfer entropy has been presented in [30]; however this
uses a sliding-window technique which does not measure the information transfer involved in the
computation at a single specific time step.

http://dx.doi.org/10.1007/978-3-642-32952-4_6
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Fig. 4.1 Information dynamics in a multivariate system. For node X , this figure displays the local
active information aX (n + 1, k) and the local transfer entropies tY1→X (n + 1) and tY2→X (n + 1)

from each of the causal information sources VX = {Y1, Y2} at time n + 1. (NB: This figure was
first published in [50])

T (i, j) = 〈t (i, j, n + 1)〉n , (4.12)

t (i, j, n + 1) = lim
k→∞ t (i, j, n + 1, k), (4.13)

T (i, j, k) = 〈t (i, j, n + 1, k)〉n , (4.14)

t (i, j, n + 1, k) = log2

p(xi,n+1 | x (k)
i,n , xi− j,n)

p(xi,n+1 | x (k)
i,n )

, (4.15)

= i(xi− j,n; xi,n+1 | x (k)
i,n ). (4.16)

We can also write T ( j, k) = 〈t (i, j, k, n + 1)〉i,n for systems of homogeneous
agents. Similarly, the local (time-lagged) mutual information can be represented as:
i(i, j, n + 1) = i(xi− j,n; xi,n+1).

This local TE t (i, j, n+1, k) to agent Xi from Xi− j at time n+1 in a lattice system
is illustrated in Fig. 4.2a. t (i, j, n, k) is defined for every spatiotemporal destination
(i, n), forming a spatiotemporal profile for every information channel or direction j.
Sensible values for j correspond to causal information sources, i.e. for CAs, sources
within the cell range | j | ≤ r .8

4.1.3 Apparent, Conditional and Complete Transfer Entropy

As per the active information storage, the average transfer entropy TY→X (k) is always
positive but is bounded above by the information capacity of a single state of the
destination. For a discrete system with b possible states this is log2 b bits. As a con-
ditional mutual information, it can be either larger or smaller than the corresponding

8 We demonstrate in Sect. 4.4.2 that the transfer entropy is interpretable as information transfer for
these sources only.
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(a) (b)

Fig. 4.2 Transfer entropy in CAs (after [23, 25]). a Apparent TE t (i, j, n + 1, k): information
contained in the source cell Xi− j about the next state of the destination cell Xi at time n + 1 that
was not contained in the destination’s past. b Complete TE tc(i, j, n + 1, k): information contained
in the source cell Xi−1 about the next state of the destination cell Xi at time n + 1 that was not
contained in either the destination’s past or all of the other causal information sources Vr

i, j . For
CAs these causal sources are within the cell range r

mutual information [51]. The local TE however is not constrained so long as it aver-
ages into this range: it can be greater than log2 b for a large local information transfer,
and can also in fact be measured to be negative. This is a similar situation to that
which we saw regarding the local information storage in Sects. 3.1.2 and 3.2.1. Local
transfer entropy is negative where (in the context of the history of the destination)
the probability of observing the actual next state of the destination given the value
of the source p(xi,n+1 | x (k)

i,n , xi− j,n), is lower than that of observing that actual next

state independently of the source p(xi,n+1 | x (k)
i,n ). In this case, the source element is

actually misinformative or misleading about the state transition of the destination. It
is possible for the source to be misleading where other causal information sources
influence the destination, or in a stochastic system.

It is also possible for the measure to attribute an effect to one source that was in
reality due to another source. As such, we label the previously described measures
as apparent transfer entropy to explicitly indicate they measure an apparent effect
without taking other sources into account.

In contrast the transfer entropy may be conditioned on other possible causal infor-
mation sources Z , to eliminate their influence from being attributed to the source in
question Y [20]. We term this a conditional transfer entropy, written on average
and locally as:

TY→X |Z = 〈tY→X |Z (n + 1)〉n, (4.17)

tY→X |Z (n + 1) = lim
k→∞ tY→X |Z (n + 1, k), (4.18)

TY→X |Z (k) = 〈
tY→X |Z (n + 1, k)

〉
n , (4.19)

tY→X |Z (n + 1, k) = log2
p(xn+1 | x (k)

n , yn, zn)

p(xn+1 | x (k)
n , zn)

, (4.20)

= i(yn; xn+1 | x (k)
n , zn). (4.21)

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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The conditional transfer entropy is the average information contained in the source Y
about the next state of the destination X ′ that was not contained in the destination’s
past or in the source(s) Z . Elsewhere, this quantity has been termed the partial
transfer entropy [52] and considered in [30].

Were one seeking to eliminate the influence of other sources, then ideally one
would condition on all sources Z in the set of parents or causal information contrib-
utors VX to X , except for the source Y and X itself. We denote this set as VY

X :

VY
X = {Z ∈ VX , Z 	= Y, Z 	= X} , (4.22)

= VX \ X, Y. (4.23)

For example, in Fig. 4.1 we have VX = {X, Y1, Y2}, VY1
X = {Y2} and VY2

X = {Y1}.
At time step n, this set has joint state vy

x,n :

vy
x,n =

{
zn | ∀Z ∈ VY

X

}
. (4.24)

We then introduce the complete transfer entropy as the average information
contained in the source about the next state of the destination that was not contained
in the destination’s past or in other causal information sources vy

x,n . We write the
average measure, and the local complete transfer entropy, as:

T c
Y→X = 〈

tc
Y→X (n + 1)

〉
n , (4.25)

tc
Y→X (n + 1) = lim

k→∞ tc
Y→X (n + 1, k), (4.26)

T c
Y→X (k) = 〈

tc
Y→X (n + 1, k)

〉
n , (4.27)

tc
Y→X (n + 1, k) = log2

p(xn+1 | x (k)
n , yn, vy

x,n)

p(xn+1 | x (k)
n , vy

x,n)
, (4.28)

= i(yn; xn+1 | x (k)
n , vy

x,n). (4.29)

Again, notice that the expressions are only completely correct as information
transfers in the limit k → ∞.

Our language above in describing the conditioning out of the influence of other
sources may have indicated that the conditional and complete measures will give
smaller values than the apparent TE . However, the extra conditioning in these condi-
tional mutual information values can make either larger or smaller than the original
measure (see Sect. 2.2.1). As an illustration, consider sources Y1 and Y2 acting on
X in an exclusive-OR (XOR) operation. Assuming maximum entropy sources, one
needs knowledge of both Y1 and Y2 in order to predict X . As such, the apparent
TE for either source will give 0 bits, while the complete TE for either will give 1
bit in full prediction of X . This example illustrates that the apparent TE is directed
towards capturing single-source transfer only, or the coherent transfer effect of
one source on a destination. In contrast, the complete TE conditions out transfer

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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from other sources, but also additionally captures interaction-based transfer, i.e.
the transfer resulting from the interaction of the given source with other sources.

We also introduce specific notation for these quantities in CAs. There, the set of
causal information contributors to Xi is the neighbourhood Vi,r of Xi within the
range r :

Vi,r = {
Xi−q | ∀q : −r ≤ q ≤ +r

}
. (4.30)

At time step n, this set has joint value vi,r,n :

vi,r,n = {
xi−q,n | ∀q : −r ≤ q ≤ +r

}
. (4.31)

For the complete TE we condition on this set except for the source Xi− j and Xi

itself, V j
i,r :

V j
i,r = {

Xi−q | ∀q : −r ≤ q ≤ +r, q 	= j, q 	= 0
}
. (4.32)

At time step n this set has joint value v j
i,r,n :

v j
i,r,n = {

xi−q,n | ∀q : −r ≤ q ≤ +r, q 	= j, q 	= 0
}
. (4.33)

We can then provide the following expressions for the complete transfer entropy
in CAs on average and in local notation:

T c(i, j) = 〈
tc(i, j, n + 1)

〉
n , (4.34)

tc(i, j, n + 1) = lim
k→∞ tc(i, j, n + 1, k), (4.35)

T c(i, j, k) = 〈
tc(i, j, n + 1, k)

〉
n , (4.36)

tc(i, j, n + 1, k) = log2

p
(

xi,n+1 | x (k)
i,n , xi− j,n, v j

i,r,n

)

p
(

xi,n+1 | x (k)
i,n , v j

i,r,n

) , (4.37)

= i(xi− j,n; xi,n+1 | x (k)
i,n , v j

i,r,n). (4.38)

Additionally, in homogeneous systems such as CAs we can average over all agents
also to obtain T c( j) = 〈tc(i, j, n + 1)〉i,n and T c( j, k) = 〈tc(i, j, n + 1, k)〉i,n . The
quantity tc(i, j, n + 1, k) is displayed in Fig. 4.2b.

In deterministic systems (e.g. CAs), conditioning on all causal source renders
tc
Y→X (n + 1, k) ≥ 0. This is because the only possible observed value of xn+1 as

determined by {yn, x (k)
n , vy

x,n} has the numerator of the log term in Eq. (4.26) as

p
(

xn+1 | x (k)
n , yn, vy

x,n

)
= 1 and a denominator less than or equal to this.

Note that only causal sources have non-zero complete TE . Where it is mea-
sured for a non-causal source, the denominator of the log term in Eq. (4.26) is
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p
(

xn+1 | x (k)
n , vy

x,n

)
= 1 since the next state of the destination is fully determined

without that source. An implication here is that in systems such as CAs where only
immediately previous source values can be causal information contributors, using
l > 1 will not alter the value of the complete TE because there is no more information
to add to the source.

In parallel, one may naively suggest that taking k > 1 with the complete TE in
such systems is redundant. It is true that the historical values of the destination cannot
add information about the next state once all causal sources have been examined.
However, they are being not examined as information sources here. They are used
to condition away any (stored) information that they share (or have correlated) with
the source in question, and for this role they are not redundant.

4.1.4 Total Information Composition and Collective Information
Transfer

In Sect. 3.2.2 we demonstrated that the information required to predict the next state
of any agent (the local entropy) can be decomposed into the amount predictable
from its past (the local active information storage) and the remaining uncertainty
after examining this memory (the local temporal entropy rate). Here we show how
the local temporal entropy rate may subsequently be decomposed as a sum of transfer
entropy terms (plus intrinsic uncertainty).9

The temporal entropy rate is composed of information that was not in the desti-
nation’s past but is added jointly to the next state X ′ of the destination by the causal
sources VX (IVX ;X ′|X (k)), and the remaining intrinsic uncertainty UX

10:

HμX (k) = IVX ;X ′|X (k) + UX (k), (4.39)

UX (k) = HX ′|VX ,X (k) . (4.40)

Note that the validity of the relation is independent of k. The IVX ;X ′|X (k) term is
clearly a transfer entropy, representing the joint information transfer from all of the

9 Similarly motivated are the decompositions of the total information for a destination presented
in [53] and [54]. The approach in [53] however decomposes the total information in terms of a
sum of mutual information terms of increasing size, rather than incrementally conditioned mutual
information terms. The approach in [54] does use incrementally conditioned mutual information
terms, though again this is merely as a means to infer the contribution to the total information from
terms of increasing size or order k. Our presentation is distinct from both of these in considering the
destination’s history as a single source, regardless of whether these states are causal contributors or
not. Establishing the context of the past is critical for an understanding of distributed computation.
Also, our approach is distinct in considering the decomposition on a local scale.
10 Note that any dependence of UX on k is due to statistical fluctuations rather than a causal effect.
(Of course, this is for k large enough to include all direct causal contributors in the past of the
destination).

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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causal sources VX to X .11 As such, we call this the collective transfer entropy:

TX (k) = IVX ;X ′|X (k) , (4.41)

TX = lim
k→∞ TX (k). (4.42)

For deterministic systems (e.g. CAs) UX (k) = 0, so the temporal entropy rate
is equivalent to the collective transfer entropy: HμX (k) = TX (k). This analytically
explains the assertion in Sect. 3.3.7 that the local temporal entropy rate represents a
collective information transfer in deterministic systems. It also underpins why the
local temporal entropy rate hμ(i, n, k) was shown to be a useful filter for all moving
particles in Sect. 3.3.7, since these particles are strongly predictable from the causal
neighbours VX in the context of the past X (k).

The collective TE can then be decomposed itself by incrementally taking account
of the contribution of each causal information source (i.e. by following the chain
rule [55] for it as a conditional mutual information). Let us consider an arbitrary
ordering (using index g) of the causal sources in {VX \ X}: Z1, Z2, ..., ZG . We can
then write an arbitrarily ordered subset of g − 1 sources as:

Vg
X = {Zc | ∀c : 1 ≤ c < g} , (4.43)

and then make the decomposition:

TX (k) =
∑

g

I (Zg; X ′ | X (k), Vg
X ). (4.44)

We have a sum of incrementally conditional mutual information terms: each term
is the information added by the given source Zg that was not contained either in the
past of the destination or in the previously inspected sources Vg

X . Each term is a
transfer entropy itself, and if we expand this sum:

TX (k) =I (Z1; X ′ | X (k)) + I (Z2; X ′ | X (k), Z1)+
I (Z3; X ′ | X (k), Z1, Z2) + · · · + I (ZG; X ′ | X (k), VG

X ), (4.45)

we see that the first term is the apparent TE from source Z1, the last term is the
complete TE from source ZG (since all other causal sources are conditioned on),
and the intermediate terms are conditional transfer entropies (see Eq. (4.19)). The
collective transfer entropy captures (while accounting for redundancies) all transfers
from the sources to the destination, incorporating both single-source and interaction-
based transfers. Importantly, it is not a simple sum of the apparent TE from each
source, nor the sum of the complete TE from each source.

11 Conceptually, the collective transfer entropy is intended to consider all causal sources to X
apart from X itself. Mathematically though, we do not need to exclude X from VX here since it is
conditioned out in X (k) (so long as k ≥ 1).

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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Finally, we can combine Eqs. (3.22), (4.39) and (4.44) together:

HX ′ = AX (k) + TX (k) + UX (k), (4.46)

HX ′ = AX (k) +
∑

g

I (Zg; X ′ | X (k), Vg
X ) + UX (k). (4.47)

This explicitly demonstrates that the information required to predict the next state of
a destination is the sum of:

• the information gained from the past of the destination (i.e. the active information
storage); plus

• the collective information transfer from all causal sources (as a sum of incremen-
tally conditioned transfer entropies); plus

• any remaining intrinsic uncertainty in the destination.

As previously commented, these equations are correct for any value of k, however
we note that only the use of k → ∞ will show the true separation between informa-
tion storage and transfer in contributing to the computation of the next state of the
destination. This again underlines the importance of the context of past history (in
establishing the underlying state of the destination) for our perspective of distributed
computation.

Of course, it is trivial to write all of the above in this limit k → ∞, as well as in
lattice notation for CAs, and with local measures of each. For example, we denote
finite-k estimates of the local collective transfer entropy using tX (n + 1, k):

TX = 〈tX (n + 1)〉n , (4.48)

tX (n + 1) = lim
k→∞ tX (n + 1, k), (4.49)

TX (k) = 〈tX (n + 1, k)〉n , (4.50)

tX (n + 1, k) = log2
p(xn+1 | x (k)

n , vx,n)

p(xn+1 | x (k)
n )

, (4.51)

= i(vx,n; xn+1 | x (k)
n ), (4.52)

where vx,n is the joint value of VX at time n. Also, where at time n the joint value of
Vg

X is vg
x,n , the value of Zg is zg,n , and the value of UX (k) is u X (n, k), we can write

Eqs. (4.46) and (4.47) on a local scale in time as:

h X (n + 1) = aX (n + 1, k) + tX (n + 1, k) + u X (n + 1, k), (4.53)

h X (n + 1) = aX (n + 1, k) +
∑

g

i(zg,n; xn+1 | x (k)
n , vg

x,n) + u X (n + 1, k). (4.54)

We can similarly define these quantities in lattice systems, the finite-k estimate of
the local collective TE for example is:

http://dx.doi.org/10.1007/978-3-642-32952-4_3


92 4 Information Transfer

t (i, n + 1, k) = i(vi,r,n; xi,n+1 | x (k)
i,n ). (4.55)

We emphasise also that the order of considering each causal source here is arbi-
trary, though in lattice systems spatial ordering is an obvious candidate. As a demon-
strative example, in ECAs in local lattice notation we have:

h(i, n +1) = a(i, n +1, k)+ t (i, j = −1, n +1, k)+ tc(i, j = 1, n +1, k), (4.56)

or in reverse source ordering:

h(i, n +1) = a(i, n +1, k)+ t (i, j = 1, n +1, k)+ tc(i, j = −1, n +1, k). (4.57)

In the above, the different forms of the TE as information transfer from causal
sources can be seen to characterise important components of the total information
at the destination. Neither the apparent, conditional nor complete forms are more
correct than the others. They are all measures of information transfer, but answer
subtly different questions regarding how the destination computes its next state.
As we see here, the answers they provide are complementary. Indeed, we see that
together they quantify the information that is physically added to the destination in a
distributed computation, in contrast to the stored information which is considered to
already be present in the destination. The context of the past history of the destination
is critical to the perspective of distributed computation; it is only the use of this context
that allows us to properly separate information storage and transfer here.

Importantly, note that no non-causal information sources appear in the sum of
information transfer terms contributing to the total information at the destination.
This is not the case for the past history of the destination, since from the perspective
of computation we consider its contribution as information storage even if it is not a
causal contributor (as described in Sect. 3.2.2).

4.1.4.1 Excess Entropy in Terms of Collective Transfer Entropy

Finally, we present a relationship between the collective transfer entropy and the
excess entropy. In a similar fashion to Eq. (3.30) in Sect. 3.2.2.2, we substitute
Eqs. (4.39) and (4.41) into Eq. (2.18), getting:

EX =
∞∑

k=0

[TX (k) − TX ] . (4.58)

This expression shows that the excess entropy is the sum of overestimates of the
collective information transfer at each finite history length k. The overestimates are
due to the observer not accounting for storage structure beyond the history length k.

As per Sect. 3.2.2.2, we could display this relationship graphically in a similar
fashion to the plot for the excess entropy in terms of entropy rates in [56]. We have

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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not included this plot here however, as it would appear identical to the plot of HμX (k)

in Fig. 3 of [56] except that the curve and asymptote would be reduced by UX (k)

(since TX (k) = HμX (k) − UX (k)).

4.2 Local Information Transfer in Cellular Automata

Local complete and apparent transfer entropy were applied with k = 16 to the
same sample ECA runs where information storage was analysed in Sect. 3.3; i.e. for
rules 54 (Fig. 3.4), 110 (Fig. 3.5), φpar (Fig. 3.6), 18 (Fig. 3.9), 22 (Fig. 3.10) and
30 (Fig. 3.11). As previously discussed in Sect. 3.3.7 these figures also include the
local temporal entropy rate hμ(i, n + 1, k), which is equal to the local collective
TE t (i, n + 1, k) in these deterministic systems.
In this section, we discuss the key results here:

• Mutual information and indeed TE with history length k = 1 are inadequate mea-
sures of information transfer (Sect. 4.2.1).

• When used with appropriate history lengths, the transfer entropy measures much
greater information transfer in particles than background domains in Sect. 4.2.2.
In aligning with our qualitative notion of the concept, it is thus shown to correctly
measure information transfer in distributed computation.

• While the particles are the dominant information transfer entities, they are not
unique such entities: in Sect. 4.2.3 we describe why transfer is also found through-
out the domain region.

• We also explore the complementary relationship between the apparent and com-
plete TE in Sect. 4.2.4, including the important situation where the local apparent
values become misinformative.

4.2.1 Inadequate Measures for Information Transfer

As base cases we measured for rule 110 the (time-lagged) local mutual information
i(i, j, n), and local apparent and complete transfer entropies with the default value
of k = 1: t (i, j, n, k = 1) and tc(i, j, n, k = 1). The comparison to the local mutual
information is analogous to that with averaged measures in [20], yet the local profiles
yield a more detailed contrast here than averages do. Note that k = 1 is the only
value used in the original presentation of TE in [20] (in less coupled systems) and in
most later applications, e.g. [14, 26, 46].

The local profiles generated with j = 1 (i.e. one cell to the right per unit time)
for these base cases are shown in Fig. 4.3. These measures are unable however to
distinguish gliders from the background here with any more clarity than the raw CA
plot itself. They were also unsuccessful with other values of j and with other CA
rules. As hypothesised earlier, a true measure of information transfer should align
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Fig. 4.3 Base comparison measures incapable of quantifying local information transfer (one cell to
the right) in rule 110 (86 time steps displayed for 86 cells): b Local (time-lagged) mutual information
i(i, j = 1, n), max. 0.48 bits, min. −1.06 bits; c Local complete transfer entropy tc(i, j = 1, n, k =
1), max. 1.28 bits, min. 0.00 bits; d Local apparent transfer entropy t (i, j = 1, n, k = 1), max.
0.67 bits, min. −0.61 bits. (NB: This figure is reprinted from [23] with permission of the American
Physical Society)

with the qualitative notion of gliders as information transfer. This provides explicit
demonstration that the MI and TE with k = 1 are inadequate as measures of
information transfer in distributed computation. The TE measures are inadequate
with k = 1 because they do not condition on a long enough extent of the past history
of the destination. As suggested in Sect. 4.1.1.1, they do not therefore eliminate large
amounts of what is actually information storage here.
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4.2.2 Particles as Dominant, Coherent Information
Transfer Structures

With sufficiently large values of k, we eliminate storage from the TE measurement
and find vanishing transfer in the domain regions (we discuss the effect of the history
length in Sect. 4.2.3 as well as non-zero levels of transfer in the domains). We then
find that the transfer entropy does indeed meet our expectation of identifying parti-
cles (including gliders and domain walls) as strong positive information transfer as
compared to the domain regions. (See the plots with k = 16 for rule 54 in Fig. 3.4,
rule 110 in Fig. 3.5, rule φ in Fig. 3.6 and rule 18 in Fig. 3.9). More precisely, they
can be distinguished from the background because the information transfer in their
direction of motion is much stronger than the information storage at the same points
(i.e. t (i, j, n) > a(i, n)). This is the case for both the local apparent and complete
TE , and for gliders as well as domain walls. Importantly, the particles are measured
as information transfer in the direction of their macroscopic motion, as expected from
such measures. These results provide quantitative evidence that particles are the
dominant information transfer entities in CAs. They also unify the theoretical
appeal of the transfer entropy with an ability to identify recognised local information
transfer structures.

Simply relying on the average TE values does not tell us whether gliders or par-
ticles exist in a given CA though. For instance, the profiles of rule 22 in Fig. 3.10
and rule 30 in Fig. 3.11 contain much information transfer: e.g. the average value
T ( j = 1, k = 16) = 0.19 bits for rule 22 is greater than for rule 110 at 0.07 bits.
However only the local TE profiles reveal the absence of particles for rules 22 and
30 (similar to the local information storage results in Sect. 3.3.8). Furthermore, the
averages do not tell us whether the length k is appropriate either (as found for the
active information storage in Sect. 3.3.1, and further discussed in Sect. 4.2.3). It is
only the local TE values that answer these questions and locates these coherent
information transfer structures. They are coherent both in terms of being composed
of contiguous spatiotemporal points with large transfer, and in that the apparent
TE reveals the large coherent transfer from a single source to the destination.

As an example, at the “x” marks in Fig. 3.8 which denote parts of the right-
moving γ+ gliders in rule 54, we have p(xi,n+1 | x (k=16)

i,n , xi−1,n) = 1.00 and

p(xi,n+1 | x (k=16)
i,n ) = 0.25. There is a strong information transfer of t (i, j =

1, n, k = 16) = 2.02 bits here because the source (in the glider) added a significant
amount of information to the destination in comparison to its past (in the domain). As
described in Sect. 3.3.3 these points identified as part of the glider from our temporal
perspective of computation are different to those identified from a perspective of
spatial pattern recognition (e.g. in [57]).

We emphasise corresponding results confirming domain walls as strong informa-
tion transfer entities in each channel for rule 18 Fig. 3.9. As the domain wall moves,
it transfers information in the direction of movement. A full picture encompassing
both directions of movement is given by the local entropy rate profile in Fig. 3.9d. As
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mentioned in Sect. 4.1.4, these are equivalent to the collective TE profiles t (i, n, k)

in deterministic systems, and so capture transfer from all causal sources.
For φpar we confirm the role of the gliders as information transfer entities in

the human understandable computation of density classification, and demonstrate
information transfer across multiple units of space per unit time step for fast-moving
gliders in Fig. 3.6f.

Finally, we note that the highlighting of structure by local transfer entropy is
similar to results from other methods of filtering for emergent structure in CAs [6,
58–62]. This is because (as described above) these particles embody large amounts of
information transfer in their direction of motion, allowing them to be highlighted or
filtered by measuring information transfer in that direction of motion. In particular, we
emphasise the local temporal entropy rate (in capturing collective TE here) provides
useful filtering for all moving emergent particle structures, rather than just those
moving in a particular direction. Moving particles are highlighted by other filtering
techniques because they also happen to embody large values of the measures used
by those techniques (e.g. large local statistical complexity [58]). The distinguishing
features of local transfer entropy filtering compared to these other techniques are
discussed in the summary of this chapter. Worth mentioning here is that much less
of the gliders are highlighted than for other CA filtering techniques. Also, the larger
values of local TE are concentrated around the leading time-edges of the gliders. In
alignment with Sect. 3.3.4, this suggests that the leading glider edges determine much
of the following dynamics which are then mainly information storage processes.

4.2.3 Ambient Transfer in Backgrounds Domains

As discussed in Sect. 4.1.1.1 and inferred in Sects. 4.2.1 and 4.2.2, a sufficient history
length k is required to eliminate information storage in the periodic domain regions
from being measured as information transfer here. For example, we plot T ( j, k) as
a function of k for rule 110 in Fig. 4.4 (in analogy to Fig. 3.3 for the information
storage). This plot shows that much information storage is eliminated with k ≥ 7.12

To understand why this is the case, we revisit the argument of Sect. 3.3.2. Were the
domain region infinite (i.e. involving only coupled periodic processes) with temporal
period p, then using k >= p −1 would measure t (i, n, k = p −1) = 0 as expected.

12 We also note that Fig. 4.4 shows the average complete transfer entropies decrease with k: an
increase is impossible because we condition out more of the information that appears to come
from the source. The average apparent transfer entropy can show increases with k however; this is
possible with a three-term entropy [51] where other information sources are not taken into account.
None of these reach a limiting value for the extent of k measured, suggesting again that as large a k
as is practical should be used. Also, while the average apparent and complete measures may appear
to be converging to a similar value in each channel, this belies their important distinctions which
are discussed in Sect. 4.2.4.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3


4.2 Local Information Transfer in Cellular Automata 97

Fig. 4.4 Average transfer entropies versus history length k, plotted for complete and apparent
transfer entropies in channels j = 1 and −1 in ECA rule 110. (NB: This figure is reprinted from
[23] with permission of the American Physical Society)

This is because the processes are then completely predictable from their past.13 For a
destination time-series with punctuated periodic sequences (i.e. like the periodic
domains here), setting k = p − 1 will eliminate the information storage related
to the period of these sequences and is a useful minimum value (hence why k ≥ 7
appears useful for rule 110 from Fig. 4.4). With this minimum setting, the gliders
are then shown to be dominant information transfer entities in comparison to the
domains (as per the results for a(i, n, k = 7) for rule 110 in Fig. 3.7c). However, this
setting will not eliminate any longer-range correlations (e.g. one glider type may be
more prevalent after encountering another type) so ideally the limit k → ∞ should
be taken.14

Importantly, there is another small but non-zero information transfer com-
ponent in the periodic background domains that is not a finite-k effect. Since
domains are periodic processes occasionally punctuated by gliders, the next state
of a cell there is not always completely determined by its periodic history. There is
scope for the neighbouring sources to add information about the next state of that
destination, effectively indicating whether a glider is incoming or not. So a non-zero
transfer within the domain could represent the absence of a glider coming from the
source cell (i.e. that the domain shall continue). For example, in Fig. 3.8 for rule
54 consider the points in the periodic domain two cells to the right and two time
steps back (up) from those marked “x”. These points have the same history as those
marked “x” which as part of the γ+ glider have high transfer to the right ( j = 1); their
neighbourhood (excluding the source on the left) is also the same. Here, we compute
p(xi,n+1 | x (k=16)

i,n , xi−1,n) = 0.87 and p(xi,n+1 | x (k=6)
i,n ) = 0.75: the probability

of observing the actual next state of the destination becomes slightly higher when
the source on the left is taken into account. As such, we have the small non-zero

13 This serves as an extension of the demonstration in [20] of zero average transfer in a lattice of
spatial and temporal period 2 using k = 1 to a domain of arbitrary period p.
14 In some systems, it may be possible to establish a minimal k (related to the synchronisation
time τ for the entropy rate [63]) to eliminate all information storage here. The situation is more
complicated than [63] in being required to consider the source variable also.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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t (i, j = 1, n + 1, k = 16) = 0.20 bits to the right at this point in the periodic
domain. This effect occurs for both the complete and apparent measures, as well as
the temporal entropy rate, and we emphasise that it is not a finite-k effect. These
small non-zero transfer values are found regularly through the domain, and can
be considered as an ambient transfer. Note that they are stronger in the wake of
a glider, indicating the absence of (relatively more common) following gliders. As
a general rule though, where t (i, j, n) < a(i, n) we can determine that the point is
part of the background domain rather than a glider. On the other hand, if the transfer
in the “wake” of a glider is stronger than the information storage at those points, then
the “wake” should really be considered a glider structure itself.

Furthermore, there are larger information transfer values in the domain of rule
18 (see e.g. Fig. 3.9d), though these remain less significant than those in the domain
walls there. There is an interesting pattern to these values, which we will discuss in
regard to the interplay between the apparent and complete TE in Sect. 4.2.4.

Given these effects, we describe gliders as the dominant, as opposed to the only,
information transfer entities here.

Finally, we note the implication that there is no more information transfer
in a system once it reaches a periodic or fixed-point attractor. This is because
the next state of each agent then becomes completely predictable from its past15:
it is executing an information storage process. From the perspective of distributed
computation, the system has completed an intrinsic computation of its final attractor
and phase on it.

4.2.4 Apparent and Complete Transfer Entropy
are Complementary

The apparent and complete transfer entropies have a similar nature and are comple-
mentary in together determining the next state of the destination (as in Eq. (4.56)).
Importantly, they can reveal different aspects of the underlying dynamics. A simple
example is shown on application to the rule φpar (in Fig. 3.6), which has simple
gliders moving at both 1 and 3 cells per time step. Here, the apparent TE does not
appear to distinguish whether the primary information source of either glider type is
the j = 1 or j = 3 channel. On the other hand, in conditioning out other sources the
complete TE associates the slow moving gliders with the j = 1 channel and the fast
moving gliders with the j = 3 channel.

15 One could argue, following the preceding paragraphs in this section, that the system will still
contain some ambient transfer while on the periodic attractor. The argument would be that in
examining only a single cell’s history (without knowing the attractor had been reached), one could
not rule out the possibility that an unexpected glider could be encountered. We note however that
this argument assumes stationary statistics in constructing the relevant PDFs using observations
from both before and after the attractor is reached. We argue that without the prospect of escaping
the attractor, the statistics should not be assumed to be stationary across this boundary. Thus, in
computing stationary statistics taken from the attractor dynamics only, there are no more unexpected
gliders to account for, and therefore there is no ambient transfer there.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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This by no means implies that the apparent TE should be ignored in favour of the
complete measure. In this section we discuss the more subtle differences revealed
in measurements in directions orthogonal to particles, the information structure in
the domain of rule 18, and in analysis of interaction-based transfer. These examples
further reveal the complementary utility of both measures.

4.2.4.1 Information Transfer Orthogonal to Particles

When measured in the orthogonal direction to particles, the complete TE returns
positive values at certain locations; e.g. for the γ+ glider in the tc(i, j = −1, n +
1, k = 16) profile of rule 54 in Fig. 3.4g. In more detail, in between the points
marked “x” in Fig. 3.8 there is non-zero tc to the left although the γ+ glider is
actually moving to the right. This occurs for a similar reason to the non-zero transfer
in the background domain, simply: the source does add information about the next
state of the destination in addition to the previously conditioned sources. In Fig. 3.8
the source cell on the right (as part of the domain) informs an observer that there is
no left-moving glider or static blinker to intercept the known right-moving glider.
Importantly, this orthogonal transfer is not as significant as that in the macroscopic
glider direction in terms of magnitude and coherence.

The apparent TE on the other hand can measure negative as well as positive
values in particles moving orthogonal to the direction of measurement. For exam-
ple, see the γ− gliders in the t (i, j = 1, n, k = 16) profile of rule 54 in Fig. 3.4e. As
suggested in Sect. 4.1.3 such negative values occur when the probability of observing
the actual next state of the destination is lower when the source on the left is taken
into account than when it is not. Here the source, as part of the domain, suggests that
this same domain found in the past of the destination is likely to continue; however
since the next state of the destination is actually part of a glider, this suggestion
proves to be misinformative. For example, consider the “x” marks in Fig. 3.8 which
denote parts of the right-moving γ+ gliders. For the source on the right (still in the
domain), we have p(xi,n+1 | x (k=16)

i,n , xi+1,n) = 0.13 and p(xi,n+1 | x (k=16)
i,n ) = 0.25

giving t (i, j = −1, n, k = 16) = −0.90 bits: this is negative because the source
(still in the domain) was misinformative about the next state of the destination. The
complete TE was not negative for this same source (see the above paragraph) since
it took into account the other causal source (on the left) that drove the glider. These
negative values for the apparent measure are in fact useful, since they clearly identify
orthogonal gliders while the complete measure does not.16 Importantly again, the
local apparent TE in the direction of glider motion was more informative than that
in the orthogonal direction was misleading.

16 Further utility for this misinformation is described in Chap. 5.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_5
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4.2.4.2 Information Structure and Interaction–Based Transfer in Domain
of Rule 18

While both the apparent and complete transfer entropies measure strong information
transfer in the domain walls of rule 18, they give different but complementary results
in the background domain there (see Fig. 3.9).

As described in Sect. 3.3.5, this domain is of spatial and temporal period two, with
every second site being “0” and every other site being either a “0” or a “1”. Since
the “0”’s at every second site are completely predictable (in the absence of domain
walls) given their past history, hμ at these points approaches zero bits. There is no
diversity in state transitions of the destination here (following the interpretation in
[37, 40]), so we have t and tc approaching zero also.

On the other hand, at every other site hμ(i, n +1, k) approaches 1 bit since obser-
vations of a “0” or a “1” are roughly equally likely with the past history indicating
this alternate phase of the background. There is much scope or capacity for the
sources to add information here, however the local apparent TE approaches zero bits
at these sites. This is because the alternate sites are determined by an XOR inter-
action between both transfer sources [64]: as discussed in Sect. 4.1.3 prediction of
this operation requires knowledge of both sources. Following [37, 40], although we
have a high diversity of state transitions in the destination here, the high assortative
noise between the source and destination obscures its contribution. As described in
Sect. 4.1.3, the apparent TE profiles vanish because there is no coherent trans-
fer from the source to the destination in these strong interactions. On the other
hand, in conditioning on the opposite source the complete transfer entropies are
able to measure approximately 1 bit in predicting the outcome of these XOR
operations. As such, the tc profiles are non-zero at only the alternate sites because
(as described in Sect. 4.1.3) this measure also detects interaction-based trans-
fer. Indeed, this example brings to mind discussion on the nature of information
transfer in complex versus chaotic dynamics [5, 15–17]. It suggests that perhaps in
chaotic dynamics, where many sources influence outcomes in an incoherent manner,
the complete measure may indicate large information transfer whereas the apparent
measure does not (because the interactions cannibalise coherent transfer effects).17

Finally, we note that it is not an anomaly that tc(i, j, n+1, k) for both j = 1 and−1
approach hμ(i, n + 1, k) at the alternate site. This is because the total information to
predict any one site is summed from tc(i, j = 1, n +1, k) and t (i, j = −1, n +1, k)

or vice-versa (as per Eqs. (4.56) and (4.57)) not by summing the two complete transfer
entropies from both sources. This example is a good demonstration of the manner
in which the apparent and complete transfer entropies are complementary and both
valuable, and how they fit with information storage in computing the next state of a
variable.

17 This suggestion is further investigated in an analysis of information transfer through an order-
chaos phase transition in Chap. 6.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_6
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4.3 Information Flow as Causal Effect

That correlation is not causation is well-understood. Yet while authors increas-
ingly consider the notions of information transfer and information flow and how
they fit with our understanding of correlation and causality [20, 26, 29, 32–34,
53, 65], several questions nag. Is information transfer akin to causal effect? If
not, what is the distinction between them? When examining the “effect” of one
variable on another (e.g. between brain regions), should one seek to measure
information transfer or causal effect? Despite the interest in this area, it remains
unclear how the notion of information transfer should sit with the concept of
causal effect.

As we have previously discussed in this chapter, predictive information transfer
refers to the amount of information that a source variable adds to the next state of a
destination variable; i.e. “if I know the state of the source, how much does that help
to predict the state of the destination?”.

Causal effect refers to the extent to which the source variable has a direct influence
or drive on the next state of a destination variable, i.e. “if I change the state of the
source, to what extent does that alter the state of the destination?”. Information from
causal effect can be seen to flow through the system, like injecting dye into a river
[26]. In an Aristotelian sense, we restrict our interpretation to efficient cause here
(e.g. see [66]).

Unfortunately, these concepts have become somewhat tangled in discussions of
information transfer. Measures for both predictive transfer [20] and causal effect
[26] have been inferred to capture information transfer in general, and measures of
predictive transfer have been used to infer causality [27–30] with the two sometimes
(problematically) directly equated (e.g. [31–36]).

The presentation of the information transfer component of distributed computa-
tion cannot be considered complete while such uncertainty clouds the concept. Our
argument here is that the concepts of predictive transfer and causal effect are quite
distinct: we aim to clarify their relationship and describe the manner in which they
should be considered separately.

It is well-recognised that measurement of causal effect necessitates some type of
perturbation or intervention of the source so as to detect the effect of the intervention
on the destination (e.g. see [67, 68]). Attempting to infer causality without doing
so leaves one measuring correlations of observations, regardless of how directional
they may be [26]. In this section, we adopt the measure information flow for this
purpose, and introduce a method for applying it on a local scale.

4.3.1 Information Flow

Following Pearl’s probabilistic formulation of causal Bayesian networks [67], Ay
and Polani [26] consider how to measure causal information flow via interventional
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conditional probability distribution functions. For instance, an interventional con-
ditional PDF p(a | ŝ) considers the distribution of a resulting from imposing the
value of ŝ. Imposing means intervening in the system to set the value of the imposed
variable, and is at the essence of the definition of causal information flow. As an
illustration of the difference between interventional and standard conditional PDFs,
consider two correlated variables s and a: their correlation alters p(a | s) in general
from p(a). If both variables are solely caused by another variable g however, then
even where they remain correlated we have p(a | ŝ) = p(a) because imposing a
value ŝ has no effect on the value of a.

In a similar fashion to the definition of transfer entropy as the deviation of a desti-
nation from stochastic independence on the source in the content of the destination’s
past, Ay and Polani propose the measure information flow as the deviation of the
destination B from causal independence on the source A imposing another set of
nodes S. Mathematically, this is written as:

Ip(A → B | Ŝ) =
∑

s

p(s)
∑

a

p(a | ŝ)
∑

b

p(b | â, ŝ) log2
p(b | â, ŝ)∑

a′ p(a′ | ŝ)p(b | â′, ŝ)
.

(4.59)
The value of the measure is dependent on the choice of the set of nodes S. It

is possible to obtain a measure of apparent causal information flow Ip(A → B)

from A to B without any S (i.e. S = �), yet this can be misleading. In particu-
lar, it ignores causal information flow arising from interactions of the source with
another source variable. For example, if b = a XOR s and p(a, s) = 0.25 for each
combination of binary a and s, then Ip(A → B) = 0 despite the clear causal
effect of A, while Ip(A → B | Ŝ) = 1 bit. Also, we may have Ip(A → B) > 0
only because A effects S which in turn effects B; where we are interested in direct
causal information flow from A to B only Ip(A → B | Ŝ) validly infers no direct
causal effect.

Here we are interested in measuring the direct causal information flow from A
to B, so we must either include all possible other sources in S or at least include
enough sources to “block”18 all non-immediate directed paths from A to B [26].
The minimum to satisfy this is the set of all direct causal sources of B excluding
A, including any past states of B that are direct causal sources. For computing
direct information flow across one cell to the right in ECAs where a = xi−1,n and
b = xi,n+1, this means S includes the immediate past of the destination cell and the
previous state of the cell on its right

(
i.e. si,n = {

xi,n, xi+1,n
})

. This is displayed in
Fig. 4.5 (note the contrast to the transfer entropy in Fig. 4.2). Generalised as Ip( j)
for information flow across j cells to the right in any 1D CA, we have:

18 A set of nodes U blocks a path of causal links where there is a node v on the path such that either:

1. v ∈ U and the causal links through v on the path are not both into v, or
2. the causal links through v on the path are both into v, and v and all its causal descendants are

not in U.
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Fig. 4.5 Information flow across one cell to the right in ECAs f (i, j = 1, n + 1): the contribution
of a causal effect from source cell Xi−1 to the next state of the destination cell Xi at time n + 1,
imposing the previous states of the destination cell and the other information contributing cell
Xi+1. We have the source a = xi−1,n , the destination b = xi,n+1, the imposed contributors are
s = {

xi,n, xi+1,n
}

and the cells blocking a back-door path (see Appendix D) relative to (s, a) are
u = {

xi−1,n−1, xi,n−1, xi+1,n−1, xi+2,n−1
}
. (NB: This figure was first published in [25]; reprinted

with kind permission of the European Physical Journal (EPJ))

s j
i,r,n =

{
xi,n, v j

i,r,n

}
. (4.60)

The major task in computing Ip(A → B | Ŝ) is the determination of the underly-
ing interventional conditional PDFs in Eq. (4.59). By definition these may be gleaned
by observing the results of intervening in the system, however this is not possible in
many cases.

One alternative is to use detailed knowledge of the dynamics, in particular the
structure of the causal links and possibly the underlying rules of the causal inter-
actions. This also is often not available in many cases, and indeed is often the very
goal for which one turned to such analysis in the first place. Regardless, where such
knowledge is available it may allow one to make direct inferences. An important
example is where the observed variable is known to be completely determined by
the imposing set (e.g. p(b | â, ŝ) in ECAs in Fig. 4.5 can be determined as 0 or
1 from the CA rule table). Indeed, with S selected to compute direct information
flow, B is determined from A and S (save for any underlying stochasticity), and
one can use observational probabilities alone for p(b | â, ŝ) when all {a, s} com-
binations are observed. Another example is where the observed variable remains
unaffected by the imposition (e.g. p(a | ŝ) becomes p(a) in ECAs in Fig. 4.5)
allowing one to use the observational probabilities alone independently of the
imposed variable.

Under certain constrained circumstances, one can construct these values from
observational probabilities only [26], e.g. with the “back-door adjustment” (see
Appendix D). A particularly important constraint on using the back-door adjustment
here is that all {s, a} combinations must be observed.
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4.3.2 Local Information Flow

We introduce a definition for a local information flow:

f (a → b | ŝ) = log2
p(b | â, ŝ)∑

a′ p(a′ | ŝ)p(b | â′, ŝ)
, (4.61)

in a similar manner to the other localisations performed following Sect. 2.2.2. The
meaning of the local information flow is slightly different however. Certainly, it is an
attribution of local causal effect of a on b were ŝ imposed at the given observation
(a, b, s). However, one must be aware that Ip(A → B | Ŝ) is not the average of the
local values f (a → b | ŝ) in exactly the same manner as the local values derived
following Sect. 2.2.2. Unlike standard information-theoretical measures, the infor-
mation flow is averaged over a product of interventional conditional probabilities
(p(s)p(a | ŝ)p(b | â, ŝ), see Eq. (4.59)) which in general does not reduce down to
the probability of the given observation p(s, a, b) = p(s)p(a | s)p(b | a, s). For
instance, it is possible that not all of the tuples {a, b, s} will actually be observed,
so averaging over observations would ignore the important contribution that any
unobserved tuples provide to the determination of information flow. Again, the local
information flow is specifically tied not to the given observation at time step n but to
the general configuration (a, b, s), and only attributed to the associated observation
of this configuration at time n.

For lattice systems, we use the notation f (i, j, n +1) to denote the local informa-
tion flow into variable Xi from the source Xi− j at time step n + 1 (i.e. flow across
j cells to the right). For CAs we have:

f (i, j, n + 1) = log2

p(xi,n+1 | x̂i− j,n,
̂s j

i,r,n)

∑
x ′

i− j,n
p(x ′

i− j,n | ̂s j
i,r,n)p(xi,n+1 | x̂i− j,n

′
,
̂s j

i,r,n)

, (4.62)

with s j
i,r,n defined in Eq. (4.60).

4.4 Local Causal Information Flow in Cellular Automata

In this section we examine results from applying the local information flow to CAs
in order to contrast the concepts of causal effect and information transfer. We focus
on the results for rule 54 in Fig. 4.6, which displays the local information flow profile
(Fig. 4.6b) of rule 54, as well as several transfer entropy profiles for comparison. We
focus on transfer and flow one step to the right per unit time step j = 1, and measure
the average transfer values being T ( j = 1, k = 16) = 0.080 and T c( j = 1, k =
16) = 0.193 bits for apparent and complete TE respectively, and the information
flow at Ip( j = 1) = 0.523 bits. Importantly, much more insight is provided by

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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(a) (b) (c)

(d) (e) (f)

Fig. 4.6 Local transfer entropy and information flow for raw states of rule 54 in a (45 time steps
displayed for 45 cells, time increases down the page): b Local information flow across one cell to
the right, max. 1.07 bits, min 0.00 bits; Local complete transfer entropy across one cell to the right:
c with past history length k = 1, max. 1.17 bits, min 0.00 bits, and d past history length k = 16,
max. 9.22 bits, min 0.00 bits; Local apparent transfer entropy: e across one cell to the right, max.
7.93 bits, min −4.04 bits, and f across two cells to the right, max. 6.00 bits, min −8.73 bits. (NB:
This figure was first published in [25]; reprinted with kind permission of the European Physical
Journal(EPJ))

contrasting the local values of each measure however, and we describe several cases
within these results to highlight the differences in the concepts of information transfer
and causal effect. These differences have been observed for transfer and flow one
step to the left per unit time step (i.e. j = −1) also, and in other CAs with emergent
structure (e.g. rules 110 and 18), and we comment on the generality of these results
to other systems.

We demonstrate that causal effect is a fundamental system property, which is
pervasive at the level of the micro-dynamics. We show in Sect. 4.4.1 that TE does
not detect all of the causal effects that information flow does, while information flow
does not detect the emergent computational structure (i.e. particles) that TE does. We
show in Sect. 4.4.2 that transfer entropy can be interpreted as information transfer
only when applied to directly causal information sources. We conclude that the
information flow should be used in the first instance to study the causal structure,
then the transfer entropy used to study emergent information transfer structure in
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distributed computation. Finally, in Sect. 4.4.3 we explore the conditions under which
the transfer entropy converges with the concept of causal effect.

4.4.1 Information Transfer, Causal Flow and Emergent
Structures

The most important result here is that the local information flow measures similar
levels of causal effect in both the gliders and the background domain (see Fig. 4.6b
in comparison to Fig. 4.6d, e). This is in contrast to the transfer entropy which, as we
have seen, measures much stronger information transfer in the gliders as compared to
the domain. Both measures are correct, but from different perspectives in measuring
different concepts. There are two key general lessons here.

1. Transfer entropy does not detect all causal effects that information flow does.
The four time step period of the (longest) sequences in the domain is longer than
any one binary-state cell could produce alone—the cells rely on interaction with
their neighbours to produce these coupled periodic processes. To achieve the long
periods here, some information is stored in neighbours and retrieved after a few
time steps (as described in Sect. 3.3.2). This is necessarily underpinned by the
coupled causal effect between the neighbours. From another perspective, much
of the background domain is highly causal simply because had one imposed
values on the sources there the destinations would have changed; hence we find
the strong patterns of information flow here. The concept of information transfer
is focused on distributed computation and is not intended to capture causal effect
where that causal effect underpins information storage processes instead.

2. In this manner, information flow does not detect emergent computational
structure that transfer entropy does (i.e. particles in CAs). As described in
Sect. 4.2.1 gliders are information transfer entities, because the cell states in the
glider region provide much stronger predictive information about the next states
in the direction of glider motion than do the previous states of the destination
cells. In addition, we see the information transfer terms combining with infor-
mation storage in computing the next state of the cell in e.g. Eq. (4.56). For
these reasons, we say that predictive transfer is the concept that more closely
aligned with the popularly understood concept of information transfer. From
a causal perspective, the same CA rules or templates {a, s} executed in the
glider are also executed elsewhere in the domain of the CA—while impos-
ing the source value does indeed have a causal effect on the destination in the
gliders, the positive directional information flow here is no greater than levels
observed in the domain. The measure certainly captures the causal mechanism
in the gliders, but its localisation does not distinguish that from the flow in the
domain. In this form, the causal perspective focuses on the details or micro-level
of the dynamics, whereas the predictive or computational perspective takes a

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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macroscopic view of emergent structures. It is possible that an explicitly macro-
scopic formulation of the information flow might distinguish gliders as highly
causal macroscopic structures,19 but certainly (when applied to the same source
and destination pair as transfer entropy) as a directional measure of direct local
causal effect it does not distinguish these emergent structures. On the other hand,
the examination in the context of the past k states affords a macroscopic view to
the TE , and emergent structure can only be detected on this scale. Since gliders
are dislocations in background patterns [59] (in the past k states) which can only
be caused by neighbouring cells, the source of the glider will add information
about the destination in the context of this background pattern in the past k states
(i.e. p(xi,n+1 | x (k)

i,n , xi− j,n) > p(xi,n+1 | x (k)
i,n )) and we have strong information

transfer. On the other hand, information flow intrinsically cannot consider the
context of the background patterns in the past, since imposing on xi− j,n and

s j
i,r,n blocks out the influence of those past k states.

4.4.2 Information Transfer to be Measured from Causal
Sources Only

Figure 4.6f measures the local apparent TE t (i, j = 2, n, k = 16) for two steps to
the right per unit time step. This profile is fairly similar to that produced for one
step to the right per unit time step (Fig. 4.6e). However, this measurement suggests
a superluminal transfer, i.e. transfer from outside of the past light-cone of xi,n (see
Sect. 2.2.4.1). The result is not intuitive as we expect zero information transfer from
sources that are not direct causal information contributors. This is because only causal
sources are present in Eq. (4.47) in contributing or transferring information to the
next state of the destination. What we see in this profile merely reflects a correlation
between the purported source and an actual causal source one cell away from the
destination: the transfer entropy will produce a non-zero result from non-causal
sources whenever such correlations exist. This does not mean that the TE measure
is wrong, merely that it has not been correctly interpreted here. The key general
result is that in order to be genuinely interpreted as information transfer, the
transfer entropy should only be applied to causal information sources for the
given destination. There it is a correlation which is realised in the computation that
determines the next state of the destination. Beyond these sources though, it only
measures correlations that do not directly contribute or transfer information into this
computation.

To check the correctness of the information flow measure, we apply it here assum-
ing the CA is of neighbourhood-5 (i.e. two causal contributors on either side of the
destination with r = 2). As expected, the local information flow profile computes no
causal effect across two cells to the right per unit time step (not shown). Importantly

19 For example, perhaps looking at flow from a set of cells, in alignment with the perturbation-based
measure the local sensitivity in [58].

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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however, note that the information flow could not be measured using observational
data alone for either j = 1 or j = 2 in neighbourhood-520; specific knowledge about
the dynamics was required for the calculation.

Furthermore, measuring the complete TE tc(i, j = 2, n, k = 16) in this neigh-
bourhood results in a zero predictive information profile (not shown). This is because
all the information h(i, n + 1) required to predict the next state of the destination is
contained within the interior r = 1 neighbourhood for this deterministic system. This
information is represented in the right-hand side of Eq. (4.56), and is a subset of the
conditioned variables in the expansion of tc(i, j = 2, n, k = 16). This measurement
aligns well with the zero result for information flow. Significantly, only the complete
TE could be applied for j = 2 using the available observational data alone, though
both measures require the correct neighbourhood of other causal contributors VY

X to
be a subset of those conditioned on or imposed here.

4.4.3 Complete Transfer Entropy as an Inferrer
for Information Flow

The parallels between the complete TE and the information flow go beyond similar
inference of a lack of influence. Consider the profile of tc(i, j = 1, n, k = 1)

in Fig. 4.6c—note how similar it is to the profile of the local information flow in
Fig. 4.6b. Indeed the average value T c( j = 1, k = 1) = 0.521 bits is almost identical
to the information flow Ip( j = 1) = 0.523 bits.

Convergence of the complete transfer entropy and direct information flow
occurs with the combination of one parameter setting and two conditions which
are approximated in this example:

1. the parameter k for the complete TE was set to include only the past states of the
destination that are causal information contributors to its next state;

2. the condition that all {a, s} combinations are observed (this condition is relevant
for averages but not local values); and

3. the condition that p(a | ŝ) ≡ p(a | s) (which for example is met where a is both
causally and conditionally independent of s).

We describe why these conditions lead to convergence in the following paragraphs.
With history length k = 1 here the numerators of the local measures Eq. (4.35)

and Eq. (4.62) in fact become equal. This is enabled because with k set to include
only the past states of the destination that are causal information contributors to its
next state21—no more, no less—the complete TE conditions on the same variables
that the direct information flow imposes upon. That is, as shown in Eq. (4.60) s j

i,r,n in

20 The CA here does not produce all of the required {s, a} combinations for computing the required
interventional probabilities with the back-door adjustment—see Appendix D for details.
21 That is, with k = 1 in the CAs here, though for example in [29] where the elements in Henon
maps are causally effected by their previous two states, k = 2 would be appropriate rather than the
use of k = 1 there.
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Eq. (4.62) refers to the same variables as {x (k)
i,n , v j

i,r,n} in Eq. (4.35) with k set in this
manner. Importantly, this argument is valid for the non-lattice forms in Eq. (4.26) and
Eq. (4.61) (i.e. s refers to the same variables as {x (k)

n , vy
x,n}). Building on this enabling

then, since we are measuring direct causal effect S includes all direct causal sources
of B excluding A and so the interventional probability p(b | â, ŝ) is equivalent
to the conditional probability p(b | a, s) when the {a, s} combination is observed
(as stated in Sect. 4.3.1). This parameter setting then ensures the numerators of the
local measures Eqs. (4.35) and (4.62) are the same. The history length parameter
k therefore has an important role in moving the (complete) transfer entropy
between measuring information transfer (at large k) and approximating causal
effect (at minimal k).

Note that for the combinations of {a, s} which are not observed, p(b | a, s) is
technically undefined. This is not relevant for local values of either measure (since
the given {a, s} must have been observed), or the average complete TE , but for the
information flow these terms revert to p(b | â, ŝ) and contribute additionally to the
average. For convergence of the averages T c

Y→X (k) and Ip(A → B | Ŝ) only, it is
thus required that all {a, s} combinations are observed. The condition is met in this
example.

Consider now that if the condition p(a | ŝ) ≡ p(a | s) is also met, then the
denominator of Eq. (4.61) becomes p(b | s). With s referring to the same variables as
{x (k)

n , vy
x,n}, the denominator of Eq. (4.61) then matches Eq. (4.26), and in conjunction

with the above conditions we have equality between the two local values and their
averages. Importantly, this condition does not require all values of s to be observed
for convergence of the averages, since p(s) in Eq. (4.59) eliminates the contribution
of any unobserved values of s.

This final condition is approximated but not quite exactly met in the CA example.
As described in Sect. 4.3.1, we have p(a | ŝ) ≡ p(a) here. This final condition
would still be met if in fact p(a) = p(a | s) (i.e. p(yn | x (k)

n , vy
x,n) = p(yn) in

the notation for Eq. (4.26)). That is, there is a class of systems which satisfy this
condition because the source is both causally and conditionally independent of the
other causal contributors to the destination. The CA example approximates the sub-
condition p(a | s) = p(a). In Fig. 4.5 we see that while both a = xi−1,n and
s = {

xi,n, xi+1,n
}

have two common sources
({

xi−1,n−1, xi−1,n
})

, a has one extra
and s has two extra sources that are not shared. It is these unshared sources that
cannibalise the correlation between s and a. The small correlation here is confirmed
by the Kullback-Leibler divergence (see [51]) of p(a | s) from p(a) (i.e. the mutual
information between a and s) which is very low (0.01 bits) for j = {1,−1} for rule
54 here. The divergence is still low, but larger for other ECA rules with emergent
structure (i.e. 0.03 bits for rule 110 and 0.13 bits for rule 18). Nonetheless, the non-
zero divergence confirms that the condition is not precisely met. Finally we note that
where the previous conditions (including p(a | ŝ) ≡ p(a)) were met, the difference
between the local values due to p(a | s) 	= p(a) may be written as:
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log2

∑
a′ p(a′)p(b | a′, s)

p(b | s)
, (4.63)

or for the CA as:

log2

∑
x ′

i− j,n
p(x ′

i− j,n)p(xi,n+1 | x ′
i− j,n, s j

i,r,n)

p(xi,n+1 | s j
i,r,n)

. (4.64)

Interestingly this difference is independent of the source value, a = xi− j,n .
As such, where one cannot intervene in the system, and does not have the required

observations to use a method such as the back-door adjustment (see Appendix D),
the local complete TE could provide a useful inference for the local information flow
profile. We explore this possibility in more detail in Appendix E. Despite the obvious
utility of the complete TE here, we emphasise that it does measure a different concept
and only infers the causal flow completely correctly when the above conditions are
met.

4.5 Summary

In this section, we have described how the local transfer entropy quantifies the infor-
mation transfer at space-time points within a system. Local transfer entropy presents
insights that cannot be obtained using the averaged measure alone, in particular
in providing these spatiotemporal information transfer profiles as an analytic tool.
Most importantly though, they provide the first direct quantitative evidence that
particles are the dominant information transfer entities in CAs. This result is impor-
tant in bringing together the quantitative definition of information transfer (transfer
entropy) with the popular understanding of the concept. It is also important because
of analogies between particles in CAs and coherent structure or hypothesised infor-
mation transfer entities in physical systems, such as travelling localisations caused
by dipole-dipole interactions in microtubules [8] and in soliton dynamics [24].

The local view also allowed us to study the transfer entropy measure itself, includ-
ing the importance of appropriate destination conditioning lengths k (e.g. that using
k → ∞ is most correct). It also allowed us to contrast the apparent and complete
forms which were introduced here in order to explore how incorporating source
interactions alters information transfer measurements (see definitions in Table 4.1).
Furthermore, the local view revealed the manner in which information transfer fits
with information storage in the distributed computation of the next state of a vari-
able. We also demonstrated the important situation where the local apparent measure
becomes negative at orthogonally moving particles (see a summary of information
transfer properties of emergent structures in CAs in Table 4.2).

We have also demonstrated the complementary nature of the concepts of informa-
tion transfer and causal information flow while emphasising the distinctions between
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Table 4.1 Local measures relevant to information transfer

Measure Local definition Equation no.

Apparent transfer entropy tY→X (n + 1, k) = i(yn; xn+1 | x (k)
n ) Eq. (4.11)

Conditional transfer entropy tY→X |Z (n + 1, k) = i(yn; xn+1 | x (k)
n , zn) Eq. (4.21)

Complete transfer entropy tc
Y→X (n + 1, k) = i(yn; xn+1 | x (k)

n , vy
x,n) Eq. (4.29)

Collective transfer entropy tX (n + 1, k) = i(vx,n; xn+1 | x (k)
n ) Eq. (4.52)

Information flow f (a → b | ŝ) = log2
p(b|â,ŝ)∑

a′ p(a′ |ŝ)p(b|â′,ŝ) Eq. (4.61)

Table 4.2 Examples of emergent structures in cellular automata with specific information storage
and transfer properties

t (i, j, n) < 0 t (i, j, n) > 0

a(i, n) > 0 a(i, n) > t (i, j, n): periodic domain with
ambient transfer (Sect. 4.2.3)
t (i, j, n) > a(i, n): wake segment of
particle (Sect. 4.2.3)

a(i, n) < 0 particle orthogonal to channel
j (Sect. 4.2.4.1)

particles in channel j(Sect. 4.2.2)

them. Causal effect is a fundamental micro-level property of a system. Information
flow should be used as a primary tool (where possible) to establish the presence of
and quantify causal relationships. Information transfer can then be analysed in order
to gain insight into the emergent computation being carried out by the system. Trans-
fer entropy can be measured for any time-series pair, but can only be interpreted as a
physical information transfer when measured on a direct causal link. We also showed
the conditions under which the complete transfer entropy converges with the infor-
mation flow. This included demonstrating the importance of k in tuning the transfer
entropy between a measure of information transfer (at large k) and inferring causal
effect (at small k). More generally, we noted that the use of a large k is critical to
our perspective of distributed computation in general, in also separating information
transfer from storage.

Finally, the local transfer entropy provides similar filtering for coherent struc-
ture in CAs to other methods [6, 58–62], yet is novel in a number of ways. The
most important distinction with previous methods is that this filtering is part of a
framework for the local information dynamics of distributed computation, combin-
ing the perspectives of information transfer with the information storage measures
that we have already seen in Chap. 3, and the information modification we will see
in Chap. 5. No other method uses multiple filtering perspectives; more importantly,
none can decompose computation into its component operations. While all methods
highlight particles along with other structure, this is the only filter that can provide
quantitative evidence that particles are the dominant information transfer entities.
Transfer entropy provides multiple filters itself here: one for each generic channel

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_5
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j , and the complementary apparent and complete measures. These filters are dis-
tinct in focussing on the leading glider edges facilitating the information transfer and
only the minimal part of domain walls necessary to identify them (from a temporal
perspective). They are also distinct in filtering only moving structure, in particular
information “moving” in the given channel. Also, the collective transfer entropy
(equivalent to the local temporal entropy rate here) provides a useful single filter for
all moving information. We comment further on the unique combination of filtering
properties shared by all of the measures in this framework in our final summary in
Sect. 9.1.5.

Together with the results from Chap. 3, we have now quantified both information
storage and transfer in our framework for the local information dynamics of distrib-
uted computation. We have also described the manner in which these dynamics are
embodied in CAs in blinkers, gliders and domain walls. However, we have not yet
separately identified collision events in CAs. To complete our framework, we now
consider the nature of information modification.
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Chapter 5
Information Modification

Information modification is often colloquially described as processing. It has been
viewed as a particularly important operation for biological neural networks and mod-
els thereof [1–4], where it has been suggested as a potential biological driver [2]. It
is also a key operation in collision-based computing (e.g. [5, 6], including soliton
dynamics and collisions [7]).

Information modification has been interpreted to mean interactions between trans-
mitted and/or stored information which result in a modification of one or the other
[8]. We accept this interpretation in our perspective of distribution computation, as
it specifically juxtaposes modification against storage and transfer, viewing it as a
dynamic combination or synthesis of information from different sources. Modifica-
tion therefore involves a non-trivial processing of information rather than a trivial
movement or translation of one source of information.

The term has however remained elusive to appropriate quantitative definition,
despite several attempts [1, 3, 4]. A major issue is that these attempts focus on
measuring trivial processing as the movement or interpretation of information rather
than specifically the modification of information synthesised from several sources.
Furthermore, some [1, 4] have been too specific to allow portability across system
types (e.g. by focusing on the capability of a system to solve a known problem, or
measuring properties related to the particular type of system being examined), or
are not amenable to measuring information modification at local space-time points
within a distributed system.

To derive quantitative insights here, we again focus on CAs where (as per Sect. 2.3)
the qualitative notion of information modification in distributed computation is well-
understood. In this context, interactions between transmitted and/or stored infor-
mation is generally interpreted to mean collisions of particles (including blinkers
as information storage), with the resulting dynamics involving something other than
the incoming particles continuing unperturbed. The resulting dynamics could involve
zero or more particles (with an annihilation leaving only a background domain), per-
haps including some of the incoming particles.1Given the focus on perturbations in

1 The number of particles resulting from a collision has been studied elsewhere [9].
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the definition here, it is logical to associate a collision event with the modification
of transmitted and/or stored information, and to see it as an information processing
or decision event. Indeed, as an information processing event the important role of
particle collisions in determining future dynamics is widely acknowledged for CAs
[8–12], e.g. in the φpar density classification task [13, 14], and is paralleled in studies
of collision-based computing [5–7].

In this chapter, we aim to quantify information modification on a local scale in
space and time, in order to complete our framework for the information dynamics of
distributed computation. We hypothesise that such a measure should identify particle
collisions in CAs as the dominant information modification events. We derive the
separable information in Sect. 5.1 as a tool to detect non-trivial information modi-
fication events, where separate inspection of information sources is misinformative
about the next state of a destination. Indeed, we demonstrate in Sect. 5.2 that the sepa-
rable information is the first measure to identify collisions in CAs as such non-trivial
information modification events.2

Additionally, we quantify irreversible information destruction on a local scale in
distributed computation in Sect. 5.3 so as to explore the relationship of this concept
to information modification. We apply this measure to CAs, where reversibility has
often been considered yet information destruction has not previously been measured.
Our local measurements here demonstrate that the concept of information destruction
is complementary to but distinct from information modification and its associated
events. Certainly many particle collisions involve information destruction, yet we
observe modification to occur without destruction, and destruction to occur without
modification.

5.1 Separable Information as a Detector for Non-Trivial
Information Modification

We begin our investigation of the quantitative nature of information modification
by considering what it means for a particle in a CA to be modified. For the simple
case of a glider, a modification is simply an alteration to the predictable periodic
pattern of the glider’s dynamics. At such points, an observer would be surprised or
misinformed about the next state of the perturbed glider, having not taken account
of the entity about to perturb it.

This interpretation is a clear reminder of our earlier comments that local active
information storage was misinformative at moving gliders (Sect. 3.3.3), and local
apparent transfer entropy was misinformative at gliders travelling in the orthogo-
nal direction to the measurement (Sect. 4.2.4.1). For these unperturbed gliders, one
expects the local apparent transfer entropy measured in the direction of motion to
be more informative about its continuation than any misinformation conveyed from
other sources (see Fig. 5.1a). However, where the glider is modified by a collision

2 The separable information and its application to CAs were first reported in [15, 16].
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Fig. 5.1 Our expectations for the local information dynamics of storage and transfer for unperturbed
gliders (coherent structures) and glider collisions. a For unperturbed gliders in channel j = 1, we
expect the transfer t (i, j = 1, n, k) in the direction of glider motion to be positively informative,
and indeed more informative than the misinformation conveyed through a and t (i, j = −1, n, k).
b For a collision perturbing a glider moving in the channel j = 1, we can no longer expect the
transfer t (i, j = 1, n, k) in the direction of glider motion to be positively informative at the collision
point. We cannot expect the transfer t (i, j = −1, n, k) in the direction of the incident glider to be
positively informative at the collision point either. (NB: Reprinted with permission from J. T. Lizier
et al. [16] Copyright 2010, American Institute of Physics)

with another glider, we can no longer expect the local apparent transfer entropy in
its macroscopic direction of motion to remain informative about its evolution (see
Fig. 5.1b). Assuming that the incident glider is also perturbed, the local apparent
transfer entropy in its macroscopic direction of motion will also not be informative
about its evolution at this collision point. We expect the same argument to be true
for domain walls and their collisions.

As such, we make the hypothesis that at the spatiotemporal location of a local
information modification event or collision, separate inspection of each information
source will misinform an observer overall about the next state of the modified infor-
mation destination. Such separate inspection contrasts with the information gained
from a unified inspection of all causal sources (i.e. IVX ;X ), where the observer can
account for the interaction of the sources producing a modification.

To be specific, the information sources referred to here are the past history of the
destination (via the local active information storage from Chap. 3) and each other
causal information contributor: these are examined in the context of the past history
of the destination, via their local apparent transfer entropies from Chap. 4.

We have seen how these sources provide the total information for the computation
of the next state of the destination when interactions are accounted for in Eq. (4.54.).3

In contrast, we quantify the total information gained from separate observation of
the information storage and information transfer contributors as the local separable
information sX (n):

3 Interactions are accounted in that equation because of the incremental conditioning on previous
sources (i.e. in conditional and complete transfer entropies). Consideration of apparent transfer
entropies only in Eq. (5.2)means that interactions are not being accounted for.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4


120 5 Information Modification

sX (n) = lim
k→∞ sX (n, k), (5.1)

sX (n, k) = aX (n, k) +
∑

Y∈VX \X

tY→X (n, k), (5.2)

with the subscripts indicating the destination X and source variables Y ∈ VX \ X .
We use sX (n, k) for finite-k estimates, though in practise recommend that as large a k
as possible is used. This is because the measure relies on the correctness of aX (n, k)

and the tY→X (n, k), which have this requirement as we have shown in Chaps. 3
and 4. Indeed, the true separation of elements of information storage and transfer
(facilitated by k → ∞providing the context of the past) is critical to our consideration
of information modification from the perspective of distributed computation here.4

As an example, in Fig. 4.1. we have sX (n, k) = aX (n, k) + tY1→X (n, k) +
tY2→X (n, k). For CAs, where the causal information contributors are homogeneously
within the neighbourhood r , we write the local separable information in lattice
notation as:

s(i, n) = lim
k→∞ s(i, n, k), (5.3)

s(i, n, k) = a(i, n, k) +
+r∑

j=−r, j �=0

t (i, j, n, k). (5.4)

We show s(i, n, k) diagrammatically in Fig. 5.2.
As inferred in our hypothesis, we expect the local separable information to be

positive or highly separable where separate observations of the information contrib-
utors are informative overall regarding the next state of the destination. This may be
interpreted as a trivial information modification, because an observer is positively
informed even without accounting for any interactions between the sources. As such,
information storage and transfer are not interacting in any significant manner. For
example, a periodic process executes information storage alone, trivially updating
its state using its past history as a sole information source.

More importantly, we expect the local separable information to be negative or
non-separable at spatiotemporal points where an information modification event or
collision takes place. Here, separate observations are misleading overall because the
outcome is largely determined by the interaction of the information sources. We
say that a non-trivial information modification is taking place, understanding this
as the interaction between information storage and transfer. For example, a particle
collision involves a non-trivial information modification because an observer needs

4 The separable information has parallels to the sum of “first order terms” (the apparent contribution
of each source without considering interactions) in the total information of a destination in [17].
The local separable information however is distinguished in considering the contributions in the
context of the destination’s past, and evaluating these on a local scale—both features are critical for
an understanding of distributed computation.
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Fig. 5.2 Separable information s(i, n + 1, k): information gained about the next state of the des-
tination xi,n+1 from separately examining each causal information source in the context of the

destination’s past x (k)
i,n . For ECAs these causal sources are within the cell range r . (NB: Reprinted

with permission from J. T. Lizier et al. [16]. Copyright 2010, American Institute of Physics)

to collectively examine multiple sources and their interaction in order to be positively
informed about the next state of the destination.

Interestingly, this formulation of non-trivial information modification echoes
descriptions of complex systems as consisting of (a large number of) elements inter-
acting in a non-trivial fashion [18], and of emergence as where “the whole is greater
than the sum of its parts” [19]. Here, we quantify the sum of the parts in s(i, n),
whereas “the whole” refers to examining all information sources together. The whole
is greater where all information sources must be examined together in order to receive
positive information on the next state of the examined entity. We emphasise, there is
no quantity representing “the whole” as such, simply the indication that the sources
must be examined together. We also emphasise that s(i, n) is not the total informa-
tion an observer needs to predict the state of the destination (this is measured by the
single-site entropy h(i, n)—see Sect. 3.2.2 and Sect. 4.1.4). It is the total obtained
by inspecting the sources separately, ignoring any interaction or redundancies.

Note that unlike other information-theoretic variables, we have introduced the
local separable information before its average, because the quantity is only truly
understood it terms of what its local values imply. The average separable information
can certainly be defined also:

SX = 〈sX (n)〉n , (5.5)

SX (k) = 〈sX (n, k)〉n , (5.6)

SX = lim
k→∞ SX (k). (5.7)

Furthermore, we also introduce the notation S+
X (k) and S−

X (k) as the averages of
positive and negative local values of sX (n, k) in contributing to the averageSX (k),

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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for example:

S+
X (k) = 〈s+

X (n, k)〉n, (5.8)

s+
X (n, k) =

{
sX (n, k) if sX (n, k) ≥ 0

0 if sX (n, k) < 0
. (5.9)

Also S−
X (k) = 〈s−

X (n, k)〉 is defined in the opposite manner, and we have:

SX (k) = S+
X (k) + S−

X (k). (5.10)

S+
X (k) and S−

X (k) are used to describe the relative proportions of trivial and non-
trivial information modifications in the computations of X (in later chapters).
Finally, for lattice systems we similarly have:

S(i) = 〈s(i, n)〉n , (5.11)

S(i, k) = 〈s(i, n, k)〉n , (5.12)

S(i) = lim
k→∞ S(i, k). (5.13)

For homogeneous agents we have S(k) = 〈s(i, n, k)〉i,n , and define S in the limit
k → ∞. Also, we can define S+(k) and S−(k) for lattice systems as above, and
extend the definitions appropriately to the limit k → ∞.

5.2 Local Information Modification in Cellular Automata

Local separable information was applied with k = 16 to study information modifica-
tion in the same sample ECA runs where we analysed information storage and transfer
in Sects. 3.3 and 4.2; i.e. for rules 54 (Fig. 3.4a), 110 (Fig. 3.5a), φpar (Fig. 3.6a), 18
(Fig. 3.9a), 22 (Fig. 3.10a) and 30 (Fig. 3.11a).
We discuss the key results from this application here:

• Negative values of local separable information provide the first quantitative iden-
tification of hard collisions between particles as dominant non-trivial information
modification events in Sect. 5.2.1. This is the case for both regular gliders and
domain walls, and we observe a short time delay between the apparent collisions
and the identified information modification points.

• That non-trivial information modification events can also occur separately from
particle collisions, for example in soft collisions between gliders and background
domains (Sect. 5.2.2), storage modifications in non-periodic background domains
(Sect. 5.2.3), as well as throughout the chaotic dynamics of rules 22 and 30
(Sect. 5.2.4).

• That appropriately large values of past history k are required to provide the per-
spective of distributed computation and identify non-trivial modification points.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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5.2.1 Hard Particle Collisions as Dominant Modification
Events

The simple gliders in ECA rule 54 give rise to relatively simple collisions which
we focus on in our discussion of s(i, n, k = 16) here (see Fig. 3.4a). Notice that
the positive values of s(i, n, k = 16) are concentrated in the domain regions and at
the stationary gliders (α and β). As expected, these regions are undertaking trivial
computations only. More importantly, the negative values of s(i, n, k = 16) are
also shown in Fig. 3.4a, with their positions circled there. The dominant negative
values are clearly concentrated around the areas of collisions between the gliders,
including collisions between the travelling gliders only (marked by “A”) and between
the travelling gliders and the stationary gliders (marked by “B”, “C” and “D”). This
clearly confirms the glider collisions as non-trivial information modification
events. We term them hard collisions because they are collisions between explicit
emergent structures.

For example, collision “A” involves the γ+ and γ− particles interacting to produce
a β particle (γ++γ− → β [9]). The only information modification point highlighted
is one time step below that at which the gliders initially appear to collide—these
points are marked “o” and “∗” respectively in the close-up of raw states in Fig. 3.8.
The periodic pattern from the past of the destination breaks at “∗”, however the
neighbouring sources are still able to support separate prediction of the state, i.e.:
a(i, n, k = 16) = −1.09 bits, t (i, j = 1, n, k = 16) = 2.02 bits and t (i, j =
−1, n, k = 16) = 2.02 bits, giving s(i, n, k = 16) = 2.95 bits. This is no longer
the case however at “o” where our measure has identified the modification point;
there we have a(i, n, k = 16) = −3.00 bits, t (i, j = 1, n, k = 16) = 0.91 bits and
t (i, j = −1, n, k = 16) = 0.90 bits, with s(i, n, k = 16) = −1.19 bits suggesting
a non-trivial information modification.

A delay is also observed before the identified information modification points of
collision types “B” (γ+ + β → γ−, or vice-versa in γ-types), “C” (γ− + α →
γ− +α+2γ+, or vice-versa) and “D” (2γ+ +α+2γ− → α). Possibly these delays
represent a time-lag of information processing. Not surprisingly, the results for these
other collision types imply that the information modification points are associated
with the creation of new behaviour: in “B” and “C” these occur along the newly
created γ gliders, and for “C” and “D” in the new α blinkers.

We observe similar results in the profile of s(i, n, k = 10) for φpar in Fig. 3.6a,
confirming the particle collisions here as non-trivial information modification events.
This completes the evidence for all of the conjectures about the role of emergent
structures in this human-understandable distributed computation.

The results for s(i, n, k = 16) for ECA rule 110 in Fig. 3.5a are also similar. Here,
we have collisions “A” and “B” which show non-trivial information modification
points slightly delayed from the collision in a similar fashion to those for rule 54.
We note that collisions between some of the more complex glider structures in rule
110 (not shown) exhibit non-trivial information modification points which are more
difficult to interpret, and which are even more delayed from the initiation of the
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collision. The larger delay is perhaps this is a reflection of the more complex gliders
requiring more time steps for the processing to take place. An interesting result not
seen for rule 54 is a collision where an incident glider is absorbed by a blinker
(not shown), without any modification to the absorbing blinker. No information
modification is detected for this absorption event by s(i, n, k = 16): this is because
the information storage for the absorbing blinker is sufficient to predict the dynamics
at this interaction.

Furthermore, as displayed in Fig. 3.9a, the separable information quite clearly
identifies the hard collision between the domain walls as dominant information
modification events for rule 18. The initial information modification event is clearly
where one would initially identify the collision point, yet it is followed by two
secondary information modification points separated by two time steps. At the raw
states of these three collision points in Fig. 3.9a, the outer domains have effectively
coalesced (inferred by spatial scanning). The source in say the left outer domain (in
the context of the past in the inner domain) indicates that the domain walls should
intrude into the inner domain; the domain wall is not observed though because the
outer domains have coalesced, and this is misinformative. The same applies for
the source in the right domain, so the separable information is negative at these
points due to the transfer sources. Indeed an observer following the computational
perspective and scanning the temporal pattern cannot be certain that the new domain
has taken hold at this particular cell until observing a “1” at the alternate phase (see
discussion of the two phases of the domain in Sect. 3.3.5). As such, these information
modification events continue to be observed until a “1” confirms the outer domains
have joined.5 This in some ways parallels the observation of delays in information
processing observed earlier.

Importantly, this result provides evidence that collision of irregular particles are
information modification events, as expected. It is also worth noting that these col-
lisions always result in the destruction of the domain walls (and the inner domain),
indicating that our method captures destruction-type modification events as well as
creation. (This is also true for the γ+ + γ− + β → 
 event in rule 54, not shown).

Interestingly also, note that the glider collisions in rules 54 and 110 always
occurred with t (i, j, n, k) > 0 for at least one j . In contrast, the domain wall colli-
sions in rule 18 have a different basis for non-trivial modification because we have
t (i, j, n, k) < 0 for both j while the a(i, n, k) remains positive.

While particle collisions are the dominant non-trivial information modification
events, they are not the only such events in these dynamics. In the next sections
we discuss the manifestation of non-trivial information modification in gliders, non-
periodic background domains, and their proliferation in chaotic dynamics.

5 Only then does the active information storage go negative, because from a temporal perspective
the inner domain no longer continues. The separable information is positive here though, as the
transfer sources provide positive information about their domains intruding (having coalesced).
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5.2.2 Soft Collisions Between Gliders and the Domain

Interestingly, weak non-trivial information modification points continue to be iden-
tified at every second point along all the γ+ and γ− particles in rule 54 after the
initial collisions. These are too weak to appear in Fig. 3.4a but can be seen for a sim-
ilar glider in rule 110 in Fig. 3.5a. This was unexpected from our earlier hypothesis.
However, these events can be understood as non-trivial computations of the contin-
uation of the glider in the absence of a collision. From another perspective, they are
soft collisions of the glider with the periodic structures and ambient transfer in
the domain. Recall the ambient transfer refers to the small but non-zero information
transfer in periodic domains indicating the absence of gliders (see Sect. 4.2.3). The
term soft collisions indicates the qualitative contrast with hard collisions between
particles, and that the gliders continue unperturbed. These soft collision events are
more significant closer to the hard collisions, since the ambient transfer is stronger
in the wake of the gliders that caused these collisions (see Sect. 4.2.3).

Also, note that these soft collision events occur with a(i, n, k) < 0 (since the
domain is misinformative) and at least one t (i, j, n, k) > 0 (since the glider contains
strong transfer). Importantly also, some soft collision events (e.g. in rule 110) occur
with a larger magnitude s(i, n, k) < 0 than for some hard collision events. These facts
together mean that hard and soft collisions are not differentiable using s(i, n, k) alone,
or by examining the underlying values of a(i, n, k) and t (i, j, n, k) that produce
these values s(i, n, k) < 0. From the perspective of these measurements, they are
both simply occurrences of non-trivial information modification.In future work, we
will investigate methods to formally quantify the difference between these collision
types.

In contrast to the gliders, the domain walls in rule 18 appear to give rise to only
positive values of s(i, n, k = 16). This indicates that the domains walls contain only
trivial information modification, in contrast with regular gliders which required a
small amount of non-trivial information processing in order to compute their contin-
uation. This is perhaps akin to the observation in [20] that the domain walls in rule
146 are largely determined by the dynamics on either side, i.e. they are not the result
of any interaction per se but of dominance from a single source at each time step.

5.2.3 Storage Modifications in Non-Periodic Domains

Also, as displayed in Fig. 3.9a, the background domain of rule 18 takes values of
s(i, n, k = 16) as either positive or negative with a(i, n, k = 16), since t (i, j =
1, n, k = 16) and t (i, j = −1, n, k = 16) vanish at these points. As described in
Sect. 3.3.5, a(i, n, k = 16) is positive for the “0” values at every second site, whereas
for the alternate sites it is positive where these are “1” but negative where they are
“0”. This indicates that the “0” sites for every second point and the “1”’s which
only occur in the alternate phase are trivial computations dominated by information
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storage. In contrast then, some minor information processing is required to compute
the “0” sites in the alternate phase. The occurrence of a “0” in this phase is a non-
trivial information modification because it makes the task of temporally determining
the phase more ambiguous in the future. With a(i, n, k = 16) < 0 as the determining
factor here, it could indeed be viewed as a storage modification.

5.2.4 Proliferation of Information Modification in Chaotic
Dynamics

We have also applied s(i, n, k = 16) to ECA rule 22, as displayed in Fig. 3.10a,
and rule 30 in Fig. 3.11a. The profiles contain many points of both positive and
negative local separable information. Indeed the presence of negative values implies
the occurrence of non-trivial information modification, yet there does not appear to
be any structure to these profiles. Again, this aligns well with the lack of coherent
structure observed in the local information storage and transfer profiles for these
rules in Sects. 3.3.8 and 4.2.2, and from the local statistical complexity profile of rule
22 [20].

In both rules 22 and 30, we observe non-trivial information modifications with
both a(i, n, k) < 0 and t (i, j, n, k) < 0 for all j , in addition to the other sign
combinations for these events previously observed in rules 110, 54 and 18 (see sum-
mary in Table 5.2). Indeed these events, along with those with a(i, n, k) > 0 and
t (i, j, n, k) < 0 for all j , are the most prevalent and strongest non-trivial modi-
fication events for rule 22. We cannot conclude that these types of modifications
events are prohibited between coherent structures though: at this stage we have
no theoretical basis for such a conclusion, and indeed such modifications between
coherent structures may exist in other examples. Further investigation is required on
this topic. Nonetheless, the result itself is important since it demonstrates that non-
trivial information modifications can occur with all sign combinations of a(i, n, k),
t (i, j = 1, n, k) and t (i, j = −1, n, k) (except for all of them being positive, since
this would leave s(i, n, k) > 0).

5.2.5 Modification Only Understood in Context of Past History

Finally, we note that measurements of s(i, n, k) must be performed with an appro-
priately large value of k. In Sect. 3.3.2 and 4.2.2, we observed that for appropriate
measurement of information storage and transfer k should be selected to be as large
as possible for accuracy, at least larger than the scale of the period of the regular
background domain for CA filtering purposes. Indeed, using sufficiently large val-
ues of k provides the perspective of distributed computation, by properly separating
information storage and transfer. Since the definition of s(i, n, k) is dependent on
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this perspective of distributed computation, and accurate measurement of informa-
tion storage and transfer, the preceding text has assumed the same applies here.
In testing this assumption, we note that for rule 54 k < 4 could not distinguish
any collision points clearly from the domains and particles, and even k < 8 could
not distinguish all of them (results not shown). Correct quantification of separable
information requires satisfactory estimates of information storage and transfer, and
accurate distinction between the two. The key result here is that detecting informa-
tion modification requires the perspective of distributed computation, which is
highly dependent on establishing the context of the past state of the destination.

5.3 Irreversibly Destroyed Information

Questions remain, even from a qualitative perspective, of the relationship between the
concepts of information modification and irreversible information destruction. Log-
ical irreversibility is a fundamentally important concept because it provides strong
ties between information theory and thermodynamics. This is primarily through Lan-
dauer’s principle [21], which states that irreversible destruction of one bit of infor-
mation results in dissipation of at least kT ln 2 J of energy6 into the environment (i.e.
an entropy increase in the environment by this amount) [22–24].7

The term information modification, and indeed the focus in the preceding dis-
cussion of perturbation of emergent structures, certainly both allude to information
destruction. This inevitably raises the question of whether the concepts of informa-
tion modification and irreversible information destruction are indeed the same. If not,
then how should one measure irreversible information destruction in a distributed
computation, in particular on a local scale? If this can be done, what then can we
learn about the relationship between the concepts of information modification and
irreversible information destruction?

We hypothesise that the concepts are complementary but distinct. They are likely
to overlap in some instances. Certainly most particle collisions involve destruction of
at least one incoming particle. Also, since the resulting emergent dynamics of some
particle collisions are possible from other starting configurations,8 then information
is destroyed in the collision about what the starting configuration was. However
there are likely to be differences between the two concepts, e.g. information could be
destroyed without any interaction between information sources, and certain collision
events could be completely reversible or else destroy comparatively little information.

In Sect. 5.3.1 we discuss how to quantify irreversible information destruction on a
local scale in distributed computation. The perspective of distributed computation is

6 T is the absolute temperature and k is Boltzmann’s constant.
7 Maroney [25] argues that while a logically irreversible transformation of information does generate
this amount of heat, it can in fact be accomplished by a thermodynamically reversible mechanism.
8 For example, the result of an annihilation could be trivially reproduced without any of the particles
existing in the first place.
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critical here: it means we wish to quantify information destruction on a local scale in
space and time, which is an extension over previous considerations in time only. We
then apply the measure to our CA examples in Sect. 5.3.2, which is a novel application
since consideration of CAs in this context has typically focussed on whether rules
are reversible [26–29], but not on the specific locations in space and time where
information is destroyed and how this relates to the dynamics of computation. We
contrast the findings with our results for non-trivial information modification from
the separable information. As expected, we demonstrate that the two concepts are
complementary but distinct: certainly they overlap in many particle collision cases,
but we present instances of each occurring in isolation.

5.3.1 Measuring Information Destruction in Distributed
Computation

An operation is defined to be logically irreversible if the output does not uniquely
define the inputs [21]. The classic example of this concept is the “reset to zero” (RTZ)
operation [24, 25, 30]: f (x) = 0, x ∈ {0, 1}. Clearly here the output 0 cannot be used
to recover information about what the input bit x was, so the operation is irreversible
and information is destroyed. This simple example demonstrates that computational
processes that deterministically map inputs to an output do not necessarily map the
same output uniquely back to its input. The RTZ operation is generally juxtaposed
with the bit flipping operation: f (0) = 1, f (1) = 0. One can clearly recover the
input from the output of a bit flip, so information is preserved in that operation.

The amount of irreversibly destroyed information can be captured information-
theoretically as the uncertainty in the inputs given the outputs (in alignment with
[31]). For a univariate process X → X ′ we can write the average amount of infor-
mation destruction at each time step as:

DX = H(X | X ′), (5.14)

For the RTZ operation, we have DX = H(X) (since there is no information in
the output X ′); so for a maximum entropy input distribution, one bit of information
is destroyed in the operation.9 In the following, we build an approach to measuring
local information destruction in distributed computation. We start with measuring
information destruction on a local scale in time in univariate processes, then in multi-
variate processes, and finally discuss the local scale in space and time in multivariate
processes.

9 With this formulation we see that the approach to information processing in [3] (referred to at the
start of this chapter) has aspects more akin to destroying redundant information than information
modification. Indeed the authors describe part of the approach as measuring “minimization of
spurious information” retained in the output.
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5.3.1.1 Local Information Destruction in Time-Series Processes

In extending this notion to distributed computation, we first need to consider ongoing
univariate time-series processes where xn → xn+1 for each time step n. We can write
the local information destruction at each time step n of process X as dX (n + 1):

DX = 〈dx (n + 1)〉n , (5.15)

dX (n + 1) = h(xn | xn+1). (5.16)

Additionally though, where the future state xn+1 is not statistically independent of
multiple past states {xn−c | k ≥ c > 0} given the previous state xn ,10 the expression
needs to be altered. This is because such statistical dependence means that conversely
information about xn could be conserved beyond the next state xn+1 even if such
information is not contained in that next state. We are interested in the uncertainty in
(or information destroyed about) xn given all of the future states x (k) that information
about it could be conserved in, so we write:

DX (k) = H(X | X (k+)), (5.17)

dX (n + 1, k) = h(xn | x (k+)
n+1 ). (5.18)

Of course, this in general requires the limit k → ∞ unless the limit of such
statistical dependence can be established (e.g. with the synchronisation time [32]).
Also, the incorporation of k consecutive values here means that we are looking at
preservation of information in embedding vectors [33], which capture the underly-
ing state of the process. This is in alignment with the examination of information
destruction in underlying causal states of ε-machines in [31] (and similarly in [34]),
where it is demonstrated that the difference between the statistical complexity and
excess entropy is equivalent to the irreversibly destroyed information about the past
state of each time step.11

5.3.1.2 Local Information Destruction in Time in Multivariate Systems

When considering multivariate systems with a joint vector of states X where at each
time step xn → xn+1, the information destruction in multivariate systems can be

10 This can be because these past states are direct causal sources of the future state, or are indirectly
causal via other variables (such as neighbouring cells in a CA, i.e. as per Sect. 3.1), or perhaps both
the past states and future state have a common causal driver.
11 Note the important distinction here. The statistical complexity—excess entropy interpretation
computes the information that will be destroyed in total about the current underlying ε-machine state,
over an arbitrary number of time steps. The interpretation in Eq. (5.18) computes the information

destroyed about the current underlying state at the next state transition x (k+)
n → x (k+)

n+1 only. The
distinction parallels that between the excess entropy and active information storage discussed in
Chap. 3, and experimental results from the two views could be contrasted in future work.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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written on average and locally in time as:

DX(k) = H(X | X(k+)), (5.19)

dX(n + 1, k) = h(xn | x(k+)
n+1 ). (5.20)

However, because we are considering the system X as a whole then under certain
assumptions (including causal closure of the system)12 we can simplify this back to:

DX = H(X | X′), (5.21)

dX(n + 1) = h(xn | xn+1). (5.22)

An important interpretation is Bennett’s description [22] of “merging of two com-
putational paths” as logically irreversible. The computational paths referred to here
are trajectories through the state-space of the joint system (which we have already
encountered for CAs [37] in Sect. 2.3). For a deterministic system, any global state is
only mapped to a single next state, yet there may be multiple precursor states leading
to one next state. This is the merging of computational paths: if at time step n + 1
we reach a global system state xn+1 with multiple precursor states xn , then we have
non-zero irreversibly destroyed information dX(n + 1) = h(xn | xn+1) at time step
n + 1. This means that a (finite) discrete dynamical system is reversible if and only
if its state-space contains states on attractor cycles only without any transient states
leading up to them [26]. In Appendix F we discuss the fact that computational paths
cannot merge and information cannot be destroyed in thermodynamically closed sys-
tems; we can only measure information destruction in open computational systems,
and what we measure is a departure of information from this system into the external,
unobserved environment.

5.3.1.3 Local Information Destruction in Time and Space in Multivariate
Systems

Measuring DX = H(X | X′) has obvious difficulties for large systems, and while
localising with dX(n + 1) tells us when in time information was destroyed, it does
not tell us where in space this occurred.

To address this question, we introduce the local information destruction in space
and time in multivariate systems. This quantity, dXi (n+1) or d(i, n+1), measures

12 Assumption 1: that all causal inputs to the computation are considered to be within the system,
i.e. it is causally closed or closed to efficient cause [35] (which is stronger than informational closure
[36]). Assumption 2: (the normal case where) only the state at time step n is a direct causal input to
the state at time step n+1. Under these assumptions, none of the conditions described in footnote 10
apply to the system as a whole, and so the future state xn+1 is statistically independent of multiple past
states {xn−c | k ≥ c > 0} given the previous state xn (i.e. I (xn−c; xn+1 | xn) = 0,∀k ≥ c > 0).
Note that our assumption of causal closure allows for stochasticity in the computation of the next
state of the system, but not for correlations across time in such stochasticity.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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the amount of uncertainty in (or information destroyed about) the previous state xi,n

of variable Xi given the next state xn+1 of the system X at time n + 1:

d(i, n + 1) = h(xi,n | xn+1), (5.23)
D(i) = H(Xi | X), (5.24)

= 〈d(i, n + 1)〉n (5.25)

In comparison to a single time-series Eq. (5.16), we try to find information about
xn in the whole system xn+1 rather than only in xn+1. This is because in the context
of the distributed computation we only consider the information destroyed if it is no
longer available anywhere in the system. In a CA for example, xi,n has a direct causal
effect on its future light-cone, so these agents can directly contain information about
xi,n . Yet extra information about xi,n may exist outside of this future light-cone, for
example where there are longer-range correlations in the system. From another per-
spective, the extended system xn+1 also contains information about the neighbours
of Xi at time n (and their own neighbours, and so on), and that information can be
helpful in decoding xi,n based on the next states xn+1 they produced together.13As
a concrete demonstration, it is known that “the inverse map of a reversible CA is
always itself a CA, but the inverse CA does not necessarily have the same radii” or
neighbourhood r ([29] citing [27, 28]). Without knowing the limits within which
to recover this information therefore, in general one should examine the whole sys-
tem xn+1. While we are locally identifying where the information may have been
destroyed from, certainly there is a “departure from locality” [38] in recognising
where that information may still exist.

Furthermore, we note that dX(n+1) �= ∑
i d(i, n+1) in general. While d(i, n+1)

certainly quantifies the amount of information destroyed about xi,n , this may include
redundancies with information destroyed about say xi− j,n . Correct summing to
obtain dX(n + 1) would involve incrementally conditioning on the destroyed infor-
mation from previously considered agents (in the style of Eq. (4.47)).

In practice, the number of available observations normally precludes the use of
the whole system state xn+1. As such, one needs to restrict analysis to a subset of the
next state of the system. The most logical restriction is to agents which have shorter
paths of causal links to xn within its past light-cone [39, 40]. In lattice systems with
local interactions (e.g. CAs) one can take the subset Xi,m of agents within m cells of
Xi , and so express this local information destruction approximation as:

d(i, n + 1, m) = h(xi,n | xi,n+1,m), (5.26)
xi,n+1,m = {xi+q,n+1 | ∀q : −m ≤ q ≤ +m}. (5.27)

Figure 5.3 displays a diagram of d(i, n+1, m). Obviously, d(i, n+1, m) converges
with d(i, n + 1) in the limit as m envelopes the whole system.

13 This is akin to using the next state of the whole system xn+1 to compute pre-images of the whole
system xn , by gradually building the previous state cell by cell [37].

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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Fig. 5.3 Local information destruction (approximation) d(i, n + 1, m) in lattice systems: informa-
tion in the previous state xi,n of Xi that is no longer contained in the subset xi,n+1,m of the next
state of the system Xi . The subset refers to agents within m cells of Xi

Finally, in comparison to Eq. (5.18) note that we have not included k steps of
xi,n+1 into the future in d(i, n +1) in Eq. (5.23). Under the assumptions described in
footnote 12, xi,n is conditionally independent of these future states given xi,n+1,
so this is not necessary. Where those assumptions are not valid, these k steps
should theoretically be included in Eq. (5.23). For the approximation Eq. (5.26), we
note that the restriction to xi,n+1,m may itself result in again rendering xi,n con-
ditionally dependent on the future states given xi,n+1,m . However, given that the
approximation d(i, n + 1, m) was introduced to counter a limited number of avail-
able approximations, there is little point in re-burdening the measure by including
these k steps.

5.3.2 Irreversible Information Destruction in Cellular Automata

Local information destruction d(i, n, m = 8) was applied to the same sample ECA
runs where information storage, transfer and modification was analysed in Sects. 3.3,
4.2 and 5.2. The results are displayed for rules 54 in Fig. 5.4 and 18 in Fig. 5.5 as
illustrative examples, with their results contrasted with the separable information
profiles in those figures.

We demonstrate that as expected the dominant information destruction events are
particle collisions, however not all particle collisions involve significant informa-
tion destruction. Also, signification information destruction can be associated with
events other than particle collisions. The concepts of information modification and
irreversible information destruction are therefore demonstrated to be distinct but
complementary.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_4
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(a) (b)

(c) (d)

d(i, n, m = 8)

s(i, n, k = 16) d(i, n, m = 8)
hµ(i, n, k = 16)

Fig. 5.4 a Local information destruction and modification in rule 54 (35 time steps displayed for 35
cells). Cells are coloured blue for positive values and red for negative in (b) and (c). b Local informa-
tion destruction d(i, n, m = 8) with max. 12.53 bits, min. 0.00 bits; c Local separable information
with collisions marked—copied from Fig. 3.4a; d Local information destruction d(i, n, m = 8)

from (b) plotted in red against local temporal entropy rate hμ(i, n, k = 16) from Fig. 3.4d. (NB:
Fig. 5.4a and c Reprinted with permission from J. T. Lizier et al. [16] Copyright 2010, American
Institute of Physics)

5.3.2.1 Large Information Destruction Associated With Many Particle
Collisions

As expected, the dominant information destruction events are associated with
particle collisions. This is shown for both periodic gliders in rule 54 (and 110 and
φpar , not shown) and in domain walls in rule 18. This result underlines similarities
between information modification and information destruction.

In contrast with non-trivial information modification events however, the (initial)
information destruction associated with particle collisions appears to occur before

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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(a) (c)

Fig. 5.5 a Local information destruction and modification in rule 18 (67 time steps displayed for
67 cells). Cells are coloured blue for positive values and red for negative in (b) and (c). b Local
information destruction d(i, n, m = 8) with collision marked and max. 12.39 bits, min. 0.00 bits;
c Local separable information with collision marked—copied from Fig. 3.9a. (NB: Fig. 5.5a and
c Reprinted with permission from J. T. Lizier et al. [16] Copyright 2010, American Institute of
Physics)

the collision itself. This is the case for the “A”, “B” and “D” collisions for rule
54 in Fig. 5.4d and the domain wall collision for rule 18 in Fig. 5.5b. The spatial
location of such early information destruction is typically within an inner domain
that will be destroyed by being sandwiched between particles in the collision. The
temporal location is where that inner domain is no longer wide enough for its spatial
pattern to be distinguished properly (e.g. to work out the phase of the domain)—as
such, the information about it can be considered to have been destroyed there. This
example explicitly shows the manner in which the local information destruction takes
a spatial perspective of patterns (from examining the spatial array xi,n+1,m). On the
other hand, analysis of distributed computation takes the temporal perspective of
the history of each variable and so the information modification is not realised until
later in time. We could also interpret the distinction in the temporal location in that
analysis of computation looks at how computations unfold going forward in time,
while analysis of information destruction looks backwards in time.

As an example here, collision “A” (γ+ +γ− → β) in Fig. 5.4d shows that the (ini-
tial) information destruction occurs three time steps prior to the point marked “∗” in
Fig. 3.8. At the middle information destruction point, we have p(xi,n | xi,n+1,m=8) =
0.40 giving h(xi,n | xi,n+1,m=8) = 1.34 bits, so there is significant uncertainty left
in what the previous state xi,n was.

In a similar fashion, for the domain wall annihilation of rule 18 in Fig. 5.5b infor-
mation is destroyed (circled) even further in advance of what is determined to be the
information modification point. At these points an observer of the spatial system sees
only a single domain, and can no longer tell whether that was the case previously or
whether a particle annihilation just occurred.14 Indeed, the information destruction

14 Note the similarly large local information destruction in the unperturbed domain wall to the left
of the particle annihilation. These values are an artifact of m = 8 not being large enough to see

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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is large because the particle annihilation that actually occurred was a comparatively
rare event. Again, due to the temporal perspective of computation there is a delay
before the local information modification is realised.

Finally, we note that large information destruction was also associated with the
particle collision events in the human-understandable computation of φpar (not
shown).

5.3.2.2 Information Modification Without Destruction

It is possible though to have information modification events without significant
information destruction. A prime example here is collision “C” in rule 54 (see
Fig. 5.4d). Here, there is vanishing15 information destruction associated with the
glider collision γ− +α → γ− +α+2γ+, or vice-versa. This is because the products
of this collision are not produced via any other common particle interactions. As such,
these modification events are effectively reversible.

5.3.2.3 Information Destruction Without Modification

Correspondingly, we also observe information destruction events without any
non-trivial modification occurring. The most prominent example here are the
repetitive destructions of approximately 0.5 bits along the β blinker in the bottom of
Fig. 5.4b after its creation in collision “A”. Here, information is destroyed because an
observer is uncertain whether the blinker was just created from a collision A event
(γ+ +γ− → β) or whether the blinker existed previously. Since collision “A” events
are relatively common, there is a large amount of uncertainty at these points.

The periodic repetition of information destruction here parallels that associated
with periodic system attractors. Where such attractors have transient states leading
up to them, there is at least one state on the attractor with multiple precursors: the
preceding state on the attractor and the incoming transient path(s). As discussed in
Sect. 5.3.1.2, there is irreversible information destruction where these computational
paths merge since uncertainty remains over whether the system just entered or had
already been on the periodic attractor. Interestingly, the information will periodically
be destroyed each time the system loops around the attractor. This is not a physical
violation: because the system is open there is no restriction on it periodically dumping
information and energy into the outside world (akin to an open heat cycle from
classical thermodynamics [41]). The β blinkers here could be thought of as a local

(Footnote 14 continued)
beyond the large number of consecutive “0” states in the white triangle in Fig. 5.5a to gauge the
phase of the surrounding domains.
15 There are a few points around the collision with small non-zero d(i, n, m = 8) up to 0.07
bits. These appear to be largely artifacts of the surrounding area of the system (m = 8) analysed,
partially due to the occurrence of similar next state configurations with different preceding states
in rare dynamics, rather than being due to irreversibility in the collision itself.
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periodic attractor, where information is periodically destroyed regarding whether the
blinker was just created or had previously existed.

In comparison to the β blinkers, these periodic events occur only with a very
small magnitude (<0.03 bits, not visible in Fig. 5.4b) along the α blinkers in rule
54. These blinkers are produced in collision “C” with other products (see above),
and in collision “D” (2γ+ + α + 2γ− → α) where they are produced in iso-
lation. As such, when observing (the relevant phase of) an α blinker as an iso-
lated emergent structure in d(i, n, m = 8), an observer is uncertain whether it
was just created from collision “D” or had already existed. Since collision “D”
is a comparatively rare event though, there is a large amount of destroyed infor-
mation in the collision itself (on the order of 5 to 7 bits at various local points)
but very little in the blinker’s periodic continuation. Thus, the trajectory of α is
almost completely reversible.

Importantly, from a computational perspective both blinkers and system attrac-
tors are purely information storage processes—there is no information modification
taking place there. We see that information modification and destruction are comple-
mentary: they are similar in being predominantly associated with particle collisions,
yet have a number of subtle distinctions described here and above.

5.3.2.4 Other Information Destruction Processes

There are a number of other interesting local information destruction processes high-
lighted by d(i, n, m = 8) here. In the background domain of rule 18 in Fig. 5.5b, we
measure approximately 1 bit of uncertainty regarding whether each preceding site in
the alternate phase was a “0” or “1” (see Sects. 3.3.5 and 4.2.4.2 for a description of
the phases in the domain of rule 18). The collective next state is useful in decoding the
phase of those sites, but cannot necessarily decode the exact values. With the large
amount of interaction occurring in the domain via XOR operations (see Sect. 4.2.4.2
and [42]), there are multiple possibilities for the preceding state. Again, this is in
contrast to the separable information which in Sect. 5.2.3 measured different levels
of information modification in the computation of “1”s and “0”s respectively in this
phase.

Furthermore, we note contrasting areas of zero and large information destruc-
tion surrounding the domain walls for rule 18. That a domain wall is contained
in the past of xi,n+1,m is generally clear from xi,n+1,m itself where an observer
can see that two phases are out of alignment. For some time steps n along the
domain wall, it is clear where the wall lies (e.g. if we have two spatially con-
secutive “1” sites) and what the previous state must have been. This is because
knowing where the wall is provides a key into decoding the sequence of XOR
inputs from the previous state. Indeed, using larger values of m would allow this
decoding to proceed much further spatially along this time step, spatially extend-
ing the regions of zero information destruction. For other time steps however the
exact location of the wall remains unclear, due to say several spatially consecutive
“0” states across the domain wall; as such, the previous state also remains unclear.
This provides an interesting contrast with the temporal entropy rate, which clearly

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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Table 5.1 Local measures relevant to information modification

Measure Local definition Equation no.

Separable information sX (n, k) = aX (n, k) + ∑
Y∈VX \X tY→X (n, k) Eq. (5.2)

Information destruction d(i, n + 1, m) = h(xi,n | xi,n+1,m) Eq. (5.26)

identifies locations of the domain wall due to its temporal perspective in considering
an advancing computation.

Indeed, there are contrasting findings of zero and significant information destruc-
tion in regular gliders also. The γ gliders of rule 54 in Fig. 5.4b are generally
reversible, however the more complex gliders of rule 110 (not shown) typically
contain more information destruction in their trajectories.

Finally, we note that rule 22 produces incoherent patterns of information destruc-
tion (results not shown), in parallel with the other local information profiles produced
for it here.

5.4 Summary

We have introduced the local separable information in Sect. 5.1 to quantify informa-
tion modification at each spatiotemporal point in a complex system (see definition
in Table 5.1). Importantly, the measure describes the manner in which information
storage and transfer interact to produce non-trivial computation where “the whole
is greater than the sum of the parts”. Information modification events occur where
the separable information is negative, indicating that separate or independent inspec-
tion of the causal information sources is misleading because of non-trivial interaction
between these sources. In Sect. 5.2 the local separable information was demonstrated
to provide the first quantitative evidence that particle collisions in CAs are the dom-
inant information modification events therein. The measure is capable of identifying
events involving both creation and destruction, and interestingly the location of an
information modification event often appears delayed perhaps due to a time-lag in
information processing. Also, the measure identified a number of other non-trivial
information modification events, the properties of which are summarised in Table 5.2.
Furthermore, in order to separate information storage and transfer and properly iden-
tify information modification, the measure required appropriately long values of past
history k in establishing the context of the destination’s past and taking the perspec-
tive of distributed computation.

We also introduced the local information destruction in Sect. 5.3.1 to quantify the
concept of irreversible information destruction on a local scale in space and time.
We then contrasted this concept with information modification in CAs in Sect. 5.3.2.
As expected, particle collisions were the dominant information destruction events,
however we demonstrated that information modification can occur without infor-
mation destruction and correspondingly information destruction can occur without
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Table 5.2 Examples of non-trivial information modification events (i.e. with s(i, n) < 0) in cellular
automata with specific information storage and transfer properties (after [16])

information modification. The complimentary nature of the concepts was fur-
ther underlined in that where they both occur in particle collisions, information
destruction is typically identified prior to the modification. We also emphasised that
local analysis of information destruction takes a spatial perspective of emergent pat-
terns, in contrast to the temporal perspective of distributed computation.

This presentation of the separable information to measure non-trivial information
modification completes our framework of the fundamental operations of distributed
computation. Together, the measures of the framework have provided the first
quantitative evidence for all of the conjectures about the role of emergent struc-
tures in distributed computation in CAs: that blinkers implement information
storage, particles are information transfer agents, and particle collisions are informa-
tion modification events. The framework is unique in relating these three operations
of computation, and in providing such evidence for our qualitative understanding of
their embodiment. With the framework in place, in the subsequent chapters we will
apply these measures to study various systems, and explore what they can tell us
about the nature of complex computation.
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Chapter 6
Information Dynamics in Networks
and Phase Transitions

“Understanding the ways in which information spreads in networks is one of the most
important open problems in science.” Mitchell, 2009 [1].

As outlined in Sect. 2.4, the topology of networks has attracted much recent atten-
tion, however their time-series dynamics remains relatively poorly understood. In
particular, the importance of quantitatively establishing the nature of distributed
computation in networks is widely acknowledged, e.g. Mitchell [2] states “the main
challenge is understanding the dynamics of the propagation of information ... in
networks, and how these networks process such information.”

As compared to other attempts to describe information manipulation in networks
(e.g. [3–8], discussed in Sect. 2.4), our perspective of how information is acted upon
in intrinsic distributed computation in these network types is an important one.
It is underlined by the comments of Mitchell above on information dynamics in
networks, and by the general importance attributed to information processing in
biological networks [9–11]. Crucially, our framework is unique in quantitatively
aligning with popular understanding of information storage, transfer and modification
(as per Chaps. 3, 4, and 5).

In this chapter, we examine the information dynamics of networks using the
framework introduced in Chaps. 3–5. This examination takes the perspective of the
distributed computation undertaken by the nodes in the intrinsic computation of
their attractor. We study two important models of time-series dynamics on networks:
random Boolean networks (RBNs), and cascading failures in power grids. RBNs were
introduced in Sect. 2.4.1, while a model for cascading failures will be introduced in
Sect. 6.2.1. Both network models undergo a phase transition between ordered and
chaotic dynamics as a key parameter is altered (average connectivity for RBNs,
network tolerance for the failures model).

As described in Sect. 2.4, it has been hypothesised that networks close to the
critical state possess a maximal information transfer capability (e.g. [6]). This is
generalised in the edge of chaos hypothesis [12]: that systems exhibiting critical
dynamics in the vicinity of a phase transition maximise their computational prop-
erties (see [11, 13] regarding RBNs in particular). More specifically, Langton [12]
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suggests that intermediate levels of information transfer and storage give rise to
complex computation in critical dynamics, with too much of either decaying the
computational capability. This is at odds with suggestions of the maximisation of
information transfer in this regime, e.g. [3, 6, 14, 15].

Such conjectures can be investigated with our framework now in place. Our experi-
ments will quantify the average information dynamics in summarising the ensemble
properties of the networks in regard to the underlying phase transitions in their
behaviour. It is simple to foresee the average active information storage and apparent
transfer entropy (TE) being zero in the extreme ordered regime (with fast freez-
ing at point attractors) and in the extreme chaotic regime (where the high level of
interactions overwhelm information storage and obscure the apparent contribution
of each information source). It seems reasonable that both would be maximised, on
average, in the interim near the critical region, where the dynamics support long
correlations across space and time. On the other hand, we predict that the complete
TE (which captures information contributions due to interactions between multiple
sources, see Sects. 4.1.3 and 4.2.4.2) will continue to increase with the connectiv-
ity into the chaotic regime. Indeed, we observed that relatively high values of the
apparent TE were associated with the capacity for coherent local information transfer
structures (i.e. gliders in CAs). We hypothesised in Sect. 4.2.4.2 that an increasing
of the complete TE in the chaotic regime indicated a higher level of interactions in
conjunction with the loss of this coherence.

Important caveats are provided though by criticisms of the edge of chaos hypothe-
sis, e.g. see [16, 17]. In examining average computational properties as a function of
RBN parameters, we emphasise that there is in general a very large range of network
realisations and consequently of behaviours possible for each parameter set [18].1

The local information dynamics of computation will provide much more detailed
insights for a given RBN (as we have seen for CAs) than averages over nodes, net-
works and network sets discussed here. That being said, these ensemble averages can
provide important insights into the computational properties as a function of RBN
parameters. We must simply remember that the average results are akin to likelihoods
rather than certainties, albeit likelihoods that are much stronger in the limit of infinite
system size where the phase transition becomes discontinuous [7].2 In contrast to
some of the criticised studies, we emphasise that the models investigated here exhibit
well-established transitions with respect to a single order-chaos parameter. We also
emphasise that in quantifying the elements of computation for any RBN, application
of our framework will uphold criticisms in [16] in showing that computation does not
only occur at an edge of chaos, but occurs to some extent at all phases of behaviour.

In this chapter, we report the results of our analyses on RBNs in Sect. 6.1 and the
model of cascading failures in Sect. 6.2.3 We demonstrate in both network models

1 This is commonly observed in such ensemble studies [17, 19].
2 See also the see sharpening of phase transition with system size for RBNs in [7, 20] and for
another network type in [3].
3 Our information dynamics analysis of RBNs was first reported in [21], and the analysis of
cascading failures first reported in [22].
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that information storage and coherent (or single-source) transfer are each maximised
in the vicinity of the phase transition between ordered and chaotic dynamics. Impor-
tantly, we demonstrate a shift from the dynamics being dominated by information
storage in the ordered regime, to a balance of information storage and transfer around
the critical point, and a further shift to the dominance of interaction-based infor-
mation transfer in the chaotic regime. These findings align with much conjecture
regarding computational properties of networks and other systems undergoing phase
transitions [3, 6, 7, 12]. Near the critical point we observe maximum capability
for coherent computation, inferred by maximisations of active information storage,
apparent TE, and relatively few but high-impact non-trivial information modification
events. Beyond this in the chaotic regime however, the interaction between the nodes
begins to dominate (inferred by increases in complete TE but a reduction in apparent
TE). This erodes the capacity for coherent computation in this regime. Furthermore,
in using our two complementary measures of information transfer (apparent and
complete TE), we are able to resolve the paradox that a too large an amount of dam-
age spreading or cascading failures actually means a smaller amount of coherent or
single-source information transfer. Finally, we also reveal interesting relationships
between network structure and dynamics, in particular the role of hubs in increasing
information transfer in networks.

6.1 Phase Transitions in Random Boolean Networks

In this section, we seek to measure the average information dynamics during the
phase transition in RBNs. This phase transition occurs as a function of average
in-degree or connectivity K , with the networks exhibiting ordered behaviour at
low K , and chaotic behaviour at large K . We will describe our experimental approach
in Sect. 6.1.1, then describe our results in Sect. 6.1.2.

6.1.1 Experimental Details

For the RBNs simulated here, we use N = 250, Poissonian distributed in-degree for
each node based on average in-degree K , p = 0.5 (no bias in rules), and classical
RBNs (CRBNs) with synchronous updating (see Sect. 2.4.1). Also, we do not bias
the network structure, allowing comparison with the majority of existing RBN pub-
lications. The RBNs are modelled using enhancements to Gershenson’s RBNLab
software [23].

The phase transition in these RBNs is traditionally quantified using a measure
of sensitivity to initial conditions, or damage spreading. Following [18], we take a
random initial state A of the network, invert the value of a single node to produce
state B, then run both A and B for many time steps (enough to reach an attractor is
most appropriate). We then use the Hamming distance:

http://dx.doi.org/10.1007/978-3-642-32952-4_2


144 6 Information Dynamics in Networks and Phase Transitions

D(A, B) = 1

N

N∑

i=1

|ai − bi |, (6.1)

between A and B at their initial and final states to obtain a convergence/divergence
parameter δ:

δ = D(A, B)t→∞ − D(A, B)t=0. (6.2)

(Note D(A, B)t=0 = 1/N ). Finding δ < 0, implies the convergence of similar
initial states, while δ > 0 implies their divergence. For fixed p, the critical value of
K between the ordered and chaotic phases is [24]:

Kc = 1

2p(1 − p)
. (6.3)

For p = 0.5, we have Kc = 2.0. The standard deviation of δ peaks slightly inside the
chaotic regime for finite-sized networks, indicating the widest diversity of networks
for those parameters [20].

We take an ensemble approach to measuring the average information dynamics
as a function of K . To measure the active information storage as a function of K for
example (denoted as AX (k, K )), we:

1. measure AX (k) for each node in a given RBN generated with K ;
2. then average these over each node in the RBN to get 〈AX (k)〉 for the network;
3. then average these network averages over many networks generated for each K

(at least 250) to determine the average value AX (k, K ) as a function of K .

We measure the average entropy and entropy rate as a function K of in this way
also. Similarly, the average apparent and complete transfer entropies are measured
for (at least 50) sample pairs of causally linked nodes,4 averaged once to obtain
network averages, and again over many networks to obtain averages as a function
of K . A hybrid local-average approach is taken for the separable information; the
average S(k, K ) is computed in a similar manner to the other measures, however
we also record the balance between its positive and negative local values (trivial
and non-trivial information modifications respectively) S+

X (k, K ) and S−
X (k, K ) in

contributing to the average (see Eq. (5.8)).
We note that larger networks have more sharply-defined order-chaos phase tran-

sitions and less variation in ensemble properties as a function of K [6, 7]. Indeed,
the edge of chaos hypothesis focuses on computation in the limit of infinitely-sized
networks, where the phase transition exhibits discontinuous changes in system prop-
erties with respect to continuous variation of parameters (see Sect. 2.4.1). To assist

4 This is unlike the mutual information measurements by Ribeiro et al. [7] and Solé and Valverde
[3] for random node pairs (regardless of whether they are directly causally linked).

http://dx.doi.org/10.1007/978-3-642-32952-4_5
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our finite-size networks to approximate this phase transition, we avoid running the
RBN for too many time steps. This is because the computation is completed once the
network reaches a periodic or fixed attractor (see Sect. 4.2.3), which is inevitable for
finite-sized RBNs. For each simulation from an initial randomised state, we ignore
a short initial transient of 30 steps to allow the network to settle into the main phase
of the computation, then allow evolution over 400 time steps. Importantly, since the
nodes in each RBN are heterogeneous agents, the PDFs for each measure must be
computed for each node individually rather than combining observations across all
nodes.5 In order to properly sample the dynamics of each node in each RBN and
generate enough data for the information-theoretic calculations, many repeat runs
from random initial states are required for each network (at least 4480 are used).
For these calculations, one should use as large a history length k as facilitated by the
number of observations in order to separate information storage and transfer (e.g. see
Sect. 3.3.1). Here we find k ≈ 13 provides reasonable convergence for a reasonable
number of repeat runs.

6.1.2 Results and Discussion

6.1.2.1 Information Storage and Transfer Components

Figure 6.1 shows that the average single node entropy HX (K ) simply increases as a
function of K , as expected since the level of activity in the network is increasing with
this parameter. More importantly, Fig. 6.1 also plots the average active information
storage AX (k = 14, K ) and entropy rate HμX (k = 14, K ). This figure shows that
the active information storage rises then reaches a maximum near to the critical
phase (K = 2) before falling away, while the entropy rate only begins to rise near
the critical phase then continues to rise and approach the entropy in the chaotic
phase. Since the entropy is the sum of the active information storage and entropy
rate (Eq. 3.21), which is equal to collective information transfer in this deterministic
system (see Sect. 4.1.4), we can now begin to describe the phase transition in terms
of computation:

• the ordered phase is dominated by information storage (information contained
in the past of the node about its next state);

• the chaotic phase is dominated by information transfer (information from
incoming links about the next state which was not contained in the node’s past);

• while there appears to be something of a balance between the two near the
critical phase.

5 In contrast, this could be done for the homogeneous agents in CAs in the preceding chapters.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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Fig. 6.1 Average information dynamics versus average connectivity K for networks of size
N = 250. Plotted here are the average entropy HX (K ), entropy rate HμX (k = 14, K ), active
information AX (k = 14, K ), apparent transfer entropy TY→X (k = 14, K ) and complete transfer
entropy T c

Y→X (k = 13, K ). The information required to predict the next state of each node is dom-
inated by information storage at low K and by information transfer at higher K (first by coherent
then interaction effects). Error bars (omitted) are on the scale of the data points for all plots (NB:
This figure was first published in [21].)

6.1.2.2 Coherent and Interaction-Based Transfer

We then examine the constituency of the information contributed from incoming
links, the total of which is the entropy rate (see e.g. Eq. (4.47)). Figure 6.1 also plots
the average apparent TE TY→X (k = 14, K ) for each link, demonstrating that this
quantity also rises to a maximum value close to the critical phase, then falls away. In
contrast, Fig. 6.1 additionally plots the average complete TE T c

Y→X (k = 13, K ) for
each link. This measure also begins to rise close to the critical phase but continues
to increase into the chaotic phase.

We see therefore that in the first stage of the shift toward the dominance of infor-
mation transfer, single sources can be observed to have a significant influence on
the destination (in the context of the destination’s history) without considering the
effect of the other causal sources (i.e. TY→X (k = 14, K ) is relatively high). In the
critical regime, there is maximum potential for single-source influences to be
propagated as coherent information transfer structures. However, as the activity
level in the RBNs continues to rise with the average connectivity K , the apparent
effect of each source is swamped by the activity of the other causal sources. That is:
an observer cannot discern the effect of a single source, leading TY→X (k = 14, K ) to
fall away. Considering then the increase in T c

Y→X (k = 13, K ) (which in accounting
for the other sources also detects interaction-based transfer), we see that the level
of interaction is increasing with the connectivity of the network. Also, in the
chaotic regime the influence of any one information source can only be properly
identified by taking all of the other sources into account.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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These complementary measures of information transfer provide different but use-
ful insights, and give impetus to our hypothesis in Sect. 4.2.4.2 regarding the rel-
ative values of the apparent and complete components of information transfer in
order-chaos phase transitions. Indeed, we can provide quantitative evidence to the
conflicting conjecture around whether information transfer is found at an interme-
diate [12] or maximum level [3] at criticality. For RBNs, transfer is maximised
close to criticality where one measures the apparent influence of a source in
isolation,but equally it is at an intermediate level where the measurement con-
siders transfer due to interaction with other causal information sources also.
If these findings apply to such phase transitions in general, then both sources of
conjecture appear to be well-founded, being resolved in these two different methods
of measuring information transfer.

6.1.2.3 Location of Maximisations of Computational Capabilities

Next, we compare these maximisations to the location of the phase transition as mea-
sured using the standard deviation of the convergence/divergence parameter δ (from
Eq. 6.2).6 In Fig. 6.2 we see that the information storage peaks slightly within the
ordered phase from the critical region, while the coherent information transfer
peaks slightly within the chaotic phase. Importantly, it is the apparent TE that
peaks here (indicating the capability for coherent information transfer), as distinct
from the complete TE which continues to increase into the chaotic phase. As per
footnote 6, we expect the relative positions of these maximisations to be maintained
around the critical phase as N → ∞, with both likely to become closer to the critical
point in this limit (as for the measure of correlation by Ribeiro et al. [7]). The relative
positions of the maximisations are quite interesting, because they align with existing
conjecture on the nature of computation around phase transitions which typically
associates information storage with the ordered phase and information transfer with
the chaotic phase (e.g. [12]).

Additionally, we note that it is not unusual for different measures of complex-
ity or structure to be maximised at different parameter settings, because they are
measuring different properties of the computation in the system and are not trivially
related [25]. We need measures of both information storage and transfer to understand
the distributed computation taking place in the system.

6 δ was confirmed to change sign close to K = 2 here (as per [20]), with a subsequent slow increase
after K = 2 (known to be a finite-N effect). The standard deviation of δ is maximised during this
increase in the chaotic regime [20]. Certain other measures suggested to indicate the critical phase
are known to be shifted into the chaotic regime for finite-N , e.g. [7]. Given impetus as an indicator
of the critical phase by the related measure of Rämö et al. [6], we use the standard deviation of δ as
guide to the relative regions of dynamics in finite-N networks.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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Fig. 6.2 Maximisations in active information AX (k = 14, K ) and apparent transfer entropy
TY→X (k = 14, K ) as a function of average connectivity K for N = 250, shown with respect
to the standard deviation of the convergence/divergence parameter δ. This indicates that informa-
tion storage peaks just on the ordered side of the phase transition, while (coherent) information
transfer peaks just on the chaotic side of the phase transition (NB: This figure was first published
in [21].)

6.1.2.4 Information Modification and Coherent Computation

We have suggested above that relatively large values of the apparent TE can be
interpreted as a capacity for the coherence of information transfer. Further insight
into the coherent information structure in the computation in the RBN is provided by
the separable information SX (k, K ). Figure 6.3 shows that SX (k, K ) is maximised
for approximately the same values of K as the apparent TE (though it is slightly
more spread out). This can be explained with reference to its positive and negative
components, S+

X (k, K ) and S−
X (k, K ). We see from Fig. 6.3 that the early rise in

the separable information is driven by S+
X (k, K ) (trivial information modifications),

with a peak occurring before S−
X (k, K ) (non-trivial information modification events)

rises and consequently reduces the total. As the connectivity K is further increased,
S+

X (k, K ) begins to fall whereas S−
X (k, K ) continues to rise. Near the critical phase,

at the peak of the separable information, note that there is in fact a relatively low
incidence of non-trivial information modification events (i.e. S−

X (k, K ) is low).
This is interesting because of the importance placed on these events in computation,
e.g. they are manifested as particle collisions in CAs Sect. 5.2.1. It appears that if the
amount of non-trivial information modification events or information collisions
is too large, the capacity of the system for complex computation is reduced. It
is likely that this is due to a large amount of “information collisions” eroding
the coherent nature of the information storage and transfer within the system,
disturbing the computation and reducing their own impact. A maximisation of
separable information should perhaps be interpreted as maximising the bandwidth

http://dx.doi.org/10.1007/978-3-642-32952-4_5
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Fig. 6.3 Separable information SX (k = 13, K ) and its positive and negative components, S+
X (k =

13, K ) and S−
X (k = 13, K ) respectively, versus average connectivity K for N = 250. Trivial

information modification (high S+
X (k)) dominates the dynamics at low K , while the amount of

non-trivial information modification rises with K (NB: This figure was first published in [21].)

for coherent information storage and transfer, while allowing a smaller number of
high-impact non-trivial information modification events in the coherent computation.

Finally, we note that all of the information dynamics described here experience
maximum standard deviation in the vicinity of the critical region (not shown). This
indicates maximal diversity in the information dynamics throughout the RBNs in
this regime, as observed for other measures (e.g. [20]).

6.2 Cascading Failures in Power Grids

Modern energy, communication, transportation and financial networks have evolved
in various complex ways to satisfy the demands of their end-users under various
resource constraints, but of some concern is that they are all subject to cascading
failure events [26–28]: local failures that trigger avalanche mechanisms with large
effects over the whole network. Our focus is energy networks, where usage has
increased faster than investment in infrastructure (much of which is reaching the end
of its useful life) and the grid has become critically loaded. As such, small failures can
lead to cascading catastrophic blackouts and outages are occurring more frequently
(see examples in [26]) and with more adverse impact. These can disrupt important
services and cost millions of dollars. It is important to understand these events so
that they may be avoided.

Much conjecture regarding information dynamics in networks surrounds these
cascading failures and the related phenomena of damage spreading/perturbation
avalanches. For example, [10] discusses the phase transition in RBNs in terms of
damage spreading: in the ordered phase, single-node perturbations usually die out,
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in the chaotic phase they tend to propagate through the entire network, whilst in
the critical regime there is maximal uncertainty in their propagation. Indeed, in [6]
information propagation is measured as the uncertainty in avalanche size. Also, dis-
cussions of information transfer in cells typically focuses on propagating cascades of
“signal” elements [11, 29]. Similar too are waves of directional change in schooling
fish, referred to as “information cascades” in [30], and waves of change in stomatal
aperture in plants [31]. The analogy to gliders in CAs for all these coherent cascad-
ing effects is clear, and indeed observed in [31]. Memory has also previously been
studied in cascade-style systems in [32] using correlation coefficients of inter-event
times. Without proper quantification of the information dynamics of these phenom-
ena though, it remains unclear whether for example, information transfer should be
directly identified with damage spreading itself, or perhaps with the uncertainty in
the extent of damage spreading. Indeed, Mitchell [1] states that “the phenomena of
cascading failures emphasises the need to understand information spreading and how
it is affected by network structure.”

We introduce a model used for studying cascading failures in networks in
Sect. 6.2.1, which exhibits a phase transition between ordered and chaotic responses
to single-point failures with respect to failure tolerance in the network. We then
describe in Sect. 6.2.2 how we will study computation during cascading failures using
this model. Subsequently we present the results of our analysis in Sect. 6.2.3, which
echo our findings in RBNs of maximisation of information storage and (coherent)
transfer properties near the critical phase.

6.2.1 Cascading Failures Model

Cascading failures are studied here using the model described in [26], and subse-
quently used e.g. in [33, 34]. We focus on the use of this model to study energy
networks (as per [33]), however note that it is also applicable to communication or
transport networks, e.g. the Internet. The network is constructed as a weighted, undi-
rected graph of N nodes (representing substations for our purposes) and K edges
(representing the transmission lines). The model describes the weights of each edge
and loads of each node, and how these interdependently evolve after the breakdown
of a node.

Each edge has an efficiency ei j (n) (akin to relative capacity in the energy networks
analogy) that changes with time n. If there is an edge from node i to j then ei j (n) ∈
(0, 1] and is initialised to ei j (0) = 1 (if there is no edge ei j (n) = 0). Edge efficiency
is the inverse of edge weight, while the efficiency εi j (n) of the most efficient path
from i to j is the inverse of the shortest path length [8].

Each node i has a load Li (n), being the total number of most efficient paths passing
through it at time n (i.e. the load is the betweenness centrality of the node) [35].
Each node is also assigned a capacity Ci , being the maximum load it can handle
without performance degradation. The capacity is assumed to be proportional to the
initial load of the node: Ci = αLi (0) [27], with α ≥ 1 being the fixed network
tolerance.
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The edge efficiencies become sub-optimal if7 either end-point node is operating
above capacity:

ei j (n + 1) =
{

ei j (0) min
(

Ci
Li (n)

,
C j

L j (n)

)
if Li (n) > Ci or L j (n) > C j ,

ei j (0) otherwise.
(6.4)

Changes induced in edge efficiencies by excess loads cause changes in most
efficient paths and therefore the distribution of loads at the next time step. While the
initial state of the network is stable (since α ≥ 1.0), the removal of a node (simulating
the breakdown of a substation) triggers a dynamical process where the network
loads are redistributed. This process can cause other nodes to overload, shunting
their loads onwards to other nodes who then overload etc., thereby stimulating a
cascading failure in time. Effectively, the network is computing its new stable state
(or attractor) during these events.

The performance of the network as a whole during these events is tracked using
the average efficiency between all node pairs, E(n) = 〈

εi j (n)
〉
. Typically, for large

α the network efficiency is relatively unaffected by node removal, however as α

becomes closer to 1 the lower tolerance means that node removal can have dramatic
cascading effects (see Fig. 2.4 in [26]). Indeed the average network efficiency after
node removals falls very quickly with α as α → 1, moving from a stable (efficient)
state to an unstable one. We note that altering α here determines the phase of the
network’s dynamic response in a similar way to the average connectivity in RBNs: for
large α the response is in a somewhat ordered phase, for α close to 1 it is chaotic, and
in a critical phase between these. In the next section, we describe how the information
dynamics of this phase change will be measured.

6.2.2 Measuring Information Dynamics in Cascading Failures

In our preceding study of RBNs, we compared damage spreading and information
dynamics properties of RBNs as a function of K , but the information dynamics
properties were measured for the average activity of the networks. Here we seek
to examine the information dynamics specifically during avalanches or cascading
failures as a function of tolerance α. From that preceding study, we could conjecture
information transfer measured by complete TE to be related to avalanche size, since
both increase into the chaotic regime. Similarly, information transfer measured by
apparent TE could be more closely related to uncertainty in avalanche size, since
both are maximised near the critical phase. More important than these coincidences
however is the intuition that in the chaotic phase where avalanches are typically large
and overlapping, the damage spreading effect of one node on another will manifest
via interactions with other sources. This will only be captured by the complete TE.
On the other hand, near critical point there is maximum differentiation of the effect

7 We have slightly altered the definition in [26], since this definition was ambiguous.
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of one node on another, which will be captured by the apparent TE; indeed it should
thus be maximised near this phase transition where coherent cascades (in analogy to
gliders in CAs) have clear causes.

In this context, going beyond studying damage spreading in a generic model such
as RBNs we study the information dynamics of cascading failures in power grids,
since there is significant social and economic impetus for focusing on this application.
Here, we use the model presented in the previous section with the topology of the
electrical power grid of the western United States [36] (N = 4941 and K = 6594).
For network tolerances 1.0 ≤ α ≤ 1.3, we simulate the breakdown of substations by
removing 149 randomly selected nodes (one at a time) and then measure the resulting
time series of node loads and edge efficiencies until the network reaches a (possibly
periodical) stable attractor state.

For each tolerance α, the active information storage Ai is measured from the
loads for every node i , and the transfer entropies Ti→ j and Tj→i are measured in
each direction for each causal link i j between their time series of loads. We use a
history length k = 3, which is limited by the amount of simulated data that we could
reasonably produce but (qualitatively) appears sufficient for the dynamics here. PDFs
are estimated for each individual node and linked pair from the set of time series of
observations of loads obtained from all the separate node knock-outs, using kernel
estimation (see Sect. 2.2.3) with a kernel width of 0.5 standard deviations of each
variable.

6.2.3 Results and Discussion

6.2.3.1 Maximisations of Information Dynamics Near the Phase Transition

First, we examine the average apparent TE (across all links, T = 〈Ti→ j 〉) and
average active information storage (across all nodes, A = 〈Ai 〉) in the network as
a function of tolerance α. Figure 6.4 shows that with large α in the ordered phase,
information storage is the dominant function. As the tolerance is decreased, both
storage and transfer reflect the phase transition in average network efficiency,
being maximised in the vicinity of the critical state. To some extent one would
expected that information transfer is (at least initially) increased as the efficiency
α falls, since cascades of larger and larger sizes are occurring. At first glance then
it may be surprising that maximisations in these measures occur before the system
is pushed into a chaotic state at α = 1.0. However, these results are in alignment
with those from RBNs in Sect. 6.1.2 and our hypotheses in Sect. 6.2.2. As per the
shift towards the chaotic phase in RBNs, the increased activity and interactions in
the network here as α → 1.0 begins to obscure the individual contribution of any
source node to a given destination, so measurement of single-source information
transfer falls in the chaotic phase. Also similar to the results from RBNs is that
the maximisations in active information storage and apparent TE are closer to the
ordered and chaotic phases respectively.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Fig. 6.4 Information dynamics versus network tolerance α, plotted relative to their values for
α = 1.00. Transfer entropy T is averaged over all time steps for each link, then averaged over all
links, with T (α = 1.00) = 0.0155 bits. Similarly, active information storage A is averaged over
all nodes, with A(α = 1.00) = 1.10 bits. Also plotted is the final network efficiency 〈E〉 averaged
over each simulated node removal. Error bars for T and A are on the scale of the data points (NB:
This figure was first published in [22].)

Another particularly interesting result is that as α is reduced the information
dynamics change more rapidly than network efficiency (see 1.1 ≤ α ≤ 1.15 in
Fig. 6.4) and could be a useful early indicator of critical loading. To clarify: this result
does not imply the information dynamics would provide an earlier detection during
any particular cascade. It does imply that, in measuring the response to failures in the
network they may be more useful in detecting that the network is actually critically
loaded and prone to large cascading failures.

We also plot the accumulated local information transfer and storage in Fig. 6.5
(i.e. the sum total of each throughout the time of the cascade rather than the average
over time). These values continue to rise towards the chaotic regime, in contrast to
the decrease in average information transfer and storage at each time step in the
cascade. The total information transferred and stored during the cascade increases
simply as a legacy of the longer cascade lengths.

6.2.3.2 Local Information Transfer at Each Node: Relation
to Topological Features

We then examine the information transfer values locally at each link, Ti→ j , checking
for any relation between the topological features and the information dynamics they
give rise to. Indeed, similar questions have been considered with the TE in the context
of cortical networks, with the authors of [37] surprised to find large differences
between different nodes (i.e. a non-“democratic” distribution of TE), while large
variations are observed over time for hubs in [38]. Interestingly, this approach brings
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Fig. 6.5 Accumulated information dynamics versus network tolerance α, plotted relative to their
values for α = 1.00. Transfer entropy T and active information storage A are sum over all
time steps for each link/node for each node knock out,

∑
ti→ j (α = 1.00) = 7.69 × 105 bits,∑

ai (α = 1.00) = 2.04 × 107 bits. Also plotted is the final network efficiency 〈E〉 averaged over
each simulated node removal

together our local view of information dynamics with the trend towards using a local
view of topological measures (e.g. see [39, 40]).

Here, Fig. 6.6 shows a strong correlation of the transfer entropy to source
node degree (with the TE averaged over all applicable links). Correlations are large
(r ≥ 0.80) and significant (p < 0.01) for α in the vicinity of the phase transition,
becoming somewhat weaker in the stable region. Similar results are found for active
information storage with node degree. While we know that failures in nodes with
larger degree typically lead to larger cascades [26], this does not explain why nodes
with larger degree transfer (and store) more information since as we have seen above
that larger cascades (in the chaotic region) do not equate to larger information transfer.
A key factor in explaining these effects is that the links are bidirectional here, so
“degree” is equivalent to both “in-degree” and “out-degree”. The more neighbours
a node has, the more locations it has to store and retrieve information, and the
more sources it has from which to obtain information that it can then transfer. From
a similar perspective, the more neighbours a node has, the more sources of input
it has and the more diversity in its activity: this intrinsic variation in a node is a
dominant factor in how much information it can both store and transfer. Indeed,
this is why nodes with degree one have zero information in this model: with zero
betweenness centrality their load never changes, so there is no diversity that they can
transfer and no influence on them to measure. Another factor may be that the more
neighbours a source node has, the more likely that its information content is novel for
the destination, allowing larger information transfer. Indeed, this aligns with the view
that hubs increase information exchange between “otherwise distant or disconnected
nodes” [38]. The key result here is that hubs are the most informative sources.
Importantly, this is not the trivial statement that they transfer more information in
total because they have more outgoing links to transfer information on; the statement
is that more information is transferred down each link sourced from the hub. This
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Fig. 6.6 Average transfer entropy T versus degree of the source node for various α. The small
number of nodes with degree larger than eight introduces large errors beyond this point (NB: This
figure was first published in [22].)

may indeed explain the (application-specific) observation that scale-free networks
spread information “better” than random networks [41].

We note that it is quite plausible that in many real-world networks the desirability
of connecting to another node is proportional to the information that can be transferred
from that node (since there is a higher potential reward in information for the cost of
the link). Where this is the case, then this correlation of information transfer to source
degree could be a generic, functional driver for the important process of preferential
attachment [42, 43] (see Sect. 2.4) in undirected networks. The undirected nature
of the links is important in providing a positive feedback component to the process,
because in drawing an input from a hub the new node also adds a new input to that
hub, thereby increasing the average information transfer from the hub even further.

On the other side of the links, there is no corresponding correlation of the
transfer entropy to the degree of the destination node. Certainly, the increased
diversity in the destination provides greater scope for information transfer to it, but the
more difficult it becomes to identify the coherent effect of the source8: these effects
seems to counter each other. We also measure small but significant (at p < 0.001)
correlations between the initial load of a node (i.e. its betweenness centrality)
and the information it stores and transfers to other nodes during the cascade
(e.g. for α = 1.05 these correlation coefficients are 0.24 and 0.13 respectively). In
a similar fashion to degree, as the betweenness centrality of a node increases so too
does its propensity to be influenced by other nodes, and therefore the diversity of its
activity increases.

6.2.3.3 Local Information Transfer in Time: How the Cascade Unfolds

Finally, we examine how the local information dynamics evolve in time as the cascade
unfolds. Figure 6.7 shows that for α = 1.05 the local information transfer values

8 It could also be said that there is a large amount of assortative noise between the source and
destination [3, 44].

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Fig. 6.7 Local transfer entropies in time (averaged across all links for the given time step n:〈
ti→ j (n)

〉
i j ) and network efficiency E(n) versus time after initial node removal. Both measures are

averaged across all simulated node knock outs with α = 1.05 (NB: This figure was first published
in [22].)

exhibit a strong peak around 12 time steps after the cascading failure (similar plots
are observed for other values ofα). This peak lags the initial failure event but coincides
with the steepest drop in network efficiency. The cascade takes some time to build up
in size, but causes the steepest change in network efficiency and largest information
transfer when it is spreading at its most rapid. The relation between the change
in network efficiency and local information transfer (in time) is quite strong:
they have a correlation of −0.94. The local information transfer could therefore be a
useful application-independent indicator of the spread of the cascade, in particular its
peak as well as its subsequent passing. Indeed, were the local values to be examined
in space (i.e. on particular links) as well as time, they could be used as indicators of
the direction of spread of the cascade. Interestingly though, the local values in space
and time do not exhibit a strong correlation to local loads—it appears the utility of
the local information transfer in time discussed above is an self-organised emergent
effect which can be seen only at the macroscopic level.

6.3 Summary

We have described results which quantify the fundamental nature of computation
around the critical phase in two models of network dynamics. The dynamics here are
dominated by information storage in the ordered phase, with the level of information
storage increasing with activity in the network (facilitated in RBNs by increasing
connectivity). The increased activity also gives rise to an increasing level of informa-
tion transferred from linked nodes. These two operations of universal computation
appear to be in balance around the critical point. After this, information transfer
continues to increase for a period, reducing the capacity for information storage.
In RBNs we observed that near the critical point there is a large amount of trivial
information modifications, providing the capability for coherent information trans-
fer and storage to flourish and indeed maximise, and allowing the small number of
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non-trivial information modifications to have a large impact on the coherent compu-
tation. As activity continues to increase, the coherent transfer from any single node
observed in isolation initially appears strong, with the apparent TE peaking slightly
into the chaotic regime. With further increases however, the interaction between
the nodes begins to dominate, being manifested in large multi-source transfer. This
erodes the capacity for coherent computation.

We emphasise the key insight gained here on conflicting conjectures regarding
whether information transfer peaks near criticality or continues into the chaotic
regime, or equally whether more variable or larger cascade size should be identi-
fied with information transfer. We resolved this in revealing the subtle relationship
between the two different perspectives of information transfer (via apparent and
complete TE). Apparent TE measures transfer attributable to a single node observed
in isolation and therefore decreases in the chaotic regime. In contrast, the manner
in which complete TE conditions on other nodes captures multi-source interactions
also and therefore increases in the chaotic regime.

Furthermore, we have revealed interesting relationships between underlying
topology (average connectivity for RBNs, and node degree in the cascading failures
model) and the local information dynamics they give rise to. We also demonstrated a
strong relationship between the spreading of cascades (in an application-dependent
level) and information transfer across the network (in an application-independent
manner): this is important since a key aim of the application of information the-
ory to complex systems is to provide application-independent explanations of the
dynamics.

The new understanding of the information dynamics in RBNs is important given
their role in modelling computation in biological networks [10, 11, 13, 29, 45].
Our findings surrounding RBNs near the critical phase are of particular interest,
because there is evidence that the Gene Regulatory Networks they model operate in
this critical regime [46]. The implication here is that GRNs have evolved to a form
facilitating maximum coherent computational capability.

Our application to cascading failures is important in that the results are applica-
ble to the many related phenomena, including damage spreading or perturbation
avalanches [6], and coherent signal cascade phenomena [11, 29, 30]. Indeed the
maximisation of apparent TE while the cascading effect remains coherent (before the
chaotic phase) underlines the analogy of this phenomena to gliders in CAs (e.g. [31]).
Furthermore, the fact that information dynamics initially changed faster than network
efficiency as the tolerance α drops suggests that information dynamics may indeed
be more useful than traditional measures in detecting that the network is critically
loaded.

We also emphasise that this study of RBNs and cascading failures represents the
first explorations of order-chaos phase transitions using this framework for informa-
tion dynamics. Our findings here align with much conjecture regarding computational
properties of not only networks [6, 7] but other systems undergoing phase transitions
[12, 14]. As such, the results here are likely to be applicable to similar phase transi-
tions in other systems, i.e. those simple transitions controlled by a single order-chaos
parameter (as approximated in our finite-sized systems here). These may include
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flocking behaviour [30, 47] and ant foraging [14]. As discussed in the next chapter
though, the results are not likely to be universal to more complicated transitions.

While our results have certainly provided quantitative answers for much conjec-
ture about the fundamental nature of the computational properties of networks, there
is certainly much room for further investigation. We expect that the choice of RBN
updating scheme will have little effect on the fundamentals of the phase transitions
reported here (as per [18]), though this remains to be tested. Furthermore, we intend
to explore the effect of different topologies on the phase transitions, in particular
small-world (akin to [48])9 and scale-free topologies (since most biological net-
works are scale-free with an exponent putting them near the critical point [50]). In a
related fashion, we plan to examine the effect of altering the topology of power grids
(e.g. with mini/microgrid technology [51]), and whether the insights gained here can
be used to control such cascade events. The effect of topology is highlighted as a
key step in understanding cascading effects in financial markets [52], and would be
analogous to the investigation of altering edge weights in [53]. Also, the effect of
noise on the information dynamics in the network should be established (in a sim-
ilar fashion to its incorporation in the investigation of avalanche size distributions
in [6]). Also requiring investigation is whether the information dynamics here can
be used to drive evolution or self-tuning adaptation to produce critical networks, e.g.
whether maximising information transfer between nodes can produce a preferential
attachment effect as conjectured in Sect. 6.2.3. Such an experiment with RBNs could
provide evidence that an underlying capacity for computation may have been a driver
in GRN evolution. Finally, the framework should be applied to Boolean network or
other models of particular real-world GRNs (e.g. [45]) in order to provide insight
into the computations taking place there.10
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Chapter 7
Coherent Information Structure in Complex
Computation

The framework for the information dynamics of distributed computation introduced
in Chaps. 3–5 has proven successful in locally identifying the component oper-
ations of information storage, transfer and modification. We have observed that
while these component operations exist to some extent in all types of computa-
tion, complex computation is distinguished in having coherent structure in its local
information dynamics profiles. We conjecture that coherent information structure
is a defining feature of complex computation, particularly evolved computation that
solves human-understandable tasks. We present a methodology for studying coherent
information structure, consisting of state-space diagrams of the local information
dynamics and a measure of structure in these diagrams.1 The methodology identifies
both clear and “hidden” coherent structure in complex computation, most notably
reconciling conflicting interpretations of the complexity of ECA rule 22. The mea-
sure is also used to demonstrate a maximisation of coherent information structure in
the order-chaos phase-transition in RBNs.

7.1 Introduction

Coherent information structure is a feature that is consistently observed in complex
computation. In particular it appears that nature evolves coherent computation. Illus-
trative examples include: coherent signalling cascades providing information trans-
fer in gene networks [2, 3]; coherent waves of directional change in flocking birds
[4] which are also referred to as “information cascades” in schooling fish in [5]; the
dynamic process of opening and closing stomatal apertures in plants via coherent col-
lective waves of activity [6]; and coherent wave structures in neural computation [7].
Indeed, we observe that coherent computational structure also emerges from
evolution in artificial systems, e.g. the φpar CA rule which was evolved to solve

1 The methodology for studying coherent information structure and the results of its application to
CAs were first reported in [1].
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the density classification problem by using coherent glider structures [8, 9] (see
Fig. 3.6).2

In our own work, we have qualitatively observed in Chaps. 3–5 that the known
complex ECA rules (54 and 110) exhibit the largest amount of coherent information
structure. That is, they contain much emergent coherent structure (gliders, blinkers
and domain walls) in the local profiles in space and time of their information dynam-
ics: information storage, transfer and modification. This observation aligns well with
similar explorations of other types of local information structure for these rules, e.g.
[10–12]. Indeed, one must note that all of the above examples of coherent structure
in biological systems are analogous to gliders in CAs. Also, we have demonstrated
maximisations of the information storage and single-source transfer near the critical
state in order-chaos phase transitions in RBNs in Sect. 6.1. There we suggested the
results could be interpreted as a maximum capacity for coherent computation near
the critical state.

On the basis of the above observations, we conjecture that the coherence of
local information structure is a defining feature of complex computation, particu-
larly evolved computation which solves human-understandable tasks. “Coherence”
implies a property of sticking together or a logical relationship [13]: in this context
we use the term to qualitatively describe a logical spatiotemporal relationship
between values in local information dynamics profiles. For example, the manner
in which particles in CAs give rise to similar values of local information transfer
amongst spatiotemporal neighbours is coherent in this sense.3 We emphasise it is the
information structure that is coherent here: the original CA states (from which the
presence of particles is not clear) are not always obviously coherent themselves.

Using language reminiscent of Langton’s analysis [14], we suggest that complex
systems exhibit very highly-structured coherent computation in comparison to:

a. ordered systems, which exhibit coherence but minimal structure in a computation
dominated by information storage; and

b. chaotic systems, whose computations are dominated by rampant information
transfer eroding any coherence.

Coherent structure is useful in complex computation because it provides stable
mechanisms for storing information, transferring information, and modifying that
information when required. Presumably it emerges in evolution of complex
computation because of this utility. For these reasons, we suggest that coherent
information structure may be a useful intrinsic goal in the domain of guided self-
organisation [15]. Evolution of coherent information structure could be particularly
useful where task-based evolution faces initially flat task-based fitness landscapes,
perhaps serving as a platform from which to launch better-equipped task-based evo-
lution. Furthermore, coherent information structure is associated with computation

2 Also, in Sect. 8.3 we will observe the emergence of coherent particle-like information structures
in a snake-like robot evolved to maximise transfer entropy between its segments.
3 See also [10] for a discussion of the term “coherent structure” referring to particles (including
blinkers) in this context.
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that appears relatively simple for humans to understand (e.g. the φpar CA), which is
an important trait for both acceptance and maintenance of self-organised systems in
real-world deployments.

Our goal then is to measure the coherence of computational or information struc-
ture in a given system from its local information dynamics. That is, given a sys-
tem X (i.e. with a time series xi,n for each variable Xi in the system, and a set of
causal connections between them), we wish to compute a measure of the coherence
of information structure in it. The approach is intended to first compute the local
information dynamics at each space-time point in the system, resulting in the
individual profiles we have seen in Chaps. 3–5. The next step is to compute the
measure of coherent information structure from these profiles. Existing measures
for coherent structure are generally problem-specific and consider only contigu-
ous clusters of similar values. A typical example is [16] which uses a mix of
thresholding and spatiotemporal clustering of resulting binary values to identify
specific coherent structures. Here however, we seek a general measure portable
between different types of computation. Certainly the examination of local infor-
mation dynamics values provides a system-independent perspective. In addition to
this, measuring coherence here must take into account the continuous nature of the
information dynamics measure, the fact that there are multiple information dynam-
ics measures, and be generic in detecting coherent structure as relationships between
these measures that may be more subtle than a contiguous cluster of similar values in a
profile of one of them.

We also note that the goal of measuring coherent information structure is distinct
from attempting to measure complexity itself (e.g. with the statistical complexity
[10, 17]), since it is a particular concept or system property. Indeed, it is unclear
whether overall complexity and coherent computational structure will have a one-to-
one correspondence. Guiding self-organisation towards generally complex computa-
tion may not produce the coherent structure that we argued above to be useful. Also,
there are examples of computation argued to be complex from certain perspectives
despite the apparent absence of local coherent structure. A prominent example is
CA rule 22 (see arguments in favour of its complexity in Sect. 2.3.4), where these
conflicting perspectives are yet to be reconciled. Put simply, the concept of coherent
information structure is worth exploring in its own right. On a related note though, we
will also examine whether measuring coherent information structure provides use-
ful insights into the differences in complexity of various computations. As outlined
above, we would expect the measure to be large in known complex computation.
We emphasise though that while this measure is not expected to produce a universal
complexity-entropy curve (as per [18]), it could be expected to be maximised along
with known complex behaviour in certain simple order-chaos phase transitions, e.g.
in RBNs.

In this chapter, we focus on measuring coherent information structure in CAs
and RBNs. In Appendix G we demonstrate that several obvious candidate mea-
sures do not meet the requirements we laid out above. A prominent example
is the apparent transfer entropy itself, which is a candidate since it measures
coherent effects of a single source on a destination, large local values of it are

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_5
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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associated with coherent glider structures in CAs, and it was shown to be max-
imised near the critical state in the phase transition in RBNs. As shown in Appendix
G however, there is not a one-to-one correspondence in any given CA between large
average values of this measure and the existence of gliders or complex behaviour
in general. As such, this measure itself cannot be considered to directly capture
coherent information structure. Despite this, these candidate measures do provide
further circumstantial evidence for the importance of coherent information structure
in complex computation.

In Sect. 7.2 then, we present and explore diagrams of the multi-dimensional state-
space formed by the local information dynamics, in particular the local informa-
tion storage values and local values of information transfer from each source to
a destination. This perspective allows the most general, unbiased interpretation of
coherent information structure as a logical relationship between the information
dynamics, in alignment with our qualitative interpretation and requirements above.
Importantly, we demonstrate these diagrams as a particularly useful tool in this con-
text. We conclude that coherent computational structure should be measured as a
logical relationship between values in the local information dynamics state-space,
and present the measure I ss for this purpose in Sect. 7.3. The state-space diagrams
and the measure I ss provide a methodology which identifies clear and “hidden”
coherent structure in complex computation, in particular revealing previously hidden
coherent structure in the information dynamics of rule 22 and reconciling the differ-
ing perspectives on how complex it is. Finally, we demonstrate in Sect. 7.3.2 that the
measure of coherent structure is maximised near the order-chaos phase transition in
RBNs, as expected.

7.2 Local Information Dynamics State-Space

As per our qualitative description, coherence may be broadly interpreted as a logi-
cal relationship between the individual local information dynamics measures rather
than only within individual profiles alone. Indeed, using a more broad definition
allows an unbiased measurement of coherent structure. To explore relationships as
per this broad definition, in this section we investigate information state-space dia-
grams which plot the local information dynamics against each other. We demonstrate
that these diagrams are useful tools in revealing both clear and hidden coherent infor-
mation structure in the computation in CAs.

The state-space referred to here is the multi-dimensional information space con-
sisting of the local values of each of the individual information dynamics. In theory,
plots of this state-space should reveal any logical relationship between the individual
measures, and by our broad definition such relationships embody coherent infor-
mation structure. Figure 7.1 projects the multi-dimensional information state-space
onto two-dimensional diagrams. There we plot the local apparent transfer entropy
t (i, j = 1, n, k = 16) versus local active information storage a(i, n, k = 16), as well
as the local separable information s(i, n, k = 16) versus a(i, n, k = 16) for several
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CA rules. Each point in these diagrams represents the local values of the measures at
one spatiotemporal point (i, n). We emphasise that coherent spatiotemporal structure
can be captured in these diagrams since the transfer entropy measurements consider
neighbouring values across space and the temporal history of the destination.

Similar state-space diagrams are known to provide insights into structure that are
not visible when examining either measure in isolation. An example is examining
structure in classes of systems (such as logistic maps) by plotting average excess
entropy versus entropy rate while changing a system parameter [18]. In contrast
here we are looking at structure within a single system rather than across a class of
systems.

As could be expected, the state-space diagrams for rule 110 exhibit interesting
structure (Fig. 7.1a and b), with significant clustering around certain areas and lines,
reflecting its status as a complex rule. The two diagonal lines in Fig. 7.1a are upper
limits representing the boundary condition tc(i, j = −1, n, k = 16) ≥ 0 for both
destination states “0” and “1”. That is, via Eq. (4.57) we have:

h(i, n + 1) ≥ a(i, n + 1, k) + t (i, j = 1, n + 1, k), (7.1)

for both the upper limits h(i, n + 1) = − log2 p(xi,n+1 = 0) and − log2 p(xi,n+1
= 1). The horizontal line is for t (i, j = 1, n, k = 16) = 0. Rather than being merely
boundaries these lines are structural elements in their own right, being dense areas
of the state-space and adding significant structure to it. Their long extent suggests
a large variety of coherent activity, because with zero transfer from one source and
a(i, n + 1, k) much less than 0 the other source has a greater opportunity to exert a
strong coherent influence on the destination.

We then consider the chaotic rule 30, whose local information dynamics profiles
in Fig. 3.11 showed a similar absence of coherent structure to rule 22 (see Sect. 3.3.8).
In contrast to the results for rule 110, the state-space diagrams for rule 30 exhibit
minimal structure (Fig. 7.1c and d), with a smooth spread of points across the space
reflecting its underlying chaotic nature. The same mathematical limits exist of course
but are not a dense, individual part of the structure as for rule 110.

As shown in Fig. 3.10, rule 22 exhibits an apparent absence of coherent structure in
its individual space-time information profiles, similar to those described for rule 30.
As such, one may expect state-space diagrams for rule 22 to exhibit a similar absence
of structure. As shown by Fig. 7.1e and f however this is not the case: the state-space
diagrams for rule 22 exhibit significant structure, with similar clustering to that
of rule 110. Indeed, rule 22 exhibits similar linear structures to rule 110, which as
argued above suggests the potential for strong coherent influence of a source on a
destination.

This is a highly significant result, because local information dynamics is
the first approach able to reconcile the opposing views of rule 22 as com-
plex and chaotic.4 When the local information dynamics profiles are viewed

4 Indeed, the candidate measures considered in Appendix G did not capture its alignment with the
known complex rules in this respect.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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rule 110:(a) (b)

(c) (d)

(f)(e)

rule 110:

rule 30: rule 30:

rule 22: rule 22:vs vs

vsvs

vsvs

Fig. 7.1 State space diagrams of local transfer entropy (one step to the right) t (i, j = 1, n, k = 16),
local active information a(i, n, k = 16) and local separable information s(i, n, k = 16) at the same
space-time points (i, n) for ECA rules 110, 30 and 22. (NB: Fig. 7.1 a, c and e are reprinted from
[1] with permission of Springer.)

individually (Fig. 3.10), no coherent structure is revealed. This is in alignment with
local information profiles from other authors, e.g. [10]. In contrast, here we see that
when plotted together in state-space diagrams we see an indication of a coherent
relationship between the local information dynamics. This view lends credence to
the claims of complex behaviour for rule 22 discussed in Sect. 2.3.4. Its coher-

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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ent information structure must be very subtle, since it is not complex enough to
be revealed in the individual profiles. Indeed, this structure may underpin coherent
computation at other scales.

7.3 Measuring Coherent Information Structure
in the State-Space

Coherent information structure should be quantified from these state-space diagrams,
because they satisfy the requirements described in Sect. 7.1 and have been demon-
strated in Sect. 7.2 to identify both clear and hidden structure. As such, we conclude
that coherent information structure should be quantified as the logical relation-
ship between values in the local information dynamics state-space. In this section,
we discuss how to quantify it in this manner and present the measure I ss for this
purpose. Subsequently, we apply the measure I ss to CAs and RBNs and discuss the
results.

To remain maximally unbiased, the measurement should be made in the underly-
ing multi-dimensional information state-space rather than the two-dimensional pro-
jections plotted in Fig. 7.1. The first question to address is which of the information
dynamics should be included in the measure here. Certainly, all of the information
sources for a given destination must be represented. One could do so by examin-
ing the state-space made up of aX (n, k) and the incrementally conditioned mutual
information terms in Eq. 4.47 (e.g. a(i, n, k), t (i, j = 1, n, k), tc(i, j = −1, n, k)

in ECAs). However, this approach leaves ambiguity in the order of considering
sources in the incrementally conditioned mutual information terms. Also, as more
sources are conditioned on, more redundant information is built into this state-space
about the previously considered sources.5 A more appropriate approach without such
ambiguity or inbuilt bias is to consider the state-space of measures underlying the
separable information: i.e. aX (n, k) and tY→X (n, k) for all sources Y . The separable
information should not be included in the measure itself since it includes redundant
information about its component variables.

The next question is how to measure structure in the state-space of these measures.
Certainly, measuring structure in two or more dimensional patterns is known to
be particularly difficult [19]. We select the multi-information (see Eq. 2.9) for this
purpose, since it measures the degree of dependence between the given variables.
This aligns well with our intention to measure the logical relationship between the
information dynamics variables.

As such, we propose the state-space multi-information as a measure of coherent
information structure at an information destination X due to causal sources {VX \ X}:

5 For example, tc(i, j = −1, n, k) is almost completely specified by a(i, n, k) and t (i, j = 1, n, k)

in ECAs, except for any difference in h(i, n) between the “0” and “1” states.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Y1, Y2, ..., YG as the multi-information I ss
X between its active information storage and

the apparent transfer entropies to it6:

I ss
X = lim

k→∞ I ss
X (k), (7.2)

I ss
X (k) = I

(
aX (n, k); tY1→X (n, k); tY2→X (n, k); . . . ; tYG→X (n, k)

)
, (7.3)

= H (aX (n, k)) +
⎛

⎝
G∑

g=1

H
(
tYg→X (n, k)

)
⎞

⎠

− H
(
aX (n, k); tY1→X (n, k); tY2→X (n, k); . . . ; tYG→X (n, k)

)
. (7.4)

For a lattice system we can write I ss(i, k) for agent i ; where the agents are
homogeneous (e.g. CAs) we can estimate the PDFs over all observations in the
system, and average over all agents to get I ss(k) = 〈I ss(i, k)〉i . Initially, it may
seem strange to make an information-theoretic measure of information-theoretical
values; however there is no reason that structure in the information state-space should
not be measured information-theoretically.

7.3.1 Coherent Information Structure Measurements
in CAs

The state-space multi-information I ss(k = 16) was measured for the CA rules inves-
tigated in previous chapters. These measurements used 200,000 sample points, with
kernel estimation of the underlying entropies (see Sect. 2.2.3, [20]) since the sample
points have continuous values. These estimates use a step kernel with precision
r = 1.0 bits and maximum distance norms. The results are displayed in Table 7.1.

The measurements of coherent information structure using I ss(k = 16) align
to a large degree with our qualitative observations of these rules above. We find
that rules 110 and 54 contain strong relationships between the information dynamics
in their state-space. In contrast, rule 30 contains very little coherent structure. We
also measure only a small amount of coherent structure for rule 18, since the structure
in its domain walls is only a relatively minor part of the dynamics compared to its
background domain. While there is a pattern to this domain, as we have observed there
is almost no relationship between the interacting sources (see Sect. 4.2.4.2), so the
lack of coherent structure here is not surprising. As per our qualitative observations
above, significant coherent structure is also measured for rule 22. This confirms that
the framework can resolve the conflicting views of rule 22 as complex and chaotic.
We remind the reader that this measure is not of complexity itself and, given the

6 Note we have altered our notation for mutual and multi-information expressions from IX;Y
to I (X; Y ) here. This is simply for easier display of the complicated quantities over which the
information is being calculated.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
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subtle nature of structure of the coherent structure in rule 22 (not being revealed in
individual information dynamics profiles), at this stage we cannot conclude that its
behaviour is any more complex than that of rules 110 and 54.

We also note that the measure returns large values for CA rules (e.g. 0.90 for
rule 47) which contain simple gliders in a single channel j only. Since these gliders
never interact with other gliders, these rules are not viewed as complex. The large
measurement is not incorrect though, since the measure is genuinely detecting coher-
ent structure. We note that this structure only manifests in a single two-dimensional
projection of the state-space (t (i, j, n, k) versus a(i, n, k) for the channel j the glid-
ers travel in). It is undesirable to infer as much coherent structure to these types
of dynamics as for rules such as 110 which have structure in all dimensions of the
state-space. We expect that new approaches addressing the acknowledged difficul-
ties in defining measures of multi-dimensional structure (e.g. see [19]) may provide
improvements over the multi-information for measuring structure in the local infor-
mation state-space here.

Despite this minor limitation, these results (in particular for rule 22) underline that
the measure I ss usefully captures clear and hidden coherent information structure
observed in the state-space. We emphasise though, that the state-space diagrams
themselves contain much more detail about the relationships between these axes of
complexity than this averaged measure.7

7.3.2 Coherent Information Structure Measurements
in RBNs

We also applied the measure I ss to RBNs, seeking to measure the average I ss(K )

as a function of average in-degree or connectivity K . Given that a phase transition
occurs between ordered behaviour at low K and chaotic behaviour at high K , one
could expect to measure a maximisation of coherent information structure coinciding
with complex behaviour at the critical regime.

The RBNs are simulated using the same parameters as for the experiments in
Sect. 6.1, except where noted below. Again, because we use finite network sizes, the
phase transitions investigated here are approximate (see Sect. 2.4.1). We measure the
local information dynamics for each node in a given sample RBN (e.g. aX (i, n, k =
13)), then use these to compute the coherent information structure I ss

X (k = 13) for
each node X . Note that the nodes are heterogeneous, in particular in terms of the
number of causal information sources, so the information dynamics and state-space
multi-information must be computed for each node separately. In order to generate
enough observations for the underlying information dynamics computations, each
sample RBN is run from a large number of random initial states (at least 8,960 are
used). The measurements of I ss

X (k = 13) used the local information dynamics values

7 This is similar to the manner in which the local information dynamics measures themselves reveal
more about the underlying computation than their averages do.

http://dx.doi.org/10.1007/978-3-642-32952-4_6
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Table 7.1 Table of the multi-information I ss(k = 16) in the local information state-space in ECAs

ECA rule I ss(k = 16) (bits)

110 0.50
54 0.95
22 0.72
18 0.15
30 0.11

The state-space consists of the local active information storage (a(i, n, k = 16)) and each local
transfer entropy (t (i, j = 1, n, k = 16) and t (i, j = −1, n, k = 16))

from at least 35,000 sample points. Kernel estimation is used for the underlying
entropies since the sample points have continuous values (see Sect. 2.2.3, [20]) using
a step kernel with precision r = 0.4 bits and maximum distance norms. The measures
of I ss

X (k = 13) for each node X in the RBN then provide an average across the sample
network I ss(k = 13) = 〈

I ss
X (k = 13)

〉
X . These sample network averages are then

averaged over many networks generated for each K (at least 120) to determine the
state-space multi-information as a function of K : I ss(k = 13, K ).

The results for I ss(k = 13, K ) as a function of K are displayed in Fig. 7.2.
I ss(k = 13, K ) is maximised itself in between the maximisations of information
storage and transfer, which we know to lie on either side of the phase transition
(see Sect. 6.1). Clearly then, our measure I ss infers that the coherence of informa-
tion structure is maximised directly in the vicinity of the critical phase between
ordered and chaotic behaviour of the RBNs. This is as we expected, given our ear-
lier comments about phase transitions in general and the circumstantial evidence of
such a maximisation inferred in Sect. G.1. In the ordered phase, the system exhibits
coherence but with only minimal structure, while in the chaotic phase the coherence
of the system is eroded by rampant interaction-based information transfer.

One could also extend the mutual information interpretation of [21, 22] to
the multi-information expression here Eq. (7.4). In the ordered phase there is low
assortative noise between the individual information dynamics, though since there
is low diversity in each of them, coherence remains low. In the chaotic phase, there
is high diversity in the individual information dynamics, but at the same time high
assortative noise between them erodes the coherence. In the critical phase in between,
there is large information storage and information transfer with high diversity in each
providing a large scope for coherent information structure. Unlike the chaotic phase,
here there is low assortative noise between them, and coherent information structure
is then high in the critical phase.

We note that the minor limitation of I ss described for CAs in Sect. 7.3.1 is not an
issue in RBNs. Since RBNs are neither a lattice system nor consist of homogeneous
agents, the existence of simple gliders in one channel is not meaningful.

While this finding of a maximisation of coherent information structure in this
order-chaos phase transition is a significant result, there are a number of key points
to keep in mind. The result is only for this specific phase transition. Certainly systems

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_6
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Fig. 7.2 Average coherent information structure I ss(k = 13, K ) in the state-space diagrams
for RBNs, as a function of average in-degree K . I ss(k = 13, K ) is plotted against the results
of A(k = 13, K ) and T (k = 13, K ) from Sect. 6.1 for comparison. Standard error of the mean
indicators are on the scale of the data points and omitted

near the critical phase displayed the largest amount of coherent structure on average,
but such structure can exist to an extent in all types of systems. While there are good
reasons to expect similar trends in other known phase transitions where complexity is
maximised, certainly there is no one universal complex-entropy curve [18]. Indeed,
we remind the reader that this measure of coherent information structure is expected
to capture an important feature of complex computation, but is not an overall measure
of complexity itself. Also, we emphasise that there is a large range of possible behav-
iour for each K in the finite-size networks (hence the transition is approximate), and
what we have reported here are average behaviours. The local information dynam-
ics of computation will provide more detailed insights for a given RBN than single
ensemble measures such as I ss(k = 13, K ). Importantly though, these ensemble
measures are useful guides, and indeed become much more strongly predictive of
behaviour in the limit of infinite system size (e.g. see sharpening of phase transition
with system size, and discontinuity at infinite size, for RBNs in [23, 24]).

7.4 Summary

We have conjectured that coherent information structure is a defining feature of com-
plex distributed computation, particularly in biological systems. We have presented a
methodology for exploring the coherence of such computation, using our framework
for local information dynamics. The methodology focuses on state-space diagrams of
the local information dynamics, since these provide the most unbiased approached
to detecting logical relationships between the local information dynamics values.

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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These diagrams produce useful visual insights and indeed we define coherent infor-
mation structure as the logical relationship between values in the local information
dynamics state-space. We proposed the multi-information I ss in this state-space as
a measure for this concept.

We applied the methodology to classical complex systems examples: cellular
automata and random Boolean networks. These applications showed that the method
captures not only clear but also hidden coherent structure in the underlying com-
putation. A prominent example here is CA rule 22, where no coherent structure
is visible in spatiotemporal profiles of the individual information dynamics, but is
revealed in the state-space diagrams between them and quantified by our measure
I ss . This is a significant result, since our framework is the first approach which
can reconcile the two conflicting views of rule 22 as complex and chaotic. On
application to RBNs, our measure I ss suggests that coherent information structure
is maximised at the critical state in the order-chaos phase transition there. While
we emphasise that I ss is not intended to measure complexity as a whole, this result
provides important evidence that coherent information structure is a key feature
of complex computation.

We intend to explore the relationship of coherent information structure to other
properties of complex computation, and indeed other measures of complexity. In
particular, further work is required to establish the meaning of the relationship
between the information dynamics measures in rule 22. We also intend to explore
the application of new measures of multi-dimensional structure to the information
state-space as they are published, in order to check if they can address the minor lim-
itations of I ss described in Sect. 7.3.1. Furthermore, we intend to explore the utility
of the measure of coherent information structure I ss as an intrinsic goal in guided
self-organisation. In this domain, guiding towards higher values of I ss has the poten-
tial to generate coherent computational structure which could be usefully applied to
solve complex tasks.
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Chapter 8
Information Transfer in Biological
and Bio-Inspired Systems

The main thrust of the preceding chapters has been the presentation of a framework
for the local information dynamics of computation. Importantly, we have demon-
strated that the underlying measures align with our qualitative notions of information
storage, transfer and modification in analysing well-understood theoretical systems,
including CAs and RBNs. We have also demonstrated that the perspective of local
measures, i.e. quantifying the information measures at each point in space and time,
produces more detailed insights into a given computation than averaged measures
can.

In this chapter then, we will demonstrate the utility of the local perspective of
information transfer in a number of biological and bio-inspired applications.

We will show that this local perspective can produce new insights in understand-
ing interaction in biological systems. In Sect. 8.1 we show that examining local
information transfer in time produces more detailed insights than averages into the
time dynamics of the complex interaction between heart and breath rate in sleep
apnea. Then in Sect. 8.2 we demonstrate that examining local information transfer
in space is useful in the domain of computational neuroscience, by showing that it
can establish the directed structure between brain regions that underpins a visuo-
motor tracking task. The information transfer-based method we present is novel
in the domain of computational neuroscience in providing directional, non-linear,
model-free, collective analysis at the regional level, and being applicable to small
data sets.

From a design perspective then, we will demonstrate in Sect. 8.3 that maximising
local information transfer is a useful intrinsic goal in guided self-organisation for a
bio-inspired snake-like robot (snakebot). We also show that local transfer entropy is
unique in revealing the emergence of coherent information structure (akin to gliders)
in this snakebot.

In all of these applications, the local perspective is crucial in providing full
insights into the distributed computation of the system. The promising results here
suggest further scope for the application of information dynamics in the realms of
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computational neuroscience, guided self-organisation, and other biological and bio-
inspired domains.

8.1 Heart and Breath Rate Interaction in Sleep Apnea

Sleep apnea (or apnoea) is a disorder characterised by pauses and bursts of breathing
during sleep. These episodes, each known as apnea, seem to occur when the heart
rate breaches some threshold [1]. The interaction between heart and breath rate in a
sleep apnea patient was studied from the perspective of information transfer between
the two by Schreiber [1] in the original presentation of the transfer entropy (TE).
That study found information transfer appears to occur in both directions between
heart and breath rate. This indicated a complex interaction, albeit one with greater
transfer from heart to breath in alignment with the observation of apnea occurring
when the heart rate crosses some threshold [1].

In this section we study the interaction using local transfer entropy (see Sect. 4.1.2).
We demonstrate the local measure to deliver more detailed insights into the dynamics
of the complex interaction between heart and breath rate in time than the averages
do. The application to this particular example is pertinent because of its use in the
original presentation of the TE.

The local transfer entropies were computed in each direction between instanta-
neous heart and breath rate of a sleeping sufferer of sleep apnea (using
samples 2350-3550 of data set B of the Santa Fe Institute time series contest held
in 1991 [2], as per [1]). We use kernel estimation to compute the probability dis-
tribution functions of the relevant variables (see Sect. 2.2.3), with a kernel width of
r = 0.60 standard deviations. Also, we use a history length of k = 4 (increasing
beyond the k = 1 used in [1] to eliminate information storage as recommended
in Chap. 4).

Figure 8.1c shows that significant bidirectional information exchanges between
heart and breath rate coincide with the apnea events in the raw data of Fig. 8.1a and b
(where the heart rate rises significantly and breath rate becomes highly variable).
Significant clusters of spikes in the TE in both directions occur around these events,
with little transfer taking place in between the events.

More importantly, the close-up of a typical event in Fig. 8.1d shows that the
information exchange is started by a significant transfer from heart rate to
breath rate, followed by a complex two-way exchange of information during
the apnea event. This precedence in time is perhaps more indicative of dominance
in the dynamics than having a larger average information transfer alone. This leading
transfer from heart to breath is typical, but does not occur in all events; importantly,
it is the local transfer entropy that reveals the true richness of both the initial
dynamics and the complex process that follows it.

http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_4


8.2 Establishing Directed Interregional Cortical Information Structure 179

Fig. 8.1 Dynamics between heart and breath rates. a Heart rate, b breath rate: raw data normalised
to zero mean and unit variance. c Transfers: local information transfer in each direction. d example
of dynamics: raw data and local information transfers for an example apnea event

8.2 Establishing Directed Interregional Cortical
Information Structure

The human brain undertakes highly sophisticated information processing facilitated
by the interaction between its sub-regions. We present a novel effective interregional
connectivity analysis of multivariate data. This analysis uses extensions to the trans-
fer entropy, which is studied locally in space. The method allows us to identify
the underlying directed information structure between brain regions, and how that
structure changes according to behavioural conditions. This method is distinguished
in using asymmetric, multivariate, information-theoretic analysis, which captures
not only directional and non-linear relationships, but also the relationships due to
collective interactions. We apply the method to analyse blood oxygen level-dependent
(BOLD) time series to establish the directed information structure between brain
regions involved in a visuomotor tracking task. Importantly, this results in a tiered
structure, with known movement planning regions driving visual and motor con-
trol regions. Also, we examine the changes in this structure as the difficulty of
the visuomotor tracking task is increased. We find greater coupling between sub-
regions of a network involved in movement planning and areas involved in hand-
and eye-movements (left SMA and left PMd, right cerebellum and right SC) with
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task difficulty. It is likely these methods will find utility in identifying interregional
structure (and changes with experimental conditions) in other cognitive tasks and
data modalities.

8.2.1 Introduction

Distributed computation in the brain is a complex process, involving interactions
between many regions in order to achieve a particular task. It is particularly important
for the different brain regions to interact and “integrate the disparate aspects of a
cognitive process into a perceptual whole” [3]. Along these lines, Stevenson et al.
have studied the areas where integration of audio-visual and visuo-haptic information
occurs [4].

Our interest lies in establishing directed, interregional, effective1 information
structure in the brain based on particular cognitive tasks. Several studies in computa-
tional neuroscience have considered similar goals. By observing common informa-
tion in different brain regions at different times, a flow of information was inferred
between different regions in [7, 8]. The (pairwise) Granger causality was used in [9]
for analysing interregional connectivity in a visual attention task. Effective networks
were inferred with a measure of information transfer in a model of the macaque
cortex in [6]. Also, single-variate information transfer was studied at the spiking
neuron level in [10] and at the regional level in fMRI measurements in the human
visual cortex in [11]. Undirected structure was studied with multivariate analysis
at the regional level in fMRI measurements during visual processing in [12]. Other
information-theoretical measures were used to study transfer between brain areas of
macaques in [13].

In establishing such information structure, we are particularly interested in cap-
turing non-linear, directional, collective interactions between different areas of one
region facilitating outcomes in another region. Some of the above studies use lin-
ear methods only (e.g. Granger causality in [9], and linear approximations in [13]),
others do not capture where an effect is due to a collective interaction2 from two or
more driving elements (e.g. [11] examines only average values over all variables in a
region), or do not specifically examine the regional level of interactions. Also, some
are not direct measures of information transfer, rather inferences of (undirected)
common information (e.g. [12]).

1 Note that the interregional information networks inferred here are effective networks rather than
structural networks [5, 6]. Effective networks consist of a set of directed links representing statistical
dependencies between the nodes in an underlying structural network. Effective networks provide
insight into the logical structure of the network and how this changes as a function of network
activity (regardless of whether the underlying structure is known).
2 As described in Sect. 4.1.3, a collective interaction occurs for example in the XOR operation,
where the outcome is not due to the isolated actions of single sources. Collective interactions are
captured as interaction-based transfer in the complete and collective TE.

http://dx.doi.org/10.1007/978-3-642-32952-4_4


8.2 Establishing Directed Interregional Cortical Information Structure 181

Here, we present a new approach in Sect. 8.2.2 to detecting directed information
structure between brain regions in cognitive tasks.3 Our approach examines the sta-
tistical significance of an ensemble of information transfer measurements between
each region pair. These information transfer measurements are local in space, and
each examines multiple variables (volume pixels or voxels for fMRI) in the source
and destination brain regions. It is distinguished in using asymmetric, multivari-
ate, information-theoretical4 analysis, which captures not only non-linear rela-
tionships, but also collective interactions arising from groups of up to seven voxels
in each region, and the direction of these relationships. Of particular importance is
that this approach considers the collective interactions resulting from the combined
activity of multiple voxels in each region: multi-voxel analysis is necessary in order to
detect complete spatiotemporal patterns of activity [18], which are known to be more
informative about experimental conditions than single voxel activity. The approach
is further distinguished in using information theory to directly measure asymmetric
information transfer, and this also makes it model-free. Also, the particular combi-
nation of information theory and multi-voxel analysis here is novel, as is the ability
of the technique to provide insights from relatively small data sets due to our focus
on statistical significance and use of innovative techniques for estimating the PDFs
of continuous variables. The approach can also be used to infer differences in the
structure as the cognitive task changes.

We apply our method in Sect. 8.2.3 to study fMRI5 recordings of subjects under-
taking a visuomotor tracking task, under various task difficulties. We note the impor-
tant relationship between studying the structure of the perception-action loop in
the human brain and studies in the domain of artificial intelligence, e.g. [19]. Our
analysis of the fMRI data here yields a distinct, tiered, directed interaction structure
which connects movement planning regions (as information sources) to visual and
motor control regions (as information destinations). The correlations of the strength
of the interregional relationships with task difficulty are then analysed to deter-
mine which pairs of regions have: a. more in common, or b. a more pronounced
directional relationship as the task difficulty increases. Most significantly, we iden-
tify an increased coupling between regions involved in movement planning (left
SMA and left PMd) and execution (right cerebellum for right hand and right SC
for eye movements) with task difficulty. The method is thus demonstrated to be
useful for investigating interregional structure in fMRI studies, but it can certainly

3 The algorithm for inferring directed interregional information structure, and results of its appli-
cation to fMRI data from a visuomotor tracking task were first reported in [14, 15].
4 Information theory is known to produce useful insights from analysis of fMRI images, e.g. [16, 17].
The novelty here lies in its combination with asymmetric, multivariate and statistical significance-
based techniques to infer directed information structure.
5 Functional magnetic resonance imaging (fMRI) is a brain imaging technique which produces a
multivariate time-series of measurements for many spatial points (voxels) within the brain at high
spatial resolution (typically 3 mm3 volumes). The measurements are of changes in blood flow and
oxygenation related to neural activity near that point.
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also be applied to other modalities such as electrophysiological multi-electrode array
recordings.

8.2.2 Interregional Information Structure Analysis
Technique

We begin by presenting our method for detecting directed information structure
between brain regions in cognitive tasks. Information theory is the natural domain
for measuring information transfer between brain regions, providing a model-free,
non-linear platform for quantifying the information content of individual variables,
variable collections or exchanges between variables.

The basic measures used here are the mutual information (MI, see Eq. (2.6)) for
undirected measurements of statically shared information, and the transfer entropy
(TE, see Eq. (4.1)) for directed measurements of dynamics information transfer. Here,
the MI is estimated for continuous-valued variables using the techniques of Kraskov
et al. [20, 21] (see Sect. 2.2.3), with a window size of the K = 2 closest observations.
For the TE , we will use a history length k = 1 due to limitations of the number
of observations. While the TE is not a direct measure of causal effect, the use of
this short history length alters the character of the measure towards inferring causal
effect (see Sect. 4.4.3). The TE is computed here as two MI terms (see Eq. (4.2)) using
MI estimators for each in the style of [20, 21].6 Again, we use a window size of the
K = 2 closest observations for the Kraskov-estimators here. The use of Kraskov-
estimators is important since they were specifically designed to handle small numbers
of observations.

We have already shown in Chap. 4 that the TE is a non-linear, directional measure
for the information transfer between two variables. In the domain of computational
neuroscience, it has been used for example to analyse cortical interactions in simu-
lated data [6], EEG data [24, 25], and fMRI data [10, 11], while a related measure
(the “directed transinformation”) was used in the investigations in [13]. As we have
already pointed out in Sect. 4.1.3, the (apparent) TE does not detect interaction-based
transfer due to two or more source variables (e.g. an XOR operation). To capture this
aspect, we need to extend it to consider multivariate sources and destinations.

We outline how to extend these basic quantities to measure multivariate and inter-
regional information transfer in Sects. 8.2.2.1 and 8.2.2.2. Subsequently, we describe
how to assess the statistical significance of the interregional information transfer in
order to infer directed information links from these measurements in Sect. 8.2.2.3.
Finally, we describe how to detect changes in the directed structure as the cognitive
task changes in Sect. 8.2.2.5.

6 Note the TE could be computed using Kraskov estimation [20, 21] but with a direct conditional
MI calculation as per [22, 23].

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_6
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4
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8.2.2.1 Extending Information Transfer to Multivariate Source
and Destination

Each of these measures of information transfer may be trivially extended to consider
joint variables as the source and destination, i.e. we have I (X; Y) and Tk(Y → X) =
I (Y; X′ | X(k)) where X and Y are joint variables.7

The multivariate mutual information I (X; Y) measures the amount of informa-
tion shared between a set of source variables Y and a set of destination variables X.
It has been studied for example in fMRI data in [12].

The multivariate transfer entropy Tk(Y → X) (see Fig. 8.2) measures the
amount of information that a set of source variables Y provide about a set of destina-
tion variables X, that was not contained in the past of the destination set.8 While the
multivariate TE has been considered elsewhere (e.g. in genetic microarray data sets
[26]9), we are not aware of its application to fMRI data as yet. This is an important
extension in this context, because multivariate voxel patterns are known to be more
informative about experimental conditions than single voxel activity [27]. In partic-
ular, Tk(Y → X) will capture both single-source and interaction-based transfer; the
same cannot be said for single voxel analysis. As such, in the multivariate TE we now
have a measure for information transfer that is non-linear, directional and captures
collective interactions.

Note however that the number of available observations limits the number of joint
variables that may be analysed in this manner (e.g. see [20, 28]), in a similar fashion
to the history length k being limited for the active information storage and TE (see
Sects. 3.3.1 and 4.1.1.1).

8.2.2.2 Measuring Information Transfer Between Two Regions of Variables

Though theoretically appealing, it is generally impractical for us to compute the
interregional information transfer as the multivariate TE Tk(Ra → Rb) between
the complete sets of variables in two regions Ra and Rb. This is because a “region”
in neural applications can contain a very large number of variables,10 and complete
sampling of these massively multivariate spaces would require many orders of mag-
nitude more observations in time than could be practically obtained. As such, the

7 We alter our information-theoretical notation in this section from IX;Y to I (X; Y ) in order to
accommodate the complex notation for the variables under consideration.
8 Note the similarity between the multivariate TE and the collective TE defined in Eq. (4.41). The
distinction is that here we have a multivariate destination, whereas the collective measure considers
a multivariate source only. This extension eliminates information that was already present in any of
the destination variables. This is important for considering regions of variables, where one wishes
to eliminate information already contained elsewhere in the region (even if that information moves
around the variables within that region). The collective TE focuses on the information added by
multiple sources to a single destination only.
9 More specifically, this appears to be a consideration of the collective TE .
10 For example, fMRI regions contain potentially hundreds of voxels, see Table 8.1.

http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4
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Fig. 8.2 Multivariate transfer entropy Tk(Y → X) = I (Y; X′ | X(k)) from the set of source
variables Y to the set of destination variables X. (NB: This figure is reprinted from [15] with
permission of Springer)

most practical way to retain the benefits of this measure is to compute the interre-
gional information transfer from region Ra to region Rb as the multivariate transfer
entropy averaged over a large number S of sample pairs of subsets of v variables in
each region:

Tk,v(Ra → Rb) = 〈
Tk(Ra,i → Rb, j )

〉
i, j . (8.1)

Here i and j label the subsets Ra,i and Rb, j of size v in each region. Again, while
it is desirable to average over all pairs of subsets from each region, where:

S =
(|Ra |

v

)(|Rb|
v

)
. (8.2)

this is impractical for large regions. In practical situations, S must be limited with the
subsets selected randomly. Thus, Tk,v(Ra → Rb) provides a measure of interregional
information transfer that is non-linear, directional, captures collective interactions
and is practically usable.

The same technique of averaging over subsets of size v can be used with the
multivariate MI to produce a similar but non-directional measure, the interregional
mutual information:

Iv(Ra; Rb) = 〈
I (Ra,i ; Rb, j )

〉
i, j . (8.3)

Indeed, this is done in [12], where the authors additionally condition on experi-
mental conditions.

Finally, we note that both measures may be averaged over subjects s in order to
assess group effect. This gives the following expressions:

T g
k,v(Ra → Rb) = 〈

Tk,v(Ra → Rb)
〉
s , (8.4)

I g
v (Ra; Rb) = 〈Iv(Ra; Rb)〉s . (8.5)
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8.2.2.3 Significance Testing of Information Transfer Measures

The measures described above quantify the information transfer between single or
sets of variables. However, it is important to realise that since they are computed from
a finite number of observations they are actually random variables. As a consequence,
even where there may be no temporal relationship between two variables, there is
a non-zero distribution of results for a transfer entropy measurement between them
based on a finite number of observations. Another consequence is that even with a
strong relationship between some subsets of variables in each region, Tk,v(Ra → Rb)

may average over many other pairs of subsets that have no temporal relationship to
each other, resulting in what may appear to be a low average value.

The intersection of these factors means that we need an objective method of deter-
mining whether a value of Tk,v(Ra → Rb) indicates a significant directional rela-
tionship Ra → Rb. Simple thresholding is undesirable since the choice of threshold
is subjective and may not be comparable between different region pairs. Considering
the statistical significance of the measurement is the most desirable approach: i.e.
determining the probability that the measured value of Tk,v(Ra → Rb) or greater
would have been observed were there no temporal relationship between the source
and destination regions. In this section we describe how to determine the statistical
significance of Tk,v(Ra → Rb) in order to infer directed interregional links.

First, we consider statistical significance testing for the single-variate TE
measurement Tk(Y → X), as previously described in [24, 29]. The null hypoth-
esis H0 of the test is that the state changes x (k)

n → xn+1 of the destination X have
no temporal dependence on the source Y .

Assuming H0 true, we need to determine the distribution of TE measurements
Tk(Y p → X) under this condition. This is done11 by generating many surrogate
time series (say P of them) Y p by randomly permuting the source time series Y ,
then using each one to compute a surrogate TE to X : Tk(Y p → X). Importantly,
these surrogates are computed from the same number of observations, and the same
distributions p(yn) and p(xn+1 | x (k)

n ); the only difference is that the temporal depen-
dence p(xn+1 | x (k)

n , yn) of the state changes of the destination on the source has
been destroyed. Thus the distribution of the surrogates Tk(Y p → X) describes our
expectation for Tk(Y → X) under H0. We can then determine a p-value as the prob-
ability p (Tk(Y p → X) ≥ Tk(Y → X)) using Student’s t-test; i.e. the probability of
observing a greater Tk(Y → X) than that actually measured, assuming H0.

For a given α value, we reject H0 when p < α, concluding then that a significant
temporal relationship between the source and destination does exist. Significance of
the MI may be determined in a similar fashion. This method provides an objectively
determined threshold for any TE measurement, and the given α allows comparison
to other pairs of variables.

11 The following explanation assumes that only one previous state yn of the source is used in the
computation of Tk(Y → X); i.e. the parameter l = 1 (see Eq. (4.1)).

http://dx.doi.org/10.1007/978-3-642-32952-4_4
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8.2.2.4 Significance Testing of Interregional Transfer Entropy

Significance testing of the multivariate measures I (X; Y) and Tk(Y → X) is a
straightforward extension. Most importantly, in generating the surrogates Yp we do
not permute the component time series Y1, Y2, . . . of Y individually but permute the
vectors yn at each time point n in Y as a whole. This ensures that the only difference
in making the surrogate measurements Tk(Yp → X) is the temporal relationship
p(xn+1 | x(k)

n , yn).
Similarly, significance testing can be extended to the interregional measures

Tk,v(Ra → Rb) and Iv(Ra; Rb) by generating P surrogate measurements as, for
example:

Tk,v(R
p
a → Rb) =

〈
Tk(R

p
a,i → Rb, j )

〉

i, j
. (8.6)

Note that the pth permutation is applied to the whole region Rp
a before the subsets i

of v variables are selected for Rp
a,i from it. Also, for each of the P permutations Rp

a the
same subsets i and j must be selected as for the actual measurement Tk,v(Ra → Rb)

in Eq. (8.1). Together, these constraints ensure that the only difference in making
the surrogate measurements Tk,v(R

p
a → Rb) is the temporal relationship p(ra,n+1 |

r(k)
a,n, rb,n). As such, we can reject H0 and conclude a significant interregional link if12:

p
(
Tk,v(R

p
a → Rb) ≥ Tk,v(Ra → Rb)

)
< α. (8.7)

This method of identifying significant interregional links is suitable for application
on the individual level (e.g. for fMRI measurements from an individual subject). We
are particularly interested in extending this inference to the group level where we
have measurements for each region for a number of subjects within a group. To do
so we need to compare the measured averages across the group (i.e. T g

k,v(Ra → Rb)

from Eq. (8.4)) to the distribution of P group averages obtained from the surrogate
measurements at each subject, e.g.:

T g
k,v(R

p
a → Rb) = 〈

Tk,v(R
p
a → Rb)

〉
s . (8.8)

We can reject H0 and conclude a significant interregional link at the group level if:

p
(

T g
k,v(R

p
a → Rb) ≥ T g

k,v(Ra → Rb)
)

< α. (8.9)

We now have a method to determine which region pairs have a significant directed
relationship under a given cognitive task at the group level. The set of these directed
relationships form a directed interregional information structure.

12 We note the different approach taken to inferring links with the interregional MI in [12], where
the authors examined its statistical significance as compared to the average over multivariate MIs
computed from random subsets of v variables taken from any of the brain regions.
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8.2.2.5 Changes in Structure with Task Conditions

Finally, we consider how to identify statistically significant changes in the interre-
gional structure as the experimental conditions change for a given cognitive task.
At the group level, for a given region pair we can compare the populations of inter-
regional measures Tk,v(Ra → Rb) and Iv(Ra; Rb) for all subjects s between the
different experimental conditions. If there are two experimental conditions we com-
pare the populations using a t-test with the null hypothesis that there is no difference
between the populations. If the experimental condition is a quantity (e.g. a task dif-
ficulty level as per the task we analyse in Sect. 8.2.3) then we test the population
of correlation scores (of interregional measure to task difficulty) for each subject
against the null hypothesis of a zero correlation.

With the TE measurements, these tests determine changes in directed informa-
tion transfer for a given region pair as a function of experimental condition. With
the MI measurements, the tests determine whether the regions have more or less in
common as as a function of the experimental condition.

8.2.3 Application to fMRI Experimental Data

In this section, we describe the application of the above methods for determining
interregional structure to brain imaging data from a visuomotor tracking task. We
also examine the changes in this structure as the difficulty of the task is altered.

8.2.3.1 Visual Tracking Task and BOLD Acquisition

The cognitive task for this experiment involved eight subjects (who gave informed
written consent) tracking a visual target moving along a circle on a computer screen
with their right index finger.13 The task required the integration of information from
visual input, movement planning and visual and motor control regions. The difficulty
of the tracking task was altered between four different levels in blocks of 16.8 s, with
20 such blocks sampled for each difficulty.

During the cognitive task, functional Magnetic Resonance Imaging (fMRI) EPI
data was acquired from each subject. With a 2.8 sec sampling interval, we have 140
observations in time for each difficulty level for each subject. The fMRI imaging
had a spatial resolution of 3 mm3. The data was pre-processed and extracted for 11
regions active during the task (see footnote 13). The 11 regions in the data set, their
abbreviations and number of voxels (volume pixels) are listed in Table 8.1.

13 The fMRI data set was obtained by researchers from the Bernstein Center for Computational
Neuroscience in Berlin (see Acknowledgements on p. 11). Furthermore, the data set was subjected
by these researchers to standard preprocessing operations (motion correction, spatial normalisation),
and a general linear model (GLM) was used to find regions that were activated during the task. The
data collection and these prior analyses are described in [30].



188 8 Information Transfer in Biological and Bio-Inspired Systems

Table 8.1 Table of brain regions analysed in the visuomotor tracking task

Name of region Abbreviation Number of voxels

Left superior colliculus Left_SC 42
Right superior colliculus Right_SC 35
Right cerebellum Right_Cerebellum 185
Right basal ganglia Right_BG 74
Primary visual cortex V1 63
Left primary motor cortex Left_M1 158
Left supplementary motor area Left_SMA 24
Left dorsal premotor cortex Left_PMd 296
Right dorsal premotor cortex Right_PMd 32
Left superior parietal lobule Left_SPL 56
Right superior parietal lobule Right_SPL 43

8.2.3.2 Directed Information Structure

For each region pair Ra and Rb here, Tk,v(Ra → Rb) and Iv(Ra; Rb) were measured
for all subjects s using v = 3 and 5 voxels for transfer entropy and v = 5 and 7
voxels for mutual information. We average over at least S = 1000 subset pairs
for each interregional information transfer measurement, with the subsets selected
randomly. The averages across the groups T g

k,v(Ra → Rb) and I g
v (Ra; Rb) were

significance tested as described in Sect. 8.2.2.4 in order to determine an interregional
information transfer structure. We used at least P = 100 surrogate time series for
the significance tests (with α = 0.05) as described in Sect. 8.2.2.4. It is important
to note that the method does not exclude bidirectional relationships (i.e. it does not
just look for which direction was strongest). The structures were additionally filtered
by requiring interregional links to qualify as significant at both subset sizes v tested
for each measure, and for all four task difficulty levels; such additional filtering is a
strong precaution against false discovery rate.

Significance testing of the interregional MI detects an almost fully connected
undirected structure (115 out of 120 undirected region pairs connected). In one
respect this is insightful, as it indicates that all of the regions have much in common
as the subjects undertake this cognitive task. However, it does not help to determine
the directed information structure in place here.

On the other hand, significance testing of the interregional transfer entropy
produces a distinct three-tier directed information structure (see Fig. 8.3).14

This result is very informative about the information structure during the cognitive
task. At the top tier are movement planning regions: left and right SPL, left and right
PMD, left SMA and left primary motor cortex. These regions provide directed inputs
to the middle and bottom tiers. The middle tier contains (visual) sensor processing
and control regions: left and right SC and primary visual cortex. While receiving
input from the top tier, the middle tier also provides directed input to the bottom tier.

14 Figures 8.3 and 8.4 were generated using Cytoscape [31].
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Fig. 8.3 Directed information structure established with the interregional transfer entropy for the
visuomotor task. The top tier represents includes planning regions, the middle tier (visual) sensor
processing and control regions, and the bottom tier motor execution. Thickness of lines indicates
significance against the null hypothesis of having no temporal relationship within a pair (thickest:
p < 0.01, thinnest: p < 0.05). (NB: This figure was first published in [14])

The bottom tier contains motor execution in the right cerebellum. Note that the BG
region is not found to be involved in the directed structure.

This tiered structure correlates well with the experiment, where one would
expect movement planning areas to direct the eyes to track the object (via SC regions)
and provide information on this movement to be integrated with visual sensing, as
well as to direct the motor execution for tracking the object with the right index finger
(via the right cerebellum). Additionally, the visual processing of the object would be
expected to be predictive of the motor execution to track the object.

One could also expect to find some level of feedback from the visual sensing
regions to the movement planning (since planning should require information of
where the object is), however such feedback links are noticeably absent from the
results in Fig. 8.3. This is possibly because such feedback links operate on a shorter
time-scale than the fMRI measurements here (at >2 second intervals). That is to
say, the raw visual information about where the object is may produce a detectable
influence on the activity in the movement planning regions for only a short time
frame (i.e. within two seconds and no longer). Comparing to the directed links that
are detected, it is reasonable to explain that movement planning regions may have
predictive effects on the visual and motor control regions over fMRI time scales via
high level concepts such as direction and speed.

8.2.3.3 Changes in Directed Information Structure

Significance testing of the correlation of interregional information transfer with task
difficulty was performed for each region pair, using both TE and MI (to assess the



190 8 Information Transfer in Biological and Bio-Inspired Systems

Fig. 8.4 Connections in the directed information structure with a statistically significant (t-test,
p < 0.05) correlation between information (transfer) and difficulty of the visuomotor task. Key:
dashed green line = correlation with interregional mutual information; directed red line = an anti-
correlation with the directed interregional transfer entropy. (NB: This figure was first published
in [14])

changing nature of the directed and undirected relationships respectively) as out-
lined in Sect. 8.2.2.5. Here, we use one-sided t-tests with α = 0.05. We also add
the additional filtering requirement (to combat false discovery rate) that significant
correlations must be detected for the pair for both subset sizes tested for the given
measure. Furthermore, we require that the pair must have also been concluded to
have a significant link (with the given measure) in the previous section to ensure
the correlation was not on spurious values. For example, we only draw conclusions
about significant changes in TE for links established in Fig. 8.3.

These tests reveal few changes in the information structure as the task difficulty
is increased. As shown in Fig. 8.4, we find one directed region pair which has a
significant decrease in interregional TE with task difficulty, and three region pairs
with a significant increase in interregional MI with task difficulty. These changes are
interesting because they indicate an increased coupling between regions involved
in movement planning (left SMA and left PMd) and execution (right cerebellum
for hand movements, right SC for eye movements) as the task difficulty increases.
Though this result does not indicate an increase in directional transfer between these
areas, the increase in coupling between them is indeed expected.

It is possible that there was a real though undetected increase in directional infor-
mation transfer with task difficulty on many of the links established in Fig. 8.3. The
increased information transfer may have been at shorter time scales than fMRI sam-
pling rates allow us to detect. It is also possible that there is in fact no increase in
directional information transfer in any of these channels, simply a change in what
the information represents. As sampling rates improve, future experiments will be
able to investigate these possibilities further.
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8.2.4 Conclusion

We have presented a novel approach to analysing effective connectivity of
time-series data to establish interregional information structure. Its combined char-
acteristics (being information-theoretical, asymmetric and multivariate) distinguish
it in identifying directional, non-linear, and collective interactions between regions
in a model-free manner. It is also applicable to small numbers of observations due to
our use of Kraskov-estimators coupled with our statistical significance perspective.

Here, the method was applied to fMRI data from a visuomotor tracking task. The
140 time steps available in each fMRI series would typically be considered too short
for multivariate information-theoretic analysis; however the aforementioned features
of our technique allow it to provide insights here. It identified an interesting three-tier
interregional information structure, with movement planning regions providing input
to visual perception and control regions, and both these tiers driving motor execution.
The method also identified increased coupling between movement planning and
motor execution regions as the tracking task became more difficult.

The presented method has thus been demonstrated to be useful for investigating
interregional structure in fMRI studies, but it could also be applied to other modalities
such as electrophysiological multi-electrode array recordings.

Future work will involve investigations of information transfer on shorter time
scales as measurement technology improves. Also, while we have demonstrated the
utility of studying information transfer on a spatially local scale in the domain of
computational neuroscience, we would like to explore information transfer in the
cortex on a local scale in time as well as space. This may result in the identification
of coherent information transfer structures (akin to gliders in CAs) in the cortex, as
described in [32].

8.3 Evolution of Coherent Information Transfer Structure

As discussed in Sect. 2.5, several authors have recently been investigating the poten-
tial for guided self-organisation in system design, e.g. [33–37]. This concept proposes
the use of information-theoretical measures of the information processing carried out
by a system in order to guide its evolution. An initial approach is to use these measures
as generic fitness functions in evolutionary design. From an engineering perspective,
template-based methods for generic information processing skills could be simpler
and afford a framework-based approach to such design of self-organised systems.
It also provides to us the potential to better understand the evolved solutions, and
more importantly the opportunity to study and understand the emergence rather than
engineering of intelligence [34].

We believe that a promising approach to guided self-organisation is a focus on
the use of measures of the information dynamics of distributed computation (from
Chaps. 3–5). Any task we wish to evolve the system to solve involves a distributed

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_3
http://dx.doi.org/10.1007/978-3-642-32952-4_5
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computation, so evolving for the fundamental building blocks of the computation
is a direct way to allow that computation to emerge. We could evolve directly for a
particular computational property (e.g. information storage as opposed to transfer),
or for a mix of those properties. As described in Sect. 2.5, information transfer has
been suggested to be a particularly important fitness function here, primarily because
of its important role in distributed computation.

In this section, we present the first use of a direct measure of information transfer,
transfer entropy [1], as the sole fitness function in an evolutionary design task.15

An initial aim of the experiment is to check whether information transfer underpins
coordinated motion, as was suggested in previous work [33]. More importantly, we
aim to investigate what type of behaviour emerges when a system is evolved to max-
imise information transfer. Much previous work on information-driven evolution has
sought to confirm whether it can approximate direct evolution for a given task. Here,
we simply seek to investigate what type of solution or computation is generated by
evolution for information transfer, and hypothesise that it will induce useful compu-
tation in the system. Our findings will help us to understand the role that information
transfer can play in a unified framework for guided self-organisation, focusing on
the information dynamics of distributed computation.

We use a snake-like modular robot (the snakebot) for experimentation. Infor-
mation structure has been observed to emerge previously in snakebots when using a
fitness function for fastest motion [39], and conversely fast motion has emerged from
evolution with a measure of coordination as the fitness function [33]. We measure
information transfer using the apparent transfer entropy (see Sect. 4.1.3) between
neighbouring modules of the snakebot, and evolve the snakebot to maximise this
quantity. This information transfer could be utilised by the snake in leading to coor-
dinated motion between the modules, communicating information about obstacles,
or driving new behaviours in a given direction along the snake.

We report that coherent information transfer structures were observed to emerge
(using local transfer entropy, see Chap. 4) in the evolved snakebot. We say “emerged”
because while high information transfer was selected for, local coherent structures
were not part of the specification.16 This is an important finding, because these
structures are analogous to glider structures in cellular automata (CAs). Gliders
are known to be the information transfer agents in CAs, providing for long-range
correlations across space and time and playing a fundamental role in the distributed
computation carried out in the CA (see Chap. 4). As such, we have provided evidence
that using a direct measure of information transfer as a fitness function in guided self-
organisation can produce useful structure in the system.

15 The application presented in this section was first reported in [38].
16 As we will discuss later in this section, we saw in earlier chapters that the ECAs with the highest
average information transfer values did not contain gliders. As such, selection for high transfer
could not automatically be expected to result in glider-like coherent structures here.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_4
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Fig. 8.5 Snakebot (NB: This
figure was first published in
[38])

8.3.1 Evolving the Snakebot for Maximum Information
Transfer

The snakebot is a snake-like modular robot, introduced by Tanev et al. [40], which is
simulated in the Open Dynamics Engine (ODE).17 As shown in Fig. 8.5, it consists
of a set of identical spherical morphological segments which are linked by universal
joints. The joints each have two actuators for joint rotation, which are oriented ver-
tically and horizontally in the initial standstill position of the snakebot, and all have
identical angle limits. No anisotropic friction between the morphological segments
and the surface is considered. The genome for the snakebot is an algebraic expression
for the desired turning angles of its horizontal and vertical actuators as a function
of time and actuator index. The periodic functions sin and cos are included in the
function set, providing support for periodic gaits. The turning angles however are
constrained by interactions between the segments and with the terrain; as such the
actual actuator angles represent the emergent dynamics. Here, αi,n and βi,n represent
the actual horizontal and vertical turning angles respectively at time step n, where
i is the actuator index (so 1 ≤ i ≤ S where S = 14 is the number of joints), and
1 ≤ n ≤ N for N = 1800 time steps in the simulation run.

Initial experiments to evolve fastest motion in any direction indicated that side-
winding motion (i.e. locomotion predominantly perpendicular to the long axis of the
snakebot) provided superior speed characteristics [40]. As previously mentioned,
subsequent experiments observed an increase in coordination (as excess entropy)
with this evolution [39], and then evolved similar fast moving side-winding loco-
motion using this measure of coordination as a fitness function [33]. In capturing
correlations across space and time, the (two-dimensional) collective excess entropy
Sect. 3.1.1) is something of an overall measure of distributed computation which
balances the underlying components of information storage and transfer between
constituent variables. Here, we evolve the snakebot using transfer entropy, in order
to maximise the information transfer component of distributed computation. It was
suggested in [33] that information transfer underpinned coordinated motion. An

17 The implementation of and original genetic programming framework for the snakebot were
supplied by Ivan Tanev (see Acknowledgements on p. 11).

http://dx.doi.org/10.1007/978-3-642-32952-4_3
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information transfer is certainly required in a transient sense to achieve coordinated
motion, but the level of information transfer in this initial phase may not be very
significant compared to the information transfer averaged over longer experimental
periods for other behaviours. The evolution of the snakebot here will take place in
a flat environment. We will observe what types of behaviour emerge as a result of
selecting for information transfer.

In evaluating the fitness of each snakebot after it is simulated for N time steps, we
compute the average apparent TE Ti+1→i (k) between each pair of consecutive mod-
ules i +1 and i , in the direction from the tail toward the head (i.e. decreasing module
number i). The TE is computed using the time series of actual horizontal turning
angles αi,n . Kernel estimation is used with these continuous values (see Sect. 2.2.3),
with resolution r set to one quarter of the standard deviation of the turning angles.
Also, we use the default step kernel and maximum distance norm, ignoring matched
pairs within 20 time steps and neighbouring modules to avoid spurious dynamic
correlations (as recommended by Schreiber [1]). The direction of tail toward head is
selected because each module only applies desired turning angles to the actuators in
front of it (i.e. in the direction of the head), thereby giving preferential treatment to
information travelling in this direction. Although it is possible for information to be
transferred across more than one joint per time step, we consider only consecutive
pairs since this is likely to be the dominant transfer mode. Also, as per Sect. 4.4.2,
we only consider transfer from a single previous state of the source variable (l = 1
in Eq. (4.1)), so as to consider information transferred directly at the given time step.
We use a past history length k = 30 (as for the correlation entropy calculations
in [33]). This is large enough to eliminate information storage from the calculation
(see Sect. 8.3.2), while allowing adequate sampling of the underlying distributions
(because the presence of sin and cos functions mean that the emergent turning angle
sequences are generally quasi-periodic and therefore much of the state space of
α

(k)
i,n remains unexplored). Our fitness function is then the average of these transfer

entropies over all S − 1 consecutive module pairs for the given snakebot:

Ttail→head(k) = 1

S − 1

S−1∑

i=1

Ti+1→i (k). (8.10)

The Genetic Programming (GP) techniques used for snakebot evolution are
described in [40]. The snakebots evolve within a population of 200 individuals,
with the best performers selecting using the fitness function described above. No
minimum limit is placed on how far the snakebot moves, since we are not evolving
for fast locomotion. The selection is based on a binary tournament with selection
ratio of 0.1 and reproduction ratio of 0.9. Random subtree mutation is used with a
ratio of 0.01.

http://dx.doi.org/10.1007/978-3-642-32952-4_2
http://dx.doi.org/10.1007/978-3-642-32952-4_8
http://dx.doi.org/10.1007/978-3-642-32952-4_2
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Fig. 8.6 Snakebot fitness
(average transfer entropy
Ttail→head (k = 30)) per
generation, plotted for the best
performer in each generation.
(NB: This figure was first
published in [38])

8.3.2 Results and Discussion

First, we note that snakebots exhibiting a high degree of coordinated motion (as
exemplified by the most fit individual from [33]) were found to have significantly
lower transfer entropy than individuals specifically evolved to maximise transfer
entropy (e.g. 0.007 bits versus 0.175 bits for the most fit snakebot here). Highly
coordinated snakebots exhibited very short transients before becoming coordinated,
and minimal TE in their ongoing behaviour. Coordinated motion is certainly more
strongly associated with memory than information transfer. When neighbouring mod-
ules achieve perfect coordination, they have effectively reached a periodic attractor:
their next states are completely predictable from their individual pasts, and so no
additional information from the neighbour is measured as TE . This is analogous
to the case of vanishing information transfer in the periodic background domains
of CAs (see Sect. 4.2.3). It is possible that TE might be measured to be higher for
snakebots attempting coordinated motion in a challenging environment, where infor-
mation transfer in the longer and more significant transient toward coordination may
play an important role in the dynamics.

In our evolution of snakebots for TE , the growth in the average TE Ttail→head

(k = 30) of the most fit snakebot in each generation is shown in Fig. 8.6.
We will focus on the most fit individual in the final (57th) generation as the

result of this evolution, which had an average TE of 0.175 bits between neighbouring
modules toward the head per time step. This snakebot did not display a fast, well
coordinated side-winding locomotion. Instead, it displayed a complex form of wrig-
gling behaviour, where thrashing of the tail appeared to drive new behaviour along
the body of the snake, achieving a slow movement to the side.18 The dynamics of this
behaviour are more clear when examining the time-series of the actual horizontal
turning angles αi,n , as displayed in Fig. 8.7a. Here, we see that coherent waves of
behaviour are consistently travelling along the snakebot, from the tail toward the

18 Videos of the snakebot, showing raw motion and local transfer entropy are available at
http://lizier.me/joseph/publications/08ALifeSnakebotTe or http://www.prokopenko.net/modular_
robotics.html or http://www.youtube.com/view_play_list?p=6604CF436CC0738C

http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://lizier.me/joseph/publications/08ALifeSnakebotTe
http://www.prokopenko.net/modular_robotics.html
http://www.prokopenko.net/modular_robotics.html
http://www.youtube.com/view_play_list?p=6604CF436CC0738C
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Fig. 8.7 Local apparent trans-
fer entropy highlights coherent
transfer structures or “gliders”
in the evolved snakebot. a
Raw actuator turning angles
for each of the 13 destination
modules (head at left, tail at
right) of the snakebot for 76
consecutive time steps (time
increases down the page):
greyscale represents a posi-
tive turning angle, yellow-red
represents a negative turn-
ing angle; range is −50 to
50◦. b local transfer entropy
ti+1→i (n, k = 30) into each
of the 13 information destina-
tion modules of the snakebot,
between consecutive modules
in the tail → head direc-
tion: greyscale, range 0.0 bits
(white) to 2.8 bits (black).
Note that only positive local
values are displayed here, and
very few negative values were
observed. (NB: This figure
was first published in [38])

head. Each wave involves the modules turning in alternating directions along the
snake, reaching a maximum angle then coming back to a rest position. The modules
then swap their turning angles in the next wave. Importantly, these waves are not
completely periodic, allowing scope for information transfer effects.
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Fig. 8.8 Snakebot modules coloured to indicate incoming local transfer entropy (black is 0.0 bits,
red is 2.8 bits) from the neighbouring module toward the tail, for three consecutive time steps. The
information transfer from the tail appears to communicate a straightening behaviour here. (NB:
This figure was first published in [38])

Already, we note a fairly clear correspondence to emergent travelling structures in
microtubules and gliders in CAs, however to confirm the information transfer prop-
erties, we examine the local transfer entropy profile in Fig. 8.7b. The local transfer
entropy profile here tells us much more about the snakebot dynamics than either
raw states or the average transfer entropy (as was observed for CAs in Sect. 4.2
[41]). Importantly, this is the first investigation of the local TE values for direct mea-
surement on continuous variables. As expected, we confirm that we have coherent
information structures moving along the snakebot from the tail toward the head,
which coincide in direction and approximately in time with the time-series waves
previously observed. As an example, note the images of the snakebot in Fig. 8.8
with modules coloured to indicate local TE . Also, videos with the modules of the
snake highlighted according to their local TE are available online (see footnote 18
on p. 195). We can be confident that the information transfer measured is not mis-
attributed information storage, because our use of k = 30 considers a longer past
history than the length of the time-series waves here. Note that these coherent transfer
structures were not observed in fully-coordinated or random snakebots.

There is a wide variation in the types of such information transfer structures
observed in Fig. 8.7b: some move faster than others (indicated by a flatter structure),
some are more highly localised in time (thinner structures), some contain higher local
transfer entropies (darker colouring), and some do not coherently travel the whole
way along the body of the snakebot. Importantly, none of these differences are
detectable by superficial examination of the time-series of the actual actuator
angles. Indeed, apart from their coincidence in direction and approximately in time,
there is little correspondence that is obvious to the observer between the time-series
waves and the information structure. Certainly, there is no simple method of using
the time-series waves to infer the location in time of the local information transfer
structures: these are observed to begin and end at various time points within the
time-series waves. Local TE reveals the precise space-time dynamics of the manner
in which the tail drives new behaviour in the snakebot in a way not possible by
examining the time-series alone.

These travelling coherent information structures are clearly analogous to
gliders in CAs (e.g. see Fig. 3.4e). This finding is significant because of the important
role that gliders play in CA dynamics, where they coherently transfer information

http://dx.doi.org/10.1007/978-3-642-32952-4_4
http://dx.doi.org/10.1007/978-3-642-32952-4_3
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in the collective computation of the CA. We previously noted that the coincidence
of gliders and coherent information transfer with a maximisation of apparent TE in
comparison to the complete measure (see Appendix G, in the context of Chap. 7).
Here, we have demonstrated the emergence of glider-like structures when apparent
TE is optimised, without explicitly selecting for such local coherence. At first glance,
this suggests that coherent glider-like structures are perhaps the most efficient mode
of apparent information transfer. More likely however,19 it suggests that glider-like
structures may be an evolutionary attractor for the coherent communication
of information between adjacent agents. That is, glider-like structures perhaps
require a minimum number of evolutionary steps, and/or perhaps there are many or
easy-to-find evolutionary paths between these steps. It also suggests that this local
optimisation (maximising transfer on each link via evolution) can lead to useful
structure on a global or emergent scale. Perhaps an adaptive local strategy (as opposed
to evolutionary) may lead to similar types of information structure.

The result is also significant because of the prevalence of glider-like structures
in natural systems, e.g. dipole-dipole interactions in microtubules [42], or waves of
directional change in schooling fish [43]; and in artificial evolution, e.g. the φpar

density classification rule [44, 45]. There are significant implications for these struc-
tures, which could have evolved to exploit this efficient mode of information transfer
where coherent communication or effect over some distance is beneficial.

The coherence of glider structures is of particular importance to the computation
in CAs; without coherence of information transfer, complex computation does not
appear to take place (see Chap. 7). A second requirement for the implementation of
arbitrarily complex, universal computation though must be bidirectional information
transfer. Without this feature, these glider-like structures cannot interact and mod-
ify information. In this experiment, with strong information transfer encouraged in
one direction only, although we have demonstrated the emergence of an important
building block for non-trivial computation, we have evolved only a trivial type of
computation.20 In future work, we will build on our results here to evolve bidirec-
tional information transfer for true distributed computation.

8.3.3 Conclusion

We have presented the first experiment of the use of transfer entropy as a generic
fitness function in the domain of guided self-organisation. We have demonstrated
that maximising information transfer in this manner can lead to the emergence of

19 We know from the earlier chapters that the ECAs with the largest apparent TE values are not the
ECAs exhibiting gliders, so it is unlikely that gliders are equivalent to a maximisation of TE at each
separate communications link. We do know that ECAs with gliders exhibit the largest proportion of
apparent to complete TE , so this proportion is perhaps related to communication over long distances
rather than single communication links.
20 This is effectively the reason that there are very few points of negative local TE measured in the
snakebot here; see Fig. 8.7.

http://dx.doi.org/10.1007/978-3-642-32952-4_7
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coherent information transfer structures which, as manifested by gliders, are known
to underpin distributed computation in CAs. Importantly, the presence of these coher-
ent structures could only be revealed by the local transfer entropy, in its first direct
application to continuous variables here.

In this instance, the useful generic skill of coherent transfer structures was not fully
capitalised on by the snakebot, but the important finding is that the use of information
transfer as a fitness function led to the emergence of this computational capability.
Also, our experiment implies that glider-like structures are the most efficient mode
of coherent or single-source information transfer to evolve, which is itself significant
insight into the nature of information transfer.

All agent-based systems compute; indeed it is their computation that makes them
useful to us. Here, the snake computes where to move. While information trans-
fer does not appear to be important for coordinated motion in flat environments, it
could underpin computation for tasks such as successful navigation in challenging
environments, where different parts of the body could sample many sections of the
environment in parallel, and communicate information about the environment along
the structure. Information transfer could be used to develop the required computa-
tional capability for tasks such as these in future work.

We intend to explore the use of information transfer in guided self-organisation in
other settings where bidirectional information transfer may be required for distributed
computation. We also intend to investigate the use of the other information dynamics
of computation (information storage and modification) in such design, and explore
the circumstances under which each should be used and indeed how they can be used
together.

8.4 Summary

In this chapter, we have demonstrated the local transfer entropy to provide novel
insights into biological and bio-inspired systems that the average value cannot. In
Sect. 8.1 we showed that it reveals interesting detail about the dynamics in time of the
heart and breath rate interaction in sleep apnea. In Sect. 8.2 we showed that localising
the TE in space could reveal interregional structure in brain imaging data. Also, in
Sect. 8.3 the local TE revealed the useful structure that emerged from the guided
evolution of a snake-like robot.

Importantly also, we used these local insights to present and analyse new appli-
cations of the (average) transfer entropy itself. We introduced a novel approach to
inferring effective network structure in the domain of computational neuroscience,
which provides a unique combination of directional, non-linear, model-free, col-
lective analysis that is applicable to small data sets. Finally, we presented the first
application of the TE as an intrinsic goal in guided self-organisation, demonstrating
that it can induce useful, travelling coherent information structures, akin to gliders
in CAs.
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Chapter 9
Conclusion

This thesis has presented a framework for the information dynamics of distributed
computation in complex systems. We summarise the main contributions of this work
in Sect. 9.1, and suggest directions for future exploration in Sect. 9.2.

9.1 Summary of Main Contributions

The results presented in this thesis have upheld the hypothesis in Sect. 1.1 that with
the ability to describe and locally quantify distributed computation in terms of infor-
mation storage, transfer and modification, we will be better able to understand
distributed computation in nature and its sources of complexity. In this section, we
describe our contribution to the fundamental understanding of distributed computa-
tion in complex systems.

9.1.1 Framework for the Information Dynamics of Distributed
Computation

The primary contribution of this thesis is the first complete framework to quantify the
information dynamics of distributed computation. That is, the framework quantifies
computation in terms of the component operations on information: storage, transfer
and modification. The framework has a particular focus on the dynamics of these
operations on a local scale in space and time within a system.

There are three key properties of the framework which underpin its novelty:

1. With an information-theoretic basis, the framework captures non-linear effects
and is applicable to any type of dynamic process (i.e. including both discrete
and continuous valued states);

J. T. Lizier, The Local Information Dynamics of Distributed Computation 203
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2. The approach is directly relevant to the language in which distributed compu-
tation in complex systems is normally described, via the concepts of memory,
communications and processing, since these directly map to the operations of
information storage, transfer and modification;

3. The framework focuses on the local dynamics of these operations on infor-
mation. While averaged or system-wide measures have their place in providing
summarised results, the local focus in space and time is vital for understanding
the nature of each measure and providing insights about system behaviour that
averaged measures cannot.

In the next three Sects. (9.1.2–9.1.4), we will describe the specific contributions
made regarding each individual operation on information. Many of the measures
presented in this framework are original contributions; all of the measures discussed
are examined on a local scale here for the first time.

Incorporating the measures together in a single framework allowed us to provide
insights that would not be possible with separate investigation. For example, we
demonstrated how the component operations interrelate in the computation of the next
state of a given variable. We also found that establishing the context of the past history
of the destination was at the heart of the perspective of distributed computation, and
was critical for accurate quantification of each operation on information. Also, the
use of a single framework allowed us to provide broader insights into the fundamental
nature of distributed computation, e.g. regarding cellular automata as described in
Sect. 9.1.5.

9.1.2 Measuring Information Storage

We described how information storage is quantified in terms of either total storage
(via the existing measure excess entropy) or the amount of storage currently in use
(via the new measure active information storage). We presented the first localisation
of both measures, allowing us to contrast the insights they provide on distributed
computation. We also made clear the manner in which information storage in a
distributed computation can be implemented using an agent’s environment as the
storage medium.

9.1.3 Measuring Information Transfer

We described how information transfer is quantified using the existing measure trans-
fer entropy. We introduced a number of variants to this measure in order to capture
subtly different concepts; most notably, we introduced the complete transfer entropy
to measure information transfer taking into account how the given source interacts
with other causal sources in acting on the destination. We described how to measure
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the transfer entropy on a local scale in time and space, allowing us to provide insights
on how its parameters should be set, describe the relationship between its variants,
and demonstrate its alignment with the popularly understood notion of information
transfer (see Sect. 9.1.5). We also showed how properly establishing the past history
of the destination was critical to separating information storage and transfer.

Additionally, we described the differentiation between the concepts of information
transfer and causal information flow. The distinctions revealed here are particularly
pertinent because of the large degree of confusion surrounding these concepts in the
literature. This result was only possible using our local perspective, which including
localising the existing information flow measure.

9.1.4 Measuring Information Modification

We described how information storage and transfer are combined in the operation
of information modification, and introduced the measure separable information to
quantitatively identify non-trivial information modification events on a local scale
within a system.

We also outlined how to quantify information destruction within a distributed
system, introducing a measure for information destruction. Using localisations of
both these measures, we described the distinction between the concepts of informa-
tion modification and destruction.

9.1.5 Quantitative Understanding of Information Dynamics in CAs

Our framework provided the first direct quantitative evidence for several important
long-held conjectures regarding the facilitation of computation in cellular automata
(CAs) via emergent structures. That is, we showed that blinkers implement infor-
mation storage, moving particles (gliders and domain walls) are dominant informa-
tion transfer agents, and particle collisions are information modification events. This
demonstrated that our quantitative framework aligned with the popularly-understood
concepts of memory, communication and processing.

CAs are a critical proving ground for any theory regarding the nature of distrib-
uted computation [1, 2], and these results suggest significant implications for our
fundamental understanding of distributed computation and the dynamics of com-
plex systems. The importance of our application to CAs is underlined because
many other natural and artificial systems have been observed to process infor-
mation using similar emergent coherent structures [3, 4]. We also emphasise
that these insights were only possible using the local perspective introduced for
these concepts here.

The application of the framework to CAs aligned well with other methods of
spatiotemporal filtering for complex structure (e.g. [5–9]). Obviously, filtering of
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coherent structure is not a new concept. However, our work is distinct in that
it provides several different profiles of the system corresponding to each type of
computational structure (and indeed one view for each information transfer channel
or direction). This approach allows more refined filtering, and is unique in providing
quantitative evidence regarding the computational role of these emergent structures.
Furthermore, this approach is distinct in that it: provides continuous rather than dis-
crete values (like [7] and [9]); does not follow an arbitrary spatial preference (unlike
[6] and [9]) but rather the flow of time only; is automatically obtained (unlike the
approaches manually crafted for specific CA rules in [5, 10]) and like [7] does not
require a new filter for every CA (though the probability distribution functions must
be recalculated individually). Finally, by focussing on these operations on informa-
tion it highlights subtly different parts of emergent structure to other filters (generally
highlighting less of the structure).

9.1.6 Measuring Computational Properties in Phase Transitions in
Networks

We presented the first analysis of information dynamics in order-chaos phase tran-
sitions in networks, finding that information storage and transfer were maximised
near the critical phase of two different network types. While the finite-sized systems
exhibited approximate phase transitions, we described reasons why this interesting
result might be expected to be generalised in similar1 order-chaos phase transitions.

The results were of particular interest because of the network models chosen for
study: random Boolean networks (RBNs, a model of gene regulatory networks) and
a model of cascading failures. In particular, the use of RBNs was important as they
had been a focus for conjecture that computational properties were maximised near
the critical phase (in alignment with the edge of chaos hypothesis). More generally,
we revealed several interesting ways in which underlying network topology drives
information dynamics. Indeed, several leading authors in network science suggest
that dynamics are the next frontier in this domain [11–13], so the promising results
from information dynamics here are notable in suggesting it as a generally-applicable
candidate for further investigation.

9.1.7 Methodology for Studying Coherent Information Structure

We also demonstrated that the maximisation of information storage and transfer
near order-chaos phase transitions is not a universal result that can be expected
from any type of system exhibiting ordered and chaotic variants (in particular CAs).

1 Similar phase transitions being those with transitions controlled by a single order-chaos parameter,
whether those transitions cause a discontinuous or smooth change in properties.
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Instead, we observed that coherent information structure is a defining feature of com-
plex computation and presented a methodology for studying coherent information
structure. Importantly, our approach identifies both clear and “hidden” coherent
structure in complex computation, most notably reconciling conflicting interpreta-
tions of the complexity in CA rule 22.

9.1.8 Demonstrated Application Areas for Information Dynamics

Finally, we demonstrated the utility of the framework for information dynamics in
two key application areas. Together, these showed its flexibility to different data types
and ability to provide useful insights to practical problems.

We presented a method for inferring directed interregional information structure
in multivariate data sets, e.g. time-series brain imaging data. The method is unique in
combining the features of directional, non-linear, model-free analysis, on a regional
level, capturing the results of interaction of multiple sources, and being robust to
relatively small data sets. We demonstrated the efficacy of the method by applying it
to an fMRI data set, revealing a tiered information structure that correlates well with
the cognitive task the subjects were performing.

We also reported the first use of the transfer entropy as a fitness function for
guiding self-organisation. This example demonstrated that the approach can induce
the emergence of useful coherent information structure in a system, which could
only be revealed by examining local information dynamics.

9.2 Directions for Future Work

Certainly there are ways in which the experiments reported here can be directly
expanded for deeper analysis. For example, we described in Sect. 6.3 several ways
in which the analysis of the phase transition in RBNs could be expanded, including
investigating the effects of noise. There are also several directions outlined in Sect. 7.4
in which our analysis of coherent information structure should be pursued further,
in particular in examining other measures of structure in the information state-space
and the relationship of coherent information structure to overall complexity.

In addition to revisiting these experiments though, new work is required to build
on the achievements of this thesis in both theoretical and practical directions.

Arguably the most important direction for theoretical work is to investigate the
relationship between the topology of networks and their information dynamics.
As discussed in Chap. 6, most leading authors in network science suggest that [11–
13] the next great leaps in that field will be produced from understanding time-series
dynamics and how they are coupled with network topology. We described the manner
in which the research landscape suggests that the dynamics of distributed computa-
tion has the potential to be the widely-anticipated framework of choice for the study
of time-series dynamics in networks. Two key reasons for this are: that the approach

http://dx.doi.org/10.1007/978-3-642-32952-4_6
http://dx.doi.org/10.1007/978-3-642-32952-4_7
http://dx.doi.org/10.1007/978-3-642-32952-4_6
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is generic and can be applied to any type of time-series dynamics; and that the lan-
guage of computation pervades description of the time-series dynamics of networks.
We have demonstrated important preliminary results in applying our framework to
analyse computation in networks in Chap. 6. More work is required here though,
in particular a thorough investigation of how information dynamics are imparted
from underlying network topology. Such investigations will establish for example
whether special topologies such as small-world and scale-free networks are distin-
guished from others by their computational properties, and how local topological
structures [14] relate to local computational capabilities.

Further theoretical work is also required to establish how the framework for
information dynamics relates to other approaches and fields, and to clarify the
measurement of several important concepts in distributed computation. A primary
example here is to establish the relationship with ε-machines and statistical complex-
ity from computational mechanics [7, 15–19]. Certainly the relationship between
excess entropy and statistical complexity is well-established [18, 20–22] (indeed
the excess entropy originated in computational mechanics). The perspective of dis-
tributed computation here would be novel in considering how information storage
and transfer together related to the overall statistical complexity. This would involve
focussing on the light-cone formulation of computational mechanics, which consid-
ers how the next state of an agent (and its causal descendants) depends on the causal
contributors to that agent [17]. Another interesting direction for exploration would
be to examine whether the framework for distributed computation can be usefully
altered to apply to the underlying internal causal states of the variables in a distribu-
tion computation. Similarly, just as computational mechanics is exploring measuring
information storage in quantum computation (e.g. the quantum excess entropy [23]),
our framework should be extended for application to distributed quantum compu-
tation. Also, we note work considering quantifying interaction structures [24]: i.e.
investigating kth order statistical dependencies between variables that cannot be
reduced to dependencies between k − 1 of them. New work is required to quantify
similar interaction structures in the context of distributed computation (i.e. exam-
ining how many source information sources are irreducibly interacting to produce
an outcome). This work should also establish how this is related to the distributed
operations on information (especially information modification), and whether the
concept can be quantified on a local scale in space and time.

We have demonstrated a number of promising practical results in the applications
of the framework to date demonstrated in this thesis (e.g. in Chap. 8). That being said,
there is much more scope for quantifying computation and producing both interesting
and useful insights in applying the framework in practical settings. Such appli-
cations will not only provide useful insights in the domain under consideration, but
also build momentum for further use of the approach.

A key application area will be computational neuroscience. In this domain there
is an abundance of time-series imaging data, and powerful capability for compu-
tational analysis, yet the road forward to specifically understand distributed com-
putation in the brain is unclear. As explored in Sect. 8.2, information dynamics
offers potential for ground-breaking insights in providing analysis of space-time
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information patterns, and revealing how the brain is computing. We have demon-
strated utility of the approach in this context by revealing directed information
structure supporting a cognitive task in Sect. 8.2; future work will include applying
our method to other cognitive tasks. We will also examine other data types, par-
ticularly those with shorter time scales which allow more direct conclusions about
neuronal interactions. Furthermore, we will seek to expand the application of infor-
mation dynamics here, in particular in examining information storage and modifi-
cation in addition to transfer. Similarly, we will examine the information dynamics
on a local scale in time as well as space in brain-imaging data. This could lead
to the identification of travelling coherent information structures in the cortex (as
described in [25]). The local perspective will also address questions such as “how
much information is transferred from region A to B at time t?”, specifically revealing
the information dynamics associated with particular cognitive tasks. We will explore
whether this direct approach to revealing space-time information interactions can
improve on inferences of shared information such as those in [26]. Additionally, we
will investigate the use of the framework to infer effective networks [27] on the level
of individual variables (e.g. voxels) rather than regions. Building on the use of the
transfer entropy alone (e.g. [28, 29]), this could be performed using the inference
method described in Appendix E to determine the sources contributing to a node’s
computation of its next state.

Another important application area will be in guiding self-organisation. As
described in Sects. 2.5 and 8.3, we that a promising approach to this type of
system design is the use of measures of the information dynamics of distributed
computation. This is primarily because any task we wish the system to solve involves
a distributed computation, so focussing our guidance on providing the fundamen-
tal building blocks of the computation is a direct way to allow that computation
to emerge. We reported preliminary results indicating that evolving to maximise
information transfer on local links can lead to the emergence of useful coherent
information structure on a global level. Future work will include examining the use
of information dynamics to guide other types of self-organised systems, e.g. collec-
tive motion or flocking. An interesting domain will be examining how information
dynamics can guide network topology, for example whether our understanding of
the information dynamics of cascading failures in Chap. 6 can be applied to design
power grids to avoid these events. From a theoretical perspective, this scope of our
work in guided self-organisation needs to be significantly expanded to consider infor-
mation storage and modification also, and to establish what types of properties can
usefully produced by processes of evolution or adaptation to maximise each of them.
More importantly, the approach needs to investigate how the information dynamics
can be used together to guide the emergence of universal computation.2 Intricate
tasks will require such arbitrarily-complex computation (facilitated by bidirectional

2 Indeed, whether these measures can be used to determine the capability of a distributed system
for universal computation, or capability of other levels of computational complexity [16], needs to
be established.
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information transfer, storage structures and modification events) as distinct from
computation that exhibits only one type of operation.
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Appendix A
Consideration of Alternative Method
of Localisation

An alternative method of localising mutual information-based measures was
proposed in [1]. The authors consider partial localisations, computing how much
information I (yn; X) a specific value yn gives about what value X might take. It is
required that a partial localisation I (yn; X) averages over yn to the average mutual
information I (Y ; X):

I (Y ; X) =
∑

yn

p(yn)I (yn; X). (A.1)

As well as the conventional expression that satisfies this requirement:

I1(yn; X) =
∑

xn

p(xn | yn) log2
p(xn | yn)

p(xn)
, (A.2)

the authors present an alternative partial local mutual information as the reduction
in uncertainty of X on knowing yn :

I2(yn; X) = HX − HX |yn , (A.3)

giving:

I2(yn; X) = −
∑

xn

p(xn) log2 p(xn)

+
∑

xn

p(xn | yn) log2 p(xn | yn). (A.4)

While both I1 and I2 satisfy the constraint Eq. (A.1), they do give different values
for I (yn; X). Importantly, I1 is non-negative, but I2 is unique in satisfying the key
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property of additivity of information from multiple sources1:

I ({yn, zn} ; X) = I (yn; X) + I (zn; X | yn). (A.5)

In this paper we consider full localisations, computing how much information
i(yn; xn) a value yn gives about the specific value xn that X actually takes at time
step n. Similar to requirement Eq. (A.1), the full localisations i(yn; xn) are required
to satisfy:

I (Y ; X) =
∑

yn

p(yn)
∑

xn

p(xn | yn)i(yn; xn). (A.6)

The approach to these local values used in the main body of our text (see Eq. (2.25)
in Sect. 2.2.2):

i1(yn; xn) = log2
p(xn | yn)

p(xn)
, (A.7)

is analogous to I1(yn; X) because it also satisfies:

I (yn; X) =
∑

xn

p(xn | yn)i(yn; xn), (A.8)

for I1(yn; X). Interestingly, for i1(yn; xn) we also have:

i1(yn; xn) = h(xn) − h(xn | yn), (A.9)

in analogy to I2(yn; X) in Eq. (A.3), which leads i1 to satisfy the crucial property of
additivity [1]:

i({yn, zn} ; xn) = i(yn; xn) + i(zn; xn | yn), (A.10)

unlike I1(yn; X) (with Eq. (A.5)).
It is worth considering whether the approach of [1] in proposing I2(yn; X) may

be extended to propose a valid i2(yn; xn) which satisfies Eq. (A.6) by satisfying
Eq. (A.8) for I2(yn; X). Certainly an extension of Eq. (A.4) provides:

i2(yn; xn) = − p(xn)p(yn)

p(xn, yn)
log2 p(xn) + log2 p(xn | yn), (A.11)

for this purpose. However, this expression does not satisfy the additivity property of
Eq. (A.10).

Importantly also, expressions for i(yn; xn) have an additional requirement for
correctness: they must be symmetric in xn and yn in analogy to the averaged value

1 The property of additivity is also referred to as recursion in [2], and was one of Shannon’s original
requirements for the averaged measure H [2, 3].
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I (X; Y ) because the information contained in yn about the specific value xn is the
same as the information contained in xn about the specific value of yn . This is not
applicable to partial localisations I (yn; X) because they are asymmetrically defined
in considering the known value of one variable and the unknown value of the other.

The extension of I2(yn; X) to i2(yn; xn) fails this symmetry requirement in general
(easily verified with sample values, e.g. p(xn) = 0.1, p(yn) = 0.18, p(xn | yn) =
0.5, p(yn | xn) = 0.9, p(xn, yn) = 0.09), and so is not a correct form to locally
quantify the mutual information.

As such, we are left with i1(yn; xn) for full localisations i(yn; xn) since it satisfies
both additivity and symmetry.

When selecting a measure for partial localisations, one should carefully con-
sider which properties are required. Selecting I2(yn; X) preserves additivity, while
I1(yn; X) preserves positivity and averaging over the correct full localisation
i1(yn; xn).
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Appendix B
Entropy Rate Convergence and Divergent
Excess Entropy

Grassberger studied temporal entropy rate estimates for several ECAs in [1, 2] in
order to gain insights into their excess entropies. These studies estimated temporal
entropy rates Hμ,N (k) for spatial blocks of size N as N is increased. Estimated values
of Hμ,N (k) (for N = 1 and in the limit as N → ∞) were catalogued for most ECAs
in a table of statistical properties in [3]. Using these estimates, the studies focused on
inferring the collective excess entropies rather than the single-agent (N = 1) excess
entropies. For several rules (including rule 22, studied with Monte Carlo estimates),
the temporal entropy rate estimates Hμ,N (k) (for N > 1) were concluded to follow
a power law decay to their asymptote Hμ,N :

Hμ,N (k) = Hμ,N + C/kα, (B.1)

with exponent α ≤ 1 (C is a constant). This is significant because with α ≤ 1 the
collective excess entropy (known as effective measure complexity in [1]) is divergent,
implying a highly complex process. This case has been described as “a phenomenon
which can occur in more complex environments”, as with strong long-range correla-
tions a semi-infinite sequence “could store an infinite amount of information about
its continuation” [4] (as per the predictive information form of the excess entropy
Eq. (2.19)). Rule 22 was inferred to have Hμ,N = 0 and infinite excess entropy, which
can be interpreted as a process requiring an infinite amount of memory to maintain
an aperiodicity [5]. Indeed, Grassberger states that “very long-range correlations are
necessary to prevent the distribution from collapsing to something periodic.” [2].
Alternative methods for computing two-dimensional excess entropies, which would
be applicable for computing the collective excess entropy in CAs, were presented by
Feldman and Crutchfield in [6].

In attempting to quantify local information dynamics of distributed computation
here, our focus is on information storage for single agents or cells rather than the
joint information storage across the collective. Were such power-law trends to exist
for the single-agent case, they may be more significant than for the collective case.
Infinite collective excess entropy may only imply that the collective is at least trivially
utilising all of its available memory (note that even the chaotic rule 30 exhibits
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divergence). For example, a CA (with infinite width) that simply copied cell values
to the right would have infinite collective excess entropy when started from random
initial states, yet this is clearly a trivial use of this storage. On the other hand, divergent
single-agent excess entropy would imply that all agents are individually strongly
utilising the resources of the collective in a highly complex process. One could
go on to study the entropy rate convergence for single agents (N = 1),2 however
any findings would be subject to the problems with overall or averaged measures
described earlier. We hypothesise that local measures in time as well as space will
provide more detailed insights into the computation taking place in CAs.
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Appendix C
Relation of Transfer Entropy to Massey’s
Directed Information

In this appendix, we describe the relationship between the transfer entropy and
Massey’s directed information [1]. The directed information is the sum of infor-
mation gained about each time step of the destination xn+1 from the concurrent and
all past states of the source y(n)

n+1, that was not contained in the past states of the

destination x (n−1)
n (capped over an N time step sequence):

IY→X (N ) =
N∑

n=1

IY (n) ′;X ′|X (n−1) , (C.1)

While the transfer entropy and the directed information are obviously quite similar,
there are several interesting differences between them. In particular, the directed
information looks at the sum of information gained over the time series, rather than
the average at each time step. Also, the directed information looks at all available
information from the past of the source (akin to setting l to ∞ in the transfer entropy,
see Eq. (4.1)) rather than only 1 state or limiting to consider only directly causal
sources (as we recommend for the transfer entropy in Sect. 4.4.2). We see that the
directed information approaches the question of how two series as a whole relate
to each other rather than the relationship between corresponding individual values.
Where the transfer entropy is differentiated as directed and dynamic against the
mutual information between individual source and destination values, the directed
information is differentiated as directed and dynamic against the mutual information
between the two series as a whole (as two joint variables).

Furthermore, we note that the transfer entropy uses a one step difference in time
from the source to the destination, while the directed information considers concur-
rent values of the source and destination. This is the key difference, because the time
difference means the transfer entropy has physical meaning in examining how much
of the source process was involved in determining the outcome of the destination:
with concurrent source and destination values, the measure will detect correlations
only. Where one is considering an isolated channel (in traditional information the-
ory applications such as Massey presents), it is generally understood that concurrent
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values mean the source is a causal information contributor to the destination. How-
ever, when one moves to large multivariate systems (e.g. fMRI measurements of the
cortex) with cross-causality or feedback between the variables, it is not appropriate
to represent concurrent values as being causal in both directions. One could simply
insert a time difference into the directed information, but it does not appear to be
intended to operate along these lines.

Indeed, one could adjust the directed information to account for all of the differ-
ences outlined here, but together they imply that the measures are firmly intended
to capture fundamentally different concepts. The directed information considers the
extent to which one series is determined from another; the transfer entropy considers
the extent to which values of a source are directly involved in a computation at the
destination and in this sense has important physical meaning.
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Appendix D
Back-Door Adjustment

Certain cases exist where one can construct interventional probability distributions
p(y | x̂) from observational probabilities only [1]. For example, the “back-door
adjustment” (Sect. 3.3.1 of [2])3 is an option where a set of nodes U satisfies the
“back-door criteria” relative to (X, Y ), i.e. that:

1. no node in U is a causal descendant of X , and
2. U blocks every “back-door path” between X and Y . A back-door path between X

and Y is a path of causal links connecting these nodes, where the individual links
in the path may point in either direction, so long as the path includes a causal
link directly into X . (See footnote 18 on p. 102 in Chap. 4 for the definition of
blocking a path).

In that case, the interventional conditional probability p(y | x̂) is given by:

p(y | x̂) =
∑

u

p(y | x, u)p(u). (D.1)

The back-door adjustment could be applied to p(a | ŝ) in ECAs in Fig. 4.5 with
the set of nodes satisfying the back-door criteria marked there as u; for p(b | â, ŝ) the
set u2 = {

u, xi−2,n−1
}

would be used. In general, note that the back-door adjustment
can only be applied if all relevant combinations are observed (i.e. for (y, x, u) where
p(y, x, u) is strictly positive [1]). Importantly, in determining p(a | ŝ) for example if
one does not observe all combinations {a, s} then one cannot observe all combinations
{a, s, u} either.

3 The back-door adjustment is a sub-case of the “adjustment for direct causes” [1] which is numer-
ically simpler when the set of back-door nodes U is known.
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Appendix E
Complete Transfer Entropy for Causal
Structure Inference

As demonstrated in Sect. 4.4.3, under certain conditions the complete transfer entropy
converges with the information flow. Where one cannot intervene in the system, and
does not have the required observations to use a method such as the back-door
adjustment (see Appendix D), the local complete transfer entropy could provide a
useful inference for the local information flow profile. Within one’s control is to set
the history length k to include only the past states of the destination that are causal
information contributors to its next state. The history length parameter k therefore
has an important role in moving the (complete) transfer entropy between measuring
information transfer (at large k) and approximating causal effect (at minimal k).
Outside of one’s control is whether the other conditions described in Sect. 4.4.3 are
met; errors begin to be introduced where they are not. We note that there is a wide
class of systems where the source a is causally independent of the other causal
contributors to the destination s (i.e. p(a | ŝ) ≡ p(a)), and though error-prone
a subsequent assumption of conditional independence (i.e. p(a | s) = p(a)) is a
maximum entropy assumption.

Importantly, the complete transfer entropy must condition on the correct neigh-
bourhood of causal sources. This knowledge is missing in the important application
where one is inferring causal structure in a multivariate time series. It is possible that
the transfer entropy itself could be used to iteratively build an inference of the causal
contributors for a given destination by incrementally conditioning on previously
inferred sources (reminiscent of Eq. (4.47)). This would be done by incrementally
identifying the next source which provides the most statistically significant transfer
entropy conditioned on the previously identified sources, until all (deterministic)
information in the destination is accounted for. Such a method combines the multi-
variate source selection of [1] with the complete transfer entropy and the statistical
significance tests of [2]. Testing this method is left for future work.

Finally, we note that while the complete transfer entropy can at least function in the
absence of observations spanning all possible combinations of the variables (unlike
information flow), if crucial combinations are not observed it can give quite incorrect
inferences here. For example, consider the classical causal example of a short circuit
which causes a fire in the presence of certain conditions (e.g. with inflammable
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material), while the fire can also be started in other ways (e.g. overturning a lighted
oil stove) [3]. If one never observes the short circuit in the right conditions, without
the other fire triggers, the transfer entropy is in fact unable to infer a causal link from
the short circuit to the fire.
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Appendix F
Information Destruction Only Measured
in Open Computational Systems

Crucially, the laws “of a closed physical system are one-to-one”4 ([1], p. 78), mean-
ing that in closed physical systems (or the universe as a whole) computational paths5

do not merge. In other words, there is no irreversible information destruction in
closed physical systems. We only measure the departure of information from an
observed scope in thermodynamically open computational systems, where the appar-
ently destroyed information is offloaded (along with energy dissipation) into the
external, unobserved environment. The logical computational system and external
environment are connected via the physical representation of the computational sys-
tem (e.g. bit registers): after all, “information is physical” [2]. The information is
only destroyed from the scope of the computational system.

Interestingly, this provides an important distinction between the concepts of infor-
mation modification and information destruction. Were the concepts identical then
we would have to accept that there is no information modification in closed physical
systems, i.e. that observations of information modification are artifacts of a reduced
observational scope in open systems. There is no reason that the concept of this
computational operation should be limited as such though.

Furthermore, the fact that we may not be observing the parts of the environment
where information is offloaded to should not be taken to mean that we have an
impoverished view of the computation itself. While it may ignore the full information
output from each variable, it does retain a complete view of the forward computation
from the inputs to each variable in the system.6

4 Emphasis added only in the inclusion here.
5 Computational paths in the system’s state-space or phase portrait.
6 This assumes as per footnote 12 on p. 96 that the system is causally closed; i.e. all causal input
sources are accounted for within the system—see the breakdown of the information to compute the
next state of each variable in Sect. 2.25.
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Appendix G
Circumstantial Evidence of Maximum
Coherence in Complex Computation

Certainly, the framework for the information dynamics of distributed computation
introduced in Chaps. 3–5 has proven successful in identifying computational struc-
ture in local profiles of information storage, transfer and modification. More impor-
tantly for our purposes here, we qualitatively observed that those results show the
known complex rules, 54 (Fig. 3.4) and 110 (Fig. 3.5), to exhibit the largest amount
of coherent information structure in their spatiotemporal information dynamics pro-
files. Specifically, by “coherent information structure” we mean their gliders being
coherent information transfer structures and blinkers being coherent information
storage entities, since spatiotemporally neighbouring points in these structures have
similarly high values of transfer and storage respectively.7 Rule 18 (Fig. 3.9) con-
tains a smaller amount of less coherent structure in its domain walls. Chaotic rules
22 (Fig. 3.10) and 30 (Fig. 3.11) certainly exhibit all of the elementary functions of
computation, but do not appear to contain any coherent structure to their computa-
tions. These observations align well with similar explorations of other types of local
information structure for these rules, e.g. [1–3].

In this appendix we briefly investigate two fairly obvious possibilities for quan-
tifying coherent information structure in complex systems. The first approach is to
check whether the average values of any of the existing measures of information
dynamics are suitable for this purpose. Subsequently we examine the spatiotempo-
ral auto-correlation values in profiles of the individual information dynamics. These
approaches are shown to be indicators of, or useful circumstantial evidence for the
presence of coherent information structure, but do not measure it per se.

G.1 Average Information Dynamics

In CAs, coherent structures have been observed to contain large values of information
transfer (for gliders and domain walls) and storage (for blinkers). Similarly, we have
observed maximisations of information storage and information transfer near the

7 See also footnote 3 on p. 80.
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Table G.1 Table of average information dynamics (all with k = 16, and values to 2 decimal places
except S− for rule 110), for several ECA rules

Rule H Hμ A Tj=1 Tj=−1 T c
j=1 T c

j=−1 S S+ S− p(s < 0)

110 0.99 0.18 0.81 0.07 0.11 0.07 0.11 0.98 0.98 −0.002 0.003
54 1.00 0.27 0.73 0.08 0.08 0.19 0.19 0.89 0.90 −0.01 0.03
22 0.93 0.75 0.19 0.19 0.19 0.56 0.56 0.56 0.62 −0.05 0.09
18 0.82 0.53 0.29 0.01 0.01 0.52 0.52 0.32 0.46 −0.14 0.25
30 1.00 0.99 0.01 0.73 0.01 0.98 0.26 0.75 0.82 −0.07 0.08

Units are in bits (except for the probability p(s < 0) = p(s(i, n) < 0), the proportion of space-time
points with negative local separable information). Bold font used to highlight values referred to in
the main text

critical point in RBNs. We consider here whether the reverse is true: do large values of
the information dynamics (or other relationships between them) imply the existence
of coherent structures and complex computation? This may be the case in certain
phase transitions in a single parameter (such as in large-sized RBNs). However, we
are interested in whether such implications hold in general systems, e.g. CAs where
there is no known continuous phase transition in a single parameter. The averages
for the CAs analysed locally previously were calculated and are presented here in
Table G.1.

Certainly large values for the active information storage A(k = 16) are observed
in Table G.1 for the known complex rules, and we know that this measure was max-
imised near the critical state in RBNs. Yet we have seen in Sect. 3.3.2 that the major
component of the information storage values in rules 54 and 110 come from their
background domains, and it is straightforward to conceive simple oscillating systems
maximising this measure without any interacting coherent structures. As such, large
information storage remains an indicator of, but not a measure for coherent structure.

Similarly, the apparent transfer entropy was maximised near the critical state in
RBNs. In CAs however, we observe that the chaotic rules 22 and 30 have significantly
larger values of T ( j, k = 16) than the complex rules, so here also the apparent
transfer entropy on its own does not measure coherent structure.

That being said, a striking feature of the known complex rules is that the appar-
ent transfer entropy in each channel j is a large proportion of the complete transfer
entropy T c( j, k = 16) for that channel. This is true also near the phase transition
in RBNs in Sect. 6.1.2. Apparent transfer entropy can only be high where the source
has a clear coherent influence on the destination, while complete transfer entropy
can separately be high due to interaction-based transfer. In the complex CAs, sin-
gle sources can often influence destinations without needing to interact with other
sources, supporting the movement of coherent particle structures and propagation of
coherent effects over long distances. Importantly, this occurs for multiple channels,
meaning that we have bidirectional travelling coherent structures that should interact
at some point.

A similar feature is that their separable information S(k = 16) approaches the
entropy (again indicating dominance of single-source effects), along with a very low
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http://dx.doi.org/10.1007/978-3-642-32952-4_6


7.7 Average Information Dynamics 229

Table G.2 Autocorrelation
Ctt ′ between local transfer
entropy values in ECAs
separated by 1 step in time
and space (t = t (i, j = 1,

n, k = 16), t ′ = t (i + 1,

j = 1, n + 1, k = 16))

ECA rule Ctt ′

110 0.19
54 0.45
22 0.09
18 0.44
30 0.03

proportion of non-trivial information modification events (indicated by an almost
vanishing S− and a small proportion of points p(s(i, n) < 0) with s(i, n) < 0). This
was also observed to be the case around the critical phase in RBNs in Sect. 6.1.2.
Given our knowledge of the importance of these events to computation, their short-
age in complex computation initially seems counter-intuitive. However, we suggest
that the power of these events lies in their subtlety: used sparingly (or perhaps judi-
ciously in a guided system) they can have high impact in a complex coherent com-
putation. Occurring too often they disturb the coherence of the computation which
then becomes chaotic; and their impact diminishes.

Similarly, we note that chaotic rules exhibit higher values of the complete transfer
entropy itself, in alignment with the complete transfer entropy increasing in the
chaotic regime in RBNs. This provides another indication of significant interaction
between components eroding the coherent computation in this regime.

Importantly though, these observations quantify neither coherence nor complexity
of computation, and again one can conceive of simple systems which produce similar
indicators without having coherent interacting structures. That being said, they do
provide useful heuristics or circumstantial evidence for identifying those properties.

G.2 Autocorrelations in Local Information Dynamics Profiles

Our interpretation of coherence as meaning a logical spatiotemporal relationship
between local values suggests that it may be measured via the autocorrelation within
profiles of each of their local information dynamics. Table G.2 shows for example
the autocorrelation Ctt ′ for local transfer entropy values t (i, j = 1, n, k = 16)

separated by 1 step in time and 1 step to the right in space. The separation for the
autocorrelation here is the same as the interval across which the local transfer entropy
is measured. Notice that the rules exhibiting particles (110, 54 and 18) display the
highest correlation values here, since coherent particles exhibit spatiotemporal corre-
lation in the direction of particle motion. Similar results are observed for t (i, j = −1,

n, k = 16) with autocorrelation over 1 step in time and 1 step to the left in space.
Again, this observation is a useful heuristic, and parallels the above observations

regarding the high proportions of apparent transfer entropy values. However, it still
treats the information dynamics independently which misses coherent structure in
their interaction. It is also a linear measure, which could miss more subtle types
of relationships here. Finally, it is difficult to extend beyond lattice systems (say to

http://dx.doi.org/10.1007/978-3-642-32952-4_6
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RBNs) where agents are heterogeneous and there are no generic spatial relationships
such as “1 step to the right”.
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