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Abstract. A simple linear loop is a simple while loop with linear as-
signments and linear loop guards. If a simple linear loop has only two
program variables, we give a complete algorithm for computing the set
of all the inputs on which the loop does not terminate. For the case of
more program variables, we show that the non-termination set cannot
be described by Tarski formulae in general.
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1 Introduction

Termination of programs is an important property of programs and one of the
main research topics in the field of program verification. It is well known that
the following so-called “uniform halting problem” is undecidable in general.

Using only a finite amount of time, determine whether a given program will
always finish running or could execute forever.

However, there are some well known techniques for deciding termination of
some special kinds of programs. A popular technique is to use ranking func-
tions. A ranking function for a loop maps the values of the loop variables to a
well-founded domain; further, the values of the map decrease on each iteration.
A linear ranking function is a ranking function that is a linear combination of
the loop variables and constants. Some methods for the synthesis of ranking
functions and some heuristics concerning how to automatically generate linear
ranking functions for linear programs have been proposed, for example, in Colón
and Sipma [3], Dams et al. [4] and Podelski and Rybalchenko [6]. Podelski and
Rybalchenko [6] provided an efficient and complete synthesis method based on
linear programming to construct linear ranking functions. Chen et al. [2] pro-
posed a method to generate nonlinear ranking functions based on semi-algebraic
system solving. The existence of ranking function is only a sufficient condition
on the termination of a program. There are programs, which terminate, but do
not have ranking functions. Another popular technique based on well-orders,
presented in Lee et al. [5], is size-change principle. The well-founded data can
ensure that there are no infinitely descents, which guarantees termination of
programs.
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For linear loops, some other methods based on calculating eigenvectors of
matrices have been proposed. Tiwari [7] proved that the termination problem of
a class of linear programs (simple loops with linear loop conditions and updates)
over the reals is decidable through Jordan form and eigenvector computation.
Braverman [1] proved that it is also decidable over the integers. Xia et al. [8]
considered the termination problems of simple loops with linear updates and
polynomial loop conditions, and proved that the termination problem of such
loops over the integers is undecidable. In [9], Xia et al. provided a novel symbolic
decision procedure for termination of simple linear loops, which is as efficient as
the numerical one given in [7].

A counter-example to termination is an infinite program execution. In pro-
gram verification, the search for counter-examples to termination is as important
as the search for proofs of termination. In fact, these are the two folds of termi-
nation analysis of programs. Gupta et al. [10] proposed a method for searching
counter-examples to termination, which first enumerates lasso-shaped candidate
paths for counter-examples and proves the feasibility of a given lasso by solving
the existence of a recurrent set as a template-based constraint satisfaction prob-
lem. Gulwani et al. [11] proposed a constraint-based approach to a wide class of
program analyses and weakest precondition and strongest postcondition infer-
ence. The approach can be applied to generating most-general counter-examples
to termination.

In this paper, we consider the set of all inputs on which a given program does
not terminate. The set is called NT throughout the paper. For simple linear
loops, we are interested in whether the NT is decidable and how to compute
it if it is decidable. Similar problems was also considered in [12]. One possible
application of computing NT (and thus termination sets) is to construct pre-
conditions and/or postconditions for loops. Our contributions in this paper are
as follows. First, for homogeneous linear loops (see Section 2 for the definition)
with only two program variables, we give a complete algorithm for computing
the NT. For the case of more program variables, we show that the NT cannot
be described by Tarski formulae in general.

The rest of this paper is organized as follows. Section 2 introduces some no-
tations and basic results on simple linear loops. Section 3 presents an algorithm
for computing the NT of homogeneous linear loops with only two program vari-
ables. The correctness of the algorithm is proved by a series of lemmas. For linear
loops with more than two program variables, it is proved in Section 4 that the
NT is not a semi-algebraic set in general, i.e., it cannot be described by Tarski
formulae in general. The paper is concluded in Section 5.

2 Preliminaries

In this paper, the domain of inputs of programs is R, the field of real numbers.
A simple linear loop in general form over R can be formulated as

P1 : while (Bx > b) {x := Ax+ c}
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where b, c are real vectors, An×n, Bm×n are real matrices. Bx > b is a conjunc-
tion of m linear inequalities in x and x := Ax+ c is a linear assignment on the
program variables x.

Definition 1. [7] The non-termination set of a program is the set of all inputs
on which the program does not terminate. It is denoted by NT in this paper.

In particular, NT(P1) = {x ∈ R
n|P1 does not terminate on x} .

We list some related results in [7].

Proposition 1. [7] For a simple linear loop P1, the following is true.

– The termination of P1 is decidable.
– If A has no positive eigenvalues, the NT is empty.
– The NT is convex.

In this paper, only the following homogeneous case is considered.

P2 : while (Bx > 0) {x := Ax} .

Let B1, . . . , Bm be the rows of B. Consider the following loops

Li : while (Bix > 0) {x := Ax} .

Obviously, NT(P2)=
⋂m

i=1 NT(Li). Therefore, without loss of generality, we as-
sume throughout this paper that m = 1, i.e., there is only one inequality as the
loop guard. The following is a simple example of such loops.

while (4x1 + x2 > 0)

{(
x1

x2

)

:=

(−2 4
4 0

)(
x1

x2

)}

.

That is B = (4, 1), A =

(−2 4
4 0

)

.

3 Two-Variable Case

To make things clear, we restate the problem for this two-variable case as follows.
For a given homogeneous linear loop P2 with exactly two program variables

and only one inequality as the loop guard, compute NT(P2).
For simplicity, we denote the program variables by x1, x2 and use NT instead

of NT(P2) in this section. If α is a non-zero point in the plane, we denote by −→α
a ray starting from the origin of plane and going through the point α.

Proposition 2. NT must be one of the following:
(1) an empty set;
(2) a single ray starting from the origin;
(3) a sector between two rays starting from the origin.
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Proof. We view an input (x1, x2) as a point in the real plane with origin O.

If there exists a point M(x1, x2) ∈ NT, any point P on the ray
−−−→
OM can be

written as P = kM = (kx1, kx2) for a positive number k. So BAn(kx1, kx2)
T =

kBAn(x1, x2)
T > 0 for any n ∈ N. That means P ∈ NT. Therefore, it is clear

from the item 3 of Proposition 1 that the conclusion is true.

By the above proposition, the key point for computing the NT is to compute
the ray(s) which is (are) the boundary of NT. We give the following algorithm
to compute the ray(s) (and thus the NT) for P2 if the NT is not empty. The
algorithm, as can be expected, is mainly based on the computation of eigenvalues
and eigenvectors of A. The correctness of our algorithm will be proved by a series
of lemmas following the algorithm.

Algorithm 1. NonTermination

Input: Matrices A2×2 and B1×2.
Output: The NT of P2 with A and B.

1 if A = 0 or B = 0 then
2 return ∅;
3 Compute the eigenvalues of A and denote them by λ1, λ2;
4 if λ1 ≯ 0 ∧ λ2 ≯ 0 then
5 return ∅; // Proposition 1

6 Take α0 ∈ R
2 \ {0} such that Bα0 = 0 and BAα0 ≥ 0;

7 if BAα0 = 0 then
8 choose ξ such that Bξ > 0
9 if B(Aξ) > 0 then

10 return {x|x ∈ R
2, Bx > 0} // Lemma 4

11 else
12 return ∅ // Lemma 5

13 if λ1 = 0 ∨ λ2 = 0 then
14 return {x|x ∈ R

2, Bx > 0, BAx > 0}; // Lemma 6

15 Suppose λ1 ≥ λ2

16 if λ1 ≥ λ2 > 0 then
17 choose an eigenvector β2 related to λ2 such that Bβ2 > 0;
18 return {x|x = k1α0 + k2β2, k1 ≥ 0, k2 > 0}; // Lemmas 7 and 8

19 if λ1 > 0 ∧ λ2 < 0 then
20 if λ1 ≥ |λ2| then
21 let α−1 = A−1α0 and return {x|x = k1α0 + k2α−1, k1 > 0, k2 > 0};
22 if λ1 < |λ2| then
23 choose an eigenvector β related to λ1 such that Bβ > 0 and
24 return {x|x = kβ, k > 0} // Lemma 10

To better understand the idea of the following lemmas, it would be helpful to
remember an obvious fact that NT ⊆ {x|Bx > 0}. Actually, in Lemma 3, we
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NT

Fig. 1. Lemma 1

will prove that, if the boundary of NT consists of two rays (see Proposition 2),
one of the two rays must lie on the line Bx = 0.

Lemma 1. Suppose NT is not empty and ∂NT is the boundary of NT. If x ∈
∂NT and Bx �= 0, then Ax ∈ ∂NT.

Proof. Obviously, B is a linear map from R
2 to R . Because By > 0 for all

y ∈ NT, we have Bx ≥ 0. And thus Bx > 0 by the assumption that Bx �= 0.
Hence, there exists an open ball o1(x, r1) such that By > 0 for all y ∈ o1(x, r1).

Let F be the linear map from R
2 to R

2 that F (y) = Ay for any y ∈ R
2

and hence F is continuous. So for any neighborhood o(Ax, r) of Ax, there exists
a positive real number r2 such that o2(x, r2) ⊆ o1(x, r1) and F (o2(x, r2)) ⊆
o(Ax, r). Because x ∈ ∂NT, there exist y, z ∈ o2(x, r2) such that y ∈ NT and
z /∈ NT. Then A(y), A(z) ∈ o(Ax, r), A(y) ∈ NT and A(z) /∈ NT since Bz > 0.
It is followed that there are both terminating and non-terminating inputs in any
neighborhood of Ax. Therefore, Ax ∈ ∂NT.

Fig. 2. Lemma 2

To prove Lemma 3, we first prove Lemma 2 which will be used in the proof of
Lemma 3 to construct a contradiction.

Lemma 2. Suppose ∂NT is composed of two rays l1 and l2 and neither l1 nor
l2 is on Bx = 0. If By = 0 and BAy > 0, then Ay ∈ NT.
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Proof. Since neither l1 nor l2 is on Bx = 0, l1 and l2 are not collinear. So we can
choose two points z ∈ l1 and v ∈ l2 such that Bz > 0, Bv > 0 and y = t1z+t2v
for some t1 ∈ R, t2 ∈ R. By Lemma 1, Az and Av must be on the boundary of
NT, i.e., l1 or l2. Thus, we have at most four possible cases as follows.

(1) Az = k1z, Av = k2v, (i.e., Az ∈ l1, Av ∈ l2)
(2) Az = k1z, Av = k2z, (i.e., Az ∈ l1, Av ∈ l1)
(3) Az = k1v, Av = k2v, (i.e., Az ∈ l2, Av ∈ l2)
(4) Az = k1v, Av = k2z, (i.e., Az ∈ l2, Av ∈ l1)

where k1 > 0, k2 > 0.
Case (1). Because By = t1Bz + t2Bv = 0 and

BAy = BA(t1z + t2v) = t1k1Bz + t2k2Bv > 0,

we have t1t2 < 0. Without loss of generality, assume that t1 > 0 and t2 < 0. We
denote t1Bz by P . Note that P > 0 and t2Bv = −P . Since BAy = (k1−k2)P >
0, we have k1 > k2 > 0 and

BAn(Ay) = kn+1
1 t1Bz + kn+1

2 t2Bv = kn+1
1 P − kn+1

2 P > 0

for any n ∈ N. By the definition of NT, Ay ∈ NT.
Case (2). Because BAy = (t1k1 + t2k2)Bz > 0, we have

BAn(Ay) = kn1 (t1k1 + t2k2)Bz > 0

for any n ∈ N. By the definition of NT, we have Ay ∈ NT.
Case (3). Similarly as Case (2), we can prove Ay ∈ NT.
Case (4). We shall show that this case cannot happen. Let

S = {x|x = r1y + r2Ay, r1 > 0, r2 > 0}

be the sector between the two rays −→y and
−→
Ay. For any w ∈ S, we have Bw =

r1By + r2BAy = r2BAy > 0.
Because

A2y = A(t1k1v + t2k2z) = t1k1k2z + t2k1k2v = k1k2y,

we have Aw = r1Ay + r2A
2y = r1Ay + r2k1k2y ∈ S. Therefore, w ∈ NT and

S ⊆ NT. As −→y is a boundary of S and By = 0, −→y is contained in ∂NT, which
contradicts with the assumption of the lemma. So (4) cannot happen.

In summary, Ay ∈ NT.

Lemma 3. If ∂NT is composed of two rays l1 and l2, then either l1 or l2 is on
Bx = 0.

Proof. Assume neither l1 nor l2 is on Bx = 0. Choose a point y such that y �= 0,
By = 0 and BAy ≥ 0.
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1

2

Fig. 3. Lemma 3

Suppose BAy = 0. As NT is not empty, there exists z ∈ NT. Hence Ay
can be rewritten as Ay = h1z + h2y for some h1 ∈ R, h2 ∈ R. As a result of
BAy = h1Bz + h2By = h1Bz = 0, h1 = 0. Note that

Any = hn
2y, BAny = hn

2By = 0 . (1)

According to Eq.(1) and z ∈ NT, we have BAn(k1z + k2y) = k1BAnz +
k2BAny = k1BAnz > 0 for any k1 > 0, n ∈ N. Hence {x|x = k1z + k2y, k1 >
0} ⊆ NT. Therefore, {x|Bx = 0} = ∂NT, which contradicts with the assump-
tion.

If BAy > 0, Ay ∈ NT follows from Lemma 2. Let S = {x|k1y + k2Ay, k1 >
0, k2 > 0}. And we have BAnz = k1BAny + k2BAn+1y > 0 for any n ∈ N,
z ∈ S. Thus z ∈ NT and S ⊆ NT. By the method of choosing y, −→y ⊆ ∂NT.
That means −→y is l1 or l2, which contradicts with the assumption.

Lemma 4. Suppose A has an eigenvector α satisfying Bα = 0. If there is a
vector ξ such that Bξ > 0 and BAξ > 0, then NT = {x|Bx > 0}.
Proof. For any y ∈ {x|Bx > 0}, it can be written as y = k1ξ + k2α for some
k1 ∈ R, k2 ∈ R. As By = k1Bξ + k2Bα = k1Bξ > 0, we have k1 > 0. Thus
BAy = k1BAξ+k2BAα = k1BAξ > 0 and Ay ∈ {x|Bx > 0}. By the definition
of NT, we have {x|Bx > 0} ⊆ NT and hence NT = {x|Bx > 0}.
Lemma 5. Suppose A has an eigenvector α satisfying Bα = 0. If there is a
vector ξ such that Bξ > 0 and BAξ ≤ 0, then NT = ∅.
Proof. For any y ∈ {x|Bx > 0}, it can be written as y = k1α + k2ξ for
some k1 ∈ R, k2 ∈ R. Since By = k2Bξ > 0, we have k2 > 0. And because
BAy = k2BAξ ≤ 0, NT = ∅.
Lemma 6. Suppose A has a positive eigenvalue and a zero eigenvalue and the
eigenvector related to the positive eigenvalue is not on the line Bx = 0. Then
NT = {x|Bx > 0, BAx > 0}.
Proof. Let β be an eigenvector with respect to eigenvalue 0 and λ be the positive
eigenvalue. Select an eigenvector γ related to the positive eigenvalue such that
Bγ > 0. Let S be the set {x|Bx > 0, BAx > 0}. For any y ∈ S, it can be
written as k1β+k2γ for some k1 ∈ R, k2 ∈ R. We have BAy = k2λBγ > 0, thus
k2 > 0. Note that BAny = k2λ

nBγ > 0 for any n ∈ N, hence S ⊆ NT. Because
{x|Bx ≤ 0 ∨BAx ≤ 0} ∩ NT = ∅, NT = {x|Bx > 0, BAx > 0}.
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Lemma 7. Suppose A has two positive eigenvalues λ1 ≥ λ2 > 0 and the eigen-
vectors related to the positive eigenvalues are not on the line Bx = 0. If β2 is
an eigenvector related to λ2 such that Bβ2 > 0 and there is a vector α such that
Bα = 0 and BAα > 0, then NT = {x|x = k1α+ k2β2, k1 ≥ 0, k2 > 0}.
Proof. Select an eigenvector β1 related to λ1, respectively, such that Bβ1 > 0.
It is easy to know β1,β2 ∈ NT, thus NT is neither empty nor a ray. By Lemma
3 there is a −→y ⊆ ∂NT and y satisfies By = 0. Since for any z ∈ ∂NT, we have
BAz ≥ 0. So BAy ≥ 0 and hence −→α = −→y . In other word, −→α is one ray of ∂NT.
Let the other ray of ∂NT be l. As −BAα < 0,

−−→−α is not l. By Lemma 1, we

have Al ∈ ∂NT. So l is one of
−→
β1,

−→
β2 and

−−−−→
A−1α. By directly checking, we know−→

β2 is l and so NT = {x|x = k1α+ k2β2, k1 ≥ 0, k2 > 0}.
Lemma 8. Assume that A has one positive eigenvalue λ with multiplicity 2 and
only one eigenvector β satisfying Bβ > 0. If α is a vector such that Bα = 0
and BAα > 0, then NT = {x|x = k1α+ k2β, k1 ≥ 0, k2 > 0}.
Proof. By the theory of Jordan normal form in linear algebra, there exists a
vector β1 such that Aβ1 = β + λβ1 and β and β1 are linearly independent.

Let α1 = Aα. We claim that

∀n ∈ N.(BAnα1 > 0 ∧ ∃h2 > 0.(Anα1 = h1β + h2β1)). (2)

To prove this claim we use induction on the value of n.
Suppose α = h1β + h2β1. If n = 0, then α1 = Aα = (h1λ + h2)β + h2λβ1.

Because Bα1 = λBα+ h2Bβ = h2Bβ > 0, we have h2 > 0.
Now assume that the claim is true for n−1. Let An−1α1 = h1β+h2β1 where

h2 > 0. Because Anα1 = A(An−1α1) = (λh1 + h2)β + λh2β1, we have λh2 > 0
and BAnα1 = λBAn−1α1 + h2Bβ > 0. So the claim is true for any n ∈ N and
we have α1 ∈ NT.

Obviously, β ∈ NT and β and α1 are linearly independent, so NT is not a
ray. By Lemma 3, −→α ⊆ ∂NT.

Let the other ray of ∂NT be l. As −BAα < 0,
−−→−α is not l. By Lemma 1,

Al = l or Al = −→α . So l must be
−→
β or

−−−−→
A−1α. By directly checking, we know l

is
−→
β and thus NT = {x|x = k1α+ k2β, k1 ≥ 0, k2 > 0}.

Lemma 9. Suppose A has a positive eigenvalue λ1 and a negative eigenvalue
λ2 with λ1 ≥ |λ2| and the eigenvectors related to the eigenvalues are not on
the line Bx = 0. Suppose α is a vector such that Bα = 0 and BAα > 0. Let
α−1 = A−1α. Then NT = {k1α+ k2α−1, k1 > 0, k2 > 0}.
Proof. Select two eigenvectors β1 and β2 related to λ1 and λ2, respectively,
such that Bβ1 > 0 and Bβ2 > 0. Let α−1 = h1β1 + h2β2. So α = Aα−1 =
h1λ1β1 + h2λ2β2 and α1 = Aα = h1λ

2
1β1 + h2λ

2
2β2. Because Bα = 0 and

Bα1 > 0, h1, h2 and Aα−1 are all positive.
Note that α1 = (−λ1λ2)α−1+(λ1+λ2)α where −λ1λ2 > 0 and λ1+λ2 ≥ 0.

Let S = {x|x = k1α + k2α−1, k1 > 0, k2 > 0}. Since By = k2Bα−1 > 0 and
Ay = (k2 + k1(λ1 + λ2))α− k1λ1λ2α−1 ∈ S for any y ∈ S, we have NT ⊇ S.
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Let y = k1α + k2α−1. Because By = k2Bα−1 ≤ 0 for any k2 ≤ 0 and
BAy = k1Bα1 ≤ 0 for any k1 ≤ 0, we have NT = S.

Lemma 10. Suppose A has a positive eigenvalue λ1 and a negative eigenvalue
λ2 such that λ1 < |λ2| and the eigenvectors related to the eigenvalues are not on
the line Bx = 0. Let β1 be an eigenvector related to λ1 such that Bβ1 > 0, then
NT = {x|x = kβ1, k > 0}.
Proof. Select an eigenvector β2 related to λ2 such that Bβ2 > 0. Consider any
β = k1β1 + k2β2 ∈ R

2.
If k2 �= 0, because An(k1β1 + k2β2) = k1λ

n
1β1 + k2λ

n
2β2 and

BAn(k1β1 + k2β2)BAn+1(k1β1 + k2β2) < 0

when n is large enough, k1β1 + k2β2 /∈ NT.
If k2 = 0, obviously, NT ⊇ {x|x = kβ1, k > 0} and Bkβ1 �∈ NT for any

k ≤ 0.
So NT = {x|x = kβ1, k > 0}.
Now, the correctness of our algorithm NonTermination can be easily obtained

as follows.

Theorem 1. The algorithm NonTermination is correct.

Proof. First, the termination of NonTermination is obvious because there are no
loops and no iterations in it. Second, it is also clear that the algorithm discusses
all the cases of eigenvalues of A, respectively. we will show that the output of
the algorithm in each case is correct.

Obviously, the outputs of Lines 2 and 5 are correct. If the algorithm goes to
Line 6, A must have at least one positive eigenvalue.

If the algorithm goes to Line 8, α0 must be an eigenvector of A because Aα0

and α0 are both on the same line Bx = 0. So, by Lemmas 4 and 5, the outputs
of Line 10 and Line 12 are correct.

If the algorithm goes to Line 13, A must have at least one positive eigenvalue
and the eigenvectors of A do not lie on the line Bx = 0. So, for a nonzero
eigenvalue, we can choose a related eigenvector γ such that Bγ > 0. That is to
say, the assumptions of Lemmas 6-10 can be satisfied in each of the following
cases, respectively. Therefore, the outputs of Lines 14, 18, 21 and 24 are correct.

Example 1. Compute the NT of the following loop.

while (4x1 + x2 > 0)

{(
x1

x2

)

=

(−2 4
4 0

)(
x1

x2

)}

Herein, B = (4, 1), A =

(−2 4
4 0

)

.
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The computation of NonTermination on the loop is:
Line 1. B �= 0 and A �= 0.
Line 4. A has a positive eigenvalue −1 +

√
17.

Line 6. Let α0 = (−1, 4)T ,α1 = Aα0 = (18,−4)T .
Line 7. Bα1 = 68 �= 0.
Line 13. The two eigenvalues of A are −1 +

√
17,−1 − √

17, respectively.
Neither of them is 0.

Line 19. A has two eigenvalues, of which one is positive and the other negative.
Line 20. The absolute value of the negative eigenvalue is greater than the

positive eigenvalue.
Line 22. The eigenvector with respect to the positive eigenvalue is β =

(1,
√
17+1
4 )T and Bβ > 0. Return {x|x = kβ, k > 0}.

4 More Variables

Theorem 2. In general, NT is not a semi-algebraic set.

Remark 1. All Tarski formulae are in the form of conjunctions or/and disjunc-
tions of polynomial equalities and/or inequalities, so, in other words, semi-
algebraic sets are exactly the sets defined by Tarski formulae. By Theorem 2, we
can conclude that the non-termination sets of linear loops with more than two
variables cannot be defined by Tarski formulae in general.

Remark 2. It should be noticed that all polynomial invariants are semi-algebraic
sets.

In order to prove the above theorem, we give an example to demonstrate its
NT is not a semi-algebraic set.

Proposition 3. Let a linear loop with three program variables be as follows.

P3 : while (x1 + 2x2 + x3 ≥ 0)

⎧
⎨

⎩

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
2 0 0
0 3 0
0 0 5

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠

⎫
⎬

⎭
.

Then NT(P3) is not a semi-algebraic set.

The conclusion can be proved by using the following lemmas. For simplicity,
NT(P3) is denoted by NT in this section.

Lemma 11. Denote by τ the following set

{9(x2
1 + x2

2)− x2
3 < 0, x3 > 0},

then τ ⊆ NT.

Proof. For any (x1, x2, x3) ∈ τ , we have x3 > 3|x1|, x3 > 3|x2| and thus x1+2x2+
x3 > 0. Because A(x1, x2, x3)

T = (2x1, 3x2, 5x3)
T and 9(4x2

1 + 9x2
2)− 25x2

3 < 0,
A(x1, x2, x3)

T ∈ τ . Therefore τ ⊆ NT.
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Lemma 12. ∂NT ⊆ NT.

Proof. Because the loop guard is of the form B(x1, x2, x3)
T ≥ 0, NT is a closed

set. So the conclusion is correct. Furthermore, for any (x1, x2, x3) ∈ ∂NT, x1 +
2x2 + x3 ≥ 0.

Lemma 13. If (x1, x2, x3) ∈ NT and A(x1, x2, x3)
T ∈ ∂NT, then (x1, x2, x3) ∈

∂NT.

Proof. Let x = (x1, x2, x3). If the conclusion is not true, there exists a ball
o(x, r) ⊆ NT. Because AxT ∈ ∂NT, there exists x′ such that |Ax−x′| < r and
x′ is not in NT.

Since |A−1x′ − x| < |x′ − Ax| < r, A−1x′ ∈ o(x, r). So A−1x′ ∈ NT and
thus x′ ∈ NT, which is a contradiction.

Lemma 14. {( 1
2n ,− 1

3n ,
1
5n )}∞n=0 ⊆ ∂NT.

Proof. Let pn = ( 1
2n ,− 1

3n ,
1
5n ), n ≥ 0. We use induction on the value of n.

When n = 0, because Bp0 = B(1,−1, 1)T = 0 and

BAkp0 = 2k − 2× 3k + 5k > 0 for any k ∈ N
+,

we have p0 ∈ ∂NT.
Now assume that the conclusion holds for n−1. So,Apn = pn−1 ∈ ∂NT ⊆ NT.

By Lemma 13, pn ∈ ∂NT.

Lemma 15. For any non-zero polynomial f(x1, x2, x3) ∈ R[x1, x2, x3], there
exists an N such that f( 1

2n ,− 1
3n ,

1
5n ) �= 0 for all n > N .

Proof. Assume that the conclusion does not hold. Then there exists a subse-
quence {((12 )nk ,−(13 )

nk , (15 )
nk)}∞k=1 such that f vanishes on each point of it.

Let f = b1x
α1
1 xβ1

2 xγ1

3 + ... + bsx
αs
1 xβs

2 xγs

3 where bi ∈ R, bi �= 0, αi ∈ N, βi ∈
N, γi ∈ N, and (αi, βi, γi) �= (αj , βj , γj) for i �= j.

Obviously s ≥ 1 because f �≡ 0. Let ti = (12 )
αi(13 )

βi(15 )
γi .

It is an obvious fact that 2αj3βj5γj �= 2αi3βi5γi for i �= j. Hence t1, t2, ..., ts
are pairwise distinct. Without loss of generality, let t1 > t2 > ... > ts.

For every j > 1, we have lim
k→∞

(
tj
t1
)nk = 0. Thus

lim
k→∞

|f((
1
2 )

nk ,−(13 )
nk , (15 )

nk)

((12 )
α1(13 )

β1(15 )
γ1)nk

| = |b1| �= 0 .

This contradicts with f((12 )
nk ,−(13 )

nk , (15 )
nk) = 0. Therefore the conclusion fol-

lows.

Using the above lemmas, we can now prove Theorem 2.
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Proof. Denote by S the sequence {(12 )n,−(13 )
n, (15 )

n)}. By Lemma 14, S ⊆ ∂NT.
Assume NT is a semi-algebraic set. Then there exist finite many polynomials

fi,j ∈ R[x1, x2, x3] and �i,j ∈ {<,=} for i = 1, ..., s and j = 1, ..., ri such that

NT =

s⋃

i=1

ri⋂

j=1

{(x1, x2, x3) ∈ R
3|fi,j �i,j 0}. (3)

Because S ⊆ ∂NT ⊆ {fi,j = 0}i,j, for any x ∈ S, there exists a polynomial fi,j
such that fi,j(x) = 0. By pigeonhole principle there exists an fi,j and a subse-
quence S1 of S such that fi,j vanishes on S1, which contradicts with Lemma 15.

5 Conclusion

In this paper, we consider whether the NT of a simple linear loop is decidable
and how to compute it if it is decidable. For homogeneous linear loops with only
two program variables, we give a complete algorithm for computing the NT. For
the case of more program variables, we show that the NT cannot be described
by Tarski formulae in general.
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