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Abstract. Motivated by Murray’s work on the limits of refinement test-
ing for CSP, we propose the use of ProB to check liveness properties under
assumptions of strong and weak event fairness, whose refinement-closures
cannot generally be expressed as refinement checks for FDR. Such prop-
erties are necessary for the analysis of fair exchange protocols in CSP,
which assume at least some messages are sent over a resilient channel.
As the properties we check are refinement-closed, we retain CSP’s the-
ory of refinement, enabling subsequent step-wise refinement of the CSP
model. Moreover, we improve upon existing CSP models of fair exchange
protocols by proposing a revised intruder model inspired by the one of
Cederquist and Dashti. Our intruder model is stronger as we use a weaker
fairness constraint.

1 Introduction

Hoare’s Communicating Sequential Processes (CSP) [1] is a process algebra for
describing models of interacting processes in terms of the events that they per-
form. For two decades the Failures Divergence Refinement (FDR) checker [2]
has been the principal tool for verifying properties of models expressed in CSP.
FDR tests whether the CSP model of the system being analysed refines some
specification of the system’s desired behaviour, which is also written in CSP.
This differentiates FDR from other model checkers which test whether a system
satisfies some predicate expressed in a temporal logic.

In [3], Lowe investigated the extent to which it can be checked that CSP
processes satisfy temporal logic specifications using a refinement-based model
checker, such as FDR. He defined the atomic formulae of a temporal logic he
considered appropriate for specifying communicating processes. Subsequently,
as a result of his investigation into the limits of refinement testing for CSP,
Murray concluded that alternative verification approaches besides refinement
checking for CSP should be further pursued [4]. Murray demonstrated there
exist useful predicates that cannot generally be expressed as refinement checks
in any semantic model of CSP that FDR can handle. One such class of predicates
includes liveness properties under Murray’s refinement-closed notions of strong
and weak event fairness.
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We demonstrate how to directly check whether CSP processes satisfy predi-
cates expressed in Lowe’s temporal logic using ProB, which is a tool that facil-
itates LTL model checking for a number of formalisms including CSP [5]. Not
all of the operators offered by ProB for LTL model checking match the intended
meaning of their counterpart in the grammar defined by Lowe. However, we
shall show how one can express Lowe’s temporal logic in ProB. By using ProB
to check that a CSP process P satisfies a formula S , written in Lowe’s gram-
mar, we can be sure that checking P �RT P ′ in FDR guarantees that P ′ |= S .
This is necessary when P |= S cannot be expressed as a simple refinement check
Spec(S ) � P in RT or any other semantic modelM that FDR can handle.

Model checking fair exchange protocols against liveness properties constrain-
ed by Murray’s refinement-closed interpretation of fairness provides a practical
setting exemplifying the ability of our approach to verify properties that cannot,
in general, be tested for via simple refinement checks in FDR. Typically, a Dolev-
Yao (DY) intruder [6], which is limited by perfect cryptography but has complete
control over the network, is assumed when analysing security protocols. However,
such an intruder model trivially breaks liveness properties, as the DY intruder
may choose not to communicate any message sent. Fair exchange protocols often
rely upon the assumption that at least some messages are communicated using
resilient channels [7], which eventually deliver each message [8]. In this paper we
construct a CSP model of an intruder constrained by a resilient communication
channel assumption, based on work by Cederquist and Dashti [9], that can be
used to verify liveness properties in fair exchange protocols using the fairness
constraints proposed by Murray [4].

Following the necessary background on CSP provided in Section 2, Section 3
describes how the atomic formulae of Lowe’s temporal logic can be expressed us-
ing the temporal operators offered when LTL model checking in ProB. Section 3
can stand alone demonstrating how, in general, one can reason about liveness
properties constrained by Murray’s refinement-closed interpretation of fairness
using ProB, while Section 4 describes its application in the specific setting of fair
exchange protocols. In Section 4 we construct an intruder model for reasoning
about liveness properties of fair exchange protocols in the presence of resilient
channels. Finally, Section 5 and Section 6 describe related and future work.

2 CSP

CSP is a process algebra for describing models of interacting processes in terms
of the atomic events that they perform [1]. Processes, denoted by identifiers
beginning in uppercase (e.g., P , Q), interact by synchronising on visible events,
denoted by lowercase characters (e.g., a, b). The set of all visible (i.e., external
events) is denoted by Σ, which does not contain the internal action τ . Stop is the
deadlocked process that performs no event. The CSP process a → P performs
the event a and then acts as P . The equation P = a → P defines a recursive
process that infinitely performs a. The process P � Q may act as either P or Q ,
the choice of which is resolved by the environment. Similarly, the process P � Q
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may act as either P or Q , but in this case the choice is resolved internally by
the system. The difference between the internal and external choice operators
is illustrated by processes P3 and P4 in Figure 1. The process P � Q acts as
P , although a timeout may occur, represented as an internal action τ , before P
performs its first visible event. Following a timeout the process shall then act as
Q , as illustrated by process P5 in Figure 1.

The process P ‖
A

Q runs P and Q in parallel, synchronising each occurrence

of an event in A. Parallel composition P ||| Q of processes that do not synchro-
nise on any event are said to be interleaved. Note that prefixing binds tighter
than each of the choice operators, which in turn bind tighter than the parallel
operators. The process P \ A acts as P but with each of the events in A replaced
by the internal action τ . Finally, P [[

a
/b ]] acts as P but with each occurrence of

event b in P replaced by event a.
Various semantic models of CSP [10] enable us to distinguish between pro-

cesses. The coarsest model is the traces model T , which captures the traces
of events which a CSP process might exhibit. A sequence of visible events,
〈e1, e2, . . . , en〉, is a trace of a process P if there is some execution of P in which
exactly that sequence of events is performed. For example, the set of all traces
of P1 = a → Stop � b → Stop, which offers the environment a choice between
performing a or b before reaching deadlock, is the set {〈〉, 〈a〉, 〈b〉}. The same set
of traces can be generated by the process P2 = a → Stop � b → Stop, although
in P2 a choice between performing an a or b is not offered to the environment.
Instead a may be performed unless a timeout first occurs, after which b may be
performed. If an internal action τ may be performed from some state, then the
state is unstable (e.g., the initial state of P2) otherwise it is stable. A process may
stabilise by performing successive internal actions until a stable state is reached.
A process is divergent if it can perform an infinite succession of internal actions.
In this paper we only consider systems that are free of divergence.

Lowe proved that the refusal-traces model RT is necessary for capturing re-
quirements expressed in the temporal logic defined in [3]. For this reason RT
is the semantic model used in the remainder of the paper. Rather than record-
ing only the traces of events performed by a process, RT also records the set
of actions refused after each event performed, 〈X0, e1,X1, e1,X2, . . . , en ,Xn〉. As
refusal sets are recorded only in stable states, the null refusal symbol, •, is used
to denote the absence of refusal information. A null refusal may be recorded
should an event occur from an unstable state or should no attempt be made to
observe the refusal information. For example, the CSP process P2 has the refusal
trace 〈•, a, Σ〉. Likewise, 〈•, a, Σ〉 is a refusal trace of the process P1, although
〈∅, a, Σ〉 is a refusal trace of P1 but not of P2.

In addition to these denotational semantics of CSP, there exists an operational
semantics based upon labelled transition systems (LTS) [10]. Any CSP process
can be given as an LTS, consisting of a non-empty set of states, an initial state, a
set of labels Σ∪{τ}, and a set of labelled transitions, where a labelled transition

S
a→ S ′ denotes that an action a can be taken from the state S to move to state

S ′. All figures in this paper illustrate a CSP process as an LTS.
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CSP has a theory of refinement that enables us to compare the behaviour
of processes. If a process S is refined by a process P , then all of the possible
behaviours of P must also be possible behaviours of S according to some semantic
model, e.g., S �RT P states that P refines S in RT . The refinement checker
FDR [2] automatically checks whether a specification of a property (S ) is satisfied
by a proposed model (P). If the result of a check is negative, a refusal trace that
leads to the violation of the property is given.

3 Model Checking under Fairness Constraints in ProB

As an alternative to refinement-based model checking, one may directly test
whether requirements expressed in a temporal logic are satisfied by the model
of the implementation. In [3], Lowe investigated the extent to which it can
be checked that CSP processes satisfy temporal logic specifications using a
refinement-based model checker, such as FDR. The following grammar, as pro-
posed by Lowe, defines a temporal logic for specifying communicating processes:

φ, ψ ::= true | false | a | available a | deadlocked |
φ ∧ ψ | φ ∨ ψ | ¬φ | φ ⇒ ψ | ♦φ | �φ | ©φ | ψ U φ | φRψ where a ∈ Σ

Formulae in such a temporal logic regard properties of individual maximal paths
of a process, i.e., an infinite refusals-trace of the process or a finite refusals-trace
that ends in deadlock. P |= φ shall denote that a process P satisfies a formula
φ if every maximal path of P satisfies φ. The formula a, for a ∈ Σ, states that
the event a is guaranteed to be the first visible event performed. The formula
available a states that the event a is not refused whenever the process stabilises
before performing its first visible event, while deadlocked guarantees there is no
next visible event. The logical operators ∧, ∨ and ⇒ have their usual meaning.
The formulae ♦φ and �φ denote that eventually φ holds and that globally φ
holds, respectively.©φ guarantees that if there is a next visible action, φ holds
after its occurrence. φU ψ states that φ remains true until ψ becomes true,
whereas ψRφ states that φ remains true up to and including the state in which
ψ becomes true, although ψ may never become true. The meaning each of these
temporal operators is described more precisely in [3].

Lowe has shown that the temporal operators eventually ♦, until U , and nega-
tion ¬ cannot in general be tested for via simple refinement checks. Furthermore,
Murray has investigated the limits of refinement testing for CSP, demonstrat-
ing that there exist useful refinement-closed predicates that cannot in general
be expressed as refinement checks in any standard CSP model that FDR can
handle. Liveness properties under the assumption of strong or weak event fair-
ness constitute one such class of predicates. It is common to make assumptions
regarding which infinite behaviours of a system should be deemed fair when
analysing an abstract model of a system. Many interpretations of fairness exist
in the literature [11]; we shall follow Murray’s interpretation of strong (resp.
weak) event fairness assumption, which distinguishes itself from other notions of
fairness [11–13] in its definition of available: an infinitely (resp. constantly) often
available event shall occur infinitely often.
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SEF =
∧

a∈Σ
(�♦ available a ⇒ �♦ a)

WEF =
∧

a∈Σ
(♦� available a ⇒ �♦ a)

Alternative notions of fairness [11–13], defined in terms of ‘available’ (or enabled)
events without checking the process stabilises before performing its first visible
event, consider ‘available’ a to be satisfied by a → Stop � Stop. Such a process
is refined by Stop in each of the semantic models discussed in Section 2, in
which a is clearly ‘unavailable’. The advantage of Murray’s interpretation of
SEF and WEF is that they are refinement-closed in RT . As temporal properties
constrained by SEF orWEF cannot in general be expressed as refinement checks
for FDR [4], we propose the use of ProB [14], which enables LTL model checking
of CSP processes using the following grammar [5].

φ, ψ ::= true | false | [a] | e(a) | deadlock |
φ &ψ | φ orψ | notφ | φ =>ψ | Fφ | Gφ | Xφ | φ Uψ | ψ Rφ where a ∈ Σ ∪ {τ}

Not all of the above operators offered by ProB for LTL model checking match
their counterpart in the grammar defined by Lowe. The temporal operators ♦, �,
U and R can be expressed directly as their counterpart in ProB, i.e., F, G, U and
R. The same is true for the boolean logic operators. However, Lowe’s operators
a, available a, deadlocked and ©φ require further attention.

Note that Lowe’s actions range over the set of visible actions, whereas ProB
also enables us to express properties in terms of internal events. The formula
[a] is satisfied along some linear execution path of a process if the first action
taken is an a. This is true also of the internal action τ , i.e., [tau] is satisfied
along some path if the first action taken from the current state along the path is
the invisible action. A path satisfies e(a), where a ∈ Σ ∪{τ}, if a is not refused
from the current state, whether a is the next action taken along the path or
not. Xφ states that there is a visible or internal action leading to a next state,
in which φ holds. Finally, deadlock is satisfied by a state from which no visible
or internal actions are offered.

Despite their differences, we can express the four atomic formulae from Lowe’s
temporal logic that do not match their counterpart in the grammar offered by
ProB in the following manner:

a → [tau] U [a]

available a → [tau] U ((e(tau) & not [tau]) or (e(a) & not e(tau)))

deadlocked → [tau] U deadlock

©φ → [tau] U (deadlock or (not [tau] & Xφ))

We captured the formula a, that states the event a is guaranteed to be the first
visible event performed, by asserting that τ events are performed from each state
on the path until an a is performed. Similarly, deadlocked , which guarantees there
is no next visible event, is expressed by asserting that τ events are performed
from each state along the path until deadlock is reached. The availability of
a, defined as a is enabled whenever the process stabilises before performing its
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τ τ
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τ

b
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Fig. 1. CSP Processes: (a) P3 = a → P3 � b → P3; (b) P4 = a → P4 	 b → P4; and
(c) P5 = a → P5 � b → P5

first event, is captured by stating that τ events are performed, until either some
visible action is taken from an unstable state or, if, a stable state is reached, then
a must be enabled. Finally, that φ is guaranteed to hold after the first visible
action is captured as [tau] U (deadlock or (not [tau] & Xφ)). Note that
©φ is vacuously true if there is no next stable state. The stronger statement
‘there exists a next state and in it φ holds’ is expressed by removing deadlock

from the formula.
To illustrate his interpretation of strong event fairness, and prove that it

cannot be expressed as a simple refinement check for FDR, Murray had us con-
sider the three CSP processes depicted in Figure 1. As a is globally available in
P3, infinite executions in which an a never occurs are considered unfair. Like-
wise, infinite executions of P3 in which a b never occurs are also unfair. Hence,
P3 |= SEF ⇒ ♦a and P3 |= SEF ⇒ ♦b.

Neither available a nor available b is satisfied in the initial state of P4, which
is visited infinitely many times in each infinite path. Thus, neither a nor b
is globally available and so no infinite path of P4 is considered unfair. Hence,
P4 �|= SEF ⇒ ♦ a and P4 �|= SEF ⇒ ♦b. In process P5, a can only occur from
an unstable state, so infinite paths in which a never occurs must be deemed fair.
In each state of P5, whenever the process stabilises before performing its first
visible event, only b is offered. Therefore, infinite paths of P5 in which a never
occurs must be deemed fair, whereas infinite paths in which b never occurs must
be deemed unfair. Hence, P5 �|= SEF ⇒ ♦a, but P5 |= SEF ⇒ ♦b.

Processes P3, P4 and P5 can be checked against SEF ⇒ ♦a and SEF ⇒ ♦b
in ProB using our definitions of a and available a above. The same results hold
under Murray’s interpretation of weak event fairness [4], which was also proved
to not be expressible as a simple refinement check for FDR. Thus our definitions
of a and available a also enable one to use ProB to check CSP processes against
properties constrained by weak event fairness.

4 An Intruder Model in CSP for Verifying Liveness

When analysing security protocols it is standard to assume a Dolev-Yao (DY)
intruder model in which the intruder has full control over the network [6]. Live-
ness properties are not satisfiable under this assumption, as the DY intruder
may choose not to communicate any message sent. Fair exchange protocols rely
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upon the assumption that at least some messages are communicated using re-
silient channels in order to satisfy certain liveness properties [7]. In this section
we construct a new intruder model for reasoning about liveness properties of fair
exchange protocols in the presence of resilient channels. We analyse our models
against fairness constrained properties in ProB, as described in Section 3.

Our intruder model is based upon the one of Cederquist and Dashti [9], who
analysed μCRL [15] models of fair exchange protocols against μ-calculus expres-
sions [16] of liveness properties constrained by fairness using CADP [17]. While
the properties against which Cederquist and Dashti analysed their models are
not refinement-closed, our liveness properties shall be. Should our models satisfy
some liveness property constrained under Murray’s SEF , then any refinement of
our models in RT shall also necessarily satisfy the property.

We begin, in Section 4.1, with a description of a CSP model of the DY intruder
proposed for reasoning about safety properties. We shall demonstrate why such
an intruder model is insufficient for reasoning about liveness properties. In Sec-
tion 4.2, we discuss how this issue was addressed by Cederquist and Dashti [9],
but show that their properties are not refinement-closed. We address this issue in
Section 4.3 by revising Roscoe’s intruder model to enable the intruder to refuse
to perform certain events. Finally, in Section 4.4, we propose a CSP model of
the intruder that enables us to analyse fair exchange protocols in the presence
of resilient channels with use of the fairness constraints described in Section 3.

4.1 Roscoe’s Intruder Model for Verifying Safety

In [18], Roscoe’s lazy spy was constructed to check whether the Needham-
Schroeder public-key protocol satisfies certain safety properties in the presence
of a DY intruder. Although written differently to better suit model checking in
FDR, Roscoe’s spy is RT equivalent to the following CSP process. The func-
tion Close(X ), defined in [18], returns the closure of a set of facts X under all
deductions that the intruder can perform. The setM contains all the messages
that can be sent or received in the protocol.

SpyS (X ) =

⎛

⎜
⎜
⎝

�
m∈X∩M

say .m → SpyS (X )

� �
m∈M

learn.m → SpyS (Close(X ∪ {m}))

⎞

⎟
⎟
⎠

It is important to appreciate that SpyS is willing to accept any incoming message
on learn and is always willing to say any message it can construct as a conse-
quence of the use of external choice in its construction. SpyS cannot refrain
from saying a message it can construct, should some other process synchronise
on performing such an event. This is of little concern when considering only
safety properties, as checked in the traces model of CSP, in which the intruder
has little to gain by refraining from performing certain events. However, the
same is not true when checking liveness properties. Let us consider the following
system, similar to that described in [13], where A = {A,B , I } with A and B
being the honest agents and I the intruder.
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0 1 2 3
snd .A.B .Na rcv .A.B .HSH .Na flag

Fig. 2. SYS1

SND1 = snd .A.B .Na → Stop
RCV1 = rcv .A.B .HSH .Na → flag → Stop

SYS1 = (SND1 ||| RCV1) ‖
{|snd,rcv |}

SpyS [[snd.x .y,rcv .y.x/learn,say |x←A\{I},y←A\{x} ]]

SpyS allows any message to be sent by the other agents, and is willing to de-
liver any message it can construct from its current knowledge. We need only
assume appropriate deduction rules for hashing and sequence generation for our
examples, and in each the initial knowledge of the intruder is assumed empty.
Figure 2 illustrates SYS1, in which SND1 and RCV1 synchronise with SpyS on
events in {| snd , rcv |} = {snd .a.b.m, rcv .a.b.m | a ← A, b ← A\{a},m ←M}.
The sender, A, who behaves as the process SND1, is willing to send a single
message consisting only of a nonce, Na, to B . Conversely, the process RCV1,
which expresses the behaviour of the recipient B , is willing only to receive the
hashed value HSH .Na. Clearly, A and B shall fail to communicate should they
attempt to do so over any reasonable medium, as B is willing to receive none of
the messages sent by A. However, the parallel composition of SND1 and RCV1

with the intruder process, SpyS , fabricates curious behaviour. The signal event,
flag, occurs in all maximal paths of SYS1 only because the modelling of the
intruder guarantees that it shall.

4.2 Cederquist-Dashti Resilient Channel Assumption

In [13], Dashti demonstrated that the fairness constraint that states that ‘each
infinitely enabled transition is infinitely taken’ is insufficient to resolve this is-
sue. It is important to appreciate the subtle differences between this fairness
assumption and Murray’s SEF , as described in Section 3. Firstly, Dashti’s ini-
tial fairness assumption is described in terms of transitions, whereas Murray’s is
described in terms of events. Secondly, external and internal events are treated
the same in Dashti’s initial fairness assumption, but not in Murray’s. Hence, the
process P5, illustrated in Figure 1, satisfies ♦a under Dashti’s interpretation of
fairness but not Murray’s.

Regardless of their differences, under either of these fairness constraints, flag
is guaranteed to eventually occur in SYS1 only because the modelling of the
intruder guarantees that it shall. To resolve this issue, Cederquist and Dashti [9]
proposed an alternative fairness constraint and to parameterise the intruder
process by the set of all messages sent but not yet delivered, which we shall
denote as Y . Initially the set is empty, but following each snd action the mes-
sage, as well as the correct addressing information, is added to Y . Should a
message be sent multiple times without being delivered, only one instance of the
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message is recorded within Y . This intruder satisfies Cederquist and Dashti’s
resilient communication channel assumption RCC1 [9]. This assumption states
that a resilient channel delivers the message at least once after the message has
been sent multiple times.

As an alternative to Dashti’s initial fairness assumption described above, Ced-
erquist and Dashti propose the use of the μ-calculus notion of fair reachability
of an action, which states that whatever path has been taken previously, there
remains a path in which the action finally occurs. By distinguishing those mes-
sages sent but not yet received and all others messages delivered by the intruder
as rcv and rcv†, respectively, Cederquist and Dashti check that whatever path
has been taken previously, there remains a path containing no rcv†’s in which
the signal event flag finally occurs. Such a property is not refinement-closed.
Consider again the examples illustrated in Figure 1. In each process P3, P4 and
P5, no matter what path has been taken previously, there always exist a path in
which a occurs. However, removing the nondeterminism from P4, for example by
demanding that the b path is always taken, refines P4 in each semantic model
discussed in Section 2. In particular, P4 �RT Q where Q = b → Q . Hence,
although P4 satisfies fair reachability, after refinement of P4 this property may
no longer be satisfied.

4.3 An Intruder Model without Resilient Channels

To maintain the use of CSP’s theory of refinement, we wish to analyse our models
against liveness properties expressed in Lowe’s temporal logic constrained by
Murray’s SEF , as presented in Section 3. Therefore, rather than adopting an
alternative fairness constraint, we have adapted the model of the intruder to
include behaviour enabling the intruder to refuse to cooperate. Our intruder
model enables the intruder to nondeterministically choose the set of messages he
is willing to send at any given time, from the set of all subsets of the messages
he can construct at that time. CSP’s notion of external choice and the use of
the semantic model, RT , are well-suited to modelling the intruder behaviour in
this way. We begin by revising the process SpyS to include behaviour enabling
the intruder to refuse to cooperate in this manner.

SpyL0(X ) = �
S∈Set(X∩M)

⎛

⎜
⎜
⎝

�
m∈S

say .m → SpyL0(X )

� �
m∈M

learn.m → SpyL0(Close(X ∪ {m}))

⎞

⎟
⎟
⎠

The process SpyL0(X ) presents an initial attempt at modelling the intruder’s
ability to refuse to cooperate. However, the result of the renaming within the
process SpyL0(X )[[

snd.x .y,rcv .y.x
/learn,say |x←A\{I},y←A\{x} ]] is such that the

intruder chooses whether or not he is willing to perform a rcv event regarding
(for example) Na. It does not give the intruder the ability to offer rcv .A.B .Na
whilst also refusing rcv .B .A.Na. The process SpyL(X ), constructed directly of
snd and rcv events, provides this necessary additional behaviour.
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43

snd .A.B .Na τ

τ

rcv .A.B .HSH .Na

τ flag

flag τ

Fig. 3. (SND1 ||| RCV1) ‖
{|snd,rcv|}

SpyL

SpyL(X ) =

�
S∈Set

({
(x ,y,n)

x←A
y←A\{x ,I}
n←(X∩M)

})

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�
(a,b,m)∈S

rcv .a.b.m → SpyL(X )

� �
snd .a.b.m →
SpyL(Close(X ∪ {m}))

(a,b,m)∈
{

(x ,y,n)
y←A
x←A\{y,I}
n←M

}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Replacing SpyS with SpyL in SYS1 produces the state space illustrated in Fig-
ure 3. From the initial state the intruder does not hold enough knowledge to gen-
erate any messages, so snd .A.B .Na is guaranteed to be the first action performed.
Following snd .A.B .Na, the intruder chooses which subset of messages he is will-
ing to deliver from the set of all messages he can construct. Hence, he chooses
between performing rcv .A.B .HSH .Na or refusing to perform rcv .A.B .HSH .Na.
If he chooses to refuse the event, then no further actions are possible, otherwise
rcv .A.B .HSH .Na is performed in synchrony with RCV1. RCV1 is then able to
perform the event flag, while the intruder can again resolve his internal choice.
Thus the interleaving of flag and τ actions means that they may occur in ei-
ther order before the system deadlocks. As a consequence of our revisions to the
intruder model, the signal event flag no longer occurs in all maximal paths of
SYS1, as was desired.

With full control over the network, the DY intruder may now choose not to
communicate any message sent. As a result, liveness properties, such as ♦flag,
can never be guaranteed in this model, even under the assumption of strong
event fairness. It is for this reason that fair exchange protocols rely upon the
assumption that at least some messages are communicated over resilient chan-
nels [7]. Our revised intruder, which can choose not to communicate any message,
requires further revision to capture Cederquist and Dashti’s resilient channel as-
sumption, RCC1. First let us motivate such a revision to the intruder model via
a second example.



178 D.M. Williams, J. de Ruiter and W. Fokkink
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5

4
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snd .A.B .Na snd .A.B .Na

τ τ rcv .A.B .Na

flag

τ

τ

flag

snd .A.B .Na

snd .A.B .Na

Fig. 4. SYS2

SND2 = snd .A.B .Na → SND2

RCV2 = rcv .A.B .Na → flag → Stop
SYS2 = (SND2 ||| RCV2) ‖

{|snd,rcv |}
SpyL

Figure 4 illustrates the state space of such a system. Initially, snd .A.B .Na is
guaranteed to be the first action performed, as the intruder does not hold enough
knowledge to generate any messages. Following snd .A.B .Na, the intruder again
chooses which messages he is willing to deliver from the set of all subsets of the
messages he can construct. Hence, he chooses between performing or refusing to
perform rcv .A.B .Na. If he chooses to refuse the event, then the system returns
to the initial state, otherwise either snd .A.B .Na is again performed in synchrony
with SND2, returning to a previously visited state, or rcv .A.B .Na is performed in
synchrony with RCV2. In the latter case, RCV2 is able to perform the event flag,
while the intruder can again resolve his internal choice. Thus, the interleaving
of the flag and τ actions means that they may occur in either order, after which
snd .A.B .Na is the only possible event, in each case returning the system to a
previously visited state.

Using ProB we can verify that SYS2 does not satisfy ♦flag. The system in-
cludes infinite execution paths in which (i) the intruder always chooses to refuse
the delivery of Na, and (ii) the intruder is willing to perform rcv .A.B .Na, but
infinitely often snd .A.B .Na is taken instead.

4.4 An Intruder Model with Resilient Channels

We shall revise the intruder model such that he is unable to refuse to deliver
messages that have been sent but not yet delivered. Such a revised model can
then be analysed under the assumption of strong event fairness.

SpyL†(X ,Y ) =

�
S∈Set

({
(x ,y,n)

x←A
y←A\{x ,I}
n←(X∩M)\Y

})

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�
(a,b,m)∈S∪Y

rcv .a.b.m → SpyL(X ,Y \{(a, b,m)})

� �
snd .a.b.m →
SpyL(Close(X ∪ {m}),Y ∪ {(a, b,m)})

(a,b,m)∈
{

(x ,y,n)
y←A
x←A\{y,I}
n←M

}

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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snd .A.B .Na

snd .A.B .Na

τ rcv .A.B .Na

flag

τ

τ

flag

snd .A.B .Na

snd .A.B .Na

Fig. 5. (SND2 ||| RCV2) ‖
{|snd,rcv|}

SpyL†

Like Cederquist and Dashti’s intruder model, our process SpyL† is parameterised
by the set Y of all messages sent but not yet delivered. Initially the set is empty.
Following each snd .a.b.m event, the message as well as the correct addressing
information (a, b,m) is added to Y . Should a message be sent multiple times
without being delivered, only one instance of the message is recorded within
Y , as this is the information required to assure the intruder satisfies RCC1.
As the correct addressing information must be recorded in Y , SpyL†(X ,Y ) is
constructed explicitly of snd and rcv events, rather than renaming a process
constructed of simpler learn events. The consequence of the other revisions is
that the intruder never refuses the delivery of messages contained in Y , but
remains able to refuse any subset of the remaining messages he can construct. We
have used ProB to successfully check that the revised model SYS2, as illustrated
in Figure 5, satisfies SEF ⇒ ♦flag using the definitions from Section 3.

4.5 Conclusion

The intruder model SpyL† constructed in this section is suitable for analysing
fair exchange protocols in the presence of resilient channels and a DY intruder.
Our analyses needed to be closed under refinement to be sure that the system
will be secure under any refinements of the nondeterministic intruder, which
represent different attack strategies. Murray’s refinement-closed interpretation
of strong event fairness SEF was added as a premise of the liveness property
being checked. The consequence of this fairness constraint was that paths in
which the intruder never delivers some message from Y , supposing that the
recipient is always willing to accept it, were disregarded as unfair paths.

A fair exchange protocol may only require certain messages to be sent via
resilient channels. Minimal changes to SpyL are required to model such a system.
Distinguishing between messages sent over non-resilient and resilient channels
as snd and sndr , respectively, is sufficient to record which messages should be
contained in Y .
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5 Related Work

Building upon Schneider’s analysis [19] and drawing from the work of Evans [20],
Wei and Heather analysed the Zhou-Gollmann non-repudiation protocol [21]
protocol using CSP and FDR [22] as well as the theorem prover PVS [23]. The
contribution that distinguishes our CSP intruder model from those that pre-
ceded it is the modelling of the resilient channel. Wei and Heather modelled the
resilient communication between the trusted third party and the other agents
as a synchronous communication over a reliable and secure channel. Originally,
Zhou and Gollmann assumed that the channel, over which the third party sends
messages, will eventually be available, i.e., that there exists a resilient channel
between the third party and other agents. Our intruder model increases the
possible behaviours of the intruder, who is able to record which messages are
sent over the resilient channel and delay the delivery of such messages. He must
only not indefinitely delay the delivery of such messages, assuming the recipient
remains willing to receive it. Thus our intruder model aims to more faithfully
capture the assumptions of resilience in CSP models of fair exchange protocols.

By adopting Murray’s refinement-closed interpretation of fairness [4] we main-
tain CSP’s theory of refinement. Furthermore, such a notion of fairness is weaker
than the one of Cederquist and Dashti [9]. Rather than treating all outgoing ex-
ternal and internal actions fairly, we demand only that infinitely often available
(visible) events are treated fairly. As we adopt a weaker notion of fairness, our
intruder model is stronger, because less of its behaviour is restricted. Even under
this stronger intruder model we have been successful in checking the satisfaction
of liveness properties in the examples given in this paper.

The Process Analysis Toolkit [24] has specific functionality for model checking
CSP processes under various fairness assumptions. However, such notions of fair-
ness do not match the ones proposed by Murray and are not refinement-closed.
The process P4, illustrated in Figure 1, satisfies ♦b under the PAT interpretation
of strong event fairness, but it also satisfies ♦a as the internal event τ is treated
the same as visible actions. Refining P4 by removing the unstable a action would
cause the process to no longer satisfy ♦a, so PAT’s interpretation of strong event
fairness is not refinement-closed.

6 Discussion and Future Work

In [4] it was shown that Murray’s refinement-closed interpretation of strong and
weak event fairness cannot be expressed as refinement checks in the semantic
models supported by FDR. We therefore propose the use of ProB, as we have
shown that its LTL model checker [5] can be used to model check liveness prop-
erties under such fairness constraints, which were expressed in Lowe’s temporal
logic [3]. More generally, we have shown how any formula of Lowe’s temporal
logic can be expressed in the grammar offered by ProB for LTL model checking,
even though the two grammars differ.
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Subsequently, using Roscoe’s intruder model [18] as a foundation, we proposed
a new intruder model for reasoning about liveness properties in security protocols
in the presence of resilient channels. Roscoe’s intruder model [18] required revi-
sion for this purpose, since this model of the intruder can drop all messages, thus
trivially violating all liveness properties. Furthermore, an example was provided
to demonstrate that Roscoe’s intruder model can in some sense help in satisfy-
ing liveness properties that would not otherwise be satisfied in the presence of
a reliable medium. Such observations were first made in [13], which justified the
construction of a new intruder model in [9]. The primary distinction between
our approach to that in [9] is the use of Murray’s refinement-closed interpreta-
tion of strong event fairness. Our analyses needed to be closed under refinement
to be sure that the system will be secure under any and all refinements of the
nondeterministic intruder, which represent different attack strategies.

The examples provided in this paper to demonstrate and justify our approach
were necessarily simplistic to enable ProB to complete the checks in reason-
able time. The application of our approach to more meaningful fair exchange
protocols, such as those described in [7], remains future research. Murray’s fair-
ness constraint was added as a premise of the liveness property, i.e., SEF ⇒ φ,
where SEF was constructed as the conjunction over the potentially large set
of events Σ. This method of model checking under fairness constraints is in-
efficient, as the time complexity of LTL model checking is exponential in the
size of the formula [24]. Rather than incorporating the fairness constraint as
a premise of the property being checked, dedicated algorithms have been im-
plemented within PAT to analyse CSP models against LTL properties under
fairness. In Section 5 we demonstrated that PAT’s interpretation of strong event
fairness is not refinement-closed, so investigating how to efficiently check liveness
properties under SEF remains an open research question.

When model checking CTL, fairness constraints cannot simply be added as a
premise of the property being checked, as they are not typically expressible in
branching time logic. It is worth considering how the work in [3] can be adapted
to check CSP processes against CTL properties that are closed under refinement.
Furthermore, it would be worthwhile to consider the use of more expressive
temporal logics when model checking CSP processes. The relationship between
LTL, CTL, CTL* and μ-calculus is well documented, but it is unclear precisely
how the limits of refinement testing for model checking CSP processes relate.
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