
A Cure for Stuttering Parity Games

Sjoerd Cranen, Jeroen J.A. Keiren, and Tim A.C. Willemse

Department of Computer Science and Mathematics
Eindhoven University of Technology

PO Box 513, 5600MB Eindhoven, The Netherlands

Abstract. We define governed stuttering bisimulation for parity games, weak-
ening stuttering bisimulation by taking the ownership of vertices into account
only when this might lead to observably different games. We show that governed
stuttering bisimilarity is an equivalence for parity games and allows for a natu-
ral quotienting operation. Moreover, we prove that all pairs of vertices related by
governed stuttering bisimilarity are won by the same player in the parity game.
Thus, our equivalence can be used as a preprocessing step when solving parity
games. Governed stuttering bisimilarity can be decided in O(n2m) time for par-
ity games with n vertices and m edges. Our experiments indicate that governed
stuttering bisimilarity is mostly competitive with stuttering equivalence on parity
games encoding typical verification problems.

1 Introduction

Parity games [11,22,27] are played by two players (represented by � and �) on a di-
rected graph in which every vertex is owned by one of the players, and vertices are
assigned a priority. The game is played by moving a single token along the edges in
the graph; the choice where to move next is dictated by the player owning the vertex
on which the token currently resides. Both players try to play such that the resulting
infinite path is winning for them, and a vertex is won by the player that can play such
that, however the opponent plays, every path from that vertex is won by her. The winner
of a vertex is uniquely determined [11,22,27] and partitioning the graph in vertices that
are won by player � and those won by player � is referred to as solving the parity game.

The parity game framework is a key instrument in solving practical verification and
synthesis problems, see [11,2]. Its practical significance is mirrored by its role in search-
ing for the true complexity of model checking: modal μ-calculus model checking is
polynomially reducible to parity game solving, and vice versa [25]. Despite the appar-
ent simplicity of the latter problem, the precise complexity of solving parity games
is still open: the problem is known to be in NP ∩ coNP, and more specifically in
UP ∩ coUP [17], suggesting there just might exist a polynomial time algorithm. In-
deed, non-trivial classes of parity games have been identified that admit polynomial
time solving algorithms, see e.g. [4,23].

In the past decade, several advanced algorithms for solving parity games have been
designed. These include algorithms exponential in the number of priorities, such as Jur-
dziński’s small progress measures algorithm [18] and Schewe’s bigstep algorithm [24],
as well as the sub-exponential algorithm due to Jurdziński et al. [19]. Orthogonally to

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 198–212, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Cure for Stuttering Parity Games 199

the algorithmic improvements, heuristics have been devised that may speed up solv-
ing parity games that occur in practice [12]. Such heuristics work particularly well for
verification problems, which give rise to games with only few different priorities.

The heuristic that we consider in this paper, following, e.g., Fritz and Wilke’s study
of delayed simulation [14], is based on the use of fine-grained equivalence relations that
approximate the solution to a parity game. The idea is to recast the solving problem as
the problem of deciding winner equivalence between vertices: two vertices in a parity
game are equivalent whenever they are won by the same player. Finding equivalence
relations that refine winner equivalence and that are decidable in polynomial time yields
a preprocessing step that can be used to reduce games prior to solving.

From a practical viewpoint, we are particularly interested in those simulation and
equivalence relations that strike a favourable balance between their power to compress
the game graph and their computational complexity. Stuttering bisimulation [7] for
Kripke Structures is among a select number of candidates worth considering, with an
O(nm) time complexity (n being the number of vertices and m the number of edges).
Observe that stuttering bisimulation only preserves a fragment of the μ-calculus when
applied to Kripke Structures. It may therefore be surprising that it does preserve the win-
ner of parity games, including those that stem from encodings of arbitrary μ-calculus
model checking problems. As earlier experiments [10] indicate, off-the-shelf stuttering
bisimulation reduction algorithms can be competitive when compared to modern avail-
able parity game solvers. Stuttering bisimulation, however, is inadequate when faced
with alternations between players along the possible plays: it cannot relate vertices be-
longing to different players. Controller synthesis problems e.g. [2], and constructs such
as �♦φ and ♦�φ in μ-calculus verification, give rise to such parity games.

A natural question is, therefore, whether stuttering bisimulation can at all be modi-
fied so that it is able to relate vertices that belong to different players. We answer this
question in this paper by defining a relation, which we dub governed stuttering bisim-
ulation (reflecting that a player’s ruling capabilities are taken as primitive), which we
show to be strictly weaker than stuttering bisimilarity. In addition, we prove that gov-
erned stuttering bisimilarity:

– is an equivalence relation on parity games.
– refines winner equivalence.
– is decidable in O(n2m) time using a partition refinement algorithm.

The time complexity for deciding governed stuttering bisimilarity is a factor n worse
than that for stuttering bisimilarity; this is due to finding a splitter, for which our algo-
rithm requires O(mn) rather than O(m) time. Our experiments, however, indicate that
this factor does not manifest itself in practice; in fact, our algorithm is mostly competi-
tive with the one for stuttering bisimilarity.

Structure of the paper. Section 2 briefly introduces the parity game framework. We
recall the definition of stuttering bisimulation and we define governed stuttering bisim-
ulation in Section 3. In Section 4, we show that governed stuttering bisimulation is an
equivalence relation, we show it refines winner equivalence, and we address its decid-
ability. We discuss our experiments with a prototype implementation of our algorithm
for deciding governed stuttering bisimulation in Section 5. Related work is discussed in

200 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

Section 6, and future work is described in Section 7. Note that, due to space restrictions,
details of the proofs have been omitted. Detailed proofs are provided in [9].

2 Preliminaries

A parity game is a two-player graph game, played by two players on a directed graph.
The game is formally defined as follows.

Definition 1 (Parity game). A parity game is a directed graph (V,→, Ω,P), where

– V is a finite set of vertices,
– → ⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one
w ∈ V such that (v, w) ∈ →),

– Ω :V → N is a priority function that assigns priorities to vertices,
– P :V → { �,�} is a function assigning vertices to players.

If i is a player, then ¬i denotes the opponent of i, i.e., ¬ � = � and ¬� = �. A sequence
of vertices v1, . . . , vn for which vm → vm+1 for all 1 ≤ m < n is a path, and may be
denoted using angular brackets: 〈v1 . . . vn〉. The concatenation p · q of paths p and q is
again a path. Infinite paths are defined in a similar manner. We use pn to denote the nth

vertex in a path p.
A game starts by placing a token on vertex v ∈ V . Players move the token indefi-

nitely according to the following simple rule: if the token is on some vertex v, player
P(v) moves the token to some vertex w such that v → w. The result is an infinite path
p in the game graph. The parity of the lowest priority that occurs infinitely often on p
defines the winner of the path. If this priority is even, then player � wins, otherwise
player � wins.

A strategy for player i is a partial function σ :V ∗→ V , that is defined only for paths
ending in a vertex owned by player i and determines the next vertex to be played onto.
The set of strategies for player i in a game G is denoted S

∗
G,i, or simply S

∗
i if G is clear

from the context. If a strategy yields the same vertex for every pair of paths that end
in the same vertex, then the strategy is said to be memoryless. The set of memoryless
strategies for player i in a game G is denoted SG,i, abbreviated to Si when G is clear from
the context. A memoryless strategy is usually given as a partial function σ :V → V .

A path p of length n is consistent with a strategy σ ∈ S
∗
i , denoted σ � p, if and

only if for all 1 ≤ j < n it is the case that if σ is defined for 〈p1 . . . pj〉, then pj+1 =
σ(〈p1 . . . pj〉). The definition of consistency is extended to infinite paths in the obvious
manner. A strategy σ ∈ S

∗
i is said to be a winning strategy from a vertex v if and only if

i is the winner of every path consistent with σ. A vertex is won by i if i has a winning
strategy from that vertex. Parity games are memoryless determined [11], i.e. each vertex
in the game is won by exactly one player, and it suffices to play a memoryless strategy.

In this paper, we are concerned with relations partitioning the vertices in a parity
game such that all related vertices are won by the same player. Let R be a relation
over a set V . For v, w ∈ V we write v R w for (v, w) ∈ R. For an equivalence
relation R, and vertex v ∈ V we define [v]R, the equivalence class of v under R, as
{v′ ∈ V | v R v′}. The set of equivalence classes of V under R is denoted V/R. A

A Cure for Stuttering Parity Games 201

collection {Bi | i ∈ I}, with ∅
= Bi ⊆ V , is called a partition of V if
⋃
i∈I Bi = V

and for i
= j : Bi ∩ Bj = ∅. An element Bi of a partition is called a block. If P
and Q are partitions of V then Q refines P if ∀Bi ∈ Q : ∃Bj ∈ P : Bi ⊆ Bj . We
use the notions of equivalence relation and partition interchangeably, and occasionally
write v P v′ rather than v, v′ ∈ B for some B ∈ P .

Determinacy of parity games effectively induces a partition on the set of vertices V
in those vertices won by player � and those vertices won by player �. This partition is
the natural equivalence relation on V .

Definition 2 (Winner equivalence). Let (V,→, Ω,P) be a parity game. Vertices
v, w ∈ V are winner equivalent, denoted v ∼ w iff v and w are won by the same
player.

3 Governed Stuttering Bisimulation

In [10] we introduced stuttering bisimulation for parity games. Informally, stuttering
bisimulation compresses subsequences of “identical” vertices, i.e. vertices with the
same priority, owned by the same player, along a path p in a parity game, such that
the path retains the essentials of the graph’s branching structure.

Before we give the formal definition of stuttering bisimulation, we first introduce
some notation. Let (V,→, Ω,P) be a parity game. In the following, let U ⊆ V be
arbitrary sets of vertices; we write v → U if there exists a u ∈ U such that v → u.

Let R ⊆ V × V be a relation on the set of vertices. The generalised transition
relation v �→R U , defined below, formalises that U is eventually reached from v by
some computation path through R-related nodes. Likewise, v �→R expresses that v is
the start of an infinite computation path along vertices related throughR.

v �→R U
μ
= ∃u : v → u ∧ (u ∈ U ∨ (v R u ∧ u �→R U))

v �→R
ν
= ∃u : v → u ∧ v R u ∧ u �→R

We next formalise the notion of stuttering bisimulation, deviating notationally from [10];
the definitions, however, are easily seen to coincide and the modifications are standard.
Our main reason for deviating from [10] is that the presented definition facilitates ex-
plaining the intuition of its generalisation to governed stuttering bisimulation.

Definition 3 (Stuttering bisimulation for parity games [10]). Let (V,→, Ω,P) be a
parity game. Let R ⊆ V × V be an equivalence relation on vertices; R is a stuttering
bisimulation if v R v′ implies

a) Ω(v) = Ω(v′) and P(v) = P(v′);
b) v → C implies v′ �→R C, for all C ∈ V/R \ {[v]R}.
c) v �→R iff v′ �→R;

Two states v and v′ are said to be stuttering bisimilar, denoted v � v′ iff there is a
stuttering bisimulation relation R, such that v R v′.

Our objective is to weaken stuttering bisimulation so that it will be able to relate vertices
of different players. However, we cannot simply weaken clause a) to Ω(v) = Ω(v′)
without modifying the remaining clauses, as this would enable us to relate vertices won
by different players, as the following parity game demonstrates:

202 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

2 2 1 2 2

The suggested weakening of clause a) would allow us to relate all vertices with priority
2; the two left vertices, however are won by player �, whereas the other vertices are
won by player �.
The problem in the above example is that the computation paths that appear in clauses
b) and c) may consist of vertices owned by different players. This means that a fixed
player is at the mercy of her opponent to stay on a computation path: the opponent may
simply choose an alternative next vertex if that would better suit her. We are therefore
forced to reason about computation trees, taking all the opponent’s choices into account.
Effectively, clause b) must be strengthened to ensure that a player eventually reaches
class C along some computation tree, and clause c) must be strengthened to ensure that
a player can construct an infinite computation tree not leaving its own class.

We first extend our notation to facilitate reasoning about computation trees rather
than computation paths. Given a memoryless strategy σ for some player, the ability to
move from vertex v to another vertex u depends on this strategy.

v σ→u =

{
v → u ∧ σ(v) = u, if σ(v) is defined

v → u, otherwise

From the viewpoint of a fixed player and her memoryless strategy σ, a token may be
moved along the edges of a computation tree that only branches at vertices owned by her
opponent. This notation v σ �→R U , defined below, formalises that all plays allowed by σ
eventually reach the set of verticesU immediately when they follow an edge to a vertex
that is no longer related under relation R. The notation v σ �→R is dual; it expresses that
all plays allowed by σ can reach only vertices related under R to the previous vertex in
that play:

v σ �→R U
μ
= ∀u : v σ→u =⇒ u ∈ U ∨ (v R u ∧ u σ �→R U)

v σ �→R
ν
= ∀u : v σ→u =⇒ v R u ∧ u σ �→R

If the strategy is unimportant to the purpose at hand, we abstract from the specific
strategy that is used and reason only in terms of a player i having a strategy with the
capability of forcing a play to a set of vertices U , and, dually, for i to be able to force
the play to diverge within a class of R:

x i �→R U = ∃σ ∈ Si : x σ �→R U
x i �→R = ∃σ ∈ Si : x σ �→R

We omitR if it is the relation V ×V . Note that v i �→R ∅ never holds. On the other hand,
v i �→R V and v i �→ are trivially true. We write v i
�→R U for ¬(v i �→R U); likewise for
all other arrows. If U ⊆ V/R, then we write v i �→R U to denote v i �→R

⋃
C∈U C.

Definition 4 (Governed stuttering bisimulation). Let (V,→, Ω,P) be a parity game.
LetR ⊆ V ×V be an equivalence relation. ThenR is a governed stuttering bisimulation
if v R v′ implies

A Cure for Stuttering Parity Games 203

a) Ω(v) = Ω(v′);
b) v → C implies v′ P(v) �→R C, for all C ∈ V/R \ {[v]R}.
c) v i �→R iff v′ i �→R for i ∈ { �,�}.

Vertices v and v′ are governed stuttering bisimilar, denoted v ∼ v′, iff a governed
stuttering bisimulation R exists such that v R v′.

If we additionally require that P(v) = P(v′), we find that v �→R U iff v P(v) �→R U ,
and, likewise, v �→R iff v P(v) �→R. This is the basis for the following proposition.

Proposition 1. Let R ⊆ V ×V be a governed stuttering bisimulation, such that v R v′

implies P(v) = P(v′). Then R is a stuttering bisimulation.

Example 1. Consider the parity game depicted in Figure 1a. The equivalence relation
that relates vertices with equal priorities is a governed stuttering bisimulation. Stuttering
bisimulation does not relate any of the vertices.

0 1 2

21

(a)

0 0

1 1

(b)

0

1

(c)

0

1

(d)

Fig. 1. All vertices in (a) with the same priorities can be related using governed stuttering bisim-
ilarity. Both (c) and (d) are minimal representations of (b).

4 Properties of Governed Stuttering Bisimulation

We next study three key properties of governed stuttering bisimulation, viz., governed
stuttering bisimilarity is an equivalence on parity games, it refines winner equivalence
and it is decidable in polynomial time.

4.1 Governed Stuttering Bisimilarity is an Equivalence

Proving that ∼ is an equivalence relation on parity games is far from straightforward:
transitivity no longer bows to the standard proof strategies that work for stuttering
bisimilarity and branching bisimilarity [26]. As a result of the asymmetry in the use
of two different transition relations in clause b) of Definition 4, proving that the equiv-
alence closure of the union of two governed stuttering bisimulation relations is again a
governed stuttering bisimulation relation is equally problematic.

The strategy we pursue is as follows. We characterise governed stuttering bisimula-
tion, in two steps, by a set of symmetric requirements. The obtained alternative charac-
terisation is then used in our equivalence proof. These alternative characterisations do
not facilitate the reuse of standard proof strategies, but they are instrumental in the tech-
nically involved proof that the equivalence closure of two governed stuttering bisimu-
lation relations is again a governed stuttering bisimulation relation. Apart from being

204 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

convenient technically, the characterisations offer more insight into the nature of gov-
erned stuttering bisimilarity. Hence, instead of providing the details of our equivalence
proof, we focus on the alternative characterisations of governed stuttering bisimulation.

Our result below states that we can rephrase condition b) of governed stuttering
bisimulation by requiring that a fixed player must have the same power to force the
play from any pair of related vertices to reach an arbitrary class. Thus, we abstract from
the player that takes the initiative to leave its class in one step.

Theorem 1. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i �→R C iff v′ i �→R C for all i ∈ { �,�}, C ∈ V/R \ {[v]R};
c) v i �→R iff v′ i �→R for all i ∈ { �,�}.

While the above alternative characterisation of governed stuttering bisimulation is now
fully symmetric, the restriction on the class C that is considered in clause b) turns out
to be too strong to facilitate our proof that ∼ is an equivalence relation. We therefore
generalise this clause once more to reason about sets of classes. A perhaps surprising
side-result of this generalisation is that the divergence requirement of clause c) be-
comes superfluous. Note that this last generalisation is not trivial, as v i �→R{C1, C2} is
in general neither equivalent to saying that v i �→R C1 and v i �→R C2, nor v i �→R C1 or
v i �→R C2.

Theorem 2. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i �→R U iff v′ i �→R U for all i ∈ { �,�},U ⊆ V/R \ {[v]R}.

Note that the divergence requirement v i �→R iff v′ i �→R can be recovered by instantiat-
ing set U by V/R \ {[v]R} for player ¬i in the above theorem. The last characterisation
enables us to prove the following theorem.

Theorem 3. ∼ is an equivalence relation.

As a side-result of the proof of Theorem 3, we find that the equivalence closure of the
union of two governed stuttering bisimulations is again a governed stuttering bisimula-
tion. The union of all governed stuttering bisimulations is again a governed stuttering
bisimulation, which coincides with governed stuttering bisimilarity.

4.2 Quotienting

The main reason for studying equivalence relations for parity games is that they may
offer the prospect of minimising the parity game by collapsing vertices that are consid-
ered equivalent. The resulting minimised structure is referred to as the quotient. How-
ever, not all equivalence relations admit such a quotienting operation; in particular, the
delayed simulation [14] for parity games fails to have a natural quotienting operation.

A Cure for Stuttering Parity Games 205

Quotienting for governed stuttering bisimulation can be done efficiently. Due to the
nature of governed stuttering bisimulation, we have some freedom in the definition of
the quotient, in particular when assigning vertices to players. We therefore first define a
notion of minimality, and we subsequently define the quotient in terms of that notion.

Definition 5 (Minimality). A∼-minimal representation of a parity game (V,→, Ω,P)
is defined as a game (Vm,→m, Ωm,Pm), that satisfies the following conditions (where
c, c′, c′′ ∈ Vm):

Vm = { [v]∼ | v ∈ V }
Ωm(c) = Ω(v) for all v ∈ c

Pm(c) = i, if for all v ∈ c, and some c′
= c we have v i �→∼ c′ and v ¬i
�→∼V \ c′
c→m c iff v i �→∼ for all v ∈ c for some player i

c→m c′ iff v i �→∼ c′ for all v ∈ c for some player i and c′
= c

Observe that for the third clause above, if from some vertex v the play could be forced
to c′ by i without ¬i having the opportunity to diverge, player i is in charge of the game
when the play arrives in c. This requires the representative in the quotient to be owned
by player i.

Note that a parity game may have multiple ∼-minimal representations. It is not hard
to verify that every parity game contains at least as many vertices and edges as its ∼-
minimal representations. Moreover, any parity game is governed stuttering bisimulation
equivalent to all its ∼-minimal representations. As a result, the governed stuttering
bisimulation quotient of a graph can be defined as its least ∼-minimal representation,
given some arbitrary ordering on parity games. A natural ordering would be one that is
induced by an ordering on players, e.g., � < �.

Example 2. Consider the parity game in Figure 1b. Two of its four minimal represen-
tations are in Figure 1c and 1d. Observe that the particular player chosen for the 0 and
1 vertices is arbitrary and does not impact the solution to the games.

4.3 Governed Stuttering Bisimilarity Refines Winner Equivalence

In this section, we prove that governed stuttering bisimilarity is strictly finer than win-
ner equivalence. That is, vertices that are won by different players are never related
by governed stuttering bisimilarity. In order to prove this result, we must first lift the
concept of governed stuttering bisimilarity to paths.

Paths of length 1 are equivalent if the vertices they consist of are equivalent. If paths
p and q are equivalent, then p · 〈v〉 ∼ q iff v is equivalent to the last vertex in q, and
p · 〈v〉 ∼ q · 〈w〉 iff v ∼ w. An infinite path p is equivalent to a path q if for all finite
prefixes of p there is an equivalent prefix of q and vice versa.

We defineΠn
ϕ(v) to be the set of paths of length n that start in v and that are allowed

by some strategy ϕ. Πω
ϕ (v) is then the set of all infinite paths allowed by ϕ, starting

in v. In a similar fashion, we also define Ψnϕ (v), which contains those paths starting in
v that are allowed by ϕ and that consist of exactly n segments in which all vertices in
a segment are related by ∼, except the last vertex. Also included in Ψnϕ (v) are infinite
paths that stay in the same class forever after n or less such segments.

206 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

Definition 6 (Levels). Formally we define the nth level paths Ψnϕ (v) of a strategy ϕ
from root vertex v for all paths p as follows:

p ∈ Ψ0
ϕ(v) iff p = 〈v〉

p · q ∈ Ψn+1
ϕ (v) iff p ∈ Ψnϕ (v) ∧ ϕ � p · q ∧

((p · q ∼ p ∧ |q| = ∞) ∨
(∃q̄, v : q = q̄ · 〈v〉 ∧ p · q̄ ∼ p ∧ p · q
∼ p))

Note that Πω
ϕ (v) = Ψωϕ (v). The following lemma is the basis for establishing that

governed stuttering bisimilarity refines winner equivalence.

Lemma 1. Given some v, w ∈ V such that v ∼ w, then for every strategy ϕ ∈ Si we
have a strategy ψ ∈ S

∗
i such that ∀n ∈ N : ∀p ∈ Ψnψ (w) : ∃p′ ∈ Ψnϕ (v) : p ∼ p′

We are now in a position to prove that governed stuttering bisimilarity refines winner
equivalence.

Theorem 4. Governed stuttering bisimulation strictly refines winner equivalence.

Proof. Let ϕ be a strategy for player i that wins from v ∈ V . Without loss of generality
assume that ϕ is memoryless, and let w ∈ V such that v ∼ w. By Lemma 1, we know
that there is some strategy ψ such that for every path in Ψωψ (w) there is a related path in
Ψωϕ (v). As Πω

ϕ (v) = Ψωϕ (v), this means that for every path starting in w that is allowed
by ψ, we have an equivalent path starting in v that is allowed by ϕ. Equivalent paths
have the same set of infinitely often recurring priorities. Any priority that may be visited
infinitely often under ψ could therefore also have been visited infinitely often under ϕ.
Therefore, ψ must be a winning strategy. The strictness of the refinement follows from,
e.g., the example in Figure 1.c, in which player � wins both vertices. ��

4.4 Decidability

Our algorithm for deciding governed stuttering bisimilarity is based on Groote and
Vaandrager’sO(nm) algorithm for deciding stuttering bisimilarity [16]. Before we pro-
vide the details, we introduce the necessary additional concepts.

Our algorithm requires a generalisation of the well-known notion of attractor sets
[22] along the lines of the generalisation used for the computation of the Until in the
alternating-time temporal logic ATL [1]. The generalisation introduces a parameter re-
stricting the set of vertices that are considered in the attractor sets.

BAttr
0
i (U) = U

BAttr
n+1
i (U) = BAttr

n
i (U)

∪ {v ∈ B | P(v) = i ∧ ∃v → v′ : v′ ∈ BAttr
n
i (U)}

∪ {v ∈ B | P(v)
= i ∧ ∀v → v′ : v′ ∈ BAttr
n
i (U)}

BAttri(U) = BAttr
ω
i (U)

Leavei(B,W) = BAttri(W) ∩B
The set Leavei(B,W) captures the subset ofB from which player i can force the game
to W ⊆ V . The formal correspondence between Leave and i �→ is formalised below;
this allows for restating the criteria from Definition 4 in terms of Leave .

A Cure for Stuttering Parity Games 207

Lemma 2. Let P be a partition of V , and let B ∈ P be a block. Then for all u ∈ B:
u i �→P if and only if u
∈ Leave¬i(B, V \B).

Lemma 3. Let P partition V , and let B,B′ ∈ P such that B
= B′. Let v ∈ B
such that v → B′. Then for all w ∈ B it holds that w P(v) �→P B

′ if and only if w ∈
LeaveP(v)(B,B

′).

Groote and Vaandrager’s algorithm for stuttering bisimulation repeatedly refines a care-
fully chosen initial partition P0 using a so-called splitter. We apply the same principle,
choosing P0 such that for all v, v′ ∈ V , v P0 v

′ if and only if Ω(v) = Ω(v′) as our
initial partition. As our splitter, we define a function pos that returns the set of vertices
in B from which a given player i can force the play to reach B′, or, in case B = B′,
force the play to diverge:

pos i(B,B
′) =

{
{v ∈ B | v i �→P } if B = B′

{v ∈ B | v i �→P B
′} if B
= B′

In line with [16], we say that B′ is a splitter of B if and only if ∅
= pos i(B,B
′)
= B

for some player i. A partition P is stable with respect to a block B ∈ P if B is not a
splitter of any block in P . The partition itself is stable if it is stable with respect to all its
blocks. A high-level description of our algorithm for governed stuttering bisimulation,

Algorithm 1. Decision procedure for ∼
n← 0
repeat

splitter ← ⊥
for each B ∈ Pn and player i do { Find splitter in O(nm) }

if there exists v ∈ B with v → B′ and ∅ �= pos i(B,B′) �= B for B′ ∈ Pn then
splitter ← (B, pos i(B,B′))

end if
end for
if splitter = (B,Pos) then { Refine partition in O(m) }

Pn+1 ← (Pn \ {B}) ∪ {Pos , B \ Pos}
end if
n← n+ 1

until Pn−1 = Pn

is given as Algorithm 1. Note that this does not compute the quotient. Correctness of
the algorithm follows the same line of reasoning as in [16]. Based on this algorithm, we
obtain the following complexity result.

Theorem 5. Algorithm 1 decides ∼ in O(n2m) time for a parity game that contains n
vertices and m edges.

Our time complexity is worse than the O(nm) achieved by the original algorithm for
deciding stuttering bisimulation. The extra factor O(n) is due to the complexity re-
quired to search for a splitter which, in our case, requires O(nm) time, instead of the
original O(m) time.

208 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

5 Experiments

While the running time of our algorithm for governed stuttering bisimilarity is theo-
retically worse than that of the algorithm for stuttering bisimilarity, we expect that for
solving parity games, in practice both are comparable. We test this hypothesis on a set
of over 200 real-life model checking problems, part of which was previously used to
study the effect of stuttering bisimilarity for parity games, see [10].

Whereas in [10] a signature based approach [5] was used, in the present paper we use
the Groote-Vaandrager algorithm for computing stuttering bisimilarity in order to an-
swer our hypothesis. For computing governed stuttering bisimilarity we have modified
the implementation of Groote-Vaandrager to include the changes presented in Algo-
rithm 1.

For running our experiments we reuse the setup of [10] for solving parity games,
i.e., we use an optimised C++ implementation of the small progress measures algo-
rithm [18], and the optimised variants of the small progress measures, recursive [22,27]
and bigstep algorithms [24] offered by the PGSolver [12] toolset.

All experiments were conducted on a machine consisting of 28 Intel R© Xeon c©
E5520 Processors running at 2.27GHz, with 1TB of shared main memory, running a
64-bit Linux distribution using kernel version 2.6.27. None of our experiments employ
multi-core features.

5.1 Test Sets

The parity games that were used for our experiments are clustered into four test sets.
We give a brief description of each of the sets below.

Model checking. Our main interest is in the practical implications of governed stutter-
ing bisimilarity reduction on solving model checking problems. To this end, a num-
ber of model checking problems have been selected from the literature [21,3,15].
The properties that have been checked include fairness, liveness and safety proper-
ties.

Games. The second test set considers a number of turn-based, two player board games.
For each of these games, and for each player, we have encoded the property that
said player can play the game in such a way that, regardless of the play of the
opponent, she can win the game.

PGSolver. The third test set was taken from [12] and consists of the elevator problem
and the Hanoi towers problem described in that paper. It also includes alternative
encodings of these problems, taken from [10].

Equivalence checking. The last test set consists of a number of equivalence checking
problems encoded into parity games as described in [8].

The problems in these test sets are scalable. In every test set, a number of instances
of every problem is included. Each problem gives rise to a parity game with at most 4
different priorities, which is typical for practical verification problems.

The model checking, PGSolver and equivalence checking problems were studied
before in the setting of stuttering bisimilarity [10]. We extended that test set to include
more examples of parity games with alternations between players and priorities. We can
expect improved reductions compared to stuttering bisimilarity in these cases.

A Cure for Stuttering Parity Games 209

5.2 Measurements: Size and Time

To analyse the performance of our reduction, we measured the difference in the sizes
(computed as the sum of the number of vertices and the number of edges) of the stutter-
ing and governed stuttering minimal games. A reduction of 0% means that the governed
stuttering bisimilarity reduced game has the same size as the stuttering bisimilarity re-
duced game.

For every problem in the test set, we compute the reduction as the average reduction
over all instances of that problem. We do this in order to measure the reduction rate for
the different problems, rather than for the instances. Figure 2a shows the average re-
duction for problems in each test set, together with the minimal and maximal reduction
achieved within that set.

In addition, we measured the times needed to reduce the parity games plus the time
needed to solve the reduced game using the fastest solver. That is, the sum of these two
is the total solving time for a parity game. This way, our results can be compared to those
listed in [10]. In Figure 2b, every data point represents a problem instance, of which the
total solving time of the stuttering minimal game determines the x-coordinate, and the
total solving time for the governed stuttering bisimilarity minimal game determines the
y-coordinate.

0 20 40 60 80 100

pgsolver

equivalence

games

modelchecking

Reduction (%)

(a) Minimum, maximum and aver-
age reduction of parity games using
governed stuttering bisimulation re-
duction, as percentage of the size af-
ter stuttering bisimilarity reduction

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

Stuttering

G
ov
er
n
ed

st
u
tt
er
in
g

modelchecking
equivalence
pgsolver
games

(b) Solving times (=sum of reduc-
tion time and subsequent solving)
in seconds using governed stuttering
bisimilarity set out against the solv-
ing times using stuttering bisimilar-
ity. The dotted line is defined as x =
y and serves as a reference. Note that
the axes are in log scale.

Fig. 2. Comparison of sizes and times of reductions

210 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

5.3 Discussion

Figure 2b shows that solving times for governed stuttering bisimilarity are generally
comparable to those for stuttering bisimilarity, confirming our hypothesis.

Whether governed stuttering bisimilarity offers additional reductions over stuttering
bisimilarity depends largely on the kind of property that is checked, and the resulting
structure of the parity game. On average, a modest additional reduction is achieved, and
there are practical cases in which the additional reduction is almost 100%.

For several model checking cases, stuttering bisimilarity already reduces the parity
game to a graph with one vertex per priority. Obviously, governed stuttering bisimilarity
cannot improve on that. However, in one of our problems (model checking a leadership
protocol) a reduction of almost 100% is achieved, increasing the average reduction for
this test set.

The properties that we considered on two-player games naturally give rise to alter-
nations between players in the parity game. For these type of properties, the reduction
achieved using governed stuttering bisimilarity surpasses that of stuttering bisimilar-
ity by about 20% on average. Similar results for parity games obtained for controller
synthesis (see e.g. [2]) may be obtained as these exhibit similar structures.

For the equivalence cases, stuttering bisimilarity reduction already yields games of a
small size and governed stuttering bisimilarity does not reduce any further.1

Interestingly, one of the PGSolver cases taken from [12] shows a better reduction
using governed stuttering bisimilarity, in contrast to an alternative encoding also used
in [10].

Summarising, we conclude that governed stuttering bisimilarity reduces slightly bet-
ter than stuttering bisimilarity, without noticable loss of performance.

6 Related Work

As observed in Fritz’ thesis [13], direct simulation for parity games led to disappoint-
ing reductions, spurring Fritz and Wilke to investigate a weaker notion, called delayed
simulation [14] and its induced equivalence. Delayed simulation equivalence is incom-
parable to governed stuttering bisimilarity. Contrary to governed stuttering bisimilarity,
delayed simulation equivalence has the capability to relate vertices with different pri-
orities. On the other hand, governed stuttering bisimilarity can relate vertices with the
same priority in cases that delayed simulation equivalence cannot, as illustrated by the
two parity games below, in which governed stuttering bisimulation relates all vertices
with equal priority whereas delayed simulation equivalence does not:

0 0 2 0 2 2

Contrary to governed stuttering bisimulation, the definition of the simulation relation is
entirely in terms of a simulation game, viz., a game graph equipped with Büchi winning
conditions. The simulation game gives rise to an O(d2n3m) algorithm for deciding

1 [10] reports a poor reduction for stuttering equivalence in these cases. This was caused by
“optimisations” that were used during generation of the parity games.

A Cure for Stuttering Parity Games 211

delayed simulation (here, n is the number of vertices, m the number of edges, and d
the number of different priorities in the game), significantly exceeding our O(n2m)
complexity for governed stuttering bisimulation.

Apart from delayed simulation, in the setting of Boolean equation systems, the notion
of idempotence-identifying bisimilarity was defined and investigated [20]. This equiv-
alence relation enables one to relate conjunctive equations to disjunctive equations.
In parity games, this translates to being able to relate � vertices and � vertices, re-
spectively. Idempotence-identifying bisimilarity is much finer than governed stuttering
bisimilarity, as the former is based on strong bisimilarity. Interestingly, the complexity
of deciding idempotence-identifying bisimilarity is the same as for strong bisimilarity.

7 Concluding Remarks

We have described a non-trivial modification of stuttering bisimulation that allows re-
lating vertices that belong to different players. The resulting relation, dubbed governed
stuttering bisimulation, is an equivalence relation that can be decided in O(n2m) time
using a partition refinement algorithm. Although this complexity is worse than the
O(nm) time complexity for deciding stuttering bisimulation, our experiments indicate
that this factor does not manifest itself in practice. In fact, the algorithm is largely com-
petitive with the one for stuttering bisimilarity.

An obvious question is whether elements of Fritz and Wilke’s delayed simulation [14]
and governed stuttering bisimulation can be combined. Given the complexity of the
proofs of most of our results for governed stuttering bisimulation and our attempts to
weakening governed stuttering bisimulation along these lines, we are rather sceptical
about the chances of success. Even if one would manage to define such a relation, it
would likely have little practical significance due to the prohibitive complexity of de-
layed simulation.

An interesting extension of our work could be to generalise the concepts of gov-
erned stuttering bisimilarity to games with other payoff functions that are insensitive to
stuttering. We expect such a generalisation to be reasonably straightforward.

Finally, we observe that stuttering bisimulation (also known as branching bisimula-
tion in labelled transition systems) underlies several confluence reduction techniques
for syntactic system descriptions, see [6]. Such reductions partly side-step the state-
space explosion. We believe that our study offers the required foundations for bringing
similar-spirited confluence reduction techniques to a setting of symbolic representations
of parity games.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5),
672–713 (2002)

2. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial
observation. TCS 303(1), 7–34 (2003)

3. Badban, B., Fokkink, W., Groote, J.F., Pang, J., van de Pol, J.: Verification of a sliding win-
dow protocol in µCRL and PVS. FAC 17, 342–388 (2005)

212 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

4. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg
(2006)

5. Blom, S.C.C., Orzan, S.: Distributed branching bisimulation reduction of state spaces. Elec-
tronic Notes in Theoretical Computer Science 89(1), 99–113 (2003)

6. Blom, S., van de Pol, J.: State Space Reduction by Proving Confluence. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–694. Springer, Heidelberg (2002)

7. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. TCS 59, 115–131 (1988)

8. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence Checking for Infinite
Systems Using Parameterized Boolean Equation Systems. In: Caires, L., Vasconcelos, V.T.
(eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)

9. Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: A cure for stuttering parity games. Technical
Report 12-05, Eindhoven University of Technology, Eindhoven (2012),
http://alexandria.tue.nl/repository/books/732149.pdf

10. Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: Stuttering Mostly Speeds Up Solving Parity
Games. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 207–221. Springer, Heidelberg (2011)

11. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS 1991,
pp. 368–377. IEEE Computer Society, Washington, DC (1991)

12. Friedmann, O., Lange, M.: Solving Parity Games in Practice. In: Liu, Z., Ravn, A.P. (eds.)
ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

13. Fritz, C.: Simulation-Based Simplification of omega-Automata. PhD thesis, Christian-
Albrechts-Universität zu Kiel (2005)

14. Fritz, C., Wilke, T.: Simulation Relations for Alternating Parity Automata and Parity Games.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 59–70. Springer, Heidelberg
(2006)

15. Groote, J.F., Pang, J., Wouters, A.G.: Analysis of a distributed system for lifting trucks. In:
JLAP, vol. 55, pp. 21–56. Elsevier (2003)

16. Groote, J.F., Vaandrager, F.W.: An Efficient Algorithm for Branching Bisimulation and Stut-
tering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638.
Springer, Heidelberg (1990)

17. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. IPL 68(3), 119–124
(1998)

18. Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

19. Jurdziński, M., Paterson, M., Zwick, U.: A Deterministic Subexponential Algorithm for
Solving Parity Games. In: SODA 2006, pp. 117–123. ACM/SIAM (2006)

20. Keiren, J.J.A., Willemse, T.A.C.: Bisimulation Minimisations for Boolean Equation Sys-
tems. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 102–116.
Springer, Heidelberg (2011)

21. Luttik, S.P.: Description and formal specification of the link layer of P1394. In: Workshop
on Applied Formal Methods in System Design, pp. 43–56 (1997)

22. McNaughton, R.: Infinite games played on finite graphs. APAL 65(2), 149–184 (1993)
23. Obdrzálek, J.: Clique-Width and Parity Games. In: CSL, pp. 54–68 (2007)
24. Schewe, S.: Solving Parity Games in Big Steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS

2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)
25. Stirling, C.: Bisimulation, Model Checking and Other Games. In: Notes for Mathfit Work-

shop on Finite Model Theory, University of Wales Swansea (1996)
26. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-

tics. J. ACM 43(3), 555–600 (1996)
27. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on

infinite trees. TCS 200(1-2), 135–183 (1998)

http://alexandria.tue.nl/repository/books/732149.pdf

	A Cure for Stuttering Parity Games
	Introduction
	Preliminaries
	Governed Stuttering Bisimulation
	Properties of Governed Stuttering Bisimulation
	Governed Stuttering Bisimilarity is an Equivalence
	Quotienting
	Governed Stuttering Bisimilarity Refines Winner Equivalence
	Decidability

	Experiments
	Test Sets
	Measurements: Size and Time
	Discussion

	Related Work
	Concluding Remarks
	References

