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Preface

This volume contains the proceedings of the 16th International Conference on
Financial Cryptography and Data Security (FC), held at the Divi Flamingo
Beach Resort, Bonaire, February 27-March 1, 2012.

FC is a well-established international forum for research, advanced develop-
ment, education, exploration, and debate regarding information assurance in the
context of finance and commerce. The conference covers all aspects of securing
transactions and systems.

This year we assembled a diverse program featuring 29 paper and a panel
on “Laws Against Adopting PETs (Privacy Enhancing Technologies).” The con-
ference was opened by Scott M. Zoldi, Vice President for Analytic Science at
FICO, with a keynote address on “Analytic Techniques for Combating Financial
Fraud.”

The program was put together through a standard peer-review process by
a technical Program Committee selected by the Program Chair. This year we
received 88 submissions from authors and institutions representing 26 countries.
All submissions received at least three reviews from the 32 members of the Pro-
gram Committee or from the 31 outside experts. A further online discussion
phase that lasted more than 2 weeks led to the selection of 29 papers (represent-
ing an overall acceptance rate of 33%).

This conference was made possible through the dedicated work of our General
Chair, Rafael Hirschfeld, from Unipay Technologies, The Netherlands. Ray also
acted as our (tireless) Local Arrangements Chair. The Program Chair would like
to thank especially the Program Committee members and external reviewers for
contributing their time and expertise to the selection of papers for the program
and for providing feedback to improve all submissions. Finally, the members of
the International Financial Cryptography Association (IFCA) board should be
acknowledged for keeping the FC conference going through the years. This year’s
conference was made more affordable thanks to the generosity of our sponsors.

March 2012 Angelos D. Keromytis
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Social Authentication: Harder Than It Looks

Hyoungshick Kim, John Tang, and Ross Anderson

Computer Laboratory,
University of Cambridge, UK

{hk331,jkt27,rja14}@cam.ac.uk

Abstract. A number of web service firms have started to authenticate
users via their social knowledge, such as whether they can identify friends
from photos. We investigate attacks on such schemes. First, attackers of-
ten know a lot about their targets; most people seek to keep sensitive
information private from others in their social circle. Against close ene-
mies, social authentication is much less effective. We formally quantify
the potential risk of these threats. Second, when photos are used, there is
a growing vulnerability to face-recognition algorithms, which are improv-
ing all the time. Network analysis can identify hard challenge questions,
or tell a social network operator which users could safely use social au-
thentication; but it could make a big difference if photos weren’t shared
with friends of friends by default. This poses a dilemma for operators:
will they tighten their privacy default settings, or will the improvement
in security cost too much revenue?

1 Introduction

Facebook1 recently launched a new user authentication method called “social
authentication” which tests the user’s personal social knowledge [15]. This idea
is neither unique nor novel [18] but Facebook’s implementation is its first large-
scale deployment. A user is presented with a series of photos of their friends and
asked to select their name of a highlighted face from a multiple-choice list (see
Figure 1). The current system is used to authenticate user login attempts from
abroad.

Facebook has invited security experts to find flaws in the current system before
a wider roll-out. If it were deployed for regular authorization and login systems
and attacks were to be found subsequently, this could have wide repercussions
for the many online merchants and websites which use Facebook to identify their
customers, using the Facebook Connect OAuth 2.0 API2. We therefore set out to
find the best attacks we could on social authentication, and this paper presents
our results.

Social authentication is based on the intuition that the user can recognize
her friends while a stranger cannot. At first glance, this seems rather promising.
However, we argue here that it is not easy to achieve both security and usability:

1 http://www.facebook.com/
2 http://developers.facebook.com/docs/authentication

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 1–15, 2012.
c© International Financial Cryptography Association 2012
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http://developers.facebook.com/docs/authentication
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Fig. 1. Social authentication on Facebook. Facebook typically asks the user to name
people in three photos.

(1) the user’s personal social knowledge is generally shared with people in her
social circle; (2) photo-based social authentication methods are increasingly vul-
nerable to automatic attacks as face recognition and social tagging technologies
develop; and (3) we face the same problems as in previous “personal knowledge
questions”.

In the rest of this article, we will analyse the risk of guessing attacks, then pro-
pose several schemes to mitigate them. In community-based challenge selection
we use social topology; if a user’s friends divide into several disjoint communi-
ties, we can select challenge sets that should not be known to any individual
friend. We can also reduce the risk of impersonation attacks leveraging the mu-
tual friends between the target user and the adversary; we demonstrate this
empirically on realistic data.

2 Why Is It Difficult to Provide Secure Social
Authentication?

We analyse three security issues in the photo-based social authentication used
in Facebook.

2.1 Friend Information Is Not Private Enough

Social authentication may be effective against pure strangers. However, the peo-
ple against whom we frequently require privacy protection are precisely those in
our own social circle. For example, if a married man is having an affair, some ran-
dom person in another country is not likely to be interested; the people who are
interested are his friends and his wife’s. In short, users may share a lot of their
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friends with their adversaries. This is nothing new; 2,400 years ago, Sun-Tzu
said ‘Keep your friends close, and your enemies closer’. So a proper assessment
of the protective power of social authentication in real social networks must be
made using real data.

Formally, we view social connections between users in Facebook as an undi-
rected graph G = (U,E), where the set of nodes U represents the users and
the set of edges E represents “friend” relationships. For any user u ∈ U , we use
fu to denote the set of u’s friends. If each challenge image is selected by the
method M, we define the advantage of an adversary a who tries to impersonate
the target user u as:

AdvM,a(u, k, ρ) ≥
min{k,|fu|}∏

i=1

Pr
[
ci ∈ f (i)

a : ci
M←−− f (i)

u

]
· ρ (1)

where f
(i)
x = fx−{c1, · · · , ci−1} and k is the number of challenges (such that all

k challenges need to be answered correctly) and ρ is the adversary a’s average
success rate to recognize a person in a challenge image ci when ci ∈ fa. It
seems reasonable to introduce ρ less than 1 since it may sometimes be difficult
to recognize friends if tricky images are selected. For simplification, however, we
use ρ as a system parameter.

For any u, k and ρ, we define the impersonation attack advantage of M via

AdvM(u, k, ρ) ≥ max
a∈Au

{AdvM,a(u, k, ρ)} (2)

where the maximum is over all potential adversaries a ∈ Au and Au is the set
of users who share mutual friends with u.

In other words, at least one potential adversary a can impersonate the user u
with probability at least AdvM(u, k, ρ) when k challenge images are provided by
the selection method M. If we assume that k challenge images of different friends
are randomly selected, the advantage of the impersonation attack in Equation
(2) can be computed as follows:

AdvR(u, k, ρ) ≥ max
a∈Au

⎧⎨⎩
min{k,|fu|}∏

i=1

|fua| − (i− 1)

|fu| − (i− 1)
· ρ

⎫⎬⎭ (3)

where fua is the intersection of fu and {fa ∪ a} and R denotes the random
selection method.

For example, in Figure 2, since |fu| = 5 and |fua| = 2, we get the probability
that a chooses the answer correctly for a challenge image about u is at least
(2/5) · ρ when k = 1. The probability decreases to (1/10) · ρ when k = 2.

One might think that authentication might be made arbitrarily secure since
increasing k will lead to an exponential decrease in the adversary success prob-
ability. We decided, however, to use real datasets to explore what value of k
might give a good balance between usability and security. With an ideal ρ value
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Fig. 2. An example graph with u and a. Nodes represent users and links represent
friend relationships. The nodes u and a have five (fu, grey) and three (fa, square)
friends, respectively. They commonly share two friends (fua, grey-square).

(ρ = 0.99), we compute the AdvR(u, k, ρ) value for each user u by varying k
from 1 to 5 on the real Facebook network crawled from both university and
regional sub-networks. These sub-networks are summarised in Table 1.

Table 1. Summary of datasets used. 〈d〉 and ncc represent the “average number of
friends” and the “number of connected components”, respectively. The sub-networks
of universities are highly connected compared to those of regions.

Network Type |U | |E| 〈d〉 ncc

Columbia University 15,441 620,075 80.32 16

Harvard University 18,273 1,061,722 116.21 22

Stanford University 15,043 944,846 125.62 18

Yale University 10,456 634,529 121.37 4

Monterey Bay Region 26,701 251,249 18.82 1

Russia Region 116,987 429,589 7.34 3

Santa Barbara (SB) Region 43,539 632,158 29.04 1

We display the histograms to show the distributions of the AdvR(u, k, ρ)
values for all the users in each sub-network. The experimental results are shown
in Figure 3.

In order to identify the high-advantage attackers, we calculate the Pearson
correlation coefficients between AdvR(u, k, ρ) and some representative network
centrality that are widely used for measuring the relative importance of nodes
in network: degree (Deg), closeness (Clo), betweenness (Bet) and clustering
coefficient (CC) centrality (see ‘Appendix: Network centrality’). The scatter
plots in Figure 4 showing the correlation between the adversary’s advantage and
network centrality visually when ρ = 0.99 and k = 3. For degree, closeness and
betweenness centrality, we can see a negative correlation between the adversary’s
advantage and nodes’ centrality values, although this trend appears to be rather
weak for betweenness. In particular, the correlation coefficients for the university
datasets are much higher than those for the region datasets. For example, the
correlation coefficients between the adversary’s advantage and closeness central-
ity of -0.485 and -0.584 are obtained for each scatter plot graph of the university
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k = 1

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

k = 2

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

k = 3

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

k = 4

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

k = 5

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 3. The histograms of AdvR(u, k, ρ) when ρ = 0.99 for the users in the seven
sub-networks of Facebook in Table 1. The black dotted lines represent the mean of
AdvR(u, k, ρ) values over the all users in a sub-network.

sub-networks, respectively, while those ranged from -0.00439 to -0.0425 for the
region sub-networks. These results indicate that social authentication should not
be offered to people with low centrality values.

Another key observation is the correlation between the adversary’s advan-
tages and nodes’ clustering coefficients. We can see there is a clear correlation
(ranged from 0.307 to 0.633) between them although the results are somewhat
inconsistent in the cases of ‘Monterey Bay’ and ‘Santa Barbara’. That is, users
with high clustering coefficients will become more vulnerable than those with low
clustering coefficients. It is natural; the clustering coefficient quantifies how well
a node’s friends are connected to each other — we should conclude that social
authentication is not recommended for users with high clustering coefficients.

2.2 Automatic Face Recognition

Social authentication is an extension of image-recognition CAPTCHAs. So we
should consider its vulnerability to machine learning attacks; Golle [9] showed
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Deg

Clo

Bet

CC

Fig. 4. Scatter plot graphs showing the correlation between the adversary’s advantage
(X-axis) and network centrality (Y -axis) over nodes when ρ = 0.99 and k = 3. We also
calculate the Pearson correlation coefficient for each scatter plot. These graphs indicate
that there exists a negative correlation between the adversary’s advantage and network
centrality while there exists a positive correlation between the adversary’s advantage
and clustering coefficient.

that Microsoft’s image-recognition CAPTCHA (Asirra) can be broken using ma-
chine learning by an adversary who can collect and label a reasonable sample
set. So automatic image recognition will be a significant threat to photo-based
social authentication. Although face recognition is not a completely solved prob-
lem, face recognition algorithms do well under certain conditions. For example,
current algorithms are about as good as human judgements about facial iden-
tity for “mug shot” images with frontal pose, no facial expression, and fixed
illumination [8].

Recent evaluation of face recognition techniques with the real photo images
in Facebook [4] showed that the best performing algorithms can achieve about
65% accuracy using 60,000 facial images of 500 users. This shows that the gap
between the legitimate user and a mechanised attack may not be as large as one
might think.

As with CAPTCHAs, if adversaries use ever-better face recognition programs,
the designers could use various tricks to make image recognition – e.g. by noise
or distortion – but such images are also hard for legitimate users to identify. The
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usability costs could be nontrivial. For example, if we reduce ρ to 0.9, then even
for k = 3 we get an unacceptable user success rate of (0.9)

3 ≈ 0.73.
To make matters worse, face recognition attacks could be easily extended to

large-scale automated attacks by combining the photo collection and recognition
processes. As Facebook provides APIs to get images with Facebook ID easily
from photo albums, an adversarymight automatically collect a lot of high-quality
images from the target’s friends since many casual users expose their photos in
public [2,13]. Although some users do have privacy concerns about sharing their
photos, many casual users often struggle with privacy management [14]. Social
networks make it difficult for users to manage privacy; it is in their commercial
interests for most users to stick with the (rather open) default settings. Therefore
an adversary attempting to circumvent social authentication could simply login
to Facebook with her own account, access the photos of the victim’s friends via
the openly available public search listings [6,11]. Acquisti et al. [1] demonstrated
the technical feasibility of this automatic attack. Using a database of images
taken from Facebook profiles, their face recognition software correctly identified
about one third of the subjects in their experiment.

2.3 Statistical Guessing Attacks

Finally, we revisit statistical guessing attacks which have been studied in the
context of personal knowledge questions [10,7]. In particular, Bonneau et al. [7]
showed that many personal knowledge questions related to names are highly
vulnerable to trawling attacks. The same issues arise in social authentication
when the names of a user’s friends are sought. The probability distribution of
names is not uniform but follows Zipf’s law, and the target’s language and culture
can give broad hints. Even a subject’s racial appearance can increase the guessing
probability. Since there is a significant correlation between name and race (or
gender), the subject’s appearance may help an attacker guess his or her name.

3 Toward More Secure Social Authentication

Having identified security problems of photo-based social authentication in Sec-
tion 2, we now consider what can be done to improve matters.

3.1 Community-Based Friend Selection

In Section 2.1, we observe that there exists a potential adversary a who can
impersonate the target user u with a high probability if the number of challenges
k is small. This is because a shares many mutual friends with the user. In this
case, random selection of challenge images may be ineffective.

We propose instead “community-based challenge selection”; our intuition is
that a user’s friends often fall into several social groups (e.g. family, high school
friends, college classmates, and work colleagues) with few, if any, common mem-
bers. So if we select challenges from different groups, this may cut the attack



8 H. Kim, J. Tang, and R. Anderson

success probability significantly. We describe this process in detail. For a user u,
the k challenges are selected as follows:

1. Extract the subgraph H induced on the user u’s friends’ nodes fu from the
social graph G.

2. Find the set of community structures S = {η1, · · · ηl} in H where ηi repre-
sents the ith community structure in H and l = |S|.

3. For ith challenge generation for 1 ≤ i ≤ k, choose randomly c and remove it
from η(i MOD l) where ηl = η0. After removing c from η(i MOD l), if η(i MOD l) is
empty, remove it from S and decrease the indices of the following community
structures {ηm : (i MOD l) < m ≤ l} and the total number of community
structures l by 1.

For example, we extract the subgraph H induced on fu in Figure 5(a) and
then find two community structures of H by applying a community detection
algorithm. Although a specific heuristic method [5] is used here for community
detection, we expect that any community detection algorithm can be used for
this purpose. In this example, unlike the results of the random selection in Sec-
tion 2.1, v cannot impersonate u since we choose a challenge from the community
structure η1 in Figure 5(b) when k = 1.

(a) Subgraph H (b) Communities of H

Fig. 5. An example of how the community structures are detected. (a) The subgraphH
is induced on the user u’s friends’ nodes fu (fu, grey). (b) Two community structures
S = {η1, η2} are detected in H .

Formally, if we select k challenge images using community-based challenge
selection, the advantage of the impersonation attack A, AdvA(u, k, ρ), can be
computed as follows:

AdvC(u, k, ρ) ≥ max
v∈U
u�=v

⎧⎨⎩
min{k,|fu|}∏

i=1

|η(i MOD l)(v)|
|η(i MOD l)|

· ρ

⎫⎬⎭ (4)

where ηi(v) is the intersection of ηi and {fv ∪ v} and C denotes the community-
based challenge selection method.

To validate the effectiveness of this selectionmethod, we compute the mean val-
ues of AdvC(u, k, ρ) on the preceding datasets in Section 2.1 and compare those
of AdvR(u, k, ρ) with random selection. The experimental results (for ρ = 0.99)
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Fig. 6. Comparison of the mean values of adversary advantage between community-
based challenge selection (red solid line) and the random challenge selection (black
dashed line)

are shown in Figure 6 which shows almost the same slope patterns for all the
datasets. Community-based selection (C, red solid line) performed significantly
better than random selection (R, black dashed line) from k = 2 to 5. But if we
use a single challenge image (i.e. k = 1), it does worse! Since the first challenge
is selected from the first community ηi only, the attack success probability of
anyone in that community ηi is increased. The gap between community-based
and random challenge selection is largest for k = 3 or 4, and the mean values
of the adversary’s advantage tend to converge slowly. In fact, community-based
challenge selection is comparable at k = 3 to random selection at k = 10.

We hypothesised that setting k to the “number of community structures”
would enable community-based selection to get a good tradeoff between security
and usability. In order to test this, we analysed the average number of community
structures for each user’s friends. The results are shown in Table 2 where friends
can be divided into about three or four communities on average except in the
Santa Barbara sub-network.

We verified this hypothesis by calculating the average number of community
structures for each user’s friends and found that indeed friends can be divided
into about three or four communities on average; the exception being Santa
Barbara sub-network which had 5 communities.

We now discuss how adversary advantage may change with the friend recogni-
tion success rate ρ (see Figure 7). To demonstrate this we fix k = 3. As ρ decreases
from 0.99 to 0.84, the advantage values of both selection methods also slightly de-
crease. However, the change of ρ does not significantly affect the advantage values
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Fig. 7. The adversary advantage between the community-based challenge selection (red
solid line) and the random challenge selection (black dashed line) by varying ρ from
0.99 to 0.84 when k = 3

Table 2. The average number of communities for each user’s friends

Columbia Harvard Stanford Yale Monterey Russia Santa

3.779 3.371 3.227 2.812 3.690 3.099 4.980

compared to the change of k or the challenge selection methods. These values were
derived from user success rates for existing image-based CAPTCHAs [12].

In all our experiments, the average number of communities is always a small
number (less than 5). Since we use campus or region networks, the number of
communities might be small compared to real friendship patterns in Facebook,
which could include structures of high school friends, college classmates, work
colleges and so on. Recently, some social networking services such as Google+3

and Facebook have started to encourage users to divide their friends into explicit
community groups; community-based challenge selection should be even more
useful in such situations.

3.2 Exclusion of Well-Known or Easily-Recognizable Friends

In order to mitigate the threat via automatic face recognition program discussed
in Section 2.2, some might suggest that we should educate users about these
attacks, but that has been found in many applications to not work very well;
“blame and train” is not the way to fix usability problems.

3 https://plus.google.com/

https://plus.google.com/
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One approach may be to exclude users who make all their photos visible
to everyone or “friends of friends” – an option in Facebook. This will prevent
collection of the training data needed for automatic face recognition tools. There
may be technical options too. As face-recognition software tools improve, they
can be incorporated into the challenge generation system – by rejecting candidate
challenge images whose subjects they can identify.

However, we should be cautious in using a long blacklist of photos; such a
policy may shrink the space of challenge photos to the point that an adversary
can just guess the answer to a given challenge.

3.3 Weighted Random Sampling

In order to reduce the risk of the statistical guessing attacks discussed in Sec-
tion 2.3, and which leverage the probability distribution of people’s names, we
suggest using weighted random sampling instead of uniform random sampling.

Under uniform sampling, a name n is selected with the probability f(n) where
f is the probability density function for a set of names of people P . Alternatively,
in weighted random sampling, n is selected with the following probability:

w(n) =
f(n)−1∑
p∈P f(p)−1

(5)

Intuitively, in this case, friends with infrequent names will be selected with higher
probability compared to friends with popular names when a challenge image is
chosen. In a global view, the estimated probability density function of the users’
names in challenge imagesmight tend to be the uniform distribution if the number
of users with popular names is much greater than that with unpopular name. So
selecting popular names as challenge answers won’t help the attacker any.

However, if an adversary can crawl all names of a victim’s friends successfully,
weighted random sampling is worse than uniform random sample unlike our
expectation; an attacker can choose a name from the crawled names in proportion
to the above probability since the challenge image is chosen with the probability.
Thus in practice a more complicated weighted random sampling technique should
be considered based on real statistics of privacy settings. As part of the future
work, we plan to design more advanced weighted sampling methods.

4 Related Work

Our work focuses on the security and usability of photo-based social authen-
tication methods. Social authentication was introduced under the belief that
adversaries halfway across the world might know a user’s password, but they
don’t know who the user’s friends are.

Yardi et al. [18] proposed a photo-based authentication frameworkanddiscussed
some security issues including Denial of Service (DoS) attacks: an adversary can
spam the system with photos with wrong tagging information so legitimate users
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cannot pass the authentication test. They also mentioned attacks by a network
outlier belonging to the same group as the target.We extended this attack formally
and experimentally measured the level of threat.

In social networks, photo privacy may become even more problematic as social
networking websites such as Facebook have become the primary method of shar-
ing photos between people [17]. Ahern et al. [3] examined users’ decisions when
posting photos to Flickr4 with mobile camera phones, finding that many users
were concerned with protecting their personal images and keeping them out of
public view. Most social networking websites already provide mechanisms for
fine-grained photo sharing control, but user surveys [2,13] have shown that over
80% of social network users do not change their privacy settings at all from the
default. This implies that photo-based social authentication is very vulnerable
in practice to face recognition tools.

5 Conclusion

Facebook recently launched an interesting authentication method [15], and is
currently waiting for feedback from the security community before pushing it
out to a wider range of authentication and login services including, potentially,
third-party merchants who utilise the Facebook Connect API.

This article provides that feedback. We found that the current social au-
thentication scheme is susceptible to impersonation both by insiders and by
face-recognition tools, and a naive approach to selecting friends isn’t effective
against either attack. It is hard to identify the social knowledge that a user holds
privately since social knowledge is inherently shared with others. A critical ob-
servation is that many likely attackers are ‘insiders’ in that the people who most
want to intrude on your privacy are likely to be in your circle of friends.

We set out to formally quantify the difficulty of guessing the social information
of your friends (and your friends’ friends) through the analysis of real social
network structures and analysed how this can interact with technical attacks
such as automatic face recognition and statistical guessing.

We proposed several ways to mitigate the threats we found. Community-based
challenge selection can significantly reduce the insider threat; when a user’s
friends are divided into well-separated communities, we can select one or more
recognition subjects from each. We can also avoid subjects with common names
or who are known in multiple communities. But perhaps the most powerful way
to improve social authentication will be to exclude subjects who make their
photos visible to friends of friends. At present, that’s most users, as 80% of
users never change the privacy defaults – presumably there was some marketing
advantage to Facebook in having relaxed privacy defaults, in that making the
photos of friends’ friends visible helped draw in new users, increasing the network
effects; so a change to a default of sharing photos only with friends could give a
real security improvement.

4 http://www.flickr.com/

http://www.flickr.com/
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In analysing the adversary’s advantage, we assumed some fixed constants (e.g.
the adversary’s average success rate to recognize a person in a challenge image)
rather than actual testing results through user studies on Facebook. So our
analysis is still rather limited. To verify this point in a practical environment,
we plan to conduct a user study to evaluate the effectiveness of the attack and
mitigation techniques.

Acknowledgements. We thank Ben Y. Zhao and Joseph Bonneau for their
Facebook datasets.

Appendix: Network Centrality

Formally, we use the standard definition [16] of the degree, closeness and be-
tweenness centrality values of a node u.

Degree centrality simply measures the number of direct connections to
other nodes. This is calculated for a node u as the ratio of the number of edges
of node u to the total number of all other nodes in the network. Degree centrality
can be simply computed but does not take into account the topological positions
of nodes and the weights of edges.

Closeness centrality expands the definition of degree centrality by measur-
ing how close a node is to all the other nodes. That is, this metric can be used to
quantify in practical terms how quickly a node can communicate with all other
nodes in a network. This is calculated for a node u as the average shortest path
length to all other nodes in the network:

Clo(u) =
1

|V | − 1

∑
v �=u∈V

dist(u, v) (6)

where dist(u, v) is the length of the shortest path from node u to node v. In
an undirected graph, dist(u, v) is the number of hops in the shortest path from
node u to node v.

Betweenness centrality measures the paths that pass through a node and
can be considered as the proportional flow of data through each node. Nodes that
are often on the shortest-path between other nodes are deemed highly central
because they control the flow of information in the network. This centrality is
calculated for a node u as the proportional number of shortest paths between
all node pairs in the network that pass through u:

Bet(u) =
1

(|V | − 1) · (|V | − 2)

∑
s�=u,t�=u∈V

σs,t(u)

σs,t
(7)

where σs,t is the total number of shortest paths from source node s to destina-
tion node t, and σs,t(u) is the number of shortest paths from source node s to
destination node t which actually pass through node u. For normalization, it is
divided by the number of all pairs of s and t.
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Fig. 8. The characteristics of network centrality. In this network, Nd has higher degree
centrality than Nc since Nd has five neighbours while Nc has higher closeness centrality
than Nd. We note that Nd is located at the periphery of the network compared to Nc.
Interestingly, Nb has the highest betweenness centrality. We can see that Nb plays a
‘bridge’ role for the rightmost nodes.

In Figure 8, for example, the nodes Nd, Nc, and Nb illustrate the character-
istics of these network centrality metrics. These nodes have the highest degree,
closeness and betweenness centrality, respectively.

Clustering coefficients measures the probability of neighbours of a node
to be neighbours to each other as well. This is calculated for a node u as the
fraction of permitted edges between the neighbours of u to the number of edges
that could possibly exist between these neighbours:

CC(u) =
2 ·Δ

(κu)(κu − 1)
(8)

where Δ is the number of the edges between the neighbours of node u and κu is
the number of the neighbours of node u (i.e. the degree of node u).
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Abstract. MVP is a framework allowing websites to use diverse
knowledge-based authentication schemes. One application is its use in
conducting ecologically valid user studies of authentication under the
same experimental conditions. We introduce MVP and its key charac-
teristics, discuss several authentication schemes, and offer lessons learned
from running 9 hybrid (lab/online) and 3 MTurk user studies over the
last year.
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1 Introduction

Despite the ubiquity of password systems, knowledge-based authentication re-
mains an important and active research area. Many current systems have low
security, and even then users often devise insecure coping strategies in order to
compensate for memorability and usability problems. Alternatives such as bio-
metrics or tokens raise other issues such as privacy and loss. Various graphical
password schemes have received considerable attention in response. A systematic
review of the literature on graphical passwords [8] shows no consistency in the
usability and security evaluation of different schemes. The situation is similar
for text passwords, making fair comparison between schemes nearly impossible.

We present MVP (Multiple Versatile Passwords), a framework for using di-
verse knowledge-based authentication schemes on websites. In particular, it al-
lows user studies of authentication in the same context. These can be deployed in
the field where ecological validity is improved by the use of real websites with real
content, making authentication a secondary task. MVP is not a single-sign-on
system; it serves as a platform for different types of authentication and therefore
facilitates research in this area. Another testing framework for authentication
was described briefly in a workshop paper by Beautement and Sasse [7]. It asked
users to log in to claim credits as part of an online bartering game.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 16–24, 2012.
c© International Financial Cryptography Association 2012
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Fig. 1. Diagram of the MVP framework

We have implemented several authentication schemes within MVP and so
far have conducted 12 user studies with the system. We have also used it as
a classroom platform for students to gain experience in running user studies.
Amongst the schemes, we offer an implementation of Draw-A-Secret (DAS) [14],
a recall-based graphical password scheme that to our knowledge has only been
tested as a paper prototype. Our implementations of the cued-recall schemes
PassPoints [16] and Persuasive Cued Click-Points [10] are the first in the litera-
ture to include fully functional systems using discretization, hashing, and image
selection. The MVP implementations of recognition-based schemes such as Face
(similar to the commercial Passfaces system) are the first to be implemented at
password-level security strength rather than PIN-level security.

2 MVP System Features

MVP has the following system characteristics:

Web-Based Usage: MVP is web-based (e.g., as a Wordpress plug-in) and func-
tions with most popular browser and operating system configurations, therefore
allowing participants to access the sites from any computer. The only modifica-
tions necessary are to server-side software, and these are minor. No modifications
are needed on users’ computers.

Easy Addition of New Schemes: Figure 1 presents MVP’s design. The web-
site’s password field is replaced by a button that invokes the MVP dispatcher
and opens a new window with the appropriate authentication scheme. The dis-
patcher returns a password string based on the user input that is evaluated by
the website as it would normally evaluate any entered text password. In this way,
the websites remain responsible for authentication, while MVP controls which
password scheme is displayed and its configuration.

MVP is designed for interchangeable use of different password schemes. The
schemes are modular components that administrators can add and remove like
server plug-ins. Password systems can be written in any web language. Currently,
the password systems are written in either Java or JavaScript. The password
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schemes use PHP to communicate with the MVP dispatcher. A mySQL database
stores administrative data to support the schemes.

MVP allows for easy parameterization of schemes so they may be used at dif-
ferent levels of security. User accounts are initially defined by an administrator,
who selects the authentication scheme and the desired parameters for the web-
site. A user may be assigned different schemes for different sites. Tools facilitate
the process of defining multiple accounts. By default, a simple plain-text pass-
word system is used. However, modules for other schemes can easily be written
and added to MVP. Currently, password schemes include PassPoints [16], Cued
Click-Points [9], Persuasive Cued Click-Points [10], Draw-a-Secret [14], GrID-
sure [3], PassTiles [15]; and recognition-based schemes using face, object, house,
and word images. As well, MVP supports various text password systems.

Ecological Validity: MVP is especially designed to allow passwords to be de-
ployed and accessed by users in their regular environments over longer periods
of time. The system allows authentication to become a secondary task, by sup-
porting primary tasks on real websites that require users to log in as part of the
process. This allows the collection of more realistic usage data. MVP exists as
a Wordpress plugin for blogs. We have also modified instances of other popular
open-source systems, including phpBB forums, OSCommerce online stores, and
the MediaWiki platform. Figure 2 provides a screenshot of the login interface
for a Wordpress blog using PCCP as an authentication scheme, while Figure 3
shows the DAS, Face, and Word Recognition login interfaces.

Fig. 2. A blog using PCCP for authentication

Instrumentation for Analysis: Since user behaviour can significantly impact
security, we collect and analyze data representing user choices and behaviour for
susceptibility to security threats as well as for evaluating usability. MVP is in-
strumented to record all user interactions, including keyboard and mouse entries,
timestamps, and details of the user’s computing environment. Logging is done
asynchronously with the server, allowing detailed data to be collected without
creating delays affecting user experience. Data is stored in a mySQL database.
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Different authentication schemes can be tested under identical conditions while
recording the same performance measures. We use LimeSurvey [4] running on
our servers in conjunction with MVP to administer study questionnaires.

Password Reset without Admin Intervention: Forgotten passwords are to
be expected, especially in long-term studies or studies requiring users to remem-
ber multiple passwords. MVP allows users to reset forgotten passwords without
intervention from a system administrator. The real-time password reset mech-
anism minimizes disruption to users, encourage completion of assigned tasks,
and supports the ecological validity of the system. MVP records details about
password resets to allow later analysis of this user behaviour.

Password resets are triggered by clicking the “forgot password” link on the
given website. When a user resets their password, they are emailed a URL that
directs them to the website, where they are prompted to choose a new password
with their assigned authentication scheme. In some cases, it can be desirable to
discourage users from resetting their password each time they want to log in.
MVP allows password resets to be delayed by any period of time (typically 5
minutes, and the user is warned about the delay). This time delay is intended to
subtly discourages users from relying on password resets as a login mechanism.

Fig. 3. The Face, DAS, and Word Recognition login interfaces

Training: MVP provides an interface for users to practice using new schemes
and receive immediate feedback about whether they are entering passwords cor-
rectly. MVP also supports audio/video tutorials, interactive demo systems, and
static text/image help pages. Some schemes (e.g., PassTiles) include the option
of practicing passwords directly within the password creation interface where
users can show/hide their password and practice it until it is memorized.

Administration Tools: MVP includes several study administration tools. A
notification system automates the process of emailing participants at specific
intervals prompting them to complete at-home tasks. A log query system al-
lows experimenters to retrieve information in real-time from the database about
the activities of specific users. While experiments are in-progress, the query sys-
tem is especially useful to monitor whether users are completing tasks and to
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troubleshoot any problems from users. A modified version of the MRBS [5]
scheduling software allows in-person participants to sign-up for study sessions.

Crowdsourcing Functionality: Online crowdsourcing websites (such as Ama-
zon’s Mechanical Turk [1] — MTurk) are increasingly used as a source of par-
ticipants for usable security studies, and MVP includes tools to help conduct
studies using such systems. Crowdsourcing studies differ from traditional stud-
ies in the volume of system traffic, the pace of the study, and the methods of
communication and payment. An MVP validation protocol verifies that the cor-
rect tasks have been completed, and users must validate their work to receive
payment for that session. MVP tracks user identifiers from the crowdsourcing
site (e.g., MTurk worker ID) and email addresses to reduce the possibility that a
user participates multiple times in the same study or in closely related studies.
The system also ensures that users cannot join partway through a multi-task
study without having completed earlier steps.

3 MVP Deployment for User Studies

MVP has been deployed for 12 user studies over the last year (see Table 1). To
situate the “Lessons Learned” from Section 4, we briefly describe their methodol-
ogy and overall results. MVP was also used in a university course to give students
a platform for learning about user studies. Seventy students in 8 groups ran user
studies with approximately 200 participants overall.

3.1 Hybrid Studies

We ran several hybrid studies of authentication systems. Participants initially
took part in a lab session where they received training on how to use the websites
and authentication schemes, and created accounts on two to four websites. The
accounts were for various Wordpress blogs (e.g., a dream vacation photo blog,
and a daily opinion poll site), and a phpBB forum to discuss the best locations for
various activities. The websites were fully populated with real content to engage
users realistically. In each case, participants’ main tasks were to comment on a
specific blog post or forum thread, tasks requiring them to log in. In the week
following the initial session, participants received email asking them to complete
further tasks from any web-enabled computer.

1. PCCP: Persuasive Cued Click-Points (PCCP) [11] is a cued-recall click-
based graphical password system where passwords consist of one user-selected
click-point per image on a sequence of images. The study’s results support and
confirm earlier lab-based studies of the usability and security of PCCP.

2. Recognition - image type, 3. Recognition - in-depth: Face [6,12] is a
recognition-based scheme where users must identify their assigned images of faces
from among decoys. It was suggested that the human proficiency for recognizing
faces would help with remembering such passwords [6]. We implemented Face
and two variations where the type of image was modified to either everyday
objects or houses [13]. A second study conducted an in-depth comparison of face
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Table 1. Summary of MVP user studies. The number of sessions includes the total
number of in-lab sessions and at-home tasks.

Study Name Number of Number Accounts Pswd Pswd Study
Sessions of Users Per User Space Selection Type

1. PCCP 4 24 3 243 Chosen Hybrid
2. Recognition - image type 5 60 3 228 Assigned Hybrid
3. Recognition - in-depth 5 20 4 228 Assigned Hybrid
4. DAS 4 26 3 258 Chosen Hybrid
5. PassTiles - user-choice 4 33 2 221 Chosen Hybrid
6. PassTiles - memory type 5 81 3 221 Assigned Hybrid
7. Text 4 21 3 236 Chosen Hybrid
8. Text - memory type 4 36 3 236 Assigned Hybrid
9. Text - interference 4 20 3 236 Assigned Hybrid

10. PassTiles - MTurk 4 77 3 221 Assigned MTurk
11. PassTiles - MTurk 2 4 92 3 228 Assigned MTurk
12. PCCP - MTurk Training 4 30 3 228 Chosen MTurk

and object images. In our configuration, 6 panels of 26 images were shown in
sequence, each panel containing one of the user’s 6 images. Results showed that
objects were as easy or easier to remember than faces while houses was most
difficult. No evidence was found to support higher performance for face images.

4. DAS: Draw-A-Secret (DAS) [14] is a recall-based scheme where users
sketch on a grid using a mouse. Our system used a 5 × 5 grid. Results showed
that users often misunderstood the scheme (e.g., users drew their figure within
one grid square, not realizing that this was equivalent to one dot in a square).
Users also tended to draw simple figures that would be easily guessed, and often
re-used passwords across different accounts.

5. PassTiles - background type, 6. PassTiles - memory type: PassTiles
passwords consist of a set of squares (tiles) on a grid [15]. The scheme was
implemented with a blank background or an image behind the grid, or with
individual objects in each tile. The systems used an 8 × 6 grid and a password
consisted of 5 tiles. The first study allowed users to choose their own passwords
while the second provided assigned passwords. Results showed that offering users
the opportunity to combine memory retrieval methods (e.g., having an image or
objects as a cue) may increase memorability of graphical passwords.

7. Text: Text passwords with a minimum length of 6, including at least one
digit and one letter, were also tested. Results showed that although users could
quickly log in (≈ 6 seconds), the majority re-used passwords across accounts.

8. Text - memory type, 9. Text - interference: These studies [17] tested
different types of text passwords: 6 randomly assigned characters, 4 randomly as-
signed common words, and a recognition-based system where the “images” were
words (“Word Recognition”, Figure 3). Results showed only minor differences in
memorability, but slower login times for the recognition scheme.
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3.2 Mechanical Turk Studies

MVP also enables fully online user studies with no in-person component. We
have completed two MTurk studies and a third study is in progress.

10. PassTiles - MTurk: Study 6 of PassTiles was replicated using partic-
ipants from MTurk. Instructions were provided entirely through webpages and
email. Results supported those found using the hybrid study.

11. PassTiles - MTurk 2: A second MTurk study of PassTiles used an
8×10 grid and 6 tiles. Results were similar to the earlier studies, indicating that
the larger theoretical password space did not negatively affect usability.

12: PCCP - MTurk Training: We are currently investigating different
delivery methods for training in online studies. Three instruction sets have been
compiled for the PCCP authentication system: a static text/image webpage, an
interactive demo webpage, and a video tutorial.

4 Discussion and Lessons Learned

Based on web server log information about their browsers, participants used
MVP on a variety of computers and platforms without problem. The partici-
pation rate was high during the at-home tasks. Several participants mentioned
enjoying the websites and inquired whether they would be available beyond the
study, providing evidence that participants engaged with the web content as
their primary task. When users forgot their passwords, they reset them from
home without intervention from an administrator.

In this section, we outline a number of lessons learned while running studies
using MVP. This list is not comprehensive, but we hope that these findings may
assist other experimenters in designing and conducting similar studies.

Force Logoffs: One problem with using real websites for experimental purposes
is that they may not be configured appropriately for password studies. The
Wordpress blogs were pre-configured to allow users to remain logged in. We
enforced server-side logoffs, so that users would need to log in with each visit.

Ethics: In running user studies of any kind (whether lab, hybrid or online), not
only it is important to obtain permission from the appropriate research ethics
board, but also to give consideration to key issues such as privacy. In our on-
line studies, email address and crowdsourcing identifier were the only identifying
information collected about each participant, and this was never displayed pub-
licly. Consent forms were completed online and included only the participant’s
email address as a “signature”. All data collected in the study (including ques-
tionnaire data) was collected and stored on our servers, allowing us to have
complete control of the data and ensuring that it is accessed only by authorized
researchers. We are considering an email aliasing system to further anonymize
data while still helpind to detect users trying to participate more than once.

Practicing: In an early MVP study, we noticed a few participants with several
logins immediately preceding a required study task. It appeared that before
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returning to the lab, participants were practicing entering their passwords! When
running studies, and considering ecological validity, it is important to consider
that participants may be putting in a different effort (whether greater or less)
than they would in a real life scenario.

Avoiding the Task at Hand: We have occasionally noticed that participants
will develop coping strategies that avoid performing the correct task. In one
study of text passwords, we noticed that instead of remembering their passwords,
participants were resetting their passwords at every login because it was quicker
and easier. In another study (of PassTiles), participants seemed to be coping
with the study tasks by writing all of their passwords down. It is important to
consider how participants may be circumventing your tasks, and either prevent
them from doing so, or collect sufficient information to be aware of these coping
strategies. Such behaviours may in fact reflect real-life behaviour and may offer
important insight into the real usage of authentication systems.

Global Researchers, Global Audience: To our initial surprise, we could not
post tasks on MTurk as non-US citizens. We instead use Crowdflower [2] as a
intermediary that can post tasks to several crowdsourcing systems, including
MTurk. We also had minor issues with international participants who were run-
ning older computer systems and had slow or unreliable internet connections.
Having a robust system that is compatible with a wide variety of environments
is critical. The system should also be able to withstand significant web traffic
when running MTurk studies and be robust enough to withstand users trying to
cheat and circumvent the system in a variety of ways.

5 Conclusions

MVP is a web-based authentication framework which we used for conducting
more ecologically valid user studies of authentication schemes. It uses instances
of real web-based applications that have been modified to require login using
configurable, interchangeable authentication schemes. Now that MVP has been
tested with these shorter studies, we are preparing larger, longer-term (several
months) comparison studies of various authentication schemes.
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Abstract. We provide the first published estimates of the difficulty of
guessing a human-chosen 4-digit PIN. We begin with two large sets of
4-digit sequences chosen outside banking for online passwords and smart-
phone unlock-codes. We use a regression model to identify a small num-
ber of dominant factors influencing user choice. Using this model and
a survey of over 1,100 banking customers, we estimate the distribution
of banking PINs as well as the frequency of security-relevant behaviour
such as sharing and reusing PINs. We find that guessing PINs based on
the victims’ birthday, which nearly all users carry documentation of, will
enable a competent thief to gain use of an ATM card once for every 11–
18 stolen wallets, depending on whether banks prohibit weak PINs such
as 1234. The lesson for cardholders is to never use one’s date of birth as
a PIN. The lesson for card-issuing banks is to implement a denied PIN
list, which several large banks still fail to do. However, blacklists cannot
effectively mitigate guessing given a known birth date, suggesting banks
should move away from customer-chosen banking PINs in the long term.

1 Introduction

Personal Identification Numbers, or PINs, authenticate trillions of pounds in
payment card transactions annually and are entrenched by billions of pounds
worth of infrastructure and decades of customer experience. In addition to their
banking role, 4-digit PINs have proliferated in a variety of other security appli-
cations where the lack of a full keypad prevents the use of textual passwords
such as electronic door locks, smartphone unlock codes and voice mail access
codes. In this work, we provide the first extensive investigation of the security
implications of human selection and management of PINs.

1.1 History of PINs

We refer the reader to [4] for a good overview of the history of banking cards and
ATMs; we summarise the development of PINs for security here. The historical
record suggests that PINs trace their origins to automated dispensing and control
systems at petrol filling stations. In the context of banking, PINs first appeared
in separate British cash machines deployed in 1967, with 6-digit PINs in the
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Barclays-De La Rue system rolled out in June and 4-digit PINs in the National-
Chubb system in September. According to John Shepherd-Barron, leader of the
De La Rue engineering team, after his wife was unable to remember six random
digits he reduced the length to four.

Early cash machines were stand-alone, offline machines which could only ex-
change cash for punched cards (which were kept by the machine). The primary
use case was to cease branch operations on Saturdays and still allow customers to
retrieve cash. Interestingly, cash machines deployed contemporaneously in Japan
and Sweden in 1967 used no PINs and absorbed losses from lost or stolen cards.
As late as 1977, Spain’s La Caixa issued cards without PINs.

PINs were initially bank-assigned by necessity as they were hard-coded onto
cards using steganographic schemes such as dots of carbon-14. Soon a variety of
schemes for storing a cryptographic transformation of the PIN developed.1 The
IBM 3624 ATM controller introduced an influential scheme for deriving PINs in
1977 [5]. PIN verification consisted of a DES encryption of the user’s account
number, converting the first 4 hexadecimal digits of the result into decimal using
a lookup table, adding a 4-digit PIN offset modulo 104, and comparing to the
entered PIN. Changing the PIN offset stored on the card enabled the user to
choose their own PIN. Banks began allowing customer-chosen PINs in the 1980s
as a marketing tactic, though it required substantial infrastructure changes.

The development of Visa and MasterCard and the interconnection of ATM
networks globally in the 1990s cemented the use of PINs for payment card au-
thentication in both the 1993 ISO 9564 standard [3] and 1995 EMV standard [1].
Today, most cards use the Visa PVV scheme, which stores a DES-based MAC
of the account number and PIN called the pin-verification value (PVV) which
can be re-computed to check if a trial PIN is correct.

The EMV standard further led to PINs taking on the role of authorising
payments at merchant tills, with the card’s chip verifying the customer’s PIN
internally.2 Technically, this use of PINs uses a different mechanism than that
for ATM authentication, though in all practical deployments the two PINs are
the same and may only be changed at an ATM. With the advent of EMV, PINs
must be entered more often and into a plethora of vendor terminals, increasing
the risk of compromise.

Chip cards have also enabled the deployment of hand-held Chip Authentica-
tion Program (CAP) readers since 2008 for verifying Internet transactions [10].
CAP readers allow muggers to verify a PIN demanded from a victim during an
attack; they can also be used to guess offline the PIN on a found or stolen card.

1.2 Standards and Practices in PIN Selection

Published standards on PIN security provide very brief treatment of human
factors. The EMV standard [1] requires support for PINs of 4–12 digits, in line

1 James Goodfellow patented a cryptographic PIN derivation scheme in 1966 [12].
Amongst others, he has been called be the inventor of PINs and ATMs.

2 EMV was deployed in the UK from 2003 under the branding “Chip and PIN.” It is
now deployed in most of Europe, though notably not in the United States.
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with earlier Visa standards, but makes no mention of PIN selection. Separately,
Visa maintains Issuer PIN Security Guidelines with several recommendations for
users, specifically that they never write down their PIN or use it for any other
purpose. The document is neutral between issuer-assigned PINs or customer-
chosen PINs, providing one sentence about PIN selection [2]: “Select a PIN that
cannot be easily guessed (i.e., do not use birth date, partial account numbers,
sequential numbers like 1234, or repeated values such as 1111).”

ISO 9564 [3] covers PIN security and is largely similar to Visa’s guidelines,
mostly focusing on PIN transmission and storage. It adds a recommendation
against “historically significant dates,” and PINs chosen as words on the keypad.
Neither standard mentions using a “denied PIN list” to blacklist weak PINs, as
is recommended in standards for text passwords [8].

As a result of the vague standards, PIN requirements vary significantly but the
minimal 4-digit length predominates. PIN length appears integrated into cultural
norms: there is rarely variation within competitive regions, while in some locales
most card issuers require PINs longer than 4 digits.3 Similarly, most banks allow
user-chosen PINs, with a few regional exceptions such as Germany.

Because denied PIN lists aren’t publicly advertised, we evaluated several bank-
ing cards by requesting the PIN 1234.4 In the UK, this was denied by Barclays,
HSBC and NatWest but allowed by Lloyds TSB and The Co-op Bank. In the
USA, this was denied by Citibank and allowed by Bank of America, HSBC
and Wells Fargo. We only identified card-specific denied PIN lists; we found no
ATM implementing local restrictions. At one bank we tested, Chase in the USA,
self-service PIN changes are not possible and changes must be made in-person.
Banks’s policies may vary with time or location (note the inconsistency of HSBC
between the USA and UK), but denied PIN lists are clearly not universal.

1.3 Academic Research

Research on authentication systems involving human-chosen secrets consistently
finds that people favour a small number of popular (and predictable) choices.
Strong bias has been analysed for textual passwords starting with Morris and
Thompson in 1979 [15] and confirmed in many studies since [19]. Similar bias
been identified in responses to personal knowledge questions [6] and in graphical
password schemes [20]. Despite their wide deployment, there exists no academic
research about human selection of PINs.

The best-known research on PINs, such as Murdoch et al.’s “no-PIN at-
tack” [16], has identified technical flaws in the handling and verification of PINs
but not addressed PIN guessing. Kuhn identified in 1997 that the use of unbal-
anced decimalisation tables introduced a bias into the distribution of PIN offsets
which could be exploited by an attacker to improve PIN guessing [13]. Bond and

3 For example, banks in Switzerland assign 6–8 digit PINs, and banks in Italy typically
use 5-digit PINs. Canadian banks use a mix of 4-digit and 6-digit PINs.

4 We assume any reasonable denied PIN list would include 1234 and allowing this PIN
indicates no restrictions exist.
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Zieliński developed further decimalisation-based attacks in 2003 [5]. Both attacks
can be improved with knowledge of human tendencies in PIN selection.

2 Quantifying Resistance to Guessing

We consider abstractly the probability distribution5 of PINs X over the set
{0000, . . . , 9999}. We consider each PIN xi to have probability pi, with p1 ≥
p2 ≥ · · · ≥ pN . Several works have formally treated the mathematics of guessing

an unknown value X
R← X [14,9,7,17]. We use the notation and terminology

from [6] throughout this paper.
A traditional measure of guessing difficulty is Shannon entropy:

H1 = −
∑N

i=1 (pi · log2 pi) (1)

However, this is mathematically unsuited to measuring guessing difficulty6 [14,9]
and recently been confirmed experimentally to be a poor measure of cracking
difficulty for human-chosen passwords [21]. A more sound measure is guesswork :

G =
∑N

i=1 (pi · i) (2)

G represents the expected number of sequential guesses to determine X if an
attacker proceeds in optimal order [14]. Both G and H1 are influenced by rare
events significantly enough to make them misleading for security analysis. A
preferable alternative is marginal guesswork μα, which measures the expected
number of guesses required to succeed with probability α:

μα = min
{
j ∈ [1, N ]

∣∣∣∑j
i=1 pi ≥ α

}
(3)

In particular, μ0.5, representing the number of attempts needed to have a 1/2
chance of guessing correctly, has been suggested as a general alternative to G, as
it is less influenced by low-probability events [17]. In the case of PINs, attackers
are almost always externally limited in the number of guesses they can try. In
this case, the best metric is the marginal success rate λβ , the probability that
an attacker can correctly guess X given β attempts:

λβ =
∑β

i=1 (pi) (4)

Locking a payment card after 3 incorrect guesses is standard practice. However,
different counters are used for ATM requests and payment requests, meaning a
thief with a CAP reader and access to an ATM can typically make 6 guesses.

5 The distribution may vary between different populations, or with knowledge of aux-
iliary information (such as a card holder’s birthday).

6 Shannon entropy represents the average number of bits needed to encode a variable

X
R← X . It measures the expected number of yes/no queries an attacker must make

about the membership of X in subsets X ′ ⊂ X , which is fundamentally different
from guessing individual values.
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Table 1. Guessing metrics for 4-digit sequences in RockYou passwords and iPhone
unlock codes. Values are also shown for the regression-model approximation for each
distribution and for a uniform distribution of 4-digit PINs.

distribution H1 G̃ μ̃0.5 λ3 λ6

RockYou 4-digit sequences 10.74 11.50 9.11 8.04% 12.29%
RockYou regression model 11.01 11.79 9.39 5.06% 7.24%
iPhone unlock codes 11.42 11.83 10.37 9.23% 12.39%
iPhone regression model 11.70 12.06 10.73 9.21% 11.74%
random 4-digit PIN 13.29 13.29 13.29 0.03% 0.06%

Thus, we are primarily concerned with estimating λ3 and λ6, though other values
are of interest if a user has reused a PIN for multiple cards.

The metrics are not directly comparable, as H1 is in units of bits, G and μα

in units of guesses, and λβ is a probability. It can be helpful to convert all of the
metrics into bits by taking the base-2 logarithm of a uniform distribution which
would have the same value of the metric, as demonstrated in [6]:

G̃ = log2 (2 ·G(X ) − 1) ; λ̃β = log2

(
β

λβ(X )

)
; μ̃α = log2

(
μα(X )

λμα

)
(5)

For example, a distribution with μ0.5 = 128 would be equivalent by this metric
to an 8-bit random variable, denoted as μ̃0.5 = 8. We may use units of dits (also
called hartleys or bans) by taking base-10 logarithms instead of base-2. This
represents the number of random decimal digits providing equivalent security.

3 Human Choice of Other 4-Digit Sequences

To the best of the authors’ knowledge, no dataset of real banking PINs has ever
been made public. However, public datasets have recently become available for
two other sources of human-chosen secret 4-digit sequences.

RockYou. The leak of 32 million textual passwords from the social gaming
website RockYou in 2009 has proved invaluable for password research [21]. We
extracted all consecutive sequences of exactly 4 digits from the RockYou pass-
words. There were 1,778,095 such sequences; all possible 4-digit sequences oc-
curred. 1234 was the most common with 66,193 occurrences (3.7%), while 8439
was the least common with 10 occurrences (0.0006%).

Though these sequences occurred as part of longer strings, a manual inspection
of 100 random passwords which include a 4-digit sequence identified only 3 with
an obvious connection between the digits and the text (feb1687, classof2007
and 2003chevy), suggesting that digits and text are often semantically indepen-
dent. Users also show a particular affinity for 4-digit sequences, using them more
significantly more often than 3-digit sequences (1,599,959) or 5-digit sequences
(497,791).
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Fig. 1. The distribution of 4-digit sequences within RockYou passwords. Each cell
shows the frequency of an individual sequence, a proxy for PIN popularity.

iPhone. Our second dataset was published (in aggregate form) in June 2011 by
Daniel Amitay, an iPhone developer who deployed a screen locking mechanism
which requires entering a 4-digit sequence to unlock. This dataset was much
smaller, with 204,508 PINs. It doesn’t support reliable estimates of low-frequency
PINs, as 46 possible PINs weren’t observed at all. 1234 was again the most
common, representing 4.3% of all PINs. The screen unlock codes were entered
using a square number pad very similar to standard PIN-entry pads. Geometric
patterns, such as PINs consisting of digits which are adjacent on the keypad,
were far more common than in the RockYou sequences.

Plotting the RockYou distribution in a 2-dimensional grid (Figure 1) high-
lights some basic factors influencing popularity. The most prominent features
are the stripe of recent years and the range of calendar dates in MMDD and DDMM

format, which trace the variation in lengths of each month. Many other features,
such as a diagonal line of PINs with the same first and last two digits, and a
horizontal line of PINs ending in 69, can be clearly seen.

To quantitatively measure important factors in PIN selection, we performed
linear regression on each distribution with a number of human-relevant functions
of each PIN as regressors. The datasets were well suited to this analysis, with
nearly 10,000 samples of the response variable (the frequencies of each PIN). The
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Fig. 2. Probability of 4-digit years from 1900–2025 in the RockYou dataset. Some
outliers demonstrate confounding factors: 1937 and 1973 represent the four-corners of
a numeric keypad, 1919 and 2020 are repeated pairs of digits, and 1969 demonstrates
users’ affinity for the number 69.

assumption of a linear model simply means that the population can be divided
into distinct groups of users employing different PIN selection strategies, such
as choosing specific date formats or geometric patterns.

Our process for identifying relevant input functions was iterative: we began
with none, producing a model in which each PIN is equally likely, and progres-
sively added functions which could explain the PINs which were the most poorly
fit. We stopped at the point when we could no longer identify intuitive functions
which increased the fit of the model as measured by the adjusted coefficient of
determination R̄2, which avoids bias in favour of extra input functions.

We were cautious to avoid over-fitting the training datasets, particularly for
PINs which represent recent years, shown in Figure 2. The popularity of recent
years has peaks between the current year and the year 1990, this range probably
represents recent events like graduations or marriages (or perhaps registration).
There is steady decline for older years, likely due to the drop-off in frequency
of birthdays and events which are still memorable. Due to the large fluctuations
for recent years in both datasets, and a possibly younger demographic for both
datasets compared to the general population, we used a biased model for the
popularity of different years in PIN selection: constant popularity for all years
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Table 2. Results of linear regression. The percentage of the variance explained by each
input function is shown for the RockYou and iPhone datasets. The final column shows
estimates for the prevalence of each category from our user survey.

factor example RockYou iPhone surveyed

date

DDMM 2311 5.26 1.38 3.07
DMYY 3876 9.26 6.46 5.54
MMDD 1123 10.00 9.35 3.66
MMYY 0683 0.67 0.20 0.94
YYYY 1984 33.39 7.12 4.95

total 58.57 24.51 22.76

keypad

adjacent 6351 1.52 4.99 —
box 1425 0.01 0.58 —
corners 9713 0.19 1.06 —
cross 8246 0.17 0.88 —
diagonal swipe 1590 0.10 1.36 —
horizontal swipe 5987 0.34 1.42 —
spelled word 5683 0.70 8.39 —
vertical swipe 8520 0.06 4.28 —

total 3.09 22.97 8.96

numeric

ending in 69 6869 0.35 0.57 —
digits 0-3 only 2000 3.49 2.72 —
digits 0-6 only 5155 4.66 5.96 —
repeated pair 2525 2.31 4.11 —
repeated quad 6666 0.40 6.67 —
sequential down 3210 0.13 0.29 —
sequential up 4567 3.83 4.52 —

total 15.16 24.85 4.60

random selection 3271 23.17 27.67 63.68

in the past 20 years, and linear drop-offs for years from 20–65 years in the past,
and for 5 years into the future. This model, plotted in Figure 2, was used for
PINs representing 4-digit years directly as well as DMYY and MMYY PINs.

After fixing the year model, we removed the range of years from the regression
model to avoid skewing the model’s estimation of other parameters to correct for
the intentionally weakened model of the year distribution. We similarly added
single-element input functions for 1234, 0000, 1111, and 2580 to avoid omitted-
variable bias caused by these significant outliers.

The complete results of our final model with 25 input functions are shown in
Table 2. All of the input functions were binary, except for years, calendar dates
(in which Feb. 29th was discounted), and words spelled on a keypad.7 All of

7 We used the distribution of four-letter passwords in the RockYou dataset to approx-
imate words used in spelled-out PINs. ‘love’ was the most common 4-letter password
by a large margin, and its corresponding PIN 5683 was a significant outlier.
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the input functions we chose contributed positively to the probability of a PIN
being selected, making it plausible to interpret the weight assigned to each input
function as the proportion of the population choosing a PIN by each method.
The intercept term fits this interpretation naturally as the proportion of users
choosing a random PIN. This simple model was able to fit both distributions
quite accurately: the coefficient of determination R̄2 was 0.79 for the RockYou
dataset and 0.93 for the iPhone dataset. Under the conventional interpretation,
this means the model explained 79% and 93% of the variation in PIN selection.

Support for our model also comes from its accurate approximation of the
source data’s guessing statistics seen in Table 1. The model consistently pro-
vides an over-approximation by about 0.2–0.3bits (< 0.1 dit) indicating that the
inaccuracy is mainly due to missing some additional sources of skew in the PIN
distribution. This is acceptable for our purposes, as it will enable us to estimate
an upper bound on the guessing difficulty of the banking PINs.

4 Surveying Banking PIN Choices

The low frequency of many PINs in the RockYou dataset means a survey of hun-
dreds of thousands of users would be needed to observe all PINs. Additionally,
ensuring that users feel comfortable disclosing their PIN in a research survey is
difficult. We addressed both problems by asking users only if their PINs fall into
the generic classes captured by our regression model.

We deployed our survey online using the Amazon Mechanical Turk platform,
a crowd-sourcing marketplace for short tasks. The study was advertised to US-
based ‘workers’ as a “Short research survey about banking security” intended to
take five minutes. We deliberately displayed the University of Cambridge as the
responsible body to create a trust effect. To reduce the risk of re-identification,
no demographic or contact information was collected. The design was approved
by the responsible ethics committee at the University of Cambridge.

The survey was piloted on 20 respondents and then administered to 1,351 re-
spondents. 1,337 responses were kept after discarding inconsistent ones.8 Re-
spondents were rewarded between US $0.10–0.44 including bonuses for complete
submission and thoughtful feedback. Repeated participation was prohibited.

4.1 PIN Usage Characteristics

The 1,177 respondents with a numeric banking PIN were asked a series of ques-
tions about their PIN usage. A summary of the question phrasing and responses
is provided in Appendix A. A surprising number (about 19%) of users rarely
or never use their PIN, relying on cash or cheques and in-person interaction
with bank tellers. Several participants reported in feedback that they distrust
ATM security to the point that they don’t even know their own PINs. Many

8 It is common practice on Mechancial Turk tasks to include carefully-worded “test
questions” to eliminate respondents who have not diligently read the instructions.
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others stated that they prefer signature verification to typing in their PIN. How-
ever, 41% of participants indicated that PINs were their primary authentication
method for in-store payments, with another 16% using PINs or signatures equally
often. Of these users, nearly all (93%) used their PINs on at least a weekly basis.

Over half of users (53%) reported sharing their PIN with another person,
though this was almost exclusively a spouse, partner, or family member. This
is consistent with a 2007 study which found that about half of online banking
users share their passwords with a family member [18]. Of the 40% of users
with more than one payment card, over a third (34%) reported using the same
PIN for all cards. This rate is lower than that for online passwords, where the
average password is reused across six different sites [11]. The rate of forgotten
PINs was high, at 16%, although this is again broadly consistent with estimates
for online passwords, where about 5% of users forget their passwords every 3
months at large websites [11]. Finally, over a third (34%) of users re-purpose
their banking PIN in another authentication system. Of these, the most common
were voicemail codes (21%) and Internet passwords (15%).

4.2 PIN Selection Strategies

We invited the 1,108 respondents with a PIN of exactly 4 digits to identify their
PIN selection method. This was the most sensitive part of the survey, and users
were able to not provide this information without penalty, removing a further
27% of respondents and leaving us with 805 responses from which to estimate
PIN strength. We presented users with detailed descriptions and examples for
each of the selection strategies identified in our regression model. Users were also
able to provide free-form feedback on how they chose their PIN. The aggregated
results of our survey are shown alongside our regression model in Table 2.

The largest difference between our survey results and the regression models
was a huge increase in the number of random and pseudo-random PINs: almost
64% of respondents in our survey, compared to 23% and 27% estimated for
our example data sets. Of these users, 63% reported that they either used the
PIN initially assigned by their bank or a PIN assigned by a previous bank.9

Another 21% reported the use of random digits from another number assigned
to them, usually either a phone number or an ID number from the government,
an employer, or a university (about 30% for each source).10

Of users with non-random PINs, dates were by far the largest category, repre-
senting about 23% of users (comparable to the iPhone data and about half the
rate of the RockYou data). The choice of date formats was similar to the other
datasets with the exception of 4-digit years, which were less common in our sur-
vey. We also asked users about the significance of the dates in their PINs: 29%

9 We explored the possibility that some of our participants kept their initial PIN
simply because they rarely or never used their card, but the rate was statistically
indistinguishable for users using their PIN at least once per week.

10 While reusing identification numbers and phone numbers in PINs may open a user
to targeted attacks, they should appear random to a guessing attacker.
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Table 3. Guessing metrics for banking PINs, using the model computed from our
survey and regression results on the iPhone dataset

guessing scenario H1 G̃ μ̃0.5 λ3 λ6

baseline 12.90 12.83 12.56 1.44% 1.94%
with blacklist 13.13 12.95 12.79 0.12% 0.24%
known birth date 12.57 12.80 12.49 5.52% 8.23%
blacklist, known birth date 12.85 12.92 12.75 5.11% 5.63%
random 4-digit PIN 13.29 13.29 13.29 0.03% 0.06%

used their own birth date, 26% the birth date of a partner or family member,
and 25% an important life event like an anniversary or graduation.

Finally, about 9% of users chose a pattern on the keypad, and 5% a numeric
pattern such as repeated or sequential digits. Our sample size was insufficient to
provide an accurate breakdown of users within these categories.

5 Approximating Banking PIN Strength

Using our survey data and regression model we estimated the distribution of
banking PINs for our survey population. This was straightforward for random
PINs and PINs based on dates. Within the other two categories we used the
sub-distribution from the iPhone dataset due to lack of sufficient sample size.

Statistics for our best estimation are show in Table 3. By any of the aggregate
metrics μ̃0.5, G̃, or H1, the strength is actually quite good—between 12.6 and
12.9 bits (3.8–3.9 dits), close to the maximum possible. In other words, if an
attacker can try many PINs for a targeted card, the introduction of human choice
does not significantly reduce security compared to randomly-assigned PINs.

Banking PINs appear considerably more vulnerable against marginal guessing
attacks. As noted in Table 3, an attacker with 3 guesses will have a λ3 = 1.4%
chance of success and an attacker with 6 guesses a λ6 = 1.9% chance of success,
equivalent to λ̃6 = 8.3 bits of security (2.5 dits). This is significantly better than
the estimates based on the RockYou or iPhone distributions (Table 1), for which
λ6 > 10%. The optimal guessing order is 1234 followed by 1990–1986.

5.1 Known Birth Date Guessing

Given the large number of users who base their PIN on their birth date (nearly
7% in total, or 29% of those using some type of date), we evaluated the success of
an attacker who can leverage a known birth date, for example if a card is stolen
in a wallet along with an identification card. The exact effects vary slightly with
the actual birth date: if variants of the date also correspond to common PINs
such as 1212, the attacker’s success rate will be higher. We calculated guessing
probabilities for all dates from 1960–1990 and report results for the median
date of June 3, 1983. In this scenario, the attacker’s optimal strategy shifts to
guessing, in order, 1983, 6383, 0306, 0603, 1234, and 0683. As seen in Table 3,
the attacker benefits considerably from this knowledge: λ6 increases to 8.2%,
providing only λ̃6 = 6.2 bits (1.9 dits) of security.
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Table 4. Probability of a successful attack given multiple cards from one user. The
final column is an expected value given the observed rate of card ownership.

number of stolen cards
guessing scenario 1 2 3 4 exp.

baseline 1.9% 2.9% 3.9% 4.9% 2.5%
with blacklist 0.2% 0.5% 0.7% 0.9% 0.4%
known birth date 8.2% 9.7% 10.3% 10.9% 8.9%
blacklist, known birth date 5.6% 6.0% 6.2% 6.4% 5.8%
random 4-digit PIN 0.1% 0.1% 0.2% 0.2% 0.1%

5.2 Effectiveness of Blacklisting

Assuming that users with a blacklisted PIN will be re-distributed randomly ac-
cording to the rest of the distribution (as assumed in [21]), the effects of black-
listing the top 100 PINs are substantial—λ6 drops to 0.2%.11 This is equivalent
to λ̃6 = 11.6bits (3.9 dits) of security, indicating that a very small blacklist may
eliminate most insecurity due to human choice. Unfortunately, as seen in Table 3
and Table 4, blacklisting is much less effective against known birth date attacks,
only reducing λ6 to 5.1% (λ̃6 = 6.9 bits/2.1 dits). With a reasonable blacklist, it
is only possible to block the YYYY format, leaving an attacker to try DDMM, MMDD,
and so on; preventing this would require user-specific blacklists.

5.3 Expected Value of a Stolen Wallet

We calculate the guessing probability of a thief with multiple stolen cards, for
example from an entire wallet or purse, in Table 4. Though most of our surveyed
users own only one card with a PIN, on expectation stealing a wallet instead of
a single card raises a thief’s guessing chances by over a third. Our survey results
suggest that virtually all payment card users (99%) carry documentation of their
birth date alongside their card.12 Thus, we conclude that a competent thief will
gain use of a payment card once every 11–18 stolen wallets, depending on the
proportion of banks using a denied PIN list.

6 Concluding Remarks

The widespread security role assigned to 4-digit PINs is a historical accident
which has received surprisingly little scrutiny. While complete analysis is impos-
sible without access to a huge list of real banking PINs, it appears that user
choice of banking PINs is not as bad as with other secrets like passwords. User
management of PINs is also comparatively good, with lower rates of reuse and

11 The optimal blacklist suggested by our model is given in Appendix B.
12 The prevalence of carrying ID may vary by locale. In 24 US states carrying ID is

legally required. In the UK, carrying ID is not required and fewer citizens carry it.
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sharing and many users reporting serious thought about PIN security. How-
ever, the skew introduced by user choice may make manual guessing by thieves
worthwhile—a lost or stolen wallet will be vulnerable up to 8.9% of the time in
the absence of denied PIN lists, with birthday-based guessing the most effective
strategy. Blacklisting appears effective only if a thief doesn’t know the user’s
date of birth (or users stop using this to choose their PIN). We advise users not
to use PINs based on a date of birth, and those banks which do not currently
employ blacklists to immediately do so. Still, preventing birthday-based guessing
requires a move away from customer-chosen PINs entirely.
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A Survey Presentation and Results

The following is a summary of questions about user PIN management. The
complete survey, including questions about PIN selection, is available online at:
http://preibusch.de/publications/pin_survey/.

Do you regularly use a PIN number with your payment cards?(N = 1337)

yes, a 4-digit PIN yes, a PIN of 5+ digits no

1108 (82.9%) 69 (5.2%) 160 (12.0%)

When making purchases in a shop, how do you typically pay? (N = 1177)

I use my payment card and key in my PIN 477 (40.5%)
I use my payment card and sign a receipt 357 (30.3%)
I use my payment card with my PIN or my signature
equally often

184 (15.6%)

I normally use cash or cheque payments and rarely use
payment cards

159 (13.5%)

Overall, how often do you type your PIN when making a purchase in a shop? And
how often do you type your PIN at an ATM/cash machine?(N = 1177)

shop ATM

Multiple times per day 81 (6.9%) 14 (1.2%)
About once per day 117 (9.9%) 19 (1.6%)
Several times a week 342 (29.1%) 118 (10.0%)
About once per week 241 (20.5%) 384 (32.6%)
About once per month 113 (9.6%) 418 (35.5%)
Rarely or never 283 (24.0%) 224 (19.0%)

How many payment cards with a PIN do you use?(N = 1177)

1 2 3 4 5 6

708 (60.2%) 344 (29.2%) 89 (7.6%) 23 (2.0%) 11 (0.9%) 2 (0.2%)

Median: 1, Mean: 1.5

http://preibusch.de/publications/pin_survey/
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If you have more than one payment card which requires a PIN, do you use the same
PIN for several cards?(N = 469)

yes no

161 (34.3%) 308 (65.7%)

Have you ever changed the PIN associated with a payment card?(N = 1177)

Never Yes, when I initially received the card Yes, I change periodically

591 (50.2%) 376 (31.9%) 210 (17.8%)

Have you ever forgotten your PIN and had to have your financial institution remind
you or reset your card?(N = 1177)

yes no

186 (15.8%) 991 (84.2%)

Have you ever shared your PIN with another person so that they could borrow your
payment card?(N = 1177)

spouse or significant other 475 (40.4%)
child, parent, sibling, or other family member 204 (17.3%)
friend or acquaintance 40 (3.4%)
secretary or personal assistant 1 (0.1%)
any 621 (52.8%)

Have you ever used a PIN from a payment card for something other than making
a payment or retrieving money?(N = 1177)

password for an Internet account 180 (15.3%)
password for my computer 94 (8.0%)
code for my voicemail 242 (20.6%)
to unlock the screen for mobile phone 104 (8.8%)
to unlock my SIM card 29 (2.5%)
entry code for a building 74 (6.3%)
any 399 (33.9%)

Do you carry any of the following in your wallet or purse?(N = 415)13

driver’s license 377 (90.8%)
passport or government ID card 68 (16.4%)
social security or other insurance card 155 (37.3%)
school or employer ID listing date of birth 23 (5.5%)
other document listing date of birth 78 (18.7%)
any item with date of birth 411 (99.0%)

B Suggested Blacklist

According to our computed model, the following blacklist of 100 PINs is optimal:
0000, 0101–0103, 0110, 0111, 0123, 0202, 0303, 0404, 0505, 0606, 0707, 0808,
0909, 1010, 1101–1103, 1110–1112, 1123, 1201–1203, 1210–1212, 1234, 1956–
2015, 2222, 2229, 2580, 3333, 4444, 5252, 5683, 6666, 7465, 7667.

13 This question was sent to a random subset of respondents after the main survey.
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Abstract. A High Yield Investment Program (HYIP) is an online Ponzi
scheme, a financial fraud that pays outrageous levels of interest using
money from new investors. We call this fraud ‘postmodern’ in that so-
phisticated investors understand the fraud, but hope to profit by joining
early. These investors support ‘aggregators’ – reputation websites that
track the status of HYIPs. We examine 9 months of aggregator data and
show that there is no evidence of collusion between different aggregators.
We use their data to measure the time until HYIPs collapse, finding –
perhaps unsurprisingly – that longer lifetimes are associated with lower
interest payments and longer mandatory investment terms. We look at
the role of digital currencies in supporting HYIPs, finding that a handful
of systems dominate. Finally, we estimate that this type of criminality
is turning over at least $6 million/month and set out ways in which it
might be disrupted.

1 Introduction

A High Yield Investment Program (HYIP) is an online version of a financial
scam in which investors are promised extremely high rates of return on their in-
vestments. Payments are made to existing investors from the funds deposited by
newcomers, continuing until insufficient funds remain and the scheme collapses.
Similar schemes have operated in the offline world for 150 years or more and are
often called Ponzi schemes after a famous swindler in 1920’s Boston.

Despite being illegal to operate in most jurisdictions, there are a considerable
number of active HYIP websites at any given time. We call them ‘postmodern’
Ponzi schemes because we believe that many of the investors are well aware of
the fraudulent nature of the sites, but are of the opinion that by investing at an
early stage – and withdrawing their money before the scheme’s collapse – they
will be able to make a profit at the expense of less savvy investors.

An extensive online ecosystem has developed in support of HYIPs, involving
discussion websites, digital currencies, and third-party ‘aggregator’ websites that
track HYIP performance. These aggregators list dozens of active HYIPs, tracking

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 41–56, 2012.
c© International Financial Cryptography Association 2012
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Fig. 1. Screenshot of HYIP macrotrade.com and the corresponding entry on the ag-
gregator hyip.com

core features such as interest rates, minimum investment terms and funding
options. They operate forums in which individuals can report their experiences;
but more significantly, the aggregators appear to make their own investments in
some of the HYIPs and report on when interest payments cease. As an illustrative
example, Figure 1 shows a screenshot of the HYIP macrotrade.com, along with
its entry on the aggregator website hyip.com.

We have spent many months collecting data from HYIP websites and ag-
gregators to measure the extent of HYIP activity, so that we can improve our
understanding of this particular type of online criminality.

In Section 2 we explain our data collection and measurement methodology. In
Section 3 we discuss our evidence as to whether the aggregator sites are making
truthful1 reports. In Section 4 we examine HYIP lifetimes and investigate the
extent to which it is possible to predict their collapse. In Section 5 we discuss the
role of ‘digital currencies’ in this ecosystem and then in Section 6 we estimate
the scale of this particular type of online criminality and discuss various ways
that it might be discouraged, if not entirely stamped out. In Section 7 we survey
related work and finally in Section 8 we summarize what we have learned so far
and consider what further work might reveal.

1 We avoid the word ‘honest’ because this is not an appropriate word to use in con-
junction with criminal activity.

macrotrade.com
hyip.com
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2 Data Collection Methodology

We term the websites that provide reputation services for HYIP programs ‘aggre-
gators’. Given that HYIPs are confidence games that keep growing so long as new
investors can be recruited, these ratings are potentially very powerful indicators
of HYIP success or failure. From a Google search for “HYIP” issued in November
2010, we identified 9 aggregator websites to monitor (myhyip.com, maxhyip.com,
iehyip.com, hyipranks.com, hyipmonitor.com, hyipinvestment.com,
hyip.com, hothyips.com, and everyhyip.com).

Between November 17, 2010 and August 21, 2011 we made daily visits to each
aggregator website (with the exception of four days in November and December
2010 due to a bug in our crawler). We parsed the pages we fetched to extract the
key characteristics of the HYIPs they listed: interest rate, investment term(s),
user and aggregator ratings, along with payment status (i.e., paying, not paying).
The names aggregators use for each of these fields varied slightly, so we manually
unified the terminology and stored each observation in a database. A total of
141 014 observations were made.

All the aggregator websites provide links to the HYIPs, though some of these
links pass via an interstitial page. From January 2011 onwards, we determined
the URL of each of the HYIPs and captured the WHOIS record for each HYIP
domain. Our automated system also visited each HYIP website, and stored the
source files linked to or loaded from the home page. These daily visits to the
HYIP websites were made over Tor2; its anonymity properties help ensure that
the website would not be able to identify us or trivially connect our visits.

2.1 Measuring HYIP Activity

We have used the collected data to derive several key measurements, whose
calculation we now describe.

Linking HYIP records across aggregators. Unfortunately, it can be difficult to
determine when two aggregators are reporting on the same HYIP. We use the
website address of the HYIP as a canonical identifier, but when we failed to
ascertain this (e.g., the HYIP website was shut down before we followed the link),
we have compared the names that the aggregator gave to HYIPs – stripping out
whitespace and punctuation and doing a caseless match.

The 9 aggregators listed 1 576 distinct HYIPs – of these, 211 did not resolve to
a website and could not be identified as an HYIP which had ever been resolved.
595 HYIPs appeared on more than one aggregator website, while the other 981
appeared only once. It is likely that some of the 981 unique HYIPs are duplicates
that we failed to link up; however, we treat them as distinct in our study.

Measuring HYIP lifetimes. One key measure of HYIP performance is how long
after initial creation the scheme collapses. Identifying when a website is ready for

2 http://www.torproject.org/

myhyip.com
maxhyip.com
iehyip.com
hyipranks.com
hyipmonitor.com
hyipinvestment.com
hyip.com
hothyips.com
everyhyip.com
http://www.torproject.org/
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business is impracticable, so we deem the HYIP lifetime to be the elapsed time
between the HYIP’s first appearance as reported by an aggregator site (which
we believe will be contemporaneous with the first accounts being created) and
its eventual disappearance from that aggregator (invariably because the HYIP
has collapsed and is no longer paying).

Normalizing profit rates, investment terms, and expected payouts. There is enor-
mous variation in the interest rates promised by HYIPs, from the outrageous
440% in 10 minutes offered by top-capital.com to the comparatively modest
1–2% per day offered by macrotrade.com. Many HYIPs offer a menu of invest-
ment choices that vary by investment level and term, just as a legitimate bank
does for their certificates of deposit (CDs).

For this paper, we start by normalizing the published interest rates and in-
vestment terms to a daily rate. We then compute an expected payout value that
is standardized across HYIPs. To arrive at the expected payout, we had to infer
a model of how investments grow over time. Subtly different phrasing must be
interpreted differently, as indicated in the following table:

Phrase Interest Rate Investment Term Expected Payout

x% for y days x% y x× y× principal
x% in y days x

y% y x× principal

x% after y days x
y% y x× principal

x% daily x% - -

In every case we do not compound daily on the current value, but compound
on the original principal. In other words, we do not assume that any of the
interest that is paid out will be reinvested. We take this approach because it is
consistent with the returns on investment (ROI) reported by the vast majority of
aggregators. Additionally, if HYIP investors are indeed ‘postmodern’ and know
to take profits as rapidly as possible, then their strategy will be to be put in
their maximum investment at the earliest possible time and never add to it.

3 Can the Reports of HYIP Aggregators Be Trusted?

Given that all HYIPs are fraudulent, it is natural to ask whether the reports from
aggregators should be trusted. While ascertaining ground truth is impossible, we
have devised a number of measurements to assess the relative accuracy of data
reported on HYIPs.

In particular, 595 of the 1 576 HYIPs (38%) are tracked by at least two aggre-
gators and so we can compare the reports about the same HYIP across different
aggregators. If there is rough consensus then, either the aggregation sites are
in a universal conspiracy, or they are independently assessing the HYIPs in a
truthful manner.

top-capital.com
macrotrade.com
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3.1 Reporting of HYIP Attributes

We determined what the aggregators reported to be the maximum and minimum
investment levels allowed by the HYIP, the referral rates offered to affiliates
for signing up new investors, and the withdrawal method offered (automatic,
manual, or instant). When we collate this information and look for similarity we
get these results:

Investment Referral Rate Withdrawal
max min high low type

Perfect Agreement 0.40 0.87 0.44 0.43 -
Diversity Index 0.72 0.94 0.77 0.75 0.88

The first row of this table reports the fraction of HYIPs where all aggregator
reports are in perfect agreement. As can be seen, for 40% of HYIPs, the maximum
allowed investment values are in agreement, while 87% of the time the minimum
investment value is reported to be the same by different aggregators.

Of course these attributes are all matters of fact, which the aggregator will
have obtained from the HYIP websites (or perhaps from the filling in of a form).
However, the aggregators are imperfect and errors are being made. If there was
collusion between aggregators and HYIPs then we would have expected to see
perfect agreement – either from better channels of communication, or from a
consistent set of mistakes being made.

By contrast, when we consider the amount of money that the aggregators
report that they have in invested into particular HYIPs, we see very little agree-
ment at all:

Aggregator Investment

Perfect Agreement 0.10
Diversity Index 0.51

Any investment at all allows the aggregators to assess whether the HYIP
is paying, and we have just noted there is reasonable agreement about what
the minimum value might be. Therefore, we presume that the amounts being
invested reflect the initial opinion of the aggregator about the prospects for the
HYIP. If there was some kind of universal conspiracy then we would expect to
see consistency here, but the aggregators invest the same amount of money into
HYIPs in only 10% of cases.

Naturally, even when there isn’t unanimous agreement across aggregators, it
could still be the case that almost all of aggregators report the same values.
Consequently, the two tables also report Simpson’s diversity index [1] for each
attribute. This measures the similarity of a sample population and it is computed
as the sum of the squares of all the probabilities for each attribute value, with
a 0 score showing complete diversity and complete uniformity giving a score
of 1. Once again, using this measure, we see a high, but imperfect, agreement
on matters of fact, but continuing diversity in the investment amount.
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3.2 Reporting of HYIP Lifetimes

We now consider the elapsed time between when HYIPs are reported to be
created – or at least when the aggregator learns of their existence – and when
the HYIPs collapse and the aggregator is no longer prepared to track them.

Figure 2 (left) plots the Cumulative Distribution Function (CDF) of the stan-
dard deviations of the reported starting and ending times of HYIPs across ag-
gregators. For around 80% of HYIPs, the standard deviation is very small, at
most a few days. However, for the remaining 20% of HYIPs, there is substantial
disagreement between aggregators. Furthermore, that disagreement is greater
for the last observed time for an HYIP than for the starting time, as indicated
by the slightly lower blue dashed line than solid red line in the graph. This is not
surprising, given that deciding when to drop an HYIP from results is more of a
judgement call for an aggregator than deciding whether to report its existence.

The green dotted line plots the standard deviations for an alternative measure
of HYIP collapse. Aggregators keep track of their own investments in HYIPs,
reporting each day the cumulative return on investment (ROI). Often, the ROI
will ‘flat-line’ – suddenly stop changing – a few days before the aggregator stops
tracking the program, because the HYIP is no longer paying out. Hence, we
can view the time when the ROI stops changing as an alternative indicator
of collapse. As the graph indicates, there is even more variation here – some
aggregators stop receiving payments before others. Again, this is not surprising,
since HYIPs may not stop all payments at once.

Aggregators generally agree on lifetime, but when there are differences they
can be large, so for lifetime value we use the median of the aggregator reports.
By using the median (rather than computing the mean), we are better protected
against a highly divergent aggregator polluting the overall measure.

Overall, our analysis of aggregator reports is that there is no evidence of
collusion, but that their measurements are generally consistent, and that our
further analysis based on the median of aggregator values will be robust.

4 The Collapse of HYIP Programs

An HYIP scheme collapses when it can no longer make the interest payments
that it has promised. While it may not have completely run out of money, a
rational HYIP operator will eventually conclude that paying the next round of
interest payments (or refunding someone’s capital) is less lucrative than shutting
the scheme down and absconding. These calculations are slightly different in cy-
berspace than for real world Ponzi schemes because there will be no bankruptcy
and no liquidators checking to see if any value can be salvaged from the ruins.

4.1 How Long Do HYIPs Survive?

One subtlety in measuring HYIP lifetimes is that some schemes remained viable
at the end of our study, making it impossible to observe when these schemes
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Fig. 2. CDF of the standard deviations of HYIP lifetimes (left); the graph indicates
that aggregators assess similar lifetimes for around 80% of HYIPs. Survival function of
HYIP lifetime (right); the graph shows that most HYIPs collapse within a few weeks,
but that a small fraction can remain open for several years.

ultimately collapsed. This can be solved using survival analysis: the 187 (12% of
the 1 576 total) HYIPs that were still operational at the end of our investigation
are said to be ‘right-censored’.

A survival function S(t) measures the probability that an HYIP’s lifetime is
greater than time t. This is similar to a complementary cumulative distribution
function, except that the censored data points must be taken into account and
the probabilities estimated. We use the standard Kaplan-Meier estimator [2] to
calculate a survival function for HYIP lifetimes.

Figure 2 (right), has a logarithmic x-axis and plots the observed survival
function for HYIPs (using the median observed lifetimes across all aggregators).
The solid blue line indicates the survival function computed using the HYIP’s
last observed time, while the green dotted line plots the survival function using
the ROI flat-line method described in the previous section. For very short-lived
HYIPs (i.e., less than one week), the lifetime measured using the ROI flat-line
method is considerably shorter. However, for longer-lived schemes, the lifetimes
are nearly indistinguishable, so we ignore the ROI flat-line method for subsequent
analysis, and just use the median of the lifetime values.

The survival function data shows us that the while the median lifetime of
HYIPs is just 28 days, one in four will last more than three months, and one in
ten for more than ten months. That is, although many HYIPs collapse almost
immediately, a substantial minority persist for a very long time.

4.2 What Factors Affect HYIP Time-to-Collapse?

Given such regular turnover and wide variation in lifetimes, it is natural to
wonder what might prolong or trigger collapse.
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Fig. 3. HYIP lifetimes: HYIPs with lower daily interest rates tend to last longer before
collapsing (left); HYIPs with longer mandatory investment periods tend to survive
longer (right)

Figure 3 examines how the generosity of the HYIP investment terms affects
the observed lifetimes. On the left, box plots for HYIP lifetimes are given that
span different profit rates. When an HYIP offers a less generous profit rate (less
than a few percent daily), there is a greater chance that the HYIP will survive for
longer. Once the profit rates become more outlandish (such as the half of HYIPs
offering more than 10% daily returns), HYIP lifetimes are more consistently
short. We conclude that the offering of higher rates of return does not bring in
sufficient investment to offset the cost of servicing existing commitments.

Another factor is the minimum investment period required by the HYIP.
Figure 3 (right) plots HYIP lifetimes sorted by investment term. As expected,
HYIPs that require longer investment terms tend to be more stable. However,
we note that there is still substantial variation in lifetime even for less gener-
ous interest rates and longer investment terms. Evidently, some HYIPs cannot
attract enough investment to sustain even these more modest programs.

4.3 Can Users or Aggregators Predict Collapse?

Several aggregators rate HYIP ‘quality’, often on a scale of zero to five stars.
The rating can vary considerably over time, ostensibly according to the risk
level associated with the scheme. Some aggregators also compile user ratings,
typically collected in the form of positive (and sometimes negative) votes. We
now examine how the crowd’s rating compares to that of the curator’s.

We focus on the four aggregators that report both user and aggregator ratings
on a finite scale. Some aggregators simply tally the total number of user votes,
while others report the absolute difference between positive and negative votes.
We exclude these reports from our analysis to ease comparisons. The ratings we
study are based on a score of zero to five, zero to ten, or out of 100; we normalize
all ratings to a percentage.
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While the ratings have been collected throughout an HYIP’s lifespan, we have
decided to take a closer look at the rating given 7 days prior to each HYIP’s
collapse. A low rating issued at this point would indicate to prospective investors
that the bottom will soon fall out (if it has not already). The results are given
in the following table.

User Rating Aggregator Rating
Aggregator # HYIPs Avg. ≤50% ≥80% Avg. ≤50% ≥80%

everyhyip.com 46 87% 13% 85% 20% 83% 9%
hyip.com 265 52% 45% 47% 8% 94% 3%
hyipranks.com 107 96% 4% 96% 35% 89% 7%
hothyips.com 292 50% 48% 46% 32% 92% 0.3%

Average - 60% 38% 57% 22% 92% 3%

Overall, user ratings are consistently much more positive than aggregator
ratings. Consider the ratings for hyipranks.com: the average user rating one
week prior to collapse is 96%. Across all HYIPs, 96% were awarded a user score
of 80% or higher, but only 4% had a score below 50%. By contrast, the average
assessment directly issued by hyipranks.com is only 35%. Moreover, 89% of
HYIPs are given a low score, compared to just 7% that receive a score over 80%.

Why do we see such divergence in ratings? Those who have already invested
in an HYIP have a very strong incentive to attract new investors. Consequently,
they are highly motivated to vote early and often in support of their invest-
ment. The aggregators, on the other hand, fully expect HYIPs to collapse and
must provide more accurate assessments in order to gain the trust of visitors.
Viewed in this way, it is not surprising that the crowd will not accurately predict
collapse.

5 The Role of Digital Currencies

Digital currencies are an essential component of a functioning HYIP ecosystem.
They allow investors to convert local hard currency into a multi-national form
that is suitable for transfers to and from the HYIP. Occasionally an HYIP will
directly accept wire transfers or credit card payments. However, this is unusual
because if the HYIP operator works within the traditional financial system, then
they risk being identified when the fraud collapses, and they will be less sure
that they will be able to hang on to any profits.

We found that 22 currencies were accepted for use at the HYIPs we tracked.
Most of these were only offered by a handful of HYIPs (including 14 HYIPs
that took PayPal, 7 Moneybookers and 1 Western Union). We list the six most
common currencies below and note that the most common, by far, were Liberty
Reserve and Perfect Money, accepted by 83% and 70% of HYIPs, respectively.
Both currencies are based in Central America.
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HYIPs
Currency # % Country % HYIP Backlinks

Liberty Reserve 1 309 83% Costa Rica 33%
Perfect Money 1 095 70% Panama 72%
AlertPay 397 25% Canada 10%
SolidTrustPay 51 3.2% Canada 60%
Pecunix 21 1.3% Panama 81%
GlobalDigitalPay 20 1.3% Hong Kong 71%

Digital currencies are riskier than traditional currencies for both the investor
and the HYIP operator. When the time comes to cash in and convert back to
hard currency, the exchange rate may have changed significantly, or there may
be no liquidity – if many of the customers of a digital currency simultaneously
ask to cash in their holdings, then the currency’s operators may not be able to
pay up (e.g., the HYIP-associated StrictPay currency appears to have collapsed
in this way [3]).

The digital currencies that HYIPs accept have terms and conditions that
forbid their use with HYIPs. This creates the additional risk that assets could
be frozen or confiscated for violating the rules. Furthermore, any digital currency
that facilitates widespread criminality runs the risk of being shut down by law
enforcement, as happened to e-gold [4].

Liberty Reserve has a warning on its website advising against investing in
HYIPs, noting that payments are ‘non-revocable’ and that they cannot be held
liable for fraudulent activities by its users. Such admonishments raise the ques-
tion: how much of these currencies’ profits come from HYIP activity?

We attempt to shed light on this by examining the backlinks from other
websites into the currency websites. We used Yahoo Site Explorer3 to gather
1 000 backlinks for each of the most common currencies and calculated what
proportion of the incoming links came from HYIP-related websites. The results
are listed in the right-most column of the table.

72% of the backlinks to Perfect Money are from HYIP-related websites, as
are 33% of the backlinks to LibertyReserve. This leads us to conclude that a
substantial proportion of the revenue to these currencies comes from HYIPs.
Note that for AlertPay, the third-most popular currency, only 10% of the incom-
ing links are from HYIPs. Indeed, many of AlertPay’s other incoming links are
from legitimate businesses, such as the web-hosting company prodhosting.net,
which uses AlertPay to process payments. AlertPay is based in Canada, and that
may mean that they are more easily pressured by first world regulators, than
the currencies based in Panama and Costa Rica.

6 Policy Options for Disrupting the HYIP Ecosystem

One of the first questions to ask when considering policy interventions into online
scams is how prevalent the scam is. If only a few people are affected, then the

3 http://siteexplorer.search.yahoo.com

prodhosting.net
http://siteexplorer.search.yahoo.com
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criminality may not be worth pursuing, especially when – as in this case – many
of the investors are aware that the sites are fundamentally fraudulent.

It is difficult to directly measure how many people and how much money are
invested in HYIPs. However, we can use some publicly available proxies to derive
an order-of-magnitude estimate of HYIP impact.

As part of its Adwords program, Google offers a Keyword Tool that returns
similar search phrases to those given as input.4 We entered the phrases “hyip”
and “high yield investment program”, and were returned 100 closely related
phrases. Google also offers a related service called Traffic Estimator that esti-
mates for any phrase the number of global monthly searches. We plugged all 102
HYIP-related phrases into the tool to arrive at an estimate of 441 000 monthly
searches for these terms on Google.

We can use this value to create a rough estimate of the monthly investment
levels to HYIPs using the following formula:

$ HYIP invest

month
=

# Google mo. searches

Google market share
×% invest× invest amount

Google’s global market share in search is known to be 64.4% but the other terms
in this equation are much harder to estimate. We do not have reliable data on
the fraction of users who learn about HYIPs that ultimately invest, or how much
money they put in. A plausible, conservative, guess is that at least 1% of people
who search for HYIPs go on to invest in an HYIP.

Researchers investigating spam-advertised pharmaceuticals found that 0.5% of
site visitors added items to their shopping carts [5], while in an earlier study they
found an approximately 8% conversion rate for non-pharmaceutical goods [6].
Leontiadis et al. estimated that between 0.3% and 3% of people looking for
drugs via web search ultimately purchased the goods from illicit retailers [7].
While the investment rate for HYIPs could undoubtedly differ from that for
pharmaceuticals, these data points do suggest that a 1% conversion rate for
HYIPs is plausible.

From observation of the statistical information that some sites provide, we
will guess that the average investment is $1 000. Plugging these numbers into
the above formula we estimate that HYIPs attract at least $6 million per month
in revenue.

Given that around 600000 people search for HYIPs each month, we conclude
that HYIPs are indeed a substantial scam worthy of policymakers’ attention. So
what should be done? We now consider a range of interventions and assess their
likely impact.

Option 1: Engage Law Enforcement. Given that HYIPs are illegal in nearly all
jurisdictions, it is logical to seek the support of law enforcement. In the US, the
Commodity Futures Exchange Commission (CFTC) has been given the power
to enforce violations of the Commodities Exchange Act of 1936. The CFTC
regularly uncovers Ponzi schemes whose perpetrators and victims are based in

4 https://adwords.google.com/select/TrafficEstimatorSandbox

https://adwords.google.com/select/TrafficEstimatorSandbox
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the US. International cooperation is possible: the CFTC recently arrested Jeffrey
Lowrance and extradited him from Peru for allegedly running a Ponzi scheme
that solicited investors via the Internet [8]. Consequently, engaging the CFTC
could lead to successful criminal prosecution.

However, the usual warnings about prosecuting online crime [9] apply: col-
lecting evidence across international borders is difficult, slow and expensive; the
perpetrators may be located in countries unwilling to cooperate. Google’s data
shows that that 85% of HYIP-related searches are made from outside the US, so
victims will be spread across the globe, necessitating an international response.

Policy interventions that apply pressure to key intermediaries have histori-
cally been one of the most successful ways to address illicit activity online. For
example, the US Unlawful Internet Enforcement Act of 2006 has largely elimi-
nated online gambling by US residents by requiring payment processors to block
credit-card payments to offshore gambling sites. The Digital Millenium Copy-
right Act of 1998 created a notice-and-takedown regime whereby online service
providers receive immunity for complying with take-down requests issued by
copyright holders. So we now turn to considering potential intermediaries that
might be enlisted to disrupt the HYIP ecosystem.

Option 2: Target Digital Currencies. The digital currencies that HYIPs rely on
for customer accounts are a logical target. As shown in Section 5, a handful
of currencies facilitate most HYIP transactions. The biggest offenders (Liberty
Reserve and Perfect Money) are undoubtedly aware of their role in funding
HYIPs, so bringing it to their attention is unlikely to make any difference. The
banking regulators in their claimed home countries (Costa Rica and Panama)
might be persuaded to cooperate with an outside crackdown. However, even if
they stopped processing HYIP payments, it is likely that alternative currencies
would come to the fore.

Option 3: Squeeze Credit-Card Payments. Another option is to block the funding
of digital currencies by credit cards. At present, a credit card can be used to
fund the most popular digital currencies, including Liberty Reserve and Perfect
Money. Although this is an obvious opportunity to apply pressure, it might
prove difficult to identify all the intermediaries that can supply the currency,
and ultimately the traffic would shift to wire transfers instead.

Option 4: Undermine Aggregators. A more promising approach is to disrupt the
aggregators, since they are essential for establishing trust in HYIP transactions.

For example, one could target the registrars that have registered the domains
in use. Persistent websites are essential for establishing the reputation of the
aggregators, so they are more likely to be adversely affected by a domain name
seizure than, say, malware-distributing sites. Many aggregators are currently
served by North American companies (e.g., hyip.com and hyipranks.com are
registered through GoDaddy, maxhyip.com is on Tucows, and hyip.com is for
sale by American domain-parking firm Sedo). However, this is likely to require
new legislation, since the aggregators are merely describing and linking to the

hyip.com
hyipranks.com
maxhyip.com
hyip.com
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HYIP sites. It could be some time before such legislation was in place in the
USA, let alone in all the jurisdictions to which the sites could move.

Alternatively, the aggregators’ income stream could be disrupted. Four of
the nine aggregators we studied – hyip.com, iehyip.com, hyipranks.com and
hyipinvestment.com – are members of the Google Display Network. Google,
and the other advertising networks, might choose not to work with sites that
knowingly link to fraudulent sites. Whether stopping this source of income would
cause all the sites to close cannot be known for certain, but it is relatively
straightforward, and arguably in the best interests of the advertising networks
to cease their financial association with criminality comparison sites.

Option 5: Target most the successful HYIPs. A final option is to attempt to
expedite the demise of HYIP websites. While this might appear a hopelessly dif-
ficult task given that we have observed around 1 600 HYIPs in just nine months
of data collection, targeting the small number of long-lived HYIPs could be effec-
tive. A long-lived HYIP is bound to be continuing to attract many victims, since
new recruits are needed to prolong the life of the scam. Consequently, efforts to
disrupt these programs are very likely to reap substantial rewards.

Over one third (49) of the 141 HYIPs that have been online for more than
six months are registered via eNom, a US-based registrar. 26 are registered
through Indian-based Directi, along with another 14 on US-based GoDaddy.
Consequently, making registrars aware of the criminal behavior being facilitated
by these websites could trigger a short-term disruption.

On balance, while each of the discussed options may help, we expect that
options 4 and 5 are likely to be most helpful for disrupting the current HYIP
ecosystem. We also believe that action by law enforcement (option 1) could do
a lot of good in the longer term.

7 Related Work

During the past decade, online criminality has proliferated [9]. In response, a
number of measurement studies have quantified various frauds and recommended
suitable interventions . Of particular relevance are studies that examine user
susceptibility to various scams, such as fake antivirus [10,11] and extortionate
social-engineering scams [12]. Stajano and Wilson identify seven principles com-
mon to offline scams that often translate into online scams [13]. At least five of
these principles apply to HYIP investment: the herd principle (false safety in
numbers), the dishonesty principle (victim’s own illegal behavior held against
him), deception principle (things are not what they seem), need and greed prin-
ciple (desperation increases vulnerability), and the time principle (time pressures
increase bad choices). Consequently, while we believe that many HYIP investors
are likely to be aware of the fraudulent nature of their investment, they are
nonetheless being masterfully deceived by con artists. Furthermore, it is entirely
plausible that some victims fully believe in the legitimacy of their investment.

The use and abuse of digital currencies has been examined since the inception
of the Financial Cryptography conference. Optimists pointed to the potential to

hyip.com
iehyip.com
hyipranks.com
hyipinvestment.com


54 T. Moore, J. Han, and R. Clayton

enhance revenue [14] or freedom through anonymity [15]. However, even in these
early days, others fretted about the potential for abuse of digital cash, such as
money laundering [16]. More recently, Anderson identified non-revocability as
the key feature of digital payments that appeals most to online criminals [17].
Indeed, the non-revocability of payments issued in the currencies underpinning
the HYIP ecosystem is essential for its successful operation.

The security and reliability of crowdsourcing in information security appli-
cations has been investigated by Moore and Clayton [18] (phishing) and Chia
and Knapskog [19] (web security). These papers discuss the distinct challenges
of crowdsourcing applications when participants may be motivated to lie, as we
have found for users promoting flagging HYIPs.

A final area of relevant work is in the examination of interventions to com-
bat online crime. In an expansive study of goods advertised by email spam,
Levchenko et al. [20] found substantial concentration in the registrars used by
spam-advertised websites. They also found that only 3 banks processed the bulk
of payments. We report similar levels of concentration in the HYIP ecosystem.
Clayton described how shutting down hosting providers that facilitate spam
transmission can have a disruptive short term effect [21]. Finally, Liu et al. [22]
examine the prospects of enlisting registrars to suspend ‘known bad’ domains,
concluding that the criminals are more adept at shifting to new domains faster
than the offending domains can be suspended. While this may be true for do-
mains used in email spam, we are more optimistic for registrar-level intervention
in combating HYIPs due to the persistence of successful schemes.

8 Conclusions and Future Work

We have presented the first detailed analysis of HYIPs – fraudulent online Ponzi
schemes. We have provided some baseline measurements by leveraging data from
the aggregator sites that exist to help investors pick where to place their money.
We have shown that the aggregators are basically truthful, and used their data
to show that HYIPs last longer with lower interest rates delays before payments
are made. We have also shown that the aggregators are better than ‘the crowd’
in warning of HYIP collapse, which we believe is directly related to the crowd
actively wishing to hype the prospects of the HYIP they are invested in.

Nontheless, this paper has only scraped the surface in measuring and under-
standing HYIPs, and there is much more data to collect and process. It is already
clear to us that many of the sites are related to each other as criminals create
new instances to replace HYIPs that have collapsed. We have been unable, so far,
to use WHOIS data to identify serial offenders but we expect to make headway
when we consider the structure and content of the websites.

We are particularly interested in the subset of HYIPs that provide a running
commentary on the number of accounts opened, and the sums of money being
invested, withdrawn and paid out as interest. We hope to use these to build
a better model of HYIP collapse, and provide better estimates of the sums of
money passing through these criminal enterprises.
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As we extend our analysis and measurement of harm, we intend to ensure that
this paper’s other key contribution – a detailed analysis of how this criminality
might be disrupted – may be of even greater relevance to policy makers.
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Abstract. We show how to collect and analyze financial data for a
consortium of ICT companies using secret sharing and secure multi-
party computation (MPC). This is the first time where the actual MPC
computation on real data was done over the internet with computing
nodes spread geographically apart. We describe the technical solution
and present user feedback revealing that MPC techniques give sufficient
assurance for data donors to submit their sensitive information.
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1 Introduction

Financial metrics are collected from companies to analyze the economic situation
of an industrial sector. Since this data is largely confidential, the process can not
be carried out just by sending the data from one company to another. We claim
that the use of secure multi-party computation (MPC) distributes the role of a
trusted third party among many parties so that none of them has to be trusted
unconditionally. The greatest added value for the companies is that no single data
value can be seen by a single outside party after it leaves the user’s computer.

In this paper we describe a secure system for collecting and analyzing financial
data in an industrial consortium. The system was deployed for ITL—an Estonian
non-governmental non-profit organization with the primary goal of promoting
co-operation between companies engaging in the field of information and com-
munication technology. The data collection and analysis system was built using
the Sharemind secure computation framework [7].

Some of the details of this work have been omitted because of space limita-
tions. The extended version of this paper that covers all these details can be
found in the IACR ePrint Archive [8].

MPC has been studied for almost thirty years and recently, manyMPC projects
have started reaching practical results [9,10,1,7,13,15,4,11]. However, to the best
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of our knowledge, this is the first time where the actual securemulti-party function
evaluation was done over a wide area network (the internet) using real data.

In 2004, J. Feigenbaum et al. implemented a privacy-preserving version of
the Taulbee Survey1 using MPC [11]. Their implementation used secret sharing
at the data source and two parties evaluating a Yao circuit over a wide area
network. However, their implementation was never used with real data [12].

MPC was first used in a large-scale practical application in Denmark in 2008
when a secure double auction system allowed Danish sugar beet farmers to trade
contracts for their production on a nation-wide market [9]. The Danish system
used three secure computation servers. In the farmers’ computers, each share of
private data was encrypted with a public key of one of the computation servers.
The encrypted shares were sent to a central database for storing. In the data
analysis phase, each computation node downloaded their corresponding shares
from the central database and decrypted them. The actual MPC process was
performed in a local area network set up between the three computation nodes.

2 Sharemind

Sharemind [7] is a distributed virtual machine that uses secure multi-party
computation to securely process data. Sharemind is based on the secret sharing
primitive introduced by Blakley [6] and Shamir [16]. In secret sharing, a secret
value s is split into a number of shares s1, s2, . . ., sn that are distributed among
the parties. Depending on the type of scheme used, the original value can be
reconstructed only if the shares belonging to some predefined sets of parties are
known. Sharemind uses the additive secret sharing scheme in the ring Z232 as
this allows it to support the efficient 32-bit integer data type.

Sharemind uses three data miners to hold the shares of secret values. Secret
sharing of private data is performed at the source and each share is sent to
a different miner over a secure channel. The miners are connected by secure
channels and run MPC protocols to evaluate secure operations on the data. The
Sharemind protocols are secure in the honest-but-curious model with no more
than one corrupted party. The honest-but-curious model means that security is
preserved when a malicious miner attempts to use the values it sees to deduce
the secret input values of all the parties without deviating from the protocol.

To set up a Sharemind application we first have to find three independent
parties who will host the miner servers. In a distributed data collection and anal-
ysis scenario, it is possible to select the parties from the organizations involved
in the process. Second, we have to implement privacy-preserving data analysis al-
gorithms using a special high-level programming language called SecreC [14]. In
the third step, we use the Sharemind controller library to build end-user applica-
tions that are used for collecting data, starting the analysis process and generating
the reports.

1 Computing Research Association, Taulbee Survey,
http://www.cra.org/statistics

http://www.cra.org/statistics
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3 The Application Scenario

In Estonia, the Ministry of Economic Affairs and Communications publishes an
economic report every year, combined from all of the annual reports of Estonian
companies. However, while this report is accurate and gives a detailed overview
of the country’s economic situation, it is only compiled once a year and by the
time it is published, the data is already more than half a year old.

Since ICT is a rapidly evolving economic sector, ITL members would like
to get more up-to-date information about the sector to make better business
decisions. ITL decided to collect basic financial data from its members twice a
year and publish them as anonymized benchmarking results for its members.
As the collected data does not have to be audited, the data collection periods
can be shorter, which means that the published benchmarking results will be
up-to-date.

During our interviews, ITL representatives described a solution they had
imagined. They would collect the following financial indicators:

– total return, number of employees, percentage of export, added value —
semi-annually;

– all of the above plus labour costs, training costs and profit — annually.

After each collection period, the values would be anonymized (i.e. the company
identifiers removed) and each indicator would be sorted independently to reduce
the risk of identifying some companies by just looking at a set of financial indi-
cators. For example, combining total return, number of employees and profit, it
could be easy to identify some ICT companies. However, when sorting by each
indicator independently, a company that is the first when sorted by one indicator
might not be the first when sorted by another indicator.

Sorting the collected data by each indicator separately gives us a slightly
stronger privacy guarantee than just stripping away the identifying information.
However, all of the collected data is still accessible by the ITL board, which con-
sists of the leaders of competing ICT companies. This means that ITL members
must trust the ITL board not to misuse or leak the collected information. Con-
sequently, ITL member companies might be reluctant to participate and give
away their sensitive economic information, as it can be seen by their competi-
tors. ITL members are required to trust the board with their data and this is
quite a significant assumption.

3.1 Reducing Trust Requirements

We proposed to use the Sharemind framework to collect and analyze the fi-
nancial data to address the shortcomings of the initial solution. By using se-
cret sharing at the source and distributing the sensitive values among the three
Sharemind data miners we make sure that no single party has access to the
original values. Hence, we also have a lower risk of insider attacks and uninten-
tional disclosures (e.g. data leak via backup). Most importantly, the use of MPC
reduces the trust that ITL members need to have in any single party.
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After data has been collected from all of the members, the data miners engage
in secure MPC protocols and sort all the collected economic indicators. The
sorted indicators are then published as a spreadsheet and made accessible to the
board members of ITL. The board can then calculate aggregate values and/or
charts and give this edited report to the members. The data flow and visibility
to different parties for this solution is shown on Figure 1.

Fig. 1. Data flow and visibility in the improved solution using the Sharemind frame-
work

4 The ITL Secure Data Aggregation System

4.1 Deployment

In the real-life deployment, the Sharemind miners are hosted by three Esto-
nian companies and ITL members—Cybernetica, Microlink and Zone Media.
Choosing the miner hosts among the consortium members fulfills the following
requirements set for the data miners: a) they are motivated to host the miners,
as this project would also be beneficial for themselves; b) they are independent
and will not collude with each other as they are also inserting their own data into
the system and want to keep it private; c) ITL members act in the field of infor-
mation technology, thus they have the necessary infrastructure and competence
to host a Sharemind server.

As the miner hosts provided their servers with no cost, they wished to reduce
the effort needed to maintain the servers. Thus, all of the three miner hosts were
set up by a single administrator who also regularly executes the computations.
Ideally, each host should be maintained by its respective owner and this should
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be a rule in all future deployments of the technology. We consider it an impor-
tant challenge to reduce the administrative attention required for managing a
Sharemind miner to a minimum as this makes miner host selection easier and
makes the technology easier to deploy in practice.

4.2 Securing Web-Based Data Collection

ITL requested that the online data submission form should be integrated into
their web-based member area. This way, the representatives of ITL members can
access everything related to ITL from one familiar environment. It also allows
us to reuse the authentication mechanisms of the ITL web page.

We have developed a JavaScript library that can be used to turn a basic
HTML form into an input source for secure MPC applications with minimal
effort. This library [17] performs secret sharing on the user-entered data and
distributes the shares among the three miner hosts using HTTPS connections.

Security. The representatives of an ITL member company can log in to the ITL
member area over an HTTPS connection using either their credentials (username
and password) or more securely, using the Estonian ID-card or Mobile-ID.

We use access tokens to make sure that only representatives of ITL member
companies are able to send shares to the miners. A random access token is
generated by the ITL web server and sent together with the form each time the
financial data submission form is requested by one of the logged-in users. The
JavaScript library used in the submission form sends this token together with
the corresponding shares and other submission data to each miner. Before saving
the received shares into the database, the miner contacts the ITL web server and
confirms that this token was really generated for the current submission form,
the current company and has never been used for any submission before. The
latter means that access tokens also act as nonces to rule out any replay attacks.

All the communication between a miner and the ITL web server is done
over the HTTPS protocol and a unique, previously agreed and pre-configured
passphrase is used to identify each miner to the ITL web server. If a miner re-
ceives a positive reply from the ITL web server, it saves the received shares to
its local database and notifies the submission form. If the latter receives these
notifications from all three miners, it marks this submission form as “submitted”
in the ITL web server. This also invalidates the used nonce.

4.3 Maintaining Confidentiality During Data Analysis

After the data collection period has ended, the secure MPC protocols can be
started. Each Sharemindminer has a copy of a SecreC script that loads shares
from the miner’s database and uses a secure MPC implementation of an oblivious
Batcher’s odd-even merge sorting network [3] to sort the underlying private data
vector. All of the collected financial indicator vectors are sorted separately in that
manner and the results are published on the ITL web page member area for the
ITL board members as an Excel spreadsheet. After reviewing the results, the
board forwards this report to all other ITL members.
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Table 1. The secure analyses performed on the collected financial data

Analysis operation Required MPC primitives

Sorting each financial indicator vector. Oblivious sorting algorithm using a sorting
network. Requires multiplication, addition
and comparison.

Privacy-preserving filtering to keep only
the data values that were really submitted
by the end user.

Casting boolean to integer, vector multi-
plication.

Calculating a new composite indicator,
added value per employee.

Division of secret shared values.

Time series for each financial indicator over
all of the three forms.

Sorting the columns in a secret shared ma-
trix by the values in one of the rows.

Security. Sharemind uses the RakNet library2 for its network layer. The RakNet
library provides secure connections between the data miners using efficient 256-
bit elliptic curve key agreement and the ChaCha stream cipher [5]. While the
latter choice is not standard, the best known attacks against ChaCha are still
infeasible in practice [2]. This technique is used to encrypt all the communication
between the Sharemind miners as well as between the miners and the controller
applications (e.g. analysis applications).

5 Secure Financial Statistics in Practice

The described solution was deployed in the beginning of 2011 and has been al-
ready used to collect financial data for several periods. After each data collection
period, the system used secure MPC protocols to sort each financial indicator
vector and published the results as a spreadsheet for the ITL board.

In addition to this, the ITL board requested a few extra reports. A list of the
analyses performed on the collected financial data, together with the required
computational routines, are listed in Table 1. The implementation was relatively
effortless as we were able to create new algorithms in SecreC and deploy them
at the miners. This justifies the use of a general-purpose secure MPC framework.

We conducted a survey among ITL members in the second data collection
period, asking about the motivation and privacy issues of the participants. While
the number of responders is not large enough to draw statistically significant
conclusions, they still cover the most important players in the Estonian ICT
market. As seen in Figure 2a, most of the participants feel that collecting and
analyzing the sector’s financial indicators is beneficial for themselves. We can
also see that most of the participants are concerned about their privacy as they
familiarized themselves with the security measures taken to protect the privacy of
the collected data (Figure 2d) and about half of the participants submitted their
data only because they felt that the system is secure in that matter (Figure 2c).

2 RakNet – Multiplayer game network engine, http://www.jenkinssoftware.com

http://www.jenkinssoftware.com
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(a) Does collecting and analyzing the economic informa-
tion benefit your company in any way?

(b) Which extra indicators are you
willing to submit for the anonymous
analysis?

(c) Did the explanation of applied security measures
make it easier for you to submit your sensitive infor-
mation?

(d) Did you familiarize yourself with
the provided materials that explained
which security measures were taken to
protect the sensitive information?

Fig. 2. Results from the feedback questionnaire

The fact that most of the participants are willing to submit even more indicators
(see Figure 2b) shows once more that ITL members are pleased with the security
measures employed in this system to protect the participants’ privacy.

6 Conclusions and Future Work

We have described a solution for securely collecting and analyzing financial data
in a consortium of ICT companies. Companies are usually reluctant to disclose
their sensitive financial indicators, as it is difficult for them to trust the parties
who have access to their data for the purpose of analyzing it. The use of secure
MPC means that the companies do not have to trust any one party uncondi-
tionally and their sensitive data stays private throughout the analysis process.

The system was implemented and deployed in the beginning of 2011 and
is in continuous use. To the best of our knowledge, this is the first practical
secure MPC application where the computation nodes are in separate geographic
locations and the actual MPC protocol is run on real data over the internet.

A survey conducted together with one of the collection periods shows that
ICT companies are indeed concerned about the privacy of their sensitive data
and using secure MPC technology gives them enough confidence to actually
participate in the collective sector analysis process. Moreover, thanks to the
increased security and privacy measures, many companies are also willing to
submit some extra indicators during the data collection process in the future.

Based on the experience of the ITL financial statistics application we conclude
that MPC-based applications can be successfully deployed for real-life problems.
Performance of the available implementations is no more a bottleneck, but more
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effort needs to be put into making application deployment and administration
easier. Our current setup works over open internet, but still assumes relatively
well controlled environment for the miner hosts. The next logical step is to study
the challenges arising from cloud-based installations, and this remains a subject
for future developments.
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Abstract. We present an interesting new protocol where participants in a se-
curities exchange may submit cryptographically encrypted rules directly to an
exchange rather than orders to buy and sell. We define this in two parts: a secure,
partially trusted computer that runs the exchange and proves its actions correct,
and a set of participants who define the rules and submit them to the exchange.
At each “tick” of the exchange, market prices are taken from the national mar-
ket system, all submitted rules are evaluated, with any resulting trades executed
at market prices. Cryptography reduces information leakage, masks participants’
intent, and provides for verification. A cryptographic audit trail proves that all
transactions executed by the exchange are according to a set of published ex-
change rules and the encrypted trading rules.

1 Introduction

In [19,18] Thorpe and Parkes introduced cryptographic exchanges for individual secu-
rities and baskets of securities, motivated by increasing transparency without the un-
favorable price impact and possible exploitation of information associated with full
disclosure. The cryptographic securities exchanges they describe require market partic-
ipants to submit specific intended trades to a marketplace. Our protocol is designed to
enable a marketplace in which participants send firm commitments to rules that trigger
trades rather than the trades themselves.

Our work is motivated by growing demand for algorithmic trading, including in the
context of alternative trading systems (ATSs) and electronic clearing networks (ECNs)
for block trading. Many of these systems, known as “dark pools”, keep trade infor-
mation secret, and instead introduce counterparties interested in trading with one an-
other. They typically trade large positions that would result in significant price impact
if traded on a primary securities exchange like the NASDAQ or New York Stock Ex-
change. Some of these systems also offer participants the ability to indicate interest in a
transaction for a defined quantity of one particular security. This limitation implies that
orders are nonbinding, which means that sometimes trades don’t work out and parties
feel like they disclosed information unnecessarily.

Disclosure typically has a cost; academic and applied finance accepts that foreknowl-
edge of an large trade can be exploited for financial gain [11,9]. On the other hand,
binding orders at a fixed price result in the free trading option problem: a limit order
grants other market participants an option to buy or sell securities at that price, for free.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 65–72, 2012.
c© International Financial Cryptography Association 2012
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We illustrate the problem with an example: Say Alice places an order in a dark pool
to buy 100,000 shares of XYZ Corp. at $9.00. The stock is currently trading at $10.00.
Then Alice goes away for lunch and returns to discover that XYZ’s CFO resigned due to
accounting irregularities and the stock immediately dropped 25% to $8.00 with trading
volume at several times the 90-day average. Since she was literally out to lunch and
unable to cancel her buy order, Alice’s order would have been immediately filled as the
price dropped, as her free trading option was exercised by someone in the market. (She
loses $100,000.) Harris’ Trading & Exchanges [8] offers a detailed description of the
free trading option.

Our exchange allows Alice to submit a rule-based trade rather than a simple limit
order, still in the context of a dark pool where her intentions can remain secret from
other market participants. The exchange executes (or does not execute) every order
based on its rules, and proves that every action was based on the committed rules,
rather than requiring that participants simply trust its activities. This, in the context
of hardware and network security, can reduce the risk of unauthorized disclosure or
trading.

These are not theoretical risks: the SEC has already settled with a major dark pool
operator and two of its executives after alleging it was facilitating client trades using a
subsidiary without disclosing that conflict, and leaking information to internal staff [3].

1.1 Properties of Our Exchange

We describe a small example language with which various rules may be expressed and
represented in an encrypted form that does not reveal unnecessary information about the
rules.

Such an exchange where the rules are submitted secretly but uses no cryptography
has the following positive (+) and negative (−) characteristics:

+ Rules can avoid the free trading option problem.
+ Network latency between the participants and the exchange is no longer as valuable,

because it is only relevant when the rules change. In fact, the exchange could require
that a participant’s rules can only change when the exchange is not operating.

− Everyone must trust that the exchange is operating fairly.
− Participants may be unwilling to reveal their rules, which prevents transparency or

external verification.

By adding cryptography, we obtain the following characteristics:

+ The exchange can issue a trustworthy audit trail based on all market participants’
encrypted algorithms.

+ The audit trail does not have to reveal anything except the encrypted algorithms
and the trades they took.

+ The only trust is that the exchange is secure, and information is not leaking. The
audit trail ensures correct outcomes.

+ Cryptography adds complexity and time in fast-moving markets. We separate real-
time decisionmaking from asynchronous correctness proofs so that the exchange
may run the rules as efficiently as possible, while still proving its activities correct
after the fact.



Cryptographic Rule-Based Trading 67

There are clearly dangers in such a system, though these exist already in modern al-
gorithmic trading. For example, algorithmic trading is likely to have led to a “flash
crash” where computers programmed to exit in panic sold significant holdings all at
once [20,10]. Algorithms could create circular trading patterns that simply trade with
each other absent other information entering the market. Other risks include the secu-
rity of the computer operating the exchange and its cryptographic keys, the particular
implementation of the underlying cryptographic scheme, and other standard security
risks associated with an applied cryptographic system.

Finally, although a collection of algorithms can lead to unintended consequences, a
model in which the exchange hosts the algorithms may actually help to alleviate mar-
ket risk.1 Armed with the suite of algorithms defining how its participants behave, the
exchange could run tests on the entire market to identify areas of instability without
revealing any particular participant’s algorithms. The ability to simulate a cohort of
trading agents in various market conditions could eventually lead to better risk manage-
ment for participating institutions and improve overall market stability.

In fact, U.S. senators who regulated and investigated financial markets have argued
for the necessity of better audit trails and protections against future flash crashes [10].
Practical technologies may offer important solutions to these very real problems.

1.2 Preliminaries

For convenience and brevity, we assume a set of primitive operations for provably cor-
rect secure computation based on homomorphic cryptography as set forth in various
sources, e.g. [18]. Most important is the ability to prove that a ciphertext is the en-
cryption of the result of a polynomial function over multiple encrypted values and/or
constants known to a verifier (and whose corresponding plaintexts are neither known
nor learned.)

In addition, these systems permit proving inequalities: which of two ciphertexts rep-
resents a larger value; and equality: that two ciphertexts represent the same value; with-
out revealing any further information about the ciphertexts. Interval proofs (see, for
example, [2,12,15]) make this possible.

If a homomorphic cryptosystem used for the computations is homomorphic only in
addition, such as the system described by Paillier [14] and elaborated by Damgård in
[5] and Parkes et al. in [15], then additional preparation is required to prove results of
computations employing both additions and multiplications. Rabin et al.’s scheme [16]
based on splitting values into hashes of random pairs also enjoys the provably cor-
rect secrecy on addition and multiplication necessary to perform these computations.
Gentry’s “fully homomorphic” scheme [6,7] and related systems [21,4] do not require
the prover to prove multiplications correct, simplifying the verification operations. Al-
though they have been implemented and tested, in practice they seem to be less efficient
than Paillier’s scheme.

Finally, we observe that in high-frequency implementations the ability to pre-
and post-process the bulk of the cryptography is critical. For example, in Paillier

1 Szydlo [17] introduced the idea of homomorphic cryptography for risk analysis, though his
work is limited only to an individual portfolio and not market risk.
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cryptography, the most expensive operation in an encryption is a modular exponenti-
ation of a random help value, which may be precomputed provided the result is kept
secure. In practice, a market participant might prepare a large number of these precom-
puted values to enable rapid submission of information into a rapidly changing market.
Traders are now using field-programmable gate arrays to reduce execution time [13],
and some have even considered creating application-specific integrated circuits encod-
ing the most valuable trading algorithms. Simple rules could be encoded in these hard-
ware or firmware structures, allowing hardware to make decisions at lightning speed
with software proving the results correct.

That said, our or similar protocols could be implemented on a platform such as se-
cure multi-party computation (see e.g. Bogetoft et al. [1]) that offers stronger security
guarantees. In our view, provable correctness with a partially trusted exchange is an
important, intentional tradeoff of perfect security versus business pragmatics.

In this short paper, we refer the reader to this previous work for further detail on the
various cryptosystems.

2 The Protocol

We describe an example protocol with sample rules to illustrate our idea. Our objective
is not to define the only way to implement such an exchange, but to show how market
designers may design an exchange in our framework.

2.1 The Rules

A rule is an optional trigger and an action. The trigger is a set of conditions in the
marketplace, such as a price target, a difference in price movement versus that of an-
other asset, or a trading volume target. It is inherently conditional: take an action if the
conditions are true. A rule with no trigger takes place at each tick.

A trigger may also be a combination of other triggers via (else) or logical operator
(and, or, xor).

The action is a trade, which we represent by a set of quantities for each security in
the universe served by the market. For example, in an exchange specializing in the S&P
500 stocks, the action would consist of 500 encrypted positive or negative integers to
represent how many shares to buy or sell, respectively, with each integer corresponding
to a security. Some rules might have a null action (all zeroes) so that a participant can
always submit the same number of rules to hide trading interest.

Some trades include a price vector which includes the least attractive prices at which
the associated quantities may be traded. We also use the term “order” to refer to a trade
caused by an action.

In our example, observers can also learn something about the structure of the rules
by the way they are evaluated, but can’t learn to which securities the rules apply. All
rules are applied to vectors of securities. For example, in our universe of 500 securities,
VECTOR might be a vector of 500 encryptions of prices, volume, etc. which are mostly
zeroes in order to mask the relevant securities.

There may be situations in which only one of two or more rules may be triggered.
Thus, the exchange also needs a policy to break ties. A rigorous treatment of tiebreaking
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is beyond the scope of the short paper format, but because arbitrary computations can be
proven correct, many tiebreaking functions are possible; some of these include random
precedence, global welfare maximization, or precedence by submission time.

An alert is a “panic button” in which a rule may indicate that the computer has
encountered an unexpected market situation and seeks human intervention or guidance.

For our example, we define a simple language in which each rule may be built. We
propose a simple language to illustrate what this might look like. Each executed action
results in an id, e.g. a confirmation number so that an order may be canceled later.
Some orders are easily encoded, e.g. stop loss orders, which are a trigger to sell when
the market prices drop below the stop loss. It would be straightforward to extend to more
complex orders, e.g. “fill or kill” that required immediate and complete execution.

RULE: ACTION

RULE: if TRIGGER ACTION

RULE: if TRIGGER ACTION else RULE

ACTION: ACTION, ACTION -- an action may be a sequence

ACTION: trade VECTOR -- market order: shares

ACTION: trade VECTOR at VECTOR -- limit order: shares at prices

ACTION: cancel ACTION_ID

ACTION: alert

TRIGGER: (TRIGGER)

TRIGGER: TRIGGER and|or|xor TRIGGER

TRIGGER: now between BEFORE and AFTER -- date/time comparison

TRIGGER: prices > VECTOR

TRIGGER: volume > VECTOR

VECTOR: [AMOUNT, AMOUNT, ... AMOUNT] -- one for each security

AMOUNT: +|- (${dollar amount}|{integer} shares)

SYMBOL: { universe of securities }

ACTION:ID: { id of previously executed action }

So, for example, one rule might be “At each round, I’d like to buy 1,000 shares of
security #2 for up to $50 per share if volume is less than 10,000 shares, or up to $45 per
share if volume is less than 20,000 shares.”2

if ( volume < [NA, 10000, ...] and prices <= [NA, 50, ...] )

or ( volume < [NA, 20000, ...] and prices <= [NA, 45, ...] )

trade [0, +1000, ...]

A market maker might guarantee certain securities can be traded at all points in time
at some cost with simple price-bounded rules.

For her part, Alice, to avoid losing her lunch upon returning to the office, might have
submitted an order like the following:

if ( price <= [NA, 9.00, ...] and volume < [NA, 20000000, ...] )

id = trade [0, +100000, ...] at [NA, 9.00, ...]

if ( volume > [NA, 20000000, ...] )

cancel id

2 A participant may wish to trade a smaller number of shares in several trades over time to obtain
an average price.



70 C. Thorpe and S.R. Willis

Alice places a conditional order to buy 100,000 shares if the price drops to $9.00 per
share and volume is within 2x of normal. However, she also places an order to cancel
her limit order if it is triggered and volume later exceeds normal trading volume. Alice
can keep her orders secret but retain protection against the free trading option of a limit
order.

In practice, NA values will be implemented by an extremely large (functionally infi-
nite) positive integer for upper bounds, and an extremely large negative integer for lower
bounds, so that those elements of each vector are always matched. Care should be taken
if encoding these values in a finite field commonly used by homomorphic encryption
schemes to ensure that the interval proofs remain valid.

2.2 Exchange Process

For simplicity, we have designed the process to occur at discrete time intervals rather
than as a stream of orders as is common in many electronic trading systems.

The exchange is able to decrypt the trading rules in the setup phase, and the verifica-
tion takes place after the fact. All live trading is conducted in real time by the exchange;
the cryptographic proofs serve to keep everyone honest.

The discrete ticks driving the exchange forward might occur at the arrival of each
new quotation, every second, every hour, or at other designated times of day. At each
tick, the exchange establishes a “market price” for the securities from existing quota-
tions for the security. In synchronous models with longer discrete times between ticks,
the exchange would obtain market prices from a fair source, for example, equities traded
on the New York Stock Exchange and NASDAQ might trade at the midpoint of the na-
tional best bid and offer (NBBO). This technique is used by existing dark pools.

The exchange conducts the following steps:
Setup. The exchange accepts encrypted rules from all participants before evaluating

the rules at each tick. The exchange and the participants also publish their encrypted
rules. These are used to validate the audit trail.

The following steps are repeated for each tick:

Step 0. (Optional.) The exchange withdraws any rules at participants’ requests.
Step 1. The exchange evaluates all the rules based on the time and date of the tick,

and the market prices at the time of the exchange.
Step 2. The market clears at exchange prices according to the submitted trading

rules and exchange policies. In this step, the market first evaluates every trigger, then
generates a list of trades to execute. In the event of incompatible trades, ties are broken
according to published rules (possibly including randomness).

Step 3 (offline). The exchange publishes a proof proving why the accepted trades are
consistent with policies and the trading rules. For example, to prove
( volume < [NA, 10000, ...] and prices <= [NA, 50, ...] )

the proof would use the participant’s encryptions of [NA, 10000, ...], [NA, 50,

...] and issue pairwise proofs for the current trading volume and price of each security.
Proofs of any broken ties are also issued.

In this case, the exchange would prove that (a) the volume of security 0 is less than
NA (a huge integer) and the volume of security 1 is less than 10,000; and (a) the price
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of security 0 is less than NA (a huge integer) and the price of security 1 is less than $50.
This adds the (encrypted) trade vector [0, 1000, ...] to the list of executed trades for
that participant. Because the trade vectors can be encrypted, an aggregate trade vector
across all trades can be printed. This can further mask a trading algorithm while still
providing transparency and auditability.

Step 4 (offline). The exchange publishes a record (“prints the ticker”) of the accepted
trades in accordance with regulation and notifies the participants whose rules generated
trades. The exchange issues a proof that the encrypted trade vectors of all executed
trades sum to the zero vector [0, 0, ... 0] (assuming no public offerings!).

Afterward, anyone can verify the proof using the encrypted trading rules.

3 Conclusions

When compared to existing dark pools, our protocol offers a few material advantages.
First, it permits participants to see that their trades are being executed according to
the rules without favoring particular parties (e.g. clients with other business.) Second,
it protects them from having to monitor exchange movements in real time on their
own. Third, it enables the exchange to examine systemic risks or even simulate various
scenarios on the market in a fundamentally new way.

There are rich implications for risk management. Participants are able to judge for
themselves what “bad news” looks like based on market information ahead of time and
have those rules within the exchange before a big event. That also means that partici-
pants don’t have to worry about whether their connection to the exchange will be up or
whether they can get trade execution during a crisis moment.

On the other hand, it is not known whether market participants will be willing to
share trading rules with a third party, even if it is a locked down computer system. This
information may be simply too sensitive for some. Based on the evidence that some
institutions share meaningful information with ECN’s like LiquidNet and Pipeline, we
believe that an exchange that offers better liquidity, lower price, or reduced disclosure
may be interesting.

It may also be challenging to craft a set of rules that offer sufficient expressiveness
while still working within our provably correct framework. Nonetheless, we view this
novel approach as an interesting continuation of past research in applications of cryp-
tography in exchanges of assets.

Future work on this topic might include a richer set of trading rules, a prototype
implementation of an exchange with performance analysis, and additional discussion
with market participants about what features they would like to see.
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5. Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Pail-
lier’s Probabilistic Public-key System. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 119–136. Springer, Heidelberg (2001)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178
(2009)

7. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer,
Heidelberg (2011)

8. Harris, L.: Trading and Exchanges. Oxford University Press (2003)
9. Johnson, J., Tabb, L.: Groping in the dark: Navigating crossing networks and other dark pools

of liquidity (January 31, 2007)
10. Kaufman, E.E., Levin, C.M.: Preventing the next flash crash. The New York Times (May 5,

2011)
11. Keim, D.B., Madhavan, A.: The upstairs market for large-block transactions: Analysis and

measurement of price effects. Review of Finacial Studies 9, 1–36 (1996)
12. Kiayias, A., Yung, M.: Efficient Cryptographic Protocols Realizing E-Markets with Price

Discrimination. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
pp. 311–325. Springer, Heidelberg (2006)

13. Madhavapeddy, A., Singh, S.: Reconfigurable data processing for clouds. In: Proc. IEEE
19th Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), May 1-3 (2011)

14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg
(1999)

15. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.A.: Practical secrecy-preserving, verifi-
ably correct and trustworthy auctions. In: Electronic Commerce Research and Applications
(2008) (to appear)

16. Rabin, M.O., Servedio, R.A., Thorpe, C.: Highly efficient secrecy-preserving proofs of cor-
rectness of computations and applications. In: Proc. IEEE Symposium on Logic in Computer
Science (2007)

17. Szydlo, M.: Risk Assurance for Hedge Funds Using Zero Knowledge Proofs. In: Patrick,
A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 156–171. Springer, Heidelberg (2005)

18. Thorpe, C., Parkes, D.C.: Cryptographic Combinatorial Securities Exchanges. In: Dingle-
dine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 285–304. Springer, Heidelberg
(2009)

19. Thorpe, C., Parkes, D.C.: Cryptographic Securities Exchanges. In: Dietrich, S., Dhamija, R.
(eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 163–178. Springer, Heidelberg (2007)

20. U.S. CFTC and U.S. SEC. Findings Regarding the Market Events of May 6, 2010 (September
30, 2010)

21. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. Cryptology ePrint Archive, Report 2009/616 (2009)



Efficient Private Proximity Testing
with GSM Location Sketches

Zi Lin, Denis Foo Kune, and Nicholas Hopper

Computer Science & Engineering, University of Minnesota,
Minneapolis, MN 55455

{lin,foo,hopper}@cs.umn.edu

Abstract. A protocol for private proximity testing allows two mobile users com-
municating through an untrusted third party to test whether they are in close phys-
ical proximity without revealing any additional information about their locations.
At NDSS 2011, Narayanan and others introduced the use of unpredictable sets of
“location tags” to secure these schemes against attacks based on guessing another
user’s location. Due to the need to perform privacy-preserving threshold set in-
tersection, their scheme was not very efficient. We provably reduce threshold set
intersection on location tags to equality testing using a de-duplication technique
known as shingling. Due to the simplicity of private equality testing, our result-
ing scheme for location tag-based private proximity testing is several orders of
magnitude more efficient than previous solutions. We also explore GSM cellular
networks as a new source of location tags, and demonstrate empirically that our
proposed location tag scheme has strong unpredictability and reproducibility.

1 Introduction

The ability to test for physical proximity to one’s friends, co-workers, family, or ac-
quaintances can be useful in a variety of settings. For example, proximity testing has
been found to facilitate in-person collaboration and thus increase work productivity
[17]. It also has potential for building social networks, since sharing proximity fre-
quently over time indicates common activities and interests, an important factor in
friendship [25]. Narayanan et al. [22] list a variety of further scenarios in which it might
be useful.

Although RF-based Inter-personal awareness devices (IPAD) were developed in 1991
[17], proximity awareness did not gain much attention until the proliferation of smart-
phones and online social networking sites. Equipped with GPS receivers and/or base
station triangulation, most smartphones are able to pinpoint their geographic coordi-
nates. As a result, several social networking services have been built to use these fea-
tures. These location-based services ask phone users to submit their presence in a given
venue (“check-in”) so that friends can interact based on the location proximity. While
these services offer many benefits, they also carry significant risks: users must trust the
service providers and their friends to handle this location data properly. Unfortunately,
it is well-established that indiscriminate handling of location information can lead to a
variety of undesirable outcomes, including threats to the physical safety and well-being
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of users. As a result, a variety of “privacy-preserving” proximity tests have been pro-
posed, allowing users to compare their locations so that nothing about their locations is
revealed if they are not nearby.

Perhaps the most efficient such construction is due to Narayanan et al. [22] who also
point out that most previous approaches suffer a common vulnerability; a malicious
user can substitute a different location from her own in an attempt to learn or confirm
the location of other users. To cope with this problem, Narayanan et al. introduce the
concept of location tags. A location tag is a collection of characteristic features derived
from the unique combination of time and location. In other words, an ephemeral key
that can only be obtained at a given time and a given location. Proximity testing through
location tags eliminates the threat of an online attacker who wants to learn the location
of the other remote party by actively lying about her own location. Friends recording
location tags will be able to test whether they are proximate by measuring the similar-
ity of their tags privately. If they are close enough, i.e. the simiarlity is above a preset
threshold, they will be notified, otherwise they learn nothing. However, private thresh-
old set intersection is an expensive primitive that mobile phones may not be capable of
executing in a timely fashion.

We address the similarity test in a novel way. We observe that since location tags are
sets of high-entropy elements, they are either essentially disjoint or essentially identical.
Thus an efficient test that has high probability of accepting near-identical sets and high
probability of rejecting near-disjoint sets is sufficient. We adopt de-duplication tech-
niques to reduce “nearly identical” testing to simple equality testing. We also seek to
compute location tags from sources other than WiFi, which has a limited coverage and
leaves blind voids between different access points.

The main contributions of this work are the following:

1. We reduce location tag based proximity testing to efficient private equality testing,
using the shingling de-duplication technique. Via shingling, we generate a concise
sketch for each set of location tags. Location proximity should lead to two nearly-
identical sets of location tags. Nearly identical sets should yield the same sketch
with high probability. Therefore, we are able to test proximity through equality.
Private equality testing is more efficient than private threshold set intersection, and
requires less tuning.

2. We explore the cellular network as a source of location tags. Compared to WiFi,
cellular networks have much better coverage and are much more reliable. In partic-
ular, we are able to take the content from the broadcast “paging” channel of GSM
cellular networks. Two phones listening to the same channel at the same time pe-
riod should hear almost identical content. This source of location tags has not been
proposed or investigated in the literature previously. We evaluate these location tags
by building a prototype that records actual readings from cellular networks.

We organize the paper as follows: We briefly reviewed related literature in section 2.
And A high-level description of our system is given in section 3. We elaborate how we
capture location tags in the cellular infrastructure and explain in detail how we integrate
shingling with location tag requirements in sections 4 and 5. Experiments and results
are reported in section 6, followed by discussion in section 7. Our conclusions appear
in section 8.
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2 Related Work

Proximity Awareness Devices. Wireless RF-based devices that detect physical proxim-
ity, called Inter-Personal Awareness Devices (IPAD), were introduced by Holmquist et
al. in 1991 [17]. A prototype, Hummingbird, [17] was developed: wearable devices that
hummed when two of them were close enough, e.g. within 100 meters. The humming-
bird provided continuous updates while complementing the usage of phones, pagers
and computers since it did not require infrastructure support.

Location Privacy. Atallah and Du studied secure multi-party geometry computations
[6]. Although computationally expensive, these protocols allowed honest users to learn
whether they are closer than a mutually agreed threshold. But a malicious user could
have lied about his/her location in order to learn the other party’s rough location. Based
on their work, Zhong, Goldberg and Hengartner introduced three protocols for private
proximity detection [27] that can either reveal the liar or cost him an exceptional amount
of work.

Location privacy by anonymization has been studied extensively. Beresford and Sta-
jano introduced the concept of “mix zones” [7] and Gruteser and Grunwald [14] intro-
duced “cloaking” for k-anonymization. Hundreds of papers have since been published
for location anonymization. However, anonymization by quantization or mixing may
not provide the desired privacy for a variety of reasons [24]; in one example, the obfus-
cated location becomes more accurate when well populated.

Location tags, initially studied by Qiu et al. in [11,23] as time-invariant location char-
acteristics, were extended by Narayanan et al. to be a nonce associated with a unique
location and time combination [22]. With proper location tags, location proximity can
be reduced to measuring similarity between two sets of tags. Narayanan et al. sug-
gested deriving tags from surrounding environment including WiFi traffic and Access
Point identifiers, GSM signals, audio and even atmospheric gas composition.

Private Set Operations and Private Equality Testing (PET). In multi-party
protocols for Private set operations, each participant has a set of elements as input
and the parties wish to compute some operation on the sets while revealing noth-
ing about the inputs beyond the result. Freedman et al. studied a private set inter-
section (PSI) protocol based on homomorphic encryption [13]. Kissner and Song
presented a general protocol for multi-party set operations [21]. Protocols focusing
on different aspects of private set intersection have been abundant [10, 15, 16, 19, 20].
When both participants have a singleton set, PSI reduces to private equality testing
(PET).

A seminal work by Fagin, Naor and Winkler presented multiple PET protocols [12].
Inspired by PSI protocols, Narayanan et al. [22] described two efficient PET protocols,
which we describe in the next section. In contrast to these works, we study how to
reduce set similarity measurements – operations on non-singleton sets – to PET.
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3 System Overview

Fig. 1. The overall architecture
of location tag system

In this section we first give a brief high-level overview
of our approach. Details of the new building blocks are
discussed in sections 4 and 5. The overall architecture
is shown in Figure 1. It has three major ingredients, the
first two of which are new in this work:
1. GSM paging channel dumping: mobile phones

record all messages received on a special broadcast
channel used by all phones in range of the same cel-
lular tower, or in the same location area.

2. Location sketch generation by shingling: phones
use the shingling document de-duplication tech-
nique to produce a short string (a sketch) that rep-
resents the set of broadcast messages received, such
that if two sets are similar, then they will have the
same sketch with high probability; if they are not
similar, then with high probability the sketches will
be different.

3. Private equality testing: Given a location sketch,
phones can test for proximity using a private equal-
ity test on their sketches.

3.1 GSM Location Tags

Fig. 2. The shingling process

The previous work on location tags used wireless broad-
cast messages over IEEE 802.11 networks [22], but with
a range limited to the access points belonging to a given
WLAN. To provide wider coverage, we use the GSM
network with base stations broadcasting at much higher
power and covering a much wider area. Particularly,
we use the set of messages received on the GSM pag-
ing channel as elements of a location tag set. When the
cellular network initiates contact with a mobile station
(phone), it issues a paging request on the broadcast pag-
ing channel of all base stations within a specific local
calling area (of size at most 100km2) referred to as a
Location Area Code (LAC). The mobile station then an-
swers back and is assigned radio resources specific to
a particular base transceiver station (BTS) with an im-
mediate assignment message, with a range of at most
1km2. Each mobile station is assigned a Temporary
Mobile Subscriber Identity (TMSI) or a unique Inter-
national Mobile Subscriber Identity (IMSI). In our mea-
surements, we observed that paging requests are mostly
issued using TMSIs (90% of the total paging requests
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captured). Since the TMSIs are local to a given LAC and one mobile phone only be-
longs to one LAC at a time, a mobile phone will get a new random TMSI once it travels
from one LAC to another. As a consequence, two phones on the same LAC will likely
observe the same set of TMSIs on paging requests. On the contrary, two phones on dif-
ferent LACs will likely see disjoint sets of TMSIs. This makes the set of TMSIs seen
on the paging channel a good candidate for location tags. In addition, the Immediate
Assignment traffic is specific to each base tower within an LAC and can be combined
with the TMSIs of paging requests to produce finer-grained location tags.

3.2 Location Sketches

To measure the similarity between two sets of location tags, we adopt a mechanism
called “Shingling” from the area of text mining/fingerprinting, which originally was
used to detect (almost-)identical documents. The intuition is that we derive a sketch
from a document such that the similarity between sketches will be high with a high
probability when two documents are close to identical. Rather than viewing documents
as ordered lists, we consider sets by simply reducing each document to a canonical
sorted collection of elements. In this paper, the shingling process is shown in Figure 2.

We define the following concepts adopted from document shingling:

Definition 1. k-shingle: a k-tuple which consists of k consecutive elements of a set D,
which is presented as a list of sorted elements. We define the k-shingling of a set D to
be the set of all unique k-shingles of D, SD = {s1, s2, . . . , sn}

For example, the 3-shingling of set { step, on, no, pets, } is the set {(no, on, pets), (on,
pets, step) }.1 It is not hard to see that nearly identical sets will generate nearly identical
shingling. Furthermore, each unique shingle can be indexed by a numerical unique id
(UID). By shingling we convert a set D into SD, a set of uids. We reduce similarity
testing on sets to similarity testing on shinglings.

The “resemblance” between sets A and B is defined by r(A,B) = |SA∩SB|
|SA∪SB| Note

that the resemblance definition is different than classical Jaccard index [18] of A and
B, which is J(A,B) = |A∩B|

|A∪B| . It is, however, the Jaccard index on shingling sets SA

and SB . With a random permutation π: {0, 1}n → {0, 1}n, it is not hard to see that

Pr[min{π(SA)} = min{π(SB)}] = r(A,B) ,

allowing us to reduce the similarity test to an equality test.
UID generation and random permutation together can be accomplished by using

cryptographic hash functions h: {0, 1}∗ → {0, 1}n (In [9], Rabin fingerprinting is ap-
plied). We can therefore save the permutation step, since min{π(SA)} and min{SA}
will have the same distribution.

Theorem 1. When Jaccard index between A and B is approximately 1, min{SA} and
min{SB} are identical with high probability.

1 Note that we sort the set to get the sequence (no, on, pets, step).
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Proof. With the union bound, Pr[min{SA} = min{SB}] = r(A,B) = |SA∩SB |
|SA∪SB | ≥

1− k(1− J(A,B)) ≈ 1

Now we define min{SA} as the sketch of SA, denoted as tA in Figure 2. If users A and
B have similar sets of location tags, then with high probability tA = tB , and if their
location tag sets are distinct, then with all but negligible probability, tA 	= tB . Thus
similarity testing can be achieved by equality testing on sketches.

3.3 Private Equality Test

To test proximity, we test equality of sketches. Surely being aware of privacy issues,
users doesn’t want to reveal their sketches nor will they trust a third-party to carry out
the operation for them. Fortunately it is possible for multiple parties to test equality
privately. For example, we can utilize any of the existing solutions to Yao’s millionaire
problem [26]. Private equality tests (PET) have been extensively studied in the litera-
ture.

In [22], Narayanan et al. discussed two protocols for PET, that are particularly well-
suited to the mobile phone with online social network setting:

– Synchronous PET. Based on additive homomorphic ElGamal encryption, Alice
sends an encryption E(a) of her input a to Bob. In turn Bob derives E(s(a − b))
from E(a), with random s and his input b only. If a = b, Alice will decrypt 0 from
E(s(a−b)). Otherwise Alice gets a non-zero random number after decryption. The
protocol requires both parties to be online.

– Asynchronous PET with Oblivious Server. Closely related to multi-party secret-
sharing, this protocol assumes no party is colluding with any other. It allows tag
submission and actual tag equality testing to happen at different times. This proto-
col enjoys better efficiency over the synchronous one at the cost of the additional
security assumption of a non-colluding server. Essentially, the protocol assumes
Alice and Bob share two keys k1, k2 ∈R Zp and Bob and the server share a key
r ∈R Zp. Bob first sends the server mb = r(b+ k1) + k2. Later, when Alice wants
to test equality, she sends the server ma = a + k1, and the server responds with
ms = r ·ma −mb = r(b − a) − k2. Alice computes ms + k2, which will be 0 if
a = b and a random element of Zp otherwise.2

Originally in [22] PET protocols were used to test whether Alice and Bob were within
the same location on a map divided into overlapping hexagonal grids, assuming Alice
and Bob are honest. Location tags (if unpredictable and reproducible) would enhance
the security because neither Alice nor Bob could gain anything by lying about their
location. However, since wireless nodes in close proximity will generally see similar but
not identical traffic (due to noise and physical location relative to the base station), Alice
and Bob were forced to use a much more expensive threshold private set intersection
protocol to determine if their location tags are similar.

The advantage of PET over private set intersection protocols is efficiency. When the
sets under consideration are as large as several hundreds (or thousands) of elements,

2 [22] includes additional information to pseudorandomly generate and rotate the single-use
shared keys r, k1, k2.
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which is the case with location tags, PET outperforms PSI by several orders of magni-
tude. With location sketches, we achieve the “best of both worlds,” allowing the use of
a simple PET with unpredictable location sketches.

4 Cellular Networks

The use of cellular phones is already pervasive with 5 billion users worldwide in 2010
[2]. A side effect of the protocols currently in use is that base stations are constantly
broadcasting the unique or pseudorandom identifiers of mobile stations they are trying
to contact. In this work, we focus on the GSM network with over 3.5 billion worldwide
subscribers in 2009 [1], but the techniques are applicable to other cellular networks with
broadcast paging channels similar to GSM. Since the paging traffic depends on the mo-
bile stations (phones) being served in a geographic area, the paging channel will be dif-
ferent for phones in different LACs, but similar in the same LAC. Since an LAC can cover
areas of up to 100km2, it is useful to have another test to determine proximity with higher
granularity. The Immediate Assignment message traffic is specific to a BTS since it is an
allocation of radio resources from that tower. Devices camped on different towers will
observe different Immediate Assignment message traffic. In an urban environment, we
have observed that the typical range of a BTS is around 1km2. We use those broadcast
messages at the LAC and base station level to increase the area covered by location tags.

4.1 Infrastructure Overview

For the purposes of this work, we can view a typical cellular network as being composed
of a number of towers (BTS) belonging to an LAC and connected to a core network.
That central network contains a location register (HLR) that keeps track of each mobile
station’s last known location. The cellular network is then connected to the regular
phone Public Switched Telephone Network (PSTN) system [5].

Most of the messages between a BTS and a mobile station including voice and data
transmissions, are done with frequencies and codes unique to that BTS-mobile station

BTS MS 

Fig. 3. Overview of a cellular network con-
nected to the PSTN

Mobile Station Base station 

Paging request 

Channel request 

Immediate Assignment 

Paging response 

Setup and data 

Fig. 4. Sequence diagram for the air interface
between the MS and the BTS
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pair [4]. However, there are dedicated broadcast channels that all mobile stations have to
listen to. In particular, the broadcast paging channel downlink is used to notify a mobile
station that it needs to contact the BTS [4]. Mobile stations tune or camp on a particular
frequency for their service providers and are able to hear all the pages being issued in
the LAC as well as Immediate Assignment messages allocating radio resources for a
particular BTS. Each paging request message contains the unique identifier of the in-
tended destination. The set of identifiers are unique per geographic region due to the
set of mobile stations in that region. Similarly, the Immediate Assignment traffic, espe-
cially the time at which those messages are broadcasted is unique by BTS as observed
by mobile stations camped on those base stations.

4.2 Incoming Call Protocol

The logical flow for the radio interface in a GSM network during an incoming call works
as follows [4]. The BTS attempts to find the mobile station over the broadcast paging
channel downlink by issuing a paging request with the mobile station’s identifier [4],
which should be the TMSI, but can also be the IMSI. Upon receiving the paging request
and matching the identifier, the mobile station will contact the BTS over the random ac-
cess channel uplink which is separate from the downlink channel. The BTS will then
indicate the frequency and code for the mobile station with an immediate assignment
message, possibly over the same paging channel downlink. The mobile station then re-
sponds with a paging reply over another random access uplink. The rest of the protocol
allows the mobile station and the BTS to negotiate the security level and other setup
parameters, before data (text or voice) can be transmitted. The initial protocol proceeds
as shown in Figure 4.

4.3 Paging Request Messages

The paging channel carries different messages including System Information, Immedi-
ate Assignment and Paging Requests. The paging requests can be of 3 types. By far the
most common paging requests are of type 1 that allow a single or two mobile identities
to be paged per message [4] (clause 9.1.22). Those paging requests are issued for every
call or text message being sent to a mobile station within range of the BTS. Due to its
frequent use and unique traffic pattern depending on the mobile stations served in the
area, the paging channel offers a good medium that is unique in time and location. Pag-
ing requests are broadcast to every mobile station within a location area. The location
area consists of several nearby BTSes. In contrast, immediate assignments are issued
locally by an individual BTS. In other words, two mobile stations belonging to the same
location area will hear almost the same paging requests. If they are not covered by the
same BTS, they will hear completely different immediate assignments.

4.4 Location Tag Using Cellular Networks

In our evaluation in section 6, we observe that the traffic on the paging channel is a
perfect candidate for LAC-level proximity testing: devices in the same LAC see very
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similar sets of TMSIs while devices in different (neighboring) LACs see disjoint sets.
Similarly, devices camped on the same BTS hear the same Immediate Assignment traf-
fic, but devices camped on different BTSes do not. We thus built our location tag algo-
rithm to compare the conditions monitored by two different mobile stations.

We note that it is possible for an attacker to use high-powered directional antennae
to eavesdrop on IA and PCCH traffic over longer distances. Clear lines of sight to the
towers will likely be required. However, this does not guarantee that the victim’s phone
will be camped on that same tower, forcing the attacker to record all possible towers in the
area. Moreover, interference from nearby towers using the same frequency is possible,
reducing the ability to effectively eavesdrop on the target tower. In any case, this enforces
that the attacker must have a device that is in physical proximity to the victim.

5 Location Sketch Privacy

Generally speaking, location sketch privacy is indeed location tag privacy. As Narayanan
et al. point out, location tags should meet two key requirements as follows:

– Reproducibility. Two measurements taken in the same place and same time pro-
duces two almost-identical tags t1 and t2.

– Unpredictability. Without presence at a certain location and time, a malicious
party should not be able to produce the tag for that location and time. Note we re-
quire location tags to be varying with time otherwise an adversary can pre-compute
all location tags and a brute-force attack can reveal the victim’s location trajectory.

The cellular mobile network broadcasts paging request messages through its base sta-
tions to alert the target mobile phone in the case of an incoming phone calls or text
messages. In addition, each tower broadcasts the allocation messages to mobile stations
requesting radio resources. Thus, two phones within the same location area should hear
near-identical paging requests. If those phones are listening on the same tower, they
will also hear near-identical immediate assignment message traffic. Heuristically, like
the WiFi channel in [22], the GSM paging channel is a rich source of location tags.

Narayanan et al. reduce the similarity test to the private threshold set intersection
(PTSI) problem [22]. In PTSI, Alice and Bob will execute a protocol that returns ’1’
(as success) when the set A and B have an intersection C of size > t′ , and returns
’0’ (as failure) when C is of size < t. Note that we require t′ > t. When |C| ∈ [t, t′],
we expect the probability of success to gradually decrease from 100% to 0%. Here we
apply shingling technique to accomplish the similarity test.

5.1 Shingling and Unpredictability

In the seminal work by Broder et al. [9], the shingling technique was introduced to give
a binary answer on whether two documents (as web page content) are nearly identical.
Decomposing a document into a set of k-shingles is called k-shingling. Since we are
interested in comparing two sets of paging requests, the order of the requests makes no
difference. In one time epoch, we first hash each recorded paging request to a numerical
ID, sort them and then apply shingling to them.
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One issue on unpredictability is the entropy of location tags. Among paging requests,
we use TMSIs which are 32-bit IDs locally randomly assigned to a mobile phone. These
IDs display some redundancy but still retain 24 bits of entropy. Thus with k-shingles,
the location sketch presumably has 24k-bits of entropy. With large enough k, the ad-
versary cannot brute-force test the tag and the proximity before the victim moves to the
next location. However, with larger k, reproducibility is decreased. With the same level
of differences between two tag sets, a larger k will create more unique shingles and
decrease the resemblance between shinglings. A proper choice of k will thus be needed
to balance the tradeoff.

As described above, shingling the paging channel provides a certain level of time
sensitivity because intuitively it’s rare for a k-shingle to appear twice at different time
epochs. However, exceptions do occur; some subscribers receive frequent calls or text
messages and may produce many paging requests for the same TMSI over time. To cope
with such issues, we append timestamps to each paging request so that the same paging
request at different times will be tagged with a different UID. Because different phones
will record paging requests in slightly different times, we restrict the timestamps to
10-second granularity to strike a balance between unpredictability and reproducibility.

5.2 Shingling and False Positive

A false positive of location promixity happens when two phones, located at two differ-
ent LACs, derive the same location sketch. Two types of cases may have led to false
positives: a hash collision by two different shingle, or sharing the same shingle which
produces the location sketch. Notice those cases are necessary, rather than sufficient,
conditions of false positives.

We are assured that either condition will not happen in practice, neither does false
positive. With random inputs, we can compute the probability of collisions with birth-
day attack. With m k-shingle and SHA-1 funciton, the probability of having one hash
collision is roughly p = m2 · 2−161. In practical the collision probability should be very
small. Meanwhile, the probability of producing a duplicatek-shingle across LACs is also
low. Without timestamp, the probability of having one duplicate k-shingle is 2−24k. It is
such a rare event, let alone the case in which this k-shingle eventually yields the location
sketch for both LACs. The timestamps make duplicate shingles even less probable. In
conclusion, it is essentially impossible to yield false positive with TMSI shingling.

5.3 Reproducibility Boosting

Reproducibility only captures the desired outcome when two measurements are nearly
the same but it doesn’t define how two measurements differ when they are taken at dif-
ferent times. With shingling, the probability of testing positive for proximity is p when
the fraction p of two shinglings are common elements. Also, when two measurements
share a fraction f of common readings, with f ≈ 1, the fraction of shingles in common
is at least 1− k(1− f) in the worst case, by the union bound. For instance, even when
two phones see 90% common values, they would produce the same 3-shingle sketch at
least 70% of the time. This reduction in accuracy is undesirable, since it would require
two mobile devices to be closely synchronized in time and view of the network.
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However, we can quickly boost the probability by repeating the protocol multiple
times. After m repetitions, the probability of getting at least one positive increases to
1−km(1−f)m. The boosting effect is shown in Figure 5. Such boosting only requires a
small value of m to significantly weaken the required synchronization between phones.
Therefore, we modify our protocol so that users compute m sketches for each epoch
(partitioned evenly into m sub-epochs) and execute m individual PETs. If there is at
least one positive, they conclude they are co-located.
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6 Evaluation

6.1 Experiment Data Collection

To test our design, we used modified Motorola C118 cell phones connected to laptops
and logging the paging channel traffic at varying distances. On our system, we ran the
open source baseband project OsmocomBB [3]. We used the custom firmware from that
project to reflash the phone, thereby acting as the layer 1 of the GSM communication
stack. Using a serial link, the phone relays each message heard to a laptop running the
upper layer 2 and 3 of the GSM stack. By default, upon startup, this system would scan
all available frequencies, and select the one with the strongest signal. We configured
our two cell phone-laptop systems to listen on the same GSM mobile network operator,
but let the phone choose the appropriate frequencies based on the RSSI level. Once
the system was started and selected the appropriate frequencies, it would start to listen
on the broadcast paging channel (PCCH). A normal phone would ignore all paging
requests and immediate assignment messages that were not intended for it. In our case,
we made a small modification to the layer 3 of the system to log all those messages
heard on the PCCH.

For our experiments, we selected the largest GSM cellular network service provider
in our area and we listened to the paging channel in several geographic locations. We
had two devices listening simultaneously at different distances apart, namely 1m, 100m
and 7km. For the experiment involving the largest distance apart, we observed that the
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devices were reporting cells with a different Location Area Code (LAC) for the chosen
operator. Devices located close together report the same LAC and if very close, they
choose the same frequency. The paging request logs were recovered from the laptops
and filtered for the TMSIs. Figure 6 shows a plot of unique TMSI we heard over a
period of 700 seconds. A unique TMSI heard multiple times will appear as multiple
dots horizontally on the plot. We have three datasets: Room (1m), Campus(100m) and
and Far-away (7km). Each of them consists of two traffic logs from two systems. Each
log keeps a 10-minute record of the paging channel traffic, including the paging requests
and immediate assignment messages.

6.2 Shingling Experiment

At the shingling stage we experiment with multiple set of parameters. We choose the
epoch time to be 1 minute long and use SHA-1 as the hash function. The shingling pa-
rameter k is chosen to be 3, 4 and 5. To study the reproducibility, we observe how the
clock offset between two mobile phones affects the resemblance. For each trial, we take
a measurement of phone 1 at a random time t1 and one of phone 2 starting at t1 + δ
as input to our system. We repeat the trial until all possible t1 values are exhausted. and
record the empirical probability of proximity detection success, at offset δ. With different
δ, we plot the probability of success versus the clock offset. The plots for the Campus
dataset and Room dataset with different values of k are shown in Figure 7. The plots for
the Room dataset display a very similar behavior and the plot for the Far-away dataset is
uninteresting as expected; the probability is always zero no matter what the offset is.

As Figure 7 confirms, larger k values tend to decrease reproducibility because larger
k values are more sensitive to the set difference. Additionally, each phone observes
approximately 4 paging requests per second. As a result, reproducibility quickly drops
as the clock offset increases. It quantitatively matches with the analysis in Section 5.
We choose k = 3 as it produces the best reproducibility while keeping the entropy at
an acceptable level (72 bits).

For reproducibility boosting, we use m = 5. Here the epoch time is 5 minutes and
we divide it into 5 sub-epochs, each 1 minute long. Recall that with boosting, proximity
detection returns true when at least one PET returns true. As a result, we again plot the
probability of success versus the clock offset on both dataset Room and dataset Campus
in Figure 8. With much better success rate, we only need to loosely synchronize all
phones. As the distance between two phones increases, the success rate is more sensitive
to the clock offset.

6.3 Fine Proximity Test

Proximity testing based only on paging requests is limited to determining whether two
phones are located in the same location area (LAC), which can be as large as 100km2. On
the other hand, each base station covers a relatively contant area with a radius between
100m and 1000m, allowing us to determine proximity more precisely. As a proof of
concept, we utilize IA messages as location tags. We choose k = 3 and m = 5, and
repeat the shingling experiments. The result is shown in Figure 9. It is clear that with
tower-specific location tags we can achieve finer-grained proximity testing. However,
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Fig. 7. First row is the plots on dataset Room, and the second row is those on dataset Campus. We
omit the plots on dataset Far-away because they are simply blank ones. As k increases, resem-
blances drops faster and faster as the offset drifts from zero. Also even when the offset is smaller
than 1 second, the resemblance is no more than 85% for either dataset.
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Fig. 8. With boosting parameter m = 5, shingling parameter k = 3 and 5-minute epoch time, the
probability of success is almost 1 within 3-second offset for both datasets

we want to point out that the unpredictability of IA messages is not as strong, because
of non-random channel assignment and some other issues. We will discuss this further
in Section 7.

7 Discussion

7.1 Shingling with PTSI

Broder et al. in [8, 9] use shingling and threshold set intersection together to identify
nearly identical documents. For each document, the smallest k elements are chosen.
If two documents have resemblance p, the (lower-bound) probability that they share t
common top-k elements can be calculated. With proper choices of (k, t) the probability
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Fig. 9. The figure on the left shows two phones in the same room have large probability of testing
positive for proximity while two phones in the same campus under different base stations will not
be considered to be close at all, as shown by the figure on the right

function acts very similar to a high-pass filter, i.e. only highly resemble documents
should have an intersection of size > t with a high probability. In practice k is usually
as small as 6, and t is as small as 2. In this way, it is possible to only keep the k shingle
for each document as a sketch and execute a private set intersection protocol to figure
out if two documents are near-identical.

With the same idea, shingling can be adopted to improve the efficiency of private
threshold set intersection on location tag proximity. Now we shrink each location tag
set to a k-element sketch set so the communication and computation cost can be greatly
improved as well.

7.2 Unpredictability of IA Messages

We have shown that proximity granularity can be controlled by different types of paging
content. Specifically we have also shown that we can consider messages that are local to
individual base stations, such like Immediate Assignment (IA) messages, to be used as
location tags for finer granularity. We also note that utilizing IA messages as location tags
has several issues. Unlike paging requests, IA messages has limited randomness. Base
stations assign channels in a somewhat predictable way. Each available channel has a
distinct set of parameters allowing passive attackers to enumerate the possible channels.
When there is little traffic we will frequently see same IA messages due to the fact that
same channel is reused. A preliminary computation shows the channel choices sent by
the BTS on a university campus have entropy ranging from 8 bits to 16 bits. We will
continue to investigate the security of IA messages and other resources for tags.

7.3 Practical Considerations

The system we used for our measurement used a modified GSM layer 3 that passively
observes broadcast paging requests on the PCCH. Commercially available GSM phones
also hear the same traffic, but their implementation of the layer 3 simply drops any
paging request that is not intended for that particular device. For our system to work,
we only need a modification in the layer 3 implementation to add the ability to record
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paging requests on the PCCH traffic for short periods of time. While small, this change
will probably require an update of the baseband firmware on the phones in order to
support our protocol. We note that there are no changes required at layers 1 and 2 of the
GSM protocol stack.

Baseband firmware updates have been deployed on iPhone and Android smartphones
as bug fixes are rolled out. Indeed, a number of baseband updates from Apple were
intended to limit the ability to jailbreak the iPhones. With this update infrastructure in
place, it would be possible to package support for our protocol in one such baseband
firmware update. However, baseband updates for feature phones are far less common,
making a migration of the baseband firmware to support our protocol less likely.

8 Conclusion

Location proximity testing has become an important social networking application.
Meanwhile, concern over location privacy has also been growing. To address these con-
cerns, Narayanan et al. [22] recently proposed Private proximity testing by location tags.
We build on their work by successfully capturing location tags based on the GSM cel-
lular network, which covers a larger area with greater reliability. Moreover, we describe
a novel use of de-duplication shingling to test location tag similarity by private equality
testing, a simple and efficient cryptographic primitive. We have developed prototypes
that demonstrate the effectiveness of our approach. We thus describe the first privacy-
preserving proximity system that builds on cellular network location tags. The use of
shingling to reduce threshold set intersection to equality testing may be of interest to
other private set operation protocols and is an open question for future research.
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Abstract. We consider the problem of ISP targeting for spam prevention through
disconnection. Any such endeavor has to rely on adequate metrics that consider
both the badness of an ISP as well as the risk of collateral damage. We propose a
set of metrics that combines the two. Specifically, the metrics compare each ISP’s
“spamcount” with its “disconnectability”. We offer a concrete methodological ap-
proach to compute these metrics, and then illustrate the methodology using datasets
involving spam statistics and autonomous system relationships. This analysis rep-
resents the first step in a broader program to assess the viability of economic coun-
termeasures to spam and other types of malicious activity on the Internet.

1 Introduction and Related Work

Recent studies have shown that a large percentage of all spam on the Internet is at-
tributable to sources from a small percentage of the Internet’s autonomous systems
[3, 8, 24]. Thus in considering the spam-prevention problem, it makes sense to con-
centrate attention on those few systems who contribute to the problem the most. Ev-
idence suggests that targeting an especially bad player can be effective. For example,
the November 2008 takedown of McColo [6, 9] resulted in a significant decline in the
global volume of spam (by estimates as much as 70%) [19].1

In this work, we address the targetability question by defining metrics to determine
when an autonomous system is doing substantially more harm than good. These metrics
can then be used not just for assessing the feasibility of targeting an ISP, but also for
recognizing which ISP’s may be susceptible to economic incentive structures designed
to elicit implementation of outbound preventative mechanisms. The set of metrics we
propose are based on ratios between “badness” measures which quantify the ill effects
an autonomous system (AS) poses to the rest of the network, and “disconnectability”
measures that quantify the collateral damage that would result from the AS’s discon-
nection from the Internet graph.

1.1 Spam Measurement Studies and Mitigation

There is a diverse and growing literature on the measurement of spam and other network
threats. Ramachandran and Feamster showed that network level properties can reveal

1 There are also bad registrars but that is a different story [18].
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decisive cues in the fight against spam [24]. Other contributions are the development
of behavior-driven or signature-driven spam classification systems which are desirable
given the transient nature of spam origins [12, 14, 25, 27, 33].

A number of studies have investigated the problem of botnet identification [11, 23,
34]. Ehrlich et al. proceed with a two-step methodology. First, they identify individual
botnet nodes. Second, they continue their investigation to determine the command-and-
control infrastructure of the botnet. In related projects, research groups have worked on
building infrastructures to identify rogue networks [15, 28].

Finally, a growing number of research studies is concerned with the better under-
standing of spam economics, by studying large-scale spam campaigns [1,4,16], and by
tracing click trajectories to better understand the spam value chain [20].

1.2 Economics of Service Provisioning and Security

Several reports have explored the economic incentives of Internet Service Providers to
invest in security measures [3,32]. A key observation is that ISPs respond differently to
emerging threats leading to varying degrees of botnet infestations in their user popula-
tion [3]. Some ISPs may act vigorously, while others appear to be slacking [5]. Finally,
a residual group aims to derive a profit from providing a safe harbor for undesirable
activities [8].

ISPs are in an excellent position to address security problems [2]. However, it is an
open debate whether or to what degree liability can be assigned to them for insufficient
or even detrimental behaviors [21].

But even from the perspective of well-motivated ISPs it is not obvious how to address
security threats in a cost-efficient manner [26]. ISPs can incentivise users to higher secu-
rity vigilance, but there are tradeoffs. Some incentive schemes target higher individual
security effort levels [29], while others focus more on group-level security outcomes [13].

Another approach is to reduce the autonomy of individual users by installing secu-
rity client software that monitors and controls network access. However, the majority of
consumer-oriented ISPs shy away from direct technical intervention involving access to
the users’ home resources. Some argue this to be a government’s role [7]. We are only
aware of one US consumer ISP experimentally testing a similar approach [22]. How-
ever, several ISPs utilize redirection and quarantining techniques to encourage users to
engage in clean-up efforts [17].

The rest of the paper is organized as follows. In Section 2, we define several met-
rics for use in ranking autonomous systems according to their miscreant behavior and
discuss their key properties. In Section 3, we briefly describe our methodology for com-
puting the proposed metrics on real data. Section 4 contains examples and illustrations
pertaining to the ASes responsible for the most spam volume in our dataset. We discuss
plans for future work and conclude in Section 5.

2 Proposed Metrics

In this section, we introduce metrics to formally quantify the badness and discon-
nectability of autonomous systems, along with the cost-benefit tradeoff that can be used
as part of a formal basis for decisions involving AS targeting.
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With respect to a given set of connectivity relations between autonomous systems,
we define the following associated set of ASes. The exclusive customer cone of an au-
tonomous system X is the set of autonomous systems that would become disconnected
from the network if X were completely disconnected from the rest of the network. Note
that every AS is a member of its own exclusive customer cone. The exclusive customer
cone of X is a subset of the customer cone of X , which was defined by Dimitropou-
los et al. as the set of customers of X together with those customers’ customers, and
so forth [10]. By way of contrast, the exclusive customer cone does not include those
customers and subcustomers of X with a connection to at least one additional provider
that can move traffic to the core of the network while avoiding X . The customer cone
is a reasonable measure of the importance of X , but the exclusive customer cone has a
more direct bearing on the question of whether to target X .

We next define a set of three metrics related to the exclusive customer cone. The
exclusive customer cone size of X is the number of ASes in the exclusive customer
cone of X . The exclusive customer cone prefix size of X is the number of distinct /24
prefixes assigned to ASes in the exclusive customer cone of X . The exclusive customer
cone address size of X is the number of IP addresses assigned to ASes in the exclusive
customer cone of X .

With respect to a given set of data attributing spam to IP addresses, we define the
following two metrics. The spamcount of an autonomous system X is the number of
spam messages attributable to IP addresses directly assigned to X . The spamipcount
of X is the number of distinct IP addresses directly assigned to X that are responsible
for sending at least one spam message. We can obviously extend these definitions to
negative attributes other than spam. For example, we could analogously define the bad-
ness of X and the ipbadness of X relative to any data set that associates a measure of
badness to certain IP addresses.

Lastly with respect to both a badness measure on IP addresses and a set of connectiv-
ity relations among autonomous systems, we define a set of ratio metrics comparing the
two. For example, the spamipcount to exclusive customer cone prefix size ratio of an
autonomous system X is the ratio of the spamipcount of X to the exclusive customer
cone prefix size of X .

3 Methodology

In this section, we briefly describe a methodological approach to computing these met-
rics on real data.

The metrics require three types of data for autonomous systems: a notion of badness
for each AS; a measure of size for each AS; and the AS customer/peer relationship
structure. The current state of the art in relationship structure is publicly available via
the Cooperative Association for Internet Data Analysis (CAIDA) [31]. CAIDA also
publishes size measures for autonomous systems.

Measures of badness come in many forms, and good datasets are more difficult to
obtain. We carried out an illustration of our methodology using a data source consisting
of about 3.4 million spam email messages collected by Ramachandran and Feamster at
Georgia Tech over a period of about 17 months starting in July 2008. The methodology of
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that data collection was previously used and is described in an earlier publication [24]. We
processed these emails to obtain a best guess source IP for each email; and then used the
bulk Whois query tools provided by Team Cymru [30] to associate IP addresses obtained
from the spam dataset with their associated autonomous system numbers.

4 Examples and Observations

The purpose of this section is to exemplify our methodological approach through illus-
tration.

4.1 Exclusive Customer Cone Properties

Figure 1 in the appendix offers visualizations of the exclusive customer cones for two of
the five most spammy ASes in our dataset: 4134 and 4837. The edges reflect provider-
to-customer relationships. The diameter of each node increases linearly with the node’s
spamcount, and the color of the node moves from green to red as the spamipcount to
exclusive customer cone prefix size ratio increases.

4.2 Aggregated Spam Characteristics

Figure 2 in the appendix shows the distributions of spamcount and spamipcount across
the top 300 most spam-facilitating ASes in our dataset, as well as the cumulative dis-
tribution of these same badness measures over our entire dataset. The graphs confirm
that most of the spam in our dataset is generated by IP addresses from a small percent-
age of autonomous systems, consistent with many other measurement studies involving
spam [11, 23–25, 34]. This feature offers justification for our focus on only a few of
the worst offenders. The graphs also give a sense of the relationship between spam-
count and spamipcount, showing that both measures follow similar distributions and
are strongly correlated.

4.3 Targeting ASes with High Spamcount

Table 1 below gives the computed value of several metrics for each of the top five
highest-ranked ASes by spamcount.

The spam ip to exclusive customer cone prefix size ratio is given in the table’s last
column. As mentioned previously, this is our preferred metric for quantifying targetabil-
ity. We see from the table that one particular autonomous system, ASN 45899, VPNT
Corp, has a high score under this metric. It is a stub AS, with no customer ASes; it has
a high badness score using both spamcount and spamipcount – in fact the spamcount is
more than double that of any other AS in our entire dataset; and it does not have any
counterbalancing large number of IP addresses or /24 prefixes in its exclusive customer
cone.

The next few autonomous systems on the list have more exclusive customers and
are generally much higher up in the internet tier hierarchy. The ratio metrics applied to
these ASes is not nearly so high, by several orders of magnitude; and it would be more
difficult to justify a targeting strategy for any of the next four ASes based on this metric.
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Table 1. ASes with the highest spamcount in our dataset

ASN Organization Spam Percent Spam Customer Exclusive Spam IP to
Name Count of Spam IP Count Cone Cust Cone Prefix Size

Prefix Size Prefix Size Ratio
45899 VNPT Corp 132918 7.9% 30222 12 12 2518
4766 Korea Telecom 54237 3.2% 6833 203306 2537 2.7
4134 Chinanet 44482 2.7% 10360 66172 1361 7.6

Backbone
7738 Telecomunicacoes 39570 2.4% 7904 111324 518 15.3

da Bahia S.A.
4837 China169 36617 2.2% 8269 6438 1664 5.0

Backbone

Due to current limitations of our data on the badness side, our true proscription to-
wards actually targeting VPNT Corp is perhaps not very strong. The intent of this pa-
per is not to make targeting proscriptions, but rather to introduce and illustrate a useful
methodology. We have shown that well-motivated targetability metrics can be computed
and applied to real ASes, using plausible data, with interesting and highly variable re-
sults. As our badness measurements become better quantified with higher quality data,
proscriptive targeting arguments can be supported on this basis.

4.4 Discussion

What are the relative advantages of the different metrics? Our view is that it depends on
the application and the quality of the datasets involved. The metrics invoking badness
only at the IP level are more robust in the sense that they are less likely to change quickly
over time, (since, for example, it may be easier to send additional spam messages from
the same compromised IP address, then to compromise an additional IP address), and
are also more applicable to the problem of diagnosing the source of badness. On the
other hand, metrics equating badness with direct aggregate features such as raw spam
volume are in better correspondence with the negative effects imposed on the rest of
the network. In a similar fashion, metrics involving the exclusive customer cone size
and exclusive customer cone prefix size, are more robust in the sense that they are less
likely to change significantly if connectivity relations change by not too much. Further,
if the data being used is accurate and not likely to change, then metrics involving the
exclusive customer cone address size most directly correspond to the aggregate benefit
to the network that would be lost if an autonomous system were targeted.

We want to emphasize that each of these metrics, based on exclusive customer cones,
is a conservative metric, in the sense that the metric will generally paint an ISP as “less
targetable” than it would be painted if more edges were included. This feature is impor-
tant, as the connectivity data we use is approximate and is known to err on the side of
omitting edges from the graph [10]. A practitioner might worry that targeting a particu-
lar AS might cause more collateral damage than expected. This would likely be the case
if we used a metric based on customer cone. In such circumstance, an ISP who might
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otherwise be subject to targeting would have an incentive to simply add more customer
edges to lower their disconnectability measure. But because we are using the exclusive
customer cone, such a strategy would not be effective. Moreover, the customers of a bad
AS would have the ability to adopt an alternative provider, resulting in a simultaneous
decrease in target risk for the customer, and an increase in the disconnectability of the
bad provider. The idea is that by publishing a metric, we create an incentive structure
that tends to isolate the bad guys from the good guys. As miscreant behavior of an AS
increases, the good guys have more and more of an incentive to line up an alternate
provider, to avoid becoming collateral damage.

5 Conclusions and Future Work

Today’s spam problem involves many players with competing interests; and any so-
lution requires numerous tradeoffs. In our study of this problem, we have focused our
attention on the players we see as having the most power to resolve the problem, namely
the ISPs. This approach has lead us to an investigation of metrics applicable to ISP tar-
geting through disconnection. Policy makers must consider a wide variety of technical,
policy, and incentive-relevant challenges to realizing ISP disconnections in practice.
Our contribution to this effort has involved demonstrating the tractability of developing
an objective framework for addressing the problem.

Our goal is to continue advancing research on the prevention of Internet-related mis-
behavior through the publication of metrics that can affect an ISP’s reputation. We con-
sider our program as parallel to more direct technological approaches for combatting
spam, such as botnet targeting and spam filtering. By developing an objective frame-
work for considering ISP targeting through disconnection, we advance the tools avail-
able to economic researchers for use in the modeling of the Internet ecosystem, and
help to foster a better understanding of the problem from crucial perspectives.
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A Appendix

(a). The exclusive customer cone of ASN 4134 (b). The exclusive customer cone of ASN 4837

Fig. 1. The size of each node relates linearly to its spamcount. The color of each node relates to
the ratio of its spamipcount to its individual prefix size.
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Abstract. Tor, an anonymity network formed by volunteer nodes, uses
the estimated bandwidth of the nodes as a central feature of its path
selection algorithm. The current load on nodes is not considered in
this algorithm, however, and we observe that some nodes persist in be-
ing under-utilized or congested. This can degrade the network’s per-
formance, discourage Tor adoption, and consequently reduce the size
of Tor’s anonymity set. In an effort to reduce congestion and improve
load balancing, we propose a congestion-aware path selection algorithm.
Using latency as an indicator of congestion, clients use opportunistic
and lightweight active measurements to evaluate the congestion state
of nodes, and reject nodes that appear congested. Through experiments
conducted on the live Tor network, we verify our hypothesis that clients
can infer congestion using latency and show that congestion-aware path
selection can improve performance.

1 Introduction

Tor is an anonymity network that preserves clients’ online privacy [6]. Today, it
serves hundreds of thousands of clients on a daily basis [13]. Despite its popular-
ity, Tor suffers from a variety of performance problems that result in high and
variable delays for clients [7]. These delays are a strong disincentive to use Tor,
reducing the size of the network’s user base and ultimately harming Tor users’
anonymity [5]. One reason why Tor is slow is due to the challenges of balancing
its dynamic traffic load over the network’s available bandwidth. In this work, we
propose a new approach to load balancing that can reduce congestion, improve
performance, and consequently encourage wider Tor adoption.

Path Selection in Tor. The current path selection algorithm selects nodes
based on the bandwidth of the nodes (adjusted by the current distribution of
bandwidth in the network among entry guards, exits and other nodes), giving a
higher probability of being chosen to nodes with higher bandwidth. It also takes
into account a number of constraints designed to promote network diversity.
However, peer-to-peer file sharing users, while discouraged from using Tor, may
still do so and consume a significant portion of the available bandwidth [15]. Even
though the number of such users is likely small, when these bulk downloaders

� An extended version of this paper is available [22].
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use nodes with insufficient bandwidth, they may affect the performance of other
clients using the nodes by introducing high delays due to congestion.

Latency as a Congestion Signal. Congestion occurs at the node level ei-
ther when a node reaches its bandwidth rate limit configured in Tor, or when a
node’s connection to the Internet is congested. When a node is congested, out-
going cells must wait in the node’s output queue. We find that this node latency
is sometimes significantly larger than the link latency, which is dominated by
the propagation delay between two nodes. Delays that do not originate from
propagation effects have been found to be quite common [3]; they have also been
found to be large [18]. From measurements and analysis of the live Tor network,
we find that Tor’s token bucket rate limiting implementation often contributes to
congestion delays of up to one second per node. These delays are detrimental to
interactive web browsing users, who are the most common type of Tor user [15].

Congestion-Aware Path Selection. To reduce congestion and improve Tor’s
load balancing, we introduce node latency as a new metric to be used when
selecting nodes to form a circuit. Our approach uses a combination of lightweight
active and opportunistic methods to obtain this information. Clients measure
the overall latency of their circuits and use an inference technique to extract
the component latencies due to congestion for each individual node along the
circuit. Live experiments indicate that a typical client’s circuit latency can be
reduced by up to 40% if congestion information is taken into account during
path selection. We also argue that the security and anonymity implications of
our scheme are minimal.

Contributions. This paper contributes the following:

1. We identify latency as a measure of node congestion and characterize how
congestion varies across different types of nodes. We describe ways to ob-
serve and isolate this node congestion from other sources of delay (such as
propagation delay) with lightweight tests.

2. We design and evaluate a latency inference technique that attributes con-
gestion-related latencies to constituent nodes along a measured circuit.

3. We extend Tor’s path selection algorithm to avoid congested relays. Our ap-
proach has low overhead, can be incrementally deployed, needs no additional
infrastructure, and our live evaluation shows that it improves performance.

2 Tor Background

Tor is the third-generation onion routing design providing source and destination
anonymity for TCP traffic. A client wanting to connect to an Internet destination
through Tor first contacts a directory server to obtain the list of Tor nodes. Next,
the client constructs a circuit of three Tor routers (or nodes) and forwards traffic
through the circuit to a desired Internet destination using a layered encryption
scheme based on onion routing [10]. To balance the traffic load across the routers’
bandwidth, clients select routers in proportion to their bandwidth capacities.
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To mitigate the predecessor attack [23], the first router on the circuit (called
an “entry guard”) is selected among nodes with high stability and bandwidth.
Clients choose precisely three entry guards to use for all circuits and new entry
guards are selected every 30 to 60 days. The last router (called an “exit router”)
is chosen to allow delivery of the client’s traffic to the destination. All data is
transmitted through Tor in fixed-size 512-byte units called cells. More details
about Tor’s design can be found in its design document [6] and its protocol
specification [4].

3 Related Work

Tor requires a good path selection algorithm to effectively distribute its traf-
fic load across its nodes. Currently, Tor uses an algorithm that chooses routers
in proportion to their bandwidth capacities. Different criteria have been pro-
posed as possible factors in the path selection algorithm, such as autonomous
system awareness [8] and application awareness [20]. In this paper, we describe a
modification to Tor’s existing path selection algorithm to incorporate congestion
information, which improves load balancing.

Using latency as a path selection criterion has been investigated by Sherr et
al. [19]. In their paper, a case is made for link-based path selection, which uses
link-based properties (e.g., latency, jitter, loss). Panchenko and Renner [17] pro-
pose using round-trip time as a link-based measure to choose paths. They give a
technique to obtain round-trip time and roughly analyze the increase in perfor-
mance by using this criterion. In this paper, however, we look into considering
latency as a node-based property instead of a link-based property. Link-based
latency includes propagation delay, so only using link-based latency as a measure
may bias path selection against circuits with nodes that are geographically far
apart or on diverse networks.

Latency in Tor has also been considered from other perspectives. Hopper et
al. [12] looked into how network latency can be used to deanonymize clients.
Evans et al. [9] investigate using long paths to congest routers, thus revealing
the identities of those connected to the router due to the change in round-trip
time. Since our congestion-informed path selection approach allows clients to
detect congested routers, our proposal may be a defense against such attacks;
we do not, however, focus on defense mechanisms in this paper, but rather on
improving Tor’s performance.

Lastly, in contrast to proposals that seek to reduce congestion by redesign-
ing Tor’s congestion control mechanisms [1, 18], our work is focused solely on
identifying and avoiding congested routers.

4 Latency Measurement and Congestion Inference

We next present a technique for inferring node-level congestion using circuit
measurements. In this section, we describe our latency model and our approach
to measuring latency, and present a technique for identifying congestion-related
delays.
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4.1 Latency Model

Table 1. Node-based latency model

tmin the minimum round-trip time
tc the congestion time
t the round-trip time
γ a smoothing constant

We next define a latency model for nodes.
Our latency measurements on the Tor
network suggest that latency measure-
ments on a node can be cleanly divided
into a non-congested component and con-
gestion time. When a node is not con-
gested, the latency can be attributed to
propagation delays, which are nearly constant. Non-congested measurements can
therefore be defined as measurements that are very close to the minimum of all
measurements on the same node. For many nodes, this accounts for most of the
data. When a node is congested, an amount of congestion time is added to the
round-trip time before it can reach the client. This amount of time is frequently
much larger than the non-congested measurements.

In Table 1 we define terms with respect to a node. tmin is the minimum round-
trip time for all measurements of round-trip time t of a node. It is a constant,
assuming all measurements are done from the same client; the chief component
of tmin is the propagation delay. We define the congestion time tc = t − tmin.
By removing tmin from the round-trip time, we isolate the congestion time. γ
is a small smoothing constant added to the measurements to allow for quick
reactions to transient congestion, as detailed further in Section 4.4. Thus, the
actual congestion time is tc = t− tmin + γ.

4.2 Measuring the Latency

We next discuss how circuit-level latency is measured by the client. This mea-
surement should fulfill the following criteria:

1. It should be lightweight. There should be little burden on the network even
if all of Tor’s estimated 300,000 clients use this scheme simultaneously.

2. It should be indistinguishable from non-measurement traffic. Otherwise, it
may be possible for malicious routers to influence the measurements.

3. It should exclude the destination server’s latency. We want the measure-
ment to consider only the delays within the Tor network, as delays at the
destination server may be experienced regardless of whether Tor is used.

To satisfy these criteria, measurements of a circuit can be done in two ways: we
can actively probe the circuit, or we can perform measurements opportunistically
so as not to create a burden on Tor.

Active Probing. One way to measure the round-trip time is to tell the exit
node to connect to localhost, which the exit node will refuse to. This scheme,
used by Panchenko et al. [17], works by forcing the exit node to return an error
message to the client, so the client obtains the round-trip time to the exit node.
However, a potential disadvantage is that a malicious exit node can identify the
measurement probes and attempt to influence the results.
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Fig. 1. A breakdown of congestion in testing. The test packet (colorless triangle) is
sent to the exit node and a response packet (colored triangle) is returned without
going through any destination server.

In our experiments, we use a technique that is conceptually similar: we use
circuit build cells to measure the circuit latency. To extend the circuit to the
final exit router, the client sends a circuit EXTEND cell through the entry guard
and the middle router. The middle router sends a CREATE cell to the exit router,
which after performing public-key cryptography replies with a CREATED cell back
through the circuit to the client. The time spent performing public-key cryptog-
raphy can be considered a small constant, which will later be factored out of the
latency measurement.

Opportunistic Probing. If only active probing is used, our scheme might add
too much measurement traffic into the Tor network, particularly if all clients were
to perform such measurements frequently. Thus, we also use an opportunistic
approach that leverages Tor’s end-to-end control cells as the measurement ap-
paratus. The stream-level and circuit-level SENDME cells are sent end-to-end in
response to every 50 and 100 DATA cells, respectively. In addition, BEGIN and
CONNECTED cells are sent whenever a new exit TCP stream is established, which
for web browsing clients can happen several times per web page visited. As
long as the client is using the circuit, we can obtain a number of measurements
without any additional burden on the Tor network.

Note that if we want the exit node to immediately send a message back
without spending time contacting a server, then the measurement is slightly
skewed towards the first two nodes. To be precise, the message has to travel
through each link among the client and the nodes twice, and it has to wait in
the queue (if any) of the first two nodes twice, but it only needs to wait in the
queue of the exit node once (see Figure 1).

Overhead. The opportunistic measurements have no overhead, as they leverage
existing end-to-end control cells. However, it might be desirable to augment
the opportunistic measurements with additional active measurements, at some
communication cost. We can obtain one congestion time entry for each member
of a circuit by sending just one cell (512 bytes). Suppose the client actively
probes each circuit it builds 5 times over 10 minutes. This will add an average
of 5 B/s of traffic to each node. If 300,000 users use this scheme together, they
will add a total of 4.5 MB/s of traffic to Tor. This is currently around 0.5%
of the total bandwidth offered by all Tor nodes, so our scheme will only add a
small load to the Tor network. As will be seen in Section 4.4, a small number of
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measurements can be effective in detecting and avoiding congested circuits; the
other measurements needed can be done opportunistically.

4.3 Isolating Circuit Congestion

When we obtain a measurement on the circuit, we want to highlight the conges-
tion times tc1 , tc2 , tc3 for each node along the circuit. First, it is necessary to
separate the circuit’s propagation delay from the delay due to congestion. We
next describe this process.

For one round-trip of the entire circuit, the time T can be dissected this way:

T = Tmin + (Tc − γ)
Tc = 2tc1 + 2tc2 + tc3

where Tmin is an estimate of the circuit’s end-to-end propagation delay and
Tc is the circuit’s delay due to congestion (γ is a small constant described in
Section 4.4). The difference between Tmin and Tc is that Tmin should be constant
for the same circuit, while Tc varies depending on the extent of the circuit’s
congestion. In addition, Tc only includes the last node once as in our tests, as
our probes do not exit through the final node. In our tests, we find that the
congestion term Tc is sometimes zero, but it is often non-zero.

For each measurement of T in this circuit, we save it in a list {T1, T2, ..., Tk},
and after all measurements of the circuit are done, we take the lowest measure-
ment, and let this be Tmin. Note that the number of measurements taken per
circuit should be large to ensure that Tmin converges to the circuit’s actual end-
to-end propagation delay.1 Through experimental analysis, we find that Tmin

can be correctly determined within an error of 0.05 s with 80% probability by
using only five measurements—in the case that Tmin is not correctly identified,
the circuit being considered is likely to be heavily congested.

The ith measurement of congestion time (0 ≤ i < k) is given by:

Tci = Ti − Tmin + γ

In Figure 1, we summarize how a single end-to-end circuit round-trip time mea-
surement is conducted and where the congestion occurs.

4.4 Attributing Circuit Congestion to Nodes

Now that we have isolated the delay due to congestion from the circuit’s total
delay, we need to attribute the congestion delay to the circuit’s constituent nodes.
Each client maintains a congestion list of all known relays paired with a number
L of congestion times for each relay. This list is updated as new measurements
are taken. Consider a three-hop circuit. Suppose the estimated congestion times

1 Tmin can also be intelligently estimated using other methods. For instance, the King
method [11] can be used to approximate the pairwise network latency between any
two Tor nodes without probing either of the routers directly.
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of nodes r1, r2, r3 in this circuit are respectively tc1 , tc2 , tc3 . The entry guard is
r1, the middle router is r2, and the exit router is r3. Next, suppose the round-trip
time taken for some cell to return across this circuit is T ; then the total circuit’s
congestion time is Tc = T − Tmin + γ. For r1 and r2, we assign the following
congestion time:

tci ← Tc ·
2tci

2tc1 + 2tc2 + tc3

Here i = 1 for node r1 and i = 2 for node r2. For r3, we assign the following
congestion time:

tc3 ← Tc ·
tc3

2tc1 + 2tc2 + tc3

Details. A technical issue emerges when a node becomes congested after a long
period of being non-congested. In this scenario, the estimated congestion time
would be very close to zero and the algorithm would not respond fast enough
to assign a high congestion time to this node. This is where the term γ comes
into play. By ensuring that the minimum estimated congestion time is at least
γ, we can guarantee that even nodes without a history of congestion will not
be immune to blame when congestion occurs in a circuit with such a node. We
empirically find γ = 0.02 s to be a good value; this is not large enough to cover
the differential between congested and non-congested nodes, yet it ensures that
convergence will not take too long.

When a new estimated congestion time has been assigned to a node, the
node’s mean estimated congestion time should be updated. We maintain a list
of congestion time measurements for each node, L; when this amount of data
has been recorded, we push out old data whenever new data comes in. If L is
chosen to be large, then the client’s preference for a node will not change as
quickly, and vice versa.2

5 Techniques for Mitigating Congestion

Congestion can be either short term (e.g., a file sharer decides to use a certain
node for their activities) or long term (e.g., a node’s bandwidth is consistently
overestimated or its flags and exit policy are too attractive). For short-term con-
gestion, we want to provide an instant response to switch to other circuits. For
long-term congestion, we propose a path selection algorithm that takes conges-
tion time into account.

5.1 Instant Response

We provide two ways in which clients can perform instant on-the-spot responses
to high congestion times in a circuit.

Choosing the Best Pre-built Circuits. Tor automatically attempts to main-
tain several pre-built circuits so that circuit construction time will not affect the

2 Alternatively, an exponentially weighted moving average (EWMA) of congestion
delay would reduce the space necessary to store historical congestion data.
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user’s experience. Two circuits are built that are capable of exiting to each port
used in the past hour (a circuit can count for multiple ports). Only one of those
circuits is chosen as the next circuit when the user’s circuit times out or breaks.
A reasonable scheme, therefore, is to test all of those circuits before choosing
which to use. As stated above, those tests can be done quickly and with minimal
overhead using active probing. We suggest that five active probing measurements
per pre-built circuit is sufficient to choose the best, as we observe in our exper-
iments (in Section 6). Since the circuits are pre-built, these measurements will
not cause the client any further delay.

Switching to another Circuit. While using the circuit, a client may continue
to measure the circuit and obtain congestion times. This can be done with no
overhead to the Tor network by opportunistically leveraging Tor’s stream-level
and circuit-level SENDME cells, or the stream BEGIN and CONNECTED cell pairs (as
described in Section 4.2). This gives us the round-trip time T , from which we
can follow the procedure given in Section 4.3 to isolate the nodes’ congestion
time. If the estimated congestion time is large, the client should stop using this
circuit and choose another circuit instead.

Comparison. Tor currently takes into account the circuit build time adaptively
and drops circuits that take too long to build [2]. This approach, however, cannot
identify circuits that may become congested after they are constructed, and
the client will not learn to avoid attempting to build circuits over nodes that
are consistently congested. Furthermore, propagation delays are included in the
circuit building time, which is undesirable. Our two schemes improve upon Tor’s
circuit building timeout mechanism.

5.2 Path Selection

In addition to an instant response, we also want a long-term response where
clients can selectively avoid certain nodes if they often receive poor service from
these nodes. This can be helpful when there are nodes with poorly estimated
bandwidth, when bulk downloaders customize their clients to use only specific
relays, or when there are other unexpected load balancing issues that have not
been resolved. Our congestion-aware path selection works as follows.

Each client will keep a list of all routers, each of which will be recorded with
a list of their measured congestion times. The list of measured values is of size
L; when new data comes in, old data is pushed out.

Node Selection. Our scheme is designed to be built atop the current path
selection algorithm in this way: when we wish to extend a circuit by one node,
we pick a few nodes from the list according to the original scheme (e.g., 10
nodes), and then choose one of them in negative correlation to their estimated
congestion times. Estimated congestion times should be obtained by leveraging
both the active and opportunistic measurements done for the instant response
schemes. Suppose that node r’s estimated congestion time is tcr . We define a
base constant α > 0, and use it to obtain the probability of selecting the node r
for a circuit:
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P (Cr) ∝
1

α+ tcr

where Cr is the event of node r being chosen. α is a constant that prevents very
low congestion nodes from dominating the path selection algorithm.

The effect of this scheme on the user’s experience and the Tor network itself
depends in part on the choice of the constant α. A smaller α will impact the
load balancing more as nodes with less estimated congestion become more likely
to be chosen.

Advantages. Our approach is simple and efficient. Furthermore, this scheme
requires no further infrastructure to support, and it is incrementally deployable
in the sense that any client who chooses to use this scheme can immediately
do so. The long term path selection scheme adds no further overhead on the
network over the instant response scheme, as it can share the few measurements
used to support the instant response scheme.

6 Experiments

We designed a number of experiments that aim to validate our assertions about
latency and congestion in Tor. For all experiments, we use the Tor control pro-
tocol to instrument Tor. We use the final pair of circuit construction cells to
measure the round-trip time of a circuit (as described in Section 4.2). In the
remainder of this section, we present experiments and results that show that
congestion is a property of Tor nodes, explore the relationship between a node’s
consensus bandwidth and its estimated congestion, and evaluate the performance
improvements offered by our congestion-aware router selection proposal.

6.1 Node Congestion

We first seek to demonstrate that congestion is a property of Tor routers. For
72 hours in August 2011, we collected round-trip time data for all Tor routers
that can be used on a circuit by measuring the time to construct one-hop cir-
cuits. For each node, we subtracted the node’s minimum measurement (e.g., the
propagation delay) to isolate the congestion delays tc.

Figure 2(a) shows the distribution of congestion delays for entry guards, exits,
guard/exits, and middle-only nodes. The median congestion delay is minimal (3–
5ms) across all node types; however, the tails of the distributions tell a different
story. For the most congested ten percent of the measurements, nodes marked as
both guard and exit experience congestion delays greater than 866ms, and guard-
only nodes have at least 836ms of congestion delay. Exit-only and middle-only
nodes tend to be the least congested. Guard nodes may be the most congested
because the stability and bandwidth criteria for the guard flag is too high. Re-
laxing the requirements for the guard flag would enable some middle-only nodes
to become guards, reducing congestion among guards.

Figure 2(b) shows congestion delays over the duration of our measurements
for all routers (top) and for three representative high-bandwidth (10MiB/s)
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Fig. 2. Analysis of congestion delays

routers (bottom). We note that these delays tend to be low. However, there
exists noticeable variability regardless of a node’s flags or bandwidth, and many
of the delays are close to one second (Figure 2(a) also illustrates these one second
delays where the CCDF lines become vertical). These one second delays are the
result of Tor’s token bucket rate limiting with a once-per-second token refilling
policy (see the extended version of this manuscript [22] for more details).3 These
one-second delays indicate that nodes are being asked to forward more traffic
than they are configured to handle, resulting in congestion. Thus, we conclude
that congestion is a property of the Tor router itself, motivating the need for
clients to consider congestion when selecting nodes for a circuit.

To investigate the possible relationship between a node’s bandwidth and its
congestion, we analyze the nodes’ consensus bandwidth as reported by Tor’s
directory servers. We observe no correlation between a node’s bandwidth and
congestion (the Pearson’s r value between log of the bandwidth and the conges-
tion time is −0.00842).4 This implies that considering only a node’s bandwidth
during path selection may not be sufficient to achieve optimal load balancing.

6.2 Performance Improvements of Our Schemes

We next present experiments that seek to quantify clients’ latency improvements
when using our scheme. Experiments are performed on both the instant response
and long-term path selection components.

3 Increasing the frequency with which the tokens are refilled may reduce or eliminate
these one second delays. This design change is currently being discussed [21].

4 Dhungel et al. report no significant correlation between bandwidth and overall de-
lay [3].
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Fig. 3. Improvements in congestion time and round-trip time for instant response

In these experiments, an unmodified Tor client used the current path selection
algorithm in Tor. At the same time, a modified client uses the instant response
components of our scheme (from Section 5.1) to determine which circuit it should
use. The original client builds 225 circuits and measures each one precisely 30
times to obtain round-trip times. The modified client determines which circuits
it should use based on the same data.

Choosing the Best Pre-built Circuits. We first tested how much of an im-
provement we would see if the client simply tested each circuit five times when
building them preemptively and chose the one with the lowest congestion. For
simplicity we assumed that the client always had three circuits to choose from.
The original client tested each of its circuits 30 times, and took the mean of the
congestion times as its experience with the circuit. The modified client chose the
best among every three circuits to use by only looking at the first five measure-
ments; after choosing the best out of three, all 30 measurements of that circuit
are revealed to the modified client and it is taken as its experience of the circuit.
Without the scheme, the mean circuit congestion time was about 0.276 s. With
the scheme, it was about 0.119 s. We find that this large improvement was be-
cause most circuits were non-congested, except a minority where the congestion
time was very high. Those circuits also clearly exhibited congestion in the first
five measurements. This experiment demonstrates that just a few measurements
are needed to effectively identify congested circuits.

Switching to Another Circuit. We next tested how much of an improvement
we would get if the client switches to a better circuit when the current one
becomes too congested. This time both the original client and the modified
client can see all measurements. The modified client dropped a circuit if the last
five measurements had a mean of more than 0.5 s of congestion; 73 of the 225
circuits were eventually dropped. This sufficed to improve the mean congestion
experienced from 0.276 s to 0.137 s.
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Finally, we combined the two instant response schemes. 75 of the 225 circuits
were chosen using the first scheme, and later 11 of the 75 circuits chosen were
eventually dropped using the second scheme. We achieved a mean congestion
time of 0.077 s, compared to the original 0.276 s. The total round-trip time was
reduced from a mean of 0.737 s to 0.448 s. Figure 3(a) shows the distribution of
congestion times for the client when it used our improvements compared to the
original selection scheme, and Figure 3(b) shows the distribution of round-trip
time for the same comparison. Note that such a reduction in congestion delays
would result in a faster time-to-first-byte for interactive clients (e.g., web brows-
ing clients), which positively affects the users’ perceived quality of service [16].

Overhead. One may worry that these
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schemes will add too much overhead be-
cause they drop existing circuits and
build new ones. With the first scheme
we are not dropping any circuits. With
the second scheme, in our experiment we
found that we would need to build about
26% more circuits, which is a relatively
modest increase.5

Long-Term Path Selection. We eval-
uate the long-term path selection algo-
rithm as follows. We ran a client that
builds many circuits over the entire Tor
network using the original path selec-
tion scheme. In total 13,458 circuits were
built, for which the round-trip time was
obtained 5 times each. One-third of the circuit build times were used as testing
data; the rest were used in training the client to learn the estimated congestion
times for each relay. By using the long-term path selection scheme, we observed
a decrease in the mean congestion time for this experiment from 0.41 s to 0.37 s
over the testing data. The improvement is not as large as in the instant response
schemes, because the long-term path selection scheme tackles more persistent
factors which adversely affect node performance rather than short-term bursts
of congestion.

The long-term path selection scheme offers an improvement nonethe-
less because it is capable of deducing the congestion time of individual
nodes while only measuring the congestion times of random circuits, al-
lowing it to choose uncongested nodes. We performed a total of 379 tri-
als where we compared deduced congestion (by building three-hop circuits)
to directly measured congestion (by building one-hop circuits). Figure 4
shows the distribution of errors. We found that nearly 90% of the errors

5 Circuit building cells are much rarer than data transfer cells; further, the Tor Project
is working to decrease the computation required for circuit building by a factor of
four [14].
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were within -0.5 s to 0.5 s, and 65% of the errors were within -0.1 s to 0.1 s.
The scheme very rarely overestimated node congestion, but sometimes under-
estimated it, as shown by the large number of negative errors. The mean error
was therefore -0.2 s. This may be because high congestion is somewhat random
in nature, so the scheme is less accurate in predicting the extent of a node’s
congestion while only given a previous record.

7 Anonymity and Security Implications

We consider if our schemes may be open to attacks which cause a loss of
anonymity for the client. To be specific, we consider sender anonymity, which is
achieved if a message and its origin cannot be traced. It is known that sender
anonymity is lost in Tor if the entry guard and the exit node in a circuit are
both compromised. The possibility of such depends on the attacker’s control of
the network. We therefore focus on the possibility of an attacker increasing their
control of the network through our schemes.

We consider a particular attack called
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Fig. 5. An estimate of the how much
control an attacker can gain through
the smearing attack. We chose tmax =
5000ms, tc = 500ms, L = 20, C = 30.

the smearing attack. The attacker first
uses all of his available bandwidth to
deploy malicious nodes. These malicious
nodes attempt to give the appearance of
congestion by artificially delaying cells.
If a client measures a circuit contain-
ing both innocuous and malicious nodes,
the innocuous nodes will be “smeared”
with high estimated congestion times.
The clients are then less likely to choose
these nodes under the long-term path se-
lection scheme. After a certain amount of
time, these malicious nodes will be es-
timated to have a very high congestion
as well, so the smearing becomes less ef-
fective. Once a malicious node becomes
rarely selected, it is taken down, and a new one is created in order to maintain
the attack. This attack is continued until all innocuous nodes can no longer be
smeared further (this is bounded by the amount of bandwidth available to the
attacker). After all nodes are maximally smeared, the attacker can stop the at-
tack and enjoy a larger control of the network for a while, as his nodes will now
seem more attractive.6

A parameter of the attack is C, which indicates for how long each malicious
node will attempt to smear other nodes before being replaced. If C = 5, for

6 Note that nodes are less likely to be chosen if they do not have the “stable” and
“fast” flags. The stable flag is a barrier for malicious nodes, as it requires the node
to demonstrate high stability before they can be effective. We neglect this barrier in
the following analysis, giving more power to the attacker.
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example, the attacker will attempt to keep each malicious node up for as long
as it takes to smear other nodes five times for each client measuring the nodes,
then take it down and replace it with another node. We take tc as the mean
performance of the nodes (including the malicious node) and tmax as the max-
imum time the client performing the latency measurement will wait for before
timing out. The estimation is done by running a simulation with the simplifying
assumption that all nodes can be selected in all positions.

Figure 5 shows howmuch bandwidth the malicious nodes must possess in order
to affect the measurements of the congestion time of the non-malicious nodes.
The attacker can indeed smear other nodes and gain an advantage by coming
up with fresh, non-smeared nodes. We also note that the advantage gained is
temporary; when the adversary stops performing the attack and uses all their
bandwidth to acquire control of the network, clients will start measuring the
other nodes’ non-smeared congestion times as well, so their estimated congestion
times will slowly return to their non-smeared levels.

Information leakage could also cause anonymity loss. The list of latencies
stored on a user’s computer may compromise anonymity if divulged. If the
list of latencies for all users is known to an attacker, he can perform an at-
tack by only controlling the exit node, and using the lists to probabilistically
guess who is connecting by checking the frequency of connections; this will give
him some amount of information. Our scheme, however, gives no reason to di-
rectly divulge the list of latencies at any point. Furthermore, this list is up-
dated based on client behavior and measurements, which the attacker cannot
easily observe or manipulate without controlling a substantial portion of the
network.

While we recognize that our scheme introduces a small risk due to the smear-
ing attack, we believe that reducing congestion would result in increased re-
silience to attacks that utilize congestion to identify the set of routers used by a
client [9]. Due to space constraints, a full investigation is future work.

8 Conclusion and Future Work

Many different metrics for path selection in Tor have been proposed, some of
which consider the use of latency. However, previous work treats latency as a
property of a link and focuses on the delays that occur primarily due to propa-
gation. We assume a different approach: we identify the importance of latency as
an indicator of a node’s congestion. To reduce congestion, improve load balanc-
ing and, ultimately, improve clients’ quality of service, we propose an improved
path selection algorithm based on inferred congestion information that biases
path selection toward non-congested nodes. We also propose ways for clients
to respond to short-term, transient congestion that improve on Tor’s adaptive
circuit building timeout mechanism.

Our experiments show that a single client can expect to experience up to a
40% decrease in delay when considering congestion during node selection. As
future work, we plan to investigate the potential benefits and other effects when
this scheme is deployed at scale through whole-network experiments.
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Abstract. In 2010, Washington, D.C. developed an Internet voting pi-
lot project that was intended to allow overseas absentee voters to cast
their ballots using a website. Prior to deploying the system in the general
election, the District held a unique public trial: a mock election during
which anyone was invited to test the system or attempt to compromise its
security. This paper describes our experience participating in this trial.
Within 48 hours of the system going live, we had gained near-complete
control of the election server. We successfully changed every vote and
revealed almost every secret ballot. Election officials did not detect our
intrusion for nearly two business days—and might have remained un-
aware for far longer had we not deliberately left a prominent clue. This
case study—the first (to our knowledge) to analyze the security of a gov-
ernment Internet voting system from the perspective of an attacker in
a realistic pre-election deployment—attempts to illuminate the practi-
cal challenges of securing online voting as practiced today by a growing
number of jurisdictions.

Keywords: Internet voting, e-voting, penetration testing, case studies.

1 Introduction

Conducting elections for public office over the Internet raises grave security
risks. A web-based voting system needs to maintain both the integrity of the
election result and the secrecy of voters’ choices, it must remain available and
uncompromised on an open network, and it has to serve voters connecting from
untrusted clients. Many security researchers have cataloged threats to Internet
voting (e.g. [11,15]), even as others have proposed systems and protocols that
may be steps to solutions someday (e.g. [6,12]); meanwhile, a growing number
of states and countries have been charging ahead with systems to collect votes
online. Estonia [1] and Switzerland [2] have already adopted online voting for
national elections. As of 2010, 19 U.S. states employed some form of Internet
voting [5], and at least 12 more were reportedly considering adopting it [4].

Among the jurisdictions considering Internet voting, one of the most enthu-
siastic proponents was the District of Columbia. In 2010, the Washington, D.C.
Board of Elections and Ethics (BOEE) embarked on a Federally-funded pilot
project that sought to allow overseas voters registered in the District to vote
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over the web starting with the November 2010 general election [16]. Though the
D.C. system, officially known as the “D.C. Digital Vote-by-Mail Service,” was
technologically similar to parallel efforts in other states, BOEE officials adopted
a unique and laudable level of transparency. The system was developed as an
open source project, in partnership with the nonprofit Open Source Digital Vot-
ing (OSDV) Foundation [3]. Most significantly, prior to collecting real votes with
the system, the District chose to operate a mock election and allow members of
the public to test its functionality and security.

We participated in this test, which ran for four days in September and October
2010. Our objective was to approach the system as real attackers would: starting
from publicly available information, we looked for weaknesses that would allow
us to seize control, unmask secret ballots, and alter the outcome of the mock
election. Our simulated attack succeeded at each of these goals and prompted
the D.C. BOEE to discontinue its plans to deploy digital ballot return in the
November election.

In this paper, we provide a case study of the security of an Internet voting
system that, absent our participation, might have been deployed in real elections.
Though some prior investigations have analyzed the security of proposed Internet
voting systems by reviewing their designs or source code, this is the first instance
of which we are aware where researchers have been permitted to attempt attacks
on such a system in a realistic deployment intended for use in a general election.

We hope our experiences with the D.C. system will aid future research on
secure Internet voting. In particular, we address several little-understood practi-
cal aspects of the problem, including the exploitability of implementation errors
in carefully developed systems and the ability of election officials to detect, re-
spond, and recover from attacks. Our successful penetration supports the widely
held view among security researchers that web-based electronic voting faces high
risks of vulnerability, and it cautions against the position of many vendors and
election officials who claim that the technology can readily be made safe. The
remainder of this paper is organized as follows: Section 2 introduces the archi-
tecture and user interface of the Digital Vote-By-Mail System. In Section 3, we
describe how we found and exploited vulnerabilities in the web application soft-
ware to compromise the mock election. Section 4 describes further vulnerabilities
that we found and exploited in low-level network components. Section 5 discusses
implications of our case study for other Internet voting systems and future public
trials. We survey related work in Section 6 and conclude in Section 7.

2 Background: The D.C. Digital Vote-By-Mail System

Architecture. The Digital Vote-by-Mail (DVBM) system is built around an open-
source web application1 developed in partnership with the D.C. BOEE by the
OSDV Foundation’s TrustTheVote project2. The software uses the popular Ruby
on Rails framework and is hosted on top of the Apache web server and the
1 http://github.com/trustthevote/DCdigitalVBM/
2 http://trustthevote.org

http://github.com/trustthevote/DCdigitalVBM/
http://trustthevote.org
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Allowed TCP ports : 80 and 443 Allowed TCP port : 80

Web Server Application Server Database Server

Public Network

digital-vbm.dc.gov

Firewall and

Intrusion Detection

Firewall

Fig. 1. Network architecture —The front-end web server receives HTTPS requests
from users and reverse-proxies them to the application server, which hosts the DVBM
election software and stores both blank and completed ballots. A MySQL database
server stores voter credentials and tracks voted ballots. Multiple firewalls reduce the
attack surface and complicate attacks by disallowing outbound TCP connections. The
intrusion detection system in front of the web server proved ineffective, as it was
unable to decrypt the HTTPS connections that carried our exploit. (Adapted from
http://www.dcboee.us/DVM/Visio-BOEE.pdf.)

MySQL relational database. Global election state (such as registered voters’
names, addresses, hashed credentials, and precinct-ballot mappings, as well as
which voters have voted) is stored in the MySQL database. Voted ballots are
encrypted and stored in the filesystem. User session state, including the user ID
and whether the ballot being cast is digital or physical, is stored in an encrypted
session cookie on the user’s browser.

Electronic ballots are served as PDF files which voters fill out using a PDF
reader and upload back to the server. To safeguard ballot secrecy, the server
encrypts completed ballots with a public key whose corresponding private key
is held offline by voting officials. Encrypted ballots are stored on the server until
after the election, when officials transfer them to a non-networked computer (the
“crypto workstation”), decrypt them using the private key, and print them for
counting alongside mail-in absentee ballots.

Figure 1 shows the network architecture deployed for the mock election.
HTTPS web requests are interpreted by the web server over TCP port 443.
The web server then performs the HTTP request on the user’s behalf to the
application server, which runs the DVBM application software. The web server,
application server, and a MySQL database server all run Linux. Firewalls pre-
vent outbound connections from the web and application servers. Since the web
server and application server run on separate machines, a compromise of the ap-
plication server will not by itself allow an attacker to steal the HTTPS private
key.

Voter experience. The DVBM system was intended to be available to all mili-
tary and overseas voters registered in the District. Months prior to the election,
each eligible voter received a letter by postal mail containing credentials for the
system. These credentials contained the voter ID number, registered name, resi-
dence ZIP code, and a 16-character hexadecimal personal identification number

http://www.dcboee.us/DVM/Visio-BOEE.pdf
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(PIN). The letters instructed voters to visit the D.C. Internet voting system
website, which guided them through the voting process.

Upon arrival, the voter selects between a digital or postal ballot return. Next,
the voter is presented with an overview of the voting process. The voter then
logs in with the credentials provided in the mail, and confirms his or her identity.
Next, the voter is presented with a blank ballot in PDF format. In the postal
return option, the voter simply prints out the ballot, marks it, and mails it to the
provided address. For the digital return, the voter marks the ballot electronically
using a PDF reader, and saves the ballot to his or her computer. The voter then
uploads the marked ballot to the D.C. Internet voting system, which reports
that the vote has been recorded by displaying a “Thank You” page. If voters try
to log in a second time to cast another ballot, they are redirected to the final
Thank You page, disallowing them from voting again.

3 Attacking the Web Application

In this section, we describe vulnerabilities we discovered and exploited in the
DVBM server application. Our search for vulnerabilities was primarily conducted
by manual inspection of the web application’s source code, guided by a focus on
the application’s attack surface. In particular, we concentrated on voter login,
ballot upload and handling, database communication, and other network activ-
ity. The fact that the application was open source expedited our search, but
motivated attackers could have found vulnerabilities without the source code
using alternative methods. For example, one might attack voter login fields, bal-
lot contents, ballot filenames, or session cookies, by either fuzzing or more direct
code injection attacks such as embedding snippets of SQL, shell commands, and
popular scripting languages with detectable side effects.

3.1 Shell-Injection Vulnerability

After a few hours of examination, we found a shell injection vulnerability that
eventually allowed us to compromise the web application server. The vulnerabil-
ity was located in the code for encrypting voted ballots uploaded by users. The
server stores uploaded ballots in a temporary location on disk, and the DVBM
application executes the gpg command to encrypt the file, using the following
code:

run ( "gpg" , "−−t ru s t−model always −o
\"#{F i l e . expand_path ( dst . path ) }\" −e −r
\"#{@rec ip i en t }\" \"#{F i l e . expand_path ( s r c . path ) }\"" )

The run method invoked by this code concatenates its first and second argu-
ments, collapses multiple whitespace characters into single characters, and then
executes the command string using Ruby’s backtick operator, which passes the
provided command to the shell. The Paperclip3 Rails plugin, which the ap-
plication uses to handle file uploads, preserves the extension of the uploaded
3 https://github.com/thoughtbot/paperclip

https://github.com/thoughtbot/paperclip
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ballot file, and no filtering is performed on this extension, so the result of
File.expand_path(src.path) is attacker controlled. Unfortunately, in the Bash
shell used on the server, double quotes do not prevent the evaluation of shell
metacharacters, and so a ballot named foo.$(cmd) will result in the execution
of cmd with the privileges of the web application.

The current release of the Paperclip plugin at the time of our analysis (late
September 2010) was version 2.3.3. It appears that a similar vulnerability in
Paperclip’s built-in run method was fixed on April 30, 20104. The first release
containing the patch was version 2.3.2, which was tagged in the Paperclip Git
repository on June 8, 2010. The degree of similarity between the DVBM ap-
plication’s custom run method and the Paperclip run method suggests that
the DVBM application’s implementation is a custom “stripped-down” version
of Paperclip’s, contrary to the D.C. BOEE’s assertion that “a new version of
[Paperclip] that had not been fully tested had been released and included in the
deployed software” and “did not perform filename checks as expected.” [14] In-
deed, if DVBM had used the Paperclip run method together with an up-to-date
version of the Paperclip library, this specific vulnerability would not have been
included in the software. The resulting attack serves as a reminder that a small,
seemingly minor engineering mistake in practically any layer of the software
stack can result in total system compromise.

When we tested the shell injection vulnerability on the mock election server,
we discovered that outbound network traffic from the test system was filtered,
rendering traditional shellcode and exfiltration attempts (e.g., nc umich.edu
1234 < /tmp/ballot.pdf) ineffective. However, we were able to exfiltrate data
by writing output to the images directory on the compromised server, where it
could be retrieved with any HTTP client. To expedite crafting our shell com-
mands, we developed an exploit compiler and a shell-like interface that, on each
command, creates a maliciously named ballot file, submits the ballot to the
victim server, and retrieves the output from its chosen URL under /images.

Interestingly, although the DVBM system included an intrusion detection sys-
tem (IDS) device, it was deployed in front of the web server and was not config-
ured to intercept and monitor the contents of the encrypted HTTPS connections
that carried our attack. Although configuring the IDS with the necessary TLS
certificates would no doubt have been labor intensive, failure to do so resulted
in a large “blind spot” for the D.C. system administrators.

3.2 Attack Payloads

We exploited the shell injection vulnerability to carry out several attacks that
illustrate the devastating effects attackers could have during a real election if
they gained a similar level of access:

Stealing secrets. We retrieved several cryptographic secrets from the application
server, including the public key used for encrypting ballots. Despite the use of

4 The patch in question is available at https://github.com/thoughtbot/paperclip/
commit/724cc7. It modifies run to properly quote its arguments using single quotes.

https://github.com/thoughtbot/paperclip/commit/724cc7
https://github.com/thoughtbot/paperclip/commit/724cc7
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the term “public key,” this key should actually be kept secret, since it allows
attackers to substitute arbitrary ballots in place of actual cast ballots should
they gain access to the storage device. We also gained access to the database
by finding credentials in the bash history file (mysql -h 10.1.143.75 -udvbm
-pP@ssw0rd).

Changing past and future votes. We used the stolen public key to replace all of
the encrypted ballot files on the server at the time of our intrusion with a forged
ballot of our choosing. In addition, we modified the ballot-processing function to
append any subsequently voted ballots to a .tar file in the publicly accessible
images directory (where we could later retrieve them) and replace the originals
with our forged ballot. Recovery from this attack is difficult; there is little hope
for protecting future ballots from this level of compromise, since the code that
processes the ballots is itself suspect. Using backups to ensure that compromises
are not able to affect ballots cast prior to the compromise may conflict with
ballot secrecy in the event that the backup itself is compromised.

Revealing past and future votes. One of the main goals of a voting system is
to protect ballot secrecy, which means not only preventing an attacker of the
system from determining how a voter voted, but also preventing a voter from
willingly revealing their cast ballot to a third party, even if they are coerced or
incentivized to do so. While any absentee system that allows voters to vote where
they choose allows a voter to reveal his or her vote voluntarily, our attack on
the D.C. system allowed us to violate ballot secrecy and determine how nearly
all voters voted.

Our modifications to the ballot processing function allowed us to learn the
contents of ballots cast following our intrusion. Revealing ballots cast prior to
our intrusion was more difficult, because the system was designed to store these
ballots in encrypted form, and we did not have the private key needed to decipher
them. However, we found that the Paperclip Rails plugin used to handle file
uploads stored each ballot file in the /tmp directory before it was encrypted. The
web application did not remove these unencrypted files, allowing us to recover
them. While these ballots do not explicitly specify the voter’s ID, they do indicate
the precinct and time of voting, and we were able to associate them with voters
by using login events and ballot filenames recorded in the server application logs.
Thus, we could violate the secret ballot for past and future voters.

Discovering that real voter credentials were exposed. In addition to decrypted
ballots, we noticed that the /tmp directory also contained uploaded files that were
not PDF ballots but other kinds of files apparently used to exercise error handling
code during testing. To our surprise, one of these files was a 937 page PDF
document that contained the instruction letters sent to each of the registered
voters, which included the real voters’ credentials for using the system. These
credentials would have allowed us (or anyone else who penetrated the insecure
server) to cast votes as these citizens in the real D.C. election that was to begin
only days after the test period. Since the system requires that these credentials
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be delivered via postal mail, it would be infeasible for officials to send updated
ones to the voters in time for the election.

Hiding our tracks. We were able to hide the evidence of our intrusion with
moderate success. We downloaded the DVBM application logs, altered them to
remove entries corresponding to our malicious ballot uploads, and, as our final
actions, overwrote the application log with our sanitized version and removed
our uploaded files from the /tmp and images directories.

Our calling card. To make our control over the voting system more tangible
to nontechnical users, we left a “calling card” on the final screen of the digital
voting workflow: we uploaded a recording of “The Victors” (the University of
Michigan fight song) and modified the confirmation page to play this recording
after several seconds had elapsed. We hoped that this would serve as a clear
demonstration that the site had been compromised, while remaining discreet
enough to allow the D.C. BOEE system administrators a chance to exercise
their intrusion detection and response procedures.

3.3 Other Vulnerabilities and Potential Attacks

Our intention in participating in the trial was to play the role of a real attacker.
Therefore, once we had found vulnerabilities that allowed us to compromise the
system, our attention shifted to understanding and exploiting these problems.
However, along the way we did uncover several additional vulnerabilities in the
DVBM web application that were not necessary for our attack. Two key system
deployment tasks were not completed. First, the set of test voter credentials
was not regenerated and was identical to those included in the public DVBM
Git repository. While the test voter credentials were fictitious, their disclosure
constituted a security problem because public testers were asked to contact the
D.C. BOEE for credentials, implying that the number of credentials available to
each test group was to be limited.

Similarly, the encryption key used for session cookies was unchanged from
the default key published in the repository. Disclosure of the key exacerbated a
second vulnerability: rather than using the Rails-provided random session_id
to associate browser sessions with voter credentials, the DVBM developers used
the rid value, which corresponds to the automatically incremented primary key
of the registration table in the system’s MySQL database. This means every
integer less than or equal to the number of registered voters is guaranteed to
correspond to some voter. Combining this with the known encryption key results
in a session forgery vulnerability. An attacker can construct a valid cookie for
some voter simply by choosing an arbitrary valid rid value. This vulnerability
could have been used to submit a ballot for every voter.

Our attack was expedited because the DVBM application user had permission
to write the code of the web application. Without this permission, we would have
had to find and exploit a local privilege escalation vulnerability in order to make
malicious changes to the application. However, as we were able to carry out
our attacks as the web application user, we did not need to find or use such an
exploit.
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We also identified other attack strategies that we ultimately did not need to
pursue. For instance, the “crypto workstation” (see Section 2) used for decrypting
and tabulating ballots is not directly connected to the Internet, but attackers
may be able to compromise it by exploiting vulnerabilities in PDF processing
software. PDF readers are notoriously subject to security vulnerabilities; indeed,
the Crypto Workstation’s lack of Internet connectivity may reduce its security
by delaying the application of automated updates in the time leading up to
the count. If the Crypto Workstation is compromised, attackers would likely be
able to rewrite ballots. Furthermore, the web application allowed uploaded PDF
ballots to contain multiple pages. If the printing is done in an automated fashion
without restricting printouts to a single page, an attacker could vote multiple
ballots.

4 Attacking the Network Infrastructure

In addition to the web application server, we were also able to compromise
network infrastructure on the pilot network. This attack was independent from
our web application compromise, yet it still had serious ramifications for the real
election and showed a second potential path into the system.

Prior to the start of the mock election, the D.C. BOEE released a pilot net-
work design diagram that showed specific server models, the network config-
uration connecting these servers to the Internet, and a CIDR network block
(8.15.195.0/26). Using Nmap, we discovered five of the possible 64 addresses
in this address block to be responsive. By using Nmap’s OS fingerprinting fea-
ture and manually following up with a web browser, we were able to discover
a Cisco router (8.15.195.1), a Cisco VPN gateway (8.15.195.4), two networked
webcams (8.15.195.11 and 8.15.195.12), and a Digi Passport 8 terminal server5
(8.15.195.8).

4.1 Infiltrating the Terminal Server

The Digi Passport 8 terminal server provides an HTTP-based administrative
interface. We were able to gain access using the default root password (dbps)
obtained from an online copy of the user manual. We found that the terminal
server was connected to four enterprise-class Cisco switches (which we surmised
corresponded to the switches shown on the network diagram provided by the
BOEE) and provided access to the switches’ serial console configuration inter-
faces via telnet.

We hid our presence in the terminal server using a custom JavaScript rootkit,
which we installed over an SSH session (the same account names and passwords
used in the web interface were accepted for SSH). The rootkit concealed an ad-
ditional account with administrator privileges, “dev,” which we planned to use in
case our attack was discovered and the passwords changed. We also used our SSH
5 A terminal server is a device that attaches to other pieces of equipment and allows

administrators to remotely log in and configure them.
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access to download the terminal server’s /etc/shadow and /etc/passwd files for
cracking using the “John the Ripper” password cracker6. After about 3.5 hours
using the cracker’s default settings, we recovered the secondary administrator
password cisco123 from a salted MD5 hash.

Evidence of other Attackers. When we inspected the terminal server’s logs,
we noticed that several other attackers were attempting to guess the SSH login
passwords. Such attacks are widespread on the Internet, and we believe the ones
we observed were not intentionally directed against the D.C. voting system.
However, they provide a reminder of the hostile environment in which Internet
voting applications must operate.

The first SSH attack we observed came from an IP address located in Iran
(80.191.180.102), belonging to Persian Gulf University. We realized that one of
the default logins to the terminal server (user: admin, password: admin) would
likely be guessed by the attacker in a short period of time, and therefore decided
to protect the device from further compromise that might interfere with the
voting system test. We used iptables to block the offending IP addresses and
changed the admin password to something much more difficult to guess. We
later blocked similar attacks from IP addresses in New Jersey, India, and China.

4.2 Routers and Switches

After we compromised the terminal server, we found several devices connected
to its serial ports. Initially, there were four Cisco switches: a pair of Nexus 5010s
and a pair of Nexus 7010s. Connecting to these serial ports through the terminal
server presented us with the switches’ login prompts, but previously found and
default passwords were unsuccessful.

The terminal server provided built-in support for keystroke logging of serial
console sessions and forwarding of logged keystrokes to a remote syslog server,
which we enabled and configured to forward to one of our machines. This allowed
us to observe in real time as system administrators logged in and configured the
switches, and to capture the switches’ administrative password, !@#123abc.

Later in the trial, four additional devices were attached to the terminal server,
including a pair of Cisco ASR 9010 routers and a pair of Cisco 7606-series routers.
We were again able to observe login sessions and capture passwords. At the end
of the public trial, we changed the passwords on the routers and switches—
effectively locking the administrators out of their own network—before alerting
BOEE officials and giving them the new password.

D.C. officials later told us that the routers and switches we had infiltrated were
not intended to be part of the voting system trial and were simply colocated
with the DVBM servers at the District’s off-site testing facility. They were,
however, destined to be deployed in the core D.C. network, over which real
election traffic would flow. With the access we had, we could have modified
the devices’ firmware to install back doors that would have given us persistent

6 http://www.openwall.com/john/

http://www.openwall.com/john/
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access, then later programmed them to redirect Internet voting connections to
a malicious server.

4.3 Network Webcams

We found a pair of webcams on the DVBM network—both publicly accessible
without any password—that showed views of the server room that housed the
pilot. One camera pointed at the entrance to the room, and we were able to ob-
serve several people enter and leave, including a security guard, several officials,
and IT staff installing new hardware. The second camera was directed at a rack
of servers.

These webcams may have been intended to increase security by allowing re-
mote surveillance of the server room, but in practice, since they were unsecured,
they had the potential to leak information that would be extremely useful to
attackers. Malicious intruders viewing the cameras could learn which server ar-
chitectures were deployed, identify individuals with access to the facility in order
to mount social engineering attacks, and learn the pattern of security patrols in
the server room. We used them to gauge whether the network administrators had
discovered our attacks—when they did, their body language became noticeably
more agitated.

5 Discussion

5.1 Attack Detection and Recovery

After we completed our attack—including our musical calling card on the “Thank
You” page—there was a delay of approximately 36 hours before election officials
responded and took down the pilot servers for analysis. The attack was appar-
ently brought to officials’ attention by an email on a mailing list they monitored
that curiously asked, “does anyone know what tune they play for successful vot-
ers?” Shortly after another mailing list participant recognized the music as “The
Victors,” officials abruptly suspended the public examination period, halting the
tests five days sooner than scheduled, citing “usability issues.”

Following the trial, we discussed the attack with D.C. officials. They explained
that they found our modifications to the application code by comparing the disk
image of the server to a previous snapshot, although this required several days
of analysis. They confirmed that they were unable to see our attacks in their
intrusion detection system logs, that they were unable to detect our presence
in the network equipment until after the trial, and that they did not discover
the attack until they noticed our intentional calling card. We believe that at-
tack detection and recovery remain significant challenges for any Internet voting
system.

5.2 Adversarial Testing and Mechanics of the D.C. Trial

The D.C. BOEE should be commended for running a public test of their system.
Their trial was a step in the right direction toward transparency in voting tech-
nology and one of the first of its kind. Nonetheless, we reiterate that adversarial
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testing of Internet voting applications is not necessary to show that they are
likely to be weak. The architectural flaws inherent in Internet voting systems in
general and the potential disastrous implications of a single vulnerability were
known and expected by researchers prior to the D.C. trial [11]. We hope not to
have to repeat this case study in order to highlight these limitations once again.

The key drawback to adversarial testing is that a lack of problems found in
testing does not imply a lack of problems in the system, despite popular per-
ception to the contrary. It is likely that testers will have more limited resources
and weaker incentives than real attackers—or they may simply be less lucky. A
scarcity of testers also seems to have been an issue during the D.C. trial. During
our compromise of the DVBM server, we were able to view the web access logs,
which revealed only a handful of attack probes from other testers, and these
were limited to simple failed SQL and XSS injection attempts.

One reason for the lack of participation may have been ambiguity over the legal
protections provided to testers by the BOEE. Another possible reason is that
the test began on short notice—the final start date was announced only three
days in advance. If such a trial must be repeated, we hope that the schedule
will be set well in advance, and that legal protections for participants will be
strongly in place. In addition to the short notice, the scheduled conclusion of
the test was only three days before the system was planned to be opened for use
by real voters. Had the test outcome been less dramatic, election officials would
have had insufficient time to thoroughly evaluate testers’ findings.

Despite these problems, one of the strongest logistical aspects of the D.C.
trial was that access to the code—and to some extent, the architecture—was
available to the testers. While some observers have suggested that this gave us
an unrealistic advantage while attacking the system, there are several reasons
why such transparency makes for a more realistic test. Above and beyond the
potential security benefits of open source code (pressure to produce better code,
feedback from community, etc.), in practice it is difficult to prevent a motivated
attacker from gaining access to source code. The code could have been leaked by
the authors through an explicit sale by dishonest insiders, as a result of coercion,
or through a compromised developer workstation. Since highly plausible attacks
such as these are outside the scope of a research evaluation, it is not only fair
but realistic to provide the code to the testers.

5.3 Why Internet Voting Is Hard

Practical Internet voting designs tend to suffer from a number of fundamental
difficulties, from engineering practice to inherent architectural flaws. We feel it is
important to point them out again given the continued development of Internet
voting systems.

Engineering practice. Both the DVBM system and the earlier prototype Inter-
net voting system SERVE [11] were built primarily on commercial-off-the-shelf
(COTS) software (which, despite the use of the term “commercial,” includes most
everyday open-source software). Unfortunately, the primary security paradigm
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for COTS developers is still “penetrate and patch.” While this approach is suit-
able for the economic and risk environment of typical home and business users,
it is not appropriate for voting applications due to the severe consequences of
failure.

Inherited DRE threats. Relatively simple Internet voting systems like D.C.’s
DVBM strongly resemble direct recording electronic (DRE) voting machines, in
that there is no independent method for auditing cast ballots. If the voting sys-
tem software is corrupt, recovery is likely to be impossible, and even detection
can be extremely difficult. DRE voting is highly susceptible to insider attacks as
well as external compromise through security vulnerabilities. In previous work
[7,8,10,13,17], the closed, proprietary nature of DREs has been held as an ad-
ditional threat to security, since there is no guarantee that even the intended
code is honest and correct. In contrast, the DVBM system was open source, but
the public would have had no guarantee that the deployed voting system was
actually running the published code.

Tensions between ballot secrecy and integrity. One of the fundamental reasons
that voting systems are hard to develop is that two fundamental goals of a secret
ballot election—ballot secrecy and ballot integrity—are in tension. Indeed, the
D.C. system attempted to protect integrity through the use of logs, backups and
intrusion detection, yet these systems can help an intruder compromise ballot
secrecy. Other security mechanisms put in place to protect ballot secrecy, such as
encrypting completed ballots and avoiding incremental backups make detecting
and responding to compromise much more difficult.

Architectural brittleness in web applications. The main vulnerability we ex-
ploited resulted from a tiny oversight in a single line of code and could have
been prevented by using single quotes instead of double quotes. Mistakes like
this are all too common. They are also extremely hard to eradicate, not because
of their complexity, but because of the multitude of potential places they can
exist. If any one place is overlooked, an attacker may be able to leverage it to
gain control of the entire system. In this sense, existing web application frame-
works tend to be brittle. As our case study shows, the wrong choice of which
type of quote to use—or countless other seemingly trivial errors—can result in
an attacker controlling the outcome of an election.

Internet-based threats. Internet voting exposes what might otherwise be a small,
local race of little global significance to attackers from around the globe, who
may act for a wide range of reasons varying from politics to financial gain to sheer
malice. In addition to compromising the central voting server as we did, attackers
can launch denial-of-service attacks aimed at disrupting the election, they can
redirect voters to fake voting sites, and they can conduct widespread attacks on
voters’ client machines [9]. These threats correspond to some of the most difficult
unsolved problems in Internet security and are unlikely to be overcome soon.

Comparison to online banking. While Internet-based financial applications,
such as online banking, share some of the threats faced by Internet voting, there
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is a fundamental difference in ability to deal with compromises after they have
occurred. In the case of online banking, transaction records, statements, and
multiple logs allow customers to detect specific fraudulent transactions and in
many cases allow the bank to reverse them. Internet voting systems cannot keep
such fine-grained transaction logs without violating ballot secrecy for voters.
Even with these protections in place, banks suffer a significant amount of online
fraud but write it off as part of the cost of doing business; fraudulent election
results cannot be so easily excused.

6 Related Work

Although this is, to the best of our knowledge, the first public penetration test
of an Internet voting system scheduled for use in a general election, we are not
the first to caution against the adoption of Internet voting.

The most closely related work is the 2004 security analysis of the Secure Elec-
tronic Registration and Voting Experiment (SERVE) by Jefferson et al. [11].
Like the D.C. DVBM project, SERVE was an Internet voting “pilot” that was
slated for use in an actual election by absentee overseas voters. Jefferson et al. re-
viewed the system design and pointed out many architectural and conceptual
weaknesses that apply to remote Internet voting systems in general, though they
did not have an opportunity to conduct a penetration test of a pilot system. On
the basis of these weaknesses, Jefferson et al. recommended “shutting down the
development of SERVE immediately and not attempting anything like it in the
future until both the Internet and the world’s home computer infrastructure
have been fundamentally redesigned.” We emphatically reaffirm that recommen-
dation. Despite incremental advances in computer security in the last eight years,
the fundamental architectural flaws Jefferson et al. identified remain largely the
same to this day.

More recently, Esteghari and Desmedt [9] developed an attack on the Helios
2.0 [6] open-audit Internet voting system. Their attack exploits an architectural
weakness in home computer infrastructure by installing a “browser rootkit” or
“man-in-the-browser attack” that detects the ballot web page and modifies votes.
Esteghari and Desmedt note that Helios 3.0 is capable of posting audit informa-
tion to an external web server before ballot submission, which can, in theory, be
checked using a second trusted computer to detect the action of the rootkit, but
it is not clear that such a second computer will be available or a sufficiently large
number of nontechnical voters will take advantage of this audit mechanism.

7 Conclusions

Our experience with the D.C. pilot system demonstrates one of the key dangers
in many Internet voting designs: one small mistake in the configuration or imple-
mentation of the central voting servers or their surrounding network infrastruc-
ture can easily undermine the legitimacy of the entire election. We expect that
other fielded Internet voting systems will fall prey to such problems, especially
if they are developed using standard practices for mass-produced software and
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websites. Even if the central servers were somehow eliminated or made imper-
vious to external attack, Internet voting is likely to be susceptible to numerous
classes of threats, including sabotage from insiders and malware placed on client
machines. The twin problems of building secure software affordably and prevent-
ing home computers from falling prey to malware attacks would both have to be
solved before systems like D.C.’s could be seriously considered. Although new
end-to-end verifiable cryptographic voting schemes have the potential to reduce
the trust placed in servers and clients, these proposals are significantly more
advanced than systems like D.C.’s and may prove even more difficult for devel-
opers and election officials to implement correctly. Securing Internet voting in
practice will require significant fundamental advances in computer security, and
we urge Internet voting proponents to reconsider deployment until and unless
major breakthroughs are achieved.
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Abstract. Security audits with subsequent certification appear to be the
tool of choice to cure failures in providing the right level of security be-
tween different interacting parties, e. g., between an outsourcing provider
and its clients. Our game-theoretic analysis scrutinizes this view and iden-
tifies conditions under which security audits are most effective, and when
they are not. We find that basic audits are hardly ever useful, and in gen-
eral, the thoroughness of security audits needs to be carefully tailored to
the situation. Technical, managerial, and policy implications for volun-
tary, mandatory, unilateral, and bilateral security audits are discussed.
The analysis is based on a model of interdependent security which takes
as parameters the efficiency of security investment in reducing individual
risk, the degree of interdependence as a measure of interconnectedness,
and the thoroughness of the security audit.

1 Introduction

Information technology has spurred innovation and productivity gains [8], but
the flip side is the emergence of cyber risk. A characteristic feature that distin-
guishes this “new” kind of risk from traditional risks is the sensitivity to inter-
dependence between decisions of individual actors [16]. Therefore, a profound
understanding of the particularities of cyber risk is essential to guide the design
of secure systems as well as supporting organizational measures. Security audits
belong to the set of organizational tools to manage and regulate risk-taking in
the internet society. This paper sets out to rigorously analyze why and under
which conditions security audits can be most effective.

1.1 Interdependent Cyber Risk

In the context of cyber risk, interdependence means that the success of risk miti-
gation does not only depend on the actions of the potentially affected party, but
also on actions of others. In economics jargon, interdependence can be described
as an instance where security investment generates externalities.

Examples for interdependent security risks exist on various levels of abstrac-
tion. For example, modern software engineering relies on the composition of
reusable components. Since the security of a system can be compromised by a
single vulnerability, the overall security of a system does not only depend on
the effort of the first-tier developer, but also on the effort of the developers of
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components, libraries, development tools, and the transitive closure thereof (i. e.,
libraries used by components, development tools used to build libraries, etc.).
Also service-oriented architectures provide a wide range of examples for interde-
pendence. In supply chains and other kinds of outsourcing relations, including all
types of cloud computing, the confidentiality, availability, and oftentimes also the
integrity of business-relevant data depends on the security level of all involved
parties. As a final example, take the internet as a whole. Botnets are the back-
bone for a range of threat scenarios. Their existence and growth is only possible
because not all nodes connected to the network make sufficient efforts to secure
their systems. So the insecurity of a victim partly depends on the inaptitude of
others—that is a clear case of interdependence.

The issues arising from interdependent security, notably free-riding and lack
of incentives to invest in security, are not always reflected in the literature dis-
cussing the potentials of interconnection for the sake of sharing information, ser-
vices, and other resources. If not fully ignored, these issues are often described
as open yet solvable (e. g., [3]). Or the problem is deferred informally to security
audits and certification (e. g., [23,18]). These organizational measures would en-
sure high enough security standards. Such claims motivate us to take a closer
look at security audits and interdependence to see if the hopes are realistic.

1.2 Security Audits

Generally, it is hard to directly measure the security level of products, systems,
services, or organizations [14]. This has mainly two reasons: first, the difficulty of
specifying all security requirements—the bug versus feature problem. And sec-
ondly, threats neither occur deterministically nor is their occurrence observable
in realtime. Hence the conclusion a system be secure because no attacks were
observed in the past is obviously invalid. One might just have been lucky that no
attacks occurred, or the consequences of successful attacks—for instance loss of
confidentiality—will only be observable at a later point in time. These difficul-
ties impede measuring the security level of one’s own systems. It is easy to see
that the problems aggravate for systems owned by others, as it is the case in the
context of interdependence. Therefore, security almost always has the properties
of a credence good [2].

As direct measurement is hard, one can resort to examine all security-relevant
attributes of an object to estimate its latent security level. This involves con-
siderable effort, because these examinations are not fully automatizable and
they require special knowledge and experience of the examiner. Moreover, the
effort will often grow disproportionately to the complexity of the object under
investigation because more and more dependencies need to be checked. We re-
fer the reader to the literature (e. g., [28]) for an overview of different types
of security assessments and their process models. According to this literature,
semi-standardized examinations can at least help to identify weaknesses against
specific known threats, and to fix the weaknesses thereafter.

Our notion of security audit in this paper goes beyond a mere examination. It
also includes certification by the examiner who is trusted by third parties. This
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way, the result of an examination is verifiable and can serve as a credible signal to
other market participants. Pure security examinations without certification are
not subject of this paper because they cannot contribute to solve the problems
arising from interdependent cyber risk.

In practice, security audits with subsequent certification are very common and
cause substantial costs to the industry. Examples include the Common Criteria
(where audits may last up to one year and cost up to a million dollars) and
their predecessors Orange Book (U. S.) and ITSEC (Europe). These standards
were designed for public procurement. Other security audits are laid down in
industry standards, such as PCI DSS for payment systems or ISO 17799, re-
spectively ISO 27001. In addition, there exists a market for a variety of quality
seals issued by for-profit and non-profit organizations alike. Examples include
VeriSign, TrustE, or the European data protection seal EuroPriSe.

1.3 Economics of Security Audits

Economic theory suggests two channels through which security audits can gen-
erate positive utility:

1. Overcoming information asymmetries. From the fact that security is a
credence good follows a lemon market problem [2]. The demand side lacks
information about the quality of goods. In the simplest case, this quality in-
formation can be thought of a binary attribute: secure versus insecure. It can
be shown that the equilibrium price for goods of unknown quality drops to
the price of insecure goods. As a result, no market exists for secure products.
Security audits can help to signal quality and fix this market failure.

2. Solving coordination problems. If credible signals are available, addi-
tional strategies emerge in the game-theoretic models of interdependent se-
curity. The players not only decide about their own security investment, but
also whether or not to signal information about their own security level.
This can generate new welfare-maximizing equilibria or stabilize existing
ones. Security audits are the means to generate credible signals in practice.

Understanding both channels is certainly relevant. However, only the second
channel is directly linked to interdependent security. Therefore, we concentrate
our attention in this paper on the solution of the coordination problem and
refer the reader to the relevant literature [1,21,2] on the role of audits in fixing
information asymmetries (cf. Sect. 4 for comments on that literature).

Note that in practice, security audits are commissioned also—if not
primarily—because of legal or contractual obligations. Another reason can be
liability dumping: a CIO might find it easier to repudiate responsibility after a
successful attack by referring to regular security audits, no matter how sound
they actually are. Both motivations can generate individual utility. In the follow-
ing, we will not directly deal with these motivations. The focus of our analysis is
economic in nature, that means, in the long run, uninformative audits will not
help the CIO in the above example. With regard to mandatory audits, we start
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one step ahead. The very objective of our analysis is to scrutinize the economic
justification of existing or future legal and contractual obligations because of
their potential to prevent market failures.

1.4 Research Question and Relevance

Now we can formulate the research question: Under which conditions do security
audits (defined in Sect. 1.2) generate positive utility by solving the coordination
problems (see Sect. 1.3), which would otherwise hinder the reduction of interde-
pendent cyber risks?

The response to this question is relevant for security managers who decide
whether commissioning security audits is profitable1 given:

a. the security productivity, a property of the organization and its business,
b. the thoroughness of the security audit, and
c. the degree of interdependence, a property of the organization’s environment.

Our contribution in this paper is a new analytical model to answer this re-
search question. The model can also be employed for decision support whenever
a change in one of the conditions (a–c) is anticipated. The latter mainly concerns
decisions to increase interconnectivity, for instance by supporting more interfaces
or integrating new services. Each affects the degree of interdependence.

Solving the coordination problem not only increases individual utility, but also
leads to improvements in social welfare. Therefore, our model and its analysis is
equally relevant for regulators. For example, regulations requesting mandatory
audits should be designed such that audits are only required when it is eco-
nomical. Moreover, the model can help to formulate high-level requirements for
security audits such that audits have a welfare-maximizing effect.

Everything that has been said for the regulator can be applied to market
situations in which one market participant defines the standards for an industrial
sector. This can be an industrial organization (such as in the case of PCI), or a
blue chip company orchestrating its supply chain.

1.5 Roadmap

The next section presents our model, which is designed parsimoniously without
omitting properties necessary for the interpretation. The model is solved and
all pure strategy equilibria identified. Section 3 analyzes the equilibria with re-
gard to the utility generated by security audits. We will explain under which
condition security audits are helpful, and when they are not needed to solve the
coordination problem. Section 4 discusses relations to prior art, both in terms of
the subject area and the analytical methodology. A critical discussion and our
outlook precede the final conclusion (Sect. 5).

1 We are agnostic about defining a price for the security audit. Hence “profitable”
should be read in the sense of strictly positive utility.
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2 Model

The analytical model consists of three components: a formalization of the secu-
rity audit process, a model of security investment, and a model of interdependent
security. Each component includes exactly one free parameter, that is one for
each of the three properties (a–c) described informally in Section 1.4. To the
extent possible, we combine established modeling conventions. However, the re-
sulting model as a whole is novel and specific to the analysis of security audits.

2.1 Stylized Audit Process

To capture security audits in an economic model, it is essential to reduce them
to their most relevant features. In particular, at our level of abstraction, it does
not matter how a security audit is conducted technically and organizationally.
The only relevant outcome is its result.

For this we assume that every examinable object X has a latent—i. e., not
directly observable—attribute sX ∈ R+ describing its security level. Objects
X of interests can include products, systems, services, or entire organizations.
The probability of loss due to security incidents decreases monotonically with
increasing security level sX .

Now we can model a security audit as function which takes object X as input,
compares its security level sX to an internal threshold t, and returns one bit,

SecAudit(X) =

{
1 if sX ≥ t
0 otherwise.

(1)

The result of the audit shall be verifiable by third parties. In practice this can be
ensured by issuing a (paper) certificate or by having the auditor sign the result
cryptographically. In any case, the result is just a snapshot in time and has to be
annotated with a time stamp if state changes of X are of interest. Our analysis
in this paper is limited to one-shot games with fixed states.

The assumption of a threshold t can be justified with the common practice
to conduct security audits along semi-standardized checklists where the thor-
oughness of the audit has to be defined beforehand. It is certainly conceivable to
consider a family of functions SecAuditt from which the appropriate function is
selected depending on the situation. A real-world example for this are the seven
Evaluation Assurance Levels (EAL) specified in the Common Criteria. However,
it most cases the number of different thresholds will be small and countable. So
we cannot assume that t can be chosen from a continuous interval.

Note that we simplify the audit problem to a single summative measure of
security level. In practice, different aspects (e. g., protection goals, security tar-
gets in the Common Criteria terminology, etc.) or components of a system can
have different levels of security. This view is compatible with our approach if one
considers each system as a bundle of objects X and a given security audit as a
collection of functions, one for each property of the bundle.
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Our abstraction ignores that practical audits may cause side effects. Audits
impose costs, which typically depend on X and t. There is also a risk of hid-
den information leakage as the auditor and its staff may get to know sensitive
information about X . In a dynamic setting, there might be a non-negligible lag
between the time when the audit decision is taken and the time when the output
is available. All these side effects are not considered in this paper. Therefore, our
simplifications may let security audits appear more useful in our analysis than
they actually are in practice. Conversely, we err on the side of caution in cases
where security audits turn out useless in our analysis. The reader is advised to
keep this bias in mind when interpreting our results.

2.2 Security Investment

Consider for now a single firm2 making security investments to reduce the prob-
ability of incurring a loss of unit size l = 1 due to security incidents. We adopt
the functional relationship between security investment s and the probability of
loss p(s) from the well-known Gordon–Loeb model of security investment [11],

p(s) = β−s. (2)

This function reflects a decreasing marginal utility of security investment, a
property that has been confirmed empirically [17], by practitioners [11], and
can be justified theoretically [7]. Parameter β ≥ e2 represents the firm-specific
security productivity. The range of s is limited to the interval [0, 1]. This is so
because risk-neutral firms prefer s = 0 over all alternatives s > l = 1. To keep
the number of parameters manageable, we fix the parameter for vulnerability in
[11] at v = 1: without security investment, every realized threat causes a loss.

Our model shares another simplification with most analytical models of infor-
mation security investment. It does not distinguish between security investment
and security level. This implies the assumption that all security investment is
effective. By contrast, practitioners often observe the situation of security over-
investment (from a cost perspective) still leading to a suboptimal security level
[6]. Hence caution is needed when transferring conclusions on security over-
investment or under-investment from analytical models to the real world.

The firm’s expected cost can be expressed as sum of the security investment
and the expected loss,

c(s) = s+ p(s) = s+ β−s. (3)

This model is good enough to find optimal levels of security investment for a
single firm. However, without interdependence, this is not of interest here.

2 For consistency and didactic reasons, we use the term “firm” to refer to a single
rational decision maker. This does not limit the generality of the model. Firm stands
as placeholder for any entity conceivable in a given context, e. g., “organization”,
“defender”, “nation state”, “player”, or “user”.
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Fig. 1. Interdependent security: firm 0’s probability of loss partly depends on firm 1’s
security investment (left); the probability of loss increases with the degree of interde-
pendence α even if both firms invest equally (right)

2.3 Modeling Interdependence

The simplest possible case to model interdependence is to assume two symmetric
a priori homogeneous firms who act as players in a game. Security investments s0
and s1 are the only choice variables. Symmetry implies that both firms share the
same security productivity β. This can be justified by generalizing Carr’s argu-
ment [9] to security technology. Security technology has become a “commodity”
which is rarely a factor of strategic differentiation between firms.

Consider the following function for the probability of loss pi of firm i ∈ {0, 1},

pi(si, s1−i) = 1− (1− β−si)(1 − αβ−s1−i). (4)

This reflects the intuition that a firm evades a loss only if neither it falls victim
to a security breach, nor a breach at an interconnected firm is propagated. Pa-
rameter α ∈ [0, 1] is the degree of interdependence, a property of the environment
of both firms. For α = 0 (no interdependence), Eq. (4) reduces to Eq. (2).

Figure 1a illustrates the effect of interdependence described informally in the
introduction. We set α = 1/2 for moderate interdependence. The black curves
show that the probability of loss of firm 0, for every choice of its own security
investment s0 > 0, also depends on the choice of s1 by firm 1. By contrast,
the gray intersecting curve shows the probability of loss if both firms make
equal security investments. This setting prevails in Figure 1b. Here we show
curves for different settings of the degree of interdependence α. Observe that
the probability of loss grows with the degree of interdependence for every fixed
security investment s0 = s1 > 0.
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2.4 Social Optima

A social optimum is reached if the sum of the expected costs of both firms is
minimal, thus

s∗ = argmin
s

2 · c(s, s) (5)

= argmin
s

s+ 1− (1− β−s)(1 − αβ−s). (6)

We may substitute si by s due to symmetry. Figure 2a shows the objective func-
tion and their minima for selected parameters. Their location can be obtained
analytically from the first-order condition of Eq. (6). We get

s∗ = −log

⎛⎝(1 + α)−
√
(1 + α)

2 − 8αlog−1(β)

4α

⎞⎠ log−1(β) (7)

for α > 0, and

s∗ = log(log(β))log−1(β) for the special case α = 0. (8)

For high degrees of interdependence and low security productivity, the social
optima reside at the lower end of the value range of s. The gray dotted curves in
Figs. 2a and 2b visualize this case (for β = 8). We will discuss the implications
of this special case on security audits below in Sect. 3.4.

Figure 2b shows the location of social optima as a function of α for selected
values of β. Observe that the socially optimal security investment does not react
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this function are pure strategy Nash equilibria

monotonously to changes in the security productivity β. Apart from the above-
described discontinuity, increasing degree of interdependence α shifts the social
optimum towards higher levels of security investment s. Frankly speaking, this
means that an increasingly interconnected society ceteris paribus has to spend
more and more on security to maintain a welfare-maximizing3 level. This follows
directly from the relation depicted in Figure 1b.

2.5 Nash Equilibria

Knowing the location of social optima does not imply that they are reached in
practice. This will only happen if all players have incentives to raise their security
investment to the level of s∗. The analysis of incentives—which obviously depend
on the actions of the respective other firm—requires a game-theoretic perspective
and the search for Nash equilibria.

Only pure strategies are regarded in this paper. Firm i’s best response s+

given s1−i is the solution to the following optimization problem:

s+(s1−i) = argmin
s

s+ p(s, s1−i) (9)

= argmin
s

s+ 1−
(
1− β−s

) (
1− αβ−s1−i

)
(10)

s. t. s ≥ 0.

After finding roots of the first-order condition and rearranging, we obtain:

s+(s1−i) = sup

{
log (log(β)) + log (1− αβ−s1−i )

log(β)
, 0

}
. (11)

3 Welfare is defined as the reciprocal of social cost.
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Figure 3 shows the best response as function of s1 for three different degrees of
interdependence (α ∈ {0, 1/2, 1}) and two values of security productivity (β ∈
{20, 100}). Nash equilibria, defined as fixed points of the best response function,
are located on the intersections with the main diagonal. For comparison, we also
plot the social optima as given by Eq. (7).

Depending on the parameters, there exist up to three Nash equilibria at

s̃1,2 = log

⎛⎝ log(β)±
√
log2(β) − 4αlog(β)

2

⎞⎠ log−1(β) (12)

(if both expression and discriminant are positive) and

s̃3 = 0 for α > 1− log−1(β). (13)

The parameters in Figure 3 are chosen such that every case of interest is repre-
sented with at least one curve. We will discuss all cases jointly with the interpre-
tation in Section 3. The formal conditions for the various equilibrium situations
are summarized in Appendix A.1.

3 Analysis

For all strictly positive values of α > 0, the Nash equilibria are located below
the social optimum. This replicates a known result: security as a public good
is under-provided in the marketplace [27,16]. The reasons are lack of incentives,
more specifically a coordination problem [24]. If firm i knew for sure that firm
1− i cooperates and invests s1−i = s∗, then it would be easier to decide for the
socially optimal level of security investment as well. In practice, however, firm i
can hardly observe the level of s1−i.

Security audits can fix this problem. They allow a firm to signal the own
security level to its peers in a verifiable way. This can convince others of the
willingness to cooperate and stimulate further cooperative responses. Now we
have to distinguish between the case of coordination between multiple equilibria,
and the case of coordination at non-equilibrium points. The former helps to avoid
bad outcomes, the latter in needed to actually reach the social optimum.

Coordination between Multiple Equilibria. If multiple Nash equilibria
exist, the initial conditions determine which equilibrium is chosen. So the co-
ordination problem is to nudge the game into the equilibrium with the lowest
social cost. To do this, it is sufficient if one firm unilaterally signals a security
level in the basin of attraction of the best possible equilibrium. Then the other
firms’ rational selfish reaction is to choose a security level within that basin and
the trajectory of strategic anticipation converges to the desired equilibrium so-
lution. Therefore, in this case, it is sufficient to have unilateral security audits
which may even be voluntary (if the audit costs are not prohibitive).
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Coordination at Non-equilibrium Points. The social optimum is not an at-
tractor in general. Therefore, to reach it, bilateral security audits and additional
incentives are needed. These incentives could come in the form of mandatory se-
curity audits and sanctions in case a claimed security level is not met. Sanctions
can be enforced by regulation or be inherently embedded in the mechanism. For
example, a tit-for-tat strategy of a multi-period prisoner’s dilemma entails sanc-
tions by other players [4]. A prerequisite for this strategy is the unambiguous
observability of security levels in past rounds. Hence security audits are also
essential in this setup.

Now we will analyze the equilibrium situations and discuss implications on
the usefulness of security audits depending on their thoroughness t. For this it
is useful to regard Figure 4, which identifies four equilibrium situations as re-
gions in the (α, β)-parameter space. Six diamond marks indicate the points in
parameter space for which curves are displayed in Figure 3.

3.1 Region A: Only Thorough Audits Useful

In region A, there exists exactly one Nash equilibrium (see dashed curves in
Fig. 3). The best response s+i on security investments s1−i < s̃1 below the Nash
equilibrium of Eq. (12) is always larger than s1−i. Therefore, firms always have
incentives to invest at least s̃1. Security audits with thoroughness t < s̃1 below
that level do not improve the situation and hence are ineffective. Thorough au-
dits with s̃1 > t ≥ s∗ can improve the security level and social welfare. Since
this involves a coordination at non-equilibrium points, such audits must be bi-
lateral. To specify this, it holds that unilateral audits with thoroughness above
the social optimum for α = 0—this is the only point (+× in Fig. 3) where the
Nash equilibrium and social optimum concur—can never be more effective than
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unilateral security audits at this level. This is so because this value bounds the
best response function from above.

3.2 Region B: Basic Audits Get Leverage

In region B, there exist three Nash equilibria (see dotted curve in Fig. 3b). In one
of them, both firms abstain from security investments (s0 = s1 = 0). In this case,
security audits can be maximally effective in solving the coordination problem
between the multiple equilibria. To achieve this, the thoroughness t must be
just above s̃2. Then a unilateral audit is enough to move both firms into the
best possible equilibrium. More thorough audits in the range s̃2 < t ≤ s̃1 do
not improve the situation further. In other words, a basic audit just above s̃2 is
leveraged to maximum outcome.

Even the best possible equilibrium is below the social optimum. To approach
the optimum further, more thorough audits t > s̃1 are needed. Everything said
for thorough audits above in Sect. 3.1 also applies here. In particular, thorough
audits must be bilateral. Superficial audits t < s̃2 are moderately useful. The
situation corresponds to the case discussed in the next section.

3.3 Region C: All Audits Moderately Useful

In region C, there exists exactly one Nash equilibrium in which both firms abstain
from security investment (see dotted curve in Fig. 3). The distance between this
equilibrium and the social optimum reaches a maximum. This case is not a
coordination game in the strict sense [24]. Therefore, the effectiveness of all
audits is much more limited than in region B (Sect. 3.2). Even though audits
may contribute to higher security levels, more specifically, exactly at the level of
the thoroughness t, if both firms perform bilateral audits. Unilateral audits are
less effective in general and completely ineffective within the range where the
dotted curve in Figure 3 is flat at level 0. Like in regions A and B, unilateral
audits above the social optimum for α = 0 are strictly dominated by unilateral
audits of thoroughness equal to this level.

3.4 Region D: All Audits Useless

In region D, there exists exactly one Nash equilibrium in which both firms abstain
from security investment. This concurs with the corner solution of the social op-
timum (compare the penultimate paragraph of Sect. 2.4 and see the dotted gray
curve in Fig. 2a). This means all security investment is prohibitively expensive
compared to the protection it promises. In other words, the firm’s business is
indefensible. Of course, firms would not decide to conduct audits voluntarily (at-
testing the absence of security investment). Manadatory audits of thoroughness
t > 0 coupled with sanctions would induce security over-investment and destroy
social welfare. The only resorts are to improve security productivity by tech-
nological innovation or to reduce the degree of interdependence. Both measures
would move the situation back to region C.
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3.5 Left Edge: No Audits

Figures 4 hides the fact that the left edge (α = 0) does not belong to region A.
This edge rather represents the special case of independent firms who optimize
on their own. There exists exactly one Nash equilibrium which concurs with the
social optimum (see solid line in Fig. 3). No firm would conduct security audits
voluntarily. Mandatory audits (with sanctions in case of failure) do not result in
relevant signals if t ≤ s∗ = s̃. They are even counter-productive if t > s∗ = s̃.

In summary, the most salient new result of this analysis is that even in this
stylized model, the usefulness of security audits and the required thoroughness
highly depends on the situation. We deem this an important insight for the
design of audit standards and policies, which in practice are applied in contexts
with many more potentially influential factors.

4 Related Work

We are not aware of any prior work addressing this specific or closely related
research questions. The same holds for the combination of elements used in
our analytical model. Consequently, we structure the discussion of related work
broadly into two categories: works which address similar questions, and works
that use similar methods for different research questions.

Anderson [2] belongs to the first category. He notes perverse incentives for
suppliers of security certifications. This leads vendors who seek certification to
shop for the auditor who has the laxest reading of a standard. Baye and Morgan
[5] study certificates as an indicator of quality in electronic commerce. They pro-
pose an analytical model of strategic price setting in a market where certified and
uncertified products compete. They find support for their model using empiri-
cal data. In another empirical study, Edelman [10] argues that less trustworthy
market participants have more incentives to seek certification (and obtain it). He
could show that this adverse selection inverts the intended function of TrustE
seals as indicators of quality. The appearance of the seal on a representatively
drawn website actually increases the posterior probability that the site is shady.
This is largely driven by the fact that TrustE certification is voluntary, leading to
self-selection. Rice [21], by contrast, recommends mandatory certification of soft-
ware and services. His proposal is clearly inspired by similar efforts in the area of
food and traffic safety. A similar proposal is brought forward by Parameswaran
and Whinston [20], yet with a tighter focus on network intermediaries, such as
Internet Service Providers. Telang and Yang [26] empirically compare the num-
ber of vulnerabilities in software products with and without Common Criteria
certification. They find that certified software fixes more old vulnerabilities, but
also contains more new vulnerabilities so that the net effect is neutral. All this
literature has in common that audits and certification are regarded as tools
to overcome information asymmetries. Interdependent security is not reflected.
Since our work exclusively deals with solutions to the coordination problem in
the presence of interdependence, it complements this strand of literature.
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Modeling interdependent risks has quite some tradition in the field of security
economics. Varian [27] as well as Kunreuther and Heal [16] belong to the second
category of related work. Both teams promoted the view of information security
as a public good, suggested formal models, and thus coined the notion of interde-
pendent security. Our model is closer to Kunreuther and Heal. Varian’s approach
is richer if more than two firms interact. He adopts three types of aggregation
functions from the economics literature of public goods [13]: weakest link, total
effort, and best shot. Grossklags et al. [12] take up this idea and extend it in a
series of works. The key difference to our model is the assumption of two kinds
of security investments, one that generates externalities and another one that
does not. Most models of interdependence are designed with the intention to
find ways to internalize the externalities. This has led to literature for different
contexts, including for instance cyber-insurance [19,15] or security outsourcing
with [29] and without [22] risk transfer. The availability of security audits is
sometimes assumed (e. g., in [25]), but their effectiveness is never scrutinized.

5 Discussion

Few analytical models with three parameters can quantitatively predict out-
comes in reality. Nevertheless, the interaction of security productivity, degree of
interdependence, and thoroughness of security audits in our model allows to draw
new conclusions. These conclusions can be transferred to practical situations at
least qualitatively using the insights about the underlying mechanics.

5.1 Technical Implications

Region A covers more than half of the parameter space, including all settings
with low or moderate degree of interdependence (α < 1/2). Even if the parame-
ters are not exactly measurable in practice, the conclusions for region A can serve
as rules of thumb. A relevant insight is that security audits and certifications
at very low security levels are often ineffective. This stands in stark contrast to
a plethora of (largely commercial) security seals that certify the “lowest com-
mon denominator”. Engineers who develop audit standards and supporting tools
should rather focus on the possibility to extract verifiable information about high
and highest security levels.

Another result of our analysis is that the effectiveness of security audits is very
sensitive to the situation. A practical conclusion is that security standards and
audit procedures should best be designed in a modular manner to allow tailored
examinations. At this point we can only speculate if, say, the seven Evaluation
Assurance Levels laid down in the Common Criteria are sufficient, or whether
a more granular choice of audit thoroughness is needed. Tailored audits may
also require technical prerequisites which need to be considered in the design
of the system to be audited. Last but not least, if auditability matters, then
technical measures which imply changes to the parameters α and β (e. g., change
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of architecture, security technology, or interconnectivity) should be evaluated
with regard to the availability of appropriate audit procedures.

5.2 Managerial and Regulatory Implications

Interdependent security risks exhibit a special and non-trivial mechanic. This
mechanic prevents that individually rational risk management decisions also lead
to socially optimal outcomes. A first important step is to explain this mechanic
to managers and regulators. This way, they can adapt their decisions and re-
frain from blindly commissioning or requesting security audits. Our analysis has
shown that security audits with bad fit to the situation are often inefficient
or useless. For example, voluntary (i. e., unilateral) security audits certifying a
very basic level of security (s > 0) are unnecessary in the large majority of
cases. By contrast, audits can be very effective if they require relatively little
thoroughness—and thus presumably little cost—to stabilize an equilibrium at a
substantially higher level of security. This is the case in region B (see Sect. 3.2).
Another insight is that very thorough security audits, which attest highest se-
curity levels, should only be conducted bilaterally in mutual agreement between
partners. This is the only way to effectively prevent free-riding.

Regulators should analyze carefully in which situations they require manda-
tory security audits of what thoroughness. Most importantly, mandatory audits
seem unnecessary in situations where the firms have own incentives to conduct
security audits. It goes without saying that security audits should not be re-
quired when they are useless. To prevent this, it might be reasonable to replace
general audit requirements with more specific sets of rules that consider factors
of the firm and its environment. If these criteria are transparent, market partic-
ipants can choose, say, whether they reduce the degree of interdependence or be
subject to more thorough security audits.

A challenge remains with the definition and measurement of practical indi-
cators to guide decision support. Neither the degree of interdependence nor the
security productivity is observable on the scales that appear in the model. Since
this task requires comparable and partly sensitive data of many market partici-
pants, we see this task in the responsibility of the government.

5.3 Conclusion

We have presented a novel analytical model to study the effectiveness of security
audits as tools to incentivize the provision of security by private actors at a
socially optimal level. The model takes parameters for the efficiency of security
investment in risk reduction (security productivity), the exposure to risk from
other peers in a network (degree of interdependence), and the thoroughness of
the security audit. The solution of this model reveals that security audits must
be tailored to the very situation in order to avoid that they are ineffective.
Moreover, “lightweight” security audits certifying a minimum level of security
are not socially beneficial in the large majority of cases. Our results call for the
revision of policies that require mandatory and undifferentiated security audits.
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A Proof Sketches

A.1 Formal Conditions of Equilibria

Border between Region A and B

Idea: Take fixed point from Eq. (12) and set it to zero,

α = 1− log−1(β).

Border between Region B and C

Idea: Take determinant of Eq. (12) and set it to zero,

β = e4α.

Border between Region C and D

Idea: Set c(s∗) = c(0) (from Eqs. (3) and (7)),

s∗ −
(
1− β−s∗

)(
1− αβ−s∗

)
= 0.

A.2 Social Optima

Start with Eq. (6):

s∗ = argmin
s

s+ 1− (1− β−s)(1 − αβ−s)
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Root of first-order condition of s:

1 = log(β)
(
1− αβ−s∗

)
β−s∗ + αlog(β)

(
1− β−s∗

)
β−s∗

1 = log(β)β−s∗ + αlog(β)β−s∗ − 2αlog(β)β−2s∗

1 = (1 + α) log(β)β−s∗ − 2αlog(β)β−2s∗

Case 1: α = 0

1 = log(β)β−s∗

s∗ = log(log(β))log−1(β)

This expression corresponds to Eq. (8).

Case 2: α > 0. We obtain the root by substituting u = β−s∗ , solving the
quadratic equation, and subsequent resubstitution:

s∗ = −log

⎛⎝(1 + α)−
√
(1 + α)2 − 8αlog−1(β)

4α

⎞⎠ log−1(β)

This expression corresponds to Eq. (7).

A.3 Best Response

Start with Eq. (10):

s+(s1−i) = argmin
s

s+ 1−
(
1− β−s

) (
1− αβ−s1−i

)
s. t. s ≥ 0

Root of first-order condition of s:

0 = 1− log(β)β−s+
(
1− αβ−s1−i

)
1 = log(β)β−s+

(
1− αβ−s1−i

)
βs+ = log(β)

(
1− αβ−s1−i

)
s+log(β) = log (log(β)) + log

(
1− αβ−s1−i

)
Rearrangement subject to constraints:

s+ = sup

{
log (log(β)) + log (1− αβ−s1−i )

log(β)
, 0

}
This expression corresponds to Eq. (11).
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A.4 Nash Equilibria

Fixed points of the best response s̃ = s+(s̃) without considering constraints:

s̃ =
log (log(β)) + log

(
1− αβ−s̃

)
log(β)

s̃ log(β) = log (log(β)) + log
(
1− αβ−s̃

)
log(βs̃) = log (log(β)) + log

(
1− αβ−s̃

)
log(βs̃) = log

(
log(β)

(
1− αβ−s̃

))
log(βs̃) = log

(
log(β)− αβ−s̃log(β)

)
βs̃ = log(β)− αβ−s̃log(β)

βs̃ − log(β) = −αβ−s̃log(β)

β2s̃ − log(β)βs̃ = −αlog(β)

β2s̃ − log(β)βs̃ + αlog(β) = 0

We obtain the root by substituting u = βs̃, solving the quadratic equation, and
subsequent resubstitution:

s̃1,2 = log

⎛⎝ log(β)±
√
log2(β) − 4αlog(β)

2

⎞⎠ log−1(β)

This expression corresponds to Eq. (12).

Fixed points are Nash equilibria if they fulfill the constraint s̃ > 0. Because of
the constraint in Eq (10), there exists another corner equilibrium at s̃3 = 0 if
s+(0) = 0:

0 ≥ log (log(β)) + log (1− α)

log(β)

1 ≥ log(β) (1− α)

α ≥ 1− log−1(β)

This expression corresponds to Eq. (13).
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Abstract. Due to the forensic value of audit logs, it is vital to provide compro-
mise resiliency and append-only properties in a logging system to prevent ac-
tive attackers. Unfortunately, existing symmetric secure logging schemes are not
publicly verifiable and cannot address applications that require public auditing
(e.g., public financial auditing), besides being vulnerable to certain attacks and
dependent on continuous trusted server support. Moreover, Public Key Cryptog-
raphy (PKC)-based secure logging schemes require Expensive Operations (Ex-
pOps) that are costly for both loggers and verifiers, and thus are impractical for
computation-intensive environments.

In this paper, we propose a new class of secure audit logging scheme called
Log Forward-secure and Append-only Signature (LogFAS). LogFAS achieves the
most desirable properties of both symmetric and PKC-based schemes. LogFAS
can produce publicly verifiable forward-secure and append-only signatures with-
out requiring any online trusted server support or time factor. Most notably, Log-
FAS is the only PKC-based secure audit logging scheme that achieves the high
verifier computational and storage efficiency. That is, LogFAS can verify L log
entries with always a small-constant number of ExpOps regardless of the value
of L. Moreover, each verifier stores only a small and constant-size public key re-
gardless of the number of log entries to be verified or the number of loggers in the
system. In addition, a LogFAS variation allows fine-grained verification of any
subset of log entries and fast detection of corrupted log entries. All these prop-
erties make LogFAS an ideal scheme for secure audit logging in computation-
intensive applications.

Keywords: Secure audit logging, applied cryptography, forward security, signa-
ture aggregation.

1 Introduction

Audit logs have been used to track important events such as user activities and pro-
gram execution in modern computer systems, providing invaluable information about
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the state of the systems (e.g., intrusions, crashes). Due to their forensic value, audit
logs are an attractive target for attackers. Indeed, an experienced attacker may erase the
traces of her malicious activities from the logs, or modify the log entries to implicate
other users after compromising the system. Therefore, ensuring the integrity, authentic-
ity and accountability of audit logs in the presence of attackers is critical for any modern
computer system [9, 20, 25, 29].

There are straightforward techniques to protect audit logs from active adversaries:
(i) Using a tamper resistant hardware on each logging machine to prevent the adversary
from modifying audit logs and (ii) transmitting each log entry as soon as it is generated
to a remote trusted server. Unfortunately, these approaches have significant limitations
as identified in [9, 19–21]: First, it is impractical to assume both the presence and the
“bug-freeness” of a tamper resistant hardware on all types of platforms (e.g., wireless
sensors [18], commercial off-the-shelf systems [7]) [17, 20]. Second, it is difficult to
guarantee timely communication between each logging machine and the remote trusted
server in the presence of active adversaries [11, 19, 29].

Limitations of Previous Cryptographic Log Protection Techniques: Cryptograp-hic
mechanisms can protect the integrity of audit logs without relying on such techniques.
In these settings, the log verifiers might not be available to verify the log entries once
they are generated. Hence, a logger may have to accumulate log entries for a period
of time. If the adversary takes full control of the logging machine in this duration, no
cryptographic mechanism can prevent her from modifying the post-attack log entries.
However, the integrity of log entries accumulated before the attack should be protected
(i.e., forward-security property) [1, 7, 9, 12, 17, 19, 20, 29]. Furthermore, this protection
should not only guarantee the integrity of individual log entries but also the integrity
of the log stream as a whole. That is, no selective deletion or truncation of log entries
should be possible (i.e., append-only (aggregate) property [17,18,20]). Forward-secure
and aggregate signatures (e.g., [17,18,20,29,30]) achieve forward-security and append-
only properties simultaneously.

Pioneering forward-secure audit logging schemes [6,7,25] rely on symmetric prim-
itives such as Message Authentication Code (MAC) to achieve computationally effi-
cient integrity protection. However, the symmetric nature of these schemes does not
allow public verifiability. This property is necessary for applications such as financial
auditing applications where financial books of publicly held companies need to be ver-
ified by the current and potential future share holders [12, 20]. Furthermore, symmetric
schemes require online remote trusted server support, which entails costly maintenance
and attracts potential attacks besides being a potential single-point of failures. Finally,
these schemes are shown to be vulnerable against the truncation and delayed detection
attacks [19, 20] (no append-only property).

To mitigate the above problems, several PKC-based secure audit logging schemes
have been proposed (e.g., [12, 17, 18, 20, 29]). These schemes are publicly verifiable
and do not require an online TTP support. However, they are costly for loggers (except
for BAF [29]) and extremely costly for the log verifiers. Second, to verify a particular
log entry, all these schemes [17–19, 29] force log verifiers to verify the entire set of log
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Table 1. Comparison of LogFAS schemes and their counterparts for performance, applicability,
availability and security parameters

Criteria PKC-based SYM

LogFAS FssAgg/iFssAgg BAF Logcrypt [7, 25]
Computational AR BM BLS

Sig&Upd (per item) ExpOp ExpOp H ExpOp H
On- Ver, (L items) ExpOp + O(L · H) O(L · (ExpOp + H)) O(L · H)
line Subset ver (l′ < L) ExpOp + O(l′ ·H) O(2l′(ExpOp + H)) Not immutable O(l′ · H)

Efficient Search Available Not Available -
Key Generation (Offline) O(L ·ExpOp) O(L · H)

Storage Verifier |K| O(S · |K|) O(L · S)|K| O(S · |K|)
Signer O(L · (|D| + |K|)) O(L · |D|) + |K| O(L · |K|)O(L · |K|)

Communication O(L · |D|)
Public Verifiability Y Y N

Offline Server Y Y N
Immediate Verification Y Y N
Immediate Detection Y Y N
Truncation Resilience Y Y N N

LogFAS is the only PKC-based secure audit logging scheme that can verify O(L) items with a
small-constant number of ExpOps; all other similar schemes require O(L) ExpOps. Similarly,
LogFAS is the only one achieving constant number of public key storage (with respect to both
number of data items and log entries to be verified) on the verifier side, while all other schemes
incur either linear or quadratic storage overhead (S, |D|, |K| denote the number of signers in
the system, the approximate bit lengths of a log entry and the bit length of a keying material,
respectively). At the same time, LogFAS is the only scheme that enables truncation-free subset
verification and sub-linear search simultaneously.

entries, which entails a linear number of Expensive Operations (ExpOps)1, and failure
of this verification does not give any information about which log entry(ies) is (are)
responsible for the failure.

Our Contribution: In this paper, we propose a new secure audit logging scheme, which
we call Log Forward-secure and Append-only Signature (LogFAS). We first develop a
main LogFAS scheme, and then extend it to provide additional capabilities. The de-
sirable properties of LogFAS are outlined below. The first three properties show the
efficiency of LogFAS compared with their PKC-based counterparts, while the other
three properties demonstrate the applicability, availability and security advantages over
their symmetric counterparts. Table 1 summarizes the above properties and compares
LogFAS with its counterparts.

1. Efficient Log Verification with O(1) ExpOp: All existing PKC-based secure audit log-
ging schemes (e.g., [12,17–20,29,30]) require O(L · (ExpOp+H)) to verify L log
entries, which make them costly. LogFAS is the first PKC-based secure audit logging
scheme that achieves signature verification with only a small-constant number of Ex-
pOps (andO(L) hash operations). That is, LogFAS can verifyL log entries with only
a small-constant number of ExpOps regardless of the value ofL. Therefore, it is much
more efficient than all of its PKC-based counterparts, and is also comparably efficient
with symmetric schemes (e.g., [7, 18, 25]) at the verifier side.

1 For brevity, we denote an expensive cryptographic operation such as modular exponentiation
or pairing as an ExpOp.
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2. Efficient Fine-grained Verification and Change Detection: LogFAS allows
fine-grained verification with advantages over iFssAgg [20], the only previous so-
lution for fine-grained verification:
(i) Unlike iFssAgg schemes [20], LogFAS prevents the truncation attack2 in the
presence of individual signatures without doubling the verification cost.
(ii) LogFAS can verify any selected subset with l′ < L log entries with a small-
constant number of ExpOps, while iFssAgg schemes require O(2l′)ExpOps.
(iii) LogFAS can identify the corrupted log entries with a sub-linear number of Ex-
pOps when most log entries are intact. In contrast, iFssAgg schemes always require
a linear number of ExpOps.

3. Verifier Storage Efficiency with O(1) Overhead: Each verifier in LogFAS only stores
one public key independent of the number of loggers or the number of log entries
to be verified. Therefore, it is the most verifier-storage-efficient scheme among all
existing PKC-based alternatives. This enables verifiers to handle a large number of
log entries and/or loggers simultaneously without facing any storage problem.

4. Public Verification: Unlike the symmetric schemes (e.g., [7, 18, 25]), LogFAS can
produce publicly verifiable signatures, and therefore it can protect applications re-
quiring public auditing (e.g., e-voting, financial books) [12, 20].

5. Independence of Online Trusted Server: LogFAS schemes do not require online
trusted server support to enable log verification. Therefore, LogFAS schemes achieve
high availability, and are more reliable than the previous schemes that require such
support (e.g., [7, 25, 30]).

6. High Security: We prove LogFAS to be forward-secure existentially unforgeable
against adaptive chosen-message attacks in Random Oracle Model (ROM) [4]. Fur-
thermore, unlike some previous symmetric schemes [7, 25], LogFAS schemes are
also secure against both truncation and delayed detection attacks.

2 Preliminaries

Notation. || denotes the concatenation operation. |x| denotes the bit length of variable

x. x
$← S denotes that variable x is randomly and uniformly selected from set S. For

any integer l, (x0, . . . , xl)
$← S means (x0

$← S, . . . , xl
$← S). We denote by {0, 1}∗

the set of binary strings of any finite length. H is an ideal cryptographic hash function,
which is defined as H : {0, 1}∗ → {0, 1}|H|; |H | denotes the output bit length of H .
AO0,...,Oi(·) denotes algorithm A is provided with oracles O0, . . . ,Oi. For example,
AScheme.Sigsk (·) denotes that algorithm A is provided with a signing oracle of signature
scheme Scheme under private key sk .

Definition 1. A signature scheme SGN is a tuple of three algorithms (Kg , Sig,Ver)
defined as follows:

2 The truncation attack is a special type of deletion attack, in which the adversary deletes a con-
tinuous subset of tail-end log entries. This attack can be prevented via “all-or-nothing” prop-
erty [18]: The adversary either should remain previously accumulated data intact, or should
not use them at all (she cannot selectively delete/modify any subset of this data [20]). LogFAS
is proven to be secure against the truncation attack in Section 5.



152 A.A. Yavuz, P. Ning, and M.K. Reiter

- (sk ,PK ) ← SGN .Kg(1κ): Key generation algorithm takes the security parameter
1κ as the input. It returns a private/public key pair (sk ,PK ) as the output.

- σ ← SGN .Sig(sk , D): The signature generation algorithm takes sk and a data
item D as the input. It returns a signature σ as the output (also denoted as σ ←
SGN .Sigsk (D)).

- c ← SGN .Ver(PK , D, σ): The signature verification algorithm takes PK , D and σ
as the input. It outputs a bit c, with c = 1 meaning valid and c = 0 meaning invalid.

Definition 2. Existential Unforgeability under Chosen Message Attack (EU-CMA) ex-
periment for SGN is as follows:

Experiment ExptEU -CMA
SGN (A)

(sk ,PK ) ← SGN .Kg(1κ), (D∗, σ∗) ← ASGN .Sigsk (·)(PK ),

If SGN .Ver(PK , D∗, σ∗) = 1 and D∗ was not queried, return 1, else, return 0.

EU-CMA-advantage of A is AdvEU -CMA
SGN (A) = Pr[ExptEU -CMA

SGN (A) = 1].

EU-CMA-advantage of SGN is AdvEU -CMA
SGN (t, L, μ) = maxA{AdvEU -CMA

SGN (A)},
where the maximum is over all A having time complexity t, making at most L oracle
queries, and the sum of lengths of these queries being at most μ bits.

LogFAS is built on the Schnorr signature scheme [26]. It also uses an Incremental
Hash function IH [3] and a generic signature scheme SGN (e.g., Schnorr) as building
blocks. Both Schnorr and IH require that H : {0, 1}∗ → Z∗

q is a random oracle.

Definition 3. The Schnorr signature scheme is a tuple of three algorithms (Kg, Sig ,Ver)
behaving as follows:
- (y, 〈p, q, α, Y 〉) ← Schnorr .Kg(1κ): Key generation algorithm takes 1κ as the input.

It generates large primes q and p > q such that q|(p − 1), and then generates a

generator α of the subgroup G of order q in Z∗
p. It also generates (y

$← Z∗
q , Y ←

αy mod p), and returns private/public keys (y, 〈p, q, α, Y 〉) as the output.
- (s,R, e) ← Schnorr .Sig(y,D): Signature generation algorithm takes private key y

and a data item D as the input. It returns a signature triplet (s,R, e) as follows:

R←αr mod p, e←H(D||R), s←(r − e · y) mod q, where r
$← Z∗

q .
- c ← Schnorr .Ver(〈p, q, α, Y 〉, D, 〈s,R, e〉): Signature verification algorithm takes

public key 〈p, q, α, Y 〉, data item D and signature 〈s,R, e〉 as the input. It returns a
bit c, with c = 1 meaning valid if R = Y eαs mod p, and with c = 0 otherwise.

Definition 4. Given a large random integer q and integer L, incremental hash func-
tion family IH is defined as follows: Given a random key z = (z0, . . . , zL−1), where

(z0, . . . , zL−1)
$← Z∗

q and hash function H , the associated incremental hash function

IHq,L
z takes an arbitrary data item set D0, . . . , DL−1 as the input. It returns an integer

T ∈ Zq as the output,

Algorithm IHq,L
z (D0, . . . , DL−1)

T ←
∑L−1

j=0 H(Dj)zj mod q, return T .

Target Collision Resistance (TCR) [5] of IH relies on the intractability of Weighted
Sum of Subset (WSS) problem [3, 13] assuming that H is a random oracle.



Efficient, Compromise Resilient and Append-Only Cryptographic Schemes 153

Definition 5. Given IHq,L
z , let A0 be an algorithm that returns a set of target mes-

sages, and A1 be an algorithm that returns a bit. Consider the following experiment:
Experiment ExptTCR

IHq,L
z

(A = (A0,A1))
(D0, . . . , DL−1) ← A0(L), z = (z0, . . . , zL−1)

$← Z∗
q ,

T ← IHq,L
z (D0, . . . , DL−1), (D

∗
0 , . . . , D

∗
L−1) ← A1(D0, . . . , DL−1, T, IHq,L

z )

If T = IHq,L
z (D∗

0 , . . . , D
∗
L−1) ∧ ∃j ∈ {0, . . . , L − 1} : D∗

j 	= Dj , return 1, else,
return 0.

TCR-advantage of A is AdvTCR
IHq,L

z
(A) = Pr[ExptTCR

IHq,L
z

(A) = 1].

TCR-advantage of IHq,L
z is AdvTCR

IHq,L
z

(t) = maxA{AdvTCR
IHq,L

z
(A)}, where the maxi-

mum is over all A having time complexity t.

3 Syntax and Models

LogFAS is a Forward-secure and Append-only Signature (FSA) scheme, which com-
bines key-evolve (e.g., [2, 15]) and signature aggregation (e.g., [8]) techniques. Specif-
ically, LogFAS is built on the Schnorr signature scheme [23, 26], and it integrates
forward-security and signature aggregation strategies in a novel and efficient way. That
is, different from previous approaches (e.g., [17–20, 25, 29, 30]), LogFAS introduces
verification with a constant number of ExpOps, selective subset verification and sub-
linear search properties via incremental hashing [3] and masked tokens in addition to
the above strategies.

Before giving more details, we briefly discuss the append-only signatures. A forward-
secure and aggregate signature scheme is an append-only signature scheme if no mes-
sage can be re-ordered or selectively deleted from a given stream of messages, while
new messages can be appended to the stream [18, 20]. In Section 5, we prove that Log-
FAS is an append-only signature scheme.

Definition 6. A FSA is comprised of a tuple of three algorithms (Kg,FASig,FAVer)
behaving as follows:
- (sk ,PK ) ← FSA.Kg(1κ, L): The key generation algorithm takes the security pa-

rameter 1κ and the maximum number of key updates L as the input. It returns a
private/public key pair (sk ,PK ) as the output.

- (sk j+1, σ0,j) ← FSA.FASig(sk j , Dj, σ0,j−1): The forward-secure and append-
only signing algorithm takes the current private key sk j , a new message Dj to be
signed and the append-only signature σ0,j−1 on the previously signed messages (D0,
. . . , Dj−1) as the input. It computes an append-only signature σ0,j on (D0, . . . , Dj),
evolves (updates) sk j to sk j+1, and returns (sk j+1, σ0,j) as the output.

- c ← FSA.FAVer(PK , 〈D0, . . . , Dj〉, σ0,j): The forward-secure and append-only
verification algorithm takes PK , 〈D0, . . . , Dj〉 and their corresponding σ0,j as the
input. It returns a bit c, with c = 1 meaning valid, and c = 0 otherwise.

In LogFAS, private key sk is a vector, whose elements are comprised of specially con-
structed Schnorr private keys and a set of tokens. These tokens later become the part of
append-only signature σ accordingly. The public key PK is a system-wide public key
that is shared by all verifiers, and is comprised of two long-term public keys. Details
are given in Section 4.
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3.1 System Model

LogFAS system model is comprised of a Key Generation Center (KGC) and multiple
signers (i.e., logging machines that could be compromised) and verifiers. As in forward-
secure stream integrity model (e.g., [7, 17, 18]), signers honestly execute the scheme
until they are compromised by the adversary. Verifiers may be untrusted.

The KGC executes LogFAS .Kg once offline before the deployment, and distributes
a distinct private key/token set (auxiliary signature) to each signer, and two long-term
public keys to all verifiers. After the deployment, a signer computes the forward-secure
and append-only signature of log entries with LogFAS .FASig, and verifiers can verify
the signature of any signer with LogFAS .FAVer via two public keys without commu-
nicating with KGC (constant storage overhead at the verifier side).

In LogFAS, the same logger computes the append-only signature of her own log
entries. Note that this form of signature computation is ideal for the envisioned secure
audit logging applications, since each logger is only responsible for her own log entries.

3.2 Security Model

A FSA scheme is proven to be ForWard-secure Existentially Unforgeable against Cho-
sen Message Attack (FWEU-CMA) based on the experiment defined in Definition 7. In
this experiment, A is provided with two types of oracles that she can query up to L
messages in total as follows:

A is first provided with a batch signing oracle FASigsk (·). For each batch query j,

A queries FASigsk (·) on a set of message
−→
D j of her choice once. FASigsk (·) re-

turns a forward-secure and append-only signature σ0,j under sk by aggregating σj

(i.e., the current append-only signature) on
−→
D j with the previous signature σ0,j−1 on

−→
D0, . . . ,

−→
D j−1 that A queried. Assume that A makes i batch queries (with 0 ≤ l ≤ L

individual messages) as described the above until she decides to “break-in”.
A then queries the Break -in oracle, which returns the remaining L − l private keys

to A (if l = L Break -in rejects the query).

Definition 7. FWEU-CMA experiment is defined as follows:

Experiment ExptFWEU -CMA
FSA (A)

(sk, PK) ← FSA.Kg(1κ, L), (
−→
D∗, σ∗) ← AFASigsk (·),Break-in (PK),

If FSA.FAVer(PK,
−→
D∗, σ∗) = 1 ∧ ∀I ⊆ {0, . . . , l},−→D∗ 	= ||k∈I

−→
Dk, return 1, else,

return 0.

FWEU-CMA-advantage ofA is AdvFWEU -CMA
FSA (A) = Pr[ExptFWEU -CMA

FSA (A) = 1].

FWEU-CMA-advantage of FSA is AdvFWEU -CMA
FSA (t, L, μ) = maxA

{AdvFWEU -CMA
FSA (A)}, where the maximum is over all A having time complexity t,

making at most L oracle queries, and the sum of lengths of these queries being at most
μ bits.

The above experiment does not implement a random oracle for A explicitly. How-
ever, we still assume the Random Oracle Model (ROM) [4], since Schnorr signature
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scheme [26] on which LogFAS is built requires the ROM. Note that this experiment
also captures the truncation attacks:

(i) The winning condition of A subsumes the truncation attack in addition to data
modification. That is, A wins the experiment when she either modifies a data item or
keeps data items intact but outputs a valid signature on a subset of a given batch query
(i.e., she splits an append-only signature without knowing its individual signatures).

(ii) LogFAS uses a standard signature scheme SGN to prevent truncation attacks
by computing signatures of counter values. Resilience against the traditional data
forgery (without truncation) relies on EU-CMA property of Schnorr and target
collision-freeness of IH. In Theorem 1, we prove that a successful truncation attack
against LogFAS is equivalent to breaking SGN , and a successful data modification
(including re-ordering) against LogFAS is equivalent to breaking Schnorr or IH.

4 LogFAS Schemes

In this section, we first present the intuition and detailed description of LogFAS, and
then describe a LogFAS variation that has additional capabilities.

4.1 LogFAS Scheme

All existing FSA constructions [17–20, 29] rely on a direct combination of an aggre-
gate signature (e.g., [8]) and a forward-secure signature (e.g., [1, 15]). Therefore, the
resulting constructions simultaneously inherit all overheads of their base primitives:
(i) Forward-secure signatures on individual data items, which are done separately from
the append-only design, force verifiers to perform O(l) ExpOps. (ii) These schemes ei-
ther eliminate ExpOps from the logging phase with pre-computation but incur quadratic
storage overhead to the verifiers (e.g., [29]), or require ExpOps in the logging phase for
each log entry and incur linear storage overhead to the verifiers (e.g., [12, 17, 20]).

The above observations inspired us to design cryptographic mechanisms that can
verify the integrity of entire log entry set once directly (preserving forward-security),
instead of checking the integrity of each data item individually, though the signing
operations have to be performed on individual data items. That is, instead of verifying
each item one-by-one with the corresponding public key(s), verify all of them via a
single set of aggregated cryptographic components (e.g., tokens as auxiliary signatures).
These mechanisms also achieve constant storage overhead at the verifier side3.

We achieve these goals with a provable security by using Schnorr signature and
incremental hash IH as follows:

a) To compute a forward-secure and append-only Schnorr signature, we aggregate
each individual signature sl on Dl with the previous aggregate signature as s0,l ←
s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0). This is done by using a distinct private
key pair (rj , yj) for j = 0, . . . , L− 1 on each data item.

3 In all existing forward-secure and/or aggregate (append-only) logging schemes (e.g., [7, 12,
17, 19, 20, 29]), the signer side storage overhead is dominated by the accumulated logs, which
already incur a linear storage overhead.
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b) Despite being forward-secure, the above construction still requires an ExpOp for
each data item. To verify the signature on D0, . . . , Dl with only a small-constant num-
ber of ExpOps, we introduce the notion of token.

In LogFAS, each Schnorr private yj is comprised of a random key pair (aj , dj) for
j = 0, . . . , L − 1. Random key aj is mutually blinded with another random factor xj

and also a long-term private key b for j = 0, . . . , L − 1. The result of these blinding
operations is called auxiliary signature (token) zj , which can be kept publicly without
revealing information about (aj , xj) and also can be authenticated with the long-term
public key B by all verifiers. Furthermore, these masked tokens z = z0, . . . , zl also
serve as a one-time initialization key for the incremental hash as IHq,l

z (Definition 4),
which enable verifiers to reduce the integrity of each Dj into the integrity of a final tag
z0,l. This operation preserves the integrity of each Dj and verifiability of each zj (via
public key B) without ExpOps.

c) To verify (s0,l, z0,l) via B in an aggregate form, verifiers also aggregate tokens
Rj as R0,l ←

∏l
j=0 Rj mod p, where p a large prime on which the group was con-

structed. However, initially, (s0,l, R0,l, z0,l) cannot be verified directly via B, since the
reduction operations introduce some extra verification information. LogFAS handles
this via auxiliary signature (token) M ′

0,l that bridges (s0,l, R0,l, z0,l) to B. That is, the
signer computes an aggregate token M ′

0,l ← M ′
0,l−1M

ej
l mod p, where 0 < l ≤ L− 1

and M0,0 = M0), along with s0,l in the signing process. During verification, this ag-
gregate token eliminates the extra terms and bridges (s0,l, R0,l, z0,l) with B.

This approach allows LogFAS to compute publicly verifiable signatures with only
one ExpOp per-item, and this signature can be verified with only a small-constant num-
ber of ExpOps by storing only two public keys at the verifier side (regardless of the
number of signers). This is much more efficient than all of its PKC-based counterparts,
and also is as efficient as the symmetric schemes at the verifier side.

The detailed description of LogFAS algorithms is given below:

1) LogFAS .Kg(1κ, L): Given 1κ, generate primes q and p > q such that q|(p− 1), and
then generate a generator α of the subgroup G of order q in Z∗

p.

a) Generate (b
$← Z∗

q , B ← αb−1

mod p) and (ŝk , P̂K ) ← SGN .Kg(1κ). System-

wide private key of KGC is sk ← (b, ŝk). This private key is used to compute the
private key of all signers in the system. System-wide public key of all verifiers is
PK ← {p, q, α,B, P̂K , L}. This public key can verify any valid signature gener-
ated by a legitimate signer.

b) Generate (rj , aj , dj , xj)
$← Z∗

q for j = 0, . . . , L− 1. The private key of signer IDi

is sk ← {rj , yj, zj ,Mj, Rj , βj}L−1
j=0 , where

- Generate the Schnorr private key of each IDi as yj ← aj − dj mod q. Generate
the masked token of IDi as zj ← (aj − xj)b mod q, which is used for integrity
reduction at the verification phase.

- Rj ← αrj mod p, Mj ← αxj−dj mod p. Each Rj serves as a part of Schnorr
signature and it is aggregated by the verifier upon its receipt. Mj is the aggregate
token and is aggregated by the signer during the logging process.

- βj ← SGN .Sig(ŝk , H(IDi||j)). Note that each βj is kept secret initially, and
then released as a part of a signature publicly.
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2) LogFAS .FASig(〈rl, yl, zl,Ml, Rl, βl〉, Dl, σ0,l−1): Given σ0,l−1 on D0, . . . , Dl−1,
compute σ0,l on D0, . . . , Dl as follows,

a) el ← H(Dl||l||zl||Rl), M ′
l ← M el

l mod p, sl ← rl − elyl mod q,

b) s0,l ← s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0),

c) M ′
0,l ← M ′

0,l−1M
′
l mod p, (0 < l ≤ L− 1, M ′

0,0 = M0),

d) σ0,l ← {s0,l,M ′
0,l, βl, Rj , ej , zj}lj=0 and erase (rl, yl, s0,l−1, sl, βl−1).

3) LogFAS .FAVer(PK , 〈D0, . . . , Dl〉, σ0,l):

a) If SGN .Ver(P̂K,H(IDi||l), βl) = 0 then return 0, else continue,

b) If
∏l

j=0 Rj mod p = M ′
0,l ·Bz0,l · αs0,l mod p holds return 1, else return 0, where

z0,l = IHq,l
z0,...,zl(D0||w||z0|| R0, . . . , Dl||w||zl||Rl).

4.2 Selective Verification with LogFAS

All the previous FSA constructions (e.g., [17–19, 29, 30]) verify the set of log entries
via only the final aggregate signature to prevent the truncation attack and save the stor-
age. However, this approach causes performance drawbacks: (i) The verification of any
subset of log entries requires the verification of the entire set of log entries (i.e., always
O(L) ExpOps for the subset verification). (ii) The failure of signature verification does
not give any information about which log entries were corrupted.

Ma et al. proposed immutable-FssAgg (iFssAgg) schemes in [20] to allow fine-
grained verification without being vulnerable to truncation attacks. However, iFssAgg
schemes double the signing/verifying costs of their base schemes. In addition, even if
the signature verification fails due to only a few corrupted log entries (i.e., accidentally
damaged entry(ies)), detecting which log entry(ies) is (are) responsible for the failure
requires verifying each individual signature.

LogFAS can address the above problems via a simple variation without incurring any
additional costs: The signer keeps all signatures and tokens in their individual forms
(including sj for j = 0, . . . , l) without aggregation. The verifiers can aggregate them
according to their needs by preserving the security and verifiability. This offers perfor-
mance advantages over iFssAgg schemes [20]:

(i) LogFAS protects the number of log entries via pre-computed tokens β0, . . . , βl,
and therefore individual signatures can be kept without a truncation risk. This elim-
inates the necessity of costly immutability strategies used in iFssAgg schemes [20].
Furthermore, a verifier can selectively aggregate any subset of l′ < l log entries and
verify them by performing only a small-constant number of ExpOps as in the original
LogFAS. This is much more efficient than the iFssAgg schemes, which require O(2l′)
ExpOps.

(ii) LogFAS can use a recursive subset search strategy to identify corrupted log en-
tries causing the verification failure faster than linear search4. That is, the set of log en-

4 Note that the previous PKC-based audit logging schemes cannot use such a recursive subset
search strategy to identify corrupted log entries with a sub-linear number ExpOps, since they
always require linear number of ExpOps to verify a given subset from the entire log entry set
(in contrast to LogFAS that requires O(1)ExpOp to verify a given subset).
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tries is divided into subsets along with their corresponding individual signatures. Each
subset is then independently verified by LogFAS .AVer via its corresponding aggregate
signature, which is efficiently computed from individual signatures. Subsets returning
1 are eliminated from the search, while each subset returning 0 is again divided into
subsets and verified by LogFAS .AVer as described. This subset search continues re-
cursively until all the corrupted log entries are identified.

The above strategy can quickly identify the corrupted entries when most log entries
are intact. For instance, if only one entry is corrupted, it can identify the corrupted entry
by performing (2 log2 l) ExpOps + O(l) hash operations. This is much faster than linear
search used in the previous PKC-based schemes, which always requires O(l) ExpOps
+ O(l) hash operations.

Recursive subset strategy remains more efficient than linear search as long as the
number of corrupted entries c satisfies c ≤ l

2 log2 l . When c > l
2 log2 l , depending on c

and the distribution of corrupted entries, recursive subset search might be more costly
than linear search. To minimize the performance loss in such an inefficient case, the
verifier can switch from recursive subset search to the linear search if the recursive
division and search step continuously returns 0 for each verified subset. The verifier
can ensure that the performance loss due to an inefficient case does not exceed the
average gain of an efficient case by setting the maximum number of recursive steps to
be executed to l′/2− log2 l

′ for each subset with l′ entries.

5 Security Analysis

We prove that LogFAS is a FWEU-CMA signature scheme in Theorem 1 below.

Theorem 1. AdvFWEU -CMA
LogFAS (t, L, μ) is bounded as follows,

AdvFWEU -CMA
LogFAS (t, L, μ) ≤ L · AdvEU -CMA

Schnorr (t′, 1, μ′)+

AdvEU -CMA
SGN (t′′, L, μ′′) +AdvTCR

IHq,L
z

(t′′′),

where t′ = O(t) + L · O(κ3) and μ′ = μ/L.

The proof of the theorem can be found in our accompanying technical report [31].

Remark 1. Another security concern in audit logging is delayed detection identified
in [19]. In delayed detection, log verifiers cannot detect whether the log entries are
modified until an online TTP provides auxiliary keying information to them. LogFAS
does not rely on an online TTP support or time factor to achieve the signature verifica-
tion, and therefore it is not prone to delayed detection.

6 Performance Analysis and Comparison

In this section, we present the performance analysis of LogFAS and compare it with
previous schemes.

Computational Overhead: From a verifier’s perspective, LogFAS requires only a
small-constant number of modular exponentiations regardless of the number of log en-
tries to be verified. Therefore, it is much more efficient than all PKC-based schemes,
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Table 2. Execution time (in ms) comparison of LogFAS and its counterparts

Criteria
PKC-based

Sym.
LogFAS FssAgg (l) / iFssAgg (l′)

Logcrypt BAF
(l = 104, l′ < l) BLS / i BM / i AR / i

Off. Kg, L = 104 5.06 × 104 3.3 × 103 8.8 × 1041.7 × 1052.6 × 104 4 × 104 2̃0

Onl.

Sig&Upd (1) 1.2 1.8 / 3.6 13.1 / 26.2 28 / 56 2.05 0.007 0.004

Ver.
l′ = 102 72.87 4.8 × 103 1.8 × 1031.6 × 1051.4 × 103 0.2 × 103 0.2
l′ = 103 75.2 4.8 × 104 1 × 104 1.8 × 1051.5 × 1042.05 × 103 2
l = 104 98.12 2.6 × 105 4.7 × 1041.9 × 1051.4 × 1052.04 × 104 19.9

which require one modular exponentiation (or a pairing) per log entry. Besides, it does
not double the verification cost to prevent the truncation attacks, providing further effi-
ciency over iFssAgg schemes [20]. The verification of subsets from these entries with
LogFAS is also much more efficient than all of its counterparts.

From a logger’s perspective, LogFAS is also more efficient than its PKC-based coun-
terparts with the exception of BAF.

We prototyped our schemes and their counterparts on a computer with an Intel(R)
Xeon(R)-E5450 3GHz CPU and 4GB RAM running Ubuntu 9.04. We tested LogFAS,
BAF [29], FssAgg-BLS [18], Logcrypt (with DSA), and the symmetric schemes (e.g.,
[7, 18, 25]) using the MIRACL library [27], and FssAgg-AR/BM using the NTL li-
brary [28] 5. Table 2 compares the computational cost of LogFAS with its counterparts
numerically in terms of their execution times (in ms). The execution time differences
with LogFAS and its PKC-based counterparts grow linearly with respect to the number
of log entries to be verified. Initially, the symmetric schemes are more efficient than all
PKC-based schemes, including ours. However, since the verification operations of Log-
FAS are dominated by H , their efficiency become comparable with symmetric schemes
as the number of log entries increases (e.g., l = 104)6.

Figure 1 and Figure 2 further compare LogFAS and previous schemes that allow
public verification in terms of signature generation and verification times as the number
of log entries increases. These figures demonstrate that LogFAS is the most verifier
computationally efficient scheme among all these choices. It is also more efficient than
its counterparts for the signature generation with the exception of BAF.

All PKC-based schemes require O(L) ExpOps in the key generation phase.

Signature/Key/Data Storage and Transmission Overheads: LogFAS is a verifier
storage friendly scheme; it requires each verifier to store only two public keys and an
index along with system-wide parameters (e.g., |q|+ |4p|), regardless of the number of
signers or the number of log entries to be verified.

5 Suggested bit lengths to achieve 80-bit security for each compared schemes are as follows
(based on the parameters suggested by Lenstra et al. in [16] and Ma et al. in [17, 18]): Large
primes (|p| = 2048, |q| = 1600) for LogFAS and Logcrypt, primes (|p′| = 512, |q′| = 160)
for BAF and FssAgg-BLS, (|n′| = 1024, z = 160) for FssAgg-AR and FssAgg-BM, where
n′ is Blum-Williams integer [17].

6 To achieve TCR property for IH, LogFAS uses relatively larger modulo sizes than its coun-
terparts. However, since LogFAS requires only a small-constant number of ExpOps for the
signature verification and a single ExpOp for the signature generation, the effect of large mod-
ulo size over its performance is negligible.
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Fig. 1. Signing time comparison of LogFAS and
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Table 3. Key size, signature size and storage overheads of LogFAS and previous schemes

Criteria
PKC-based Symmetric

LogFAS BAF
FssAgg Schemes [19, 20]

Logcrypt [12]
Sym.

BLS [18] BM [17] AR [17] [18, 24, 25]

Sig.
Key size O(L)(|q|+ |p|) 3|q′| |q′| |n′|z 3|n′| |q′| + |p′| |H|
Sig. size O(l)(|q| + |p|) |q′| |p′| |n′| |n′| 2|q′| |H|
Storage O(L + l)(|q| + |p|) 4|q′| 2|q′| + 3|p′| |n′|l 4|n′| O(L)(|q′| + |p′|)O(V )|H|

Ver.
Key size |q| + 4|p| 2|p′| |q′| |n′|z 3|n′| 2|q′| + |p′| |H|
Storage |q| + 4|p| O(L · S)(2|p′|)O(L · S)|q′|O(S)|n′|zO(S)|3n′|O(L)(|q′| + |p′|)O(S)|H|

The values in this table are simplified by omitting some constant/neglibigle terms. For instance,
the overhead of data items to be transmitted are the same for all compared schemes and therefore
are omitted.

In LogFAS, the append-only signature size is |q|. The key/token and data storage
overheads on the logger side are linear as O(L(5|q|+2|p|))+O(l|D|) (assuming SGN
is chosen as Schnorr [26]). LogFAS transmits a token set along with each data item re-
quiring O(l(|q|+ |p|+ |D|)) transmission in total. The fine-grain verification introduces
O(l′) extra storage/communication overhead due to the individual signatures.

From a verifier’s perspective, LogFAS is much more storage efficient than all existing
schemes, which require either O(L ·S) storage (e.g., FssAgg-BLS [18] and BAF [29]),
or O(S) storage (e.g., [7, 12, 17, 20, 25]). From a logger’s perspective, all the com-
pared schemes both accumulate (store) and transmit linear number of data items (i.e.,
O(l)|D|) until their verifiers become available to them. This dominates the main stor-
age and communication overhead for these schemes. In addition to this, LogFAS re-
quires linear key storage overhead at the logger side, which is slightly less efficient
than [17, 18, 29]. LogFAS with fine-grained verification and its counterpart iFssAgg
schemes [20] both require linear key/signature/data storage/transmission overhead.

Availability, Applicability and Security: The symmetric schemes [7, 25] are not pub-
licly verifiable and also require online server support to verify log entries. Furthermore,
they are vulnerable to both truncation and delayed detection attacks [19, 20] with the
exception of FssAgg-MAC [18]. In contrast, PKC-based schemes [12, 17–20] are pub-
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licly verifiable without requiring online server support, and they are secure against the
truncation and delayed detection attacks, with the exception of Logcrypt [12].

7 Related Work

Most closely related are those forward-secure audit logging schemes [6,7,12,17–20,25,
29]. The comparison of these schemes with LogFAS has been presented in Section 6.

Apart from the above schemes, there is a set of works complementary to ours.
Itkis [14] proposed cryptographic tamper resistance techniques that can detect tam-
pering even if all the keying material is compromised. LogFAS can be combined with
Itkis model as any forward-secure signature [14]. Yavuz et al. [30] proposed a Hash-
based Forward-Secure and Aggregate Signature Scheme (HaSAFSS) for unattended
wireless sensor networks, which uses timed-release encryption to achieve computa-
tional efficiency. Davis et al. proposed time-scoped search techniques on encrypted au-
dit logs [10]. There are also authenticated data structures that can be used for audit
logging in distributed systems [9,22]. LogFAS can serve as a digital signature primitive
needed by these constructions.

8 Conclusion

In this paper, we proposed a new forward-secure and append-only audit logging scheme
called LogFAS. LogFAS achieves public verifiability without requiring any online
trusted server support, and is secure against truncation and delayed detection attacks.
LogFAS is much more computationally efficient than all existing PKC-based alterna-
tives, with a performance comparable to symmetric schemes at the verifier side. Log-
FAS is also the most verifier storage efficient scheme among all existing alternatives.
Last, a variation of LogFAS enables selective subset verification and efficient search
of corrupted log entries. Overall, our comparison with the existing schemes shows that
LogFAS is an ideal choice for secure audit logging by offering high efficiency, security,
and public verifiability simultaneously for real-life applications.
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Abstract. We consider the problem of secure integer division: given two
Paillier encryptions of �-bit values n and d, determine an encryption of
�n
d
� without leaking any information about n or d. We propose two new

protocols solving this problem.
The first requires O(�) arithmetic operations on encrypted values (se-

cure addition and multiplication) in O(1) rounds. This is the most ef-
ficient constant-rounds solution to date. The second protocol requires
only O (

(log2 �)(κ+ loglog �)
)
arithmetic operations in O(log2 �) rounds,

where κ is a correctness parameter. Theoretically, this is the most effi-
cient solution to date as all previous solutions have required Ω(�) oper-
ations. Indeed, the fact that an o(�) solution is possible at all is highly
surprising.

Keywords: Secure two-party computation, Secure integer division.

1 Introduction

Secure multiparty computation (MPC) allows two or more mutually mistrust-
ing parties to evaluate a function on private data without revealing additional
information. Classic results show that any function can be computed with poly-
nomial overhead but specialised protocols are often used to improve efficiency:
integer arithmetic can for instance be simulated using ZM arithmetic. On the
other hand, this makes non-arithmetic operations difficult, including determin-
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et al. [BCD+09]), or performing an integer division of sums (essentially the com-
putation of the mean problem of Kiltz et al. [KLM05]).

In this paper we consider the problem of secure integer division – computing
�n/d� given n and d – in the two-party setting. Immediate applications include
statistics on data from companies in the same line of business, as well as data-
mining tasks, e.g., the k-means clustering protocol of Jagannathan and Wright
[JW05]. Further, since the problem of secure integer division is equivalent to that
of secure modulo reduction – n mod m = n−m · �n/m� – any such protocol may
be utilized in joint key-generation, e.g., as done by Algesheimer et al. [ACS02].

Related Work. Algesheimer et al. introduced the problem of secure integer di-
vision in the context of passively secure RSA-modulus generation with honest
majority [ACS02]; active security is achievable using standard techinques. Their
solution was based on Newton iteration and required O(
) work and communi-
cation (using the notation of this paper) in O(log 
) rounds, where 
 is the bit-
length of the inputs. The protocols were implemented by From and Jakobsen in
the passively secure three-party setting [FJ05]. Recently, Catrina and Dragulin
have used similar ideas to construct secure fixed-point arithmetic [CD09].

Regarding constant-rounds solutions, Kiltz et al. proposed specialised proto-
cols based on Taylor series for the related, but simpler, problem of computing
the means in a two-party setting [KLM05]. Damg̊ard et al. [DFK+06] observed
that combining the ideas of [ACS02, KLM05] and bit-decomposition (BD) im-
plied constant-rounds modulo reduction and hence integer division. No details
were presented, though naturally complexity was at least that of BD, O(
 log 
).

The simpler problem where d is known to all parties (a single party) has been
studied by Guajardo et al. [GMS10] and Ning and Xu [NX10] (Veugen [Veu10]).

Finally, we remark that it is possible to “switch technique” mid-protocol and
use homomorphic encryption for arithmetic and (small) Yao circuits for prim-
itives such as integer division as done by Henecka et al. [HKS+10]. However,
achieving active security in this setting typically requires the use of cut-and-
choose techniques. Moreover, while it is possible to use generic non-interactive
zero-knowledge proofs to demonstrate correct protocol execution to indepen-
dent observers – e.g. clients which have supplied the inputs as in the Danish
“sugar beet auction” [BCD+09] – this will be much more expensive than using
non-generic zero-knowledge proofs as our solution allows.

Contribution. We present two two-party protocols for the problem of secure
integer division: given Paillier encryptions of 
-bit values n and d, compute an
encryption of �n/d� without leaking any information. Both are based on Taylor
series. The first protocol requires O(
) encryptions to be exchanged between the
parties in a constant number of rounds; this is quite practical for small inputs,
e.g., up to 40 bits. The second protocol communicates O

(
(log2 
)(κ+ loglog 
)

)
encryptions in O(log2 
) rounds. Moreover, we are able to avoid bit-decomposi-
tion; indeed, as the latter complexity is sub-linear in the bit-length, it precludes
the use of bit-decomposition. That a sub-linear solution is possible at all is quite
surprising, but the construction is of theoretical rather than practical interest.
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Though our protocols are presented in the two-party Pailier-based setting, they
are applicable in other settings providing secure arithetmic, e.g. the protocols of
Ben-Or et al. [BGW88]. However, the sub-linear solution requires the presence of
two mutually incorruptible parties, at least with current knowledge.

2 Preliminaries

After presenting Paillier encryption and secure two-party computations we in-
troduce a set of protocols used in our constructions. All sub-protocols are secure
against malicious (i.e., potentially deviating) attackers. Regarding complexity,
we shall use Rπ and Cπ to denote respectively the number of rounds used and
the number of ring elements communicated during a single run of protocol π.

Paillier Encryption. Paillier’s encryption scheme [Pai99] is an additively homo-
morphic, sematically secure public key encryption scheme based on the decisional
composite residuosity assumption of RSA-moduli. Suppressing the randomness
used for encryption, we write [m] to denote an encryption of m.

Secure Computation. Secure multi-party computation can be based on Paillier
encryption with a threshold key using the protocols of Cramer et al. [CDN01].
The threshold sharing can be constructed using the ideas of Damg̊ard and Jurik
[DJ01]. Though not explicitly stated, apart from guaranteed termination, the
protocols of [CDN01] are still valid even if all but a single party are corrupt. In
particular this allows the two-party setting. We assume the following setting:

– Alice and Bob know a public Paillier key and share the decryption key.
– Inputs and intermediary values are held in encrypted form by both parties.

Paillier encryption is additively homomorphic, hence given [m] and [m′] both
parties may compute an encryption [m+m′]. We will use infix operations in the
plaintext space and write [m+m′] ← [m] + [m′] for this operation. To perform
a multiplication, the parties need to run a protocol; see [CDN01] for details.

Zero-Knowledge Proof of Boundedness. In addition to secure arithmetic in ZM

we require a zero-knowledge proof of boundedness, i.e. that Alice and Bob may
demonstrate to each other that the plaintext of an encryption [m] sent to the
other party (where the sender knows m) is smaller than some public bound B.
For Paillier encryption this can be achieved with O(1) communication (of ring
elements) using integer commitments and the fact that any non-negative integer
can be written as a sum of four squares. See [Bou00, Lip03] for further discussion.

Computing the greater-than relation. Given encryptions [m] and [m′] of 
-bit
values, obtain an encryption [b] of a bit b such that b = 1 iff m > m′. A
constant-rounds protocol πc

>? for this can be based off of the comparison protocol
of Nishide and Ohta [NO07]; communication complexity is Cπc

>?
= O(
) ring

elements. We use πc
≤? as syntactic sugar for running πc

>? with inputs swapped.
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A sub-linear protocol, denoted πs
>? and πs

≤?, is possible due to Toft [Tof11]. Its
complexity is Cπs

>?
= O ((log 
)(κ+ loglog 
)) ring elements in Rπs

>?
= O(log 
)

rounds, where κ is a correctness parameter.

Computing the Inverse of an Element. Given an encryption [x] of x ∈ Z∗
M ,

compute an encryption
[
x−1

]
of its inverse. We use the protocol from [BB89]

which performs this task in a constant number of rounds and communicating
a constant number of field elements. We shall use this protocol in both the
constant-rounds and the sub-linear protocol and hence simply denote it by πinv.

Bit-Decompositon (BD). Decomposing an encrypted 
-bit value [m] into binary

form – i.e. computing bits [m�−1] , . . . , [m0] such that m =
∑�−1

i=0 2
i · mi – is

not strictly required (details appear in the full version) but we use it here for
clarity. We denote by πc

BD the BD protocol of Reistad and Toft [RT10]; this uses
Cπc

BD
= O(
) communication.

Prefix-or of a Sequence of Bits. Given encrypted bits [x�−1] , . . . , [x0], compute

encrypted bits [y�−1] , . . . , [y0] such that yi =
∨�−1

j=i xj . An O(1)-rounds protocol

communicating Cπc
pre-∨ = O(
) elements, πc

pre-∨, is provided in [DFK+06].

Powers of a number. Given an encrypted number [x] and public ω ∈ Z, compute[
x1

]
,
[
x2

]
, . . . , [xω]. πc

pre-Π achieves this using Cπc
pre-Π

= O(ω) communication

in O(1) rounds using a prefix-product computation, [BB89, DFK+06].

3 The Intuition Behind the Constructions

In this section we take a high-level view and present the ideas behind the desired
computation. The following sections then explain how to do this securely in the
stated complexity. Assume in the following that n and d are 
-bit integers, and
let k be a suitable large, public integer. Our solutions then consist of two steps:

I. Compute an encrypted approximation [ã] of a = �2k/d�
II. Compute [�n/d�] as

⌊
([ã] · [n])/2k

⌋
Step I is explained over the reals in Section 3.1. This is then converted to in-
teger computation in Section 3.2 and finally realised using ZM arithmetic in
Section 3.3. Note that the integer division in step II is simpler as 2k is public.

3.1 The Taylor Series

As in [KLM05] or the constant depth division circuit of Hesse et al. [HAB02],
we start with a geometric series to compute a “k-shifted” approximation of 1/d:

1

α
=

∞∑
i=0

(1 − α)i =

ω∑
i=0

(1 − α)i + εω (1)
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where εω =
∑∞

i=ω+1(1−α)i. This is easily verified for any real 0 < α < 1. Further,
approximating 1/α by keeping only the first ω + 1 terms of the summation
introduces an additive error of εω. If 0 < 1− α ≤ 1/2 then this error is at most

εω =

∞∑
i=ω+1

(1− α)i = (1− α)
ω+1 ·

∞∑
i=0

(1− α)i ≤ 2−ω−1 · 1
α

≤ 2−ω. (2)

By picking ω sufficiently large this ensures an appropriately small error below.

3.2 Converting the Taylor Series to an Integer Computation

Multiplying 1/α by a power of two “shifts” the value; this ensures that each of
the ω + 1 terms of the finite sum of Eq. (1) are integer. The non-integer part of
the shifted value is entirely contained in εω, which will be discarded.

Let 
d = �log2(d) + 1� be the bit-length of d, i.e. 2�d−1 ≤ d < 2�d ; define 
n
similarly. Any ω ≥ max{
n − 
d, 0} provides sufficient accuracy, however, the
public ω cannot depend on the secret 
n and 
d. Thus, we let ω = 
 ≥ 
n − 
d.
For α = d/2�d and k = 
2 + 
 the following provides 1/d shifted up by k bits:

2k

d
= 2k−�d · 1

d/2�d
=

(
2k−�d(ω+1)

ω∑
i=0

(
2�d − d

)i · 2�d(ω−i)

)
+2k−�d ·εω.

We define the desired approximation of 2k/d as

ã = 2k−�d(ω+1) ·
ω∑

i=0

(
2�d − d

)i · 2�d(ω−i). (3)

Note that not only is this an integer since k ≥ 
d(ω + 1) and 2�d > d, it may
also be computed as the product of 2k−�d(ω+1) and the evaluation of the integer
polynomial with coefficients 2�d(ω−i) for 0 ≤ i ≤ ω at point 2�d −d. Furthermore,
since 0 < 1− d/2�d ≤ 1/2 we have a bound on the additive error by Eq. (2):

2k−�d · εω ≤ 2k−�d−ω.

This ensures that the result computed in step II is off by at most 1; we have:⌊n
d

⌋
=

⌊
n ·

(
ã+ 2k−�d · εω

)
2k

⌋
=

⌊
n · ã
2k

+
n · 2k−�d · εω

2k

⌋
(4)

and see that the second summand is bound by
n · 2k−�d · εω

2k
≤ n · 2k−�d−ω

2k
<

2k

2k
= 1

since 
n ≤ ω. �n·ã
2k � is the desired result except that the sum of the error, n ·

2k−�d · εω, and the discarded bits of the approximation, n · ã mod 2k, may be
greater than 2k; i.e. there may be an additive error of −1 due to a lost carry.

To recap: Given integers 2k−�d(ω+1), 2�d − d and 2�d(ω−i) for 0 ≤ i ≤ 
,
performing step I yields an approximation ã of 2k/d using Eq. (3). Down-shifting
this almost gives the desired result, namely q̃ ∈ {q, q − 1}, where q = �n/d�.



On Secure Two-Party Integer Division 169

3.3 Performing the Integer Computation Using ZM Arithmetic

The underlying primitives provide secure ZM arithmetic, with M = p · q being
the Paillier key whose secret key is held jointly by the parties. We assume1 that

M � 2�
2+�+κs ,

where κs is a statistical security parameter, e.g. κs = 100. This implies that no
“overflow” modulo M occurs in Eq. (3), hence it can be seen as occurring in
ZM . However, for efficiency reasons we rephrase the expression as

ã = 2k−�d(ω+1) ·
ω∑

i=0

(
2�d − d

)i · 2�d(ω−i) = 2k−�d ·
ω∑

i=0

((
2�d − d

)
· 2−�d

)i
(5)

where addition and multiplication occur in ZM . Although this should no longer
be seen as an integer computation, the key observation is that it is irrelevant how
the encryption [ã] is obtained; what matters is that the plaintext is correct. Es-
sentially this altered calculation can be viewed as using the encoding of rational
values suggested in [FSW02]. Note that this simplifies the desired calculation:
we now only need the values 2k−�d , 2�d − d, and 2−�d as well as the evaluation
of a ZM -polynomial with known coefficients (all equal to 1).

4 The Overall Division Protocol

Having presented the desired ZM -expression for computing the approximation
ã ≈ 2k/d in Section 3.3 above, the goal now is to give a high-level view of
the actual protocol. We first formalise the required sub-tasks, and then present
the overall protocol based on assumed protocols for these. Instantiating these
protocols with either the constant-rounds (Section 5) or the sub-linear (Section 6)
versions of the sub-protocols we obtain our two division protocols.

4.1 Sub-tasks and Sub-protocols

In addition to the basic primitives of Section 2 we require the following sub-
protocols:

– πBL: Given an encryption [d] of an 
-bit value d, determine an encryption[
2�d

]
for 
d = �log2(d) + 1�

– πpoly: Given an encryption [p] of p ∈ Z∗
M , evaluate the known polynomial

A(x) =
∑ω

i=0 x
i over ZM securely at point p, i.e. compute encryption [A(p)]

– πtrunc: Given an encryption [q̂] of an (
 + k)-bit value q̂ ∈ ZM , compute an
encryption [q̃] of an approximation of �q̂/2k� s.t. q̃ = �q̂/2k�+ε for ε ∈ {0, 1}.

1 M needs to be at least a thousand bits long to ensure security of the Paillier scheme
and hence this assumption is not as bad as it may appear at first glance.
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4.2 The High-Level View

The full division protocol is seen in Figure 1 and proceeds by the following steps:

I. Compute an encryption [ã] of the approximation
(a) Determine

[
2�d

]
and in turn compute

[
2k−�d

]
and [p] =

[
(2�d − d) · 2−�d

]
(b) Evaluate the polynomial of Eq. (5) in [p] and securely multiply by

[
2k−�d

]
II. Compute [�n/d�]

(a) Obtain encryption [q̃] of q̃ ≈ �n/d� by computing and truncating [n · ã]
(b) Eliminate errors introduced by approximations, i.e., compute [q] from [q̃]

where the elimination of errors are performed by two secure comparions.

A: skA pk = M, [n] , [d] B: skB

[
2�d

] ← πBL ([d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[
2−�d

] ← πinv

([
2�d

])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[p] ← (
[
2�d

]− [d]) · [2−�d
]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[ã] ← 2k · [2−�d

] · πpoly([p])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[q̂] ← [n] · [ã]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̃] ← πtrunc([q̂] , k)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[r] ← [n]− [d] · [q̃]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[ε+] ← π≤? ([d] + [d] , [r] + [d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[ε−] ← π>? ([d] , [r] + [d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[q] ← [q̃] + [ε+]− [ε−]

Fig. 1. The full division protocol, πdiv([n] , [d]) 	→ [�n/d�]

Correctness. Correctness follows almost entirely from the previous section. For
the plaintext of [q̂], the most significant bits are off by at most 1:

�q̂/2k� ∈ {�n/d�, �n/d� − 1}.

The execution of πtrunc may introduce an additional additive error, i.e. we have

q̃ ∈ {�n/d� − 1, �n/d�, �n/d�+ 1}.

Using r = n − d · q̃ ∈ [−d; 2d[ we can securely determine which case we are in.
Namely, q̃ + 1 = �n/d� when d ≤ r and q̃ − 1 = �n/d� when 0 > r. In order to
deal only with positive integers we scale these tests to respectively 2d ≤ r + d
and d > r + d. Letting ε+ and ε− denote the Boolean outcome of these tests, it
follows that q = q̃ + ε+ − ε− = �n/d�.
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Privacy. The protocol reveals no information about the inputs (other than the
desired encryption of the result). This follows from the fact that no value is
ever decrypted and that we only invoke secure sub-protocols which do not leak
information. We note that πinv and πpoly require the input to be invertible –

this is indeed the case as M is the product of two odd primes, p, q ≈
√
M , while

2�d , 2�d − d ≤ 2� �
√
M . Further, the input [n · ã] for the truncation is 
+ k-bit

long as n < 2� and ã ≤ 2k/d ≤ 2k, and hence the input is of the correct size.
A formal security proof using the real/ideal paradigm requires the construc-

tion of a simulator for each party. These are straightforward to construct from
the simulators of the sub-protocols; as our protocol consists of the sequential
evaluation of sub-protocols, the overall simulator simply consists of the sequen-
tial execution of the simulators of these.

Complexity. The complexity depends on the details of the sub-protocols πBL,
πpoly, πtrunc, and π>?. Formally we have

Rπdiv
= RπBL +Rπinv +Rπpoly

+Rπtrunc + 2 · Rπ>?
+ 3 · Rπmult

= RπBL +Rπpoly
+Rπtrunc +O(Rπ>?

) +O(1)

Cπdiv
= CπBL + Cπinv + Cπpoly

+ Cπtrunc + 2 · Cπ>?
+ 3 · Cπmult

= CπBL + Cπpoly
+ Cπtrunc +O(Cπ>?

) +O(1)

(6)

such that for the constant-rounds instantiation we get Rπc
div

= Rπc
BL

+Rπc
poly

+

Rπc
trunc

+O(1) and Cπc
div

= Cπc
BL

+Cπc
poly

+Cπc
trunc

+O(
). Likewise, for the sub-

linear instantiation we get Rπs
div

= Rπs
BL

+Rπs
poly

+Rπs
trunc

+O(log 
) and Cπs
div

=

Cπs
BL

+ Cπs
poly

+ Cπs
trunc

+O ((log 
)(κ+ loglog 
)). Finally, a slight optimisation
regarding rounds is possible by invoking π>? and π≤? in parallel.

Active Security. The protocol in Figure 1 is only passively secure. However,
obtaining active security is straightforward by executing appropriate ZK proofs.
This increases the communication complexity by a constant factor.

5 The Constant-Rounds Protocol

In this section we plug in protocols for the three sub-tasks. All protocols use
a constant number of rounds and linear communication. Combined with the
previous section this provides a constant-rounds protocol for division.

5.1 The Constant-Rounds πBL Protocol

In the full version of this paper [DNT12] we give a πc
BL protocol that, somewhat

surprising, does not rely on bit-decomposition. However, for clarity the πc
BL

protocol presented here in Figure 2 is composed of two protocols introduced
in Section 2: πc

BD and πc
pre-∨. To recap, given [d] the former returns a vector of

encrypted bits [x�−1] , . . . , [x0] for which it holds that
∑�−1

i=0 xi ·2i = d. The latter

takes such a vector of encrypted bits and returns another such that yi =
∨�−1

j=i xj .
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A: skA pk = M, [d] B: skB

[x�−1] , . . . , [x0] ← πc
BD([d])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y�−1] , . . . , [y0] ← πc
pre-∨([x�−1] , . . . , [x0])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[
2�d

] ← 1 +
∑�−1

i=0 [yi] · 2i

Fig. 2. Constant-rounds bit-length protocol, πc
BL([d]) 	→

[
2�d

]

Correctness. By the correctness of the two sub-protocols we only have to argue
the correctness of the final step. Note that the result of πc

pre-∨ is a set such that

yi = 1 if and only if d ≥ 2i. This means that 1 +
∑�−1

i=0 yi · 2i is the desired 2�d .

Privacy and Active Security. Follows immediately by the privacy and security
guarantees of the two sub-protocols.

Complexity. Since the final step of πc
BL is a local computation we simply have

that Rπc
BL

= Rπc
BD

+Rπc
pre-∨ = O(1) and Cπc

BL
= Cπc

BD
+ Cπc

pre-∨ = O(
).

5.2 The Constant-Rounds πpoly Protocol

As shown in the protocol in Figure 3, we simply evaluate polynomial A(x) =∑ω
i=0 x

i in point p =
(
2�d − d

)
· 2−�d using the prefix-product protocol πc

pre-Π .

This gives encryptions of p1, p2, . . . , pω – and knowing these, all there is left to
do is to sum them together with p0 = 1 to form A(p).

A: skA pk = M, [x] B: skB

[
p1
]
, . . . , [pω] ← πc

pre-Π([x] , . . . , [x])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y] ← 1 +
∑ω

i=1 [pi]

Fig. 3. Constant-rounds polynomial evaluation protocol, πc
poly([x]) 	→ [A(x)]

Correctness, Privacy, Complexity, and Active Security. Noting that the second
step of πc

poly is a local computation, all properties directly reflect those of the
πc
pre-Π subprotocol. Formally, Rπc

poly
= O(1) and Cπc

poly
= O(ω).

5.3 The Constant-Rounds πtrunc Protocol

Our constant-rounds protocol for truncation (shown in Figure 4) takes encryp-
tion [q̂] and public k as input and returns [q̃] such that q̃ ≈ �q/2k�. The result
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may have an additive error c ≤ 1. It is possible to eliminate this error with a com-
parison [c] ← ([q̃] · 2k >? [q̂]), and computing the correct result as [q] ← [q̃]− [c].
However, instead of comparing two 
2-bit numbers here, we handle the error in
the main protocol with a comparison of two 
-bit numbers instead.

A: skA pk = M, [q̂] , k B: skB

r ∈R Z2k+�+κ

r� ← �r/2k�
[z] ← [q̂] + r

[z], [r�]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z ← decrA([z])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z� ← �z/2k�
[z�]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̃] ← [z�]− [r�]

Fig. 4. Constant-rounds truncation protocol, πc
trunc([q̂] , k) 	→

[�q̂/2k�+ c
]

To perform the truncation, party B first picks a random integer of a bit-length
sufficient for using it as a mask for q̂. He also stores the 
 + κ most significent
bits of r as r� and computes an encryption of it. Upon receiving [z], the masked
value of q̂, A and B now decrypt [z] for A to see. After learning this value z, A
can locally perform the truncation to form z�. She sends an encryption of this
value to B and both can finally compute the output locally by [z�]− [r�].

Correctness. When computing z it may happen that r causes a carry bit c from
the k least significant bits to spill over into the 
 + κ most significant bits. In
this case the truncation of z will maintain this carry bit, causing the result of
z� − r� to be �q̂/2k�+ 1 instead of �q̂/2k�. For efficiency we allow this error.

Privacy. The only point where information could potentially be leaked is through
A seeing z. However, since r is chosen uniformly at random and κ bit longer than
q̂, z leaks information about q̂ with probability negligible in κ.

Complexity. We see that the complexity of πc
trunc is Rπc

trunc
= 2 +Rdecr = O(1)

where Rdecr is the round complexity of a decryption, assumed to be constant.
Likewise the communication complexity is Cπc

trunc
= 3 + Cdecr = O(1).

Active Security. To obtain active security B must also send
[
r⊥ = r mod 2k

]
to A, who in turn must also send

[
z⊥ = z mod 2k

]
. B can now append a zero-

knowledge proof that z = (r� ·2k+r⊥)+ q̂ as well as proofs that both r� and r⊥
are within the correct bounds. Similary, A also appends a proof of z = z� ·2k+z⊥
and that z� and z⊥ are within bounds.
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5.4 Combined Protocol and Analysis

By plugging the protocols introduced in this section into the πdiv protocol of
Section 4 we obtain our constant-rounds division protocol πc

div. Correctness, pri-
vacy, and active security follow from the discussions above. Using the complexity
expressions in Eq. 6 from Section 4 and the fact that ω = 
 we get:

Rπc
div

= Rπc
BL

+Rπc
poly

+Rπc
trunc

+O(1) = O(1)

Cπc
div

= Cπc
BL

+ Cπc
poly

+ Cπc
trunc

+O(
) = O(ω) +O(
) = O(
).

6 The Sub-linear Protocol

In this section we give the protocols needed for giving the division protocol of
Section 3 a sub-linear communication complexity. We can reuse the truncation
protocol πc

trunc from Section 5 and hence only present two new πBL and πpoly

protocols.

6.1 The Sub-linear πBL Protocol

To compute
[
2�d

]
from [d] in sub-linear communication complexity we take in-

spiration from [Tof11] and perform, in a sense, a binary search. Assuming we
have a protocol πs

≤? for performing comparison of two encrypted numbers, we
give the protocol in Figure 5. For simplicity we assume that 
 = 2γ for some
integer γ.

Intuitively, our construction recursively computes a pointer p into the binary
representation of d. Initially p points to the first bit position (p0 = 20). In the
first round we then ask in which half of the binary representation of d the most
significant 1 occurs and store the result in bit c1. Next we update p to point to
position 
/21 if c = 1 (i.e. p1 = p0 · 2�/2

1

) and to the same position as before
if c = 0 (i.e. p1 = p0 · 1). Iterating in this way p will eventually point to the
position of the most significant bit of d. Shifting the position by one will give us
integer 2�d .

Correctness and Privacy. Correctness follows from the above description of the
protocol, and privacy follows immediately from the sub-protocols as we only
compute on encrypted values.

Complexity. The protocol requires γ = log2 
 iterations, each requiring one com-
parison and one multiplication (not counting multiplication by public values).
Hence we get round complexity Rπs

BL
= γ · (Rπs

≤?
+Rπmult

) = O(log2 
) and com-

munication complexity Cπs
BL

= γ · (Cπs
≤?

+ Cπmult
) = O

(
(log2 
)(κ+ loglog 
)

)
.

Active Security. Since the sub-protocol is actively secure, we only have to append
zero-knowledge proofs of correctness to every multiplication in order to make the
protocol resistant against active attackers. This increases the number of messages
communicated but only by a constant factor.
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A: skA pk = M, [d] B: skB

[p0] ← 1

[c1] ← πs
≤?

(
2�/2 · [p0] , [d]

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[p1] ← [p0] ·
(
[c1] · (2�/2 − 1) + 1

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

...

[cγ ] ← πs
≤?

(
2�/2

γ · [pγ−1] , [d]
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[pγ ] ← [pγ−1] ·

(
[cγ ] · (2�/2γ − 1) + 1

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[
2�d

] ← 2 · [pγ ]

Fig. 5. Sub-linear bit-length protocol, πs
BL([d]) 	→

[
2�d

]

6.2 The Sub-linear πpoly Protocol

Evaluating the A(x) =
∑ω

i=0 x
i polynomial at a point p can be done by a method

similar to “square and multiply”. We give the protocol in Figure 6 where for
simplicity we have assumed that ω = 2γ for some integer γ. The intuition behind

the notation is that σj =
∑2j

i=1 x
i and xj = x2j – it is not hard to see that

this is indeed the case. Specifically this gives us that σγ =
∑2γ

i=1 x
i and hence

σγ + 1 =
(∑ω

i=1 x
i
)
+ 1 =

∑ω
i=0 x

i as required.

Correctness, Privacy, and Complexity. The first two follow respectively from
the description above and from that fact that only arithmetical operations on
encryptions are performed. For complexity we have that the protocol requires
γ = log2 ω iterations with two multiplications in each. Hence the round com-
plexity is Rπs

poly
= γ · (2 ·Rπmult

) = O(logω), and likewise for the communication

complexity Cπs
poly

= γ · (2 · Cπmult
) = O(log ω).

Active Security. By appending zero-knowledge proofs of correctness to every
multiplication we make the protocol resistant against active attackers. This in-
creases the number of messages communicated but only by a constant factor.

6.3 The Sub-linear πtrunc Protocol

The truncation protocol πc
trunc of Section 5 is efficient enought to be reused for

the sub-linear protocol πs
trunc: only a single operation is performed, namely the

decryption of [z]. The remaining operations can be carried out locally.
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A: skA pk = M, [x] B: skB

[σ0] ← [x]

[x0] ← [x]
[σ1] ← ([x0] + 1) · [σ0]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

...
[xγ−1] ← [xγ−2] · [xγ−2]

[σγ ] ← ([xγ−1] + 1) · [σγ−1]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[∑ω

i=0 x
i
] ← [σγ ] + 1

Fig. 6. Sub-linear polynomial evaluation protocol, πs
poly([x]) 	→ [A(x)]

6.4 Combined Protocol and Analysis

Our sub-linear division protocol πs
div is obtained from the πdiv protocol of Sec-

tion 4. Correctness, privacy, and active security follow from the discussions in
the previous sections and in this section. As for complexity, since ω = 
, we get:

Rπs
div

= Rπs
BL

+ · · ·+O(log 
) = O(log2 
) +O(log ω) +O(log 
) = O(log2 
)

Cπs
div

= Cπs
BL

+ · · ·+O ((log 
)(κ+ loglog 
)) = O
(
(log2 
)(κ+ loglog 
)

)
.

7 Variations and Extensions

The multiparty case. Though we have presented our protocols in the two-party
setting, the ideas are also applicable to the multiparty case, based e.g. on the
protocols of [CDN01]. Arithmetic operations on encrypted values are immediate,
hence we must only consider πBL, πtrunc, and the sublinear comparison π>?.

For the constant-rounds protocol we may use the arithmetic-based comparison
of [NO07] while πBL is essentially the bit-decomposition of [RT10]. Thus, these
immediately work in the multiparty setting. The πtrunc protocol in Figure 4 can
be jointly played by the parties. Part A is played publicly and part B is played
using the protocols of [CDN01]. First each party Pi (1 ≤ i ≤ n) supplies an

encryption of a random value
[
r(i)

]
as well as

[
r
(i)
�

]
with plaintext

⌊
r(i)/2k

⌋
.

The parties then compute and decrypt [z] ← [q̂] +
∑n

i=1

[
r(i)

]
and in turn [q̂] ←⌊

z/2k
⌋
−

∑n
i=1

[
r
(i)
�

]
. This is the right result plus an additive error originating

from a carry in the addition of r. Since r is a sum itself, the possible error grows
linearly in the number of parties. However, as in the main protocol (Figure 1)
this may be corrected using a number of secure comparisons.

With the additional requirement of two named and mutually incorruptible
parties, the sub-linear case follows analogously by the protocols of [Tof11]. Since
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πBL is based on comparison and arithmetic, and πtrunc is the same as the
constant-rounds case, a sub-linear multiparty protocol is possible too.

Unconditionally secure integer division. Unconditionally secure variations of our
protocols are possible, based e.g. on Shamir’s secret sharing scheme and the
protocols of Ben-Or et al. [Sha79, BGW88]. The construction is straightforward
as all sub-protocols are applicable in this setting as well.

Improving the complexity of the sub-linear protocol. Using the other comparison
protocol given in [Tof11] we may obtain slightly better bounds on our division

protocol, namely O(log 
) rounds and O
(
(log 
)

√

(κ+ log 
)

)
communications.
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Abstract. In a range proof, the prover convinces the verifier in zero-
knowledge that he has encrypted or committed to a value a ∈ [0, H ]
where H is a public constant. Most of the previous non-interactive range
proofs have been proven secure in the random oracle model. We show
that one of the few previous non-interactive range proofs in the common
reference string (CRS) model, proposed by Yuen et al. in COCOON
2009, is insecure. We then construct a secure non-interactive range proof
that works in the CRS model. The new range proof can have (by dif-
ferent instantiations of the parameters) either very short communication
(14 080 bits) and verifier’s computation (81 pairings), short combined
CRS length and communication (log1/2+o(1) H group elements), or very
efficient prover’s computation (Θ(logH) exponentiations).

Keywords: NIZK, pairings, progression-free sets, range proof.

1 Introduction

In a range proof, the prover convinces the verifier in zero-knowledge that he
has encrypted or committed to a value a ∈ [0, H ], where H is a public con-
stant. Range proofs are needed in a wide variety of cryptographic protocols, like
e-voting (to show that a ballot corresponds to a valid candidate), e-auctions,
anonymous credentials, e-cash, or any other protocol that needs for its correct-
ness that the inputs are from a valid range. Given the need for range proofs in
a large variety of protocols, it is not surprising that there is a large amount of
research on this topic.

Most of the existing efficient range proofs fall in one of the next two categories.
The first category uses a classical result of Lagrange that every non-negative in-
teger is a sum of four squares [13,7,21]. However, in this case the underlying
group has to be of unknown order which seriously limits the available cryp-
tographic techniques. In particular, all known secure Lagrange’s theorem based
range proofs are based on operations in Z

∗
n for a hard-to-factor n. Since to achieve

128-bit security level, n must be at least 3072 bits long, arithmetic in Z∗
n is rela-

tively slow. One also has to compute the four squares of the Lagrange’s theorem
which is inefficient by itself. Furthermore, this means that it is not known how
to instantiate such schemes with bilinear groups. (This is exemplified by the fact

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 179–199, 2012.
c© International Financial Cryptography Association 2012
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that we break the range proof of [21] where the Lagrange theorem is used in the
bilinear setting with known group order.)

Due to such considerations, one usually considers the second approach. There,
one uses the fact that a ∈ [0, H ], if and only if for some well chosen coefficients
Gi, there exist bi ∈ [0, u − 1] such that a =

∑n
i=1 Gibi. Here, u � H and

n is also small. One then proves separately for every bi that bi ∈ [0, u − 1],
and uses additively homomorphic properties of the used commitment scheme to
verify that a =

∑n
i=1 Gibi. The goal is to minimize the communication (which

is approximately n times the cost of a more basic proof that bi ∈ [0, u − 1]) of
that type of range proofs.

Clearly, a ∈ [0, 2d−1] iff a =
∑d

i=1 2
i−1bi and bi ∈ {0, 1}. Then one can prove

that a ∈ [0, H ] for arbitrary H by showing that both a and H − a belong to
[0, 2�log2 H�+1 − 1]. Showing that bi ∈ {0, 1} is straightforward, e.g., by using an
AND of two Σ-protocols. This means that one has to execute two basic range
proofs for [0, 2d−1]. Lipmaa, Asokan and Niemi showed in [16] that by choosing
the coefficients Gi cleverly, one obtains a simpler result that a ∈ [0, H ], for any

H > 1, iff a =
∑�log2 H�+1

i=1 Gibi and bi ∈ {0, 1}.
In [3], the authors considered the general case u ≥ 2, following the fact that

a ∈ [0, ud−1] iff a =
∑d

i=1 u
ibi and bi ∈ [0, u−1]. They showed that bi ∈ [0, u−1]

by letting the verifier to sign every integer in [0, u − 1], and then letting the
prover to prove that he knows the signature on committed bi. One can show
that a ∈ [0, H ] for general H by using an AND of two Σ-protocols. Nontrivially
generalizing [16] (by using methods from additive combinatorics), Chaabouni,
Lipmaa and shelat [4] showed that there exist (efficiently computable) coeffi-

cients Gi such that (u − 1)a ∈ (u − 1) · [0, H ] iff a =
∑�logu((u−1)·H+1)�

i=1 Gibi
for some bi ∈ [0, u − 1]. The range proof from [4] has the communication
complexity of Θ(logu H + u) group elements, which obtains the minimal value
Θ(logH/ log logH) if u ≈ logH/ log logH . (See [9] for recent related work.)

Usually, it is desired that the range proof is non-interactive. For example, in
the e-voting scenario, range proof is a part of the vote validity proof that is
verified by various parties without any active participation of the voter. Most of
the previous non-interactive range proofs first construct a Σ-protocol which is
then made non-interactive in the random oracle model by using the Fiat-Shamir
heuristic. While the random oracle model allows to construct efficient protocols,
it is also known that there exist protocols that are secure in the random oracle
models and insecure in the plain model.

Motivated by this, [5,21,18] have proposed non-interactive range proofs with-
out random oracles. The range proof from [5] is of mainly theoretical value. The
range proof from [21] uses Lagrange’s theorem, but we will demonstrate an attack
on it. The range proof from [18] combines the range proof of [3] with the Groth-
Sahai non-interactive zero-knowledge (NIZK) proofs [11] and P-signatures. The
range proof from [18] is not claimed to be zero-knowledge (only NIWI, that is,
non-interactive witness-indistinguishable).

We first show that the protocol from [21] is insecure. Their protocol works in
a group of known order. In this case, using Lagrange’s theorem to prove that a
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non-negative number is the sum of four squares fails. We can only conclude that
the sum of four squares is computed modulo the group order. Hence an attacker
can prove that any number is “non-negative” and completely break the protocol
in [21]. See Sect. 4 for more information.

We then construct a new NIZK range proof (for an encrypted a — if one
needs a to be committed, one can use the same cryptosystem as a perfectly
binding commitment) that works in the common-reference string model. We
do this by using recent NIZK arguments by Groth and Lipmaa [8,15]. We also
use the additive combinatorics results from [4], that is, we base a range proof
a ∈ [0, H ] on the fact that (u − 1)a ∈ (u − 1) · [0, H ] iff a =

∑n
i=1 Gibi and

bi ∈ [0, u − 1], where Gi are as defined in [4]. However, differently from [4], we
prove that bi ∈ [0, u−1] by proving (by a recursive use of the method from [16,4])
that bi =

∑nv

j=0 G
′
jb

′
ji with b′ji ∈ [0, 1]. Here, nv := �log2(u − 1)�.

By using the commitment scheme of [8,15] that enables to succinctly commit
to a vector (b1, . . . , bn), and the Hadamard product argument of [8,15], we can
do all nv + 1 small range proofs in parallel. In addition, in Sect. 5 we construct
a new non-interactive argument that a knowledge-commited value is equal to a
BBS-encrypted [2] value. (Due to the use of knowledge assumptions, this proof
is computationally more efficient than the one constructed by using Groth-Sahai
proofs [11].) The new range proof does not rely on the random oracle model or
use any proofs of knowledge of signatures.

The conceptual novelty of the new range proof as compared to all previous
range proofs of the “second approach” is that in all latter schemes, a ∈ [0, H ]
is proven by executing in parallel N ≈ logu H smaller zero-knowledge proofs of
type bi ∈ [0, u − 1]. In the new range proof, N elements bi are arranged in an
nv × n matrix, where it takes only one zero-knowledge proof (the complexity of
which depends on n) to prove that all elements in one row belong to the range
[0, u−1]. By appropriately choosing the values nv and n (and u), one can achieve
different complexity trade-offs.

The complexity of the new range proof is described in Tbl. 1. Setting u = 2
results in a constant argument length (but CRS of Θ((logH)1+o(1)) group el-
ements). By using an efficient variation of Barreto-Naehrig curves (where the
group elements are either 256 or 512 bits), the communication drops to 14 080
bits. The range proof of [18] does not allow for constant communication. More-
over, if u = 2 then the communication is even smaller than that of the known
range proofs based on the Lagrange’s theorem like [13]. We note that constant
communication is achieved since the new range proof uses permutation argu-
ments only for permutations that do not depend on the statement. On the
other hand, setting u = H results in summatory CRS and argument length
of log1/2+o(1) H , and setting u = 2

√
logH results in prover’s computational com-

plexity dominated by Θ(logH) exponentiations. The previous non-interactive
range proofs did not allow for such a flexibility.

One can obtain a zap (that is, a 2-message public-coin witness-
indistinguishable proof) from the NIZK range proof by first letting the veri-
fier create and send a CRS to the prover, and then letting the prover to send
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Table 1. Comparison of NIZK arguments for range proof. Here, M/E/P means the
number of multiplications, exponentiations and pairings. Communication is given in
group elements. Here, nv = �log(u− 1)�, n ≈ logH/ log u and ε = o(1), and the basis
of all logarithms is 2. To fit in page margins, in this table only, we write h = log2 H .

CRS length Argument length Prover comp. Verifier comp.

[18] Θ(1) Θ(h) Θ(h) Θ(h)
[18] Θ( h

log h
) Θ( h

log h
) Θ( h

log h
) Θ( h

log h
)

This paper

General n1+ε 5nv + 40 Θ(n2nv)M +Θ(n1+o(1)nv)E (9nv + 81) P

u = 2 h1+ε 40 Θ(h2)M + h1+εE 81 P

u = 2
√

h h1/2+ε ≈ 5
√
h+ 40 Θ(h3/2)M + h1+εE ≈ (9

√
h+ 81) P

u = H Θ(1) ≈ 5h+ 40 Θ(h)E ≈ (9h+ 81) P

the range proof to the verifier. This zap works in the standard model (without
needing a CRS since it is generated on run) and has the total communication

log1/2+o(1) H in the case u = H .

2 Preliminaries

Let [L,H ] = {L,L + 1, . . . , H − 1, H} and [H ] = [1, H ]. Let Sn be the set of
permutations from [n] to [n]. By a, we denote the vector a = (a1, . . . , an). If A
is a value, then x ← A means that x is set to A. If A is a set, then x ← A means
that x is picked uniformly and randomly from A. If y = hx, then let logh y := x.
Let κ be the security parameter. We abbreviate probabilistic polynomial-time as
PPT, and let negl(κ) be a negligible function. We say that Λ = (λ1, . . . , λn) ⊂ Z

is an (n, κ)-nice tuple, if 0 < λ1 < · · · < λi < · · · < λn = poly(κ).
By using notation from additive combinatorics, if Λ1 and Λ2 are subsets of

some additive group (Z or Zp within this paper), then Λ1+Λ2 = {λ1+λ2 : λ1 ∈
Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 − Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is
their difference set. If Λ is a set, then kΛ = {λ1+ · · ·+λk : λi ∈ Λ} is an iterated
sumset, and k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ. Let 2̂Λ = {λ1 + λ2 : λ1 ∈
Λ ∧ λ2 ∈ Λ ∧ λ1 	= λ2} ⊆ Λ+ Λ denote a restricted sumset [20].

A set {λ1, . . . , λn} ⊂ Z+ is progression-free, if no three of the numbers are
in arithmetic progression, so that λi + λj = 2λk only if i = j = k. Let r3(N)
denote the cardinality of the largest progression-free set that belongs to [N ].

Recently, Elkin [6] showed that r3(N) = Ω((N · log1/42 N)/22
√

2 log2 N ). It is also
known that r3(N) = O(N(log logN)5/ logN) [19]. Thus, the minimal N such
that r3(N) = n is ω(n), while according to Elkin, N = n1+o(1).

Fact 1 (Lipmaa [15]). For any fixed n > 0, there exists N = n1+o(1), such
that [N ] contains a progression-free subset Λ of odd integers of cardinality n.
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Bilinear Groups. Let Gbp(1
κ) be a bilinear group generator that outputs a

description of a bilinear group gk := (p,G1,G2,GT , ê) ← Gbp(1
κ) such that p is

a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of order p, ê : G1×
G2 → GT is a bilinear map (pairing) such that ∀a, b ∈ Z, t ∈ {1, 2} and gt ∈ Gt,
ê(ga1 , g

b
2) = ê(g1, g2)

ab. If gt generates Gt for t ∈ {1, 2}, then ê(g1, g2) generates
GT . Moreover, it is efficient to decide the membership in G1, G2 and GT , group
operations and the pairing ê are efficiently computable, generators are efficiently
sampleable, and the descriptions of the groups and group elements each are
O(κ) bit long. One can implement an optimal (asymmetric) Ate pairing [12]
over a subclass of Barreto-Naehrig curves [1,17] very efficiently. In that case,
at security level of 128-bits, an element of G1/G2/GT can be represented in
respectively 256/512/3072 bits.

A bilinear group generator Gbp is DLIN (decisional linear) secure [2] in group
Gt, for t ∈ {1, 2}, if for all non-uniform PPT adversaries A, the next probability
is negligible in κ:∣∣∣∣∣∣∣Pr

⎡⎢⎣ gk ← Gbp(1
κ),

(f, h) ← (G∗
t )

2, (σ, τ) ← Z
2
p :

A(gk; f, h, fσ, hτ , gσ+τ
t ) = 1

⎤⎥⎦− Pr

⎡⎢⎣ gk ← Gbp(1
κ),

(f, h) ← (G∗
t )

2, (σ, τ, z) ← Z
3
p :

A(gk; f, h, fσ, hτ , gzt ) = 1

⎤⎥⎦
∣∣∣∣∣∣∣ .

Let Λ be an (n, κ)-nice tuple for some n = poly(κ). A bilinear group generator
Gbp is Λ-PSDL secure, if for any non-uniform PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê) ← Gbp(1

κ), g1 ← G1 \ {1},
g2 ← G2 \ {1}, x ← Zp : A(gk; (gx

s

1 , gx
s

2 )s∈{0}∪Λ) = x

]
= negl(κ) .

Let Λ be an (n, κ)-nice tuple. According to [15], any successful generic adversary
for Λ-PSDL requires time Ω(

√
p/λn) where p is the group order and λn is the

largest element of Λ.
The soundness of NIZK arguments (for example, an argument that a computa-

tionally binding commitment scheme commits to 0) seems to be an unfalsifiable
assumption in general. We will use a weaker version of soundness in the case
of subarguments, but in the case of the range proof, we will prove soundness.
Similarly to [8,15], we will base the soundness of that argument on an explicit
knowledge assumption.

For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if A on input x
outputs y, and XA on the same input (including the random tape of A) outputs
z. Let Λ be an (n, κ)-nice tuple for some n = poly(κ). Consider t ∈ {1, 2}. The
bilinear group generator Gbp is Λ-PKE secure in group Gt if for any non-uniform
PPT adversary A there exists a non-uniform PPT extractor XA,

Pr

⎡⎢⎢⎢⎣
gk := (p,G1,G2,GT , ê) ← Gbp(1

κ), gt ← Gt \ {1},
(α̂, x) ← Z

2
p, crs ← (gk; (gx

s

t , gα̂x
s

t )s∈{0}∪Λ),

(c, ĉ; (as)s∈{0}∪Λ) ← (A||XA)(crs) : ĉ = cα̂ ∧ c 	=
∏

s∈{0}∪Λ

gasx
s

t

⎤⎥⎥⎥⎦ = negl(κ).
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Groth [8] proved that the [n]-PKE assumption holds in the generic group model;
his proof can be modified to the general case.

In the case of both the PSDL and PKE assumptions, we will define straight-
forward generalizations in Sect. 5.

BBS Cryptosystem. A public-key cryptosystem (Gpkc, Enc,Dec) is a triple of
efficient algorithms (key generation, encryption, and decryption), where for any
(sk, pk) ← Gpkc(1

κ) and any valid m and randomizer r, Decsk(Encpk(m; r)) =
m. A cryptosystem is IND-CPA secure, if for any (sk, pk) ← Gpkc(1

κ) and any
two messages m0 and m1, the distributions Encpk(m0; ·) and Encpk(m1; ·) are
computationally indistinguishable. In the lifted BBS cryptosystem [2] (in group
G1), the system parameters are equal to (gk; g1), where gk ← Gbp(1

κ) and g1 ←
G1 \ {1}. The secret key sk is (sk1, sk2) ← (Z∗

p)
2, the public key pk is (f, h) ←

(g
1/sk1
1 , g

1/sk2
1 ). One encrypts a ∈ Zp as Encpk(ck1; a; rf , rh) ← (cg, cf , ch) =

(g
rf+rh+a
1 , f rf , hrh), where (rf , rh) ← Z2

p. One decrypts (cg, cf , ch) by returning

the discrete logarithm of cg/(c
sk1
f csk2h ). The BBS cryptosystem is IND-CPA secure

under the DLIN assumption.

Commitment Schemes in the CRS Model. A (batch) commitment scheme
(Gcom, Com) in a bilinear group consists of two PPT algorithms: a randomized
CRS generation algorithm Gcom, and a randomized commitment algorithm Com.
Here, Gt

com(1
κ, n), t ∈ {1, 2}, produces a CRS ckt, and Comt(ckt;a; r), with

a = (a1, . . . , an), outputs a commitment value A in Gb
t for b > 1 (in our case,

b = 2 or b = 3). A commitment Comt(ckt;a; r) is opened by revealing (a, r).
A commitment scheme (Gcom, Com) is computationally binding in group Gt, if

for every non-uniform PPT adversary A and positive integer n = poly(κ),

Pr

[
ckt ← Gt

com(1
κ, n), (a1, r1,a2, r2) ← A(ckt) :

(a1, r1) 	= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]
= negl(κ) .

A commitment scheme (Gcom, Com) is perfectly hiding in group Gt, if for any
positive integer n = poly(κ) and ckt ∈ Gt

com(1
κ, n) and any two messages a1,a2,

the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal.
A trapdoor commitment scheme has 3 additional efficient algorithms: (a) A

trapdoor CRS generation algorithm inputs t, n and 1κ, and outputs a CRS ck∗

(that has the same distribution as Gt
com(1

κ, n)) and a trapdoor td, (b) a random-
ized trapdoor commitment algorithm takes ck∗ and a randomizer r as inputs,
and outputs Comt(ck∗;0; r), and (c) a trapdoor opening algorithm takes ck∗, td,
a and r as inputs, and outputs an r′ such that Comt(ck∗;0; r) = Comt(ck∗;a; r′).

An extractable commitment scheme is a commitment scheme (Gcom, Com) with
an additional extractor (Extr1,Extr2) such that: Extrt1(1

κ) creates a CRS ck∗

(indistinguishable from the real CRS ck) and a trapdoor td, and Extr2(ck
∗, td;A)

returns (a; r) such that A = Com(ck; a; r), given that A is a valid commitment.
An extractable commitment scheme can only be computationally hiding.

We use the knowledge commitment scheme, defined in [15], as follows.
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CRS generation: Let Λ be a (n, κ)-nice tuple with n = poly(κ). Let λ0 = 0.
Given a bilinear group generator Gbp, set gk := (p,G1,G2,GT , ê) ← Gbp(1

κ).
Let g1 ∈ G1 and g2 ∈ G2 be generators, and choose random α̂, x ← Zp.
Consider t ∈ {1, 2}. The CRS is ckt ← (gk; (gt,λi , ĝt,λi)i∈{0,...,n}), where

gt,λi = gx
λi

t , and ĝt,λi = gα̂x
λi

t .
Commitment: To commit to a = (a1, . . . , an) ∈ Zn

p , one chooses a random
r ← Zp, and computes Comt(ckt;a; r) := (grt ·

∏n
i=1 g

ai

t,λi
, ĝrt ·

∏n
i=1 ĝ

ai

t,λi
).

Let t = 1. Fix a commitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A
commitment (A, Â) ∈ G2

1 is valid, if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is dual.
According to [15], the knowledge commitment scheme is statistically hiding

in group Gt, and computationally binding in group Gt under the Λ-PSDL as-
sumption in group Gt. If the Λ-PKE assumption holds in group Gt, then for
any non-uniform PPT algorithm A, that outputs some valid knowledge commit-
ments, there exists a non-uniform PPT extractor XA that, given as an input
the input of A together with A’s random coins, extracts the contents of these
commitments. The knowledge commitment scheme is also trapdoor, with the
trapdoor being td = x: after trapdoor-committing A ← Comt(ck;0; r) = grt for
r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a.

Non-interactive Zero-Knowledge. Let R = {(C,w)} be an efficiently com-
putable binary relation such that |w| = poly(|C|). Here, C is a statement, and
w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n = |C|
be a fixed input length. For fixed n, we have a relation Rn and a language
Ln. A non-interactive argument for R consists of the next PPT algorithms: a
common reference string (CRS) generator Gcrs, a prover P , and a verifier V . For
crs ← Gcrs(1

κ, n), P(crs;C,w) produces an argument ψ. The verifier V(crs;C,ψ)
outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs,P ,V) is perfectly complete, if for all values
n = poly(κ), all crs ← Gcrs(1

κ, n) and all (C,w) ∈ Rn, V(crs;C,P(crs;C,w)) = 1.
A non-interactive argument (Gcrs,P ,V) is computationally (adaptively) sound, if
for all non-uniform PPT adversaries A and all n = poly(κ),

Pr[crs ← Gcrs(1
κ, n), (C,ψ) ← A(crs) : C 	∈ L ∧ V(crs;C,ψ) = 1] = negl(κ) .

A non-interactive argument (Gcrs,P ,V) is perfectly witness-indistinguishable, if
(given that there are several possible witnesses) it is impossible to tell which
witness the prover used. That is, for all n = poly(κ), if crs ∈ Gcrs(1

κ, n) and
((C,w0), (C,w1)) ∈ R2

n, then the distributions P(crs;C,w0) and P(crs;C,w1)
are equal. (Gcrs,P ,V) is perfectly zero-knowledge, if there exists a polynomial-
time simulator S = (S1,S2), such that for all stateful interactive non-uniform
PPT adversaries A and n = poly(κ),

Pr

⎡⎢⎢⎢⎣
crs ← Gcrs(1

κ, n),

(C,w) ← A(crs),

ψ ← P(crs;C,w) :

(C,w) ∈ Rn ∧ A(ψ) = 1

⎤⎥⎥⎥⎦ = Pr

⎡⎢⎢⎢⎣
(crs, td) ← S1(1

κ, n),

(C,w) ← A(crs),

ψ ← S2(crs, C, td) :

(C,w) ∈ Rn ∧ A(ψ) = 1

⎤⎥⎥⎥⎦ .
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System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be a progression-free
set of odd integers, such that λi+1 > λi > 0. Denote λ0 := 0. Let Λ̂ := {0}∪Λ∪2̂Λ.

CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1

κ). Let α̂, x ← Zp.

Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Denote gt� ← gx
�

t and ĝt� ← gα̂x�

t

for t ∈ {1, 2} and � ∈ {0} ∪ Λ̂. Let D ← ∏n
i=1 g2,λi . The CRS is crs ←

(gk; (g1�, ĝ1�)�∈{0}∪Λ, (g2�, ĝ2�)�∈Λ̂, D). Let ĉk1 ← (gk; (g1�, ĝ1�)�∈{0}∪Λ).

Common inputs: (A, Â,B, B̂, B2, C, Ĉ), where (A, Â) ← Com1(ĉk1;a; ra), (B, B̂) ←
Com1(ĉk1; b; rb), B2 ← grb2 ·∏n

i=1 g
bi
2,λi

, (C, Ĉ) ← Com1(ĉk1; c; rc), s.t. aibi = ci for
i ∈ [n].

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)): Let
I1(�) := {(i, j) : i, j ∈ [n] ∧ j �= i ∧ λi + λj = �}. For � ∈ 2̂Λ, the prover sets
μ� ← ∑

(i,j)∈I1(�)
(aibj − ci). He sets ψ ← g

rarb
2 · ∏n

i=1 g
rabi+rbai−rc
2,λi

· ∏�∈2̂Λ g
μ�
2� ,

and ψ̂ ← ĝrarb2 · ∏n
i=1 ĝ

rabi+rbai−rc
2,λi

· ∏�∈2̂Λ ĝμ�
2� . He sends ψ× ← (ψ, ψ̂) ∈ G

2
2 to

the verifier as the argument.
Verification V×(crs; (A, Â, B, B̂, B2, C, Ĉ), ψ×): accept iff ê(A,B2)/ê(C,D) =

ê(g1, ψ) and ê(g1, ψ̂) = ê(ĝ1, ψ).

Protocol 1. Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂, B2)]] = [[(C, Ĉ)]]

Here, td is the simulation trapdoor. (Gcrs,P ,V) is computationally zero-knowledge
if these two probabilities are computationally indistinguishable.

3 Groth-Lipmaa Arguments

In this section, we describe two of our building-blocks, an Hadamard product ar-
gument and a (known) permutation argument. In both cases, Groth [8] proposed
efficient (weakly) sound and non-interactive witness-indistinguishable (NIWI)
arguments that were further refined by Lipmaa [15], who used the theory of
progression-free sets to optimize Groth’s arguments. Since [15] is very new, we
will give here a full description of Lipmaa’s NIWI arguments. We refer to [15]
(and its full version, [14]) for details.

3.1 Hadamard Product Argument

Let (Gcom, Com) be the knowledge commitment scheme. An Hadamard product of
two vectors a and b is equal to their entrywise product vector c, that is, cj = aj ·bj
for j ∈ [n]. In an Hadamard product argument, the prover aims to convince the
verifier that for given three commitments (A, Â), (B, B̂) and (C, Ĉ), he knows
how to open them as (A, Â) = Com1(ck;a; ra), (B, B̂) = Com1(ck; b; rb), and
(C, Ĉ) = Com1(ck; c; rc), such that cj = aj · bj for j ∈ [n]. Prot. 1 has a full

description of Lipmaa’s Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂, B2)]] =
[[(C, Ĉ)]], where B2 is the equivalent of B in G2: B2 ← grb2 ·

∏n
i=1 g

bi
2,λi

.

Fact 2 (Lipmaa [15]). The above Hadamard product argument is perfectly
complete and perfectly witness-indistinguishable. If the bilinear group generator
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Gbp is Λ̂-PSDL secure, then a non-uniform PPT adversary has negligible chance

of outputting inp× ← (A, Â, B, B̂, B2, C, Ĉ) and an accepting argument ψ× ←
(ψ, ψ̂) together with an opening witness w× ← (a, ra, b, rb, c, rc, (f

′
s)s∈Λ̂), such

that (A, Â) = Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n

i=1 g
bi
2i,

(C, Ĉ) = Com1(ĉk1; c; rc), (ψ, ψ̂) = (g
∑

s∈Λ̂ f ′
sx

s

2 , ĝ
∑

s∈Λ̂ f ′
sx

s

2 ), and for some
i ∈ [n], aibi 	= ci.

For the product argument to be useful in more complex arguments, we must
also assume that the verifier there additionally verifies that ê(A, ĝ2) = ê(Â, g2),
ê(B, ĝ2) = ê(B̂, g2), ê(g1, B2) = ê(B, g2), and ê(C, ĝ2) = ê(Ĉ, g2). Note that

(f ′
s)s∈Λ̂ is the opening of (ψ, ψ̂).

Fact 3 (Lipmaa [15]). For any n > 0 and y = n1+o(1), let Λ ⊂ [y] be a
progression-free set of odd integers from Fact 1, such that |Λ| = n. The commu-
nication (argument size) of the Hadamard product argument is 2 elements from
G2. The prover’s computational complexity is Θ(n2) scalar multiplications in Zp

and n1+o(1) exponentiations in G2. The verifier’s computational complexity is
dominated by 5 bilinear pairings. The CRS consists of n1+o(1) group elements.

Finally, if a, b and c are Boolean vectors then the prover’s computational com-
plexity is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G [15].

3.2 Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for
given permutation � ∈ Sn and two commitments (A, Ã) and (B, B̃), he knows
how to open them as (A, Ã) = Com1(ck;a; ra) and (B, B̃) = Com1(ck; b; rb),
such that bj = a�(j) for j ∈ [n]. We denote this non-interactive argument by

�([[(A, Ã)]]) = [[(B, B̃, B2)]], where B2 is again the equivalent of B in G2. As
in the case of the Hadamard product argument, we describe a version of the
argument due to [15]. See Prot. 2.

Let TΛ(i, �) := |{j ∈ [n] : 2λ�(i) +λj = 2λ�(j) +λi}|, clearly TΛ(i, �) ≥ 1. One
proves that a�(i) = bi for i ∈ [n] by using a subargument that shows that for
separately committed a∗i , a

∗
�(i) = TΛ(i, �) ·bi for i ∈ [n]. Showing in addition that

a∗i = TΛ(�
−1(i), �) ·ai (which is equivalent to a∗�(i) = TΛ(i, �) ·a�(i)), one obtains

that a�(i) = bi for i ∈ [n]. We only consider the case where � is fixed and thus the

element E� can be put to the CRS. We also use the fact that Λ̂ ∪ Λ̃ = {0} ∪ Λ̃,

where Λ̃ is defined in Prot. 2.
We denote the full permutation argument by �([[(A, Ã)]]) = [[(B, B̂, B̃)]].

Fact 4 (Lipmaa [15]). The above permutation argument is perfectly complete
and perfectly witness-indistinguishable. If the bilinear group generator Gbp is

Λ̃-PSDL secure, then a non-uniform PPT adversary has negligible chance of
outputting inpperm ← (A, Ã, B, B̂, B̃, �) and an accepting argument ψperm ←
(A∗, Â∗, ψ×, ψ̂×, ψ�, ψ̃�) together with an opening witness

wperm ← (a, ra, b, rb,a
∗, ra∗ , (f ′

(×,�))�∈Λ̂, (f
′
(�,�))�∈ ˜Λ) ,
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System parameters: Same as in Prot. 1, but let Λ̃ := Λ∪ {2λk − λj}i,k∈[n] ∪ 2̂Λ∪
({2λk + λi − λj}i,j,k∈[n]∧i�=j \ 2 · Λ).

CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1

κ). Let α̂, α̃, x ← Zp.
Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Let ĝt ← ĝα̂t and g̃t ← g̃α̃t for t ∈ {1, 2}.
Denote gt� ← gx

�

t , ĝt� ← ĝx
�

t , and g̃t� ← g̃x
�

t for t ∈ {1, 2} and � ∈ {0} ∪ Λ̃. Let
(D, D̃) ← (

∏n
i=1 g2,λi ,

∏n
i=1 g̃2,λi). The CRS is

crs ← (gk; (g1�, ĝ1�, g̃1�)�∈{0}∪Λ, (g2�)�∈{0}∪Λ̃, (ĝ2�)�∈Λ̂, (g̃2�)�∈Λ̃, D, D̃) .

Let ĉk1 ← (gk; (g1�, ĝ1�)�∈{0}∪Λ), c̃k1 ← (gk; (g1�, g̃1�)�∈{0}∪Λ).

Common inputs: (A, Ã,B, B̂, B̃, �), where � ∈ Sn, (A, Ã) ← Com1(c̃k1;a; ra),

(B, B̂) ← Com1(ĉk1; b; rb), and (B, B̃) ← Com1(c̃k1; b; rb), s.t. bj = a�(j) for j ∈ [n].

Argument generation Pperm(crs; (A, Ã,B, B̂, B̃, �), (a, ra, b, rb)):

1. Let (T ∗, T̂ ∗, T ∗
2 ) ← (

∏n
i=1 g

TΛ(�−1(i),�)
1,λi

,
∏n

i=1 ĝ
TΛ(�−1(i),�)
1,λi

,
∏n

i=1 g
TΛ(�−1(i),�)
2,λi

).

2. Let ra∗ ← Zp, (A∗, Â∗) ← Com1(ĉk1;TΛ(�
−1(1), �) · a1, . . . , TΛ(�

−1(n), �) ·
an; ra∗). Create an argument ψ× for [[(A, Â)]] ◦ [[(T ∗, T̂ ∗, T ∗

2 )]] = [[(A∗, Â∗)]].
3. Let Λ̃′

� := 2̂Λ∪({2λ�(j)+λi−λj : i, j ∈ [n]∧i �= j}\2·Λ) ⊂ {−λn+1, . . . , 3λn}.
4. For � ∈ Λ̃′

�, I1(�) as in Prot. 1, and I2(�) := {(i, j) : i, j ∈ [n]∧ j �= i∧ 2λ�(i) +
λj �= λi+2λ�(j)∧2λ�(j)+λi−λj = �}, set μ�,� ←

∑
(i,j)∈I1(�)

a∗
i−

∑
(i,j)∈I2(�)

bi.

5. Let (E�, Ẽ�) ← (
∏n

i=1 g2,2λ	(i)−λi ,
∏n

i=1 g̃2,2λ	(i)−λi).

6. Let ψ� ← Dr∗a ·E−rb
� ·∏�∈Λ̃′

	
g
μ	,�

2� , ψ̃� ← D̃r∗a · Ẽ−rb
� ·∏�∈Λ̃′

	
g̃
μ	,�

2� ,

Send ψperm ← (A∗, Â∗, ψ×, ψ�, ψ̃�) ∈ G
2
1 ×G

4
2 to the verifier as the argument.

Verification Vperm(crs; (A, Ã,B, B̂, B̃, �), ψperm): Let E� and (T ∗, T̂ ∗, T ∗
2 ) be com-

puted as in Pperm. If ψ× verifies, ê(A∗, D)/ê(B,E�) = ê(g1, ψ
�), ê(A∗, ĝ2) =

ê(Â∗, g2), and ê(g1, ψ̃
�) = ê(g̃1, ψ

�), then Vperm accepts. Otherwise, Vperm rejects.

Protocol 2. Permutation argument �([[(A, Ã)]]) = [[(B, B̃)]] from [15]

such that (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb),

(B, B̃) = Com1(c̃k1; b; rb), (A∗, Â∗) = Com1(ĉk1;a
∗; ra∗), (ψ×, ψ̂×) =

(g
∑

�∈Λ̂ f ′
(×,�)

2 , ĝ
∑

�∈Λ̂ f ′
(×,�)

2 ), (ψ�, ψ̂�) = (g
∑

�∈Λ̃ f ′
(	,�)

2 , g̃
∑

�∈Λ̃ f ′
(	,�)

2 ), a∗i =
TΛ(�

−1(i), �) · ai (for i ∈ [n]), and for some i ∈ [n], a�(i) 	= bi.

For the permutation argument to be useful in more complex arguments, we must
also assume that the verifier there verifies that ê(Ã, g2) = ê(A, g̃2), ê(B̂, g2) =
ê(B, ĝ2), and ê(B̃, g2) = ê(B, g̃2).

Fact 5 (Lipmaa [15]). The permutation argument has a CRS of length n1+o(1)

and communication of 4 group elements. The prover’s computational complexity
is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G. The verifier’s
computational complexity is dominated by 12 bilinear pairings.

4 Breaking the COCOON 2009 Range Proof

In [21], the authors proposed a non-interactive range proof. In what follows, we
show that their argument is not secure.
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Their goal is to prove that a committed secret w is in some range [a, b]. To
do so they prove that both w − a and b − w are non-negative by making use of
Lagrange theorem stating that any non-negative integer can be decomposed as
the sum of four squares. Hence,

w − a =

4∑
j=1

w2
1j and b− w =

4∑
j=1

w2
2j , (1)

for some wij . The range proof of [21] is based on (symmetric) bilinear groups of
composite order, i.e., on bilinear groups (n,G,GT , ê), where n = pq. To commit
to a message w, the committer picks a random1 r ∈ Zq and computes C = gwur,
where g is a random generator of G (of order n), and u is a random generator of
subgroup Gq (of order q). Given C, w is uniquely determined in Zp as Cq = gwq.

In their range proof, the prover finds the witnesses wij in Eq. (1) and
outputs a proof ψ = ({C1j , C2j}j∈[4], Cw, ϕ1, ϕ2), where Cw ≡ gwurw ∈ G,

Cij ≡ gwijurij ∈ G for i ∈ [2] and j ∈ [4], ϕ1 ≡ g−rw+2
∑4

j=1 r1jw1j ·u
∑4

j=1 r21j ∈ G,

ϕ2 ≡ grw+2
∑4

j=1 r2jw2j · u
∑4

j=1 r22j ∈ G. The verifier checks whether ê(gaC−1
w , g) ·∏4

j=1 e(C1j , C1j) = ê(u, ϕ1) and ê(Cwg
−b, g) ·

∏4
j=1 ê(C2j , C2j) = ê(u, ϕ2).

Now assume that a malicious prover P � picks an integer w∗ ∈ {0, . . . , p− 1}\
[a, b]. We have that either w∗ − a or b − w∗ is negative as an integer. Suppose

b − w∗ < 0, then P � chooses {w∗
2j}j∈[4] such that n + (b − w∗) =

∑4
j=1(w

∗
2j)

2,

sets Cw ← gw
∗
urw , C2j ← gw

∗
2jur2j , ϕ1 as above, and ϕ2 ← grw+2·∑4

j=1 r2jw
∗
2j ·

u
∑4

j=1 r22j . Let u = gα for some α. It is easy to see that the second verification
equation still holds:

ê(Cwg
−b, g)·

4∏
j=1

ê(C2j , C2j) = ê(g, g)(w
∗−b)+αrw+

∑4
j=1(w

∗
2j+αr2j)

2

=ê(g, g)(w
∗−b)+αrw+

∑4
j=1(w

∗
2j)

2+
∑4

j=1 α2r22j+2
∑4

j=1 αr2jw
∗
2j

=ê(g, g)α·(rw+2
∑4

j=1 r2jw
∗
2j+α·∑4

j=1 r22j) = ê(u, ϕ2) .

We have successfully constructed a polynomial time adversary who can always
break the scheme. Therefore, the NIZK range proof in [21] is not sound.

5 New Subargument for Correct Encryption

In the new range proof of Sect. 6, we need a subargument that if (Ac, Āc) is a
knowledge-commitment of some a (with n = 1 and some randomness r), and
(Ag, Af , Ah) is a BBS ciphertext of some a′, then a = a′. That is, Ac = gr1g

a
1,λ1

and (Ag, Af , Ah) = (g
rf+rh+a
1 , f rf , hrh) for randomness (rf , rh) and public key

(f, h). (The generator g1,λ1 is required in Sect. 6.)

1 In [21], the scheme uses r ∈ Zn to facilitate their security proof (crs switching).
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We will construct this argument in the current section, by combining ideas
from [11] and [8,15]. Intuitively, for every multi-exponentiation ha1

1 . . . ham
m = t

that we want to prove, we write down a verification equation ê(h1, Com(a1)) ·
· · · · ê(hm, Com(am)) = ê(ψ, g2)ê(t, Com(1)), where ψ “compensates” for the fact
that Com(am) are probabilistic commitments. In addition, we use knowledge
commitments (though for small values 0 or 1 of n) so that one can extract all
committed values. Since the argument uses three committed values (a, rf and
rh) and three equations, according to Fig. 6 of [10] (the full version of [11]), the
corresponding pure Groth-Sahai argument will have length of 15 group elements.
Our argument has the same length, but is computationally more efficient.

System parameters: An (n, κ)-nice tuple Λ = (λ1, . . . , λn).
Common reference string generation Gcrs(1

κ): Set

gk := (p,G1,G2,Gt, ê) ← Gbp(1
κ) .

Generate random αg, αf , αh, ᾱ, αg/c, x ← Zp. Let g1 ← G1 \ {1} and g2 ←
G2 \ {1}. Denote g1,λ1 ← gx

λ1

1 , g2,λ1 ← gx
λ1

2 , g̊1 ← g
αg

1 , g̊2 ← g
αg

2 , ḡ1 ← gᾱ1 ,

ḡ1,λ1 ← gᾱ1,λ1
, ḡ2 ← gᾱ2 , ḡ2,λ1 ← gᾱ2,λ1

, g̊1,g/c ← g
αg/c·(1−xλ1)
1 , g̊2,g/c ←

g
αg/c·(1−xλ1)
2 , g̊1,f ← g

αf

1 , g̊2,f ← g
αf

2 , g̊1,h ← gαh
1 , and g̊2,h ← gαh

2 . The
common reference string is

crs ←(gk; g1, g1,λ1 , g2, g2,λ1 , g̊1, g̊2, ḡ1, ḡ1,λ1 , ḡ2, ḡ2,λ1 , g̊1,g/c, g̊2,g/c, g̊1,f , g̊2,f ,

g̊1,h, g̊2,h) .

A third party also creates sk := (sk1, sk2) ← (Z∗
p)

2, and sets pk :=

(f, h, f̊ , h̊) ← (g
1/sk1
1 , g

1/sk2
1 , g̊

1/sk1
1,f , g̊

1/sk2
1,h ).

Common inputs: (crs; pk, Ag, Af , Ah, Ac), where pk = (f, h, f̊ , h̊),

(Ag, Af , Ah) = (g
rf+rh+a
1 , f rf , hrh), and Ac = g

rf+rh
1 ga1,λ1

.

Argument P(crs; (pk, Ag, Af , Ah, Ac), (a, rf , rh)): let Āc ← ḡ
rf+rh
1 ḡa1,λ1

,

(Åg, Åf , Åh) ← (̊g
rf+rh+a
1 , f̊ rf , h̊rh), Åg/c ← g̊a1,g/c. Let Rf , Rh ← Zp. Let

(Cf , C̄f ) ← (g
Rf

2 g
rf
2,λ1

, ḡ
Rf

2 ḡ
rf
2,λ1

), (Ch, C̄h) ← (gRh
2 grh2,λ1

, ḡRh
2 ḡrh2,λ1

) ∈ G2
2. Let

(ψg, ψ̊g) ← (g
r+Rf+Rh

1 , g̊
r+Rf+Rh

1 ) ∈ G2
1, (ψf , ψ̊f ) ← (fRf , f̊Rf ) ∈ G2

1,

(ψh, ψ̊h) ← (hRh , h̊Rh) ∈ G2
1.

Send ψce ← (Åg, Åf , Åh, Åc, ψg, ψ̊g, Cf , C̄f , ψf , ψ̊f , Ch, C̄h, ψh, ψ̊h, Åg/c) to
the verifier.

Verification V(crs; (pk, Ag, Af , Ah, Ac), ψ
ce): Verify that ê(f̊ , g2) = ê(f, g̊2,f),

ê(̊h, g2) = ê(h, g̊2,h), ê(Ag, g̊2) = ê(Åg, g2), ê(Af , g̊2,f) = ê(Åf , g2),

ê(Ah, g̊2,h) = ê(Åh, g2), ê(Ac, ḡ2) = ê(Āc, g2), ê(ψg, g̊2) = ê(ψ̊g, g2),

ê(ψf , g̊2,f) = ê(ψ̊f , g2), ê(ψh, g̊2,h) = ê(ψ̊h, g2), ê(ḡ1, Cf ) = ê(g1, C̄f ),

ê(ḡ1, Ch) = ê(g1, C̄h), and ê(Ag/Ac, g̊2,g/c) = ê(Åg/c, g2).
Verify that ê(f, Cf ) = ê(ψf , g2) · ê(Af , g2,λ1), ê(h,Ch) = ê(ψh, g2) ·
ê(Ah, g2,λ1), and ê(g1, CfCh) = ê(ψgA

−1
c , g2) · ê(Ag, g2,λ1).
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As mentioned in Sect. 2, to prove the security of this argument, we will need a
generalization of the PSDL and PKE assumptions.

Let Φ ⊂ Z[X ], with d := maxϕ∈Φ degϕ, be a set of linearly independent
polynomials, such that |Φ|, all coefficients of all ϕ ∈ Φ, and d are polynomial in
κ. Let 1 be the polynomial φ(x) = 1. We say that a bilinear group generator Gbp

is Φ-PSDL secure, if for any non-uniform PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê) ← Gbp(1

κ), g1 ← G1 \ {1}, g2 ← G2 \ {1},

x ← Zp : A(gk; (g
ϕ(x)
1 , g

ϕ(x)
2 )ϕ∈{1}∪Φ) = x

]

is negligible in κ. By a straightforward generalization of the proof from [15], any
successful generic adversary for Φ-PSDL requires time Ω(

√
p/d), where p is the

group order.
Let Φ be as before. Consider t ∈ {1, 2}. The bilinear group generator Gbp is

Φ-PKE secure in group Gt if for any non-uniform PPT adversary A there exists
a non-uniform PPT extractor XA,

Pr

⎡⎢⎢⎢⎢⎣
gk := (p,G1,G2,GT , ê) ← Gbp(1

κ), gt ← Gt \ {1}, (α̂, x) ← Z
2
p,

crs ← (gk; (g
ϕ(x)
t , g

α̂ϕ(x)
t )ϕ∈{1}∪Φ), (c, ĉ; (aϕ)ϕ∈{0}∪Φ) ← (A||XA)(crs) :

ĉ = cα̂ ∧ c 	=
∏

ϕ∈{1}∪Φ

g
aϕϕ(x)
t

⎤⎥⎥⎥⎥⎦
is negligible in κ. Groth’s proof [8] that the [n]-PKE assumption holds in the
generic group model can be modified to the general case.

Note that Gbp is Λ-PSDL secure (resp., Λ-PKE secure) iff it is {Xλ : λ ∈ Λ}-
PSDL secure (resp., {Xλ : λ ∈ Λ}-PKE secure).

Theorem 1. The argument of this subsection is a perfectly argument for
the next claim: for some a, rf , rh ∈ Zp, Ac = gr1g

a
1,λ1

and (Ag, Af , Ah) =

(grf+rh+a, f rf , hrh). If the {1 − Xλ1}-PSDL assumption and the {1 − Xλ1}-
PKE assumption (in both G1 and G2) hold, then this argument is computation-
ally sound. If the DLIN assumption holds in group G1, then this argument is
computationally zero-knowledge.

(The proof of this theorem is given in App. A.) Clearly, this argument has CRS
of length Θ(1), its argument consists of 13 elements of G1 and 2 elements of
G2. The prover’s computational complexity is dominated by 20 exponentiations.
The verifier’s computational complexity is dominated by 33 pairings.

6 New Range Proof

In the next range proof, the prover has an encrypted a ∈ Zp, and he aims to
convince the verifier that a ∈ [0, H ]. We will use the lifted BBS cryptosystem
(Gpkc, Enc,Dec) that can be thought of as a perfectly binding commitment scheme
if decryption is not necessary. Since we are interested in obtaining a sublinear
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argument, we will also use the (computationally binding) knowledge commitment
scheme (Gcom, Com). We use the following result that was stated for u = 2 in [16]
and for general u in [4].

Fact 6. Let H > 0 and u > 1. Let 
(u,H) ≤ logu(H + 1) be defined as in [4].
Then a ∈ [0, H ] if and only if for some bi ∈ [0, u− 1],

(u − 1)a =

�(u,(u−1)H)∑
i=1

Gibi ,

where Gi ∈ Z are values defined in [4]. That is, (u−1)· [0, H ] =
∑�(u,(u−1)H)

i=1 Gi ·
[0, u− 1]. In particular, [0, H ] =

∑�log2 H�
i=0 �(H + 2i)/2i+1� · [0, 1].

The precise values of 
(u,H) and Gi are not important in the next description.
It suffices to know that they can be efficiently evaluated. We note that

Gi = �H/ui+1�+ �(Hi + (
i−1∑
j=0

Hj mod (u− 1)) + 1)/u� ,

where H =
∑

2iHi [4].
The basic idea of the next range proof is as follows. Choose a u > 1, and let

n = 
(u, (u−1)H). According to Fact 6, a ∈ [H ] iff for Gi computed as in Fact 6,
one has (u− 1)a =

∑n
i=1 Gibi for some bi ∈ [u− 1]. The prover shows by using a

parallel version of range proof from [16] that for i ∈ [n], bi ∈ [0, u−1]. The latter

is done by writing bi as bi =
∑�log2(u−1)�

j=0 G′
jb

′
ji (by again using Fact 6) and then

showing that b′ji ∈ [0, 1] by using an Hadamard product arguments from [15].
This will be achieved with commitments on (b′j1, . . . , b

′
jn) for j ∈ [�log2(u− 1)�].

The prover then commits to the vector (c1, . . . , cn), where cj =
∑n

i=j Gibi, and
shows that the values cj are correctly computed by using a small constant number
of Hadamard product and permutation arguments. More precisely, he commits to
(G1b1, . . . , Gnbn) (and shows this has been done correctly), then to (c2, . . . , cn, c1)
(and shows thiswas done correctly), then to (c2, . . . , cn, 0) (and shows thiswas done
correctly), and then shows that (c1, . . . , cn) = (G1b1, . . . , Gnbn) + (c2, . . . , cn, 0).
Thus, the verifier is convinced that cj =

∑n
i=j Gibi. Then, by Fact 6, c1 =∑n

i=1 Gibi ∈ (u− 1) · [H ], and thus the prover has to show (by using a single prod-

uct argument) that (Au−1
c , Âu−1

c ) commits to (c1, 0, . . . , 0), and that (Ag, Af , Ah)
is a lifted BBS encryption of A with randomizer (rf , rh) where r = rf + rh.

As in [15], in a few cases, instead of computing two different commit-

ments Comt(ĉkt;a; r) = (grt ·
∏

gai

t,λi
, ĝrt ·

∏
ĝai

tλi
) and Comt(c̃kt;a; r) = (grt ·∏

gai

t,λi
, g̃rt ·

∏
g̃ai

t,λi
), we compute a composed commitment Comt(ckt;a; r) =

(grt ·
∏

gai

t,λi
, ĝrt

∏
ĝai

t,λi
, g̃rt ·

∏
g̃ai

t,λi
).

The common input to both parties is equal to a BBS encryption (Ag, Af , Ah) of

a, accompanied by (Ac, Âc) such that (Ac, Âc) is a knowledge commitment to a.

Theorem 2. Let u > 1. Let H = poly(κ) and n = 
(u, (u − 1)H) where 
 is
defined as in Fact 6. Let Λ = {λi}i∈[n] be an (n, κ)-nice tuple. Denote λ0 := 0.
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System parameters: H,Gi, n, u, nv := �log2(u− 1)�, and G′
j := �(u+ 2j)/2j+1�.

Common reference string generation Gcrs(1κ): Set gk := (p,G1,G2,GT , ê) ← Gbp(1
κ).

Generate random α̂, α̃, αg, αf , αh, ᾱ, αg/c, x ← Zp. Let g1 ← G1\{1} and g2 ← G2\{1}.
Denote gts ← gx

s

t , ĝts ← gα̂xs

t , g̃ts ← gα̃xs

t , g̊1 ← g
αg

1 , g̊2 ← g
αg

2 , ḡ1 ← gᾱ1 ,

ḡ1,λ1
← gᾱ1,λ1

, ḡ2 ← gᾱ2 , ḡ2,λ1
← gᾱ2,λ1

, g̊1,g/c ← g
αg/c·(1−xλ1 )

1 , g̊2,g/c ← g
αg/c·(1−xλ1 )

2 ,

g̊1,f ← g
αf

1 , g̊2,f ← g
αf

2 , g̊1,h ← g
αh
1 , and g̊2,h ← g

αh
2 . Set D ←

∏n
=1 g1,λi

,
Erot ←

∏n
i=1 g2,2λrot(i)−λi

, and Ẽrot ← Eα̃
rot. The common reference string is crs ←

(gk; (g1,s, ĝ1,s, g̃1,s)s∈{0}∪Λ, g2, (ĝ2,s)s∈ ̂Λ
, (g2,s, g̃2,s)s∈Λ̃, D,Erot, Ẽrot).

Set ck1 ← (gk; (g1s, ĝ1s, g̃1s)s∈{0}∪Λ), ĉk1 ← (gk; (g1s, ĝ1s)s∈{0}∪Λ) and c̃k1 ←
(gk; (g1s, g̃1s)s∈{0}∪Λ). The prover creates a secret key sk := (sk1, sk2) ← Z2

p,

and sets pk ← (f, h, f̊ , h̊) ← (g
1/sk1
1 , g

1/sk2
1 g̊

1/sk1
1,f , g̊

1/sk2
1,h ). Here, Encpk(m; (rf , rh)) :=

(g
rf+rh+m

1 , frf , hrh).
Common inputs: (pk, Ag, Af , Ah, Ac, Âc), where (Ag , Af , Ah) = (gr+a

1 , frf , hrh) and
(Ac, Âc) = gr1g

a
1,λ1

, ĝr1 ĝ
a
1,λ1

), for r = rf + rh.

Argument P(crs; (pk, Ag, Af , Ah, Ac, Âc), (a, rf , rh)): The prover does the following:
1. Compute (b1, . . . , bn) ∈ Zn

u such that (u− 1)a =
∑n

i=1Gibi.
2. For i ∈ [n] do: compute (b′0i, . . . , b

′
nv ,i

) ∈ Z
nv+1
2 such that bi =

∑nv
j=0 G

′
j · b′ji.

3. For j ∈ [0, nv] do:

– Let rj ← Zp, (B′
j , B̂

′
j) ← Com1(ĉk1; b′j1, . . . , b

′
jn; rj), B

′
j2 ← g

rj
2 ·

∏n
i=1 g

b′ji
2,λi

.

– Create an argument (ψ′
j , ψ̂

′
j) for [[(B′

j , B̂
′
j)]] ◦ [[(B′

j , B̂
′
j , B

′
j2)]] = [[(B′

j , B̂
′
j)]].

4. For i ∈ [n], let ci ←
∑n

k=iGkbk.
5. Set r′0, r

′
1, r

′
2 ← Zp, (B†, B̂†) ← Com1(ĉk1;G1b1, . . . , Gnbn; r′0), (C, Ĉ, C̃) ←

Com1(ck1; c; r′1), and (Crot , Ĉrot, C̃rot) ← Com1(ck1; c2, . . . , cn−1, cn, c1; r′2).
6. Create an argument (ψ×

1 , ψ̂
×
1 ) for [[(

∏nv
j=0(B

′
j)

G′
j ,
∏nv

j=0(B̂
′
j)

G′
j )]] ◦

[[(Com1(ĉk1;G1, . . . , Gn; 0),
∏n

i=1 g
Gi
2,λi

)]] = [[(B†, B̂†)]].
7. Create an argument (A∗, Â∗, ψ×

2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2 ) for rot([[(C, C̃)]]) =

[[(Crot, Ĉrot, C̃rot)]].
8. Create an argument (ψ×

3 , ψ̂
×
3 ) for [[(Crot, Ĉrot)]] ◦

[[(Com1(ĉk1; 1, 1, . . . , 1, 0; 0),
∏n−1

i=1 g2,λi
)]] = [[(C/B†, Ĉ/B̂†)]].

9. Create an argument (ψ×
4 , ψ̂

×
4 ) for [[(C, Ĉ)]] ◦ [[(Com1(ĉk1; 1, 0, . . . , 0, 0; 0), g2,λ1

)]] =

[[(Au−1
c , Âu−1

c )]].
10. Create an argument ψce

5 that Ac commits to the same value that (Ag , Af , Ah)

encrypts.
11. Send ψ ← ((B′

j , B̂
′
j , B

′
j2, ψ

′
j , ψ̂

′
j)j∈[0,nv ], (B

†, B̂†), (C, Ĉ, C̃), (Crot , Ĉrot, C̃rot),

(ψ×
1 , ψ̂

×
1 ), (A∗, Â∗, ψ×

2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2 ), (ψ×
3 , ψ̂

×
3 ), (ψ×

4 , ψ̂
×
4 ), ψce

5 ) to V .
Verification V(crs; (pk, Ag, Af , Ah, Ac, Âc), ψ): V does the following.

1. For j ∈ [0, nv] do:
(a) Check that ê(B′

j , g2) = ê(g1, B′
j2) and ê(B′

j , ĝ2) = ê(B̂′
j , g2).

(b) Verify (ψ′
j , ψ̂

′
j) for inputs as specified above.

2. For K ∈ {Ac, B†, C,Crot}: check that ê(K, ĝ2) = ê(K̂, g2).
3. For K ∈ {C,Crot}: check that ê(K, g̃2) = ê(K̃, g2).
4. Verify the arguments (ψ×

1 , ψ̂
×
1 ), (A∗, Â∗, ψ×

2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2 ), (ψ×
3 , ψ̂

×
3 ),

(ψ×
4 , ψ̂

×
4 ), ψce

5 for inputs as specified above.

Protocol 3. The new range proof
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Let Λ̂ := {0} ∪ Λ ∪ 2̂Λ, and Λ̃ be as in Sect. 3.2. Let rot ∈ Sn be such that
rot(i) = i − 1 if i > 1, and rot(1) = n. Define Gi as in Fact 6. The argument
in Prot. 3 is perfectly complete. If Gbp is

{
1−Xλ1

}
-PKE, Λ-PKE and DLIN

secure in G1, then the argument in Prot. 3 is computationally zero-knowledge.
If Gbp is ({Xs}s∈Λ̃ ∪ {1 −Xλ1})-PSDL, Λ-PKE and {1−Xλ1}-PKE secure in
both G1 and G2, then the argument in Prot. 3 is computationally sound.

This argument is computationally zero-knowledge because (Ac, Âc) was provided
by a prover and not generated during the argument. To achieve perfect zero-
knowledge, one must be able to open (Ac, Âc) given only the CRS trapdoor.
That is, one has to use an extractable commitment scheme. It is easy to see
that the knowledge commitment scheme is extractable, however, extractability
is only achieved under the PKE assumption. The use of a cryptosystem also
makes achieving perfect zero-knowledge impossible.

Proof ([Of Thm. 2). Perfect completeness: Recall that in the case of the
product arguments, the inputs of P are (A, Â, B, B̂, B2, C, Ĉ). Within this proof
we say that (B, B̂, B2) (assuming B2 is correctly defined, that is, ê(B, g2) =
ê(g1, B2)) commits to the same values as (B, B̂).

The pairing verifications (for example, that ê(K, ĝ2) = ê(K̂, g2)) hold by con-
struction of the protocol. Since (B′

j , B̂
′
j) commits to (b′j1, . . . , b

′
jn) for binary b′ji

then the argument (ψ′
j , ψ̂

′
j) verifies.

Note that (
∏nv

j=0(B
′
j)

G′
j ,

∏nv

j=0(B̂
′
j)

G′
j ) commits to (b1, . . . , bn). Thus argu-

ment (ψ×
1 , ψ̂×

1 ) verifies. Since (Crot, Ĉrot) commits to a rotation of (C, Ĉ), then

(A∗, Â∗, ψ×
2 , ψ̂

×
2 , ψ

rot
2 , ψ̂rot

2 ) verifies. Since (Crot, Ĉrot) commits to (0, c1, . . . , cn−1)

and (C/B†, Ĉ/B̂†) commits to (c1 − G1b1, c2 − G2b2, . . . , cn − Gnbn) =

(0, c1, . . . , cn−1), then (ψ×
3 , ψ̂×

3 ) verifies. Finally, since (u − 1)a =
∑n

i=1 Gibi
and cn =

∑n
i=1 Gibi, then (ψ×

4 , ψ̂×
4 ) verifies.

Computational soundness: let A be a non-uniform PPT adversary who
creates a statement (pk, Ag, Af , Ah, Ac, Âc) and an accepting range proof ψ.
By the DLIN assumption, the BBS cryptosystem is IND-CPA secure, and thus
the adversary obtains no information from (Ag, Af , Ah). By the Λ-PKE and the
{1−Xλ1}-PKE assumptions, there exists a non-uniform PPT extractorXA that,
running on the same inputs and seeing A’s random tape, extracts the following
openings:

– (Ac, Âc) = Com1(ĉk1;a; r), (B
′
j , B̂

′
j) = Com1(ĉk1; b

′
j ; rj) for j ∈ [0, nv],

– (B†, B̂†) = Com1(ĉk1; b
†; r′0),

– (C, Ĉ) = Com1(ĉk1; c; r
′
1) and (Crot, Ĉrot) = Com1(ĉk1; crot; r

′
2),

– (ψ×
1 , ψ̂

×
1 ) = (

∏
s∈Λ̂ g

f ′
(×1,s)

2s ,
∏

s∈Λ̂ ĝ
f ′
(×1,s)

2s ),

– (A∗, Â∗) = Com1(ĉk1;a
∗; ra∗),

– (ψ×
2 , ψ̂

×
2 ) = (

∏
s∈Λ̂ g

f ′
(×2,s)

2s ,
∏

s∈Λ̂ ĝ
f ′
(×2,s)

2s ),

– (ψrot
2 , ψ̂rot

2 ) = (
∏

s∈Λ̃ g
f ′
(rot2,s)

2s ,
∏

s∈Λ̃ g̃
f ′
(rot2,s)

2s ),



A Non-interactive Range Proof with Constant Communication 195

– (ψ×
3 , ψ̂

×
3 ) = (

∏
s∈Λ̂ g

f ′
(×3,s)

2s ,
∏

s∈Λ̂ ĝ
f ′
(×3,s)

2s ), and

– (ψ×
4 , ψ̂

×
4 ) = (

∏
s∈Λ̂ g

f ′
(×4,s)

2s ,
∏

s∈Λ̂ ĝ
f ′
(×4,s)

2s ).

It will also create the openings that correspond to ψce
5 . If any of the openings

fails, we are done. Since Λ̃-PSDL and {1−Xλ1}-PSDL assumptions are supposed
to hold, all the following is true. (If it is not true, one can efficiently test it, and
thus we have broken the PSDL assumption.)

Since ê(B′
j , g2) = ê(g1, B

′
j2) for j ∈ [0, nv], then (Bj1, B̂j1, Bj2) commits to

b′j . Therefore, due to the Λ̂-PSDL assumption, the fact that the adversary knows

the openings of (B′
j , B̂

′
j) and (ψ′

j , ψ̂
′
j), and the last statement of Fact 2, since

(ψ′
j , ψ̂

′
j) verifies, then b′ji ∈ {0, 1} for all j ∈ [0, nv] and i ∈ [1, n]. Thus, by

Fact 6, b = (b1, . . . , bn) := (
∑nv

j=0 G
′
jb

′
j1, . . . ,

∑nv

j=0 G
′
jb

′
jn) ∈ [0, u− 1]n, and thus

(
∏nv

j=0(B
′
j)

G′
j ,

∏nv

j=0(B̂
′
j)

G′
j ) commits to b with bi ∈ [0, u− 1].

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (B′

j , B̂
′
j), (B

†, B̂†) and (ψ×
1 , ψ̂

×
1 ), and the last statement of Fact 2, since

(ψ×
1 , ψ̂

×
1 ) verifies, then b†i = Gibi. Due to the Λ̃-PSDL assumption, the fact that

the adversary knows the openings of (C, C̃), (Crot, Ĉrot) and

(A∗, Â∗, ψ×
2 , ψ̂

×
2 , ψ

rot
2 , ψ̂rot

2 ) ,

and the last statement of Fact 2, since (A∗, Â∗, ψ×
2 , ψ̂

×
2 , ψ

rot
2 , ψ̂rot

2 ) verifies, then
crot,1 = cn and crot,i+1 = ci for i ≥ 1.

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (Crot, C̃rot), (C, Ĉ), (B†, B̂†), and (ψ×

3 , ψ̂×
3 ), and the last statement of

Fact 2, since (ψ×
3 , ψ̂×

3 ) verifies, then c1−G1b1 = 0 and ci−Gibi = crot,i = ci−1 for
i > 1. Therefore, c1 = G1b1, c2 = G2b2+G1b1, and by induction ci =

∑n
j=1 Gibi

for i ≥ 1. In particular, cn =
∑n

i=1 Gibi for bi ∈ [0, u− 1].

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (C, Ĉ), (Ac, Âc), and (ψ×

4 , ψ̂
×
4 ), and the last statement of Fact 2, since

(ψ×
4 , ψ̂

×
4 ) verifies, then (Ac, Âc) = (gr1g

a
1,λ1

, ĝr1 ĝ
a
1,λ1

) commits to (a, 0, . . . , 0) such

that (u− 1)a =
∑n

i=1 Gibi for bi ∈ [0, u− 1], and therefore by Fact 6, a ∈ [0, H ].
Due to the {1 − Xλ1}-PSDL assumption and since ψce

5 verifies, then
(Ag, Af , Ah) encrypts a ∈ [0, H ].

Computational zero-knowledge: we construct the following simulator
S = (S1,S2). First, S1 creates a correctly formed common reference string to-
gether with a simulation trapdoor td = (α̂, α̃, . . . , x). After that, the prover
creates a statement inpr := (pk, Ag, Af , Ah, Ac, Âc) and sends it to the simula-
tor. Second, S2(crs; inp

r; td) uses a knowledge extractor to extract (a, r) from
the prover’s random coins and (Ac, Âc). Since we are only interested in the case
of a honest prover, we have that a = (a, 0, . . . , 0) with a ∈ [0, H ]. Thus, using
the fact that the knowledge commitment scheme is also trapdoor, the simulator
computes r′′ ← axλn + r; clearly A = gr

′′
1 . Since both r and r′′ are uniformly

random, r′′ does not leak any information on the prover’s input. After that, the
simulator creates all commitments (B′

j , B̂
′
j, B

′
j2)j∈[0,nv ], (B

†, B̂†), (C, Ĉ, C̃) and
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(Crot, Ĉrot, C̃rot) as in the argument, but replacing a with 0 and r with r′′. (Note
that all the mentioned commitments just commit to 0.) Thus, the simulator can
simulate all product and permutation arguments and the argument of Sect. 5.
Clearly, this simulated argument ψsim is perfectly indistinguishable from the
real argument ψ. ��

Theorem 3. Let u > 1. Let Λ be as in Fact 1 and let n = 
(u, (u − 1)H) ≤
�logu((u − 1)H + 1)� ≈ logH/ log u + 1, where 
(·, ·) is defined as in Fact 6.
Let nv = �log2(u− 1)�. Assume that we use the Hadamard product argument
and the permutation argument from Sect. 3. The range proof in Prot. 3 has a
length-n1+o(1) common reference string, communication of 2nv + 25 elements
from G1 and 3nv + 15 elements from G2, the prover’s computational complexity
of Θ(n2nv) scalar multiplications in Zp and n1+o(1)nv exponentiations in G1 or
G2. The verifier’s computational complexity is dominated by 9nv + 81 pairings.

Proof. The communication complexity: nv +1 tuples (B′
j , B̂

′
j , B

′
j2, ψj) (each has

2 elements of G1 and 3 elements of G2), and then 8 extra elements from G1,
3 Hadamard product arguments (2 elements from G2 each), 1 permutation ar-
gument (2 elements from G1 and 4 elements from G2), and argument ψce (13
elements from G1 and 2 elements from G2). In total, thus 2(nv+1)+8+2+13 =
2nv + 25 elements from G1 and 3(nv + 1) + 3 · 2 + 4 + 2 = 3nv + 15 elements
from G2.

The prover’s computational complexity is dominated by (nv +1)+3 = nv +4
Hadamard product arguments and 1 permutation argument (Θ(n2) scalar mul-
tiplications and bilinear-group n1+o(1) exponentiations each), that is in total
Θ(n2 · nv) = Θ(n2 · log u) scalar multiplications and n1+o(1) log u exponentia-
tions.

The verifier’s computational complexity is dominated by verifying nv + 4
Hadamard product arguments (5 pairings each), 1 permutation argument (12
pairings), and the argument ψce (33 pairings). In addition, the verifier performs
2 · (2(nv + 1) + 6) = 4nv + 16 pairings. The total number of pairings is thus
9nv + 81. The rest follows. ��

The communication complexity is minimized when nv (and thus u) is as small as
possible, that is, u = 2. Then nv = �log2 1� = 0. In this case the communication
consists of 12 elements from G1 and 13 elements from G2. The same choice u = 2
is also optimal for verifier’s computational complexity (81 pairings). As noted
before, at the security level of 2128, elements of G1 can be represented in 256
bits, and elements of G2 in 512 bits. Thus, at this security level, if u = 2 then
the communication is 25 · 256 + 25 · 512 = 14 080 bits, that is, only about 4
to 5 times longer than the current recommended length of a 2128-secure RSA
modulus. Therefore, the communication of the new range proof is even smaller
than that of Lagrange theorem based arguments like [13].

The optimal prover’s computational complexity is achieved when the number
of exponentiations, n1+o(1) ·nv = (logH/ logu)1+o(1) ·�log2(u−1)�, is minimized.
This happens if u = H , then the prover’s computation is dominated by Θ(logH)
scalar multiplications and exponentiations. Moreover, in this case the CRS length
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n1+o(1) is constant. Finally, we might want the summatory length of the CRS
and the communication to be minimal, that is, n1+o(1) + Θ(nv). Considering
n ≈ logu H and nv ≈ log2 u, we get that the sum is (logH/ log u)1+o(1)+Θ(log u).

One can approximately minimize the latter by choosing u = e
√
lnH . Then the

summatory length is log1/2+o(1) H . (In this case, it would make sense to change
the role of groups G1 and G2 to get better efficiency.) The efficiency of the new
range proof in all three cases is given in Tbl. 1.
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versity of Århus, Denmark (October 2004)

8. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidel-
berg (2010)

9. Groth, J.: Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic
Commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 431–448. Springer, Heidelberg (2011)

10. Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups.
Technical Report 2007/155, International Association for Cryptologic Research
(April 27, 2007), http://eprint.iacr.org/2007/155 (version 20100222:192509)
(retrieved in December 2011)

11. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

12. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

http://eprint.iacr.org/2007/155


198 R. Chaabouni, H. Lipmaa, and B. Zhang

13. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415.
Springer, Heidelberg (2003)

14. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. Technical Report 2011/009, International Association
for Cryptologic Research (January 5, 2011), http://eprint.iacr.org/2011/009

15. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 169–189. Springer, Heidelberg (2012)

16. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold
Trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidel-
berg (2003)
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A Proof of Thm. 1

Proof. Perfect completeness: correctness verifications are straightforward.
Clearly,

ê(f, Cf ) =ê(f, g
Rf

2 g
rf
2,λ1

) = ê(f, g
Rf

2 ) · ê(f, grf2,λ1
) = ê(fRf , g2) · ê(f rf , g2,λ1)

=ê(ψf , g2) · ê(Af , g2,λ1) .

Analogously, ê(h,Ch) = ê(ψh, g2) · ê(Ah, g2,λ1). Finally, ê(Acψ
−1
g , g2) ·

ê(g1, CfCh) = ê(gr1g
a
1,λ1

· g−r−Rf−Rh

1 , g2) · ê(g1, gRf+Rh

2 ) · ê(g1, grf+rh
2,λ1

) = ê(ga1,λ1
·

g
−Rf−Rh

1 , g2) · ê(gRf+Rh

1 , g2) · ê(grf+rh
1 , g2,λ1) = ê(ga1 , g2,λ1) · ê(g

rf+rh
1 , g2,λ1) =

ê(g
rf+rh+a
1 , g2,λ1).
Computational Soundness: By the {1−Xλ1}-PKE assumption in G1 and

G2, one can open the next values: (Ac, Āc) = (gr1g
a
1,λ1

, ḡr1 ḡ
a
1,λ1

), (Ag/Ac, Åg/c) =

((g1g
−1
1,λ1

)a
′
, g̊a

′
1,g/c), (Ag, Åg) = (ga

′′
1 , g̊a

′′
1 ), (Af , Åf ) = (f rf , f̊ rf ), (Ah, Åh) =

(hrh , h̊rh), (Cf , C̄f ) = (g
Rf

2 g
r′f
2,λ1

, ḡ
Rf

2 ḡ
r′f
2,λ1

), (Ch, C̄h) = (gRh
2 g

r′h
2,λ1

, ḡRh
2 ḡ

r′h
2,λ1

),

(ψg, ψ̊g) = (g
r′′a
1 , g̊

r′′a
1 ), (ψf , ψ̊f ) = (g

r′′f
1 , g̊

r′′f
1,f), and (ψh, ψ̊h) = (g

r′′h
1 , g̊

r′′h
1,h).

http://eprint.iacr.org/2011/009
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Since Ac = gr1g
a
1,λ1

, Ag = ga
′′

1 and Ag/Ac = (g1g
−1
1,λ1

)a
′
, we have that ga

′′
1 =

gr+a′
1 ga−a′

1,λ1
. Thus, if a 	= a′, one can compute xλ1 ← (a′′ − r − a′)/(a− a′), and

from this compute x and thus break the {1−Xλ1}-PSDL assumption. (To verify

whether x is the correct root, one can check whether gx
λ1

1 = g1,λ1 .) Thus a = a′,
and thus also a′′ = r + a and Ag = gr+a

1 .

Due to Cf = g
Rf

2 g
r′f
2,λ1

, ψf = g
r′′f
1 , Af = f rf and ê(f, Cf ) = ê(ψf , g2) ·

ê(Af , g2,λ1), we have ê(f, g
Rf

2 g
r′f
2,λ1

) = ê(g
r′′f
1 , g2)ê(f

rf , gx
λ1

2 ) for unknown x. Tak-
ing the discrete logarithm of the both sides of the last equation, we get that
Rf/sk1 + r′fx

λ1/sk1 = r′′f + rfx
λ1/sk1, or (rf − r′f )x

λ1 = Rf − r′′f · sk1. Thus,
if rf 	= r′f , then we can compute xλ1 , and find from this x, and thus break the

{1−Xλ1}-PSDL assumption. Thus, rf = r′f and therefore also Cf = g
Rf

2 g
rf
2,λ1

.

Moreover, ψf = g
r′′f
1 = fRf .

Analogously, we get that rh = r′h and therefore Ch = gRh
1 grh1,λ1

and ψh = hRh .

Due to Cf = g
Rf

2 g
rf
2,λ1

, Ch = gRh
1 grh1,λ1

, ψg = g
r′′a
1 , Ac = gr1g

a
1,λ1

, Ag = gr+a
1 and

ê(g1, CfCh) = ê(ψgA
−1
c , g2) · ê(Ag, g2,λ1), we have ê(g1, g

r+Rf+Rh+(rf+rh)x
λ1

2 ) =

ê(g
r′′a
1 g−r

1 g−a
1,λ1

, g2) · ê(gr+a
1 , g2,λ1) = ê(g

r′′a−r+rxλ1

1 , g2) for unknown x. Taking the
discrete logarithm of both sides of the last equation, we get r+Rf +Rh+(rf +
rh)x

λ1 = r′′a − r + rxλ1 . Again, if rf + rh 	= r, then one can compute xλ1 and
thus also x. Thus, r = rf + rh, and thus also r′′a = r+Rf +Rh. This means that

Ac = g
rf+rh
1 ga1,λ1

and (Ag , Af , Ah) = (g
rf+rh+a
1 , f rf , hrh).

Computational Zero-knowledge: we construct the next simulator
(S1,S2). S1 creates a CRS according to the protocol together with a trapdoor
td = (αg, αf , αh, ᾱ, αg,c, x). On input td, S2 creates zf , zh ← Zp. He then sets

Cf ← g
zf
2 , ψf ← fzf /Axλ1

f , Ch ← gzh2 , ψh ← hzh/Axλ1

h , and ψg ← g
zf+zh
1 /Axλ1

g .

He creates the knowledge elements (Åg, Åf , Åh, Åc, ψ̊g, C̄f , ψ̊f , C̄h, ψ̊h, Åg/c) by

using the trapdoor. For example, Åg/c ← (Ag/Ac)
αg/c . One can now check that

the verification succeeds. For example, ê(ψf , g2)ê(Af , g2,λ1) = ê(fzf /Axλ1

f , g2) ·
ê(Af , g2,λ1) = ê(fzf , g2)/ê(A

xλ1

f , g2)ê(Af , g2,λ1) = ê(fzf , g2) = ê(f, Cf ), and

finally, ê(Acψ
−1
g , g2) · ê(g1, CfCh) = ê(g

−zf−zh
1 Axλ1

g Ac, g2) · ê(g1, gzf+zh
2 ) =

ê(Ag, g2,λ1). If the DLIN assumption is true, then (Ag, Af , Ah) is indistinguish-
able from an encryption of 0 ∈ [0, H ], and thus the whole argument is computa-
tionally zero-knowledge. ��
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Abstract. We consider applications where an untrusted aggregator would like
to collect privacy sensitive data from users, and compute aggregate statistics pe-
riodically. For example, imagine a smart grid operator who wishes to aggregate
the total power consumption of a neighborhood every ten minutes; or a market
researcher who wishes to track the fraction of population watching ESPN on an
hourly basis.

We design novel mechanisms that allow an aggregator to accurately estimate
such statistics, while offering provable guarantees of user privacy against the un-
trusted aggregator. Our constructions are resilient to user failure and compromise,
and can efficiently support dynamic joins and leaves. Our constructions also ex-
emplify the clear advantage of combining applied cryptography and differential
privacy techniques.

1 Introduction

Many real-world applications have benefitted tremendously from the ability to collect
and mine data coming from multiple individuals and organizations. These applications
have also spurred numerous concerns over the privacy of user data. In this paper, we
study how an untrusted aggregator can gather information and learn aggregate statis-
tics from a population without harming individual privacy. For example, consider a
smart grid operator who wishes to track the total electricity consumption of a neigh-
borhood every 15 minutes, for scheduling and optimization purposes. Since such power
consumption data can reveal sensitive information about individual’s presence and ac-
tivities, we wish to perform such aggregation in a privacy-preserving manner.

More generally, we consider the periodic distributed stream aggregation model.
Imagine a group of n users. In every time period, each user has some data point within
a certain range (−Δ,+Δ). An untrusted aggregator wishes to compute the sum of all
users’ values in each time period. Each user considers her data as sensitive, and does
not want to reveal the bit to the untrusted aggregator. How can we allow an untrusted
aggregator to periodically learn aggregate information about a group of users, while
preserving each individual’s privacy?

The problem of privacy-preserving stream aggregation was first studied by Rastogi
et al. [13] and Shi et al. [14]. These two works demonstrate how to combine cryptog-
raphy with differential privacy and achieve O(1) error, while using differential privacy
techniques alone would result in at least Ω(

√
N) error [3] in this setting1.

1 The lower bound holds when the aggregator sees all the messages in the protocol, for example,
in the case where each user communicates only with the aggregator.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 200–214, 2012.
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Specifically, these two works [13,14] both employ special encryption schemes which
work as follows: in each aggregation period, each user encrypts its (perturbed) data
value and sends the encrypted value to the aggregator. The aggregator has a crypto-
graphic capability allowing it to decrypt the sum of all users’ values, but learn nothing
else. In constructing such encryptions schemes, both works [13, 14] rely on the follow-
ing key idea: each user would incorporate a random value into their ciphertext; and the
aggregator’s capability also incorporates a random value. All of these random values
sum up to 0, and would cancel out in the decryption step, such that the aggregator can
recover the sum of all users’ values, but learn nothing else.

One major drawback of these earlier works [13, 14] is that these schemes are not
tolerant of user failures. Even if a single user fails to respond in a certain aggregation
round, the server would not be able to learn anything. This can be a big concern in real-
world applications where failures may be unavoidable. For example, in a smart sensing
applications, where data is collected from multiple distributed sensors, it is quite likely
that some sensor might be malfunctioning at some point, and fails to respond. Failure
tolerance is an important challenge left open by Shi et al. [14] and Rastogi et al. [13].

Summary of Contributions. Our main contribution is to introduce a novel technique
to achieve fault tolerance, while incurring only a very small (logarithmic or poly-
logarithmic) penalty in terms of communication overhead and estimation error (see
Table 1). In our construction, the aggregator is still able to estimate the sum over the
remaining users when an arbitrary subset of users (unknown in advance) fail.

As a by-product of the fault tolerance technique, our scheme also supports dynamic
joins and leaves, which is another problem left open by previous work [13,14]. Specif-
ically, our scheme supports dynamic joins and leaves without having to perform costly
rekeying operations with every join and leave.

Apart from failure tolerance and dynamic joins/leaves, our scheme has another de-
sirable feature in that it requires only a single round of client-to-server communication.
On a very high level, our construction works as follows: in every time period, each user
uploads an encrypted and perturbed version of her data, and then the aggregator can
compute the noisy sum by using a cryptographic capability obtained during an initial
one-time setup phase.

Techniques. Our main technique for achieving failure tolerance may be of independent
interest. Specifically, we build a binary interval tree over n users, and allow the aggre-
gator to estimate the sum of contiguous intervals of users as represented by nodes in
the interval tree. In comparison with Shi et al. [14], the binary-tree technique allows us
to handle user failures, joins and leaves, with a small logarithmic (or polylog) cost in
terms of communication and estimation error.

More Applications. Apart from the smart grid example mentioned earlier, the dis-
tributed stream aggregation problem is also widely applicable in a variety of problem
domains, such as distributed hot item identification, sensing and monitoring, as well as
medical research. We elaborate more on these applications in the online full version [2].
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Table 1. Comparison between existing schemes and our contributions. The asympototic
bounds hide the privacy parameters ε and δ. The parameter ρ denotes any constant between 0
and 1. The Õ(·) notation hides a log log n factor.

In our full online technical report [2], we also propose two variants of sampling-based con-
structions, in which a random subset of users respond by sending a perturbed version of their
data. The sampling constructions can be useful in applications where bandwidth efficiency is a
major concern. In particular, for arbitrarily small ρ between 0 and 1, we can achieve error O(ρn)
with O( 1

ρ2
) words of total communication.

Scheme
Total Avg comm.

Error
Fail-safe/Dynamic Security Comm.

comm. per user joins & leaves Model model

Naive O(n) O(1) O(
√
n) Yes DP C → S

Rastogi et al.
O(n) O(1) O(1) No

CDP
C ⇔ S

[13] AO

Shi et al. [14] O(n) O(1) O(1) No
CDP

C → S
AO

This paper:
Sampling

O( 1
ρ2
) O( 1

ρ2n
) O(ρn) Yes DP C ⇔ S

(Online TR)

Binary O(n log n) O(log n) Õ((log n)
3
2 ) Yes CDP C→ S

DP: Differential Privacy CDP: Computational Differential Privacy AO: Aggrega-
tor Obliviousness (explanations in Section 1.1) C → S: client-to-server uni-directional
C ⇔ S: interactive between client and server

1.1 Related Work

Differential privacy [1, 5, 6, 8] was traditionally studied in a setting where a trusted cu-
rator, with access to the entire database in the clear, wishes to release statistics in a way
that preserves each individual’s privacy. The trusted curator is responsible for introduc-
ing appropriate perturbations prior to releasing any statistic. This setting is particularly
useful when a company or a government agency, in the possession of a dataset, would
like to share it with the public.

In real-world applications, however, users may not trust the aggregator. A recent
survey by Microsoft [15] found that “...58% of the public and 86% of business leaders
are excited about the possibilities of cloud computing. But, more than 90% of them are
worried about security, availability, and privacy of their data as it rests in the cloud.”

Recently, the research community has started to consider how to guarantee differen-
tial privacy in the presence of an untrusted aggregator [13, 14]. Rastogi et al. [13] and
Shi et al. [14] proposed novel algorithms that allow an untrusted aggregator to period-
ically estimate the sum of n users’ values, without harming each individual’s privacy.
In addition to (computational) differential privacy, these two schemes also provide ag-
gregator obliviousness, meaning that the aggregator only learns the noisy sum, but no
intermediate results.

Both of these schemes [13, 14], however, would suffer in the face of user failures,
thereby leaving resilience to node failure as one of the most important open challenges
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in this area. Our Binary Protocol utilizes Shi et al.’s encryption scheme as a building
block, and we successfully solve the node failure problem.

Dwork et al. [7] study distributed noise generation, however, their scheme requires
interactions among all users.

The use of a binary tree in our construction may be reminiscent of Dwork et al. [9]
and Chan et al. [4], where they use a binary-tree-like construction for a completely
different purpose, i.e., to achieve high utility when releasing statistics continually in a
trusted aggregator setting.

2 Problem Definition and Assumptions

For simplicity, consider a group of n users each holding a private bit xi ∈ {0, 1} –
although our approach can be trivially adapted to the case where each user has a data
point within a certain discrete range. We use the notation x := (x1, x2, . . . , xn) ∈
{0, 1}n to denote the vector of all users’ bits, also referred to as an input configuration.
An aggregator A wishes to estimate the count, denoted sum(x) :=

∑
i∈[n] xi.

Periodic Aggregation. We are particularly interested in the case of periodic aggrega-
tion. For example, a market researcher may wish to track the fraction of the population
watching ESPN during different hours of the day. In general, in each time period t ∈ N,
we have a vector x(t) ∈ {0, 1}n, e.g., indicating whether each of the surveyed users is

currently watching ESPN. The aggregator wishes to evaluate sum(x(t)) :=
∑

i∈[n] x
(t)
i

in every time period. For ease of exposition, we often focus our attention on the aggre-
gation algorithm in one time step, and as a result, omit the superscript t.

Failure Tolerance. When a user fails, it stops participating in the protocol. A protocol
is failure tolerant, if for any subset of failed users, the aggregator can still make an
estimate on the sum of the bits from the remaining functioning users.

Communication Model. In real-world applications, peer-to-peer communication is un-
desirable as it requires all users to be online simultaneously and interact with each other.
This paper will focus on schemes that requires no user-to-user communication, i.e., all
communication takes place between an aggregator and a user.

2.1 Assumptions and Privacy Definitions

Trust Model. We consider the scenario when the aggregator is untrusted. We think
of the aggregator as the adversary from whom we wish to protect the users’ privacy.
The aggregator does not have access to the users’ bits directly, but may have arbitrary
auxiliary information a priori. Such auxiliary information can be harvested in a vari-
ety of ways, e.g., from public datasets online, or through personal knowledge about a
user. Our constructions ensure individual privacy even when the aggregator may have
arbitrary auxiliary information.

Compromise. We assume a semi-honest model, where compromised users can collude
with the aggregator by revealing their input bits or random noises to the aggregator.
However, we assume that all users honestly use their inputs in the aggregation. The data
pollution attack, where users inflate or deflate their input values, is out of the scope of
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this paper, and can be solved using orthogonal techniques such as [12]. In this paper,
we assume a slightly relaxed model of compromise, where the compromised nodes
are chosen independently from the randomness used in the algorithm (more details in
Section 4).

Key Distribution. We assume that any cryptographic keys or privacy parameters re-
quired are already distributed to the aggregator and users in a separate setup phase ahead
of time. The setup phase needs to be performed only once at system initialization, and
need not be repeated during the periodic aggregation rounds.

We define a transcript π to be the sequence of all messages sent by the users and
the aggregator at the end of the protocol. As we consider protocols with no peer-to-
peer communication, i.e., all communication takes place between the users and the
aggregator, the view of the aggregator during the protocol is essentially the transcript
π.

Users (and the aggregator) may contribute randomness to the protocol, for example,
users will add noise to perturb their input bits. Therefore, we can define a distribution
on the transcripts. Formally, we use the notation Π to denote a randomized protocol,
and use Π(x) to denote the random transcript when the input configuration is x.

In this paper, we consider the computational version of differential privacy, as in
practice it suffices to secure the protocol against computationally-bounded adversaries.
We now define computational differential privacy (CDP), similar to the CDP notion
originally proposed by Mironov et al. [11].

In addition to the users’ data x, the protocol Π also takes a security parameter λ ∈
N. We use the notation Π(λ,x) to denote the distribution of the transcript when the
security parameter is λ and the input configuration is x.

Definition 1 (Computational Differential Privacy Against Compromise). Suppose
the users are compromised by some underlying randomized process C, and we use C
to denote the information obtained by the adversary from the compromised users. Let
ε, δ > 0. A (randomized) protocolΠ preserves computational (ε, δ)-differential privacy
(against the compromise process C) if there exists a negligible function η : N → R

+

such that for all λ ∈ N, for all i ∈ [n], for all vectors x and y in {0, 1}n that differ only
at position i, for all probabilistic polynomial-time Turing machines A, for any output
b ∈ {0, 1},
PrCi [A(Π(λ,x), C) = b] ≤ eε · PrCi [A(Π(λ,y), C) = b] + δ + η(λ),

where the probability is taken over the randomness of A, Π and Ci, which denotes the
underlying compromise process conditioning on the event that user i is uncompromised.

A protocol Π preserves computational ε-differential privacy if it preserves computa-
tional (ε, 0)-differential privacy.

3 Preliminaries

3.1 Tool: Geometric Distribution

Two noise distributions are commonly used to perturb the data and ensure differential
privacy, the Laplace distribution [8], and the Geometric distribution [10]. The advantage
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of using the geometric distribution over the Laplace distribution is that we can keep
working in the domain of integers. The geometric distribution is particularly useful
when used in combination with a crypto-system, e.g., our Binary Protocol described in
Section 4. Most crypto-systems work in discrete mathematical structures, and are not
designed to work with (truly) real numbers.

We now define the symmetric geometric distribution.

Definition 2 (Geometric Distribution). Let α > 1. We denote by Geom(α) the sym-
metric geometric distribution that takes integer values such that the probability mass
function at k is α−1

α+1 · α−|k|.

The following property of Geom distribution is useful for designing differentially pri-
vate mechanisms that output integer values.

Fact 1 Let ε > 0. Suppose u and v are two integers such that |u − v| ≤ Δ. Let
r be a random variable having distribution Geom(exp( ε

Δ)). Then, for any integer k,
Pr[u+ r = k] ≤ exp(ε) · Pr[v + r = k].

In our setting, changing 1 bit can only affect the sum by at most 1. Hence, it suffices
to consider Geom(α) with α = eε. Observe that Geom(α) has variance 2α

(α−1)2 . Since
√
α

α−1 ≤ 1
lnα = 1

ε , the magnitude of the error added is O(1ε ). The following diluted
geometric distributions is useful in the description of our protocols.

Definition 3 (Diluted Geometric Distribution). Let 0 < β ≤ 1, α > 1. A random
variable has β-diluted Geometric distribution Geomβ(α) if with probability β it is sam-
pled from Geom(α), and with probability 1− β is set to 0.

3.2 Naive Scheme

We describe a simple scheme as a warm-up, and as a baseline of comparison. In the
Naive Scheme, each user generates an independent Geom(eε) noise, which is added to
her bit. Each user sends her perturbed bit to the aggregator, who computes the sum of all
the noisy bits. As each user adds one copy of independent noise to her data, n copies of
noises would accumulate in the sum. As some positive and negative noises may cancel
out, the accumulated noise is O(

√
n
ε ) with high probability. Notice that if we employs

the information-theoretic (as opposed to computational) differential privacy notion, the
naive scheme is in some sense the best one can do. Chan et al. [3] show in a recent
work that in a setting with n users and one aggregator, any (information theoretically)
differential private summation protocol with no peer-to-peer interaction must result in
an error of Ω(

√
N).

4 Binary Protocol: Achieving Failure Tolerance

4.1 Intuition

Consider the periodic aggregation scheme proposed by Shi et al. [14], henceforth re-
ferred to as the Block Aggregation (BA) scheme. In the BA scheme, every time period,
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(a) The aggregator obtains block esti-
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ing in the binary interval tree.
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(b) When user 5 fails, the aggregator sums up
the block estimates corresponding to the black
nodes.

Fig. 1. Intuition for the Binary Protocol

each user sends a perturbed and encrypted version of her data to the aggregator. The ag-
gregator has a cryptographic capability to decrypt the sum of all encrypted values, but
can learn nothing else. The BA scheme achieves O(1) error. and guarantees all users’
differential privacy against polynomial-time adversaries.

Unfortunately, the use of cryptography in the BA scheme introduces the all-or-
nothing decryption model. Therefore, the aggregator learns nothing if a single user fails.

The Challenge. On one hand, we have the naive scheme which achieves O(
√
n) error,

and is failure tolerant On the other hand, we have the BA Scheme which achieves O(1)
error (by combining cryptography with differential privacy), but is unfortunately not
failure tolerant. Can we seek middle-ground between these approaches, such that we
can obtain the best of both worlds, i.e., achieve both fault tolerance and small error?

Binary Tree Idea. One idea is to form user groups (henceforth referred to as blocks),
and run the BA Scheme for each block. The aggregator is then able to estimate the sum
for each block. If a subset of the users fail, we must be able to find a set of disjoint
blocks to cover the functioning users. In this way, the aggregator can estimate the sum
of the functioning users. The challenge is how to achieve this with only a small number
of groups.

As depicted in Figure 1, our construction is based on a binary interval tree, hence the
name Binary Protocol. For ease of exposition, assume for now that n is a power of 2.
Each leaf node is tagged with a number in [n]. Each internal node in the tree represents
a contiguous interval covering all leaf nodes in its subtree. As a special case, we can
think of the leaf nodes as representing intervals of size 1. For each node in the tree, we
also use the term block to refer to the contiguous interval represented by the node.

Intuitively, the aggregator and users would simultaneously perform the BA Scheme
for every interval (or block) appearing in the binary tree. Hence, the aggregator would
obtain an estimated sum for each of these blocks. Normally, when n is a power of
2, the aggregator could simply output the block estimate for the entire range [1, n].
However, imagine if a user i fails to respond, the aggregator would then fail to obtain
block estimates for any block containing i, including the block estimate for the entire
range [1, n].
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Fortunately, observe that any contiguous interval within [n] can be covered by
O(log n) nodes in the binary interval tree. If κ users have failed, the numbers 1 through
n would be divided into κ + 1 contiguous intervals, each of which can be covered by
O(log n) nodes. This means that the aggregator can estimate the sum of the remaining
users by summing up O((κ+ 1) logn) block estimates.

Example. For convenience, we use the notation sum[i..j] (where 1 ≤ i ≤ j ≤ n)
to denote the estimated sum for the block xi, xi+1, . . . , xj of user inputs. Figure 1
depicts a binary tree of size n = 8. When all users are active, the aggregator can obtain
block estimates corresponding to all nodes in the tree. Therefore, the aggregator can
simply output block estimate sum[1..8]. Figure 1 illustrates the case when user 5 has
failed. When this happens, the aggregator fails to obtain the block estimates sum[5..5],
sum[5..6], sum[5..8], and sum[1..8], since these blocks contain user 5. However, the
aggregator can still estimate the sum of the remaining users by summing up the block
estimates corresponding to the black nodes in the tree, namely, sum[1..4], sum[6..6],
and sum[7..8].

Privacy-Utility Tradeoff. We now give a quick and informal analysis of the privacy-
utility tradeoff. It is not hard to see that each user is contained in at most O(log n)
blocks. This means that if a user’s bit is flipped, O(log n) blocks would be influenced.
Roughly speaking, to satisfy ε-differential privacy, it suffices to add noise proportional
to O( log n

ε ) to each block.
If κ users fail, we would be left with κ + 1 intervals. Each interval can be covered

by O(log n) nodes in the binary tree. Therefore, the final estimate would consist of
O((κ + 1) logn) block estimates. Since each block estimate contains O( log n

ε ) noise,
the final estimate would contain O((κ + 1) logn) copies of such noises. As some pos-
itive and negative noises cancel out, the final estimate would contain noise of roughly

O( (log n)1.5
√
κ+1

ε ) magnitude.

In the remainder of the section, we first give a formal description of the BA Scheme [14]
used as a building block of the Binary Protocol. Then we formally describe the Binary
Protocol and state the theorems on the privacy and utility tradeoff.

4.2 Background: Basic Block Construction

We will use the BA Scheme [14] as a building block to aggregate the sum for each block
(or subset) B ⊆ [n] of users. We now explain at a high level how the BA scheme works.
Note that in place of the BA scheme by Shi et al. [14], the binary tree framework also
readily applies on top of the scheme by Rastogi et al. [13]. The tradeoffs are discussed
later in Section 5.

Encryption Scheme. The BA Scheme leverages an encryption scheme that allows an
aggregator to decrypt the sum of all users’ encrypted values (with an appropriate cryp-
tographic capability), but learn nothing more. The encryption scheme has three (possi-
bly randomized) algorithms.
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– Setup(m,λ): A one-time setup algorithm, run by a trusted dealer, takes the number
of users m, and a security parameter λ as inputs. It outputs the following:

(params, cap, {ski}i∈[m]),

where params are system parameters, e.g., a description of the selected algebraic
group. Capability cap is distributed to the aggregator, and ski (i ∈ [m]) is a secret
key distributed to user i. The users will later use their secret keys to encrypt, and
the aggregator will use its capability to decrypt the sum, in each aggregation period.
The setup algorithm is performed only once at system initialization, and need not
be repeated for each periodic aggregation round.

– Encrypt(ski, xi, t): During time step t, user i uses ski to encrypt its (possibly per-
turbed) data xi. The user uploads the outcome ciphertext ci to the aggregator.

– Decrypt(cap, {ci}i∈[m], t): During time step t, after the aggregator collects all users’
ciphertexts {ci}i∈[m], it calls the decryption algorithm Decrypt to retrieve the sum∑

i∈[m] xi. Apart from this sum, the aggregator is unable to learn anything else.

The BA scheme relies on the following key idea. In the Setup phase, each user i
(1 ≤ i ≤ m) obtains a secret-key which incorporates a random value ri. The ag-
gregator obtains a capability which incorporates a random value r. Furthermore, the
condition r +

∑m
i=1 ri = 0 is satisfied. In every aggregation period, each user incorpo-

rates its random value ri into its ciphertext. After collecting all ciphertexts from users,
the aggregator can homomorphically “sum up” all ciphertexts, such that the random
values r, r1, . . . , rm cancel out, and the aggregator can thus decrypt the sum of all
users’ encrypted values. The above is a grossly simplied view of the BA scheme in-
tended to capture the intuition. The full construction is more sophisticated, and requires
additional techniques to allow the random values distributed in the Setup phase to be
reusable in multiple aggregation phases, while still maintaining security.

Input Perturbation. Revealing the exact sum to the aggregator can still harm an in-
dividual’s differential privacy. To guarantee differential privacy, each user adds some
noise to her data before encrypting it.

Recall that in the naive scheme, each user must add one copy of geometric noise to
guarantee its own differential privacy. In the BA Scheme, however, the aggregator can
only decrypt the sum, and cannot learn each individual’s perturbed values. Therefore,
as long as the all users’ noises sum up to roughly one copy of geometric noise, each
user’s differential privacy can be guaranteed. This is why the BA Scheme construction
can guarantee O(1) error.

Let ε, δ denote the privacy parameters. In every time step t, each user i generates
an independent ri from the diluted geometric distribution Geomβ(α) and computes
x̂i := xi + ri. In other words, with probability β, the noise ri is generated from the
geometric distribution Geom(α), and with probability 1− β, ri is set to 0. Specifically,
we choose α := eε, and β := min{ 1

m ln 1
δ , 1}. This ensures that with high probability,

at least one user has added Geom(eε) noise. More generally, if 1 − γ fraction of the
users are compromised, then we set β := min( 1

γm ln 1
δ , 1).

The user then computes the ciphertext ci := Encrypt(ski, x̂i, t), where x̂i is the
purtubed data, and uploads the ciphertext to the aggregator.
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SETUP(n, λ, ε, δ): # run by a trusted dealer
1: K ← �log2 n�+ 1
2: ε0 ← ε

K
, δ0 ← δ

K

3: Give ε0 and δ0 to all users.
4: for B ∈ T (n) do
5: (params, capB , {ski,B}i∈B) ←

BA.Setup(|B|, λ)
6: Give params to aggregator and all users.
7: Give capB to the aggregator.
8: Give ski,B and |B| to each user i ∈ B.
9: end for

ALGUSER
`
xi, t,B(i), {ski,B}i∈B(i), ε0, δ0

´
:

# Periodic aggregation – user i’s algorithm
1: for B ∈ B(i) do
2: β ← min( 1

|B| ln 1
δ0

, 1)

3: r ← Geomβ(eε0)
4: bxi,B ← xi + r
5: ci,B ← BA.Encrypt(ski,B , bxi,B , t)
6: Send ci,B to aggregator.
7: end for

ALGAGGR
`
S, {capB}B∈T (n), {ci,B}i∈S,B∈B(i)

´
:

# Periodic aggregation – the aggregator’s
algorthm
1: Find a set of blocks B to uniquely cover S.
2: s← 0
3: for B ∈ B do
4: sB ← BA.Decrypt(capB , {ci,B}i∈B)
5: s← s + sB

6: end for
7: return the estimated sum s

λ security parameter
n total number of users
t current round
xi user i’s data in current round

T (n)
set of all blocks corresponding to
nodes in a binary tree of size n

ε, δ privacy parameters
ski,B user i’s secret key for block B

where i ∈ B

capB aggregator’s capability for block B

S set of functioning users
in current round

B(i)
B(i) := {B|B ∈ T (n) and i ∈ B}

set of blocks containing user i

Fig. 2. The Binary Protocol

Theorem 1 (Computational Differential Privacy of BA). Let ε > 0, 0 < δ < 1 and
β := min{ 1

γm ln 1
δ , 1}, where γ is the probability that each user remains uncompro-

mised. If each user adds diluted Geometric noise Geomβ(α) (where α = eε), then at
each time step, the Block Aggregation Scheme is computationally (ε, δ)-differentially
private against compromised users.

4.3 Binary Protocol: Construction

The Binary Protocol consists of running the BA Scheme over a collection of blocks
simultaneously. Specifically, if n is a power of 2, then one can build a binary interval
tree of the n users such as in Figure 1(a). Each node in the tree represents a contiguous
interval, which we call a block. The aggregator and users would run the BA Scheme for
all blocks depicted in the interval tree. It is not hard to see that each user i is contained
in at most K := �log2 n� + 1 blocks, represented by nodes on the path from the i-th
leaf node to the root of the tree.

We now state the above description more formally. Given integers k ≥ 0 and j ≥ 1,
the jth block of rank k is the subset Bk

j := {2k(j − 1) + l : 1 ≤ l ≤ 2k} of integers. If
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there are n users, we only need to consider the blocks Bk
j such that Bk

j ⊆ [n]. Define
T (n) to be the set of all relevant blocks when there are n users.

T (n) := {Bk
j |k ≥ 0, j ≥ 1, Bk

j ⊆ [n]}

Specifically, when n is a power of 2, T (n) basically corresponds to the collection of
all nodes in the binary interval tree with n leaf nodes. It is not hard to see that the total
number of blocks is at most 2n. The following observations will be important in the
design of the Binary Protocol.

Observation 1. Each user i ∈ [n] is contained in at most K := �log2 n� + 1 blocks.
In particular, each user is in at most one block of rank k.

Setup Phase. Like in the BA Scheme, a one-time trusted setup is performed at system
initialization. A trusted dealer distributes O(log n) secret keys to each user. In partic-
ular, each user i ∈ [n] obtains one secret key corresponding to each block containing
the user (i.e., the path from the i-th leaf node to the root). We use the notation ski,B to
denote user i’s secret key corresponding to the block B.

For each block B ∈ T (n), the trusted dealer issues a capability capB to the aggre-
gator. The aggregator thus receives O(n) capabilities. The parties also agree on other
system parameters including the privacy parameters (ε, δ).

Periodic Aggregation: User Algorithm. In each time step t ∈ [n], each user i performs
the following:

For each block B containing the user i, the user generates a fresh random noise r
from the diluted geometric distribution Geomβ(eε0), where the choice of parameters
β and ε0 will be explained later. The user adds the noise ri,B to her input bit xi, and
obtains x̂i,B := xi + ri,B . The user then encrypts x̂i,B using ski,B , i.e., her secret key
corresponding to the block B. Specifically, user i computes

ci,B := BA.Encrypt(ski,B , x̂i,B, t)

The final ciphertext ci uploaded to the aggregator is the collection of all ciphertexts,
one corresponding to each block containing the user i.

ci := {ci,B|B ∈ T (n), i ∈ B}

As each user is contained in O(log n) blocks, the ciphertext size is also O(log n).

Parameter Choices. Suppose we wish to guarantee computational (ε, δ)-differential
privacy for the Binary Protocol, where (ε, δ) are parameters agreed upon by all parties
in the setup phase. Each user needs to determine the parameters ε0 and β when generat-
ing a noise from the diluted geometric distribution Geomβ(eε0). Specifically, each user
chooses ε0 := ε

K , where K := �log2 n�+1. When selecting noise for a block B of size
|B|, the user selects an appropriate β := min{ 1

|B| ln
1
δ0
, 1}, where δ0 = δ

K . Notice that
due to Theorem 1, the above choice of ε0 and β ensures that each separate copy of the
BA Scheme satisfies computational (ε0, δ0)-differential privacy. This fact is used later
to analyze the differential privacy of the entire Binary Protocol.
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Intuitively, using the diluted geometric distribution, each user effectively adds a ge-
ometric noise with probability β, and adds 0 noise with probability 1 − β. Notice that
β is smaller if the block size is bigger, since we wish to guarantee that at least one user
added a real geometric noise.

More generally, if each user may be compromised with independent probability 1−γ,
then each (uncompromised) user would choose ε0 := ε

K , and β := 1
γ|B| ln

1
δ0

for a

block B whose size is |B|, where δ0 := δ
K .

Periodic Aggregation: Aggregator Algorithm. Suppose 0 ≤ κ < n users have failed
to respond. Then the entire range [n] would be divided up into κ+1 contiguous interval.
The aggregator will recover the noisy sum for each of these intervals, and the sum of
these will be the estimate of the total sum.

It suffices to describe how to recover the noisy sum for each of these contiguous
intervals. An important observation is that each contiguous interval within [n] can be
covered uniquely by O(log2 n) blocks. This is stated more formally in the following
observation.

Observation 2 (Unique cover for a contiguous interval). Let [s, t] denote a contigu-
ous interval of integers within [n], where 1 ≤ s ≤ t ≤ n. We say that [s, t] can be
covered uniquely by a set of blocks B ⊆ T (n), if every integer in [s, t] appears in ex-
actly one block in B. For any interval [s, t] ⊆ [n], it is computationally easy to find set
of at most 2 �log2 n�+ 1 blocks that uniquely cover [s, t].

Therefore, to recover the noisy sum for an interval [s, t] ⊆ [n], the aggregator first finds
a set of blocksB to uniquely cover [s, t]. Then, the aggregator decrypts the noisy sum for
each block B ∈ B by calling the decryption algorithm: BA.Decrypt(capB, {ci,B}i∈B).
The sum of all these block estimates is an estimate of the total sum.

One possible optimization for decryption is to leverage the homomorphic property
of the BA Scheme [14]. Instead of decrypting each individual block estimates, the ag-
gregator can rely on the homomorphic property to compute an encryption of the sum
of all block estimates. In this way, only one decryption operation is required to decrypt
the estimated sum. As mentioned in Section 4.7 decryption takes O(n) time using the
brute-force approach, and O(

√
n) time using Pollard’s Rho method.

This concludes the description of our Binary Protocol. Earlier in Section 4.1, we
explained the intuition of the above Binary Protocol with a small-sized example. In the
remainder of this section, we will focus on the privacy and utility analysis.

4.4 Theoretic Guarantees

Theorem 2 below states that our Binary Protocol satisfies computational (ε, δ)-

differential privacy, and achieves an error bound of Õ( (log n)1.5

ε

√
κ+1
γ ) with high prob-

ability (hiding a log logn factor and δ, η parameters). Here κ is the number of failed
users, and γ is the fraction of users that remain uncompromised.

The intuition behind the proof was explained earlier in Section 4.1. Due to space
constraint, we defer the full proof of this theorem to the online full version [2].
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Theorem 2 (Error Bound with κ-Failed Users). Let ε > 0 and 0 < δ < 1. Sup-
pose each of the n users remains uncompromised independently with probability γ.
Then, the Binary Protocol can be run such that it is computationally (ε, δ)-differentially
private. Moreover, when there are κ failed users, for 0 < η < 1 subject to some
technical condition2, with probability at least 1 − η, the aggregator can estimate the

sum of the participating users’ bits with additive error at most O( (log n)1.5

ε ·
√

κ+1
γ ·√

(log logn+ log 1
δ ) log

1
η ).

4.5 Dynamic Joins

First, imagine that the system knows beforehand an upper-bound n = 2K on the total
number of users – if n is not a power of 2, assume we round it up to the nearest power of
2. We will later discuss the case when more than n users actually join. In this case, when
a new user i joins, it needs to contact the trusted dealer and obtain a secret key ski,B for
every block B ∈ T (n) that contains i. However, existing users need not be notified. In
this case, the trusted dealer must be available to register newly joined users, but need
not be online for the periodic aggregation phases. The trusted dealer may permanently
erase a user’s secret key (or the aggregator’s capability) after its issuance.

What happens if more users join than the anticipated number n = 2K? We propose
2 strategies below.

Key Updates at Every Power of Two. When the number of users exceeds the budget
n = 2K , the trusted dealer sets the new budget to be n′ := 2K+1, and issues new
keys and capabilities to the users and aggregator as follows. For every new block B that
forms in T (n′) but is not in T (n), a new secret key (or capaiblity) needs to be issued to
every user contained in B (and the aggregator). Notice that the secret keys for existing
blocks in T (n) need not be updated. In this way, each existing user obtains one addi-
tional secret key, the newly joined user obtains O(log n) secret keys, and the aggregator
obtains O(n) capabilities. Notice that such key updates happen fairly infrequently, i.e.,
every time the number of users reach the next power of 2.

Allocate a New Tree. When the number of users reach the next power 2K of two, the
trusted dealer allocates a new tree of size 2K . For every block in the new tree, the trusted
dealer issues a capability to the aggregator corresponding to that block. For the next 2K

users that join the system, each user is issued O(K) secret keys corresponding to blocks
in the new tree. Hence, the sizes of the trees are 1, 1, 2, 4, 8, ... and so on.

When the aggregator estimates the sum, it will simply sum up the estimate cor-
responding to each tree. Suppose the number of current users is n. Then, there are
O(log n) such trees. A straightforward calculation shows that the additive error made

by the aggregator will be Õ( (logn)3

ε ) with high probability.
The advantage of this approach is that only the aggregator needs to be notified when

the number of users changes. The existing users need not be notified. Therefore, this

2 The following condition is satisfied certainly when n is large enough: (κ+1) log2 n

γ
ln log2 n

δ
≥

exp( ε
log2 n

) ln 2
η

.
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approach is particularly suited when making push notifications to users may be difficult
(e.g., when users are frequently offline).

4.6 Dynamic Leaves

When a user leaves, that user can be treated as permanently failed. As mentioned in
Theorem 2, the estimation error grows only sub-linearly in the number of absent users.

For reduced error and higher utility, sometimes we may consider repeating the setup
phase when too many users have left. The application designer can make this choice to
fit the characteristics and requirements of the specific application.

4.7 Practical Performance

Consider a scenario with n � 10, 000 users. The Binary Protocol leverages the BA
Scheme scheme proposed by Shi et al. [14]. According to their performance esti-
mates [14], each encryption takes about 0.6 ms on a modern computer, when we use
high-speed elliptic curves such as “curve25519”. When n � 10, 000, each user needs
to perform roughly �log2 n� + 1 = 14 encryptions. Therefore, a user’s computation
overhead is roughly 8 ∼ 9 ms on a modern computer.

Decryption of the underlying BA Scheme requires taking a discrete logarithm. The
brute-force method involves enumerating the plaintext space. It takes one modular ex-
ponentiation, roughly 0.3 ms to try each possible plaintext. With n = 10, 000 users, our
simulation shows that the additive error is under 500 with > 99% probability (when
ε = 0.5, δ = 0.05, and in the absence of failures). Therefore, the brute-force method
takes on average 1.5 seconds to decrypt the sum. We can speed up decryption signifi-
cantly using one of the following methods: 1) Use Pollard’s Rho method, which reduces
the decryption overhead to about

√
n+ o(n). 2) Exploit parallelism. The brute-force

method is trivially parallelizable, and particularly suited for modern clusters such as
MapReduce or Hadoop.

5 Discussions

Faster Decryption. One limitation of the proposed scheme is that the decryption time
is O(

√
n) using Pollard’s Rho method. As a result, we need the plaintext space to be

polynomially sized. While Sections 4.3 and 4.7 have proposed some methods to make
decryption faster in practice, we also point out that another method would be to replace
the encryption scheme entirely with the encryption scheme used by Rastogi et al. [13].
Basically, the binary tree method can be regarded as a generic approach which can
be applied on top of both the works by Rastogi et al. [13] and Shi et al. [14]. If we
use the scheme by Rastogi et al. [13] as a building block, we remove the constraint of
polynomially-sized plaintext space, at the cost of introducing interactions between the
users and the server (however, still, no peer-to-peer interaction would be needed).

Operations in an Algebraic Group. Due to the use of cryptography, integer additions
are in fact performed in a discrete mathematical group of prime order p, which is needed
by the encryption algorithm in the BA Scheme. Our error analysis also guarantees that
with high probability, no integer overflow or underflow will happen.
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6 Conclusion

We investigated how an untrusted aggregator can learn aggregate statistics about a group
of users without harming each individual’s privacy. Our construction addresses fault tol-
erance, a question left open by earlier works in this area [13,14]. Our construction is de-
sirable in the sense that it requires no peer-to-peer communication (unlike the traditional
approach of Secure Multi-Party Computation), and achieves high utility guarantees.
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Abstract. In this paper we are interested in privacy preserving discre-
tionary access control (DAC) for outsourced storage such as increasingly
popular cloud storage services. Our main goal is to enable clients, who
outsource data items, to delegate permissions (read, write, delete) to
other clients such that clients are able to unlinkably and anonymously
perform operations on outsourced data items when holding adequate per-
mission. In contrast to recent approaches based on oblivious RAM, obliv-
ious transfer combined with anonymous credentials or attribute based
encryption, we propose a solution based on dynamic accumulators. In
doing so, our approach naturally reflects the concept of access control
lists (ACLs), which are a popular means to implement DAC.

1 Introduction

Ensuring confidentiality, integrity and authenticity when outsourcing organiza-
tional data(bases) to untrusted third parties has been a research topic for many
years [7,10,12]. With the growing popularity of cloud computing, security in dis-
tributed access to data outsourced by “ordinary users” becomes also relevant.
This is underpinned by the fact that so called cloud storage services increasingly
gain in popularity. Besides confidentiality issues, i.e. for many types of data it
may be valuable that the cloud provider (CP) solely has access to encrypted data
but is still able to perform operations like searches on encrypted data [11], many
recent works focus on more subtle privacy issues, i.e. unlinkable and potentially
anonymous access to and operations on data stored in the cloud [3,4,9,13,14].

Some works [3,4,8] thereby focus on mandatory access control (MAC), i.e. ac-
cess control policies for stored data are specified by the cloud provider, and others
[9,14] on discretionary access control (DAC). In the latter scenario, clients can
store data in the cloud and delegate access permissions to other clients - thereby
specifying access control on their own - without the CP being able to determine
who is sharing with whom, link operations (reads, writes) of clients together and
to identify the users. Nevertheless, the CP can be sure that access control is
enforced, i.e. clients need to have adequate permissions for the data.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 215–222, 2012.
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Our Contribution. In the DAC setting, the access control in a system is en-
forced by a trusted reference monitor. A commonly used approach is to employ
access control lists (ACLs), whereas every data item has its associated ACL
representing a list of users with their corresponding permissions which can be
modified dynamically. Thus, data owners can add or remove other users and their
permissions to or from an ACL. A user who wants to perform an operation on a
data item has to authenticate to the system and the reference monitor decides
(using the corresponding ACL) whether he is allowed to perform the operation.
It is straightforward to use pseudonyms in ACLs to hide the real identities of
users in this setting. However, all operations of a user within the system can be
linked to the user’s pseudonym and achieving unlinkability is not that straight-
forward. We solve this problem and basically our approach is to stick with ACLs,
but to “modify” ACLs in a way that the reference monitor 1) can still decide
if a user is allowed to perform the operation, 2) users can delegate/revoke ac-
cess rights to/from other users but 3) the reference monitor (CP) is not able to
identify users as well as link operations conducted by users together.

We provide two solutions to this problem. The first solutions has the drawback
that convincing the “reference monitor” of holding the respective permission
has proof complexity O(k), where k is the number of authorized users. The
key idea is to have one ACL for every type of permission and data item and
the ACL contains commitments to “pseudonyms”. A user essentially proves to
the “reference monitor” that he possesses one valid pseudonym in the ACL
without revealing which one. The second approach reduces the proof complexity
to O(1) and uses a similar idea, whereas ACLs are represented by cryptographic
accumulators [1]. A cryptographic accumulator allows to represent a set by a
single value (the accumulator) whose size is independent of the size of the set. For
every accumulated value of this set one can compute a witness and having this
witness one can prove in zero-knowledge that one holds a witness corresponding
to one accumulated value without revealing which one. Dynamic accumulators
[6] in addition allow an efficient update of an accumulator by adding elements
to (and possibly deleting elements from) it along with efficient update of the
remaining witnesses. In particular, our second construction relies on a dynamic
accumulator with efficient updates proposed by Camenisch et al. in [5], whereas
efficient updates mean that witnesses can be updated without the knowledge of
accumulator-related secret information by any party.

2 Related Work and Background

In this section we briefly present three different approaches bearing some sim-
ilarities with the one proposed in this paper, but employing entirely different
building blocks. Then, we present the concept of dynamic accumulators.

Anonymous Credentials. Camenisch et al. [3,4] use anonymous credentials
within oblivious transfer protocols to access items from a database at a server.
Thereby, the server defines the access control policies but neither learns which
items a user accesses nor which attributes or roles the user has. Still, he is able to
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enforce access control. An approach supporting complex access control policies
such as the Brewer-Nash or the Bell-LaPadula model based on oblivious transfer
and so called stateful anonymous credentials is proposed in [8].

Oblivious RAM. In [9], Franz et al. present an oblivious RAM (ORAM) based
approach, which enables an owner of a database to outsource the database to an
untrusted storage service. Thereby, the data owner can delegate read and write
permissions to clients and clients can only perform operations on data items
when they possess appropriate permissions. A key feature of their so called del-
egated ORAM solution is that the storage service does not learn how often data
items are accessed by a user while access control is still enforced. Additionally,
their approach employs symmetric encryption to provide data confidentiality.
However, revocation of access rights is not explicitly realized. They propose to
encrypt data items with a fresh key and to use broadcast encryption to distribute
the key amongst all remaining authorized clients, which is rather involved.

Attribute Based Encryption. Very recently Zarandioon et al. [14] introduced
K2C, an approach for hierarchical (file system like) cryptographic cloud storage,
which can be implemented (like the approach presented here) on top of exist-
ing cloud services like Amazon S31. Here, clients can organize their encrypted
data items hierarchically at an untrusted storage provider and delegate read

and write permissions to other clients. The approach is based on key-policy
attribute based encryption (KP-ABE) and signatures from KP-ABE to provide
anonymous access. Although quite elegant, the revocation of permissions in this
approach, as above, requires re-encryption of data items w.r.t. updated policies
and distribution of respective keys to all remaining authorized clients.

Re-encryption (even when using lazy revocation on write accesses) is a cumber-
some task and we avoid this by guaranteeing that revoked clients will no longer
be able to even read data items, since they will not be able to successfully pass
the prove protocol with the “reference monitor” at the CP any longer.

Dynamic Accumulator with Efficient Updates. In our construction we
make use of a dynamic accumulator with efficient updates introduced in [5].
Accumulatable values are in the set {1, . . . , n}, by V we denote the set of val-
ues contained in the accumulator, Vw represents status information about the
accumulator, stateU are state information containing some parameters for the
accumulator and the set U represents all elements that were ever accumulated.
We provide an abstract definition below (see [5] for technical details):

AccGen(1k, n) generates an accumulator key pair (sk, pk), an initially empty
accumulator acc∅, which is capable of accumulating up to n values, and an
initial state state∅.

AccAdd(sk, i, accV , stateU ) adds value i to the accumulator accV and outputs a
new accumulator accV ∪{i}, a state stateU∪{i} and a witness witi for value i.

AccUpdate(pk, V, stateU ) outputs an accumulator accV for values V ⊂ U .

1 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/
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AccWitUpdate(pk, witi, Vw, accV , V, stateU ) outputs a witness wit′i for accV if
witi was a witness for accVw and i ∈ V .

AccVerify(pk, i, witi, accV ) verifies whether i ∈ V using an actual witness witi
and accumulator accV . If this holds it outputs accept otherwise reject.

Note that the AccVerify algorithm among other parameters gets (i, witi)
2 and

thus knows who “proves” that his corresponding value i was indeed accumulated.
Fortunately, dynamic accumulators are usually designed having in mind that
they should come along with efficient proofs to prove in zero-knowledge that a
value was accumulated without revealing the value itself.

ZKP of Accumulated Value. Camenisch et al. [5] provide an elegant and
efficient ZKP for accumulated values. Therefore, instead of signing the values
i using an arbitrary signature scheme, one uses a variant of the weakly secure
Boneh-Boyen signature scheme [2] (therefore the AccAdd algorithm has to be
modified accordingly [5]). This in combination with a randomization technique
allows a user to provide a proof of knowledge (PK) of a randomization value
that allows to de-randomize a commitment to value i such that i was signed
and i is accumulated in accV . The PK can be made non-interactive using the
Fiat-Shamir heuristic, whereas the corresponding signature of knowledge will
be denoted as spk. Thus, we can modify the AccVerify algorithm to take input
parameters (pk, spk, accV ) and this allows for verification without the necessity
of revealing the value i and the witness witi.

3 Implementing DAC with Unlinkable Access

In this section we present the model, a first (rather inefficient) construction and
a detailed description of our main construction. Then, we comment on some
aspects and briefly argue about the security.

Model. Let CP be a cloud provider who runs a cloud storage service, which
allows clients C = {c1, . . . , cn} to store (outsource), retrieve and manipulate
data items. Clients access data via a very simple interface as it is quite common
in block oriented cloud storage services such as Amazon S3, i.e. storing key-value
pairs and supporting the operations insert, read, write and delete. Now, the
owner of a data item (the client who inserts the data into the cloud storage)
should be able to delegate the permissions read, write and delete (r,w and
d for short) for single data items to other clients and can also revoke all these
permissions whenever necessary.

One main design goal is, that the CP “enforces” the access control, i.e. only
allows an operation if the client is able to prove the possession of the respective
permission, but at the same time is not able to link different operations of the
clients together. Additionally, clients may also stay anonymous as we will dis-
cuss later on and will be clear from our construction. We assume that a client
can establish a secure communication channel to an owner of data items and vice

2 When instantiating the accumulator scheme of [5] the values i are actually group
elements gi and can either be made public or the values gi||i are signed.
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versa (for instance by sharing encrypted messages via Amazon’s Simple Queue
Service). Furthermore, we assume the CP to represent an honest but curious
(passive) adversary and that the CP does not collude with clients.

A First Approach. To provide a better understanding, we begin with a first
approach: Consider a data owner cm, who wants to insert a data item di at CP.
He generates a key pair (skdi , pkdi) of a signature scheme and chooses suitable
random values sm,i,r, rm,i,r, sm,i,w, rm,i,w and sm,i,d, rm,i,d for an uncondition-
ally hiding commitment scheme, i.e. Pedersen commitments. He computes the
commitments cm,i,r = C(sm,i,r, rm,i,r) as well as cm,i,w and cm,i,d and signs ev-
ery single commitment using skdi . Then he sends di, the verification key pkdi

along with the commitments and respective signatures to CP. CP checks whether
the single signatures are valid and creates three empty ACLs, ACLdi,r, ACLdi,w

and ACLdi,d for r, w and d permissions respectively and adds the commitments
to the corresponding ACLs.

If cm wants to delegate a permission to another client cj for data item di,
he simply chooses new random values sj,i,x, rj,i,x for permission x ∈ {r, w, d},
computes and signs the commitments and requests CP to add the commitments
to the respective ACLs (who accepts this if the signatures are valid). Then, he
gives (sj,i,x, rj,i,x) as well as the parameters for the commitment scheme to cj .

Assume a user wants to perform a r operation for data item di, then he
has to retrieve the respective ACL ACLdi,r (which we assume has k entries)
and perform an OR-composition of a ZKP of the opening of a commitment, i.e.
PK{(α, β) :

∨k
l=1(cl,i,x = C(α, β))}. This proof is an efficient OR-composition of

DL-representation proofs in case of Pedersen commitments, can easily be made
non-interactive and succeeds if cj knows at least one opening for a commitment
in ACLdi,r. If the verification of this proof succeeds, CP can allow the r op-
eration for data item di, but is not able to identify cj . Nor is CP able to link
different operations of cj together due to employing zero-knowledge OR-proofs.
Obviously, if there is only a single commitment in the ACL, then there will be no
unlinkability. However, it is straightforward for the data owner to initially insert
some dummy commitments into the ACLs, which will provide unlinkability - the
CP cannot distinguish between such dummies and real users.

In order to revoke permission x for dj for client cj , the data owner simply
provides the opening information of the commitment (sj,i,x, rj,i,x) along with
the signature for the respective commitment to the CP. Then, the CP computes
the commitment, checks the signature and if the verification holds removes the
commitment from ACLdi,x.

Our Main Construction. The above presented approach is very simple, but
has some drawbacks. Let k be the number of clients in an ACL, then 1) the
representation of every ACL has size O(k), 2) clients have to retrieve k commit-
ments prior to every operation and most importantly 3) the proof complexity
of client’s OR-proofs is O(k). In contrast, within the approach presented below
all these complexities are O(1) and thus independent of the number of clients.
Before going into details, we provide an abstract description of the operations.
The additional input paramsAcc will be discussed subsequently.
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Store(idi, di): The owner of data item di identified by idi stores (idi, di) at CP.
Delegate(cj, idi, per, paramsAcc): Delegate permission per ∈ {r, w, d} for data

item identified by idi to client cj .
Revoke(cj, idi, per, paramsAcc): Revoke permission per ∈ {r, w, d} for data item

identified by idi for client cj .
Read(idi, paramsAcc): Read data item di identified by idi. If the client holds the

corresponding permission, di will be delivered, otherwise return ⊥.
Write(idi, d

′
i, paramsAcc): Modify data item di identified by idi to d′i. If the client

has the corresponding permission, d′i will be written, otherwise return ⊥.
Delete(idi, paramsAcc): Delete data item di identified by idi. If the client has the

corresponding permission, di will be deleted, otherwise return ⊥.

Below, we provide a more detailed description of the operations involved in our
construction and the meaning of the parameters paramsAcc:

Store. A data owner who wants to insert (idi, di) at the CP needs to specify
the maximum numbers of clients for every permission. Let us assume that he
sets this number for r, w and d to n. Then he runs AccGen(1k, n) three times
and obtains (skdi,x, pkdi,x, acc∅,di,x, state∅,di,x) for x ∈ {r, w, d} and adds him-
self (represented by value 1, the first accumulatable value) to all accumulators
by running AccAdd(skdi,x, 1, acc∅,di,x, state∅,di,x) and sends (idi, di) along with
(pkdi,x, acc{1},di,x, state{1},di,x) and bookkeeping information Vdi , Vw,di to the
CP. He stores skdi,x, the witnesses wit1,di,x and Vdi , Vw,di.

Delegate. A data owner who wants to delegate permission x ∈ {r, w, d} for data
item di to client cj proceeds as follows: He parses paramsAcc (which can be
retrieved from CP) as (pkdi,x, accV,di,x, stateU,di,x). Using stateU,di,x he deter-
mines a value z not already accumulated and obtains the updated accumulator
accV ∪{z},di,x, updated state information stateU∪{z},di,x and a witness witz,di,x

by running AccAdd(skdi,x, z, accV,di,x, stateU,di,x). The data owner securely com-
municates (z, witz,di,x) to client cj and stores the signature part of witz,di,x for
revocation purposes. Then, he sends (accV,di,x, stateU,di,x) along with updated
bookkeeping information to the CP.

Revoke. A data owner who wants to revoke permission x ∈ {r, w, d} for data
item di and client cj proceeds as follows: The data owner parses paramsAcc as
z, where z represents the value accumulated for cj in accV,di,x. Then he sends z
along with the signature for the corresponding witness to CP, who checks the sig-
nature. If the verification holds, CP runs AccUpdate(pkdi,x, V \ {z}, stateU,di,x)
and stores the resulting accumulator accV \{z},di,x, otherwise CP terminates.

Read/Write/Delete. A client who wants to perform operation x ∈ {r, w, d} for
data item di first parses paramsAcc as (pkdi,x, witdi,x, Vw, accV,di,x, V, stateU,di,x).
Then he has to check whether the accumulator accV,di,x has changed, i.e. a new
client was added or a client was revoked. If this is the case, the user has to
run AccWitUpdate(pkdi,x, witdi,x, Vw, accV,di,x, V, stateU,di,x) to compute the up-
dated witness wit′di,x

. Then, he uses the actual witness to compute a signature of
knowledge spk to prove that the value corresponding to the witness was accumu-
lated. He then sends spk to CP and the CP runs AccVerify(pkdi,x, spk, accV,di,x).
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If it returns accept, then CP depending on the operation either delivers di to the
client (read), overwrites di with d′i provided by the client (write) or deletes di
along with corresponding accumulators and bookkeeping information (delete)
and terminates otherwise.

Remark. Delegate and Revoke operations need to be authorized, since otherwise
“ACLs” could be maliciously manipulated. We have omitted this above, but this
can be efficiently realized by signing the values sent to the CP at the end of the
two above mentioned operations. For the sake of convenience and efficiency, the
data owner can use the Boneh-Boyen signature scheme whose respective keys
are part of the private and public key of the accumulator respectively.

Confidentiality and Integrity of Stored Data. When storing encrypted
data, all that data owners have to do is to additionally send the respective en-
cryption key along with the witness to the user. Note that we do not require re-
encryption (as in [9,14]) since revoked users will no longer be able to access data
items. To provide integrity verification, one can store signatures or HMACs along
with data items and distribute the keys together with the witnesses to clients.

Security Analysis. First, we consider security against malicious clients : All
clients other than the data owner do not know skdi,x. Thus they will not succeed in
producing newwitnesses, i.e. authorizing unauthorized clients, or trigger unautho-
rizedDelegate orRevoke operations to manipulate the accumulator. Consequently,
clients canonlyperformoperationsondataobjectswithpermissions theyhavebeen
granted.Secondly,weconsider securityagainst acuriousCP :TheCPdoesnot learn
the identities of clients (when they obtain a permission, they are only identified by
thevalue tobeaccumulated -which isunrelatedto their identity).Furthermore,due
to employing ZKPs in the AccVerify protocol to prove the possession of witnesses,
the respectivewitnesses and corresponding values are not disclosed. Consequently,
clients conduct operations in an unlinkable and anonymous fashion.

4 Extensions and Future Work

Hierarchical Delegation. It may be desirable to augment simple DAC in a
way that clients who have obtained permissions for some data from a data owner
are able to delegate the obtained permissions for this data to further clients on
their own. But then, data owners very likely would like to recursively revoke
granted permission. For instance, if the data owner has provided permission x
to client ci and ci has granted permission x to cj, then revoking permission x for
ci should immediately imply revoking permission x for cj. This can be realized
as follows: If the data owner wants to allow further delegation for a specific data
item, permission x and client ci, he simply gives m witnesses to this client and
remembers the corresponding values and signatures. Client ci can then delegate
m − 1 permissions x to other clients (or give other clients more witnesses for
further delegation). If the data owner revokes the permission x for client ci, then
he simply “removes” all m witnesses from the respective accumulator.

Discretionary access control is an admittedly simple but often sufficient ac-
cess control model. Especially when outsourcing data to popular cloud storage
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services, such an access control model is reasonable and can be deployed quite
easily. Due to increasing privacy demands, a mechanism - as the one proposed
in this paper - can be valuable. We leave the gathering of practical experiences
when deploying our construction in this scenario as important future work.
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Abstract. Traditional access control models often assume that the en-
tity enforcing access control policies is also the owner of data and re-
sources. This assumption no longer holds when data is outsourced to a
third-party storage provider, such as the cloud. Existing access control
solutions mainly focus on preserving confidentiality of stored data from
unauthorized access and the storage provider. However, in this setting,
access control policies as well as users’ access patterns also become pri-
vacy sensitive information that should be protected from the cloud. We
propose a two-level access control scheme that combines coarse-grained
access control enforced at the cloud, which provides acceptable com-
munication overhead and at the same time limits the information that
the cloud learns from his partial view of the access rules and the ac-
cess patterns, and fine-grained cryptographic access control enforced at
the user’s side, which provides the desired expressiveness of the access
control policies. Our solution handles both read and write access control.

1 Introduction

The emerging trend of outsourcing of data storage at third parties – “cloud stor-
age” – has recently attracted tremendous amount of attention from both research
and industry communities. Outsourced storage makes shared data and resources
much more accessible as users can retrieve them anywhere from personal com-
puters to smart phones. This alleviates data owner from the burden of data
management and leaves this task to service providers with dedicated resources
and more advanced techniques. By adopting the cloud computing solution, gov-
ernment agencies will drastically save budget and increase productivity by utiliz-
ing low-cost and maintenance-free services available on the Internet rather than
purchasing, designing and installing new IT infrastructure themselves. Similar
benefits could be realized in financial services, health care, education, etc [10].

Security remains the critical issue that concerns potential clients, especially
for the banks and government sectors. A major challenge for any comprehensive
access control solution for outsourced data is the ability to handle requests for
resources according to the specified security policies to achieve confidentiality,
and at the same time protect the users’ privacy. Several solutions have been
proposed in the past [6,8,12,13,15], but none of them considers protecting privacy
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of the policies and users’ access patterns as an essential goal. In this paper
we address these privacy requirements and propose a mechanism to achieve
a flexible level of privacy guarantee for the client. We introduce a two-level
access control model that combines fine-grained access control, which supports
the precise granularity for access rules, and coarse-grained access control, which
allows the storage provider to manage access requests while learning only limited
information from its inputs. This is achieved by arranging outsourced resources
into units called access blocks and enforcing access control at the cloud only
at the granularity of blocks. The fine-grained access control within each access
block is enforced at the user’s site and remains oblivious to the cloud. The
mapping between files and access blocks is transparent to the users in the sense
that they can submit file requests without knowing in what blocks the files
are contained. While most existing solutions [2,13,15] focus on read request, we
present a solution that provides both read and write access control.

1.1 Motivation

Traditional access control models often make an implicit assumption that the
entity enforcing access control policies is also the owner of data. However, in
many cases of distributed computing, this assumption no longer holds, and access
control policies are enforced at points which should not have direct access to the
data content itself, such as data outsourced to an untrusted third party. Hence
we need to store data in encrypted form and enforce access control over the
encrypted data. The setting of cloud computing falls into this category. The cloud
servers are considered to be honest but curious. They will follow our proposed
protocol in general, but try to find out as much information as possible based on
their inputs. Hence data confidentiality is not the only security concern. Privacy
becomes one of the major reasons that drives big companies to build their own
private cloud infrastructure rather than making use of the public cloud services.

First of all, access control policies defined by the data owner that govern who
can have access to what data become private information with respect to the
storage provider. For example, suppose that a business newspaper reports that
a secretive company has just hired a new top-level executive who has specialized
in a particular field. By watching what other organizations in the company –
perhaps first research, then development, then procurement and manufacturing
– share access groups with this executive, an observer can learn significant details
about the company’s strategy and progress. This is similar to what military
intelligence agencies do when using traffic analysis to determine an enemy’s
order of battle [7]. In fact, protecting access rules against privacy leakage is a
long-standing problem, and has been studied a lot in the past especially for
enforcing access control in databases [3]. This problem is mitigated by the use of
cryptography as an enforcement mechanism, which translates the access control
problem into the question of key management for decryption keys.

A more challenging task, that cannot be solved by data encryption alone, is
to protect data access patterns from careful observations on the inputs of the
storage provider. Even if data is stored and transferred in an encrypted format,
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traffic analysis techniques can reveal privacy sensitive information. For example,
analysis on the length of encrypted traffic could reveal certain properties of the
enclosed data; access history could disclose a particular user’s access habits and
privileges; access to the same data object from multiple users could suggest a
common interest or collaborative relationship; a ranking of data popularity can
also be built upon access requests that the cloud receives. One trivial solution
is to return all encrypted data upon any access request. However, this comes
with prohibitive communication costs for data transfer as well as storage and
computation costs for decryption at the user’s side, which rules out this obvi-
ous solution. The question of hiding access pattern is challenging while avoiding
work proportional to the total size of all stored files. There have been several
cryptographic solutions that realize the notion of oblivious RAM and manage to
achieve improved amortized complexity for queries while hiding access patterns
[4,11,1,5]. However, such solutions are highly interactive and still require com-
munication polylogarithmic in the size of the database, which in the setting of
large storage cloud providers, weak client devices and expensive network commu-
nication will not be practical (e.g., wireless network communication with limited
bandwidth). Furthermore, they assume that the user submitting the query is the
owner of all data, which does not fit into our scenario where access control is
enforced on data shared by multiple users, not limited to the data owner.

An equally important, but often overlooked, aspect of access control for out-
sourced data is to enforce the write access. Existing solutions often handle only
read requests, which is obviously impractical in a more flexible data sharing sce-
nario. For example, co-workers contribute to the same project document in a
collaborative working environment. While data encryption naturally preserves
authorization of the read access through key management, the procession of
a decryption key implies authorized read access but not necessarily the write.
Therefore, different cryptographic schemes are mandatory to manage read and
write accesses separately. Further, a full-fledged access control solution should
assume no relationship between read and write access rules (a user may have
both types of access, only one of them or none).

Therefore we summarize that a privacy-aware access control solution for data
sharing in outsourced storage needs to meet the following requirements:

1. it provides data confidentiality by implementing a fine-grained cryptographic
access control mechanism;

2. it supports practical and flexible data sharing scheme by handling both read
and write operations in the access control model;

3. it enhances data and user privacy by protecting access control rules and
access patterns from the storage provider.

2 Two-Level Access Control Model – Solution Overview

We consider the following scenario: a set of users outsource their data to a remote
storage (cloud) provider. These users further would like to be able to share
selectively some of their data among themselves. This data sharing should be
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enabled directly at the cloud through appropriate access control rules that allow
users to retrieve all data that they are authorized to access (i.e. not involving the
actual data owner). Further, the access control rules governing the data sharing
and the data that users access are private information of the users and our goal
will be to protect this information from the cloud provider.

We distinguish the following three roles in this access control model: the data
owner who creates data to be stored at the remote storage in an encrypted for-
mat and regulates who has what access to each part of the data; the data user
who may have read and write access to the protected data; the cloud provider
that stores the encrypted data and responds to access requests. While a solution
that enforces access control solely through encryption of the data and appro-
priate decryption key distribution can achieve complete privacy for the access
patterns and access control rules by allowing users to retrieve the whole en-
crypted database, such an approach will be completely impractical requiring an
enormous amount of communication. We suggest a hybrid solution that offers a
way to trade off privacy and efficiency guarantees. The basic idea behind it is to
provide two levels of access control: coarse-grained and fine-grained. The coarse-
grained level access control will be enforced explicitly by the cloud provider and
it would also represent the granularity at which he will learn the access pattern
of users. Even though the cloud provider will learn the access pattern over all
user requests, he will not be able to distinguish requests from different users,
which would come in the form of anonymous tokens. The fine-grained access
control will be enforced obliviously to the cloud through encryption and would
prevent him from differentiating requests that result in the same coarse-grained
access control decision but have different fine-grained access pattern.

We realize the above two levels of access control by introducing division of the
data resources of the same owner into units called access blocks, which would
represent the coarse-level granularity in the system. Now the cloud provider
would be able to map user requests to the respective access blocks containing
the relevant data only if the user has access to the requested data and without
learning which part of the block is accessed. The provider would also not learn
the reason for no match: missing data or no access authorization. Our solution
does not require users to know the exact access blocks that would contain the
data they are searching for. Files might be moved between different blocks, and
the only information that users would need in order to request them will be
a unique file identifier rather than the id of the current block where the file is
residing. We will enable this oblivious mapping of files to blocks using techniques
from predicate encryption and some extensions to the scheme [9]. Once a user
retrieves the content of the matching block, he would be able to decrypt only the
part of the block, which he is authorized to access. We use the ideas of [13] to
minimize the decryption keys that need to be distributed for fine-grained access
control within access blocks.

While the above suffices for read access control, handling write access control
is a little more subtle. The main issue there is that the cloud would need to allow
users to submit updates for different parts of an access block without learning
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which part are updated, and at the same time prevent users authorized to write
to one file in the block from writing to another file. In order to facilitate this
functionality the cloud provider would accept write updates for blocks only from
users that provide tokens granting them write access to some part of the block
(not revealing which part). These updates will be appended to the content of
the block but also the cloud would obliviously tag the updates with the id of the
file for which the user has been authorized, but without learning which this file
is. We achieve this functionality again through a modification of the searchable
ciphertexts in a predicate encryption scheme.

3 Read Access Control

In this section, we present in detail the two-level access control scheme for read
access only after describing the following techniques applied in our protocol.

3.1 Techniques

Fine-Grained Access Control. Fine-grained access control is applied to files
inside each access block to explicitly enforce access control rules. While the
cloud provider is able to determine whether a user submits a legitimate request
for some file within a block, he should remain oblivious to the access control rules
defined for that file. To guarantee this property the access control view presented
to the cloud treats blocks as entities, and the cloud grants a read access by
providing the content of an entire block. Fine-grained access control is enforced
by encrypting files per block under different keys, and the access control problem
is mitigated to appropriate key distribution. Even a user receives the encrypted
content of a block, he is able to decrypt only the files that he has access to. Access
revocation requires re-encryption of the resource and re-distribution of the new
key to the remaining authorized users. Our goal is to minimize the amount of
work and interaction between users and the system upon policy updates.

The work of [13] proposes an encryption-based access control solution for
outsourced data. Their key distribution is facilitated by the construction of a
public tree structure that allows each user to derive file decryption keys using
a secret, which he establishes once in the beginning. The leaf nodes in the tree
represent initial secrets distributed to users when they join the system, and the
internal nodes denote the file decryption keys derivable from leaf nodes using
public tokens along a directed path. Any update of the access control rules entails
a change in the tree. Access revocation requires re-encryption of affected files.

In our scheme, each user generates a public-private key pair, and the public
key is used by data owners as initial secret to construct trees. Hence each user
only needs to maintain one key in the system and the distribution of leaf nodes is
implicit through the asymmetric key scheme. If some resources are only accessible
by a single user, instead of encrypting files using a leaf node (i.e., the public key),
we generate a symmetric key for file encryption, which is further encrypted under
that public key to avoid expensive computation of asymmetric scheme. In that
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case, the initial secret needs to be explicitly distributed to an authorized user.
Unlike in [13], key derivation tokens have to be protected. First a user’s initial
secret is generally available to anyone in the system. More importantly, the tree
structure itself can reveal certain sensitive information to the cloud. For example,
a user having access to one file will have access to all the files along a directed
path. So the ontent of each node, a pointer to next node and the token to derive
next key are all protected under the current encryption key. Thus we can achieve
efficient key distribution without requiring any direct interaction between data
owners and users beyond some initial set-up assuming only the cloud will be
online all the time. A list of algorithms for key distribution and management are
summarized in Figure 1.

– Publish(r, o, eo, acl): adds a resource r owned by o with a secret eo and
an access control list acl = acl read(r) for read access.

– Access Read(u, r, o): returns the encryption key for a resource r owned
by o, if u is an authorized user.

– Find Chain(u, r): finds the shortest chain of tokens from the secret key
of user u to derive the decryption key for resource r.

– Compute Key(u, chain): derives the secret key for a user u given a chain
of transition tokens.

– Find Resources(u, r): finds the set of nodes that lie on any path from
the user u to the node corresponding to resource r.

– Update(r, acl): if there is another resource with the same access control
list acl, i.e., there is a node in the tree accessable exactly by a subset of
users in acl, then encrypt r with the key contained in that node. Otherwise,
encrypt r with a new key, add a new node containing this key to the tree
and add appropriate edges to connect the new node to the users who
have access to r. (Note that certain subgroups of the users in acl might
already have a shared key through another node in tree, and in that case
we connect to that node rather than all the users’ nodes separately.)

Fig. 1. Algorithms for key distribution and management for fine-grained AC

Coarse-Grained Access Control. The main goal to achieve at the level of
coarse-grained access control is to enable the cloud provider to obliviously match
a user’s request to an access block without learning which part of the block the
user is authorized to access. In addition we provide unlinkability among multiple
requests for the same resource even if coming from the same user, which further
protects users’ access patterns from the cloud provider. In order to achieve these
goals we apply the predicate encryption scheme of [9]. Observing that in this
scheme ciphertext can be re-randomized even without knowledge of the secret
key, we define a re-randomization algorithm in Definition 1.

Definition 1. A re-randomizable predicate encryption scheme consists of the
following algorithms:
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– Setup(1n): produces a master secret key SK and public parameters;
– EncSK(x): encrypts an attribute x using key SK;
– GenKeySK(f): generate a decryption key SKf associated with a function f ;
– DecSKf

(c): outputs 1 if the attribute encrypted in c = EncSK(x) satisfies f ,
i.e. f(x) = 1, and output a random value, otherwise;

– Rand(c): computes a new encryption c′ of the value encrypted in c but with
different randomness without the secret key.

We present the predicate encryption scheme of [9] and the instantiation of the
function Rand(c) for that scheme in Appendix A. This scheme handles a class of
functions f , which includes polynomials of bounded degree. We use polynomial
functions of the type f(x) = (x− id1) · · · (x− idn), to implement coarse-grained
access control. Figure 2 present a list of algorithms to enforce access control
on the block level granularity without revealing the exact files that are being
accessed insider a block. The algorithm File Access Check grants access if the
submitted access token matches any of the files in the block without revealing
the file identity. The request token produced by File Access Request is an
encryption that does not leak information about the file id it contains.

– Block Access Setup: data owner runs Setup(1n), publishes the public
parameters and keeps the master secret key SK. For files id1, . . . , idn in
each block, he computes SKf = GenKeySK(f) for f(x) = (x−id1) · · · (x−
idn) and sends SKf to the cloud provider.

– File Access Authorization: data owner provides access to a file id by
sending cid = EncSK(id) to an authorized user.

– File Access Request: user generates a token tid = Rand(cid) for file id.
– File Access Check: upon receiving a request token t, the cloud computes

DecSKf (t) for each block, and returns those blocks that compute to 1.

Fig. 2. Algorithms for enforcing coarse-grained AC at the access block level

3.2 Read Access Control

We present a read access control solution consisting of the following algorithms.
Unless explicitly stated, all the actions are performed by individual data owners.

– System Setup: At the fine-grained level, files are distributed into access
blocks. Generate a tree graph per block by running Publish(r, o, eo, acl) for
each resource r owned by o with initial ACLs, and encrypt resources using keys
from the tree graph. At the coarse-grained level, each data owner computes
parameters for a predicate encryption scheme. Then he constructs a separate tree
graph over all resources he owns to distribute authorization tokens of the form
cid = EncPK(id) (i.e., now tree nodes contain authorizations tokens rather than
file decryption keys). Finally, data owner computes a key SKf = GenKeySK(f)
per block where f is the polynomial derived from the ids of the files contained
in that block as described above, and gives this key to the cloud provider, which
will use it to obliviously check read access on authorization tokens.



230 M. Raykova, H. Zhao, and S.M. Bellovin

– Access Authorization: At the fine-grained level, add a leaf node contain-
ing the new user’s public key to the corresponding tree graph with encryption
keys. Update the graph by adding new internal nodes and appropriate edges if
necessary. Update file encryptions if new internal nodes were added previously.
At the coarse-grained level, perform similar operations with respect to the tree
graph containing read access tokens.

– Access Request: At the fine-grained level, an authorized user u derives the
decryption key from the tree graph for resource r by calling Find Chain(u, r),
Find Resources (u, r) and Compute Key(u, chain). At the coarse-grained
level, he calls the same set of functions but to query the tree graph with access
tokens and find token cid = EncSK(id) for the requested file id, and then submit
a randomized token tid = Rand(cid) to the cloud.

– Access Check: At the fine-grained level, only authorized users can derive the
correct decryption key for any file using the public tree structure. At the coarse-
grained level, the cloud provider executes File Access Check to identify the
block that contains the requested file.

– Access Rule Update: At the fine-grained level, changes are applied im-
mediately upon policy updates. If the policy update involves access revocation,
the data owner changes the encryption of corresponding files. The data owner
identifies the blocks affected by those files and updates their tree graphs with
decryption keys. The changes at the coarse-grained level happen at longer in-
tervals of time, the length of which would depend on the resources of the data
owner. They involve updating of the tree graph with access tokens.

4 Write Access Control

Enforcing write access control presents more challenges, mainly for the fact that
access control through data encryption does not apply to cases when data can be
modified. Without revealing fine-grained access control policies, it is not guar-
anteed that a user will modify only files that he is granted write access to. An
unauthorized user can overwrite and destroy data without being detected by the
cloud, regardless of whether he has the read privilege. A trivial solution is to rely
on the cloud provider to restrict the memory regions to which users may submit
changes, which however reveals to the cloud access rules and access patterns.

The approach that we adopt is to record modifications of files in new regions
of memory without overwriting previous content. The coarse-grained access con-
trol enforced by the cloud allows users to submit changes for files only if they can
demonstrate write permission for some resource in that block, without revealing
the exact content to be changed. At the fine-grained level, a public encryption
scheme is used to separate read and write privileges by providing a key pair for
each file. The only information that the cloud tags to each file change obliviously
contains implicit information on file identifier. However, using a submitted write
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authorization token directly as an update identifier will enable users with only
read access to copy and reuse it later to obtain write privilege. To prevent this
undesired situation, we take advantage of the predicate encryption ciphertexts
constituting access tokens, which allows us to use part of the token as identifier.
We generate predicate that allows users with read access to identify relevant
updates, but this identifier on its own is not sufficient to grant write access.

4.1 Techniques

File Encryption. We apply an asymmetric encryption scheme to handle all
possible combinations of read and write access to a file. Since such scheme is
computationally expensive for large size of data, file content is still encrypted
using a symmetric key (e.g., AES), which is further encrypted under the public
key. Two trees are constructed for key distribution per block – one for the public
(encryption) keys and the other for the private (decryption) keys. These two
trees share the same set of internal nodes for an one to one correspondence
between public and private key pair. Only files readable and writable by the
same set of users can share the same public key pair.

Access Authorization Tokens. Two trees are constructed by each data owner
for the distribution of read and write access tokens respectively.

File Identifiers for Write Updates. We observe that the write authorization
token is a valid encryption for a predicate encryption that provides polynomials
evaluation, and the structure of the encrypted plaintext for access to file id is a
vector of the form (1, id, id2, . . . , idn), where n is the number of files placed in
a block. The structure of the ciphertext allows it to be split into parts where
one part is an encryption of the vector (1, id, id2, . . . , idk) (k < n, n > 2),
which is no longer a valid write access token for that file, but can still be used
identify file updates for users with read privilege. This can be achieved using a
decryption predicate for a polynomial of degree k that has id as a zero point.
(See Appendix A for details.)

4.2 Integrated Read and Write Access Control

We realize the above proposal for the write access control enforcement and de-
scribe an integrated solution for both read and write access. Because of space
constraints we describe only the functionality associated with write access en-
forcement. The read access is the same as the construction in the previous section
with the exception that once a client has retrieved a block he needs to identify
both the original encryption of the file as well as all updates for that file. The
latter will be achieved using an additional key (a new part in his authorization
token) that will allow him to identify the valid updates submitted for that file.

– Setup: At the fine-grained level, construct a key distribution tree per block
based on read access rules. For each node in the tree, generate a public-private
key pair (skn, pkn), but only store the secret key skn. Construct another tree
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with the same set of nodes to store the public key pkn, with edges determined by
write access rule. For each file id generate a AES key skaesid for encryption, and
append to the ciphertext Encpkn(sk

aes
id ). At the coarse-grained level, each data

owner generates two sets of parameters (pk′, sk′) and (pk”, sk”) for the predicate
encryption. Then he constructs a tree graph, where each node contains read
access token Encpk′

ra
(id) (used by the cloud provider to check the read access)

and SKx−id = GenKeysk′′
ra
(f) where f(x) = x− id (used by the user to identify

all updates to the file within the retrieved block). Similarly, construct another
tree to distribute write access tokens Encpkwa(id).

– Access Authorization: At the coarse-grained level, extend the trees with
read and write access tokens with new leaves for the new user and update the
edges according to his read and write permissions. This may involve splitting of
nodes and re-encrypting files with new keys if the user has read access only to a
subset of files that have been encrypted with the same key.

– Write Access Request: At the fine-grained level, obtain the encryption key
pkn for the file to be updated from the write tree. Encrypt the new content
for that file with key pkn. At the coarse-grained level, submit to the cloud a
re-randomized copy of the write authorization token for that file.

– Write Access Check: At the fine-grained level, a user can modify a file
only if he has the encryption key and the write authorization token. Upon read
he will check at the end of a block a list of updates with valid write access
tokens. At the coarse-grained level, the cloud finds if there is a block for which
the authorization token grants write access. The write access token is of the form
(C0, {C1,i, C2,i}ni=1), and the cloud uses the first components (C0, {C1,i, C2,i}2i=1)
as an identifier for updates appended to a block.

– Write Access Rule Update: Update per-block trees for encryption keys
and the tree for distributing write access tokens accordingly.

4.3 An Example

To facilitate our discussion, consider a system with five users U = {A,B,C,D,
E}. Let Ro denote the set of resources owner by user o ∈ U , and we have
RA = {r1, r2, r3, r4}, RB = {r5, r6, r7} and RC = RD = RE = ∅. Access control
lists (ACLs) are used to represent fine-grained level access policies, and the owner
of each resource automatically entails both read and write access privilege. At the
coarse-grained level, user A maintains two blocks b1 = {r1, r2} and b2 = {r3, r4},
and user B maintains a single block b3 = {r5, r6, r7}.

1. acl read(r1) = {A,B,C}, acl write(r1) = {A,B,C};
2. acl read(r2) = {A,B,C}, acl write(r2) = {A,B,C};
3. acl read(r3) = {A,E}, acl write(r3) = {A};
4. acl read(r4) = {A,B,C,E}, acl write(r4) = {A,D};
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5. acl read(r5) = {A,B}, acl write(r5) = {A,B,C};
6. acl read(r6) = {B,C,D}, acl write(r6) = {B,D,E};
7. acl read(r7) = {A,B,C,D,E}, acl write(r7) = {A,B,C,D,E}.

Follow the above example, two trees are constructed per block for read and write
access respectively at the fine-grained level in Figure 3. Each block stores files
owned by a single user (shaded), and a public key pair is generated for each con-
tained resource ri, where skid is stored in the read tree and pkid in the write tree.
Leaf nodes v∗j1n store users’ initial public keys, which are connected to internal
nodes following key derivation paths (think links). Each row in the table states ri
in block bj is associated with key skid (pkid) at vertex vRj

mn (vWj
mn ). Different ACLs

on read and write for the same resource entail different labels of user list, e.g.,
vR2
31 is labeled as [ABCE] since acl read(r4) = {A,B,C,E}; whereas vW2

31 is la-
beled as [AD] given acl write(r4) = {A,D}. In Figure 3(a), both trees share the
same set of vertexes and edges, as acl read(r1) = acl read(r2) = acl write(r1) =
acl write(r2) = {A,B,C}. Figure 4 depicts tree graphs per data owner to dis-
tribute read and write access tokens respectively at the coarse-grained level.
(Due to space limitation, coarse-grained graphs for resources owned by user B
are omitted.) Each row in the table states ri is associated with an unique read
(write) access token Encpk′

ra
(id) (Encpkwa

(id)) encrypted on its id and stored
at vertex vRO

mn (vWO
mn ). For example, r1 and r2 are now given different access

tokens at vertexes v∗A21 and v∗A22 respectively. Each authorized write operation
requires an additional update token SKx−id distributed to authorized users the
same way as read access tokens.

5 Analysis

5.1 Security Guarantees

Our two-leveled access control scheme provides the following privacy guarantees
for data owners and users in the system:

Read Access. For the privacy of the data owners, the cloud provider does
not learn any of the content of the files that he stores. The cloud learns the
frequency of access to particular blocks but not the exact files that have been
accessed within a block. For users’ privacy, the cloud provider cannot relate
access requests to particular users’, neither can he infer which requests were
submitted from the same user. However, he can observe the block access pattern
from the requests of all users. The data owner does not learn anything about
the access requests for the data.

Write Access. For privacy of the data owners, the cloud provider learns how
often update requests are submitted for each block but without finding out which
files have been written. Similarly to the read requests, write requests coming from
the users are anonymous and unlinkable. Thus the cloud provider cannot learn
anything about the access behavior of a particular user, but only a cumulative
view over the requests from all users.
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Fig. 3. Tree graphs per block for read and write access at the fine-grained level

Fig. 4. Distribution of read and write access tokens at the coarse-grained level

5.2 Performance Analysis

Read Access. During setup, data owners compute of the authorization trees
with decryption keys and access tokens. The work is proportional to the number
of files in the database and the number of users. In order to authorize or to
revoke file access to a user, data owner updates the tree with decryption keys
and the tree with access tokens: in the worst case proportional to the depth of
the trees. The updates for the tree with the access tokens can be executed at
larger intervals of time to achieve better amortized efficiency for updates. For
users, retrieving access tokens requires reading the coarse-level tree with access
tokens for the data of a particular provider. Decryption keys retrieval can be
proportional to the number of files that the user is authorized to access. For the
cloud provider, in order to map an access request to a particular block the cloud
provider will have to execute the File Access Check function for the submitted
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token and each block. We describe in the following optimization section how we
can reduce the costs estimated here.

Write Access. From the perspective of a data owner, the enforcement of write
access control requires duplication of the tree structures that were necessary for
the read access control but this time with credentials necessary for the write
access. This comes as an overhead in the setup phase when these structures
are computed by the data owner and also each update of the access rules will
necessitate update of both types of trees since the encryption and decryption
(relevant for write and read access) need to be synchronized. Also periodically
the data owner would need to process the blocks and compact the updates for
each file back in its initial memory location. For a user, the size of the blocks
that he receives, and hence the time he needs to locate the file and its updates
at read access, will increase depending on the frequency of the updates for a
block as well as the time period at which the data owner processes the blocks
and brings the updates back in place. The cloud provider would need to transfer
larger blocks including both the original files as well as the updates. He would
need to compute the identification tag for each authorized write update, which
requires constant time.

Optimizations. Some optimizations that help improve the performance of the
scheme are as follows. If the user has enough memory, he can cache both autho-
rization tokens and decryption keys for multiple accesses of the same files. This
optimization applies to the read and the write access tokens as well as the de-
cryption key for read. The only exception is the encryption key for write access
— the user should always derive the current public encryption key for the file,
which he wants to update since if the key has been changed, he will not be able
to detect it and will submit an invalid update. Similarly the user can cache the
identifier of the block in which a file is located and use it in repeated requests,
which will save the search time at the cloud avoiding checks of all blocks. Further
the user can trade-off the privacy guarantee for his request within its block for
smaller communication overhead by revealing the exact memory address of the
file after proving that he is authorized to access the block.

5.3 Discussion

Choosing the granularity for the access blocks in the read and write access control
schemes affects the privacy guarantees for the scheme as well as its efficiency
performance. The right granularity for each specific usage scenario will depend
on the privacy and efficiency requirements for it, the expected patterns of access
to the files and the expected frequency of access control rules’ updates. The
following points should be taken into consideration when choosing how to divide
the files into access blocks: the size of a block should depend on the expected
bandwidth of the clients and the acceptable delays for the system. Files that
contain “complementary” information, i.e., a user is likely to access only one of
a these files (e.g. a file to sell stocks, a file to buy stocks) should be located in
the same block since their access pattern is highly sensitive. Data that requires
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frequent updates should be split into smaller blocks since the size of those blocks
will grow faster. Accessing files with frequently changing access rules will require
derivation of the corresponding decryption keys, which is proportional to the
number of files in the block, such files should be located in blocks with fewer
items (that can still be of big size). Since the view of the cloud provider of the
access requests amounts to the frequency at which each access block is matched,
files that are expected to have high access rates should be distributed across
different blocks.

6 Related Work

Existing access control solution in outsourced storage usually apply crypto-
graphic methods by disclosing data decryption keys only to authorized users. [8]
proposed a cryptographic storage system, called Plutus, which arranges files with
similar attributes into filegroups, applying two-level file encryption and distin-
guishes read and write access. [6] designed a secure file system to be layered over
insecure network and P2P file system, like NFS. Each file is attached a meta data
containing the file’s access control list. [15] defines and enforces fine-grained ac-
cess control policies based on data attributes, and delegates most of computation
tasks to untrusted cloud server without disclosing data content. [12] proposed
a cloud storage system, called CloudProof, that enables meaningful security
Service Level Agreements (SLAs) by providing a solution to detect violations
of security properties, namely confidentiality, integrity, write-serializability, and
read freshness. The problem presented in this paper shares some similarity with
the proposals in [14,2]. [14] introduced a practical oblivious data access protocol
using pyramid-shaped database layout and an enhanced reordering techniques
to ensure access pattern confidentiality. [2] proposed a shuffle index structure,
adapting traditional B-tree, to achieve content, access and pattern confidential-
ity in the scenario of outsourced data. All those proposals focus on one or more
aspects, such as scalability, efficiency, minimizing key distribution, etc., but none
of them consider privacy issues as well as write access control.

7 Conclusion

We presented a two-level access control scheme enabling data sharing in out-
sourced storage, like the cloud environment. The fine-grained and the coarse-
grained access control schemes complement each other to achieve both data
confidentiality and privacy protection on access patterns. To the best of our
knowledge, we are the first to handle both read and write access rights entailing
a more practical data sharing solution. As follow-on work, we will conduct ex-
periments on a full implementation of our scheme. As a more ambitious goal, we
would like to further extend our scheme for a complete solution that guarantees
both security and privacy protection for a remote file storage system.
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A Predicate Encryption and Extensions

We present the construction of predicate encryption of [9] as follows:
– Setup(1n): Choose primes p, q and r and groupsGp,Gq andGr with genera-

tor gp, gq and gr respectively. LetG = Gp×Gq×Gr. Choose R1,i, R2,i ∈ Gr,
h1,i, h2,i ∈ Gp uniformly at random for 1 ≤ i ≤ n and R0 ∈ Gr. The public
parameters for the scheme are (N = pqr,G,GT , e). The public key PK and
master secret key SK are defined as follows:

PK = (gp, gr, Q = gq · R0, {H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}ni=1),
SK = (p, q, r, gq, {h1,i, h2,i}ni=1).

– EncSK(x1, . . . , xn): Choose randoms s, α, β ∈ ZN , R3,i, R4,i ∈ Gr for 1 ≤
i ≤ n, then output the following ciphertext:
C =

(
C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi · R4,i}ni=1

)
.

– GenKeySK(v1, . . . , vn): Choose randoms r1,i, r2,i ∈ Zp for 1 ≤ i ≤ n, R5 ∈
Gr, f1, f2 ∈ Zq and Q6 ∈ Gq, then output SKv that consists of(
K = R5 ·Q6 ·

n∏
i=1

h
−r1,i
1,i · h−r2,i

2,i , {K1,i=gr1,ip · gf1·viq ,K2,i=gr2,ip · gf2·viq }ni=1

)
– DecSKf

(c): The decryption algorithm outputs 1 if and only if

e(C0,K)

n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i) = 1.

We define an algorithm called Rand(C) that re-randomizes any ciphertext pro-
duced by the predicate encryption.Given a ciphertext of form (C0, {C1,i, C2,i}ni=1),

choose a random s′ ∈ ZN and output C′ = C0 · gs
′

p , {C1,i ·Hs′
1,i, C2,i ·Hs′

2,i}ni=1. The
resulting ciphertext is the same as freshly generated ciphertext for the encrypted
value using random value s+ s′, if s was the value used in C.

Now we look closely at the instantiation of the predicate encryption scheme
that handles polynomial evaluation as its predicate. In this case the predicate
(v1, . . . , vn) consists of the coefficients of the polynomial that is being evalu-
ated and the attribute vector that is used for an evaluation point x is of the
form (1, x, x2, . . . , xn−1). The ciphertext for the encryption of (1, x, x2, . . . , xn−1)
has components (C0, {C1,i, C2,i}ni=1), where C1,i, C2,i correspond to the vec-
tor point xi−1. Thus we can view the first view components of the ciphertext
(C0, {C1,i, C2,i}2i=1) as an encryption of the vector (1, x) that can be used for
evaluation of predicates that are linear functions.

We use the above observation in the instantiation of the tags that the cloud
derives for each of the accepted write updates. He uses the token that the client
has used to prove his write access to a particular block, which a predicate encryp-
tion ciphertext (C0, {C1,i, C2,i}ni=1), to derive identifier for the files with which
the submitted update will be associated by taking the first part of the ciphertext
(C0, {C1,i, C2,i}2i=1). This identifier cannot be used as a write access token since
it is missing substantial part of the ciphertext, and no party without the master
secret key can extend an identifier to a valid write token. Also any party that
has read access to the file associated with the update will be given a key that
would allow it to recognize the updates for that file. This key is the predicate
corresponding to the linear function that evaluates to zero at the file id.
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Abstract. Smart meters that track fine-grained electricity usage and
implement sophisticated usage-based billing policies, e.g., based on time-
of-use, are a key component of recent smart grid initiatives that aim to
increase the electric grid’s efficiency. A key impediment to widespread
smart meter deployment is that fine-grained usage data indirectly reveals
detailed information about consumer behavior, such as when occupants
are home, when they have guests or their eating and sleeping patterns.
Recent research proposes cryptographic solutions that enable sophisti-
cated billing policies without leaking information. However, prior re-
search does not measure the performance constraints of real-world smart
meters, which use cheap ultra-low-power microcontrollers to lower de-
ployment costs. In this paper, we explore the feasibility of designing
privacy-preserving smart meters using low-cost microcontrollers and pro-
vide a general methodology for estimating design costs. We show that
it is feasible to produce certified meter readings for use in billing pro-
tocols relying on Zero-Knowledge Proofs with microcontrollers such as
those inside currently deployed smart meters. Our prototype meter is
capable of producing these readings every 10 seconds using a $3.30USD
MSP430 microcontroller, while less powerful microcontrollers deployed
in today’s smart meters are capable of producing readings every 28 sec-
onds. In addition to our results, our goal is to provide smart meter de-
signers with a general methodology for selecting an appropriate balance
between platform performance, power consumption, and monetary cost
that accommodates privacy-preserving billing protocols.

1 Introduction

The goal of recent smart grid initiatives is to increase the electric grid’s efficiency
by reducing both its monetary and environmental cost. One way to increase effi-
ciency is to alter electricity demand by either shifting some of it to off-peak hours
or better aligning it with intermittent renewable generation. Since directly con-
trolling the grid’s electricity consumption, e.g., by forcibly disconnecting loads,
is infeasible, smart grids focus on incentivizing consumers to change their own
consumption patterns by altering the price of electricity to accurately reflect
generation costs and aggregate demand.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 239–253, 2012.
© International Financial Cryptography Association 2012
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A variety of billing policies that properly incentivize consumers are available
to utilities. For instance, time-of-use (TOU) pricing alters the price for electricity
($/kWh) based on the time of day, with peak daytime rates more expensive than
off-peak nighttime rates. Utilities implicitly assume that TOU pricing requires
them to know not only how much electricity consumers use each month, but also
when they use it. Unfortunately, prior research demonstrates that fine-grained
usage data indirectly reveals sensitive private information about a consumer’s
activity patterns, e.g., when they are home, when they have guests, their eating
and sleeping patterns, etc. [21]. Vast collections of fine-grained electricity data for
many buildings over long periods of time raise both legal and economic concerns.
To address these issues, researchers have proposed a variety of privacy-preserving
billing protocols that prevent utilities from linking fine-grained usage patterns
to individual households, but still allow them to implement sophisticated billing
policies. The solutions draw on common cryptographic techniques, including
commitment schemes, digital signatures and Zero-Knowledge Proofs (ZKP).

A key impediment to the widespread adoption of privacy-preserving billing
protocols is the computational and memory constraints of smart meters, which,
due to cost, size, and power considerations, typically use embedded microcon-
trollers. Prior work does not measure these resource constraints, and, thus, im-
plicitly assumes that meters are capable of executing protocols in a reasonable
amount of time. In this paper, we explore the economic feasibility of implement-
ing the cryptographic techniques required for privacy-preserving smart metering,
and propose a general methodology for evaluating the cost of a solution. We take
into account current smart meter deployments and look at the hardware tech-
nologies utilities are adopting over both the short- and long-term. Our focus is
on implementing cryptographic techniques on smart meters such as those pro-
posed by Rial et al. [25], Molina-Markham et al. [21], Kursawe et al. [18] and
Jawurek et al. [17]. However, our methodology also applies to estimating the cost
of similar metering systems that require privacy, including natural gas, water,
and toll roads, such as the one proposed by Balasch et al. [2]. We summarize our
contributions below:

Implementation. We implement a privacy-friendly smart meter using low-cost
microcontrollers from both the MSP430 and ARM families. We present the first
experimental results that actually measure the performance of a Camenisch-
Lysyanskaya (CL) based scheme using elliptic curves in constrained environ-
ments. Previous work [25] discusses and estimates, but does not include imple-
mentation results. The most comparable realization of a CL based scheme uses
a Java Card [5] and does not include an elliptic curve version.

Cost Evaluation. We outline a cost evaluation strategy for implementing
privacy-preserving smart meters that accounts for the special characteristics of
low-cost microcontrollers and industry trends. In particular, we list a set of sys-
tem variables that designers may modify to balance security, privacy, and cost.
We are the first to discuss the issues surrounding ultra-low-power implementa-
tions, which in some applications may make the difference between a meter that
requires a battery replacement every few years versus every few days.
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Feasibility Analysis. We present evidence to support the hypothesis that ZKP
billing protocols are feasible on current deployments of smart meters and cost ef-
fective on deployments over both the short- and long-term. Because some smart
meters can be remotely updated, it is plausible that a deployment may be im-
plemented in one of these updates. In the long-term, our experimental results
may help system designers to assess the performance and cost benefits of uti-
lizing elliptic curve primitives. Our analysis takes into account the evolution
of the storage and computational capabilities of low-cost microcontrollers and
contrasts it to the evolution of personal computer processors.

2 Cryptographic Building Blocks

This work builds on protocols for privacy-preserving calculations of time-of-use
based bills for smart electricity metering. In that setting a customer fitted with a
smart meter proves to a utility provider the amount to be paid for their electricity
consumption within a specific time period, without revealing any details about
their fine-grained consumption. The bill is calculated on the basis of detailed
readings, every half hour or fifteen minutes, that are each billed according to
the dynamic price of electricity at that time, or a pre-defined but time variable
tariff scheme. These protocols are applicable when consumers do not trust the
utility with their detailed electricity usage information, and the utility does not
rely on consumers to honestly report their usage. Our work focuses on efficient
implementations of the meter components on different families of processors
necessary to support those protocols.

2.1 Commitment Schemes and Zero-Knowledge Proofs

Commitment schemes are cryptographic primitives that enable a party to create
the digital equivalent of an envelope for a secret. Commitments support two
important properties: hiding protects the secrecy of the committed message,
and binding ensures it can only be opened to the committed message.

Pedersen commitments [23] are information-theoretically hiding, and binding
under the discrete logarithm assumption. They rely on a set of global parameters,
namely a group G of prime order p with generators g and h. Under that scheme
a commitment C to message r ∈ Zp is computed as C = grho where o is an
opening nonce chosen uniformly at random in Zp. Opening a commitment C
involves disclosing the values r and o to a verifier. In addition to opening the
commitment, efficient protocols exist for a prover to convince a verifier that they
know the committed value without disclosing it.

Fujisaki-Okamoto commitments [13] are similar to Pedersen commitments,
except that they make use of a group of composite, hidden order instead of a
group of prime order. They allow the committed value to be any integer, includ-
ing negative integers. We can use Pedersen or Fujisaki-Okamoto commitments
depending on whether the meter needs to encode negative values or not.

For the purposes of time-of-use billing, the meter periodically commits to
meter readings. Those commitments are signed and the customer can use the
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signature to prove functions of the bill to a verifier. Different signature schemes
may be used to achieve different security properties. A standard signature scheme,
such as DSA, can be used to ensure the integrity of any further statement proved
on the basis of the meter readings. On the downside, it is not possible to elimi-
nate covert channels that may allow a dishonest meter to signal some information
back to the utility verifier. When meters are not trusted for privacy, a signature
scheme such as Camenisch-Lysyanskaya (CL) signatures [7] can be used to sign
readings individually.

CL-signatures allow a requesting party to obtain a digital signature on a
commitment from an authorized signer. In particular, Camenisch and Lysyan-
skaya [7] provide efficient protocols for computing a signature on a commitment
message, as well as for constructing zero-knowledge proofs of knowledge of a
signature on a committed or encrypted message. Note that there are two dig-
ital signature schemes attributed to Camenisch and Lysyanskaya; their earlier
scheme [6] relies on the Strong RSA assumption, while the later scheme relies
on a discrete-logarithm-based assumption (the LRSW assumption) [20]. CL-
signatures [7] can be implemented using elliptic curve groups, as long as we have
an efficient bilinear map that is non-degenerate. We describe the key genera-
tion function, the signing function and the signature verification function for
CL-signatures using the notation in [26]:

1. CLKeyGen(1k). Given a security parameter k, and the number of block
messages to sign n, the signer generates the first part of their public key:
(p,G,H, g, h, e), such that there is a mapping e : G × G → H, which is
bilinear, non-degenerate and efficient to compute. The signer then chooses
the following parameters for their private key: x, y, z1, . . . , zn ∈R Zp. Next,
the signer uses these parameters to computeX = gx, Y = gy and Zi = gzi for
all i ∈ [1, n]. The public key is pubkey = (p,G,H, g, h, e,X, Y, {Zi}, {Wi}),
and the secret key is the public key concatenated with (x, y, {zi}).

2. CLSign((x, y, {zi}), {mi}). To sign n blocks {mi}, the signer first chooses
a ∈R G, and computes b = ay. The signer then computes Ai = azi and Bi =
(Ai)

y for all i ∈ [2, n]. Finally, the signer computes σ = ax+xym1
∏n

i=2 A
xymi

i .
The signature is sig = (a, {Ai}, b, {Bi}, σ).

3. CLV erifySign(pubkey, {mi}, sig). The verifier performs the following com-
putations and outputs accept if the following equalities hold: e(a, Y ) =
e(g, b); e(a, Zi) = e(g,Ai), ∀i ∈ [1, n]; e(Ai, Y ) = e(g,Bi), ∀i ∈ [1, n]; and
e(g, σ) = e(X, a) · e(X, b)m1 ·

∏n
i=2 e(X,Bi)mi.

ZKPs make use of commitments and CL-signatures to prove to a third party
an aggregate function of the committed readings without revealing the enclosed
readings. The full billing protocol proposed by Rial et. al. [25] decomposes a bill’s
proof of correctness into a small set of ZKPs – effectively proving the correctness
of a commitment to the price component of each period of consumption sepa-
rately before aggregating them and disclosing the final bill. All proofs in their
scheme are non-interactive by using the well known Fiat-Shamir heuristic [12].
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2.2 A Smart Metering Billing Protocol

Our study focuses on the efficient implementation of the meter cryptographic
components for the Rial and Danezis [25] privacy preserving smart metering
protocols. Proposals by [17] can be adapted to use the same meter components.

On-site

Privacy-Preserving Meter Consumer Device

Off-site

Metrology

• Obtain readings

Reading Certification

• Derive Keys
• Encrypt Readings
• Compute Commitments
• Create Batch Signature
• Transmit Encrypted Readings

Commitment Reconstruction

• Derive Keys
• Decrypt Readings
• Reconstruct Commitments

Bill Computation

• Compute Bill
• Compute Proof

Utility Provider's Server

Bill Verification

• Verify Bill
• Verify Proof

     Accept Bill

Fig. 1. Architecture of the privacy-preserving smart metering system. A smart meter,
in addition to its metrologic unit, has a microcontroller capable of encrypting and
certifying its readings. The meter also has a wireless transceiver used to send encrypted
readings to the consumer’s device. The consumer uses the information from the meter
for consumption planning, and in the computation of bills and corresponding proofs.

We illustrate the protocol with an example that includes three principals, as
depicted in Figure 1: the smart meter, the prover, and the verifier. The smart
meter first measures and certifies consumer electricity readings, and then com-
municates them to the prover using a secure channel. The prover, a consumer-
owned device, computes a bill along with a non-interactive ZKP that ensures
the bill’s validity. The prover sends the bill and the proof to the utility company,
which verifies the bill’s correctness before accepting it. Below, we describe in
detail the computations the meter has to perform, and provide a brief outline of
the protocols between the prover and the verifier.

Smart Meter Computations. To support privacy protocols, smart meters
need to perform the following computations: sensing and measuring electric-
ity usage, deriving session keys, certifying and encrypting readings, and finally
transmitting readings to the consumer.

Sensing and measuring electricity. The meter’s primary function is sensing and
measuring electricity usage. Thus, other computations must not interfere with
this fundamental task. We denote Δt as the measurement interval, such that
duration between meter readings ti+1 − ti = Δt.

Deriving session keys. The protocol encrypts readings using a symmetric en-
cryption algorithm before passing them to the user. To ensure the encrypted
reading’s secrecy, each reading is encrypted with a distinct session key. For ev-
ery ti the meter encrypts reading ri using key Ki = H0(K, ti), where H0 is a
secure hash function and K is a master symmetric key known by the consumer.
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Additionally, the meter derives from the master key an opening value for the
commitment oi = H1(K, ti) where H1 is a hash function.

Certification and encryption. After deriving Ki and oi, the meter both encrypts
the reading ri using Ki and computes a commitment ci for the reading. More
formally, the meter generates an encrypted reading Eri = E(Ki, ri) using a
symmetric encryption algorithm, and a commitment ci = gri ·hoi using globally
known constants g, h, and their group. The protocol also requires the meter to
generate cryptographic signatures for each commitment ci. To reduce the nec-
essary computations, the protocol computes batch signatures Sigj for multiple
commitments ci, ci+1, . . . , ci+k.

Network transmission. After the meter encrypts readings and computes batches
of signatures, it transmits the batches to the consumer’s device (the prover)
via the local network. More formally, for each batch j, the meter transmits the
following tuples to the consumer: {{ti}j , {Eri}j , Sigj}. The commitments need
not be transmitted, which keeps the overheads of the protocol low.

Consumer prover computations. The prover computes the bill’s payment
and its corresponding proof of correctness. First, the prover derives the session
keys Ki = H0(K, ti) on the basis of times ti and the master key K; decrypts
the readings ri from Eri = E(Ki, ri), and derives the opening values from each
commitment as oi = H1(K, ti). Then all commitments to readings can be recon-
structed as ci = gri ·hoi using the public parameters of the commitment scheme
and the recovered readings and openings. Finally, a batch of commitments are
accepted as authentic after checking the signature Sigj. This ensures that the
received encrypted readings have not been tampered with. After the readings
and their signed commitments are available, an arbitrary billing function can
be applied to each reading (or aggregates of readings) to establish the final bill.
The prover calculates a ZKP of correctness and provides it to the verifier.

Summary. The details of those computations, and families of functions that
can be practically proved and verified in zero-knowledge are provided in [25]
along with the detailed security proofs for the protocol. To summarize, fine-
grained meter readings are only available to the consumer, while simultaneously
allowing the consumer to self-calculate their bill and ensuring the utility that the
consumer has not manipulated or under-reported the payment. Thus, the utility
has a guarantee over each bill’s authenticity, and the consumer has a guarantee
over their data’s privacy. To resolve disputes, the meter may optionally store
readings and decryption keys to permit audits by a trusted third party.

3 Implementation on Low-Cost Microcontrollers

In this section we describe a few different implementations of the cryptographic
primitives discussed in Section 2 that would be required to run on a smart
meter. We start by pointing out that the computational capabilities of low-cost
and ultra-low-power microcontrollers have not developed at the same pace as
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high-performance microprocessors employed in servers and personal computers.
System designers should, therefore, use different means to evaluate the economic
feasibility of a cryptographic solution in the low-cost spectrum of embedded
devices. We present the set of design variables that we control in our various
implementations with the purpose of illustrating their effects on performances
and costs in subsequent sections.

3.1 Computing Capabilities of Low-Cost Microcontrollers

Moore’s law predicted that the number of transistors placed in an integrated
circuit would double approximately every two years. This prediction, however,
does not directly address two issues that are pertinent to microcontrollers. First,
the production costs associated with maintaining this trend have not remained
constant. Second, with the addition of more transistors, the problem of efficient
power management has significantly increased [11]. As a consequence, microcon-
trollers that are often constrained by production costs and power budgets have
not increased their computational capabilities at the same rate as microproces-
sors for servers and personal computers. In Figure 2 we illustrate this by showing
the evolution in processing capabilities across different technologies.
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Fig. 2. While it is difficult to compare the performances ofmicroprocessors usingmillions
of instructions per second, this graph provides a visual representation of performance im-
provements as seen across a few popular architectures. The trends inmicroprocessors tar-
geting desktop computers and servers, as well as the performance improvements observed
in ARMapplication microprocessors have followed exponential curves. However, the per-
formance improvements observed in embedded ARM microprocessors and MSP430 mi-
crocontrollers have followed linear curves [1,8,16].
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3.2 Design Variables

In this section, we enumerate a set of design variables that we consider in our im-
plementations with the purpose of illustrating their effect on various properties
of the system. As we show, some of these design variables correspond to features,
such as qualitative privacy or security guarantees, e.g. properties of a trust or
security model. Other design variables correspond to quantitative properties, for
example computation performance, storage and communication requirements.
The design variables that we consider in our implementation are in one of two
categories, system variables or crypto variables. System variables include the
selection of an MCU platform and a multitasking approach. Crypto variables
include the selection of a digital signature scheme, and the selection of cryp-
tographic primitives that rely on large integer multiplicative groups or elliptic
curve cryptography. We should note that a complete analysis of the economic
feasibility of a metering solution should also include a variety of economic vari-
ables, for example, the costs of implementation, deployment, maintenance and
customer support. These economic variables are not considered explicitly in this
work. We assume that if a solution can be implemented using microcontrollers,
such as those in currently deployed meters, and those meters support software
updates, then the solution is economically feasible given that it does not require
a complete change in infrastructure. For example, rather than forcing millions
of deployments, utility companies could offer concerned customers the option to
request a meter update that implements the privacy features mentioned here.

3.3 Anatomy of a Smart Meter

In order to provide context for our discussion, we describe the generic anatomy of
a smart meter. Figure 3 shows the schematics of a smart meter. In general, they
are equipped with an analog front end, which is part of the metrologic unit used
to convert the data coming from the load sensors and preprocess the measure-
ments before they are passed to the microcontroller unit. The microcontroller
unit handles this stream of data as well as the general functionality of storing the
data in flash memory, and driving an LCD screen. More modern microcontrollers
replace the analog front end with an integrated embedded signal processor. Cur-
rent deployments of smart meters use microcontrollers that run at clock speeds
ranging from 8-25 MHz and have storage ranging from 32-256 KB [14].

3.4 Implementation Details

We implement the algorithms Commit, CLSign and DSA, using both large in-
teger multiplicative groups and elliptic curve cryptography. We also implement
the symmetric key derivation algorithm DeriveAESKeys to encrypt readings
with AES for on-site wireless transmission. We integrate these algorithms to pro-
duce certified readings, as discussed in Section 2. In our experiments, we use the
libraries bnlib [24] and Miracl [27] to perform integer or elliptic curve arithmetic,
together with one of the following Real-Time Operating Systems: FreeRTOS [4],
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SYS/BIOS [30] and MicroC/OS-III [19]. We write the rest of the implementa-
tion in C, with some minimal amount of assembly code. We describe the par-
ticular details of the ECC implementation in Section 3.5. We focus primarily
on the MSP430 family of microcontrollers with a 16-bit RISC architecture. The
motivation behind this focus is that current deployments already include mi-
crocontrollers in this family. We use the evaluation board MSP-EXP430F5438,
in combination with the microcontrollers MSP430BT5190 and MSP430F5438A.
The board includes an LCD screen and connectors for radio components. We also
use the radio stack CC2567-PAN1327. Both microcontrollers are from the same
family (MSP430x5xx). Shared characteristics include the availability of a hard-
ware multiplier supporting 32-bit operations, size of flash (256 KB), frequency
(25 MHz), and power consumption (∼ 230 μA/MHz in active mode). The man-
ufacturers designed the MSP430BT5190 for use with the radio stack; however,
the MSP430F5438A has a larger RAM (16 KB). In our evaluation, we compare
a few ARM microcontrollers and processors. For this we use readily available
ARM ports for all the libraries mentioned above. We compile our code and the
libraries using IAR Embedded Workbench for ARM version 6.30 [15]. The most
significant difference is that the word size for the multi-precision arithmetic is 32
instead of 16, which we use in the MSP430 implementations. The other micro-
controller board we use is the TI Stellaris Evaluation Board EKB-UCOS3-EVM.
The ARM processors we measure are capable of running full Linux distributions;
nevertheless, we perform the measurements using IAR Workbench as well.

3.5 Elliptic Curve Cryptography Details

The full ZKP based billing protocol requires the selection of various building
blocks, such as commitment schemes and signatures. The security of these build-
ing blocks may depend on either the strong RSA (SRSA) assumption [6], or on
the discrete logarithm (LRSW) assumption [7]. One important side-effect of
the selection of these building blocks is that in order for the SRSA assump-
tion to hold, the cryptographic operations need to be performed over multi-
plicative groups of integers with large moduli (1,024 to 2,048 bits in length).
However, by leveraging modern Elliptic Curve Cryptography, the designer can
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Fig. 3. Main components of a smart meter. On the left we illustrate a simple meter
with a single microcontroller unit (MCU) that controls the metrologic unit, storage and
communication interfaces. On the right we show a smart meter that replaces the analog
front end with an embedded signal processor (ESP) and has an additional application
processor that controls communication, OS, power monitoring, and analytics.
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use building blocks that rely on the discrete logarithm assumption employing
considerably smaller key sizes. Therefore, for the ECC based commitments and
ECDSA implementations, we use the NIST curves P-192 and P-224 [9]. For the
ECC versions of the CL Signatures, we use the pairing-friendly elliptic curves
E(F2379) : y2 + y = x3 + x + 1 and E(Fp) : y2 = x3 + Ax + B with a 512-bit
prime p as presented in [29].

The criteria for choosing curve parameters for ECDSA and the commitment
scheme that we used are well known. However, choosing appropriate parameters
for pairing-based cryptography is still an active area of research. That is, to use
an elliptic curve implementation for CL-signatures, we require an appropriate
bilinear map e : G×G → H that is non-degenerate and easy to compute. There
is no unique way to obtain this map using elliptic curve groups G,H. While
most protocols, such as signatures and identity based encryption protocols, are
designed using a type-1 pairing, it is often possible to use a type-3 pairing. The
latter are typically more efficient in practice. In other words, protocols often
assume the existence of a pairing e : G × G → H (type-1). However, in some
cases the designer can implement a protocol that assumes the existence of a
pairing e : G1 × G2 → H with G1 	= G2 such that there is no isomorphism
ψ : G2 → G1 (type-3). We choose to implement type-1 pairings on a super-
singular curve defined over GF (2m) using the ηT pairing [3] and on a super-
singular curve defined over GF (p) using a modified Tate pairing [28]. In order
for the curves to provide an adequate security guarantee, the size of the key must
be large enough so that the corresponding dilogarithm problem in H is hard. For
the purposes of the particular billing protocol described in this paper, we note
that a smart meter needs to compute signatures and not necessarily verify them.
Therefore, we want to make operations on the curve as cheap as possible, even
if that means computing more expensive parings on the consumer’s device. For
more details on pairings, we refer the reader to Devegili et al. [10].

4 Experimental Evaluation

In this section, we evaluate the impact of choosing each of the design variables
overviewed in Section 3. We first describe the impact of choosing a family of mi-
crocontrollers on overall computing performance. Next, we discuss the impact of
choosing an approach for multitasking on the RAM requirements and total cost
size. Finally, we discuss the impact of choosing various cryptographic primitives.

4.1 Impact of Platform Selection

We implemented the cryptographic operations Commit and CLSign using mi-
crocontrollers from two of the most popular families, specifically, a microcon-
troller MSP430F5438A with 256 KB flash, 16 KB RAM and a microcontroller
Stellaris LM3S9B92 (ARM Cortex M) with 256 KB flash, 96 KB SRAM; and
two ARM application microprocessors OMAP3 (ARM Cortex A8) and OMAP4
(ARM Cortex A9) capable of running full Linux operating systems. These two
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microprocessors are commonly used in smart phones. The performances of these
operations on these platforms are summarized in Table 1.

4.2 Impact of Multitasking Approach

Meters need to be able to interrupt cryptographic computations periodically
to perform measurements, logging and communication. One way of handling
multitasking is with the use of an RTOS. Another way is the modeling of an ap-
plication using a finite state machine and the implementation of it using timers
and interrupts. Generally, the footprint of an RTOS is larger than the footprint
of a state machine approach. We explore the following three RTOS in our work:
FreeRTOS, SYS\BIOS and μC-OSIII. Our configurations for each of the RTOS
use 4 KB, 16 KB and 12 KB of code size respectively. The finite state machine
requires approximately 2 KB of code. RTOS have the capability of managing
memory; some by reserving particular regions of the stack for different appli-
cations, and some by allowing for the use of dynamic memory allocation even
with multiple heaps, such as SYS\BIOS. It is typically not a trivial engineering
exercise to fit each cryptographic algorithm in RAM. We should also note that
the system designer should probably base the decision of whether or not to use
an RTOS on the necessity of additional required functionality, such as occasional
tasks like secure updates, secure audits, key exchange and key revocation, etc.

Table 1. Running time of commitments and signatures across multiple platforms. The
tasks are run exclusively and uninterrupted on each of the platforms. The signatures
are performed on 16 bytes of data. DSA uses a 1,024-bit prime p, a 160-bit prime q, and
SHA-256. The timing does not include the generation of randomness, which depends
on the source. Prices are in USD (Sept., 2011).

MSP430F5438A LM3S9B92 Cortex-A8 Cortex-A9

Operating Freq 25 MHz 80 MHz 720 MHz 1 GHz
Operating Power 330 - 690 μW 333 - 524 mW 0.4 W 1.9 W

Family Price Range $0.25 - $9 $1 - $8 $41 - $46 +$50
Commitments - Key Size 1,024 bits

Avg. Running Time 19.56 s 0.82 s 51 ms 36 ms

DSA Signatures - Key Size 1,024 bits

Avg. Running Time 2.71 s 0.13 s 8 ms 6 ms

CL Signatures - Key Size 1,024 bits

Avg. Running Time 43.1 s 2.3 s 150 ms 81 ms

4.3 Impact of ECC Utilization

In this subsection, we evaluate the impact of using elliptic curve cryptography
instead of cryptography relying on large integer multiplicative groups. The code
sizes of the bnlib [24] and Miracl [27] libraries and their RAM requirements
depend on the features that are included. In our experimental setting using a
microcontroller MSP430F5438A, the code size of Miracl was 23 KB and the
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code size of bnlib was 18 KB. The performance of bnlib and Miracl on non-ECC
arithmetic is comparable. In our experiments, the running times of the same
operation using either library differed by less than 5% of the total computation
time of the operation. The RAM footprint for various functions is summarized
in Table 2. As we can see, given a security level, ECC cryptographic primitives
utilize RAM more efficiently. Similarly, Table 2 shows that given a microcon-
troller and a security level, an improvement in performance of about one order
of magnitud can be achieved by using elliptic curve primitives.

4.4 Impact of Signature Scheme Selection

Table 2 shows running times for performing a CLSign algorithm with four read-
ings. We highlight in particular the benefit of using an elliptic curve based library.
If a designer uses elliptic curves, he or she can reduce a monthly batch signature
with 1,440 readings (one reading every half hour) from 15.6 hours to 2.5 hours.
If the designer assumes a different trust level in which zero-knowledge is not re-
quired, signatures are less expensive. On an MSP430F5438A at 25 MHz, signing
a 16-byte message using regular DSA with a 1,024-bit prime p, a 160-bit prime q,
and SHA-256 takes 2.71 seconds excluding the generation of randomness, which
depends on the source. Signing a 16-byte message using ECDSA using a curve
in GF (p) for a 192-bit prime and SHA-256 takes 3.78 seconds excluding the gen-
eration of randomness. DSA signatures scale better than CL-signatures because
the only overhead for a larger message would be the cost of the hash, which for
the computations above is less than 0.01% of the computation.

Table 2. On the left we show the running time of commitments (single reading) and
signatures (4 reading batches) on an MSP430F5438A at 25 MHz. These times are
obtained when the algorithms are running exclusively and uninterrupted. We use Miracl
for the elliptic curve versions as described in Section 3. The key sizes are in bits. On
the right we show the RAM utilization for the various algorithms we implement on an
MSP430F5438A all using the Miracl library. The measurements do not include RAM
utilization by an RTOS, a radio stack or I/O.

Algorithm Key Size Library Time Algorithm Key Size RAM
Commit 1,024 bnlib 19.9 sec Commit 1,024 5.8 KB
Commit 2,048 bnlib 303.0 sec Commit 2,048 10.2 KB

ECC Commit 192 miracl 5.6 sec CLSign 1,024 6.3 KB
ECC Commit 224 miracl 8.3 sec CLSign 2,048 11.3 KB

CLSign 1,024 bnlib 41.2 sec ECC Commit 192 2.2 KB
CLSign 2,048 bnlib 313.8 sec ECC Commit 224 2.5 KB

ECC CLSign 379 miracl 6.7 sec ECC CLSign 379 3.1 KB
ECC CLSign 512 miracl 35.6 sec ECC CLSign 512 3.6 KB
AES Key Gen 128 miracl 0.1 sec AES Key Gen 128 2 KB

5 Feasibility and Costs in Real-World Deployments

We now discuss a strategy for estimating the cost of deploying privacy preserving
smart meters according to the system variables that we discussed in Section 3.
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5.1 Cost Estimation Strategy

Step 1: Determine the performance and power requirements. The first
step is to determine the acceptable levels of general computational performance
and the power requirements of the meter. Depending on the specific application,
meter readings may need to be certified with a frequency of seconds, minutes
or hours. Also, the meter may need to operate on a battery. Thus, using an
ultra-low-power microcontroller may be the difference between replacing the
battery every few years or every few days. For example, the performance shown
in Table 1 may make the LM3S9B92 MCU look very attractive for its ratio of
cost/performance. However, the power consumption is roughly three orders of
magnitude greater than the MSP430 MCU. Mobile processors are still far from
being ultra-low power, although their computational and storage capabilities are
increasing faster than those of the MCUs.

Step 2: Determine the code and RAM requirements. Once the perfor-
mance and power requirements are met by a family of microcontrollers, it is then
necessary for the designer to estimate the code size and RAM requirements for
the implementation of the reading certification functions in a meter, taking into
account whether multitasking needs to be supported.

5.2 Economic Feasibility

The results in Section 4 support the hypothesis that privacy-preserving billing
protocols based on ZKP are economically feasible. We note that existing smart
meters that have the ability to be remotely updated rely on microcontrollers
similar to those we use in our implementation. Furthermore, if a microcontroller
in the MSP430 family is used, it is possible to generate commitments and CL-
signatures every 10 seconds when running at 25 MHz or every 28 seconds when
running at a more conservative 8 MHz. Thus, a remote update that enables
meters with privacy preserving functionality appears feasible.

Other metering applications may require that readings be certified at a finer
granularity, for example every one or two seconds. This would require higher
computational performance and larger storage than is currently available on
low-cost ultra-low-power microcontrollers. For this reason, while obtaining cer-
tified readings at fine granularities is technologically feasible, it is to this date
a feature that may incur a greater cost. Finally, in some circumstances, billing
transactions may be required to take milliseconds. In that case, only high-end
mobile processors could provide the required performance, and thus the cost of
that application would be high based on current technological trends.

While in our analysis we did not cover all manufacturers of low cost MCUs,
other leading manufacturers have similar offerings. For example Atmel also has
AVR ultra low power microcontrollers, and various ARM based MCUs compara-
ble to those discussed here. Microchip has the PIC microcontroller line with 8-,
16- and 32-bit MCUs. We did not consider 8-bit microcontrollers because they
are perhaps too constrained for the kind of crypto application described here.
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5.3 Best Utilization of Resources

The measurements in Section 4 show that the best security/cost ratio can be
achieved by using ECC primitives. If current MCUs are targeted, maximizing the
use of RAM can be achieved via ECC. Looking toward the future, performance
will most likely regain importance due to the increasing economic feasibility of
Ferroelectric RAM (FRAM), a kind of memory that enables high-performance
on ultra-low power microcontrollers, with a unified memory model. Texas In-
struments has started to ship MCUs with 16 KB of FRAM ($1.20 USD), and
they are already producing chips with 4 MB of FRAM [22].

6 Conclusion

Our evidence supports the notion that ZKP-based billing protocols are econom-
ically feasible. We show that evaluating the cost of a cryptographic solution
in an embedded system such as a smart meter depends first on the family of
microcontrollers used, then on the storage and RAM requirements, and finally
on additional features such as communication and user interface. Our empirical
analyses show that with the use of Elliptic Curve Cryptography, it is possible to
reduce the RAM requirements by about 50% and obtain performance improve-
ments of one order of magnitude, thus obtaining a better performance/cost ratio.
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Abstract. Secure function evaluation (SFE) on mobile devices, such
as smartphones, creates compelling new applications such as privacy-
preserving bartering. Generating custom garbled circuits on smartphones,
however, is infeasible for all but the most trivial problems due to the high
memory overhead incurred. In this paper, we develop a new methodology
of generating garbled circuits that is memory-efficient. Using the stan-
dard SFDL language for describing secure functions as input, we design
a new pseudo-assembly language (PAL) and a template-driven compiler
that generates circuits which can be evaluated with Fairplay. We deploy
this compiler for Android devices and demonstrate that a large new set
of circuits can now be generated on smartphones, with memory overhead
for the set intersection problem reduced by 95.6% for the 2-set case. We
develop a password vault application to show how runtime generation of
circuits can be used in practice. We also show that our circuit generation
techniques can be used in conjunction with other SFE optimizations.
These results demonstrate the feasibility of generating garbled circuits
on mobile devices while maintaining high-level function specification.

1 Introduction

Mobile phones are extraordinarily popular, with adoption rates unprecedented
in the history of product adoption by consumers. Smartphones in particular have
been embraced, with over 296 million of these devices shipped in 2010 [4]. The in-
creasing importance of the mobile computing environment requires functionality
tailored to the limited resources available on a phone. Concerns of portability
and battery life necessitate design compromises for mobile devices compared
to servers, desktops, and even laptops. In short, mobile devices will always be
resource-constrained compared to their larger counterparts. However, through
careful design and implementation, they can provide equivalent functionality
while retaining the advantages of ubiquitous access.

Privacy-preserving computing is particularly well suited to deployment on
mobile devices. For example, two parties bartering in a marketplace may wish
to conveal the nature of their transaction from others, and share minimal infor-
mation with each other. Such a transaction is ideally suited for secure function
evaluation, or SFE. Recent work, such as by Chapman et al. [6], demonstrates
the myriad applications of SFE on smartphones.
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However, because of computational and memory requirements, performing
many of these operations in the mobile environment is infeasible; often, the only
hope is outsourcing computation to a cloud or other trusted third party, thus
raising concerns about the privacy of the computation.

In this paper, we describe a memory-efficient technique for generating the
garbled circuits needed to perform secure function evaluation on smartphones.
While numerous research initiatives have considered how to evaluate these cir-
cuits more efficiently [16,7], little work has gone towards efficient generation.
Our port of the canonical Fairplay [12] compiler for SFE to the Android mobile
operating system revealed that because of intensive memory requirements, the
majority of circuits could not be compiled in this environment. As a result, our
main contribution is a novel design to compile the high-level Secure Function
Definition Language (SFDL) used by Fairplay and other SFE environments into
garbled circuits with minimal memory usage. We created Pseudo Assembly Lan-
guage (PAL), a mid-level intermediate representation (IR) compiled from SFDL,
where each instruction represents a pre-built circuit. We created a Pseudo As-
sembly Language Compiler (PALC), which takes in a PAL file and outputs the
corresponding circuit in Fairplay’s syntax. We then created a compiler to compile
SFDL files into PAL and then, using PALC, to the Secure Hardware Definition
Language (SHDL) used by Fairplay for circuit evaluation.

Using these compilation techniques, we are able to generate circuits that were
previously infeasible to create in the mobile environment. For example, the set
intersection problem with sets of size two requires 469 KB of memory with our
techniques versus over 10667 KB using a direct port of Fairplay to Android,
a reduction of 95.6%. We are able to evaluate results for the set intersection
problem using four and eight sets, as well as other problems such as Levenshtein
distance; none of these circuits could previously be generated at all on mobile
devices due to their memory overhead. Combined with more efficient evaluation,
our techniques provide a new arsenal for making privacy-preserving computation
feasible in the mobile environment.

The rest of this paper is organized as follows. Section 2 provides background
on secure function evaluation, garbled circuits, and the Fairplay SFE compiler.
Section 3 describes the design of PAL, our pseudo assembly language, and our
associated compilers. Section 4 describes our testing environment and method-
ology, and provides benchmarks on memory and execution time. Section 5 de-
scribes applications that demonstrate circuit generation in use, while Section 6
describes related work and Section 7 concludes.

2 Background

2.1 Secure Function Evaluation with Fairplay

The origins of SFE trace back to Yao’s pioneering work on garbled circuits [18].
SFE enables two parties to compute a function without knowing each other’s
input and without the presence of a trusted third party. More formally, given
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participants Alice and Bob with input vectors a = a0, a1, · · ·an−1 and b =
b0, b1, · · · bm−1 respectively, they wish to compute a function f(a, b) without re-
vealing any information about the inputs that cannot be gleaned from observing
the function’s output. Fundamentally, SFE is predicated on two cryptographic
primitives. Garbled circuits allow for the evaluation of a function without any
party gaining additional information about the participants. This is possible
since one party creates a garbled circuit and the other party evaluates the circuit
without knowing what the wires represent. Secondly, oblivious transfer allows the
party executing the garbled circuit to obtain the correct wires for setting inputs
from the other party without gaining additional information about the circuit;
in particular, a 1-out-of-n OT protocol allows Bob to learn about one piece of
data without gaining any information on the remaining n− 1 pieces.

A garbled circuit is composed of many garbled gates, with inputs represented
by two random fixed-length strings. Like a normal boolean gate, the garbled
gate evaluates the inputs and gives a single output, but alterations are made
to the garbled gate’s truth table: aside from the randomly chosen input values,
the output values are uniquely encrypted by the input wires and an initialization
vector. The order of the entries in the table is then permuted to prevent the order
from giving away the value. Consequently, the only values saved for the truth
table are the four encrypted output values. A two-input gate is thus represented
by the two inputs and four encrypted output values.

The garbled circuit protocol requires that both parties are able to provide
inputs. If Bob creates the circuit and Alice receives it, Bob can determine which
wires to set, and Alice performs an oblivious transfer to receive her input wires.
Once she knows her input wires she runs the circuit by evaluating each gate in
order. To evaluate a gate, she uses the input values as the key to decrypt the
output value. To find the correct entry in the table, Alice uses a decryption step
using the input wires as keys. To find her output, Alice acquires a translation
table, a hash of the wires, from Bob for her possible output values. She then can
perform the hash on her output wires to see which wires were set. Alice sends
Bob’s output in garbled form since she cannot interpret it.

Fairplay is the canonical tool for generating and evaluating garbled circuits
for secure function evaluation. The Fairplay group is notable for creating the
abstraction of a high-level language, known as SFDL. This language describes
secure evaluation functions and is compiled SHDL, which is written in the style
of a hardware description language such as VHDL and describes the garbled
circuit. The circuit evaluation portion of Fairplay provides for the execution
of the garbled circuit protocol and uses oblivious transfer (OT) to exchange
information. Fairplay uses the 1-out-of-2 OT protocols of Bellare et al. [1] and
Naor et al. [14] which allows for Alice to pick one of two items that Bob is offering
and also prevents Bob from knowing which item she has picked.

Examining the compiler in more detail, Fairplay compiles each instruction
written in SFDL into a so-called multi-bit instruction. These multi-bit (e.g. inte-
ger) instructions are transformed to single-bit instructions (e.g., the 32 separate
bits to represent that integer). From these single-bit instructions, Fairplay then
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(a) Fairplay compiler process.

Fairplay SFDL Fairplay SHDL

PAL

FPPALC PALC

(b) PAL compiler process.

Fig. 1. Compilation with Fairplay versus PAL

unrolls variables, transforms the instructions into SHDL, and outputs the file,
either immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We performed
a port of Fairplay directly to the Android mobile platform (described further
in Section 4) and found that a large number of circuits were completely unable
to be compiled. We examined the results of circuit compilation on a PC to
determine the scope of memory requirements. From tests we performed on a
64-bit Windows 7 machine, we observed that Fairplay needed at least 245 MB of
memory to run the compilation of the keyed database program, a program that
matches database keys with values and employs SFE for privacy preservation
(described further in Section 4). In order to determine the cause of this memory
usage, we began by analyzing Fairplay’s compiler.

From our analysis, Fairplay uses the most memory during the mapping op-
eration from multi-bit to single-bit instructions. During this phase, the memory
requirements increased by 7 times when the keyed database program ran. We
concluded that it would be easier to create a new system for generating the SHDL
circuit file, rather than making extensive modifications to the existing Fairplay
implementation. To accomplish this, we created an intermediate language that
we called PAL, described in detail in section 3.

2.2 Threat Model

As with Fairplay, which is secure in the random oracle model implemented using
the SHA-1 hash function, our threat model accounts for an honest-but-curious
adversary. This means the participants will obey the given protocol but may look
at any data the protocol produces. Note that this assumption is well-described
by others considering secure function and secure multiparty computation, such
as Kruger et al.’s OBDD protocol [10], Pinkas et al.’s SFE optimizations [16],
the TASTY proposal for automating two-party communication [5], Jha et al.’s
privacy-preserving genomics [8], Brickell et al.’s privacy-preserving classifiers [3]
and Huang et al.’s recent improvements to evaluating SFE [6]. Similarly, we
make the well-used assumption that parties enter correct input to the function.

3 Design

To overcome the intensive memory requirements of generating garbled circuits
within Fairplay, we designed a pseudo assembly language, or PAL, and a pseudo
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Table 1. PAL Operations

Possible Operations
Operation Syntax
Addition DEST + V1 V2
Greater than or Equal to DEST >= V1 V2
Equal to DEST == V1 V2
Bitwise AND DEST & V1 V2
If Conditional DEST IF COND V1 V2
Input line INPUT V1 a (or INPUT V1 b)
Output line INPUT V1 a (or INPUT V1 b)
For loop V1 FOR X (an integer) to Y (an integer)
Call a procedure V1 PROC
Call a function DEST,...,DEST = FunctionName(param, ... ,param)
Multiple Set Equals DEST,...,DEST=V,...,V

assembly language compiler called PALC. As noted in Figure 1, we change Fair-
play’s compilation model by first compiling SFDL files into PAL using our FP-
PALC compiler, and generating the SHDL file which can then be run using
Fairplay’s circuit evaluator with our PALC compiler.

3.1 PAL

We first describe PAL, our memory-efficient language for garbled circuit cre-
ation. PAL resembles an assembly language where each instruction corresponds
to a pre-optimized circuit. PAL is composed of at least two parts: variable dec-
larations and instructions. PAL files may also contain functions and procedures.
A full table showing all headings can be found in the full technical report [13]
and is elided here because of space constraints.

Table 1 lists an abbreviated set of operations that are available in PAL along
with their instruction signatures. The full set can be found in our technical
report [13]. Each operation consists of a destination, an operator, and one to
three operands. DEST, V1, V2, and COND are variables in our operation listing.
PAL also has operations not found in Fairplay, such as shift and rotate.

Note that conditionals can be reduced to the IF conditional. Unlike in regular
programs, all parts of an IF circuit must be executed on every run.

The first part of a PAL program is the set of variable declarations. These con-
sist of a variable name and bit length, and the section is marked by a Variables:
label. In this low-level language there are no structs or objects, only integer vari-
ables and arrays. Each variable in a PAL file must be declared before it can be
used. Array indices may be declared at any point in the variable name.

Figure 2 shows an example of variables declared in PAL. Alicekey and Bobkey
have a bit length of 6, Bobin and Aliceout have a bit length of 32, COND is a
boolean like variable which has a bit length of 1, and Array[7] is an array of
seven elements where each have a bit length of 5. All declared variables are
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Variables :
Alicekey 6
Bobin 32
Bobkey 6
Aliceout 32
COND 1
Array [7] 5

Fig. 2. Example of variable decla-
rations in PAL

Instructions :
Bobin IN b
Bobkey IN b
Alicekey IN a
COND == Alicekey Bobkey
Aliceout IF COND Bobin Aliceout
Aliceout OUT a

Fig. 3. Example of number comparison (for
keyed database problem) in PAL

Variables:
i 6
in.a 6
in.b[16]. data 24
in.b[16]. key 6
out.a 24
$c0 1
$t0 1
DBsize 64

Procedure: $p0
$t0 == in.a in.b[i].key

$c0 = $t0
out.a IF $c0 in.b[i].data out.a

Instructions:
in.b[16]. data IN b
in.b[16]. key IN b
in.a IN a
DBsize = 16
i FOR 0 15
$p0 PROC
out.a OUT a

Fig. 4. Representation of keyed database program in PAL

initialized to 0. After variable declarations, a PAL program can have function
and procedure definitions preceding the instructions, which is the main function.

Figure 3 shows the PAL instructions for comparing two keys as used in the
keyed database problem, described more fully below. The first two statements
are input retrieval for Bob, while the third retrieves input for Alice. A boolean
like variable COND is set based on a comparison and the output is set accordingly.
Note that constants are allowed in place of V1, V2, or COND in any instruction.
PAL supports loops, functions, and procedures.

To illustrate a full program, Figure 4 shows the keyed database problem in
PAL, where a user selects data from another user’s database without any infor-
mation given about the item selected. In this program, Bob enters 16 keys and
16 data entries and Alice enters her key. If Alice’s key matches one of Bob’s then
Alice’s output of the program is Bob’s data entry that held the corresponding
key. The PAL program shows how each key is checked against Alice’s key. If one
of those keys matches, then the output is set.

3.2 PALC

Circuits generated by our PALC compiler, which generates SHDL files from PAL,
are created using a database of pre-generated circuits matching instructions to
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their circuit representations. These circuits, other than equality, were generated
using simple Fairplay programs that represent equivalent functionality. Any op-
eration that does not generate a gate is considered a free operation. Assignments,
shifts, and rotates are free.

Variables in PALC have two possible states: they are either specified by a
list of gate positions or they have a real numerical value. If an operation is
performed on real value variables, the result is stored as a real value. These real
value operations do not need a circuit to be created and are thus free.

When variables of two different sizes are used, the size of the operation is
determined by the destination. If the destination is 24 bits and the operands are
32 bits, the operation will be performed 24-bit operands. This will not cause an
error but may yield incorrect results if false assumptions are made.

There are currently a number of known optimizations, such as removing static
gates, which are not implemented inside PALC; these optimization techniques
are a subject of future work.

3.3 FPPALC

To demonstrate the feasibility of compileing non-trivial programs on a phone, we
modified Fairplay’s SFDL compiler to compile into PAL and then run PALC to
compile to SHDL. This compiler is called FPPALC. Compiling in steps greatly
reduces the amount of memory that is required for circuit generation.

We note our compiler will not yield the same result as Fairplay’s compiler
in two cases, which we believe demonstrate erroneous behavior in Fairplay. In
these instances, Fairplay’s circuit evaluator will crash or yield erroneous results.
A more detailed explanation can be found in our technical report [13], To sum-
marize, unoptimized constants in SFDL can cause the evaluator to crash, while
programs consisting of a single if statement can produce inconsistent variable
modifications. Apart from these differences, the generated circuits have equiva-
lent functionality.

For our implementation of the SFDL to PAL compiler we took the original
Fairplay compiler and modified it to produce the PAL output by removing all
elements besides the parser. From the parser we built our own type system,
support for basic expressions, assignment statements, and finally if statements
and for loops. All variables are represented as unsigned variables in the output
but input and other operations treat them as signed variables. Our implemen-
tation of FPPALC and PALC, which compile SFDL to PAL and PAL to SHDL
respectively, comprises over 7500 lines of Java code.

3.4 Garbled Circuit Security

A major question posed about our work is the following: Does using an in-
termediate metalanguage with precompiled circuit templates change the security
guarantees compared to circuits generated completely within Fairplay? The sim-
ple answer to this question is no: we believe that the security guarantees offered
by the circuits that we compile with PAL are equivalent to those from Fairplay.
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Table 2. FPPALC on Android: total memory application was using at end of stages
and the time it took

Memory (KB) Time (ms)
Program Initial SFDL→PAL PAL→SHDL SFDL→PAL PAL→SHDL Total

Millionaires 4931 5200 5227 90 29 119
Billionaires 4924 5214 5365 152 54 206
CoinFlip 5042 5379 5426 139 122 261
KeyedDB 4971 5365 5659 142 220 362
SetInter 2 5064 5393 5533 161 305 466
SetInter 4 5078 5437 5600 135 1074 1209
SetInter 8 5122 5542 5739 170 6659 6829

Levenshtein Dist 2 5184 5431 5576 183 336 519
Levenshtein Dist 4 5233 5436 5638 190 622 802
Levenshtein Dist 8 5264 5473 5693 189 2987 3172

Because there are no preconditions about the design of the circuit in the de-
scription of our garbled circuit protocol, any circuit that generates a given result
will work: there are often multiple ways of building a circuit with equivalent
functionality. Additionally, the circuit construction is a composition of existing
circuit templates that were themselves generated through Fairplay-like construc-
tions. Note that the security of Fairplay does not rely on how the circuits are
created but on the way garbled circuit constructs work. Therefore, our circuits
will provide the same security guarantees since our circuits also rely on using
the garbled circuit protocol.

4 Evaluation

In this section, we demonstrate the performance of our circuit generator to show
its feasibility for use on mobile devices. We targeted the Android platform for
our implementation, with HTC Thunderbolts as a deployment platform. These
smartphones contain a 1 GHz Qualcomm Snapdragon processor and 768 MB of
RAM, with each Android application limited to a 24 MB heap.

4.1 Testing Methodology

We benchmarked compile-time resource usage with and without intermediate
compilation to the PAL language. We tested on the Thunderbolts; all results
reported are from these devices. Memory usage on the phones was measured
by looking at the PSS metric, which measures pages that have memory from
multiple processes. The PSS metric is an approximation of the number of pages
used combined with how many processes are using a specific page of memory.

Several SFDL programs, of varying complexity, were used for benchmarking.
Each program is described below. We use the SFDL programs representing the
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Millionaires, Billionaires, and Keyed Database problems as presented in Fair-
play [11]. The other SFDL files that we have written can be found in the full
technical report [13]. We describe these below in more detail.

The Millionaire’s problem describes two users who want to determine which
has more money without either revealing their inputs. We used a 4-bit integer
input for this problem. The Billionaire’s problem is identical in structure but
uses 32-bit inputs instead. The CoinFlip problem models a trusted coin flip
where neither party can determine the program’s outcome deterministically. It
takes two inputs of 24-bit inputs per party. In the Keyed database program, a
user performs a lookup in another user’s database and returns a value without
the owner being aware of which part of the database is looked up – we use a
database of size 16. The keys are 6-bits and the data members are 24-bits. The
Set intersection problem determines elements two users have in common, e.g.,
friends in a social network. We measured with sets of size 2, 4, and 8 where 24-bit
input was used. Finally, we examined Levenshtein distance, which measures edit
distance between two strings. This program takes in 8-bit inputs.

4.2 Results

Below the results of the compile-time tests performed on the HTC Thunderbolts.
We measured memory allocation and time required to compile, for both the
Fairplay and PAL compilers. In the latter case, we have data for compiling to
and from the PAL language. Our complete compiler is referred to FPPALC in
this section.

Memory Usage & Compilation Time. Table 2 provides memory and execu-
tion benchmarks for circuit generation, taken over at least 10 trials per circuit.
We measure the initial amount of memory used by the application as an SFDL
file is loaded, the amount of memory consumed during the SFDL to PAL com-
pilation, and memory consumed at the end of the PAL to SHDL compilation.

As an example of the advantages of our approach, we successfully compiled a
set intersection of size 90 that had 33,000,000 gates on the phone. The output
file was greater than 2.5 GB. Android has a limit of 4 GB per file and if this was
not the case we believe we could have compiled a file of the size of the memory
card (30 GB). This is because the operations are serialized and the circuit never
has to fully remain in memory.

Although we did not focus on speed, Table 2 gives a clear indication of where
the most time is used per compilation: the PAL to SHDL phase, where the circuit
is output. The speed of this phase is directly related to the size of the program
that is being output, while the speed of the SFDL to PAL compliation is related
to the number of individual instructions.

Comparison to Fairplay. Table 3 compares the Fairplay compiler with FP-
PALC. Where results are not present for Fairplay are situations where it was
unable to compile these programs on the phone. For the set intersection problem
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Table 3. Comparison of memory increase by Fairplay and FPPALC during circuit
generation

Memory (KB)
Program Fairplay FPPALC

Millionaires 658 296
Billionaires 1188 441
CoinFlip 1488 384

KeyedDB 16 NA 688
SetInter 2 10667 469
SetInter 4 NA 522
SetInter 8 NA 617

Levenshtein Dist 2 NA 392
Levenshtein Dist 4 NA 405
Levenshtein Dist 8 NA 429

Table 4. Evaluating FPPALC circuits on Fairplay’s evaluator with both Nipane et
al.’s OT and the suggested Fairplay OT

Memory (KB) Time (ms)
Program Initial Open File End Open File Fairplay Nipane

Millionaires 5466 5556 5952 197 533 406
Billionaires 5451 5894 6287 579 1291 981
CoinFlip 5461 5933 6426 789 1795 1320

KeyedDB 16 5315 6197 7667 1600 1678 1593
SetInter 2 5423 5993 6932 1511 2088 1719
SetInter 4 5414 7435 11711 8619 7714 7146

Levenshtein Dist 2 5617 6134 7162 1799 2220 2004
Levenshtein Dist 4 5615 7215 10787 7448 6538 6150
Levenshtein Dist 8 5537 12209 20162 29230 29373 27925

with set 2, FPPALC uses 469 KB of memory versus 10667 KB by Fairplay, a re-
duction of 95.6%. Testing showed that the largest version of the keyed database
problem that Fairplay could handle is with a database of size 10, while we easily
compiled the circuit with a database of size 16 using FPPALC.

Circuit Evaluation. Table 4 depicts the memory and time of the evaluator
running the programs compiled by FPPALC. Consider again the two parties Bob
and Alice, who create and receive the circuit respectively in the garbled circuit
protocol. This table is from Bob’s perspective, who has a slightly higher memory
usage and a slightly lower run time than Alice. We present the time required
to open the circuit file for evaluation and to perform the evaluation using two
different oblivious transfer protocols. Described further below, we used both
Fairplay’s evaluator and an improved oblivious transfer (OT) protocol developed
by Nipane et al. [15]. Note that Fairplay’s evaluator was unable to evaluate
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Table 5. Results from programs compiled with Fairplay on a PC evaluated with Nipane
et al.’s OT

Memory (KB) Time (ms)
Program Initial After File Opening End File Opening Evaluating

Millionaires 5640 5733 5995 194 302
Billionaires 5536 5885 6303 631 958
+CoinFlip 5528 5796 6280 428 1062

KeyedDB 16 5551 6255 7848 2252 1955
SetInter 2 5439 6018 7047 1663 2131
SetInter 4 5553 7708 13507 10540 9555

+Levenshtein Dist 2 5568 5872 6316 529 781
+Levenshtein Dist 4 5577 6088 7178 1704 2213
Levenshtein Dist 8 5488 7670 13011 9745 8662

programs with around 20,000 mixed two and three input gates on the phone.
This limit translates to 209 32-bit addition operations in our compiler.

While the circuits we generate are not optimized in the same manner as
Fairplay’s circuits, we wanted to ensure that their execution time would still
be competitive against circuits generated by Fairplay. Because of the limits of
generating Fairplay circuits on the phone, we compiled them using Fairplay on a
PC, then used these circuits to compare evaluation times on the phone. Table 5
shows the results of this evaluation. Programs denoted with a + required edits
to the SHDL to run in the evaluator, in order to prevent their crashing due
to the issues described in Section 3.3. In many cases, evaluating the circuit
generated by FPPALC resulted in faster evaluation. One anomaly to this trend
was Levenshtein distance, which ran about three times slower using FPPALC.
We speculate this is due to the optimization of constant addition operations and
discuss further in Section 5. Note, however, that these circuits are unable to be
generated on the phone using Fairplay and require pre-compilation.

4.3 Interoperability

To show that our circuit generation protocol can be easily used with other im-
proved approaches to SFE, we used the faster oblivious transfer protocol of Nipane
et al. [15], who replace the OT operation in Fairplay with 1-out-of-2 OT scheme
based on a two-lock RSA cryptosystem. Shown in Table 5, these provide an over
24% speedup for the Billionaire’s problem and 26% speedup for the Coin Flip pro-
tocol. On average, there was an 13% decrease in evaluation time across all prob-
lems. For the Millionaires, Billionaires, and CoinFlip programs we disabled Na-
gle’s algorithmas describedbyNipane et al., leading tobetter performance on these
problems. The magnitude of improvement decreased as circuits increased in size,
a situation we continue to investigate. Our main findings, however, are that our
memory-efficient circuit generation is complementary to other approaches that fo-
cus on improving execution time and can be easily integrated.
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(a) (b)

Fig. 5. Screenshots of editor and password wallet applications

5 Discussion

To demonstrate how our memory-efficient compiler can be used in practice, we
developed Android apps capable of generating circuits at runtime. We describe
these below.

5.1 GUI Based Editor

To allow compilation on a phone we have to address one large problem. Our
experience porting Fairplay to Android showed the difficulty of writing a program
on the phone. Figure 5 (a) shows an example of a GUI front-end for picking and
compiling given programs based on parameters. A list of programs is given to
the user who can then pick and choose which program they wish to run. For
some of the programs there is a size variable that can also be changed.

5.2 Password Vault Application

We designed an Android application that introduces SFE as a mechanism to
provide secure digital deposit boxes for passwords. In brief, this “password vault”
can work in a decentralized fashion without reliance on the cloud or any third
parties. If Alice fears that her phone may go missing and wants Bob to have a
copy of her passwords, she and Bob can use their “master” passwords as inputs to
a pseudorandom number generator. These passwords are not revealed to either
party, nor is the output of the generators, which is used to encrypt the password.
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If the passwords are ever lost, Alice and Bob can jointly recover the passwords;
both must present their master passwords to decrypt the password file, ensuring
that neither can be individually coerced to retrieve the contents. Figure 5(b)
shows a screenshot of this application. which can encrypt passwords from the
user or decrypt those in the database.

Our evaluation shows that compiling the password SFDL program requires
915 KB of memory and approximately 505 ms, with 60% of that time involving
the PAL to SHDL conversion. Evaluating the circuit is more time intensive.
Opening the file takes 2 seconds, and performing the OTs and gate evaluation
takes 6.5 seconds. We are exploring efficiencies to reduce execution time.

5.3 Experiences with Garbled Circuit Generation

A major takeaway from our implementation was cognizance of the large burden
on mobile devices caused when complete circuits must be kept in memory. Better
solutions only use small amounts of memory to direct the actual computation,
for instance, one copy of each circuit even if n statements are required.

The largest challenge for many other approaches is the need for the full circuit
to be created. Circuits for O(n2) algorithms and beyond scale extremely poorly.
A different approach is needed for larger scalability. For instance, doubling the
Levenshtien distance n paremeter increased the circuit size by a factor of about
4.5 (decreasing the larger n grows), when n is 8 there are 11,268 gates, 16 is
51,348 gates, 32 is 218,676 gates, and 64 is 902,004 gates.

Our original version of PAL did not scale well due to its lack of loops, arrays,
procedures, or functions. Once these structures were added, the length of PAL
programs decreased dramatically. Instead of unrolling all programming control
flow constructs we added them for smaller PAL programs, creating largely iden-
tical circuits with much fewer instructions.

6 Related Work

Other research has primarily focused on optimizing the actual evaluation for
SFE, while we focus on generating circuits in a memory efficient manor.
Kolesnikov et al. [9] demonstrated a “free XOR” evaluation technique to im-
prove execution speed, while Pinkas et al. [16] implement techniques to reduce
circuit size of the circuits and computation length. We plan to implement these
enhancements in the next version of the circuit evaluator.

Huang et al. [7] have similarly focused on optimizing secure function evalua-
tion, focusing on execution in resource-constrained environments. The approach
differs considerably from ours in that users build their own functions directly at
the circuit level rather than using high-level abstractions such as SFDL. While
the resulting circuit may execute more quickly, there is a burden on the user
to correctly generate these circuits, and because input files are generated at
the circuit level in Java, compiling on the phone would require a full-scale Java
compiler rather than the smaller-scale SFDL compiler that we use.
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Another way to increase the speed of SFE has been to focus on leverag-
ing the hardware of devices. Pu et al. [17] have considered leveraging Nvidia’s
CUDA-based GPU architecture to increase the speed of SFE. We have con-
ducted preliminary investigations into leveraging vector processing capabilities
on smartphones, specifically single-instruction multiple-data units available on
the ARM Cortex processing cores found within many modern smartphones, as
a means of providing better service for certain cryptographic functionality.

Kruger et al. [10] described a way to use ordered binary decision diagrams
(OBDDs) to evaluate SFE, which can provide faster execution for certain prob-
lems. Our future work will involve determining whether the process of preparing
OBDDs can benefit from our memory-efficient techniques. TASTY [5] also uses
different methods of privacy-preserving computation, namely homomorphic en-
cryption (HE) as well as garbled circuits, based on user choices. This approach
requires the user to explicitly choose the computation style, but may also benefit
from our generation techniques for both circuits and the homomorphic construc-
tions. FairplayMP [2] showed a method of secure multiparty computation. We
are examining how to extend our compiler to become multiparty capable.

7 Conclusion

We introduced a memory efficient technique for making SFE tractable on the
mobile platform. We created PAL, an intermediate language, between SFDL and
SHDL programs and showed that by using pre-generated circuit templates we
could make previously intractable circuits compile on a smartphone, reducing
memory requirements for the set intersection circuit by 95.6%. We demonstrate
the use of this compiler with a GUI editor and a password vault application. Fu-
ture work includes incorporating optimizations in the circuit evaluator and de-
termining whether the pre-generated templates may work with other approaches
to both SFE and other privacy-preserving computation primitives.
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Abstract. In this paper, we design efficient protocols for a number of
private database query problems. Consider a general form of the prob-
lem where a client who holds a private input interacts with a server
who holds a private decision program (e.g. a decision tree or a branch-
ing program) with the goal of evaluating his input on the decision pro-
gram without learning any additional information. Many known private
database queries such as Symmetric PIR, and Private Keyword Search
can be formulated as special cases of this problem.

We design computationally efficient protocols for the above general
problem, and a few of its special cases. In addition to being one-round
and requiring a small amount of work by the client (in the RAM model),
our protocols only require a small number of exponentiations (indepen-
dent of the server’s input) by both parties. Our constructions are, in
essence, efficient and black-box reductions of the above problem to 1-out-
of-2 oblivious transfer. We prove our protocols secure (private) against
malicious adversaries in the standard ideal/real world simulation-based
paradigm.

The majority of the existing work on the same problems focuses on
optimizing communication. However, in some environments (supported
by a few experimental studies), it is the computation and not the com-
munication that may be the performance bottleneck. Our protocols are
suitable alternatives for such scenarios.

1 Introduction

The client/server paradigm for computation and data retrieval is arguably the
most common model for interaction over the internet. The majority of the ser-
vices currently provided over the web are laid out in this framework wherein
an often more resourceful entity (i.e. the server) provides its services to a large
pool of clients. The need for the client/server model is even more justified given
the widespread use of (small) mobile devices with varying computational and
storage capacities.

Most client-server applications, in one way or another, deal with personal
and/or sensitive data. Hence, it is not surprising that the protocols designed
in this model have been the subject of extensive study by the cryptographic
community. A few notable examples include private information retrieval and
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its extensions [15,9,13], or the more recent effort on securely outsourcing com-
putation [10,7].

Communication vs. Computation. Consider the problem of symmetric private
information retrieval (SPIR) [15,5,16]. SPIR refers to a PIR scheme with the ad-
ditional security requirement that the server’s database also be kept private. The
majority of the research on this problem is focused on improving the commu-
nication complexity, because communication between the client and the server
is often considered to be the most expensive resource. Despite achieving this
goal, other barriers continue to limit realistic deployment of SPIR schemes; the
most limiting of which is computation. In particular, while servers often have
higher computational resources, they also need to serve a large pool of clients;
consequently, even a small increase in the computation of the server for a single
run of the protocol, negatively affects its overall performance. Furthermore, a
number of experimental studies [24,22] conclude that, in many network setups
where private database queries are likely to be deployed, it is the computation
(and not the communication) that might be the performance bottleneck.1

Unfortunately, given the security requirements for SPIR schemes (or even
PIR), it is possible to show that the server’s work has to be at least linear in
the size of his database (e.g. see [3]). Hence, there is no hope of achieving better
asymptotic efficiency. Nevertheless, the type of operations (e.g. asymmetric vs.
symmetric-key) the server performs has a significant effect on the efficiency of the
resulting scheme. This is particularly important in real applications since based
on existing benchmarks (e.g. http://bench.cr.yp.to) asymmetric operations (e.g.
exponentiation) require several thousand times more cpu cycles compared to
their symmetric-key counterparts. In all the constructions we are aware of for
SPIR, except for one, the number of exponentiations the server has to perform
is at least linear in the size of his database. The exception is the construction of
Naor and Pinkas [19,21], who studied the problem under the different name of
1-out-of-N oblivious transfer (OTN

1 ).
The situation, however, is not the same for most of the generalized vari-

ants of SPIR. A number of generalizations and extensions to SPIR have been
studied in the literature. Examples include private keyword search [6,9], private
element rank [8], and even more generally, the problem of oblivious decision
tree, and branching program evaluation [13,4]. The existing solutions for these
problems often require a number of public-key operations that is proportional
to the server’s input size and hence are not computationally efficient for use in
practice. The only exception (with a small number of asymmetric operations) is
Yao’s garbled circuit protocol which is unsuitable for our applications due to its
high computational cost for the client (see the related work section for a more
detailed discussion).

Why OT extension does not solve the problem. OT extension techniques (e.g.
[12]) are often used to reduce the number of asymmetric operations in crypto-

1 The experimental studies we cite here, focus on PIR but the implications are even
more valid for SPIR schemes.
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graphic constructions. They allow one to reduce the computation needed for a
large number (n) of 1-out-of-2 OTs, to k such OTs, and O(n) symmetric-key
operations, where k is the security parameter. This yields significant savings
when n is large. One may wonder whether similar techniques can be applied
to the existing solutions for the problems we are studying in order to reduce
their computation. Specifically, the constructions of [15,13] can be seen as eval-
uation of many OTs which makes them suitable candidates for OT extension.
These constructions, however, require additional properties from the underlying
OT such as (i) short OT answers since the OT protocol is applied in multi-
ple layers and (ii) a strongness property which requires the OT answer not to
reveal the corresponding OT query (see future sections for more detail). Unfortu-
nately, the existing OT extension techniques do not preserve either one of these
properties and hence cannot be used to improve the computational efficiency
of these solutions. Designing new extension techniques that preserves the above
two properties is, however, an interesting research question.

In this work, we propose new and efficient protocols for oblivious tree and
branching program evaluation which possess the following four efficiency prop-
erties:

- The number of exponentiations by both the client and the server is indepen-
dent of the size of the server’s input.

- The client’s total computation is independent of the size of the server’s input.
- Our protocols are black-box constructions based on OT 2

1 and a PRG, and
hence can be instantiated using a number of assumptions.

- The protocols are non-interactive (one round) if the underlying OT 2
1 is.

RAM model of computation. When measuring client’s computation in our proto-
cols, we work in the RAM model of computation where lookups can be performed
in constant time. In particular, even though the server communicates a some-
what large (proportional to the size of the program) encrypted decision program
to the client, client only needs to lookup a small number of values and perform
computation only on those values.

Next, we review our protocols in more detail.

1.1 Overview of Protocols

Oblivious evaluation of trees. Our first protocol deals with secure evaluation
of arbitrary decision trees that are publicly known by both the client and the
server, but where the input to the decision tree is only known to the client and
the labels of the terminal nodes are only known to the server. This problem has
a number of interesting applications. For example, 1-out-of-N oblivious transfer
can be seen as an instance of this more general problem. In fact, our protocol
yields a new and more efficient 1-out-of-N OT, that reduces the number of
symmetric-key operations needed by the scheme of [19] from O(N logN) to
O(N), while maintaining the same asymmetric (O(logN)) and communication
(O(kN)) complexities.
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Hiding the tree structure. Our first protocol mentioned above hides the leaf
labels but assumes that the decision tree itself is public. We apply a number of
additional tricks to hide all the structural information about the decision tree
(except for its size), without increasing the computational cost for the client
or the server. Once again, the resulting protocol preserves the above-mentioned
efficiency properties. Unlike our first protocol, for this construction we need a
OT 2

1 protocol with the slightly stronger security property that, the OT answers
are not correlated with their corresponding queries. This notion of security for
OT and its instantiation based on standard assumptions has already been studied
by Ishai and Paskin [13] (see section 2.3).

Extension to branching programs. Finally, at the cost of a slightly higher number
of OTs (though still independent of the size of the program), we extend the
protocol from decision trees to decision programs (branching programs). The
difficulty is to make sure the number of occurrences of a single variable during
the evaluation of an input by the program is not revealed to the client. For
decision trees, this number is always one, but for decision programs, it can be
an arbitrary value.

Our protocols all follow the common paradigm of having the server encrypt
his database/decision tree/branching program using a set of random strings;
sending it to the client; and then engaging in a small number of OT 2

1 protocols
such that the client learns enough keys to evaluate his input on the encrypted
program and learn the output but nothing else. The main challenge is to devise
an encryption strategy that is secure and at the same time allows our protocols
to have the efficiency properties we are after.

We prove our protocols secure in the ideal/real world simulation paradigm.We
also discuss how our new protocols yield computationally efficient constructions
for a number of well-studied problems in the literature such as 1-out-of-N OT
and private keyword search.

1.2 Related Work

There are a number of works that study the problem of oblivious decision pro-
gram evaluation. In [13], a one-round protocol for oblivious branching program
(BP) evaluation is proposed. This protocol hides the size of the BP as well as its
structure. Although the number of client exponentiations are O(n) and hence
proportional to the size of its input, the number of exponentiations by the server
is linear in the size of the BP which makes the protocol computationally quite
expensive. This protocol was slightly improved in [17], where a more communica-
tion efficient protocol but with the same computational complexity is designed.

In [4] Yao’s garbled circuit protocol is used in conjunction with homomorphic
encryption and oblivious transfer to solve the problem of oblivious BP evaluation
(with the application of remote diagnostic programs). This protocol has O(|V |)
rounds and requires O(|V | + n) exponentiations on the client side and O(|V |)
exponentiations at server side where |V | is the size of the program and n is
the size of client’s input. This protocol was later generalized and improved in
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[2] but the number of server’s exponentiation is still dependent on |V |. These
constructions, however, consider a more general form of BP where the decision
nodes contain an attribute index as well as a threshold value which is used to
decide whether to go left or right n next.

Using fully homomorphic encryption schemes. The problem of oblivious tree/
branching program evaluation can also be solved using the recent fully homo-
morphic encryption schemes [11]. The problem with such a solution is its high
computation cost as the number of times the corresponding public-key encryp-
tion scheme is invoked is at least linear in the tree/branching program size and
its input.

Using yao’s garbled circuit protocol. It is also possible to use Yao’s garbled circuit
protocol to implement oblivious tree and branching program evaluation. One
party’s input to the circuit is his input string while the other party’s input is
the tree/branching program itself. However, Yao’s protocol is not well-suited for
the client/server model of computation since both parties have to perform work
that is proportional to the size of the circuit, and the circuit in this case is at
least linear in size of the program, and its input. In particular, in Yao-based
solutions, the client ends up doing work that is proportional to the size of the
server’s input which does not meet our efficiency criteria.

We give a more detailed comparison of efficiency between our protocol and
the existing solutions including the one based on Yao’s garbled circuit protocol
in Table 1.

2 Preliminaries

In this section, we introduce the notations, decision program definitions and the
primitives we use throughout the paper. Readers can refer to the full version [18]
for the security definitions we work with.

2.1 Notations

We denote by [n] the set of positive integers {1, . . . , n}. We use
$← to denote

generation of uniformly random strings.
Throughout the paper, we use k to denote the security parameter. We denote

an element at row i and column j of a matrix by M [i, j]. Vectors are denoted by
over-arrowed lower-case letters such as v. We use a||b to denote the concatenation
of the strings a and b.

We denote a random permutation function by Perm. v ← Perm(V ) takes as
input a set of integers V = {1, . . . , |V |}, permutes the set uniformly at random
and returns the permuted elements in a row vector v of dimension |V |.

2.2 Decision Trees and Branching Programs

Below we define decision trees and branching programs, two common models for
computation which are also the main focus of this paper. Note that we only give



274 P. Mohassel and S. Niksefat

one definition below for both models under the name of decision programs. If the
directed acyclic graph we mention below is a tree, then we have a decision tree
and otherwise we have a branching program. The description and the notations
are mostly borrowed from [13].

Definition 1 (Decision Program (DP)). A (deterministic) decision program
over the variables x = (x1, . . . , xn) with input domain I and output domain O
is defined by a tuple (G = (V,E), v1, T, ψV , ψT , ψE) where:

– G is a directed acyclic graph (e.g. a binary tree as a special case). Denote by
Γ (v) the children set of a node v.

– v1 is an initial node of indegree 0 (the root in case of a tree). We assume
without loss of generality that every u ∈ V − {v1} is reachable from v1.

– T ⊆ V is a set of terminal nodes of outdegree 0 (the leaves in case of a tree).
– ψV : V −T → [n] is a node labeling function assigning a variable index from

[n] to each nonterminal node in V − T .
– ψT : T → O is a node labeling function asigning an output value to each

terminal node in T .
– ψE : E → 2I is an edge labeling function, such that every edge is mapped to

a non-empty set, and for every node v the sets labeling the edges to nodes in
Γ (v) form a partition of I.

In this paper, for simplicity, we describe our protocols for binary decision pro-
grams. But, it is easy to generalize our constructions to t-ary decision protocols
for arbitrary positive integers t.

Definition 2 (Binary DP). A binary decision program is simply formed by
considering I = {0, 1}. Also for simplicity instead of the children set function Γ ,
we define ΓL(v) and ΓR(v) which output the variable indices of the left and right
children of v. Since edge labeling are fairly obvious for binary decision programs,
we often drop ψE when discussing such programs.

Definition 3 (Layered DP). We say that P = (G =
(V,E), v1, T, ψV , ψT , ψE , ψ�) is a layered decision program of length 	 if
the node set V can be partitioned into 	 + 1 disjoint levels V = ∪�

i=0Vi, such
that V1 = {v1}, V�+1 = T , and for every e = (u, v) we have u ∈ Vi, v ∈ Vi+1

for some i. We refer to Vi as the i-th level of P . Note that we also introduced
the function ψ� : V → [	] which takes a vertex as input and returns its level as
output.

How to evaluate a DP. The output P (x) of a decision program P on an input
assignment x ∈ In is naturally defined by following the path induced by x from
v1 to a terminal node v�, where the successor of node v is the unique node v′ such
that xψV (v) ∈ ψE(v, v

′). The output is the value ψT (v�) labeling the terminal
node (leaf node) reached by the path.

Parameters of a DP. Let P = (G = (V,E), v1, T, ψV , ψT , ψE) be a decision
program. The size of P is |V |. The height of a node v ∈ V , denoted height(v),
is the length (in edges) of the longest path from v to a node in T . The length of
P is the height of v1.
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2.3 Oblivious Transfer

Our protocols use Oblivious Transfer (OT) as a building block. Since we focus on
protocols that run in a single round, we describe an abstraction for one-round
OT protocols here [13]. A one-round OT involves a server holding a list of t
secrets (s1, s2, . . . , st), and a client holding a selection index i. The client sends
a query q to the server who responds with an answer a. Using a and its local
secret, the client is able to recover si.

More formally, a one-round 1-out-of-t oblivious transfer (OT t
1) protocol is de-

fined by a tuple of PPT algorithms OT t
1 = (GOT,QOT,AOT,DOT). The protocol

involves two parties, a client and a server where the server’s input is a t-tuple of
strings (s1, . . . , st) of length τ each, and the client’s input is an index i ∈ [t]. The
parameters t and τ are given as inputs to both parties. The protocol proceeds
as follows:

1. The client generates (pk, sk) ← GOT(1
k), computes a query q ←

QOT(pk, 1
t, 1τ , i), and sends (pk, q) to the server.

2. The server computes a ← AOT(pk, q, s1, . . . , st) and sends a to the client.
3. The client computes and outputs DOT(sk, a).

In the case of semi-honest adversaries many of OT protocols in the literature
are one-round protocols [1,20,14]. In case of malicious adversaries (CRS model),
one can use the one-round OT protocols of [23].

Strong Oblivious Transfer. When OT is invoked multiple times as a sub-
protocol, sometimes it is crucial for the security of the protocol that the receiver
(i.e. client) be unable to correlate OT answers with their corresponding queries.
In particular, when the client receives an OT answer, he should not determine
which OT query the answer belongs to.

This property can be formalized by requiring the distribution of the answer a
conditioned on the output si to be independent of the query q. More formally,

Definition 4 (Strong OT Property [13]). An OT protocol is said to have the
strong OT property if there exists an expected polynomial time simulator SimOT

such that the following holds. For every k, t, τ, i ∈ [t], pair (pk, q) that can be
generated by GOT,QOT on inputs k, t, τ, i, and strings s0, ..., st−1 ∈ {0, 1}τ , the
distributions AOT(pk, q, s1, ..., st) and SimOT(pk, 1

t, si) are identical.

Some implementations of one-round OT based on homomorphic encryption
schemes [15,13] satisfy this strongness property.

3 Secure Evaluation of Binary Decision Trees

In this section we propose a new protocol for secure evaluation of any publicly
known decision tree with privately held terminal nodes on private inputs. This
problem has a number of interesting applications such as an improved OTN

1

protocol which is described in Section 6.
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Protocol Overview. Our first protocol deals with secure evaluation of arbitrary
decision trees (P = ((V,E), v1, T, ψV )) that are publicly known by both the
client and the server, but where the input to the decision tree (X = x1x2 . . . xn ∈
{0, 1}n) is only known to the client and the labels of the terminal nodes (ψT )
are only known to the server.

The Protocol 1

Shared Inputs: The security parameter k, and

a binary decision tree P = ((V, E), v1, T, ψV )

with O = {0, 1}k (note the missing ψT ). Par-

ties also agree on a 1-out-of-2 OT protocol

(GOT,QOT,AOT,DOT) and a PRG G : {0, 1}k →
{0, 1}2k .

Server’s Input: The terminal node labeling func-

tion ψT .

Client’s Input: A bitstring X = x1x2 . . . xn ∈
{0, 1}n.

1. The client encrypts his inputs using OT

queries, and sends them to the server.

Client computes (pk, sk) ← GOT(1k)

for 1 ≤ i ≤ n do

Client computes qi ← QOT(pk, 12, 1k, xi)

end for

Client sends pk and q = (q1, q2, . . . , qn) to

Server.

2. Server computes the OT answer vector

a.

for 1 ≤ i ≤ n do

(K0
i , K

1
i )

$← {0, 1}k
ai ←AOT(pk, qi, K

0
i ,K

1
i )

end for

a ← (a1, a2, . . . , an)

3. Server prepares the Encrypted Vertex

Vector
−−−→
EV V .

- Server generates a random

pad vector PAD of length

|V |:
for i = 1 to |V | do

PAD[i]
$← {0, 1}k

end for

- Server encrypts the non-terminal

nodes:

for i ∈ V − T do

EncL = K0
ψV (i) ⊕ PAD[ΓL(i)]

EncR = K1
ψV (i) ⊕ PAD[ΓR(i)]

EV V [i] ←G(PAD[i]) ⊕ (EncL||EncR)

end for

- Server encrypts the labels of the terminal

nodes:

for i ∈ T do

EV V [i] ← PAD[i] ⊕ ψT (i)

end for

4. Server sends (a, PAD[1],
−−−→
EV V ) to the

client.

5. Client retrieves the keys and

computes the final output.

node ← 1

pad ← PAD[1]

while node /∈ T do

EncL||EncR
parse←− EV V [node]⊕G(pad)

i ← ψV (node)

K
xi
i ← DOT(sk, ai)

if (xi = 0) then

newpad ← K0
i ⊕ EncL

newnode ← ΓL(node)

else

newpad ← K1
i ⊕ EncR

newnode ← ΓR(node)

end if

pad ← newpad

node ← newnode

end while

Client outputs (pad ⊕ EV V [node]) as his

final output.

In our protocol, a pair of random keys (K0
xi
,K1

xi
) is generated for each xi, and

is used by the server as his input in the n 1-out-of-2 OTs. The idea is then to
generate a set of random pads, one for each node in the decision tree. Each node
stores a pair of values, i.e. the two random pads corresponding to its left and
right children. However, this pair of values is not stored in plaintext. Instead, the
left (right) component of the pair is encrypted using a combined key formed by
XORing the left-half (right-half) of the expanded pad (expanded using a PRG)
for the current node with K0

xi
(K1

xi
) where i is the label of the current node. The

encryption scheme is a simple one-time pad encryption. The encrypted values

are stored in a vector we call the Encrypted Vertex Vector (
−−−→
EV V ).

The client who receives one of each pair of random keys, can then use them
to decrypt a single path on the tree corresponding to the evaluation path of
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his input X , and recover his output, i.e. the output label associated with the
reached terminal node. As we show in the proof, the rest of the terminal node
labels remain computationally hidden from the client. A detailed description of
the protocol is depicted in the box for the protocol 1.

Security. In the full version of the paper [18] we show that as long as the
oblivious transfer protocol used is secure even when executed in parallel, so is
our construction given above. Particularly, if the OT is secure against malicious
(semi-honest) adversaries (when run in parallel), protocol 1 described above is
also secure against malicious (semi-honest) adversaries. The following Theorem
formalizes this statement.

Theorem 1. In the OT-hybrid model, the above protocol is fully-secure (i.e.
simulation-based security: see the definition in Appendix B of the full version
[18]) against malicious adversaries.

Complexity. The proposed protocol runs in one round which consists of a
message from the client to the server and vice versa.

The only asymmetric computation required in this protocol is for the OT in-
vocations and since there are n OT invocations and each OT requires a constant
number of exponentiations, the number of exponentiations is O(n) for both par-
ties. Using the OT extension of [12] we can reduce the number of exponentiations
to O(k) for both parties.

The number of other (symmetric-key) operations such as PRG invocations,
and XORing is O(|V |) on the server side and O(l) on the client side where l
refers to the depth of the tree (l ≤ n).

The communication complexity of the protocol is dominated by the total size

of the elements in
−−−→
EV V which is bounded by O(|V |k) where k is the security

parameter. This is due to the fact that each element of
−−−→
EV V is of size 2k and

there are |V | such elements.

4 Hiding the Tree Structure

We will show how to securely formulate via decision programs, other proto-
cols such as the private keyword search problem [6,9] and the private element
rank problem [8] (see the full version for discussion on the latter). For some of
these problems, privacy of the server’s database critically relies on keeping the
structure of the corresponding decision program private. The program structure
includes all the information available about it except for its size (number of its
nodes) and the number of variables (both of which are publicly known).

For simplicity, in this section we assume that the decision tree we work with
is layered. Alternatively, we could allow for arbitrary tree structures2 and then
consider the length of the evaluation path as public information available to our

2 In a non-layered decision tree, the length of the evaluation path for different inputs
need not be the same.



278 P. Mohassel and S. Niksefat

simulators (our protocol reveals the length). However, since in most applications
one wants to keep this information private (see Section 6), we chose to work
with this assumption instead. Note that there are generic and efficient ways of
transforming any decision program (tree) into a layered one. In section 6, we give
a customized and more efficient transformation for the private keyword search
application.

Next, we show how to enhance the protocol of previous section in order to
hide the decision tree’s structure without increasing the computational cost of
the client or the server (in the next section we extend this to decision programs).
Once again, our protocol reduces the problem to n OT 2

1 protocols.
Here we require the OT 2

1 protocol to have a slightly stronger security property
compared to the standard one. We refer to such OTs as strong OTs. At a high
level, we require that the OT answers do not reveal anything about the corre-
sponding query. This property helps us hide from the client, the order in which
the input variables are evaluated which would in part reveal some information
about the structure of the tree. A formal definition of security as well as some
existing constructions for strong OT are discussed in section 2.3.

An Overview. The high level structure of the protocol of this section is similar
to the previous one. In particular, we still perform n OTs and use a set of key
pairs and random pads in order to garble the tree. But since this time we are also
interested in hiding the structure of the tree, a more involved encryption process
is necessary. The main changes to the previous construction are as follows: first,
instead of revealing the labels of the non-terminal nodes to the client, we use
a pointer (index) to the corresponding item in the randomly permuted list of
OT answers (a′). In order for the permuted list of answers not to reveal the
permutation, we need to use a strong OT protocol. Second, in order to hide the
arrangement of the nodes in the tree, instead of revealing the outgoing edges of
each non-terminal node, we use two pointers to the corresponding nodes in a

randomly permuted list of the nodes in the tree (
−−−→
EV V ).

The three pointers mentioned above (one pointing to a′ and two pointing

to
−−−→
EV V ) stored at each node, is all that the client needs in order to evaluate

the decision tree on his input. All of this information will be encrypted using a
combination of the random pads and the key pairs similar to the construction

of previous section and is stored in the
−−−→
EV V vector. However, several subtleties

exist in order to make sure the construction works. First, only the random pads
(not the random keys) are to be used in encrypting the pointers to the OT an-
swers since the random keys themselves are retrieved from the OT answers. Also,
in order to hide from the client which bit value the retrieved key corresponds to
(note that this can reveal extra information about the node labels which are to
be kept private), the two values encrypted using the keys (EncL and EncR) are
randomly permuted and a redundant padding of 0k is appended to the values be-
fore encryption to help the client recognize when the correct value is decrypted.
A detailed description of the protocol is depicted in the box for protocol 2.

In the description above, the size of EVV for terminal vs. non-terminal nodes
is different which leaks the total number of terminal nodes. However, we only did
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so to make the description of the protocol simpler. In particular, it is easy to pad
the size of terminal nodes to the appropriate size, and then embed an indicator
bit in each EVV cell (before encryption) that helps the client determine if he
has reached a terminal node.

The Protocol 2

Shared Inputs: The security parameter k, size of

the set V , i.e. |V |. We also let k′ = 2k + log(|V |).
Parties also agree on a strong OT2

1 protocol

OT = (GOT,QOT,AOT,DOT) and a PRG

G : {0, 1}k → {0, 1}2k′+log n.

Server’s Input: A layered binary decision tree

P = ((V, E), v1, T, ψV , ψT ) with O = {0, 1}k .

Client’s Input: A bitstring X = x1x2 . . . xn ∈
{0, 1}n.

1. Client encrypts his inputs using OT

queries, and sends the vector q to

Server. The first step of computing the OT

queries for the client is identical to protocol

of Section 3 and hence is omitted here.

2. Server computes a permuted OT answer

vector a′.
- Server computes the OT answer vector

a:

for 1 ≤ i ≤ n do

(K0
i ,K

1
i )

$← {0, 1}k′

ai ←AOT(pk, qi,K
0
i ,K

1
i )

end for

a ← (a1, a2, . . . , an)

- Server Generates a random

permutation vector PERn:

PERn ← Perm({1, ..., n})
- Server Permutes a using PERn:

for 1 ≤ i ≤ n do

a′[PERn[i]] ← a[i]

end for

3. Server computes an encrypted vertex

vector
−−−→
EV V .

- Server generates a random

pad vector PAD of length

|V |:
for i = 1 to |V | do

PAD[i]
$← {0, 1}k

end for

- Server Generates a random

permutation vector PERV :

PERV ← Perm({1, ..., |V |})

- Server encrypts non-terminal

nodes and their outgoing edges:

for i ∈ V − T do

EncL ← K0
ψV (i)⊕

(PAD[ΓL(i)]||PERV [ΓL(i)]||0k)

EncR ← K1
ψV (i)⊕

(PAD[ΓR(i)]||PERV [ΓR(i)]||0k)

b
$← {0, 1}

if b = 0 then

EV V [PERV [i]] ←
G(PAD[i])⊕

(PERn[ψV (i)]||EncL||EncR)

else

EV V [PERV [i]] ←
G(PAD[i])⊕

(PERn[ψV (i)]||EncR||EncL)

end if

end for

- Server encrypts the labels of the terminal

nodes:

for i ∈ T do

EV V [PERV [i]] ← PAD[i]⊕ψT (i)

end for

4. Server sends (PERV [1], PAD[1], a′, −−−→
EV V )

to Client.

5. Client retrieves the keys and computes

the final result.

node ← PERV [1]

pad ← PAD[1]

while node /∈ T do

(j||Enc0||Enc1)
parse←− EV V [node]⊕pad

K ← DOT (sk, a′[j])
Dec0 ← K ⊕ Enc0
Dec1 ← K ⊕ Enc1
if k least significant bits of Dec0 are 0

then

pad||node||0k parse←− Dec0
else

pad||node||0k parse←− Dec1
end if

pad ← G(pad)

end while

Client outputs (pad ⊕ EV V [node]) as his

final output.

Security. The simulation proof for protocol 2 follows the same line of argument
as that of protocol 1. The main difference in the security claim for protocol
2 is that it is private against a malicious server (as opposed to being fully-
secure). The intuition behind this weakening in the security guarantee is that

the server can construct an
−−−→
EV V that does no correspond to a valid decision
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tree, and our protocol does not provide any mechanisms for detecting this type
of behavior. However, the protocol is still private, since all that the server sees
in the protocol are the OT queries. Also note that the client is always able to

compute an output even if the
−−−→
EV V is not a valid tree (there is no possibility of

failure conditioned on specific input values), and hence the server cannot take
advantage of the pattern of aborts by the client in order to learn additional
information. It is possible to augment the protocol with zero-knowledge proofs
that yield full security against a malicious server, but all the obvious ways of
doing so would diminish the efficiency properties we are after. In particular both
the server and the client would have to do a number of exponentiations that is
proportional to the size of the tree.

Next, we state our security theorem. Readers are referred to the full version
of the paper [18] for the proof of Theorem 2.

Theorem 2. In the strong-OT-hybrid model, and given a cryptographically se-
cure PRG G, the above protocol is fully-secure against a malicious client and is
private against a malicious server.

Complexity. Similar to protocol 1, protocol 2 runs in one round. The asymp-
totic computational complexity for the client and the server remains the same
too. In other words, the client and the server perform O(n) exponentiations for
the OTs. Server performs O(|V |) PRG invocations and XOR operations while
the client performs O(l) PRG and XOR operations where l is the length of the
decision tree.

The communication cost of the protocol is dominated by size of
−−−→
EV V which

consists of |V | elements of size 4k+ log |V |. This leads to a total communication
of O(|V |(log |V |+ k) bits.

5 Extension to Branching Programs (BP)

In this section we extend our proposed protocol of previous section to branch-
ing programs (BP). BPs are decision programs that are represented as directed
acyclic graphs [25], and hence may contain various paths from the root to some
nodes. Because of the structure of the BPs, a variable may be evaluated more
than once in a single evaluation. In order to hide the number of times a variable
is visited from a curious party, and to obliviously evaluate a BP, we generate
a separate OT answer vector for each level of the BP. This can be done by
computing a permuted OT answer matrix (A′) instead of an OT answer vector

described in protocol 2, and using the indices to this matrix when
−−−→
EV V is com-

puted. Similar to the previous protocol, we need a strong OT as a sub-protocol
to prevent correlation between OT queries, and answers.

More formally, assume that PERln is a permutation matrix of dimension l×n
where l is the length of the program. A′ is computed as follows:
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for i = 1 to l do
for j = 1 to n do

(K0
i,j ,K

1
i,j)

$← {0, 1}k
′

A′[i, PERln[i, j]] ← AOT (pk, qj ,K
0
i,j ,K

1
i,j)

end for
end for

Moreover, in the
−−−→
EV V computation step, PERln[height(i), ψV (i)] is used to

point to the elements in A′. To compute the final result, the client will also use
the elements in the A′ matrix to retrieve the keys and evaluate the BP.

The argument for the security of this scheme is almost the same as protocol 2.

Theorem 3. In the strong-OT-hybrid model, and given a cryptographically se-
cure PRG G, the above-mentioned protocol is fully-secure against a malicious
client and is private against a malicious server.

Complexity. As before, the protocol runs in one round. The number of exponen-
tiations performed by the client remains the same but the server has to perform
slightly more exponentiations. In other words, the client performs O(n) expo-
nentiations and the server performs O(ln) exponentiations for the OTs where l is
the length of the branching program. The number of PRG invocations and XOR
operations remains the same as protocol 2 which is O(|V |) for the server and
O(l) for the client. The asymptotic communication cost of the protocol remains
the same as protocol 2 which is O(|V |(log |V |+ k)) bits.

Table 1 compares the complexities of the related work with our proposed
protocol for oblivious evaluation of BPs. The main advantage of our proposed
protocol over the previous schemes is that the server’s asymmetric computation
is independent of the size of the branching program. This feature makes our pro-
tocol truly efficient when |V | is large. In case of Yao-based constructions, the size
of the circuit required for evaluating a branching program of size |V | and length
l on an input of size n is O(|V |l(log |V | + logn)). Therefore, using Yao’s pro-
tocol for oblivious branching program evaluation yields a protocol which needs
O(|V |l(log |V | + logn)) symmetric-key operations for both the client and the
server, and a communication complexity of O(|V |lk(log |V |+ logn)).

Table 1. Comparison of protocols for oblivious branching program evaluation

Rounds Client Computations Server Computations Communication
Asymmetric Symmetric Asymmetric Symmetric Complexity

Yao [26] 1 O(n) O(|V |l(log |V | + log n)) O(n) O(|V |l(log |V | + log n))O(|V |lk(log |V | + log n))

[13] 1 O(n + l) none O(|V |) none O(knl)
[4,2] O(|V |) O(|V | + n) O(|V |) O(|V |) O(|V |) O(k(n + |V |))
Ours 1 O(n) O(l) O(ln) O(|V |) O(|V |(log |V | + k))

6 Applications

An Improved OTN
1 Protocol. We review the Naor-Pinkas OTN

1 and its ef-
ficiency in Appendix C of [18]. It is easy to observe that looking up an index
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X = x1 · · ·xlogN in a database of size N can be efficiently described as evalua-
tion of a decision tree on X , where the node variables are xi’s and the terminal
(leaf) node values are the elements of the database. This way, an OTN

1 can be
represented as a special case of our proposed protocol 1. This yields a more ef-
ficient OTN

1 protocol with only O(N) instead of O(N logN) PRG invocations
which is the case in the Naor-Pinkas protocol [19].

Claim 1. Let N be the size of the database. Given a one-round 1-out-of-2 OT
protocol with security against malicious adversaries, there exists a one-round
two-party protocol for 1-out-of-N OT, with full-security against malicious ad-
versaries. The protocol only requires O(logN) exponentiations by both parties.
The total work of the client is O(logN), while the server performs O(N) PRG
invocations.

The security of the construction follows from our more general construction in
Section 3. It is also easy to verify the claimed computational complexities.

A Private Keyword Search Protocol. We first recall the setup for the pri-
vate keyword search (PKS) problem. A server and a client are involved in this
problem. The server’s input is a databaseD ofN pairs (ki, pi), where ki ∈ {0, 1}�
is a keyword, and pi ∈ {0, 1}m is the corresponding payload. The client’s input
is an 	 bit searchword w = w1w2 · · ·w�. If there is a pair (ki, pi) in the database
such that ki = w, then the output is the corresponding payload pi. Otherwise
the output is a special symbol ⊥.

Designing efficient PKS protocols has been the focus of several works in the
literature [6,9]. However, these works have mostly focused on optimizing the
communication complexity of the protocols. In particular, they require O(N)
exponentiations by the server, which is a significant computational burden for
large N .

Using the techniques we developed in previous section, we can design an ef-
ficient PKS with properties mentioned in the claim below. The details of the
construction are available in the full version of the paper [18].

Claim 2. Let 	 be the length of the keywords and N be the size of the database.
Given a one-round OT protocol with security against malicious adversaries,
there exists a one-round two-party protocol for private keyword search, with full-
security against a malicious client and privacy against a malicious server. The
protocol only requires O(	) exponentiations by both parties. The total work of the
client is O(	), while the server performs O(N	) symmetric operations.
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Abstract. For searchable symmetric encryption schemes (or symmetric-
key encryption with keyword search), the security against passive adver-
saries (i.e. privacy) has been mainly considered so far. In this paper, we
first define its security against active adversaries (i.e. reliability as well as
privacy). We next formulate its UC-security. We then prove that the UC-
security against non-adaptive adversaries is equivalent to our definition
of privacy and reliability. We further present an efficient construction
which satisfies our security definition (hence UC-security).

Keywords: searchable symmetric encryption, UC-security, symmetric-
key encryption.

1 Introduction

We consider the following problem [8]: a client wants to store his files (or docu-
ments) in an encrypted form on a remote file server (in the store phase). Later (in
the search phase), the client wants to efficiently retrieve some of the encrypted
files containing (or indexed by) specific keywords, keeping the keywords them-
selves secret and not jeopardizing the security of the remotely stored files. For
example, a client may want to store old email messages encrypted on a server
managed by Google or another large vendor, and later retrieve certain messages
while traveling with a mobile device. Such a scheme is called a searchable sym-
metric encryption (SSE) scheme because symmetric key encryption schemes are
used.

For this problem, the security against passive adversaries (i.e. privacy) has
been mainly considered so far. After a series of works [10, 9, 1, 8], Curtmola,
Garay, Kamara and Ostrovsky [6, 7] showed a rigorous definition of security
about the client’s privacy against a passive server, and an efficient scheme which
satisfies their definition.

However, an active adversary (i.e. a server) may forge the encrypted files
and/or delete some of them. Even if the clients uses MAC to authenticate
the encrypted files, a malicious server may replace (Ci, MAC(Ci)) with some
(Cj , MAC(Cj)) in the search phase, where Ci is an encrypted file which should be
returned. Then the client cannot detect cheating.

In this paper, we first formulate the security of verifiable SSE schemes against
active adversaries by using the notion of privacy and reliability. Our definition of
privacy is slightly stronger than “adaptive semantic security” of Curtmola et al.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 285–298, 2012.
c© International Financial Cryptography Association 2012
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[7, Definition 4.11]. Our definition of reliability means that even if the server is
malicious, the client can receive the corresponding files correctly, or he outputs
fail in the search phase.

We next formulate its UC-security, where UC means universal composability.
(In the UC framework [3–5], the security of a protocol Σ = (P1, · · · , Pn) is
maintained under a general protocol composition if Σ is UC-secure.) We then
prove that the UC-security against non-adaptive adversaries is equivalent to our
definition of privacy and reliability.

We further present an efficient scheme which satisfies our definition (hence
UC-security). The communication overhead of our search phase is proportional
to N , where N is the number of stored files. (It is independent of the size of each
file.) It will be an open problem to construct a UC-secure scheme such that the
communication overhead of the search phase is sublinear in N .

2 Verifiable Searchable Symmetric Encryption (SSE)

In this section, we define verifiable searchable symmetric encryption (verifiable
SSE) scheme and its security.

– Let D = {D1, · · · , DN} be a set of documents (or files).
– Let W = {0, 1}� be a set of keywords.

(Hence 	 denotes the bit length of each keyword.)
– Let D(w) denote the set of documents which contain a keyword w ∈ W .

If X is a string, then |X | denotes the bit length of X . If X is a set, then |X |
denotes the cardinality of X . PPT means probabilistic polynomial time.

2.1 Verifiable SSE

A verifiable SSE scheme consists of six polynomial time algorithms

vSSE = (Gen, Enc, Trpdr, Search, Dec, Verify)

such that

– K ← Gen(1k): is a probabilistic algorithm which generates a key K, where
k is a security parameter.

– (I, C) ← Enc(K,D,W): is a probabilistic encryption algorithm which out-
puts an encrypted index I and C = {C1, · · · , CN}, where Ci is a ciphertext
of Di.

– t(w) ← Trpdr(K,w): is a deterministic algorithm which outputs a trapdoor
t(w) for a keyword w.

– (C(w), T ag) ← Search(I, C, t(w)): is a deterministic search algorithm, where

C(w) = {Ci | Ci is a ciphertext of Di ∈ D(w)} (1)

– accept/reject← Verify(K, t(w), C̃(w), T ag): is a deterministic verification
algorithm which checks the validity of C̃(w).
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– D ← Dec(K,C): is a deterministic decryption algorithm, where D is a doc-
ument and C is a string.

For the set of documents D = {D1, · · · , DN} and a keyword w ∈ W , it must be
that

– Di = Dec(K,Ci) if Ci is a ciphertext of Di.
– Verify(K, t(w), C(w), T ag) = accept if (I, C) is output by Enc(K,D,W),

t(w) is output by Trpdr(K,w) for w ∈ W , and (C(w), T ag) is output by
Search(I, C, t(w)).

The definition of usual searchable symmetric encryption (SSE) schemes [6, 7]
is obtained by deleting Tag and Verify from the verifiable SSE schemes.

We next translate a vSSE into a protocol Σvsse which is a protocol between a
client and a server. It consists of the store phase and the search phase as shown
below, where the store phase is executed once, and the search phase is executed
for polynomially many times.

Store phase:� �

1. The client generates a key K ← Gen(1k) and keeps it secret.
2. On input (D,W), the client computes (I, C) ← Enc(K,D,W) and store

them to the server,
where D is a set of documents, W is the set of keywords, I is an en-
crypted index and C is a ciphertext of D.

� �
Search phase:� �

1. On input a keyword w ∈ W , the client computes a trapdoor t(w) ←
Trpdr(K,w) and sends it to the server.

2. The server computes (C(w), T ag) ← Search(I, C, t(w)) and sends them
to the client (where C(w) is defined by eq.(1)).

3. If the client received (C̃(w), T ag) from the server,
then the client computes Verify(K, t(w), C̃(w), T ag).

– If the result is accept, then the client decrypts each ciphertext Ci

in C(w) to the document Di by using Dec(K, ·), and outputs the set
of such Di as D(w).

– Otherwise the client outputs fail.
� �

2.2 Privacy

In the above protocol, the server learns |Di| from Ci for each i, and 	 from I in
the store phase. In the search phase, she also knows

List(w) = {i | Di contains w}

for each queried keyword w. We require that the server should not be able to
learn any more information.
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Based on the work of Curtmola, Garay, Kamara and Ostrovsky [6, 7], this
security notion is formulated as follows. We consider a real game Gamereal and
a simulation game Gamesim as shown below, where Gamereal is played by a chal-
lenger and an adversary A, and Gamesim is played by a simulator Sim as well.

Real Game (Gamereal)� �

– Adversary A chooses (D,W) and sends them to the challenger.
– The challenger generates K ← Gen(1k),

and then sends (I, C) ← Enc(K,D,W) to A.
– For i = 1, · · · , q, do:

1. A chooses a keyword wi ∈ W and sends it to the challenger.
2. The challenger sends a trapdoor t(wi) ← TrpdrK(wi) to A.

– A outputs a bit b.
� �

Simulation Game (Gamesim)� �

– A chooses (D,W) and sends them to the challenger.
– The challenger sends |D1|, · · · , |DN | and 	 to simulator Sim,

where D = {D1, · · · , DN} and 	 is the length of a keyword.
– Sim computes (I ′, C′) from |D1|, · · · , |DN | and 	,

and sends them to the challenger.
– The challenger relays (I ′, C′) to A.
– For i = 1, · · · , q, do:

1. A chooses wi ∈ W and sends it to the challenger.
2. The challenger sends List(wi) to Sim.
3. Sim computes t(wi)

′ from List(wi) and sends it to the challenger.
4. The challenger relays t(wi)

′ to A.
– A outputs a bit b.

� �

Definition 1. We say that a verifiable SSE satisfies privacy if there exists a
PPT simulator Sim such that

|Pr(A outputs b = 1 in Gamereal)− Pr(A outputs b = 1 in Gamesim)| (2)

is negligible for any PPT adversary A.

“Adaptive semantic security” of Curtmola et al. [7, Definition 4.11] requires that
for any PPT adversary A, there exists a PPT Sim such that eq.(2) is negligible.
On the other hand, our definition requires that there exists a PPT Sim such that
for any PPT adversary A, eq.(2) is negligible. Hence our definition is slightly
stronger. This small change is important when we prove the relationship with
UC-security. (See Remark 1 in the proof of Theorem 2.)
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2.3 Reliability

In addition to the privacy, the server (an adversaryA) should not be able to forge
(C(w), T ag) in the search phase. We formulate this security notion as follows.

Fix (D,W) and search queries w1, · · · , wq ∈ W arbitrarily. In the store phase,
suppose that the client generated K and then computed (I, C).

– We say that C(w)∗ is invalid for t(w) if C(w)∗ 	= C(w), where (C(w), T ag) ←
Search(I, C, t(w)).

– We say thatA wins if she can return (C(wi)
∗, T ag∗) for some query t(wi) such

that C(wi)
∗ is invalid for t(wi) and Verify(K, t(wi), C(wi)

∗, T ag) = accept.

Definition 2. We say that a verifiable SSE satisfies reliability if for any PPT
adversary A, Pr(A wins) is negligible for any (D,W) and any search queries
w1, · · · , wq.

3 UC-Secure SSE

3.1 UC Security

The security of a protocol Σ = (P1, · · · , Pn) is maintained under a general pro-
tocol composition if Σ is secure in the universally composable (UC) security
framework [3–5].

In this framework, there exists an environment Z which generates the input
to all parties, reads all outputs, and in addition interacts with an adversary A
in an arbitrary way throughout the computation.

A protocol Σ is said to securely realize a given functionality F if for any
adversary A, there exists an ideal-world adversary S such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or
with S and parties that interact with F in the ideal world.

The following universal composition theorem is proven in [3, 4]. Consider
a protocol Σ that operates in a hybrid model of computation where parties
can communicate as usual, and in addition have ideal access to (an unbounded
number of copies of) some ideal functionality F . Let ρ be a protocol that securely
realizes F as sketched above, and let Σρ be the composed protocol. That is, Σρ

is identical to Σ with the exception that each interaction with some copy of
F is replaced with a call to (or an invocation of) an appropriate instance of ρ.
Similarly, ρ-outputs are treated as values provided by the appropriate copy of F .
Then Σ and Σρ have essentially the same input/output behavior. In particular,
if Σ securely realizes some ideal functionality G given ideal access to F , then Σρ

securely realizes G from scratch.
For more details, see [3, 4].

3.2 Ideal Functionality of Verifiable SSE

We define the ideal functionality FvSSE of verifiable SSE protocols as follows.
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Ideal Functionality FvSSE� �

Running with a dummy client P1, a dummy server P2 and an ideal world
adversary S.

Store: Upon receiving input (store, sid,D1, · · · , DN ,W) from P1, verify
that this is the first input from P1 with (store, sid).
If so, store D1, · · · , DN , and send |D1|, · · · , |DN | and 	 to S.
Otherwise ignore this input.

Search: Upon receiving (search, sid, w) from P1, send List(w) to S.
1. If S returns OK, then send D(w) to P1.
2. If S returns ⊥, then send ⊥ to P1.

� �
Our FvSSE provides an ideal world because

– The dummy client receives D(w) correctly or ⊥.
– The ideal world adversary S learns only |D1|, · · · , |DN | and 	 in the store

phase, and only List(w) in the search phase.

(See the first paragraph of Sec.2.2.)
We say that a verifiable SSE protocolΣvSSE is UC-secure if it securely realizes

the ideal functionality FvSSE .

4 Equivalence

In this section, we prove that the UC-security notion of SSE is equivalent to the
definitions of privacy and reliability presented in Sec.2. In the UC framework, a
non-adaptive adversary corrupts some parties at the beginning of the protocol
execution.

Theorem 1. A verifiable SSE scheme vSSE satisfies privacy and reliability if
the corresponding protocol Σvsse is UC-secure against non-adaptive adversaries.

(Proof) Assume that vSSE does not satisfy (one of) privacy or reliability. We
show that Σvsse does not securely realize FvSSE.

This is done by constructing an environment Z and an adversary A such that
for any ideal world adversary S, Z can tell whether it is interacting with A in
Σvsse, or with S in the ideal world which interacts with FvSSE.

(I) Assume that vSSE does not satisfy the privacy property defined by Def.1.
That is, for any simulator Sim, there exists an adversary B such that eq.(2) is
non-negligible.

Z asks A or S to corrupt P2 (server) so that P2 relays each message which he
received from P1 (client) to Z (in the real world). Except for this, P2 behaves
honestly. Z then internally runs B as follows.
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– If B sends (D,W) to the challenger, then

1. Z activates P1 (client) with input (store, sid,D,W).
2. In the real world,

P1 sends (I, C) to P2(= A), and P2(= A) relays it to Z.
In the ideal world,

P1 sends (store, sid,D,W) to FvSSE .
FvSSE sends |D1|, · · · , |DN | and 	 to S(= P2).
S(= P2) computes (I ′, C′), and sends it to Z.

3. Z sends (I, C) or (I ′, C′) to B.

– If B sends wi to the challenger, then

1. Z activates P1 with input (search, sid, wi).
2. In the real world,

P1 sends t(wi) to P2, and P2 relays it to Z.
In the ideal world,

P1 sends (search, sid, wi) to FvSSE .
FvSSE sends List(wi) to S(= P2).
S(= P2) computes t(wi)

′, and sends it to Z.
3. Z sends t(wi) or t(wi)

′ to B.

Finally Z outputs 1 if and only if B outputs 1.
If Z interacts with Σvsse (i.e. the real world), then it is easy to see that

Gamereal is simulated for B. On the other hand, suppose that Z interacts with
S in the ideal world. Then Gamesim is simulated for B because the ideal func-
tionality FvSSE plays the role of the challenger and the ideal world adversary S
plays the role of Sim.

Now from our assumption, for any ideal world adversary S, there exists some
B which can distinguish Gamereal from Gamesim. This means that for any ideal
world adversary S, there exists some Z which can distinguish Σvsse (the real
world) from the ideal world.

(II) Assume that vSSE does not satisfy reliability, i.e. there exists an adversary
B which breaks the reliability defined by Def.2. Z asks A to corrupt P2 (server)
so that P2 behaves in the same way as B. Z finally outputs 1 if and only if Z
receives some set of documents D′ from P1 such that D′ 	= D(w) for some w.

If Z interacts with Σvsse, then B wins with non-negligible probability from
our assumption. Hence Z outputs 1 with non-negligible probability. On the other
hand, if Z interacts with S in the ideal world, Z never receives such D′ from
P1. Hence Z never outputs 1. This means that Z can distinguish Σvsse from the
ideal world for any ideal world adversary S. Q.E.D.

Theorem 2. ΣvSSE is UC-secure against non-adaptive adversaries if the un-
derlying vSSE satisfies privacy and reliability.

(Proof) Assume thatΣvSSE does not securely realize FvSSE against non-adaptive
adversaries. That is, there exists some Z who can distinguish between the real
world and the ideal world.
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We show that vSSE does not satisfy (one of) privacy or reliability. Assume
that vSSE satisfies privacy. (Otherwise the theorem is proven). Then there exists
a simulator Sim which satisfies Def.1.

Suppose that the real world adversary A does not corrupt any party. Then
it is easy to see that no Z can distinguish the real world from the ideal world.
(Note that Z interacts only with P1.)

Suppose that Z asks A to corrupt P1 (client). Note that A can report the
communication pattern of P1 to Z. Consider an ideal world adversary S who
runs A internally by playing the role of P2. Note that S can play the role of P2

faithfully because P2 has no interaction with Z and FvSSE . Hence it is easy to
see that no Z can distinguish the real world from the ideal world in this case,
too.

Suppose that Z asks A to corrupt P2 (server), but P2 can not break the relia-
bility at all. That is, Pr(P2 wins) = 0 in Def.2. A may report the communication
pattern of P2 to Z. Then our ideal world adversary S behaves in the same way
as the above mentioned Sim, where the ideal functionality FvSSE plays the role
of the challenger. In this case, no Z can distinguish between the real world and
the ideal world from the definition of privacy.

Remark 1. Def.1 says that there exists a Sim such that for any interactive dis-
tinguisher (Z in the above case), eq.(2) is negligible. This is the point where the
privacy definition of of Curtmola et al. [7, Definition 4.11] does not work.

Suppose that Z asks A to corrupt P2 (server), and P2 breaks the reliability
with negligible probability. That is, Pr(P2 wins) is negligible in Def.2. Then
similarly to the above, no Z can distinguish between the real world and the ideal
world.

Therefore it must be that Z asks A to corrupt P2 (server), and P2 breaks
reliability with non-negligible probability. That is, Pr(P2 wins) is non-negligible
in Def.2. (Otherwise no Z can distinguish between the real world and the ideal
world.) This means that vSSE does not satisfy reliability. Q.E.D.

5 Construction

In this section, we construct an efficient verifiable SSE scheme which satisfies
Def.1 and Def.2. Our scheme is based on SSE-2 of Curtmola et al. [6, 7]. (Note
that SSE-2 is not verifiable).

5.1 Overview

We first illustrate SSE-2 of Curtmola et al. [6, 7] by using an example.

(Store phase:) The client constructs an array I as follows. Let πK be a pseudo-
random permutation, where K is the secret key of the client. Suppose that
D(Austin) = (D3, D6, D10). That is, D3, D6 and D10 contains a keyword Austin.
First the client computes

addrAustin,i = πK(Austin, i)
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for i = 1, · · · , N . Next let

I(addrAustin,1) = 3, I(addrAustin,2) = 6, I(addrAustin,3) = 10 (3)

and
I(addrAustin,i) = dummy (4)

for i = 4, · · · , N . Do the same thing for all the other keywords. Finally the client
stores I and C = {C1, · · · , CN} to the server, where Ci is a ciphertext of Di.

(Search phase:) Suppose that the client wants to retrieve the documents which
contain Austin. Then the client sends

t(Austin) = (addrAustin,1, · · · , addrAustin,N )

to the server. From eq.(3) and eq.(4), the server sees that List(Austin) =
{3, 6, 10}. The server then returns (C3, C6, C10) to the client. The client finally
decrypts them to obtain (D3, D6, D10).

The above scheme satisfies privacy, but not reliability. To achieve reliability,
a naive approach is to replace Ci with Ĉi = (Ci, MAC(Ci)). The client stores the
set of such Ĉi to the server. For a query t(Austin), an (honest) server returns
(Ĉ3, Ĉ6, Ĉ10) to the client. However, a malicious server would return (Ĉ3, Ĉ6, Ĉ11)
or just (Ĉ3, Ĉ6). Then the client cannot detect any cheating.

To overcome this problem, we construct I as follows.

I(addrAustin,1) = (3, tag1 = MAC(addrAustin,1, C3))

I(addrAustin,2) = (6, tag2 = MAC(addrAustin,2, C6))

I(addrAustin,3) = (10, tag3 = MAC(addrAustin,3, C10))

and
I(addrAustin,i) = (dummy, tagi = MAC(addrAustin,i, dummy))

for i = 4, · · · , N . For a query t(Austin), the server returns (C3, C6, C10) and
(tag1, · · · , tagN ) to the client.

The client checks the validity of each tagi. This approach works because MAC
binds the (query, answer) pair.

Another subtle point is that the index of each Di should appear in I the same
number of times, say max times. (Otherwise the simulator Sim in the definition
of privacy cannot construct I ′ which is indistinguishable from I. Remember that
Sim must be able to construct I ′ only from |D1|, · · · , |DN | and 	.)

For this problem, Curtmola et al. described the following method in SSE-2 [7,
Fig.2].

For each index i:

– let c be the number of entries in I that already contain i.
– for 1 ≤ 	 ≤ max− c, set I[πK(0�, n+ 	)] = i.
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The last line is strange because 	 is used in two different meanings. (In [7], 	 is
also defined as the bit length of each keyword.) Hence it must be that

– for 1 ≤ k ≤ max− c, set I[πK(0�, n+ k)] = i.

Even so, the above line does not work as shown below. For simplicity, suppose
that c = max− 1 for i = 1, · · · , N . Then we have I[πK(0�, n+1)] = N at the end
because the entry of I[πK(0�, n+1)] is overwritten for i = 1, · · · , N . This means
that in I, only N appears max times and the other each i appears max− 1 times.

We will show how to fix this flaw, too.

5.2 Proposed Verifiable SSE

Let SKE = (G,E,E−1) be a symmetric-key encryption scheme, where G is a
key generation algorithm, E is an encryption algorithm and E−1 is a decryption
algorithm.

Remember that the set of documents is D = {D1, · · · , DN}, and the set of
keywords is W = {0, 1}�. Let π : {0, 1}k × {0, 1}�+1+logN → {0, 1}�+1+logN be
a pseudo-random permutation. For simplicity, we will write y = π(x) instead of
y = π(K,x), where K is a key.

LetMAC : {0, 1}k×{0, 1}∗ → {0, 1}n be a MAC (a tag generation algorithm).
For simplicity, we write tag = MAC(m) instead of tag = MAC(K,m), where K is a
key and m is a message.

Now the proposed verifiable SSE scheme is as follows.

Gen(1k): Run G to generate a key K0 of SKE. Choose a key K1 ∈ {0, 1}k of π
and a key K2 ∈ {0, 1}k of MAC randomly. Let K = (K0,K1,K2).

Enc(K,D,W): First compute Ci = E(K0, Di) for each Di ∈ D and let C =
{C1, · · · , CN}. Next let I be an array of size 2× 2�N as follows.

1. First let

I(i) ← (dummy, MAC(i, dummy))

for all i = 1, · · · , 2 · 2�N .
2. Next for each w ∈ {0, 1}�, suppose that D(w) = (Ds1 , · · · , Dsm). Define

(sm+1, · · · , sN ) as

{sm+1, · · · , sN} = {1, · · · , N} \ {s1, · · · , sm}

For j = 1, · · · , N , do

addrj ←
{
π(0, w, j) if 1 ≤ j ≤ m
π(1, w, j) if m+ 1 ≤ j ≤ N

tagj ← MAC(addrj , Csj )

I(addrj) ← (sj , tagj).

It is now easy to see that each index i appears 2� times in I.
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Example 1. Suppose that N = 5 and D(Austin) = (D1, D3, D5). Then

I(π(0, Austin, 1)) = (1, tag1)

I(π(0, Austin, 2)) = (3, tag2)

I(π(0, Austin, 3)) = (5, tag3)

I(π(1, Austin, 4)) = (2, tag4)

I(π(1, Austin, 5)) = (4, tag5)

Trpdr(K,w): Output

t(w) = (π(0, w, 1), · · · , π(0, w,N)).

Search(I, C, t(w)): Parse t(w) as t(w) = (addr1, · · · , addrN ). Suppose that

I(addri) = (si, tagi)

for i = 1, · · · , N . First let C(w) ← empty. Next for i = 1, · · · , N , add Csi to
C(w) if si 	= dummy. Finally let

Tag = (tag1, · · · , tagN )

Output (C(w), T ag).
Verify(K, t(w), C̃(w), T ag): Parse t(w), C̃(w) and Tag as

t(w) = (addr1, · · · , addrN )

C̃(w) = (C̃1, · · · , C̃m)

Tag = (tag1, · · · , tagN )

First letXi ← C̃i for i = 1, · · · ,m. Next letXi ← dummy for i = m+1, · · · , N .
Finally if tagi = MAC(addri, Xi) for i = 1, · · · , N , then output accept.
Otherwise output reject.

Dec(K,C): Output a document D = E−1(K0, C) for a ciphertext C.

5.3 Security

We assume that the symmetric-key encryption scheme SKE = (G,E,E−1) is
left-or-right (LOR) CPA secure as defined by [2]. The common counter mode
with AES satisfies this condition, where AES is assumed to be a pseudo-random
permutation. We also assume that MAC is unforgeable against chosen message
attack.

Theorem 3. The above scheme satisfies privacy (see Def.1).

(Proof) We construct a simulator Sim as follows. In the store phase, Sim is
given |D1|, · · · , |DN | and 	.

1. Sim runs Gen(1k) to generate K = (K0,K1,K2).
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2. Let C′
i = E(K0, 0

|Di|) for i = 1, · · · , N , and let C′ = {C′
1, · · · , C′

N}.
3. Construct I ′ as if D(w) = (D1, · · · , DN ) for all w ∈ {0, 1}�. This means that

for each w ∈ {0, 1}�,

I ′(π(0, w, i)) = (i, tagi) for i = 1, · · · , N (5)

I ′(π(1, w, i)) = (dummy, tag′i) for i = 1, · · · , N (6)

where tagi = MAC(π(0, w, i), C′
i) and tag′i = MAC(π(1, w, i), dummy).

That is,

I ′(π(0, w, 1)) = (1, tag1), I ′(π(1, w, 1)) = (dummy, tag′1)

...
...

I ′(π(0, w,N)) = (N, tagN ), I ′(π(1, w,N)) = (dummy, tag′N )

4. Return (I ′, C′).

In the search phase, for i = 1, · · · , q, Sim is given

List(wi) = {s1, · · · , sm}

(but not wi). Then Sim returns

t(wi)
′ = (π(0, i, s1), · · · , π(0, i, sm), π(1, i,m+ 1), · · · , π(1, i, N)). (7)

We will prove that any A cannot distinguish between Gamereal and Gamesim
by using a series of games Game0, · · · , Game2, where Game0 = Gamereal. Let

pi = Pr(A outputs b = 1 in Gamei).

– Game1 is the same as Game0 except for that Ci is replaced with C′
i of the

above for i = 1, · · · , N . Then |p0 − p1| is negligible from our assumption on
SKE.

– Game2 is the same as Game1 except for that I is replaced with I ′ of the above,
and t(wi) is replaced with t(wi)

′ of the above.
Note that the index i of each Di appears 2

� times in both I and I ′.
Next on t(wi)

′, let

addr1 = π(0, i, s1), · · · , addrm = π(0, i, sm),

addrm+1 = π(1, i,m+ 1), · · · , addrN = π(1, i, N).

Then from eq.(5) and eq.(6), it is easy to see that

I ′(addr1) = (s1, tag1), · · · , I ′(addrm) = (sm, tagm),

I ′(addrm+1) = (dummy, tag′m+1), · · · , I ′(addrN ) = (dummy, tag′N )

The value of such I ′(addri) is the same as the real one. Further π is a
pseudo-random permutation. Hence |p1 − p2| is negligible.
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Consequently |p0 − p2| is negligible. Further it is clear that Game2 = Gamesim.
This means that Gamereal and Gamesim are indistinguishable for any A. Q.E.D.

Theorem 4. The above scheme satisfies reliability (see Def.2).

(Proof) Suppose that there exists an adversary A who breaks the reliability for
some (D,W) and some search queries w1, · · · , wq. We will show a forger B for
the underlying MAC.

B runs A by playing the role of a client, where the input to the client is
(D,W) in the store phase, and w1, · · · , wq in the search phase. In the search
phase, B uses his MAC oracle to compute I.

From our assumption, A returns (C(w)∗, T ag∗) for some query t(w) such that
C(w)∗ is invalid for t(w) and

Verify(K, t(w), C(w)∗ , T ag∗) = accept (8)

with non-negligible probability, where w ∈ {w1, · · · , wq}. Let

(C(w), T ag) ← Search(I, C, t(w)). (9)

Then C(w)∗ 	= C(w) because C(w)∗ is invalid for t(w). Suppose that

t(w) = (addr1, · · · , addrN )

C(w) = (C1, · · · , Ck)

C(w)∗ = (C∗
1 , · · · , C∗

m)

Tag∗ = (tag∗1 , · · · , tag∗N )

Since C(w)∗ 	= C(w), there are three cases.

Case 1: m = k and there exists some C∗
i such that C∗

i 	= Ci.
Case 2: m < k.
Case 3: m > k.

If (Case 1) occurs, then B outputs (addri, C
∗
i ) and tag∗i as a forgery. We will

show that this is a valid forgery on MAC. That is, tag∗i = MAC(addri, C
∗
i ) and B

never queried (addri, C
∗
i ) to the MAC oracle.

First it is clear that tag∗i = MAC(addri, C
∗
i ) from eq.(8).

Next it is easy to see that B queried (addri, Ci) to his MAC oracle when
computing I from eq.(9). It means that B did not query (addri, C

∗
i ) to the

MAC oracle because B does not query addri to the MAC oracle more than once
when computing I. This means that B succeeds in forgery.

If (Case 2) occurs, then B outputs (addrm+1, dummy) and tag∗m+1 as a forgery.
If (Case 3) occurs, then B outputs (addrm, C∗

m) and tag∗m as a forgery. We can
show that these are valid forgeries on MAC similarly.

This is against our assumption on MAC. Hence our scheme satisfies
reliability. Q.E.D.

Corollary 1. The corresponding protocol ΣvSSE is UC-secure against non-
adaptive adversaries.

(Proof) From Theorem 2. Q.E.D.
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1 Introduction

Nowadays we are living in a fully digitized and networked world. The ubiq-
uitous transmission of data over the open network has made security one of
the most important concerns in almost all modern digital systems, being pri-
vacy another. Both security and privacy concerns call for support from applied
cryptography. However, the great diversity of today’s computing hardware and
software platforms is creating a big challenge for applied cryptography since we
need building blocks that should ideally be reused at various platforms without
reprogramming. For instance, a large-scale video surveillance system (like those
we have already been seeing in many big cities) involves many different kinds
of hardware and software platforms: scalar sensors, video sensors, audio sensors,
mobile sensors (e.g. mobile phones), sensor motor controller, storage hub, data
sink, cloud storage servers, etc. [11]. Supporting so many different devices in
a single system or cross the boundary of multiple systems is a very challeng-
ing task. Many cryptographic libraries have been built over the years to partly
meet this challenge, but most of them are written in a particular programming
language (e.g. C, C++, Java and VHDL) thus their applications are limited in
nature. While it is always possible to port a library written in one language
to the other, the process requires significant human involvement on reprogram-
ming and/or re-optimization, which may not be less easier than designing a new
library from scratch.

In this paper, we propose to meet the above-mentioned technical challenges by
building a platform-independent1 library based on a recently-established ISO /
IEC standard called RVC (Reconfigurable Video Coding) [33, 34]. Unlike its
name suggests, the RVC standard offers a general development framework for
all data-driven systems including cryptosystems, which is not surprising because
video codecs are among the most complicated data-driven systems we can have.
The RVC framework follows the dataflow paradigm, and enjoys the following
nice features at the level of programming language: modularity, reusability, re-
configuration, code analyzability and parallelism exploitability. Modularity and
reusability help to simplify the design of complicated programs by having func-
tionally separated and reusable computational blocks; reconfigurability makes
reconfiguration of complicated programs easier by offering an interface to con-
figure and replace computational blocks; code analyzability allows automatic
analysis of both the source code and the functional behavior of each compu-
tational block so that code conversion and program optimization can be done
in a more systematic manner. The automated code analysis enables to conduct
a fully-/semi-automated design-space exploitation to find critical paths and/or
parallel data-flows, which suggests different optimization refactorings (merging
or splitting) of different computational blocks [43], and/or to achieve concurrency

1 In the context of MPEG RVC framework, the word “platform” has a broader mean-
ing. Basically, it denotes any computing environment that can execute/interpret code
or compile code to produce executable programs, which includes both hardware and
software platforms and also hybrid hardware-software systems.
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by mapping different computational blocks to different computing resources [20].
In contrast to the traditional sequential programming paradigm, the dataflow
programming paradigm is ideally suited for such optimizations thanks to its
data-driven nature as described next.

The dataflow programming paradigm, invented in the 1960s [61], allows pro-
grams to be defined as a directed graph in which the nodes correspond to com-
putational units and edges represent the direction of the data flowing among
nodes [25,40]. The modularity, reusability and reconfigurability are achieved by
making each computational unit’s functional behavior independent of other com-
putational units. In other words, the only interface between two computational
units is the data exchanged. The separation of functionality and interface allows
different computational units to run in parallel, thus easing parallelism exploita-
tion. The dataflow programming paradigm is suited ideally for applications with
a data-driven nature like signal processing systems, multimedia applications, and
as we show in this paper also for cryptosystems.

Our Contributions: In this paper, we present the Crypto Tools Library (CTL)
as the first (to the best of our knowledge) open and platform-independent cryp-
tographic library based on a dataflow programming framework (in our case the
RVC framework). In particular, the CTL achieves the following goals:

– Fast development/prototyping: By adapting the dataflow programming
paradigm the CTL components are inherently modular, reusable, and easily
reconfigurable. These properties do not only help to quickly develop/prototype
security algorithms but also make their maintenance easier.

– Multiple target languages: The CTL cryptosystems are programmed
only once, but can be used to automatically generate source code for multi-
ple programming languages (C, C++, Java, LLVM, Verilog, VHDL, XLIM,
and PROMELA at the time for this writing2).

– Automatic code analyzability and optimization:An automated design-
space exploitation process can be performed at the algorithmic level, which
can help to optimize the algorithmic structure by refactoring (merging or
splitting) selected computational blocks, and by exploiting multi-/many-core
computing resources to run different computational blocks in parallel.

– Hardware/Software co-design:Heterogenous systems involving software,
hardware, and various I/O devices/channels can be developed in the RVC
framework [62].

– Adequate run-time performance: AlthoughCTLcryptosystemsarehigh-
ly abstract programs, the run-time performance of automatically synthesized
implementations is still adequate compared to non-RVC reference implemen-
tations.

In this paper, along with the development of the CTL itself, we report some
performance benchmarking results of CTL that confirm that the highly abstract

2 More code generation backends are to be developed in the future, especially OpenCL
for GPUs.
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nature of the RVC code does not compromise the run-time performance. In
addition, we also briefly discuss how different key attributes of the RVC frame-
work can be used to develop different cryptographic algorithms and security
applications.

Outline: The rest of the paper is organized as follows. In Sec. 2 we will give
a brief overview of related work, focusing on a comparison between RVC and
other existing dataflow solutions. Sec. 3 gives an overview of the building blocks
of the RVC framework and Sec. 4 describes the design principles of CTL and
the cryptosystems that are already implemented. In Sec. 5, we benchmark the
performance of SHA-256 implemented in CTL on a single-core machine and a
quad-core one. In Sec. 6, we conclude the paper by giving directions for future
works.

2 Related Work

Many cryptographic libraries have been developed over the years (e.g., [16,24,30,
41,46,56,57,63,64]), but very few can support multiple programming languages.
Some libraries do support more than one programming language, but often in the
form of separate sets of source code and separate programming interfaces/APIs
[63], or available as commercial software only [8, 41]. There is also a large body
of optimized implementations of cryptosystems in the literature [17,18,21,44,45,
55, 67], which normally depend even more on the platforms (e.g., the processor
architecture and/or special instruction sets [28, 45, 66, 67]).

Despite being a rather new standard, the RVC framework has been success-
fully used to develop different kinds of data-driven systems especially multimedia
(video, audio, image and graphics) codecs [12–14,19,35] and multimedia security
applications [10]. In [10], we highlighted some challenges being faced by develop-
ers while building multimedia security applications in imperative languages and
discussed how those challenges can be addressed by developing multimedia secu-
rity applications in the RVC framework. In addition, we presented three multi-
media security applications (joint H.264/MPEG-4 video encoding and decoding,
joint JPEG image encoding and decoding and compressed domain JPEG image
watermark embedding and detecting) developed using the CTL cryptosystems
and the RVC implementations of H.264/MPEG-4 and JPEG codecs. Consider-
ing the focus of that paper, we only used and briefly summarized CTL. In this
paper, we give a detailed discussion on CTL, its design principles, features and
benefits, and performance benchmarking results.

The wide usage of RVC for developing multimedia applications is not the only
reason why we chose it for developing CTL. A summary of advantages of RVC
over other solutions is given in Table 1 (this is an extension of the table in [10]).
We emphasize that this comparison focuses on the features relevant to achieve
the goals of CTL, so it should not be considered as an exhaustive overview of
all pros and cons of the solutions compared.
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Table 1. Comparison of RVC framework with other candidate solutions. Candidates
with similar characteristics are grouped together. These categories include 1) high-level
specification languages for hardware programming languages, 2) frameworks for hard-
ware/software co-design, 3) commercial products, and 4) other cryptographic libraries.
The columns in the table represent the following features: A) high-level (abstract)
modeling and simulation; B) platform independence; C) code analyzability (i.e., semi-
automated design-space exploitation); D) hardware code generation; E) software code
generation; F) hardware/software co-design; G) supported target languages; H) open-
source or free implementations; I) international standard.

Cat. Candidate A B C D E F G H I

RVC ✓ ✓ ✓ ✓ ✓ ✓

C, C++, Java, LLVM,
Verilog, VHDL, XLIM,

PROMELA
✓ ✓

1 Handel-C [39] ✗ ✗ ✗ ✓ ✗ ✗ VHDL ✗ ✗

ImpulseC [15] ✗ ✗ ✗ ✓ ✗ ✓ VHDL ✗ ✗

Spark [29] ✗ ✗ ✗ ✓ ✗ ✓ VHDL ✗ ✗

2 BlueSpec [49] ✓ ✗ ✓ ✓ ✓ ✗ C, Verilog ✗ ✗

Daedalus [65] ✓ ✓ ✓ ✓ ✓ ✓ C, C++, VHDL ✓ ✗

Koski [38] ✓ ✓ ✓ ✓ ✓ ✓ C, XML, VHDL ✗ ✗

PeaCE [31] ✓ ✓ ✓ ✓ ✓ ✓ C, C++, VHDL ✓ ✗

3 CoWare [58] ✓ ✓ ✗ ✓ ✓ ✓ C, VHDL ✗ ✗

Esterel [1] ✗ ✓ ✗ ✓ ✓ ✗ C, VHDL ✓ ✗

LabVIEW [3] ✓ ✓ ✓ ✗ ✗ ✗ - ✗ ✗

Simulink [4] ✓ ✓ ✓ ✓ ✓ ✗ C, C++, Verilog, VHDL ✗ ✗

Synopsys System
Studio [7]

✓ ✓ ✓ ✓ ✓ ✓
C++, SystemC,
SystemVerilog

✗ ✗

4 CAO [9,47] ✓ ✓ ✗ ✗ ✓ ✗ C, x86-64 assembly, ARM ✗ ✗

Cryptol [8,41] ✓ ✓ ✓ ✓ ✓ ✗
C, C++, Haskell, VHDL,

Verilog
✗ ✗

3 Reconfigurable Video Coding (RVC)

The RVC framework was standardized by the ISO/IEC (via its working group
JTC1 / SG29 / WG11, better known as MPEG – Motion Picture Experts Group
[48]) to meet the technical challenges of developing more and more complicated
video codecs [33,34]. One main concern of the MPEG is how to make video codecs
more reconfigurable, meaning that codecs with different configurations (e.g.,
different video coding standards, different profiles and/or levels, different system
requirements) can be built on the basis of a single set of platform-independent
building blocks. To achieve this goal, the RVC standard defines a framework
that covers different steps of the whole life cycle of video codec development.
The RVC community has developed supporting tools [2, 5, 6] to make the RVC
framework not only a standard, but also a real development environment.
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While the RVC framework is developed in the context of video coding, it
is actually a general-purpose framework that can model any data-driven ap-
plications such as cryptosystems. It allows developers to work with a single
platform-independent design at a higher level of abstraction while still being
able to generate multiple editions of the same design that target different plat-
forms like embedded systems, general-purpose PCs, and FPGAs. In principle,
the RVC framework also supports hardware-software co-design by converting
parts of a design into software and other parts into hardware. Additionally, the
RVC framework is based on two languages that allow automatic code analysis
to facilitate large-scale design-space exploitation like enhancing parallelism of
implementations running on multi-core and many-core systems [14, 20, 43].

The RVC standard is composed of two parts: MPEG-B Part 4 [34] and MPEG-
C Part 4 [33]. MPEG-B Part 4 specifies the dataflow framework for design-
ing and/or reconfiguring video codecs, and MPEG-C Part 4 defines a video
tool library that contains a number of Functional Units (FUs) as platform-
independent building blocks of MPEG standard compliant video codecs [33].
To support the RVC dataflow framework, MPEG-B Part 4 specifies three differ-
ent languages: a dataflow programming language called RVC-CAL for describing
platform-independent FUs, an XML dialect called FNL (FU Network Language)
for describing connections between FUs, and another XML dialect called RVC-
BSDL for describing the syntax format of video bitstreams. RVC-BSDL is not
involved in this work, so we will not discuss it further.

The real core of the RVC framework is RVC-CAL, a general-purpose dataflow
programming language for specifying platform-independent FUs. RVC-CAL is a
subset of an existing dataflow programming language CAL (Caltrop Actor Lan-
guage) [26]. In RVC-CAL, FUs are implemented as actors containing a number of
fireable actions and internal states. In the RVC-CAL’s term, the data exchanged
among actors are called tokens. Each actor can contain both input and output
port(s) that receive input token(s) and produce output token(s), respectively. Each
action may fire depending on four different conditions: 1) input token availability;
2) guard conditions; 3) finite-state machine based action scheduling; 4) action pri-
orities. In RVC-CAL, actors are the basic functional entities that can run in par-
allel, but actions in an actor are atomic, meaning that only one action can fire at
one time. This structure gives a balance between modularity and parallelism, and
makes automatic analysis of actor merging/splitting possible.

Figure 1 illustrates how an application can be modeled and how target im-
plementations can be generated with the RVC framework. At the design stage,
different FUs (if not implemented in any standard library) are first written in
RVC-CAL to describe their I/O behavior, and then an FU network is built to
represent the functionality of a whole application. The FU network can be built
by simply connecting all FUs involved graphically via a supporting tool called
Graphiti Editor [2], which translates the graphical FU network description into
a textual description written in FU Network Language (FNL). The FUs and the
FU network are instantiated to form an abstract model. This abstract model
can be simulated to test its functionality without going to any specific platform.



CTL: A Platform-Independent Crypto Tools Library 305
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Application Implementation
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Tool Library 
Implementation

Input Data Application Solution Output Data

Fig. 1. Process of application implementation generation in the RVC framework

Two available supporting tools allowing the simulation are OpenDF [5] and
ORCC [6]. At the implementation stage, the source code written in other target
programming languages can be generated from the abstract application descrip-
tion automatically. OpenDF includes a Verilog HDL code generation backend,
and ORCC contains a number of code generation backends for C, C++, Java,
LLVM, VHDL, XLIM, and PROMELA. ORCC is currently more widely used in
the RVC community and it is also the choice of our work reported in this paper.

4 Crypto Tools Library (CTL)

Crypto Tools Library (CTL) is a collection of RVC-CAL actors and XDF net-
works for cryptographic primitives such as block ciphers, stream ciphers, cryp-
tographic hash functions and PRNGs (see Sec. 4.2 for a list of currently imple-
mented algorithms). Being an open project, the source code and documentation
of CTL is available at http://www.hooklee.com/default.asp?t=CTL.

As mentioned in Sec. 1, most existing cryptographic libraries are developed
based on a single programming language (mostly C/C++ or Java) that can hardly
be converted to other languages. In contrast, CTL is a platform-independent solu-
tion whose source code is written in RVC-CAL and FNL that can be automatically
translated into multiple programming languages (C, C++, Java, LLVM, Verilog,
VHDL, XLIM, PROMELA). More programming languages can be supported by
developing new code generation tools for RVC applications.

4.1 Design Principles

The CTL is developed by strictly following the specifications/standards
defining the implemented cryptosystems. For block ciphers, both enciphers and

http://www.hooklee.com/default.asp?t=CTL
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deciphers are implemented so that a complete security solution can be built.
When it is possible, the CTL FUs are designed to exploit inherent parallelism in
the implemented cryptosystems. For instance, for block ciphers based on multi-
ple rounds, the round number is also transmitted among different FUs so that
encryption/decryption of different blocks can be parallelized.

The CTL is designed so that different cryptosystems can share common FUs.
We believe that this can help enhance code reusability and ease reconfigurability
of the CTL cryptosystems. In addition, CTL includes complete solutions (e.g.,
both encipher and decipher) of the implemented cryptosystems, normally a set
of CAL and XDF files.

4.2 Cryptosystems Covered

CTL contains some standard and frequently used cryptosystems. In the follow-
ing, we list the cryptosystems currently implemented in CTL. The correctness of
all cryptosystems has been validated using the test vectors given in the respective
standards.

– Block Ciphers:
• AES-128/192/256 [51],
• DES [50] and Triple DES [50, 52],
• Blowfish [59],
• Modes of operations: CBC, CFB, OFB, CTR.

– Stream Ciphers: ARC4 [60] and Rabbit [23].
– Cryptographic hash functions: SHA-1, SHA-2 (SHA-224, SHA-256) [53].
– PSNRs: 32-bit and 64-bit LCG [60] and LFSR-based PRNG [60].

CTL also includes some common utility FUs (e.g., multiplexing/demultiplex-
ing of dataflows, conversion of bytes to bits and vice versa etc.) that are shared
among different cryptosystems and can also find applications in non-cryptography
systems. Due to the space limitation, we refer the reader to the extended edition
of this paper for a list of the utility FUs and more discussions of the cryptosys-
tems implemented in CTL.

5 Performance Benchmarking of CTL

Previous work has demonstrated that the RVC framework can outperform other
sequential programming languages in terms of implementing highly complex
and highly parallelizable systems like video codecs [19]. However, there are still
doubts about if the high-level abstraction of RVC-CAL and the automated code
generation process may compromise the overall performance to some extent at
the platform level. In this section, we clarify those doubts by showing that the
automatically generated implementations from a typical RVC-based application
can usually achieve a performance comparable to manually-written implemen-
tations in the target programming language. This was verified on AES and
SHA-256 applications in CTL. In this section, we take SHA-256 as an example
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Table 2. Configuration of the test machine

Machine Hardware and Operating System Details

Desktop PC: – Model: HP Centurion

– CPU: Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz

– Memory: 8GB RAM

– OS1: Windows Vista Business with Service Pack 2 (64-bit Edition)

– OS2: Ubuntu Linux (Kernel version: 2.6.27.11)

to show how we did the benchmarking on a single-core machine and a quad-core
one. The main purpose of getting the quad-core machine involved is to show
how easy one can divide an FU network and map different parts to different
cores to make a better use of the computing resources. In the given example, the
partitioning and mapping were both done manually, but they can be automated
for large applications thanks to the code analyzability of RVC-CAL.

Run-Time Performance Metric. We ran our experiments on both Microsoft
Windows and Linux OSs (see Table 2 for details). Both operating systems sup-
port high-resolution timers to measure time in nanoseconds. More specifically,
we used the QueryPerformanceCounter() and QueryPerformanceFrequency()

functions (available from Windows API) on Windows, and the clock gettime()

and clock getres() functions with CLOCK MONOTONIC clock (available from the
Higher Resolution Timer [22] package) on Linux. In addition, to circumvent the
caching problem, we conducted 100 independent runs (with random input data)
of each configuration and used the average value as the final performance metric.

The concrete specifications of our test machine can be found in Table 2. Due
to the multi-tasking nature of Windows and Linux operating systems, the bench-
marking result can be influenced by other tasks running in parallel. In order to
minimize this effect, we conducted all our experiments under the safe mode of
both OSs. We used Microsoft Visual Studio 2008 and GCC 4.3.2 as C compilers
for the Windows and the Linux operating systems, respectively. Both compil-
ers were configured to maximize the speed of generated executables. For Java
programs, we used Eclipse SDK 3.6.1 and Java(TM) SE Runtime Environment
(build 1.6.0 12-b04).

Benchmarking of SHA-256 on Single-Core Platform. In this subsection,
we present the results of benchmarking a single SHA-256 FU against some non-
RVC reference implementations in C (OpenSSL [64], OGay [27], and sphlib [56])
and Java (Java Cryptography Architecture (JCA) [54]). Figure 2 shows the re-
sults of our benchmarking under Windows operating system while our test ma-
chine was configured to run only one CPU core. One can see that the run-time
performance of CTL implementation is better than OpenSSL but inferior to
carefully optimized implementations (OGay and sphlib). In addition, the CTL’s
Java implementation of SHA-256 does not outperform the JCA implementation.
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Fig. 2. Benchmarking of CTL’s SHA-256 implementation

This can probably be explained by the fact that the current edition of the ORCC
Java backend does not generate very efficient code. These results indicate that
the CTL’s SHA-256 implementation can achieve a performance similar to ref-
erence implementations. We also did similar benchmarking experiments on the
AES block cipher in CTL (included in the extended edition of the paper) and
came to a similar conclusion.

Benchmarking of SHA-256 on Multi-core Platform. On a platform with
multiple CPU cores, one can map different parts of an FU network to differ-
ent CPU cores so that the overall run-time performance of the application can
be improved. The C backend of the RVC supporting tool ORCC [6] supports
multi-core mapping, so one can easily allocate different FUs or FU sub-networks
to different CPU cores. To see how much benefit we can get from a multi-core
platform, we devised a very simple RVC application called HashTree that imple-
ments the following functionality using five hash H operations: given an input
signal x = x1 ‖ x2 ‖ x3 ‖ x4 consisting of four blocks xi, hash each block
hi = H(xi) and then output H(h1 ‖ h2 ‖ h3 ‖ h4). In our implementation of
HashTree, we instantiated H with SHA-256. By comparing this application with
the simple single-core SHA-256 application computing H on the same input (i.e.,
H(x1 ‖ x2 ‖ x3 ‖ x4)), we can roughly estimate the performance gain.

In the benchmarking process, we considered three different configurations:

– Single SHA-256: This configuration represents a single SHA-256 FU run-
ning on a single-core, which processes an input x and produces the hash. We
used this configuration as the reference point to evaluate the performance
gain of the following two configurations, which implement HashTree using
five SHA-256 instances.

– 5-thread with manual mapping: In this configuration, each SHA-256 in-
stance is programmatically mapped to run as a separate thread on a specific
CPU core of our quad core machine. At the start of the hashing process,
we manually mapped the four threads (processing hi = H(xi)) to four CPU
cores. The fifth thread performing the final hashing operation is created and
mapped after the preceding four threads are finished with their execution.
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Fig. 3. The performance gain we got from the benchmarked configurations

– 1-thread with manual mapping: Similar to the above configuration, this
configuration also implements HashTree. However, all five SHA-256 instances
are bounded to run in a single thread on a specific CPU core of our quad
core machine.

It should be noted that thread creation and mapping also consume some CPU
time, which is the cost one has to pay to achieve concurrency. Therefore, in order
to make the study judicial, we also count the times spent on thread creation and
thread mapping. The benchmarking results are shown in Fig. 3. One can see
that the performance gain is between 200% to 300% when five threads are used.

6 Future Work

In order to allow researchers from different fields to extend CTL and use it
for more applications, we have published CTL as an open-source project at
http://www.hooklee.com/default.asp?t=CTL. In our future work, we plan to
continue our research on the following possible directions.

Cryptographic Primitives. The CTL can be enriched by including more cryp-
tographic primitives (especially public-key cryptography), which will allow cre-
ation of more multimedia security applications and security protocols. Another
direction is to develop optimized versions of CTL cryptosystems. For instance,
bit slicing can be used to optimize parallelism in many block ciphers [28, 45].

Security Protocols. Another direction is to use the RVC framework for the de-
sign and development of security protocols and systems with heterogenous com-
ponents and interfaces.While RVC itself is platform independent, “wrappers” [62]
can be developed to bridge the platform-independent FUs with physical I/O de-
vices/channels (e.g., a device attached to USB port, a host connected via LAN/
WLAN, a website URL, etc.). Although there are many candidate protocols that
can be considered, as a first step we plan to implement the hPIN/hTAN e-banking
security protocol [42], which is a typical (but small-scale) heterogeneous system in-
volving a hardware token, a web browser plugin on the user’s computer, and a web
service running on the remote e-banking server. We have already implemented an

http://www.hooklee.com/default.asp?t=CTL
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hPIN/hTAN prototype system without using RVC, so the new RVC-based imple-
mentation can be benchmarked against the existing system.

Cryptographic Protocols. Many cryptographic protocols require a high amount of
computations. One example are garbled circuit protocols [68] that allow secure
evaluation of an arbitrary function on sensitive data. These protocols can be
used as basis for various privacy-preserving applications. At a high level, the
protocol works by one party first generating an encrypted form of the function
to be evaluated (called garbled circuit) which is then sent to the other party who
finally decrypts the function using the encrypted input data of both parties and
finally obtains the correct result. Recent implementation results show that such
garbled circuit based protocols can be implemented in a highly efficient way
in software [32]. However, until now, there exist no software implementations
that exploit multi-core architectures. It was shown that such protocols can be
optimized when using both software and hardware together: For generation of
the garbled circuit, a trusted hardware token can generate the garbled circuit
locally and hence remove the need to transfer it over the Internet [36]. Here, the
encrypted versions of the gates which require four invocations of a cryptographic
hash function can be computed in parallel similar to the 4-adic hash tree we have
shown in Sec. 5. Furthermore, the evaluation of garbled circuits can be improved
when using hardware accelerations as shown in [37]. We believe that the RVC
framework can serve as an ideal basis for hardware-software co-designed systems
with parallelized and/or hardware-assisted garbled circuit-based protocols.
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Abstract. We show in this paper that the isolation characteristic of
system virtualization can be bypassed by the use of a cache timing at-
tack. Using Bernstein’s correlation in this attack, an adversary is able to
extract sensitive keying material from an isolated trusted execution do-
main. We demonstrate this cache timing attack on an embedded ARM-
based platform running an L4 microkernel as virtualization layer. An
attacker who gained access to the untrusted domain can extract the key
of an AES-based authentication protocol used for a financial transaction.
We provide measurements for different public domain AES implementa-
tions. Our results indicate that cache timing attacks are highly relevant
in virtualization-based security architectures, such as trusted execution
environments.
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kernel, AES, Cache, Timing, Embedded.

1 Introduction

Virtualization technologies provide a means to establish isolated execution en-
vironments. Using virtualization, a system can for example be split into two
security domains, one trusted domain and one untrusted domain. Security crit-
ical applications which perform financial transactions can then be executed in
the trusted domain while the general purpose operating system, also referred to
as rich OS, is executed in the untrusted domain. In addition, other untrusted
applications can be restricted to the untrusted domain.

It is generally believed that virtualization characteristics provide an isolated
execution environment where sensitive code can be executed isolated from un-
trustworthy applications. However, we will show in this paper that this isolation
characteristic can be bypassed by the use of cache timing attacks. Even though
it has already been stated that cache timing attacks may circumvent the virtu-
alization barriers [14], we provide additional practical evidence to that matter.
Especially, we show how this side channel can also be exploited on embedded
ARM-based architectures for mobile devices, such as smartphones.
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A cache timing attack exploits the cache architecture of modern CPUs. The
cache architecture has influence on the timing behavior of each memory access.
The timing depends on whether the addressed data is already loaded into the
cache (cache-hit) or it is accessed for the first time (cache-miss). In case of a
cache-miss, the CPU has to fetch the data from the main memory which causes
a higher delay compared to a cache-hit where the data can be used directly
from the much faster cache. Based on the granularity of information an at-
tacker uses for the attack, cache timing attacks can be divided into three classes:
time-driven [7,17,2,16], trace-driven [1,9] and access-driven [17,15]. Time-driven
attacks depend only on coarse timing observations of whole encryptions includ-
ing certain computations. In this paper, we use a time-driven attack which is the
most general attack of the three. To perform a trace-driven attack, an attacker
has to be able to profile the cache activity during a single encryption. In addi-
tion, he has to know which memory access of the encryption algorithm causes
a cache-hit. More fine grained information about the cache behaviour is needed
to perform an access-driven attack. This attack additionally requires knowledge
about the particular cache sets accessed during the encryption. That means
that those attacks are highly platform dependent while time-driven attacks are
portable to different platforms as we will show.

Although trace- and access-driven cache attacks would be feasible in a vir-
tualized system, it would require much more effort to setup a spy-process. For
an access-driven attack, the adversary needs the physical address of the lookup
tables to know where they are stored in memory and thus the information to
which cache lines they are mapped. This cannot be accomplished by a spy-
process during runtime in the untrusted domain, as there is no shared library.
By a time-driven attack, it is sufficient to see the attacked system as a black
box.

Bernstein [7] for instance used this characteristic for a known plaintext attack
to recover the secret key of an AES encryption on a remote server. However,
Bernstein had to measure the timing on the attacked system to get rid of the
noisy network channel between the attacked server and the attacking client.
While this is a rather unrealistic scenario since the server needs to be modified,
it is very relevant in the context of virtualization. In the context of virtualization,
the noise is negligible since local communication channels are used for controlled
inter-domain data exchange. These communication channels are based on shared
memory mechanisms which introduce only a small and almost constant timing
overhead.

This paper is organized as follows. In the next section we state related works.
We analyze the general characteristics of a virtualization-based system and
present a generic system architecture that provides strong isolation of execution
environments in Section 3. We believe that this system architecture is repre-
sentative for related architectures based on virtualization that establish secure
execution environments. Based on this architecture, we show the feasibility to
adapt Bernstein’s attack. Further, in Section 4, we show that standard mutual
authentication schemes based on AES are vulnerable to cache timing attacks
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executed as man-in-the-middle in the untrusted domain. We provide practical
measurements on an ARM Cortex-A8 based SoC running the Fiasco.OC micro-
kernel [23] and its corresponding runtime environment L4Re as virtualization
layer to confirm our proposition in Section 5. Finally, we conclude with a dis-
cussion about the results and possible countermeasures in Section 6.

2 Related Work

Bernstein provides in [7] a practical cache-timing attack on the OpenSSL imple-
mentation of AES on a Pentium III processor. He describes a known plaintext
attack to a remote server which provides some kind of authentication token.
However, Bernstein does not provide an analysis of his methodology and an ex-
planation why the attack is successful. This is revisited by Neve et al. [16]. They
present a full analysis of Bernstein’s attack technique and state the correlation
model. Later Aciiçmez et al. [2] proposed a similar attack extended to use second
round information of the AES encryption. However, they also provide only local
interprocess measurements in a rather unrealistic attack setup similar to Bern-
stein’s client-server scenario. Independently from Bernstein, Osvik et al. [17] also
describe a similar time-driven attack with their Evict+Time method. Further,
they depict an access-driven attack Prime+Probe with which they are able to
extract the disk encryption key used by the operating system’s kernel. However,
they need access to the file system which is transparently encrypted with that
key.

Gueron et al. [14] discussed several security aspects of current x86/x86-64
PC architectures including potential timing side channels which are caused by
performance optimizations of the hardware architecture. They discussed that for
example the cache may compromise the isolation of virtualization environments.
Ristenpart et al. [20] consider side-channel leakage in virtualization environments
on the example of the Amazon EC2 cloud service. They show that there is cross
VM side-channel leakage. They used the Prime+Probe technique from [17] for
analyzing the timing side-channel. However, Ristenpart et al. are not able to
extract a secret encryption key from one VM.

There are also more sophisticated cache attacks which can recover the AES
key without any knowledge of the plaintext nor the ciphertext. Lately, Gullasch
et al. [15] describe an access-driven cache attack. They introduce a spy-process
which is able to recover the secret key after several observed encryptions. How-
ever, this spy-process needs access to a shared crypto library which is used in the
attacked process. Further, a DoS attack on the Linux’ scheduler is used to mon-
itor a single encryption. Recently, Bogdanov et al. [8] introduced an advanced
time-driven attack and analyzed it on an ARM-based embedded system. It is a
chosen plaintext attack which is using pairs of plaintexts. Those plaintexts are
chosen in a way that they exploit the maximum distance separable code. This
is a feature of AES used during MixColumns operation to provide a linear trans-
formation with a maximum of possible branch number. For 128-bit key length,
they have to perform exactly two full 16-byte encryptions for each plaintext pair
where the timing of the second encryption has to be measured.
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Fig. 1. High level security architecture of an embedded device based on virtualization

Even though these attacks could be demonstrated in a virtualization-based
system, it would require strong adaptations of the system which may result in
an unrealistic attacker model. In contrast, the approach by Bernstein is more
flexible and provides a more realistic attacker model for a trusted execution
environment.

3 System Architecture

We present in this section the system architecture of a generic virtualization-
based system. This system architecture is representative for other systems based
on virtualization and is later used to demonstrate our cache timing attack. The
system architecture consists of a high level virtualization-based security archi-
tecture including the operating system and an authentication protocol used to
authenticate a security sensitive application executed in the trusted domain.

3.1 Virtualization-Based Security Architecture

Virtualization techniques can be used to provide strong isolation of execution
environments and thus enables the construction of compartments. One com-
partment can then be used to execute sensitive transactions while the other
compartment is used for transactions with a lower trust level. This design pro-
cess is already partly employed by smartphone architectures. The Dalvik VM on
Android provides some sort of process virtualization [21, p. 83], however, with-
out providing the same level of isolation achieved by system virtualization [21,
p. 369]. Due to the insecurity of current smartphones’ and other embedded sys-
tems’ architectures, it is expected that virtualization solutions will be used in
the near future to increase security and reliability. This assumption is supported
by current developments in the embedded hardware architectures (ARM TZ [3],
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Table 1. Mutual authentication protocol using symmetric AES encryption

Verifier B Prover A

shared key: k shared key: k
rB := rnd() rA := rnd()

connect()←−−−−−−−−−−−−−−
IDB , rB−−−−−−−−−−−−−−→

mA := h(rB||rA||IDA)
IDA, rA, cA cA = E(mA, k)←−−−−−−−−−−−−−−

m′
A := h(rB ||rA||IDA)

cA
?
= E(m′

A, k)

mB := h(rA||IDB)
cB := E(mB, k) cB−−−−−−−−−−−−−−→

m′
B := h(rA||IDB)

cB
?
= E(m′

B, k)

Intel Atom VT-x [11]). GlobalPlatform is currently in the process of specifying
a high level system architecture of a trusted execution environment (TEE) [4].
The security architecture is mainly adapted from the TEE Client API Specifi-
cation [13]. At the time of this writing, this is the publicly available part of the
complete specification. It is shown in Figure 1. The system architecture consists
of two execution domains, the trusted execution environment for the trusted
applications and the rich environment for the user controlled rich operating sys-
tem1. It is much more likely that the rich environment is infected by malware due
to the greater software complexity. The trusted applications are either executed
in their own virtual machine or are separated in different address spaces and do
not share any memory to allow the deployment of trusted application by differ-
ent vendors which may not trust each other. However, each trusted application
depends on the security of the underlying isolation layer.

3.2 Authentication Scheme

To keep the trusted computing base (TCB) small and to reduce implementation
complexity, the drivers and communication stacks are implemented in the rich
operating system executed in the untrusted domain. Thus, to achieve for exam-
ple authenticity of a transaction in an online banking application, a protocol
resistant to man-in-the-middle attacks has to be used. The protocol’s end point
has to be in the trusted domain and not in the rich OS since the rich OS could
be compromised. When the trusted application wants to communicate with its
backend system, it has to prove its authenticity against the backend and vice

1 A rich operation system is a full operating system with drivers, userland and user
interfaces, e. g., Android.
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Table 2. Timing attack on a trusted application

Untrusted VM

To/From remote To/From trusted
connect() connect()←−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−
IDB , rB IDB, rB−−−−−−−−−−−−−−→ startClk() −−−−−−−−−−−−−−→

IDA, rA, cA IDA, rA, cA←−−−−−−−−−−−−−− stopClk() ←−−−−−−−−−−−−−−
mA := h(rB||rA||IDA)

...

versa. For this purpose, a mutual authentication protocol as shown in Table 1
between both parties needs to be employed. Note that this is only a simple exam-
ple authentication scheme and also more sophisticated authentication schemes
could be used. We assume that both parties have negotiated a secret symmetric
key. The protocol uses random nonces as challenges and AES with the shared se-
cret key k to generate the responses. Also an identifier of the particular sender is
included in the encrypted response. Before the execution of the encryption, this
ID is concatenated with the challenges. Further, this concatenation is hashed to
prevent concatenation attacks.

Both verifier and prover execute the mutual authentication protocol depicted
in Table 1. The prover in this case is the trusted application whereas the verifier
is a remote backend system. The untrusted domain is not taking part in the
protocol and just acts as transparent relay. After execution of this scheme, the
prover A has proven to the verifier B the knowledge of the secret k and vice
versa. Further, the freshness of the communication is provided by this scheme.
This simple mutual authentication is used to demonstrate the vulnerability of
virtualization-based trusted execution domains against the timing attack de-
picted in the next section.

4 Attack Setup

For our attack setup, we focus on a virtualization-based system architecture of an
embeddedmobile device as stated above. In the following,we show that an attacker
who has overtaken the richOS in the untrusted domain, e.g., by the use ofmalware,
can circumvent the isolation mechanism with a cache timing side-channel.

Our introduced authentication scheme is secure against man-in-the-middle
attacks on protocol level. However, due to the fact that the untrusted domain
is relaying the messages between the client application and the remote server,
malware can use a time-driven cache attack to at least partially recover the
AES-encryption key k. To this end, we use a template attack derived from the
attack in [7] which is conducted in two phases, first the profiling phase (offline
and online) and second the correlation phase. We assume that an attacker has
gained access to the rich operating system. The attacker is then able to execute
a small attack process which is used to generate the timing profile.
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4.1 Profiling Phase

The profiling phase is run twice, one time offline with a known key k and a second
time online on the real target with an unknown key k′. However, the malware
program which is running on the attacked system only has to generate the online
profile. The profiling phase in this context looks as follows. The attacker process
has to hook into the messaging system between rich OS and the trusted execution
environment as depicted in Table 2. Since the protocol stack is implemented in
the rich OS, this could be done in the rich OS kernel. Thus, the attacker is
able to capture the server’s challenge rB and measure the time between relaying
this challenge to the client and receiving the client’s response message. This
provides him the timing of the AES encryption of the known plaintext mA =
h(rB ||rA||IDA), of course with the noise introduced by the hashing and other
operations executed in addition to the actual encryption.

To recover the key in the later correlation phase, many challenge-response
observations are needed to deal with the noise by averaging over all samples.
Therefore, the attacker has to increase the number of challenge-response pairs
to be collected. For that, he has several options depending on the used implemen-
tation of the virtualization layer and the client application. In upcoming TEE
implementations, like the GlobalPlatform TEE, an untrusted user application
may be used to initiate the trusted application. Thus, malware could initiate the
trusted application as well and some kind of trigger application could be used
to initiate the authentication process of the trusted application. The following
connection request to the remote server can be blocked by the attacker as he has
full control over the untrusted rich operating system and thus can intercept any
communication. Instead of relaying the connection request to the remote server,
the attacker establishes a local fake connection and sends an own generated
nonce to the trusted application. After receiving the answer with the ciphertext,
the attacker can send a connection reset and depending on how the trusted ap-
plication is implemented, the protocol will just restart and a new challenge can
be sent.

4.2 Correlation Phase

After receiving sufficient challenge-response pairs for the online timing profile,
the attacker can correlate the profiles to recover at least partially the key k′. We
provide detailed measurement results in Section 5. We use a correlation based
on timing information during the first round of AES. It would be possible to also
use information from the second round to reduce the amount of samples needed.
However, to show that time-driven cache attacks are a threat to virtualization-
based systems, it is sufficient to use the easier first round attack.

At first we define the function timing() which computes the timing difference
between the start and end of an operation. During the first run of the profiling
phase, for each plaintext p, the overall encryption time is stored accumulated in
a matrix t which is indexed by the byte number 0 ≤ j < 16 and the byte value
0 ≤ b < 256.

tj,b = tj,b + timing(enc AES(p, k)) (1)
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Further, the total amount of captured samples for each plaintext byte value is
traced in a matrix tnum as shown in Equation 2.

tnumj,b = tnumj,b + 1 (2)

After several samples the matrix v which is computed as depicted in Equation 3
is stored in the profile.

vj,b =
tj,b

tnumj,b
− tavg (3)

tavg shown in Equation 4 is the accumulated timing measurements of all plain-
texts pm divided by the total number of encryptions l.

tavg =

∑l
m=0 timing(enc AES(pm, k))

l
(4)

During the online part of the profiling phase, the matrices t′ and tnum′ are
generated and the output v′ is generated for the unknown key k′.

Finally, for every key byte j the correlation c for each possible value 0 ≤ u <
256 is computed as shown in Equation 5.

cj,u =

255∑
w=0

vj,w · v′
j,(u⊕w) (5)

According to the probability which is derived from the variance also stored in
the profile, the values of c are sorted. Further, the key values with the lowest
probability below a threshold as defined in [7] are sorted out.

5 Empirical Results

For practical analyses of the above described use-case, we built a testbed based
on an embedded ARM SoC with an L4 microkernel as virtualization layer. As
hardware platform, we decided to use the beagleboard in revision c4 because it
is widely spread community driven open source board and also comparable to
the hardware of currently available smartphones, for instance the Apple iPhone
as well as Android smartphones. It is based on Texas Instruments’ OMAP3530
SoC which includes a 32-bit Cortex-A8 core with 720MHz as central processing
unit. The Cortex-A8 implements a cache hierarchy consisting of a 4-way set
associative level 1 and an 8-way set associative level 2 cache. The L1-cache is
split into instruction and data cache. The cache line size of both is 64 byte. For
precise timing measurement, we used the ARM CCNT register, which provides
the current clockcycles, the CPU spent since last reset. This is a standard feature
of the Cortex-A8 and thus also available in current smartphones. However, it
needs system privileges by default.

We implemented the scenario shown in Figure 1 and employed the mutual
authentication scheme from Table 1 in a trusted environment. For the virtual-
ization environment, we used the Fiasco.OC microkernel and the L4Re runtime
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Fig. 2. Linux trigger application (simulating malware) connecting through L4Linux
kernel services to trusted application executed as L4Server

environment from TUD’s Operating Systems group. Fiasco.OC is a capability-
based microkernel. In cooperation with the L4Re, it provides the functionality
of a hypervisor for paravirtualized Linux machines. Further, it enables real time
application and security applications to run directly on top of the microkernel
in separated address spaces (L4Tasks) besides the Linux VMs. In fact, the L4Re
virtualization runs Linux in user mode also in an L4Task. Further, each Linux
application is executed in its own L4Task, however, with a special restriction
that the L4Linux machine where the application belongs to is the registered
pager of that task.

The rich OS is simulated by an L4Linux system. In L4Re an IPC mechanism
in form of a C++ client server framework exists. This provides a synchronous
control channel. The trusted application is implemented as an L4Server while
the client part is implemented in the L4Linux kernel. A user level application is
implemented on top of the L4Linux kernel to trigger the authentication of the
trusted application. Instead of real challenges of a remote server, we also used
this trigger application to generate random nonces as server challenges. This
approach makes no difference to the timing measurement. The actual plaintext
data (the remote server’s nonce rB) is written to a shared memory page by the
client. The client, in our case the L4Linux kernel, requests this shared page in
advance from the trusted application. The trusted application L4Server registers
the page in the microkernel and transfers the capability for the page through
the established IPC control channel to the Linux kernel. A detailed view of
the software architecture of this attack is provided in Figure 2. As the rich
OS is running in user mode, it is necessary to enable the access to the CCNT
register beforehand in system mode. We used the boot loader u-boot to set this
instruction before the hypervisor is executed. However, if the TEE would be
realized for example with ARM TrustZone [3], the rich OS is executed in the so
called NormalWorld. The SecureWorld of the processor is used for the trusted
execution domain. An attacker could then access the CCNT register directly
from the rich OS kernel since access rights of the NormalWorld’s system mode
are sufficient.
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5.1 Measurement Setup

The side-channel leakage depend on the used AES implementation. Thus, we
analyzed different AES implementations using our authentication protocol shown
in Table 1. During the profiling phase, we used the null key for the offline part
and for the online part we generated the randomly chosen key k′:

k′ = 0x 2153 fc73 d4f3 4a98 1733 bb3f 1892 008b

Further, we encrypt the plaintext generated by the trigger application directly
and do not perform the hashing operation as described in the protocol. The rea-
son for this is that the hashing generates more noise and makes the comparison
between the different AES implementations less clear. Nevertheless, we provide
the measurement result with the full protocol implementation exemplary for the
AES implementation of Bernstein [6]. However, noise is not really considered in
our work but clearly has an impact on the measurements.

We generate a profile every time when additionally 100K samples for each
possible plaintext byte value are observed until 2M of each such samples were
reached. To generate N samples for each possible value of all plaintext bytes,
approximately N · 256 messages with 16-byte random plaintexts have to be ob-
served.

5.2 Results

We evaluated a broad range of different AES implementations as shown in Table 3.
The implementations of Bernstein [6], Barreto [5] and OpenSSL [22] are optimized
for 32-bit architectures like the Cortex-A8whereasGladman’s [12] is optimized for
8-bit micro controllers. Niyaz’ [19] implementation is totally unoptimized. Table 3
visualizes the online and offline profile of each implementation. The first column
shows the minimum and maximum of the overall timing in CPU cycles which is
used for the correlation. The second column shows information about the varia-
tion of this timing computed over all measurements. To make propositions over

Table 3. Timing profile comparison between the different implementations

Implemenation
time (in cycles) variation time aes

min max min max median interval (in cycles)

Barreto [5]
offline 0 33745.96 33772.29 -9.57 16.77 -0.47 26.34 ≈ 4231
online k′ 33745.71 33772.31 -9.87 16.73 -0.49 26.59 ≈ 4230

OpenSSL [22]
offline 0 33584.26 33605.61 -8.04 13.31 -0.16 21.35 ≈ 4222
online k′ 33585.64 33607.81 -8.99 13.18 -0.14 22.17 ≈ 4221

Bernstein [6]
offline 0 33731.61 33778.54 -11.44 35.49 -0.94 46.93 ≈ 4546
online k′ 33745.04 33781.29 -5.24 31.00 -0.78 36.24 ≈ 4573

Gladman [12]
offline 0 35139.63 35158.00 -6.26 12.10 -0.16 18.37 ≈ 5689
online k′ 35139.48 35157.03 -5.72 11.82 -0.16 17.55 ≈ 5689

Niyaz [19]
offline 0 59266.99 59280.43 -8.39 5.05 0.03 13.44 ≈ 24840
online k′ 59265.01 59278.61 -8.88 4.72 0.01 13.60 ≈ 24834
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the signal to noise ratio, we also provide the average time spent in the AES encryp-
tion method. In Figure 3, the result of the correlation is shown. The plots depict
the decreasing possibilities for each key byte by increasing samples. For each imple-
mentation, a subfigure is providedwhich plots the left choicesmwithm ∈]0; 256] in
z-direction for each key byte ki with i ∈ [0; 15] from left to right, while the amount
of samples N for the online profile with N ∈ [100K; 2M ] is plotted in y-direction
from behind to front. For this result, a constant sample amount of 2Mwas used for
the offline profile with the null key.

Barreto. Barreto’s implementation which is part of many crypto libraries is
showing a high vulnerability against this time-driven attack. Barreto uses four
lookup tables, each of 1 KByte in size. Thus, the lookup tables do not fit into one
cache line. Additionally for the last round, a fifth lookup table is used. This type
of implementation is also called T-Tables implementation. After 100K samples,
only key byte 3 and 7 have more than 200 possibilities left and for key byte 9,
the choices are above 50. The other 13 key bytes are all below 50. After 800K
almost any key is pinpointed to 4 choices except key byte 9. However, this seems
to be the limit for this implementation. That means, using additional samples
do not improve the results any further. After 1.6M samples also for key byte 9
the limit is reached and only 4 choices are left. Nothing changes afterwards until
2M samples are reached. See Figure 3(a).

OpenSSL. The OpenSSL implementation is almost the same as Baretto’s imple-
mentation. However, the results of both implementations differ. For the OpenSSL
implementation, the limit is reached at 16 choices per key byte. Furthermore, the
attack was not able to reduce the key space for key byte 4 at all. One could believe
that the results of Barreto’s implementation and the results of OpenSSL have to
be the same as the encryption function is exactly performing the same operations.
However, as listed in Table 3, the overall time which is measured during the attack
is about 200 cycles higher for Barreto’s implementation because of the encryption
function definition. Barreto passes parameters by value which are passed by refer-
ence in the OpenSSL encryption function header. Also the performed operations
outside the measurement in the trigger application influences the cache evictions.
In total, this causes more cache evictions and thus a higher variation of the AES
signal, resulting in better correlation behaviour.

Gladman. The same holds for the implementation of Gladman which we com-
piled with tables and 32-bit data types enabled. Here, also the choices for several
key bytes are reduced to 16 possibilities. However,Gladmanuses only one 256-byte
lookup table which means the signal to noise ratio is even worse than in the other
implementations. Further, as the cache is 4-way associative with a cache line size
of 64 byte, the lookup table fits into one cache block at once. This makes evictions
by AES itself nearly impossible. However, other variables used during the compu-
tation can compete with the same lines in cache. This reduces the amount of cache
evictions a lot in comparison to the 4 KByte tables implementations. So, there is
no reduction of the key space for four key bytes at 2M samples.
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(a) Barreto (b) Bernstein

(c) Bernstein with hashing (d) Gladman

(e) Niyaz (f) OpenSSL

Fig. 3. Reducing key space by timing attack of different AES implementations
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Table 4. Correlation results after 100K samples of online profile received with the C
version of Bernstein’s AES implementation; offline profile with 2M samples

choices byte# key values
←− probability

20 0 21 20 23 22 fc 25 26 ..
4 1 53 52 51 50

256 2 fc cb 9b a1 fd a6 a4 ..
80 3 73 70 76 71 75 74 72 ..
10 4 d4 d6 d5 d7 d3 0a df ..
4 5 f3 f1 f0 f2
6 6 4a 49 4b 48 4f 4d
3 7 98 9a 99

choices byte# key values
←− probability

23 8 17 15 ce c9 13 12 ca ..
27 9 33 31 32 ec ea 30 ed ..
4 10 bb b8 ba b9

27 11 3f 3e 3c 3b 3a e2 e5 ..
4 12 18 1b 19 1a

11 13 92 90 91 93 97 96 9a ..
51 14 00 c0 01 02 20 e9 21 ..

256 15 8b 06 93 8f 33 b3 0f ..

Niyaz. The implementation of Niyaz seems almost secure against this attack
as shown in Figure 3(e). Niyaz also implements the AES with only one S-Box
table of 256 byte in size. As in Gladman’s implementation, this table also fits in
one cache block. Thus, the timing leakage generated by the S-Box lookups is re-
duced. Further, the unoptimized code beside the table lookups in the encryption
method will decrease the signal-to-noise ratio to make it even harder to extract
information from the measurements using the correlation.

Bernstein. Our results show that Bernstein’s AES implementation is most
vulnerable to our cache timing attack. However, we used the C compatibility
version which is part of his Poly1305-AES [6] message authentication code since
no ARM implementation is available. This implementation is the only one which
totally leaks the secret key k′. Already after 400K samples, the key is almost
completely recovered by the correlation and only 2 key bytes need to be computed
using brute-force. Further, during the correlation phase, the possible key bytes
are sorted by probability, thus, already after 100K, the correct key k′ can be
extracted as shown in Table 4. The first column of Table 4 shows the possible
choices which are left after correlation. In the second column, the corresponding
key byte index is listed while the third column shows the key values sorted
by their probability. The values with highest probability are also the correct
bytes of k′ we introduced in this section. The correct values are printed bold
in the table. For this implementation, we also executed the attack with the full
mutual authentication protocol, with hashing enabled. We used the reference
SHA1 implementation of the L4Re crypto package. In Figure 3(c), it can clearly
be seen that the additional noise generated by the hashing function increases
the amount of samples needed for the attack.

6 Conclusion

We have shown that the isolation characteristic of virtualization environments
can be circumvented using a cache timing attack. Even if authentication schemes
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with hashing are used, the side-channel leakage of the cache can be used to
significantly reduce the key space. Nevertheless, our attack requires many mea-
surement samples and noise also makes our attack more difficult. As there are
doubts about practicability of this kind of attacks, further research has to ex-
amine proper workloads and real noise. Indeed, cache timing attacks remain a
threat and have to be considered during design of virtualization-based security
architectures. Switching the algorithm for authentication would not be a solu-
tion to this problem. For instance, there exist cache-based timing attacks against
asymmetric algorithms like RSA by Percival [18] and ECDSA by Brumley and
Hakala [10] as well.

The first step to mitigate those attacks is to not use a T-Tables implementa-
tion. However, also the implementations of Gladman and Niyaz with the 256-byte
S-Box tables leak timing information which reduces the key space. An additional
option for implementations with a 256-byte S-Box would be to use the preload
engine in cooperation with the cache locking mechanism of the Cortex-A8 pro-
cessor, as the whole S-Box fits in a cache-set. On a higher abstraction layer,
the communication stack and all relevant protocol stacks and drivers could be
implemented in the trusted domain. However, this would increase the TCB sig-
nificantly and thus also the probability to be vulnerable to buffer-overflow at-
tacks. Another solution would be to use a crypto co-processor implemented in
hardware. This could be either a simple micro controller which does not use
caching, or a sophisticated hardware security module (HSM) with a hardened
cache-architecture that provides constant encryption timing.
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2. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache Based Remote Timing Attack on
the AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

3. ARM Limited. ARM Security Technology - Building a Secure System using Trust-
Zone Technology, prd29-genc-009492c edition (April 2009)

4. Bailey, S.A., Felton, D., Galindo, V., Hauswirth, F., Hirvimies, J., Fokle, M., More-
nius, F., Colas, C., Galvan, J.-P.: The trusted execution environment: Delivering
enhanced security at a lower cost to the mobile market. Technical report. Global
Platform Inc. (2011)

5. Barreto, P., Bosselaers, A., Rijmen, V.: Optimised ANSI C code for
the Rijndael cipher, now AES (2000), http://fastcrypto.org/front/misc/

rijndael-alg-fst.c

6. Bernstein, D.J.: Poly1305-AES for generic computers with IEEE floating point
(February 2005), http://cr.yp.to/mac/53.html

7. Bernstein, D.J.: Cache-timing attacks on AES. Technical report (2005)
8. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision

timing attacks on aes with applications to embedded cpus. In: The Cryptographer’s
Track at RSA Conference, pp. 235–251 (2010)

http://fastcrypto.org/front/misc/rijndael-alg-fst.c
http://fastcrypto.org/front/misc/rijndael-alg-fst.c
http://cr.yp.to/mac/53.html


328 M. Weiß, B. Heinz, and F. Stumpf

9. Bonneau, J., Mironov, I.: Cache-Collision Timing Attacks Against AES. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006)

10. Brumley, B.B., Hakala, R.M.: Cache-Timing Template Attacks. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg
(2009)

11. Intel Corporation. Intel R© virtualization technology list (accessed September 15
(2011), http://ark.intel.com/VTList.aspx

12. Brian Gladman (2008), http://gladman.plushost.co.uk/oldsite/AES/
aes-byte-29-08-08.zip

13. GlobalPlatform Inc. TEE Client API Specification Version 1.0 (July 2010)
14. Gueron, S., Stronqin, G., Seifert, J.-P., Chiou, D., Sendag, R., Yi, J.J.: Where

does security stand? new vulnerabilities vs. trusted computing. IEEE Micro 27(6),
25–35 (2007)

15. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games – Bringing access-based cache
attacks on AES to practice. In: IEEE Symposium on Security and Privacy, S&P
2011. IEEE Computer Society (2011)

16. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at bernstein’s aes side-channel
analysis. In: ASIACCS, p. 369 (2006)

17. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

18. Percival, C.: Cache missing for fun and profit. In: Proc. of BSDCan 2005 (2005)
19. Niyaz, P.K.: Advanced Encryption Standard implementation in C
20. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212. ACM, New York (2009)

21. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-
cesses. The Morgan Kaufmann Series in Computer Architecture and Design. Mor-
gan Kaufmann Publishers Inc., San Francisco (2005)

22. The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS (February
2011), http://www.openssl.org

23. TU Dresden Operating Systems Group. The Fiasco microkernel,
http://os.inf.tu-dresden.de/fiasco/ (accessed April 6, 2011)

http://ark.intel.com/VTList.aspx
http://gladman.plushost.co.uk/oldsite/AES/aes-byte-29-08-08.zip
http://gladman.plushost.co.uk/oldsite/AES/aes-byte-29-08-08.zip
http://www.openssl.org
http://os.inf.tu-dresden.de/fiasco/


Softer Smartcards
Usable Cryptographic Tokens with Secure Execution

Franz Ferdinand Brasser1, Sven Bugiel1, Atanas Filyanov2,
Ahmad-Reza Sadeghi1,2,3, and Steffen Schulz1,2,4

1 System Security Lab, Technische Universität Darmstadt
2 System Security Lab, Ruhr-University Bochum

3 Fraunhofer SIT, Darmstadt
4 Information and Network System Security, Macquarie University

Abstract. Cryptographic smartcards provide a standardized, interoper-
able way for multi-factor authentication. They bridge the gap
between strong asymmetric authentication and short, user-friendly pass-
words (PINs) and protect long-term authentication secrets against mal-
ware and phishing attacks. However, to prevent malware from capturing
entered PINs such cryptographic tokens must provide secure means for
user input and output. This often makes their usage inconvenient, as
dedicated input key pads and displays are expensive and do not inte-
grate with mobile applications or public Internet terminals. The lack of
user acceptance is perhaps best documented by the large variety of non-
standard multi-factor authentication methods used in online banking.

In this paper, we explore a novel compromise between tokens with
dedicated card reader and USB or software-based solutions. We design
and implement a cryptographic token using modern secure execution
technology, resulting in a flexible, cost-efficient solution that is suitable
for mobile use yet secure against common malware and phishing attacks.

Keywords: trusted computing, security tokens, secure execution.

1 Introduction

Although available for over a decade, cryptographic security tokens with asym-
metric multi-factor authentication are still not in common use for many daily
authentication procedures. Despite their significant advantages, service providers
and users still prefer more usable but weak password-based authentication pro-
tocols that are highly vulnerable to simple malware and phishing attacks. More-
over, the lack of scalability in password-based authentication resulted in the
widespread deployment of password managers and federal ID systems, creating
single points of failures that pose a serious threat to a user’s online identity,
personal data and business relationships.

In contrast, cryptographic tokens allow strong user authentication and secure
storage of authentication secrets. The PKCS#11 cryptographic token interface
specification [26] is widely accepted and, when combined with a card reader

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 329–343, 2012.
c© International Financial Cryptography Association 2012
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with dedicated user input/output pad, enables the secure authentication and
authorization of transactions even on untrusted systems. However, while a clear
return of investment can be identified for well-defined environments like large
enterprises and organizations [10], end users face significantly higher costs for
the deployment and maintenance of cryptographic token solutions. Moreover,
currently available solutions still fail to meet the flexibility and security required
in mobile usage scenarios. For example, the secure encryption of files and emails
with smartcards is easily implemented at the work place but it is inconvenient
to use a dedicated keypad in addition to a laptop or smartphone, only to secure
the PIN entry process against malware attacks.

USB tokens were proposed to address the mobile usage scenario by integrating
card reader and smartcard into a single USB stick [20]. However, in this case the
critical PIN entry and transaction confirmation to the user is done in software
on the PC and thus again vulnerable to malware and interface spoofing attacks.
Alternatively, one-time password systems are sometimes deployed as a compro-
mise between usability and security. However, such systems essentially use a
symmetric authentication mechanism and do not easily scale to authenticate a
user towards multiple service providers. Moreover, as demonstrated in the recent
security breach at RSA Security1, the employed centralized server-side storage
of master secrets and lack of scalable revocation mechanisms represents a severe
security risk. Similarly, the several proposed authentication and transaction con-
firmation methods for online banking (e.g., [11]) are often special-purpose solu-
tions: Approaches that use dedicated security hardware are not easily extendible
for use with multiple service providers, while software-based solutions, such as
using a mobile phone to transmit a transaction confirmation number out of
band (mobileTAN), are again vulnerable to malware attacks. In contrast, a se-
cure general-purpose solution using smartcards, like “Secoder/HBCI-3”2, again
requires dedicated secure hardware, making it inconvenient for mobile use.

In recent years, consumer hardware was extended with the ability to execute
programs independently from previously loaded software, including the main
operating system [16,1]. These so-called Secure Execution Environment (SEE)
allow the secure re-initialization of the complete software state at runtime and
can be used to launch a new OS or simply execute a small security-sensitive
program while the main OS is suspended. Sophisticated systems have been
proposed to use these capabilities for securing online transactions, however,
they require substantial modification of existing authentication procedures and
software stacks. In contrast, this work presents a conservative approach that
uses secure execution to implement a standards-compliant cryptographic to-
ken, thus simplifying deployment and interoperability with existing software
infrastructures.

1 A security breach of the RSA Security servers resulted in a compromise of the widely
deployed SecurID tokens, incurring an estimated $66 million in replacement costs:
www.theregister.co.uk/2011/07/27/rsa_security_breach/

2 http://www-ti.informatik.uni-tuebingen.de/˜borchert/Troja/
Online-Banking.shtml#HBCI-3

www.theregister.co.uk/2011/07/27/rsa_security_breach/
http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Online-Banking.shtml#HBCI-3
http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Online-Banking.shtml#HBCI-3
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Contribution. In this paper, we present the design and integration of a software
security token that uses secure execution technology available in commodity
PCs. Our solution achieves comparable security features to hardware tokens in
face of software attacks and basic protection against common hardware attacks
such as device theft and offline brute-force attacks. In contrast to previously
proposed secure transaction systems using trusted computing, our solution aims
for interoperability and deployment, supporting the widely accepted PKCS#11
standard. Hence, our prototype is directly usable with many existing applica-
tions, such as enterprise single sign-on solutions, authentication in VPN, e-Mail
and WiFi clients and password managers. By implementing secure facilities for
user input/output, we can also provide secure and convenient mechanisms for
deployment, backup and migration of our software token. We implement a pro-
totype using Flicker and OpenCryptoki, providing an easily deployable solution
that can be used on many standard Laptops and PCs today.

2 Background and Related Work

Cryptographic Smartcards and Tokens. Smartcards and cryptographic tokens
are used in many large organizations today. The Cryptographic Token Informa-
tion Format Standard PKCS#15 [25] was developed to provide interoperability
between cryptographic smartcards and is today maintained as ISO 7816-15. On
a higher layer, the Cryptographic Token Interface Standard PKCS#11 specifies
a logical API for accessing cryptographic tokens, such as PKCS#15-compatible
smartcards or Hardware Security Modules (HSMs). Alternative standards and
APIs exist to access security tokens but are outside the scope of this work.

Apart from smartcards with external card readers, security tokens are also
available in form of USB tokens or microSD cards3. The TrouSerS [15] TCG
software stack also provides a PKCS#11 interface, using the TCG TPM [31]
to prevent password guessing attacks against a purely software-based secu-
rity token implementation. Similar to our work, these solutions offer different
kinds of compromises between security and usability. However, in contrast to
the aforementioned systems our solution provides secure facilities for user in-
put/output (trusted user I/O) and is therefore resilient against common malware
attacks.

TCG Trusted Computing. The Trusted Computing Group (TCG) [30] published
a number of specifications to extend computing systems with trusted comput-
ing. Their core component is the Trusted Platform Module (TPM), a processor
designed to securely record system state changes and bind critical functions,
such as decryption, to pre-defined system states [31]. For this purpose, the TPM
introduces Platform Configuration Registers (PCRs) to record of state change
measurements in form of SHA-1 digests. By resetting the PCRs only at sys-
tem reboot and otherwise always only extending the current PCR value with
the newly recorded state change, a chain of measurements is built. This chain
3 E.g., Aladdin eToken Pro, Marx CrypToken or Certgate SmartCard microSD.
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can be used to securely verify the system state. The TPM then supports basic
mechanisms to bind cryptographic keys or data to specific system states. Most
significantly for our design, keys can be sealed to a given system state by en-
crypting them together with the desired target PCR values under a storage root
key (SRK)4. Since the SRK is only known to the TPM, it can check upon un-
sealing if the current system state recorded by the PCRs matches the desired
state stored together with the sealed key, and otherwise reject the request.

A major problem of this approach is dealing with the huge amount and com-
plexity of software in today’s systems, resulting in a very large chain of measure-
ments. Moreover, the problem of runtime compromise is currently unsolved, i.e.,
the TPM is only informed of explicit program startups but cannot assure that
already running software was not manipulated.

Secure Execution and Flicker. A recent extension in many hardware platforms
is the SEE, a mechanism that executes code independently from previously exe-
cuted software. Essentially, the CPU is reset at runtime, so that the subsequently
executed program (the payload) is not affected by previously executed, poten-
tially malicious, software.

A major advantage of this technology is that the aforementioned chain of mea-
surements can be reset, since previously executed software does not influence the
security of the current software state anymore. For this purpose, the TPM was
extended with a set of PCRs that can be reset by the CPU when entering the
SEE. The CPU then measures the SEE payload and stores the measurements in
the previously reset PCRs. This allows the use of shorter, more manageable mea-
surement chains that are easier to verify. Several implementations of SEEs are
available, most notably Secure Virtual Machines (SVM) [1], Trusted Execution
Technology (TXT) [16] and M-Shield [4].

A flexible framework for using the SEE provided by Intel TXT and AMD
SVM is Flicker [22,23]. Flicker implements a framework for executing a security
critical Piece of Application Logic (PAL) by temporarily suspending the main
OS and diverting execution to the SEE. In this work we use and extend Flicker
to implement the security-critical cryptographic operations and secure user I/O
inside the SEE.

Secure Transaction Schemes. Several previous proposals aim to protect user
credentials, typically using either a persistent security kernel that protects the
credentials [14,17,6] or relying on external trusted hardware [18]. We know of
only one system that uses Flicker, aiming to provide a uni-directional trusted
path [13] as an instrument for transaction confirmation. It uses Flicker to take
control of devices for user I/O and then asks the user to confirm a specific
transaction. Using remote attestation, a remote system can then verify that the
transaction was securely confirmed by a human user. All of these approaches
require substantial modification of individual applications or even the addition

4 It is also possible to use a hierarchy of keys, however, for the purpose of this work
we simply assume all sealed data to be encrypted using the SRK.
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of a hypervisor. In contrast, our solution uses the widely established PKCS#11
interface [26] and works seamlessly with existing applications and operating sys-
tems that make use of this interface.

The On-board Credentials (ObC) framework was introduced for mobile em-
bedded devices [21]. ObC uses device-specific secrets of M-Shield to provide
an open provisioning protocol for credentials (code and data), that are securely
executed/used inside the SEE. TruWalletM [8] implements a secure user authen-
tication for web-services based on ObC. ObC is complementary to our solution
and may be used to provide a similar solution for mobile embedded devices.
However, in its current state ObC supports only very limited applications due
to high memory constraints.

3 A Softer Smartcard with Secure Execution

In the following we present the security requirements, architecture and protocols
of our solution. We identify the following security requirements for a secure
cryptographic token:

Secure Token Interface: The interface used for interaction between the
(trusted) token and the (untrusted) outside world must prevent the leak-
age or manipulation of any secret information contained in the token, such
as keys or key properties.

Secure User I/O: The user interface of the token solution must provide a
secure mechanism for the user to (1) judge the current security status of the
token, (2) infer the details of a pending transaction to be authorized and
(3) input the authorization secret (Personal Identification Number, PIN).

Moreover we can identify the following functional requirements:

Interoperability: The token should use a standards-compliant interface to pro-
vide interoperability with existing applications, such as the PKCS#11 or
Cryptographic Service Provider (CSP).

Usability: The token should be usable in the sense that it’s use should not
impose a significant burden on the user. In particular, the user should not
be required to buy additional hardware and the token should be usable in
mobile scenarios.

Migration and Backup: The token should provide facilities for secure migra-
tion between different hardware platforms or implementations, and for the
creation of secure data backups.

Adversary Model. We assume an adversary that can compromise the user’s op-
erating system and applications (malware, trojan horse attacks) or tries to lure
the user into revealing authentication secrets by imitating local applications and
web services (phishing, spoofing). However, the adversary has no physical con-
trol over the user’s cryptographic token and is thus restricted to the application
interface of the token. The goal of the adversary is to compromise long-term
secret keys, to authorize transactions or decrypt confidential data of the user.
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3.1 System Architecture

We aim to protect the user’s sensitive information by implementing the func-
tionality of a cryptographic token in a Secure Execution Environment (SEE).
The SEE manages and protects the credentials even if the underlying operating
system is untrusted and potentially compromised. Hence, the secure execution
environment must also establish a trusted input/output path between user and
token and must be able to authenticate itself towards the user. We combine the
SEE with the data sealing mechanism of the TPM to let only the locally au-
thenticated user access the secret token state, and to assure that only a trusted
token implementation running in the SEE can access the sensitive token state.

Fig. 1. Integration of an SEE-based cryptographic token

The overall architecture of our SEE-based token is depicted in Figure 1. It
consists of a “legacy” software stack with operating system, token middleware,
and the secure execution environment on the left-hand side, which runs our
Secure Execution Token Application (SETA) in parallel to the legacy operating
system.

Applications must be compatible with the middleware interface to make use
of cryptographic tokens. Multiple tokens can be supported by the token mid-
dleware, and in our design we add another type of token beside hardware and
software tokens that calls the SEE with appropriate parameters. The call into
the SEE is implemented using an SEE driver provided by the legacy OS, such
as Flicker. Finally, the SETA is started as the main component of this archi-
tecture, implementing the semantics of the cryptographic token and enforcing
the security-critical interfaces based on (1) isolated execution using the SEE
and (2) state-specific data encryption using the TPM sealing operation (cf.
Section 2). The SETA component running in the SEE supports three major
interfaces, as shown in Figure 1. The user interface (user I/O) implements in-
teraction with the platform peripherals for user input and output using key-
board and graphics card. The TPM interface is used for basic interaction with
the TPM, specifically for the sealing, unsealing and interaction with the TPM’s
monotonic counters. Finally, the input and output of the SETA module, upon
entering and leaving the SEE, is used to implement the cryptographic token
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interface. The token interface operation op() that is to be executed is provided
together with the encrypted token state [ts]. SETA must then request autho-
rization for executing op() by requesting the PIN pin via user I/O, decrypt the
token state ts = unseal(pin, [ts]) using the TPM interface and compute the result
res = execute(op(), ts) to be returned as the output of SETA.

3.2 Component Interaction and Protocols

Usability and flexibility are among the main concerns when using cryptographic
tokens today. In the following, we present more detailed protocol flows for the
main smartcard operation and caching of the user’s PIN, and discuss the prob-
lems of deployment, migration and backup.

3.3 Deployment

Before using the software token for the first time, the user must initialize it in a
trusted enrollment environment and choose an individual picture img and PIN
number pin, as illustrated in Figure 2(a). The picture is used later on to authen-
ticate Secure Execution Token Application (SETA) towards the user, while the
PIN is used to authenticate the user towards the token. After initialization, the
token state is sealed to the expected TPM PCR values of SETA, which are also
supplied as input, so that only SETA can open and modify the token.

Note that if the initialization and enrollment system is different from the user’s
target platform, the SEE-based token can be created centrally and deployed to
the user’s target platform using the token migration procedure described in
Section 3.4. This is particularly interesting for enterprises, which often require
central enrollment and backup of authentication and encryption secrets. Hence,
the overall procedure remains identical to the deployment of regular smartcards,
except that the user is not required to (but could) use a physical device to
transport the token state from enrollment platform to the target platform.

(a) Initialization of SEE-token state. (b) Secure migration of token state [ts] under
passphrase Km and/or trusted channel.

Fig. 2. Procedures for the secure deployment and migration/backup of SETA
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3.4 Migration and Backup

Secure backup and migration of credentials is essential for both enterprise and
personal use. Note that backup and migration are very similar, since backup can
be regarded as a “migration into the future”, using either a dedicated backup
platform as intermediate migration target or a direct migration to a target plat-
form of yet unknown configuration.

For best usability in personal usage scenarios, we propose to realize secure
migration simply based on trusted user I/O and a user passphrase Km as illus-
trated in Figure 2: To migrate the token, the user must first launch SETA and
enter the correct PIN pin to access the protected token state ts. Upon issuing
the migrate() command, SETA encrypts ts using a symmetric randomly chosen
passphrase Km and returns the encrypted token state [ts]Km to the untrusted
environment of the source platform. The passphrase Km is disclosed to the user
via trusted I/O, enabling the owner of the token (authorized by the entered PIN)
to import the encrypted token state [ts]Km at the target platform.

Additionally, the migration procedure can be wrapped in a trusted channel
if the target platform is known in advance and is equipped with a TPM: As
proposed in [3,9], the encrypted token state [ts]Km can be bound to a specific
target platform’s TPM and platform state before disclosing it to the source
platform’s untrusted environment. As a result, the protected token state can only
be imported by the designated target platform, and only from within the trusted
SETA environment. Token migration using trusted channels can thus effectively
mitigate brute-force attacks on Km and, based on the authentication image img
sealed to SETA, also prevent impersonation of the importing application at the
target platform. Note that if the backup system is equipped with a TPM, this
extended migration protocol can also be used for secure backups.

3.5 Token Operation

The protocol for the regular operation of our SEE-based token is illustrated in
Figure 3. As outlined in previous Section 3.1, the token middleware executes
security-sensitive operations op() on behalf of the applications, which in turn
delegates execution of the required algorithms to SETA and returns the result
res at the very end of the protocol flow. For this purpose, the middleware keeps
track of one or more token states [ts] and their supported types of operations
op(). Specifically, [ts] consists of encrypted token state cstatetk, cstatepal and the
corresponding encryption keys [Ktk], [Kpal] sealed to the SETA environment.
To execute a specific operation op(), the middleware determines the required
cryptographic token algorithm algo to be executed and then asks the operating
system’s SEE driver to launch an instance of the SETA module, supplying the
algorithm identifier algo, the token identifier id and the respective protected
token state [ts] as shown in step 2.

Once launched, SETA unseals Kpal in step 3 to decrypt the PAL meta-data
state statepal to retrieve the master key Kctr of the counter list clist and the
secret authentication picture img. Kctr is used to decrypt ctrs, a list of counters
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Fig. 3. System component interaction during normal operation

that is shared by all trusted applications on the platform. In correspondence
with previous work on secure virtual counters [27], the sum of the elements in
ctrs is compared with a predefined secure monotonic counter in the TPM in
step 4. If the sum matches, ctrs and thus also cstatepal and the individual to-
ken’s counter ctrs[id] and img are fresh. In step 5, the picture img is used to
authenticate SETA to the user and retrieve the authentication PIN pin. The
PIN and token identifier id are fed into the password-based key derivation func-
tion (PBKDF2 [19]) to generate the user authentication key Kpin. This secret
is in turn used in step 6 to unseal Ktk, so that cstatetk can be decrypted to
retrieve the secret token state statetk and the verification counter cntrtk. To
assure the freshness of cstatetk, SETA checks if known fresh cntrid is equal to
cntrtk. If successful, the actual token algorithm algo can finally be executed in
the context of statetk, yielding the return value res. If the state statetk was
updated during the execution of algo, we must increment the freshness counters
cntrtk and ctrs[id] (step 7), update the TPM hardware counter accordingly and
then re-encrypt the token state cstatetk, cstatepal (dashed box). If updated, the
new states cstatetk, cstatepal are returned together with the result res in step 8.
Finally, the result of the operation op() can be returned to the application in
step 9.

Note that even if verification of the virtual counter vector ctrs, which is shared
together with Kctr among all trusted applications that require secure TPM-
bound counters, is unsuccessful, the application can still recover the desired secret
states and also determine the number of version rollbacks that have occurred as
num = cntrID−cntrtk. Hence, in case of system crashes or misbehavior of other
software components SETA can inform the user and offer recovery. However, in
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this case the user must assure that no malicious version rollback of the sealed
token state [ts] took place.

While the TPM specification imposes a frequency limit on the use of the
TPM’s secure monotonic counters, it is unlikely that the use of SETA is affected
by this limit: Most common operations carried out with the token, such as signa-
ture creation, do not modify the token state and thus do not require an update
of the TPM secure counters. Moreover, common operations such as enquiring
the algorithms supported by the token are not actually security sensitive and
can be implemented within the token middleware’s SETA adapter.

3.6 PIN Caching

It is often useful to cache a given user authorization for a certain time or certain
number of uses. For example, in the current adoption of security tokens in health
care systems it is often simply too time consuming to authorize prescriptions
and other documents of minor sensitivity individually. Hence, so-called “batch
signatures” were introduced that sign multiple documents at once [12]. In the
following, we present an optional PIN caching mechanism for our SEE-based
token that allows the authorization of multiple token operations.

Instead of requiring the PIN for each transaction, our system is able to se-
curely cache the PIN for multiple uses. For this purpose, we seal the cached
authorization secret Kpin to the trusted system state of SETA and add a us-
age counter uses to be maintained by the (untrusted) token middleware. We
verify the value of uses based on the non-invertible status of a PCR register
p, so that the usage count can be tracked independently from the token state
cstatetk, cstatepal. Another advantage of this construction is that an unexpected
reset of the platform or update of the PCR p does not invalidate the token state
but only the cached PIN.

Figure 4 shows a modified version of the main protocol in Figure 3 to support
PIN caching. When the PIN is provided for the first time and should be cached,
the maximum desired number of PIN uses usesmax, the user authorization se-
cret Kpin ← PBKDF(pin, id) and a randomly chosen secret s are added to the
token state cstatepal. For subsequent SETA executions with cached Kpin, the
respective values are recovered from cstatepal as shown in Figure 4 after step 2.

In step 4, the current value reg′ of PCR p is read in addition to the verification
of ctrs. Due to the non-invertibility of the PCR states, this allows to verify the
value of uses based on the purported PCR pre-image reg and the secret s. If
this verification succeeds and uses < usesmax, the cached PIN can be used and
the PCR p is updated for the incremented uses counter in step 5a. Otherwise,
the user is asked for authorization in step 5b. After successful execution of the
following steps 6 and 7, the result res is returned together with the current usage
counter uses and possibly updated state [ts] in step 8 and 9.

If step 6 executes successfully following step 5b, the caching state can be reset
as reg = reg′, uses = 0. Otherwise, if the PIN was (repeatedly) entered incor-
rectly, Kpin should be purged from cstatepal. As a result of this construction,
the PIN caching works mostly independent from the more expensive token state
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Fig. 4. Protocol extension for PIN-caching

updates: The values of usesmax and s can be considered relatively static and
remain in cstatepal even if PIN caching is not used. Moreover, an unexpected
modification of PCR p, including platform reset, only invalidates the PIN caching
status, requiring only a regular user authentication to continue operation.

4 Implementation and Results

We implemented a proof of concept prototype of our SEE-based token based on
the software token of the OpenCryptoki middleware [5]. OpenCryptoki imple-
ments the PKCS#11 interface [26], a well-known standard supported by many
applications, including major web browsers, eMail clients, several VPN clients
and other authentication solutions.

To build SETA, we separated the security-sensitive functions implemented
by the OpenCryptoki software token into a separate software module that is
then executed using the Flicker SEE driver. Additionally, we implemented ba-
sic drivers for accessing keyboard and graphics hardware from within SETA, to
provide a secure user input/output interface while the untrusted OS and appli-
cations are suspended by the SEE. In this respect, we extend the work of [13]
that could only provide a basic text output from within the SEE.

4.1 Performance Evaluation

While the processors in many hardware tokens are optimized for low cost and
resistance against physical attacks, our solution benefits from the high perfor-
mance of today’s CPUs. The main delay for executing operations with SETA is
caused by the switch into the SEE itself using Flicker, and the interaction with
the (often rather slow) TPM for unsealing and counter update.
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Table 1. Speed comparison for a PKCS#11-compliant 1024 bit RSA signature

Existing Tokens Time
CrypToken MX2048 2.9s
eToken Pro 32k 4.3s
opencryptoKi SW-Token 0.05s

Our SETA Solution Time
Switch to SEE +1.20s
TPM interaction +1.50s
Signing in SEE +0.05s

Overall Signing in SETA =2.75s

We compared the time required for a PKCS#11 signing operation using hard-
ware and software tokens versus using our SETA. The signature operation is
perhaps the most common operation for security tokens, as it is used for authen-
tication as well as document signing. The specific document or data length is
insignificant in this case, as most applications simply hash the document them-
selves and only sign the hash digest, to reduce the amount of data that would
otherwise have to be transferred and handled by the token.

Specifically, we compared an older Aladdin eToken Pro 32k and a newer
MARX CrypToken MX2048 as hardware tokens against the opencryptoKi soft-
ware token and our SEE-based solution on a standard Dell Optiplex 980 PC
with an Intel 3.2 GHz Core i5 CPU. For the signature operation we use the
PKCS#11 C_Sign command using RSA-1024 as the signature mechanism. As
can be seen in Table 1, SETA is almost twice as fast as the older eToken Pro
and still faster than the modern MX2048. As can be seen in the explicitly listed
time overheads for switching to Flicker and interacting with the TPM, significant
performance improvements can be expected for more complex token operations.
We also expect improvements in the SEE switching and TPM interaction times
once these components are relevant for daily use.

5 Security Considerations

The security of our overall scheme depends on the enforcement of information
flow control to maintain the confidentiality and integrity of the internal token
state. Specifically, our token must meet the two security requirements formu-
lated in Section 3, (1) preventing unauthorized leakage or manipulation of the
token state and (2) providing a user interface that is secure against spoofing
or eavesdropping attacks by a compromised legacy operating system and that
detects attempts to tamper with the SETA token implementation.

Secure Token Interface. Requirement (1) holds based on the assumption that
the user and TPM are trusted and the PKCS#11 token interface is secure and
securely implemented. The first two assumptions are standard assumptions and
differ from the security of regular hardware-based cryptographic tokens mainly
in that the TPM is not designed to be secure against hardware attacks.

Considering the limited security of hardware tokens against hardware at-
tacks [2,29,24] and the prevalence of remote software attacks it is reasonable
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that we exclude hardware attacks in our adversary model. While some attacks
on PKCS#11 implementations have been shown [7], the specification itself is
considered highly mature and implementation flaws are independent from the
token type.

Secure User I/O. Requirement (2) is met by our combination of SEE and TPM,
which results in isolated execution of trusted code with full control over the local
platform. The SEE suspends the legacy OS, preventing any potentially loaded
malware from manipulating the execution of SETA payload and giving it full
hardware access. By implementing appropriate keyboard and graphics drivers
in SETA we can thus provide secure I/O on standard computing platforms.
Additionally, to prevent the replacement of SETA by malicious applications,
we use the TCG TPM’s sealing capability to bind data to designated system
states, such that a malicious SETA’ 	= SETA is unable to access the protected
token state [ts] and user authentication image img. Specifically, since only the
pristine SETA program can access and display the secret authentication image
img, the user can always recognize if the currently running application is the
untampered SETA. A well-known open problem, in this context is that users
often disregard such security indicators, allowing an adversary to spoof the user
interface and intercept the secret PIN [28]. However, in our solution, an attacker
that has gained knowledge of the user’s PIN also requires the untampered SETA
program to which the user’s sealing key is bound and to which he thus has to
enter the PIN (physical presence). Hence, although our solution cannot fully
prevent interface spoofing against attacks against unmindful users, the attack
surface is notably reduced by restricting the TPM unseal operation to pre-defined
physical platforms and requiring physical presence. We suggest that enterprises
monitor the migration and authorization of SETA modules for such events.

Some recent works also manage to break the rather novel SEE implementa-
tions through security bugs in BIOS and PC firmware [32,33]. The works show
that PC-based SEE environments currently still require secure BIOS implemen-
tations, which can be verified using the respective TPM PCRs. Again, these
vulnerabilities in the execution environment are not specific to our solution, as
illustrated by recent attacks on dedicated smartcard readers 5. However, similar
to bugs in the PKCS#11 implementations such vulnerabilities are rare and usu-
ally very hard to exploit in comparison with common trojan horse or phishing
attacks. Overall, SETA thus significantly improves the security of user authenti-
cation and transaction authorization by preventing the vast majority of malware
attacks and significantly reducing the applicability of social engineering.

6 Conclusion and Future Work

We introduced an SEE-based PKCS#11 token that combines the flexibility of a
software-based PKCS#11 token with the security of modern trusted computing
5 E.g., a smartcard reader by Kobil allowed unauthorized firmware manipulation:
http://h-online.com/-1014651

http://h-online.com/-1014651
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technology. While our solution does achieve the same resilience against hard-
ware attacks as some hardware cryptographic tokens, it presents a significant
improvement over software-based solutions or cryptographic tokens used with-
out dedicated keypad and display for secure PIN entry and transaction confirma-
tion. By integrating secure user I/O with increasingly deployed SEE technology
and leveraging standard cryptographic token interfaces, we can provide a se-
cure plug-in solution that is especially attractive for today’s mobile computing
environments.

For future work, we aim to further reduce time delay when accessing SETA by
parallelizing TPM interactions with software computations. Moreover, we aim
to port our prototype to other platforms such as ObC or the Windows OS and
include additional PKCS#11 functionality such as elliptic curve cryptography.
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Abstract. We discuss an efficient combination of the cryptographic pro-
tocols adopted by the International Civil Aviation Organization (ICAO)
for securing the communication of machine readable travel documents
and readers. Roughly, in the original protocol the parties first run the
Password-Authenticated Connection Establishment (PACE) protocol to
establish a shared key and then the reader (optionally) invokes the Ac-
tive Authentication (AA) protocol to verify the passport’s validity. Here
we show that by carefully re-using some of the secret data of the PACE
protocol for the AA protocol one can save one exponentiation on the
passports’s side. We call this the PACE|AA protocol. We then formally
prove that this more efficient combination not only preserves the desir-
able security properties of the two individual protocols but also increases
privacy by preventing misuse of the challenge in the Active Authentica-
tion protocol. We finally discuss a solution which allows deniable au-
thentication in the sense that the interaction cannot be used as a proof
towards third parties.

1 Introduction

Through ISO/IEC JTC1 SC17 WG3/TF5 [ICA10] the International Civil Avia-
tion Organization (ICAO) has adopted the Password Authenticated Connection
Establishment (PACE) protocol [BSI10] to secure the contactless communica-
tion between machine-readable travel documents (including identity cards), and
a reader. Roughly, the protocol generates a secure Diffie-Hellman key out of a
low-entropy password which the owner of the passport has to enter at the reader,
or which is transmitted through a read-out of the machine-readable zone. The
Diffie-Hellman key is subsequently used to secure the communication. In [BFK09]
it has been shown that the PACE protocol achieves the widely accepted security
notion of password-based authenticated key agreement of Bellare-Pointcheval-
Rogaway [BPR00], in its strong form of Abdalla et al. [AFP05]. This holds under
a variant of the Diffie-Hellman assumption, assuming secure cryptographic build-
ing blocks, and idealizing the underlying block cipher and the hash function.

According to European endeavors, the PACE protocol should be followed by
the extended access control (EAC) authentication steps, called Chip Authen-
tication (CA) and Terminal Authentication (TA), with high-entropic certified
keys. This should ensure that access for either party is granted based on strong

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 344–358, 2012.
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cryptographic keys (i.e., not relying on low-entropy passwords only). The secu-
rity of the EAC protocols and of the composition with PACE has been discussed
in [DF10].

In the specifications of the ICAO 9303 standard [ICA06] for the border control
scenario, the normative document about machine-readable travel documents,
however, only passive authentication of the passport is mandatory, where the
passport essentially merely sends its (authenticated) data. Active Authentication
(AA) of the passport, implemented through a signature-based challenge-response
protocol, is only optional. If AA is not enforced this potentially allows to bypass
authentication through cloning of passports. Even if AA is used, then the (plain)
challenge-response protocol introduces a potential threat to privacy, as discussed
in [BSI10] (see also [BPSV08b,BPSV08a,MVV07]). Namely, if the terminal can
encode a time stamp or the location into the challenge, then the signature on
that challenge can be used as a proof towards third parties about the location or
time of the border check. In this sense, the passport cannot deny this interaction.
This problem has been explicitly addressed in the European Chip Authentication
protocol (where a message authentication code for a shared key is used for the
challenge-response step instead).

Combining PACE and AA. We discuss that, on the chip’s side, we can re-use
some of the (secret) data in the PACE step for the AA step to save the exponen-
tiation for the signature in AA on the chip’s side, giving Active Authentication
(almost) for free.

To understand our technique, we need to take a closer look at the PACE proto-
col. The PACE protocol first maps the short password to a random group element
through an interactive sub protocol Map2Point, followed by a Diffie-Hellman key
exchange step for this group element, and concludes with an authentication step.
While the latter steps are somewhat canonical, the Map2Point step can be in-
stantiated by different means and allows a modular design. The most common
instantiations are based on another Diffie-Hellman step (used within the German
identity card), or on hashing into elliptic curves as proposed by Icart [Ica09] and
Brier et al. [BCI+10]. The security proof for PACE [BFK09] holds for general
Map2Point protocols satisfying some basic security properties.

Our improvement works for the Diffie-Hellman based Map2Point protocol as
implemented on the German identity cards, for example, since the chip can re-use
its secret exponent from the Diffie-Hellman step of the Map2Point protocol. We
discuss two alternatives how to carry out the AA step with this exponent more
efficiently, one based on DSA signatures and the other one using Schnorr signa-
tures. We note that the idea applies more generally to other discrete-log based
signature schemes. The challenge in the new AA step is now the authentication
data sent by the terminal in the PACE step.

Security of the Combined Protocol. Whenever secret data is used throughout
several sub protocols great care must be taken in cryptography not to spoil the
security of the overall protocol. We thus show that sharing the data between the
PACE protocol and the new AA sub protocol preserves the desirable security
properties. More precisely, we show that:
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– In the combined PACE|AA protocol we still achieve the security of a
password-based authenticated key exchange protocol (thus showing that the
deployment of the randomness in the extra AA step does not violate the
security of the PACE protocol), and

– the overall protocol still authenticates the chip securely (in a high-entropy
sense), even when many executions of PACE|AA take place. To this end, we
define a strong security model for authentication, essentially only excluding
trivial attacks, e.g., if the adversary gets possession of the secret key, or
simply relays information in executions.

It follows that the PACE|AA protocol achieves the previous security standards
of the individual protocols but comes with a clear efficiency improvement. We
note that the underlying assumptions are essentially the same as for PACE and
AA, i.e., besides the common assumptions about secure encryption, signature,
and MAC algorithms, we reduce the security of the combined protocol to the
security of PACE (as an authenticated key-exchange protocol) and to a variant
of the security of Schnorr signatures resp. DSA signatures (where the adversary
now also gets access to a decisional Diffie-Hellman oracle and can decide upon
the message to be signed after seeing the first half of the signature).

A Deniable Schnorr Version. As explained before, for privacy reasons it may
be important that the terminal cannot derive a proof for others from the in-
teraction with the passport or identity card that an interaction took place. Put
differently, the protocol should provide deniable authentication [DDN00]. This
roughly means that the terminal could have generated its view in the protocol
itself from the public data, without communicating with the passport. This im-
plies that the passport holder can deny any actual interaction and claim the
terminal to have made up this conversation.

We note that the previously discussed signature based protocols do not sup-
port deniability. The reason is that the terminal could not have created the
signature under the passport’s key without the signing key —or without com-
municating with the actual chip. For the (ordinary) AA variant the terminal is
even allowed to encode any information in the challenge, in our improved com-
binations the challenge is “only” a MAC computed over data provided by the
passport and the shared Diffie-Hellman key. If this allows to encode information
depends on the MAC.

In contrast, our proposed deniable variant does not rely on Schnorr signa-
tures, but in some sense rather on the interactive Schnorr identification scheme
for honestly chosen challenges. This identification scheme is deniable because
one can simulate the interaction via the well-known zero-knowledge simulator.1

1 It is this property which is not known to work for the DSA case and why we restrict
ourself to the Schnorr scheme. Note also that Schnorr signatures are also some-
what simulatable but only if one programs the random oracle hash function; this,
however, is not admissible for the notion of deniability. We nonetheless still use a
hash function in the solution but use programmability only to show the unforge-
ablity/impersonation resistance property, not the deniability proof.
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Interestingly, our variant is essentially as efficient as the signature based one,
but comes with the advantage of deniability.

2 Security Model

We use the real-or-random security model of Abdalla et al. [AFP05] which ex-
tends the model of Bellare et al. [BPR00] for password-based key exchange proto-
cols. Due to space limitations, we refer the reader to [BFK09] for the description
of the attack model and security notion. Some changes are necessary, though,
because we now incorporate a long-term signing key of the chip. These minor
modifications follow next.

Attack Model. We consider security against active attacks where the adversary
has full control over the network, and the adversary’s goal is to distinguish
genuine keys from random keys in executions, which are picked independently of
the actual protocol run. This corresponds to the so-called real-or-random setting
[AFP05], a stronger model than the original find-then-guess model of [BPR00],
where the adversary can see several test keys (instead of a single one only).

In the attack, each user instance is given as an oracle to which an adversary
has access, basically providing the interface of the protocol instance (via the
usual Send, Execute, Reveal, and Test commands to send messages to parties, to
observe executions between honest parties, to reveal the session key, and to be
challenged for a test key). In addition, there exists a Corrupt oracle in the model
from [AFP05]. The adversary can gain control over a user during the execution by
issuing a Corrupt query with which the adversary obtains the secrets of an honest
party. For sake of convenience, here we split these queries into Corrupt.pw and
Corrupt.key queries, where the former reveals the password only and the latter
discloses the long-term key only (in case of a chip); in both cases, the other secret
remains private. Note that we now can model Corrupt queries by both queries
(since we work in the weak corruption model where the parties’ internal states
are not revealed upon corruption). An honest party gets adversarially controlled
if it does not have any secrets left (i.e., if the adversary issues both Corrupt query
types for a chip, or the Corrupt.pw query for the terminal).

The adversary can make the following queries to the interface oracles other
than these from [AFP05]:

Corrupt.pw(U) The adversary obtains the party’s password π.

Corrupt.key(U) The adversary obtains the party’s cryptographic key sk (if it
exists).

In addition, since the original PACE protocol was cast in the random oracle and
ideal cipher model where oracles providing a random hash function oracle and
an encryption/decryption oracle are available, the attacker may also query these
oracles here. (We note that we only use the ideal cipher implicitly through the
reduction to the security to PACE.)



348 J. Bender et al.

Partners, Correctness and Freshness. Upon successful termination, we assume
that an instance Ui outputs a session key k, the session ID sid, and a user ID pid
identifying the intended partner (assumed to be empty in PACE for anonymity
reasons but containing the chip’s certificate in the combined PACE|AA pro-
tocol). We note that the session ID usually contains the entire transcript of
the communication but, for efficiency reasons, in PACE it only contains a part
thereof. This is inherited here. We say that instances Ai and Bj are partnered
if both instances have terminated in accepting state with the same output. In
this case, the instance Ai is called a partner to Bj and vice versa. Any untam-
pered execution between honest users should be partnered and, in particular,
the users should end up with the same key (this correctness requirement ensures
the minimal functional requirement of a key agreement protocol).

Neglecting forward security for a moment, an instance (U, i) is called fresh at
the end of the execution if there has been no Reveal(U, i) query at any point,
neither has there been a Reveal(B, j) query where Bj is a partner to Ui, nor has
somebody been corrupted (i.e., neither kind of Corrupt query has been issued).
Else, the instance is called unfresh. In other words, fresh executions require that
the session key has not been leaked (by neither partner) and that no Corrupt-
query took place.

To capture forward security we refine the notion of freshness and further de-
mand from a fresh instance (U, i) as before that the session key has not been leaked
through a Reveal-query, and that for each Corrupt.pw(U)- or Corrupt.key(U)-query
there has been no subsequent Test(U, i)-query involving U , or, if so, then there has
been no Send(U, i,m)-query for this instance at any point.2 In this case we call the
instance fs-fresh, else fs-unfresh. This notionmeans that it should not help if the ad-
versary corrupts some party after the test query, and that even if corruptions take
place before test queries, then executions between honest users are still protected
(before or after a Test-query).

AKE Security. The adversary eventually outputs a bit b′, trying to predict the
bit b of the Test oracle. We say that the adversary wins if b = b′ and instances
(U, i) in the test queries are fresh (resp. fs-fresh). Ideally, this probability should
be close to 1/2, implying that the adversary cannot significantly distinguish
random keys from session keys.

To measure the resources of the adversary we denote by t the number of
steps of the adversary, i.e., its running time, (counting also all the steps required
by honest parties); qe the maximal number of initiated executions (bounded
by the number of Send- and Execute-queries); qh the number of queries to the
hash oracle, and qc the number of queries to the cipher oracle. We often write
Q = (qe, qh, qc) and say that A is (t, Q)-bounded.

Define now the AKE advantage of an adversaryA for a key agreement protocol
P by

2 In a stronger notion the adversary may even issue a Corrupt.key command for the user
before the testing; Due to the entanglement of the PACE and the AA protocol here
our protocol does not achieve this, though.
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Advake
P (A) := 2 · Prob[A wins]− 1

Advake
P (t, Q) := max

{
Advake

P (A)
∣∣∣A is (t, Q)-bounded

}
The forward secure version is defined analogously and denoted by Advake−fs

P

(t, Q).

Impersonation Resistance. This security property says that the adversary, in the
above attack, successfully impersonates if an honest reader in some session ac-
cepts with partner identity pid and session id sid, but such that (a) the intended
partner U in pid is not adversarially controlled or the public key in pid has not
been registered, and (b) no Corrupt.key command to U has been issued before
the reader has accepted, and (c) the session id sid has not appeared in another
accepting session. This roughly means that the adversary managed to imper-
sonate an honest chip or to make the reader accept a fake certificate, without
knowing the long-term secret or relaying the data in a trivial man-in-the-middle
kind of attack.

Define now the IKE advantage (I for impersonation) of an adversary A for a
key agreement protocol P by

Advike
P (A) := Prob[A successfully impersonates]

Advike
P (t, Q) := max

{
Advike

P (A)
∣∣∣A is (t, Q)-bounded

}
Note that we do not need to define a forward secure version here.

3 The PACE|AA Protocol

In this section, we describe the PACE|AA protocol and both options for authen-
tication in the last message, i.e., active authentication (AA) via Schnorr and via
DSA. The deniable Schnorr variant and its security is addressed in Section 6.

3.1 Protocol Description

Figure 1 illustrates the PACE|AA protocol with both options of authentication
at the end. The scheme itself uses a block cipher C(Kπ, ·) : {0, 1}� → {0, 1}� and
a hash function H, with values 1, 2, . . . in fixed-length encoding prepended to
make evaluations somewhat independent.

The chip already holds a certificate certC for its public key XA under the au-
thorities’ public key pkCA, and (authenticated) group parameters G = (a, b, p, q,
g, k) describing a subgroup of order q, generated by g, of an elliptic curve for
parameters a, b, p for security parameter k. We also note that, throughout the
paper, we use the multiplicative notation for group operations. It is understood
that, if working with elliptic curves, multiplications correspond to additions and
exponentiations to multiplications. Then the parties run the PACE protocol,
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A : B :
password π password π
secret xA, public XA = gxA

certificate certC for XA, and pkCA pkCA
authenticated group parameters G = (a, b, p, q, g, k)

PACE
Kπ = H(0||π) Kπ = H(0||π)
choose s ← {0, 1}� ⊆ Zq

z = Enc(Kπ, s)
G, z−−−−−−−−−−−−−−→ abort if G incorrect

s = Dec(Kπ, z)
choose yA ← Z

∗
q choose yB ← Z

∗
q

YA = gyA YB = gyB

YB←−−−−−−−−−−−−−−
abort if YB �∈ 〈g〉 \ {1}

YA−−−−−−−−−−−−−−→ abort if YA �∈ 〈g〉 \ {1}
h = Y yA

B h = Y yB
A

ĝ = h · gs ĝ = h · gs
choose y′

A ← Z
∗
q choose y′

B ← Z
∗
q

Y ′
A = ĝy

′
A Y ′

B = ĝy
′
B

Y ′
B←−−−−−−−−−−−−−−

check that Y ′
B �= YB

Y ′
A−−−−−−−−−−−−−−→ check that Y ′

A �= YA

K = (Y ′
B)y

′
A K = (Y ′

A)
y′
B

KENC = H(1||K) KENC = H(1||K)
K′

SC = H(2||K) K′
SC = H(2||K)

KMAC = H(3||K) KMAC = H(3||K)
K′

MAC = H(4||K) K′
MAC = H(4||K)

TA = MAC(K′
MAC, (Y

′
B ,G)) TB = MAC(K′

MAC, (Y
′
A,G))

TB←−−−−−−−−−−−−−−
abort if TB invalid

TA−−−−−−−−−−−−−−→
abort if TA invalid

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Version: Schnorr Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ = yA +H(5||YA, TB) · xA

Send(K′
SC, (σ, certC))−−−−−−−−−−−−−−→ recover and validate certificate

abort if gσ �= YAX
H(5||YA,TB)
A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Version: DSA Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r = YA mod q

σ = y−1
A (H(5||TB) + rxA)

Send(K′
SC, (σ, certC))−−−−−−−−−−−−−−→ recover and validate certificate

w = σ−1

r = YA

v = gwH(5||TB) ·Xrw
A

abort if v �= YA

key=(KENC,KMAC) key=(KENC,KMAC)
sid = (Y ′

A, Y
′
B,G) sid = (Y ′

A, Y
′
B ,G)

pid = certC pid = certC

Fig. 1. The PACE|AA protocol (all operations are modulo q)

with the chip sending a nonce encrypted under the password, running the Diffie-
Hellman based Map2Point protocol to derive another generator ĝ on which an-
other Diffie-Hellman key exchange is then performed. In this Map2Point step the
chip uses some secret exponent yA to send YA = gyA . The parties in the PACE
protocol finally exchange message authentication codes TA,TB.
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The idea is now roughly to re-use the secret exponent yA in the Map2Point
sub protocol on the chip’s side for the signature generation, and use the au-
thentication value TB of the terminal as the challenge on which the signature is
computed. The chip then sends its certificate (along with the missing signature
part) over the secure channel, via a Send command for the key K′

SC derived from
the Diffie-Hellman exchange. The reader may think for now of the secure channel
as an authenticated encryption, but other channel instantiations work as well.

3.2 Instantiations

There are essentially two possible instantiations. One is based on the Schnorr
signature scheme [Sch90] where the chip uses the values yA and YA as the (private
resp. public) randomness and TB as the challenge for creating the signature under
its long-term signature key XA. We call this option Active Authentication via
Schnorr signatures. Alternatively, the chip card might prove its authenticity by
providing a DSA signature where again yA and YA are used as the randomness for
the signature generation [Kra95]. This version is called Active Authentication via
DSA signatures. We note that the computation of the final signatures requires
only modular multiplications (and, in case of DSA, an inversion) instead of
exponentiations.

4 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash
function (random oracle model). Basically, this assumption says that H acts like
a random function to which all parties have access. We do not make any explicit
assumption about the cipher C here, but note that the security proof for PACE
in [BFK09] (to which we reduce AKE security to) relies on an ideal cipher.

4.1 Cryptographic Primitives

For space reasons, we omit the standard definitions of the cryptographic primi-
tives for message authentication, signatures, certificates, and for secure channels.
In the theorems’ statements, we denote by Advattack

S (t, Q) an upper bound on
an adversary running in time t (and making Q queries of the corresponding type)
and breaking the scheme S in an attack of type attack. For secure channels we
consider a simultaneous attack in which the adversary either tries to distinguish
messages sent through the channel or to successfully inject or modify transmis-
sions. We denote the adversary’s advantage in this case by Advlor

SC (t, Q).

4.2 Number-Theoretic Assumptions

Our proof for the AKE security of the PACE|AA protocol follows by reduction
to the security of the original PACE protocol (and from the security of crypto-
graphic primitives for the channel). For the IKE security against impersonators,
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we nonetheless need two number-theoretic assumptions related to the Diffie-
Hellman resp. discrete-log problems. The first one is the gap Diffie-Hellman
problem [BLS01]. For a group G generated by g let DH(X,Y ) be the Diffie-
Hellman value Xy for y = logg Y (with g being an implicit parameter for the
function). Then the gap Diffie-Hellman assumption says that solving the com-
putational DH problem for (ga, gb), i.e., computing DH(ga, gb) given only the
random elements (ga, gb) and G, g, is still hard, even when one has access to a
decisional oracle DDH(X,Y, Z) which returns 1 iff DH(X,Y ) = Z, and 0 other-
wise. We let AdvGDH(t, qDDH) denote (a bound on) the value ε for which the
GDH problem is (t, qDDH , ε)-hard.

Furthermore, for the Schnorr signature based solution we rely on the following
version which (a) allows access to a decisional DH oracle for the forger, and
(b) considers access to a signer in an online/offline fashion in the sense that
the adversary may ask to see the public randomness part first before deciding
on a message to be signed. Still, the goal is to create a signature on a new
message for which the signing has not been completed. We note that the proof
in [PS00] for Schnorr signatures still holds, assuming that computing discrete-
logarithms relative to a DDH-oracle is hard. In particular, the hardness of this
“gap discrete-log problem” is implied by the GDH hardness. We call this security
notion robust unforgeability as it should still hold in presence of the DDH oracle
and the delayed message choice.

Definition 1 (Robust Unforgeability of Schnorr Signatures). The
Schnorr signature scheme is (t, Q, ε)-robustly-unforgeable with Q = (qR, qDDH)
if for any adversary A running in total time t, making at most qDDH DDH
oracle queries and at most qR init-queries to oracle O the probability that the
following experiment returns 1 is most ε:

pick G (including a generator g of prime order q)
pick sk ← Zq and let pk = gsk

let (m∗, σ∗) ← AO(sk,·),DDH(·,·,·)(G, g, pk) for σ∗ = (c∗, s∗)
where stateful oracle O upon input init picks r ← Zq and returns R = gr;

and upon input (complete, R,m) checks if it has returned R = gr to a
request init before, and if so, returns r +H(R,m)sk mod q;

output 1 iff c∗ = H(gs
∗
pkc

∗
,m∗) and m∗ was no input to a complete-query

We let Advr−forge
Schnorr(t, Q) be the maximal advantage for any adversary running

in time t, making in total Q = (qR, qDDH) queries.

As it turns out to be useful for our deniable version, we remark that the proof
of Pointcheval and Stern [PS00] holds as long as the input to the hash oracle
in the forgery is new, i.e., one can extract the discrete-logarithm of the public
key even if the hash function in signature requests is evaluated on quasi unique
inputs, and the forgery, too, uses a previously unqueried hash function input. For
the notion of signature unforgeability this holds because each signature request
uses a high-entropic random group element and the message m∗ in the forgery
cannot have been signed before. We take advantage of this fact for our deniable
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version where we insert (Y ′
A,G) instead of (R,m) into the hash function for the

random group element Y ′
A chosen by the chip respectively, signer. We also show

that for the proof of impersonation resistance the adversary cannot re-use one of
these values (Y ′

A,G) but needs to pick a new value Y ′
A, thus showing the second

property.
For the DSA based solution, we require an analogous assumption which is

omitted here for space reasons and refer to the full version of this paper.

5 Security Analysis of PACE|AA

In this section, we discuss the security of the PACE|AA protocol when active
authentication is done via Schnorr signatures; the case of DSA signatures follows,
too, because we do not use any specific properties of the underlying signature
scheme (except for the robust unforgeability). That is, we assume that the chip,
holding public key XA = gxA with certificate certC , signs the message YB with
key xA and randomness YA. The signature is given by σ = yA + cxA mod q for
c = H(5||YA, TB). After the final authentication step of PACE, the chip sends
(using already a secure channel) the values σ and certC to the reader who verifies
the signatures and the certificate (and aborts in case one of the verification fails).

As noted in [BFK09] using the derived keys already in the key agreement step
does not allow for a proof in the Bellare-Pointcheval-Rogaway model. We hence
also use the variant that the keys K′

SC and K′
MAC are independent from the keys

output as the result of the key agreement.

5.1 Security as a Key Exchange Protocol

Theorem 1. The protocol PACE|AA (with Schnorr or DSA signatures) satis-
fies:

AdvakePACE|AA(t, Q) ≤ q2e
2q

+AdvlorSC (t
∗, qe, qe) +AdvakePACE(t

∗, Q)

where t∗ = t+O(kq2e + kq2h + kq2c + k2) and Q = (qe, qc, qh).

We remark that the time t∗ covers the additional time to maintain lists and
perform look-ups. Since PACE is secure (under cryptographic assumptions) it
follows together with the security of the underlying encryption scheme that the
PACE|AA scheme is secure as well.

The idea of the proof is roughly that the additional Schnorr signature does not
violate the security of the underlying PACE protocol as it is encrypted. This is
shown through a reduction to the security of the original PACE protocol, mildly
exploiting the structure of the original proof in [BFK09] and the properties of
the Schnorr signature scheme. We roughly show that, in the PACE|AA protocol,
we can simulate the final transmission of the signature token by sending dummy
values through the channel, because the keys used to secure this transmission
are “as secure as” the PACE keys. That is, even though the strength of the keys
is only password-protected (i.e., one can try to guess the low-entropy password),
this is sufficient for our purpose, as we do not plan to be more secure than that.
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Proof. The proof uses the common game-hopping technique, gradually taking
away adversarial success strategies and discussing that each modification cannot
contribute significantly to the overall success probability. Note that the original
proof of PACE in [BFK09] actually shows something stronger than indistin-
guishability of keys (from random). The proof rather shows that computing the
Diffie-Hellman key K in an execution is hard (unless one knows or has guessed
the password); key indistinguishability then follows from this. We will use this
more fine-grained view on the proof below and also consider the adversary on
the PACE|AA protocol in this regard, i.e., we measure its success probability
according to the probability of making a hash query about K in a Test session
(called target hash query).

Game 0: Corresponds to an AKE attack on the PACE|AA protocol (with the
more fine-grained success notion).

Game 1: Abort Game 0 if an honest chip would compute the same Diffie-Hellman
key in two executions.

Note that, since the honest chip always goes second for the Diffie-Hellman
key exchange step, sending Y ′

A, the keys in such executions are random ele-
ments and the probability that such a collision occurs is thus at most 1

2q
2
e/q.

Game 2: Change the previous game slightly such that, an honest chip when
sending the encrypted signature, instead picks and uses random and inde-
pendent (independent of the hash function output) keys K′

SC.
Note that the only difference between the two cases can occur if the

adversary makes a target hash query since Reveal and Test sessions never
output these keys and Diffie-Hellman keys are distinct by the previous game.
It follows that the adversarial success can only decrease by the probability
of making a target hash query in this new game.

Game 3: Change the game once more and replace channeled transmissions of
the signatures sent by an honest chip by encryptions of 0-bits of the same
length and, at the same time, let any honest terminal reject any final message
unless it has really been sent by the honest chip in the same session.

Note that the length (of the signature part and the certificate) is known
in advance. Note also that the probability of making a target hash query
in Game 3 cannot be significantly larger, by the distinguishing advantage of
genuine transmissions from all-zero transmissions. To make this claim more
formally, assume that we mount an attack on the left-or-right security of the
(multi-user) encryption scheme by simulating the entire Game 2 with two
exceptions: (1) If an honest chip is supposed to send the signature and cer-
tificate, then we simply call the next transmission challenge oracle about the
signature part and the certificate and about an all-zero message of the same
length. Then the challenge bit of the left-or-right oracle corresponds exactly
to the difference between the two games. (2) If the adversary successfully
modifies the final transmission of an honest chip and the honest terminal
would accept the message, then this would also constitute a security breach
of the channel protocol. Hence, if the success probabilities of the adversary
dropped significantly, we would get a successful attacker against the secure
channel scheme.
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The final game can now be easily cast as an attack on the original PACE protocol.
That is, if there was a successful attacker in Game 3 (making a target hash
query), then there was a straightforward attacker with the same probability in
the original PACE protocol: this attacker would run the Game 3-adversary and
simulate the additional signature steps itself (i.e., creating keys and certificates),
inject the values from the PACE protocol (i.e., relay the communication), but
send dummy values 0 . . . 0 through the channel on behalf of honest chips under
independent random keys. It follows that the probability of making a target hash
query in Game 3 is also bounded by the PACE security.

Given that no target hash query is made, the advantage in the final game
is now bounded from above by the advantage against PACE. Note that the
advantage of breaking PACE simultaneously covers both the case of target
hash queries and of breaks otherwise (such that we do not need to account
for the advantage of target hash queries and then of other breaks, resulting in a
factor 2). ��

On Forward Security. Note that the PACE|AA protocol inherits the forward
security of PACE (when used as authenticated key exchange protocol). That
is, even if the adversary knows the password, then executions between honest
parties remain protected. Since the security of PACE|AA essentially reduces
to the security of PACE any successful attack against the forward security of
PACE|AA would yield a successful attack against PACE; the other protocol
steps do not violate this property.

5.2 Security against Impersonation

It remains to show that the protocol is IKE-secure. Here, we only rely on the
unforgeability of certificates and MACs and the robust unforgeability of the
Schnorr/DSA signature scheme.

Theorem 2. For the PACE|AA protocol (with Schnorr or DSA signatures) it
holds:

AdvikePACE|AA(t, Q)

≤ q2e + qeqh
q

+AdvforgeCA (t∗, qe) + 2qe ·AdvforgeM (t∗, 2qe, 2qe)

+Advr−forge
{Schnorr|DSA}(t

∗, qe)

where t∗ = t+O(kq2e + kq2h + k2) and Q = (qe, qh).

The idea is to show first that the adversary cannot inject its own unregistered
key (unless it breaks the unforgeability of the certification authority). Since any
successful attack must be then for an uncorrupt party whose secret signing key
was not revealed, it follows that the adversary must produce a signature under
the (registered) public key of an honest user. Because the session id must be new
and is somewhat signed via TB, it follows that the adversary must forge Schnorr
respectively DSA signatures in order to break the IKE property.

The formal proof appears in the full version of the paper.
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6 A Deniable Schnorr Variant

Deniability basically demands that for any (possibly malicious) party on either
side, there exists a simulator S which produces the same output distribution as
the malicious party but without communicating with the honest party (but only
receiving the honest party’s public input and the malicious party’s secrets). This
implies that the malicious party could have generated these data itself, without
the help of the other party, and cannot use it as a proof towards a third party.

Since we work in the random oracle model, there is a peculiarity due to the
(non-)programmability of the hash function [Pas03]. Roughly, it is important
that the distinguisher (receiving either the view of the malicious party or the sim-
ulated view) cannot distinguish these two random variables, even if it gets access
to the same random oracle as the parties and the simulator. The distinguisher’s
access to the same hash function prevents the simulator from programming the
hash values (as in the case for a real-world hash function).

We omit a formal definition of deniability (in the random oracle model) and
refer to [Pas03]. We note that there are even stronger versions, called online de-
niability [DKSW09] where the distinguisher can communicate with the malicious
party resp. the simulator while the protocol is executed. This notion, however,
is much harder to achieve and not known to work here.

Deniability of Our Protocol. Our deniable version of the Schnorr schemes works
as before, only that this time we hash (Y ′

A,G) instead of TB. We call this proto-
col the deniable Schnorr-based PACE|AA protocol. Roughly, the idea is now that
the chip itself determines the challenge! Hence, given that the challenge can be
determined beforehand, and that it is created independently of the first signa-
ture step one can simulate the final signature part as in the interactive Schnorr
identification protocol [Sch91]. We only need to take care that the other security
properties are not violated through this.

Note that security as an AKE protocol follows as in the Schnorr signature
based version (with the very same bounds), even for such challenges, as discussed
after Definition 1. It suffices to show impersonation resistance —which follows
similar to the case of signatures, using the fact that the chip in the PACE
protocol already provides some form of authentication through the token TA—
and to show deniability. We note that our deniability simulator will actually need
some assistance in form of a decisional Diffie-Hellman oracle (which, for sake of
fairness, we then also give the adversary and the distinguisher). We comment
that this does not trivialize the task as such a decision oracle is not known to
help compute discrete logarithms, such that the simulator cannot simply derive
the chip’s secret key from the public key and use this key to show deniability.

We omit a formal treatment of these two properties but merely sketch how the
deniability simulator SH works for this case. More insights can be found in the
full version of this paper. The simulator only has access to the chip’s public key
XA, the group data, and the password since it is considered a secret input to the
terminal (but not the chip’s secret key). The simulator now proceeds as follows,
running a black-box simulation of the adversarial terminal (playing the honest
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chip). In each execution, the simulator initially picks values yA, y
′
A ← Zq and

computes Y ′
A = gy

′
A as well as c = H(Y ′

A,G) and YA = X−c
A gyA . Note that both

values are not computed according to the protocol description but still have the
same distribution. In particular, even though the simulator may not be able to
compute the shared Diffie-Hellman key K in the execution, it can later complete
the signature generation by setting s = yA (such that gs = YAX

H(Y ′
A,G)). For

the other steps the simulator proceeds as the chip would, using knowledge of
the password. Only when the simulator receives TB from the malicious token, it
searches (with the decisional Diffie-Hellman oracle) in the list of hash queries of
the malicious terminal for queries about a key DH(Y ′

A, Y
′
B). If no key is found,

then abort this execution (this means that the adversary must have forged a
MAC for an unknown key); else use the found key K to finish the execution
(using the signature tokens as computed above). If the adversary stops, then let
the simulator output the same value.
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Abstract. We propose oblivious printing, a novel approach to docu-
ment printing in which a set of printers can cooperate to print a se-
cret message—in human or machine readable form—without learning
the message. We present multi-party protocols for obliviously printing a
secret in three settings: obliviously printing the contents of a ciphertext,
obliviously printing a randomized message, and generating and obliv-
iously printing a DSA/Elgamal keypair. We propose an approach to
improving the legibility of messages in the presence of numerous par-
ticipants. Finally we propose some potential applications of oblivious
printing in the context of electronic voting and digital cash.

1 Introduction

Since the days of Gutenberg the privacy model for document printing has been
the same: a printer must learn the content of a message in order to print it. In this
paper we take a fundamentally new approach to printing, one in which a human-
or machine-readable message can be printed without the printers learning its
content.

We believe oblivious printing can useful in a variety of real-world situations
where it may advantageous to receive a secret in printed form. As an example,
consider a scenario in which a user needs to receive a secret, but lacks access to
the appropriate software, hardware or network infrastructure, such as in certain
mobile or financial settings. Another potential scenario might be one in which
a user needs to create a secret but does not understand how, or is otherwise
unmotivated to take the proper steps to so securely, such as in the creation of
strong passwords. Oblivious printing might even be useful when a user’s com-
puter cannot be trusted to handle a sensitive computation, such as in the case
of internet voting. We describe several concrete applications later in the paper.

The Oblivious Printing Model. Oblivious printing is a protocol in which a
group of printers cooperate to print a secret message. This message can be re-
vealed and read by the intended recipient, but remains unknown to the printers.
Oblivious printing is accomplished through a combination of cryptographic and
document security techniques. The high level procedure is sketched as follows:

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 359–373, 2012.
© International Financial Cryptography Association 2012
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1. Message selection: Printers execute a secure multi-party protocol to se-
lect a message (under encryption) from an alphabet of valid messages.

2. Graphical Secret Sharing: Printers convert the message (under encryp-
tion) into a graphical image. Using a dealerless protocol they secret share
the pixels between themselves.

3. Invisible ink overprinting: Pixel shares are converted into a visual crypto
pattern. Using invisible ink each printer successively prints their share on the
same sheet of paper and in a known location/orientation.

4. Message recovery: The recipient of the completed document activates
the invisible ink of the combined shares (e.g., using a special activation pen),
thereby revealing the message.

We presented a preliminary two-party protocol for oblivious printing of ran-
domized messages based on oblivious transfers [10]. The techniques presented
in this paper generalize the model to a fully multi-party setting. Additionally
this approach allows for the secret message to be simultaneously output as an
obliviously printed document and as an associated ciphertext allowing greater
possibilities for integration into broader protocols.

Contributions and Organization. In this paper we present the oblivious
printing paradigm and give three novel multi-party protocols: in Section 3 we
present a protocol for obliviously printing the contents of an encrypted message,
in Section 4 we present a protocol for obliviously printing a randomized message
with improved contrast over the first protocol. We then present an extension
to the second protocol for generating and obliviously printing an Elgamal/DSA
keypair. In Section 5 we suggest a possible method for mitigating contrast drop-
off as the number of printers increases based on the existence of AND-ing invisible
inks. Finally in Section 6 we suggest some possible applications of oblivious
printing for trustworthy electronic voting and electronic cash.

2 Preliminaries

2.1 Physical Security

Printing is ultimately a physical process, which means that any oblivious print-
ing scheme will have a physical security component to it. In this paper we assume
ideal security properties although we acknowledge in practice they can be chal-
lenging and costly to implement and difficult to guarantee.

Invisible Ink. Invisible ink is an ink that, as its name implies, is initially invis-
ible when printed. The ink becomes visible (i.e., pigmented) after it is activated.
Ideal invisible ink has two security properties,

– Invisibility: Messages printed in invisible ink should be unreadable prior
to activation,

– Activation-evident: Activated ink should always be plainly evident to
anyone viewing the document.
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Work has been done in developing invisible inks in the context of trustworthy
optical-scan voting as part of the Scantegrity II system [5]. Ballots with confir-
mation codes printed in invisible ink were recently fielded in a live municipal
election in the United States [4]. For the sake of our description we assume that
there exists an ink printing process with the above properties.

Document Authentication. Techniques for determining a document’s au-
thenticity are an important component of oblivious printing. Ideally document
authentication can efficiently and definitively distinguish between authentic and
non-authentic (counterfeit) documents.

Anti-counterfeiting methods (e.g., watermarks, holographic foil, embedded
magnetic strips, etc) exist but can be cost-prohibitive. It was shown by Buchanan
et al. [3] that fiber patterns can be used to uniquely identify paper documents.
Clarkson et al. [8] later developed a paper fiber identification method using
commercial-grade scanners. Sharma et al. [24] implement a paper fingerprinting
scheme based on texture speckles using a USB microscope costing under $100.

For the sake of our description we assume that there exists an efficient scheme
for determining a physical document’s authenticity.

2.2 Visual Cryptography

A visual cryptography scheme (VCS) is a visual secret sharing scheme in which
a (secret) message or graphical image is split into a number of shares. An early
example of visual secret sharing is due to Kafri and Keren [16] (what they call
“random grids”), although Shamir and Naor [18] are generally credited with
the paradigm in the security literature. The latter outline a collection of visual
crypto schemes for which the shares of some threshold k > 2 out of n printers
are necessary to recover the image and is denoted as (k, n)-VCS. Ateniese et
al. [2] generalize this notion to access structures for which the message is recov-
erable under arbitrarily defined subsets of participants. A survey of a number of
variations of visual cryptography is presented in [28].

Optimal Contrast of an (n, n)-VCS. An image is secret shared by a trusted
dealer on a pixel-by-pixel basis. To share a pixel, the dealer issues each printer a
unique and randomly assigned pattern of sub-pixels chosen to enforce the desired
access structure. Shamir and Naor [18] prove the optimal number of sub-pixels
for an (n, n)-VCS is 2n−1. In this scenario if the dealer wishes to share a black
pixel, the shares are constructed such that when an authorized set of printers
combine their shares, each of the resulting 2n−1 sub-pixels will be black. Similarly
if the dealer wishes to share a white pixel, one of the resulting sub-pixels will
be white (the other 2n−1−1 will be black). This is used to define a measure of
contrast, α, as being the relative difference in intensity between the combined
shares resulting from a white pixel and a black pixel in the original image. The
optimal contrast for an (n, n)-VCS is thus α = 1

2n−1 .

Visual Crypto as Used for Oblivious Printing. We make use of some
aspects of visual cryptography for the purposes of oblivious printing; however
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there are several important differences with how it is typically presented in the
literature:

1. Invisible ink shares: Printers successively overprint their shares in invis-
ible ink on a single sheet of paper. Activation of the combined invisible
ink shares recovers the message.

2. Dearlerless share creation: The message is distributed to shares by a
multi-party computation.

3. Fixed sub-pixel patterns: Each printer has a fixed pair of sub-pixel pat-
terns. Which of the two patterns the printer ends up printing is secret, but
the patterns themselves are a public input to the protocol.

We will make use of a set of sub-pixel patterns that implement an XOR oper-
ation. Work has been done into visual cryptography in a variety of physically
XOR-ing media including interferometers [17], light polarization [25], and even
image reversal using modern photocopy machines [27]. In our approach, however,
the XOR is approximated in an underlying physical medium (i.e., over-printed
shares of invisible ink) that implements an OR.

Definition 1. An n-input visual XOR, n-VCX, describes a set of sub-pixel pat-
terns that visually implement an XOR of the input bits in a physically OR-ing
medium.

Let S be an n× 2n−1 binary matrix for which each column is unique and has an
even Hamming weight. Let S be the element-wise complement of S. Let sub-pixel
pattern matrix Φ be as follows: Φ(l, 0) = S(l, :) and Φ(l, 1) = S(l, :).

For a set of Boolean values a1 . . . an ∈ {0, 1} and their associated logical
exclusive-or a′ =

⊕n
i=1 ai, we say the sub-pixel pattern matrix Φ implements an

n-input visual crypto exclusive-or, if the sub-pixel pattern produced by overlay-
ing shares Φ(1, a1) . . . Φ(n, an) has the following outcome: the total number of
black sub-pixels is 2n−1−1 if a′ = 0, and respectively 2n−1 when a′ = 1. If the
ai’s contain an even number of ones (i.e., the XOR is zero), then exactly one
of the columns will end up with all 0’s (i.e., a white sub-pixel) due to the way
the matrix was designed and the pixel will be visually interpreted as white. If
the ai’s contain an odd number of ones (i.e., their XOR is one), all columns will
contain a non-zero number of 1’s due to the way the matrix was designed and
the pixel will be visually interpreted as black. Φ implements an n-VCX.

Example 1. A 4-VCX: Let inputs [a1, a2, a3, a4] = [1, 0, 0, 1] and,

S =

⎡⎢⎢⎣
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 1 0 0 0 1

⎤⎥⎥⎦ .

We have Φ(1, 1) = [1, 1, 1, 0, 1, 0, 0, 0], Φ(2, 0) = [0, 0, 1, 0, 1, 0, 1, 1], Φ(3, 0) =
[0, 1, 0, 0, 1, 1, 0, 1], and Φ(4, 1) = [1, 0, 0, 0, 1, 1, 1, 0]. When the vectors are OR-
ed, it produces the sub-pixel pattern [1, 1, 1, 1, 0, 1, 1, 1]. Such a pattern is visually
interpreted as intended, i.e., a white pixel with contrast α = 1

8 .
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3 Obliviously Printing an Encrypted Message

In this section we present a protocol for obliviously printing the contents of
a ciphertext for which the associated plaintext is within a known, bounded,
alphabet of m possible valid messages. Given an encrypted plaintext �p�, a set
of n printers P1 . . .Pn, each with a share of the decryption key, will jointly print p
as a (u×v)-pixel image Ip depicting p in a human- or machine-readable form such
that no printer learns p. We leave the origin of �p� generic although we envision
it as being the output of some other (previous) multi-party computation.

3.1 Translation Table

A translation table is defined in which each element is a valid possible message
that can be printed and for which each message consists of an association between
a plaintext value and a bitmap that depicts it. The translation table is taken as
input to the protocol and is used to facilitate the translation of a message—under
encryption—from its plaintext form to its bitmap depiction.

Let translation table T consist of m message pairs representing the set of
valid messages that can be printed. Each message pair 〈t, It〉 ∈ T consists of a
plaintext value t in the plaintext domain, and a (u×v)-pixel monochrome bitmap
It depicting t as a human- or machine-readable image. Each value It(i, j) ∈ {0, 1}
corresponds respectively to a white or black pixel.1 We use the notation �T � to
denote the element-wise encryption of T . Each message pair 〈t, It〉 ∈ T , can be
regarded as a vector of uv+1 elements, [t, It(0, 0), . . . , It(u−1, v−1)] where each
element is encrypted separately. The initial encryption of each element is taken
with a known random factor (e.g., 0). Mixing �T � involves re-randomizing each
element and shuffling by the message pair vectors.

In order to facilitate mixing and searching for elements in �T � under encryp-
tion, |T | in practice will be small relative to the plaintext domain. Because It will
be encrypted at the pixel-level we note that for practical purposes the image size
should be kept small. Using a technique described by Essex et al. [10], however,
text can be optimized using segment-based display logic. A single alphanumeric
character (or digit) can be fully described in 16 (respectively 7) encryptions
regardless of the resolution of the visual crypto sub-pixel pattern used.

3.2 Setup

Let 〈DKG,Enc,DDec〉 be an encryption scheme with distributed decryption. Dis-
tributed key generationDKG(n) generates a public key, e, and a private key share,
di associated with printer Pi. Encryption �m� = Ence(m, r) is semantically se-
cure and homomorphic in one operation. Distributed decryption DDecdi(c) of a
ciphertext c is possible with all n printers applying their shares di. Without loss
of generality we use Elgamal [20].

1 Printing uses a subtractive color model and thus the plaintext values assigned to
color intensities are the reverse of that found in the computer graphics literature.



364 A. Essex and U. Hengartner

3.3 The Protocol

The protocol for obliviously printing a p ∈ T given �p� is described in Protocol 1
and consists of Sub-protocols 1.1 and 1.2. Briefly, Sub-protocol 1.1 encrypts
and mixes T and searches it (under encryption) for the entry corresponding to
p, outputting the associated encrypted bitmap. The process of searching the
encrypted translation table for a value and outputting the associated encrypted
image as described in Step 2 of Sub-protocol 1.1 is closely related to the Mix
and Match system [13]. In Step 1 of Sub-protocol 1.2 the printers secret share a
pixel by homomorphically XOR-ing it with random bits in a manner similar to
the technique used by Cramer et al. [9].

Finalization Layer. Given n printers note that Protocol 1 uses an (n+1)-VCX.
An additional “finalization” layer allows the printers to verify the correctness of
printing without ever revealing the message. For each pixel, each printer will
generate a random bit, and using the sub-pixel pattern matrix, print it in in-
visible ink. A cut-and-choose proof is performed in Step 2 to demonstrate the
printers correctly printed their random bits. Then an (n+1)-th finalization layer
is computed by homomorphically XOR-ing the message bit with each of the
random bits. Since the finalization layer is essentially a one-time pad, it can be
decrypted without revealing the message. Finally, the finalization layer is printed
using black ink, the correctness of which can be verified visually by inspection.

3.4 Obliviously Printing an Arbitrary Plaintext

In Protocol 1 we showed how to obliviously print a plaintext p ∈ T given its
encryption. As was previously mentioned, in order to make mixing and searching
�T � feasible, |T | will typically be quite small relative to the plaintext space.

We briefly sketch how any message from the plaintext space might be accom-
modated. To print an arbitrary p, first the printers would define an alphabet Σ
(e.g., the Latin alphabet) for which p could be represented as a string Σl. The
printers would execute a multi-party pre-protocol to convert �p� into a collection

PROTOCOL 1 (Obliviously Print p given �p�)

Input: Translation table T , encrypted plaintext �p�, sub-pixel matrix Φ imple-
menting an (n+1)-VCX, soundness parameter ρ.

Output: A document with a (u×v)-pixel image depicting p, printed in invisible
ink and with contrast α= 1

2n
.

The protocol:

1. Translate encrypted plaintext into associated pixel-wise en-

crypted image: Run Sub-protocol 1.1.
2. Obliviously print encrypted image: Run Sub-protocol 1.2.



Oblivious Printing 365

SUB-PROTOCOL 1.1 (Translate �p� into �Ip�)

Input: Translation table T , encrypted plaintext �p�.

Output: A (u×v) pixel-wise encrypted image of p (i.e., �Ip�).

The protocol:

1. Encrypt and verifiably mix translation table T : Each printer partic-
ipates in a verifiable mix network, which encrypts and shuffles the message
pairs 〈ti, Iti〉 ∈ T . The result is denoted �T ′�.

2. Find �p� in �T ′�: printers search �T ′� attempting to locate a �ti� for which
ti = p:
(a) For each message pair 〈�ti�, �Iti�〉 ∈ �T ′�, the printers perform a test of

plaintext-equality between �p� and �ti�.
(b) If a match is found, output the corresponding pixel-wise encrypted bitmap

�Iti�. If no match is found the protocol terminates and an error message
is output.

Remark: Various protocols exist for verifiable mix networks. One efficient and

statistically sound technique for multi-column mixing is due to Sako and Kilian

[23]. The plaintext equality test (PET) is due to Juels and Jakobsson [13].

of ciphertexts �p1� . . . �pl� for which p = p1|| . . . ||pl (a multi-party protocol for
extracting bit-fields under encryption is left to future work). The printers would
then run Protocol 1 for each pi, printing the result on the same sheet of paper.

4 Obliviously Printing a Randomized Message

In this section we present a contrast optimization in the special case where the
printers are printing a randomized message r ∈r T . Although Protocol 1 can also
be used for this purpose the protocol presented in this section has a contrast of
α = 1

2n−1 (as opposed to α = 1
2n ). Protocol 1 allows the printers to engage in

a cut-and-choose proof of correct printing without revealing p directly. This is
done at the expense of contrast: the use of the finalization layer introduces an
additional layer forcing the n printers use an (n+1)-VCX, which has half the
contrast relative to an n-VCX.

If the message is randomized, then revealing it as part of a cut-and-choose
process does not reveal information about the remaining (unactivated) messages.
So instead of partially printing ρ copies of a single message p, auditing ρ − 1
copies and finalizing the remaining copy, the printers instead obliviously print ρ
complete and independently random messages, of which they audit ρ − 1. The
protocol is described in Protocol 2.

Arbitrary-length random messages can be built by repeated (independent)
executions of Protocol 2 on the same sheet of paper, which may be useful in the
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SUB-PROTOCOL 1.2 (Obliviously Print �It�)

Input: A (u×v) pixel-wise encrypted image �It�, sub-pixel matrix Φ implementing
an (n+1)-VCX, soundness parameter ρ.

Output: A document with It printed in invisible ink with contrast α= 1
2n

.

The protocol:

1. Obliviously Print ρ instances of It: For each 1 ≤ i ≤ ρ :
(a) Print a new instance (sheet): For each pixel �It(j, k)�:

i. Post commitments to random bits: Each printer Pl≤n draws a ran-
dom bit bi,j,k,l ∈R {0, 1} and broadcasts a non-malleable commitment
to it.

ii. Secret share pixel: The n printers jointly compute an encrypted
finalization pixel �fi,j,k� = �t(j, k) ⊕ bi,j,k,1 ⊕ . . . ⊕ bi,j,k,n� using a
partially homomorphic XOR.

iii. Print sub-pixel pattern in invisible ink: Each printer Pl≤n

records the unique physical characteristics of the paper sheet and over-
prints the sub-pixel pattern Φ(l, bi,j,k,l) in invisible ink on the i-th
document instance at the position associated with pixel (j, k).

2. Perform cut-and-choose proof of correct printing: The printers select
ρ−1 documents at random to audit (see remark). For each chosen sheet:
(a) Prove:

i. Unveil commitments: Each printer unveils their uv commitments
generated in Step 1a-i).

ii. Prove XOR: Each printer broadcasts their random factor used in
computing the partially homomorphic XOR in Step 1a-ii).

iii. Activate invisible ink: The printers collectively activate the invisi-
ble ink revealing the result of Step 1a-iii).

(b) Verify: Each printer performs the following steps. If any of them do not
hold, the protocol is terminated and an error message output:
i. Check commitments: Verify commitments produced in Step 2a-i).
ii. Check XOR: Recompute the homomorphic XOR using �t(j, k)� and

the random factors revealed in Step 2a-ii) and confirm the result equals
the finalization pixel generated in Step 1a-ii).

iii. Check printing: For each pixel ensure the combined VC sub-pixel
pattern created by the bits revealed in 2a-i corresponds to the printed
version.

iv. Check paper: Authenticate the sheet against those in Step 1a-iii.
3. Finalize the remaining sheet:

(a) Decrypt finalization layer: The printers decrypt the finalization pixels
�fi,j,k�.

(b) Print finalization layer: The printers authenticate authenticate the
sheet. If the sheet is not recognized, the protocol terminates and an error
message is output. Without loss of generality P1 prints the finalization
layer: each pixel Φ(n + 1, fi,j,k) is printed in black ink at the associated
position. The other printers check the finalization layer is printed correctly.
The resulting document is securely delivered to its intended recipient.

Remark: A partially homomorphic XOR using exponential Elgamal is due to
Neff [19]. The heuristic due to Fiat and Shamir [12] can be used to fairly select
documents to audit.
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PROTOCOL 2 (Obliviously Print a Random r ∈r T )

Input: Translation table T , sub-pixel matrix Φ implementing an n-VCX, sound-
ness parameter ρ

Output: A document with a (u× v)-pixel image depicting a random r ∈r T ,
printed in invisible ink and with contrast α= 1

2n−1 . Encrypted plaintext �r�.

The protocol:

1. Obliviously print ρ independent rand. msgs.: For each 1 ≤ i ≤ ρ:

(a) Select random message pair from T : Run Step 1) from Sub-
protocol 1.1 to generate �T ′

i �. Without loss of generality the printers select
encrypted message pair �T ′

i (0)� = 〈�ri�, �Iri�〉.
(b) Obliviously print �Iri�: Run Step 1a) from Sub-protocol 1.2 with the

following modifications:
– Without loss of generality, the first (n−1) printers Pl<n−1 partially

decrypt the secret shared pixel �fi,j,k� created in Step 1a-ii) by ap-
plying their respective shares of the private key.

– Similar to Step 1a-iii) each printer Pl<n−1 overprints their VC sub-
pixel pattern Φ(l, bi,j,k,l). Printer Pn decrypts the partial decryption
of �fi,j,k� and prints Φ(n, (bi,j,k,n ⊕ fi,j,k)) in invisible ink.

(c) Perform cut-and-choose proof of correct printing: The printers
select and audit ρ−1 documents as in Step 2) of Sub-protocol 1.1.

(d) Output remaining sheet: The remaining document Ir′ is securely de-
livered to its intended recipient. The associated ciphertext �r′� is output.

creation of strong passwords, cryptographic keys or random tokens. Note in this
setting the bit-field extraction step outlined in Section 3.4 would be unnecessary.

4.1 Generating and Obliviously Printing a DSA Keypair

One interesting variation of Protocol 2 might be generating and obliviously print-
ing an DSA/Elgamal keypair for which the printers do not know the private key.
This could potentially be an interesting approach to building a PKI in which a
group of printers acting as a distributed CA issues keypairs in physical form.

Our initial work [10] allowed for the oblivious printing of random strings, but
could not construct the associated ciphertext. In this paper we can obviously
print random strings for which we have the associated ciphertext from which we
can compute the associated public key.

The keypair can be rendered in a convenient encoding such as alphanumeric
(e.g., Base64) or 2-D barcode (e.g., a QR-code). We note that 2-D barcodes often
contain additional error correction information. Creating a valid error-correction
codes under encryption is something we leave to future work. We present a proto-
col for generating and obliviously printing a DSA/Elgamal keypair in Protocol 3.
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PROTOCOL 3 (Generate and Obliviously Print an Elgamal Keypair)

Input: A large prime p = 2αq+1 (for a small integer α), a generator g ∈ Gq , an
encoding alphabet Σ (e.g., Base64) for which |Σ| is a power of 2.

Output: A document with public key y = gsk printed in black ink, and secret
key sk printed in invisible ink.

The protocol:

1. For 0 ≤ i <
⌊ log2(q)

|Σ|
⌋
:

(a) Initialize Ti: For 0 ≤ j < |Σ|: Add message pair 〈gj+|Σ|i, IΣ(j)〉 to Ti.
(b) Obliviously Print Private Key Segment: Printing on the same sheet

each time so as to build a string of characters, run Protocol 2 with Ti as
input, receiving an (encrypted) segment of the private key ci = �gski�.

2. Recover public key: Printers decrypt �y� = �g
∑

i ri� =
∏

i ci. Without loss
of generality P1 prints the result in black ink and other printers confirm the
value is correctly printed. The result is securely delivered to the intended
recipient.

Remark: If the secret key’s bit-length does not evenly divide the encoding alphabet,

the above loop is run one final time with a reduced alphabet Σ′ ⊂Σ where |Σ′| =
log2(q) mod |Σ|.

5 Mitigating Contrast Drop-Off with AND-ing Inks

Using the basic invisible ink described above we note that contrast declines
exponentially in the number of printers. In practice this greatly limits the number
of printers that can participate and still produce a legible message. Other factors
like image size, resolution and font play a role in legibility but in general we would
not expect an obliviously printed document to be legible with more than about
half a dozen printers.

We have discussed invisible ink in the context of a physical disjunction (i.e.,
an OR). In that setting a pixel will darken on activation if any of the shares
contain invisible ink. However it seems invisible ink printing could offer other
possibilities if the pigmentation reaction could be customized to realize a differ-
ent logical construction. We briefly examine the properties that can be achieved
if it were possible to formulate invisible inks that implement a physical conjunc-
tion (i.e., an AND). Chemically it seems possible such inks could be formulated;
the basic ink process as described throughout this paper (cf. [4]) already forms
a type of chemically-based conjunction between the invisible ink itself and the
activating substance. Granted it would likely be a challenge to formulate con-
junctive inks that were invisible for more than a small k. We are not aware of
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the existence of such inks. It is worth noting, however, that if such inks could
be formulated, they have the potential, at least in theory, to achieve optimal
contrast (i.e., α = 1) in the presence of arbitrarily many printers.

Definition 2. A set of k inks are k-way conjunctive if, upon activation, a pixel
darkens iff all k inks are physically present.

We denote an n-VCX implemented with k such “AND-ing” inks as a (k, n)-
VCXA. To create sub-pixel share matrix Φ in this setting we begin by construct-
ing the (n× 2n−1) matrix S (refer to Definition 1) and then evenly segmenting

it into 2n−1

k sub-matrices of size (n×k). Each sub-matrix represents a sub-pixel,
and each element in the sub-matrix instructs the printer whether to print the
associated ink in that sub-pixel or not. Using this approach a (k, n)-VCXA has
a contrast α = k

2n−1 (k is a power of 2 and the optimal contrast ratio remains
α = 1).

Example 2. A (4, 4)-VCXA: Let inputs [a1, a2, a3, a4] and S be the same as in
Example 1. The 4-way conjunctive inks are labeled A,B,C, and D. Each share
instructs the printer which of the four inks to print in each of the two-subpixels.
The shares are: Φ(1, 1) = [{A,B,C}, {A}], Φ(2, 0) = [{C}, {A,C,D}], Φ(3, 0) =
[{B}{A,B,D}], and Φ(4, 1) = [{A}, {A,B,C}]. The conjunction of the shares
produces [{A,B,C}, {A,B,C,D}]. Since the first sub-pixel will not contain the
ink D when the shares are printed, it will never activate. The second sub-pixel
will contain all four inks when printed and therefore will darken when activated.
The pixel therefore will contain one white and one black sub-pixel which is
visually interpreted as intended, i.e., a white pixel with contrast α = 1

2 . By
comparison with Example 1 the contrast is 4x greater.

6 Example Applications

Electronic Voting. Cryptographically verifiable electronic voting is a natural
application for oblivious printing. In this setting voters receive a receipt of their
ballot that allows them to confirm their vote was correctly counted, yet without
revealing it to anyone. A vital requirement of any secret ballot election employing
the receipt paradigm is that no single party, including the ballot printer(s), may
gain an advantage in deducing how a voter voted.

Printing Verifiable Optical-scan Ballots. Voting by paper optical-scan ballot is
a common method used in the United States [26] today. However work into
cryptographically verifiable optical-scan voting (cf. [5, 6, 21]) has continued to
entrust ballot printers with secret and identifying information. Recently in [11]
we presented a two-party approach to obliviously printing ballots based on the
preliminary techniques in [10]. Through this work, we can extend it to a fully
multi-party setting—a feature long realized in fully-electronic proposals.
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Multi-factor ballots for Internet Voting. Internet voting has been a recent and
popular topic of interest. One successful open-source and cryptographically-
verifiable internet voting platform is Helios.2 Helios accepts encrypted votes
(along with zero-knowledge proofs of validity), which are then homomorphically
tallied [1]. One fundamental and well-known limitation of this approach is that
the voter’s computer must be trusted to construct the encrypted ballot and is
vulnerable to virus/malware. Using Protocol 3, encrypted Helios votes could be
prepared on a voter’s behalf and mailed to them on an obliviously printed ballot
form. The voter would cast their vote by submitting the ciphertext correspond-
ing to their candidate. Similarly, a verifiable internet voting scheme due to Ryan
and Teague [22] proposes a multi-factor solution based on acknowledgment codes
cards, which are mailed to the voter. The acknowledgment code cards contain
secret information and so oblivious printing may of use here also.

Coercion-resistant internet voting. Beginning with Juels et al. [15], work into
coercion-resistant internet voting has attempted to extend privacy protection to
voters, even when casting their ballots in an unsupervised environment. Clark
and Hengartner [7] propose a coercion-resistant scheme based in part on an in-
person registration protocol requiring voters to select secret passphrases and be
able to (privately) compute randomized encryptions of them. Such passphrases
and their encryptions could instead be pre-computed and obliviously printed by
a distributed election authority, potentially simplifying the in-person registration
phase and simultaneously enforcing higher-entropy passphrases.

Electronic Cash. Bitcoin3 is an interesting recent proposal for digital currency.
Transactions are timestamped and inserted into a common transaction history
(known as a “block chain”) using a proof-of-work model. An account consists
of a DSA keypair: a private signing key is used for sending funds and a public
key is used for receiving them. A transaction consists of two components. The
first component points to an earlier transaction in the block chain in which funds
were sent to the account corresponding with the user’s public key (and for which
the funds have not already been spent). The second component involves the user
signing the transaction (which includes the destination account) using the private
signing key. Typically these keys are stored on a user’s machine in a “wallet” file.
One interesting alternative is Bitbills,4 a service which issues Bitcoins in physical
form. A Bitbill consists of a plastic card (similar to a credit card) corresponding
to a set amount of Bitcoins. The associated private signing key is printed on the
card as a 2-D barcode and hidden under a tamper-evident/holographic covering.
The funds can be redeemed in by scanning the card with a smartphone.

Importantly, knowledge of the private signing key is necessary and sufficient
to transfer funds and recent criminal activity has focused on stealing such keys
from users’ computersas well as online Bitcoin bank accounts5. Therefore any
currency issuing service like Bitbills would have to be trusted never to redeem

2 http://heliosvoting.org
3 http://bitcoin.org
4 http://bitbills.com
5 http://mybitcoin.com/archives/20110804.txt

http://heliosvoting.org
http://bitcoin.org
http://bitbills.com
http://mybitcoin.com/archives/20110804.txt
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the cards it issues, and to prevent any private keys to fall into the hands of
hackers. Oblivious printing could be used to create a distributed currency issuing
service. With Protocol 3 adapted to an elliptic curve setting, keypairs could be
generated and printed without any individual issuer knowing the private key
thereby enforcing that only the cardholder can redeem the funds.

7 Security Analysis

We briefly sketch some of the security properties of our system. For space reasons
we limit our discussion to Protocol 1 (i.e., Subprotocols 1.1 and 1.2).

Cryptographic Security. Informally there are two security properties we seek
for the cryptographic component of the protocol. One is integrity: a printer
should be convinced that the combined shares depict an image of the (encrypted)
input. The other property is secrecy: an adversary in collusion with a subset of
printers should not be able to determine the input.

We assume the commitment function is non-malleable, hiding and binding.
The assumptions regarding encryption are stated in Section 3.2. The complete-
ness, soundness and secrecy of Sub-protocol 1.1 follow directly from [14] [13].
If the printers follow Sub-protocol 1.2 they will always produce a finalization
layer that, when XOR-ed with the individual shares, recovers the input. Secrecy
of the commitments and encryptions follow from the assumptions. Secrecy of
the decrypted finalization layer follows if one or more printers select random
bits. Soundness is probabilistic and follows from the cut-and-choose proof. The
independence of the random bits is enforced by the non-malleable commitment
function. Correct computing of the homomorphic XOR is established by the
cut-and-choose proof when printers reveal their commitments and the random
factors used to compute the XOR.

Physical Security. For simplicity we proceed with our discussion of physical
security in a setting in which the printers receive their shares from a trusted
dealer through a private and authenticated channel. In the physical setting we
seek two security properties. One is integrity: a printer should be convinced that
the combined printed shares match the combined received shares. The other
property is tamper evidence which is closely related to secrecy: an adversary
should not be able to determine the output of the protocol without corrupting
all printers or tampering with the document, which will then be evident.

We assume the invisible ink can only be read in its activated state and that
activated ink is plainly evident. We assume that a sheet of paper can be authen-
ticated. Completeness of Sub-protocol 1.2 is self-evident. Secrecy of the shares
follows from the properties of an n-VCX. If a printer attempts to read the doc-
ument by activating the ink it will be evident following from the assumptions
of the invisible ink. If a printer attempts to replace a valid document with a
fake it will be evident following the assumptions regarding document authen-
tication. Soundness is probabilistic and follows the cut-and-choose proof. If a
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printer prints nothing in a sub-pixel where it was to print invisible ink, it will
either be covered by invisible ink from another share, and does not alter the
intended outcome, or, it will not be covered by another share in which case it
will be detectable by the cut-and-choose and attributable by examining the elec-
tronic shares. If a printer prints invisible ink in a sub-pixel where it was to print
nothing, it will be detected similarly but is not attributable.

It is important to note that nothing fundamentally prevents an adversary in
physical possession a document from activating the ink and reading its contents.
The severity of this threat will depend greatly on the use-case. For example if
the document contains a unique secret, additional physical security measures are
necessary to protect document secrecy. Alternatively if the document contains
an arbitrary secret (e.g., a new password), it may suffice for the recipient of a
tampered document to simply request it be invalidated and a new one be issued.

Conclusion. In this paper we introduced oblivious printing. We presented three
protocols: a generic protocol for obliviously printing an encrypted plaintext, a
protocol with improved contrast for obliviously printing a random message, and
third protocol to generate and obliviously print a DSA/Elgamal keypair. We
then proposed a contrast optimization based on the AND-ing invisible inks and
provided some example applications for electronic voting and digital cash.
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Abstract. RFID-based tokens are increasingly used in electronic pay-
ment and ticketing systems for mutual authentication of tickets and
terminals. These systems typically use cost-effective tokens without ex-
pensive hardware protection mechanisms and are exposed to hardware
attacks that copy and maliciously modify tokens. Physically Unclonable
Functions (PUFs) are a promising technology to protect against such at-
tacks by binding security critical data to the physical characteristics of
the underlying hardware. However, existing PUF-based authentication
schemes for RFID do not support mutual authentication, are often vul-
nerable to emulation and denial-of service attacks, and allow only for a
limited number of authentications.

In this paper, we present a new PUF-based authentication scheme
that overcomes these drawbacks: it supports PUF-based mutual authen-
tication between tokens and readers, is resistant to emulation attacks,
and supports an unlimited number of authentications without requiring
the reader to store a large number of PUF challenge/response pairs. In
this context, we introduce reverse fuzzy extractors, a new approach to
correct noise in PUF responses that allows for extremely lightweight im-
plementations on the token. Our proof-of-concept implementation shows
that our scheme is suitable for resource-constrained devices.

1 Introduction

Electronic payment and ticketing systems have been gradually introduced in
many countries over the past few years. Typically, these systems use a large
number of RFID-enabled tokens with constrained computing and memory capa-
bilities (see, e.g., [35]). A fundamental security requirement in electronic payment
and ticketing systems is mutual authentication: Only genuine tokens should be
accepted by readers and only eligible readers should be able to modify the debit
of a user’s token. The widespread use of these systems makes them attractive

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 374–389, 2012.
c© International Financial Cryptography Association 2012
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targets for different kinds of attacks. The most prominent example are attacks on
widely used MiFare Classic tokens by NXP Semiconductors [35] that allow copy-
ing (cloning) and maliciously changing the debit of tokens [13]. Other MiFare
products are claimed not to be affected. Existing solutions typically use cost-
efficient tokens without expensive hardware protection mechanisms [35]. Hence,
the authentication secrets of these tokens can often be recovered by basic side
channel and invasive attacks, and used to emulate the token in software, which
allows forging the information of the token (e.g., the debit of the ticket). To
prevent such attacks, the secrets and information of the token should be crypto-
graphically bound to the underlying RFID chip such that any attempt to extract
or change them permanently deactivates the token.

In this context, Physically Unclonable Functions (PUFs) [31,27,2] promise to
provide an effective and cost-efficient security mechanism. PUFs are physical
systems embedded into a host device, that, when challenged with a stimulus,
generate a noisy response. This means that, depending on environmental varia-
tions (e.g., temperature or voltage variations), a PUF will always return slightly
different responses when challenged with the same stimulus. Further, due to
manufacturing variations, responses to the same challenge vary across different
PUFs and are typically hard to predict [27,2].

The common approach to authenticate a PUF-enabled token is querying its
PUF with a challenge from a pre-recorded database of PUF challenges and re-
sponses. The token is accepted only if its response matches a PUF response in
the database (such as in [32,6,10]). An alternative approach is using the PUF to
generate the authentication secret of the token for use in a classical authentica-
tion protocol (such as in [38,34]). However, both approaches have serious draw-
backs in practice: PUF-based key storage requires the token to reliably recover
the (bit-exact) cryptographic secret from the noisy PUF response using some
kind of error correction mechanism, which is expensive in terms of number of
gates [12,7]. Further, existing PUF-based authentication schemes for RFID suffer
from the following deficiencies: (1) there is no support for mutual authentica-
tion between token and reader; (2) most PUF types are vulnerable to emulation
attacks [33] and would allow emulating the token in software; (3) some schemes
are subject to denial-of-service attacks that permanently prevent tokens from
authenticating to the reader [6]; and (4) all existing PUF-based authentication
schemes are not scalable and allow only for a limited number of authentication
protocol-runs since they rely on a database containing a large number of chal-
lenge/response pairs of the PUF of each token. It seems that emulation attacks
could be mitigated by controlled PUFs [14]. However, controlled PUFs typically
apply a cryptographic operation (such as a hash function) to the PUF response,
which requires an expensive error correction mechanism on the token to maintain
verifiability of the PUF.

Our Contribution. In this paper, we present the design and implementation of
a new lightweight PUF-based authentication scheme for mutual authentication of
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RFID tokens and readers. Our scheme supports an unlimited number of authen-
tication protocol-runs, is resistant to emulation attacks, and does not require
the reader to store a large number of PUF challenge/response pairs.

Furthermore, we introduce the concept of reverse fuzzy extractors, a novel
approach to eliminate noise in PUF responses that moves the computationally
expensive error correction process from the resource-constrained PUF-enabled
token to the more powerful RFID reader. The resources required to implement
our authentication scheme on the token are minimal since it is based on a reverse
fuzzy extractor that requires significantly less hardware resources than the error
correcting mechanisms used in existing PUF-based authentication schemes or
PUF-based key storage.

Outline. In Section 2, we provide background information on Physically Unclon-
able Functions (PUFs). We propose reverse fuzzy extractors in Section 3 and
present our PUF-based mutual authentication scheme in Section 4. We describe
the implementation and evaluate the performance of our scheme in Section 5, and
analyze its security in Section 6. Finally, we survey on related work in Section 7
and conclude in Section 8.

2 Background on Physically Unclonable Functions (PUFs)

A PUF is a noisy function that is embedded into a physical object, e.g., an
integrated circuit [31,27,2]. When queried with a challenge c, a PUF generates
a response r ← PUF(c) that depends on both c and the unique device-specific
intrinsic physical properties of the object containing the PUF. Since PUFs are
subject to noise (e.g., environmental variations), they return slightly different
responses when queried with the same challenge multiple times.

In literature, PUFs are typically assumed to be robust, physically unclon-
able, unpredictable and tamper-evident, and several approaches to heuristically
quantify and formally define their properties have been proposed (see [2] for
an overview). Robustness means that, when queried with the same challenge
multiple times, the same PUF will return a similar response with high proba-
bility. Physical unclonability means that it is infeasible to produce two PUFs
that cannot be distinguished based on their challenge/response behavior. Un-
predictability requires that it is infeasible to predict the PUF response to an
unknown challenge, even responses to other challenges can be obtained adap-
tively. Tamper-evidence means that any attempt to physically access the PUF
irreversibly changes its challenge/response behavior.

There is a variety of PUF implementations (see [27] for an overview). The
most appealing ones for integration into electronic circuits are electronic PUFs.
The most prominent examples of this type are delay-based PUFs that exploit
race conditions (arbiter PUFs [22,30]) and frequency variations (ring oscillator
PUFs [15,37,28]) in integrated circuits; memory-based PUFs are based on the
instability of volatile memory cells, like SRAM [16,18], flip-flops [26,23] and
latches [36,21]; and coating PUFs [39] use capacitances of a dielectric coating
applied to the chip housing the PUF.
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Verifier VPUF Device
DB

c, h
r′ ← PUF(c) (c, r, h) ∈R DB

r ← Rep(r′, h)

(a) Typical use of fuzzy extractors

Verifier VPUF Device
DB

c
r′ ← PUF(c)

h

(c, r) ∈R DB

h← Gen(r′)
r′ ← Rep(r, h)

(b) Reverse fuzzy extractor concept

Fig. 1. Concept of fuzzy extractors and reverse fuzzy extractors

Note that the number of responses of a memory-based PUF is limited by
the number of its memory cells. Further, most delay-based PUFs are subject
to model building attacks [22,30,25,33] that allow emulating the PUF in soft-
ware. To counter this problem, additional primitives must be used: Controlled
PUFs [14] use cryptography in hardware to hide the responses of the underly-
ing PUF to mitigate model building attacks. This requires correcting the noise
of PUF responses before they are processed by the cryptographic operation to
maintain verifiability of the PUF. The cryptographic and error correcting com-
ponents as well as the link between them and the PUF must be protected against
invasive and side channel attacks.

Many PUF-based applications, including PUF-based identification and key
storage, require PUF responses to be reliably reproducible while at the same
time being unpredictable [3,27,2]. However, since PUFs are inherently noisy and
their responses are not uniformly random, they are typically combined with fuzzy
extractors [12] (Figure 1(a)). Fuzzy extractors consist of a secure sketch, which
maps similar PUF responses to the same value, and a randomness extractor,
which extracts full-entropy bit-strings from a partially random source.

Secure sketches generally work in two phases: in the generation phase some
helper data h = Gen(r) is computed from PUF response r, which is used later in
the reproduction phase to recover r = Rep(r′, h) from a distorted PUF response
r′ = r+ e, where e is the error caused by noise. An important property of secure
sketches is that, after observing one single h, there is still some min-entropy
left in r, which means that h can be stored and transferred publicly without
disclosing the full PUF response [12].

3 Reverse Fuzzy Extractors

Fuzzy extractors and secure sketches [12] are commonly used to correct noisy
PUF responses on the PUF-enabled device, which is required when the PUF
response is used in a cryptographic algorithm or protocol (such as in [14,11,38,3]).
However, the underlying error decoding algorithms are typically complex and
require a large number of gates and/or long execution times when multiple bit
errors must to be corrected [12,7]. Hence, implementing the decoding algorithm
on the PUF-enabled device is a huge disadvantage in many applications.

To overcome this problem, we propose reverse fuzzy extractors that allow for
very compact and fast implementations of secure sketches and fuzzy extractors.
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Instead of implementing the computationally intensive reproduction phase Rep(),
we implement the much more efficient helper data generation phase Gen() on
the PUF-enabled device and move Rep() to the typically more powerful verifier
(Figure 1(b)). As a consequence, new helper data h is generated each time the
PUF is queried and the verifier corrects the reference value r of its database to
the noisy PUF response r′, which is different each time the PUF is evaluated.

There is one major pitfall that must be considered: Each execution of the
helper data generator Gen() on a different noisy version of the same PUF response
reveals new helper data. However, secure sketches give no guarantee about the
min-entropy of the PUF response in case multiple helper data for different noisy
variants of the same response is known [8]. Hence, reverse fuzzy extractors may
leak the full PUF response, when Gen() and Rep() are based on a conventional
fuzzy extractor. This is problematic in most PUF-based applications, such as
controlled PUFs and PUF-based key storage (Section 2) that require at least
some bits of the PUF response to be secret, and must be carefully considered
when designing reverse fuzzy extractors.

We present an implementation of a reverse fuzzy extractor based on the syn-
drome construction [12], which is a secure sketch with a highly efficient helper
data generation phase and that has been shown to ensure a certain amount of
min-entropy in the PUF response even if multiple helper data for noisy variants
of a response is known [8]. The syndrome construction implements the helper
data generator Gen(r) as h ← r ·HT , where H is the parity check matrix of a bi-
nary linear block code and h corresponds to the syndrome of r. The reproduction
algorithm Rep(r′, h) of the syndrome construction computes r ← r′ − e, where e
is determined by decoding the syndrome s = h− r′ ·HT using the decoding al-
gorithm of the underlying error correcting code. Note that Gen() corresponds to
computing a matrix product of the PUF response with the parity-check matrix
H of the underlying cyclic linear block code. Due to the special form of parity
check matrices of these codes, this product can be computed very efficiently, as
we show later when describing our prototype implementation in Section 5.

4 Our PUF-Based Mutual Authentication Scheme

A naive approach to authenticate a PUF-enabled RFID token is the following:
The verifier sends a random PUF challenge from a reference database to the
token and accepts the token only when its response is similar to the one in the
database. However, since the token always responds to the same PUF challenge
with a similar PUF response, replay attacks are possible. Moreover, for most
PUF implementations, sending the PUF response in clear allows cloning the
token by model building attacks [33]. Further, it is not trivial to authenticate
the reader to the token following this approach.

Our scheme solves these problems by merging the idea of controlled PUFs [14]
and logically reconfigurable PUFs [20]: We amend a PUF with a control logic that
(1) hides the plain PUF response from the adversary and (2) allows dynamically
changing the challenge/response behavior of the PUF in a random manner. Using
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reverse fuzzy extractors allows for a very compact implementation of our scheme
that requires only minimal resources on the token.

4.1 System Model

The players in our scheme are (at least) a token issuer I, a verifier V and a token
T . We denote the adversary with A. Our scheme enables mutual authentication
between V and T . V has access to a database DB containing detailed information
on all tokens T in the system. DB is initialized and maintained by I.

4.2 Trust Model and Assumptions

Issuer I and verifier V. We assume I and V to be trusted, which is a typical
assumption in most RFID systems.1 Further, I initializes T and V in a secure
environment.

Token T . We consider T to be a passive device that cannot initiate communica-
tion, has a narrow communication range (a few centimeters to meters) and erases
its temporary state (all session-specific information and randomness) after it gets
out of the electromagnetic field of V . Further, we assume T to be equipped with a
robust and unpredictable PUF (Section 2), a reverse fuzzy extractor (Section 3)
and a lightweight hash function.

Adversary A. As in most RFID security models, we assume A to control the wire-
less communication channel between V and T . This means that A can eavesdrop,
manipulate, delete and reroute all protocol messages sent by V and T . Moreover,
A can obtain useful information (e.g., by visual observation) on whether V ac-
cepted T as a legitimate token. Following the typical assumptions on PUF-based
key storage (such as in [40,24,38]), we assume that A can read any information
that is stored in the non-volatile memory of T . However, A cannot access the
responses of the PUF of T and cannot obtain temporary data stored in volatile
memory (such as intermediate results of the computations) of T while it is partic-
ipating in an authentication protocol. This can be achieved by using side-channel
aware designs for the implementation of the underlying algorithms.

4.3 Protocol Specification

System Initialization. Token issuer I stores a random token identifier ID in the
non-volatile memory of token T . Moreover, I extracts q > 0 challenge/response
pairs (c1, r

′
1), . . . , (cq, r

′
q) from the PUF of T and stores them together with ID

in database DB, which is later used by verifier V in the authentication protocol.

Authentication Protocol. The authentication protocol (Figure 2) works as fol-
lows: Verifier V starts by sending an authentication request auth to token T ,
1 Note that there are papers considering revocation of malicious verifiers (such as

in [4,29]). A simple approach to enable verifier revocation in our scheme is moving
all computations of V to DB s.t. V has no access to the PUF challenge/response pairs.
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Verifier VToken T

auth

ID

ID

DB =
(
ID′, (c1, r′1), . . . , (cq , r

′
q)
)

if ID′ �= ID then reject and abort
i ∈R {1, . . . , q}

ci, N
ri ← PUF(ci)

hi, a
ri ← Rep(r′i, hi)

b← Hash(a, ri)b
if Hash(a, ri) �= b then reject and abort

N ∈R {0, 1}l

if Hash(ID, N, ri, hi) �= a then reject and abort

a← Hash(ID, N, ri, hi)

hi ← Gen(ri)

Fig. 2. Lightweight PUF-based mutual authentication protocol

which responds with its identifier ID. V chooses a random nonce N and a random
challenge/response pair (ci, r′i) from database DB and sends (ci, N) to T . Then, T
evaluates ri ← PUF(ci), generates hi ← Gen(ri) using the reverse fuzzy extrac-
tor, computes a ← Hash(ID, N, ri, hi) and sends (hi, a) to V . Next, V reproduces
ri ← Rep(r′i, hi) using r′i from DB and checks whether Hash(ID, N, ri, hi) = a. If
this is not the case, V aborts and rejects. Otherwise, V sends b ← Hash(a, ri) to
T and accepts. Eventually, T accepts if Hash(a, ri) = b and rejects otherwise.

Discussion. Note that the case q = 1 is equivalent to PUF-based key storage,
where r1 represents the authentication secret of T . In this case, c1 can be stored
in the non-volatile memory of T and needs not to be sent from V to T . Hence,
two protocol messages can be saved: N can be sent with auth and ID can be
sent with (hi, a). Using multiple challenge/response pairs corresponds to storing
multiple (session) keys in the PUF, which limits the impact of side channel
attacks that may recover only a subset of these keys.

5 Implementation and Performance Evaluation

We demonstrate the feasibility of reverse fuzzy extractors by presenting a
prototype implementation of the protocol depicted in Figure 2. The prototype
comprises three main primitives (Figure 3): A challenge expander, a syndrome
generator and a hash function. A controller orchestrates these primitives to ex-
ecute the protocol in the correct order.

The prototype is designed to be used with an arbiter PUF but can be eas-
ily modified to work with most existing intrinsic PUFs. The used arbiter PUF
implementation accepts 64-bit challenges and generates 1-bit responses. Since
our protocol requires multiple response bits, we use a linear feedback shift regis-
ter (LFSR) to expand a single challenge c into many consecutive 64-bit challenges
c′, which are fed one after the other into the PUF. This allows generating PUF
responses of arbitrary length for a single challenge. The expansion can be omitted
for other PUF types that generate responses that have a sufficient length.
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h

Controller

Reverse fuzzy extractor and hash function (on FPGA)

Fig. 3. Architecture of the reverse fuzzy extractor core

s234 s233 s232 s231 s2 s1s230 PUF()

LFSRFeedback = generator polynomial of BCH code

Fig. 4. Implementation of the syndrome generator

As described in Section 3, the syndrome generation consists of the matrix
multiplication of an n-bit PUF response r with the n × (n − k) parity check
matrix HT of an error correcting linear block code. This (n − k)-bit result is
called helper data h for r and can be used to correct a noisy version of r if
the number of bit errors is small enough. For our implementation, we use the
parity-check matrix of a [n = 255, k = 21, t = 55] BCH block code that can
correct up to t = 55 erroneous bits in a n = 255 bit PUF response, using a
(n− k) = 234-bit helper data vector. In case the probability of a single bit error
is 10%, then the probability of observing more than 55 errors in 255 response
bits (resulting in a decoding failure) will only happen with probability 10−7.82.
Due to the special structure of parity-check matrices of BCH codes, the matrix
multiplication can be efficiently implemented as an LFSR where the feedback
polynomial is determined by the BCH code and the feedback bit is added to the
next bit of the PUF response (Figure 4). The helper data must be sent from the
token to the verifier, which causes an entropy loss of the actual PUF response of
up to n−k bits. Assuming the PUF response has full entropy, there will be only
k = 21 bits of uncertainty left after observing the helper data. In order to obtain a
security level equivalent to a 128-bit key, we need at least �128/21� = 7 responses,
each 255 bits in length, and 7 corresponding helper data vectors. This leads to
an overall PUF response length of 7 · 255 = 1, 785 bits and an overall helper
data length of 7 · 234 = 1, 638 bits. The probability of an authentication failure
due to a decoding failure in one of the 7 blocks is 1 − (1 − 10−7.82)7 = 10−6.97.
This means that this prototype implementation of the protocol achieves a false
rejection rate of only one in approximately 10 million authentications. The final
building block of our prototype is the lightweight hash function SPONGENT [5],
which seems to be perfectly suited for resource-constrained tokens.
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Table 1. Implementation size of the reverse fuzzy extractor core and its components
when implemented on a Xilinx Virtex-5 FPGA (XC5VLX50)

Component Registers 6-LUTs

SPONGENT hash 146 160
Syndrome generator 234 235
Challenge expander 65 67
Controller 51 196

Complete RFE core 496 658

Table 1 provides the implementation size results when synthesizing our pro-
totype design for a field-programmable gate array (FPGA). The target device
is a Xilinx Virtex-5. The complete core (Figure 3) can be implemented using
496 one-bit flip-flops and 658 6-input lookup-tables (LUTs). We note that these
results can be further optimized by designing specifically for implementation on
FPGA. The HDL description of our design is platform independent.

6 Security Analysis

We now prove the security properties of our reverse fuzzy extractor construction
and mutual authentication scheme. In this context, we formalize all necessary
aspects and set up formal security definitions.

6.1 Security of the Reverse Fuzzy Extractor

Secure sketch. Let M be a metric space with n elements and distance metric dist.
Moreover, let C = {w1, . . . , wk} ⊆ M be an error correcting code with codewords
wi for 1 ≤ i ≤ k. Let d be the minimum distance and t be the error correcting
distance of C, which means that C can detect up to d, and correct up to t errors.
In this paper, we only consider linear binary block codes, where M = Fn

2 and dist
corresponds to the Hamming distance. These codes are commonly denoted as
[n, k, d] codes and it holds t = �(d − 1)/2�. Following [12], we formally define a
secure sketch as follows:

Definition 1. A (M,m,m′, t)-secure sketch is a pair of probabilistic polynomial
time algorithms Gen() and Rep() with the following properties: Gen() takes input
w ∈ M, which is chosen according to a distribution W on M, and returns a bit-
string h ∈ {0, 1}∗. Rep() takes inputs w′ ∈ M and h, and returns w′′ ∈ M.
Correctness ensures that w′′ = w if h = Gen(w) and dist(w,w′) ≤ t. The security
property guarantees that for any distribution W over M with min-entropy m, w
can be recovered from (a single) h = Gen(w) with at most probability 2−m′

.

Next, we specify the syndrome construction that has been informally discussed
in Section 3 and that has been shown to implement a secure sketch [12]:
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Definition 2. The syndrome construction is a (Fn
2 , n, k, t)-secure sketch (Defin-

ition1) that is based on a linear binary [n, k, d] error correcting block code. Gen(w)
computes h ← w ·HT , where H is the parity check matrix of the underlying code.
Rep(w′, h) computes w ← w′−e, where e is determined by decoding the syndrome
s = h− w′ ·HT using the decoding algorithm of the underlying code.

Note that helper data h = w ·HT corresponds to the syndrome of w. However,
since the syndrome construction does not require w to be a codeword, decoding h
may most likely fail. To overcome this problem, the reproduction algorithm Rep()
of the syndrome construction decodes the syndrome s = h− w′ ·HT = e ·HT .

Security definition of reverse fuzzy extractors. Similar to conventional fuzzy ex-
tractors, reverse fuzzy extractors should ensure that helper data does not leak
the full PUF response. However, for reverse fuzzy extractors this must hold
even when multiple different helper data for noisy variants of the same PUF
response are known. This has been formalized by Boyen [8] as outsider chosen
perturbation security, which is defined based on a security experiment between
an unbounded adversary A and a challenger CPS. In this experiment, A interacts
with the helper data generator Gen() of a secure sketch (Definition 1) and ob-
tains helper data for different wi = w + ei for a fixed but secret w and different
noise vectors (perturbations) ei that can be adaptively chosen by A. This allows
A to influence the noise, which in case of PUFs can be done by changing the
operating conditions such as ambient temperature or supply voltage. The out-
sider chosen perturbation security experiment is defined as follows: A sends a
description of distribution W over M to CPS, which then samples w ∈ M according
to W . Next, A interacts with Gen() and obtains an arbitrary number of helper
data hi = Gen(wi) for different wi = w + ei, where ei ∈ M can be adaptively
chosen by A with the only restriction that the Hamming weight of ei is less or
equal to t. Eventually, A returns a guess w∗ for w. A wins if w∗ = w. Based on
this security experiment, Boyen [8] sets up the following security definition:

Definition 3. A (M,m,m′, t)-secure sketch (Definition 1) is unconditionally se-
cure against adaptive outsider chosen perturbation attacks, if no unbounded ad-
versary A can win the outsider chosen perturbation security experiment with
probability greater than 2−m′

for any distribution W over M with min-entropy m.

Moreover, Boyen [8] shows that the at the syndrome construction achieves out-
sider chosen perturbation security:

Theorem 1. The syndrome construction (Definition 2) is unconditionally se-
cure against adaptive outsider chosen perturbation attacks (Definition 3).

We now state the security of our reverse fuzzy extractor construction:

Theorem 2. The reverse fuzzy extractor (Section 3) based on the syndrome con-
struction (Definition 2) is a (Fn

2 , n, k, t)-secure sketch (Definition1) that achieves
outsider perturbation security (Definition 3).

Proof (Sketch, Theorem 2). Note that Gen() and Rep() of the syndrome con-
struction and the the reverse fuzzy extractor based on the syndrome construction
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are identical. In fact, only the entities that execute Gen() and Rep() have been
switched. Hence, it is easy to see that the syndrome construction and the reverse
fuzzy extractor based on the syndrome construction are equivalent. Thus, since
the syndrome construction is a (Fn

2 , n, k, t)-secure sketch, the reverse fuzzy ex-
tractor based on the syndrome construction is also a (Fn

2 , n, k, t)-secure sketch.
Consequently, it follows from Theorem 1 that the reverse fuzzy extractor based
on the syndrome construction achieves outsider perturbation security. ��

6.2 Security of the Authentication Protocol

Correctness. Correctness means that, in case token T and verifier V are honest,
mutual authentication should be successful.

Definition 4. A mutual authentication scheme is correct, if an honest T always
makes an honest V accept, and an honest V always makes an honest T accept.

Theorem 3. The authentication scheme in Section 4.3 is correct, when based
on a PUF that generates responses of length n bits with at most t bit errors, and
a (Fn

2 , n, k, t)-secure sketch (Definition 1).

Proof (Sketch, Theorem 3). It is easy to see that the protocol in Section 4.3
is correct if Rep(r′i,Gen(ri)) = ri for all (ri, r

′
i). The correctness property of

the (Fn
2 , n, k, t)-secure sketch (Definition 1) ensures that Rep(r′i,Gen(ri)) = ri if

dist(ri, r
′
i) ≤ t. If the PUF generates responses of length n bits with a bit error

rate of at most ρ, then the probability of dist(r, r′) ≤ t can be expressed as
the cumulative binomial distribution in t with parameters ρ and n. Note that
t is chosen such that this probability, which is an upper bound for the false
rejection rate of the authentication, becomes very small. Hence, a (Fn

2 , n, k, t)-
secure sketch can then recover r from r′ with overwhelming probability. ��

Note that the implementation in Section 5 can handle PUFs with ρ ≤ 10%.
When both verifier and token are trusted, it achieves an authentication failure
rate of less than 10−6.97, which is acceptable for most commercial applications.

Token Authentication. Token authentication means that adversary A should not
be able to make a legitimate verifier V to accept A as a legitimate token T . Fol-
lowing [34,1], we formalize token authentication based on a security experiment,
where A must make an honest V to authenticate A as T . Hereby, A can arbi-
trarily interact with T and V , which both are simulated by a challenger CTA.
However, since in general it is not possible to prevent simple relay attacks, A is
not allowed to just forward all messages from T to V .2 This means that at least
some of the protocol messages that made V accept must have been computed
by A. More specifically, the token authentication experiment is as follows: CTA
initializes T and V . Then, CTA initializes A with the public system parameters.
2 Note that simple relay attacks can be mitigated by distance bounding techniques.

However, for simplicity we excluded relay attacks because the main focus of the
protocol is demonstrating the use of reverse fuzzy extractors.
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Next, A can arbitrarily interact with T and V that are simulated by CTA. Hereby,
A can eavesdrop on authentication protocol-runs between an honest T and an
honest V , and manipulate protocol messages exchanged between V and T . Fur-
ther, A can start authentication protocol-runs as V or T with CTA. A wins, if it
makes V accept after a polynomial (in l) number of queries to CTA.

Definition 5. An authentication scheme achieves μ-token authentication, if no
probabilistic polynomial time adversary A wins the token authentication experi-
ment with probability greater than 2−μ.

Theorem 4. The authentication scheme in Section 4.3 achieves k-token au-
thentication (Definition 5) in the random oracle model, when using the reverse
fuzzy extractor (Section 3) based on the syndrome construction (Definition 2).

In the following, we focus on the variant of our authentication scheme that uses
only one single challenge/response pair, i.e., where q = 1 (Section 4.3). The proof
can be easily extended for q > 1. Due to space restrictions we give only proof
sketches and provide detailed proofs in the full version of the paper [17].

Proof (Sketch, Theorem 4). We show that, if there is an adversaryA that violates
token authentication (Definition 5) with probability greater than 2−k, then A can
be transformed into an adversary B that violates outsider chosen perturbation
security of the reverse fuzzy extractor (Theorem 2). Note that, in the chosen
perturbation security experiment (Definition 3), B interacts with a helper data
generator oracle Gen() that, when queried with ej , returns hj = Gen(r + ej) for
a fixed but unknown r ∈ Fn

2 . Based on this Gen()-oracle, B simulates challenger
CTA of the token authentication security experiment (Definition 5) such that
A cannot distinguish between B and CTA. Hereby, A and B have access to the
same random oracle Hash(), and B records all queries x made by A to Hash()
and the corresponding responses Hash(x) in a list L. Since, A cannot distinguish
B from CTA, by assumption A violates token authentication (Definition 5) with
probability greater than 2−k. B uses L to extract r∗ = r from the protocol
message (h, a) generated by A that finally makes V accept. Note that, the random
oracle ensures that (x, a) ∈ L. Hence, B can extract r with probability greater
than 2−k, which contradicts outsider chosen perturbation security of the reverse
fuzzy extractor (Theorem 2). ��
Note that in practice, the success probability 2−μ (Definition 5) of A may depend
on the output length t of the hash function implementing the random oracle:
In case t < k A could simply guess the correct hash digest a with probability
2−t. For the implementation of the syndrome construction based reverse fuzzy
extractor (Section 5), we have t = 128 < k = 147, and thus μ = 128.

Verifier Authentication. Verifier authentication means that adversary A should
not be able to make an honest token T to accept A as a legitimate verifier V .
This is formalized by a verifier authentication security experiment between A
and a challenger CVA that is identical to the token authentication experiment
with the only difference that A wins, if A makes T accept after a polynomial
(in t and the bit length of PUF responses) number of queries.
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Definition 6. An authentication scheme achieves μ-verifier authentication, if
no probabilistic polynomial time adversary A wins the verifier authentication
experiment with probability greater than 2−μ.

Theorem 5. The authentication scheme in Section 4.3 achieves k-verifier au-
thentication (Definition 6) in the random oracle model, when using the reverse
fuzzy extractor (Section 3) based on the syndrome construction (Definition 2),
when the underlying PUF generates at least ρ bit errors each time it is evaluated.

Proof (Sketch, Theorem 5). We show that, if there is an adversary A that vi-
olates verifier authentication (Definition 6) with probability greater than 2−k,
then A can be transformed into an adversary B that violates outsider chosen
perturbation security of the reverse fuzzy extractor (Theorem 2). B simulates
challenger CVA of the verifier authentication security experiment (Definition 5)
based on the Gen()-oracle such that A cannot distinguish between B and CVA in
a similar way as in the proof of Theorem 4. Hereby, A and B have access to the
same random oracle, and B records all queries x made by A to Hash() and the
corresponding responses Hash(x) in a list L. Since, A cannot distinguish between
B and CVA, by assumption A violates verifier authentication (Definition 6) with
probability greater than 2−k. B uses L to extract r∗ = r from the protocol mes-
sage b generated by A that finally makes T accept. Note that, the random oracle
assumption ensures that (x, b) ∈ L, while the bit errors in the PUF responses
ensure that A cannot just replay an old b. Hence, B can extract r with proba-
bility greater than 2−k, which contradicts outsider chosen perturbation security
of the reverse fuzzy extractor (Theorem 2). ��

7 Related Work

One of the first proposals of using PUFs in RFID systems is by Ranasinghe
et al. [32], who propose storing a set of PUF challenge/response pairs (CRPs)
in a database that can later be used by RFID readers to identify a token. The
idea is that the reader queries the PUF of the token with a random challenge
from the database and verifies whether the response of the token is similar to the
database entry. One problem of this approach is that CRPs cannot be re-used
since this enables replay attacks. Hence, the number of token authentications
is limited by the number of CRPs in the database. This scheme has been im-
plemented and analyzed by Devadas et al. [10]. Holcomb et al. [18] present a
similar scheme based on an SRAM-PUF on RFID chips. Another approach to
PUF-based authentication by Bolotnyy and Robins [6] aims to prevent unautho-
rized tracking of tokens. A major drawback of their scheme is that tokens can
only be authenticated a limited number of times without being re-initialized,
which enables denial-of-service attacks.

Tuyls and Batina [38] propose using a PUF to reconstruct the authentication
secret of a token whenever it is needed instead of storing it in secure non-volatile
memory. Since the key is inherently hidden in the PUF, obtaining the key by
hardware-related attacks is supposed to be intractable. However, the scheme
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proposed by Tuyls and Batina [38] relies on public-key cryptography, which is
still much too expensive for low-cost RFID tokens. Several other authentication
schemes for RFID exist that use PUF-based key storage to protect against unau-
thorized tracking of tokens [9,34] and relay attacks [19]. However, these schemes
require the expensive decoding operation of a fuzzy extractor to be implemented
on the token, which is too expensive for low-cost RFIDs.

8 Conclusion

We presented a new lightweight PUF-based authentication scheme providing
mutual authentication of RFID tokens and readers. Our scheme is resistant to
emulation attacks, supports an unlimited number of token authentications, and
does not require the reader to store a large number of PUF challenge/response
pairs. Furthermore, we introduce the concept of reverse fuzzy extractors, a novel
approach to correct noise in PUF responses moving the computationally expen-
sive error correction process from the resource-constrained PUF-enabled token to
the more powerful RFID reader. Reverse fuzzy extractors are applicable to device
authentication and PUF-based key storage (where the key is used to communi-
cate with an external entity) and can significantly reduce the area costs of secure
PUF implementations. Future work includes a highly optimized implementation
of our scheme and developing lightweight privacy-preserving authentication pro-
tocols based on PUFs and reverse fuzzy extractors.
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Abstract. In the standard definition of a commitment scheme, the
sender commits to a message and immediately sends the commitment to
the recipient interested in it. However the sender may not always know
at the time of commitment who will become interested in it. Further,
when the interested party does emerge, it could be critical to establish
when the commitment was made. Employing a proof of work protocol
at commitment time will later allow anyone to “carbon date” when the
commitment was made, approximately, without trusting any external
parties. We present CommitCoin, an instantiation of this approach that
harnesses the existing computational power of the Bitcoin peer-to-peer
network; a network used to mint and trade digital cash.

1 Introductory Remarks

Consider the scenario where Alice makes a discovery. It is important to her that
she receives recognition for her breakthrough, however she would also like to
keep it a secret until she can establish a suitable infrastructure for monetizing
it. By forgoing publication of her discovery, she risks Bob independently making
the same discovery and publicizing it as his own.

Folklore suggests that Alice might mail herself a copy of her discovery and
leave the letter sealed, with the postal service’s timestamp intact, for a later
resolution time. If Bob later claims the same discovery, the envelope can be
produced and opened. In reality, this approach does not work as (among other
shortcomings) most postal services are pleased to timestamp and deliver unsealed
empty envelopes that can be retroactively stuffed with “discoveries.”

In our approach, Alice will use a commitment scheme to put the discovery in
a “digital envelope” which can be opened at some later time, but only by Alice.
Alice can safely disclose the commitment value to anyone, but she does not know
ahead of time that Bob will rediscover her breakthrough. Alice might attempt to
reach Bob by broadcasting the commitment value to as many people as possible
or she might have a trusted/distributed third party timestamp it, however she
is neither guaranteed to reach Bob, nor choose a party that Bob will trust.
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Instead we show that Alice can produce a commitment and later convince Bob
that the commitment was made at roughly the correct time, premised on the
assumption that she does not have unusual computational power. We call this
“carbon dating.” We show a general approach to carbon dating using moderately
hard puzzles and then propose a specific instantiation. CommitCoin harnesses
the existing processing power of the Bitcoin network without trusting it, and is
designed to leave the commitment value evident in the public Bitcoin transcript
in a way that does not destroy currency. We use CommitCoin to augment the
verifiability of a real-world election.

2 Preliminaries and Related Work

Commitment Schemes. Briefly, Comm(m, r) takes message m and randomness
r and produces commitment c. Open(c,m, r) takes the commitment and pur-
ported message and returns accept iff c is a valid commitment to m. Commit-
ments should be binding and hiding. Respectively, it should be hard to find any
〈m1,m2, r〉 where m1 	= m2 such that Open(Comm(m1, r),m2, r) accepts, and it
should be hard to find any 〈m, r〉 given c such that Open(c,m, r) accepts.

Secure Time-Stamping. Secure time-stamping [18] is a protocol for preserving
the chronological order of events. Generally, messages are inserted into a hash
chain to ensure their relative temporal ordering is preserved under knowledge
of any subsequent value in the chain. The chain is constructed by a distributed
time-stamping service (TSS) and values are broadcast to interested participants.
Messages are typically batched into a group, using a hash tree [4,3,7,27] or an
accumulator [5], before insertion in the chain. Time-stamping is a mature field
with standardization1 and commercial implementations.

A secure timeline is a “tamper-evident, temporally-ordered, append-only se-
quence” of events [24]. If an event Eti occurs at time ti, a secure timeline can
only establish that it was inserted after Eti−1 was inserted and before Eti+1 was.
To determine ti by consulting the chain, one must either trust the TSS to vouch
for the correct time, or, to partially decide, trust a recipient of a subsequent
value in the chain to vouch for when that value was received (if at tj , we can
establish ti < tj). However should conflicting values emerge, implying different
hash chains, there is no inherent way to resolve which chain is correct beyond
consensus.

Non-Interactive Time-Stamping. An approach closely related to carbon dating
is non-interactive time-stamping [25]. In such a scheme, stampers are not required
to send any message at stamping time. The proposed scheme is in the bounded
storage model. At each time interval, a long random bitstring is broadcast to all
parties. Stampers store a subset that is functionally dependent on the message
they are time-stamping. Verifiers also captured their own subset, called a sketch,
at every time interval. This allows verification of the timestamp by anyone who
1 ISO IEC 18014-3; IETF RFC 3161; ANSI ASC X9.95.
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is participating in the protocol, but not by a party external to the protocol. By
contrast, our notion of carbon dating allows verification by anyone but is not
necessarily non-interactive.

Proof of Work. The literature considers applications of moderately hard func-
tions or puzzles that take a certain amount of computational resources to solve.
These are variably called pricing [14], timing [15], delaying [17], or cost [16,2] func-
tions; and time-lock [29,6,22] or client [20,1,12,32,33,13,31,10,30] puzzles. Proof
of work is sometimes used as an umbrella term [19]. Among other applications,
proof of work can be used to deter junk email [14,16] and denial of service at-
tacks [20,12,2,32,33], construct time-release encryption and commitments [29,6],
and mint coins in digital currencies [28,2,26].

We consider proof of work as three functions: 〈Gen, Solve,Verify〉. The gener-
ate function p = Gen(d, r) takes difficulty parameter d and randomness r and
generates puzzle p. The solve function s = Solve(p) generates solution s from p.
Solve is a moderately hard function to compute, where d provides an expecta-
tion on the number of CPU instructions or memory accesses needed to evaluate
Solve. Finally, verification Verify(p, s) accepts iff s is a correct solution to p.

Time-Stamping & Proof of Work. Bitcoin is a peer-to-peer digital currency
that uses secure time-stamping to maintain a public transcript of every transac-
tion [26]. However new events (groups of transactions) are appended to the hash
chain only if they include the solution to a moderately hard puzzle generated
non-interactively from the previous addition. Peers compete to solve each puzzle
and the solver is awarded newly minted coins. A secure timeline with proof of
work provides a mechanism to both limit the creation of new currency and to
make it computationally difficult to change a past event and then catch up to
the length of the original chain (peers accept the longest chain as canonical).

3 Commitments with Carbon Dating

A protocol for carbon dating commitments is provided in Protocol 1. It is a
natural application of proof of work protocols but one that does not seem to have
been specifically noted in the literature before.2 Alice commits to a message m
and instantiates a puzzle p based on the commitment value c that will take, on
expectation, Δt units of time to solve. Alice begins solving p. Should a new party,
Bob, become interested in when c was committed to, Alice will later produce
the solution s. When given s, Bob concludes that p, and thus c, were created
Δt time units before the present time. Since p will not take exactly Δt to solve,
there is some variance in the implied instantiation time. We consider the case
where Bob is only interested in whether the commitment was made well before
a specific time of interest, which we call the pivot time.

If useful, a few extensions to Protocol 1 are possible. It should be apparent
that carbon dating can be used for any type of sufficiently random message
2 Concurrent to the review of this work, it is independently proposed and studied [23].
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PROTOCOL 1 (Commitments with Carbon Dating)

Input: Alice has message m at t1.
Output: Bob decides if m was known by Alice prior to pivot time t2.
The protocol:
1. Pre-instantiation: At t0, Alice commits to m with randomness r by com-

puting c = Comm(m, r). She then generates puzzle based on c with diffi-
culty d (such that the time to solve it is approximately Δt) by computing
p = Gen(d, c). She outputs 〈c, p〉.

2. Instantiation: At t1, Alice begins computing s = Solve(p).
3. Resolution: At t3 = t1 + Δt, Alice completes s = Solve(p) and outputs

〈s,m, r〉. Bob checks that both Verify(s,Gen(d, c)) and Open(c,m, r) accept.

If so, Bob decides if t3 −Δt
?� t2

(e.g., plaintexts, ciphertexts, signatures, etc.) by replacing c in Gen(d, c) with the
message. Second, the commitment can be guaranteed to have been made after a
given time by, e.g., including recent financial data in the puzzle instantiation [11].
Finally, the resolution period can be extended by instantiating a new puzzle with
the solution to the current puzzle (assuming the puzzles are entropy-preserving;
see [17] for a definition of this property).3

3.1 Puzzle Properties

For carbon dating, we require the proof of work puzzle to have specific properties.
Consider two representative proof of work puzzles from the literature (and recall
c is the commitment value and d is a difficulty parameter). The first puzzle
(Prs), based on repeated squaring, is to compute Solve(d, c,N) = c2

d

mod N
where N = q1q2 for unknown large primes q1 and q2, and 2d � N [29,6,21]. The
second puzzle (Ph), based on hash preimages, is to find an x such that y = H(c, x)
has d leading zeros (where H is a cryptographic hash function)4 [16,1,2,26]. We
contrast the properties of Prs and Ph with the properties of an ideal puzzle scheme
for carbon dating (Pcd).

Pcd should be moderately hard given a sufficiently random c as a parameter.
Prs requires d modular multiplications and Ph requires 2d−1 hashes on average.
Neither precomputation, amortizing the cost of solving many puzzles, or par-
allelization should be useful for solving Pcd. Parallelization is useful in solving
Ph, while Prs is by design inherently sequential. Verify in Pcd should be efficient for

3 It may be preferable to solve a chain of short puzzles, rather than a single long
puzzle, to allow (by the law of large numbers) the average solution time to converge
and to reduce the amount of time Bob must wait for the solution.

4 Let H : {0, 1}∗ → {0, 1}m. Then for d ≤ m, find any x such that y ∈
({0}d‖{0, 1}m−d).
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anyone. This is the case in Ph but not Prs, where efficient verification requires
knowing the factorization of N ,5 making Prs useful only when the puzzle creator
and solver are different parties.6 When surveying the literature, we found that
like Prs and Ph, each type of puzzle is either parallelizable or only verifiable by
the puzzle creator. Designing a non-interactive, non-parallelizable puzzle appears
to be an open problem.

Finally, we require a few properties specific to our scheme. It should be hard to
choose c such that the puzzle is not moderately hard. Given s = Solve(Gen(d, c))
and s′ = Solve(Gen(d, c′)), it should be hard to find any pair of puzzles such that
s = s′. Further, it should not be efficient to convert 〈s, c〉 into 〈s′, c′〉.

3.2 Limitations

Aside from a good candidate for Pcd, the primary limitation to Protocol 1 is
that the implied instantiation time is fuzzy. Carbon dating is best when the
ratio between instantiation-to-pivot and pivot-to-resolution is maximized but the
timing of the pivot is often unknowable. Another limitation is that Alice could
commit to many different messages but only claim one. This excludes carbon
dating (and non-interactive time-stamping) from, e.g., predicting election results
or game outcomes. Generally, the scheme only works for accepting a committed
message from an exponentially large set. A final limitation is that Alice must
devote a CPU to solely solving the problem for a long period of time. We address
this last limitation with CommitCoin, and then latter provide an example where
the first two limitations are not as applicable.

4 Carbon Dating with Bitcoin

Bitcoin is a peer-to-peer digital currency. A simplification of the scheme is as
follows. Participants are identified by a public signing key. A transaction includes
a sender, receiver, and amount to be transferred (units of bitcoins are denoted
BTC), and it is digitally signed by the sender and broadcast to the network.
Transactions are batched together (into a “block”) and then appended to a hash
chain (“block chain”) by solving the Ph hash puzzle on the block (d = 53 bits
currently). The first node to broadcast a solution is awarded newly minted coins
(currently 50 BTC) plus any transaction fees (currently optional). At the time of
writing, one large Bitcoin mining pool, Deepbit, reports being able to compute 242
hashes/second, while the network solves a puzzle on average every 10 minutes.7

5 The totient of N serves as a trapdoor: compute δ = 2d mod φ(N) and then
s = cδ mod N .

6 Alice could use Ph with the smallest unfactored N from the RSA challenges. Assum-
ing continued interest in factoring these numbers, Alice’s solution will eventually be
verifiable. However she risks (a) it being factored before she solves the puzzle or (b)
it never being factored at all. It also assumes non-collusion between Alice and RSA
(assuming they know the factors).

7 http://deepbit.net; http://blockexplorer.com/q/interval

http://deepbit.net
http://blockexplorer.com/q/interval
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PROTOCOL 2 (CommitCoin)

Input: Alice has message m, key pair 〈sk, pk〉 associated with a Bitcoin account.
Without loss of generality the account has a balance of >2 BTC.
Output: The Bitcoin block chain visibly containing the commitment to m.
The protocol:
1. Pre-instantiation: At t0, Alice does the following:

(a) Alice commits to m with randomness r by computing c = Comm(m,r).
(b) Alice generates new temporary key pair 〈sk′, pk′〉 with sk′ = c.

2. Instantiation: At t1, Alice does the following:
(a) Alice generates transaction τ1 = 〈pk → pk′, 2〉 to send 2 BTC from pk

to pk′ and signs it with randomness ρ: σ1 = Signsk(τ1, ρ). She outputs
〈τ1, σ1〉 to the Bitcoin network.

(b) Alice generates transaction τ2 = 〈pk′ → pk, 1〉 to send 1 BTC from pk′

back to pk and signs it with randomness ρ′: σ2 = Signsk′(τ2, ρ
′). She

outputs 〈τ2, σ2〉 to the Bitcoin network.
3. Tag & Open: At t2, after τ1 and τ2 have been finalized, Alice generates

transaction τ3 = 〈pk′ → pk, 1〉 to send the remaining 1 BTC from pk′ back to
pk and signs it with the same randomness ρ′: σ3 = Signsk′(τ3, ρ

′). She outputs
〈τ3, σ3〉 to the Bitcoin network.

4. Extraction: At t3, Bob can recover c by extracting sk′ from σ2 and σ3.

Remark: For simplicity we do not consider transaction fees.

4.1 CommitCoin Protocol

If Alice can put her commitment value into a Bitcoin transaction, it will be
included in the chain of puzzles and the network will provide carbon dating
without Alice having to perform the computation herself. Bob only has to trust
that Alice cannot produce a fraudulent block chain, longer than the canonical
one and in less time. This idea has been considered on the Bitcointalk message
board8in the context of the distributed network vouching for the timestamp.
Our observation is that even if you do not trust the timestamp or any node in
the network, the proof of work itself can be used to carbon date the transaction
(and thus commitment value).

In a Bitcoin transaction, Alice has control over several parameters including
her private key(s), her public key(s), and the randomness used in the signature
algorithm which, importantly, is ECDSA. If she sets the receiver’s public key9to
be her commitment value c and sends 1 BTC to it, the 1 BTC will be unrecov-
erable (akin to burning money). We consider this undesirable for two reasons:
(a) it is financially wasteful for Alice and (b) it is not being a good citizen of the
Bitcoin community.

8 http://goo.gl/fBNnA
9 Technically, it is a fingerprint of the public key.

http://goo.gl/fBNnA
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By setting c equal to a private key or the signature randomness and following
the protocol, c itself will never directly appear in the transcript. To get around
this, Alice sets c to the private key of a new account and then purposely leaks
the value of the private key by signing two different transactions with the same
randomness. The CommitCoin protocol is given in Protocol 2. Since c is random-
ized, it has sufficient entropy to function (temporarily) as a secret key. A few
bits of the secret key could be used as a pointer (e.g., URL) to a place to post
the opening of the commitment.

4.2 Implementation and Use with Scantegrity

An interesting application of carbon dating is in end-to-end verifiable (E2E)
elections. Scantegrity is an election system where the correctness of the tally can
proven unconditionally [9], however this soundness relies, in part, on commit-
ments made prior to the election. If a corrupt election authority changed the
pre-election commitments after the election without being noticed, an incorrect
tally could be made to verify. It is natural to assume that many people may only
become interested in verifying an election after it is complete. Since the pivot
(election day) is known, the commitments can be made well in advance, reducing
the uncertainty of the carbon dating protocol. Moreover, owing to the design of
Scantegrity, invalid commitments will only validate negligibly, ruling out precom-
mitting to many possible values as an attack. Scantegrity was used in the 2011
municipal election in Takoma Park, MD (for a second time [8]) and CommitCoin
was used to provide carbon dating of the pre-election commitments.10
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Abstract. Bitcoin is a distributed digital currency which has attracted a substan-
tial number of users. We perform an in-depth investigation to understand what
made Bitcoin so successful, while decades of research on cryptographic e-cash
has not lead to a large-scale deployment. We ask also how Bitcoin could become
a good candidate for a long-lived stable currency. In doing so, we identify several
issues and attacks of Bitcoin, and propose suitable techniques to address them.

1 Introduction

Bitcoin is a decentralized electronic cash system initially designed and developed by
Satoshi Nakamoto (whose name is conjectured to be fake by some, and who has not
been heard from since April 2011). The design of Bitcoin was first described in a self-
published paper by Nakamoto [14] in October 2008, after which an open-source project
was registered on sourceforge. The genesis block was established on January 3rd 2009,
and the project was announced on the Cryptography mailing list on January 11th 2009.

Since its invention, Bitcoin has gained amazing popularity and much attention from
the press. At the time of the writing, approximately 7M Bitcoins are in circulation;
approximately USD $2M to $5M worth of transactions take place each day in Bitcoin;
and about eighteen Bitcoin exchanges exist offering exchange services with many real
world currencies, (e.g., EUR, USD, CAD, GBP, PLN, JPY, HKD, SEK, AUD, CHF,
and so on). Bitcoin’s exchange rate has varied widely, reaching as high as USD $30 per
Bitcoin although at the time of writing is around USD $5 per Bitcoin.

Despite some pessimists’ critiques and disbelief, Bitcoin has admittedly witnessed
enormous success since its invention. To the security and cryptographic community,
the idea of digital currency or electronic cash is by no means new. As early as 1982,
Chaum has outlined his blueprint of an anonymous e-cash scheme in his pioneering pa-
per [10]. Ever since then, hundreds of academic papers have been published to improve
the efficiency and security of e-cash constructions — to name a few, see [15,8,9].

Naturally, an interesting question arises: Despite three decades’ research on e-cash,
why have e-cash schemes not taken off, while Bitcoin — a system designed and initially
implemented possibly single-handedly by someone previously unknown, a system that
uses no fancy cryptography, and is by no means perfect — has enjoyed a swift rise to
success? Looking forward, one also wonders: Does Bitcoin have what it takes to become
a serious candidate for a long-lived stable currency, or is it yet another transient fad?
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Intrigued by these questions, we investigated Bitcoin’s design and history, and came
to many interesting realizations. We therefore present this paper to the (financial) cryp-
tography research community, with the following goals and expectations:

1. To investigate the Bitcoin phenomenon, and achieve a deeper understanding of the
crucial factors underlying its success, especially compared to other e-cash schemes.

2. To scrutinize the design of Bitcoin and analyze its strengths and weakness, in order
to expose and anticipate potential attacks, and focus investigation on key issues;

3. To suggest redesigns, improvements, or extensions, such as, e.g., our fail-safe mixer
protocol that requires no third-party and no system modification (Section 7).

4. To pose open research problems stemming from our broad reflections on Bitcoin;
5. Last but not least, to bring Bitcoin to the attention of the cryptography research

community, to encourage it to reflect on its success, and draw lessons therein.

2 The Intriguing Success of Bitcoin: A Comparative Study

As mentioned earlier, despite three decades’ research on e-cash by the cryptographic
community [10,15,8,9], all these efforts seem to have been dwindled by the swift suc-
cess of Bitcoin. Has Nakamoto, a single individual whose name previously unheard of,
outsmarted the ingenuity of all the cryptographers combined? Bitcoin is by no means
perfect and some well-known problems are discussed later on. So what is it in Bitcoin
that has ensured its success?

After an in-depth investigation of Bitcoin, we found that although Bitcoin uses no
fancy cryptography, its design actually reflects a suprising amount of ingenuity and so-
phistication. Most importantly, it addresses the incentive problems most expeditiously.

No Central Point of Trust. Bitcoin has a completely distributed architecture, without
any single trusted entity. Bitcoin assumes that the majority of nodes in its network are
honest, and resorts to a majority vote mechanism for double spending avoidance, and
dispute resolution. In contrast, most e-cash schemes require a centralized bank who is
trusted for purposes of e-cash issuance, and double-spending detection. This greatly ap-
peals to individuals who wish for a freely-traded currency not in control by any govern-
ments, banks, or authorities — from libertarians to drug-dealers and other underground
economy proponents (note that apart from the aforementioned illegal usages, there are
numerous legitimate uses as well, which will be mentioned later). In a spirit similar
to the original motivation for a distributed Internet, such a purely decentralized system
guarantees that no single entity, no matter how initially benevolent, can succumb to the
temptation or be coerced by a government into subverting it for its own benefit.

Incentives and Economic System. Bitcoin’s eco-system is ingeniously designed, and
ensures that users have economic incentives to participate. First, the generation of new
bitcoins happens in a distributed fashion at a predictable rate: “bitcoin miners” solve
computational puzzles to generate new bitcoins, and this process is closely coupled with
the verification of previous transactions. At the same time, miners also get to collect
optional transaction fees for their effort of vetting said transactions. This gives users
clear economic incentives to invest spare computing cycles in the verification of Bitcoin
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transactions and the generation of new Bitcoins. At the time of writing the investment
of a GPU to accelerate Bitcoin puzzle solution can pay for itself in ∼6 months.

Predictable Money Supply. Bitcoin makes sure that new coins will be minted at a
fixed rate, that is, the larger the Bitcoin community and the total computational resource
devoted to coin generation, the more difficult the computational puzzle becomes. This
provides strong incentives for early adopters — the earlier in the game, the cheaper
the coins minted. (In a later section we discuss negative consequences that the adopted
money supply schedule will have, in the long term, on value, incentives, and security.)

Divisibility and Fungibility. One practical appeal of Bitcoin is the ease with which
coins can be both divided and recombined to create essentially any denomination pos-
sible. This is an Achilles’ heel of (strongly anonymous) e-cash systems, because denom-
inations had to be standardized to be unlinkable, which incidentally makes the compu-
tational cost of e-cash transactions linear in the amount. In Bitcoin, linkage is inherent,
as it is what prevents double spending; but it is the identities that are “anonymous”.

Versatility, Openness, and Vibrancy. Bitcoin is remarkably flexible partly due to its
completely distributed design. The open-source nature of the project entices the cre-
ation of new applications and spurs new businesses. Because of its flexibility and open-
ness, a rich extended ecosystem surrounding Bitcoin is flourishing. For example, mixer
services have spawned to cater to users who need better anonymity guarantees (see Sec-
tion 7 for details). There are payment processor services that offer gadgets venders can
embed in their webpages to receive Bitcoin payments alongside regular currency.

Scripting. Another salient and very innovative feature is allowing users (payers and
payees) to embed scripts in their Bitcoin transactions. Although today’s reference im-
plementations have not fully utilized the power of this feature, in theory, one can realize
rich transactional semantics and contracts through scripts [2], such as deposits, escrow
and dispute mediation, assurance contracts, including the use of external states, and so
on. It is conceivable that in the future, richer forms of financial contracts and mecha-
nisms are going to be built around Bitcoin using this feature.

Transaction Irreversibility. Bitcoin transactions quickly become irreversible. This at-
tracts a niche market where vendors are concerned about credit-card fraud and charge-
backs. Through personal communication with a vendor selling specialty magazines, he
mentioned that before, he could not conduct business with customers in certain coun-
tries where credit-card fraud prevails. With Bitcoin, he is able to extend his business to
these countries due to the protection he obtains from the irreversibility of transactions.

Low Fees and Friction. The Bitcoin verifiers’ market currently bears very low transac-
tion fees (which are optional and chosen by the payer); this can be attractive in micro-
payments where fees can dominate. Bitcoin is also appealing for its lack of additional
costs traditionally tacked upon international money transfers, due to disintermediation.

Readily Available Implementations. Last but not the least, in comparison with other e-
cash schemes, Bitcoin has provided readily available implementations, not only for the
desktop computer, but also for mobile phones. The open-source project is maintained
by a vibrant community, and has had healthy developments.
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3 Under the Hood of the Bitcoin System

Bitcoin is based on a peer-to-peer network layer that broadcasts data to all nodes on
the network. There are two types of object that are broadcast: transactions and blocks.
Both object types are addressed by a hash of the object data, and are broadcast through
the network to all nodes. Transactions are the operations whereby money is combined,
divided, and remitted. Blocks record the transactions vetted as valid.

Spending. Suppose that Alice wishes to remit 1 bitcoin to Bob and 2 to Carol. Alice’s
coins “reside” in prior transactions that designate her public key as beneficiary. To spend
coins, Alice creates a new transaction that endorses any such coins she has not spent
yet, e.g., she can endorse, using a digital signature, 4 coins each received from Diane
and Edgar as the inputs of her new transaction. As outputs she specifies 1 coin for Bob,
2 for Carol, and 4.99 of “change” back to herself. In this example, Alice chose to leave
a residual of 0.01 coin, which can be claimed as a fee by whoever vets it first.

Vetting. In order for a transaction to be confirmed, its various components must be
validated and checked against double spending. Once verified, transactions are incor-
porated in frequently issued official records called blocks. Anyone is allowed to create
such blocks, and indeed two sorts of incentives are offered to attract verifiers to compete
for block creation: (1) the collection of fees; and (2) the minting of new coins.

Minting. The bitcoin money supply expands as each block created may contain a spe-
cial generation transaction (with no explicit input) that pays the block creator a time-
dependent amount for the effort (50 coins today, rapidly decreasing). The rate of block,
hence money, creation is limited by a proof of work of adaptive difficulty, that strives to
maintain a creation rate of one block every 10 minutes across the whole network. Bit-
coin transaction verification is thus a lucrative race open to all, but a computationally
expensive one. Note: “bad” blocks will be rejected by peers, invalidating their rewards.

3.1 Transactions and Scripting: The Tools for Spending

One of the main powers of the Bitcoin system is that the input and output of transactions
need not have a fixed format, but rather are constructed using a Forth-like stack-based
flexible scripting language. We remark that transaction principals are not named users
but anonymous public keys, which users may freely create in any number they wish.

Transactions. Transaction encapsulate the movement of bitcoins by transfering the
value received from its inputs to its outputs (exception: generation transactions have
no explicit input at all). An input identifies a previous transaction output (as the hash
of the earlier transaction and an index to an output within it), and claims its full value.
An output specifies an amount; the outputs’ total must not exceed the inputs’. Both also
contain fragments of executable script, on the input side for redeeming inflows, and on
the output side for designating payees.

Script Fragments. The scripting language is a Forth-like stack-based language. Oper-
ators include cryptographic operations like SHA1 (which replaces the top item on the
stack with its hash), and CHECKSIG (which pops an ECDSA public key and signature
from the stack, verifies the signature for a “message” implicitly defined from the trans-
action data, and leaves the result as a true or false on the stack). For a transaction to be
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valid, its outputs must not exceed its inputs, and its issuer must show title to each input
claimed. Title is tested by evaluating the input script fragment concatenated with the
script fragment from the output (of an earlier transaction) that the input references.

Standard Transfer. To illustrate how the stack-based scripting language can be used,
among other things, to designate and enforce the recipient of a transfer, we study the ex-
ample of the standard Bitcoin transaction used for transfer. To send coins to an address
stated as the hash of a public key, the payer, Alice, creates a transaction output with
the following associated script fragment (recall that since the amount is specified in a
special record associated with the output; the script only needs to enforce the recipient):

DUP HASH160 <recipient-address> EQUALVERIFY CHECKSIG (�)
The recipient, Bob, will notice the remittance (since it is broadcast to all), and mark it
for spending. Later on, to spend those received coins, he creates a transaction with an
input that redeems them, and an output that spends them. The redeeming input script is:

<signature> <public-key> (��)
Bob will have managed to spend coins received from Alice if his redemption is valid.
This is checked by executing the concatenated script (�, ��): the input fragment (�)
pushes a signature and a key on the stack; the output fragment (��) checks that the key
hash matches the recipient, and checks the signature against transaction and key.

3.2 Blocks and Coin Creation: The Process of Verifying

Transactions become effective after they have been referenced in a block, which serve as
the official record of executed transactions. Transactions may only be listed in a block
if they satisfy such conditions as valid timestamping and absence of double spending.

Blocks. A block consists of one “coinbase” minting transaction, zero or more regular
spending transactions, a computational proof of work, and a reference to the chronologi-
cally prior block. Thus the blocks form a singly linked blockchain, rooted in Nakamoto’s
genesis block whose hash is hardcoded in the software. The regular creation of new
blocks serves the dual purpose of ensuring the timely vetting of new transactions, and
the creation of new coins, all in a decentralized process driven by economic incentives
(the minting of new coins and the collection of fees) balanced by computational costs.
The difficulty of the required proof of work is adjusted by a feedback mechanism that
ensures an average block creation interval of 10 minutes across the entire network.

Coinbase. Currently, each new block may contain a coinbase transaction with an im-
plicit input value of 50 coins, with about 7M already minted as of this writing. The
minting rate is slated to decrease shortly, eventually to reach zero when the total supply
reaches about 21M bitcoins. The coinbase transaction also serves to claim all the fees in
the transactions collected in the block. Both minting and fees motivate people to create
blocks and hence keep the system alive.

3.3 Forking and Conflict Resolution

If two blocks are published nearly simultaneously, a fork in the chain can occur. Nodes
are programmed to follow the blockchain whose total proof-of-work difficulty is the
largest and discard blocks from other forks. Transactions on the discarded branch will
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eventually be collected into blocks on the prevailing branch. This mechanism ensures
that one single ordering of transactions becomes apparent and accepted by all (although
it may take a few blocks’ time to become clear), and hence this solves the double-
spending problem.

4 Structural Problems and Potential Solutions

Whether by accident or by design, the Bitcoin system as presently parameterized defines
a currency with extreme deflationary characteristics built into it. Currently coins are
minted by verifiers (i.e., block creators, or “miners”) as an incentive to keep the Bitcoin
ecosystem running, but minting is poised to expire gradually, and rather soon, resulting
in a hard cap on the coins total. Moreover, coins whose private key has been forgotten or
destroyed — let us call them zombie coins — can never be replaced, resulting in further
shrinkage of the money base. For perspective, of the 21M coins maximum, 7M have
already been minted; and of those, tens of thousands have reportedly become zombies.

Aside from economic considerations that have been discussed at length [4], The
potential deflationary spiral in a decentralized system like Bitcoin has security implica-
tions that should not be neglected.

4.1 Deflationary Spiral

In capped supply, bitcoins have no alternative but to appreciate tremendously should the
system ever gain more than marginal acceptance. Even in a “mature market” scenario
with, say, a stable 1% of the US GDP transacted in BitCoins and 99% in dollars, the real
purchasing power of coins would still increase over time, as each coin would capture
a correspondingly constant fraction of the country’s growing wealth. Put in another
way, while the Federal Reserve can increase the number of dollars in circulation to
accommodate economic growth, in a Bitcoin economy the only outlet for growth would
be appreciation of the currency. While it has been observed that the money supply cap
could lead to a severe deflationary spiral [4], it is quite a paradox that the intrinsic
strength of the Bitcoin currency could be its greatest weakness, causing an even more
catastrophic unraveling than through “mere” deflation.

Hoarding: A Moral Hazard? Bitcoins much more than any other currency in existence
derive their value from the presence of a live, dynamic infrastructure loosely constituted
by the network of verifiers participating in block creation. Because of their appreciation
potential, bitcoins will tend to be saved rather than spent. As hoarded bitcoins vanish
from circulation, transaction volume will dwindle and block creation will become less
profitable (fewer fees to collect). If circulation drops too much, it can precipitate a loss
of interest in the system, resulting in “bit rot” and verifier dearth, until such point that
the system has become too weak to heal and defend itself. Of particular concern is an
unavoidable large-scale fraud that we describe in the next section, and whose aftermath
includes sudden loss of confidence, collapse of value, and repudiation.

Towards Decentralized Organic Inflation. An antidote to the preceding predicament
could take the form of a Bitcoin-like electronic currency with a decentralized inflation-
ary feedback built-in, that could control the global minting rate based, e.g., on transac-
tion volume statistics. While we leave the devising of monetary parameters for such an
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“organically inflationary” currency as an open problem, we show next how deflationary
expectations negatively impact the long-term structural security of the Bitcoin system.

4.2 Doomsday, or the “History-Revision” Attack

In the Bitcoin world, transactions are irrevocably valid once they are incorporated into
the ever growing Block Chain, insofar as they do not end up in the discarded branch
of a fork. As previously described, short-lived forks may arise, but tend to be quickly
resolved per the rule that the chain whose “total difficulty” is the greatest, prevails.
Most forks are benign, causing the few transactions on the wrong side of the fork to be
delayed — merely a temporary rejection, unless double spending was attempted.

This approach works well, under the crucial assumption that no attacker should ever
be able to muster so much computational power that it is able to fake and publish an
“alternative history”, created ex post facto, that has greater total difficulty and hence
is more authoritative than the actual history. In such event, the forking rules would
cause the actual history to be discarded in favor of the alternative history, from the
forking point onwards. We designate this as the history-revision attack. In the extreme
case where the fork is made near time zero, a history-revision attacker would cause the
entire coin base ever created to be replaced with a figment of its forgery.

One may take solace in the ludicrous amount of computing power that, one might
hope, such a history-revision attack would require. Alas, the threat is very real — owing
both to technical and monetary characteristics of Bitcoin.

Technical Vulnerability. The attack’s feasibility stems from Moore’s law, which em-
pirically posits that computation power per unit cost is doubling every year or so. As-
suming a stable population of verifiers, the block difficulty parameter (set by the system
to maintain a block creation mean interval of 10 minutes) is thus an exponential func-
tion of time, f(t) = α et/τ . The total difficulty of the block chain at any point in time is
thus approximated by the integral F (t) =

∫ t

t0
f(t′)dt′ ∝ f(t). It follows that, regard-

less of the block chain’s length, an attacker that can muster a small multiple (say 2×) of
the computation power of the legitimate verifiers together, and starting an attack at time
t = t1, will be able to create an entire alternative history forked at the origin time t0,
whose total difficulty F ′(t) overtakes F (t) at some future time t = t2, where the attack
length Δt = t2 − t1 is bounded by a constant (about 1–2 years for a 2× multiple). 1

Economic Motivation. The strong deflationary characteristic of Bitcoin further com-
pounds the problem. On the one hand, Bitcoins are a currency poised to explode in
value, ceteris paribus, as already discussed; and hence so will the incentive for theft.
On the other hand, the way deflation comes into play, driven by a hard cap on the money
supply, will all but eliminate the money-minting incentive that currently draws in the
many verifiers that by their competition contribute to make block creation a difficult

1 To underscore the seriousness of the threat, we note that it is common nowadays for miners
to pool their resources and, by some estimates, one such mining pool, deepbit, contributes
40% of the total computation power devoted to mining in the entire system. Merely doubling
its “market share” would make it able to revise the entire Bitcoin history in a year’s time,
owing to Moore’s law. Botnets and governments may be there already.
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problem. With this incentive dwindling, laws of economics dictate that the competi-
tive effort devoted to verifying transactions and creating blocks will diminish. In other
words, while block difficulty may continue to increase for some time into the future, it
will eventually start to decrease relatively to the power of the day’s typical PC. History
revision attacks will thence become easier not harder.

4.3 Countering “Revisionism” by Checkpointing the Past

We outline a distributed strategy to tackle the history-revision attack threat in a sim-
ple and elegant way. Its principle is rooted in the commonsense notion that one ought
to be suspicious of tales that conflict with one’s own first-hand recollection of events.
Translated in the Bitcoin world, we propose that a Verifier that has been running with-
out interruption for a long time, should be “highly skeptical” of any long-range fork
resolution that would drastically change its own private view of the transaction history
acquired from first-hand data collection and block creation.

Private Checkpointing. Verifiers should thus timestamp published transactions as they
see them, and privately take regular snapshots of their own view of the transaction his-
tory (such snapshots should be made tamper-proof, e.g., with a cryptographic forward-
secure signature). If in the future a drastic fork is put forth that is inconsistent with
many of the various snapshots taken, the verifier should demand an increasingly high
burden of proof before accepting the “new” branch as correct. E.g., the verifier should
not merely accept an alternative branch whose total difficulty exceeds that of the pri-
vately checkpointed history, but demand an increasingly high margin of excess, the
longer and the more improbable the alternative branch is deemed w.r.t. the verifier’s
private knowledge.

Implicit Voting and Phase Transition. Verifiers ought to make such determination
independently, based on their own remembered history. That is to say that “young”
verifiers that recently came online, and acquired their history by downloading the trans-
action log ex post facto, would have little first-hand checkpointing to rely upon, and
would thus behave as in the current system (merely favoring the most difficult branch
in a fork). “Seasoned” verifiers that have seen and checkpointed ancient transactions
first-hand, would on the contrary oppose a resisting force of skepticism against what
they perceive could be an attempt to revise history. As a result, the network would par-
tition into two camps, but only briefly, as certain verifiers that are on the fence “flip”
one way or the other based on observing their peers’ endorsement of either branch of
the fork. Eventually, as more and more verifiers endorse one position over the other,
and the corresponding branch of the fork grows faster, the whole network will “phase-
transition” back to a single unified view.

Comparative Behavior. Our strategy is a strict improvement over the current Bitcoin
handling of history-revision attacks, for in all cases where a history-revision attack
would fail in the current system, our system would behave identically (and exhibit
no partition, and no subsequent phase transition). It is only in cases where a history-
revision attack would have succeeded in the current system, that a partition could occur
in the new system. A partition could remain meta-stable for a certain time, but eventu-
ally ought to resolve itself by taking the bulk of the network to one side or the other.
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Checkpointing Today. We remark that the current protocol already does what we
would call “fiat checkpointing”, where authoritative checkpoints (in the form of hard-
coded hashes of certain blocks) are pushed out with software updates [12]. Alas, there
is no reason to trust a download of the software any more than one of the transac-
tion history itself. This is unlke our private checkpointing proposal which emphatically
prescribes first-hand checkpoints, independently made by each verifier in a privately
tamper-proof decentralized way.

We leave as an open problem the formal design and analysis of “anti-revisionism
profiles” that offer marked security against vastly powerful history-revision attacks,
while guaranteeing that partitions caused by accidental forks get quickly resolved.

5 Theft or Loss of Bitcoins

As all bitcoins are public knowledge (in the form of unredeemed transaction outputs),
what enables a user to spend a coin is possession of the associated private key. Theft or
loss of private keys, or signature forgeries, thus equate to loss of money in this world.

5.1 Malware Attacks

Reported malware attacks on Bitcoin are on the rise [16,1], resulting in the theft of pri-
vate keys. The online wallet service mybitcoin.com recently lost $1.3million worth
of users’ coins due to malware [1]. Several solutions can be envisaged; we mention:

Threshold Cryptography. A natural countermeasure to malware is to split private keys
into random shares, using standard threshold cryptography techniques [11,13], and dis-
tribute them onto multiple locations, e.g., a user’s desktop computer, her smart phone,
and an online service provider. In this way, only when a threshold number of these de-
vices collaborate, can a user spend her coins. Of course, doing so can harm the usability
of the system, since coins can no longer be spent without operating multiple devices
(even though not all the devices but only a chosen number of them are needed at once).

Super-Wallets. To address the usability concern, we propose the simple idea of super-
wallet, i.e., a user’s “personal bank” where most of her coins are stored. The super-
wallet is split across multiple computing devices, using threshold techniques as above.
In addition, the user carries a small sub-wallet with her on her smartphone. Pre-approved
transactions are setup so that the user can withdraw money from her super-wallet onto
her sub-wallet, periodically in small amounts (similar to how real banks let people with-
draw cash from ATMs today). The user now only needs her smartphone to spend money
in her wallet, and in case her smartphone is captured by an adversary, the user only loses
the small amount of money that she has in her wallet, but not that in her personal bank.
Large amounts can always be spent from the super-wallet using a threshold of devices.

Both approaches can be implemented as backward-compatible and incrementally
deployable wrappers, requiring changes in the signature generation but not verification.

5.2 Accidental Loss of Bitcoins

Apart from malware, system failures or human errors can cause the accidental loss of the
wallet file (which stores the private keys needed to spend coins), which in turn leads to

mybitcoin.com
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the loss of coins (turning them into zombies). For example, bitomat, the third largest
bitcoin exchange, recently lost about $200K worth of bitcoins (at the exchange rate at
the time) due to the loss of its private wallet file — the cause was later identified to be
human error, as the developer hosted the wallet on non-persistent cloud storage [3].

Backups. Naturally, the universal answer against accidental loss or adversarial destruc-
tion of data, is to follow best-practice backup procedures. For backup purposes, the
wallet file should be treated like any other private cryptographic asset — meaning that
backups are a non-trivial proposition, not because of volume, but because of secrecy.
With Bitcoin, things are complicated by the incessant creation of keys.

Pseudo-random Keys. To avoid having to back up a constantly growing wallet file,
a trivial solution is to generate all of one’s private keys not at random, but pseudo-
randomly from a master secret that never changes, using a standard PRG. The problem
then reduces to that of backing up the short and static PRG seed, e.g., in a bank vault.

Encryption. A natural idea is to encrypt the wallet using a password sufficiently strong
that the resulting ciphertext can be widely replicated without fear of cryptanalysis. This
approach is especially useful in conjunction with pseudo-random keys, as then coins
can be spent and received without requiring the ciphertext to be updated. The main
problem, of course, is that strong passwords are prone to memory loss and palimpsest.

Offline (Single-)Password-Based Encryption. One solution relies on the “optimal”
password-based encryption system of [7], which offers optimal trade-offs between pass-
word strength (how tough it is to guess) and “snappiness” (how quickly it can be used,
which is also kept a secret). Users can even set multiple passwords with varying trade-
offs for a common security goal: e.g., an everyday password, complex but snappy; and
a backup password, simple but just as secure by virtue of being made “sluggish”. A
pseudo-random wallet seed, encrypted à la [7], would combine static portability with
usable protection against both loss and theft, and is probably the best approach for an
isolated user who trusts his mental possessions more than his physical ones.

Online (Multi-)Password-Based Encryption. Another approach is to combine the
power of several memorable secrets into a single high-security “vault”, using the pro-
tocols of [5]. Each member in some circle of friends holds a short totally private and
long-term memorable phrase. One member is a distinguished leader. Without revealing
their secrets, the members can perform private operations such as signing or decrypting
a message on behalf of the leader. With this protocol, a group of users can cooperate
to let the leader spend the coins from his wallet (kept as a public, static, accessible,
encrypted file), by issuing signatures on messages created by the leader. This approach
provides strong safety against loss, plus security against compromise of a subset of the
group.

Trusted Paths. Any of the above approaches can be combined with trusted-path de-
vices, which are dedicated hardware devices that let humans input and read out (tiny
amounts of) cryptographic data out of the reach of any malware. European banks use
the DigiPass, for example. Alas, while trusted-path protocols are well known and very
safe when it can be assumed that the remote server is uncorrupted (e.g., when talking
to a bank), in the Bitcoin case the server is the user’s own PC, possibly infected. It is an
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interesting open problem to devise trusted-path protocols that are secure in this model,
when the trusted-path data is too tiny to provide cryptographic strength by itself.

6 Scalability

Bitcoin suffers from several scalability issues, among which we note the following.

6.1 Data Retention and Communication Failures

The smooth operation of Bitcoin relies on the timely broadcast of transactions and
blocks. A preprint [6] suggests that verifiers competing for the same reward have an
incentive to withhold the information needed to do so. However, since transactors have
an incentive to disseminate their data as quickly and widely as possible, not only is re-
tention futile, but economic forces will counter it by fostering circumvention services.

6.2 Linear Transaction History

As discussed, the Bitcoin wallet software fetches the entire Bitcoin blockchain at in-
stallation, and all new transactions and blocks are (supposedly) broadcast to all nodes.

The Bitcoin nodes cryptographically verify the authenticity of all blocks and trans-
actions as they receive them. Clearly, this approach introduces a scalability issue in the
longer term, in terms of both network bandwidth, and computational overhead associ-
ated with cryptographic transaction verification. The scalability issue can be worrying
for smart phones with limited bandwidth, computational power, and battery supply.

The scalability issue can be addressed with a subscription-based filtering service.
Recall that Bitcoin nodes can be divided into broadly two classes, verifiers and clients.
Verifiers create new blocks and hence mint new coins. Verifiers are mostly nodes with
ample computational and bandwidth resources, typically desktop computers. By con-
trast, clients are Bitcoin nodes that are not actively minting new coins, such as smart
phones. While verifiers have incentives to receive all transactions (to earn transaction
fees), clients may not care. In particular, all that is needed for clients to spend their
coins is that they receive transactions payable to their public key(s).

Bitcoin Filtering Service. Our filtering service is a third-party cloud service provider
which filters Bitcoin transactions, and sends only relevant transactions to nodes that
have registered for the service. A Bitcoin client (e.g., a user’s smartphone) can send
a cryptographic capability to the filtering service, which allows the filtering service to
determine whether a transaction is payable to one or more of its public keys.
We identify the following desirable security and usability requirements.

– Unlinkability without the capability. While a user may allow the filtering service
to determine which transactions are payable to itself, no other party should be able
to link a user’s multiple public keys better than they can today (i.e., without the
filtering service).

– Forward security. The filtering service should be able to update its capability peri-
odically, such that in the case of compromise or a subpoena, the revealed capability
can allow one to identify new transactions targeted to a specific user, but cannot be
used to link the users’ transactions in the past.
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– Reasonable false positives and low false negatives. A false positive is when the
filtering service mistakenly sends a user a non-relevant transaction. False positives
wastes a user’s bandwidth and computational power, but a user can locally detect
such false positives after receiving the transactions. A false negative is when the
filtering service fails to send a user a relevant transaction. The false negative rate
should ideally be 0.

Constructing a Filtering Service. We now propose a potential approach to build such
a filtering service, in a way that is backward compatible with today’s Bitcoin. Assume
that the user and the filtering service are weakly time synchronized. A user can generate
a random Message Authentication Code (MAC) key K and share it with the filtering
service. This MAC key K will be used as the initial MAC key. For forward security,
in every time epoch (e.g., every day), both the user and the filtering service will update
their MAC key by applying a Pseudo-Random Generator (PRG): K ← PRG(K). The
MAC key K will then be used as below. When the user needs to pick a public key to
receive money, it will pick a public key PK whose hash H(PK) satisfies the following
condition: MACK(H(PK)) mod 2� = 0. In particular, when 	 is not too large, the
user can find such a public key by randomly generating public-private key pairs until
a public-key satisfying the above condition is found. 	 is a parameter used to engineer
the tradeoff between the false positive rate and the computation cost needed to generate
public keys. Since a transaction payable to user A includes user A’s public key hashes in
one or more outputs, the filtering service can now identify transactions possibly targeted
for user A by checking the above condition.

6.3 Delayed Transaction Confirmation

Another related scalability issue is delayed transaction confirmation. In the current im-
plementation, a new block is generated about every 10 minutes, so it takes at least 10
minutes or so to get a transaction confirmed. This can be problematic in certain applica-
tion scenarios, e.g., on-demand video playback Worse still, after a single confirmation
it is still possible the transaction is a double spend, and the blockchain has forked.

One approach, already seen in the Bitcoin ecosystem, uses intermediate “semi-
trusted” third parties acting as short-term banks, issuing the Bitcoin equivalents to
cashiers’ checks (essentially, a transaction signed by the bank’s key). Banks would have
no incentive to double-spend, as their fraud would immediately become apparent to all.

Another approach is to fundamentally reduce the transaction confirmation delay by
re-parameterizing the computational puzzles to reduce the average block creation inter-
val from 10 minutes to 10 seconds. However, this would increase the forking propensity
on slow communication networks, which could become a concern.

6.4 Dynamically Growing Private Key Storage

To achieve better anonymity, users are urged to use a different public key for each trans-
action. However, this means that the user has to store the corresponding private keys for
all previously generated public keys — a private key should only be deleted if one is
certain that no payment to its public key will ever be made (lest zombie coins result).
Aside from size, the dynamic nature of the private key storage is another difficulty.
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Fig. 1. A fair exchange protocol: mixing Bitcoins with an untrusted mixer

Pseudo-random Generation of Private Keys. An easy answer to both concerns, al-
ready mentioned, is to generate all of one’s private keys pseudo-randomly from a static
secret.

Explicit Expiration of Public Keys. Another way to address this problem is to intro-
duce explicit expiration dates for public keys, and ensure that no money can be sent to
expired keys, or that such money can be reclaimed somehow. In any case, it is good
practice that keys be made to expire, and this should be encouraged. In view of this,
it seems desirable to give the scripting language facilities for reading and comparing
timestamps.

7 Improving Anonymity with Reduced Trust

Bitcoin partially addresses the anonymity and unlinkability issue, by allowing users
to use different addresses and public keys in every transaction. However, Bitcoin still
exposes their users to a weak form of linkability. Specifically, multiple public keys of
the same user can potentially be linked when the user pays change to herself, in which
case two or more of a single user’s public keys will appear in the same transaction [17].

To improve users’ anonymity, third-party services called mixers have emerged, that
take multiple users’ coins, mix them, and issue back coins in equal denominations. To-
day, the mixers are trusted entities, in the sense that users send money to the mixer,
trusting that it will issue back the money later. As a malicious mixer can cheat and
not pay the money back, a cautious user could send the money to the mixer in small
amounts, and only continue sending when the mixer has paid back. However, this ap-
proach is unscalable, especially as each transaction can take 10 minutes to confirm.

An alternative and better approach is to implement a fair exchange protocol. One
contribution of this paper is to demonstrate how to implement such a fair exchange
protocol in Bitcoin in a backward compatible manner.
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1. A: Select random key pairs (PKA1, SKA1) and (PKA2, SKA2)
B: Select random key pairs (PKB1, SKB1) and (PKB2, SKB2)
A ⇔ B : Exchange public keys

2. A: Select random secrets ΩA = {a1, a2, . . . , an}
B: Select random secrets ΩB = {b1, b2, . . . , bn}
A → B : ΩA

B → A : {H(ai + bi), H(bi) : ∀i ∈ [n]}
3. A → B : random index set I ⊆ [n], s.t. |I| = n − k

B → A : {bi|i ∈ I}
A: ∀i ∈ I: verify correctness of previously received H(ai + bi), H(bi)

Fig. 2. Secrets setup phase. A and B exchange keys then engage in cut-and-choose. At the end of
the protocol, the remaining set of size k indexed by [n]\I will later be used in the fair exchange.

<PK A2> CHECKSIGVERIFY
IF // refund case

<PK B2> CHECKSIG
ELSE // claim case

HASH
DUP <H(b1)> EQUAL SWAP
DUP <H(b2)> EQUAL SWAP
<H(b3)> EQUAL
BOOLOR BOOLOR

ENDIF

<PK B1> CHECKSIGVERIFY
IF // refund case
<PK A1> CHECKSIG

ELSE // claim case
HASH <H(a1 + b1)> EQUALVERIFY
HASH <H(a2 + b2)> EQUALVERIFY
HASH <H(a3 + b3)> EQUAL

ENDIF

Fig. 3. On left: Output script of TxCommB . On right: Output script of TxCommA.

7.1 A Fair Exchange Protocol

A fair exchange protocol consists of three types of transactions:
– A commitment transaction, denoted TxCommA or TxCommB , commits a party to

the money exchange;
– A refund transaction, denoted TxRefundA or TxRefundB , refunds a party’s com-

mitted money at a future date, in case the exchange protocol aborts.
– A claim transaction denoted TxClaimA or TxClaimB , allows a party to claim the

other party’s committed money. To ensure fairness one party conducts the first
claim transaction in which it must publish a secret which enables the second claim.

Secrets Setup Phase. As depicted in Figure 2, Alice and Bob perform key generation,
and exchange public keys. The reasons for each party to generate two key pairs is to
later use different keys for different transactions to ensure unlinkability. Alice and Bob
then engage in a cut-and-choose protocol. At the end of the protocol, the remaining set
indexed by I := [n]\I will later be used in the fair exchange. Specifically, the hash
values {H(ai + bi) : ∀i ∈ I} will later be included in the output script of TxCommA,
and the hash values {H(bi) : ∀i ∈ I} will be later included in the output script of
TxCommB . For Bob to claim Alice’s committed money TxCommA, it has to reveal all
of the correct {ai + bi : i ∈ I}, such that their hash values match those in TxCommA.
For Alice to later claim Bob’s committed moneyTxCommB , it only has to reveal one bi
for some i ∈ I , such that it matches one hash value in TxCommB . The key to ensuring
fairness is that when Bob claims TxCommA, it has to reveal the secrets {ai+bi : i ∈ I},
allowing Alice to learn the values of {bi : i ∈ I}, enabling Alice to claim TxCommB .
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A cheating Bob can potentially supply Alice with the wrong H(bi) values, in an
attempt to prevent Alice from claiming TxCommB , while retaining its own ability to
claim TxCommA. Suppose that I has size k. Through elementary probability anal-
ysis, we can show that a cheating B can succeed only with very small probability:
Pr[B succeeds in cheating] = 1/

(
n
k

)
� 1/nk.

Transaction Setup Phase — Bob. Bob generates TxCommB , using an output script
that will allow 2 forms of redemption. The redemption can either be the refund transac-
tion (dated in the future), with an input script signed by SKA2 and SKB2, or the claim
transaction with an input script signed by SKA2 and supplying any one of Bob’s secrets
from the set {bi : i ∈ I}. Figure 3 shows an example of TxCommB’s output script for
set I of size k = 3.

Bob then generates a partial TxRefundB releasing his money, with the locktime set
to t+3 (timing in units of ’certain transaction confirmation time’, an agreed number
of block times, plus a buffer), with this incomplete input script: <sig B2> 1. Bob
sends the partial TxRefundB to party A, who verifies the locktime, and adds his signa-
ture to the input script <sig B2> 1 <sig A2>, and returns the completed refund
transaction to Bob. Bob verifies the signed TxRefundB and publishes TxCommB and
TxRefundB , and is now committed to the exchange.

Transaction Setup Phase — Alice. Alice waits until TxCommB confirms, verifies
TxRefundB and checks the value. Alice generates TxCommA, again using an output
script that allows 2 forms of redemption. The first form enables the refund transaction,
requiring signature by SKB1and SKA1. The second form allows the claim transaction
requiring signature by SKB1 and all of {ai + bi : i ∈ I}. Figure 3 shows an example
output script of TxCommA, for a set I of size k = 3.

Then, Alice generates TxRefundA, with the locktime set to t+1, with the incomplete
input script <sig A1> 1 and with a standard output addressed to PKA1 (returning
the money to herself). Alice sends this incomplete TxRefundA to Bob. Bob verifies the
locktime and adds his signature to the input script: <sig A1> 1 <sig B1>, and
returns the now complete transaction to Alice. Alice verifies the returned TxRefundA
is unmodified and correctly signed. Alice now broadcasts TxCommA and TxRefundA,
and is now committed to the exchange.

Money Claim Phase. Bob waits for TxCommA to confirm, and checks the amount is
sufficient. Bob also needs to ensure he has enough time for his claim of Alice’s money
to confirm before TxRefundA’s time lock (hence the requirements on time locks). Now
Bob claims Alice’s money; he does this by taking TxRefundA and modifying the time
lock to “now” and the output to PKB1. He also updates the input script to become (mod-
ified to include {ai + bi : i ∈ I}), <a3+b3> <a2+b2> <a1+b1> 0 <sig B1>,
thus creating TxClaimB . Bob now publishes TxClaimB . This claims Alice’s money,
while also revealing Alice’s bis for i ∈ I . Now Alice can claim Bob’s money by taking
TxRefundB , removing the locktime, changing the output to PKA2, and updating the in-
put script to this form (modified to include one bi from I): <b> 0 <sig A2>. Alice
earlier made sure that the locktime on TxRefundB would give her sufficient time for
this claim to confirm before the Bob’s refund.
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8 Conclusion

We have provided a preliminary but broad study of the crypto-monetary phenomenon
Bitcoin, whose popularity has far overtaken the e-cash systems based on decades of
research. Bitcoin’s appeal lies in its simplicity, flexibility, and decentralization, making
it easy to grasp but hard to subvert. We studied this curious contraption with a critical
eye, trying to gauge its strengths and expose its flaws, suggesting solutions and research
directions. Our conclusion is nuanced: while the instantiation is impaired by its poor
parameters, the core design could support a robust decentralized currency if done right.
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