
On Secure Two-Party Integer Division

Morten Dahl1, Chao Ning2,3,�, and Tomas Toft1

1 Aarhus University, Denmark��,� � �,†

{mdahl,ttoft}@cs.au.dk
2 IIIS, Tsinghua University, Beijing, China

ncnfl@mail.tsinghua.edu.cn
3 School of Computer Science and Technology, Shandong University, Jinan, China

Abstract. We consider the problem of secure integer division: given two
Paillier encryptions of �-bit values n and d, determine an encryption of
�n
d
� without leaking any information about n or d. We propose two new

protocols solving this problem.
The first requires O(�) arithmetic operations on encrypted values (se-

cure addition and multiplication) in O(1) rounds. This is the most ef-
ficient constant-rounds solution to date. The second protocol requires
only O (

(log2 �)(κ+ loglog �)
)
arithmetic operations in O(log2 �) rounds,

where κ is a correctness parameter. Theoretically, this is the most effi-
cient solution to date as all previous solutions have required Ω(�) oper-
ations. Indeed, the fact that an o(�) solution is possible at all is highly
surprising.

Keywords: Secure two-party computation, Secure integer division.

1 Introduction

Secure multiparty computation (MPC) allows two or more mutually mistrust-
ing parties to evaluate a function on private data without revealing additional
information. Classic results show that any function can be computed with poly-
nomial overhead but specialised protocols are often used to improve efficiency:
integer arithmetic can for instance be simulated using ZM arithmetic. On the
other hand, this makes non-arithmetic operations difficult, including determin-
ing which of two sums is the larger (as needed in the double auction of Bogetoft

� This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation
of China Grant 61033001, 61061130540, 61073174 and 61173139.

�� The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed.

� � � The authors acknowledge support from the Center for research in the Founda-
tions of Electronic Markets (CFEM), supported by the Danish Strategic Research
Council.

† The authors acknowledge support from Confidential Benchmarking (COBE), sup-
ported by The Danish Research Council for Technology and Production.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 164–178, 2012.
c© International Financial Cryptography Association 2012

On Secure Two-Party Integer Division 165

et al. [BCD+09]), or performing an integer division of sums (essentially the com-
putation of the mean problem of Kiltz et al. [KLM05]).

In this paper we consider the problem of secure integer division – computing
�n/d� given n and d – in the two-party setting. Immediate applications include
statistics on data from companies in the same line of business, as well as data-
mining tasks, e.g., the k-means clustering protocol of Jagannathan and Wright
[JW05]. Further, since the problem of secure integer division is equivalent to that
of secure modulo reduction – n mod m = n−m · �n/m� – any such protocol may
be utilized in joint key-generation, e.g., as done by Algesheimer et al. [ACS02].

Related Work. Algesheimer et al. introduced the problem of secure integer di-
vision in the context of passively secure RSA-modulus generation with honest
majority [ACS02]; active security is achievable using standard techinques. Their
solution was based on Newton iteration and required O(�) work and communi-
cation (using the notation of this paper) in O(log �) rounds, where � is the bit-
length of the inputs. The protocols were implemented by From and Jakobsen in
the passively secure three-party setting [FJ05]. Recently, Catrina and Dragulin
have used similar ideas to construct secure fixed-point arithmetic [CD09].

Regarding constant-rounds solutions, Kiltz et al. proposed specialised proto-
cols based on Taylor series for the related, but simpler, problem of computing
the means in a two-party setting [KLM05]. Damg̊ard et al. [DFK+06] observed
that combining the ideas of [ACS02, KLM05] and bit-decomposition (BD) im-
plied constant-rounds modulo reduction and hence integer division. No details
were presented, though naturally complexity was at least that of BD, O(� log �).

The simpler problem where d is known to all parties (a single party) has been
studied by Guajardo et al. [GMS10] and Ning and Xu [NX10] (Veugen [Veu10]).

Finally, we remark that it is possible to “switch technique” mid-protocol and
use homomorphic encryption for arithmetic and (small) Yao circuits for prim-
itives such as integer division as done by Henecka et al. [HKS+10]. However,
achieving active security in this setting typically requires the use of cut-and-
choose techniques. Moreover, while it is possible to use generic non-interactive
zero-knowledge proofs to demonstrate correct protocol execution to indepen-
dent observers – e.g. clients which have supplied the inputs as in the Danish
“sugar beet auction” [BCD+09] – this will be much more expensive than using
non-generic zero-knowledge proofs as our solution allows.

Contribution. We present two two-party protocols for the problem of secure
integer division: given Paillier encryptions of �-bit values n and d, compute an
encryption of �n/d� without leaking any information. Both are based on Taylor
series. The first protocol requires O(�) encryptions to be exchanged between the
parties in a constant number of rounds; this is quite practical for small inputs,
e.g., up to 40 bits. The second protocol communicates O (

(log2 �)(κ+ loglog �)
)

encryptions in O(log2 �) rounds. Moreover, we are able to avoid bit-decomposi-
tion; indeed, as the latter complexity is sub-linear in the bit-length, it precludes
the use of bit-decomposition. That a sub-linear solution is possible at all is quite
surprising, but the construction is of theoretical rather than practical interest.

166 M. Dahl, C. Ning, and T. Toft

Though our protocols are presented in the two-party Pailier-based setting, they
are applicable in other settings providing secure arithetmic, e.g. the protocols of
Ben-Or et al. [BGW88]. However, the sub-linear solution requires the presence of
two mutually incorruptible parties, at least with current knowledge.

2 Preliminaries

After presenting Paillier encryption and secure two-party computations we in-
troduce a set of protocols used in our constructions. All sub-protocols are secure
against malicious (i.e., potentially deviating) attackers. Regarding complexity,
we shall use Rπ and Cπ to denote respectively the number of rounds used and
the number of ring elements communicated during a single run of protocol π.

Paillier Encryption. Paillier’s encryption scheme [Pai99] is an additively homo-
morphic, sematically secure public key encryption scheme based on the decisional
composite residuosity assumption of RSA-moduli. Suppressing the randomness
used for encryption, we write [m] to denote an encryption of m.

Secure Computation. Secure multi-party computation can be based on Paillier
encryption with a threshold key using the protocols of Cramer et al. [CDN01].
The threshold sharing can be constructed using the ideas of Damg̊ard and Jurik
[DJ01]. Though not explicitly stated, apart from guaranteed termination, the
protocols of [CDN01] are still valid even if all but a single party are corrupt. In
particular this allows the two-party setting. We assume the following setting:

– Alice and Bob know a public Paillier key and share the decryption key.
– Inputs and intermediary values are held in encrypted form by both parties.

Paillier encryption is additively homomorphic, hence given [m] and [m′] both
parties may compute an encryption [m+m′]. We will use infix operations in the
plaintext space and write [m+m′]← [m] + [m′] for this operation. To perform
a multiplication, the parties need to run a protocol; see [CDN01] for details.

Zero-Knowledge Proof of Boundedness. In addition to secure arithmetic in ZM

we require a zero-knowledge proof of boundedness, i.e. that Alice and Bob may
demonstrate to each other that the plaintext of an encryption [m] sent to the
other party (where the sender knows m) is smaller than some public bound B.
For Paillier encryption this can be achieved with O(1) communication (of ring
elements) using integer commitments and the fact that any non-negative integer
can be written as a sum of four squares. See [Bou00, Lip03] for further discussion.

Computing the greater-than relation. Given encryptions [m] and [m′] of �-bit
values, obtain an encryption [b] of a bit b such that b = 1 iff m > m′. A
constant-rounds protocol πc

>? for this can be based off of the comparison protocol
of Nishide and Ohta [NO07]; communication complexity is Cπc

>?
= O(�) ring

elements. We use πc
≤? as syntactic sugar for running πc

>? with inputs swapped.

On Secure Two-Party Integer Division 167

A sub-linear protocol, denoted πs
>? and πs

≤?, is possible due to Toft [Tof11]. Its
complexity is Cπs

>?
= O ((log �)(κ+ loglog �)) ring elements in Rπs

>?
= O(log �)

rounds, where κ is a correctness parameter.

Computing the Inverse of an Element. Given an encryption [x] of x ∈ Z
∗
M ,

compute an encryption
[
x−1

]
of its inverse. We use the protocol from [BB89]

which performs this task in a constant number of rounds and communicating
a constant number of field elements. We shall use this protocol in both the
constant-rounds and the sub-linear protocol and hence simply denote it by πinv.

Bit-Decompositon (BD). Decomposing an encrypted �-bit value [m] into binary

form – i.e. computing bits [m�−1] , . . . , [m0] such that m =
∑�−1

i=0 2
i · mi – is

not strictly required (details appear in the full version) but we use it here for
clarity. We denote by πc

BD the BD protocol of Reistad and Toft [RT10]; this uses
Cπc

BD
= O(�) communication.

Prefix-or of a Sequence of Bits. Given encrypted bits [x�−1] , . . . , [x0], compute

encrypted bits [y�−1] , . . . , [y0] such that yi =
∨�−1

j=i xj . An O(1)-rounds protocol
communicating Cπc

pre-∨ = O(�) elements, πc
pre-∨, is provided in [DFK+06].

Powers of a number. Given an encrypted number [x] and public ω ∈ Z, compute[
x1

]
,
[
x2

]
, . . . , [xω]. πc

pre-Π achieves this using Cπc
pre-Π

= O(ω) communication

in O(1) rounds using a prefix-product computation, [BB89, DFK+06].

3 The Intuition Behind the Constructions

In this section we take a high-level view and present the ideas behind the desired
computation. The following sections then explain how to do this securely in the
stated complexity. Assume in the following that n and d are �-bit integers, and
let k be a suitable large, public integer. Our solutions then consist of two steps:

I. Compute an encrypted approximation [ã] of a = �2k/d�
II. Compute [�n/d�] as ⌊([ã] · [n])/2k⌋

Step I is explained over the reals in Section 3.1. This is then converted to in-
teger computation in Section 3.2 and finally realised using ZM arithmetic in
Section 3.3. Note that the integer division in step II is simpler as 2k is public.

3.1 The Taylor Series

As in [KLM05] or the constant depth division circuit of Hesse et al. [HAB02],
we start with a geometric series to compute a “k-shifted” approximation of 1/d:

1

α
=

∞∑

i=0

(1 − α)i =

ω∑

i=0

(1 − α)i + εω (1)

168 M. Dahl, C. Ning, and T. Toft

where εω =
∑∞

i=ω+1(1−α)i. This is easily verified for any real 0 < α < 1. Further,
approximating 1/α by keeping only the first ω + 1 terms of the summation
introduces an additive error of εω. If 0 < 1− α ≤ 1/2 then this error is at most

εω =

∞∑

i=ω+1

(1− α)i = (1− α)
ω+1 ·

∞∑

i=0

(1− α)i ≤ 2−ω−1 · 1
α
≤ 2−ω. (2)

By picking ω sufficiently large this ensures an appropriately small error below.

3.2 Converting the Taylor Series to an Integer Computation

Multiplying 1/α by a power of two “shifts” the value; this ensures that each of
the ω + 1 terms of the finite sum of Eq. (1) are integer. The non-integer part of
the shifted value is entirely contained in εω, which will be discarded.

Let �d = �log2(d) + 1� be the bit-length of d, i.e. 2�d−1 ≤ d < 2�d ; define �n
similarly. Any ω ≥ max{�n − �d, 0} provides sufficient accuracy, however, the
public ω cannot depend on the secret �n and �d. Thus, we let ω = � ≥ �n − �d.
For α = d/2�d and k = �2 + � the following provides 1/d shifted up by k bits:

2k

d
= 2k−�d · 1

d/2�d
=

(

2k−�d(ω+1)
ω∑

i=0

(
2�d − d

)i · 2�d(ω−i)

)

+2k−�d ·εω.

We define the desired approximation of 2k/d as

ã = 2k−�d(ω+1) ·
ω∑

i=0

(
2�d − d

)i · 2�d(ω−i). (3)

Note that not only is this an integer since k ≥ �d(ω + 1) and 2�d > d, it may
also be computed as the product of 2k−�d(ω+1) and the evaluation of the integer
polynomial with coefficients 2�d(ω−i) for 0 ≤ i ≤ ω at point 2�d−d. Furthermore,
since 0 < 1− d/2�d ≤ 1/2 we have a bound on the additive error by Eq. (2):

2k−�d · εω ≤ 2k−�d−ω.

This ensures that the result computed in step II is off by at most 1; we have:

⌊n
d

⌋
=

⌊
n · (ã+ 2k−�d · εω

)

2k

⌋

=

⌊
n · ã
2k

+
n · 2k−�d · εω

2k

⌋
(4)

and see that the second summand is bound by
n · 2k−�d · εω

2k
≤ n · 2k−�d−ω

2k
<

2k

2k
= 1

since �n ≤ ω. �n·ã2k � is the desired result except that the sum of the error, n ·
2k−�d · εω, and the discarded bits of the approximation, n · ã mod 2k, may be
greater than 2k; i.e. there may be an additive error of −1 due to a lost carry.

To recap: Given integers 2k−�d(ω+1), 2�d − d and 2�d(ω−i) for 0 ≤ i ≤ �,
performing step I yields an approximation ã of 2k/d using Eq. (3). Down-shifting
this almost gives the desired result, namely q̃ ∈ {q, q − 1}, where q = �n/d�.

On Secure Two-Party Integer Division 169

3.3 Performing the Integer Computation Using ZM Arithmetic

The underlying primitives provide secure ZM arithmetic, with M = p · q being
the Paillier key whose secret key is held jointly by the parties. We assume1 that

M � 2�
2+�+κs ,

where κs is a statistical security parameter, e.g. κs = 100. This implies that no
“overflow” modulo M occurs in Eq. (3), hence it can be seen as occurring in
ZM . However, for efficiency reasons we rephrase the expression as

ã = 2k−�d(ω+1) ·
ω∑

i=0

(
2�d − d

)i · 2�d(ω−i) = 2k−�d ·
ω∑

i=0

((
2�d − d

) · 2−�d
)i

(5)

where addition and multiplication occur in ZM . Although this should no longer
be seen as an integer computation, the key observation is that it is irrelevant how
the encryption [ã] is obtained; what matters is that the plaintext is correct. Es-
sentially this altered calculation can be viewed as using the encoding of rational
values suggested in [FSW02]. Note that this simplifies the desired calculation:
we now only need the values 2k−�d , 2�d − d, and 2−�d as well as the evaluation
of a ZM -polynomial with known coefficients (all equal to 1).

4 The Overall Division Protocol

Having presented the desired ZM -expression for computing the approximation
ã ≈ 2k/d in Section 3.3 above, the goal now is to give a high-level view of
the actual protocol. We first formalise the required sub-tasks, and then present
the overall protocol based on assumed protocols for these. Instantiating these
protocols with either the constant-rounds (Section 5) or the sub-linear (Section 6)
versions of the sub-protocols we obtain our two division protocols.

4.1 Sub-tasks and Sub-protocols

In addition to the basic primitives of Section 2 we require the following sub-
protocols:

– πBL: Given an encryption [d] of an �-bit value d, determine an encryption[
2�d

]
for �d = �log2(d) + 1�

– πpoly: Given an encryption [p] of p ∈ Z
∗
M , evaluate the known polynomial

A(x) =
∑ω

i=0 x
i over ZM securely at point p, i.e. compute encryption [A(p)]

– πtrunc: Given an encryption [q̂] of an (� + k)-bit value q̂ ∈ ZM , compute an
encryption [q̃] of an approximation of �q̂/2k� s.t. q̃ = �q̂/2k�+ε for ε ∈ {0, 1}.

1 M needs to be at least a thousand bits long to ensure security of the Paillier scheme
and hence this assumption is not as bad as it may appear at first glance.

170 M. Dahl, C. Ning, and T. Toft

4.2 The High-Level View

The full division protocol is seen in Figure 1 and proceeds by the following steps:

I. Compute an encryption [ã] of the approximation
(a) Determine

[
2�d

]
and in turn compute

[
2k−�d

]
and [p] =

[
(2�d − d) · 2−�d

]

(b) Evaluate the polynomial of Eq. (5) in [p] and securely multiply by
[
2k−�d

]

II. Compute [�n/d�]
(a) Obtain encryption [q̃] of q̃ ≈ �n/d� by computing and truncating [n · ã]
(b) Eliminate errors introduced by approximations, i.e., compute [q] from [q̃]

where the elimination of errors are performed by two secure comparions.

A: skA pk = M, [n] , [d] B: skB

[
2�d

]← πBL ([d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[
2−�d

]← πinv

([
2�d

])

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[p]← (

[
2�d

]− [d]) · [2−�d
]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[ã]← 2k · [2−�d

] · πpoly([p])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[q̂]← [n] · [ã]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̃]← πtrunc([q̂] , k)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[r]← [n]− [d] · [q̃]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[ε+]← π≤? ([d] + [d] , [r] + [d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[ε−]← π>? ([d] , [r] + [d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[q]← [q̃] + [ε+]− [ε−]

Fig. 1. The full division protocol, πdiv([n] , [d]) �→ [�n/d�]

Correctness. Correctness follows almost entirely from the previous section. For
the plaintext of [q̂], the most significant bits are off by at most 1:

�q̂/2k� ∈ {�n/d�, �n/d� − 1}.

The execution of πtrunc may introduce an additional additive error, i.e. we have

q̃ ∈ {�n/d� − 1, �n/d�, �n/d�+ 1}.

Using r = n − d · q̃ ∈ [−d; 2d[we can securely determine which case we are in.
Namely, q̃ + 1 = �n/d� when d ≤ r and q̃ − 1 = �n/d� when 0 > r. In order to
deal only with positive integers we scale these tests to respectively 2d ≤ r + d
and d > r + d. Letting ε+ and ε− denote the Boolean outcome of these tests, it
follows that q = q̃ + ε+ − ε− = �n/d�.

On Secure Two-Party Integer Division 171

Privacy. The protocol reveals no information about the inputs (other than the
desired encryption of the result). This follows from the fact that no value is
ever decrypted and that we only invoke secure sub-protocols which do not leak
information. We note that πinv and πpoly require the input to be invertible –

this is indeed the case as M is the product of two odd primes, p, q ≈ √M , while
2�d , 2�d − d ≤ 2� � √M . Further, the input [n · ã] for the truncation is �+ k-bit
long as n < 2� and ã ≤ 2k/d ≤ 2k, and hence the input is of the correct size.

A formal security proof using the real/ideal paradigm requires the construc-
tion of a simulator for each party. These are straightforward to construct from
the simulators of the sub-protocols; as our protocol consists of the sequential
evaluation of sub-protocols, the overall simulator simply consists of the sequen-
tial execution of the simulators of these.

Complexity. The complexity depends on the details of the sub-protocols πBL,
πpoly, πtrunc, and π>?. Formally we have

Rπdiv
= RπBL +Rπinv +Rπpoly

+Rπtrunc + 2 · Rπ>?
+ 3 · Rπmult

= RπBL +Rπpoly
+Rπtrunc +O(Rπ>?

) +O(1)

Cπdiv
= CπBL + Cπinv + Cπpoly

+ Cπtrunc + 2 · Cπ>?
+ 3 · Cπmult

= CπBL + Cπpoly
+ Cπtrunc +O(Cπ>?

) +O(1)

(6)

such that for the constant-rounds instantiation we get Rπc
div

= Rπc
BL

+Rπc
poly

+

Rπc
trunc

+O(1) and Cπc
div

= Cπc
BL

+Cπc
poly

+Cπc
trunc

+O(�). Likewise, for the sub-
linear instantiation we get Rπs

div
= Rπs

BL
+Rπs

poly
+Rπs

trunc
+O(log �) and Cπs

div
=

Cπs
BL

+ Cπs
poly

+ Cπs
trunc

+O ((log �)(κ+ loglog �)). Finally, a slight optimisation
regarding rounds is possible by invoking π>? and π≤? in parallel.

Active Security. The protocol in Figure 1 is only passively secure. However,
obtaining active security is straightforward by executing appropriate ZK proofs.
This increases the communication complexity by a constant factor.

5 The Constant-Rounds Protocol

In this section we plug in protocols for the three sub-tasks. All protocols use
a constant number of rounds and linear communication. Combined with the
previous section this provides a constant-rounds protocol for division.

5.1 The Constant-Rounds πBL Protocol

In the full version of this paper [DNT12] we give a πc
BL protocol that, somewhat

surprising, does not rely on bit-decomposition. However, for clarity the πc
BL

protocol presented here in Figure 2 is composed of two protocols introduced
in Section 2: πc

BD and πc
pre-∨. To recap, given [d] the former returns a vector of

encrypted bits [x�−1] , . . . , [x0] for which it holds that
∑�−1

i=0 xi ·2i = d. The latter

takes such a vector of encrypted bits and returns another such that yi =
∨�−1

j=i xj .

172 M. Dahl, C. Ning, and T. Toft

A: skA pk = M, [d] B: skB

[x�−1] , . . . , [x0]← πc
BD([d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y�−1] , . . . , [y0]← πc
pre-∨([x�−1] , . . . , [x0])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[
2�d

]← 1 +
∑�−1

i=0 [yi] · 2i

Fig. 2. Constant-rounds bit-length protocol, πc
BL([d]) �→

[
2�d

]

Correctness. By the correctness of the two sub-protocols we only have to argue
the correctness of the final step. Note that the result of πc

pre-∨ is a set such that

yi = 1 if and only if d ≥ 2i. This means that 1 +
∑�−1

i=0 yi · 2i is the desired 2�d .

Privacy and Active Security. Follows immediately by the privacy and security
guarantees of the two sub-protocols.

Complexity. Since the final step of πc
BL is a local computation we simply have

that Rπc
BL

= Rπc
BD

+Rπc
pre-∨ = O(1) and Cπc

BL
= Cπc

BD
+ Cπc

pre-∨ = O(�).

5.2 The Constant-Rounds πpoly Protocol

As shown in the protocol in Figure 3, we simply evaluate polynomial A(x) =∑ω
i=0 x

i in point p =
(
2�d − d

) · 2−�d using the prefix-product protocol πc
pre-Π .

This gives encryptions of p1, p2, . . . , pω – and knowing these, all there is left to
do is to sum them together with p0 = 1 to form A(p).

A: skA pk = M, [x] B: skB

[
p1
]
, . . . , [pω]← πc

pre-Π([x] , . . . , [x])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y]← 1 +
∑ω

i=1 [pi]

Fig. 3. Constant-rounds polynomial evaluation protocol, πc
poly([x]) �→ [A(x)]

Correctness, Privacy, Complexity, and Active Security. Noting that the second
step of πc

poly is a local computation, all properties directly reflect those of the
πc
pre-Π subprotocol. Formally, Rπc

poly
= O(1) and Cπc

poly
= O(ω).

5.3 The Constant-Rounds πtrunc Protocol

Our constant-rounds protocol for truncation (shown in Figure 4) takes encryp-
tion [q̂] and public k as input and returns [q̃] such that q̃ ≈ �q/2k�. The result

On Secure Two-Party Integer Division 173

may have an additive error c ≤ 1. It is possible to eliminate this error with a com-
parison [c]← ([q̃] · 2k >? [q̂]), and computing the correct result as [q]← [q̃]− [c].
However, instead of comparing two �2-bit numbers here, we handle the error in
the main protocol with a comparison of two �-bit numbers instead.

A: skA pk = M, [q̂] , k B: skB

r ∈R Z2k+�+κ

r� ← �r/2k�
[z]← [q̂] + r

[z], [r�]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z ← decrA([z])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z� ← �z/2k�
[z�]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̃]← [z�]− [r�]

Fig. 4. Constant-rounds truncation protocol, πc
trunc([q̂] , k) �→

[�q̂/2k�+ c
]

To perform the truncation, party B first picks a random integer of a bit-length
sufficient for using it as a mask for q̂. He also stores the � + κ most significent
bits of r as r� and computes an encryption of it. Upon receiving [z], the masked
value of q̂, A and B now decrypt [z] for A to see. After learning this value z, A
can locally perform the truncation to form z�. She sends an encryption of this
value to B and both can finally compute the output locally by [z�]− [r�].

Correctness. When computing z it may happen that r causes a carry bit c from
the k least significant bits to spill over into the � + κ most significant bits. In
this case the truncation of z will maintain this carry bit, causing the result of
z� − r� to be �q̂/2k�+ 1 instead of �q̂/2k�. For efficiency we allow this error.

Privacy. The only point where information could potentially be leaked is through
A seeing z. However, since r is chosen uniformly at random and κ bit longer than
q̂, z leaks information about q̂ with probability negligible in κ.

Complexity. We see that the complexity of πc
trunc is Rπc

trunc
= 2 +Rdecr = O(1)

where Rdecr is the round complexity of a decryption, assumed to be constant.
Likewise the communication complexity is Cπc

trunc
= 3 + Cdecr = O(1).

Active Security. To obtain active security B must also send
[
r⊥ = r mod 2k

]

to A, who in turn must also send
[
z⊥ = z mod 2k

]
. B can now append a zero-

knowledge proof that z = (r� ·2k+r⊥)+ q̂ as well as proofs that both r� and r⊥
are within the correct bounds. Similary, A also appends a proof of z = z� ·2k+z⊥
and that z� and z⊥ are within bounds.

174 M. Dahl, C. Ning, and T. Toft

5.4 Combined Protocol and Analysis

By plugging the protocols introduced in this section into the πdiv protocol of
Section 4 we obtain our constant-rounds division protocol πc

div. Correctness, pri-
vacy, and active security follow from the discussions above. Using the complexity
expressions in Eq. 6 from Section 4 and the fact that ω = � we get:

Rπc
div

= Rπc
BL

+Rπc
poly

+Rπc
trunc

+O(1) = O(1)
Cπc

div
= Cπc

BL
+ Cπc

poly
+ Cπc

trunc
+O(�) = O(ω) +O(�) = O(�).

6 The Sub-linear Protocol

In this section we give the protocols needed for giving the division protocol of
Section 3 a sub-linear communication complexity. We can reuse the truncation
protocol πc

trunc from Section 5 and hence only present two new πBL and πpoly

protocols.

6.1 The Sub-linear πBL Protocol

To compute
[
2�d

]
from [d] in sub-linear communication complexity we take in-

spiration from [Tof11] and perform, in a sense, a binary search. Assuming we
have a protocol πs

≤? for performing comparison of two encrypted numbers, we
give the protocol in Figure 5. For simplicity we assume that � = 2γ for some
integer γ.

Intuitively, our construction recursively computes a pointer p into the binary
representation of d. Initially p points to the first bit position (p0 = 20). In the
first round we then ask in which half of the binary representation of d the most
significant 1 occurs and store the result in bit c1. Next we update p to point to
position �/21 if c = 1 (i.e. p1 = p0 · 2�/21) and to the same position as before
if c = 0 (i.e. p1 = p0 · 1). Iterating in this way p will eventually point to the
position of the most significant bit of d. Shifting the position by one will give us
integer 2�d .

Correctness and Privacy. Correctness follows from the above description of the
protocol, and privacy follows immediately from the sub-protocols as we only
compute on encrypted values.

Complexity. The protocol requires γ = log2 � iterations, each requiring one com-
parison and one multiplication (not counting multiplication by public values).
Hence we get round complexity Rπs

BL
= γ · (Rπs

≤?
+Rπmult

) = O(log2 �) and com-

munication complexity Cπs
BL

= γ · (Cπs
≤?

+ Cπmult
) = O (

(log2 �)(κ+ loglog �)
)
.

Active Security. Since the sub-protocol is actively secure, we only have to append
zero-knowledge proofs of correctness to every multiplication in order to make the
protocol resistant against active attackers. This increases the number of messages
communicated but only by a constant factor.

On Secure Two-Party Integer Division 175

A: skA pk = M, [d] B: skB

[p0]← 1

[c1]← πs
≤?

(
2�/2 · [p0] , [d]

)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[p1]← [p0] ·

(
[c1] · (2�/2 − 1) + 1

)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
...

[cγ]← πs
≤?

(
2�/2

γ · [pγ−1] , [d]
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[pγ]← [pγ−1] ·

(
[cγ] · (2�/2γ − 1) + 1

)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[
2�d

]← 2 · [pγ]

Fig. 5. Sub-linear bit-length protocol, πs
BL([d]) �→

[
2�d

]

6.2 The Sub-linear πpoly Protocol

Evaluating the A(x) =
∑ω

i=0 x
i polynomial at a point p can be done by a method

similar to “square and multiply”. We give the protocol in Figure 6 where for
simplicity we have assumed that ω = 2γ for some integer γ. The intuition behind

the notation is that σj =
∑2j

i=1 x
i and xj = x2j – it is not hard to see that

this is indeed the case. Specifically this gives us that σγ =
∑2γ

i=1 x
i and hence

σγ + 1 =
(∑ω

i=1 x
i
)
+ 1 =

∑ω
i=0 x

i as required.

Correctness, Privacy, and Complexity. The first two follow respectively from
the description above and from that fact that only arithmetical operations on
encryptions are performed. For complexity we have that the protocol requires
γ = log2 ω iterations with two multiplications in each. Hence the round com-
plexity is Rπs

poly
= γ · (2 ·Rπmult

) = O(logω), and likewise for the communication

complexity Cπs
poly

= γ · (2 · Cπmult
) = O(log ω).

Active Security. By appending zero-knowledge proofs of correctness to every
multiplication we make the protocol resistant against active attackers. This in-
creases the number of messages communicated but only by a constant factor.

6.3 The Sub-linear πtrunc Protocol

The truncation protocol πc
trunc of Section 5 is efficient enought to be reused for

the sub-linear protocol πs
trunc: only a single operation is performed, namely the

decryption of [z]. The remaining operations can be carried out locally.

176 M. Dahl, C. Ning, and T. Toft

A: skA pk = M, [x] B: skB

[σ0]← [x]

[x0]← [x]
[σ1]← ([x0] + 1) · [σ0]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

...
[xγ−1]← [xγ−2] · [xγ−2]

[σγ]← ([xγ−1] + 1) · [σγ−1]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[∑ω

i=0 x
i
]← [σγ] + 1

Fig. 6. Sub-linear polynomial evaluation protocol, πs
poly([x]) �→ [A(x)]

6.4 Combined Protocol and Analysis

Our sub-linear division protocol πs
div is obtained from the πdiv protocol of Sec-

tion 4. Correctness, privacy, and active security follow from the discussions in
the previous sections and in this section. As for complexity, since ω = �, we get:

Rπs
div

= Rπs
BL

+ · · ·+O(log �) = O(log2 �) +O(log ω) +O(log �) = O(log2 �)

Cπs
div

= Cπs
BL

+ · · ·+O ((log �)(κ+ loglog �)) = O (
(log2 �)(κ+ loglog �)

)
.

7 Variations and Extensions

The multiparty case. Though we have presented our protocols in the two-party
setting, the ideas are also applicable to the multiparty case, based e.g. on the
protocols of [CDN01]. Arithmetic operations on encrypted values are immediate,
hence we must only consider πBL, πtrunc, and the sublinear comparison π>?.

For the constant-rounds protocol we may use the arithmetic-based comparison
of [NO07] while πBL is essentially the bit-decomposition of [RT10]. Thus, these
immediately work in the multiparty setting. The πtrunc protocol in Figure 4 can
be jointly played by the parties. Part A is played publicly and part B is played
using the protocols of [CDN01]. First each party Pi (1 ≤ i ≤ n) supplies an

encryption of a random value
[
r(i)

]
as well as

[
r
(i)
�
]
with plaintext

⌊
r(i)/2k

⌋
.

The parties then compute and decrypt [z]← [q̂] +
∑n

i=1

[
r(i)

]
and in turn [q̂]←

⌊
z/2k

⌋ −∑n
i=1

[
r
(i)
�
]
. This is the right result plus an additive error originating

from a carry in the addition of r. Since r is a sum itself, the possible error grows
linearly in the number of parties. However, as in the main protocol (Figure 1)
this may be corrected using a number of secure comparisons.

With the additional requirement of two named and mutually incorruptible
parties, the sub-linear case follows analogously by the protocols of [Tof11]. Since

On Secure Two-Party Integer Division 177

πBL is based on comparison and arithmetic, and πtrunc is the same as the
constant-rounds case, a sub-linear multiparty protocol is possible too.

Unconditionally secure integer division. Unconditionally secure variations of our
protocols are possible, based e.g. on Shamir’s secret sharing scheme and the
protocols of Ben-Or et al. [Sha79, BGW88]. The construction is straightforward
as all sub-protocols are applicable in this setting as well.

Improving the complexity of the sub-linear protocol. Using the other comparison
protocol given in [Tof11] we may obtain slightly better bounds on our division

protocol, namely O(log �) rounds and O
(
(log �)

√
�(κ+ log �)

)
communications.

Acknowledgements. The authors would like to thank Troels Sørensen, Jesper
Buus Nielsen, and the anonymous reviewers for their comments and suggestions.

References

[ACS02] Algesheimer, J., Camenisch, J., Shoup, V.: Efficient Computation Modulo
a Shared Secret with Application to the Generation of Shared Safe-Prime
Products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432.
Springer, Heidelberg (2002)

[BB89] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In: Rudnicki, P. (ed.) Proceed-
ings of the Eighth Annual ACM Symposium on Principles of Distributed
Computing, pp. 201–209. ACM Press, New York (1989)

[BCD+09] Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen,
T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M., Toft, T.: Secure Multiparty Computation Goes Live.
In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343.
Springer, Heidelberg (2009)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
noncryptographic fault-tolerant distributed computations. In: 20th Annual
ACM Symposium on Theory of Computing, pp. 1–10. ACM Press (1988)

[Bou00] Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444.
Springer, Heidelberg (2000)

[CD09] Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multipli-
cation and reciprocal. In: International Workshop on Database and Expert
Systems Applications, pp. 107–111 (2009)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation from
Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
Secure Constant-Rounds Multi-party Computation for Equality, Compar-
ison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

178 M. Dahl, C. Ning, and T. Toft

[DJ01] Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

[DNT12] Dahl, M., Ning, C., Toft, T.: On secure two-party integer division. Technical
report (2012), http://eprint.iacr.org/2012/164

[FJ05] From, S., Jakobsen, T.: Secure multi-party computation on integers.
Master’s thesis, Aarhus University (2005), http://users-cs.au.dk/tpj/
uni/thesis/

[FSW02] Fouque, P., Stern, J., Wackers, J.: Cryptocomputing with Rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidel-
berg (2003)

[GMS10] Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo Reduction for Pail-
lier Encryptions and Application to Secure Statistical Analysis. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 375–382. Springer, Heidelberg (2010)

[HAB02] Hesse, W., Allender, E., Mix Barrington, D.A.: Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences 65(4), 695–716 (2002)

[HKS+10] Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY:
tool for automating secure two-party computations. In: CCS 2010: Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, pp. 451–462. ACM, New York (2010)

[JW05] Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In: Grossman, R., Bayardo,
R.J., Bennett, K.P. (eds.) KDD, pp. 593–599. ACM (2005)

[KLM05] Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean
and Related Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp.
283–302. Springer, Heidelberg (2005)

[Lip03] Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge
Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp.
398–415. Springer, Heidelberg (2003)

[NO07] Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and
Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg
(2007)

[NX10] Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without
Bit-Decomposition and a Generalization to Bit-Decomposition. In: Abe, M.
(ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidel-
berg (2010)

[Pai99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[RT10] Reistad, T., Toft, T.: Linear, Constant-Rounds Bit-Decomposition. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer,
Heidelberg (2010)

[Sha79] Shamir, A.: How to share a secret. Communications of the ACM 22(11),
612–613 (1979)

[Tof11] Toft, T.: Sub-linear, Secure Comparison with Two Non-colluding Parties.
In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011)

[Veu10] Veugen, T.: Encrypted integer division. In: IEEE Workshop on Information
Forensics and Security (WIFS 2010). IEEE, Seattle (2010)

http://eprint.iacr.org/2012/164
http://users-cs.au.dk/tpj/uni/thesis/
http://users-cs.au.dk/tpj/uni/thesis/

	On Secure Two-Party Integer Division
	Introduction
	Preliminaries
	The Intuition Behind the Constructions
	The Taylor Series
	Converting the Taylor Series to an Integer Computation
	Performing the Integer Computation Using ZM Arithmetic

	The Overall Division Protocol
	Sub-tasks and Sub-protocols
	The High-Level View

	The Constant-Rounds Protocol
	The Constant-Rounds BL Protocol
	The Constant-Rounds poly Protocol
	The Constant-Rounds trunc Protocol
	Combined Protocol and Analysis

	The Sub-linear Protocol
	The Sub-linear BL Protocol
	The Sub-linear poly Protocol
	The Sub-linear trunc Protocol
	Combined Protocol and Analysis

	Variations and Extensions
	References

