


Lecture Notes in Computer Science 7521
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Abhik Roychoudhury
Meenakshi D’Souza (Eds.)

Theoretical Aspects
of Computing –
ICTAC 2012
9th International Colloquium
Bangalore, India
September 24-27, 2012
Proceedings

13



Volume Editors

Abhik Roychoudhury
School of Computing
National University of Singapore
13 Computing Drive
117417 Singapore, Singapore
E-mail: abhik@comp.nus.edu.sg

Meenakshi D’Souza
International Institute of Information Technology
26-C, Electronics City
560100 Bangalore, India
E-mail: meenakshi@iiitb.ac.in

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32942-5 e-ISBN 978-3-642-32943-2
DOI 10.1007/978-3-642-32943-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944719

CR Subject Classification (1998): D.2.4, D.3.1, F.1, F.3, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the proceedings of the 9th International Colloquium on
Theoretical Aspects of Computing (ICTAC) 2012. The event was held in Ban-
galore, India, during September 24–27, 2012. The ICTAC 2012 colloquium was
organized jointly by the International Institute of Information Technology Ban-
galore (IIIT-B) and United Nations University - International Institute for Soft-
ware Technology (UNU-IIST) at Macau.

One of the new features of ICTAC 2012 was the holding of an Industry
Day to encourage greater communication and co-operation between academic
researchers and industrial researchers. We would like to thank Satish Chandra
(IBM Research) and Sriram Rajamani (Microsoft Research India) for chairing
the first ever Industry Day at ICTAC. We are also thankful to Formal Methods
in Europe (FME) for providing partial support for the Industry Day.

ICTAC 2012 received 73 submissions. Each submission was reviewed by at
least three members of the Program Committee, along with help from external
reviewers. Out of the 73 submissions, the Program Committee accepted 16 full-
length papers, and three tool papers. The three tool papers accepted for ICTAC
2012 were presented on the Industry Day.

ICTAC 2012 featured three invited talks by Luke Ong (University of Oxford),
Gernot Heiser (NICTA and UNSW Australia), and Ganesan Ramalingam (Mi-
crosoft Research India). Gernot Heiser was the invited speaker for the Industry
Day, while Luke Ong was the UNU-IIST 20th anniversary speaker.

Luke Ong’s invited talk focused on automated verification of actor-style mes-
sage passing concurrency. Gernot Heiser’s invited talk provided an overview of
trustworthy systems and focused on how to provide safety and security guaran-
tees to real-world systems including operating systems. Ganesan Ramalingam’s
invited talk focused on formalizing process failures and achieving failure-free
computations in modern distributed platforms.

Apart from the paper presentations and invited talks, ICTAC 2012 continued
the tradition of previous ICTAC conferences in holding a school on Software
Engineering. The speakers at the Software Engineering school were Supratik
Chakraborty (IIT Mumbai), Peter Mueller (ETH Zurich), K.V. Raghavan (IISc),
and Nishant Sinha (IBM Research).

On behalf of the Program Committee we would like to thank the authors
of the submitted papers, as well as the external reviewers whose expert reviews
helped us build up the program.

July 2012 Abhik Roychoudhury
Meenakshi D’Souza
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Symbolically Bounding the Drift

in Time-Constrained MSC Graphs�

S. Akshay1, Blaise Genest1,2, Löıc Hélouët1, and Shaofa Yang3

1 IRISA, INRIA Rennes - ENS Cachan Bretagne - CNRS, France
2 CNRS, UMI IPAL joint with NUS and A*STAR/I2R, Singapore

3 SIAT, Chinese Academy of Sciences, China
{akshay,bgenest}@irisa.fr, loic.helouet@inria.fr, sf.yang@siat.ac.cn

Abstract. Verifying systems involving both time and concurrency
rapidly leads to undecidability, and requires restrictions to become effec-
tive. This paper addresses the emptiness problem for time-constrained
MSC-Graphs (TC-MSC graphs for short), that is, checking whether there
is a timed execution compatible with a TC-MSC graph specification. This
problem is known to be undecidable in general [11], and decidable for some
regular specifications [11]. We establish decidability of the emptiness prob-
lem under the condition that, for a given K, no path of the TC-MSC graph
forces any node to take more thanK time units to complete. We prove that
this condition can be effectively checked. The proofs use a novel symbolic
representation for runs, where time constraints are encoded as a system
of inequalities. This allows us to handle non-regular specifications and im-
prove efficiency w.r.t. using interleaved representations.

1 Introduction

In a distributed system, several processes interact to implement a protocol. One
way to describe these interactions is through scenarios, formalized using Message
Sequence Charts (MSCs) [13]. MSCs describe finite interactions among agents
that communicate asynchronously.A protocol is described by allowing choices and
repetition of these MSCs. To specify these main characteristics while abstract-
ing away details of implementation, the formal methods community often con-
siders MSC graphs, which are directed graphs whose nodes are labeled by MSCs.
Protocol specifications also include timing requirements for messages as well as de-
scriptions of how to recover from timeouts. To specify how time and concurrency
influence each other, MSCs and MSC graphs have been generalized to
time-constrained MSCs (TC-MSCs) and time-constrained MSC graphs (TC-MSC
graphs) [2]. The timing information is captured by adding timing constraints be-
tween pairs of events, and transitions have additional timing constraints.

We consider decidability issues for TC-MSC graphs. This is a challenging task
due to the presence of both time and concurrency. First, the set of executions
of a TC-MSC graph is not regular in general. Even checking whether there
exists a timed execution that is consistent with all the constraints of a model

� Funded by the French Consulate at Guangzhou, ANR IMPRO, and the DST project.

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S. Akshay et al.

is non-trivial. This question, called the emptiness problem, is undecidable for
TC-MSC graphs in general [11]. However, it is decidable for (sequential) timed
automata [4]. Extending decidability results to distributed systems has been done
in two particular and limited settings. In the first setting [15,10], clocks are local
to a process, and so, one cannot specify time taken by a communication (message
or synchronization). This limitation makes the specification formalism very weak.
The second setting can relate clocks from different processes and specify how long
a communication takes, but the specifications can only exhibit regular behaviors
[2,3,7,8,18], which is a significant restriction in a concurrent setting where even
the simple producer-consumer protocol is not regular. To obtain regularity (and
hence decidability), these papers restrict the concurrency in a structural way,
for instance considering only locally synchronized (see [16,5,12]) MSC graphs
(in [2,3]) or only safe Petri Nets (in [7,8]). In [1], the language is restricted to being
representable by a regular set, using both K-drift-boundedness — that we use in
this paper and define below — and a restriction on Zeno behaviors. Decidability
of checking K-drift-boundedness was however left open. Last, the procedures for
TC-MSC graphs in [2,3,11,1] construct an interleaved timed automaton, leading
to a combinatorial explosion. This could be seen as going against the spirit of
MSCs, which try to avoid interleavings. Further, the approaches in [2,3,11,18,1]
add another blow-up in complexity through the use of zone construction [4].

In this paper, we prove a novel decidability result for timed concurrent systems
with global clocks having a possibly non-regular set of behaviors. We investigate
the emptiness problem for TC-MSC graphs, and prove it to be decidable in the set-
ting where a TC-MSC graph is prohibited from forcing any TC-MSC appearing
along one of its paths to take an arbitrarily long amount of time to complete. More
precisely, for a given integer K, for any path ρ of a TC-MSC graph, if there exists
at least one execution of ρ, then we require that there exists one in which the occur-
rence times of any two events from the same TC-MSC differ by at mostK. Such a
TC-MSCgraph is said to beK-drift-bounded [1].We further show that givenK, one
can effectively test whether a TC-MSC graph G is K-drift-bounded. Both results
are established without constructing an interleaved timed automaton or relying
on the seminal result on decidability of emptiness of timed automata [4], avoiding
both state space explosions. Instead, we translate the set of time constraints of a
path into a symbolic profile, in the form of a system of inequalities. We show how
to manipulate this system symbolically using Fourier-Motzkin elimination [9]. We
approximate symbolic profiles by a bounded system of inequalities whose coeffi-
cients are integers in [−K ′,K ′] for some integer K ′ depending on G and K. This
does not hinder checking consistency of K-drift-bounded TC-MSC graphs. This
forms the cornerstone of our decidability results, as finite state automata can keep
track of bounded systems of inequalities.

The paper is organized as follows: Section 2 recalls basic definitions. Section 3
discusses drift-boundedness and its relevance. Section 4 shows how to check empti-
ness for K-drift-bounded TC-MSC graphs and Section 5 shows that checking K-
drift-boundedness is decidable, for a given K. Omitted proofs are available in an
extended version (http://perso.crans.org/~genest/AGHY12full.pdf).
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2 Preliminaries

Let R≥0 denote the set of non-negative reals, N the set of integers and I the
collection of open and closed intervals with end points in N as well as intervals of
the form [c,∞), (c,∞), where c ∈ N. Throughout this paper, we fix a finite set P
of processes and let p, q range over P . Let Σ = {p!q, p?q | p, q ∈ P , p �= q} be the
communication alphabet. The letter p!q represents p sending a message to q, while
p?q signifies p receiving a message sent by q. We define the map loc : Σ → P
via loc(p!q) = p = loc(p?q), and call loc(a) the location of a. We define Message
Sequence Charts (MSCs) and time-constrained MSCs (TC-MSCs) as usual. We
do not require FIFO ordering among messages.

Definition 1. An MSC is a tuple (E, (<p)p∈P , μ, λ). The set of events is E
and λ : E→Σ labels events with letters. For each p, <p is a total order over
Ep = {e ∈ E | loc(λ(e)) = p}. The message function μ ⊆ ES ×ER is a bijection,
such that f = μ(e) implies λ(e) = p!q, λ(f) = q?p for some p, q ∈ P, with
ES = {e ∈ E | ∃p, q ∈ P , λ(e) = p!q} and ER = {f ∈ E | ∃p, q ∈ P , λ(f) = q?p}.
We require that the transitive closure ≤ of � =

⋃
p∈P <p ∪μ is a partial order.

The relation ≤ reflects causal ordering of events. We will write e < f when
e ≤ f and e �= f . Notice that Ep has a unique <p-maximal event (respec-
tively, minimal event), which we refer to as the last (respectively, first) event of
E on p.

Definition 2. A TC-MSC is a tuple (E, (<p)p∈P , μ, λ, δ) where (E, (<p

)p∈P , μ, λ) is an MSC and δ is a function associating an interval δ(e, e′) ∈ I
to each e� e′.

For each pair of events e� e′, the interval δ(e, e′) constrains the range in which
the difference between the occurrence time of e′ and the occurrence time of e can
lie. For clarity, we shall refer to occurrence times as dates. A TC-MSC T defines
a collection of MSCs with dates such that the relative differences of dates fulfill
the constraints asserted in T .

Definition 3. Let T = (E, (<p)p∈P , μ, λ, δ) be a TC-MSC. A dated MSC gen-
erated by T is a tuple (E, (<p)p∈P , μ, λ, d) where d : E → R+ is such that for
each e� e′, d(e′)− d(e) is in the interval δ(e, e′).

We denote by L(T ) the set of dated MSCs generated by T . To capture infinite
collections of TC-MSCs, we define TC-MSC graphs as in [2,11], which are finite
graphs whose nodes are labeled by TC-MSCs. Each path ρ of a TC-MSC graph
G induces a TC-MSC by concatenating TC-MSCs labeling nodes of ρ. Transi-
tions of G are labeled by interval constraints, one for each process, that act as
constraints on the timing between the last and first event of each process in
consecutive nodes of ρ.

Definition 4. A TC-MSC graph is a structure G = (N, T , Λ, nin , Nfi ,−→, Δ)
where N is a finite non-empty set of nodes, T a finite set of TC-MSCs, Λ : N →
T labels each node with a TC-MSC, nin is the initial node, Nfi the set of final
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Fig. 1. A TC-MSC graph G1, a TC-MSC T1 and a dated MSC M1 ∈ L(G1)

nodes, −→⊆ N×N is the transition relation, and Δ is a labeling function which
associates an interval Δp(n→n′) ∈ I to each transition n→n′ and each process
p, such that Δp(n→n′) = [0,∞) if Λ(n) or Λ(n′) has no event on process p.

A path ρ of the TC-MSC graph G is a sequence n0n1 . . . n� such that n0 = nin

and ni→ni+1 for i = 0, . . . , �− 1. The path ρ is said to be final if n� ∈ Nfi . For
each n→n′, the concatenation of TC-MSCs Λ(n), Λ(n′) is defined with respect
to Δ(n→n′), and is denoted Λ(n) ◦ Λ(n′). Roughly speaking, this consists of
putting Λ(n′) after Λ(n) and for every process p, attaching to the pair (ep, fp) the
constraint Δp(n→n′), for ep the last event of Λ(n) on process p and fp the first
event of Λ(n′) on p. Formally, let Λ(n) = (E, (<p)p∈P , μ, λ, δ), Λ(n

′) = (E′, (<′
p

)p∈P , μ
′, λ′, δ′). Then Λ(n) ◦ Λ(n′) = (E′′, (<′′

p)p∈P , μ
′′, λ′′, δ′′) where E′′ is the

disjoint union of E and E′, <′′
p is the transitive closure of the union of <p, <

′
p

and Ep×E′
p, and λ′′ is given by: λ′′(e) = λ(e) for e ∈ E, λ′′(e) = λ′(e) for e ∈ E′.

We also set μ′′(e) = μ(e) when μ(e) is defined, and μ′′(e) = μ′(e) when μ′(e) is
defined. At last, δ′′ is given by: δ′′(e, f) = δ(e, f) for e� f , δ′′(e, f) = δ′(e, f) for
e�′f . For each p, if both Ep and E′

p are nonempty, we set δ′′(ep, fp) = Δp(n→n′)
for ep the last event of Ep and fp the first event of E′

p.
We emphasize that by definition, Δp(n→n′) = [0,∞) if Ep or E′

p is empty. It
follows that for n→n′→n′′, (Λ(n) ◦Λ(n′)) ◦Λ(n′′) is the same as Λ(n) ◦ (Λ(n′) ◦
Λ(n′′)). Thus, we unambiguously define the TC-MSC T ρ induced by a path
ρ = n0 . . . n� of G to be Λ(n0) ◦ . . . ◦ Λ(n�). A path ρ of G is called consistent
if L(T ρ) �= ∅. From now on, we will speak interchangeably of a node n and its
associated TC-MSC Λ(n). We write L(G) for the union of L(T ρ), ρ ranging over
final paths of G. We call a dated MSC in L(G) a timed execution of G. An
example of a TC-MSC graph G1 is in Figure 1. The TC-MSC T1 is induced by
path n1 ·n1 ·n2 of G1, i.e., T1 = T n1·n1·n2 . Further, M1 is a dated MSC generated
by T1. As n2 is final, M1 ∈ L(G1).

The emptiness problem for TC-MSC graphs is: given a TC-MSC graph G,
determine whether L(G) = ∅, that is, whether it has no consistent and final path.
This is a fundamental verification problem that must be addressed. Indeed, a
TC-MSC graph with an empty language should be considered ill-specified and
such an exception should be caught at an early stage of design. In [11], it is
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shown that this problem is undecidable in general, and decidable for some regular
specifications. We show in the following that checking emptiness for TC-MSC
graphs is decidable under an arguably mild restriction on time constraints which
does not impose regularity. Furthermore, we will show that one can test whether
a given TC-MSC graph satisfies this condition.

3 Drift-Boundedness

In this section we define our mild restriction, namely drift-boundedness. Let
us fix a TC-MSC graph G. Let ρ = n0 . . . n� be a consistent path of G and
M = (E, (<p)p∈P , μ, λ, d) be a dated MSC generated by T ρ. For an integer K,
we say that M is a K-drift-bounded dated MSC of ρ iff for each i = 0, . . . , �,
for any two events e, e′ in Λ(ni), it is the case that |d(e) − d(e′)| ≤ K. We
say that ρ is K-drift-bounded iff there exists a K-drift-bounded dated MSC in
L(T ρ). We emphasize that L(T ρ) may also contain dated MSCs which are not
K-drift-bounded. We say that G is K-drift-bounded iff every consistent (but
not necessarily final) path of G is K-drift-bounded. In other words, for each
consistent path ρ, we can find a dated MSC in L(T ρ) such that the difference
between the dates of any two events from the same instance of a node is at most
K. Notice that we can have L(G) = ∅ even though G is K-drift-bounded. In
fact, G is vacuously K-drift-bounded for any K if it has no consistent path.

As an example, consider the TC-MSC graph G1 from Figure 1. G1 is 3-drift-
bounded since in every timed execution, we can be sure that all events in node
n1 or n2 can be completed within a delay of 3 time units. But if we change the
constraints on the loop on n1 from ([0, 1]r, [0, 1]s) to ([4, 5]r, [1, 2]s) then for any
integer K, G1 is not K-drift-bounded. Note that G1 is not locally synchronized
(as defined in [16,5], and lifted in [3] to a timed setting). In fact, we can simulate
the producer-consumer protocol and obtain non-regular behaviors. Thus, this
example cannot be handled by the decidability result in [3].

We believe that drift-boundedness is a practical notion. Interpreting a node
of a TC-MSC graph as a phase or a transaction of a distributed protocol, we
expect any scenario labeling the node to be executable in a bounded time, say
K. A protocol specified as a TC-MSC graph that is not K-drift-bounded should
thus be considered as ill-formed. Indeed, while a TC-MSC graph specification is
usually incomplete (as it abstracts away some events and constraints used in the
actual implementation), if it is not K-drift-bounded, then every implementation
of this specification will not be K-drift-bounded either.

3.1 The Main Results

We can now state our main results. The first result establishes the decidability
of the emptiness problem for K-drift-bounded TC-MSC graphs.

Theorem 1. Let K ∈ N and G be a K-drift-bounded TC-MSC graph. Then
checking whether L(G) is empty is decidable in PSPACE.
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We next show that the drift-boundedness hypothesis of Theorem 1 can be effec-
tively checked, giving rise to an effective decidability procedure.

Theorem 2. Let K ∈ N and G be a TC-MSC graph. Then checking whether G
is K-drift-bounded is decidable in PSPACE.

We can show that the decidability result in Theorem 2 is in fact at the boundary
of undecidability. Recall that the definition of K-drift-bounded considers every
path of a TC-MSC graph, including paths that cannot be extended to consis-
tent final paths. Instead, if we consider the problem of checking whether every
consistent final path of a TC-MSC graph is K-drift-bounded, this turns out to
be undecidable. We assume K fixed for the next proposition.

Proposition 1. It is undecidable, given a TC-MSC graph G, to determine
whether every consistent final path of G is K-drift-bounded.

Proof. The proof is by a reduction from the emptiness problem of TC-MSC
graphs, shown undecidable in [11]. Let G be a TC-MSC graph. We construct
another TC-MSC graph G′ from G such that there does not exist a consistent
final path of G iff every consistent final path of G′ is K-drift-bounded, which
shows the result. G′ is obtained from G with the following modifications. Firstly,
add a new node nnew and for every final state nf ofG, add a transition (nf , nnew ).
Secondly, define the set of final nodes of G′ to be the singleton set {nnew}.
Thirdly, nnew is labeled with a TC-MSC consisting of a single message (e, f)
from p to q. The time constraint on (e, f) is [K+1,K+1]. Lastly, for every final
state nf of G and every process, the time constraint of transition (nf , nnew ) is
[0,∞). If there does not exist a consistent final path of G, then there does not
exist a consistent final path of G′, and it is vacuously true that every consistent
final path of G′ is K-drift-bounded. On the other hand, assume that there exists
some consistent final path ρ of G. Then ρ · nnew is a consistent final path of G′

(timing of a consistent dated MSC of ρ can be easily extended). But it is not
K-drift-bounded because of the constraint [K + 1,K + 1] on the last node nnew

of the path, which impose e, f to be K + 1 time units away. Hence not every
consistent final path of G′ is K-drift-bounded. �

Next, we introduce full TC-MSC graphs and show that any TC-MSC graph
can be transformed into a full TC-MSC graph, while preserving consistency and
drift-boundedness of paths. This enables us to check both the emptiness of a K-
drift-bounded TC-MSC graph G, and the K-drift-boundedness of any TC-MSC
graph G, by working with a full TC-MSC graph constructed from G.

3.2 Full TC-MSC Graphs

We call a TC-MSC graph G full if each node of G has at least one event on each
process p ∈ P . We will now show how to “augment” a TC-MSC graph G to
obtain a full TC-MSC graph Ĝ by adding “dummy events” to nodes of G. For
notational convenience, we assume that TC-MSCs may contain internal events.
We denote by p(int) the label of such an internal event on process p ∈ P .
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Given G = (N, T , Λ, nin , Nfi ,−→, Δ), the augmented graph of G is defined as

Ĝ = (N, T̂ , Λ̂, nin , Nfi ,−→, Δ) differing only in the labeling set of “augmented”
TC-MSCs and the labeling function assigning nodes to them. More precisely,
any TC-MSC T = (E, (<p)p∈P , μ, λ, δ) in T is replaced by the TC-MSC T̂ =

(E′, (<p)p∈P , μ, λ
′, δ) in T̂ where E′ is obtained from E by adding a new event

ep with λ(ep) = p(int) for each process p such that Ep = ∅. Every <p and δ are
unchanged, so ep is an isolated point in the partial order ≤. Such events ep will
be called dummy events. Events already in Λ(n) will be called concrete events.
Note that Δ(n→m) is unchanged for each transition n→m. In particular, recall
that for each transition (n,m) in G, if either n or m has no concrete event on p,

then Δp(n,m) = [0,∞). For each Λ(n) = T , we set Λ̂(n) = T̂ . Obviously, Ĝ is
full for any G.

Let H be any full TC-MSC graph with events partitioned as dummy or con-
crete. That is, in every TC-MSC labeling a node of H , there is a mapping from
the set of events to {dummy, concrete}. For instance, Ĝ is such a full TC-MSC
graph. Let Y ≤ Y ′ ∈ N. Now, for a path ρ = n0 . . . n� of H , we say that a dated
MSC M = (E, (<p)p∈P , μ, λ, d) generated by T ρ is (Y, Y ′)-drift-bounded if for
each i = 0, . . . , �, for any two events e, f in the TC-MSC Λ(ni), we have: (i) if
both e and f are concrete events, then |d(e) − d(f)| ≤ Y ; (ii) if one or both of
e, f are dummy events, then |d(e)− d(f)| ≤ Y ′. We say that a consistent path ρ
of H is (Y, Y ′)-drift-bounded if there exists a (Y, Y ′)-drift-bounded dated MSC
generated by ρ. At last, H is (Y, Y ′)-drift-bounded if all its consistent paths are.

Proposition 2. For a TC-MSC graph G, a path ρ of G and K ∈ N, (i) ρ is

consistent in G iff ρ̂ is consistent in Ĝ, (ii) ρ is K-drift-bounded in G iff ρ̂ is

(K, K̂)-drift-bounded in Ĝ, with K̂ = (|P| − 1) ·K.

Hence, we are able to restrict to full TC-MSC graphs when checking for emptiness
using (i), and when checking for K-drift boundedness using (ii):

Corollary 1. Given a TC-MSC graph G, (i) L(G) �= ∅ iff L(Ĝ) �= ∅, and (ii)

G is K-drift-bounded iff Ĝ is (K, K̂)-drift-bounded, where K̂ = (|P| − 1) ·K.

4 Emptiness for K-Drift-Bounded TC-MSC Graphs

We now prove Theorem 1. We assume G to be a K-drift-bounded TC-MSC
graph. By Corollary 1, we can build Ĝ, a (K, K̂)-drift-bounded full TC-MSC

graph with L(Ĝ) �= ∅ iff L(G) �= ∅. It then suffices to check the emptiness of a

finite automaton that accepts the set of (K, K̂)-drift-bounded final paths of Ĝ.
Let H be a full TC-MSC graph, with events partitioned as dummy or concrete.

To avoid clutter, we assume that constraints in H are only of the form [a, b] and
[a,∞). Extending proofs to handle other constraints is straightforward and all
statements hold in general, but additional notations are needed to remember
whether each inequality is strict or not. We first describe intuitively the key
ingredients of the proof, which will be developed in the rest of this section.
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– First, we observe that checking consistency of a path ρ of H , i.e., L(T ρ) �=
∅, is equivalent to checking for the existence of a solution to a system of
inequalities over (real-valued) variables xe depicting the dates of events e of
T ρ.

– Next, we show that checking whether a dated MSC can be extended by a
node by assigning appropriate dates to events of this node can be done with
information only on the relative difference of dates of the last event of the
dated MSC on each process. This motivates us to associate a symbolic profile
PF (ρ) to each path ρ. A symbolic profile is a system of inequalities whose
solutions correspond to the dates of final events of dated MSCs generated
by T ρ, and vice versa. In particular, PF (ρ) has a solution iff ρ is consistent.

– We remark that constants appearing in symbolic profiles can be chosen as
integers. Restricting constants to be within [−K̂, K̂] does not exclude any

consistent (K, K̂)-drift-bounded path of H . We can then represent with a

finite automaton the set of consistent (K, K̂)-drift-bounded paths of H .

Systems of Inequalities and Fourier-Motzkin Elimination. We first fix
basic terminologies for systems of difference inequalities. Let X be a finite
nonempty set of real-valued variables. A (difference) inequality is an inequal-
ity of the form x− y ≤ a, where x, y are two different variables in X .

Definition 5. A system of (difference) inequalities φ over X is ∧(x,y)∈R x−y ≤
axy where R ⊆ X × X is an irreflexive relation. We say that φ has integral
coefficients whenever axy is a (possibly negative) integer for all (x, y) ∈ R.

From now on, we assume that the system is simplified, that is, for each x, y ∈ X ,
there is at most one inequality of the form x − y ≤ a. This involves no loss of
generality as x − y ≤ a ∧ x − y ≤ a′ is equivalent with x − y ≤ min(a, a′). If
x− y ≤ a appears in φ, we say that φ contains an edge (x, y), and the weight of
this edge is a. We say that two systems φ, ψ of inequalities are equivalent when
φ has a solution (in the real domain) iff ψ has a solution (in the real domain).

A key idea is to propagate constraints concerning variables in a subset Y � X
on variables in X \ Y , and then safely remove variables in Y while keeping an
equivalent system. This is done using the Fourier-Motzkin elimination method
(see extended version, or [9,14]).

For F ⊆ X , let φ|F denote the (unique) system of inequalities over variables
F obtained by performing Fourier-Motzkin elimination of variables in X \ F
following a fixed order. We have that φ and φ|F are equivalent. If φ has integral
coefficients, then so does φ|F .

Symbolic Profiles. Let T ρ = (E, (<p), μ, λ, δ) be the TC-MSC associated with
some path ρ = n0 . . . n� of H . We denote by xe a R≥0-valued variable, standing
for the date of event e ∈ E, and let XE = {xe | e ∈ E}. We associate path ρ
with a system of linear inequalities Φ(ρ) with integral coefficients as follows:

Definition 6. The system Φ(ρ) associated with ρ is the smallest system of in-
equalities over the set of variables XE

such that, for any e, f ∈ E with e� f ,
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= Tn1·n1 ,

p q r s

[0, 3]

[0, 3]

[1, 3] [0, 1] [0, 1] [0, 1] φ(n1 · n1)|Xlast
=

⎧⎨⎩
xq − xp ≤ 3
xp − xq ≤ 0
xr − xs ≤ 0

⎫⎬⎭
Fig. 2. The TC-MSC induced by path n1 · n1 of G1 and its profile

– if δ(e, f) = [L,U ], then Φ(ρ) contains both xf − xe ≤ U and xe − xf ≤ −L;
– if δ(e, f) = [L,∞), then Φ(ρ) contains xe − xf ≤ −L.

We easily have that ρ is consistent iff Φ(ρ) has a solution. Let ep be the last event
of T ρ on p, for each process p. Let Elast be the set {ep | p ∈ P}. Using Fourier-
Motzkin elimination of variables X ′ = {xe | e /∈ Elast}, we obtain a system
Φ(ρ)|Xlast

over variables Xlast = {xe | e ∈ Elast}, with integral coefficients,
equivalent with Φ(ρ). Once simplified, this system has at most |P|2 inequalities
with integral coefficients. We encode this system as a symbolic profile.

Definition 7. A symbolic profile σ is a function from P × P to Z ∪ {∞}. We
denote by PF the (infinite) set of all profiles.

Notice that symbolic profiles are syntactically similar to Difference Bounded
Matrices (DBMs) [6] over |P| clocks. However, unlike a DBM, a symbolic profile
may not correspond to a timed linearization, and the update function (defined
below) is very different when compared to DBMs.

Let φ be a system of inequalities with integral coefficients over Xlast = {xp |
p ∈ P}. We define the symbolic profile PF (φ) induced by φ as PF (φ)[p, q] = apq
if xp − xq ≤ apq belongs to φ, and PF (φ)[p, q] = ∞ otherwise. Intuitively,
PF (φ)[p, q] = ∞ means that there is no inequality of the form xp − xq ≤ apq
in φ. We abusively use PF (φ) as a system of inequalities in the following, and
denote xp for xep . For a path ρ, we denote PF (ρ) = PF ((Φ(ρ))|Xlast

). We say
that a symbolic profile σ ∈ PF is satisfiable if it has a solution. It is easy to
check whether PF (ρ) is satisfiable, either by using Fourier-Motzkin elimination
till reaching a trivial equation, or by using Shostak characterisation [17].

Proposition 3. PF (ρ) is satisfiable iff ρ is consistent.

As an example, consider the TC-MSC T n1·n1 in Figure 2, generated by path n1·n1

of G1 from Figure 1. Let eij denote the i
th event on process j and E be the set of

events of T n1·n1 . We obtain Φ(n1 ·n1) to be the set of inequalities over X = {xe |
e ∈ E}, where for instance the inequations xe2p

− xe1p
≤ 3 and xe1p

− xe2p
≤ −1

capture the timing constraint [1, 3] between e1p and e2p. Now eliminating variables
xe1p

, xe1q
, xe1r

, xe1s
results in a set of equations on Xlast = {xe2p

, xe2q
, xe2r

, xe2s
} =

{xp, xq, xr, xs} as shown. E.g., PF (n1 · n1))[p, q] = min(3,−1 + 3 + 1) = 3 and
PF (n1 · n1))[s, r] =∞. This system of inequalities has many solutions.

Bounded profiles. Notice that the set of symbolic profiles as defined above is
not finite in general (the coefficients range over Z), and so, it cannot be recorded
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by a finite state automaton. Instead, we use the finite set of L-bounded profiles,
where L ∈ N is some integer.

Definition 8. For L ∈ N, a L-bounded profile σ is a function from P × P to
Z ∩ [−L,L]. We denote by PFL the set of L-bounded profiles.

Let Y ≤ Y ′ ∈ N. Notice that the set PFY ′ is finite. We denote by ΦY,Y ′(ρ) the
system of inequalities obtained from Φ(ρ) by the following modification: for each
i = 0, . . . , �, for any two different events e, f in the same node n of ρ, if Φ(ρ) con-
tains xe − xf ≤ ae,f , then replace it by xe − xf ≤ min(ae,f , Y ) if both e, f are
concrete, and by xe−xf ≤ min(ae,f , Y

′) otherwise (that is if at least one of e or f is
dummy); if Φ(ρ) does not have an edge (e, f), then add the inequality xe−xf ≤ Y
if both e, f are concrete, and xe − xf ≤ Y ′ otherwise. Clearly, ρ is consistent
and (Y, Y ′)-drift-bounded iff ΦY,Y ′(ρ) has a solution. If ΦY,Y ′(ρ) has a solution,
we set PFY,Y ′(ρ) = PF (ΦY,Y ′(ρ)|Xlast

). In a full TC-MSC graphH , by definition
of ΦY,Y ′(ρ), we have PF Y,Y ′(ρ) ∈ PFY ′ . If ΦY,Y ′(ρ) has no solution, it is possible
that PF (ΦY,Y ′(ρ)|Xlast

) /∈ PFY ′ . In this case, we set PF Y,Y ′(ρ) to be a particular
profile ⊥ ∈ PFY ′ without solution, e.g. ⊥[p, q] = 0,⊥[q, p] = −1 (which would
require 1 ≤ xp − xq ≤ 0).

Proposition 4. Let ρ be a path of a full TC-MSC graph H. Then PF Y,Y ′(ρ) ∈
PFY ′ , and PFY,Y ′(ρ) is satisfiable iff ρ is consistent and (Y, Y ′)-drift-bounded.

Notice that PF Y,Y ′(ρ) cannot be obtained from PF (ρ). An intuitive (but wrong)
idea would be to set PF Y,Y ′(ρ)[p, q] = Y ′ for all PF (ρ)[p, q] > Y ′ and else
PF Y,Y ′(ρ)[p, q] = PF (ρ)[p, q]. However, setting PFY,Y ′(ρ)[p, q] = Y ′ for all
PF (ρ)[p, q] > Y ′ only constrains the dates of the last events on each process.
So, the bound Y ′ in ΦY,Y ′(ρ) must be imposed for every node of ρ, and these
constraints on past nodes can have implications for the profile of ρ.

We now explain how to compute PF Y,Y ′(ρ) in an inductive way, by defining

an extension function θn
−→n

Y,Y ′ : PFY ′→PFY ′ for all transitions n−→n. For σ ∈
PFY ′ and a transition n− → n, we define the profile θn

−→n
Y,Y ′ (σ) as follows:

– Form the system Ψ = ψσ∧ψn−→n∧ψn overX = {xp | p ∈ P}∪{xe | e ∈ En}
(xp represents the date of process p in σ, En the events of T n), where:
• ψσ consists of xp − xq ≤ σ[p, q] for every p, q ∈ P , such that σ[p, q] �=∞.
• ψn−→n contains, for each p with Δp(n

−→n) = [L,U ], two inequalities
xp − xfp ≤ −L and xfp − xp ≤ U , where fp is the first event of n on p.
For each p with Δp(n

−→n) = [L,∞), ψn−→n contains xp − xfp ≤ −L.
• ψn is ΦY,Y ′(n), the system associated with the singleton path n.

– Perform Fourier-Motzkin elimination on Ψ to remove all variables but
{xêp}p∈P where êp is the last event of ρ ·n on p. Denote byΠ the resulting sys-

tem (after simplification) of inequalities over {xêp | p ∈ P}. Set θn
−→n

Y,Y ′ (σ) =
PF (Π). If at any stage of Fourier-Motzkin elimination, the system is not sat-

isfiable, then set θn
−→n

Y,Y ′ (σ) to be the un-satisfiable profile ⊥ ∈ PFY ′ .

Lemma 1. For a path ρ ending in n− and a transition n−→n, we have that
PF Y,Y ′(ρ · n) and θn

−→n
Y,Y ′ (PF Y,Y ′(ρ)) have the same set of solutions.
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Construction of a Symbolic Automaton. We now construct a symbolic
automaton A(H) accepting the final (Y, Y ′)-drift-bounded paths of H .

Proposition 5. Let H be a full TC-MSC graph with |H | nodes. Then there

exists an automaton A(H) with at most |H | × (2 · Y ′ + 1)|P|2 states, such that
L(A(H)) �= ∅ iff H has a (consistent) final (Y, Y ′)-drift-bounded path.

Proof (sketch). The states of A(H) are pairs (n, σ), with n a state of H and
σ ∈ PFY ′ . The initial state is (nin ,PF Y,Y ′(nin)). A state (n, σ) is final if n is
final, and σ is satisfiable. There is a transition labeled by n′ from (n, σ) to (n′, σ′)
iff both σ, σ′ are satisfiable, there is a transition from n to n′, and σ′ = θn→n′

Y,Y ′ (σ).
The proof now follows from Lemma 1 and Proposition 4. �

The proof of Theorem 1 follows from this: as every path of Ĝ is (K, K̂)-drift-

bounded, taking H = Ĝ, Y = K,Y ′ = K̂ implies L(A(Ĝ)) �= ∅ iff L(Ĝ) �= ∅
(iff L(G) �= ∅ by Corollary 1). Now, checking that L(A(Ĝ)) �= ∅ is decidable in
space logarithmic in |G|,K and polynomial in |P|.

Compared with [3], which builds an automaton accepting every timed lin-
earizations of a regular TC-MSC graph, we end up with a much smaller automa-
ton in the worst case (exponential in |P|2 instead of exponential in |G| for [3]).
Further, being symbolic, we believe that the worst case is seldom reached, con-
trary to constructions based on zones of timed automata [3,1,2,18]. Indeed, con-
sider a path ρ made of one node, labeled by a TC-MSC with one event ep for
every p ∈ P , and without constraints, hence allowing events to occur at any date.
Without symbolic encoding, this path would give rise to |2K||P| configurations
of the form (xp)p∈P , with xp ∈ {0, (0, 1), 1, · · · ,K} the clock associated with ep.
Our solution only memorizes the unique symbolic profile PFK,K̂(ρ) such that

∀p, q ∈ P , PFK,K̂(ρ)[p, q] = K̂, meaning that −K̂ ≤ xp − xq ≤ K̂ for all p, q.

5 Checking K-Drift-Boundedness of TC-MSC Graphs

The construction of automaton A(Ĝ) in Section 4 allows to decide the emptiness

of L(Ĝ) (and hence of L(G)), under the hypothesis that G is K-drift-bounded.
We show here that given K, one can decide whether G is K-drift-bounded. We
use Proposition 2 to create a full TC-MSC graph Ĝ. The main idea is that if
Ĝ is not (K, K̂)-drift-bounded, then there must be a path of “minimal” length

which is consistent but not (K, K̂)-drift-bounded. The idea is then to look for

such a minimal witness. We call a path ρ · n of Ĝ a minimal witness iff:

1. The path ρ is (K, K̂)-drift-bounded, and

2. The path ρ · n is not (K, K̂)-drift-bounded, and
3. The path ρ · n is consistent.

Remark 1. G is not K-drift-bounded iff Ĝ is not (K, K̂)-drift-bounded iff there

exists a minimal witness in Ĝ.
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Now we build a finite automaton recognizing exactly the set of minimal witnesses
of Ĝ which from the remark above immediately proves Theorem 2. Requirements
1. and 2. are easy to check with the automaton built in the previous section. Re-
quirement 3. is harder to check on its own as there is no effectively constructible
finite state automaton accepting all consistent paths, (since it is undecidable to
know whether there exists a consistent final path [11]). However, we will prove
that thanks to requirement 1., requirement 3. can be replaced by: the path ρ ·n
is consistent and K2-drift-bounded, for some contant K2 depending on G and
K̂. Notice that fixing K2 = K̂ may not be enough.

The bound K2 is chosen as follows. For a node n in Ĝ, set Dn to be the sum
of lower bounds of δ(e, f), for every pair (e, f) with e�f . For a transition (n, n′)

in Ĝ, set D(n,n′) to be the sum of the lower bounds of Δp(n, n
′) for p ranging

over P . Set D(Ĝ) to be the maximum of D(n,n′) +Dn′ where (n, n′) ranges over

transitions of Ĝ. Finally, we let K2 = (|P|/2 + 1) · K̂ +D(Ĝ).

Proposition 6. Let ρ · n be a path of Ĝ such that ρ is (K, K̂)-drift-bounded.
Then ρ · n is consistent iff ΦK2,K2(ρ · n) is satisfiable.

The technical proof uses the characterization of consistent systems of equations
given by Shostak lemma [17], which we explain now.

Recall that consistency of a path ρ in Ĝ is equivalent to satisfiability of
the associated system of inequalities PF (ρ). Let ϕ be a (simplified) system of
inequalities. A cycle in ϕ is a sequence x1 . . . xm such that for all i ∈ {1, . . . ,m−
1}, xi+1−xi ≤ ai appears in φ for some ai, and xm = x1. The weight of this cycle
is
∑

i∈{1,...,m−1} ai. A cycle is simple if all variables, except the first and last one,

are pairwise distinct. According to Shostak lemma [17], a system of inequalities
ϕ has a solution iff every cycle in ϕ has non-negative weight iff every simple
cycle in ϕ has non-negative weight. Detection of cycles of negative weight can
be efficiently performed with the Bellman-Ford algorithm.

Proof (of Prop. 6.). We will consider three systems of inequalities.

1. The first one is φ1 = Φ(ρ · n).
2. The second one is φ2 = ΦK2,K2(ρ · n). By definition, φ2 is obtained from φ1

by adding inequalities xe − xf ≤ K2 for all e, f from the same node of ρ · n.
3. Finally, φ3 = ΦK,K̂(ρ). Since K ≤ K̂ ≤ K2, φ3 can be obtained from φ2

by deleting the events from n, and adding inequalities xe − xf ≤ K for all

concrete e, f from the same node of ρ, and adding inequalities xe − xf ≤ K̂
for all events e, f from the same node of ρ s.t. e or f or both are dummy.

We know that ρ · n is consistent iff φ1 is satisfiable. Hence, we just need to
prove that φ2 has a solution iff φ1 has a solution to yield the statement of the
proposition. Clearly, if φ2 has a solution, then this solution is also a solution for
φ1. Conversely, assume that φ1 has a solution. By Shostak lemma, it implies that
every cycle in φ1 has weight at least 0. Now to prove that φ2 has a solution, it
suffices to show that every simple cycle of φ2 has weight at least 0. Let x1 . . . xm

be a simple cycle in φ2. That is, for all i ∈ {1, . . . ,m−1}, xi+1−xi ≤ bi appears
in φ2 for some bi, and xm = x1. We want to prove that

∑
i bi ≥ 0.
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Let ai be the associated coefficients in φ1, i.e such that there is an inequality
in φ1 of the form, xi+1 − xi ≤ ai (if ai does not exist, fix ai = +∞). Let ci be
the associated coefficients of φ3 (we fix ci = −∞ if it corresponds to events in
n, i.e., events not represented in φ3).

Observe that ci ≤ bi ≤ ai by definition of φ1, φ2, φ3. Now, if ai = bi for all i,
then the cycle x1 . . . xm in φ2 is also a cycle in φ1 and

∑
i bi =
∑

i ai. As every
cycle in φ1 has weight at least 0, we are done. Else, we have aj �= bj for some
j. Let J �= ∅ be the set of indices j such that aj �= bj . Hence |J | ≥ 1. Further,
ej , ej+1 are in the same node m of ρ · n for all j ∈ J , because φ2 only adds
constraints on pairs of events of the same node. Last, bj = K2 for all j ∈ J , as
the only additional constraints in φ2 w.r.t. φ1 are of the form xe − xf ≤ K2.

Now, we partition the indices {1, . . . ,m} = Iρ ∪ In ∪ Jρ ∪ Jn where,
Jρ = {j | bj = K2 and both xj and xj+1 belong to ρ},
Jn = {j | bj = K2 and at least one of xj or xj+1 belongs to n}.
In = {j | bj �= K2 and at least one of xj or xj+1 belongs to n}, and
Iρ = {j | bj �= K2 and both xj and xj+1 belong to ρ}.

With this
∑

i bi =
∑

i∈In
bi +
∑

i∈Jn
bi+
∑

i∈Iρ
bi+
∑

i∈Jρ
bi. Now, observing

that J = Jρ ∪ Jn, we have
∑

i∈(Jn∪Jρ)
bi = K2 · (|Jρ|+ |Jn|) = K2 · |J | ≥ K2 · 1.

Further, we also have
∑

i∈In
bi ≥ −D(Ĝ) by definition of D(Ĝ) and because the

cycle is simple. Now, we bound the sum
∑

i∈Iρ
bi (the remaining weights) using

φ3. Indeed, since each i ∈ Iρ is an index such that xi and xi+1 are events of
ρ, we have bi ≥ ci where ci is the coefficient of φ3. And therefore it suffices to
bound

(∑
i∈Iρ

ci
)
. It immediately yields the bound for

∑
i bi.

For this, the set Iρ is first partitioned into pieces. Each piece I ′ ⊆ Iρ is made of
“consecutive” indices, i.e., either I ′ = {i, i+ 1 . . . , j} or I ′ = {i, . . . ,m, 1, . . . , j},
such that (ei−1 ∈ n or bi = K2) and (ej+1 ∈ n or bj = K2). There are at most
|Jρ| + |P|/2 pieces (because the cycle is simple). Each piece begins and ends
either with the last event on some process of the node before n or with an event
ei or ei+1 such that bi = K2.

ρ

For instance, the picture above depicts a cycle (in φ2) with 3 pieces r1, r2, r3,
involving 4 processes. r1 begins with the last event on some process p1 of ρ and
ends with an event ej such that bj = K2. r2 begins with ej+1 and ends with the
last event on some process p4 of ρ. r3 begins and ends with the last events on some
processes p2, p3 of ρ.

As ρ is (K, K̂)-drift-bounded and consistent, we know that φ3 has a solution,
that is every cycle in φ3 has weight at least 0 by Shostak lemma. Let I1, · · · , Ir be
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the pieces of Iρ. Recall that r ≤ |Jρ|+|P|/2. For all i ≤ r, denoting Ii = {s, . . . , t},
we rename es · · · et into yi1 · · · yimi . We now build a cycle of φ3 using every piece,
and with some additional edges connecting these pieces. More precisely, we define
ξ = y11 · · · y1m1 · · · yr1 · · · yrmry11 , made by gluing all the pieces together. Comparing

the weight of ξ with
∑

i∈Iρ
ci, there is an additional weight di in ξ with yi+1

1 −
yimi ≤ di, for each i. We have that both yimi and yi+1

1 are in the same node
(either the last node before n, or some node where there were a K2 edge). In φ3,
there is an edge between any two events of the same node, hence this connecting
edge ys+1

1 − ysms ≤ cs exists (that is ξ is a cycle), and cs ≤ K̂, by definition
of φ3. By Shostak lemma, the weight w of ξ in φ3 is at least 0. We thus have(∑

i∈Iρ
ci
)
+ (|P|/2 + |Jρ|) · K̂ ≥ w ≥ 0. We then have

∑
i∈Iρ

bi ≥
∑

i∈Iρ
ci ≥

−(|P|/2 + |Jp|) · K̂. Thus, we get
∑

i bi ≥ K2 · (|Jρ| + |Jn|) − (|P|/2 + |Jρ|) ·
K̂ − D(Ĝ) = K2 + (|Jρ| + |Jn| − 1) · K2 − (D(Ĝ) + |P|/2K) − |Jρ|) · K̂ =

K̂ + (|Jρ|+ |Jn| − 1) ·K2 − |Jρ| · K̂ = (|Jρ|+ |Jn| − 1) ·K2 − (|Jρ| − 1) · K̂ ≥ 0,

as |Jρ| − 1 ≤ |Jρ|+ |Jn| − 1, 0 ≤ |Jρ|+ |Jn| − 1 and K̂ ≤ K2. �

We can now build an automaton accepting minimal witness paths of Ĝ.

AnAutomaton forMinimalWitnesses. Wesearch for aminimalwitness path
ρ ·n = n0 · · ·n� ·n in Ĝ using an automatonB(Ĝ). The first component of a state of

B(Ĝ) keeps track of the current node n. The second component will test for (K, K̂)-
drift-boundedness,whichneeds to hold for ρbut not for ρ·n. This is done by keeping
track of a K̂-bounded profile. The last component keeps track ofPFK2,K2(ρ) which
is sufficient to check consistency of ρ according to Proposition 6. Theorem 2 is ob-
tained using the following proposition (where |Ĝ| is the number of nodes of Ĝ):

Proposition 7. Let G be a TC-MSC graph. Then there exists an automaton
B(Ĝ) such that L(B(Ĝ)) = ∅ iff Ĝ is (K, K̂)-drift-bounded. Further, B(Ĝ) has at

most |Ĝ|×(2K̂+1)|P|2×(2K2+1)|P|2 states, where K2 = (|P|/2+1) ·K̂+D(Ĝ).

Proof (Sketch). The states of B(Ĝ) are triples (n, σ, τ), with n a node of Ĝ, σ a

K̂-bounded profile of Ĝ, and τ a K2-bounded profile of Ĝ. The initial state of
B(Ĝ) is (nin ,PFK,K̂(nin ),PFK2,K2(nin)). A state (n, σ, τ) of B(Ĝ) is final if σ

is not satisfiable, but τ is. Last, there is a transition labeled by n′ from (n, σ, τ)

to (n′, σ′, τ ′) iff Ĝ contains a transition n→n′, σ′ = θn→n′

K,K̂
(σ), τ ′ = θn→n′

K2,K2
(τ),

and both σ and τ ′ are satisfiable. Notice that τ is satisfiable when σ is, as K2 ≥
K̂ ≥ K, and that σ′ is not required to be satisfiable. �

6 Conclusion

This paper has addressed the emptiness problem for TC-MSC graphs. We have
shown that emptiness can be checked under the restriction that a TC-MSC graph
is K-drift-bounded, for some K, and we established the decidability of check-
ing this restriction. The decision procedure does not consider linearizations of
TC-MSC graphs, nor rely on the seminal result of [4]. Instead, a finite automaton
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keeps track of a system of inequalities describing symbolically constraints over
dates on each process. As future work, we plan to consider checking whether a
TC-MSC graph is drift-bounded (without the bound K), and if so computing
the bound. It seems that tackling this problem needs new ideas and concepts.
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Abstract. In this paper we give a compositional (or inductive) con-
struction of monitoring automata for LTL formulas. Our construction is
similar in spirit to the compositional construction of Kesten and Pnueli
[5]. We introduce the notion of hierarchical Büchi automata and phrase
our constructions in the framework of these automata. We give detailed
constructions for all the principal LTL operators including past opera-
tors, along with proofs of correctness of the constructions.

1 Introduction

Linear-Time Temporal Logic (LTL) was proposed by Pnueli in [8] as a language
for specifying temporal properties of program executions. It has since become a
popular specification language with widespread use in practical verification.

In recent years, the most popular approach to solving the verification problem
(or the so-called model-checking problem) for LTL is the automata-theoretic
approach of Vardi and Wolper [9]. The central idea in this approach is the
construction of a formula automaton Aϕ for a given LTL formula ϕ, which is
a Büchi automaton that accepts precisely the models of ϕ. Given a finite-state
system model T and an LTL specification ϕ, one can check whether T satisfies
ϕ (ie. whether all runs of T satisfy ϕ) by checking whether T and A¬ϕ have a
joint accepting run. If they do have a joint accepting run, then we have a witness
to the fact that T does not satisfy the formula, and if not we know that T does
indeed satisfy the formula. This technique is implemented in popular explicit-
state model-checking tools like Spin [4] as well as symbolic model-checking tools
like Sal [2].

The Vardi-Wolper formula automaton construction is “monolithic” in that it
directly (as against “compositionally”) constructs an automaton for the given
formula. While the transition relation of the automaton has a simple description,
the set of valid atoms (which play the role of states) do not. In fact many
techniques (for example [3]) focus on generating the set of valid next states
efficiently. This can be an impediment to applying symbolic model checking.
Further, the automaton can have a number of states that is exponential in the size
of the given formula. Verifying systems with large state spaces and reasonable
sized specifications in this “one-shot” technique is often a problem, with model-
checking tools running out of memory.

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 16–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In the face of this problem, an interesting “compositional” alternative for both
deductive and algorithmic verification for LTL (and more generally for CTL∗)
was proposed by Kesten and Pnueli in [5]. Here the task of verifying whether
T satisfies a temporal logic ϕ is broken up into several sub-tasks of verifying
sub-formulas of ϕ. The key step in this approach is a compositional construction
of a “monitoring” automaton (or a “temporal tester” as termed in [5]) for a
given LTL formula. A monitoring automaton for a formula ϕ is similar to a
formula automaton for ϕ, except that it “monitors” the truth of ϕ at all points
along an accepting run of the automaton on any candidate model for ϕ. The
technique is compositional in that the monitoring automaton for a formula of
the form ψUη is constructed purely from monitoring automata for ψ and η. The
monitoring automaton is constructed as a composition of component automata,
where the communication between component automata is through shared state
variables, in a manner similar to modelling languages like Z [10] and Event-B[1].
The monitoring automaton so constructed is linear in the size of the given LTL
formula, though of course the explicit Büchi automaton corresponding to it may
have an exponential number of states. This linear-sized representation is also
conducive for symbolic model-checking.

In this paper, our focus is on a compositional construction of a monitoring
automaton for an LTL formula. We present such a construction which is similar
in spirit to that of Kesten and Pnueli, though in the framework of Hierarchi-
cal Büchi Automata (HBA’s) which we introduce for this purpose. HBA’s are
similar to synchronous products of Büchi automata, except that component au-
tomata can have “edge guards” which may disallow certain joint transitions in
the product. Thus the communication in these automata is only through edge
guards.

Our work differs from Kesten and Pnueli in several ways. Our constructions
are more concise than those in [5]. In general our constructions can be seen to
use an optimal number of states and transitions. We formalize the notion of
“monitoring” in terms of universal and unambiguous Büchi automata, and ex-
plicitly show that our constructions conform to this restriction. Unlike [5], which
do not address the issue of correctness of their constructions, our constructions
are accompanied by detailed proofs of correctness.

Finally our framework of HBA’s is useful in generalising the compositional
construction to timed temporal logics like MITL [7]. Such a generalisation has
been done earlier in [6] though in the setting of signals (rather than timed words,
for which we find HBA’s more convenient).

The rest of this paper is organised as follows. We begin with prelimary def-
initions in the next section, and then introduce hierarchical Büchi automata
in Section 3. In Section 4 we define the notion of a monitoring automaton for
LTL formulas, and go on to give our inductive constructions for monintoring
automata in Section 5. In the following section we discuss the optimality of our
construction. We finally close with a conclusion section.
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2 Preliminaries

For a finite alphabet of symbols Σ, an infinite word overΣ is an infinite sequence
of symbols from Σ. We denote the set of infinite words over Σ by Σω and the
empty word by ε. We use standard notations for regular expressions denoting
languages over finite and infinite words. We use N for the set {0, 1, . . .} of natural
numbers.

Let us fix an alphabet Σ for the rest of this paper. The syntax of an LTL
formula over Σ is given by:

ϕ ::= � | a | ¬ϕ | ϕ | ϕ | ϕ ∨ ϕ | ϕUϕ | ϕSϕ,

where a ∈ Σ. The natural interpretation of LTL is over words in Σω. Let σ ∈ Σω

be a word of the form a0a1 · · ·. Let i ∈ N. Then the satisfaction relation σ, i |= ϕ
is given by:

σ, i |= �
σ, i |= a iff ai = a
σ, i |= ¬ψ iff σ, i �|= ψ
σ, i |= ψ ∨ η iff σ, i |= ψ or σ, i |= η
σ, i |= ψ iff σ, i + 1 |= ψ
σ, i |= ψ iff i > 0 and σ, i − 1 |= ψ
σ, i |= ψUη iff ∃k ≥ i : σ, k |= η, and ∀j : i ≤ j < k, σ, j |= ψ
σ, i |= ψSη iff ∃k ≤ i : σ, k |= η, and ∀j : k < j ≤ i, σ, j |= ψ.

We say that a word σ satisfies the LTL formula ϕ, written σ |= ϕ, if and only if
σ, 0 |= ϕ, and set L(ϕ) = {σ ∈ Σω | σ |= ϕ}.

A Buchi automaton B is structure of the form (Q,Σ, S,E, F ) where Q is a
finite set of states, Σ is an alphabet, S ⊆ Q is the set of initial states, E ⊆
Q × Σ × Q is the set of transitions (or edges), and F ⊆ Q is the set of final
states.

Let σ = a0a1 · · · be an infinite word over Σ. Then a run of B over σ is a map
ρ : N→ Q satisfying the following conditions:

1. q0 ∈ S.
2. For each i, (ρ(i), ai, ρ(i+ 1)) ∈ E.

We call the run ρ accepting if ρ(i) ∈ F for infinitely many i. In other words
an accepting run visits a set of final states infinitely often. We say a word σ is
accepted by B if B has an accepting run over σ. We define the language accepted
by B, denoted L(B), to be the set of all words which are accepted by B. We say
B is universal if L(B) = Σω and unambiguous if B has at most one accepting
run over each in Σω.

It will be convenient to use a variant of Buchi automata in which the edges are
marked initial and final. We call these edge Buchi automata. Formally, an edge
Buchi automaton B is a structure of the form (Q,Σ, S,E, F ) where Q is a finite
set of states, Σ is an alphabet, S ⊆ E is the set of initial edges, E ⊆ Q×Σ×Q
is the edge set, and F ⊆ E is the set of final edges.
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Let σ = a0a1 · · · be an infinite word over Σ. Then a run of B over σ is a
sequence of edges ρ : N→ E satisfying the following properties:

1. ρ(0) ∈ S.
2. There exist states q0q1 · · · such that for each i, ρ(i) = (qi, ai, qi+1).

We call the run ρ accepting if ρ(i) ∈ F for infinitely many i. In other words an
accepting run visits a set of final edges infinitely often.

Fig. 1 shows an example edge Buchi automaton B with two states. In the
figure and the others that follow we adopt the following conventions. We write
the action labels of the edges after the name label. Absence of an action label
indicate that the edges can be taken on any action in Σ. The initial edges will
be given as bold edges and the non-initial edges will be given as non-bold edges.
For the final edges we use normal edges (non-dashed) and for the non-final edges
we use dashed edges. The automaton has two initial edges labelled f1 and f4
and two final edges labelled f1 and f3. The edges f1 and f4 are enabled when
the action a occurs and f3 enabled when a b occurs. The edge f2 is enabled on
every action in Σ. The automaton accepts the language (a+(a+ b)∗b)ω.

f1 : a

f3 : b

f4 : a f2

Fig. 1. An example edge Buchi automaton B accepting the language (a+(a + b)∗b)ω.
Bold face indicates initial edges, and full (as against dashed) edges indicate final edges.

It is not difficult to see that for a Buchi automaton one can construct a
language-equivalent edge Buchi automaton and vice-versa. So these classes of
automata are expressively equivalent.

3 Hierarchical Buchi Automata

We now introduce the notion of hierarchical Buchi automata which we will use in
our constructions for LTL. Let L = [Bn, . . . ,B1] be a list of edge Buchi automata,
where Bi = (Qi, Σ,Ei, Si, Fi) for each i. Then we define the syntax of an edge
guard w.r.t. L as follows:

g ::= � | Bi.e | ¬g | g ∨ g | g ∧ g,

where e ∈ Ei. We denote the set of all edge guards w.r.t. L by E(L).
The semantics of an edge guard is defined as follows: an edge guard is evalu-

ated over a joint transition of Bn, . . . ,B1. Let (en, . . . , e1), where ei ∈ Ei, be a
joint transition of Bn, . . . ,B1 and let g ∈ E(L). Then we define the satisfaction
relation, (en, . . . , e1) |= g, inductively as follows:
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– (en, . . . , e1) |= �.
– (en, . . . , e1) |= Bi.e iff ei = e.
– Boolean combinations are handled in the expected manner.

A hierarchical Buchi automaton (or HBA) over Σ is a structure of the form
[Cn, . . . , C1] where each Ci is of the form (Bi, Gi) with Bi = (Qi, Σ, Si, Ei, Fi) an
edge Buchi automaton and Gi : Ei → E([Bi, . . . ,B1]) a labelling of edges of Bi
with “level i” edge guards.

Let σ ∈ Σω. Then a run of H over σ is a joint run of Bn, . . . ,B1 except that at
each position the edge guards have to be satisfied. Formally, a run ρ of H over
σ is a tuple (ρn, . . . , ρ1) satisfying the following two conditions:

1. Each ρi is a run of Bi on σ.
2. For all j ∈ N, (ρn(j), . . . , ρ1(j)) |=

∧n
i=1 Gi(ρi(j)).

For a run ρ = (ρn, . . . , ρ1) over H and a point i ∈ N we henceforth use ρ(i) to
mean the tuple (ρn(i), . . . , ρ1(i)).

The run ρ of H on σ is called accepting if each ρi is an accepting run of Bi
on σ. A word σ is accepted by H if H has an accepting run over it. We define
L(H), the language accepted by H, to be the set of all words which are accepted
by H. We say H is universal if L(H) = Σω and unambiguous if H has at most
one accepting run for every word in Σω.

Example 1. Fig. 2 shows the HBA H1 = [C2, C1] over the alphabet {a, b}. It
accepts the language, L(H1) = {biaω | i ∈ N}. In the figure the guards C1.e1 and
C1.e2 of the automaton C2 refer to the edges e1 and e2 in the automaton C1. By
convention we write the edge guards after the action labels of the edges, if any.

We now show that the class of ω-languages accepted by edge Buchi automata
and HBA coincide. Clearly every edge Buchi automaton is an HBA. To see

f3 : C1.e1

e1 : a

e2 : b

C2 :

C1 :

q r

p

f1 : C1.e2

f2 : C1.e2

Fig. 2. HBA H1
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that every HBA-definable language is Buchi-definable too, let H be an HBA as
defined above. Then we define an edge Buchi automaton BH as follows: BH is
essentially the product of Bn . . . ,B1 except that some edges in the product are
disallowed based on the edge guards present on the edges of these automata.

– Q = Q1 × · · · ×Qn × {0, . . . , n}.
– S = S1 × · · · × Sn.
– E ⊆ Q×Σ×Q is the set of edges defined as follows: for each a ∈ Σ, an edge

((pn, . . . , p1, l), a, (qn, . . . , q1,m)) ∈ E iff for all i ∈ {1, . . . , n} there exists
an ei ∈ Ei of the form (pi, a, gi, qi) such that the following conditions are
satisfied:
• (en, . . . , e1) |=

∧n
i=1 Gi(ei).

• m =

⎧⎨⎩
(i+ 1) mod (n) if i ≥ 1 and ei ∈ Fi.

1 if i = 0.
i otherwise.

– F = {((pn, . . . , p1, 0), a, (qn, . . . , q1, 1)) ∈ E | a ∈ Σ} is the set of final edges.

It is not difficult to see that L(BH) = L(H).

Example 2. Fig. 3 shows the language equivalent edge Buchi automaton BH1

corresponding to the HBA H1 of Example. 1.

0q p

1q p 2q p

(f1, e2) : b

(f2, e2) : b

(f1, e2) : b

(f1, e2) : b

1pr

(f2, e2) : b

(f2, e2) : b

(f3, e1) : a

(f3, e1) : a (f3, e1) : a

2p

0p

r

r

Fig. 3. Language-equivalent Buchi automaton BH1 of the HBA H1

4 Monitoring HBA for LTL

In this section we define the notion of a monitoring HBA for an LTL formula.
Let H = [Cn, . . . , C1], where each Ci is of the form (Bi, Gi), be an HBA. Then

by an edge guard over H we will mean an edge guard over the list of automata
Bn, . . . ,B1.

Definition 1. Let ϕ be an LTL formula over Σ. Let H be an HBA over Σ and
let g be an edge guard over H. Then (H, g) is called a monitoring HBA for ϕ iff
for every word σ ∈ Σω the following conditions are satisfied.

– There exists a unique accepting run of H over σ. We denote this run by ρσ.
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– The edge guard g monitors the truth of the formula along ρσ in the sense
that σ, i |= ϕ ⇐⇒ ρσ(i) |= g. We call g the monitoring guard for ϕ.

We note that such an HBA H is necessarily unambiguous and universal.
The notion of a monitoring automaton for a formula is useful in verification

because one can easily build a formula automaton for the formula from it. To
see this consider an LTL formula ϕ. Let (H, g) be a monitoring automaton for
ϕ and let BH be the language-equivalent edge Buchi automaton constructed as
mentioned above. Let C be the automaton BH with the following restriction on
its initial edges: an edge (en, . . . , e1) of C is an initial edge if it is an initial edge
in BH and (en, . . . , e1) |= g. It is not difficult to see that L(C) = L(ϕ), and hence
C is a required formula automaton for ϕ.

5 Monitoring Automaton Construction for LTL

We now give a constructive proof showing that for any LTL formula ϕ we can
construct a monitoring HBA for ϕ. In the proof, for an HBA H = [C, Cn, . . . , C1]
and a word σ ∈ Σω, if we are only interested in the run of C over σ then we use
the compact notation (π, ρ) where π is a run of C over σ and ρ is a joint run of
Cn, . . . , C1 over σ. And we also use the notation (π(i), ρ(i)) to refer to the edge
tuple at position i in the run. For a list of edge Buchi automata H = [Cn, . . . , C1]
and an edge Buchi automaton C we write [C,H] to mean the list [C, Cn, . . . , C1].

In the figures that follow, the transitions are assumed to be labelled by Σ
unless otherwise mentioned. Also, for convenience we write “ψ” instead of a
monitoring guard for ψ.

Theorem 1. Given an LTL formula ϕ we can effectively construct a monitoring
HBA (Hϕ, gϕ) for ϕ.

Proof. We prove this theorem by induction on the structure of ϕ.

Case: ϕ = a, a ∈ Σ. For this case the monitoring HBA is ([Ca], Ca.ea) where Ca
is as shown in Fig. 4.

ea : a

Σ − {a}

Fig. 4. Automaton Ca

Clearly the automaton Ca is deterministic and universal. Also, along the run of
the automaton over a word σ, the guard ea monitors the truth of the
formula “a”.

Case: ϕ = ¬ψ. By the induction hypothesis we have a monitoring HBA (Hψ , gψ)
for ψ. Then (Hψ,¬gψ) is a monitoring HBA for ¬ψ.
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Case: ϕ = ψ1 ∨ ψ2. Let (Hψ1 , gψ1) and (Hψ2 , gψ2) be the monitoring HBAs for
ψ1 and ψ2 respectively. Then ([Hψ1 ,Hψ2 ], gψ1 ∨ gψ2) is a monitoring HBA for ϕ.

Case: ϕ = ψ. By induction hypothesis we have a monitoring HBA (Hψ , gψ)
for ψ. Let C ψ be the automaton shown in Fig. 5. Let H ψ = [C ψ,Hψ] and
g ψ = C ψ.(e1 ∨ e2).

e1 : ¬ψ
d2 : ¬ψ e2 : ψ

d1 : ψ

Fig. 5. Automaton C ψ

We prove that (H ψ, g ψ) is indeed a monitoring HBA for ψ. Let σ ∈ Σω and
let ρ be the unique accepting run of Hψ over σ. Let π be a sequence of edges of
C ψ given by

π(i) =

⎧⎪⎪⎨⎪⎪⎩
e1 if σ, i |= ¬ψ ∧ ψ
e2 if σ, i |= ψ ∧ ψ
d1 if σ, i |= ψ ∧ ¬ψ
d2 if σ, i |= ¬ψ ∧ ¬ψ.

We now show that the edges in the sequence π connect up to form a valid run
of C ψ over σ. For example, consider the case when π(i) = e1. Since π(i) = e1
it must be the case that σ, i + 1 |= ψ and therefore π(i + 1) should be either e2
or d1, both of which are valid successor edges of e1. So the transition relation
of C ψ is respected by π at position i. Other cases can be handled similarly.
Finally, since all the edges of C ψ are initial π is a valid run of C ψ and since
all the edges final too π is an accepting run of the automaton.

We now prove that (π, ρ) is an accepting run of H ψ over σ. For this we need
to show that the edge guards along π are satisfied at each position i. Consider
the case when π(i) = e1 once again. Then by the construction of π it must be the
case that σ, i |= ¬ψ. Since ρ is the accepting run of Hψ over σ, by the definition
of a monitoring automaton ρ, i |= ¬gψ and therefore (π(i), ρ(i)) |= ¬gψ. So the
edge guard ¬ψ is satisfied at position i in the run (π, ρ). Other cases can be
handled similarly and we conclude (π, ρ) is an accepting run of H ψ .

Now, it remains to prove that (π, ρ) is the only accepting run of H ψ over
σ. Consider any accepting run of H ψ over σ. Then it must be the form (π′, ρ).
We argue that π′ = π. Consider any position i, and suppose π′(i) = e1. Since
the edge guard on e1 must be satisfied at (π′(i), ρ(i)) we have that ρ(i) |= ¬gψ
and ρ(i + 1) |= gψ, i.e. σ, i �|= ψ and σ, i + 1 |= ψ By the construction of π, π(i)
should be e1. Other cases can be handled similarly and we conclude π′ = π.

Next we need to show that the guard gϕ monitors the truth of ψ over (π, ρ).
Consider any position i. Suppose σ, i |= ψ. Then:



24 D. D’Souza and R.M. Matteplackel

σ, i |= ψ ⇐⇒ σ, i + 1 |= ψ
⇐⇒ π(i+ 1) = e2 or d1
⇐⇒ π(i) = e1 or e2.

Case: ϕ = ψ1Uψ2. Let (Hψ1 , gψ1) and (Hψ2 , gψ2) be the monitoring HBA for ψ1

and ψ2 respectively (which exist by induction). Let CU be the automaton shown
in Fig. 6. Let Hϕ = [CU ,Hψ2 ,Hψ1 ] and gϕ = CU (e1 ∨ e2 ∨ e3).

e1 : ψ2

e2 : ψ1 ∧ ¬ψ2 d2 : ¬ψ1 ∧ ¬ψ2

e3 : ψ2 d1 : ¬ψ2

Fig. 6. Automaton CU

We first prove that for any word σ ∈ Σω, CU has an accepting run over it.
Towards that end let us define a sequence of edges π of CU as follows: for all
i ≥ 0 we define:

π(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e1 if σ, i |= ψ2 and σ, i + 1 |= ψ1Uψ2

e2 if σ, i |= (ψ1 ∧ ¬ψ2) ∧ (ψ1Uψ2)
e3 if σ, i |= ψ2 and σ, i + 1 �|= ψ1Uψ2

d1 if σ, i |= ¬ψ2 and σ, i + 1 �|= ψ1Uψ2

d2 if σ, i |= ¬ψ1 ∧ ¬ψ2 and σ, i+ 1 |= ψ1Uψ2.

We now prove that π is an accepting run of CU over σ. Observe that as all the
edges in CU are initial the edge π(0) is initial. Now to show that the consecution
relation is respected by the run at every position consider a position i in π.
Suppose, if π(i) = e2 then by the condition associated with e2 we have that
σ, i |= ψ1Uψ2. This implies either σ, i + 1 |= ψ1Uψ2 or σ, i + 1 |= ψ2. Clearly
π(i+1) cannot be d2 because if it were then neither ψ1Uψ2 nor ψ2 is true in σ at
i+1. If ψ(i+1) = d1 then by construction we have that σ, i+1 |= ¬ψ2∧¬(ψ1Uψ2).
This contradictions the assumption that σ, i+1 |= ψ2 ∨ (ψ1Uψ2). Thus the edge
at position i+1 in π must be e1, e2 or e3 all of which are valid consecutions e2.
Other cases can be handled similarly and we conclude that π valid run of CU .

To see that π is an accepting run of CU note the only non-final edge is e3. So
if π(i) = e2 for some i then it must be the case that there exists a j > i such
that σ, j |= ψ2 which by the construction implies that π(j) should be either e1
or e3. Thus every e2 edge is followed by an e1 or an e3 both of which are final
in π and therefore π accepting. This completes the proof of the claim that π is
an accepting run of CU over σ.

We now construct an accepting run of Hϕ on σ using π. By the induction
hypothesis there exist unique accepting runs ρ1 and ρ2 of Hψ1 and Hψ2 respec-
tively, along which gψ1 and gψ2 monitor the truth of the formula ψ1 and ψ2.
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Consider the run (π, ρ), where ρ is the joint run ρ1 and ρ2. To show that (π, ρ)
is an accepting run of Hϕ on σ it is sufficient to show that the external guards of
π are satisfied in (π, ρ). Again taking e2 as an example, suppose π(i) = e2. Then
by the construction π, we know that ψ1 and ¬ψ2 are true at i in σ. Since gψ1

and gψ2 monitor ψ1 and ψ2 along ρ, it must be the case that ρ, i |= gψ1 ∧ ¬gψ2 .
Hence the edge guard of e2 is satisfied in ρ.

Next we show that (π, ρ) is the unique accepting run of Hϕ over σ. Suppose
it were not. Then there exists an accepting run π′ of CU such that (π′, ρ) is an
accepting run of HU . Let i be the first position such that π(i) �= π′(i). From
the construction of CU we observe that for any run the only plausible non-
deterministic choices are between the edges e1 and e3, and between the edges d1
and d2. So let us assume that π(i) = e1 and π′(i) = e3. Then by the construction
of π we have that σ, i+ 1 |= ψ1Uψ2. Since π′ is an accepting run it must be the
case that π′(i + 1) = d1 or d2. In either case we have that σ, i + 1 �|= ψ1Uψ2,
a contradiction. Similarly we can handle the other cases and we conclude that
(π, ρ) is the unique accepting run of HU over σ.

To prove that gϕ monitors the formula ψ1Uψ2, consider a position i. Suppose
σ, i |= ϕ. Then either σ, i |= ψ2 in which case π(i) should be either e1 or e3.
Otherwise σ, i |= ψ1∧¬ψ2 and therefore π(i) = e2. For the proof in the converse
direction, if π(i) is e1 or e3 then σ, i |= ψ2 and if π(i) is e2 then σ, i |= ψ1Uψ2.

Case: ϕ = ψ. Let (Hψ, gψ) be a monitoring HBA for ψ. Let C ψ be the
automaton shown in Fig. 7 and let H ψ = [C ψ,Hψ]. It is not hard to see that
if Hψ1 is unambiguous and universal so is H ψ . It is also easy to verify that
σ, i |= ψ ⇐⇒ ρ(i) |= C ψ.(e1 ∨ e2) where ρ is the unique accepting run of
H ψ over σ. Therefore (H ψ , C ψ.(e1 ∨ e2)) is monitoring HBA for ψ.

e2 : ¬ψ

d2 : ψd1 : ¬ψ e1 : ψ

Fig. 7. Automaton C ψ

Case: ϕ = ψ1Sψ2. Let (Hψ1 , gψ1) and (Hψ2 , gψ2) be monitoring HBA for ψ1

and ψ2 respectively. Let CS be the automaton shown in Fig. 8 and let HS =
[CS ,Hψ2 ,Hψ1 ]. We observe that as both the HBAHψ1 andHψ2 are unambiguous
and universal by induction, HS also is unambiguous and universal. Once again,
it is easy to verify that σ, i |= ψ1Sψ2 ⇐⇒ ρ(i) |= CS .(e1 ∨ e2) where ρ is the
unique accepting run HS on σ. Therefore (HS , CS .(e1 ∨ e2)) is monitoring HBA
for ψ1Sψ2.

�
Example 3. Fig. 9 shows an HBA HU = [CU , C b, Cb, Ca] which along with the
monitoring guard CU .(e1 ∨ e2 ∨ e3) monitors the LTL formula aU( b).
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e1 : ψ2

¬ψ1 ∧ ¬ψ2

¬ψ2 e2 : ψ1 ∨ ψ2

Fig. 8. Automaton CS

We note that size of our monitoring automaton is linear in the size of the given
LTL formula. More precisely the number of states in the monitoring HBA is
bounded by 2 · len(ϕ) and number of edges is bounded by 5 · len(ϕ). Though the
size of the induced Büchi automaton may still be 2O(len(ϕ)) in the worst case (as
in the Vardi-Wolper automaton), the HBA is a linear-sized representation that
is conducive to symbolic model-checking techniques.

Cb:

Ca:

e1 : ¬Cb.eb

Cb.eb

eb : b

Σ − {b}

ea : a

Σ − {a}

C b:

¬Cb.eb e2 : Cb.eb

¬Ca.ea ∧ ¬Cb.(e1 ∨ e2)
f2 : Ca.ea ∧ ¬Cb.(e1 ∨ e2)

f1 : Cb.(e1 ∨ e2) ¬Cb.(e1 ∨ e2)

CU :
f3 : Cb.(e1 ∨ e2)

Fig. 9. HBA HU for the formula aU( b)
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6 Optimality of Our Constructions

We now prove that in general our constructions are optimal in terms of the num-
ber of states as well as edges used. To be precise, we prove that the component
CU of the monitoring automaton for a formula aUb, where a, b ∈ Σ, uses an
optimal number of states and edges.

First let us argue that to monitor the formula aUb we require at least two
states. Suppose there exists an automaton A with a single state such that (A, g)
monitors aUb. Consider the accepting runs ρ1 = e0e1e2 · · · over the word σ1 =
aabaω and ρ2 = d0d1d2 · · · over σ2 = aω of the automaton. Clearly σ1, 0 |= aUb
and σ2, 0 �|= aUb. Since g monitors the truth of aUb we have that ρ1, 0 |= g and
ρ2, 0 �|= g. This implies g in its most simplified form should be of the form e0∨g1,
and should not be of the form d0 ∨ g2, for some edge guards g1 and g2.

Let us now consider the run ρ = e0d1d2 · · · of A. It is not difficult that see that
ρ is also an accepting run of A over σ2. But this contradicts with the assumption
that g monitors the formula as ρ, 0 |= g and σ2, 0 �|= aUb.

In a similar way we can prove that in general our constructions for the re-
maining cases also use an optimal number of states.

To prove that any monitoring automaton for the formula aUb requires at least
five edges let us assume, without loss of generality, that there exists an automa-
ton A with four edges and a guard g over A such that (A, g) is a monitoring
automaton for the formula. Let us first handle the case when, among the four
edges, the formula is true when two of them say e1 and e2 are taken.

Now, consider an accepting run ρ = f0f1 · · · of A over the word σ = (ab)ω.
We first prove that there exists infinitely many i such that fi = e1 and infinitely
many j such that fj = e2. Suppose that there exists a k such that for all i ≥ k
fi = e1. Since ρ is accepting it must be the case that e1 is final. Now consider the
run flfl+1 . . . where l > k and is even. It is not difficult to see that this is a valid
accepting run of A over (ab)ω . But this implies that A has multiple accepting
runs over σ, a contradiction to the assumption that A is unambiguous. Similarly
we can handle the other case.

To prove that for all even i the edge fi = f0 (=e2 say), suppose it were not.
Then there exists an even position j such that fi �= f0. Now consider the sequence
of edges obtained from ρ by replacing the edge fi with e2. It is not difficult to
show that this sequence is also an accepting run of A over σ, a contradiction as
A is unamiguous. Similarly we can prove that prove that for all odd i, fi = f1
(=e1 say).

We also observe that the edge f0 is non-accepting because if it were then
f0f0 · · · is an accepting run of A over the word aω along which g does not
correctly monitor the formula. Further, we also deduce that the edge f1 is final
as ρ is an accepting run of A. Since e1 and e2 are the only monitoring edges
we can also conclude that both the edges e1 and e2 are from p to p for some
state p.

We have proved above that any monitoring automaton for aUb requires at
least 2 states. Since there are only two more edges, say d1 and d2, other than
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e1

e2

p

d1

d2

q

Fig. 10. Automaton A

e1 and e2 it must be the case that d1 is from state p to another state q and d2
from q to p. Fig. 10 shows the edge transitions of A.

It is not difficult to verify that this automaton cannot monitor the formula
on any of its run over the word (cccb)ω, where c is another action in Σ. We
can handle other cases similarly and hence we conclude that (A, g) is not a
monitoring automaton for aUb.

Once again, on a similar note we can prove that in general our constructions
for the remaining cases also use an optimal number of edges.

We would like to point out here that the monitoring automaton for the formula
aUb (where a and b are actions) in the setting of Kesten and Pnueli [5] has has
8 states (of which 3 are dead states) and 27 edges. In contrast our monitoring
automaton for the formula has 2 states and 5 edges, which we argue is optimal.

7 Conclusion

In this paper we have given a compositional construction for a monitoring au-
tomaton for arbitrary LTL formulas, in the framework of hierarchical Büchi
automata. As pointed out in the introduction we depart from the similar con-
struction given by Kesten and Pnueli in [5] in several aspects.

In addition, we would like to mention that in our construction it is easy to
see by inspection that for a pure past LTL formula, the monitoring automaton
is deterministic.

We also believe that our construction is useful from a pedagogical point of
view, as each inductive step is fairly simple and intuitive, with simple and direct
automata constructions.
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Abstract. This paper presents results that enable efficient translations
of extensions of linear temporal logic (LTL) into alternating automata,
which can be applied to improve algorithms for the automata-theoretic
approach to model-checking. In particular, we introduce—using a game
theoretic framework—a novel finer grain complementation theorem for
the parity condition. This result allows simple and efficient translations
of extended temporal operators into pairs of automata accepting com-
plementary languages, using only up to 3 colors. Our results: (1) allow to
translate directly operators from LTL and different extensions (2) that
can be combined without restriction; and (3) does not require to elim-
inate negation upfront, or to start from formulas in negation normal
form.

1 Introduction

We study the problem of temporal verification of reactive systems, in particular
the automata approach to model-checking [16,17]. Given a finite system and a
specification in LTL [13,11] the problem consists in deciding whether all runs of
the systems are accepted by the specification. The automata-theoretic approach
to model checking reduces this verification problem to automata constructions
(like product and complementation) and decision problems (like non-emptiness
and language containment). First, one builds an automaton on infinite words for
the negation of the formula, which is then composed with the system using a
synchronous product. Finally, an emptiness check concludes whether the result-
ing product admits some trace (counter-example) or the system is correct with
respect to the specification.

In recent years, specifications are translated into alternating automata. The
richer structure of alternating automata enables a more direct translation than
non-deterministic automata, and allows to postpone a potentially exponential
blow-up. Another advantage of alternation is the easy dualization (see Muller
and Schupp [12]) provided by the availability of both conjunctive and disjunctive
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q ¬q

3

2

2

p ¬p

2

1

1

r ¬r

1

0

0

Fig. 1. Alternating automaton for the formula ¬(p ∧ ¬q) ∨ r

transition relations. However, to obtain an automaton accepting the complement
language, one also needs to complement the acceptance condition (e.g., [15] stud-
ies the complementation of weak alternating automata by dualization).

In this paper we study complementation constructions for parity automata
and applications to translate formulas from LTL and extensions into automata
more efficiently. We use APW to refer to alternating parity automata on words
and NBW for non-deterministic Büchi automata on words. The parity accep-
tance condition allows a simple and well-known complementation construction:
increment the color assigned to every state. This operation preserves the relative
order between the colors of any two states, and inverts the parity of the maxi-
mum color in any given sequence of states. This way, accepting traces become
non-accepting traces, and non-accepting traces become accepting traces. Even
though this construction is simple and elegant, it suffers the drawback that the
number of colors in the resulting automaton grows with every complementation
step. If this construction is used to translate the logical negation operator, the
total number of colors used in the resulting automaton can grow linearly in the
size of the formula. Consider, for example, the expression (¬(p ∧ ¬q) ∨ r). The
number of colors generated in the translation using the standard complementa-
tion construction is 4 (see Fig. 1). The best known algorithms [3] for translating
APW into NBW becomes less efficient as the number of colors grow, requiring
O(2nk log nk) states for an automaton with n states and k colors. Hence, many
researchers [9] have suggested translations of LTL into automata with weaker
acceptance conditions at the cost of manipulating formulas in the logical level.
Gastin et al. [6] is the closest work to ours, but their approach is tailored for LTL
and is not immediately applicable to extensions of LTL, like regular expression
operators, which seem to preclude the use of simpler forms of automata.

In this paper we alleviate the problem of the inefficient translation into APW
by exploiting the following intuition. The classical parity complementation con-
struction complements all sequences of states in the automaton, while only a
subset of these sequences are allowed by an automaton and its dual. We show
that the set of traces of an automaton and its dual are identical, and that to
complement an automaton it is enough to provide a pair of parity assignments
with opposite outcomes on these traces. The second contribution of this paper is
a translation of temporal logic operators into automata based on the complemen-
tation results. Each operator is translated into a pair of complement automata,
starting from a pair of complement automata for the operands.
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The rest of the paper is structured as follows. Section 3 presents the notion of
specular frame and specular automata pairs, and show that they accept comple-
ment languages. Section 4 shows translations of some temporal operators from
LTL and extensions into specular automata pairs. Finally, Section 5 concludes.

2 Preliminaries

Positive Boolean Formulas: We use B+(X) for the positive boolean formulas
over a set of propositions X . These formulas are built from true, false and
elements of X , combined using ∧ and ∨. A model of a formula θ is a subset
of X that makes θ true. A minimal model M of a formula θ is a model of θ
such that no strict subset of M is a model of θ. For example, given the set
Q = {q0, q1, q2, q3}, the formula θ1 = (q1 ∧ q2) ∨ q3 is a B+(Q) formula. The
sets {q1, q2} and {q3} are the minimal models of θ1. We use MOD(θ) for the set
of models of θ and mod(θ) for the set of minimal models.

Every positive boolean formula can be expressed in disjunctive normal form,
as disjunction of conjunctions of propositions. Given a positive boolean formula
θ there is a dual formula θ̃ obtained by switching ∧ and ∨, and switching true
and false. Some easy properties of dual formulas are:

Proposition 1 (Duals). For every θ and θ̃, and for every M ∈ MOD(θ):

1. For every M ′ ∈ MOD(θ̃), M ∩M ′ �= ∅.

2. Let q ∈M . There is an M ′ in MOD(θ̃) with q ∈M ′.

For example, the dual of θ1 above is θ̃1 = (q1 ∨ q2) ∧ q3, or equivalently in

disjunctive normal form θ̃1 = (q1 ∧ q3) ∨ (q2 ∧ q3). The minimal models of

θ̃1 are {q1, q3} and {q2, q3}. A choice function is a map f that chooses, for a
model M of θ an element of M , i.e., f : MOD(θ) → X such f(M) ∈ M . Some
interesting properties of choice functions follow:

Proposition 2 (Choice Functions). Let θ be a formula and θ̃ its dual. Then

1. If f is a choice function for θ, then Img f ∈ MOD(θ̃).

2. If M ∈ mod(θ) then there is a choice function f of θ̃ such that Img f = M .

Proof. We prove 2.1 (2.2 follows similarly). Consider θ in disjunctive normal
form. Each child subexpression of the root expression corresponds to a conjunc-
tion of states that form a model. The choice function f chooses one state from
each model of θ. Expressing θ̃ dualy, each child subexpression of θ̃ is a disjunc-
tion of the corresponding set of states. Hence, the element that f chooses in each
child satisfies the corresponding disjunction, and

(
Img f =

⋃
M∈MOD(θ) f(M)

)
is a model of θ̃. �

Clearly, not every choice function has a minimal model as image (2.1 states
that it must be a model but not necessarily minimal). Those choice functions
whose images are minimal models are called proper choice functions. We will
later focus our attention on proper choice functions as strategies for players in
certain classes of parity games.
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3 Specular Automata Pairs

3.1 Alternating Frames

We study now the layout of alternating automata. An automaton frame, or
simply a frame, is a tuple F : 〈Σ,Q, δ, I〉 where Σ is an alphabet, Q is a finite
set of states, δ : Q × Σ → B+(Q) is the transition function, and I ∈ B+(Q)
is the initial condition of the frame. A frame determines the legal traces for a
given input word. We will later introduce automata as frames equipped with an
acceptance condition, which will determine which traces allowed by the frame
are “good”. A frame is non-deterministic whenever I, and δ(q, a) for all states
q and input symbols a, have singleton sets as minimal models. In other words,
I and δ(q, a) are equivalent to disjunctive formulas. A frame is called universal
if I, and δ(q, a) for all states q and symbols a, have a unique minimal model.
In other words, I and δ(q, a) are equivalent to conjunctive formulas. A frame
is deterministic if it is both non-deterministic and universal, that is if both the
initial condition and transition functions correspond to true, false or a single
successor state. In general a frame is neither universal nor non-deterministic,
but fully alternating.

Run and Trace. Given a word w ∈ Σω, a run of a frame F : 〈Σ,Q, δ, I〉 on w
is a DAG (V,E) with nodes V ⊆ Q× ω, such that:
1. The set {m | (m, 0) ∈ V } is a minimal model for I.
2. for every (q, k) in V , the set {q′ | (q′, k+1) ∈ V and ((q, k), (q′, k+1)) ∈ E}

is a minimal model for δ(q, w[k]).
A trace of a run is an infinite path in the run, following edges. A non-deterministic
frame may admit multiple different runs for a given word, but each run contains
a unique trace. A universal frame admits just one run for each word, but this
run may contain multiple traces. In general a frame admits multiple runs each
with multiple traces.

Given a frame F : 〈Σ,Q, δ, I〉, the specular frame is the frame F̃ : 〈Σ,Q, δ̃, Ĩ〉,
where Ĩ is the dual formula of I and δ̃ is the dual transition function: δ̃(q, a) is
the dual formula of δ(q, a) for all states q and symbols a.

Frame Graphs. We define the graph of a frame F as (VF , EF ) where VF = Q
and there is an edge in EF from p to q whenever q is in some minimal model
of δ(p, a) for some symbol a. Since the union of all minimal models of a formula
is the same set as the union of all minimal models of its dual formula, the edge
relation is the same for the graph of a frame and its specular frame:

Proposition 3 (Frame Graphs). The graph of a frame and the graph of its
specular frame are identical.

By construction, if (p, k) → (q, k + 1) is an edge in some run of a given frame,
then p→ q is an edge in the graph of the frame. Consequently, the set of traces
of runs on a frame correspond to the set of walks in the graph, which in turn is
also the set of traces of runs on the specular frame.
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Automata. A frame F : 〈Σ,Q, δ, I〉 can be enriched into an automaton A :
〈Σ,Q, δ, I, F 〉 by adding an acceptance condition F . In this paper we use the
parity acceptance condition F : Q → {0 . . . d}. Given an infinite sequence of
states π : q0, q1, q2 . . . we let inf (π) be those states from Q that occur infinitely
many times in π. The sequence π is accepting according to F , which we denote
π ∈ acc(F ), whenever the maximum value that occurs infinitely often (i.e.,
max{F (q) | q ∈ inf (π)}) is even. A run of a word w on an automaton A is a
run on its frame. A run is called accepting whenever all its traces are accepting
sequences. We say that a word w is in the language of an automaton A, and we
write w ∈ L(A) whenever there is an accepting run for w on A.

Definition 1 (Specular Automata). Two automata A : 〈Σ,Q, δ, I, FA〉 and
B : 〈Σ,Q, δ̃, Ĩ, FB〉 with specular frames are specular automata whenever for all
paths π in the frame graph, π ∈ acc(FA) iff π /∈ acc(FB).

The standard construction for complementing an alternating parity automaton
proceeds by creating the dual automaton, which is obtained by dualizing the
initial condition and transition function, and making FB(q) = FA(q) + 1 for
every q. Observe that dual automata are special cases of specular automata. In
fact, in many cases it is possible to exploit the particular structure of A to define
lower values for FB than those defined by the standard construction.

3.2 Automata and Games

We show now that specular automata accept complementary languages, using
game theory. From a given automaton A and a word w, we create a parity game
called a word game as a tuple G(A, w) : 〈VA, VP , EA, EP , f〉 where:

VA =Q× ω

VP ={(M, q, i) |M ∈ MOD(δ(q, w[i]))} ∪ {(M, ·, 0) |M ∈ MOD(I)}
EA =(q, i)→ (M, q, i) for each M ∈ MOD(δ(q, w[i]))

EP =(M, q, i)→ (q′, i+ 1) for q′ ∈M

The game is played by two players: Automaton (A) and Pathfinder (P ). The
set of positions V = VA ∪ VP is partitioned into positions in which A plays
and those in which P plays. The game begins by A choosing a model M of
I, which determines the initial position (M, ·, 0) (here · denotes an irrelevant
state). The legal moves of the game are captured by the relation E = EA ∪EP .
From a position (q, i) ∈ VA, player A chooses a model M of δ(q, w[i]) and moves
to (M, q, i) ∈ VE . Then, player P chooses the next successor q′ from M , and
moves to (q′, i + 1). A play is an infinite sequence of positions π : V0v0V1v1 . . .
with V0 being an initial position, vi obtained from Vi by a P move, and Vi+1

obtained from vi by an A move. The map f : V → {0 . . . d} determines the
outcome of a play. We define the trace of a play π : V0v0V1v1 . . . as the sequence
of states trace(π) : p0p1 . . . obtained by projecting the first component of the VA

positions of the play (i.e., vi = (pi, i)). The following result holds, directly from
the definitions.
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Proposition 4. Every trace of a play of G(A, w) is also a trace of some run of
A on w.

As for parity automata the outcome of a play is determined by the highest
color that is seen infinitely often in the play. Player A wins play π whenever:
max{f(q) | q ∈ inf (trace(π))} is even. Otherwise, P wins play π. A strategy for
player A is a map ρA : (V ∗VA ∪ ε) → V , that maps histories of positions into
moves. Here, ε denotes the empty sequence of positions, to let player A choose an
initial state in the game. A memoryless strategy simply takes into account the
last position: ρA : VA∪ε→ V . Since parity games are memoryless determined [4]
it is enough to consider memoryless strategies. Similarly, a strategy for player P
is a map ρP : VP → V . A play π : V0v0V1v1 . . . is played according to strategy
ρA whenever the initial position is V0 = ρA(ε) and all moves of A are played
according to it Vi = ρA(vi). A strategy ρA is winning for player A whenever
all plays played according to ρA are winning for A. Memoryless determinacy of
parity games guarantees that either player A has a memoryless winning strategy
or player P has a memoryless winning strategy. We say that π is a G · ρA play
whenever π is played in G according to ρA.

We restrict our attention to strategies for A that choose minimal models, and
strategies for P that are proper choice functions. This is not a drastic restriction.
Clearly, if there is a winning strategy for A that does not choose a minimal
model, then any strategy that chooses a smaller minimal model is also winning.
This is because the set of plays is reduced, and all plays in the unrestricted set
are winning for A. Similarly, if ρP is a winning strategy for P , then restricting
its moves to a proper choice functions also gives a winning strategy. In both
cases, the set of successor moves is restricted but still confined within winning
regions. Lemma 1 is similar to Prop. 2 from [15], where complementation of weak
alternation automata by dualization is studied.

Lemma 1. w ∈ L(A) if and only if A has a winning strategy in G(A, w).

3.3 Specular Pairs and Complementation

We show in this section that specular automata accept complementary lan-
guages. In the rest of the section we let A and Ã be a specular automata pair, w
be a word and G : G(A, w) and G̃ : G(Ã, w) be the corresponding word games.
First we need some preliminary definitions.

Definition 2. We say that strategies ρA (for A in G) and ρ̃P (for P in G̃) are
duals whenever both:
– for every G · ρA play π there is a G̃ · ρ̃P play π̃ s.t. trace(π̃) = trace(π), and

– for every G̃ · ρ̃P play π̃ there is a G · ρA play π s.t. trace(π̃) = trace(π).

Theorem 1 (Dual Strategies). The following holds:

(1) For every strategy ρA for A in G, there is a dual strategy ρ̃P for P in G̃.

(2) For every ρP for P in G, there is a dual strategy ρ̃A for A in G̃.
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Proof. We prove the two statements separately:

(1) Let ρA be a strategy for A in G. This strategy ρA is characterized by

ρA(ε) = (M0, ·, 0) where M0 ∈ mod(I)
ρA((q, i)) = (M, q, i + 1) where M ∈ mod(δ(q, w[i]))

By Prop. 2.1 there are choice functions satisfying

fM0 : MOD(Ĩ)→ Q Img fM0 = M0

f〈M,q,a〉 : MOD(δ̃(q, a))→ Q Img f〈M,q,a〉 = M

Moreover, these functions are proper choice functions. We now define the dual
strategy ρ̃P for P in G̃ as follows:

ρ̃P ((N0, ·, 0)) = (fM0(N0), 0)
ρ̃P ((N, q, i + 1)) = (f〈M,q,a〉(N), q, i+ 1)

where M is the move of A in G from (q, i): ρA(q, i) = (M, q, i+1), and a = w[i].
Our choice of choice functions f〈M,q,a〉 guarantees that for every move of player

P from M , there is a move for player A in G̃ that, when followed by f〈M,q,a〉
results in the same state. The properties of fM0 and f〈M,q,a〉 ensure that the
strategy ρ̃P is proper.

We are ready to show that for every G · ρA play there is a G̃ · ρ̃P play with
the same trace, and vice-versa.

“→” Consider an arbitraryG·ρA play π : V0v0V1v1 . . ., and let ρA(ε) = (M0, ·, 0)
and ρA(vi) = (Mi+1, qi, i + 1). We use qi for vi = (qi, i). Note that qi+1 ∈
Mi+1 because all moves of player P in π are legal moves. We create the G̃·ρ̃P
play π̃ : Ṽ0, ṽ0, Ṽ1, ṽ1 . . . as follows:
• Ṽ0 = (N0, ·, 0) where N0 is such that fM0(N0) = q0. One such N0 exists
since Img fM0 = M0 and q0 ∈ M0 (recall that (q0, 0) is the result of a
move of P in G from (M0, ·, 0)).
• From (qi, i), player A chooses in G̃ the position (Ni+1, qi, i + 1), where

Ni+1 is chosen such that f〈Mi+1,q,w[i]〉 = qi+1.
By induction, we show that vi= ṽi. First, ṽ0= ρ̃P ((N0, ·, 0))= (fM0(N0), 0) =

(q0, 0) = v0. Now, assume that for some i, vi = ṽi. Then, Ṽi = (Ni+1, qi, i+1),
and Vi = ρA(qi, i) = (Mi+1, qi, i+ 1). Now,

ṽi+1 = ρ̃P (Ṽi) = ρ̃P ((Ni+1, qi, i+ 1)) =
= (f〈Mi+1,qi,w[i]〉(Ni+1), i+ 1) =
= (qi+1, i+ 1) = vi+1.

Hence, trace(π) = trace(π̃).

“←” Consider an arbitrary G̃ · ρ̃P play π̃ : Ṽ0ṽ0Ṽ1ṽ1 . . ., and let qi and Ni be
such that:

ṽi = (qi, i) Ṽ0 = (N0, ·, 0) Ṽi+1 = (Ni+1, qi, i+ 1)
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Since π̃ is a G̃ · ρ̃P play, then ṽi+1 = ρ̃P (Ṽi+1) = (f〈Mi+1,qi,w[i]〉(Ni+1), i + 1)
where Mi is obtained from ρA(qi, i) = (Mi+1, i + 1). Now, we define the play
π : V0v0V1v1 . . . as follows. First the move for A is played according to ρA:

V0 = ρA(ε) = (M0, ·, 0) Vi+1 = ρA(vi)

Then, we let the moves of P to be:

v0 = (q0, 0) vi+1 = (qi+1, i+ 1)

We only need to show that these moves for P are legal. First, q0 = fM0(N0),
and since Img fM0 = M0 it follows that q0 ∈M0, so moving from V0 into v0 is a
legal move.

Moreover, (qi+1 = f〈Mi+1,qi,w[i]〉(Ni)). Since Img f〈Mi+1,qi,w[i]〉 = Mi+1 it
follows that qi+1 ∈ Mi+1, so again moving from Vi+1 into vi+1 is a legal move.
By construction, trace(π) = trace(π̃) again.

(2) Assume now that ρP is a (proper) strategy for P in G. The strategy ρP is
characterized by

ρP ((M0, ·, 0)) = (q0, 0) ρP ((M, q, i)) = (qi, i)

Since the strategy is proper there are proper choice functions:

g0 : MOD(I)→ Q gq,i : MOD(δ(q, w[i]))→ Q

with
g0 : MOD(I)→ Q Img g0 ∈ mod(Ĩ)

gq,i : MOD(δ(q, w[i]))→ Q Img gq,i ∈ mod(δ̃(q, w[i]))
(1)

We define the strategy ρ̃A for A in G̃ as follows:

ρ̃A(ε) = Img g0 ρ̃A((q, i)) = Img gq,i

By (1), ρ̃A is well defined. We show now that ρ̃A and ρP are dual strategies.
First, consider (q, i) an arbitrary state and (M, q, i) a legal move for player A
in G. Player P will move to (q′, i + 1) = ρP ((M, q, i)) with q′ = gq,i((M, q, i)).

In G̃, player A will move from (q, i) into (Img gq,i, q, i). We let player P move

in G̃ to (q′, i+ 1), which is legal, since q′ ∈ Img gq,i. Consider now an arbitrary

state (p, i) and the move of A in G̃: ρ̃A((p, i)) = (Img gp,i, p, i), and consider an
arbitrary legal move for P , (p′, i + 1), hence p′ ∈ Img gp,i. Consequently, there
is an M ∈ MOD(δ(p, w[i])) such that gp,i((M,p, i)) = p′. Let A choose (M,p, i)
as the move from (p, i), which is a legal move. Then, playing from (M,p, i) in G
according to ρP , the resulting state is (p′, i+1). This shows that ρA and ρ̃P are
dual strategies.

It is important to note that the moves of the players playing against the
strategies are not restricted to follow proper strategies (give minimal models or
be proper choice functions). Still, ρA is winning precisely whenever ρ̃P is. �
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The following theorem follows directly from Lemma 1 and Theorem 1. This
theorem allows to reason about complementation simply by reasoning about
traces of two automata with specular frames. In [15] a similar result is proved
the weak acceptance condition.

Theorem 2. Let A and Ã be specular automata. Then L(A) = Σω \ L(Ã).

4 Temporal Logic to Specular Automata

We show in this section how the results in Section 3 can be used to trans-
late temporal logic expressions into alternating parity automata. Most previous
translations fix the logic first, and then show a monolithic translation from the
whole expression into automata. Typically, these translations begin with a pre-
vious transformation of the expression into negation normal form, by pushing
the negation operator to the propositional level. This transformation requires
the logics to enjoy duality laws for all operators, or in other words, to admit a
negation normal form. With this preprocessing the negation operator need not
be considered in the translation into automata.

We follow here a different approach. For each operator we construct a specu-
lar automata pair: one automaton is equivalent to the expression, and another
equivalent to its complement. The construction for a given operator starts from
a specular automata pair for each of the operands. This approach has two ad-
vantages. First, negation becomes trivial. Second, adding operands to a logic
simply requires defining the translation of the added operands. In this manner,
operators from different logics can be easily combined. We present here a few
examples of constructs from LTL and some of its extensions.

Linear Temporal Logic: Linear temporal Logic was introduced by Pnueli [13],
see also [11]. We consider here the following operators

ϕ ::= p
∣∣ ¬ϕ ∣∣ ϕ ∨ ϕ

∣∣ϕ
∣∣ϕ
∣∣ϕ
∣∣ ϕ U ϕ

∣∣ ϕR ϕ
∣∣ ϕW ϕ

This definition is not minimal but it serves to illustrate how to translate some
of the operators into APW. The semantics of LTL expressions are defined using
a binary relation � between pointed ω-words and LTL expressions:

− (w, i) � p when p ∈ w[j].
− (w, i) � ¬x when (w, i) �� x.
− (w, i) � x ∨ y when (w, i) � x or (w, i) � y or both.
− (w, i) �x when (w, i + 1) � x.
− (w, i) �x when (w, j) � x for some j ≥ i.
− (w, i) �x when (w, j) � x for all j ≥ i.
− (w, i) � x U y when (w, j) � y for some j ≥ i, and (w, k) � x for all i≤k <j.
− (w, i) � xR y when (w, j) � y for all j ≥ i, or

for some j, (w, j) � x and for all k in i ≤k ≤ j, (w, k) � y.
− (w, i) � xW y when (w, j) � x for all j ≥ i, or

(w, j) � y for some j ≥ i, and (w, k) � x for all i ≤ k < j.
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We now show the translation of each operator. We assume a pair of dual au-
tomata (Ax,Ax) for each operand x.

– p: The automaton Ap is 〈Q, δ, I, F 〉 such that Q = {q0, q1, q2}, I = q0,
F (q0) = F (q1) = 2 and F (q2) = 1. The transitions function is: δ(q0, p) =
q1, δ(q0,¬p) = q2, and δ(q1, ·) = q1 and δ(q2, ·) = q2 are self loops. The
dual automaton Ap has, as final condition, F (q0) = F (q1) = 1, F (q2) = 2.
Note how the dualization of the acceptance condition is not performed by
incrementing the color of each state.

– ¬x: the automaton for A¬x is Ax and the automaton for A¬x is Ax.
– x ∨ y: The automaton Ax∨y is 〈Q, δ, I, F 〉 with Q = Qx ∪Qy, and I = Ix ∨

Iy. The acceptance condition works as Fx for Qx and as Fy for Qy. For Ax∨y,
the automaton is build similarly, but from Ax and Ay, with I = Ix ∧ Iy .

– x: The automaton Ax has Q = {q0} ∪ Qx, where q0 is a fresh state. The
initial condition is I = {q0}. The acceptance condition works as Fx inQx, and
assignsF (q0) = 2. Finally, δ(q0, a) = q0 ∧ δx(Ix, a). The dual automatonAx

is built analogously, fromAx, except: F (q0) = 1 and δ(q0, a) = q0 ∨ δx(Ix, a).
– x: The construction is exactly the dual as for x. Hence, given (Ax,Ax)

the automata obtained for Ax
is identical to A¬x

, and Ax
is identical

to A¬x. This construction directly proves the duality of and .
– x U y: The automaton AxUy has Q = {q0} ∪Qx ∪Qy and I = {q0}. The ac-

ceptance condition is F (q0) = 1, and as Fx for states in Qx and Fy for states
in Qy. The transition function, maps δ(q0, a) = δ(Iy , a) ∨ (δ(Ix, a) ∧ q0); for
states in Qx and Qy, δ is as δx and δy. The dual automaton is constructed
analogously, except that F (q0) = 2 and δ(q0, a) = δy(Iy , a) ∧ (δx(Ix, a) ∨
q0). This case illustrates again how colors need not to be increased in the
dualization. The only trace to be considered when incrementally proving
the correctness (accepting complementary languages) of AxUy and AxUy is
the infinite sequence q0q0q0 . . ., which is rejecting for AxUy and accepting for
AxUy. The other traces follow from the inductive construction.

– x R y: The construction is exactly dual as for x U y, which illustrates the
duality between U and R.

– xW y: The construction is as for U , except that F (q0) = 2 for AxWy and
false(q0) = 1 for AxWy.

In all these translations, the APW generated uses only two colors: 1 and 2. Every
APW(1,2) automaton is a Büchi automaton: traces will be accepted if at least one
2 state is visited infinitely often. Also, by looking at the automaton graph, we see
that all even valued states can be assigned any even value, and all odd states can
be assigned any odd value, because every trace will still have the same acceptance
outcome. Hence, choosing 0 instead of 2 in all steps of the inductive construction
will produce anAPWwith colors 0 and 1, which is a co-Büchi automaton. Our con-
struction avoids to upfront conversion of the formula into negation normal form.

Regular Linear Temporal Logic. We sketch here an incremental construction
for operators of Regular Linear Temporal Logic RLTL [10,14]. RLTL is a logic
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that fuses regular expressions and temporal operators in a single formalism.
RLTL is defined in two stages: the first stage consists of a variation of regular
expressions over finite words, using

α ::= p
∣∣ α+ α

∣∣ α ; α
∣∣ α∗α

where p is a proposition. We will later use a to refer to letters in an the power-set
propositional alphabet. We assume that a non-deterministic finite automaton of
linear size is constructed from a given regular expression. The second stage de-
fines temporal logic expressions that describe languages over infinite words, using
regular expressions as building blocks. Since regular expressions are used to later
build temporal expressions, the semantics for regular expressions are defined to
accept segments of infinite words. Given an infinite word w and two positions i
and j, the tuple (w, i, j) is called a segment of the word w (it is worth to note that
the letter w[i] is considered as being included in the segment while w[j] is not).
The syntax of RLTL expressions is defined by the following grammar:

ϕ ::= ∅
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ α ; ϕ
∣∣ ϕ|α〉〉ϕ

∣∣ ϕ|α〉ϕ

where α ranges over regular expressions. The symbol ; stands for the conventional
concatenation of an expression over finite words followed by an expression over
infinite words. The operator ∅ represents the empty language.

The operators ϕ|α〉〉ϕ and its weak version ϕ|α〉ϕ are the power operators.
The power expressions x|r〉〉y and x|r〉y (read x at r until y, and, respectively, x
at z weak-until y) are built from three elements: y (the attempt), x (the obliga-
tion) and r (the delay). Informally, for x|r〉〉y to hold, either the attempt holds,
or the obligation is met and the whole expression evaluates successfully after
the delay; in particular, for a power expression to hold the obligation must be
met after a finite number of delays. On the contrary, x|r〉y does not require the
obligation to be met after a finite number of delays. These two simple operators
allow the construction of many other operators like x U y and rω , which make
RLTL ω-complete. Also, for every LTL operator there is an RLTL operator with
the same number of operands, and consequently LTL can be translated linearly
into RLTL. The semantics of the new RLTL operands ∅, r;x, r|x〉〉y and r|x〉y is:

− (w, i) � ∅ never holds.
− (w, i) � r ; y when for some k, (w, i, k) �re r and (w, k) � y
− (w, i) � x|r〉〉y when (w, i) � y or for some (i0 = i, i1, . . . im), and for all k<m

(w, ik, ik+1) �re r and (w, ik) � x, and (w, im) � y
− (w, i) � x|r〉y when one of:

(i) (w, i) � y.
(ii) for some (i0 = i, i1, . . . im), (w, im) � y, and

(w, ik, ik+1) �re r and (w, ik) � x for all k < m.
(iii) for some inf. seq. (i0 = i, i1, . . .), (w, ik, ik+1) �re r and (w, ik) � x

We show now the translations of RLTL into APW. The operators ∨ and ¬
can be reused from LTL. We assume again that we have the automata pair
(Ax,Ax) for all operands x, and a non-deterministic automaton Nr for each
regular expression r.
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– ∅: The automaton A∅ consists of a single state Q = {q0} with I = {q0} and
a self-loop δ(q0, a) = q0. The accepting condition maps F (q0) = 1. The dual
automaton A

∅
is identical except that F (q0) = 0.

– r;x: The automaton for Ar;x consists of Q = Qr ∪ Qx, and I = Ir . The
transition function is as in Ax for states Qx; for states q in Qr:
• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =

∨
δr(q, a).

• if δr(q, a) ∩ Fr �= ∅, then δ(q, a) =
∨

δr(q, a) ∨ Ix.
This allows δ to non-deterministically jump to x when an accepting segment
is matched by r. Finally, the acceptance condition is F (q) = Fx(q) for all
states in Qx and F (q) = 1 for all states in Qr. Hence, a trace that remains
in Qr is a non-accepting trace.

The automaton for Ar;x is built from Nr and Ax: Q = Qr ∪ Qx. The
transition function now interprets the transitions from states in Qr univer-
sally:
• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =

∧
δr(q, a).

• if δr(q, a) ∩ Fr �= ∅, then δ(q, a) =
∧

δr(q, a) ∧ Ix.
Finally, F (q) = Fx(q) for q in Qx and F (q) = 0 for q in Qr. Note how a trace
that gets trapped in Qr is now accepting, and how the frame corresponding
to the regular expression r is universal.

– x|r〉〉y: The set of states is Q = Qx ∪Qy ∪Qr ∪ {q0}. The initial condition is
I = {q0}. The transition function is as δx for states in Qx, as δy for states
in Qy. For states q in Qr:
• if δr(q, a) ∩ Fr = ∅ then δ(q, a) =

∨
δr(q, a).

• if δr(q, a) ∩ Fr �= ∅ then δ(q, a) =
∨

δr(q, a) ∨ q0.
For q0:
• if δr(Ir, a) ∩ Fr = ∅ then δ(q0, a) = δy(Iy , a) ∨ (δx(Ix, a) ∧ δr(Ir , a)).
• if δr(q, a) ∩ Fr �= ∅ then δ(q0, a) = δy(Iy, a) ∨ (δx(Ix, a) ∧ (δr(Ir, a) ∨

q0)).
The acceptance condition is F (q) = Fx(q) for q in Qx, F (q) = Fy(q) for q in
Qy, and F (q0) = F (q) = 1 for q in Qr.

The dual automaton Ax|r〉〉y is built analogously. The transition function

is dual of Ax|r〉〉y. The acceptance condition is F (q) = Fx(q) for q in Qx,
F (q) = Fy(q) for q in Qy, and F (q0) = F (q) = 2 for q in Qr.

– x|r〉y: The set of states Q, the initial state I and the transition function δ
are like in x|r〉〉y. The acceptance condition is F (q) = Fx(q) for q in Qx,
F (q) = Fy(q) for q in Qy, and F (q0) = 2, F (q) = 1 for q in Qr. This makes
traces that visit q0 infinitely often accepting, but traces that get trapped in
r rejecting.

The dual automaton A
x|r〉〉y is built with a dual frame and F (q0) = 1,

and F (q) = 0 for q ∈ Qr. Color increasing was once again prevented by
reasoning about traces independently.

These translations are depicted graphically in Fig. 2. Note how the obtained
automata are APW(0,1,2). Still, the automata obtained have a particular struc-
ture: all strongly connected components (SCCs) are either labeled with 0 and
1, or labeled with 1 and 2. This is not a weak but a hesitant acceptance condi-
tion [8]. This fact can be used to improved the translation into NBW further,
but this optimization is out of the scope of this paper.
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Fig. 2. Specular automata pairs for ∅, x ∨ y, ¬x, x ; y, x|r〉〉y and x|r〉y
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PSL Operators. The logic PSL [5] and its precursors ForSpec [1] and Sugar [2],
also combine regular expressions with temporal operators. We illustrate here how
to translate the PSL operator r|� x and its dual r� x, assuming that r is a
regular expression as defined above. The semantics of r|�x and r�x is:

− (w, i) � r|�x when there is a j with (w, i, j + 1) � r and (w, j) � x.
− (w, i) � r�x when for all j with (w, i, j + 1) � r, then (w, j) � x.

We sketch the translation from r|�x and r�x into specular APW pairs:

– r|� x: The automaton for Ar|�x consists of Q = Qr ∪ Qx, and I = Ir. The
transition function is as in Ax for states Qx. For states q in Qr:

• if δr(q, a) ∩ Fr = ∅, then δ(q, a) =
∨

δr(q, a).

• if δr(q, a) ∩ Fr �= ∅, then δ(q, a) =
∨

δr(q, a) ∨ δx(Ix, a).

This allows δ to non-deterministically jump to x when an accepting segment
is matched by r, overlapping the last state. Finally, the acceptance condition
is F (q) = Fx(q) for all states in Qx and F (q) = 1 for all states in Qr. Hence,
a trace that remains in Qr is a non-accepting trace.

The automaton for Ar|�x is built dually. For the accepting condition: F (q) =

Fx(q) for q in Qx and F (q) = 2 for q in Qr. Note how a trace that gets
trapped in Qr is now accepting, and how the frame corresponding to the
regular expression r is universal.

– r�x is dual of r|�x.

Dynamic Linear Temporal Logic DLTL. DLTL is defined as a dynamic
logic in [7]. DLTL introduces a generalized until operator xUr y that constraints
those points at which the attempt y can be evaluated by successful matches of
the regular expression r. In order for x Ur y to be satisfied, there must be a
segment met by regular expression r after which y is satisfied, and x must be
satisfied in all the positions until the successful match of r. More formally:

− (w, i) � x Ur y when there is a j with (w, i, j) � r and (w, j) � y,
and for all k within i ≤ k < j, (w, k) � x.

The translation into APW is:

– x Ur y: The set of states is Q = Qx ∪ Qy ∪ Qr ∪ {q0}. The initial state is
I = q0. The transition function is like δx for states in Qx and like δy for
states in Qy. For q0:

• if δr(Ir, a) ∩ Fr = ∅ then δ(q0, a) = δy(Iy , a) ∨ (δx(Ix, a) ∧ δr(Ir , a)).

• if δr(Ir, a)∩Fr �=∅ then δ(q0, a)=δy(Iy, a)∨ (δx(Ix, a)∧ (δr(Ir, a) ∨ q0)).

For states q ∈ Qr:

• if δr(q, a) ∩ Fr = ∅ then δ(q, a) = (δx(Ix, a) ∧ δr(q, a)).

• if δr(q, a) ∩ Fr �= ∅ then δ(q, a) = (δx(Ix, a) ∧ (δr(q, a) ∨ q0).

The acceptance condition is F (q) = Fx(q) for q in Qx, F (q) = Fy(q) for q in
Qy, and F (q0) = 1, F (q) = 1 for q in Qr. The dual automaton AxUry is built
analogously, with the dual frame and F (q0) = 0, and F (q) = 0 for q ∈ Qr.
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5 Conclusions

In this paper we have presented a finer grain complementation construction
for alternating automata with the parity condition. This complementation al-
lows to reason about walks in the graph of the specular automata pair, which
are the only potential traces of runs. In turn, we showed how this result can
be used to inductively translate temporal logic into APW. The translation
of each operator produces a specular automata pair: one for the expression,
one for its complement. This construction generates APW with few colors (2
for most expressions, 3 for the most sophisticated), which enables its efficient
translation into non-deterministic Büchi Automata for model-checking. Future
work includes the design of antichain algorithms directly for the APW gen-
erated from temporal logic expressions to alleviate even further the state
explosion.
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Abstract. Modelling and analysing data dependencies and consistency
between classes and objects is a complex task. We show that dependently
typed programming languages can handle this in a particularly simple,
convenient and highly automated way. Dependent datatypes are used to
implement (meta)models for classes and objects directly and concisely.
Data dependencies and similar system constraints are specified within
the language’s expressive type system. Verification and propagation of
these constraints is handled by type inference, which can be enhanced
by customised decision procedures or external solvers if needed. The
approach thus supports the development of software models that are
correct by construction.

1 Introduction

This research is motivated by the Model Driven Architecture1 (MDA), where
software is developed by integrating global platform independent system mod-
els with heterogeneous platform specific models. The MDA provides models for
object-oriented designs at various meta-levels (MOF), languages for express-
ing constraints between models (OCL), and various languages and methods for
model transformations. The approach depends on the ability to compose plat-
form specific models in a highly automatic fashion, while maintaining global
consistency and constraints that have been declared at the abstract level [9].
This is still difficult to achieve in practice.

This work focuses on modelling and analysing data dependencies and consis-
tency between class diagrams, their corresponding object diagrams and meta-
level templates that yield constraints for specifying these diagrams.

This work is inspired by and builds on previous work on formalising model
transformations in constructive type theory [11]. We propose an approach that
uses the dependently typed programming language Agda [2] for modelling sys-
tem (meta)models for classes and objects, as they arise in MDA. Agda is a func-
tional programming language similar to Haskell but with a much more powerful
type system in which intuitionistic higher-order logic can be used for expressing
1 http://www.omg.org/mda

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 46–60, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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type constraints. Since, in this context, type inference is undecidable, the pro-
gramming language is also an interactive theorem prover (ITP), in which type
constraints can be resolved by incrementally filling in holes in proofs. Agda has
a similar theory pedigree to the Coq ITP [1].

At the specification side, dependently typed programming is very convenient
for MDA because data dependencies between classes and objects can be declared
very simply and directly by using dependent datatypes, in particular depen-
dent records. At the verification side, data consistency can often be established
fully automatically by type checking and type inference. For more complex type
constraints, this can be augmented by customised decision procedures, domain
specific solvers or automated theorem provers [4].

Our main contributions are as follows.

• We show how class graphs—a restricted version of the MOF—can be imple-
mented by Agda’s dependent records. As an example, we populate the gen-
eral infrastructure for classes provided by a simple meta-model for classes.

• We demonstrate how object graphs—which are dependent on class graphs—
can be implemented in such a way that class-level constraints, for instance
range constraints of associations, are automatically maintained. As an ex-
ample, we derive object diagrams that are correct by type checking with
respect to the constraints imposed.

• To illustrate the use of more advanced constraints, we show how bidirectional
associations can be declared and verified automatically.

These results show that, with Agda, modelling, verification and implementation
of our approach can be achieved in one and the same language. This is in con-
trast to other approaches where external formal methods like B or verification
approaches like model checking are used [13,7].

Agda, as a functional language without side-effects, is also ideally suited for
compositional system development. Compositionality is particularly important
for integrating heterogeneous models in MDA.

While this paper focuses on the proof of concept that dependently typed pro-
gramming has much to offer for MDA, and therefore shows and discusses the
Agda implementation in detail, these technicalities should be hidden as far as
possible to software engineers. A UML-style graphical toolkit providing tem-
plates for class and object diagrams could use our implementation as a backend,
providing mechanisms for validating inputs and resolving system constraints be-
hind the scenes in a highly sophisticated way.

The complete code featured in this paper can be found at our website2.

2 Agda Preliminaries

This section contains a basic introduction to the features of Agda needed for
this work. A more complete tutorial can be found on the Agda Wiki3. Agda is
2 http://www-users.cs.york.ac.uk/~simonf/MDA/
3 http://wiki.portal.chalmers.se/agda

http://www-users.cs.york.ac.uk/~simonf/MDA/
http://wiki.portal.chalmers.se/agda
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a dependently typed functional programming language and proof assistant. Its
syntax is inspired by Haskell, although Agda has support for both unicode and
mixfix (e.g. ternary) operators. Agda is space sensitive – if a string has no spaces
it is treated as a single name (or name part for a mixfix operator), for instance
“x�y” is a single name whilst “x � y” consists of three names.

Agda is set apart as a programming language by its support for develop-
ing programs or systems that are correct by construction. Its type system is
expressive enough to capture correctness properties concisely and sufficiently.
These properties are verified within the development process by type checking.
Whereas in simple cases this can be achieved fully automatically, more advanced
tasks require interactive theorem proving within Agda. Agda also supports incre-
mental development of programs and proofs by the technique of meta-variable
refinement, which we illustrate below.

There are three main programming concepts which we here highlight:

• Algebraic Datatypes, which may be (co)inductive and can be used to define
both data and propositions (e.g. proof datatypes);

• Functions, which can be recursive and contain proofs;
• Dependent records, a special form of datatype with field projections.

Datatypes are specified using a type constructor declaration, followed by a list
of constructors with their respective types.

data N : Set where
zero : N

suc : N→ N

data Vec (A : Set) : N→ Set where
[ ] : Vec A zero
_::_ : {n : N} → (x : A)→ (xs : Vec A n)→ Vec A (suc n)

Set is the type of all types. The natural numbers datatype declares the two
usual constructors. The vector type Vec is a dependent datatype, because it
is parameterised by its length, a property that depends on the particular data.
The type constructor has two parameters. The first parameter, A, is an arbitrary
element of Set which is fixed for all constructors. This is indicated by its position
before the colon. The second parameter is a natural number which specifies the
vector’s length, and varies depending on the constructor. The first constructor []
constructs a Vec over A with zero length. The second infix constructor ::, given
a value of type A and a vector of length n, constructs a vector of length suc
n. Parameter n is hidden by the presence of braces. This means that the type
system will try to infer its value via the other parameters and thus it need not
be explicitly given. Parameter types in general can often also be inferred by
insertion of a ∀ quantifier. Hidden arguments are useful to reduce verbosity of
declarations. So 1 :: 2 :: 3 :: [ ] is a vector of length three over N.

Functions in Agda are total; a coverage checker ensures that all possible inputs
have associated outputs. Partial functions can be specified by a partiality type,
akin to Haskell’s Maybe. Functions are specified using a type-signature followed
by a sequence of equations. We define function ++ and map below.
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++ : {A : Set} {m n : N} → Vec A m→ Vec A n→ Vec A (m + n)
[ ] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

map : {A B : Set} {m : N} → (A→ B)→ Vec A m→ Vec B m
map f [ ] = [ ]
map f (x :: xs) = f x :: map f xs

Concatenation, ++, is a binary operation on vectors defined, as usual, by recur-
sion. It takes two vectors of element type A with lengths m and n and produces
a vector of length m + n. This last property is beyond the expressivity of most
traditional type systems. The map function takes a vector of A’s and a function
from A to B and produces a vector of B’s by applying the function to every
element. It is defined in the usual way.

Functions can also be used to represent lemmas and proofs; here the property
that ++ distributes over map. We prove it by meta-variable refinement:

map-++ : ∀ {m n} {A B : Set} (f : A→ B) (xs : Vec A m) (ys : Vec A n)
→ map f xs ++ map f ys ≡ map f (xs ++ ys)

map-++ f xs ys = { } 0

We begin with a type declaration, which encodes the proof goal for a function
f and arbitrary vectors xs and ys, all supplied as parameters. In the type decla-
ration, ≡ represents propositional equality, that is equality of normal forms in
all contexts. The function equation is populated with a meta-variable hole, { } 0,
which we incrementally fill in using a divide and conquer strategy. To proceed
with the inductive proof we have Agda split xs into its two possible cases.

map-++ f [ ] ys = { } 0
map-++ f (x :: xs) ys = { } 1

We can then fill in both of these proof obligations as below.

map-++ f [ ] ys = refl
map-++ f (x :: xs) ys = cong (_::_ (f x)) (map-++ f xs ys)

The first case has type map f [ ] ++ map f ys ≡ map f ([ ] ++ ys), after substitution,
which normalises to map f ys ≡ map f ys. Therefore the two terms are proposi-
tionally equal by application of the reflexivity constructor refl. The second case
is obtained by application of the induction hypothesis and the congruence rule
cong under the context C[X ] = (f x) :: X .

Records are specified in the usual way by listing fields with their types.

record Person : Set where
field

name : String
age : N

ageInRange : age < 200

This is a dependent record because fields can depend on predecessors. Here the
field called ageInRange, which is a proof of the proposition age < 200, depends
on age. Thus fields can be used to encode both data and data constraints. We
make much use of this for our MDA datatypes.
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3 Overview of the Encoding

The fundamental MDA datatypes are UML class diagrams and object diagrams.
To deal with them uniformly, MDA provides the meta-object facility (MOF)
in which templates for objects are provided as class diagrams. Here we do not
attempt an accurate portrayal of the MOF, but rather a simplified interpretation
in terms of directed graphs (digraphs).

We model digraphs as labelled transition systems, using a transition function
to map vertices and edges onto vertices. Recall that given a set V of vertices and
E of edges, a digraph is a function δ : V × E → V .

• In Section 4 we introduce a set of class graphs, ClassGraph : Set1 in Agda.
A ClassGraph can be regarded as a digraph where the set of vertices is Class
and the transition function is Δ : ∀ {c : Class} → Assoc c → Class.

• In Section 6 we define ObjGraph : ClassGraph → Set, assigning to each class
graph c : ClassGraph a set of all object graphs validating c. ObjGraph is
a digraph indexed by Class and the transition function is δ followed by a
projection out of the object vector.

• In Section 8 we add bidirectionality constraints to class and object graphs.

The intermediate sections illustrate these implementations with simple examples.

4 Class Graphs in Agda

In Agda we represent class graphs as a dependent record.

record ClassGraph (Types : Set) : Set1 where
field

Class : Set
Attr : Class→ Set
Assoc : Class→ Set
attrType : {c : Class} → Attr c→ Types
assocRange : {c : Class} → Assoc c→ Interval
Δ : {c : Class} → Assoc c→ Class

A class graph is parameterised over a set Types of primitive types, which we use
in class attributes. Class is the set of class names. Attr and Assoc are parametric
types, indicated by their definition as functions from Class into Set. They give
the attribute and association names for each class. Field attrType gives a type to
each attribute, and assocRange a target multiplicity for each association. Finally,
Δ gives the target class of each association. This record is dependent because,
for instance, assocRange depends on the definition given for Assoc. Constraints
imposed on Assoc are therefore automatically inherited by assocRange.

Specifications like this would be difficult to formulate as concisely in languages
without dependent types. We strongly use dependent records for the implemen-
tation of MDA concepts in this paper.
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The parameter Interval in the definition of assocRange is defined as follows.

record Interval : Set where
constructor _–_

field
lb : N

ub : Maybe N

IsInRange : N→ Set
IsInRange n = lb N� n × n �i ub

Interval ranges over the natural numbers. It consists of a lower bound lb and
an upper bound ub, with just n representing upper bound n and nothing an
unbounded range ∗. The predicate IsInRange over N defines whether the given
number is in range by means of a pair of inequalities, which are customised for
the respective types. In constructive logic × performs the function of ∧. We also
define a simple binary constructor so that we can write ranges like 0 – just 1.

5 A Class Graph Example

To exemplify the use of class graphs, we populate a simple meta-model for a
class diagram as shown in Figure 1. We first declare some datatypes to act as
names for classes, associations and attributes.

data CDClass : Set where
NamedElt Classifier Class Attribute DataType : CDClass

data CDAssoc : CDClass→ Set where
att super : CDAssoc Class
type owner : CDAssoc Attribute
*super : ∀ {c} → CDAssoc c

data CDAttr : CDClass→ Set where
name : CDAttr NamedElt
isAbstract : CDAttr Class
multivalued : CDAttr Attribute

Fig. 1. Basic metamodel class diagram
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The classes in this diagram are the labels of the nodes in the class graph. In
our case these are precisely the elements NamedElt, Classifier, Class, Attribute
and DataType of the datatype CDClass. The elements CDAssoc and CDAttr rep-
resent the names of associations and attributes in the class graph. They are
parameterised by the name of the class from which they are drawn.

CDAssoc has elements att—the attributes of each class, type—the attribute
type, owner—the owner class of an attribute, super—the superclass of a class,
and *super—a polymorphic association which we use to model inheritance at the
meta-level. We could automatically instrument the representation of inheritance
through a preorder on the classes, but for this simple example it will be encoded
manually. CDAttr has elements name, isAbstract and multivalued, as depicted in
the example diagram.

To assign types to each attribute we also need a set Prim of primitive types.
The types N, Bool and String are all drawn from Agda’s standard library4.

data Prim : Set where Nat Bl Str : Prim
�_� : Prim→ Set
� Nat � = N

� Bl � = Bool
� Str � = String

We now define the functions for attrType, assocRange and Δ for the remaining
fields of our instance of ClassGraph.

cd-attrType : ∀ {c} → CDAttr c→ Prim
cd-attrType name = Str
cd-attrType isAbstract = Bl
cd-attrType multivalued = Bl

cd-asrn : ∀ {c} → CDAssoc c→ Interval
cd-asrn {NamedElt} *super = none
cd-asrn { } *super = one
cd-asrn {Class} att = many
cd-asrn {Class} super = optional
cd-asrn {Attribute} type = one
cd-asrn {Attribute} owner = one

cd-Δ : ∀ {c} → CDAssoc c→ CDClass
cd-Δ {NamedElt} *super = NamedElt
cd-Δ {Class} att = Attribute
cd-Δ {Class} super = Class
cd-Δ {Class} *super = Classifier
cd-Δ {Attribute} type = Classifier
cd-Δ {Attribute} owner = Class
cd-Δ {Attribute} *super = NamedElt
cd-Δ {DataType} *super = Classifier
cd-Δ {Classifier} *super = NamedElt

The definition of cd-attrType assigns to each attribute in the class graph a type
symbol from Prim. The function cd-asrn associates a range to each association,
where none is empty, many is 0 − ∗, optional is 0 − 1 and one is 1 − 1. The
implementation of these functions is not shown. We must pattern match on both
the class name and association name because of the polymorphic *super which
has a different arity for each type. In particular for NamedElt it is empty as there
is no superclass. The code for Δ essentially programs the transition function of
the graph, that is, it gives a target class to each association. In particular *super
targets the direct superclass of each class.

Using these functions we can complete the definition of our class graph.

4 http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.StandardLibrary

http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.StandardLibrary
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classGraph : ClassGraph Prim
classGraph = record
{ Class = CDClass ; Attr = CDAttr
; Assoc = CDAssoc ; attrType = cd-attrType
; assocRange = cd-asrn ; Δ = cd-Δ }

6 Object Graphs in Agda

We can now define object graphs. At this level we need to provide an infras-
tructure for mapping the fields in an object graph, which represent the object
instance data, to fields in a class graph, which represent their meta information.

record ObjGraph {T} (G : ClassGraph T) (�_� : T→ Set) : Set1 where
open ClassGraph G
field

Obj : Class→ Set
attrVals : ∀ {c} (o : Obj c) (a : Attr c)→ � attrType a �
assocIndices : ∀ {c} (o : Obj c) (a : Assoc c)

→ InRange (assocRange a)
δ : ∀ {c} (o : Obj c) (a : Assoc c)

→ Vec (Obj (Δ a)) (value (assocIndices o a))

An object graph is parametrised by a class graph G, from which its structure is
drawn, and a primitive type interpretation function �_�, which assigns an Agda
type to each abstract type. Within the record we first open the class graph G,
thus bringing its fields into scope. Obj defines the set of all objects for each class,
thus an Obj c is an object of class c. Field attrVals assigns, for each object and
attribute name, a value for the attribute, using �_� to give a concrete type.
Field assocIndices gives a cardinality for each association of each object, which
naturally must satisfy the constraint of being in the range of the association’s
interval, as specified in G. Finally, δ gives, for each object and association, a
vector of target objects of the association’s target class (Δ a) and given size.

ObjGraph is again heavily dependent, so for example all fields depend on the
definition of the underlying class graph, and, in addition, attrVals, assocIndices
and δ depend on the definition of Obj. From the object oriented point of view
this is, of course, obvious, but being able to encode this directly in a specification
language is certainly unusual (without dependent types).

Values within intervals are provided by the type InRange.

record InRange (i : Interval) : Set where
constructor #r_

open Interval i

field
value : N

{ni} : True (decIsInRange i value)
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InRange uses a decision procedure to check whether a number is in the range of
a given interval. This is, again, declared at the type level. It shows how Agda’s
type system can be effectively augmented with customised decision procedures.
The InRange record consists of a number value and a proof that this value is in
the correct range. The proof is automatically provided by the decision procedure

decIsInRange : (i : Interval) (n : N)→ Dec (IsInRange i n)

which makes direct use of the Agda standard library decision procedure for �.
The type Dec P represents a decision of the proposition P, containing either

yes P or no ¬P. True is a function which returns type � if the parameterised value
is yes and otherwise ⊥. In the context of Agda, ⊥ is a vacuous (unsatisfiable)
type. � is a single element type which can also be automatically populated by
the type checker. This means that field ni can be automatically inferred if value
is populated with a number in the given range, whilst an out-of-range value
will not yield a proof and invalidate InRange. We can therefore write #r 1 :
InRange (0 – just 1), which is certified to be correct automatically by the type
checker. Conversely, #r 6 : InRange (1 – just 5) will not type check as there is
no proof of 6 �i just 5. An IsInRange proof witness can then be extracted from a
valid InRange and used in other proofs.

This simple example illustrates how constraints on objects and classes can
effectively be captured by extended type checking in Agda, based on decision
procedures, automated theorem provers or other solvers.

7 Populating Correct Object Graphs

This section shows how the class and object graph infrastructure developed in
the previous sections can be used for populating concrete object graphs while
checking the constraints imposed on classes and objects at the type level. This
process can be seen in analogy to completing a template or filling in a web form
while type checking is used behind the scenes to guarantee that the data is cor-
rect. However, while usually only simple properties can be verified, for instance
that some input string consists of numbers, much more powerful properties and
system constraints can be captured by Agda’s expressive type system.

As an example, we construct the object graph of Figure 2. Agda supports
type-safe incremental construction of data through meta-variable refinement,
which we use to define the object graph. We first create datatypes to represent
our objects.

Fig. 2. Basic model object diagram
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data PersonObj : CDClass→ Set where
Person : PersonObj Class
Person′ : PersonObj Classifier
Person′′ : PersonObj NamedElt
Name : PersonObj Attribute
Name′ : PersonObj NamedElt
Str : PersonObj DataType
Str′ : PersonObj Classifier
Str′′ : PersonObj NamedElt

Each object requires identifiers for each of the superclasses so that the respective
*super associations can be populated. In real applications, such names would be
allocated automatically; they are here shown explicitly for the sake of presenta-
tion. Using the object type we can then go ahead to construct the three functions
attrVals, assocIndices and δ, each by meta-variable refinement. We now show this
step-by-step. First we create the template for our object graph.

personOG : ObjGraph classGraph �_�
personOG = record
{Obj = PersonObj
; attrVals = og-attrVals
; assocIndices = og-assocIndices
; δ = og-δ}

og-attrVals : ∀ {c} → PersonObj c→ (a : CDAttr c)→ � attrType a �
og-attrVals o a = { } 0

og-assocIndices : ∀ {c} → PersonObj c→ (a : CDAssoc c)
→ InRange (assocRange a)

og-assocIndices o a = { } 1

og-δ : ∀ {c : CDClass} (o : PersonObj c) (a : CDAssoc c)
→ Vec (PersonObj (Δ a)) (value (og-assocIndices o a))

og-δ o a = { } 2

The types of these three functions can be inferred automatically, but we write
them explicitly for the sake of explanation. The body of each function is pop-
ulated by a meta-variable hole. To fill in og-attrVals we case split on first the o
parameter, the type of objects, and then the a parameter, the attribute type.
This gives us the following holes to fill in (with corresponding types).

og-attrVals Person isAbstract = { } 0 -- Bool
og-attrVals Person′′ name = { } 1 -- String
og-attrVals Name multivalued = { } 2 -- Bool
og-attrVals Name′ name = { } 3 -- String
og-attrVals Str′′ name = { } 4 -- String

Agda infers the type of each meta-variable and presents this information to the
user. We have added comments that indicate these types. These meta-variables
can all be filled in with correct values, and the type checker prevents us from
substituting an incorrectly typed value.
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og-attrVals Person isAbstract = false
og-attrVals Person′′ name = "Person"
og-attrVals Name multivalued = false
og-attrVals Name′ name = "name"
og-attrVals Str′′ name = "String"

We follow a similar procedure for og-assocIndices, each case of which needs to be
populated by a suitable InRange for the corresponding association. For instance
the case for association owner of Name has range one (1 − 1), meaning the only
possible value is 1.

og-assocIndices Name owner = #r 1

If we try and insert any other value, for instance

og-assocIndices Name owner = #r 2

the type checker will fail to resolve the internal constraint proof (ni) of the
InRange, since it resolves to ⊥. In this way the type system acts as a static
checker for the multiplicities whilst we build the diagram.

Finally we construct the object assocation function og-δ, each element of which
is a vector of suitably typed object, with length drawn from the corresponding
association index.

og-δ Person att = { } 0 -- Vec (PersonObj Attribute) 1
og-δ Person super = { } 1 -- Vec (PersonObj Class) 0
og-δ Person *super = { } 2 -- Vec (PersonObj Classifier) 1
og-δ Person′ *super = { } 3 -- Vec (PersonObj NamedElt) 1
og-δ Person′′ *super = { } 4 -- Vec (PersonObj NamedElt) 0
...

We then fill in each meta-variable with associations from Figure 2.

og-δ Person att = [Name ]
og-δ Person super = [ ]
og-δ Person *super = [Person′ ]
og-δ Person′ *super = [Person′′ ]
og-δ Person′′ *super = [ ]
og-δ Name type = [Str′ ]

og-δ Name owner = [Person ]
og-δ Name *super = [Name′ ]
og-δ Name′ *super = [ ]
og-δ Str *super = [Str′ ]
og-δ Str′ *super = [Str′′ ]
og-δ Str′′ *super = [ ]

This simple example shows how class and object graphs can be generated that
are correct by construction. We are using the type system to check quite compli-
cated constraints about the structures, rather than simple set-style constraints.
Already simple object graphs can capture rather complex data dependencies that
even involve the corresponding class. In a dependently type language, resolving
these dependencies does not require any external proof engines or solvers. The
entire process in this section is completely automatic as far as type inference
is concerned. For instance, it is inferred that object Person has type Obj Class,
class Class has association att, and association att in the class graph has range
many and it must point to objects of type Attribute from the definition of Δ. It
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therefore follows that the Person case of function δ must consist of a vector of
Obj Attribute, of a length within the many interval.

Although the constraints in our small examples are relatively simple, more
complex constraints can be encoded at the type level if they can be expressed in
intuitionistic higher-order logic.

8 Type Checking Bidirectionality Constraints

This section gives an example of how the verification of more complex constraints
can be based on type checking. Many associations in class diagrams are bidirec-
tional, for instance in Figure 1 att and owner are bidirectional. In our class graph
model we encode a bidirectional association as a pair of unidirectional associa-
tions, but so far cannot explicitly declare and verify the constraint that a given
association is bidirectional. We encode bidirectionality of associations with the
following record.

record Bidirect {T} (G : ClassGraph T) : Set1 where
constructor [_←→_]

open ClassGraph G
field
{class} : Class
assoc : Assoc class
assoc’ : Assoc (Δ assoc)
converse : Δ assoc’ ≡ class

Bidirect consists of a pair of associations, the first of which has its source in
class and its target in the associated class, whereas for the second association
source and target class are swapped, which is ensured by the converse constraint.
We then use this new record to extend class graphs to class diagrams with
bidirectional associations.

record ClassDiagram (Types : Set) : Set1 where
field

classGraph : ClassGraph Types
bidirects : Σ [n : N] (Vec (Bidirect classGraph) n)

A class diagram simply adds a vector of associations which are bidirectional.
These can then be used in object diagrams, which constrain bidirectionality of
concrete associations. First we define the interpretation function for bidirectional
constraints with the function IsBidirect.

AssocIx : ∀ {c} (o : Obj c) (a : Assoc c)→ Set
AssocIx o a = Fin (value (assocIndices o a))

IsBidirect : Bidirect G→ Set
IsBidirect b = let open Bidirect b in
∀ (o : Obj class) (i : AssocIx o assoc)→
let o’ = lookup i (δ o assoc) in
Σ [ i’ : AssocIx o’ assoc’ ] (lookup i’ (δ o’ assoc’) ∼= o)
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A bidirectional relation is encoded between associations assoc and assoc’ as a
logical formula that satisfies the following condition. For every object o of the
source class of assoc, and each of its indices i, targeting object o’, there exists
an index i’ of assoc’ targeting object o. To satisfy this constraint for a given
object graph we have to supply a lambda term of the correct type. In certain
circumstances such a lambda term can be generated automatically.

We can then enforce this constraint when building object diagrams.

record ObjDiagram {T} (G : ClassDiagram T) : Set1 where
open ClassDiagram G
field

objGraph : ObjGraph classGraph

open ObjGraph objGraph

field
isBidirects : ∀ (i : Fin (proj1 bidirects))→ IsBidirect (lookup i (proj2 bidirects))

An object diagram consists of an object graph and a function mapping each
bidirectional association to a proof that bidirectionality holds.

9 A Bidirectionality Example

We can extend our examples from the previous sections, making att and owner
converses of each other. This will turn our type into an accurate representation
of the class diagram in Figure 1, ensuring that only valid object diagrams are
elements.

classDiagram : ClassDiagram Prim
classDiagram = record
{classGraph = classGraph
; bidirects = (2, [att←→ owner ] PropEq.refl :: [owner←→ att] PropEq.refl :: [ ])}

Both directions must be stated. Each constraint also uses the simple proof
PropEq.refl that following att and then owner returns to Class, and vice versa.
We can then extend our object graph to an object diagram.

personOD : ObjDiagram classDiagram
personOD = record
{objGraph = personOG
; isBidirects = isBidirects}
where open ObjGraph personOG

isBidirects : (i : Fin (proj1 bidirects))→ IsBidirect (lookup i (proj2 bidirects))
isBidirects zero Person zero = zero, HetEq.refl
isBidirects (suc zero) Name zero = zero, HetEq.refl

The function isBidirects satisfies both of the bidirectional constraints (vacuous
cases are omitted). The first requires a proof of

Σ [ i : Fin 1 ] (lookup i (Person :: [ ]) ∼= Person)
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where i is an index of owner under object Name, which is reached by following
att from Person. This is trivially satisfied by index zero, with Person ∼= Person
satisfied by HetEq.refl. The second case is similarly satisfied, but with att and
owner reversed. Both of these proofs can be automatically discharged by Agda’s
auto tactic. This completes the definition of the object diagram.

10 Related Work

The area of formal semantics for UML is vast and space restricts their full
consideration, though we note that both Object-Z and VDM have class diagram
mappings. Specific to our work is the use of graphs to represent class diagrams,
for which a comprehensive discussion exists in [8]. We use a fairly standard graph
encoding, though with the addition of dependent types.

Works with similar aims using different ITPs exist. For instance, HOL-OCL [3]
is a well-developed Isabelle/HOL library for verifying OCL expressions on UML
class diagrams. Similarly, Object-Z has been mechanised [12]. The key difference
in our work is the intimate relationship between data and proof, provided by
dependent type theory. Nevertheless, Agda lacks the automated proof support
which more mature ITPs (like Isabelle) enjoy, though similar results could po-
tentially be achieved [4]. Moreover, we do not currently support OCL, but since
we do have well-typed navigation an elegant implementation is possible.

11 Conclusion and Future Work

We have implemented basic MDA concepts and shown how Agda can be used
for inferring system constraints. With dependent types, system dependencies and
constraints can be modelled succinctly and directly; they can be resolved, often
automatically, by extended type inference.

Additional work focuses on the implementation of a library for representing
valid models and transformations between them. In general a model transforma-
tion can be represented as a function.

_⇒_ : ∀ {T} → ClassDiagram T→ ClassDiagram T→ Set
P⇒ Q = ObjDiagram P→ ObjDiagram Q

Such a function must, for each valid instance of the class diagram P, provide
a valid instance of the class diagram Q. We can use the type system to aid
with construction of such a transformation by having it exhaustively supply all
possibilities for the input, thus ensuring that a model transformation is complete.

Refinement and implementation of transformations can proceed in several
ways. We are currently collaborating on extending an Agda based graph trans-
formation library [6] for this purpose. Graph transformations are one of the
standard approaches to model transformations. Alternatively we are designing a
state-based embedded language in Agda for graph traversals and manipulation,
inspired by languages such as ATL [5] and Kermeta [10]. The type system can
be used during program construction to inform programmers about data and
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constraints relevant to a particular object. Also, integration of automated theo-
rem provers in Agda beyond the current prototype [4] would be of great benefit
to the semi-automatic composition and development of model transformations.

In conclusion, we believe that Agda provides many benefits to the integration
of formal methods, for instance by both ensuring that code is correct with respect
to a suitable model and supplying useful information during code construction. In
applicable formal methods the Agda layer needs to be hidden as much as possible
behind an interface, for which a high degree of automation is a prerequisite. In the
future we would therefore like to see an Eclipse frontend, which would interface
to a suitable Agda domain-specific language and convert Agda error messages
and information into a format readable by a software engineer.
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Non-termination Sets of Simple Linear Loops
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Abstract. A simple linear loop is a simple while loop with linear as-
signments and linear loop guards. If a simple linear loop has only two
program variables, we give a complete algorithm for computing the set
of all the inputs on which the loop does not terminate. For the case of
more program variables, we show that the non-termination set cannot
be described by Tarski formulae in general.

Keywords: Simple linear loop, termination, non-termination set, eigen-
value, Tarski formula.

1 Introduction

Termination of programs is an important property of programs and one of the
main research topics in the field of program verification. It is well known that
the following so-called “uniform halting problem” is undecidable in general.

Using only a finite amount of time, determine whether a given program will
always finish running or could execute forever.

However, there are some well known techniques for deciding termination of
some special kinds of programs. A popular technique is to use ranking func-
tions. A ranking function for a loop maps the values of the loop variables to a
well-founded domain; further, the values of the map decrease on each iteration.
A linear ranking function is a ranking function that is a linear combination of
the loop variables and constants. Some methods for the synthesis of ranking
functions and some heuristics concerning how to automatically generate linear
ranking functions for linear programs have been proposed, for example, in Colón
and Sipma [3], Dams et al. [4] and Podelski and Rybalchenko [6]. Podelski and
Rybalchenko [6] provided an efficient and complete synthesis method based on
linear programming to construct linear ranking functions. Chen et al. [2] pro-
posed a method to generate nonlinear ranking functions based on semi-algebraic
system solving. The existence of ranking function is only a sufficient condition
on the termination of a program. There are programs, which terminate, but do
not have ranking functions. Another popular technique based on well-orders,
presented in Lee et al. [5], is size-change principle. The well-founded data can
ensure that there are no infinitely descents, which guarantees termination of
programs.
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For linear loops, some other methods based on calculating eigenvectors of
matrices have been proposed. Tiwari [7] proved that the termination problem of
a class of linear programs (simple loops with linear loop conditions and updates)
over the reals is decidable through Jordan form and eigenvector computation.
Braverman [1] proved that it is also decidable over the integers. Xia et al. [8]
considered the termination problems of simple loops with linear updates and
polynomial loop conditions, and proved that the termination problem of such
loops over the integers is undecidable. In [9], Xia et al. provided a novel symbolic
decision procedure for termination of simple linear loops, which is as efficient as
the numerical one given in [7].

A counter-example to termination is an infinite program execution. In pro-
gram verification, the search for counter-examples to termination is as important
as the search for proofs of termination. In fact, these are the two folds of termi-
nation analysis of programs. Gupta et al. [10] proposed a method for searching
counter-examples to termination, which first enumerates lasso-shaped candidate
paths for counter-examples and proves the feasibility of a given lasso by solving
the existence of a recurrent set as a template-based constraint satisfaction prob-
lem. Gulwani et al. [11] proposed a constraint-based approach to a wide class of
program analyses and weakest precondition and strongest postcondition infer-
ence. The approach can be applied to generating most-general counter-examples
to termination.

In this paper, we consider the set of all inputs on which a given program does
not terminate. The set is called NT throughout the paper. For simple linear
loops, we are interested in whether the NT is decidable and how to compute
it if it is decidable. Similar problems was also considered in [12]. One possible
application of computing NT (and thus termination sets) is to construct pre-
conditions and/or postconditions for loops. Our contributions in this paper are
as follows. First, for homogeneous linear loops (see Section 2 for the definition)
with only two program variables, we give a complete algorithm for computing
the NT. For the case of more program variables, we show that the NT cannot
be described by Tarski formulae in general.

The rest of this paper is organized as follows. Section 2 introduces some no-
tations and basic results on simple linear loops. Section 3 presents an algorithm
for computing the NT of homogeneous linear loops with only two program vari-
ables. The correctness of the algorithm is proved by a series of lemmas. For linear
loops with more than two program variables, it is proved in Section 4 that the
NT is not a semi-algebraic set in general, i.e., it cannot be described by Tarski
formulae in general. The paper is concluded in Section 5.

2 Preliminaries

In this paper, the domain of inputs of programs is R, the field of real numbers.
A simple linear loop in general form over R can be formulated as

P1 : while (Bx > b) {x := Ax+ c}
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where b, c are real vectors, An×n, Bm×n are real matrices. Bx > b is a conjunc-
tion of m linear inequalities in x and x := Ax+ c is a linear assignment on the
program variables x.

Definition 1. [7] The non-termination set of a program is the set of all inputs
on which the program does not terminate. It is denoted by NT in this paper.

In particular, NT(P1) = {x ∈ Rn|P1 does not terminate on x} .
We list some related results in [7].

Proposition 1. [7] For a simple linear loop P1, the following is true.

– The termination of P1 is decidable.
– If A has no positive eigenvalues, the NT is empty.
– The NT is convex.

In this paper, only the following homogeneous case is considered.

P2 : while (Bx > 0) {x := Ax} .

Let B1, . . . , Bm be the rows of B. Consider the following loops

Li : while (Bix > 0) {x := Ax} .

Obviously, NT(P2)=
⋂m

i=1 NT(Li). Therefore, without loss of generality, we as-
sume throughout this paper that m = 1, i.e., there is only one inequality as the
loop guard. The following is a simple example of such loops.

while (4x1 + x2 > 0)

{(
x1

x2

)
:=

(
−2 4
4 0

)(
x1

x2

)}
.

That is B = (4, 1), A =

(
−2 4
4 0

)
.

3 Two-Variable Case

To make things clear, we restate the problem for this two-variable case as follows.
For a given homogeneous linear loop P2 with exactly two program variables

and only one inequality as the loop guard, compute NT(P2).
For simplicity, we denote the program variables by x1, x2 and use NT instead

of NT(P2) in this section. If α is a non-zero point in the plane, we denote by −→α
a ray starting from the origin of plane and going through the point α.

Proposition 2. NT must be one of the following:
(1) an empty set;
(2) a single ray starting from the origin;
(3) a sector between two rays starting from the origin.
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Proof. We view an input (x1, x2) as a point in the real plane with origin O.

If there exists a point M(x1, x2) ∈ NT, any point P on the ray
−−−→
OM can be

written as P = kM = (kx1, kx2) for a positive number k. So BAn(kx1, kx2)
T =

kBAn(x1, x2)
T > 0 for any n ∈ N. That means P ∈ NT. Therefore, it is clear

from the item 3 of Proposition 1 that the conclusion is true.

By the above proposition, the key point for computing the NT is to compute
the ray(s) which is (are) the boundary of NT. We give the following algorithm
to compute the ray(s) (and thus the NT) for P2 if the NT is not empty. The
algorithm, as can be expected, is mainly based on the computation of eigenvalues
and eigenvectors of A. The correctness of our algorithm will be proved by a series
of lemmas following the algorithm.

Algorithm 1. NonTermination

Input: Matrices A2×2 and B1×2.
Output: The NT of P2 with A and B.

1 if A = 0 or B = 0 then
2 return ∅;

3 Compute the eigenvalues of A and denote them by λ1, λ2;
4 if λ1 ≯ 0 ∧ λ2 ≯ 0 then
5 return ∅; // Proposition 1

6 Take α0 ∈ R2 \ {0} such that Bα0 = 0 and BAα0 ≥ 0;
7 if BAα0 = 0 then
8 choose ξ such that Bξ > 0
9 if B(Aξ) > 0 then

10 return {x|x ∈ R2, Bx > 0} // Lemma 4
11 else
12 return ∅ // Lemma 5

13 if λ1 = 0 ∨ λ2 = 0 then
14 return {x|x ∈ R2, Bx > 0, BAx > 0}; // Lemma 6

15 Suppose λ1 ≥ λ2

16 if λ1 ≥ λ2 > 0 then
17 choose an eigenvector β2 related to λ2 such that Bβ2 > 0;
18 return {x|x = k1α0 + k2β2, k1 ≥ 0, k2 > 0}; // Lemmas 7 and 8

19 if λ1 > 0 ∧ λ2 < 0 then
20 if λ1 ≥ |λ2| then
21 let α−1 = A−1α0 and return {x|x = k1α0 + k2α−1, k1 > 0, k2 > 0};

22 if λ1 < |λ2| then
23 choose an eigenvector β related to λ1 such that Bβ > 0 and
24 return {x|x = kβ, k > 0} // Lemma 10

To better understand the idea of the following lemmas, it would be helpful to
remember an obvious fact that NT ⊆ {x|Bx > 0}. Actually, in Lemma 3, we
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NT

Fig. 1. Lemma 1

will prove that, if the boundary of NT consists of two rays (see Proposition 2),
one of the two rays must lie on the line Bx = 0.

Lemma 1. Suppose NT is not empty and ∂NT is the boundary of NT. If x ∈
∂NT and Bx �= 0, then Ax ∈ ∂NT.

Proof. Obviously, B is a linear map from R2 to R . Because By > 0 for all
y ∈ NT, we have Bx ≥ 0. And thus Bx > 0 by the assumption that Bx �= 0.
Hence, there exists an open ball o1(x, r1) such that By > 0 for all y ∈ o1(x, r1).

Let F be the linear map from R2 to R2 that F (y) = Ay for any y ∈ R2

and hence F is continuous. So for any neighborhood o(Ax, r) of Ax, there exists
a positive real number r2 such that o2(x, r2) ⊆ o1(x, r1) and F (o2(x, r2)) ⊆
o(Ax, r). Because x ∈ ∂NT, there exist y, z ∈ o2(x, r2) such that y ∈ NT and
z /∈ NT. Then A(y), A(z) ∈ o(Ax, r), A(y) ∈ NT and A(z) /∈ NT since Bz > 0.
It is followed that there are both terminating and non-terminating inputs in any
neighborhood of Ax. Therefore, Ax ∈ ∂NT.

Fig. 2. Lemma 2

To prove Lemma 3, we first prove Lemma 2 which will be used in the proof of
Lemma 3 to construct a contradiction.

Lemma 2. Suppose ∂NT is composed of two rays l1 and l2 and neither l1 nor
l2 is on Bx = 0. If By = 0 and BAy > 0, then Ay ∈ NT.
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Proof. Since neither l1 nor l2 is on Bx = 0, l1 and l2 are not collinear. So we can
choose two points z ∈ l1 and v ∈ l2 such that Bz > 0, Bv > 0 and y = t1z+t2v
for some t1 ∈ R, t2 ∈ R. By Lemma 1, Az and Av must be on the boundary of
NT, i.e., l1 or l2. Thus, we have at most four possible cases as follows.

(1) Az = k1z, Av = k2v, (i.e., Az ∈ l1, Av ∈ l2)
(2) Az = k1z, Av = k2z, (i.e., Az ∈ l1, Av ∈ l1)
(3) Az = k1v, Av = k2v, (i.e., Az ∈ l2, Av ∈ l2)
(4) Az = k1v, Av = k2z, (i.e., Az ∈ l2, Av ∈ l1)

where k1 > 0, k2 > 0.
Case (1). Because By = t1Bz + t2Bv = 0 and

BAy = BA(t1z + t2v) = t1k1Bz + t2k2Bv > 0,

we have t1t2 < 0. Without loss of generality, assume that t1 > 0 and t2 < 0. We
denote t1Bz by P . Note that P > 0 and t2Bv = −P . Since BAy = (k1−k2)P >
0, we have k1 > k2 > 0 and

BAn(Ay) = kn+1
1 t1Bz + kn+1

2 t2Bv = kn+1
1 P − kn+1

2 P > 0

for any n ∈ N. By the definition of NT, Ay ∈ NT.
Case (2). Because BAy = (t1k1 + t2k2)Bz > 0, we have

BAn(Ay) = kn1 (t1k1 + t2k2)Bz > 0

for any n ∈ N. By the definition of NT, we have Ay ∈ NT.
Case (3). Similarly as Case (2), we can prove Ay ∈ NT.
Case (4). We shall show that this case cannot happen. Let

S = {x|x = r1y + r2Ay, r1 > 0, r2 > 0}

be the sector between the two rays −→y and
−→
Ay. For any w ∈ S, we have Bw =

r1By + r2BAy = r2BAy > 0.
Because

A2y = A(t1k1v + t2k2z) = t1k1k2z + t2k1k2v = k1k2y,

we have Aw = r1Ay + r2A
2y = r1Ay + r2k1k2y ∈ S. Therefore, w ∈ NT and

S ⊆ NT. As −→y is a boundary of S and By = 0, −→y is contained in ∂NT, which
contradicts with the assumption of the lemma. So (4) cannot happen.

In summary, Ay ∈ NT.

Lemma 3. If ∂NT is composed of two rays l1 and l2, then either l1 or l2 is on
Bx = 0.

Proof. Assume neither l1 nor l2 is on Bx = 0. Choose a point y such that y �= 0,
By = 0 and BAy ≥ 0.
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1

2

Fig. 3. Lemma 3

Suppose BAy = 0. As NT is not empty, there exists z ∈ NT. Hence Ay
can be rewritten as Ay = h1z + h2y for some h1 ∈ R, h2 ∈ R. As a result of
BAy = h1Bz + h2By = h1Bz = 0, h1 = 0. Note that

Any = hn
2y, BAny = hn

2By = 0 . (1)

According to Eq.(1) and z ∈ NT, we have BAn(k1z + k2y) = k1BAnz +
k2BAny = k1BAnz > 0 for any k1 > 0, n ∈ N. Hence {x|x = k1z + k2y, k1 >
0} ⊆ NT. Therefore, {x|Bx = 0} = ∂NT, which contradicts with the assump-
tion.

If BAy > 0, Ay ∈ NT follows from Lemma 2. Let S = {x|k1y + k2Ay, k1 >
0, k2 > 0}. And we have BAnz = k1BAny + k2BAn+1y > 0 for any n ∈ N,
z ∈ S. Thus z ∈ NT and S ⊆ NT. By the method of choosing y, −→y ⊆ ∂NT.
That means −→y is l1 or l2, which contradicts with the assumption.

Lemma 4. Suppose A has an eigenvector α satisfying Bα = 0. If there is a
vector ξ such that Bξ > 0 and BAξ > 0, then NT = {x|Bx > 0}.
Proof. For any y ∈ {x|Bx > 0}, it can be written as y = k1ξ + k2α for some
k1 ∈ R, k2 ∈ R. As By = k1Bξ + k2Bα = k1Bξ > 0, we have k1 > 0. Thus
BAy = k1BAξ+k2BAα = k1BAξ > 0 and Ay ∈ {x|Bx > 0}. By the definition
of NT, we have {x|Bx > 0} ⊆ NT and hence NT = {x|Bx > 0}.
Lemma 5. Suppose A has an eigenvector α satisfying Bα = 0. If there is a
vector ξ such that Bξ > 0 and BAξ ≤ 0, then NT = ∅.
Proof. For any y ∈ {x|Bx > 0}, it can be written as y = k1α + k2ξ for
some k1 ∈ R, k2 ∈ R. Since By = k2Bξ > 0, we have k2 > 0. And because
BAy = k2BAξ ≤ 0, NT = ∅.
Lemma 6. Suppose A has a positive eigenvalue and a zero eigenvalue and the
eigenvector related to the positive eigenvalue is not on the line Bx = 0. Then
NT = {x|Bx > 0, BAx > 0}.
Proof. Let β be an eigenvector with respect to eigenvalue 0 and λ be the positive
eigenvalue. Select an eigenvector γ related to the positive eigenvalue such that
Bγ > 0. Let S be the set {x|Bx > 0, BAx > 0}. For any y ∈ S, it can be
written as k1β+k2γ for some k1 ∈ R, k2 ∈ R. We have BAy = k2λBγ > 0, thus
k2 > 0. Note that BAny = k2λ

nBγ > 0 for any n ∈ N, hence S ⊆ NT. Because
{x|Bx ≤ 0 ∨BAx ≤ 0} ∩ NT = ∅, NT = {x|Bx > 0, BAx > 0}.
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Lemma 7. Suppose A has two positive eigenvalues λ1 ≥ λ2 > 0 and the eigen-
vectors related to the positive eigenvalues are not on the line Bx = 0. If β2 is
an eigenvector related to λ2 such that Bβ2 > 0 and there is a vector α such that
Bα = 0 and BAα > 0, then NT = {x|x = k1α+ k2β2, k1 ≥ 0, k2 > 0}.

Proof. Select an eigenvector β1 related to λ1, respectively, such that Bβ1 > 0.
It is easy to know β1,β2 ∈ NT, thus NT is neither empty nor a ray. By Lemma
3 there is a −→y ⊆ ∂NT and y satisfies By = 0. Since for any z ∈ ∂NT, we have
BAz ≥ 0. So BAy ≥ 0 and hence −→α = −→y . In other word, −→α is one ray of ∂NT.
Let the other ray of ∂NT be l. As −BAα < 0,

−−→−α is not l. By Lemma 1, we

have Al ∈ ∂NT. So l is one of
−→
β1,
−→
β2 and

−−−−→
A−1α. By directly checking, we know−→

β2 is l and so NT = {x|x = k1α+ k2β2, k1 ≥ 0, k2 > 0}.

Lemma 8. Assume that A has one positive eigenvalue λ with multiplicity 2 and
only one eigenvector β satisfying Bβ > 0. If α is a vector such that Bα = 0
and BAα > 0, then NT = {x|x = k1α+ k2β, k1 ≥ 0, k2 > 0}.

Proof. By the theory of Jordan normal form in linear algebra, there exists a
vector β1 such that Aβ1 = β + λβ1 and β and β1 are linearly independent.

Let α1 = Aα. We claim that

∀n ∈ N.(BAnα1 > 0 ∧ ∃h2 > 0.(Anα1 = h1β + h2β1)). (2)

To prove this claim we use induction on the value of n.
Suppose α = h1β + h2β1. If n = 0, then α1 = Aα = (h1λ + h2)β + h2λβ1.

Because Bα1 = λBα+ h2Bβ = h2Bβ > 0, we have h2 > 0.
Now assume that the claim is true for n−1. Let An−1α1 = h1β+h2β1 where

h2 > 0. Because Anα1 = A(An−1α1) = (λh1 + h2)β + λh2β1, we have λh2 > 0
and BAnα1 = λBAn−1α1 + h2Bβ > 0. So the claim is true for any n ∈ N and
we have α1 ∈ NT.

Obviously, β ∈ NT and β and α1 are linearly independent, so NT is not a
ray. By Lemma 3, −→α ⊆ ∂NT.

Let the other ray of ∂NT be l. As −BAα < 0,
−−→−α is not l. By Lemma 1,

Al = l or Al = −→α . So l must be
−→
β or

−−−−→
A−1α. By directly checking, we know l

is
−→
β and thus NT = {x|x = k1α+ k2β, k1 ≥ 0, k2 > 0}.

Lemma 9. Suppose A has a positive eigenvalue λ1 and a negative eigenvalue
λ2 with λ1 ≥ |λ2| and the eigenvectors related to the eigenvalues are not on
the line Bx = 0. Suppose α is a vector such that Bα = 0 and BAα > 0. Let
α−1 = A−1α. Then NT = {k1α+ k2α−1, k1 > 0, k2 > 0}.

Proof. Select two eigenvectors β1 and β2 related to λ1 and λ2, respectively,
such that Bβ1 > 0 and Bβ2 > 0. Let α−1 = h1β1 + h2β2. So α = Aα−1 =
h1λ1β1 + h2λ2β2 and α1 = Aα = h1λ

2
1β1 + h2λ

2
2β2. Because Bα = 0 and

Bα1 > 0, h1, h2 and Aα−1 are all positive.
Note that α1 = (−λ1λ2)α−1+(λ1+λ2)α where −λ1λ2 > 0 and λ1+λ2 ≥ 0.

Let S = {x|x = k1α + k2α−1, k1 > 0, k2 > 0}. Since By = k2Bα−1 > 0 and
Ay = (k2 + k1(λ1 + λ2))α− k1λ1λ2α−1 ∈ S for any y ∈ S, we have NT ⊇ S.
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Let y = k1α + k2α−1. Because By = k2Bα−1 ≤ 0 for any k2 ≤ 0 and
BAy = k1Bα1 ≤ 0 for any k1 ≤ 0, we have NT = S.

Lemma 10. Suppose A has a positive eigenvalue λ1 and a negative eigenvalue
λ2 such that λ1 < |λ2| and the eigenvectors related to the eigenvalues are not on
the line Bx = 0. Let β1 be an eigenvector related to λ1 such that Bβ1 > 0, then
NT = {x|x = kβ1, k > 0}.

Proof. Select an eigenvector β2 related to λ2 such that Bβ2 > 0. Consider any
β = k1β1 + k2β2 ∈ R2.

If k2 �= 0, because An(k1β1 + k2β2) = k1λ
n
1β1 + k2λ

n
2β2 and

BAn(k1β1 + k2β2)BAn+1(k1β1 + k2β2) < 0

when n is large enough, k1β1 + k2β2 /∈ NT.
If k2 = 0, obviously, NT ⊇ {x|x = kβ1, k > 0} and Bkβ1 �∈ NT for any

k ≤ 0.
So NT = {x|x = kβ1, k > 0}.

Now, the correctness of our algorithm NonTermination can be easily obtained
as follows.

Theorem 1. The algorithm NonTermination is correct.

Proof. First, the termination of NonTermination is obvious because there are no
loops and no iterations in it. Second, it is also clear that the algorithm discusses
all the cases of eigenvalues of A, respectively. we will show that the output of
the algorithm in each case is correct.

Obviously, the outputs of Lines 2 and 5 are correct. If the algorithm goes to
Line 6, A must have at least one positive eigenvalue.

If the algorithm goes to Line 8, α0 must be an eigenvector of A because Aα0

and α0 are both on the same line Bx = 0. So, by Lemmas 4 and 5, the outputs
of Line 10 and Line 12 are correct.

If the algorithm goes to Line 13, A must have at least one positive eigenvalue
and the eigenvectors of A do not lie on the line Bx = 0. So, for a nonzero
eigenvalue, we can choose a related eigenvector γ such that Bγ > 0. That is to
say, the assumptions of Lemmas 6-10 can be satisfied in each of the following
cases, respectively. Therefore, the outputs of Lines 14, 18, 21 and 24 are correct.

Example 1. Compute the NT of the following loop.

while (4x1 + x2 > 0)

{(
x1

x2

)
=

(
−2 4
4 0

)(
x1

x2

)}

Herein, B = (4, 1), A =

(
−2 4
4 0

)
.
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The computation of NonTermination on the loop is:
Line 1. B �= 0 and A �= 0.
Line 4. A has a positive eigenvalue −1 +

√
17.

Line 6. Let α0 = (−1, 4)T ,α1 = Aα0 = (18,−4)T .
Line 7. Bα1 = 68 �= 0.
Line 13. The two eigenvalues of A are −1 +

√
17,−1 −

√
17, respectively.

Neither of them is 0.
Line 19. A has two eigenvalues, of which one is positive and the other negative.
Line 20. The absolute value of the negative eigenvalue is greater than the

positive eigenvalue.
Line 22. The eigenvector with respect to the positive eigenvalue is β =

(1,
√
17+1
4 )T and Bβ > 0. Return {x|x = kβ, k > 0}.

4 More Variables

Theorem 2. In general, NT is not a semi-algebraic set.

Remark 1. All Tarski formulae are in the form of conjunctions or/and disjunc-
tions of polynomial equalities and/or inequalities, so, in other words, semi-
algebraic sets are exactly the sets defined by Tarski formulae. By Theorem 2, we
can conclude that the non-termination sets of linear loops with more than two
variables cannot be defined by Tarski formulae in general.

Remark 2. It should be noticed that all polynomial invariants are semi-algebraic
sets.

In order to prove the above theorem, we give an example to demonstrate its
NT is not a semi-algebraic set.

Proposition 3. Let a linear loop with three program variables be as follows.

P3 : while (x1 + 2x2 + x3 ≥ 0)

⎧⎨⎩
⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝2 0 0
0 3 0
0 0 5

⎞⎠⎛⎝x1

x2

x3

⎞⎠⎫⎬⎭ .

Then NT(P3) is not a semi-algebraic set.

The conclusion can be proved by using the following lemmas. For simplicity,
NT(P3) is denoted by NT in this section.

Lemma 11. Denote by τ the following set

{9(x2
1 + x2

2)− x2
3 < 0, x3 > 0},

then τ ⊆ NT.

Proof. For any (x1, x2, x3) ∈ τ , we have x3 > 3|x1|, x3 > 3|x2| and thus x1+2x2+
x3 > 0. Because A(x1, x2, x3)

T = (2x1, 3x2, 5x3)
T and 9(4x2

1 + 9x2
2)− 25x2

3 < 0,
A(x1, x2, x3)

T ∈ τ . Therefore τ ⊆ NT.
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Lemma 12. ∂NT ⊆ NT.

Proof. Because the loop guard is of the form B(x1, x2, x3)
T ≥ 0, NT is a closed

set. So the conclusion is correct. Furthermore, for any (x1, x2, x3) ∈ ∂NT, x1 +
2x2 + x3 ≥ 0.

Lemma 13. If (x1, x2, x3) ∈ NT and A(x1, x2, x3)
T ∈ ∂NT, then (x1, x2, x3) ∈

∂NT.

Proof. Let x = (x1, x2, x3). If the conclusion is not true, there exists a ball
o(x, r) ⊆ NT. Because AxT ∈ ∂NT, there exists x′ such that |Ax−x′| < r and
x′ is not in NT.

Since |A−1x′ − x| < |x′ − Ax| < r, A−1x′ ∈ o(x, r). So A−1x′ ∈ NT and
thus x′ ∈ NT, which is a contradiction.

Lemma 14. {( 1
2n ,−

1
3n ,

1
5n )}∞n=0 ⊆ ∂NT.

Proof. Let pn = ( 1
2n ,−

1
3n ,

1
5n ), n ≥ 0. We use induction on the value of n.

When n = 0, because Bp0 = B(1,−1, 1)T = 0 and

BAkp0 = 2k − 2× 3k + 5k > 0 for any k ∈ N+,

we have p0 ∈ ∂NT.
Now assume that the conclusion holds for n−1. So,Apn = pn−1 ∈ ∂NT ⊆ NT.

By Lemma 13, pn ∈ ∂NT.

Lemma 15. For any non-zero polynomial f(x1, x2, x3) ∈ R[x1, x2, x3], there
exists an N such that f( 1

2n ,−
1
3n ,

1
5n ) �= 0 for all n > N .

Proof. Assume that the conclusion does not hold. Then there exists a subse-
quence {((12 )nk ,−(13 )nk , (15 )

nk)}∞k=1 such that f vanishes on each point of it.

Let f = b1x
α1
1 xβ1

2 xγ1

3 + ... + bsx
αs
1 xβs

2 xγs

3 where bi ∈ R, bi �= 0, αi ∈ N, βi ∈
N, γi ∈ N, and (αi, βi, γi) �= (αj , βj , γj) for i �= j.

Obviously s ≥ 1 because f �≡ 0. Let ti = (12 )
αi(13 )

βi(15 )
γi .

It is an obvious fact that 2αj3βj5γj �= 2αi3βi5γi for i �= j. Hence t1, t2, ..., ts
are pairwise distinct. Without loss of generality, let t1 > t2 > ... > ts.

For every j > 1, we have lim
k→∞

(
tj
t1
)nk = 0. Thus

lim
k→∞

|
f((12 )

nk ,−(13 )nk , (15 )
nk)

((12 )
α1(13 )

β1(15 )
γ1)nk

| = |b1| �= 0 .

This contradicts with f((12 )
nk ,−(13 )nk , (15 )

nk) = 0. Therefore the conclusion fol-
lows.

Using the above lemmas, we can now prove Theorem 2.
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Proof. Denote by S the sequence {(12 )n,−(
1
3 )

n, (15 )
n)}. By Lemma 14, S ⊆ ∂NT.

Assume NT is a semi-algebraic set. Then there exist finite many polynomials
fi,j ∈ R[x1, x2, x3] and �i,j ∈ {<,=} for i = 1, ..., s and j = 1, ..., ri such that

NT =

s⋃
i=1

ri⋂
j=1

{(x1, x2, x3) ∈ R3|fi,j �i,j 0}. (3)

Because S ⊆ ∂NT ⊆ {fi,j = 0}i,j, for any x ∈ S, there exists a polynomial fi,j
such that fi,j(x) = 0. By pigeonhole principle there exists an fi,j and a subse-
quence S1 of S such that fi,j vanishes on S1, which contradicts with Lemma 15.

5 Conclusion

In this paper, we consider whether the NT of a simple linear loop is decidable
and how to compute it if it is decidable. For homogeneous linear loops with only
two program variables, we give a complete algorithm for computing the NT. For
the case of more program variables, we show that the NT cannot be described
by Tarski formulae in general.
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Abstract. We define a novel static analysis for Java bytecode, called definite ex-
pression aliasing. It infers, for each variable v at each program point p, a set of
expressions whose value at p is equal to the value of v at p, for every possible ex-
ecution of the program. Namely, it determines which expressions must be aliased
to local variables and stack elements of the Java Virtual Machine. This is a use-
ful piece of information for a static analyzer, such as Julia, since it can be used
to refine other analyses at conditional statements or assignments. We formalize
and implement a constraint-based analysis, defined and proved correct in the ab-
stract interpretation framework. Moreover, we show the benefits of our definite
expression aliasing analysis for nullness and termination analysis with Julia.

1 Introduction

Static analyses infer properties of computer programs and prove those programs secure
for some classes of bugs. Modern programming languages are, however, very com-
plex. Static analysis must cope with that complexity and remain precise enough to be
of practical interest. This is particularly true for low-level languages such as Java byte-
code [9], whose instructions operate on stack or local variables, which are typically
aliased to expressions. Consider, for instance, the method onOptionsItemSelected in
Fig. 1, taken from the Google’s HoneycombGallery Android application. The statement
if (mCamera!=null) at line 4 is compiled into the following bytecode instructions:

aload_0
getfield mCamera:Landroid/hardware/Camera;
ifnull [go to the else branch]
[then branch]

Bytecode ifnull checks whether the topmost variable of the stack, top, is null and
passes control to the opportune branch. A static analysis that infers non-null vari-
ables can, therefore, conclude that top is non-null at the [then branch]. But this
information is irrelevant: top gets consumed by the ifnull and disappears from the
stack. It is, instead, much more important to know that top was a definite alias of
the field mCamera of local 0, i.e., of this.mCamera, because of the previous two byte-
codes (local 0 stands for this). That observation is important at the subsequent call to
mCamera.stopPreview() at line 5, since it allows us to conclude that this.mCamera is
still non-null there: line 5 is part of the then branch starting at line 4 and we proved
that top (definitely aliased to this.mCamera) is non-null at that point.

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 74–89, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1 public boolean onOptionsItemSelected (MenuItem item ) {
2 switch ( item . getItemId ( ) ) {
3 case R. id . menu switch cam :
4 i f (mCamera != null ) {
5 mCamera . stopPreview ( ) ;
6 mPreview . setCamera ( null ) ;
7 mCamera . r e l e a s e ( ) ;
8 mCamera = null ;
9 }

10 mCurrentCamera = (mCameraCurrentlyLocked+1)%mNumberOfCameras ;
11 mCamera = Camera . open (mCurrentCamera ) ;
12 mCameraCurrentlyLocked = mCurrentCamera ;
13 mCamera . s ta r tPrev i ew ( ) ;
14 return true ;
15 case . . . .
16 . . . .
17 }

Fig. 1. A method of the CameraFragment class by Google

As another example of the importance of definite aliasing for static analysis, suppose
that we statically determined that the value returned by the method open and written in
this.mCamera at line 11 is non-null. The compilation of that assignment is:

aload_0
aload_0
getfield mCurrentCamera:I
invokestatic android/hardware/Camera.open:(I)Landroid/hardware/Camera;
putfield mCamera:Landroid/hardware/Camera;

and the putfield bytecode writes the top of the stack (open’s returned value) into the
field mCamera of the underlying stack element s . Hence s .mCamera becomes non-null,
but this information is irrelevant, since s disappears from the stack after the putfield
is executed. The actual useful piece of information at this point is that s was a definite
alias of expression this (local variable 0) at the putfield, which is guaranteed by
the first aload_0 bytecode. Hence, this.mCamera becomes non-null there, which is
much more interesting for the analysis of the subsequent statements.

The previous examples show the importance of definite expression aliasing analysis
for nullness analysis. However, the former is useful for other analyses as well. For
instance, consider the termination analysis of a loop whose upper bound is the return
value of a function call: for (i = 0; i < max(a, b); i++) {body}. In order to
prove its termination, a static analyzer needs to prove that the upper bound max(a, b)
remains constant during the loop. However, in Java bytecode, that upper bound is just a
stack element and the static analyzer must rather know that the latter is a definite alias
of the return value of the call max(a, b).

These examples show that it is important to know which expressions are definitely
aliased to stack and local variables of the Java Virtual Machine (JVM) at a given pro-
gram point. Moreover, when a bytecode instruction affects a variable, this modification
is propagated to all the expressions containing that variable. This way we can determine
different properties about the aliased expressions. In this article, we introduce a static
analysis called definite expression aliasing analysis, which provides, for each program
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point p and each variable v , a set of expressions E such that the values of E and v at
point p coincide, for every possible execution path. We call these expressions definite
expression aliasing information. In general, we want to deal with relatively complex
expressions (e.g., a field of a field of a variable, the return value of a method call, possi-
bly non-pure, and so on). We show, experimentally, that this analysis supports nullness
and termination analyses of our tool Julia, but this paper is only concerned with the ex-
pression aliasing analysis itself. Our analysis has been proven sound, but due to space
limitations, proofs can only be found in an extended version of this paper [10].

We opt for a semantical analysis rather than simple syntactical checks. For instance,
in Fig. 1, the result of the analysis must not change if we introduce a temporary variable
temp = this.mCamera and then check whether temp != null: it is still this.mCamera
that is compared to null there. Moreover, since we analyze Java bytecode, a semantical
approach is important in order to be independent from the specific compilation style of
high-level expressions and be able to analyze obfuscated code (for instance, malware)
or code not decompilable into Java (for instance, not organized into scopes).

Our definite expression aliasing analysis is constraint-based: a large constraint is
built from the program, whose solution is a sound approximation of the expressions
aliased to each variable at each program point. The correctness of our analysis is proved
in the abstract interpretation framework [5] and follows from a correct treatment of the
potential side-effects of statements.

Related Work. Alias analysis belongs to the large group of pointer analyses [7], and
its task is to determine whether a memory location can be accessed in more than one
way. There exist two types of alias analyses: possible (may) and definite (must). The
former detects those pairs of variables that might point to the same memory location.
There are very few tools performing this analysis on Java programs (e.g., WALA [2],
soot [1], JAAT [12]). On the other hand, definite alias analysis under-approximates the
actual aliasing information and, to the best of our knowledge, the analysis introduced
in this article is the first of this type dealing with Java bytecode programs and pro-
viding expressions aliased to variables. Similarly, the authors of [6] deal with definite
aliasing, but their must-aliasing information is used for other goals and they do not
deal with aliasing expressions. The idea of a constraint-based analysis is not new: we
have already used it to formalize possible analyses [14,11]. However, the construction
of the constraint and the definition of the propagation rules are different there. A static
analysis that over-approximates the set of fields that might be null at some point has
been introduced in [13]. More complex expressions than fields are not considered there,
though. Our analysis is also related to the well-known available expression analysis [3]
where, however, only variables of primitive type are considered, hence it is much eas-
ier to deal with side-effects. Fields can be sometimes transformed into local variables
before a static analysis is performed [4], but this requires a preliminary modification of
the code and we want to deal with more general expressions than just fields.

2 Operational Semantics

This section introduces a formal operational semantics of our target, Java bytecode-
like language, used also in [14,11] and inspired by the standard informal semantics [8].
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The target language contains the following instructions: const x , dup, load, store, inc,
ifeq, ifne, new, getfield, putfield, throw and call. They abstract whole classes of Java
bytecode instructions such as iconst_x, ldc, bipush, dup, iload, aload, istore, astore,
iinc, ifeq, ifne, if_null, if_nonnull, new, getfield, putfield, athrow, invokevirtual, and
invokespecial. In addition, we introduce an instruction op corresponding to the arith-
metic bytecode instructions such as iadd, isub, imul, idiv and irem, and an instruction
catch starting the exception handlers. An informal semantics of this language is pro-
vided at the end of this section. We analyze programs at bytecode level for several rea-
sons: there is a small number of bytecode instructions, compared to varieties of source
statements; bytecode lacks complexities such as inner classes; our implementation of
definite expression aliasing is at bytecode level as well, which brings formalism, imple-
mentation and correctness proofs closer.

For simplicity, we assume that the only primitive type is int and that reference types
are classes containing instance fields and instant methods only. Our implementation
handles all Java types and bytecodes, as well as classes with static fields and methods.

Definition 1 (Classes). We let K denote the set of classes and we define T = {int} ∪ K,
the set of all possible types. Every class κ ∈ K might have instance fields κ.f : t (field f
of type t ∈ T defined in class κ) and instance methods κ.m(�t): t (method m, defined in
class κ, with arguments of type�t taken from T, returning a value of type t ∈ T ∪ {void}),
where κ,�t, and t are often omitted. We let F(κ) denote the set of all fields contained in κ.

We analyze bytecode preprocessed into a control flow graph (CFG), i.e., a directed

graph of basic blocks, with no jumps inside them. ins
rest

→
→

b1
· · ·
bm

denotes a block of code

starting at instruction ins, possibly followed by a sequence of instructions rest and
linked to m subsequent blocks b1, . . . , bm .

Example 1. Consider the Java method delayMinBy and its corresponding graph of ba-
sic blocks of bytecode instructions given in Fig. 2. The latter contains a branch since the
getfield min might throw a NullPointerException which would be temporarily caught
and then re-thrown to the caller of the method. Otherwise, the execution continues with
a block that reads the other parameter (load 1), adds it to the value read from the field
min and returns the result. Every bytecode instruction except return and throw always
has one or more immediate successors. The latter are placed at the end of a method or
constructor and typically have no successors. �

Bytecode instructions operate on variables, which encompass both stack elements and
local variables. A standard algorithm [8] infers their static types.

Definition 2 (Type environment). Let V be the set of variables from L= {l0, . . . , li−1}
(i local variables) and S = {s0, . . . , sj−1} (j stack elements). A type environment is a
function τ : V→T, and its domain is written as dom(τ). The set of all type environments
is T . For simplicity, we write dom(τ) = {v0, . . . , vi+j−1}, where vr = lr if 0 ≤ r < i and
vr =sr−i if i ≤r < i + j . Moreover, we let |τ| denote |dom(τ)|= i + j .

Definition 3 (State). A value is an element of V = Z ∪ L ∪ {null}, where L is an
infinite set of memory locations. A state over a type environment τ is 〈ρ, μ〉, where
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public class Event {
public int hr , min ;
. . .
public int delayMinBy ( int o f f s e t )
{ return min + o f f s e t ; }

. . .
}

load 0 Event
getfield Event.min : int

load 1 int
add int
return int

catch
throw Throwable

Fig. 2. Our running example
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Fig. 3. A JVM state σ = 〈ρ, μ〉

ρ ∈ dom(τ) → V is called environment and assigns a value to each variable from
dom(τ), while μ ∈ M is called memory and binds locations to objects. Every object o
has class o.κ and an internal state o.φ mapping each field f of o into its value (o.φ)(f ).
The set of all states over τ is Ξτ. We assume that states are well-typed, i.e., variables
hold values consistent with their static types.

The JVM supports exceptions and we distinguish between normal and exceptional
states. These latter arise immediately after a bytecode throwing an exception and in that
case there is only one element on the stack: a location bound to the thrown exception.

Example 2. Let τ = [l1 	→ ListEvents;l2 	→ int;l3 	→ Event;l4 	→ ListEvents]∈T , where
class ListEvents defines two fields: head of type Event and tail of type ListEvents.
Fig. 3 shows a state σ = 〈ρ, μ〉 ∈ Στ. Environment ρ maps variables l1, l2, l3 and l4 to
values 
2, 2, 
3 and 
4, respectively. Memory μ maps locations 
2 and 
4 to objects o2

and o4 of class ListEvents, and 
3 to o3 of class Event. Objects are shown as boxes in
μ with a class tag and a local environment mapping fields to integers, locations or null.
For instance, fields head and tail of o4 contain locations 
3 and 
2, respectively. �

The semantics of an instruction ins of our target language is a partial map ins : Στ → Στ′
from initial to final states. Number of local variables and stack elements at its start, as
well as their static types, are specified by τ∈T . In the following we assume that dom(τ)
contains i local variables and j stack elements. Moreover, we suppose that the semantics
is undefined for input states of wrong sizes or types, as is required in [8]. The formal
semantics is given in [14] and we discuss it informally below.

Basic Instructions. constx pushes x ∈Z on top of the stack. Like any other instruction
except catch, it is defined only when the JVM is in a normal state. catch starts instead
the exceptional handlers from an exceptional state and is, therefore, undefined on a
normal state. dup t duplicates the top of the stack, of type t. load k t pushes on the stack
the value of local variable number k , lk , which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable lk ; it might
potentially enlarge the set of local variables. In our formalization, conditional bytecodes
are used in complementary pairs (such as ifne t and ifeq t), at a conditional branch. For
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instance, ifeq t checks whether the top of the stack, of type t, is 0 when t= int or null
when t ∈ K. Otherwise, its semantics is undefined. Bytecode inc k x increments the
integer held in local variable lk by a constant x . Bytecode op pops two integers from
the operand stack, performs a suitable binary algebraic operation on them, and pushes
the integer result back onto the stack. op may be add, sub, mul, div and rem, and the
corresponding algebraic operations are +, −, ×, ÷ and %.

Object-Manipulating Instructions. These create or access objects in memory. new κ
pushes on the stack a reference to a new object o of class κ, whose fields are initialized
to a default value: null for reference fields, and 0 for integer fields [8]. getfield f reads
field f of a receiver object r popped from the stack. putfield f writes the top of the stack
inside field f of the object pointed to by the underlying value r .

Exception-Handling Instructions. throw κ throws the top of the stack, whose type κ
is a subclass of Throwable. catch starts an exception handler: it takes an exceptional
state and transforms it into a normal state at the beginning of the handler. After catch,
an appropriate handler dependent on the run-time class of the exception is selected.

Method Call and Return. We use an activation stack of states. Methods can be re-
defined in object-oriented code, so a call instruction has the form call m1 . . .mk , enu-
merating an over-approximation of the set of its possible run-time targets. See [14] for
details.

3 Alias Expressions

In this section, we define our expressions of interest (Definition 4), their non-standard
evaluation (Definition 6), which might modify the content of some memory locations
and we introduce the notion of alias expression (Definition 7). Moreover, we specify
in which cases a bytecode instruction might affect the value of an expression (Defini-
tion 8), and when the evaluation of an expression might modify a field (Definition 9).

Definition 4 (Expressions). Given τ∈T , let Fτ andMτ respectively denote the sets of
the names of all possible fields and methods of all the objects available in Στ. We define
the set of expressions over dom(τ): Eτ � E ::= n | v | E ⊕ E | E.f | E.m(E, . . .), where
n ∈ Z, v ∈ dom(τ), ⊕ ∈ {+,−,×,÷,%}, f ∈ Fτ and m ∈ Mτ.

Definition 5. We define a map vars : Eτ → ℘(dom(τ)) yielding the variables occurring
in an expression and a map flds : Eτ → ℘(Fτ) yielding the fields that might be read
during the evaluation of an expression, for a given τ ∈ T as:

E vars(E) flds(E)
n ∈ Z ∅ ∅

v ∈ dom(τ) {v } ∅

E1 ⊕ E2 vars(E1) ∪ vars(E2) flds(E1) ∪ flds(E2)
E.f vars(E) flds(E) ∪ {f }

E0.m(E1, . . . ,Eπ)
π⋃

i=0
vars(Ei )

π⋃

i=0
flds(Ei ) ∪ {f | m might read f }
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Note that the definition of flds requires a preliminary computation of the fields possibly
read by a method m, which might just be a transitive closure of the field f for which a
getfield occurs in m or in at least one method invoked by m. For instance, if the static
type of the local variable l2 is Event, then expression E = l2.delayMinBy(15) satisfies
the following equalities: vars(E2)= {l2}, and flds(E2)= {min}. The latter follows from the
fact that delayMinBy contains only one getfield and no call instruction (Ex. 1). There
exist some more precise approximations of this useful piece of information, e.g., the
one determined by our Julia tool. Anyway, in the absence of this approximation, we can
always assume the least precise sound hypothesis: every method can read every field.

Some of the expressions defined above represent the result of a method invocation.
Their evaluation, in general, might modify the memory, so we must be aware of the
side-effects of the methods appearing in these expressions. We define the non-standard
evaluation of an expression e in a state 〈ρ, μ〉 as a pair 〈w , μ′〉, where w is the computed
value of e, while μ′ is the updated memory obtained from μ after the evaluation of e.

Definition 6 (Non-standard evaluation of expressions). A non-standard evaluation of
expressions in a state σ = 〈ρ, μ〉 ∈ Στ is a partial map �·�∗ : Eτ → V ×M defined as:

– for every n ∈ Z, �n�∗σ = 〈n , μ〉, while for every v ∈ dom(τ), �v�∗σ = 〈ρ(v ), μ〉;
– �E1 ⊕ E2�∗σ is defined only if �E1�∗σ = 〈w1, μ1〉, �E2�∗〈ρ, μ1〉 = 〈w2, μ2〉 and

w1,w2 ∈ Z. In that case �E1 ⊕ E2�∗σ = 〈w1 ⊕ w2, μ2〉, otherwise it is undefined;
– �E.f �∗σ is defined only if �E�∗σ = 〈
, μ1〉, 
 ∈ L and f ∈ F(μ1(
).κ). In that case
�E.f �∗σ = 〈(μ1(
).φ)(f ), μ1〉;

– in order to compute �E0.m(E1, . . . ,Eπ)�∗σ, we determine �E0�∗〈ρ, μ〉 = 〈w0, μ0〉,
and for each 1 ≤ i < π, we evaluate Ei+1 in the state 〈ρ, μi 〉: �Ei+1�∗〈ρ, μi 〉 =
〈wi+1, μi+1〉. If w0 ∈ L, we run m on the object μπ(w0) with parameters w1, . . . ,wπ
and if it terminates with no exception, the result of the evaluation is the pair of m’s
return value w and the memory μ′ obtained from μπ as a side-effect of m.

We write �E�σ for the value of E, without the updated memory.

Definition 7 (Alias Expression). We say that an expression E ∈ Eτ is an alias expres-
sion of a variable v ∈dom(τ) in a state σ= 〈ρ, μ〉∈Στ if and only if �E�σ=ρ(v ).

We specify when the value of an expression might be affected by an instruction’s exe-
cution. An information about the fields that might be modified during the execution of
the methods is required. Without that information, the analysis would be less precise.

Definition 8 (canBeAffected). Let τ and τ′ be the static type information at and imme-
diately after an instruction ins. We define a map canBeAffected(·, ins) : Eτ → {true, false}
which, for every expression E ∈ Eτ determines whether E might be affected by ins:

E canBeAffected(E, ins)
n ∈ V false

v ∈ dom(τ)
(v �dom(τ′)) ∨ (ins ∈{inc k x , store k t} ∧ v = lk )
∨(ins=getfield f ∧ v =sj−1) ∨ (ins=op ∧ v =sj−2)

E1 ⊕ E2 canBeAffected(E1, ins) ∨ canBeAffected(E2, ins)

E.g
canBeAffected(E, ins) ∨ (ins=putfield f ∧ f =g)
∨ (ins=call m ∧ execution of m might modify g)

E0.p(E1, . . . ,Eπ)
∨π

i=0 canBeAffected(Ei , ins) ∨ (ins=putfield f ∧ f ∈flds(E))
∨ (ins=call m ∧ the execution of m might modify a field in flds(E))
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That is, instructions that remove some variables from the stack (putfield, op, ifne, ifeq
and store) affect the evaluation of all the expressions in which these variables appear;
instructions that write into one particular variable (inc, store, getfield and op) might
affect the evaluation of the expressions containing that variable; putfield f might modify
the evaluation of all the expressions that might read f ; call m1 . . .mk might modify the
evaluation of all expressions that might read a field f possibly modified by an mi .

On the other hand, the evaluation of an expression in a state, might update the mem-
ory component of that state by modifying the value of some fields.

Definition 9 (mightMdf). Function mightMdf specifies whether a field belonging to a
set of fields F ⊆ Fτ might be modified during the evaluation of an expression E:

– mightMdf(n ,F ) = mightMdf(v ,F ) = false, for every n ∈Z and every v ∈dom(τ);
– mightMdf(E1 ⊕ E2,F ) = mightMdf(E1,F ) ∨mightMdf(E2,F );
– mightMdf(E.g ,F ) = mightMdf(E,F );
– mightMdf(E0.p(E1, . . . ,Eπ),F ) = true if there exists 0≤ i ≤π, s.t. mightMdf(Ei ,F ) =

true or if the execution of p might write a field from F .

4 Definite Expression Aliasing Analysis

The concrete semantics works over concrete states, that our abstract interpretation ab-
stracts into tuples of sets of expressions.

Definition 10 (Concrete and Abstract Domain). The concrete domain over τ ∈ T
is Cτ = 〈℘(Στ),⊆,∪,∩〉 and the abstract domain over τ is Aτ = 〈(℘(Eτ))|τ|,�,�,�〉,
where for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉, A1 � A2 if and only if

for each 0 ≤ i < |τ|, A1
i ⊇ A2

i . Moreover, the join operator � is defined as A1 � A2 =

〈A1
0 ∩ A2

0, . . . ,A
1
|τ|−1 ∩ A2

|τ|−1〉. The meet operator � is dually defined.

Concrete states σ corresponding to an abstract element 〈A0, . . . ,A|τ|−1〉 must satisfy the
aliasing information represented by the latter, i.e., for each 0≤ r < |τ|, the value of all
the expressions from Ar in σ must coincide with the value of vr in σ (definite aliasing).

Definition 11 (Concretization map). Let τ∈T and A= 〈A0, . . . ,A|τ|−1〉∈Aτ. We define
γτ : Aτ → Cτ as follows: γ(A)= {σ= 〈ρ, μ〉∈Στ | ∀0≤r < |τ|.∀E∈Ar .�E�σ=ρ(vr )}.

Both Cτ and Aτ are complete lattices. Moreover, we proved γτ co-additive, and there-
fore it is the concretization map of a Galois connection [5] and Aτ is actually an abstract
domain, in the sense of abstract interpretation.

4.1 The Abstract Constraint Graph

Our analysis is constraint-based: we construct an abstract constraint graph from the
program under analysis and then we solve these constraints. For each bytecode of the
program there is a node containing an approximation of the actual aliasing information
at that point. Arcs of the graph propagate these approximations, reflecting, in abstract
terms, the effects of the concrete semantics on the aliasing information. In other words,
an arc between the nodes corresponding to two bytecodes b1 and b2 propagates the
aliasing information at b1 into that at b2. The exact meaning of propagates depends
here on b1, since each bytecode has different effects on the abstract information.
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ins A′r

#1 dup t A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar ∪ Ar [sj /sj−1] if r < |τ|−1
A|τ|−1 ∪ {sj } if r = |τ|−1
A|τ|−1 ∪ {sj−1} if r = |τ|

#2 new κ A′r =

⎧
⎪⎪⎨
⎪⎪⎩

Ar if r � |τ|
∅ if r = |τ|

#3 load k t A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar ∪ Ar [sj /lk ] if r � {k , |τ|}
Ak ∪ {sj } if r = k

Ak ∪ {lk } if r = |τ|
#4 store k t A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � k

{E ∈ A|τ|−1 | ¬canBeAffected(E, ins)} if r = k

#5 getfield f A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � |τ|−1
{E.f | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins)

∧¬mightMdf(E, {f })} if r = |τ|−1
#6 putfield f

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}
#7 catch, ifne t, ifeq t

#8 const v A′r =

⎧
⎪⎪⎨
⎪⎪⎩

Ar if r � |τ|
{x } if r = |τ|

#9 inc k x A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E[lk − x/lk ] | E ∈ Ar } if r � k

∅ if r = k

#10 op A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ E2 ∈A|τ|−1

∧¬canBeAffected(E1⊕E2, ins)} if r = |τ|−2

#11 return void A′r = {E ∈ Ar | noStackElements(E)}
#12 return t A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | noStackElements(E)} if r � i

{E ∈ A|τ|−1 | noStackElements(E)} if r = i

#13 throw κ

A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | noStackElements(E)} if r � i

∅ if r = i
#14 call m1 . . .mk

#15
new κ, throw κ

getfield f , putfield f

Fig. 4. Propagation rules of 1−1 arcs

Definition 12 (ACG). Let P be the program under analysis, already in the form of a
CFG of basic blocks for each method or constructor (Section 2). The abstract constraint
graph (ACG) for P is a directed graph 〈V ,E 〉 (nodes, arcs) where:

– V contains a node ins for each bytecode ins in P ;
– for each method or constructor m in P , V contains nodes exit@m and exception@m ,

representing the normal and the exceptional final states of m;
– each node contains an abstract element A ∈ A representing an approximation of

the actual aliasing information at that point;
– E contains directed arcs with one (1−1) or two (2−1) sources and always one

sink. Each arc has a propagation rule i.e., a function over A, from the aliasing
information at its source(s) to the aliasing information at its sink.

The arcs in E are built from P as follows. We assume for all 1−1 arcs that τ and τ′

are the static type information at and immediately after the execution of a bytecode
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A′r

#17 A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar if r � |τC |−π
{E=R[E0, . . . ,Eπ−1/l0, . . . , lπ−1] | R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E, insC )}
∪ {E=E0.m(E1, . . . ,Eπ−1) | safeAlias(E, insC )} if r = |τC |−π

#18 A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E | safeExecution(E,Ar , insC )} if r � |τC |−π
EτN if r = |τC |−π

safeExecution(E,A, insC ) = E ∈ A ∧ noParameters(E) ∧ ¬canBeAffected(E, insC )
safeAlias(E, insC ) =

∧π−1
k=0 safeExecution(Ek ,A|τC |−π+k , insC ) ∧ ¬mightMdf(E, flds(E))

safeReturn(R,mw ) = ∀lk ∈vars(R)⊆{l0, . . . , lπ−1}.lk is not modified by mw

noParameters(E) = vars(E) ∩ {v|τC |−π, . . . , v|τC |−1} = ∅
Fig. 5. Propagation rules of 2−1 arcs

ins, respectively. Moreover, we assume that τ contains j stack elements and i local
variables and, for every expression E, we write noStackElements(E) to denote that no
stack element appears in E, i.e., vars(E) ∩ {s0, . . . , sj−1}=∅.

Sequential arcs. If ins is a bytecode in P , distinct from call, immediately followed by
a bytecode ins′, distinct from catch, then an 1−1 arc is built from ins to ins′ , with
a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉 where, for each 0 ≤ r < |τ′|, A′r is

defined by one of the rules #1 − #10 in Fig. 4.

Final arcs. For each return t and throw κ occurring in a method or constructor m of P ,
there are 1−1 arcs from return t to exit@m and from throw κ to exception@m , respectively,
with a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉 where, for each 0≤r < |τ′|, A′r

is defined by one of the rules #11 − #13 in Fig. 4.

Exceptional arcs. For each ins throwing an exception, immediately followed by a catch,
an arc is built from ins to catch , with a prop. rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉

where, for each 0≤r < |τ′|, A′r is defined by rules #14 or #15 in Fig. 4.

Parameter passing arcs. For each call m1 . . .mq occurring in P with π parameters
(including the implicit parameter this), for each 1 ≤ i ≤ q we build an 1−1 arc from
call m1 . . .mq to the node corresponding to the first bytecode of mi , with a propagation

rule #16: λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A
′
π−1〉 where, for each 0≤r <π, A′r =∅.

Return value arcs. For each insC = call m1 . . .mq to a method with π parameters
(including the implicit parameter this) returning a value of type t � void, and each
subsequent bytecode insN distinct from catch, we build, for each 1≤w ≤ q , a 2−1 arc
from insC and exit@mw (2 sources, in that order) to insN . Suppose that the static type
information at insC , exit@mw and insN are τC , τE and τN , respectively. We define
a propagation rule λ〈A0, . . . ,Ap , . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A

′
|τC |−π〉, where

for each 0≤r ≤|τC |−π, A′r is defined by the rule #17 in Fig. 5.

Side-effects arcs. For each insC = call m1 . . .mq to a method with π parameters (in-
cluding the implicit parameter this), and each subsequent bytecode insN , we build,
for each 1 ≤ w ≤ q , a 2−1 arc from insC and exit@mw (2 sources, in that order) to
insN , if insN is not a catch and a 2−1 arc from insC and exception@mw (2 sources,

in that order) to catch . Suppose that the static type information at insC , exit@mw (or
exception@mw ) and insC are τC , τE and τN respectively. We define a propagation rule



84 Ð. Nikolić and F. Spoto

λ〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A
′
|τN |−1〉, where for each 0≤r <

|τN |, A′r is defined by the rule #18 in Fig. 5.

Example 3. In Fig. 6 we give the ACG of the method delayMinBy from Fig. 2. Nodes
a, b and c belong to the caller of this method and exemplify the arcs related to the call
and return bytecodes. Arcs are decorated with the number of their associated propaga-
tion rules. In the following examples, for each node x , we let Ax = 〈Ax

0 , . . . ,A
x
nx−1〉 be

the aliasing information at x , where nx is the number of variables at x and, for each r ,
we let Ax

r be an approximation of the definite aliasing expressions of variable vr . �

The sequential arcs link an instruction ins to its immediate successor ins′ propagat-
ing, for every variable v at ins′, all those expressions E aliased to v at ins that can-
not be affected by ins itself, i.e., such that ¬canBeAffected(E, ins) holds. However,
some new alias expressions might be added to the initial approximation as well. For
instance, in the case of ins=dup t (rule #1), the new added variable vn = sj is a
copy of vn−1 = sj−1, hence they are trivially aliased to each other, and all definite
alias expressions of vn−1 at ins become definite alias expressions of vn at ins′ (i.e.,
A′n−1=An−1 ∪ {sj }, A′n =An−1 ∪ {sj−1}). Approximations related to the rest of the vari-
ables are enriched with the same expressions where occurrences of sj−1 are replaced by
sj (A′r =Ar ∪ Ar [sj /sj−1]). Rule #5 is more interesting: ins=getfield f inserts an ex-
pression E.f among alias expressions of vn−1 at ins′ if E is aliased to vn−1 (holding the
receiver) at ins, it cannot be modified by ins (¬canBeAffected(E, ins)) and the evaluation
of E cannot modify the field f (¬mightMdf(E, {f })). For instance, suppose that in Ex. 3
we have n2=3 and A2

2= {v0}, i.e., v2, the top of the stack and the receiver of the getfield
at 2, is aliased to v0. There is an arc with rule #5 connecting nodes 2 and 3. According
to that rule, since the getfield cannot affect v0, but only v2, and since no evaluation of
v0 can modify any field (in particular min), we conclude that A3

2= {v0.min}, i.e., the new
top of the stack is aliased to the field min of the only alias of the old top of the stack.

The final arcs feed nodes exit@m and exception@m for each method m. They propa-
gate, for each local variable lk at ins′, all those expressions aliased to lk at ins where no
stack variable occurs. In the case of ins= return t, with t�void, the alias expressions of
vi =s0 at ins′ are alias expressions of vn−1=sj−1 at ins with no stack elements.

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of their exception handler(s). They propagate alias expressions
of local variables analogously to the final arcs. For the only stack element (vi = s0),
holding the thrown exception, there is no alias expression (Ai =∅).

Let us explain the auxiliary functions introduced in Fig. 5. An execution of ins =
call m1 . . .mt is safe for an expression E ∈ A (safeExecution(E,A, ins) holds), if the
fields possibly read during the evaluation of E must not be modified by the invoked
method (¬canBeAffected(E, ins)) and if no actual parameter of that method appears in E
(noParameters(E)), since they disappear from the stack after the call. An alias expres-
sion E in which E0, . . . ,Eπ−1 appear is safe (safeAlias(E, ins) holds) if ins is safe for
each Er and if no field might be both read and modified during all possible evaluations
of E (¬mightMdf(E, flds(E))). An alias expression R of a return value at the exit from a
method mw is safe, i.e., safeReturn(R,mw ) holds, if only local variables corresponding
to the formal parameters of mw (l0, . . . , lπ−1) appear in R and none of them is modified
by mw (for every lk ∈vars(R), no store k t nor inc k x occurs in mw ).



Definite Aliasing Analysis 85

node anode c

catch

node 9
exception@delayMinBy

node b
store 3 int

node 6
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
return int

node 7
catch

node 8
throw java.lang.Throwable

�14

�16
�18 �18

�17

�3

�7 �3

�10

�5�15

�12

�13

Fig. 6. The ACG for the method delayMinBy in Fig. 2

There exists a return value 2−1 arc for each target mw of a call returning a value.
Rule #17 considers 〈A0, . . . ,A|τC |−1〉 and 〈R0, . . . ,R|τE |−1〉, approximations at insC and
exit@mw , and builds the alias expressions related to the returned value s|τC |−π at insN .

An alias expression R ∈ R|τE |−1 of the computed value s0 at exit@mw can be turned
into an alias expression of s|τC |−π at insN if (i) R is safe; (ii) every occurrence of
a formal parameter lk in R is replaced by an alias expression Ek ∈ A|τC |−π+k of the
corresponding actual parameter s|τC |−π+k at insC , which is safe w.r.t. insC . Moreover,
E = E0.mw (E1, . . . ,Eπ−1) can be an alias of s|τC |−π at insN if it is safe w.r.t. insC .
For instance, suppose that in Ex. 3 the actual parameters of the call at node a (which
become the local variables v0 and v1 inside delayMinBy) are aliased to v1 and 15, and
that at the exit node 6 the return value is aliased to v0.min + v1. Since this expression
is composed of local variables corresponding to the formal parameters of delayMinBy
and the latter does not modify any variable (it contains no store nor inc), we conclude
that v0.min + v1 is safe. v0 and v1 at 6 correspond to the actual parameters at a, thus the
aliases v1 and 15 of these latter can substitute these former obtaining the alias expression
E=v1.min + 15 at b. Indeed, no evaluation of E can modify any field (Definition 9), so
¬mightMdf(E, flds(E)) trivially holds. Moreover, v1 and 15 contain no actual parameter
at a, and no execution of the method can modify a local variable or a constant of the
caller, hence E is safe and can be an alias expression of the returned value at node b.

The side-effects 2−1 arcs consider the alias expressions E of the variables vr dif-
ferent from the actual parameters (s|τC |−π, . . . , s|τC |−1) of the method at insC and insert
them among the alias expressions of vr also at insN if they are safe w.r.t. insC .

Definition 13 (Alias Expression Analysis). A solution of an ACG is an assignment of
an abstract element An to each node n of the ACG such that the propagation rules of
the arcs are satisfied, i.e., for every arc from nodes n1 . . .nk to n with propagation rule
λA1, . . . , λAk .Π(A1, . . . ,Ak ), the condition An � Π(An1 , . . . ,Ank

) holds. The alias
expression analysis of the program is the minimal solution of its ACG w.r.t. �.

Definition 13 entails that if k arcs reach the same node n , bringing to it k approxima-
tions, i.e., k sets of alias expressions for each variable at n , then the approximation of
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Node n An
0 An

1 An
2 An

3 in jn
a ∅ {v0.getHead(), s0} {v0.getHead(), v1} {15} 2 2
1 ∅ ∅ − − 2 0
2 {s0} ∅ {v0} − 2 13 ∅ ∅ {v0.min} −
4 ∅ {s1} {v0.min} {v1} 2 2

5, 6 ∅ ∅ {v0.min + v1} −

2 1
7, 8, 9 ∅ ∅ ∅ −

b ∅ {v0.getHead()} {v1.delayMinBy(15), v0.getHead().min+15, −
v1.min+15, v0.getHead().delayMinBy(15)}

c ∅ {v1.getHead()} ∅ −

Fig. 7. The solution of the ACG from Fig. 6

the actual aliasing information for each variable v at n is the intersection of the k sets re-
lated to v . The minimal solution w.r.t. � corresponds to the greatest sets of expressions
for each variable (Definition 10). In order to guarantee its existence, we fix an upper
bounds on the height of the alias expressions (e.g., a maximal number of field accesses
and method invocations) which makes the abstract domain Aτ finite. The solution of the
constraint can, hence, be computed by starting with the bottom approximation for every
node: the set of all possible alias expressions; and then applying the propagation of the
arcs and computing the intersection at each node entry, until stabilization.

Example 4. Fig. 7 shows the solution of the ACG from Fig. 6. For each node n , the
values shown in columns in , jn and An

r are respectively the number of local variables,
stack elements and the final approximation of the aliasing information related to the
variable vr at that point. When the latter is −, it means that vr is not available there. It
is worth noting that the variable v0 at nodes a, b and c is of type ListEvents (Ex. 2)
and that getHead only returns the field head of that class. �

The following theorem states that our analysis is sound.

Theorem 1 (Soundness). Suppose that an execution of a program leads to a state σ∈
Στ. Let Ains ∈Aτ be the approximation of the definite expression aliasing information at
the node ins corresponding to ins, computed by our static analysis. Then, σ∈γτ(Ains).

5 Experiments

We have implemented our definite expression aliasing analysis inside the Julia analyzer
for Java bytecode (http://www.juliasoft.com) and we have analyzed some real-life
benchmark programs. We provide the names of these latter together with their identi-
fication numbers used in Fig. 8 and 9. The majority of our benchmarks are Android
applications: Mileage (15), OpenSudoku (19), Solitaire (26) and TiltMazes1 (29); Chime-
Timer (4), Dazzle (7), OnWatch (18) and Tricorder2 (31); TxWthr3 (32). There are also
some Java programs: JFlex (12) is a lexical analyzers generator4; Plume is a library by

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://jflex.de

http://f-droid.org/repository/browse/
http://moonblink.googlecode.com/svn/trunk/
http://typoweather.googlecode.com/svn/trunk/
http://jflex.de


Definite Aliasing Analysis 87

0 

100 

200 

300 

400 

500 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

RUNTIME WITHOUT ALIASING ANALYSIS RUNTIME WITH ALIASING ANALYSIS 

0 

50 

100 

150 

200 

250 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

NULLNESS WITHOUT ALIASING ANALYSIS NULLNESS WITH ALIASING ANALYSIS 

Fig. 8. Comparison of the number of warnings (possible dereference of null, possibly passing
null to a library method) produced by the nullness tool of Julia (top) and of the run-times (in
seconds) of that tool (bottom) when our definite aliasing analysis is present and absent
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Fig. 9. Comparison between number of warnings (possible divergence of constructors or meth-
ods) produced by the termination tool of Julia (top) and between run-times (in seconds) of that
tool (bottom) when our definite aliasing analysis is present and absent

Michael D. Ernst5; Nti (17) is a non-termination analyzer by Étienne Payet6; Lisimplex
(13) is a numerical simplex implementation by Ricardo Gobbo7. The others are sample
programs from the Android 3.1 distribution by Google.

5 http://code.google.com/p/plume-lib
6 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
7 http://sourceforge.net/projects/lisimplex

http://code.google.com/p/plume-lib
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex
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Definite expression aliasing analysis is used to support Julia’s nullness and termina-
tion analyses. In particular, we use our analysis at the then branch of each comparisson
if (v!=null) to infer that the definite aliases of v are non-null there, and at each as-
signment w.f=exp to infer that expressions E.f are non-null when exp is non-null
and when E is a definite alias of w whose evaluation does not read nor write f. More-
over, we use it to infer symbolic upper or lower bounds of variables whenever we have
a comparison such as x< y: all definite alias expressions of y (resp. x) are upper (resp.
lower) bounds for x (resp. y). This is important for termination analysis.

Figures 8 and 9 report the precision and the run-time of our nullness and termina-
tion analyses on a Linux quad-core Intel Xeon machine running at 2.66GHz, with 8
gigabytes of RAM. We performed these analyses first without and then with the help of
our definite expression aliasing analysis. This way, we notice how the tools’ precision
changes. A clear difference between the two runs is that the run-time of the nullness and
termination analyses increased by 9.88% and 12.57% respectively, when the definite ex-
pression aliasing analysis is activated. On the other hand, the precision of both analyses
is improved in the presence of the definite expression aliasing analysis: 45.98% and
11.44% less warnings are produced by the nullness and termination analyses, respec-
tively. These improvements are well worth the extra time required for the analyses.

6 Conclusion

Our expression aliasing analysis is a constraint-based definite analysis for Java byte-
code. To the best of our knowledge, it is the first definite aliasing analysis dealing with
Java bytecode programs and with aliases to expressions. Our experimental evaluation
shows the benefits of our new analysis for the nullness and termination analyses of Julia.
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Using Semantics Specified
in Maude to Generate Test Cases�
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Abstract. Testing is one of the most important and most time-consuming tasks
in the software developing process and thus techniques and systems to generate
and check test cases have become crucial. For these reasons, when specifying
a prototype of a programming language it may be very useful to have a tool
that, beyond testing the semantics of the program, generates test cases for the
programs written in the specified language. In this way, we could use the test
cases generated in the prototyping stage to check the implementation. To build
these prototypes we can use rewriting logic, which has been proposed as a logical
framework where other logics can be represented, and as a semantic framework
for the specification of languages and systems.

In this paper we propose a technique to generate test cases for programs writ-
ten in programming languages specified in Maude, although it can be generalized
to similar languages. In this way Maude becomes an even more powerful proto-
typing language providing a test-case generator (in addition to an interpreter of
the language). The test cases can be generated in two ways: computing a set of test
cases using all the instructions required by a given coverage criterion or trying to
disprove a property over the program. This methodology has been implemented
in a Maude prototype and its use is described by means of an example.

Keywords: testing, semantics, Maude, coverage, property-based, narrowing.

1 Introduction

Testing is a technique for checking the correctness of programs by means of execut-
ing several inputs and studying the obtained results. Testing is one of the most impor-
tant stages of the software-development process, but it also is a very time-consuming
and tedious task, and for this reason several efforts have been devoted to automate
it [12,3]. Basically, we can distinguish two different approaches to testing: white-box
testing [9,17], that uses the specific statements of the system to generate the most appro-
priate test cases, and black-box testing [26,10,3], that considers the system as a black
box with an unknown structure and where a specification of the system is used to gener-
ate the test cases and check their correctness. When using white-box testing we can also
distinguish between generating ground test cases that are later executed and using test
cases with variables that must be refined by using the program. From the programming-
languages prototyping point of view, it would be interesting to generate test cases for
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programs written in the programming language being prototyped, instead of the stan-
dard approach which generates test cases for the semantics of the language. That is, if
we define, for example, the semantics of Java in a programming language providing
a test-case generator, we could use it for testing that the semantics are defined in the
appropriate way (e.g., the while loop works properly in general), but we could not use
it for testing a program written in Java and executed used this semantics (e.g., does my
sorting method work?). The advantages of having this kind of tool are that (i) test cases
can be obtained in the prototyping stage, executed, and used again once the real system
is implemented, and (ii) since several well-known languages have been already repre-
sented in Maude [15], we can generate test cases for them. The technique presented
here—which can be adapted to any programming language providing features similar
to reflection and narrowing—is, to the best of our knowledge, the first one applying this
“meta-level” approach.

We are especially interested in prototypes of programming languages specified in
Maude [5], a high-level language and high-performance system supporting both equa-
tional and rewriting logic computation. Maude modules correspond to specifications in
rewriting logic [14], a simple and expressive logic which allows the representation of
many models of concurrent and distributed systems. This logic is an extension of equa-
tional logic; in particular, Maude functional modules correspond to specifications in
membership equational logic [2], which, in addition to equations, allows the statement
of membership axioms characterizing the elements of a sort. Rewriting logic extends
membership equational logic by adding rewrite rules, that represent transitions in a con-
current system. Maude system modules are used to define specifications in this logic.
The current version of Maude supports a limited version of narrowing [25], a general-
ization of term rewriting that allows to execute terms with variables by replacing pattern
matching by unification, for some unconditional rewriting logic theories without mem-
berships. As a semantical framework, Maude has been used to specify the semantics
of several languages, such as LOTOS [27], CCS [27], or C [7]. These researches, as
well as several other efforts to describe a methodology to represent the semantics of
programming languages in Maude, led to the rewriting logic semantics project [15],
which presents a comprehensive compilation of these works, and to the development
of K [24], a programming language built upon a continuation-based technique that pro-
vides mechanisms (i) to ease language definitions and (ii) to translate these definitions
into Maude, allowing the programmer to uses its analysis tools.

In previous works we have presented a tool to generate test cases for Maude mod-
ules [19,20]. This kind of tool generates test cases in different ways: they can try to use
all the equations, membership axioms, and rules required by a given coverage criterion;
they can try to falsify a given property; or they can check whether a given Maude sys-
tem module, the implementation, performs the same actions as another Maude system
module, the specification, which has been previously tested and debugged. However,
when specifying other programming languages the user could test the Maude specifi-
cation but not the programs written in that programming language. In this paper we
present a methodology for generating test cases for the programming languages speci-
fied in Maude. In this way, one of the main features of Maude, providing an interpreter
of the language being described for free (obtained because Maude specifications are
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executable) is now extended with a test-case generator for the language being specified.
This tool computes test cases (i) trying to cover all the statements of the sort indicated
by the user (as we will explain later, this is known as global branch coverage), what
means that he can e.g. try to cover all the assignments in imperative languages or all the
equations in functional languages; and (ii) trying to disprove a property over the pro-
gram. As an extra feature obtained from the coverage approach, we can perform static
analysis in the programs written in these languages and check whether all the statements
are reachable, that is, if the program contains dead code.

The rest of the paper is organized as follows: Section 2 presents the related work and
the differences with our approach. Section 3 introduces Maude and narrowing, while
Section 4 describes the methodology followed to test programs whose semantics has
been previously specified in Maude. Section 5 shows how this approach has been im-
plemented in a Maude prototype by means of an example. Finally, Section 6 concludes
and outlines the future work. The source code of the tool, examples, related papers, and
much more information is available at http://maude.sip.ucm.es/testing/ .

2 Related Work

Different approaches to testing have been proposed in the literature. We present in this
section the most similar approaches to ours: testing of imperative languages following
a declarative approach (in the sense that they use a methodology initially designed for
declarative languages) and testing using symbolic execution approaches (like narrow-
ing). We thus rule out from the picture other interesting approaches like conformance
testing [26], which checks that an implementation performs the same actions as a given
specification, because it is very different from the ideas presented here, although we
consider it an interesting subject of future work. Correspondingly, we do not include
the verification of security protocols [13], that symbolically explore the state space try-
ing to find a flaw in the protocol, because they focus on a very specific problem.

An important example of test-case generator initially developed for a functional lan-
guage that has been extended to imperative languages is Quickcheck [4], a tool devel-
oped for Haskell specifications where the programmer writes assertions about logical
properties that a function should fulfill; test cases are randomly generated by using the
constructors of the data type to test and attempt to falsify these assertions. Note that
these test cases are just ground terms used to check whether the properties stated by
the user hold. The project, started in 2000, has been extended to generate test cases for
several languages such as Java, C++, Erlang, and several others following the same ap-
proach. Quickcheck has also inspired other tools like PropEr [18], a test case generator
for Erlang, although we will focus our comparison on Quickcheck.

An interesting symbolic approach is applied by Lazy Smallcheck [23] (an improve-
ment of a previous system called SparseCheck), a library for Haskell to test partially-
defined values that uses a mechanism similar to narrowing to test whether the system
fulfills some requirements. Another way of achieving symbolic execution in a generic
way is by considering that the statements in the program under test introduce con-
straints on the variables, an approach followed by PET (Partial Evaluation-based Test
Case Generation) [11], that uses Constraint Logic Programming to generate test cases
satisfying some coverages on object-oriented languages (focusing on Java bytecode).

http://maude.sip.ucm.es/testing/
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Table 1. Comparison of different test-case generators

Quickcheck Lazy Smallcheck PET MSTCG
Tested language Haskell, C++, Languages

Java, Erlang, Haskell Java bytecode specified
and others in Maude

Type of testing Property-based Property-based Code coverage Property-based
and code coverage

Technique Random testing Narrowing Constraints Narrowing
Other Shrinking Shrinking Breakpoints Shrinking

remarks Best performance Research tool GUI Generic approach
(industrial tool) More coverages Research tool

The comparison between these tools and ours (called MSTCG, from Maude Seman-
tical Test-Case Generator) is outlined in Table 1. Note that we do not include our own
test-case generator for Maude specifications [19], because it would share part of the
features of Quickcheck and Lazy Smallcheck, and thus it would not add any new in-
formation. The table presents the tested language, the focus of the test cases generated
(property-based or code coverage), the mechanism used to generate them, and some
interesting remarks about them; we discuss in the following the main points of this
comparison. Quickcheck is applied to several different languages; however, the tool for
testing each language is implemented specifically and thus it is not generic. From the
features point of view, it provides property-based testing and, since it is an industrial
tool with several heuristics, it presents a better performance than our tool. On the other
hand, an advantage of our tool is the computation of test cases fulfilling a coverage cri-
terion, allowing the user to test the specification by checking test cases “by hand” (that
is, against his intended interpretation) even when no properties over the specification are
stated. Finally, Quickcheck implements a mechanism called shrinking that computes,
for a test-case disproving the property, the smaller one (in terms of constructors) that
also disproves it. Test cases obtained by using symbolic execution provide a similar re-
sult (for both code coverage and property-based testing in our case), due to the fact that
they perform the smallest amount of modifications to the initial terms in order to exe-
cute the given program; in this way, we are sure that the test cases are the smallest ones.
Lazy Smallcheck is very similar to our tool in the sense that both are narrowing-based
experimental tools that focus on research rather than in efficiency, and thus they present
a similar performance; however, this tool is not generic and only applies property-based
testing. Finally, PET is not generic and does not allow the user to state properties over
the program. However, it is more mature than MSTCG and presents many advantages:
its provides a graphical user interface, which allows the user to see which commands
are covered with each test case, put breakpoints in the code that are later used for the
tool, and many other options; and offers more coverage strategies than our approach.

Summarizing, an important point of our approach is that it is generic, in the sense
that any user can define the semantics of a programming language and then generating
test cases for its programs; our tool is to the best of our knowledge the first one of
this kind. It is also important to note that we provide two different techniques: code
coverage and property-based testing, while most tools only provide one of them. The
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strong point of our tool reveals its main weaknesses: (i) it is necessary to specify in
Maude the semantics of the language and (ii) the performance of the tool is low due to
the intensive use of metalevel computation, which takes a great amount of time.

3 Preliminaries

We present in this section the Maude system and its narrowing mechanisms [6].

3.1 Maude

Maude modules are executable rewriting logic specifications. Maude functional mod-
ules [5, Chap. 4], introduced with syntax fmod ... endfm, are executable member-
ship equational specifications that allow the definition of sorts (by means of keyword
sort(s)); subsort relations between sorts (subsort); operators (op) for building val-
ues of these sorts, giving the sorts of their arguments and result, and which may have
attributes such as being associative (assoc) or commutative (comm), for example; mem-
berships (mb) asserting that a term has a sort; and equations (eq) identifying terms.
Both memberships and equations can be conditional (cmb and ceq). Maude system
modules [5, Chap. 6], introduced with syntax mod ... endm, are executable rewrite
theories. A system module can contain all the declarations of a functional module and,
in addition, declarations for rules (rl) and conditional rules (crl).

We introduce Maude modules with an example showing how to define the evalua-
tion semantics of a simple imperative language; the complete specification of this lan-
guage is presented in [27]. In the following, we will call this programming language
the object language to distinguish it from Maude; we will also use this name in general
to refer to any programming language specified in Maude. Assume we have defined
in a module called EVALUATION-EXP-EVAL the syntax of a language with the empty
instruction skip, assignment, If statement, While loop, and composition of instruc-
tions, all of them of sort Com; some simple operations over expressions and Boolean
expressions such as addition and equality; and a state, of sort ST, mapping variables
to values. Using this module we specify the evaluation semantics of this language in
EVALUATION-SEMANTICS, that first defines a Program as a pair of a term of sort Com
and a state:

(mod EVALUATION-SEMANTICS is
pr EVALUATION-EXP-EVAL .
op <_,_> : Com ST -> Program .

The semantics for the assignment are described by the rule AsR, that computes the
value of the expression in the condition and then updates the state of the variables by
substituting the value in the variable with the one computed in the condition:

crl [AsR] : < X := e, st > => < skip, st[v / X] >
if < e, st > => v .

The rules IfR1 and IfR2 describe the behavior of the If statement. If the boolean
condition be reaches the value T (which stands for true) then we execute the Then
branch and return the reached state st’; otherwise, the Else part is executed:
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crl [IfR1] : < If be Then C Else C’, st > => < skip, st’ >
if < be, st > => T /\

< C, st > => < skip, st’ > .
crl [IfR2] : < If be Then C Else C’, st > => < skip, st’ >
if < be, st > => F /\

< C’, st > => < skip, st’ > .

Analogously, WhileR1 and WhileR2 describe the behavior of the while loop:
crl [WhileR1] : < While be Do C, st > => < skip, st >
if < be, st > => F .
crl [WhileR2] : < While be Do C, st > => < skip, st’ >
if < be, st > => T /\

< C ; (While be Do C), st > => < skip, st’ > .

Finally, the rule ComR combines two different computations, using the state reached
in the first one to continue with the second one:
crl [ComR] : < C ; C’, st > => < skip, st’’ >
if < C, st > => < skip, st’ > /\

< C’, st’ > => < skip, st’’ > .
endm)

Given this semantics, we can now write and execute programs of the form:
< If Equal(x, 0) Then y := 0

Else y := 1 ;
If Equal(w, 0) Then z := 0

Else z := 1, st:ST >

where st is a free variable of sort ST (the state) that will be instantiated by the testing
process. We can see now the differences between testing the Maude specification and
testing the imperative program executed by Maude.1 Assuming that in both Maude and
our imperative language the coverage criteria is global branch coverage [9], which re-
quires that all the reachable statements (membership, equations, and rules in the Maude
case; assignments, If, and While statements otherwise) are executed, we would obtain
the following results: the state x = 0, w = 1 would cover all the possible Maude rules
(AsR, IfR1, IfR2, and ComR rules, the rest of the rules are not reachable) but only covers
two assignments y := 0 and z := 1 (and, obviously, the two If statements), that is,
we would need another state (e.g. x = 1, w = 0) to meet the criterion. It is easy to see
that, although the techniques for covering Maude specifications and for programs writ-
ten in another language previously specified in Maude are similar, the rules that must be
applied are different, and thus it is necessary to specify the kind of statements we want
to cover, manipulate the object program to “mark” these statements,2 and indicate for
each Maude rule the statements that are executed. We will see the details in Section 4.

1 In fact, test case generation is even more different between Maude and any other program
written in the given object language, because in Maude we would start with a term containing
only variables, that is, the initial term would be < prog:Com, st:ST >. However, we present
the differences over this partially instantiated term to show that even setting the program the
required coverage is different.

2 In this specific example we want to cover assignments, but note that this methodology also
works for other languages and even other paradigms. For example, in Haskell-like programs
we would want to cover all the cases for all the reachable functions.
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3.2 Narrowing

Narrowing [25,8,16] is a generalization of term rewriting that allows free variables in
terms and replaces pattern matching by unification in order to reduce these terms. It
was first used for solving equational unification problems [22] and then generalized
to deal with problems of symbolic reachability. Similarly to rewriting, where at each
rewriting step one must choose which subterm of the subject term and which rule of the
specification are going to be considered, at each narrowing step one must choose which
subterm of the subject term, which rule of the specification, and which instantiation of
the variables of the subject term and the rule’s lefthand side are going to be considered.
The difference between a rewriting step and a narrowing step is that in both cases we
use a rewrite rule l ⇒ r to rewrite t at a position p, but narrowing unifies the lefthand
side l and the chosen subject term t before actually performing the rewriting step, while
in rewriting this term must be an instance of l (i.e., only matching is required). Using
this narrowing approach, we can obtain a substitution that, applied to an initial term that
contains variables, generates the most general term that can apply the traversed rules.

We denote by t �σ
θ t ′, with σ = q1; . . . ;qn a sequence of labels, the succession of

narrowing steps applying (in the given order) the statements q1; . . . ;qn that leads from
the initial term t (possibly with variables) to the term t ′, and where θ is the substi-
tution used by this sequence, which results from the composition of the substitutions
obtained in each narrowing step. The latest version of Maude includes an implemen-
tation of narrowing for unconditional free, C, AC, or ACU theories in Full Maude [6].
We have improved this implementation by using the techniques described in [20] to use
membership axioms and conditional statements.

4 Using Semantics to Generate Test Cases

We describe in this section the methodology to test programs whose semantics has been
previously specified in Maude. It consists of three steps: identifying the appropriate sort
of statements that must be covered, manipulating the program to mark these statements,
and modifying the Maude rules to indicate the statements applied by each of them. It is
important to state first that the coverage criterion applied to all the programs is global
branch coverage, that tries to apply all the reachable statements, as illustrated above.
Also note that some of the steps explained in this section will be later performed auto-
matically, as shown in Section 5. Note that this approach is only required for coverage
strategies, and hence property checking will be explained later.

The first step relies on the user to indicate the sort of statements that he wants to
cover. In our example, the user should mark Com, the sort for all the possible instructions
(skip, assignment, If conditional, and While loop) as this sort. The second step is
automatically performed by the tool, and consists of “marking” the given program and
each Maude rule with a unique identifier distinguishing the different statements. For
example, the program presented at the end of Section 3.1 would be marked as follows:3

3 In fact, an extra label for the whole program, which will be executed by an application of
the extraInfo-ComR rule, would also be computed. We do not show it here for the sake of
readability.
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< 1If Equal(x, 0)
Then 2y := 0
Else 3y := 1 ;
4If Equal(w, 0)
Then 5z := 0
Else 6z := 1, st:ST>

where the two conditional statements and the four assignments have been labeled with
natural numbers indicating that they are statements of the sort given by the user. The
test-case generator will look for states executing all of these commands. In the same
way, rules have to be modified to deal with this kind of terms by adding variables of
sort Nat (the predefined sort for natural numbers) to each statement of the given sort. In
this way, the rule IfR1 is extended as follows:

crl [extraInfo-IfR1] : <nIf be Then n′C Else n′′C’, st> => <skip, st’>
if < be, st > => T /\

< n′C, st > => < skip, st’ > .

Note that extended rules are renamed by using the prefix extraInfo. We can see now
in the extraInfo-IfR1 rule above that it contains several labeled statements, but not
all of them are executed by the rule: the Else branch is never executed, the Then branch
is executed in the conditions (and thus the execution of this statement is in charge of the
the assignment rule, which will indicate that this statement has been used), and finally
the whole If statement is executed. As we will show in the next section, we provide
a semi-automatic approach to relate rules and executed statements: the tool computes
a mapping following a fixed strategy, that the user can check and edit it if required.
Finally, note that the initial term must also be provided by the user. It must contain at
least one variable, indicating the values of the variables through the execution of the
program, which is instantiated to generate the test cases.

We can use now narrowing to our labeled initial term. Assuming that initial is the
labeled term shown above, we can apply the following narrowing step:

initial�extraInfo-ComR < skip, x = 0 y = 0 w = 0 z = 0 >

after applying the statements 1, 2, 4, and 5, where extraInfo-ComR is a rule that defines
the composition of statements by execution them in the conditions and then putting the
result in the righthand side of the rule. However, this step does not clarify the process
due to the fact that all the important steps are applied in the rewrite conditions. For
this reason, let’s see how the first If statement is executed (note here the importance
of transmitting the label information to the conditions, which requires a careful rule
transformation) by using a narrowing step with the rule extraInfo-IfR1 shown above:

< 1If Equal(x, 0) Then 2y := 0 Else 3y := 1, st >�IfR1

< skip, x = 0 st’ >

It is important to see that the mapping between rules and applied statements com-
puted by the tool indicates that extraInfo-IfR1 applies (covers) the statement labeled
with n in the transformed rule above, which refers to the complete If statement. In this
case n is bound to 1, and thus this rule is executing the first If statement. Again, most
of the information is developed in the rewrite conditions. Although we have not shown
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the rule for the equality, it is easy to see that it requires both values in Equal to be equal
to return T. Hence, in this step we really see how narrowing works, since thus far all
the rules have been applied by using matching instead of unification. In this case, unifi-
cation requires the state to contain the variable x mapped to the value 0, while another
state st’ remains:

< Equal(x, 0), st >�EqR1
st �→ x = 0 st’ < T, x = 0 st’ >

where EqR1 is the rule in charge of the positive case of Equal; note that this rule has not
been modified with respect to the original module because it does not contain statements
of sort Com, and thus its label does not use the extraInfo prefix. Once this first rewrite
condition of extraInfo-IfR1 holds, we try to fulfill to second one, that contains the
statement labeled with 2 in the initial term. Before using narrowing, the substitution
obtained in the previous step is applied:

< 2y := 0, x = 0 st’ >�AsR < skip, x = 0 y = 0 st’’ >

where the new state requires a simple application of narrowing to update the state that
we can omit. The main points in this step, which concludes the execution of the first
If statement, is that the statement labeled with 2 is executed and y = 0 added to the
state. The second If statement can be executed in a similar way to obtain the final state
x = 0 y = 0 w = 0 z = 0. Note that this is the final state reached after executing
the statements 1, 2, 4, and 5, and thus we need now to compute the initial one. For
this reason, our tool also returns the initial states, which consists of the term introduced
by the user with the variables instantiated with the substitution computed during the
narrowing process, in this case it would be st �→ x = 0 y = 0 w = 0 z = 0.

Given the explanation above for the variables, it may seem strange to have the vari-
ables y and z with value 0, since these variables may contain any value and it does not
affect the executed statements, and thus it deserves a careful explanation. In fact, the
rule in charge of updating the state checks whether the variable is already there. If it is
not in the state, what would force the state to be empty, then it is added and it would not
appear in the initial state, but in this case the next statements cannot be applied because
the state does not contain y and the process cannot continue. For this reason, we (as
well as the tool in the next section) have used the rule that forces the state to contain
the variable. Thus, at the end of the process, the term representing the initial state will
contain a value of the form y = N:Nat, with N:Nat a fresh variable. This variable is
instantiated, to ease the readability, with the smaller term of the appropriate sort, which
is the constant 0. The same happens with the remaining variable of sort ST, that would
be named st’’’’, which is substituted with the identity element for states, empty, and
thus disappears.

5 Maude Prototype

We briefly present in this section the Maude prototype and its main commands by using
the example in the previous sections. Much more information about the prototype can
be found at http://maude.sip.ucm.es/testing/.

http://maude.sip.ucm.es/testing/
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5.1 Code Coverage

Once all the modules have been introduced in Full Maude and the tool has been started,
we can indicate the module where testing must take place and the sort of the statements
that we want to cover with the following commands:

Maude> (semantics module EVALUATION-SEMANTICS .)
Module EVALUATION-SEMANTICS selected for semantics testing.
Maude> (set sort statements Com .)
Sort Com selected as sort of statements.

Once these commands are introduced the tool manipulates the rules in the (flattened)
EVALUATION-SEMANTICS module as described in the previous section. We can display
these modified rules with the command (show semantics rules .), but it is worth
seeing the map between the rules and the executed statements. The tool follows a simple
strategy to generate this map that consists of selecting as executed statement the first
term of the given sort found (i) in the lefthand side of the rule, traversed following
a breadth-first search in the tree representing the term; or (ii) in the conditions if the
lefthand side does not contain a term of this sort. Note that, although this strategy is
quite simple, it works very well in practice because, when several statements appear in
a term, the outermost is the one usually applied (e.g. to direct the execution of the inner
ones). The command in charge of showing this information is:

Maude> (show applied statements .)
The rule extraInfo-AsR :
crl < stmntIndx(X:Var := e:Exp,V$#0:Nat),st:ST >
=> < skip,st:ST[v:Num / X:Var]>
if < e:Exp,st:ST > => v:Num .
applies the statement
X:Var := e:Exp identified by the variable V$#0

...

which shows for each rule the associated statement, as in the extraInfo-AsR shown
above, where the new variables have the form V$# to avoid clashes with other variables
in the rule and the operator stmntIndx generates pairs of the given sort and variables.
When the tool fails to associate the appropriate information to a rule, the following
commands can be used:

Maude> (rule Q is not associated to any statement .)
The mapping for rule Q has been updated.
Maude> (rule Q is associated to VL .)
The mapping for rule Q has been updated.

where Q is a rule label and VL is the list of variables identifying the applied statements.
We can now introduce the program we want to test with the following command:

Maude> (object program init .)
Object program introduced.

where init has the form indicated in the previous section (a term with variables instead
of state). It will be reduced by using equations before labeling to allow the user to use
constants instead of big terms in the command line. Assuming that init is the program
described at the end of Section 3.1 and it is labeled as shown in Section 4 (which
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can be checked with the command (show object program .)), the tool can start the
test generation process. However, we may be interested in only covering some of the
statements of the initial coverage (e.g., because we want to know whether a specific one,
such as an exception, is reached). The user can modify the statements in the coverage
with:
Maude> (statements in coverage NL .)
The required coverage has been updated.

where NL is a list of natural numbers indicating the statements to be covered. When
all the options have been set, we can start the testing process. The current version of
the tool only supports, as explained in the previous section, the global branch coverage
strategy, and thus the following result is obtained:
Maude> (start semantics testing .)
2 test cases must be checked by the user:
The program reaches the state < skip, x = 0 y = 0 w = 0 z = 0 >

starting with the substitution st:ST |-> x = 0 y = 0 w = 0 z = 0
and covers the statements 1, 2, 4, 5
The program reaches the state < skip, x = 1 y = 1 w = 1 z = 1 >

starting with the substitution st:ST |-> x = 1 y = 0 w = 1 z = 0
and covers the statements 1, 3, 4, 6
All the statements were covered

Where the variables y and z appear in the initial state for the reasons given in the
previous section. The user would be now in charge of checking whether the reached
states are the expected ones. Remember that an important idea behind this tool is to
use the generated test cases during the prototyping stage to test programs written in the
programming language prototyped in Maude once it is implemented in other language.
In this case, we can introduce the values for the variables in the “real” language and
then check that the results obtained in both cases are equivalent.

5.2 Property-Driven Test-Case Generation

Another very useful way of testing a program is by defining a property and then trying
to find a state where the negation of the property holds, that is, where the property
does not hold. This generic scheme has been studied in [5, Chapter 12] when using
the Maude search command to check invariants; we apply the same idea here with
symbolic search. Note that, since we are just trying to check if the property holds in
all the reachable states we are not concerned about coverages, and thus the module
transformations presented above are not required, although the underlying narrowing
mechanism remains unchanged. It is also important to note that, as explained below, we
take conditions into account when performing this search, thus making this approach
much more powerful than the current narrowing search available in Maude.

The current command is an improvement of a previous command used in [20], where
we provided a command to check whether a property holds in a Maude specification
providing the name of the function we wanted to test, when dealing with functional
modules, or the sort under test, when working with system modules. We have modified
this command to accept terms partially instantiated that, as we have seen above, stand in
our case for programs written in some programming language specified in Maude. For
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the sake of example, we can state a very simple property over the program described
in the previous sections. We can define a function allEq that checks whether all the
variables in a state contain the same values. Since we use the negation of the property,
what we are really checking is that all the reachable states contain at least two different
values, which is incorrect, as we have seen in Section 4. The command for this kind of
testing is:

Maude> (semantics property reaches < skip, st’:ST > s.t. allEq(st’:ST) .)
The property does not hold.
The program reaches the state < skip, x = 0 y = 0 w = 0 z = 0 >

starting with the substitution st:ST |-> x = 0 y = 0 w = 0 z = 0

where the command mimics the standard search command available in Maude and
thus requires a pattern to wrap the reached state and a condition over that pattern;4

note that the initial state is introduced with the command described above for the object
program and thus it is not necessary. An interesting approach using this pattern would
consist of trying to match part of the program, for example related to loops, and then
check that some properties hold before and after the loop. In our case, the pattern is
< skip, st’:ST >, indicating that the program has finished, while the condition is
allEq(st’:ST). As expected, the tool has found a counterexample proving that the
property does not hold, showing the initial and final states.

Observe that, in this kind of analysis it is not necessary to extend the test case (if it
exists) to the implementation. We have proved the program is erroneous and must be
modified; once it is fixed and the property holds, we could use global branch coverage
to test all its possible branches. It is also important to note that, as the rest of testing ap-
proaches, the ones used by our tool are not complete, in the sense that the program may
contain a bug and it cannot be found. To palliate this problem the tool uses a bound in the
number of steps that can be modified by the user with (set narrowing depth N .),
with N a natural number, in order to traverse a bigger search space.

5.3 Implementation Notes

Exploiting the fact that rewriting logic is reflective, a key distinguishing feature of
Maude is its systematic and efficient use of reflection through its predefinedMETA-LEVEL
module [5, Chap. 14], a feature that makes Maude remarkably extensible and that al-
lows many advanced metaprogramming and metalanguage applications. This power-
ful feature allows access to metalevel entities such as specifications or computations
as usual data. In this way, we can manipulate the modules introduced by the user, di-
rect the narrowing process, and implement the input/output interactions in Maude it-
self. More specifically, we are interested in the metaNarrowSearchPath function that,
given a term and a bound on the number of narrowing steps, returns all the possible
paths starting from this term, the used substitutions, and the applied rules. We use this
command to perform a breadth-first search of the state space. Moreover, the test-case
generator is implemented on top of Full Maude [5, Chap. 18], a tool completely writ-
ten in Maude which includes features for parsing, storing modules, and pretty-printing

4 Obviously, if the pattern contains enough information about the reached state the condition
can be nil.
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terms, improving the input/output interaction. Although conceptually our tool uses two
levels of reflection (the meta-represented Maude module standing for the semantics of a
programming language and the program written in this language, which is used to gener-
ate the test cases; this second level is the novelty of our approach), at the implementation
level one reflection level is enough.

It is worth mentioning some important implementation issues. First, and following
the module transformation described in [20], we consider that equations are oriented
from left to right and thus can be transformed into rules (analogously transforming
equational conditions into rewrite conditions with fresh variables), allowing the nar-
rowing process to use equations to refine the variables. Moreover, the current narrowing
commands available in Maude only work with unconditional rules, which prevents us
from using this kind of rules. Since this constraint would exclude most of the language
specifications developed in Maude thus far, we use a mechanism [20] that checks by
using narrowing, for each narrowing step, the rewrite conditions (remember that, as
said above, equational conditions become rewrite conditions), and adds the obtained
substitution to the one obtained with the body of the rule. In this way we can extend the
substitution obtained for the rule with the extra variables that appear in rewrite condi-
tions and may appear, as shown in the example at the end of Section 4, in the righthand
side of the rule. This extension makes the search command used in the previous sec-
tion more powerful than the current narrowing search available in Maude. Finally, we
provide a rule-based definition for some predefined functions, such as _<_ for natural
numbers. They follow the standard definitions distinguishing the different constructors
(0 and successor) of these functions and allow us to apply our technique to a much
wider range of programming languages, that use most of these functions in conditions.

6 Concluding Remarks and Ongoing Work

We have presented a methodology to test programs written in any programming lan-
guage whose semantics has been previously defined. In this way we propose a novel
way to generate test-cases using a meta-level approach, instead of just testing the given
semantics. We use this approach to improve the Maude features as prototyping language
because it provides now, in addition to an interpreter of the language being specified, a
test-case generator for programs written in that language. These test cases can be also
used after prototyping to check that the implementation follows the specification or to
detect dead code. The process to accomplish this generic coverage is semi-automatic:
the user is in charge of indicating the sort of statements he wants to cover and of check-
ing that the rules execute the statements inferred by the tool, modifying them if needed;
the rest of module manipulations is automatically performed by the tool. Finally, we
also allow the user to check whether a property holds in the program.

The work presented in this paper offers a good basis for potential extensions and
enrichment that can improve its usability and generality. We are currently working
on a generic way to modify the output generated by the tool; our goal is to gener-
ate JUnit-like [1] output for each programming language, i.e., an executable program
with assertions written in the object language that allows the user to really test its pro-
gram in the original language. This idea would be an important step to perform testing



Using Semantics to Generate Test Cases 103

against the specification [10] in a natural and automatic way. Similarly, it is interest-
ing to study how to combine conformance testing [26] with our approach, that is, how
to check that transitions used in the specification are replicated in the implementation.
Moreover, expanding our approach to deal with program definitions specified in the K
framework [24] would also be very useful. This option is not available in the current
version of the tool due to the internal transformations of K, which modifies the form
of the rewrite rules. We also want to provide more coverage criteria in addition to the
global branch coverage criterion presented in this work. However, we require generic
criteria, that is, criteria that can be applied independently of the paradigm of the object
language, which makes the implementation of these criteria far more complicated than
for specific programming languages. It would also be interesting to see how the random
testing approach, successfully followed in other tools like Quickcheck [4], works here.
Furthermore, we plan to extend our declarative debugger [21], that currently presents
the same problem as the previous version of the test-case generator: it can only debug
Maude specifications, but not the object language. Our aim is to develop a universal
declarative debugger that takes as input a program in any object language specified in
Maude, applies the test-case generator presented in this work and, if any of the test
cases reveal an error, debug it with this new debugger. Finally, we want to study how
the test-case generator works for languages with parallelism and synchronization. We
expect the narrowing mechanism to traverse all the possible paths and check, following
the ideas of property-based testing, whether the program fulfills some requirements.
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Abstract. We propose a locally nameless representation for Launch-
bury’s natural semantics for lazy evaluation. Names are reserved for free
variables, while bound variable names are replaced by indices. This avoids
the use of α-conversion and Barendregt’s variable convention, and facil-
itates proof formalization. Our definition includes the management of
multi-binders to represent simultaneous recursive local declarations. We
use cofinite quantification to express the semantic rules that require the
introduction of fresh names, but we show that existential rules are ad-
missible too. Moreover, we prove that the choice of names during the
evaluation of a term is irrelevant as long as they are fresh enough.

1 Motivation

Call-by-need evaluation, which avoids repeated computations, is the semantic
foundation for lazy functional programming languages like Haskell or Clean.
Launchbury defines in [7] a natural semantics for lazy evaluation where the set
of bindings, i.e., (variable, expression) pairs, is explicitly managed to make pos-
sible their sharing. In order to prove that this lazy semantics is correct and
computationally adequate with respect to a standard denotational semantics,
Launchbury introduces some variations in his natural semantics. On the one
hand, functional application is modeled denotationally by extending the envi-
ronment with a variable bound to a value. This new variable represents the
formal parameter of the function, while the value corresponds to the actual ar-
gument. For a closer approach of this mechanism, applications are carried out in
the alternative semantics by introducing indirections instead of by performing
the β-reduction through substitution. On the other hand, the update of bindings
with their computed values is an operational notion without counterpart in the
standard denotational semantics, so that the alternative natural semantics does
no longer update bindings and becomes a call-by-name semantics.

Unfortunately, the proof of the equivalence between the lazy natural semantics
and its alternative version with indirections and nonupdate is detailed nowhere,
and a simple induction turns out to be insufficient. Intuitively, both reduction
systems should produce the same results. However, this cannot be directly estab-
lished since final values may contain free variables which are dependent on the
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context of evaluation, which is represented by the heap of bindings. The changes
introduced by the alternative semantics do deeply affect the heaps. Although
indirections and “duplicated” bindings (a consequence of no updating) do not
add relevant information to the context, it is awkward to prove this fact.

In the usual representation of the lambda-calculus, i.e., with variable names
for free and bound variables, terms are identifed up to α-conversion. Dealing
with α-equated terms usually implies the use of Barendregt’s variable convention
[3] to avoid the renaming of bound variables. However, the use of the variable
convention in rule inductions is sometimes dubious and may lead to faulty results
(as it is shown by Urban et al. in [15]). Looking for a system of binding more
amenable to formalization, we have chosen a locally nameless representation (as
presented by Charguéraud in [5]). This is a mixed notation where bound variable
names are replaced by de Bruijn indices [6], while free variables preserve their
names. Hence, α-conversion is no longer needed and variable substitution is easily
defined because there is no danger of name capture. Moreover, this representation
is suitable for working with proof assistants like Coq [4] or Isabelle [9].

The present work is the first step to prove formally the equivalence between
Launchbury’s semantics and its alternative version. We start by defining a locally
nameless representation of the λ-calculus extended with recursive local declara-
tions. Then we express Launchbury’s rules in the new style and present several
properties of the reduction system that are useful for the equivalence proof.

Our concern for reproducing and formalizing the proof of this equivalence is
not arbitrary. Launchbury’s semantics has been cited frequently and has inspired
many further works as well as several extensions [2,8,13,17], where the corre-
sponding adequacy proofs have been obtained by just adapting Launchbury’s
proof scheme. We have extended ourselves the λ-calculus with a new expression
that introduces parallelism when performing functional applications [11]. This
parallel application creates new processes to distribute the computation; these
processes exchange values through communication channels. The corresponding
adequacy property relies on the adequacy of Launchbury’s natural semantics.

The paper is structured as follows: In Section 2 we present the locally nameless
representation of the lambda calculus extended with recursive local declarations.
In Section 3 we describe a locally nameless translation of Launchbury’s natural
semantics for lazy evaluation [7], together with the corresponding regularity,
introduction and renaming lemmas. The proofs (by hand) of these lemmas and
other auxiliary results are detailed in [12]. In Section 4 we comment on some
related work. The last two sections are devoted to conclusions and future work.

2 The Locally Nameless Representation

The language described by Launchbury in [7] is a normalized lambda calculus
extended with recursive local declarations. We reproduce the restricted syntax in
Figure 1. Normalization is achieved in two steps. First an α-conversion is carried
out so that all bound variables have distinct names. In a second phase, argu-
ments for applications are enforced to be variables. These static transformations
simplify the definition of the reduction rules.
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x ∈ Var
e ∈ Exp ::= x | λx.e | (e x) |

let {xi = ei}ni=1 in e

Fig. 1. Restricted named syntax

x ∈ Id i, j ∈ N
v ∈ Var ::= bvar i j | fvar x
t ∈ LNExp ::= v | abs t | app t v |

let {ti}ni=1 in t

Fig. 2. Locally nameless syntax

We give the corresponding locally nameless representation by following the
methodology summarized in [5]:

1. Define the syntax of the extended λ-calculus in the locally nameless style.
2. Define the variable opening and variable closing operations.
3. Define the free variables and substitution functions, as well as the local

closure predicate.
4. State and prove the properties of the operations on terms that are needed

in the development to be carried out.

2.1 Locally Nameless Syntax

The locally nameless (restricted) syntax is shown in Figure 2. Var stands now
for the set of variables, where bound variables and free variables are distin-
guished. The calculus includes two binding constructions: λ-abstraction and
let-declaration. Being the latter a multi-binder, we follow Charguéraud [5] and
represent bound variables with two natural numbers: The first number is a de
Bruijn index that counts how many binders (abstraction or let) one needs to
cross to the left to reach the corresponding binder for the variable, while the
second refers to the position of the variable inside that binder. Abstractions are
seen as multi-binders that bind one variable; thus, the second number should be
zero. In the following, a list like {ti}ni=1 is represented as t, with length |t| = n.

Example 1. Let e ∈ Exp an expression in the named representation:

e ≡ λz.let x1 = λy1.y1, x2 = λy2.y2, x3 = x in (z x2).

The corresponding locally nameless term t ∈ LNExp is:

t ≡ abs (let abs (bvar 0 0), abs (bvar 0 0), fvar x in app (bvar 1 0) (bvar 0 1)).

Notice that x1 and x2 denote α-equivalent expressions in e. This is more
clearly seen in t, where both expressions are represented with syntactically equal
terms. �

As bound variables are nameless, the first phase of Launchbury’s normalization
is unneeded. However, application arguments are still restricted to variables.
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{k → x}(bvar i j) =

{
fvar (List.nth j x) if i = k ∧ j < |x|
bvar i j otherwise

{k → x}(fvar x) = fvar x
{k → x}(abs t) = abs ({k + 1 → x} t)
{k → x}(app t v) = app ({k → x} t) ({k → x} v)
{k → x}(let t in t) = let ({k + 1 → x} t) in ({k + 1 → x} t)

where {k → x} t = List.map ({k → x} ·) t.

Fig. 3. Variable opening

2.2 Variable Opening and Variable Closing

Variable opening and closing are the main operations to manipulate locally
nameless terms. We extend to let the definitions given by Charguéraud in [5].1

To explore the body of a binder (abstraction or let), one needs to replace
the corresponding bound variables by fresh names. In the case of an abstraction
abs t the variable opening operation replaces in t with a (fresh) name every
bound variable which refers to the outermost abstraction. Analogously, to open
let t in t we provide a list of |t| distinct fresh names to replace the bound vari-
ables that occur in t and in the body t which refer to this particular declaration.

Variable opening is defined by means of a more general function {k → x}t
(Figure 3), where the number k represents the nesting level of the binder to be
opened, and x is a list of pairwise-distinct identifiers in Id . Since the level of the
outermost binder is 0, variable opening is defined as: tx = {0→ x}t. We extend

this operation to lists of terms: t
x
= List.map (·x) t.

The last definition and those in Figure 3 include some operations on lists.
We use an ML-like notation. For instance, List.nth j x represents the (j +1)th

element of x,2 and List.map f t indicates that the function f is applied to every
term in the list t. In the rest of definitions we will use similar list operations.

Example 2. Let t ≡ abs (let bvar 0 1, bvar 1 0 in app (abs bvar 2 0) (bvar 0 1)).
Hence, the body of the abstraction is:

u ≡ let bvar 0 1, bvar 1 0 in app (abs bvar 2 0 ) (bvar 0 1).

But then in u the bound variables referring to the outermost abstraction (shown
squared) point to nowhere. Therefore, we consider u[x] instead of u, where

u[x] = {0→ x}(let bvar 0 1, bvar 1 0 in app (abs bvar 2 0) (bvar 0 1))
= let{1→ x}(bvar 0 1, bvar 1 0) in{1→ x}(app (abs bvar 2 0)(bvar 0 1))
= let bvar 0 1, fvar x in app (abs {2→ x}(bvar 2 0)) (bvar 0 1)
= let bvar 0 1, fvar x in app (abs fvar x) (bvar 0 1)

�
1 Multiple binders are defined in [5]. Two constructions are given: One for non-

recursive local declarations, and another for mutually recursive expressions. Yet both
extensions are not completely developed.

2 Elements in lists are numbered starting with 0 to match bound variables indices.
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{k ← x}(bvar i j) = bvar i j

{k ← x}(fvar x) =

{
bvar k j if ∃j : 0 ≤ j < |x|.x = List.nth j x
fvar x otherwise

{k ← x}(abs t) = abs ({k + 1 ← x} t)
{k ← x}(app t v) = app ({k ← x} t) ({k ← x} v)
{k ← x}(let t in t) = let ({k + 1 ← x} t) in ({k + 1 ← x} t)

where {k ← x} t = List.map ({k ← x} ·) t.

Fig. 4. Variable closing

Inversely to variable opening, there is an operation to transform free names into
bound variables. The variable closing of a term is represented by \xt, where
x is the list of names to be bound (recall that the names in x are distinct).
The definition of variable closing is based on a more general function {k ← x}t
(Figure 4), where k indicates the level of nesting of binders. Whenever a free
variable fvar x is encountered, x is looked up in x. If x occurs in position j,
then the free variable is replaced by the bound variable bvar k j, otherwise it
is left unchanged. Variable closing is then defined as \xt = {0 ← x}t. And its
extension to lists is: \xt = List.map (\x·) t.

Example 3. Now we close the term obtained by opening u in Example 2.
Let t ≡ let bvar 0 1, fvar x in app (abs fvar x) (bvar 0 1).

\xt = {0← x}(let {bvar 0 1, fvar x} in app (abs (fvar x)) (bvar 0 1))
= let {1← x}(bvar 0 1, fvar x)
in {1← x}(app (abs fvar x) (bvar 0 1))

= let bvar 0 1, bvar 1 0 in app (abs {2← x}(fvar x)) (bvar 0 1)
= let bvar 0 1, bvar 1 0 in app (abs bvar 2 0) (bvar 0 1)

Notice that the closed term coincides with u, the body of the abstraction in
Example 2, although this is not always the case. �

2.3 Local Closure, Free Variables and Substitution

The locally nameless syntax in Figure 2 allows to build terms that have no
corresponding expression in Exp (Figure 1). For instance, in abs (bvar 1 5)
index 1 does not refer to a binder in the term. Well-formed terms, i.e., those
matching expressions in Exp, are called locally closed. To determine if a term
is locally closed one should check that every bound variable has valid indices,
i.e., that they refer to binders in the term. An easier method is to open with
fresh names every abstraction and let-declaration in the term to be checked,
and verify that no bound variable is reached. This checking is implemented with
the local closure predicate lc given in Figure 5.

Observe that we use cofinite quantification (as introduced by Aydemir et al. in
[1]) in the rules for the binders, i.e., abstraction and let. Cofinite quantification
is an elegant alternative to exist-fresh conditions and provides stronger induction
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lc var
lc (fvar x)

lc abs
∀x /∈ L ⊆ Id lc t[x]

lc (abs t)

lc app
lc t lc v

lc (app t v)
lc let

∀x|t| /∈ L ⊆ Id lc [t : t]
x

lc (let t in t)

lc list
List.forall (lc ·) t

lc t

Fig. 5. Local closure

lck-bvar
i < k ∧ j < List.nth i n

lc at k n (bvar i j)
lck-app

lc at k n t lc at k n v

lc at k n (app t v)

lck-fvar
lc at k n (fvar x)

lck-let
lc at (k + 1) [|t| : n] [t : t]

lc at k n (let t in t)

lck-abs
lc at (k + 1) [1 : n] t

lc at k n (abs t)
lck-list

List.forall (lc at k n ·) t

lc at k n t

Fig. 6. Local closure at level k

and inversion principles. Proofs are simplified, because it is not required to define
exactly the set of fresh names (several examples of this are given in [5]). The rule
lc-abs establishes that an abstraction is locally closed if there exists a finite set
of names L such that, for any name x not in L, the term t[x] is locally closed.
Similarly, in the rule lc-let we write x|t| /∈ L to indicate that the list of distinct
names x of length |t| are not in the finite set L. For any list x satisfying this

condition, the opening of each term in the list of local declarations, t
x
, and of

the term affected by these declarations, tx, are locally closed. Notice that we
have overloaded the predicate lc to work both on terms and list of terms. In
the following we will overload other predicates and functions similarly. We write
[t : t] for the list with head t and tail t. In the following, [ ] represents the empty
list, [t] is a unitary list, and ++ is the concatenation of lists.

We define a new predicate that checks if indices in bound variables are valid
from a given level: t is closed at level k, written lc at k n t (Figure 6). As usual,
k indicates the current depth, that is, how many binders have been passed by.
Since binders can be either abstractions or local declarations, we need to keep
the size of each binder (1 in the case of an abstraction, n for a let with n local
declarations). These sizes are collected in the list n, thus |n| should be at least
k. A bound variable bvar i j is closed at level k if i is smaller than k and j is
smaller than List.nth i n. The list n is new with respect to [5] because there
the predicate lc at is not defined for multiple binders.

It can be proved that if t is locally closed at level k for a given list of numbers
n, then it is also locally closed at level k for any list of numbers greater than n.

Lemma 1. lc at m from n lc at k n t⇒ ∀m ≥ n . lc at k m t

Where m ≥ n is the pointwise lifting to lists of the usual ordering on naturals.
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fv(bvar i j) = ∅
fv(fvar x) = {x}

fv(abs t) = fv(t)
fv(app t v) = fv(t) ∪ fv(v)
fv(let t in t) = fv(t) ∪ fv(t)

(bvar i j)[z/y] = bvar i j

(fvar x)[z/y] =

{
fvar z if x = y
fvar x if x �= y

(abs t)[z/y] = abs t[z/y]
(app t v)[z/y] = app t[z/y] v[z/y]
(let t in t)[z/y] = let t[z/y] in t[z/y]

where fv(t) = List.foldright (· ∪ ·) ∅ (List.map fv t)
t[z/y] = List.map ([z/y]·) t.

Fig. 7. Free variables and substitution

The two approaches for local closure are equivalent, so that it can be proved
that a term is locally closed if and only if it is closed at level 0.

Lemma 2. lc iif lc at lc t⇔ lc at 0 [ ] t

If the opening of a term is locally closed then the opening of the term with a
different variable is locally closed too.

Lemma 3. lc op lc t[x] ⇒ lc t[y]

Computing the free variables of a term t is very easy in the locally nameless
representation, since bound and free variables are syntactically different. The
set of free variables of t ∈ LNExp is denoted as fv(t), and it is defined in
Figure 7.

A name x is said to be fresh for a term t, written fresh x in t, if x does not
belong to the set of free variables of t. Similarly for a list of distict names x:

x /∈ fv(t)

fresh x in t

x /∈ fv(t)

fresh x in t

A term t is closed if it has no free variables at all:

fv(t) = ∅
closed t

Substitution replaces a variable name by another. For t ∈ LNExp and z, y ∈ Id ,
t[z/y] is the term where z substitutes any occurrence of y in t (see Figure 7).

Under some conditions variable closing and variable opening are inverse oper-
ations. More precisely, opening a term with fresh names and closing it with the
same names, produces the original term. Symmetrically, closing a locally closed
term and then opening it with the same names gives back the initial term.

Lemma 4.
close open var fresh x in t⇒ \x(tx) = t
open close var lc t⇒ (\xt)x = t
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Lam Γ : λx.e ⇓ Γ : λx.e App
Γ : e ⇓ Θ : λy.e′ Θ : e′[x/y] ⇓ Δ : w

Γ : (e x) ⇓ Δ : w

Var
Γ : e ⇓ Δ : w

(Γ, x �→ e) : x ⇓ (Δ,x �→ w) : ŵ
Let

(Γ, {xi �→ ei}ni=1) : e ⇓ Δ : w

Γ : let {xi = ei}ni=1 in e ⇓ Δ : w

Fig. 8. Natural semantics

3 Natural Semantics for Lazy λ-Calculus

The semantics defined by Launchbury in [7] follows a lazy strategy. Judgements
are of the form Γ : e ⇓ Δ : w, that is, the expression e ∈ Exp in the context of the
heap Γ reduces to the value w in the context of the heap Δ. Values (w ∈ Val) are
expressions in weak-head-normal-form (whnf ). Heaps are partial functions from
variables into expressions. Each pair (variable, expression) is called a binding,
and it is represented by x �→ e. During evaluation, new bindings may be added to
the heap, and bindings may be updated to their corresponding computed values.
The rules of this natural semantics are shown in Figure 8. The normalization of
the λ-calculus, that has been mentioned in Section 2, simplifies the definition of
the operational rules, although a renaming is still needed (ŵ in Var) to avoid
name clashing. This renaming is justified by Barendregt’s variable convention [3].

Example 4. Without the renaming in rule Var heaps may end up binding a
same name more than once. Take for instance the evaluation of the expression
e ≡ let x1 = λy.(let z = λv.y in y), x2 = (x1 x3), x3 = (x1 x4), x4 = λs.s in x2

in the context of the empty heap. The evaluation of e implies the evaluation of
x2, and then the evaluation of (x1x3). This application leads to the addition of
z to the heap bound to λv.x3. Subsequently, the evaluation of x3 implies the
evaluation of (x1x4). Without a renaming of values, variable z is added again to
the heap, now bound to λv.x4. �

Theorem 1 in [7] states that “every heap/term pair occurring in the proof of
a reduction is distinctly named”, but we have found that the renaming fails to
ensure this property. At least, it depends on how much fresh is this renaming.

Example 5. Let us evaluate in the context of the empty heap the expression

e ≡ let x1 = (x2 x3), x2 = λz.let y = λt.t in y, x3 = λs.s in x1

{ } : e

...

Let {x1 �→ (x2 x3), x2 �→ λz.let y = λt.t in y, x3 �→ λs.s} : x1

...

Var {x2 �→ λz.let y = λt.t in y, x3 �→ λs.s} : (x2 x3)

...

App {x2 �→ λz.let y = λt.t in y, x3 �→ λs.s} : x2

...

Var {x3 �→ λs.s} : λz.let y = λt.t in y

{x3 �→ λs.s} : λz.let y = λt.t in y

Lam
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At this point the ruleVar requires to rename the value highlighted in the square.
Notice that x1 is fresh in the actual heap/term pair, and hence can be chosen
to rename y. This would lead later in the derivation to introduce twice x1 in
the heap. The solution is to consider the condition of freshness in the whole
derivation. This notion has not been formally defined by Launchbury. �

3.1 Locally Nameless Heaps

Before translating the semantic rules in Figure 8 to the locally nameless repre-
sentation defined in Section 2, we have to establish how bindings and heaps are
represented in this notation.

Recall that bindings associate expressions to free variables, therefore bindings
are now pairs (fvar x, t) with x ∈ Id and t ∈ LNExp. To simplify, we will just
write x �→ t. In the following, we will represent a heap {xi �→ ti}ni=1 as (x �→ t),
with |x| = |t| = n. The set of the locally-nameless-heaps is denoted as LNHeap.

The domain of a heap Γ , written dom(Γ ), collects the set of names that are
bound in the heap.

dom(∅) = ∅ dom(Γ, x �→ t) = dom(Γ ) ∪ {x}

In a well-formed heap names are defined at most once and terms are locally
closed. The predicate ok expresses that a heap is well-formed:

ok-empty
ok ∅ ok-cons

ok Γ x /∈ dom(Γ ) lc t

ok (Γ, x �→ t)

The function names returns the set of names that appear in a heap, i.e., the
names occurring in the domain or in the right-hand side terms:

names(∅) = ∅ names(Γ, x �→ t) = names(Γ ) ∪ {x} ∪ fv(t)

This definition can be extended to (heap: term) pairs:

names(Γ : t) = names(Γ ) ∪ fv(t)

Next we define the freshness predicate of a list of names in a (heap:term) pair:

x /∈ names(Γ : t)

fresh x in (Γ : t)

Substitution of variable names is extended to heaps as follows:

∅[z/y] = ∅ (Γ, x �→ t)[z/y] = (Γ [z/y], x[z/y] �→ t[z/y])

where x[z/y] =

{
z if x = y
x otherwise

The following property is verified:

Lemma 5. ok subs ok ok Γ ∧ y /∈ dom(Γ )⇒ ok Γ [y/x]
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LNLam
{ok Γ} {lc (abs t)}
Γ : abs t ⇓ Γ : abs t

LNVar
Γ : t ⇓ Δ : w {x /∈ dom(Γ ) ∪ dom(Δ)}
(Γ, x �→ t) : (fvar x) ⇓ (Δ,x �→ w) : w

LNApp
Γ : t ⇓ Θ : abs u Θ : u[x] ⇓ Δ : w {x /∈ dom(Γ ) ⇒ x /∈ dom(Δ)}

Γ : app t (fvar x) ⇓ Δ : w

LNLet
∀x|t| /∈ L ⊆ Id (Γ, x �→ t

x
) : tx ⇓ (x ++z �→ ux) : wx {y|t| /∈ L ⊆ Id}

Γ : let t in t ⇓ (y ++z �→ uy) : wy

Fig. 9. Locally nameless natural semantics

3.2 Locally Nameless Semantics

Once the locally nameless syntax and the corresponding operations, functions
and predicates have been defined, three steps are sufficient to translate an in-
ductive definition on λ-terms from the named representation into the locally
nameless notation (as it is explained in [5]):

1. Replace the named binders, i.e., abstractions and let-constructions, with
nameless binders by opening the bodies.

2. Cofinitely quantify the names introduced for variable opening.
3. Add premises to inductive rules in order to ensure that inductive judgements

are restricted to locally closed terms.

We apply these steps to the inductive rules for the lazy natural semantics given
in Figure 8. These rules produce judgements involving λ-terms as well as heaps.
Hence, we also add premises that ensure that inductive judgements are restricted
to well-formed heaps. The rules using the locally nameless representation are
shown in Figure 9. For clarity, in the rules we put in braces the side-conditions
to distinguish them better from the judgements.

The main difference with the rules in Figure 8 is the rule LNLet. To evaluate
let t in t the local terms in t have to be introduced in the heap, so that the
body t is evaluated in this new context. To this purpose fresh names x are
needed to open the local terms and the body. The evaluation of tx produces a
final heap and a value. Both are dependent on the names chosen for the local
variables. The domain of the final heap consists of the local names x and the rest
of names, say z. The rule LNLet is cofinite quantified. As it is explained in [5],
the advantage of the cofinite rules over existential and universal ones is that the
freshness side-conditions are not explicit. In our case, the freshness condition for
x is hidden in the finite set L, which includes the names that should be avoided
during the reduction. The novelty of our cofinite rule, compared with the ones
appearing in [1] and [5] (that are similar to the cofinite rules for the predicate lc
in Figure 5), is that the names introduced in the (infinite) premises do appear
in the conclusion too. Therefore, in the conclusion of the rule LNLet we can
replace the names x by any list y not in L.
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The problem with explicit freshness conditions is that they are associated just
to rule instances, while they should apply to the whole reduction proof. Take
for instance the rule LNVar. In the premise the binding x �→ t does no longer
belong to the heap. Hence, a valid reduction for this premise may chose x as fresh
(this corresponds to the problem shown in Example 5). We avoid this situation
by requiring that x remains undefined in the final heap too. By contrast to the
rule Var in Figure 8, no renaming of the final value w is needed.

The side-condition of rule LNApp deserves an explanation too. Let us suppose
that x is undefined in the initial heap Γ . We must avoid that x is chosen as a
fresh name during the evaluation of t. For this reason we require that x is defined
in the final heap Δ only if x was already defined in Γ . Notice how the body of
the abstraction, that is u, is open with the name x. This is equivalent to the
substitution of x for y in the body of the abstraction λy.e′ (see rule App in
Figure 8).

A regularity lemma ensures that the judgements produced by this reduction
system involve only well-formed heaps and locally closed terms.

Lemma 6.
regularity Γ : t ⇓ Δ : w ⇒ ok Γ ∧ lc t ∧ ok Δ ∧ lc w

Similarly, Theorem 1 in [7] ensures that the property of being distinctly named
is preserved by the rules in Figure 8. However, as shown in Example 5, the
correctness of this result requires that freshness is relative to whole reduction
proofs instead to the scope of rules.

The next lemma states that names defined in a context heap remain defined
after the evaluation of any term in that context.

Lemma 7.
def not lost Γ : t ⇓ Δ : w ⇒ dom(Γ ) ⊆ dom(Δ)

Furthermore, fresh names are introduced only by the rule LNLet and, by the
previous lemma, they remain bound in the final (heap: value) pair. Hence, any
free variable appearing in a final (heap: value) pair is undefined only if the
variable already occurs in the initial (heap: term) pair.

Lemma 8.
add vars Γ : t ⇓ Δ : w

⇒ (x ∈ names(Δ : w)⇒ (x ∈ dom(Δ) ∨ x ∈ names(Γ : t)))

A renaming lemma ensures that the evaluation of a term is independent of the
fresh names chosen in the reduction process. Moreover, any name in the context
can be replaced by a fresh one without changing the meaning of the terms
evaluated in that context. In fact, reduction proofs for (heap: term) pairs are
unique up to renaming of the variables defined in the context heap.

Lemma 9.
renaming Γ : t ⇓ Δ : w ∧ fresh y in (Γ : t) ∧ fresh y in (Δ : w)

⇒ Γ [y/x] : t[y/x] ⇓ Δ[y/x] : w[y/x]
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In addition, the renaming lemma permits to prove an introduction lemma for the
cofinite rule LNLet which establishes that the corresponding existential rule is
admissible too.

Lemma 10.
let intro (Γ, x �→ t

x
) : tx ⇓ (x++z �→ ux) : wx ∧ fresh x in (Γ : let t in t)

⇒ Γ : let t in t ⇓ (x ++z �→ ux) : wx

This result, together with the renaming lemma, justifies that our rule LNLet is
equivalent to Launchbury’s rule Let used with normalized terms.

4 Related Work

In order to avoid α-conversion, we first considered a nameless representation like
the de Bruijn notation [6], where variable names are removed and replaced by
natural numbers. But this notation has several drawbacks. First of all, the de
Bruijn representation is hard to read for humans. Even if we intend to check our
results with some proof assistant like Coq [4], human readability helps intuition.
At a more technical level, the de Bruijn notation does not have a good way
to handle free variables, which are represented by indices, alike to bound vari-
ables. This is a serious weakness for our application. Recall that Launchbury’s
semantics uses contexts heaps that collect the bindings for the free variables
that may occur in the term under evaluation. Any change in the domain of a
heap, i.e., adding or deleting a binding, would lead to a shifting of the indices,
thus complicating the statement and proof of results. Therefore, we prefer the
more manageable locally nameless representation, where bound variable names
are replaced by indices but free variables keep their names. This mixed notation
combines the advantages of both named and nameless representations. On the
one hand, α-conversion is avoided all the same. On the other hand, terms stay
readable and easy to manipulate.

There exists in the literature different proposals for a locally nameless rep-
resentation, and many works using these representations. Charguéraud offers in
[5] a brief survey on these works, that we recommend to the interested reader.

Launchbury (implicitly) assumes Barendregt’s variable convention [3] twice in
[7]. First when he defines his operational semantics only for normalized λ-terms
(i.e. every binder in a term binds a distinct name, which is also distinct from
any free variable); and second, when he requires a (fresh) renaming of the values
in the rule Var (see Figure 8). Urban, Berghofer and Norrish propose in [15] a
method to strengthen an induction principle (corresponding to some inductive
relation), so that Barendregt’s variable convention comes already built in the
principle. Unfortunately, we cannot apply these ideas to Launchbury’s semantics,
because the semantic rules (shown in Figure 8) do not satisfy the conditions that
guarantee the variable convention compatibility, as described in [15]. In fact, as
we have already pointed out, Launchbury’s Theorem 1 (in [7]) is only correct if
the renaming required in each application of the rule Var is fresh in the whole
reduction proof. Therefore, we cannot use directly Urban’s nominal package for
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Isabelle/HOL [14] (including its recent extensions for general bindings described
in [16]).

Nevertheless, Urban et al. achieve the “inclusion” of the variable convention
in an induction principle by adding to each induction rule a side condition which
expresses that the set of bound variables (i.e., those that appear in a binding
position in the rule) are fresh in some induction context ([15]). Furthermore,
this context is required to be finitely supported. This is closely related to the
cofinite quantification that we have used for the rule LNLet in Figure 9. Besides,
one important condition to ensure the variable convention compatibility is the
equivariance of the functions and predicates occurring in the induction rules.
Equivariance is a notion from nominal logic [10]. A relation is equivariant if it
is preserved by permutation of names. Although we have not proven that the
reduction relation defined by the rules in Figure 9 is equivariant, our renaming
lemma (Lemma 9) establishes a similar result, that is, the reduction relation is
preserved by (fresh) renaming.

5 Conclusions

We have used a more modern approach to binding, i.e., a locally nameless repre-
sentation for the λ-calculus extended with mutually recursive local declarations.
With this representation the reduction rule for local declarations implies the
introduction of fresh names. We have used neither an existential nor a universal
rule for this case. Instead, we have opted for a cofinite rule as introduced by
Aydemir et al. in [1]. Freshness conditions are usually considered in each rule
individually. Nevertheless, this technique produces name clashing when consider-
ing whole reduction proofs. A solution might be to decorate judgements with the
set of forbidden names and indicate how to modify this set during the reduction
process (this approach has been taken by Sestoft in [13]). However, this could
be too restrictive in many occasions. Besides, existential rules are not easy to
deal with because each reduction is obtained just for one specific list of names.
If any of the names in this list causes a name clashing with other reduction
proofs, then it is cumbersome to demonstrate that an alternative reduction for a
fresh list does exist. Cofinite quantification has allowed us to solve this problem
because in a single step reductions are guaranteed for an infinite number of lists
of names. Nonetheless, our introduction lemma (Lemma 10) guarantees that a
more conventional exists-fresh rule is correct in our reduction system too.

The cofinite quantification that we have used in our semantic rules is more
complex than those in [1] and [5]. Our cofinite rule LNLet in Figure 9 introduces
quantified variables in the conclusion as well, as the latter depends on the chosen
names.

Compared to Launchbury’s original semantic rules, our locally nameless rules
include several extra side-conditions. Some of these conditions require that heaps
and terms are well-formed (like in rule LNLam). The rest of side-conditions
express restrictions on the choice of fresh names. These restrictions, together
with the cofinite quantification, fix the problem with the renaming in rule Var
that we have shown in Example 5.
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For our locally nameless semantics we have shown a regularity lemma (Lemma
6) which ensures that every term and heap involved in a reduction proof is well-
formed, and with a renaming lemma (Lemma 9) which indicates that the choice
of names (free variables) is irrelevant as long as they are fresh enough. A heap
may be seen as a multiple binder. Actually, the names defined (bound) in a heap
can be replaced by other names, provided that terms keep their meaning in the
context represented by the heap. Our renaming lemma ensures that whenever a
heap is renamed with fresh names, reduction proofs are preserved. This renaming
lemma is essential in rule induction proofs for some properties of the reduction
system. More concretely, when one combines several reduction proofs coming
from two or more premises in a reduction rule (for instance, in rule LNApp in
Figure 9).

In summary, the contributions of this paper are:

1. A locally nameless representation of the λ-calculus extended with recursive
local declarations;

2. A locally nameless version of the inductive rules of Launchbury’s natural
semantics for lazy evaluation;

3. A new version of cofinite rules where the variables quantified in the premises
do appear in the conclusion too;

4. A set of interesting properties of our reduction system, including the regu-
larity, the introduction and the renaming lemmas; and

5. A way to guarantee Barendregt’s variable convention by redefining Launch-
bury’s semantic rules with cofinite quantification and extra side-conditions.

6 Future Work

Our future tasks include the implementation in the proof assistant Coq [4] of the
natural semantics redefined in this paper, and the formalization of the proofs for
the lemmas given (regularity, renaming, introduction, etc.), which at present are
just paper-and-pencil proofs. We will use this implementation to prove formally
the equivalence of Launchbury’s natural semantics with the alternative version
given also in [7]. As we mentioned in Section 1, this alternative version differs
from the original one in the introduction of indirections during β-reduction and
the elimination of updates. At present we are working on the definition (using the
locally nameless representation) of two intermediate semantics, one introducing
indirections and the other without updates. Then, we will establish equivalence
relations between the heaps obtained by each semantics, which makes able to
prove the equivalence of the original natural semantics and the alternative one
through the intermediate semantics.

Acknowledgments. This work is partially supported by the projects: TIN2009-
14599-C03-01 and S2009/TIC-1465.
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Abstract. We consider modal transition systems with infinite state
space generated by finite sets of rules. In particular, we extend pro-
cess rewrite systems to the modal setting and investigate decidability of
the modal refinement relation between systems from various subclasses.
Since already simulation is undecidable for most of the cases, we focus on
the case where either the refined or the refining process is finite. Namely,
we show decidability for pushdown automata extending the non-modal
case and surprising undecidability for basic parallel processes. Further,
we prove decidability when both systems are visibly pushdown automata.
For the decidable cases, we also provide complexities. Finally, we discuss
a notion of bisimulation over MTS.

1 Introduction

The ever increasing complexity of software systems together with their reuse call
for efficient component-based design and verification. One of the major theoreti-
cally well founded frameworks that answer this call are modal transition systems
(MTS) [LT88]. Their success resides in natural combination of two features.
Firstly, it is the simplicity of labelled transition systems, which have proved ap-
propriate for behavioural description of systems as well as their compositions;
MTS as their extension inherit this appropriateness. Secondly, as opposed to
temporal logic specifications, MTS can be easily gradually refined into imple-
mentations while preserving the desired behavioural properties.

MTS consist of a set of states and two transition relations. Themust transitions
prescribe which behaviour has to be present in every refinement of the system; the
may transitions describe the behaviour that is allowed, but need not be realized in
the refinements. This allows for underspecification of non-critical behaviour in the
early stage of design, focusing on the main properties, verifying them and sorting
out the details of the yet unimplemented non-critical behaviour later.

The formalism of MTS has proven to be useful in practice. Industrial applica-
tions are as old as [Bru97] where MTS have been used for an air-traffic system
at Heathrow airport. Besides, MTS are advocated as an appropriate base for in-
terface theories in [RBB+09] and for product line theories in [Nym08]. Further,
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MTS based software engineering methodology for design via merging partial
descriptions of behaviour has been established in [UC04]. Moreover, the tool
support is quite extensive, e.g. [BLS95, DFFU07, BML11, BČK11].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of transi-
tions are possible [LX90, FS08, BK10, BKL+11]. Further, MTS framework has
also been lifted to quantitative settings. This includes probabilistic [CDL+10] and
timed systems [ČGL93, JLS11, BFJ+11, BKL+12, DLL+10, BLPR11] with clear
applications in the embedded systems design. As far as the infinite state systems
are concerned, only a few more or less ad hoc extensions have been proposed, such
as systems with asynchronous communication based on FIFO [BHJ10] or Petri
nets [EBHH10]. In this paper, we introduce modalities into a general framework
for infinite-state systems, where we study modal extensions of well-established
classes of infinite-state systems.

Such a convenient unifying framework for infinite-state systems is provided by
Process rewrite systems (PRS) [May00]. They encompass many standard models
such as pushdown automata (PDA) or Petri nets (PN) as syntactic subclasses.
A PRS consists of a set of rewriting rules that model computation. These rules
may contain sequential and parallel composition. For example, a transition t of
a Petri net with input places I1, I2 and output places O1, O2 can be described by

the rule I1 ‖ I2
t−→ O1 ‖ O2. A transition of a pushdown automaton in a state

s with a top stack symbol X reading a letter a resulting in changing the state
to q and pushing Y to the stack can be written as sX

a−→ qYX . Limiting the
occurrences of parallel and sequential composition on the left and right sides of
the rules yields the most common automata theoretic models. For these syntactic
subclasses of PRS, see Figure 1 and a more detailed description in Section 2.

Motivation. One can naturally lift PRS to the modal world by having two
sets of rules, may and must rules. What is then the use of such modal process
rewrite systems (mPRS)? Firstly, potentially infinite-state systems such as Petri
nets are very popular for modelling whenever communication or synchronization
between processes occurs. This is true even when they are actually bounded and
thus with a finite state space.

Example 1. Consider the following may rule (we use dashed arrows to denote
may rules) generating a small Petri net.

resource ‖ customer
consume��� trash

This rewrite rule implies that e.g. a process resource ‖ customer ‖ customer may
be changed into trash ‖ customer. Therefore, if there is no other rule with trash
on the right side a safety property is guaranteed for all implementations of this
system, namely that trash can only arise if there is at least one resource and
one customer. On the other hand, it is not guaranteed that trash can indeed be
produced in such a situation. This is very useful as during the design process
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new requirements can arise, such as necessity of adding more participants to
perform this transition. For instance,

resource ‖ customer ‖ permit
consume��� trash

expresses an auxiliary condition required to produce trash, namely that permit
is available. Replacing the old rule with the new one is equivalent to adding
an input place permit to the Petri net. In the modal transition system view,
the new system refines the old one. Indeed, the new system is only more specific
about the allowed behaviour than the old one and does not permit any previously
forbidden behaviour. One can further refine the system by the one given by

resource ‖ customer ‖ permit ‖ bribe consume−→ trash

where additional condition is imposed and now the trash-producing transition
has to be available (denoted by an unbroken arrow) whenever the left hand side
condition is satisfied.

Secondly, even if an original specification is finite its refinements and the final
implementation might be infinite. For instance, consider a specification where
permit needs to be available but is not consumed or there is an unlimited amount
of permits. In an implementation, the number of permits could be limited and thus
this number with no known bounds needs to be remembered in the state of the
system. Similarly, consider a finite safety specification of a browser together with
its implementation that due to the presence of back button requires the use of
stack, and is thus a pushdown system. Further, sometimes both the specification
and the implementation are infinite such as a stateless BPA specification of
a stateful component implemented by a PDA.

Example 2. Consider a basic process algebra (BPA) given by rulesX
(−→ XX and

X
)−→ ε for correctly parenthesized expressions with X

a��� X for all other sym-
bols a, i.e. with no restriction on the syntax of expressions. One can easily refine
this system into a PDA that accepts correct arithmetic expressions by remember-
ing in the state whether the last symbol read was an operand or an operator.

Further, opposite to the design of correct software where an abstract verifiedMTS
is transformed into a concrete implementation, one can consider checking correct-
ness of software through abstracting a concrete implementation into a coarser sys-
tem. The use of MTS as abstractions has been advocated e.g. in [GHJ01]. While
usually overapproximations (or underapproximations) of systems are constructed
and thus only purely universal (or existential) properties can be checked, [GHJ01]
shows that using MTS one can check mixed formulae (arbitrarily combining uni-
versal and existential properties) and, moreover, at the same cost as checking uni-
versal properties using traditional conservative abstractions. This advantage has
been investigated also in the context of systems equivalent or closely related to
MTS [HJS01, DGG97, Nam03, DN04, CGLT09, GNRT10]. Although one is usu-
ally interested in generating finite abstractions of infinite systems, it might be in-
teresting to consider situations where the abstract system is infinite. For instance,
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PRS
(G, G)

PAD
(S, G)

PAN
(P, G)

PDA
(S, S)

PN
(P, P)

PA
(1, G)

BPA
(1, S)

BPP
(1, P)

FSM
(1, 1)

Fig. 1. PRS hierarchy

if one is interested in a property that is inherently non-regular such as correct
parenthesizing in the previous example, the abstractionhas to capture this feature.
One could thus abstract the PDA from the previous example into the smaller BPA
above and prove the property here using algorithms for BPA.Moreover, if one is in-
terested inmixedproperties the abstract systemhas to bemodal. Itwould be useful
to extend the verification algorithms for systems such as PDA to their modal ver-
sions along the lines of the generalized model checking approach [BG00, BČK11].
This is, however, beyond the scope of this paper.

Our Contribution. In this paper, we focus on modal infinite-state systems
and decidability of the most fundamental problem here, namely deciding the
refinement relation, for most common classes of systems. Since simulation is
undecidable already on basic parallel processes (BPP) [Hüt94] and basic pro-
cess algebras (BPA) [GH94], cf. Figure 1, the refinement as a generalization of
simulation is undecidable in general. However, one can consider the case where
either the refined or the refining system is finite (a finite state machine, FSM).
This case is still very interesting, e.g. in the context of finite abstractions or
implementations with bounded resources. [KM99] shows that while simulation
remains undecidable between process algebras (PA) and FSM, it is decidable
between PDA and FSM. We extend this result using methods of [KM02b] to
the modal setting. Further, although simulation is decidable between PN and
FSM [JM95] (in both directions), we show that surprisingly this result cannot be
extended and the refinement is undecidable even for BPP and FSM in the modal
setting. Although the decidability of the refinement seems quite limited now, we
show that refinement is sometimes decidable even between two infinite-state sys-
tems, namely between modal extensions of visibly pushdown automata [AM04],
cf. Example 2; for this, we use the methods of [Srb06]. To summarize:

– We introduce a general framework for studying modal infinite-state system,
namely we lift process rewrite systems to the modal setting. This definition
comes along with the appropriate notion of refinement.
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– We prove un/decidability of the refinement problem for modal extensions of
standard classes of infinite-state systems. Apart from trivial corollaries due
to the undecidability of simulation, this amount to proving undecidability
of refinement between Petri nets and FSM (on either side) and decidability
between pushdown systems and FSM (again on either side). Moreover, we
prove decidability for visibly PDA. For the decidable cases, we show that
the complexity is the same as for checking the respective simulation in the
non-modal setting. Finally, we discuss a notion of bisimulation over MTS,
which we name birefinement.

Related Work. There are various other approaches to deal with component re-
finements. They range from subtyping [LW94] over Javamodelling language [JP01]
to interface theories close to MTS such as interface automata [dAH01]. Similarly
to MTS, interface automata are behavioural interfaces for components. However,
their composition works very differently. Furthermore, its notion of refinement is
based on alternating simulation [AHKV98], which has been proved strictly less
expressive than MTS refinement—actually coinciding on a subclass of MTS—in
a paper [LNW07] that combines MTS and interface automata based on I/O au-
tomata [Lyn88]. The compositionality of this combination is further investigated
in [RBB+11].

MTS can also be viewed as a fragment of mu-calculus that is “graphically
representable” [BL90]. The graphical representability of a variant of alternating
simulation called covariant-contravariant simulation has been recently studied
in [AFdFE+11].

The PRS framework has been introduced in [May00]. Simulation on classes
of PRS tends to be computationally harder than bisimilarity [KM02b]. While
e.g. bisimulation between any PRS and FSM is decidable [KŘS05], simula-
tion with FSM is undecidable already for PA (see above). Therefore, the de-
cidability is limited to PDA and PN, and we show that refinement is even
harder (undecidability for BPP). Another aspect that could help to extend
the decidability is determinism. For instance, simulation between FSM and
deterministic PA is decidable [KM99]. It is also the case with the abovemen-
tioned [EBHH10] where refinement over “weakly deterministic” modal Petri
nets is shown decidable.

Outline of the Paper. In Section 2, we introduce modal process rewrite sys-
tems formally and recall the refinement preorder. In Section 3 and 4, we show
undecidability and decidability results for the refinement. Section 5 concludes.

2 Refinement Problems

In this section, we introduce modal transition systems generated by process
rewrite systems and define the notion of modal refinement. We start with the
usual definition of MTS.
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2.1 Modal Transition Systems

Definition 1 (Modal transition system). A modal transition system (MTS)
over an action alphabet Act is a triple (P , ���,−→), where P is a set of processes
and −→ ⊆ ��� ⊆ P×Act×P are must and may transition relations, respectively.

Observe that P is not required to be finite. We often use letters s, t, . . . for
processes of MTS. Whenever clear from the context, we refer to processes without
explicitly mentioning their underlying MTS.

We proceed with the standard definition of (modal) refinement.

Definition 2 (Refinement). Let (P1, ���1,−→1), (P2, ���2,−→2) beMTS over
the same action alphabet and s ∈ P1, t ∈ P2 be processes. We say that s refines
t, written s ≤m t, if there is a relation R ⊆ P1 × P2 such that (s, t) ∈ R and for
every (p, q) ∈ R and every a ∈ Act:

1. if p
a���1 p′ then there is a transition q

a���2 q′ s.t. (p′, q′) ∈ R, and
2. if q

a−→2 q′ then there is a transition p
a−→1 p′ s.t. (p′, q′) ∈ R.

The ultimate goal of the refinement process is to obtain an implementation,
i.e. an MTS with ��� = −→. Implementations can be considered as the stan-
dard labelled transition systems (LTS). Note that on implementations refinement
coincides with strong bisimilarity, and on modal transition systems without any
must transitions it corresponds to the simulation preorder, denoted by ≤sim. Fur-
ther, refinement has a game characterization [BKLS09] similar to (bi)simulation
games, which we often use in the proofs.

2.2 Modal Process Rewrite Systems

We nowmove our attention to infinite-state MTS generated by finite sets of rules.
Let Const be a set of process constants. We define the set of process expressions
E by the following abstract syntax:

E ::= ε | X | E ‖ E | E;E

whereX ranges over Const . We often use Greek letters α, β, . . . for elements of E .
The process expressions are considered modulo the usual structural congruence,
i.e. the smallest congruence such that the operator ; is associative, ‖ is associative
and commutative and ε is a unit for both ; and ‖. We often omit the ; operator.

Definition 3 (Modal process rewrite system). A process rewrite system
(PRS) is a finite relation Δ ⊆ (E \ {ε})×Act × E, elements of which are called
rewrite rules. A modal process rewrite system (mPRS) is a tuple (Δmay, Δmust)
where Δmay, Δmust are process rewrite systems such that Δmust ⊆ Δmay.

An mPRS Δ = (Δmay, Δmust) induces an MTS MTS(Δ) = (E , ���,−→) as
follows:

(E, a,E′) ∈ Δmay

E
a��� E′

E
a��� E′

E;F
a��� E′;F

E
a��� E′

E ‖ F a��� E′ ‖ F



126 N. Beneš and J. Křet́ınský

Δmay = { (X, a,X ‖ Y ),
(X, c, ε),
(Y, b, ε) }

Δmust = { (X, a,X ‖ Y ),
(Y, b, ε) }

· · ·

· · ·

a a a

b b b

b b b

c c c

Fig. 2. An example of a mBPP and its corresponding (infinite) MTS; the dashed arrows
represent may transitions, the unbroken arrows represent must transitions; as s

a−→ t

implies s
a��� t we omit the may transitions where must transitions are also present

(E, a,E′) ∈ Δmust

E
a−→ E′

E
a−→ E′

E;F
a−→ E′;F

E
a−→ E′

E ‖ F a−→ E′ ‖ F
We consider four distinguished classes of process expressions. Class S stands
for expressions with no ‖ (purely sequential expressions) and class P stands
for expressions with no ; (purely parallel expressions). Further, we use G for
the whole E (general expressions) and 1 for Const (one process constant and
no operators). Now restricting the left and right sides of rules of PRS to these
classes yields subclasses of PRS as depicted in Figure 1 using the standard
shortcuts also introduced in Section 1. Each subclass C has a corresponding
modal extension mC containing all mPRS (Δmay, Δmust) with both Δmay and
Δmust in C. For instance, mFSM correspond to the standard finite MTS and
mPN are modal Petri nets as introduced in [EBHH10]. An example of an mBPP
and the resulting MTS are depicted in Figure 2.

For any classes C, D, we define the following decision problem mC ≤m mD.

Given mPRS Δ1 ∈ mC, Δ2 ∈ mD and process terms δ1, δ2 conforming
to left-hand side restrictions of C,D, respectively, does δ1 ≤m δ2 hold
considering δ1, δ2 as processes of MTS(Δ1),MTS(Δ2)?

3 Undecidability Results

In this section, we present all the negative results. As already discussed in Sec-
tion 1, simulation—and thus refinement—is undecidable already on BPP [Hüt94]
and BPA [GH94]. When considering the case where one of the two classes is
mFSM, the undecidability holds for mPA [KM99]. Thus we are left with the prob-
lems mFSM≤mmPDA, mPDA≤mmFSM and mFSM≤mmPN, mPN≤mmFSM.
On the one hand, the two former are shown decidable in Section 4 using non-
modal methods for simulation of [KM02b]. On the other hand, the non-modal
methods for simulation of [JM95] cannot be extended to the latter two prob-
lems. In this section, we show that (surprisingly) they are both undecidable and,
moreover, even for mBPP.

Theorem 1. The problem mBPP≤mmFSM is undecidable.
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•
A a C b

•
B a′b′

s

sa sb u

a b

Act′

a′

Act ∪Act′

b′

Act ∪Act′
Act ∪Act′

Fig. 3. A ‖ B ≤m s where the original two BPPs are given by A
a−→ A ‖ C, C

b−→ ε,

B
a−→ B ‖ B, B

b−→ ε

Proof. We reduce the undecidable problem of simulation between two BPPs
(even normed ones) to the problem mBPP≤mmFSM.

Let A, B be two BPP processes with underlying PRS ΔA and ΔB; w.l.o.g.
ΔA ∩ ΔB = ∅. We transform them as follows. We rename all actions of the
underlying PRS of B from a to a′. Let Act′ be the set of these renamed actions
and let Δ′

B be the modification of ΔB by renaming the actions. The mBPP is
defined as (ΔA ∪Δ′

B , Δ
′
B), i.e. the transitions of A are just may, the (modified)

transitions of B are both must and may.
We then build a finite mPRS as follows. The states are {s, u}∪{sa | a ∈ Act}.

– s
a��� sa and s

a′
��� u for all a ∈ Act

– sa
a′
−→ s for all a ∈ Act (with the corresponding may transition)

– sa
x��� u for all a ∈ Act and x ∈ Act ∪ Act′

– u
x��� u for all x ∈ Act ∪ Act′

Clearly q ≤m u for any process q. The construction is illustrated in Figure 3.
We now show that A ≤sim B iff A ‖ B ≤m s. In the following, α always

denotes a process of ΔA, while β denotes a process of ΔB . Furthermore, we use
the notation LTS(ΔA) to denote the LTS induced by ΔA (similarly for ΔB). We
use the refinement game argumentation, see [BKLS09].
⇒: Let R = {(α ‖ β, s) | α ≤sim β}. We show that R can be extended to be

a modal refinement relation. Let (α ‖ β, s) ∈ R:

– If the attacker plays α ‖ β a′
��� α ‖ β′ (where a′ ∈ Act′), the defender can

play s
a′
��� u and obviously wins.

– If the attacker plays α ‖ β a��� α′ ‖ β (where a ∈ Act), the defender has to

play s
a��� sa. There are two possibilities then:

• if the attacker plays α′ ‖ β
x���, the defender can play sa

x��� u and
obviously wins;

• if the attacker plays sa
a′
−→ s, the defender can play α′ ‖ β a′

−→ α′ ‖ β′

where β′ is a process such that β
a−→ β′ in LTS(ΔB) and α′ ≤sim β′.

Such β′ obviously exists due to α ≤sim β. Thus (α′ ‖ β′, s) ∈ R.
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⇐: We show that R := {(α, β) | α ‖ β ≤m s} is a simulation. Let (α, β) ∈ R:

– If α
a−→ α′ in LTS(ΔA) then α ‖ β a��� α′ ‖ β. This has to be matched by

s
a��� sa. Furthermore, sa

a′
−→ s has to be matched by α′ ‖ β a′

−→ α′ ‖ β′.

This means that β
a−→ β′ in LTS(ΔB) and that (α′, β′) ∈ R. �

Theorem 2. The problem mFSM≤mmBPP is undecidable.

Proof. We reduce the undecidable problem of simulation between two BPPs to
the problem mFSM≤mmBPP. The proof is similar to the previous one. However,
as the situation is not entirely symmetric (the requirement that Δmust ⊆ Δmay

introduces asymmetry), we need to modify the construction somewhat.
Let again A, B be two BPP processes with underlying PRS ΔA and ΔB ;

w.l.o.g. ΔA∩ΔB = ∅. We rename all actions of ΔB from a to a′. Let Act′ be the
set of these renamed actions and let Δ′

B be the modification of ΔB. We further
create a new PRS as follows:

ΔX = {(X, a, Y ) | a ∈ Act} ∪ {(Y, x,X) | x ∈ Act ∪ Act′}

The mBPP is defined as (ΔA ∪ Δ′
B ∪ ΔX , ΔA), i.e. the (modified) transitions

of B are just may, the transitions of A are both must and may, and the new
transitions of ΔX are may.

We then build a finite mPRS as follows. The states are {s, v}∪{sa | a ∈ Act}.

– s
a−→ sa for all a ∈ Act (with the corresponding may transitions)

– sa
a′
��� s for all a ∈ Act

– sa
a−→ v for all a ∈ Act (with the corresponding may transitions)

– v
a−→ v for all a ∈ Act (with the corresponding may transitions)

The construction is illustrated in Figure 4.

•
A a C

b

•
B a′

b′

•
X

Act

Act ∪Act′
Y

s

sa sb

v

a b

a′

Act

b′

Act

Act

Fig. 4. s ≤m A ‖ B ‖ X where the original two BPPs are again given by A
a−→ A ‖ C,

C
b−→ ε, B

a−→ B ‖ B, B
b−→ ε

We now show that A ≤sim B iff s ≤m A ‖ B ‖ X . As in the previous proof, α
denotes a process of ΔA while β denotes a process of ΔB .
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We first show that v ≤m α ‖ β ‖ V for all V ∈ {X,Y } and all processes
α, β. Whenever the attacker plays a must transition of α, it is matched by
v

a−→ v. Whenever the attacker plays a may transition of v, it is matched either

by X
a��� Y or by Y

a��� X (α and β are unaffected).
⇒: Let R = {(s, α ‖ β ‖ X) | α ≤sim β}. We show that R can be extended to

be a modal refinement relation. Let (s, α ‖ β ‖ X) ∈ R:

– If the attacker plays s
a��� sa then the defender can play α ‖ β ‖ X a��� α ‖

β ‖ Y . The attacker then has two possibilities:

• if the attacker plays sa
a′
��� s then the defender can play α ‖ β ‖ Y a′

���
α ‖ β ‖ X and the game is back in R;
• if the attacker plays α ‖ β ‖ Y

a−→ α′ ‖ β ‖ Y then the defender can

play sa
a−→ v and win due to the fact above.

– If the attacker plays α ‖ β ‖ X a−→ α′ ‖ β ‖ X then the defender has to play

s
a−→ sa. The attacker then has three possibilities:

• if the attacker plays α′ ‖ β ‖ X b−→ α′′ ‖ β ‖ X then the defender can

play sa
b−→ v and win due to the fact above.

• if the attacker plays sa
b��� v then the defender can play α′ ‖ β ‖ X b���

α′ ‖ β ‖ Y and win due to the fact above.

• if the attacker plays sa
a′
��� s then the defender plays α′ ‖ β ‖ X

a′
���

α′ ‖ β′ ‖ X where β′ is a process such that β
a−→ β′ in LTS(ΔB)

and α′ ≤sim β′. Such process has to exist due to α ≤sim β. Therefore,
(s, α′ ‖ β′ ‖ X) ∈ R.

⇐: Let R = {(α, β) | s ≤m α ‖ β ‖ X}. We show that R is a simulation. Let
(α, β) ∈ R.

– If α
a−→ α′ then α ‖ β ‖ X

a−→ α′ ‖ β ‖ X . This has to be matched by

s
a−→ sa. Furthermore, sa

a′
��� s has to be matched by α′ ‖ β ‖ X a′

��� α′ ‖
β′ ‖ X (note that neither α′ nor X can make an a′-transition). This means

that β
a−→ β′ in LTS(ΔB) and that (α′, β′) ∈ R. �

4 Decidability Results

We prove that the problems mFSM≤mmPDA and mPDA≤mmFSM are decid-
able and EXPTIME-complete like the corresponding simulation problems.

We modify the result of [KM02b] and show that, in certain classes of mPRS,
refinement can be reduced to simulation. The original method introduces two
translations, A and D, that transform two processes s and t into A(s) and D(t)
in such a way that s and t are bisimilar iff A(s) ≤sim D(t). This approach can
be modified in a straightforward way to work with modal refinement instead of
bisimulation. The idea of the modification is that the part of the construction
that simulates the attacker’s possibility to play on the right-hand side is only
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done for must transitions. The modified A and D translations are then functions
from MTS to LTS such that if we have two MTS processes s and t, it holds that
s ≤m t iff A(s) ≤sim D(t). As these translations are only slightly changed from
the original ones, we omit their definition here and refer to [BK12].

The applicability of this method is the same (modulo the modal extension)
as the applicability of the original method. Both the A-translation and the D-
translation preserve the following subclasses of PRS: PDA, BPA, FSM, nPDA,
nBPA and OC. Here, nPDA and nBPA are the normed variants (every process
may be rewritten to ε in finite number of steps) of PDA and BPA, respectively.
OC is the subclass of one-counter automata, i.e. PDA with only one stack symbol.
Furthermore, the A-translation also preserves determinism.

As a direct corollary of the previous remark and the results of [KM02a], we
obtain the following.

Theorem 3. The problem mPDA≤mmFSM is EXPTIME-complete in both ways,
even if the mFSM is of a fixed size. The problem mBPA≤mmFSM is EXPTIME-
complete in both ways, but if the mFSM is of a fixed size, it is PTIME-complete.

4.1 Visibly PDA

We have seen that the refinement relation is undecidable between any two infinite
classes of the hierarchy depicted in Figure 1. However, there are other subclasses
where the refinement is decidable. In this section, we show that the refinement
between two modal visibly PDA is decidable.

Definition 4. A PDA is a visibly PDA (vPDA) if there is a partitioning Act =

Actc # Actr # Act i such that every rule pX
a−→ qα satisfies the following:

– if a ∈ Actc then |α| = 2 (call),
– if a ∈ Actr then |α| = 0 (return),
– if a ∈ Act i then |α| = 1 (internal).

The modal extension (mvPDA) is straightforward; its subclass mvBPA can be
defined similarly.

In order to prove decidability, we make use of the idea of [Srb06] for showing
that simulation between two vPDA is decidable. We modify and simplify the
method somehow, as the original method is used to prove decidability of various
kinds of equivalences and preorders, while we are only considering the modal
refinement.

Theorem 4. The problem mvPDA≤mmvPDA is decidable.

Proof. Let (Δmay, Δmust) be a mvPDA with a stack alphabet Γ and a set of
control states Q. Let sA and tB be two processes of the mvPDA. Note that for
simplicity we consider two processes of a single mvPDA. However, as a disjoint
union of two mPRS is a mPRS, this also solves the case of two distinct mvPDA.
Our goal is to transform the mvPDA into a PDA with a distinguished process
such that this process satisfies certain μ-calculus formula if and only if sA ≤m tB.
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We create a PDA Δ′ with actions Act′ = {att , def }, stack alphabet Γ ′ = G×G
where G = Γ ∪ (Γ × Γ ) ∪ (Γ × Act) ∪ {ε}, and control states Q′ = Q×Q. We
write Ya instead of (Y, a) as an element of G.

We use a (stack merging) partial mapping [Xα, Y β] = (X,Y )[α, β], [ε, ε] = ε.
In the following, we abuse the notation of the rules, as we did in the introduction,

and write e.g. pX
a��� p′α instead of (pX, a, p′α) ∈ Δmay.

The set of rules of Δ′ is as follows:

– Whenever pX
a��� p′α then

• (p, q)(X,Y )
att−→ (p′, q)(α, Ya) for every q ∈ Q and Y ∈ Γ

• (q, p)(β,Xa)
def−→ (q, p′)[β, α] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}

– Whenever pX
a−→ p′α then

• (q, p)(Y,X)
att−→ (q, p′)(Ya, α) for every q ∈ Q and Y ∈ Γ

• (p, q)(Xa, β)
def−→ (p′, q)[α, β] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}

Note that [α, β] and [β, α] is always well defined as |α| = |β| is guaranteed (the
transition that created β has to have the same label as the transition that creates
α – this is guaranteed via Xa). We conclude by the following claim whose proof
can be found in [BK12].

Claim. Let ϕ denote an alternation-free μ-calculus formula νZ.[att ]〈def 〉Z. Then
sA ≤m tB iff (s, t)(A,B) |= ϕ �

The following theorem can be proved using complexity bounds for μ-calculus
model checking, as in [Srb06].

Theorem 5. The problem mvPDA≤mmvPDA is EXPTIME-complete, the prob-
lem mvBPA≤mmvBPA is PTIME-complete.

4.2 Birefinement

Since the refinement is often undecidable, the same holds for refinement equiva-
lence (≤m ∩ ≥m). Nevertheless, one can consider an even stronger relation that
is still useful. We define the notion of birefinement as the modification of refine-
ment where we require both conditions of Definition 2 to be satisfied in both
directions, similarly as bisimulation can be defined as a symmetric simulation.

Definition 5 (Birefinement). A birefinement is a symmetric refinement. We
say that α birefines β (α ∼m β) if there exists a birefinement containing (α, β).

This notion then naturally captures the bisimilarity of modal transition sys-
tems. Furthermore, the birefinement problem on MTS can be reduced to bisim-
ulation on LTS in the following straightforward way. Let (Δmay, Δmust) and
(Γmay, Γmust) be two mPRS over the same action alphabet Act . We create a new
action a for every a ∈ Act . We then translate the mPRS into ordinary PRS as
follows. Let Δ = Δmay ∪ {(α, a, β) | (α, a, β) ∈ Δmust} and similarly for Γ . It is
then clear that if we take two processes δ of (Δmay, Δmust) and γ of (Γmay, Γmust)
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Table 1. Summary of the decidability results

decidable mFSM �m mPDA, mvPDA �m mvPDA, mFSM ∼m mPRS

undecidable mFSM �m mBPP, mBPA �m mBPA

then the following holds: δ birefines γ if and only if δ and γ are bisimilar when
taken as processes of Δ and Γ , respectively.

The decidability and complexity of birefinement is thus identical to that of
bisimulation in the non-modal case. Therefore, we may apply the powerful result
that bisimilarity between any PRS and FSM is decidable [KŘS05] to get the
following theorem.

Theorem 6. Birefinement between an mFSM and any mPRS is decidable.

This is an important result since it allows us to check whether we can replace an
infinite MTS with a particular finite one, which in turn may allow for checking
further refinements.

5 Conclusions

We have defined a generic framework for infinite-state modal transition sys-
tems generated by finite descriptions. We investigated the corresponding notion
of modal refinement on important subclasses and determined the decidability
border, see Table 1. Although in some classes it is possible to extend the de-
cidability of simulation to decidability of refinement, it is not possible always.
We have shown that somewhat surprisingly the parallelism is a great obstacle
for deciding the refinement relation. Therefore, the future work will concentrate
on identifying conditions leading to decidability. One of the best candidates is
imposing determinism, which has a remarkable effect on the complexity of the
problem in the finite case [BKLS09] as well as in the only infinite case consid-
ered so far, namely modal Petri nets [EBHH10]. Further, we leave the question
whether the problem becomes decidable in some cases when the refining system
is an implementation open, too. Finally, it remains open to what extent can
verification results on finite MTS, such as [BČK11], be extended to infinite-state
MTS.
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[ČGL93] Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed Modal Specification -
Theory and Tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 253–267. Springer, Heidelberg (1993)



134 N. Beneš and J. Křet́ınský
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Abstract. Narrowing is a procedure that was conceived in the context of equa-
tional E-unification, and that has also been used in a wide range of applica-
tions. The classic completeness result due to Hullot states that any term rewriting
derivation starting from an instance of an expression that has been obtained by
using a normalized substitution can be ‘lifted’ to a narrowing derivation. Since
then, several variants and extensions of narrowing have been developed in order
to improve that result under certain assumptions or for particular classes of term
rewriting systems.

In this work we propose a new narrowing notion for constructor systems that
is based on the novel notion of s-unifier, that essentially allows a variable to
be bound to several expressions at the same time. A Maude-based implemen-
tation for this narrowing relation, using an adaptation of natural narrowing as
on-demand evaluation strategy, is presented, and its use for symbolic reachability
analysis applied to the verification of cryptographic protocols is also outlined.

Keywords: narrowing, unification, constructor systems, Maude.

1 Introduction

Narrowing [3] is a procedure that was originally conceived in the context of equa-
tional E-unification, and that has also been used in a wide range of applications like
for example symbolic reachability analysis [15], test-case generation [20], or as the
basic operational mechanism of functional-logic languages [2]. Narrowing can be de-
scribed as a modification of term rewriting in which matching is replaced by unification.
By doing so, in a narrowing derivation from a starting goal expression, the narrowing
procedure is able to deduce the instantiation of the variables of the goal expression
that is needed for the computation to progress. This idea is reflected in Hullot’s lift-
ing lemma [11], the key result for the completeness of narrowing w.r.t. term rewriting,
which states that given an expression e1 if we instantiate it with a substitution θ and
we perform a term rewriting derivation e1θ→∗ e2, then we can lift it into a narrowing
derivation e1 �∗σ e3 such that e3 and σ are more general than e2 and θ—w.r.t. to the
usual instantiation preorder [4], and for the variables involved in the derivations—, pro-
vided that the starting substitution θ is normalized. This latter condition is essential: a
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normalized substitution only contains expressions in normal form in its range, which
are expressions which cannot be reduced by term rewriting. It is fairly easy to break
Hullot’s lifting lemma by dropping that condition, for example under the term rewrit-
ing system (TRS) { f (0,1)→ 2,coin→ 0,coin→ 1}, using the expression f (X ,X) and
the non-normalized substitution [X/coin] we can perform the term rewriting derivation
f (X ,X)[X/coin] = f (coin,coin)→ f (0,coin)→ f (0,1)→ 2, which cannot be lifted
by any narrowing derivation. Several variants and extensions of narrowing have been
developed in order to improve that result under certain assumptions or for particular
classes of term rewriting systems [16,21,15,8].

In this paper we propose a new narrowing relation that tries to improve the complete-
ness results for classic general narrowing, for the class of left-linear constructor-based
term rewriting systems or just constructor systems (CS’s). In particular we focus on
dropping the normalization condition over the starting substitution that is required by
Hullot’s lifting lemma. In order to test the feasibility of the approach, we have imple-
mented it in Maude [6]. The resulting prototype can be used to evaluate expressions
with free variables under any given constructor system with extra variables.

Our starting point is a previous work [12], where a sound and complete composi-
tional semantics for CS’s was presented. CS’s are characterized by having the signature
partitioned in two disjoint sets of function symbols and constructor symbols, so any
left-hand side of a rule has a function symbol in its root with constructed terms or just
c-terms (expressions built using only constructor symbols and variables) as arguments,
and no variable appears more than once in a left-hand side. CS’s are usually used to
represent programs in declarative languages, therefore we will use ‘program’ as a syn-
onym for CS from now on. The semantics from [12] gives a characterization of the set
of c-terms (an outer constructed part of any expression) reachable by term rewriting
from expressions.1 The key for getting compositionality in that semantics was using a
suitable notion of semantic value. Instead of using c-terms, which may seem the obvi-
ous choice at a first look, a structured representation of the alternatives between c-terms
in a term rewriting derivation is used so the constructor symbols have sets of values
as arguments. For example, using a constructor symbol c with arity one and under the
program {X ? Y → X ,X ? Y → Y} then c({0,1}) is a value for the expression c(0 ? 1)
but not for the expression c(0) ? c(1), which reflects the different behavior of these
expressions: if we add the rule g(c(X))→ d(X ,X) to the program then it is easy to
check that g(c(0 ? 1))→∗ d(0,1) while g(c(0) ? c(1)) �→∗ d(0,1), even though the set
of c-terms reachable by c(0 ? 1) and c(0) ? c(1) is the same. These structured values are
called s-cterms, so an s-csubstitution or just s-csubst is any substitution with s-cterms
in its range. And as that semantics is compositional—in fact it is also fully abstract
w.r.t. reachability of c-terms [12]—then any pair of expressions with the same set of
s-cterms are interchangeable in any context, as long as we are only concerned about
the set of reacheable c-terms. This is also reflected at the level of substitutions in an
intermediate result of [12], that roughly states that if we can compute a value—i.e.,
reach that value/c-term by a term rewriting derivation—for an expression instantiated
with an arbitrary substitution (for which normalization is not required), then we can

1 We use the terminology expression instead of the more usual term—in the term rewriting
community—in order to stress their difference with the more restricted notion of c-term.
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compute the same value instantiating the same expression with an s-csubst such that
every s-cterm in its range is a value for the corresponding expression in the range of the
starting substitution. This makes sense because although an arbitrary substitution may
implicitly contain an infinite amount of information in its range—as it may contain calls
to functions with unbounded recursion—any finite term rewriting derivation is a finite
computation process that therefore can only consume a finite amount of information in
the form of values from the expressions in the range of that substitution. Note that in
a sense we should consider that s-csubst are not normalized because they contain al-
ternatives between expressions, so we could evaluate any s-csubst to several c-subst by
choosing an element in each of the sets that appear in the s-cterms in the range of the
s-csubst.

But what it is important for our purpose here is that this result shows that, for reacha-
bility of c-tems in CS’s, s-csubstitutions have the same power as arbitrary substitutions.
And that is good because narrowing derivations use the left-hand sides of program rules
to deduce the instantiation of variables in the goal expression needed for the computa-
tion to progress, by syntactic unification in the case of classic narrowing. But we have
seen that, in order to have the same power as arbitrary substitutions, what we need to
deduce from those left-hand sides is an s-csubst, instead of a normalized substitution.
To do that we propose a modification of a classical syntactic unification algorithm that
now allows a variable to be bound to several expressions at the same time. We use this
novel s-unification algorithm as the basis to define a new narrowing relation called s-
narrowing, that gathers up all the c-terms to which a variable has been bound during the
computation. Doing so for every variable in the starting goal expression, and also for
the variables in the expressions it has been bound to, we end up building the s-csubst
that solves the goal. Applying these ideas to lift the derivation from the example above
we get the following s-narrowing derivation:

f (X ,X) | /0 � 2 | {X �→ {0,1}}

where the following successful s-unification derivation is used in the application of the
rule for f .

{ f (0,1)
?
= f (X ,X)}; /0⇒{0 ?

= X ,1
?
= X}; /0⇒{X ?

= 0,1
?
= X}; /0

⇒{1 ?
= X};{X �→ {0}}⇒ {X ?

= 1};{X �→ {0}}⇒ /0;{X �→ {0,1}}

Regarding the prototype, s-narrowing is implemented by using an adaptation of the
natural narrowing on-demand strategy [9], which indicates the positions that must be
reduced in each step. As a proof-of-concept we have tested the prototype with several
examples, including a sketch of the verification of cryptographic protocols.

The rest of the paper is organized as follows. In Section 2 we explain the aforemen-
tioned semantics for constructor systems, and use it to formalize the intuitions presented
in the introduction. In Section 3 we present the notions of s-unification and s-narrowing
and some interesting results about them. Then in Section 4 we outline the implementa-
tion and commands of our prototype using examples. Finally, Section 5 concludes and
outlines some lines of future work. More information and detailed proofs of the results
shown here are presented in [18].
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2 Prelimininaries and Formal Setting

2.1 Basic Syntax

We consider a first order signature Σ = CS#FS, where CS and FS are two disjoint
set of constructor and defined function symbols respectively, all them with associated
arity. We write CSn (FSn resp.) for the set of constructor (function) symbols of arity n.
We write c,d, . . . for constructors, f ,g, . . . for functions and X ,Y, . . . for variables of a
numerable set V . The notation o stands for tuples of any kind of syntactic objects.

The set Exp of expressions is defined as Exp & e ::= X | h(e1, . . . ,en), where X ∈V ,
h ∈ CSn∪FSn and e1, . . . ,en ∈ Exp. The set CTerm of constructed terms (or c-terms) is
defined like Exp, but with h restricted to CSn (so CTerm ⊆ Exp). We will write e,e′, . . .
for expressions and t,s, . . . for c-terms. The set of variables occurring in an expression
e will be denoted as var(e). We say that an expression e is ground iff var(e) = /0. We
will frequently use one-hole contexts, defined as Cntxt & C ::= [ ] | h(e1, . . . ,C , . . . ,en),
with h ∈ CSn∪FSn. The application of a context C to an expression e, written by C [e],
is defined inductively as [ ][e] = e and h(e1, . . . ,C , . . . ,en)[e] = h(e1, . . . ,C [e], . . . ,en).

We also consider the extended signature Σ⊥ = Σ∪ {⊥}, where ⊥ is a new 0-arity
constructor symbol that does not appear in programs, and that stands for the undefined
value. Over this signature we define the sets Exp⊥ and CTerm⊥ of partial expressions
and c-terms resp. The intended meaning is that Exp and Exp⊥ stand for evaluable ex-
pressions, i.e., expressions that can contain function symbols, while CTerm and CTerm⊥
stand for data terms representing total and partial values resp. Partial expressions are
ordered by the approximation ordering ' defined as the least partial ordering satisfy-
ing ⊥' e and e ' e′ ⇒ C [e] ' C [e′] for all e,e′ ∈ Exp⊥,C ∈ Cntxt. The shell |e| of
an expression e represents the outer constructed part of e and is defined as: |X | = X ;
|c(e1, . . . ,en)| = c(|e1|, . . . , |en|); | f (e1, . . . ,en)| = ⊥. It is trivial to check that for any
expression e we have |e| ∈ CTerm⊥, that any total expression is maximal w.r.t. ', and
that as consequence if t is total then t ' |e| implies t = e.

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally
to θ : Exp −→ Exp. We write ε for the identity (or empty) substitution. We write
eθ for the application of θ to e, and θθ′ for the composition, defined by X(θθ′) =
(Xθ)θ′. The domain and range of θ are defined as dom(θ) = {X ∈ V | Xθ �= X} and
vran(θ) =

�
X∈dom(θ) var(Xθ). By [X1/e1, . . . ,Xn/en] we denote a substitution σ such

that dom(σ) = {X1, . . . ,Xn} and ∀i.σ(Xi) = ei. Similarly the notation [X/e | P(X ,e)]
where P is some predicate over X and e is used to define substitutions using a set-like
notation, so ([X/e | P(X ,e)])(Y ) = e′ if P(Y,e′), and ([X/e | P(X ,e)])(Y ) = Y other-
wise. If dom(θ0)∩dom(θ1) = /0, their disjoint union θ0#θ1 is defined by (θ0#θ1)(X)=
θi(X), if X ∈ dom(θi) for some θi; (θ0#θ1)(X) = X otherwise. Given W ⊆V we write
θ|W for the restriction of θ to W , i.e. (θ|W )(X) = θ(X) if X ∈W , and (θ|W )(X) = X
otherwise; we use θ|\D as a shortcut for θ|(V \D). C-substitutions θ ∈ CSubst verify that
Xθ ∈ CTerm for all X ∈ dom(θ). We say a substitution σ is ground iff vran(σ) = /0,
i.e. ∀X ∈ dom(σ) we have that σ(X) is ground. The sets Subst⊥ and CSubst⊥ of partial
substitutions and partial c-substitutions are the sets of finite mappings from variables to
partial expressions and partial c-terms, respectively.
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A constructor-based term rewriting system or just constructor system or program P
(CS) is a set of c-rewrite rules of the form f (t)→ r where f ∈ FSn, r ∈ Exp and t is
a linear n-tuple of c-terms, where linearity means that variables occur only once in t.
Notice that we allow r to contain so called extra variables, i.e., variables not occurring
in f (t). To be precise, we say that X ∈ V is an extra variable in the rule l → r iff
X ∈ var(r) \ var(l). the set of extra variables in a program rule R. A fresh variant of
a program rule is the result of taking a program rule and applying to it a substitution
that replaces each variable of the rule by a fresh variable. We assume that every CS
contains the rules Q = {X ? Y → X ,X ? Y → Y}, defining the behavior of ? ∈ FS2,
used infix mode, and that those are the only rules for ?. Besides, ? is right-associative
so e1 ? e2 ? e3 is equivalent to e1 ? (e2 ? e3). For the sake of conciseness we will often
omit these rules when presenting a CS. A consequence of this is that we only consider
non-confluent programs.

Given a TRS P , its associated term rewriting relation→P is defined as: C [lσ]→P
C [rσ] for any context C , rule l→ r ∈ P and σ ∈ Subst. We write

∗→P for the reflexive
and transitive closure of the relation →P . In the following, we will usually omit the
reference to P or denote it by P ( e→ e′ and P ( e→∗ e′. By P ( e1 ↓ e2 we denote
that e1 and e2 are joinable under P , i.e., it exists some expression e3 such that P (
e1 →∗ e3

∗← e2, where ← denotes the inverse of →, and ∗← the reflexive-transitive
closure of←.

2.2 A Proof Calculus for Constructor Systems with Extra Variables

In [12] an adequate semantics for reachability of c-terms by term rewriting in CS’s
was presented. As we mentioned in Section 1, the key idea in that semantics is using a
suitable notion of value, in this case the notion of s-cterm, which is a structured repre-
sentation of alternative between c-terms in a term rewriting derivation. An s-cterm is a
finite set of elemental s-cterms, that are variables or constructors applied to s-cterms, so
SCTerm is an alias for the set of finite sets of elemental s-cterms and the set ESCTerm
of elemental s-cterms is defined as ESCTerm & est ::= X | c(st1, . . . ,stn) for X ∈ V ,
c ∈ DCn, st1, . . . ,stn ∈ SCTerm. We extend this idea to expressions obtaining the sets
SExp of s-expressions or just s-exp, and ESExp of elemental s-expressions, which are
defined the same but now using any symbol in Σ in applications instead of just con-
structor symbols. Note that for s-expressions /0 corresponds to ⊥, so s-exps are partial
by default. The approximation preorder ' is defined for s-exps as the least preorder
such that se ' se′ iff ∀ese ∈ se.∃ese′ ∈ se′ such that ese' ese′, X ' X for any X ∈ V ,
and h(se1, . . . ,sen)' h(se′1, . . . ,se′n) iff ∀i.sei ' se′i.

The sets SSubst and SCSubst of s-substitutions and s-csubstitutions (or just s-csubst)
consist of finite mappings from variables to s-exps or s-cterms, respectively. Some care
must be taken when extending s-substs to be applied to ESExp and SExp, so for any
σ ∈ SSubst we define σ : ESExp→ SExp as Xσ = σ(X), h(se)σ = {h(seσ)}; and σ :
SExp→ SExp as seσ =

�
ese∈se eseσ. The approximation preorder ' is defined for s-

substs as σ' θ iff ∀X ∈ V .σ(X)' θ(X).
In this semantics the denotation of an expression is obtained as the denotation of its

associated s-expression, assigned by the operator� : Exp⊥ → SExp, which is defined as
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E se � /0

RR {X}� {X} if X ∈V

DC

se1 � st1 . . . sen � stn

{c(se1, . . . ,sen)}� {c(st1, . . . ,stn)} if c ∈ CS

MORE

se � st1 . . . se � stn

se � st1 ∪ . . .∪ stn

LESS

{esa1}� st1 . . . {esam}� stm

{ese1, . . . ,esen}� st1 ∪ . . .∪ stm

if n≥ 2,m > 0, for any
{esa1, . . . ,esam}
⊆ {ese1, . . . ,esen}

ROR

se1 � �p1θ . . . sen � �pnθ �rθ � st

{ f (se1, . . . ,sen)}� st if
( f (p1, . . . , pn)→ r) ∈ P
θ ∈ SCSubst

Fig. 1. A proof calculus for constructor systems

�⊥= /0; �X = {X} for any X ∈V ;�h(e1, . . . ,en) = {h(�e1, . . . ,�en)} for any h∈Σn. The oper-

ator� is extended to s-substitutions as �σ(X) =�σ(X), for σ ∈ Subst⊥. Is is easy to check
that�eσ = �e�σ (see [12]). Conversely, we can flatten an s-expression se to obtain the set
flat(e) of expressions “contained” in it, so flat( /0) = {⊥} and flat(se) =

�
ese∈se flat(ese)

if se �= /0, where the flattening of elemental s-exps is defined as flat(X)= {X}; flat(h(se1,
. . . ,sen)) = {h(e1, . . . ,en) | ei ∈ flat(sei) for i = 1..n}.

In Figure 1 we can find the proof calculus that defines the semantics of s-expressions.
Our proof calculus proves reduction statements of the form se � st with se ∈ SExp
and st ∈ SCTerm, expressing that st represents an approximation to one of the possible
structured sets of values for se. We refer the interested reader to [12] for a detailed
explanation of the intuitions behind the rules of the calculus. We write P ( se � st to
express that se � st is derivable in our calculus under the CS P . The denotation of an
s-expression se under a CS P is defined as [[se]]P = {st ∈ SCTerm | P ( se � st}. In the
following we will usually omit the reference to P . The denotation of an s-substitution
σ is defined as [[σ]] = {θ ∈ SCSubst | ∀X ∈V ,σ(X) � θ(X)}.

The setting originally presented in [12] was not able to deal with extra variables, but
in [17] we extended it to deal with them, which is just needed for the present work,
as extra variables are very common when using narrowing. To do that we were not
required to change the rules of the calculus, but only the proof for the adequacy, as
the rule ROR from Figure 1 already allows to instantiate extra variables freely with
s-cterms. Nevertheless, as a consequence of that freely instantiation of extra variables,
every program with extra variables turns into non-deterministic. For example consider
a program { f → (X ,X)} for which the constructors 0,1 ∈ CS0 are available, then we

can prove �f = { f} � {({0},{1})} =�(0,1). But in fact this is not very surprising,
and it has to do with the relation between non-determinism and extra variables [1],
but adapted to the run-time choice semantics [19] induced by term rewriting. As a
consequence of this—as seen in Section 2.1—we assume that all the programs con-
tains the function ? defined by the rules Q = {X ? Y → X ,X ? Y → Y}, so we only
consider non-confluent TRS’s. We admit that this is a limitation of our setting, but
we also conjecture that for confluent TRS’s a simpler semantics could be used, for
which the packing of alternatives of c-terms would not be needed. Anyway, the point
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is that having ? at one’s disposal is enough to express the non-determinism of any pro-
gram [10], so we can use it to define the transformation � from s-exp and elemental
s-exp to partial expressions that, contrary to flat, now takes care of keeping the nested
set structure by means of uses of the ? function. Then � : ESExp→ Exp⊥ is defined

by �X = X , 	h(se1, . . . ,sen) = h(
se1, . . . ,
sen); and � : SExp→ Exp⊥ is defined by �/0 =⊥,
	{ese1, . . . ,esen}=�ese1 ? . . . ?�esen for n > 0, where in the case for 	{ese1, . . . ,esen} we

use some fixed arbitrary order on terms for arranging the arguments of ?. This operator

is also overloaded for substitutions as� : SSubst→ Subst⊥ as (�σ)(X) =�σ(X). Thanks to
the power of ? to express non-determinism, that transformation preserves the semantics
from Figure 1, so the following result can be proved—see [12] for details about the
proof.

Theorem 1 (Adequacy of [[ ]]). For all e,e′ ∈ Exp, t ∈ CTerm⊥,st ∈ SCTerm:
Soundness st ∈ [[�e]] and t ∈ flat(st) implies e→∗ e′ for some e′ ∈ Exp such that t ' |e′|.
Therefore, �t ∈ [[�e]] implies e→∗ e′ for some e′ ∈ Exp such that t ' |e′|. Besides, in any
of the previous cases, if t is total then e→∗ t.

Completeness e→∗ e′ implies�|e′| ∈ [[�e]]. Hence, if t is total then e→∗ t implies�t ∈ [[�e]].
We conclude this section with the following result, that formalizes the intuitions we
gave in Section 1 stating that we only need to compute an s-csubst in order to lift
any term rewriting derivation starting from an expression instatiated with an arbitrary
substitution, if we only care about reachability of c-terms—or its outer constructed part,
expressed by the notion of shell.

Proposition 1. For all e,e′ ∈ Exp, σ ∈ Subst, eσ→∗ e′ implies ∃θ ∈ [[σ]]. e�θ→∗ e′′

such that |e′| ' |e′′|. Note that θ ∈ [[σ]] implies θ ∈ SCSubst. Besides, if e′ = t ∈ CTerm
then e�θ→∗ t.

3 S-Narrowing and S-Unification

In this section we will present our proposal for the novel s-narrowing relation—where
‘s’ stands for “set,” as in s-cterm—in which we realize the ideas about a new narrow-
ing relation discussed in Section 1. As suggested by Proposition 1, in s-narrowing we
use the information contained in the left-hand sides of program rules to compute an
s-csubst, in order to lift any term rewriting derivation starting from the instantiation
of an expression with an arbitrary substitution. To do that we rely on the notion of s-
unification, a modification of syntactic unification that basically allows a variable to be
bound to several expressions at the same time.

For the sake of conciseness of the notation, in the rest of the paper we will often omit
the braces in singleton sets, so the context determines wheter e refers to {e}—as {0} in
c(0) ∈ SExp—or just to e—as 0 in c(0) ∈ Exp.

3.1 S-Unification

The main difference between s-unification and syntactic unification is that, instead of
finding a substitution that makes two expressions equal, in s-unification we look for an
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VTRIV {X ?
= X}#P;S⇒ P;S if X ∈ V

DEC {h(e1, . . . ,en)
?
= h(e′1, . . . ,e

′
n)}#P;S⇒ {e1

?
= e′1, . . . ,en

?
= e′n}#P;S

CLASH {h1(e1)
?
= h2(e2)}#P;S⇒ fail if h1 �= h2

TURN {e ?
= X}#P;S⇒{X ?

= e}#P;S if e �∈ V
ADDBIND {X ?

= e}#P;S⇒ P;S⊕{X �→ e}

Fig. 2. S-Unification algorithm S

s-subst that makes the intersection of two expressions a nonempty set. From the term
rewriting point of view this means that an s-unifier of two expressions makes them join-
able. Formally, σ∈ SSubst is an s-unifier of e1,e2 ∈ Exp iff Q ( e1�σ ↓ e2�σ. A particular-
ity of s-unification is that occurs check is not needed: for example we can instantiate the
expressions X and c(X) so they have a nonempty intersection by using [X/{X ,c(X)}],
as Q ( X 	[X/{X ,c(X)}] = X ? c(X)→ c(X)← c(X ? c(X)) = c(X)	[X/{X ,c(X)}].

In Figure 2 we formulate our rule-based s-unification algorithm S , following the
style of the rule-based algorithm U from [4] for computing the most general syntactic
unifier. Hence, in S we rewrite configurations of the shape P;S where P is the problem,
i.e., a finite set of equations of the shape e1

?
= e2 between the expressions to unifiy,

and S is the solution computed so far, represented as a finite set of bindings of the
shape X �→ {e1, . . . ,en} for X ∈ V and e1, . . . ,en ∈ Exp. The special configuration fail
is used to indicate a failure in the s-unification process. Given a solution S, its domain
dom(S) is the set of variables for which a binding is defined in S. By S[X ] we denote
the binding corresponding to X in S, and by S[X �→ s] we denote the solution S′ such
that S′[X ] = s and S′[Y ] = S[Y ] for each Y ∈ dom(S) \ {X}. The operator ⊕ is used
to add a new element to the binding for a variable in a solution, and it is defined as
S⊕{X �→ e} = S[X �→ {e}] if X �∈ dom(S); S[X �→ c]⊕{X �→ e} = S[X �→ c∪ {e}]
otherwise. Given some W ⊆ V by S|W we denote the restriction of S to W , i.e., the
result of dropping from S the bindings for variables which are not contained in W ; and
by S|\W we denote S|(V \W ).

In order to s-unify two given expressions e1,e2 ∈ Exp we start with {e1
?
= e2}; /0

as the initial configuration and apply the rules of S in a don’t care non-deterministic
fashion until reaching fail or a configuration of the shape /0;S, which is a configura-
tion in solved form. By ⇒∗ we denote the reflexive-transitive closure of⇒, therefore
{e1

?
= e2}; /0⇒∗ /0;S indicates that the s-unification procedure for e1 and e2 has ended

with success computing the solution S. The rules VTRIV, DEC, CLASH and TURN are
standard in unification algorithms. The novelty in S compared to U is the rule AD-
DBIND that, together with the abstence of a rule for occurs check, tries to reflect the
intended meaning of an s-unifier discussed above. Maybe the reader could expect a
special case for occurs check where a binding X �→ {X ,e} would be added to the solu-
tion, but that case is not needed because of the way we interpret the solutions computed
by S , as we will see below.

We conjecture that the set of pairs of expressions that are s-unifiable is bigger
than the set of pairs of expressions that are unifiable. However, the algorithm S only
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grants the abstence of cycles in the computed solutions when unifiying pairs of ex-
pression e1 and e2 such that var(e1)∩ var(e2) = /0 and e1 is linear, which is enough
for its uses in s-narrowing. Otherwise the computed solution may contain cyclic bind-
ings: consider for example the problem h(X ,Z,Y )

?
= h(Z,Y,X) which is unifiable with

[Z/Y,X/Y ], and for which S computes the cyclic solution [X/Z,Z/Y,Y/X ]; or the
problem d(X ,c(X))

?
= d(Y,Y ) which is not unifiable but for which S computes the

cyclic solution [X/Y,Y/c(X)], even though d(X ,c(X)) and d(Y,Y ) do not share vari-
ables. The abstence in S of a rule for variable elimination, that would propagate the
binding computed for one variable to the rest of the problem, allows us for exam-
ple to s-unify d(X ,X) and d(0,1) with [X/{0,1}]. But, at the same time, it implies
that sometimes S will not compute the most general unifier for two unifiable expres-
sions, so it is not a conservative extension of a unification algorithm. For example
f (c(U),c(V ))

?
= f (X ,X); /0 ⇒∗ /0;{X �→ {c(U),c(V)}}, while [X/c(U),V/U ] is the

most general unifier of f (c(U),c(V )) and f (X ,X). In order to be more conservative,
we could have opted for an alternative definition of the rule ADDBIND in which the
bindings computed so far would be reused. But, as we will see in Section 3.2, that
would entail computing an s-narrowing solution that would be more concrete that what
is needed to lift the term rewriting derivations, so we use ADDBIND as defined above.
The algorithm S is terminating as shown in the following result, in the line of [4].

Proposition 2. For any problem P, every sequence P; /0⇒ P1;S1⇒ P2;S2⇒ . . . termi-
nates either with fail or with a configuration of the shape /0;S

By S∗[X ] we denote the binding corresponding to X in S after resolving the indirec-
tions caused by variables in S[X ] that are also in the domain of S, which is defined as
S∗[X ] = (S[X ])[Y/S∗[Y ]] for Y = var(S[X ])∩ dom(S). Hence in general S∗[X ] ∈ SExp.
Note that S∗[X ] is only well defined for solutions S without cyclic bindings, but that
is enough for us as we will only deal with solutions with acyclic bindings. Using
this notion we define the SSubst corresponding to a solution S, denoted by σS, as
σS = [X/S∗[X ] | X ∈ dom(S)]. Although we do not provide a formal proof, we con-
jecture that if var(e1)∩ var(e2) = /0 and e1 is linear then {e1

?
= e2}; /0⇒∗ /0;S implies

that σS
o is an s-unifier of e1 and e2, where the opening σo of an s-subst σ is defined as

(σo)(X) = {X}∪σ(X). In fact, in s-unification and s-narrowing we treat any substitu-
tion and its opening as if they were indistinguishable, which reflects a view of variables
as ever fruitful sources of c-terms. In s-narrowing free variables are never really instan-
tiated, but different alternative binding for the variables are collected, hence a variable
can always “be itself” again when needed, so it can be bound to a c-term it was not
previously bound.

3.2 S-Narrowing

The s-narrowing relation is defined in Figure 3. In s-narrowing we work with configu-
rations of the shape e | S where e is a goal expression and S is a solution like those used
in s-unification. We do this in order to avoid instantiating the variables in the goal, so
we could bind them to several c-terms at the same time. In this way, we collect in S the
bindings for those variables. The idea of s-narrowing is pretty simple. First we s-unify
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C [ f (e)] | S1 � C [rσp] | S2 for any fresh variant ( f (p)→ r) ∈ P such that:

i) { f (p)
?
= f (e)};S1⇒∗ /0;S ii) Sp = S|var(p) and S2 = S|\var(p) iii) σp =
σSp

Fig. 3. S-Narrowing

an expression f (e) occurring in the goal expression with the left hand-side of a fresh
variant of a programa rule. To do that we start s-unification using the solution computed
so far, that contains the bindings collected for the goal subexpression. As the variant is
fresh then occurs check is not needed. If s-unification succeeds then we take the part Sp

of the solution corresponding to the fresh left-hand side and use it for parameter pass-
ing. The following result ensures that each s-expressions in the range of Sp is singleton,
so
σSp = σp ∈ Subst:

Lemma 1. For all e1,e2 ∈ Exp if e1 is linear, var(e1)∩var(e2) = /0 and {e1
?
= e2}; /0⇒∗

/0;S, then for Se1 = S|var(e1) ∀X ∈ dom(Se1) Se1 [X ] is singleton.

Then the propagation of the bindings computed for f (e) is implicitly performed by
using S2 in the resulting s-narrowing configuration, as it is the part of the solution for
the s-unification that does not affect the fresh left-hand side. By �∗ we denote the
reflexive-transitive closure of �. A successful s-narrowing derivation for an expression
e is a derivation e | /0 �∗ t | S where t is a c-term. Then, similarly to s-unification, the
s-subst computed as solution by that s-narrowing derivation is σS

o.
Note that the application of σp to r is needed to ensure soundness, as we can see

considering the program { f (X)→ g(X),g(1)→ 2}. If we drop the application of σp at
each step, then we can do:

f (0) | /0 � g(X1) | {X1 �→ {0}} as { f (X1)
?
= f (0)}; /0⇒∗ /0;{X1 �→ {0}}

� 2 | {X1 �→ {0,1}} as {g(1) ?
= g(X1)};{X1 �→ {0}}⇒∗ /0;{X1 �→ {0,1}}

but this is clearly unsound because f (0)[X1/0?1] �→∗ 2, and in fact there is no σ ∈
Subst such that f (0)σ →∗ 2. Thus the application of σp is necessary to respect the
restrictions imposed by the symbols of Σ present in the goal expression which, contrary
to variables, cannot be replaced by the application of substitutions. Conversely, if we use
� as defined in Figure 3 then the derivation gets stuck after the first step, as expected:

f (0) | /0 � g(0) | /0 as { f (X1)
?
= f (0)} | /0⇒∗ /0 | {X1 �→ {0}}

and we cannot continue as {g(1) ?
= g(0)}; /0⇒ {1 ?

= 0}; /0⇒ fail. Just like classical
narrowing can be rephrased as a unification step followed by a term rewriting step,
i.e. as C [ f (e)] ⇒ C σ[ f (e)σ] → C σ[rσ], we could similarly rephrase s-narrowing as
C [ f (e)] | S1⇒ C [ f (e)σp] | S2→ C [rσp] | S2.

The following example shows why we open the substitution computed as solu-
tion. Given the program { f (0,1,X)→ X ,coin→ 0,coin→ 1} and the goal f (X ,X ,X)
for which we can compute f (X ,X ,X) | /0 � X | {X �→ {0,1}}. If we use σS with
S = {X �→ {0,1}} as the computed solution then we could not reach X by term rewrit-

ing, as f (X ,X ,X)[X/{0,1}] �→∗ X , while we can reach it using the non-normalized
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substitution [X/coin ? X ]. But if we open the solution and use σS
o as the computed so-

lution, as we originally proposed, then f (X ,X ,X)�[X/{0,1}]o →∗ f (0,1,X)→ X . This
is also coherent with our view of free variables in s-narrowing, which are never instan-
tiated and are always implicitly bound to (the singleton set containing) themselves.

In Section 3.1 we saw that s-unification is not a conservative extension of unifi-
cation because the bindings in the solution computed so far are not reused to solve
subsequent equations. The following example illustrates how reusing those bindings
would result in computing too specific solutions. Consider the program { f (c(X),Y )→
h(X ,Y ),h(X ,c(Y ))→ g(X ,Y ),g(0,1)→ 2} and the goal expression f (X ,X), for which
we can do f (X ,X) | /0 � h(U,X) | {X �→ c(U)}—for the sake of conciseness we drop
the bindings for irrelevant variables. Now in order to unify h(U,X) with h(W,c(V))—a
fresh variant of the left-hand side of the rule for h—we have two options. On the one
hand, if we modify the rule ADDBIND in order to reuse the binding in {X �→ c(U)}
then we can perform the step h(U,X) | {X �→ c(U)}� g(U,U) | {X �→ c(U)} and
then g(U,U) | {X �→ c(U)} � 2 | {X �→ c(U),U �→ {0,1}}, thus getting the solu-
tion [X/c({0,1})]o—for conciseness here we restrict the solution to the variables in the
starting goal. On the other hand, if we use the proposed definition of s-unification then
derivation proceeds as h(U,X) | {X �→ c(U)} � g(U,V) | {X �→ {c(U),c(V)}} �
2 | {X �→ {c(U),c(V )},U �→ 0,V �→ 1}, getting the solution [X/{c(0),c(1)}]o. Al-

though both solutions are sound in the sense that both f (X ,X)	[X/c({0,1})]o →∗ 2

and f (X ,X) 	[X/{c(0),c(1)}]o →∗ 2, the solution computed by the original definition
is better in the sense that [X/{c(0),c(1)}]o ' [X/c({0,1})]o while [X/c({0,1})]o �'
[X/{c(0),c(1)}]o. This is also reflected at the term rewriting level, as seen with function
g in Section 1. For these reasons we have chosen not to reuse bindings in s-unifications.

We have not obtained any formal result about the adequacy of s-narrowing yet, so
we only have some conjectures. Regarding soundness, we think that e1 | S1 �∗ e2 | S2

implies e1�σS2
o→∗ e2. For completeness we would like to prove a lifting lemma in the

style of Hullot’s one, but first we have to find an appropiate order to be used there.
That is pretty difficult because that order should be able to express at the same time
that the computed substitution neither instantiates too much, nor introduces redundant
alternatives in the sets contained in the s-expressions in its range. Therefore it would
be a combination of the usual instantiation preorder [4] and the preorder ', that also
should treat any expression and its opening as equivalent. Hence, a lot of additional
work should be put in developing the theory of s-unification.

4 Maude Prototype and Sample Application

We present in this section our prototype and outline its implementation. Much more
information can be found at http://gpd.sip.ucm.es/snarrowing .

4.1 Implementation Notes

We have implemented our prototype in Maude [6], a high-level language and high-
performance system supporting both equational and rewriting logic computation for a

http://gpd.sip.ucm.es/snarrowing
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wide range of applications. Maude modules correspond to specifications in rewriting
logic [13], a simple and expressive logic which allows the representation of many mod-
els of concurrent and distributed systems. This logic is an extension of equational logic;
in particular, Maude functional modules correspond to specifications in membership
equational logic [5], which, in addition to equations, allows the statement of member-
ship axioms characterizing the elements of a sort. Rewriting logic extends membership
equational logic by adding rewrite rules, that represent transitions in a concurrent sys-
tem. This logic is a good semantic framework for formally specifying programming
languages as rewrite theories [14]; since Maude specifications are executable, we ob-
tain an interpreter for the language being specified.

Exploiting the fact that rewriting logic is reflective, an important feature of Maude
is its systematic and efficient use of reflection through its predefined META-LEVEL mod-
ule [6, Chapter 14], a characteristic that allows many advanced metaprogramming and
metalanguage applications. This feature allows access to metalevel entities such as spec-
ifications or computations as usual data. In this way, we define the syntax of the modules
introduced by the user, manipulate them, direct the evaluation of the terms (by using on-
demand strategies), and implement the input/output interactions in Maude itself.

An important point of our implementation is the use of an adaptation of the on-
demand evaluation strategy natural narrowing [9], which generates a matching defini-
tional trees for each function symbol and then traverses them to decide the position of
the current term where narrowing must be applied. However, the description of natural
narrowing presented in [9] used syntactic unification while traversing the definitional
trees used by the technique, which leads to incompleteness in our approach. For this
reason we have slightly modified the algorithm to use s-unification, which implies mod-
ifying the application of the unifier to the current term in order to preserve matching.

4.2 Prototype

The prototype is started by typing loop init-s ., that initiates an input/output loop
where programs and commands can be introduced. These programs have syntax smod
NAME is STMNTS ends, where NAME is the identifier of the program and STMNTS is a
sequence of constructor-based left-linear rewrite rules, written in the following format:

(smod ICTAC is
f(c(X),Y) -> h(X,Y) .
h(X, c(Y)) -> g(X,Y) .
g(0,1) -> 2 . ends)

where upper-case letters are assumed to be variables. We can first see how the tool
solves s-unification problems with the =? command:

Maude> (g(0, 1) =? g(X,X) .)
X -> 0 ? 1

We can evaluate terms with variables by using s-narrowing with the natural narrow-
ing strategy, which is used with the command:

Maude> (narrowing f(X,X) .)
{2, X -> c(0) ? c(1)}
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The narrowing command returns the obtained result (2 in this case) as well as the
required substitution, that in this case indicates that the variable X must take the set of
values composed of c(0) and c(1). We can ask the system for more solutions with the
cont command until no more solutions (as in the current example) are found:

Maude> (cont .)
No more solutions.

Finally, the system combines the on-demand techniques, that indicate the positions
and the rules that must be used, with two different search strategies: depth-first and
breadth-first. These strategies can be switched with breadth-first and depth-first.

4.3 The Dolev-Yao Intruder Model Using S-Narrowing

We present an implementation of the Dolev-Yao intruder model [7] in the line of [15]
but now using s-narrowing, as proof-of-concept of our system. Note that the different
features provided but these languages make the implementation rather different. We
first define alice and bob as the possible roles or participants:

roles -> alice .
roles -> bob .

Decryption of messages is specified by using a ground simulation of the equality
constraint, where we use the constructor enc to define the encryption of messages and
inv as data constructor for inverting a key:

decrypt(enc(M,k1),inv(k1)) -> M .
decrypt(enc(M,k2),inv(k2)) -> M .

The protocol function associates to each participant a set of actions, which are
the answers he or she returns for a given question. First, alice share a pair with the
messages ma1 and ma2, using the key received as parameter to encrypt them. Note that
the same parameter is used in both messages:

protocol(alice, X) -> p(enc(ma1, X), enc(ma2, X)) .

When bob receives the message ma1 encrypted with the k1 key he sends mb1; simi-
larly, he sends mb2 when he receives ma2 encrypted with k2. In these rules and the one
above lies the novelty of the s-narrowing approach: the variable X above must be bound
to both k1 and k2 for bob to send the appropriate messages:

protocol(bob, enc(ma1, k1)) -> mb1 .
protocol(bob, enc(ma2, k2)) -> mb2 .

Finally, if alice receives a pair with the two messages from bob she sends the in-
verse of k1, that can be used to decrypt, for example, enc(ma1, k1):

protocol(alice, p(mb1, mb2)) -> inv(k1) .

The function discover models the messages that can be deduced by the intruder
from a starting set of messages, where discStep combines the information generated
by the responses of alice and bob to the queries of the intruder, and the one generated
by the intruder by combining the starting messages according to the Dolev-Yao model:

discover(M) -> M ? discover(discStep(M) ? M) .
discStep(M) -> protocol(roles, M) ? dyStep(M) .
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The auxiliary dyStep function can generate pairs of the elements, split these pairs,
encrypt, and decrypt, thus representing the recombination of information the intruder is
able to perform, according to the Dolev-Yao model for the intruder capabilities. Note
that in this function the same variable M appears twice in the right-hand side of the first,
third, and fourth rules. This variable will be bound to a set of values (built with the ?
function symbol) in the s-narrowing, thus allowing the program to use different values:
dyStep(M) -> p(M, M) .
dyStep(p(M1, M2)) -> M1 ? M2 .
dyStep(M) -> enc(M, M) .
dyStep(M) -> decrypt(M, M) .

Finally, we define a function attack that returns true if the secret, ma1, is found:
attack(M) -> secret(discover(M)) .
secret(ma1) -> true .

Once this module is loaded into the prototype, we can use s-narrowing to find the
initial information required to break the protocol, i.e. the instantiation of X for this goal:
Maude> (narrowing attack(X) .)
{true, X -> ma1}

This result shows the trivial answer: if we already posses the secret information the
attack is successful. We can ask for more interesting answers with the cont command:
Maude> (cont .)
{true, X -> p(ma1,V:Exp)}

In this case the tool deduces that we can split the pair and use the secret. Using this
command we find several other possible attacks, like:
{true, X -> p(enc(ma1,k1),V#1:Exp) ? p(inv(k1),V#2:Exp)}

which indicates that we can split the pairs and use the inverse of k1 to decrypt ma1.
After many other results, the tool answers that the substitution k1 ? k2 allows us to
find the secret by using it in the first message sent by alice.

5 Concluding Remarks and Ongoing Work

In this work we propose a new narrowing relation for called s-narrowing that is based
on the novel notion of s-unification, a modification of syntactic unification that allows
variables to be bound to sets of expressions. It has been devised with the aim of improv-
ing the completeness results of classic narrowing. Although we think that s-unification
has great potential, we still have to develop the theory of s-unification so we can use it
to prove the adequacy of s-unification. This proposal has been implemented in a Maude
prototype that allows us to study their expressivity and possible applications. The pro-
totype uses an adaptation to s-narrowing of natural narrowing [9] as its on-demand
strategy, thus providing an efficient implementation that allows us to use the tool with
complex examples—see http://gpd.sip.ucm.es/snarrowing for more programs.

Regarding future work, our priority is proving the adequacy of s-narrowing, which
implies defining an adequate order over s-unifiers. Besides, we should prove that our
adaptation of natural narrowing to s-unification is still complete and optimal. We also
consider expanding the prototype with search commands in the style of Maude to spec-
ify the shape of the solutions, thus avoiding irrelevant results.

http://gpd.sip.ucm.es/snarrowing
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Abstract. Advances in storage, networks, and hardware technology have re-
sulted in an explosion of data and given rise to multiple sources of overlapping
data. This, combined with general apathy towards privacy issues while designing
systems and processes, leads to frequent breaches in personal identity and data
security. What makes this worse is that many of these breaches are committed
by the legitimate users of the data. Major countries like the U.S., Japan, Canada,
Australia and EU have come up with strict data distribution laws which demand
their organizations to implement proper data security measures that respect per-
sonal privacy and prohibit dissemination of raw data outside the country.

Since companies are not able to provide real data, they often resort to com-
pletely random data. It is obvious that such a data would offer complete privacy,
but would have very low utility. This has serious implications for an IT services
company like Tata Consultancy Services Ltd. (TCS), since application develop-
ment and testing environments rely on realistic test data to verify that the appli-
cations provide the functionality and reliability they were designed to deliver. It
is always desirable that the test data is similar to, if not the same as, the pro-
duction data. Hence, deploying proven tools that make de-identifying production
data easy, meaningful and cost-effective is essential.

Data masking methods came into existence to permit the legitimate use of data
and avoid misuse. In this paper, we consider various such techniques to come up
with a comprehensive solution for data privacy requirements. We present a de-
tailed methodology and solutions for enterprise-wide masking. We also present
the data masking product MASKETEERTM , developed at TCS, which imple-
ments these techniques for providing maximum privacy for data while maintain-
ing good utility.

1 Introduction

Suppose that a large corporation wants TCS to develop an application that is going to
use a lot of its sensitive data. Its main concern is about the security and confidentiality
of its data, for it needs to protect the interests of its clients and partners. TCS presents its
security practices and security audit certificates. However, the client corporations senior
management is not convinced. They fear that an application developer with access to
this data may use it maliciously. They suggest that the software development vendor
should use some fictitious data during the application development cycle.

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 151–158, 2012.
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Application development and testing environments in TCS rely on realistic test data
to verify that the applications provide the functionality and reliability they were de-
signed to deliver. So it is desirable that the test data is similar to, if not same as, the
production data. This leads to a deadlock situation, where in TCS needs the original
data to develop a good product while owing to the privacy concerns of its clients the
large corporation cannot give the data to TCS. One solution is to change or mask the
production data when migrating it to the test environment. Masking the production data
is the process of systematically removing or transforming data elements that could be
used to gain additional knowledge about the sensitive information. That is the data is
as realistic as possible for the test environment and also as fake as possible to respect
privacy.

The objective of data masking is to maximize data utility in such a way that the
masked data should have the same characteristics as the original data and at the same
time minimize disclosure risks, that is, reduce the ability to identify an individual and
reduce the ability to predict the value of confidential attributes. Note that there is a natu-
ral trade-off between the data privacy and its utility. An unmasked, original data would
naturally have the highest data utility, but no privacy. On the other hand, randomly gen-
erated data would guarantee very high privacy, but almost no utility. However, if done
properly, data masking should combine the best of both the worlds, that is, high data
utility as well as high data privacy.

It is important to note that the results of the data transformation have to be appropri-
ate in the context of the application. Data utility is dependent on the use of the masked
data. For example for testing purposes larger volumes of syntactically correct data is
needed with all the outliers. While for data mining or knowledge discovery the data
needs to be as realistic as possible but completely de-identified.

The need for data masking is, in fact, ubiquitous. The contract software development
is just one such striking example. Many useful properties can be extracted from the
data even if it is masked. Data Mining is one such example, where certain statistical
properties of the data set can be retained even by destroying their association with the
original data. Data masking plays a key role when a certain version of privately held
data has to be made public. Here goal is to keep the identities of the individuals who
are the subjects of the data secret, and yet allow the legitimate users to make perfect
use of the released data. This problem is very common in the health sector. Government
agencies would need to solve the same problem while releasing census data. One more
scenario where data masking is of crucial significance is location-based applications.
Here the infrastructure should allow mobile users to avail all possible location-based
information services without endangering their location privacy.

2 Masking Approaches

Over the years, statisticians, cryptographers and computer scientists have developed
many models and techniques to address the trade-off between data privacy and its utility.
We present here techniques that are robust, practical, and have simple quantification of
privacy/utility. We explain them using Figures 1 and 2.

Randomization: In this approach, a data-element is replaced by a randomly chosen value
from a given range or a dataset. The Name column of Figure 1 is replaced by randomly
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SSN Name Gender Age Zipcode Balance
101 Alice F 31 94305 100
102 Bob M 31 94308 24
103 Carol F 32 94308 35
104 David M 22 94125 85
105 Evelyn F 34 90428 12
106 Frank M 18 94308 73
107 George M 35 92405 57

Fig. 1. Original Database table

SSN Name Gender Age Zipcode Balance
501 Jane F 31 9430* 110
438 Kurt M 31 9430* 30
107 Lance M 31 9430* 45
745 Molly F 20 94*** 75
885 Nancy F 34 9**** 25
990 Oscar M 20 94*** 60
210 Philip M 34 9**** 52

Fig. 2. Masked Database table

chosen names from a dataset of English Names in Figure 2. This technique provides
strong identity protection.

Hashing and Encryption: In this approach, the data-element X is replaced by its image
h(X) where h is a suitable hash function. Ideally, one would want the hash function h
to be collision-free, non-idempotent and one-way. Unfortunately no such h is provably
known. But in practice, MD5, SHA-1, or Discrete Log based functions are useful. In the
above example, encryption is applied to the SSN column. Encryption techniques are
often efficient, but they provide low data utility by destroying semantics readily.

Shuffling: Shuffling randomly permutes the data-elements in a column. Thus, it can eas-
ily destroy relations between the columns. Shuffling is applied to the Gender column
in the above example.

Perturbation: Another popular approach is to use perturbation techniques in order to
hide the exact values, for example, adding noise to data and its numerous improvements.
Here it is possible to capture the richness of data, say, with the covariance matrices . A
simple perturbation technique could be addition of Gaussian noise to the input data. Let
X be the input column. Then, the resultant Y would be Y = X + e, here e is the Gaussian
noise taken from a standard distribution. Perturbation is applied to the Balance column
in the above example.

Perturbation techniques, capable of providing high data utility and low disclosure
risk, may require some pre-processing of the data to yield parameter values. Otherwise,
they are fairly efficient. They are not very suitable if one wants to draw inferences with
100% confidence.
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k-Anonymity: De-identifying the data by masking key attributes like SSN and Name
may not protect identities since linking such a masked database with a publicly available
database on non-key attributes like Gender, Date of Birth and Zipcode can uniquely
identify an individual [10].

A table provides k-anonymity [10] if any attempt to link the identifying columns
by external joins results in k or more matches. It means that each row in the table is
forced to be same as at least k − 1 other rows in the potentially identifying attributes.
Thus, identification of an individual by external join is with a probability of at most
1/k. k-Anonymity is achieved by blocking all the dissimilar values (suppression) or by
replacing them with a less specific common consistent value (generalization). Hence
k-anonymity is a trade off between data utility and privacy. A higher value of k enforces
a stricter privacy but more data loss. It is important to note that the data loss happens
mainly for the potentially identifying attributes only, and the sensitive information (for
example, say, medical condition of patients or cash balance) may appear as it is.

In the above example, we have applied 2-Anonymity to Age and Zipcode. The first
three, the 4th and 6th, and the 5th and 7th rows in Figure 2 are identical in these two
columns. Non identical values in Age are replaced by their average, while those in Zip-
code are substituted by *. Hence anybody trying to link some known Age and Zipcode
values with those in this table to find the Balance value would essentially be confused
with two balance values. Thus, we are guaranteed 50% privacy.

k-Anonymity provides high data utility since it generalizes or suppresses only the
quasi-identifiers. It also quantifies the identity disclosure risk at 1/k. But the optimal k-
anonymity is known to be NP-hard [2]. The known algorithms are either O(k) approxi-
mations [2] or super-linear [1] or require time exponential in the number of columns [7]
thus making them inefficient or expensive. We have designed and implemented a single
pass algorithm that scales linearly in the number of columns [8] in our product.

A comparative overview of the different techniques is given in Figure 3. It is clear
from this table that no single technique by itself can provide low disclosure risk, high
data utility and work for high data volumes. But good news is that these techniques
seem to complement each other. So their right combination may generate good data for
us. A recent Forrester report [13] also advocates the same.

Technique Data Utility Identity Disclosure Risk Value Disclosure Risk Scalability
Randomization Low Low Low High

Encryption Low Medium Medium High
Shuffling Medium Low High Medium

Perturbation Medium Low Medium Medium
k-Anonymity High Low High Low

Fig. 3. Techniques Overview

3 Masking Challenges

The simple techniques described above are privacy-preserving and amenable to effi-
cient implementations that scale well. Also appropriate choice of parameters for these
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techniques can help us retain much of the characteristics and patterns from the original
data providing sound results. But there are other database constraints that limit the abil-
ity of masking. For example theoretically k-anonymity kind of solution would provably
provide better privacy [10,8] and preserve some vital statistical properties, but if any
one of the columns is declared as unique then a method like k-anonymity cannot be
applied at all. This is where theory parts ways with practice and we have to consider
the real world restrictions and accommodate them. They bring in serious engineering
challenges. The database related constraints can be broadly classified as

Syntactic Constraints: The masked values should be within the limits specified in the
database schema.

Uniqueness Constraints: For attributes that are marked as unique or as primary keys of
the table, the masked values should be unique.

Relational Integrity: In order to support RDBMS, it is important to make sure that re-
lational integrity constraints are satisfied, that is, the masked data-elements are propa-
gated from the parent table to child tables.

Business Constraints: Much of the known business logic is encoded in company
databases by linking multiple columns through some arithmetical or logical operations.
The masked data should also satisfy these constraints.

Semantic Constraints: The data values in real life could be clustered around a cer-
tain value or have some distinctive association with values in other columns. From the
masked value more information about the original values should not be obtained due to
some uncharacteristic organization of the data.

4 Information Retrieval from Masked Data

Masking data is important for other purposes like outsourced data mining and remote
analysis of data [10,7,9]. It is also useful for sanitizing data before putting it together
from multiple sources [3,11,4]. Data put together from multiple sources could be hor-
izontally partitioned or vertically partitioned. In case of horizontal partitioning the
different data sources have data conforming to the same schema but contribute data
about different rows or individuals. This allows more information to be learned from
the combined data and also allows the discovery of rare facts as there is more data. In
the case of vertical partitioning the different data sources provide data about the same
rows or individuals. However the different sources provide different aspects, features or
columns corresponding to the rows or individuals. This allows the inferring of knowl-
edge correlating different columns, which may not be possible at any single data source.

Extracting information and learning functions from data distributed on multiple
sources has been well studied for two decades. The area of secure multiparty com-
putation [12,5] has allowed the computation of an arbitrary function expressed as a
circuit on top of the original data sources. This can afford the sources the strongest no-
tion of privacy, semantic security [6]. However more recent research tries to give the
data sources weaker notions of privacy [11,3,4] while at the same time provide tech-
niques for easy computation of a large class of useful functions on these distributed
data sources.
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It is important during data sanitization to retain as many properties of the data so
that the data mining algorithm will be able to learn maximum amount of information
from the database. For tools like MASKETEERTM we can come up with principles to
decide the sanitization to be applied to different columns before giving it out for knowl-
edge discovery. For identifier columns like SSN, drivers license number, voter number
etc. randomization or hashing are popular techniques as they provide good data pri-
vacy. For other columns which are also available at other sources and are susceptible to
join attacks (called quasi-identifiers in contemporary research), like date of birth, gen-
der and zipcode k-anonymity [10,7,8] is the technique to be applied. Sensitive columns
which are only available at the data source can be subjected to l-diversity [9] transfor-
mation. Perturbation can be applied to numeric columns, and shuffling can be applied to
categorical columns.

5 Masking Best Practices

Data masking is not just applying a standard algorithm to all information. The choice of
the masking algorithm and its parameters depend on the desired application of masked
data, the database constraints and also the actual values present in the production data.
There is no single right solution but a slew of things need to be taken care before sending
the masked data out. After interacting with many TCS clients from banking, finance,
and health sectors, as well as detailed market studies, we recommend these guidelines
for achieving the best results:

1. Analysis It is important to understand the complexity of the application and data
environment. This would help to identify sensitive data at the bare minimum (as
opposed to all), understand data relationships and constraints defined both in data as
well as in application. Sufficient rigor is needed to understand the flow of data across
applications, various assumptions, both at the application and inter-application level.
Even all the sources of the data, their flow and their copies needs to be known to
avoid unwarranted data leakage. A good knowledge of the applicable regulatory
laws is also essential for their compliance and coming up with a masking strategy.

2. Setup This part is crucial in the sense that the person, who has the authority to
access the original data needs to setup the whole masking strategy of selecting the
sensitive data, applying the right masking technique and taking into consideration
the risks involved in identifying the data back. We suggest a few guidelines for
using the algorithms described above.

Randomization Useful for performance testing
– Data is effectively useless
– Privacy is maximum
– Domain for randomization needs to carefully defined from some external

source.

Encryption and Hashing Useful for relinking back to original data
– Semantic information about the data is lost to do any meaningful analysis.
– Encryption and hashing algorithms should be coded with great care to avoid

any possible error.



Data Privacy Using MASKETEERTM 157

Shuffling Useful for testing as outliers are maintained
– Bad for non-uniformly distributed data.
– Data associations with other columns are lost.
– Original data is in the clear.

Perturbation Testing statistical analysis and data mining
– The amount of noise depends on the distribution of the data.
– Lot of advance research exist about such techniques and their guarantees.
– Applicable mainly to numerical data.

k-Anonymity Aggregate analysis and data mining
– Good against a weak attacker model
– Not good for unique and sparse data values.

All the data integrity constraints need to be in place for correct masking and only
then the masking should be carried out. If the database size is huge then sampling
would be a good idea to reduce processing time. If masking is a regular job then
based on the strategy a schedule of the test bed creation can programmed.

3. Masking The actual masking of the data could be a time consuming process de-
pending on the amount of data to be masked. There needs to be a way to recover
from failures if any. At the end of masking, user must verify the quality of masking
and identify any unintended variation on the statistical measure or amiss from the
specification.

4. Upload and Final Review Once the masking is done, there should be some easy
way to transfer the masked data to various target systems. A thorough check to
ensure the inter-relationships and constraints of data are maintained is necessary so
that the data is acceptable the to various applications using it.

6 Conclusion

MASKETEERTM supports most of the RDBMS using, say, JDBC drivers for connec-
tivity. For example, it supports DB2, MS Access, Oracle, MS SQL Server, Sybase,
Informix, MySQL, VSAM, TeraData, Advantage, DB2 on AS 400, PostgreSQL, IMX,
XLS and also flat files. Its extensible framework allows users to plug-in other databases
as well. MASKETEERTM is available on Mainframe, Windows, Linux ,Unix and Mac.
The top sixteen customers of MASKETEERTM , including customers in different indus-
try units like BFS, Insurance, Telecom and HiTech have masked totally hundreds of
Gigabytes of data, stored in thousands of tables, spanning tens of databases.1 This sim-
ple, intuitive, versatile, user-friendly and easy to use tool has served as a good business
enabler for TCS and has won 2010 Golden Peacock Award for Innovation Product.
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Abstract. We describe a tool on conformance checking which verifies
if the event logs (observed) match/fit the reference (arbitrary) business
process, we call this tool “CSPConCheck”. We use concepts from Commu-
nicating Sequential Processes (CSP), which facilitates automated analy-
sis using PAT toolkit for conformance checking. Our tool takes process
diagram and process logs as input and uses PAT tool to check for con-
formance.

1 Introduction

Process-aware information systems are widely used in industries these days as
they provide precise description of business requirements; industrial regulatory
business activities need to be monitored for auditing an organization (which is
made mandatory by the new Sarbanes-Oxlay (SOX) Act [6]) in conjunction with
business process modeling and simulation. A natural question arises - how closely
the observed behavior follows or fits the specified behavior of a process. This is
known as the problem of “conformance”. Our tool aims at checking conformance
of business processes wrt their executions which can result in balancing ‘Business-
IT’ platform in software development.

Information systems, such as WFM, ERP, CRM, SCM and B2B systems main-
tain foot prints of execution of the activities of processes, which is also called
event logs or transaction logs. Each event log denotes one instance of the process.
In this work, we use Business Process Modeling Notation (BPMN) to capture
processes, which are modeled using an in-house tool, called InFlux. BPMN allows
four types of constructs: event, activity, control-flow gateway and sequence (with
their obvious meaning). The event logs of the model are recorded in MXML files
as industry standard which provides the execution sequence of the activities,
number of instances of the log and some other data.

We use a process algebraic language called Communicating Sequential Process
(CSP) for generating compact representations of both the reference model and
the event logs. CSP is a process algebra for describing processes or programs [3,5]
� This work was done when the author was an intern with Infosys Lab during Dec’11-
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in which processes communicate via events. The CSP for the reference model
is called the specification (Spec). Also, we describe event logs in CSP, which is
called the implementation (Impl). Both Spec and Impl are trace equivalent wrt
the process and event logs respectively. Moreover, we assume all the activities
in event logs appear in the process descriptions also. Then CSP processes are
fed into PAT model checker [7,4] and using the notion of trace refinement, it is
checked whether the Impl trace refines Spec. In fact, Impl trace refines Spec if
and only if the event log conforms to the process.

We have implemented these algorithms with PAT tool [7] at the back end. We
call this tool “CSPConCheck”. The algorithm for generating CSP descriptions
for the processes is a modification of the algorithm used for converting UML
diagrams to CSP descriptions [2]. The basic methodology of the mapping is to
decompose the process model into atomic patterns and generate independent
CSP description for each of these patterns. Then using the prefix operator the
CSPs are merged to get the complete CSP description of the whole process.
For activity and event nodes the CSP is a simple prefix process. For gateway
nodes it uses different operators depending upon the type of the gateway. The
nodes of the process model are considered as events in the CSP description and
the edges of the model are treated as processes. The CSP description for an
event log is generated by constructing a single CSP process for each trace in
the log set and then aggregating all of them using the external choice operator.
The CSP for each trace is a simple prefix process as the traces contain only the
sequence of activities [1]. When both the CSP descriptions are fed to the tool it
decides whether the logs conform to the process or not. In case of the latter, by
using the shortest counterexample produced by PAT tool one can produce all
the error traces in separate stages (an error trace is one which cannot replayed
on the process). Also this tool can compute metrics related to conformance
checking that shows the fitness, closeness, and appropriateness of the event logs
with respect to the reference process models.

2 Description of CSPConCheck Tool

CSPConCheck is a JAVA based tool. The menu File is displayed on the GUI and
allows the user to open event logs (in MXML format) and to import reference
models (in XMI format) into the tool. We use our in-house process modeler
(InFlux tool) to draw the process which generates an XMI file. The event logs
are assumed to be in MXML format. The tool picks up the process models and
relevant logs for further processing as driven by the menu. When the application
is run, it generates one CSP file for each process model and event log. We have
written Java code to convert XMI representation of processes to CSP descriptions
in machine readable format of PAT tool. Similarly, another Java code is used
to translate event logs to machine readable CSP description. Both these CSP
descriptions are fed into PAT toolkit which is a windows based tool. The tool
produces the result for conformance checking. A schematic diagram of this setup
is shown in Figure 1. The tool offers a GUI for the visualization of the reference
model and replay of logs in the form of path coverage. In case of presence of
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Fig. 1. A schematic diagram of the tool

error traces the tool has a Display module for showing all of them. Moreover,
CSPConCheck has a Metric module which computes and displays the metric
values for an event log set vis-a-vis the reference model.

3 Functionalities of CSPConCheck

In this section we will illustrate the funtionalities of the tool though a case study.
Figure 2 portrays is a typical example of a business process followed in a bank for
opening account, modeled using Influx tool. The process is free of control flow
related errors like deadlock and lack of synchronization, and contains complex
constructs like loops, unstructured gateways etc. We use the convention that an
activity is labeled with an alphabet displayed against it. Table 1 shows the event
logs for the process which comprise of sequence of activities i.e. traces and the
corresponding instances of occurrence.

The reference model and the event logs are fed to CSPConCheck for con-
formance checking purposes, the tool reports that the event log does not
conform to the reference model and displays the shortest counter exam-
ple as < A, B, E, C, H >. The tool further shows all the error traces

Fig. 2. An example of a bank account opening process
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Table 1. Event logs for bank account opening process

No of Log
instances Traces

92 ACBEGFDHIJKOL
34 ACBGFEDHIJKOLJKOM
81 ABCDEGFHIJLKOJKOM
9 ABECHFGDIJKON
80 ACBDEGFHIJKOLJKON
2 ABCEGDFHIJKOLJKOLJKON

which cannot played on the reference model, e.g., {ACBEGFDHIJKOL,
ABCDEGFHIJLKOJKOM, ABECHFGDIJKON}. Subsequently it com-
putes metrics for conformance checking and displays them in the Metric module.

4 Experimental Results

We perform some experiment related to conformance checking on industrial pro-
cess models. For experimentation purposes, we use Intel Pentium 4 CPU, 2.8
GHz, a physical memory of 2 GB RAM on Microsoft windows XP Service Pack
3. The business processes which are modeled using InFlux tool arise in different
business domains of Infosys, they are seggregated into three libraries A, B, and C
depending on the domain. Lib A, B and C contain 20, 12, 18 models thus aggre-
gating 50 models. Some of these models contain 65 XOR gates and a maximum of
5 AND gates. Now we use our tool for conformance checking. The experimental
results are given in Table 2 which is accurate. The time taken for conformance
checking is negligible, for most of the real life processes conformance checking
can be performed quickly.

Table 2. Conformance checking of InFlux processes using PAT

Libraries A B C
Avg no of explored states 38.6 56.78 72
Max no of explored states 84 136 110
Avg length of shortest counterexample 1.4 1.28 0.85
Avg analysis time (in seconds) 0.040 0.034 0.044
Total analysis time (in seconds) 0.807 0.414 0.796
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Abstract. Our work concerns with test case generation for structural
coverage of Simulink/Stateflow (SL/SF) models. We have developed a
tool called SmartTestGen which integrates multiple test generation tech-
niques; experiments show that this tool performs better than some com-
mercial tools. In this paper, we discuss a novel experiment. SmartTestGen
uses random testing as one of the testing techniques. The random testing
component first generates random test cases; the tool then extends these
test cases to cover the uncovered targets. In our experiment, instead of
using the random test cases as the initial seed, we use the test cases of an
existing test suite. We have evaluated the impact of this modified testing
process by considering 20 industrial strength SL/SF models.

1 Introduction

The Simulink/Stateflow (SL/SF) modeling notation [1] is widely used in indus-
try. We have performed experiments with many test case generation techniques
– random testing, model checking, constraint solving, mix of random testing and
constraint solving etc – on a number of industrial-strength models. We observed
that the coverage achieved by the individual techniques in a broader sense com-
plement each other. With this aim in mind, we have developed SmartTestGen [5],
an integrated test generation environment which uses various test generation en-
gines, each engine implementing a different technique. We have observed that
SmartTestGen outperforms some of the commercial tools [5].

Even if SmartTestGen performs better than an existing tool, it is unlikely
to replace such a tool in an industrial setting where hundreds of engineers use
the existing tool for test case generation. Introduction of such a tool could be
seen as a disrupting technology. In this context, we present in this paper
a supporting technology involving SmartTestGen which is more likely to be
accepted by engineers; this we outline in the following.

SmartTestGen has a random testing component which generates random test
sequences; thereafter, other components of the tool extend the traces due to the
random test sequences to cover the uncovered targets. We have performed a novel
experiment on SmartTestGen. We replace the random test sequences generated
by the random testing component of SmartTestGen by the test sequences of
an existing test suite – possibly obtained by some other test generator. In other
words, the traces due to the test sequences of the existing test suite are extended
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Fig. 1. SmartTestGen architecture: dotted lines show the modifications

by other components of SmartTestGen.We refer to this new use of SmartTestGen
as SmartTestGen+. Our main contributions:

– SmartTestGen+ tool using an existing test suite as its initial seed: we argue
that this extension is a supporting technology and hence can be adapted
with ease in an industrial testing process.

– Evaluation of SmartTestGen+ on 20 production quality industrial models: for
our experiments, we have considered the test cases produced by a commercial
tool, and compared its coverage results with those of SmartTestGen+.

2 SmartTestGen+ Architecture

Figure 1 shows the SmartTestGen architecture. This tool has three major compo-
nents a) Centralized Information table (CIT) b) a set of test generation engines,
and (c) the Supervisor module.

The CIT contains all the target candidates (based on the coverage criteria),
to what extent they have been covered, what are the uncovered targets, and the
test cases for the covered targets. In addition, the CIT also stores targets which
have been shown to be unreachable.

SmartTestGen uses three test generation engines: (a) the random test genera-
tion engine to generate the initial test cases, (b) the constraint solving and

heuristics engine which essentially extends the traces of the current test se-
quences by using a combination of constraint solving and heuristics [3], and (c)
a SAL based model checking engine which is used to cover some given targets
by using model checking. Heuristics are primarily used to cover targets when the
constraints are non-linear or when the size of a constraint becomes too large [3].

The functionality of the Supervisor module is as follows: the Random

testing engine produces the initial test cases. Depending on the nature of the
targets, an appropriate test engine is selected for test case generation. This
goes on till all engines are invoked. The constraint solving and heuristics
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engine extends the earlier test cases (a) by performing constraint solving with
respect to an intermediate point of a given test case [5], or (b) by using heuristics.
Model checking engine has two tasks: (i) it tries to generate test cases to cover
certain targets, and (ii) it also tries to show unreachability of certain targets.

For SmartTestGen+, we deactivate the random testing engine of
SmartTestGen. We now use a pre-generated test suite as the initial cases;
refer to Figure 1. We can assume that this test suite is produced by an existing
testing method. Once we have the initial test cases, the SmartTestGen testing
process is used to generate the subsequent test cases and the unreachability
proofs. In Figure 1, the portion with the dotted lines illustrate this modification.

3 Experimental Results

We consider the test cases already generated by the Reactis tool [2] as our initial
test suite. Note that Reactis is a highly successful tool, widely used in industry
for test case generation [2]. We then use SmartTestGen+ which enhances the
above test suite for additional structural coverage. We have considered twenty
SL/SF design models from various domains of automotive engineering such as
Active safety (AS), Performance traction control (PTC), Powertrain (PT), Heat-
ing ventilation and cooling (HVAC) and Electronic stability control (ESC). The
model sizes vary from 37 blocks to 901 SL/SF blocks. These models contain

Fig. 2. Comparison of Decision, Condition and MC/DC coverages between Reactis,
SmartTestGen and SmartTestGen+
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Stateflow blocks, multi-dimensional inputs, legacy code, non-linear blocks like
multiplication and division, dynamic lookup tables and hierarchical triggering
of blocks. Simulink Verification & Validation (V & V) tool box [4] is our common
measuring platform. All the experiments were carried out on a machine with In-
tel Xeon 3 GHz and 3.5 GB RAM running Windows XP professional. The tool
versions used were: Reactis 2009.2 and Matlab R2011.2.

We have compared the results of SmartTestGen+ with those of Reactis when
used independently. The graphs in Figure 2 respectively show the comparison
results for the decision, condition and MC/DC coverages of all the 20 models.
For each model, the first bar shows the coverage by Reactis, and the second
shows the coverage of SmartTestGen+.

SmartTestGen+ achieves (a) better decision coverage than Reactis in 50%
cases, (b) better condition coverage than Reactis in 33% of the cases, and (c)
better MC/DC coverage than Reactis in 55% of the cases. In the remaining cases
the coverage results are equal.

Using the model checking engine, we have verified that the remaining decision
targets of PT1, HVAC2 and PTC3 models are un-reachable. Similar advantages
are also observed in case of models PT1, HVAC2 and PTC3 for condition cover-
age, and in case of PT1 and HVAC2 models for MC/DC coverage. The Reactis
tester as of now does not address the issue of unreachability.

4 Summary

– We claim that introduction of SmartTestGen+ in an industrial setting is
not a disrupting technology but a supporting technology. Consider a
scenario in which the testers use the existing test generation tool to produce
test cases. Based on the criticality of the applications, the test cases of this
tool could be fed to SmartTestGen+, and test cases with higher coverage
would possibly be obtained. All the testers need not learn SmartTestGen+,
only a small percentage can use it. In this sense, the original testing process
would be minimally affected.

– In case of automotive or aerospace domains, many applications are safety-
critical. Therefore the added coverage we obtain would increase the reliability
of the applications.
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Abstract. Motivated by Murray’s work on the limits of refinement test-
ing for CSP, we propose the use of ProB to check liveness properties under
assumptions of strong and weak event fairness, whose refinement-closures
cannot generally be expressed as refinement checks for FDR. Such prop-
erties are necessary for the analysis of fair exchange protocols in CSP,
which assume at least some messages are sent over a resilient channel.
As the properties we check are refinement-closed, we retain CSP’s the-
ory of refinement, enabling subsequent step-wise refinement of the CSP
model. Moreover, we improve upon existing CSP models of fair exchange
protocols by proposing a revised intruder model inspired by the one of
Cederquist and Dashti. Our intruder model is stronger as we use a weaker
fairness constraint.

1 Introduction

Hoare’s Communicating Sequential Processes (CSP) [1] is a process algebra for
describing models of interacting processes in terms of the events that they per-
form. For two decades the Failures Divergence Refinement (FDR) checker [2]
has been the principal tool for verifying properties of models expressed in CSP.
FDR tests whether the CSP model of the system being analysed refines some
specification of the system’s desired behaviour, which is also written in CSP.
This differentiates FDR from other model checkers which test whether a system
satisfies some predicate expressed in a temporal logic.

In [3], Lowe investigated the extent to which it can be checked that CSP
processes satisfy temporal logic specifications using a refinement-based model
checker, such as FDR. He defined the atomic formulae of a temporal logic he
considered appropriate for specifying communicating processes. Subsequently,
as a result of his investigation into the limits of refinement testing for CSP,
Murray concluded that alternative verification approaches besides refinement
checking for CSP should be further pursued [4]. Murray demonstrated there
exist useful predicates that cannot generally be expressed as refinement checks
in any semantic model of CSP that FDR can handle. One such class of predicates
includes liveness properties under Murray’s refinement-closed notions of strong
and weak event fairness.
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We demonstrate how to directly check whether CSP processes satisfy predi-
cates expressed in Lowe’s temporal logic using ProB, which is a tool that facil-
itates LTL model checking for a number of formalisms including CSP [5]. Not
all of the operators offered by ProB for LTL model checking match the intended
meaning of their counterpart in the grammar defined by Lowe. However, we
shall show how one can express Lowe’s temporal logic in ProB. By using ProB
to check that a CSP process P satisfies a formula S , written in Lowe’s gram-
mar, we can be sure that checking P 'RT P ′ in FDR guarantees that P ′ |= S .
This is necessary when P |= S cannot be expressed as a simple refinement check
Spec(S ) ' P in RT or any other semantic modelM that FDR can handle.

Model checking fair exchange protocols against liveness properties constrain-
ed by Murray’s refinement-closed interpretation of fairness provides a practical
setting exemplifying the ability of our approach to verify properties that cannot,
in general, be tested for via simple refinement checks in FDR. Typically, a Dolev-
Yao (DY) intruder [6], which is limited by perfect cryptography but has complete
control over the network, is assumed when analysing security protocols. However,
such an intruder model trivially breaks liveness properties, as the DY intruder
may choose not to communicate any message sent. Fair exchange protocols often
rely upon the assumption that at least some messages are communicated using
resilient channels [7], which eventually deliver each message [8]. In this paper we
construct a CSP model of an intruder constrained by a resilient communication
channel assumption, based on work by Cederquist and Dashti [9], that can be
used to verify liveness properties in fair exchange protocols using the fairness
constraints proposed by Murray [4].

Following the necessary background on CSP provided in Section 2, Section 3
describes how the atomic formulae of Lowe’s temporal logic can be expressed us-
ing the temporal operators offered when LTL model checking in ProB. Section 3
can stand alone demonstrating how, in general, one can reason about liveness
properties constrained by Murray’s refinement-closed interpretation of fairness
using ProB, while Section 4 describes its application in the specific setting of fair
exchange protocols. In Section 4 we construct an intruder model for reasoning
about liveness properties of fair exchange protocols in the presence of resilient
channels. Finally, Section 5 and Section 6 describe related and future work.

2 CSP

CSP is a process algebra for describing models of interacting processes in terms
of the atomic events that they perform [1]. Processes, denoted by identifiers
beginning in uppercase (e.g., P , Q), interact by synchronising on visible events,
denoted by lowercase characters (e.g., a, b). The set of all visible (i.e., external
events) is denoted by Σ, which does not contain the internal action τ . Stop is the
deadlocked process that performs no event. The CSP process a → P performs
the event a and then acts as P . The equation P = a → P defines a recursive
process that infinitely performs a. The process P � Q may act as either P or Q ,
the choice of which is resolved by the environment. Similarly, the process P � Q
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may act as either P or Q , but in this case the choice is resolved internally by
the system. The difference between the internal and external choice operators
is illustrated by processes P3 and P4 in Figure 1. The process P ! Q acts as
P , although a timeout may occur, represented as an internal action τ , before P
performs its first visible event. Following a timeout the process shall then act as
Q , as illustrated by process P5 in Figure 1.

The process P ‖
A

Q runs P and Q in parallel, synchronising each occurrence

of an event in A. Parallel composition P ||| Q of processes that do not synchro-
nise on any event are said to be interleaved. Note that prefixing binds tighter
than each of the choice operators, which in turn bind tighter than the parallel
operators. The process P \ A acts as P but with each of the events in A replaced
by the internal action τ . Finally, P [[

a
/b ]] acts as P but with each occurrence of

event b in P replaced by event a.
Various semantic models of CSP [10] enable us to distinguish between pro-

cesses. The coarsest model is the traces model T , which captures the traces
of events which a CSP process might exhibit. A sequence of visible events,
〈e1, e2, . . . , en〉, is a trace of a process P if there is some execution of P in which
exactly that sequence of events is performed. For example, the set of all traces
of P1 = a → Stop � b → Stop, which offers the environment a choice between
performing a or b before reaching deadlock, is the set {〈〉, 〈a〉, 〈b〉}. The same set
of traces can be generated by the process P2 = a → Stop ! b → Stop, although
in P2 a choice between performing an a or b is not offered to the environment.
Instead a may be performed unless a timeout first occurs, after which b may be
performed. If an internal action τ may be performed from some state, then the
state is unstable (e.g., the initial state of P2) otherwise it is stable. A process may
stabilise by performing successive internal actions until a stable state is reached.
A process is divergent if it can perform an infinite succession of internal actions.
In this paper we only consider systems that are free of divergence.

Lowe proved that the refusal-traces model RT is necessary for capturing re-
quirements expressed in the temporal logic defined in [3]. For this reason RT
is the semantic model used in the remainder of the paper. Rather than record-
ing only the traces of events performed by a process, RT also records the set
of actions refused after each event performed, 〈X0, e1,X1, e1,X2, . . . , en ,Xn〉. As
refusal sets are recorded only in stable states, the null refusal symbol, •, is used
to denote the absence of refusal information. A null refusal may be recorded
should an event occur from an unstable state or should no attempt be made to
observe the refusal information. For example, the CSP process P2 has the refusal
trace 〈•, a, Σ〉. Likewise, 〈•, a, Σ〉 is a refusal trace of the process P1, although
〈∅, a, Σ〉 is a refusal trace of P1 but not of P2.

In addition to these denotational semantics of CSP, there exists an operational
semantics based upon labelled transition systems (LTS) [10]. Any CSP process
can be given as an LTS, consisting of a non-empty set of states, an initial state, a
set of labels Σ∪{τ}, and a set of labelled transitions, where a labelled transition

S
a→ S ′ denotes that an action a can be taken from the state S to move to state

S ′. All figures in this paper illustrate a CSP process as an LTS.
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CSP has a theory of refinement that enables us to compare the behaviour
of processes. If a process S is refined by a process P , then all of the possible
behaviours of P must also be possible behaviours of S according to some semantic
model, e.g., S 'RT P states that P refines S in RT . The refinement checker
FDR [2] automatically checks whether a specification of a property (S ) is satisfied
by a proposed model (P). If the result of a check is negative, a refusal trace that
leads to the violation of the property is given.

3 Model Checking under Fairness Constraints in ProB

As an alternative to refinement-based model checking, one may directly test
whether requirements expressed in a temporal logic are satisfied by the model
of the implementation. In [3], Lowe investigated the extent to which it can
be checked that CSP processes satisfy temporal logic specifications using a
refinement-based model checker, such as FDR. The following grammar, as pro-
posed by Lowe, defines a temporal logic for specifying communicating processes:

φ, ψ ::= true | false | a | available a | deadlocked |
φ ∧ ψ | φ ∨ ψ | ¬φ | φ ⇒ ψ | ♦φ | �φ | ©φ | ψ U φ | φRψ where a ∈ Σ

Formulae in such a temporal logic regard properties of individual maximal paths
of a process, i.e., an infinite refusals-trace of the process or a finite refusals-trace
that ends in deadlock. P |= φ shall denote that a process P satisfies a formula
φ if every maximal path of P satisfies φ. The formula a, for a ∈ Σ, states that
the event a is guaranteed to be the first visible event performed. The formula
available a states that the event a is not refused whenever the process stabilises
before performing its first visible event, while deadlocked guarantees there is no
next visible event. The logical operators ∧, ∨ and ⇒ have their usual meaning.
The formulae ♦φ and �φ denote that eventually φ holds and that globally φ
holds, respectively.©φ guarantees that if there is a next visible action, φ holds
after its occurrence. φU ψ states that φ remains true until ψ becomes true,
whereas ψRφ states that φ remains true up to and including the state in which
ψ becomes true, although ψ may never become true. The meaning each of these
temporal operators is described more precisely in [3].

Lowe has shown that the temporal operators eventually ♦, until U , and nega-
tion ¬ cannot in general be tested for via simple refinement checks. Furthermore,
Murray has investigated the limits of refinement testing for CSP, demonstrat-
ing that there exist useful refinement-closed predicates that cannot in general
be expressed as refinement checks in any standard CSP model that FDR can
handle. Liveness properties under the assumption of strong or weak event fair-
ness constitute one such class of predicates. It is common to make assumptions
regarding which infinite behaviours of a system should be deemed fair when
analysing an abstract model of a system. Many interpretations of fairness exist
in the literature [11]; we shall follow Murray’s interpretation of strong (resp.
weak) event fairness assumption, which distinguishes itself from other notions of
fairness [11–13] in its definition of available: an infinitely (resp. constantly) often
available event shall occur infinitely often.
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SEF =
∧

a∈Σ

(�♦ available a ⇒ �♦ a)

WEF =
∧

a∈Σ

(♦� available a ⇒ �♦ a)

Alternative notions of fairness [11–13], defined in terms of ‘available’ (or enabled)
events without checking the process stabilises before performing its first visible
event, consider ‘available’ a to be satisfied by a → Stop ! Stop. Such a process
is refined by Stop in each of the semantic models discussed in Section 2, in
which a is clearly ‘unavailable’. The advantage of Murray’s interpretation of
SEF and WEF is that they are refinement-closed in RT . As temporal properties
constrained by SEF orWEF cannot in general be expressed as refinement checks
for FDR [4], we propose the use of ProB [14], which enables LTL model checking
of CSP processes using the following grammar [5].

φ, ψ ::= true | false | [a] | e(a) | deadlock |
φ &ψ | φ orψ | notφ | φ =>ψ | Fφ | Gφ | Xφ | φ Uψ | ψ Rφ where a ∈ Σ ∪ {τ}

Not all of the above operators offered by ProB for LTL model checking match
their counterpart in the grammar defined by Lowe. The temporal operators ♦, �,
U and R can be expressed directly as their counterpart in ProB, i.e., F, G, U and
R. The same is true for the boolean logic operators. However, Lowe’s operators
a, available a, deadlocked and ©φ require further attention.

Note that Lowe’s actions range over the set of visible actions, whereas ProB
also enables us to express properties in terms of internal events. The formula
[a] is satisfied along some linear execution path of a process if the first action
taken is an a. This is true also of the internal action τ , i.e., [tau] is satisfied
along some path if the first action taken from the current state along the path is
the invisible action. A path satisfies e(a), where a ∈ Σ ∪{τ}, if a is not refused
from the current state, whether a is the next action taken along the path or
not. Xφ states that there is a visible or internal action leading to a next state,
in which φ holds. Finally, deadlock is satisfied by a state from which no visible
or internal actions are offered.

Despite their differences, we can express the four atomic formulae from Lowe’s
temporal logic that do not match their counterpart in the grammar offered by
ProB in the following manner:

a → [tau] U [a]

available a → [tau] U ((e(tau) & not [tau]) or (e(a) & not e(tau)))

deadlocked → [tau] U deadlock

©φ → [tau] U (deadlock or (not [tau] & Xφ))

We captured the formula a, that states the event a is guaranteed to be the first
visible event performed, by asserting that τ events are performed from each state
on the path until an a is performed. Similarly, deadlocked , which guarantees there
is no next visible event, is expressed by asserting that τ events are performed
from each state along the path until deadlock is reached. The availability of
a, defined as a is enabled whenever the process stabilises before performing its
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Fig. 1. CSP Processes: (a) P3 = a → P3 � b → P3; (b) P4 = a → P4 � b → P4; and
(c) P5 = a → P5 � b → P5

first event, is captured by stating that τ events are performed, until either some
visible action is taken from an unstable state or, if, a stable state is reached, then
a must be enabled. Finally, that φ is guaranteed to hold after the first visible
action is captured as [tau] U (deadlock or (not [tau] & Xφ)). Note that
©φ is vacuously true if there is no next stable state. The stronger statement
‘there exists a next state and in it φ holds’ is expressed by removing deadlock

from the formula.
To illustrate his interpretation of strong event fairness, and prove that it

cannot be expressed as a simple refinement check for FDR, Murray had us con-
sider the three CSP processes depicted in Figure 1. As a is globally available in
P3, infinite executions in which an a never occurs are considered unfair. Like-
wise, infinite executions of P3 in which a b never occurs are also unfair. Hence,
P3 |= SEF ⇒ ♦a and P3 |= SEF ⇒ ♦b.

Neither available a nor available b is satisfied in the initial state of P4, which
is visited infinitely many times in each infinite path. Thus, neither a nor b
is globally available and so no infinite path of P4 is considered unfair. Hence,
P4 �|= SEF ⇒ ♦ a and P4 �|= SEF ⇒ ♦b. In process P5, a can only occur from
an unstable state, so infinite paths in which a never occurs must be deemed fair.
In each state of P5, whenever the process stabilises before performing its first
visible event, only b is offered. Therefore, infinite paths of P5 in which a never
occurs must be deemed fair, whereas infinite paths in which b never occurs must
be deemed unfair. Hence, P5 �|= SEF ⇒ ♦a, but P5 |= SEF ⇒ ♦b.

Processes P3, P4 and P5 can be checked against SEF ⇒ ♦a and SEF ⇒ ♦b
in ProB using our definitions of a and available a above. The same results hold
under Murray’s interpretation of weak event fairness [4], which was also proved
to not be expressible as a simple refinement check for FDR. Thus our definitions
of a and available a also enable one to use ProB to check CSP processes against
properties constrained by weak event fairness.

4 An Intruder Model in CSP for Verifying Liveness

When analysing security protocols it is standard to assume a Dolev-Yao (DY)
intruder model in which the intruder has full control over the network [6]. Live-
ness properties are not satisfiable under this assumption, as the DY intruder
may choose not to communicate any message sent. Fair exchange protocols rely
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upon the assumption that at least some messages are communicated using re-
silient channels in order to satisfy certain liveness properties [7]. In this section
we construct a new intruder model for reasoning about liveness properties of fair
exchange protocols in the presence of resilient channels. We analyse our models
against fairness constrained properties in ProB, as described in Section 3.

Our intruder model is based upon the one of Cederquist and Dashti [9], who
analysed μCRL [15] models of fair exchange protocols against μ-calculus expres-
sions [16] of liveness properties constrained by fairness using CADP [17]. While
the properties against which Cederquist and Dashti analysed their models are
not refinement-closed, our liveness properties shall be. Should our models satisfy
some liveness property constrained under Murray’s SEF , then any refinement of
our models in RT shall also necessarily satisfy the property.

We begin, in Section 4.1, with a description of a CSP model of the DY intruder
proposed for reasoning about safety properties. We shall demonstrate why such
an intruder model is insufficient for reasoning about liveness properties. In Sec-
tion 4.2, we discuss how this issue was addressed by Cederquist and Dashti [9],
but show that their properties are not refinement-closed. We address this issue in
Section 4.3 by revising Roscoe’s intruder model to enable the intruder to refuse
to perform certain events. Finally, in Section 4.4, we propose a CSP model of
the intruder that enables us to analyse fair exchange protocols in the presence
of resilient channels with use of the fairness constraints described in Section 3.

4.1 Roscoe’s Intruder Model for Verifying Safety

In [18], Roscoe’s lazy spy was constructed to check whether the Needham-
Schroeder public-key protocol satisfies certain safety properties in the presence
of a DY intruder. Although written differently to better suit model checking in
FDR, Roscoe’s spy is RT equivalent to the following CSP process. The func-
tion Close(X ), defined in [18], returns the closure of a set of facts X under all
deductions that the intruder can perform. The setM contains all the messages
that can be sent or received in the protocol.

SpyS (X ) =

⎛
⎜⎜⎝

�
m∈X∩M

say .m → SpyS (X )

� �
m∈M

learn.m → SpyS (Close(X ∪ {m}))

⎞
⎟⎟⎠

It is important to appreciate that SpyS is willing to accept any incoming message
on learn and is always willing to say any message it can construct as a conse-
quence of the use of external choice in its construction. SpyS cannot refrain
from saying a message it can construct, should some other process synchronise
on performing such an event. This is of little concern when considering only
safety properties, as checked in the traces model of CSP, in which the intruder
has little to gain by refraining from performing certain events. However, the
same is not true when checking liveness properties. Let us consider the following
system, similar to that described in [13], where A = {A,B , I } with A and B
being the honest agents and I the intruder.



Model Checking under Fairness in ProB 175

0 1 2 3
snd .A.B .Na rcv .A.B .HSH .Na flag

Fig. 2. SYS1

SND1 = snd .A.B .Na → Stop
RCV1 = rcv .A.B .HSH .Na → flag → Stop

SYS1 = (SND1 ||| RCV1) ‖
{|snd,rcv |}

SpyS [[snd.x .y,rcv .y.x/learn,say |x←A\{I},y←A\{x} ]]

SpyS allows any message to be sent by the other agents, and is willing to de-
liver any message it can construct from its current knowledge. We need only
assume appropriate deduction rules for hashing and sequence generation for our
examples, and in each the initial knowledge of the intruder is assumed empty.
Figure 2 illustrates SYS1, in which SND1 and RCV1 synchronise with SpyS on
events in {| snd , rcv |} = {snd .a.b.m, rcv .a.b.m | a ← A, b ← A\{a},m ←M}.
The sender, A, who behaves as the process SND1, is willing to send a single
message consisting only of a nonce, Na, to B . Conversely, the process RCV1,
which expresses the behaviour of the recipient B , is willing only to receive the
hashed value HSH .Na. Clearly, A and B shall fail to communicate should they
attempt to do so over any reasonable medium, as B is willing to receive none of
the messages sent by A. However, the parallel composition of SND1 and RCV1

with the intruder process, SpyS , fabricates curious behaviour. The signal event,
flag, occurs in all maximal paths of SYS1 only because the modelling of the
intruder guarantees that it shall.

4.2 Cederquist-Dashti Resilient Channel Assumption

In [13], Dashti demonstrated that the fairness constraint that states that ‘each
infinitely enabled transition is infinitely taken’ is insufficient to resolve this is-
sue. It is important to appreciate the subtle differences between this fairness
assumption and Murray’s SEF , as described in Section 3. Firstly, Dashti’s ini-
tial fairness assumption is described in terms of transitions, whereas Murray’s is
described in terms of events. Secondly, external and internal events are treated
the same in Dashti’s initial fairness assumption, but not in Murray’s. Hence, the
process P5, illustrated in Figure 1, satisfies ♦a under Dashti’s interpretation of
fairness but not Murray’s.

Regardless of their differences, under either of these fairness constraints, flag
is guaranteed to eventually occur in SYS1 only because the modelling of the
intruder guarantees that it shall. To resolve this issue, Cederquist and Dashti [9]
proposed an alternative fairness constraint and to parameterise the intruder
process by the set of all messages sent but not yet delivered, which we shall
denote as Y . Initially the set is empty, but following each snd action the mes-
sage, as well as the correct addressing information, is added to Y . Should a
message be sent multiple times without being delivered, only one instance of the
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message is recorded within Y . This intruder satisfies Cederquist and Dashti’s
resilient communication channel assumption RCC1 [9]. This assumption states
that a resilient channel delivers the message at least once after the message has
been sent multiple times.

As an alternative to Dashti’s initial fairness assumption described above, Ced-
erquist and Dashti propose the use of the μ-calculus notion of fair reachability
of an action, which states that whatever path has been taken previously, there
remains a path in which the action finally occurs. By distinguishing those mes-
sages sent but not yet received and all others messages delivered by the intruder
as rcv and rcv†, respectively, Cederquist and Dashti check that whatever path
has been taken previously, there remains a path containing no rcv†’s in which
the signal event flag finally occurs. Such a property is not refinement-closed.
Consider again the examples illustrated in Figure 1. In each process P3, P4 and
P5, no matter what path has been taken previously, there always exist a path in
which a occurs. However, removing the nondeterminism from P4, for example by
demanding that the b path is always taken, refines P4 in each semantic model
discussed in Section 2. In particular, P4 'RT Q where Q = b → Q . Hence,
although P4 satisfies fair reachability, after refinement of P4 this property may
no longer be satisfied.

4.3 An Intruder Model without Resilient Channels

To maintain the use of CSP’s theory of refinement, we wish to analyse our models
against liveness properties expressed in Lowe’s temporal logic constrained by
Murray’s SEF , as presented in Section 3. Therefore, rather than adopting an
alternative fairness constraint, we have adapted the model of the intruder to
include behaviour enabling the intruder to refuse to cooperate. Our intruder
model enables the intruder to nondeterministically choose the set of messages he
is willing to send at any given time, from the set of all subsets of the messages
he can construct at that time. CSP’s notion of external choice and the use of
the semantic model, RT , are well-suited to modelling the intruder behaviour in
this way. We begin by revising the process SpyS to include behaviour enabling
the intruder to refuse to cooperate in this manner.

SpyL0(X ) = �
S∈Set(X∩M)

⎛
⎜⎜⎝

�
m∈S

say .m → SpyL0(X )

� �
m∈M

learn.m → SpyL0(Close(X ∪ {m}))

⎞
⎟⎟⎠

The process SpyL0(X ) presents an initial attempt at modelling the intruder’s
ability to refuse to cooperate. However, the result of the renaming within the
process SpyL0(X )[[

snd.x .y,rcv .y.x
/learn,say |x←A\{I},y←A\{x} ]] is such that the

intruder chooses whether or not he is willing to perform a rcv event regarding
(for example) Na. It does not give the intruder the ability to offer rcv .A.B .Na
whilst also refusing rcv .B .A.Na. The process SpyL(X ), constructed directly of
snd and rcv events, provides this necessary additional behaviour.
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Fig. 3. (SND1 ||| RCV1) ‖
{|snd,rcv|}

SpyL

SpyL(X ) =

�
S∈Set

({
(x ,y,n)

x←A
y←A\{x ,I}
n←(X∩M)

})

⎛
⎜⎜⎜⎜⎜⎝

�
(a,b,m)∈S

rcv .a.b.m → SpyL(X )

� �
snd .a.b.m →
SpyL(Close(X ∪ {m}))

(a,b,m)∈
{

(x ,y,n)
y←A
x←A\{y,I}
n←M

}

⎞
⎟⎟⎟⎟⎟⎠

Replacing SpyS with SpyL in SYS1 produces the state space illustrated in Fig-
ure 3. From the initial state the intruder does not hold enough knowledge to gen-
erate any messages, so snd .A.B .Na is guaranteed to be the first action performed.
Following snd .A.B .Na, the intruder chooses which subset of messages he is will-
ing to deliver from the set of all messages he can construct. Hence, he chooses
between performing rcv .A.B .HSH .Na or refusing to perform rcv .A.B .HSH .Na.
If he chooses to refuse the event, then no further actions are possible, otherwise
rcv .A.B .HSH .Na is performed in synchrony with RCV1. RCV1 is then able to
perform the event flag, while the intruder can again resolve his internal choice.
Thus the interleaving of flag and τ actions means that they may occur in ei-
ther order before the system deadlocks. As a consequence of our revisions to the
intruder model, the signal event flag no longer occurs in all maximal paths of
SYS1, as was desired.

With full control over the network, the DY intruder may now choose not to
communicate any message sent. As a result, liveness properties, such as ♦flag,
can never be guaranteed in this model, even under the assumption of strong
event fairness. It is for this reason that fair exchange protocols rely upon the
assumption that at least some messages are communicated over resilient chan-
nels [7]. Our revised intruder, which can choose not to communicate any message,
requires further revision to capture Cederquist and Dashti’s resilient channel as-
sumption, RCC1. First let us motivate such a revision to the intruder model via
a second example.



178 D.M. Williams, J. de Ruiter and W. Fokkink

0 1 2 3

5

4

6

snd .A.B .Na snd .A.B .Na

τ τ rcv .A.B .Na

flag

τ

τ

flag

snd .A.B .Na

snd .A.B .Na

Fig. 4. SYS2

SND2 = snd .A.B .Na → SND2

RCV2 = rcv .A.B .Na → flag → Stop
SYS2 = (SND2 ||| RCV2) ‖

{|snd,rcv |}
SpyL

Figure 4 illustrates the state space of such a system. Initially, snd .A.B .Na is
guaranteed to be the first action performed, as the intruder does not hold enough
knowledge to generate any messages. Following snd .A.B .Na, the intruder again
chooses which messages he is willing to deliver from the set of all subsets of the
messages he can construct. Hence, he chooses between performing or refusing to
perform rcv .A.B .Na. If he chooses to refuse the event, then the system returns
to the initial state, otherwise either snd .A.B .Na is again performed in synchrony
with SND2, returning to a previously visited state, or rcv .A.B .Na is performed in
synchrony with RCV2. In the latter case, RCV2 is able to perform the event flag,
while the intruder can again resolve his internal choice. Thus, the interleaving
of the flag and τ actions means that they may occur in either order, after which
snd .A.B .Na is the only possible event, in each case returning the system to a
previously visited state.

Using ProB we can verify that SYS2 does not satisfy ♦flag. The system in-
cludes infinite execution paths in which (i) the intruder always chooses to refuse
the delivery of Na, and (ii) the intruder is willing to perform rcv .A.B .Na, but
infinitely often snd .A.B .Na is taken instead.

4.4 An Intruder Model with Resilient Channels

We shall revise the intruder model such that he is unable to refuse to deliver
messages that have been sent but not yet delivered. Such a revised model can
then be analysed under the assumption of strong event fairness.

SpyL†(X ,Y ) =

�
S∈Set

({
(x ,y,n)

x←A
y←A\{x ,I}
n←(X∩M)\Y

})

⎛
⎜⎜⎜⎜⎜⎝

�
(a,b,m)∈S∪Y

rcv .a.b.m → SpyL(X ,Y \{(a, b,m)})

� �
snd .a.b.m →
SpyL(Close(X ∪ {m}),Y ∪ {(a, b,m)})

(a,b,m)∈
{

(x ,y,n)
y←A
x←A\{y,I}
n←M

}

⎞
⎟⎟⎟⎟⎟⎠



Model Checking under Fairness in ProB 179

0 1 2 3

5

4

6
snd .A.B .Na

snd .A.B .Na

τ rcv .A.B .Na

flag

τ

τ

flag

snd .A.B .Na

snd .A.B .Na

Fig. 5. (SND2 ||| RCV2) ‖
{|snd,rcv|}

SpyL†

Like Cederquist and Dashti’s intruder model, our process SpyL† is parameterised
by the set Y of all messages sent but not yet delivered. Initially the set is empty.
Following each snd .a.b.m event, the message as well as the correct addressing
information (a, b,m) is added to Y . Should a message be sent multiple times
without being delivered, only one instance of the message is recorded within
Y , as this is the information required to assure the intruder satisfies RCC1.
As the correct addressing information must be recorded in Y , SpyL†(X ,Y ) is
constructed explicitly of snd and rcv events, rather than renaming a process
constructed of simpler learn events. The consequence of the other revisions is
that the intruder never refuses the delivery of messages contained in Y , but
remains able to refuse any subset of the remaining messages he can construct. We
have used ProB to successfully check that the revised model SYS2, as illustrated
in Figure 5, satisfies SEF ⇒ ♦flag using the definitions from Section 3.

4.5 Conclusion

The intruder model SpyL† constructed in this section is suitable for analysing
fair exchange protocols in the presence of resilient channels and a DY intruder.
Our analyses needed to be closed under refinement to be sure that the system
will be secure under any refinements of the nondeterministic intruder, which
represent different attack strategies. Murray’s refinement-closed interpretation
of strong event fairness SEF was added as a premise of the liveness property
being checked. The consequence of this fairness constraint was that paths in
which the intruder never delivers some message from Y , supposing that the
recipient is always willing to accept it, were disregarded as unfair paths.

A fair exchange protocol may only require certain messages to be sent via
resilient channels. Minimal changes to SpyL are required to model such a system.
Distinguishing between messages sent over non-resilient and resilient channels
as snd and sndr , respectively, is sufficient to record which messages should be
contained in Y .
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5 Related Work

Building upon Schneider’s analysis [19] and drawing from the work of Evans [20],
Wei and Heather analysed the Zhou-Gollmann non-repudiation protocol [21]
protocol using CSP and FDR [22] as well as the theorem prover PVS [23]. The
contribution that distinguishes our CSP intruder model from those that pre-
ceded it is the modelling of the resilient channel. Wei and Heather modelled the
resilient communication between the trusted third party and the other agents
as a synchronous communication over a reliable and secure channel. Originally,
Zhou and Gollmann assumed that the channel, over which the third party sends
messages, will eventually be available, i.e., that there exists a resilient channel
between the third party and other agents. Our intruder model increases the
possible behaviours of the intruder, who is able to record which messages are
sent over the resilient channel and delay the delivery of such messages. He must
only not indefinitely delay the delivery of such messages, assuming the recipient
remains willing to receive it. Thus our intruder model aims to more faithfully
capture the assumptions of resilience in CSP models of fair exchange protocols.

By adopting Murray’s refinement-closed interpretation of fairness [4] we main-
tain CSP’s theory of refinement. Furthermore, such a notion of fairness is weaker
than the one of Cederquist and Dashti [9]. Rather than treating all outgoing ex-
ternal and internal actions fairly, we demand only that infinitely often available
(visible) events are treated fairly. As we adopt a weaker notion of fairness, our
intruder model is stronger, because less of its behaviour is restricted. Even under
this stronger intruder model we have been successful in checking the satisfaction
of liveness properties in the examples given in this paper.

The Process Analysis Toolkit [24] has specific functionality for model checking
CSP processes under various fairness assumptions. However, such notions of fair-
ness do not match the ones proposed by Murray and are not refinement-closed.
The process P4, illustrated in Figure 1, satisfies ♦b under the PAT interpretation
of strong event fairness, but it also satisfies ♦a as the internal event τ is treated
the same as visible actions. Refining P4 by removing the unstable a action would
cause the process to no longer satisfy ♦a, so PAT’s interpretation of strong event
fairness is not refinement-closed.

6 Discussion and Future Work

In [4] it was shown that Murray’s refinement-closed interpretation of strong and
weak event fairness cannot be expressed as refinement checks in the semantic
models supported by FDR. We therefore propose the use of ProB, as we have
shown that its LTL model checker [5] can be used to model check liveness prop-
erties under such fairness constraints, which were expressed in Lowe’s temporal
logic [3]. More generally, we have shown how any formula of Lowe’s temporal
logic can be expressed in the grammar offered by ProB for LTL model checking,
even though the two grammars differ.
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Subsequently, using Roscoe’s intruder model [18] as a foundation, we proposed
a new intruder model for reasoning about liveness properties in security protocols
in the presence of resilient channels. Roscoe’s intruder model [18] required revi-
sion for this purpose, since this model of the intruder can drop all messages, thus
trivially violating all liveness properties. Furthermore, an example was provided
to demonstrate that Roscoe’s intruder model can in some sense help in satisfy-
ing liveness properties that would not otherwise be satisfied in the presence of
a reliable medium. Such observations were first made in [13], which justified the
construction of a new intruder model in [9]. The primary distinction between
our approach to that in [9] is the use of Murray’s refinement-closed interpreta-
tion of strong event fairness. Our analyses needed to be closed under refinement
to be sure that the system will be secure under any and all refinements of the
nondeterministic intruder, which represent different attack strategies.

The examples provided in this paper to demonstrate and justify our approach
were necessarily simplistic to enable ProB to complete the checks in reason-
able time. The application of our approach to more meaningful fair exchange
protocols, such as those described in [7], remains future research. Murray’s fair-
ness constraint was added as a premise of the liveness property, i.e., SEF ⇒ φ,
where SEF was constructed as the conjunction over the potentially large set
of events Σ. This method of model checking under fairness constraints is in-
efficient, as the time complexity of LTL model checking is exponential in the
size of the formula [24]. Rather than incorporating the fairness constraint as
a premise of the property being checked, dedicated algorithms have been im-
plemented within PAT to analyse CSP models against LTL properties under
fairness. In Section 5 we demonstrated that PAT’s interpretation of strong event
fairness is not refinement-closed, so investigating how to efficiently check liveness
properties under SEF remains an open research question.

When model checking CTL, fairness constraints cannot simply be added as a
premise of the property being checked, as they are not typically expressible in
branching time logic. It is worth considering how the work in [3] can be adapted
to check CSP processes against CTL properties that are closed under refinement.
Furthermore, it would be worthwhile to consider the use of more expressive
temporal logics when model checking CSP processes. The relationship between
LTL, CTL, CTL* and μ-calculus is well documented, but it is unclear precisely
how the limits of refinement testing for model checking CSP processes relate.
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Abstract. This paper presents a model-checking experiment for a de-
sign model of a practical real-time operating system (RTOS) based on
environment modeling. In previous work, we developed a tool called the
environment generator to generate environments for model-checking gen-
eral RTOS models in Spin. This tool takes a general model of the envi-
ronments, called the environment model, as an input and generates all
possible environments within the bounds of the model. Here, we applied
the tool to verify the design model of an OSEK/VDX OS, the RTOS for
controlling automotive systems. In this paper, we explain the details of
constructing the environment models for verifying various aspects of the
RTOS. We also show the results of an experiment using our tool.

1 Introduction

Nowadays, many embedded systems are using real-time operating systems
(RTOSs) to realize high functionality and responsiveness. RTOSs are required
to have high reliability because they are commonly used in a wide variety of
systems. Since failures in embedded systems lead to huge recalling costs, and
can even endanger human lives, it is important to ensure the correctness of their
behavior. Currently, we are working on a project to verify the design model
of an OSEK/VDX OS [8] (hereinafter, the RTOS model) by model checking.
OSEK/VDX is the OS specification for controlling automotive systems. The
RTOS model that we have developed is described in Promela, the input lan-
guage of the Spin model checker [6]. We focus on the verification of the task
scheduling algorithm. This algorithm is based on priorities, and its correctness
is critically important for the safety of automobiles. Specifically, high-priority
tasks such as life-saving units must always be activated before all low priority
tasks.

To apply model checking to the RTOS model, we need to construct an envi-
ronment that provides function calls to the RTOS model. Such an environment
is an application consisting of tasks and resources, and is necessary as a driver
to close the behavior of the RTOS model. According to the number of tasks
and resources and their priorities, there are a number of environmental varia-
tions. For example, one environment may consist of 2 tasks with priorities 1 and
2, whereas another environment consists of 3 tasks with priorities 1, 2 and 3,
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Fig. 1. Environment generator

and a resource with priority 4. Since exhaustively constructing all variations by
hand is infeasible, we have developed a tool called the environment generator
to automate the process. Fig. 1 summarizes the concepts behind the tool. The
environment generator first takes a general model of the environments, called
the environment model, as an input. This model consists of class and statechart
models, whose notations are based on the unified modeling language (UML) [7],
to describe the structure and behavior of the environment. The environment gen-
erator then generates all possible environments within the bounds of the model.
Finally, each generated environment is model-checked in combination with the
RTOS model in Spin.

For the current study, we applied this tool to verify the RTOS model. During
verification, we had to construct various environment models to clarify various
aspects of the RTOS such as task management, resource management, event con-
trol, and interrupt handling. In this paper, we explain the details of constructing
the environment models and show experimental verification results.

This paper is organized as follows. In Section 2, we describe the RTOS model
and how an environment is used to verify it. In Section 3, we explain the en-
vironment model and the environment generator. In Section 4, we explain the
verification procedure of the RTOS model by using the environment generator.
In Section 5, we discuss the effectiveness of our method. In Section 6, we outline
related work. In Section 7, we conclude this paper.

2 RTOS Model and Its Environment

Let us first introduce the RTOS model and explain how it is checked using an
environment. The RTOS model is constructed based on the OSEK OS spec-
ification, and is described in about 2800 lines of Promela code, following the
approach in [2]. The main functionalities of the OS are modeled, including its
task management, resource management, event mechanism, and interrupt pro-
cessing. Fig. 2 (left) shows the basic structure of the code. The first part defines
the data structures such as tasks, resources, and the ready queue. Here, tasks are
the entities that compete for a central processing unit (CPU), and the currently
running task is represented by the variable turn. The ready queue is used to
manage the execution order of tasks, and is represented by a two-dimensional
array (i.e., a set of queues assigned for each task priority level). When a task is
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Fig. 2. RTOS model and an environment

activated, it is pushed onto the queue with corresponding priority. The next task
to be executed is then the one at the head of the highest priority queue. The
second part of the code defines a number of functions. The function Schedule

corresponds to the activation of the scheduler, and is called only from inside of
the OS. When Schedule is called, the next task to be executed is dispatched
from the ready queue and the identifier (ID) of the task is stored in turn. In con-
trast, the functions DeclareTask, ActivateTask, and TerminateTask are called
from outside the OS. DeclareTask registers a new task for the RTOS model.
ActivateTask and TerminateTask activate and terminate a task, respectively,
and the main role of these two functions is to enqueue and dequeue tasks for the
ready queue. At the end of the execution of these functions, Schedule is called to
activate the scheduler. Including these three functions, a total of 13 external OS
functions are defined. Their executions all follow the same procedure, namely,
after conducting their operation, the scheduler is activated.

To apply model checking to the RTOS model, we need an environment that
provides function calls to the RTOS model. Fig. 2 (right) shows an example of
an environment. In actuality, this environment is implemented in Promela; how-
ever, we show it here as a state model for readability. This example environment
consists of two tasks: T1 with priority 1 and T2 with priority 2. It describes a
sequence of function calls to the RTOS model, as well as the state transitions
of the tasks expected by the function calls. The environment starts in an initial
state constructed by declaring the two tasks using DeclareTask. Both tasks are
expected to be suspended in this state. When ActivateTask(0,1) (activation
of T1 by the OS) is called in this initial state, the environment moves to the left
state in which T1 and T2 are expected to be running and suspended, respectively.
When ActivateTask(1,2) (activation of T2 by T1) is called in the left state,
the environment moves to the bottom state in which T1 and T2 are expected to
be ready and running, respectively. T2 hence preempts the execution of T1. In
this way, the environment describes the state transitions of tasks expected by
the function calls. To ensure that this expectation is actually satisfied, we check
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the consistency of the environment and the RTOS model by using assertions. In
this example, we check that the task running in the environment is also running
in the RTOS model by inspecting the variable turn of the RTOS model in each
state of the environment. For instance, for the left state in which T1 is expected
to be running, we check that turn is equal to the ID of T1 (= 1). In this way,
we ensure the correctness of the RTOS model by applying model checking in
combination with an environment.

3 Environment Generator

The example in the previous section is so simple that we can construct it even by
hand. However, as stated in Section 1, there are many environmental variations
considering the number of tasks and resources and their priorities. To automate
the construction of environmental variants, we previously developed the envi-
ronment generator tool. We briefly introduce this tool here. For more details,
please refer to our earlier work [17].

Environment models are input models of the environment generator. An en-
vironment model consists of a class model and statechart models. In the class
model, we describe structural variations of the environment. In the statechart
models, we describe the state transitions of environment objects, which are ex-
pected by the function calls to the target system. Fig. 3 shows an example
environment model. The class model defines the following two classes. The first
class RTOS represents the verification target and defines two types of functions:
trigger functions (defined in the upper box of the figure) and reference func-
tions (defined in the lower box). Trigger functions cause state transitions to the
environment, and their arguments are defined with a range that characterizes
the call variations. Reference functions refer to the internal values of the target
system and are used to define assertions. The second class Task represents the
environment of the target system. It is defined in terms of attributes and asso-
ciations. For example, the attribute pr represents the priority of a task, and the
association from RTOS to Task represents the number of tasks. Such attributes
and associations are also defined with ranges that characterize the value and
multiplicity variations, respectively. The detailed structure of the environments
is constrained by invariants. For example, the invariant of Task forces the priori-
ties of tasks to be different from one another. The properties under examination
are defined by assertions, which are checked in all states of each object. For ex-
ample, the assertion of Task checks the consistency of the running task between
the environment and the RTOS model (as explained in Section 2). The function
GetTurn is used to reference the value of turn in the RTOS model. Invariants
and assertions are described in object constraint language (OCL) [16].

The figure also shows the statechart model of Task. A transition is caused
by calling a trigger function, for example, the transition AT1 is caused by
ActivateTask such that when a suspended task is activated, this task runs if no
other tasks are running. The expression in the square brackets ([]) beneath AT1 is
a guard condition. Simultaneous transitions amongmultiple objects are defined by
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Fig. 3. Example environment model

synchronous transitions. For example, the transition AT2 defines a synchronous
transition |Run->Rdy:GetRun(). During the main transition, the task transits
from suspended to running. In combinationwith this transition, the task expressed
by GetRun() (i.e., the running task GetRun()=Task->select(t|t@Run)) transits
fromrunning to ready.Guard conditions and theobjects in synchronous transitions
are also described in OCL.

The environment generator generates all possible environments of the envi-
ronment model. It is implemented as a LINUX command line tool that takes
an environment model as a text file input and outputs environments as Promela
files. Environment generation is conducted in three steps. Firstly, all possible
object graphs are generated within the bounds of the class model. In [17], we
performed this generation by using an elementary algorithm that enumerated
all of the object graphs in alphabetical order. However, we have now updated
the generator to use a satisfiability modulo theories (SMT) solver Yices. The
problem of finding object graphs that satisfy the invariants can be considered
as a constraint solving problem against the class diagram [3,4]. We follow this
approach, and enumerate all of the object graphs efficiently using Yices [1]. Sec-
ondly, for each object graph, we generate a labeled transition system (LTS) by
composing the statechart models of all objects in the object graph. Finally, we
generate the environments by translating each LTS into a Promela file.

4 Verification of RTOS Model

4.1 Approach

To verify the RTOS model, we constructed environment models based on the
OSEK/VDXOS specification. For this construction, we followed two approaches:
(1) separation of environment models and (2) use case analysis of state transi-
tions.

Separation of Environment Models. We first constructed separate environ-
ment models based on the individual functionality of the OS. Fig. 4 summarizes
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Fig. 4. Separation of environment (Env.) models

this concept. The OS has various functionalities such as task management, re-
source management, event control, and interrupt processing, and we constructed
multiple environment models to independently check each of these. There are
two reasons for separating the models. Firstly, each environment model is sim-
plified. In actuality, it is possible to construct a single environment model that
covers all aspects of the OS. However, we avoided this because the environment
model becomes so complicated that the reliability of the verification is reduced.
Since the environment model describes the OS properties, it must be simple so
as to clearly reflect the intention of the verification. However, if all aspects of
the OS are placed into a single environment model, the complexity of the model
becomes equivalent to that of the RTOS model. Creating such a model for ver-
ification makes little sense because the correctness of the environment model
becomes as uncertain as that of the RTOS model. Therefore, we constructed the
environment models separately such that each model was as simple as possible.
Secondly, the models are separated to reduce the risk of state explosion. If we
check all aspects of the OS at once, state explosion can easily occur. However,
by separating the environment models, we can check each of them within a rela-
tively small state space. As a result, we can check the entire environment without
causing state explosion.

In addition to separation according to functionality, we separated the environ-
ment models based on the priority of tasks. Specifically, for each functionality,
we constructed two environment models: one consisting of tasks with different
priorities and the other consisting of tasks with the same priority. This separa-
tion also retains the simplicity of the environment models. To deal with tasks
having arbitrary priorities, we would need to define a data structure similar to
a ready queue that precisely defines the order of task executions. (For example,
let us consider the case where T1 with priority 2 is running and T2 and T3, both
with priority 1, are ready. When T1 terminates, we cannot tell which of T2 and
T3 will run next unless we record their activation order.) However, this again
increases the complexity of the environment model such that it is equivalent to
that of the RTOS model because the RTOS model uses the ready queue. Thus,
we divided the environment models into above two cases. In the different priority
case, we can check the preemptive mechanism of task execution, namely, that
a task with higher priority is executed before those with lower priorities. Here,
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Fig. 5. Use cases for ActivateTask and TerminateTask

we do not need a ready queue because the order of task execution is simply de-
termined by comparing their priorities. In the same priority case, we can check
the first-in-first-out order of task execution, that is, tasks with the same priority
are executed in activation order. Here, we still need a ready queue to record
the order of task activation. However, a single array is adequate to represent
the ready queue because there is only one level of priority. This simplifies the
environment model compared with the RTOS model, where the ready queue is
represented by a two dimensional array.

Use Case Analysis of State Transitions. Second, before constructing the en-
vironment models, we constructed use case models to understand the specifica-
tion correctly. In actuality, the behavior of functions is described in various ways
in the specification such as by plain text, diagrams, tables, and so on. This va-
riety makes direct conversion of the specification into environment models prone
to errors. Hence, we introduced use case models as intermediate models to fill the
notational gaps between the specification and environment models. Fig. 5 shows
an example of use case models. In such models, we describe the state transition
patterns caused by function calls by using concrete objects in the environment.
For example, AT3 presents the state transitions of two tasks, T1 with priority 1
and T2 with priority 2, caused by ActivateTask(1,2) (activation of T2 by T1).
Initially, T1 is running and T2 is suspended. After the function call, T1 then be-
comes ready and T2 becomes running. When constructing use case models, it is
important to exhaustively cover all state transition patterns. The five cases in
the figure are all of the state transition patterns caused by ActivateTask and
TerminateTask in which the tasks have different priorities. Specifically, the three
cases of ActivateTask are divided into AT1, and {AT2, AT3} based on the exis-
tence of a running task. Furthermore, AT2 and AT3 are divided based on the rela-
tion between the priorities of the running and activated tasks, namely, AT2 with
T1.pr<T2.pr and AT3 with T1.pr>T2.pr. The two cases of TerminateTask are
divided based on the existence of a ready task. Through such a case analysis, we
exhaustively extract all state transition patterns from the specification.

We constructed environment models by generalizing the use case models us-
ing OCL expressions. For instance, the five cases in the example in Fig. 5 are
generalized as the statechart model shown in Fig. 3. The initial conditions are
defined by guard conditions and the state transitions of multiple objects are de-
fined by synchronous transitions. Although we have not developed a formal way
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Fig. 6. Class model

of analyzing and generalizing use case models, we consider that the case analysis
employed to construct the use case models is an important activity for correctly
ascertaining the behavior of functions.

4.2 Environment Models

Following the approach outlined in the Section 4.1, we defined a total of 12
environment models to check each aspect of the RTOS model. The class model
commonly defined for these environment models, is shown in Fig. 6. The ranges
of the parameters, invariants, and statechart models are defined individually for
each environment model.

Fig. 7 shows the configuration of each environment model. The environment
models are divided into six groups based on which the functionalities of the OS
are being checked. Each group is further divided into two cases based on the
equality of task priorities. For example, environment models No. 1 (TaskDiff)
and No. 2 (TaskEq) check the task management functions. They represent the
cases with different priorities and the same priority, respectively. The table lists
the parameter ranges in the class model. For example, in model No.1, we define
the range of task priorities (P) as 1..3 and add an invariant to specify that the
priorities are different for each task. On the other hand, in model No. 2, we simply
define the range as {1} to make the priority equal for all tasks. The table also lists
the number of transitions in the statechart model. For example, the statechart
model of model No. 1, which we have already shown in Fig. 3, consists of six
transitions: 1 for DeclareTask, 3 for ActivateTask, and 2 for TerminateTask.
As we can see, these functions are used commonly by all of the other models.
This is because tasks are necessary to compose the minimum behavior of the en-
vironment. We thus treated models No. 1 and No. 2 as core environment models
and defined all of the other models by extending these core models. For example,
Fig. 8 shows the statechart models of models No. 5, 7, and 9, which are defined
by extending model No.1. These three models check the functions associated
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Fig. 7. Configuration of environment models

with multiple activation of tasks, resource management, and event control, re-
spectively. Model No. 5 adds the state transitions AT4 and AT5, which occur
when a ready task or a running task is activated multiple times, respectively.
Model No. 7 adds the statechart model of the resource, and state transitions
TT1 and TT2 are updated to include a guard condition that prohibits a task from
terminating while occupying resources. Model No. 9 adds the state Wait for
waiting events. In this way, we constructed each environment model by adding
the relevant behaviors to the core models.

Let us explain more about the class model. The attribute ty of Task rep-
resents two types of tasks (basic tasks and extended tasks) defined in the OS.
The accessibility of a task to functions is defined based on this type. For ex-
ample, WaitEvent is called only by extended tasks. We check this accessibility
in the guard condition of state transitions by referring the attribute. The vari-
able dpr of Task represents the dynamic priority of a task. Under the priority
ceiling protocol of the OSEK/VDX OS, all resources are defined with a ceiling
priority (the attribute pr or Resource). When a task acquires a resource, its
priority is changed to the ceiling priority of the resource. In the class model,
such dynamic data is defined as a variable, and its value can be changed by
actions that are defined along with the state transitions. The invariant of Task
defines the constraint on the association between Task and Resource whereby a
task can only access resources whose priorities are greater than or equal to that
of the task. The classes Queue and Stack are utility functions for defining the
precise behavior of tasks. Queue is the single ready queue that we explained in
Section 4.1, and is used to record the activation order of tasks for models with
the same priority. Stack is used to control the last-in-first-out order of resource
accessing, specifically, when a task releases a resource, that resource must be
the last one acquired by the task. The class ISR represents the interrupt service
routines. ISRs are those entities besides tasks that compete for the CPU. In-
terrupt processing is checked in models No. 11 and12, which use the functions
DeclareInterrupt, SetInterrupt and ResetInterrupt. These functions are
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Fig. 8. Statechart models of models No. 5, 7, and 9

not defined in the specification; however, we included them in the RTOS model
to represent the activation and termination of ISRs. Interruption is then real-
ized by calling these functions from the environment model. Since the processing
level of ISRs is higher than that of tasks, the range of the ISR priorities (R) is
set to be higher than that of the task priorities. For the assertions, we checked
the consistency of running tasks between the RTOS model and the environment
for all models. We also checked the consistency of the dynamic priority of tasks
and the consistency of the owner task of a resource in the resource management
models (No. 7 and 8).

4.3 Verification Results

Fig. 9 shows the results of environment generation and model checking. The
environment generation results show the number of environments generated from
each environment model, the time taken for generation, the average length of
the Promela files, and the average number of states and transitions contained in
each environment. The model checking results show the time taken for checking
all of the environments and the number of environments in which errors were
detected. From Fig. 7, we limited the number of tasks, resources, and ISRs to
a maximum of 3. With these ranges, we were able to generate a total of 620
environments in about 1 min, which is quite efficient since only about 0.1 s was
needed to generate each environment. This result demonstrates the effectiveness
of using the SMT solver. For model checking, we were able to check the RTOS
model using all of the environments without state explosion occurring due to
the separation of the environment models. The entire model checking took 106
min such that about 10 s per environment was required on average. Most of this
time was used for compilation, which grows exponentially with the length of the
Promela file. The cost of model checking can therefore be improved by using PC
clusters, that is, checking all of the environments in parallel.

The results show that errors were found in the environments of models No. 3,
4, 7, and 8. The RTOS model and the environment models were constructed by
different researchers. Hence, when an error was discovered, we needed to identify
which model had caused it. The results show both situations. For models No. 3
and 4, the errors were caused by the environment models. Specifically, the errors
were contained in the state transition of ChainTask. When ChainTask(t1,t2) is
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Fig. 9. Verification results (CPU: 2.4 GHz, Memory: 4.0 GB)

called, it first terminates task t1 and then activates task t2. If task t2 is already
running or is ready, however, then the task is activated twice. Such multiple
activation is allowed only for basic tasks. Nevertheless, the environment models
did not check this condition and allowed multiple activation also for extended
tasks. As a result, the RTOS model flagged an error to notify the violation of
this condition. For models No. 7 and 8, the errors were caused by the RTOS
model. Under the priority ceiling protocol, the priority of the task is changed
only when it acquires a resource whose priority is higher than that of the task.
However, the RTOS model was defined to change the priority every time a task
acquired a resource. As a result, the assertion in the environment was violated
due to the inconsistency between the dynamic priority of the tasks of the RTOS
model and those of the environment. In both of the above cases, when errors
were found, we held a discussion to identify the cause of the errors. This activity
allowed us to understand the specification correctly, and led us to construct an
error-free RTOS model within the bounds of the environment models.

The results also show a feature of our method: structural difference analysis
of errors. The table on the right-hand side of Fig. 9 lists the number of errors
found in the environments of model No. 7 grouped according to the number
of tasks and resources. For example, among the 27 environments containing 2
tasks and 2 resources, 18 environments caused errors. From this table, we can
see that errors were caused by environments containing more than one resource.
This result leads us to infer that an error occurs when a task tries to acquire
multiple resources, and we further infer that changes in the dynamic priority
are not performed correctly. From structural information such as this, we can
predict the cause of errors before analyzing counterexample traces.

5 Discussion

5.1 Effectiveness

In the environment model, we can declare the structural variation of the envi-
ronment in OCL using the ranges of the parameter and invariants. From this
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model, we can then exhaustively generate all environmental variants using the
environment generator within the given bounds. As shown in the experiment,
the number of environments can become so large that it is almost impossible
to correctly construct them all by hand. However, the environment generator
enables automatic and effective generation of environments with leveraging the
SMT solver. The generator can also exhaustively enumerate all structural varia-
tions, which is important for obtaining a full coverage of verification with respect
to all environment structures. Thanks to this exhaustiveness, we were able to
find an error in the resource manipulation without missing the case in which a
task is linked to multiple resources.

Our method is also effective for avoiding state explosion. The act of gener-
ating all structural variations of the environment is equivalent to structurally
decomposing the entire environment into smaller environments. This enables us
to check each environment independently within a small state space. As a result,
we can check the entire environment without causing state explosion. We further
benefit from this decomposition since it facilitates structural difference analysis
of errors. The effect of the decomposition is thus notable, especially when it is
applied to the verification of systems that have various environmental structures.
In this sense, our method is most effective when applied to the domains of OSs
and middleware.

5.2 Verification Coverage

In our method, the verification coverage must be evaluated with respect to the
structure and behavior of the environment. For the structural coverage, we lim-
ited the numbers of tasks, resources, and ISRs to a maximum of 3. We consider
that this number is sufficient to check the critical properties of the OS. For exam-
ple, to check that the priority ceiling protocol is satisfied, we need to examine the
following properties. (1) When a task occupies multiple resources, its dynamic
priority is set to the maximum priority of the resources. (2) A task with higher
dynamic priority must be executed before that with lower dynamic priority. To
check (1), we need to create a situation in which a task can access at least two
resources. To check (2), we need to create a situation in which two tasks occupy
at least one resource. Therefore, we need at least 2 tasks and 2 resources and
must define the ranges accordingly to cover these numbers. Basically, the suffi-
cient ranges depend on the system under verification. Thus, when defining the
ranges, it is important to identify which properties to check and the structure
that needs to be created to check them. The ranges must initially be defined to
at least cover that structure. Then, they should be extended further to raise the
structural verification coverage depending on the machine power. Currently, the
environment generator efficiently generates environments for up to 8 objects on a
PC with average specifications. For a greater number of objects, the composition
of the statechart models becomes the bottleneck and generation takes hours.

For the behavioral coverage, we have so far defined statechart models for
checking normal execution sequences of the OS. However, for such execution
sequences, we still need to check the interaction between functionalities. For
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example, we need to check the case where ISRs can access resources and set
events. When we check many functionalities simultaneously, we risk complicating
the statechart models. We consider that the combination of 2 functionalities is
a limitation for maintaining the simplicity of the model. For checking further
combinations, a simple and specific environment should be constructed directly
by hand on the Promela level by abondoning the generarity of the environment
model. For abnormal execution sequences, we can construct statechart models for
verifying them by extending those of normal execution sequences. For example,
when ActivateTask is called for a running task, an error must be flagged by
the OS. This can be checked by adding a transition from the running state to an
error state that is entered when ActivateTask is called for a running task. In
the error state, we check that the error is actually flagged in the RTOS model
by referring the variable representing the error code.

Moreover, we need to strengthen the verification of interrupt processing.
We modeled the activation and termination of ISRs by calling the functions
SetInter and ResetInter from the environment. However, we only call them
before and after other functions calls, and we have not checked the case where
they are called within a function execution. To enable such a check, we need to
define ISRs as different processes from the process of the environment. This then
allows ISRs to interleave the functions of the environment. Still, the difficulty re-
mains of how to realize the nested activation of ISRs and the function call from
ISRs. Furthermore, allowing interleaving at any point of a function execution
can increase the risk of state explosion. Considering these problems, we need to
develop an effective way to verify interrupt processing.

6 Related Work

Tkachuk et al. [15] proposed the Bandera Environment Generator (BEG) to
automatically generate environments for the verification of Java programs in
Bandera. BEG has been used to verify commercial software and a web appli-
cation [14,12]. BEG generates environments from specifications written by the
user, called environment assumptions, or by analyzing the programs that im-
plement the environment. The environment assumptions are described through
regular expressions as sequences of method calls. Their approach corresponds
to describing a single instance of the environment model in our method; how-
ever, by expressing the set of instances as a class model, we can automatically
generate all possible instances based on variations of this model.

Penix et al. [11] validated the time partitioning of DEOS RTOS by using
Spin. In their method, environments are obtained by filtering a nondeterminis-
tic environment with linear temporal logic (LTL) assumptions [10]. The method
uses a top-down approach, where an over-approximated environment is gradu-
ally reduced by LTL assumptions toward the ideal environment. In comparison,
our approach is bottom-up, that is, we start with an under-approximated en-
vironment and gradually extend it toward the ideal environment. Our method
enables execution of this process by using statechart models, which are a familiar
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concept for general software engineers. In this sense, we consider that our method
is more effective in practical settings.

Dhaussy et al. [5] proposed a formal language called context description lan-
guage (CDL) for describing system environments. In their method, environment
behavior is defined by using actors and sequence diagrams. Through CDL, a set
of traces representing the interaction between the environment and the system
are generated. Each trace is checked in combination with the system, and the
property automata are examined by model checking. Raji et al. [13] extended
Dhaussy et al.fs method by introducing use case diagrams to facilitate the de-
scription of an environment. Similar to those works, we also make use of UML to
describe environments. However, we address the problem of structural variation
by using a class model, which is crucial for the verification of OSs.

Parizek et al. [9] proposed a method that combines the Java PathFinder and
Protocol Checker model checkers. Their method targets the validation of Java
components whose protocols are described in architecture description language
(ADL). Model checking is conducted by searching the program states using Java
PathFinder in the Java parts and Protocol Checker in the ADL parts. Although
the environment in their method can be modeled in ADL, environmental varia-
tion cannot be expressed using classes as in our method.

7 Conclusion

In this paper, we presented a model-checking experiment for an OSEK/VDX
OS design model based on environment modeling. In the environment model, we
define the structure and behavior of the environment using class and statechart
models. From this environment model, the environment generator generates all
possible environmental variations within the bounds of the model. To verify
various individual aspects of the RTOS model, we constructed separate environ-
ment models. By this separation, each model was simplified and the risk of state
explosion was avoided. By using the environment generator, we were able to
efficiently generate a sufficient range of environments to verify the critical prop-
erties of the RTOS model. By checking the RTOS model using the generated
environments, we have shown that the correctness of the RTOS model can be
guaranteed within the given experimental bounds. As future work, we need to
verify other aspects of the RTOS model including abnormal execution sequences
and interrupt processing. We will also consider the development of a formal way
to analyze use case models and to extend the environment models.
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Abstract. We define governed stuttering bisimulation for parity games, weak-
ening stuttering bisimulation by taking the ownership of vertices into account
only when this might lead to observably different games. We show that governed
stuttering bisimilarity is an equivalence for parity games and allows for a natu-
ral quotienting operation. Moreover, we prove that all pairs of vertices related by
governed stuttering bisimilarity are won by the same player in the parity game.
Thus, our equivalence can be used as a preprocessing step when solving parity
games. Governed stuttering bisimilarity can be decided in O(n2m) time for par-
ity games with n vertices and m edges. Our experiments indicate that governed
stuttering bisimilarity is mostly competitive with stuttering equivalence on parity
games encoding typical verification problems.

1 Introduction

Parity games [11,22,27] are played by two players (represented by � and �) on a di-
rected graph in which every vertex is owned by one of the players, and vertices are
assigned a priority. The game is played by moving a single token along the edges in
the graph; the choice where to move next is dictated by the player owning the vertex
on which the token currently resides. Both players try to play such that the resulting
infinite path is winning for them, and a vertex is won by the player that can play such
that, however the opponent plays, every path from that vertex is won by her. The winner
of a vertex is uniquely determined [11,22,27] and partitioning the graph in vertices that
are won by player � and those won by player � is referred to as solving the parity game.

The parity game framework is a key instrument in solving practical verification and
synthesis problems, see [11,2]. Its practical significance is mirrored by its role in search-
ing for the true complexity of model checking: modal μ-calculus model checking is
polynomially reducible to parity game solving, and vice versa [25]. Despite the appar-
ent simplicity of the latter problem, the precise complexity of solving parity games
is still open: the problem is known to be in NP ∩ coNP, and more specifically in
UP ∩ coUP [17], suggesting there just might exist a polynomial time algorithm. In-
deed, non-trivial classes of parity games have been identified that admit polynomial
time solving algorithms, see e.g. [4,23].

In the past decade, several advanced algorithms for solving parity games have been
designed. These include algorithms exponential in the number of priorities, such as Jur-
dziński’s small progress measures algorithm [18] and Schewe’s bigstep algorithm [24],
as well as the sub-exponential algorithm due to Jurdziński et al. [19]. Orthogonally to
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the algorithmic improvements, heuristics have been devised that may speed up solv-
ing parity games that occur in practice [12]. Such heuristics work particularly well for
verification problems, which give rise to games with only few different priorities.

The heuristic that we consider in this paper, following, e.g., Fritz and Wilke’s study
of delayed simulation [14], is based on the use of fine-grained equivalence relations that
approximate the solution to a parity game. The idea is to recast the solving problem as
the problem of deciding winner equivalence between vertices: two vertices in a parity
game are equivalent whenever they are won by the same player. Finding equivalence
relations that refine winner equivalence and that are decidable in polynomial time yields
a preprocessing step that can be used to reduce games prior to solving.

From a practical viewpoint, we are particularly interested in those simulation and
equivalence relations that strike a favourable balance between their power to compress
the game graph and their computational complexity. Stuttering bisimulation [7] for
Kripke Structures is among a select number of candidates worth considering, with an
O(nm) time complexity (n being the number of vertices and m the number of edges).
Observe that stuttering bisimulation only preserves a fragment of the μ-calculus when
applied to Kripke Structures. It may therefore be surprising that it does preserve the win-
ner of parity games, including those that stem from encodings of arbitrary μ-calculus
model checking problems. As earlier experiments [10] indicate, off-the-shelf stuttering
bisimulation reduction algorithms can be competitive when compared to modern avail-
able parity game solvers. Stuttering bisimulation, however, is inadequate when faced
with alternations between players along the possible plays: it cannot relate vertices be-
longing to different players. Controller synthesis problems e.g. [2], and constructs such
as �♦φ and ♦�φ in μ-calculus verification, give rise to such parity games.

A natural question is, therefore, whether stuttering bisimulation can at all be modi-
fied so that it is able to relate vertices that belong to different players. We answer this
question in this paper by defining a relation, which we dub governed stuttering bisim-
ulation (reflecting that a player’s ruling capabilities are taken as primitive), which we
show to be strictly weaker than stuttering bisimilarity. In addition, we prove that gov-
erned stuttering bisimilarity:

– is an equivalence relation on parity games.
– refines winner equivalence.
– is decidable in O(n2m) time using a partition refinement algorithm.

The time complexity for deciding governed stuttering bisimilarity is a factor n worse
than that for stuttering bisimilarity; this is due to finding a splitter, for which our algo-
rithm requiresO(mn) rather thanO(m) time. Our experiments, however, indicate that
this factor does not manifest itself in practice; in fact, our algorithm is mostly competi-
tive with the one for stuttering bisimilarity.

Structure of the paper. Section 2 briefly introduces the parity game framework. We
recall the definition of stuttering bisimulation and we define governed stuttering bisim-
ulation in Section 3. In Section 4, we show that governed stuttering bisimulation is an
equivalence relation, we show it refines winner equivalence, and we address its decid-
ability. We discuss our experiments with a prototype implementation of our algorithm
for deciding governed stuttering bisimulation in Section 5. Related work is discussed in
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Section 6, and future work is described in Section 7. Note that, due to space restrictions,
details of the proofs have been omitted. Detailed proofs are provided in [9].

2 Preliminaries

A parity game is a two-player graph game, played by two players on a directed graph.
The game is formally defined as follows.

Definition 1 (Parity game). A parity game is a directed graph (V,→, Ω,P), where

– V is a finite set of vertices,
– → ⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one

w ∈ V such that (v, w) ∈ →),
– Ω :V → N is a priority function that assigns priorities to vertices,
– P :V → { �,�} is a function assigning vertices to players.

If i is a player, then¬i denotes the opponent of i, i.e.,¬ � = � and¬� = �. A sequence
of vertices v1, . . . , vn for which vm → vm+1 for all 1 ≤ m < n is a path, and may be
denoted using angular brackets: 〈v1 . . . vn〉. The concatenation p · q of paths p and q is
again a path. Infinite paths are defined in a similar manner. We use pn to denote the nth

vertex in a path p.
A game starts by placing a token on vertex v ∈ V . Players move the token indefi-

nitely according to the following simple rule: if the token is on some vertex v, player
P(v) moves the token to some vertex w such that v → w. The result is an infinite path
p in the game graph. The parity of the lowest priority that occurs infinitely often on p
defines the winner of the path. If this priority is even, then player � wins, otherwise
player � wins.

A strategy for player i is a partial function σ :V ∗→ V , that is defined only for paths
ending in a vertex owned by player i and determines the next vertex to be played onto.
The set of strategies for player i in a game G is denoted S∗G,i, or simply S∗i if G is clear
from the context. If a strategy yields the same vertex for every pair of paths that end
in the same vertex, then the strategy is said to be memoryless. The set of memoryless
strategies for player i in a game G is denoted SG,i, abbreviated to Si when G is clear from
the context. A memoryless strategy is usually given as a partial function σ :V → V .

A path p of length n is consistent with a strategy σ ∈ S∗i , denoted σ 	 p, if and
only if for all 1 ≤ j < n it is the case that if σ is defined for 〈p1 . . . pj〉, then pj+1 =
σ(〈p1 . . . pj〉). The definition of consistency is extended to infinite paths in the obvious
manner. A strategy σ ∈ S∗i is said to be a winning strategy from a vertex v if and only if
i is the winner of every path consistent with σ. A vertex is won by i if i has a winning
strategy from that vertex. Parity games are memoryless determined [11], i.e. each vertex
in the game is won by exactly one player, and it suffices to play a memoryless strategy.

In this paper, we are concerned with relations partitioning the vertices in a parity
game such that all related vertices are won by the same player. Let R be a relation
over a set V . For v, w ∈ V we write v R w for (v, w) ∈ R. For an equivalence
relation R, and vertex v ∈ V we define [v]R, the equivalence class of v under R, as
{v′ ∈ V | v R v′}. The set of equivalence classes of V under R is denoted V/R. A
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collection {Bi | i ∈ I}, with ∅ �= Bi ⊆ V , is called a partition of V if
⋃

i∈I Bi = V
and for i �= j : Bi ∩ Bj = ∅. An element Bi of a partition is called a block. If P
and Q are partitions of V then Q refines P if ∀Bi ∈ Q : ∃Bj ∈ P : Bi ⊆ Bj . We
use the notions of equivalence relation and partition interchangeably, and occasionally
write v P v′ rather than v, v′ ∈ B for some B ∈ P .

Determinacy of parity games effectively induces a partition on the set of vertices V
in those vertices won by player � and those vertices won by player �. This partition is
the natural equivalence relation on V .

Definition 2 (Winner equivalence). Let (V,→, Ω,P) be a parity game. Vertices
v, w ∈ V are winner equivalent, denoted v ∼ w iff v and w are won by the same
player.

3 Governed Stuttering Bisimulation

In [10] we introduced stuttering bisimulation for parity games. Informally, stuttering
bisimulation compresses subsequences of “identical” vertices, i.e. vertices with the
same priority, owned by the same player, along a path p in a parity game, such that
the path retains the essentials of the graph’s branching structure.

Before we give the formal definition of stuttering bisimulation, we first introduce
some notation. Let (V,→, Ω,P) be a parity game. In the following, let U ⊆ V be
arbitrary sets of vertices; we write v → U if there exists a u ∈ U such that v → u.

Let R ⊆ V × V be a relation on the set of vertices. The generalised transition
relation v �→R U , defined below, formalises that U is eventually reached from v by
some computation path through R-related nodes. Likewise, v �→R expresses that v is
the start of an infinite computation path along vertices related through R.

v �→R U
μ
= ∃u : v → u ∧ (u ∈ U ∨ (v R u ∧ u �→R U))

v �→R
ν
= ∃u : v → u ∧ v R u ∧ u �→R

We next formalise the notion of stuttering bisimulation, deviating notationally from [10];
the definitions, however, are easily seen to coincide and the modifications are standard.
Our main reason for deviating from [10] is that the presented definition facilitates ex-
plaining the intuition of its generalisation to governed stuttering bisimulation.

Definition 3 (Stuttering bisimulation for parity games [10]). Let (V,→, Ω,P) be a
parity game. Let R ⊆ V × V be an equivalence relation on vertices; R is a stuttering
bisimulation if v R v′ implies

a) Ω(v) = Ω(v′) and P(v) = P(v′);
b) v → C implies v′ �→R C, for all C ∈ V/R \ {[v]R}.
c) v �→R iff v′ �→R;

Two states v and v′ are said to be stuttering bisimilar, denoted v + v′ iff there is a
stuttering bisimulation relation R, such that v R v′.

Our objective is to weaken stuttering bisimulation so that it will be able to relate vertices
of different players. However, we cannot simply weaken clause a) to Ω(v) = Ω(v′)
without modifying the remaining clauses, as this would enable us to relate vertices won
by different players, as the following parity game demonstrates:



202 S. Cranen, J.J.A. Keiren and T.A.C. Willemse

2 2 1 2 2

The suggested weakening of clause a) would allow us to relate all vertices with priority
2; the two left vertices, however are won by player �, whereas the other vertices are
won by player �.
The problem in the above example is that the computation paths that appear in clauses
b) and c) may consist of vertices owned by different players. This means that a fixed
player is at the mercy of her opponent to stay on a computation path: the opponent may
simply choose an alternative next vertex if that would better suit her. We are therefore
forced to reason about computation trees, taking all the opponent’s choices into account.
Effectively, clause b) must be strengthened to ensure that a player eventually reaches
class C along some computation tree, and clause c) must be strengthened to ensure that
a player can construct an infinite computation tree not leaving its own class.

We first extend our notation to facilitate reasoning about computation trees rather
than computation paths. Given a memoryless strategy σ for some player, the ability to
move from vertex v to another vertex u depends on this strategy.

v σ→u =

{
v → u ∧ σ(v) = u, if σ(v) is defined

v → u, otherwise

From the viewpoint of a fixed player and her memoryless strategy σ, a token may be
moved along the edges of a computation tree that only branches at vertices owned by her
opponent. This notation v σ �→R U , defined below, formalises that all plays allowed by σ
eventually reach the set of vertices U immediately when they follow an edge to a vertex
that is no longer related under relation R. The notation v σ �→R is dual; it expresses that
all plays allowed by σ can reach only vertices related under R to the previous vertex in
that play:

v σ �→R U
μ
= ∀u : v σ→u =⇒ u ∈ U ∨ (v R u ∧ u σ �→R U)

v σ �→R
ν
= ∀u : v σ→u =⇒ v R u ∧ u σ �→R

If the strategy is unimportant to the purpose at hand, we abstract from the specific
strategy that is used and reason only in terms of a player i having a strategy with the
capability of forcing a play to a set of vertices U , and, dually, for i to be able to force
the play to diverge within a class of R:

x i �→R U = ∃σ ∈ Si : x σ �→R U
x i �→R = ∃σ ∈ Si : x σ �→R

We omit R if it is the relation V ×V . Note that v i �→R ∅ never holds. On the other hand,
v i �→R V and v i �→ are trivially true. We write v i ��→R U for ¬(v i �→R U); likewise for
all other arrows. If U ⊆ V/R, then we write v i �→R U to denote v i �→R

⋃
C∈U C.

Definition 4 (Governed stuttering bisimulation). Let (V,→, Ω,P) be a parity game.
Let R ⊆ V ×V be an equivalence relation. Then R is a governed stuttering bisimulation
if v R v′ implies
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a) Ω(v) = Ω(v′);
b) v → C implies v′ P(v) �→R C, for all C ∈ V/R \ {[v]R}.
c) v i �→R iff v′ i �→R for i ∈ { �,�}.

Vertices v and v′ are governed stuttering bisimilar, denoted v ∼ v′, iff a governed
stuttering bisimulation R exists such that v R v′.

If we additionally require that P(v) = P(v′), we find that v �→R U iff v P(v) �→R U ,
and, likewise, v �→R iff v P(v) �→R. This is the basis for the following proposition.

Proposition 1. Let R ⊆ V ×V be a governed stuttering bisimulation, such that v R v′

implies P(v) = P(v′). Then R is a stuttering bisimulation.

Example 1. Consider the parity game depicted in Figure 1a. The equivalence relation
that relates vertices with equal priorities is a governed stuttering bisimulation. Stuttering
bisimulation does not relate any of the vertices.

0 1 2

21

(a)

0 0

1 1

(b)

0

1

(c)

0

1

(d)

Fig. 1. All vertices in (a) with the same priorities can be related using governed stuttering bisim-
ilarity. Both (c) and (d) are minimal representations of (b).

4 Properties of Governed Stuttering Bisimulation

We next study three key properties of governed stuttering bisimulation, viz., governed
stuttering bisimilarity is an equivalence on parity games, it refines winner equivalence
and it is decidable in polynomial time.

4.1 Governed Stuttering Bisimilarity is an Equivalence

Proving that ∼ is an equivalence relation on parity games is far from straightforward:
transitivity no longer bows to the standard proof strategies that work for stuttering
bisimilarity and branching bisimilarity [26]. As a result of the asymmetry in the use
of two different transition relations in clause b) of Definition 4, proving that the equiv-
alence closure of the union of two governed stuttering bisimulation relations is again a
governed stuttering bisimulation relation is equally problematic.

The strategy we pursue is as follows. We characterise governed stuttering bisimula-
tion, in two steps, by a set of symmetric requirements. The obtained alternative charac-
terisation is then used in our equivalence proof. These alternative characterisations do
not facilitate the reuse of standard proof strategies, but they are instrumental in the tech-
nically involved proof that the equivalence closure of two governed stuttering bisimu-
lation relations is again a governed stuttering bisimulation relation. Apart from being
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convenient technically, the characterisations offer more insight into the nature of gov-
erned stuttering bisimilarity. Hence, instead of providing the details of our equivalence
proof, we focus on the alternative characterisations of governed stuttering bisimulation.

Our result below states that we can rephrase condition b) of governed stuttering
bisimulation by requiring that a fixed player must have the same power to force the
play from any pair of related vertices to reach an arbitrary class. Thus, we abstract from
the player that takes the initiative to leave its class in one step.

Theorem 1. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i �→R C iff v′ i �→R C for all i ∈ { �,�}, C ∈ V/R \ {[v]R};
c) v i �→R iff v′ i �→R for all i ∈ { �,�}.

While the above alternative characterisation of governed stuttering bisimulation is now
fully symmetric, the restriction on the class C that is considered in clause b) turns out
to be too strong to facilitate our proof that ∼ is an equivalence relation. We therefore
generalise this clause once more to reason about sets of classes. A perhaps surprising
side-result of this generalisation is that the divergence requirement of clause c) be-
comes superfluous. Note that this last generalisation is not trivial, as v i �→R{C1, C2} is
in general neither equivalent to saying that v i �→R C1 and v i �→R C2, nor v i �→R C1 or
v i �→R C2.

Theorem 2. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);
b) v i �→R U iff v′ i �→R U for all i ∈ { �,�},U ⊆ V/R \ {[v]R}.

Note that the divergence requirement v i �→R iff v′ i �→R can be recovered by instantiat-
ing set U by V/R \ {[v]R} for player ¬i in the above theorem. The last characterisation
enables us to prove the following theorem.

Theorem 3. ∼ is an equivalence relation.

As a side-result of the proof of Theorem 3, we find that the equivalence closure of the
union of two governed stuttering bisimulations is again a governed stuttering bisimula-
tion. The union of all governed stuttering bisimulations is again a governed stuttering
bisimulation, which coincides with governed stuttering bisimilarity.

4.2 Quotienting

The main reason for studying equivalence relations for parity games is that they may
offer the prospect of minimising the parity game by collapsing vertices that are consid-
ered equivalent. The resulting minimised structure is referred to as the quotient. How-
ever, not all equivalence relations admit such a quotienting operation; in particular, the
delayed simulation [14] for parity games fails to have a natural quotienting operation.
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Quotienting for governed stuttering bisimulation can be done efficiently. Due to the
nature of governed stuttering bisimulation, we have some freedom in the definition of
the quotient, in particular when assigning vertices to players. We therefore first define a
notion of minimality, and we subsequently define the quotient in terms of that notion.

Definition 5 (Minimality). A∼-minimal representation of a parity game (V,→, Ω,P)
is defined as a game (Vm,→m, Ωm,Pm), that satisfies the following conditions (where
c, c′, c′′ ∈ Vm):

Vm = { [v]∼ | v ∈ V }
Ωm(c) = Ω(v) for all v ∈ c

Pm(c) = i, if for all v ∈ c, and some c′ �= c we have v i �→∼ c′ and v ¬i ��→∼V \ c′

c→m c iff v i �→∼ for all v ∈ c for some player i

c→m c′ iff v i �→∼ c′ for all v ∈ c for some player i and c′ �= c

Observe that for the third clause above, if from some vertex v the play could be forced
to c′ by i without ¬i having the opportunity to diverge, player i is in charge of the game
when the play arrives in c. This requires the representative in the quotient to be owned
by player i.

Note that a parity game may have multiple∼-minimal representations. It is not hard
to verify that every parity game contains at least as many vertices and edges as its ∼-
minimal representations. Moreover, any parity game is governed stuttering bisimulation
equivalent to all its ∼-minimal representations. As a result, the governed stuttering
bisimulation quotient of a graph can be defined as its least ∼-minimal representation,
given some arbitrary ordering on parity games. A natural ordering would be one that is
induced by an ordering on players, e.g., � < �.

Example 2. Consider the parity game in Figure 1b. Two of its four minimal represen-
tations are in Figure 1c and 1d. Observe that the particular player chosen for the 0 and
1 vertices is arbitrary and does not impact the solution to the games.

4.3 Governed Stuttering Bisimilarity Refines Winner Equivalence

In this section, we prove that governed stuttering bisimilarity is strictly finer than win-
ner equivalence. That is, vertices that are won by different players are never related
by governed stuttering bisimilarity. In order to prove this result, we must first lift the
concept of governed stuttering bisimilarity to paths.

Paths of length 1 are equivalent if the vertices they consist of are equivalent. If paths
p and q are equivalent, then p · 〈v〉 ∼ q iff v is equivalent to the last vertex in q, and
p · 〈v〉 ∼ q · 〈w〉 iff v ∼ w. An infinite path p is equivalent to a path q if for all finite
prefixes of p there is an equivalent prefix of q and vice versa.

We define Πn
ϕ(v) to be the set of paths of length n that start in v and that are allowed

by some strategy ϕ. Πω
ϕ (v) is then the set of all infinite paths allowed by ϕ, starting

in v. In a similar fashion, we also define Ψn
ϕ (v), which contains those paths starting in

v that are allowed by ϕ and that consist of exactly n segments in which all vertices in
a segment are related by ∼, except the last vertex. Also included in Ψn

ϕ (v) are infinite
paths that stay in the same class forever after n or less such segments.
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Definition 6 (Levels). Formally we define the nth level paths Ψn
ϕ (v) of a strategy ϕ

from root vertex v for all paths p as follows:

p ∈ Ψ0
ϕ(v) iff p = 〈v〉

p · q ∈ Ψn+1
ϕ (v) iff p ∈ Ψn

ϕ (v) ∧ ϕ 	 p · q ∧
((p · q ∼ p ∧ |q| =∞) ∨
(∃q̄, v : q = q̄ · 〈v〉 ∧ p · q̄ ∼ p ∧ p · q �∼ p))

Note that Πω
ϕ (v) = Ψω

ϕ (v). The following lemma is the basis for establishing that
governed stuttering bisimilarity refines winner equivalence.

Lemma 1. Given some v, w ∈ V such that v ∼ w, then for every strategy ϕ ∈ Si we
have a strategy ψ ∈ S∗i such that ∀n ∈ N : ∀p ∈ Ψn

ψ (w) : ∃p′ ∈ Ψn
ϕ (v) : p ∼ p′

We are now in a position to prove that governed stuttering bisimilarity refines winner
equivalence.

Theorem 4. Governed stuttering bisimulation strictly refines winner equivalence.

Proof. Let ϕ be a strategy for player i that wins from v ∈ V . Without loss of generality
assume that ϕ is memoryless, and let w ∈ V such that v ∼ w. By Lemma 1, we know
that there is some strategy ψ such that for every path in Ψω

ψ (w) there is a related path in
Ψω
ϕ (v). As Πω

ϕ (v) = Ψω
ϕ (v), this means that for every path starting in w that is allowed

by ψ, we have an equivalent path starting in v that is allowed by ϕ. Equivalent paths
have the same set of infinitely often recurring priorities. Any priority that may be visited
infinitely often under ψ could therefore also have been visited infinitely often under ϕ.
Therefore, ψ must be a winning strategy. The strictness of the refinement follows from,
e.g., the example in Figure 1.c, in which player � wins both vertices. �

4.4 Decidability

Our algorithm for deciding governed stuttering bisimilarity is based on Groote and
Vaandrager’sO(nm) algorithm for deciding stuttering bisimilarity [16]. Before we pro-
vide the details, we introduce the necessary additional concepts.

Our algorithm requires a generalisation of the well-known notion of attractor sets
[22] along the lines of the generalisation used for the computation of the Until in the
alternating-time temporal logic ATL [1]. The generalisation introduces a parameter re-
stricting the set of vertices that are considered in the attractor sets.

BAttr
0
i (U) = U

BAttr
n+1
i (U) = BAttr

n
i (U)

∪ {v ∈ B | P(v) = i ∧ ∃v → v′ : v′ ∈ BAttr
n
i (U)}

∪ {v ∈ B | P(v) �= i ∧ ∀v → v′ : v′ ∈ BAttr
n
i (U)}

BAttri(U) = BAttr
ω
i (U)

Leavei(B,W ) = BAttri(W ) ∩B

The set Leavei(B,W ) captures the subset of B from which player i can force the game
to W ⊆ V . The formal correspondence between Leave and i �→ is formalised below;
this allows for restating the criteria from Definition 4 in terms of Leave .
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Lemma 2. Let P be a partition of V , and let B ∈ P be a block. Then for all u ∈ B:
u i �→P if and only if u �∈ Leave¬i(B, V \B).

Lemma 3. Let P partition V , and let B,B′ ∈ P such that B �= B′. Let v ∈ B
such that v → B′. Then for all w ∈ B it holds that w P(v) �→P B′ if and only if w ∈
LeaveP(v)(B,B′).

Groote and Vaandrager’s algorithm for stuttering bisimulation repeatedly refines a care-
fully chosen initial partition P0 using a so-called splitter. We apply the same principle,
choosing P0 such that for all v, v′ ∈ V , v P0 v′ if and only if Ω(v) = Ω(v′) as our
initial partition. As our splitter, we define a function pos that returns the set of vertices
in B from which a given player i can force the play to reach B′, or, in case B = B′,
force the play to diverge:

pos i(B,B′) =

{
{v ∈ B | v i �→P } if B = B′

{v ∈ B | v i �→P B′} if B �= B′

In line with [16], we say that B′ is a splitter of B if and only if ∅ �= pos i(B,B′) �= B
for some player i. A partition P is stable with respect to a block B ∈ P if B is not a
splitter of any block in P . The partition itself is stable if it is stable with respect to all its
blocks. A high-level description of our algorithm for governed stuttering bisimulation,

Algorithm 1. Decision procedure for ∼
n ← 0
repeat

splitter ← ⊥
for each B ∈ Pn and player i do { Find splitter in O(nm) }

if there exists v ∈ B with v → B′ and ∅ �= pos i(B,B′) �= B for B′ ∈ Pn then
splitter ← (B, pos i(B,B′))

end if
end for
if splitter = (B,Pos) then { Refine partition in O(m) }

Pn+1 ← (Pn \ {B}) ∪ {Pos , B \ Pos}
end if
n ← n + 1

until Pn−1 = Pn

is given as Algorithm 1. Note that this does not compute the quotient. Correctness of
the algorithm follows the same line of reasoning as in [16]. Based on this algorithm, we
obtain the following complexity result.

Theorem 5. Algorithm 1 decides ∼ in O(n2m) time for a parity game that contains n
vertices and m edges.

Our time complexity is worse than the O(nm) achieved by the original algorithm for
deciding stuttering bisimulation. The extra factor O(n) is due to the complexity re-
quired to search for a splitter which, in our case, requires O(nm) time, instead of the
originalO(m) time.
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5 Experiments

While the running time of our algorithm for governed stuttering bisimilarity is theo-
retically worse than that of the algorithm for stuttering bisimilarity, we expect that for
solving parity games, in practice both are comparable. We test this hypothesis on a set
of over 200 real-life model checking problems, part of which was previously used to
study the effect of stuttering bisimilarity for parity games, see [10].

Whereas in [10] a signature based approach [5] was used, in the present paper we use
the Groote-Vaandrager algorithm for computing stuttering bisimilarity in order to an-
swer our hypothesis. For computing governed stuttering bisimilarity we have modified
the implementation of Groote-Vaandrager to include the changes presented in Algo-
rithm 1.

For running our experiments we reuse the setup of [10] for solving parity games,
i.e., we use an optimised C++ implementation of the small progress measures algo-
rithm [18], and the optimised variants of the small progress measures, recursive [22,27]
and bigstep algorithms [24] offered by the PGSolver [12] toolset.

All experiments were conducted on a machine consisting of 28 Intel R© Xeon c©
E5520 Processors running at 2.27GHz, with 1TB of shared main memory, running a
64-bit Linux distribution using kernel version 2.6.27. None of our experiments employ
multi-core features.

5.1 Test Sets

The parity games that were used for our experiments are clustered into four test sets.
We give a brief description of each of the sets below.

Model checking. Our main interest is in the practical implications of governed stutter-
ing bisimilarity reduction on solving model checking problems. To this end, a num-
ber of model checking problems have been selected from the literature [21,3,15].
The properties that have been checked include fairness, liveness and safety proper-
ties.

Games. The second test set considers a number of turn-based, two player board games.
For each of these games, and for each player, we have encoded the property that
said player can play the game in such a way that, regardless of the play of the
opponent, she can win the game.

PGSolver. The third test set was taken from [12] and consists of the elevator problem
and the Hanoi towers problem described in that paper. It also includes alternative
encodings of these problems, taken from [10].

Equivalence checking. The last test set consists of a number of equivalence checking
problems encoded into parity games as described in [8].

The problems in these test sets are scalable. In every test set, a number of instances
of every problem is included. Each problem gives rise to a parity game with at most 4
different priorities, which is typical for practical verification problems.

The model checking, PGSolver and equivalence checking problems were studied
before in the setting of stuttering bisimilarity [10]. We extended that test set to include
more examples of parity games with alternations between players and priorities. We can
expect improved reductions compared to stuttering bisimilarity in these cases.



A Cure for Stuttering Parity Games 209

5.2 Measurements: Size and Time

To analyse the performance of our reduction, we measured the difference in the sizes
(computed as the sum of the number of vertices and the number of edges) of the stutter-
ing and governed stuttering minimal games. A reduction of 0% means that the governed
stuttering bisimilarity reduced game has the same size as the stuttering bisimilarity re-
duced game.

For every problem in the test set, we compute the reduction as the average reduction
over all instances of that problem. We do this in order to measure the reduction rate for
the different problems, rather than for the instances. Figure 2a shows the average re-
duction for problems in each test set, together with the minimal and maximal reduction
achieved within that set.

In addition, we measured the times needed to reduce the parity games plus the time
needed to solve the reduced game using the fastest solver. That is, the sum of these two
is the total solving time for a parity game. This way, our results can be compared to those
listed in [10]. In Figure 2b, every data point represents a problem instance, of which the
total solving time of the stuttering minimal game determines the x-coordinate, and the
total solving time for the governed stuttering bisimilarity minimal game determines the
y-coordinate.
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Fig. 2. Comparison of sizes and times of reductions
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5.3 Discussion

Figure 2b shows that solving times for governed stuttering bisimilarity are generally
comparable to those for stuttering bisimilarity, confirming our hypothesis.

Whether governed stuttering bisimilarity offers additional reductions over stuttering
bisimilarity depends largely on the kind of property that is checked, and the resulting
structure of the parity game. On average, a modest additional reduction is achieved, and
there are practical cases in which the additional reduction is almost 100%.

For several model checking cases, stuttering bisimilarity already reduces the parity
game to a graph with one vertex per priority. Obviously, governed stuttering bisimilarity
cannot improve on that. However, in one of our problems (model checking a leadership
protocol) a reduction of almost 100% is achieved, increasing the average reduction for
this test set.

The properties that we considered on two-player games naturally give rise to alter-
nations between players in the parity game. For these type of properties, the reduction
achieved using governed stuttering bisimilarity surpasses that of stuttering bisimilar-
ity by about 20% on average. Similar results for parity games obtained for controller
synthesis (see e.g. [2]) may be obtained as these exhibit similar structures.

For the equivalence cases, stuttering bisimilarity reduction already yields games of a
small size and governed stuttering bisimilarity does not reduce any further.1

Interestingly, one of the PGSolver cases taken from [12] shows a better reduction
using governed stuttering bisimilarity, in contrast to an alternative encoding also used
in [10].

Summarising, we conclude that governed stuttering bisimilarity reduces slightly bet-
ter than stuttering bisimilarity, without noticable loss of performance.

6 Related Work

As observed in Fritz’ thesis [13], direct simulation for parity games led to disappoint-
ing reductions, spurring Fritz and Wilke to investigate a weaker notion, called delayed
simulation [14] and its induced equivalence. Delayed simulation equivalence is incom-
parable to governed stuttering bisimilarity. Contrary to governed stuttering bisimilarity,
delayed simulation equivalence has the capability to relate vertices with different pri-
orities. On the other hand, governed stuttering bisimilarity can relate vertices with the
same priority in cases that delayed simulation equivalence cannot, as illustrated by the
two parity games below, in which governed stuttering bisimulation relates all vertices
with equal priority whereas delayed simulation equivalence does not:

0 0 2 0 2 2

Contrary to governed stuttering bisimulation, the definition of the simulation relation is
entirely in terms of a simulation game, viz., a game graph equipped with Büchi winning
conditions. The simulation game gives rise to an O(d2n3m) algorithm for deciding

1 [10] reports a poor reduction for stuttering equivalence in these cases. This was caused by
“optimisations” that were used during generation of the parity games.
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delayed simulation (here, n is the number of vertices, m the number of edges, and d
the number of different priorities in the game), significantly exceeding our O(n2m)
complexity for governed stuttering bisimulation.

Apart from delayed simulation, in the setting of Boolean equation systems, the notion
of idempotence-identifying bisimilarity was defined and investigated [20]. This equiv-
alence relation enables one to relate conjunctive equations to disjunctive equations.
In parity games, this translates to being able to relate � vertices and � vertices, re-
spectively. Idempotence-identifying bisimilarity is much finer than governed stuttering
bisimilarity, as the former is based on strong bisimilarity. Interestingly, the complexity
of deciding idempotence-identifying bisimilarity is the same as for strong bisimilarity.

7 Concluding Remarks

We have described a non-trivial modification of stuttering bisimulation that allows re-
lating vertices that belong to different players. The resulting relation, dubbed governed
stuttering bisimulation, is an equivalence relation that can be decided in O(n2m) time
using a partition refinement algorithm. Although this complexity is worse than the
O(nm) time complexity for deciding stuttering bisimulation, our experiments indicate
that this factor does not manifest itself in practice. In fact, the algorithm is largely com-
petitive with the one for stuttering bisimilarity.

An obvious question is whether elements of Fritz and Wilke’s delayed simulation [14]
and governed stuttering bisimulation can be combined. Given the complexity of the
proofs of most of our results for governed stuttering bisimulation and our attempts to
weakening governed stuttering bisimulation along these lines, we are rather sceptical
about the chances of success. Even if one would manage to define such a relation, it
would likely have little practical significance due to the prohibitive complexity of de-
layed simulation.

An interesting extension of our work could be to generalise the concepts of gov-
erned stuttering bisimilarity to games with other payoff functions that are insensitive to
stuttering. We expect such a generalisation to be reasonably straightforward.

Finally, we observe that stuttering bisimulation (also known as branching bisimula-
tion in labelled transition systems) underlies several confluence reduction techniques
for syntactic system descriptions, see [6]. Such reductions partly side-step the state-
space explosion. We believe that our study offers the required foundations for bringing
similar-spirited confluence reduction techniques to a setting of symbolic representations
of parity games.
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Abstract. This paper studies the independent implementability of rea-
chability properties, which are in general not compositional. We con-
sider modal specifications, which are widely acknowledged as suitable for
abstracting implementation details of components while exposing to the
environment relevant information about cross-component interactions. In
order to obtain the required expressivity, we extend them with marked
states to model states to be reached. We then develop an algebra with
both logical and structural composition operators ensuring reachability
properties by construction.

1 Introduction

In order to face the intrinsic complexity of automotive, aeronautic and consumer
electronics embedded systems, but also of web-based service oriented architec-
tures, modular design aims at organizing systems as a set of distinct components
that can be developed independently and then assembled together. This is best
achieved using interfaces which abstract superfluous implementation details of a
component and expose cross-component protocol informations that are essential
to a correct use of a component. Component reuse in different contexts is thus
made possible, not only reducing design time, but also enabling the amortization
of design costs over several different projects.

Component interoperability or compatibility is then a major issue: when can
we safely compose two (or more) components? Compatibility is often considered
at a signature level. In this simple case, interfaces consist in function or method
types and compatibility consists in a type-checking, performed either at compile-
time or at run-time. This paper deals with a richer notion of interfaces capable
of capturing behavioral properties.

The first work on behavioral compatibility of interfaces has been proposed
in [1]. This paper considers an automata-based formalism for interfaces in which
transitions are labeled with output (produced by the component) or input (pro-
duced by the environment) actions. Then, a run-time error occurs whenever a
component produces an output that is not accepted as input by one of its peers.
The fact that a runtime error may occur does not necessarily lead to deem the
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interfaces incompatible. Indeed, the authors promote an optimistic approach of
composition in which two interfaces are compatible if there exists a restriction
of the permitted actions of the environment in order to prevent the reachability
of a runtime error. They show that this form of compatibility is preserved in the
design flow provided alternating refinement [2] is used. More precisely, starting
from initial interfaces whose product satisfies a particular safety property (i.e.,
a runtime error cannot be reached), they can be refined independently and then
composed, their product will also satisfy the same safety property. This principle,
called independent implementability, is of key importance [11] and enables the
concurrent design of systems that are then assembled in a bottom-up manner.

This paper now studies the case of reachability properties and proposes results
regarding their satisfaction by design. Basically, a reachability property states
that some particular situation can be reached. Examples abound in practice.
For instance, consider Service Oriented Architectures (SOA) formed of several
interacting services; they should always have the possibility to reach a termina-
tion state, by delivering a response to all service activation. However, termina-
tion is in general not preserved by service composition. Although reachability
properties are easy to verify in this context [4], model-checking may not be
an appropriate solution. First, because it requires to construct the reachability
graph of a system which may lead to a state explosion problem. Moreover, in
case model-checking reveals a violation of the reachability property, designers
have to iterate the design cycle by re-coding and re-validating their components,
therefore extending time to market. The alternative approach advocated in this
paper consists in controlling the design flow of components, that is, the evolu-
tion of interfaces through compositions and refinements, in order to ensure a
reachability property by construction. Now, what specification formalism cap-
turing some behavioral aspects of components is convenient for interface-based
design? Modal specifications [16,14,3] are widely acknowledged as a suitable
proposal [12,20,21]. Basically, they consist in labeling interface transitions with
modalities, either must if the transition has to be enabled in any refinement, or
may if the transition is allowed. In [12,20,21], modal specifications are shown to
have many benefits comparing the specification formalism introduced in [1]; they
are not only equipped with an optimistic composition operator and a refinement
relation but also with a conjunction and a quotient operator. As reachability
properties cannot be expressed, in general, with modal specifications, we first
consider in this paper modal specifications enriched with marked states, in the
same fashion as it is done in [6]. We show that, in this framework, we can develop
a theory ensuring reachability properties by design.

2 Modeling with Marked Modal Specifications

2.1 Background on Automata

Let Σ be a finite alphabet of actions, a deterministic automaton over Σ is a
tupleM = (R, r0, Σ, λ,G) where R is a finite set of states, r0 ∈ R is the unique
initial state, λ is a partial map from R × Σ to R called the labeled transition
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map and G ⊆ R is a non-empty set of marked states. The set of firable actions
from r ∈ R is ready(r) = {a ∈ Σ | λ(r, a) is defined}.

Transition map λ is extended to its transitive and reflexive closure: let ε
denote the empty word, for all r ∈ R, λ(r, ε) = r and for all u ∈ Σ∗, a ∈ Σ,
r1, r2, r3 ∈ R, λ(r1, u) = r2 and λ(r2, a) = r3 imply λ(r1, u.a) = r3. Define
LM = {u ∈ Σ∗ |∃r′ ∈ R, λ(r0, u) = r′} to be the language ofM. If λ(r, u) = r′

for some u then r′ is said to be reachable from r.
Given P ⊆ R, define pre∗(P ) and post∗(P ) to be the set of states that are

respectively coreachable and reachable from any state r ∈ P : it is the least set
such that for r ∈ P , r ∈ pre∗(P ) and r ∈ post∗(P ) and for every λ(r′, a) = r′′, if
r′′ ∈ pre∗(P ) then r′ ∈ pre∗(P ) and if r′ ∈ post∗(P ) then r′′ ∈ post∗(P ). With
a slight abuse, we may write pre∗(r) and post∗(r) for pre∗({r}) and post∗({r}).

If modeling a service, it is desirable to set that a service session eventually
terminates; this is often refered in SOC as weak termination. To capture this
kind of requirement, we define terminating automata: an automatonM is said
to be terminating whenever R = pre∗(G) meaning that it is always possible to
reach a marked state from any state of the automaton. In other words, M is
terminating if and only if for any u ∈ LM, there exists a v such that uv ∈ LM
and λ(r0, uv) ∈ G. In the temporal logic CTL, this property can be written
AG(EF G).

Given two automataM1 = (R1, r
0
1 , Σ1, λ1, G1) andM2 = (R2, r

0
2 , Σ2, λ2, G2),

their product is the automatonM1×M2 = (R1×R2, (r
0
1 , r

0
2), Σ1∪Σ2, λ,G1×G2)

where λ((r1, r2), a) is defined as (λ1(r1, a), r2) for a ∈ Σ1 \Σ2, (r1, λ2(r2, a)) for
a ∈ Σ2 \Σ1 and (λ1(r1, a), λ2(r2, a)) for a ∈ Σ1 ∩Σ2.

2.2 Marked Modal Specifications

Following [6], we enrich modal specifications [16,14,3] with marked states in
order to model states to be reached. For instance, if a designer specifies a service,
this enables to represent session terminations. The obtained formalism allows to
specify a (possibly infinite) set of automata called implementations.

Definition 1 (Marked Modal Specification). A marked modal specification
over Σ is a tuple C = (Q, q0, Σ, δ,must,may, F ), where Q is a finite set of states,
q0 ∈ Q is the unique initial state, δ : Q × Σ → Q is a partial labeled transition
map; must ,may : Q → 2Σ map to each state q the set of required and allowed
actions from q, F ⊆ Q is a non-empty set of marked states.

It is assumed that a transition is associated to any allowed action, that is for
every state q ∈ Q and every action a ∈ Σ, a ∈ may(q) if and only if δ(q, a) is
defined. The mapping may : Q→ 2Σ can thus be reconstructed from the transi-
tion relation δ. However, this distinction simplifies the definition of satisfaction
and refinement relations and compositions operators.

In this paper, marked modal specifications are taken deterministic, that is:
for any a ∈ Σ and any state q there is at most one state q′ such that δ(q, a) = q′.
The reason for this will be given later in Sec. 3.



216 B. Caillaud and J.-B. Raclet

The underlying automata associated to C is Un(C) = (Q, q0, Σ, δ, F ). The
language LC is then LUn(C). As previously for automata, we extend δ to words
by taking its transitive and reflexive closure. Moreover, we define pre∗M (P ) and
pre∗m(P ) with P ⊆ Q as the set of states that are coreachable from any state q ∈
Q by following transitions labeled by required and allowed actions, respectively:
pre∗m(P ) corresponds to pre∗(P ) in Un(C); pre∗M (P ) is the least set such that
for r ∈ P , r ∈ pre∗M (P ) and for every λ(r′, a) = r′′ with a ∈ must(r′) and
r′′ ∈ pre∗M (P ) then r′ ∈ pre∗M (P ). Last, post∗m(P ) is post∗(P ) in Un(C).

Any terminating automaton can be seen as a marked modal specification
with no design choice left open, that is, for any state r, the optional action
set may(r) \ must(r) is empty. More formally, the embedding of a terminating
automatonM = (R, r0, Σ, λ,G) into the class of the marked modal specifications
is Em(M) = (R, r0, Σ, λ,must,may , G) with, for all r ∈ R, may(r) = must(r) =
ready(r). Now, the semantics of marked modal specifications is given in terms
of terminating automata:

Definition 2 (Satisfaction). A terminating automaton M = (R, r0, Σ, λ,G)
satisfies the marked modal specification C = (Q, q0, Σ, δ,must,may , F ), denoted
M |= C, if and only if there exists a simulation relation π ⊆ R × Q such that
(r0, q0) ∈ π and for all pairs (r, q) ∈ π:
– must(q) ⊆ ready(r) ⊆ may(q);
– r ∈ G implies q ∈ F ;
– for every a ∈ Σ and every r′ ∈ R, λ(r, a) = r′ implies

(
r′, δ(q, a)

)
∈ π.

The set of models (or implementations) of C is denoted �C�. A marked modal
specification is said satisfiable if and only if �C� �= ∅. Two marked modal speci-
fications C and C′ are said equivalent, written C ≡ C′, if and only if they admit
the same implementations: �C� = �C′�. Any unsatisfiable specification is mapped
on a special specification denoted C⊥, with �C⊥� = ∅.

Example 1. Consider the terminating automatonM in Fig. 1(a) and the marked
modal specification C in Fig. 1(b) where transitions from q labeled by a are
dashed when a ∈ may(q) \ must(q) and plain when a ∈ must(q); marked
states are double-circled. M satisfies C because of the simulation relation π =
{(0, 0′), (1, 1′), (2, 2′), (3, 1′)}.

Observe that, in state 2′, although none of the two outgoing transition is must,
at least one of the two has to be present in any model in order to preserve the
reachability of a marked state. Such restricted disjunction cannot be expressed
with traditional unmarked modal specifications. Observe also that, according to
the second item of the Def. 2, the reachability of a marked state may be delayed:
1′ is marked, (3, 1′) ∈ π but 3 is not marked; however, a marked state can be
eventually reached from 3 thanks to the state 1.

According to Def. 2, only reachable states of C are semantically meaningful. We
thus suppose from now on, and without loss of generality, that C is reachable,
that is: ∀q ∈ Q, q0 ∈ pre∗(q).
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(a) A terminating automaton M

0′ 1′ 2′a a

b

c

(b) A marked modal spec. C

Fig. 1. M is a model of C

A marked state q ∈ F is said delayable if q can be reached again, that is,
there exists a word u �= ε such that δ(q, u) = q; it is said undelayable otherwise.
Denote by D the set of delayable states of a marked modal specification.

A marked state q ∈ F is a bottleneck of C if it is the only marked state
reachable from some state q′ ∈ Q that is, post∗m(q′) ∩ F = {q}. Intuitively, this
notion allows to identify the states that will be marked in any model of the
specification.

Lemma 1. Given a terminating automaton M and a marked modal specifica-
tion C s.t.M |= C then: LM ⊆ LC, and, for all u ∈ LM,

(
λ(r0, u), δ(q0, u)

)
∈ π.

The introduced semantics induces some simplifications in the structure of the
marked modal specifications that we discuss now. At the end of this section, this
will lead to the definition of an associated normal form.

Must-saturation. Observe that any terminating automaton model of the mar-
ked modal specification in Fig. 1 includes the starting transition labeled by a
stemming from the initial state. It is thus a required transition that can be
assigned a must modality in the specification. We therefore introduce the must-
saturation of marked modal specifications.

Definition 3 (Must-saturation). A marked modal specification is must-sa-
turated if for all q /∈ F such that there is a unique a ∈ may(q), we have a ∈
must(q). Such a must-mapping is then said to be saturated.

Lemma 2. Any must-mapping can be saturated without changing the set of
marked implementations.

Consistency and attractability. Given a marked modal specification C =
(Q, q0, Σ, δ,must,may , F ) and a state q ∈ Q, C is said consistent in q if and only
if must(q) ⊆ may(q). C is said attracted in q if and only if q ∈ pre∗m(F ).

Lemma 3. If M |= C then C is consistent and attracted in every state δ(q0, u)
with u ∈ LM.

As a consequence, only consistent and attracting states of C are semantically
meaningful. This now leads us to define a reduced form:

Definition 4 (Reduced marked modal specification). C is reduced iff ev-
ery state is reachable and it is consistent and attracted in every state q ∈ Q.
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Proposition 1 (Reducibility). Every satisfiable marked modal specification is
equivalent to a reduced marked modal specification.

Proof of this proposition is by construction of a reduced marked specification ρC
and then proving that C and ρC are equivalent. This construction makes use of
a pruning operation. We denote by QΨ ⊆ Q the set of all states q ∈ Q such that
q is inconsistent or unattracting, that is: must(q) � may(q) or q /∈ pre∗(F ).

Definition 5 (Reduction operation). Given a marked modal specification
C = (Q, q0, Σ, δ,must,may , F ): if q0 ∈ pre∗M (QΨ ) then the reduction of C is C⊥;
otherwise, it is the marked modal specification (Q \ pre∗M (QΨ ) , q

0, Σ, δ′,must ′,
may ′, F \ pre∗M (QΨ )) where: δ′(r, a) = r′ if and only if δ(r, a) = r′ and r, r′ /∈
pre∗M (QΨ ); as indicated in right after Def. 1, may ′ can be recovered from δ′

whereas must′ is the restriction of must to the domain Q \ pre∗M (QΨ ).

Normal form. This now leads us to define the normal form of any marked
modal specification:

Definition 6 (Normal form). A marked modal specification is in normal form
if it is both must-saturated and reduced.

According to Lem. 2 and Prop. 1, any marked modal specification C can be put
in normal form ηC without altering its set of models. As a result, from now on,
we always suppose that marked modal specifications are in normal form.

At this point, the reader may wonder why must-saturation, consistency and
attractability are not fully part of the definition of marked modal specification
(as it is the case for the consistency requirement in the original papers on un-
marked modal specifications [16,14]). The reason for this is because, in what
follows, we propose composition operators on marked modal specifications and
it is easier to define these constructions without trying to preserve these different
requirements. Now if the combination of two marked modal specifications (which
are now implicitly supposed to be in normal form) gives rise to a specification
violating one of the above requirements then a step of normalization has to be
applied on the result in order to have an iterative process.

3 Refinement of Marked Modal Specifications

A refinement relation aims at relating interfaces at different stages of their de-
sign. Basically, it should correspond to refine the set of allowed implementations
of an interface. Moreover, we shall see later that refinement should entail substi-
tutability, meaning that the substitution of an interface C2 by a refined version
C1 must not impact the possible and actual cooperation with other components,
that have been previously declared as legal for C2.

Definition 7 (Refinement). Given two marked modal specifications C1 = (Q1,
q01 , Σ, δ1,must1,may1, F1) and C2 = (Q2, q

0
2 , Σ, δ2,must2,may2, F2), C1 is a re-

finement of C2, noted C1 ≤ C2, if and only if there exists a simulation relation
Π ⊆ Q1 ×Q2 such that (q01 , q

0
2) ∈ Π and, for all pairs (q1, q2) ∈ Π:
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– may1(q1) ⊆ may2(q2) and must1(q1) ⊇ must2(q2);
– q1 ∈ F1 implies q2 ∈ F2;
– for every a ∈ may1(q1), we have:

(
δ1(q1, a), δ2(q2, a)

)
∈ Π.

Intuitively, refining an interface corresponds to possibly changing a transition
with a may modality into either a required or a proscribed transition while
potentially delaying the reachability of a marked state. This relation is reflexive
and transitive and is thus a preorder.

Theorem 1. Given two marked modal specifications C1 and C2, C1 ≤ C2 if and
only if, �C1� ⊆ �C2�.

Theorem 1 holds provided the marked modal specifications are deterministic. If
nondeterminism is allowed, refinement becomes correct but not fully abstract
(the implication from right to left in Theorem 1 is not true in general). This is
discussed for unmarked modal specifications in [15]; their counterexample can be
immediately adapted to our context. Moreover, as argued in [8], nondeterministic
modal specifications are not really suitable to characterize a set of deterministic
automata.

When the left counterpart is ultimately refined, the refinement relation coin-
cide with the implementation relation: given a terminating automatonM and a
marked modal specification C,M |= C if and only if Em(M) ≤ C.

4 Conjunction of Marked Modal Specification

It is a current practice, when modeling complex systems, to associate several
specifications with a same system, sub-system, or component, each of them de-
scribing a different aspect of it. These so-called viewpoints may be engineered
independently, and possibly by different teams. It is then natural to question
whether different viewpoints are not contradictory and how to realize all of
them. This leads to define a conjunction operator. Moreover in [7], the authors
point out that, during the design cycle, a designer may be tempted to merge
two interfaces which share some similarities in order to use a same implementa-
tion for the two interfaces. More formally, this corresponds to look for a shared
refinement of the interfaces, if it exists.

We now define a conjunction operator which enjoy the expected properties to
solve the two above problems.

Definition 8 (Conjunction). Given two marked modal specifications C1 =
(Q1, q

0
1 , Σ, δ1,must1,may1, F1) and C2 = (Q2, q

0
2 , Σ, δ2,must2,may2, F2), the

conjunction of C1 and C2, noted C1 ∧ C2, is the normal form η(C1 & C2) of
C1 & C2 = (Q, q0, Σ, δ,must,may , F ) with:
– Q = Q1 ×Q2 and q0 = (q01 , q

0
2);

– for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ, δ
(
(q1, q2), a

)
= (q′1, q

′
2) if and only if

δ1(q1, a) = q′1 and δ2(q2, a) = q′2;
– may(q1, q2) = may1(q1)∩may2(q2) and must(q1, q2) = must1(q1)∪must2(q2);
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– (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.

Considering the manipulations done on the may/must-maps and on the transi-
tion map to obtain C1 & C2, the must-saturation and the consistency may not
be respected. We thus impose a normalization step in order to have an iterative
process as explained at the end of Sec. 2.

Theorem 2. Given some marked modal specifications C1, C2, C3 and C:
– �C1 ∧ C2� = �C1� ∩ �C2�;
– C1 ∧ C2 is the greatest lower bound of C1 and C2 for the refinement relation:
C ≤ C1 and C ≤ C2 iff C ≤ C1 ∧ C2;

– ∧ is associative: C1 ∧ (C2 ∧ C3) ≡ (C1 ∧ C2) ∧ C3.

5 Product of Marked Modal Specifications

Reachability is not preserved by product in general. Fig. 2 shows a simple ex-
ample: M1 |= C1 and M2 |= C2; however the product of M1 ×M2 is a single
non-marked state, hence the reachability of a marked state is not possible.

b

(a) M1

a b

(b) C1

a

(c) M2

a b

(d) C2

Fig. 2. Reachability is not compositional

This leads us to consider the following problem: given two marked modal
specifications, can they be implemented concurrently i.e., such that the product
of any model of the first specification with any model of the second one will
always have the ability to reach a marked state of the product?

Similarly to [1], we distinguish a pessimistic from an optimistic view of com-
position and solve the previous problem in this two contexts.

First, in order to represent the cooperation between subsystems, a signature
over Σ is now associated to any terminating automaton or marked modal spec-
ification over Σ:

Definition 9 (Signature). Given a set of actions Σ, a signature over Σ is a
mapping μ : Σ → {?, !} which associates to any action either ? when the action
is an input or ! when it is an output.

Now, transitions are either labeled !a (for μ(a) = !) when the entity responsi-
ble for the occurrence of a is the system, or ?a (for μ(a) = ?) if a stems from
the environment of the system. The resulting formalism is thus suited to model
protocols between a system and an unknown partner belonging to the system
environment. Contrarily to the input/output automata of [18] and following the
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interface automata of [1], terminating automata and marked modal specifica-
tions are not required to be input-enabled, meaning that some actions ?b of the
environment may not be permitted in some state q. More formally, this situa-
tion occurs in state q if there is no outgoing transition from q labeled by ?b.
This allows to restrict, from the point of view of the system, the behavior of its
environment.

Example 2. Fig. 3(a) depicts the specification of a service which can receive
requests ?r from an unidentified subsystem in its environment and then answers
by producing !a until it is stopped with ?f . It may also produce !b when set in
an enhanced mode by ?e. Fig. 3(b) depicts the specification of a client which
expects to receive ?a as an answer to any request !r and is ready to receive
remitted ?a. Although ?b is in the signature of C2, there is no transition labeled
?b meaning that the client rejects this inputs.

We write Σ? and Σ! for the set of input and output actions, respectively, thus
forming a partition of Σ. A system is then closed if its associated signature is
such that Σ? = ∅ and open otherwise. In this paper, we assume that ifM |= C
then the signature associated toM and C is identical. Similarly, if C1 ≤ C2 then
C1 and C2 have the same signature1.

A first condition to product is the composability of signatures. Given two sig-
natures μ1 and μ2 over Σ1 and Σ2 respectively, defining two partitions

(
Σ?

1 , Σ
!
1

)
and
(
Σ?

2 , Σ
!
2

)
, they are composable if no output actions is shared: Σ!

1 ∩ Σ!
2 =

∅. For composable signatures, we let the communication actions be the set
Σco(μ1, μ2) = (Σ?

1 ∩ Σ!
2) ∪ (Σ?

2 ∩ Σ!
1) which corresponds to the shared ac-

tions on which a synchronization will be possible. The set of private actions
is Σpr(μ1, μ2) = (Σ1 ∪Σ2) \ (Σ1 ∩Σ2).

Definition 10 (Product of signatures). The product of two composable sig-
natures μ1 and μ2 is μ = μ1 × μ2 defined over Σ1 ∪ Σ2 such that: Σ? =
(Σ?

1 ∪Σ?
2) \Σco(μ1, μ2) and Σ! = Σ!

1 ∪Σ!
2.

The product of two terminating automataM1 andM2 with respective compos-
able signatures μ1 and μ2 is thenM1×M2 as defined in Sec. 2.1 with signature
μ1 × μ2.

5.1 Pessimistic Composition of Marked Modal Specifications

We first consider the case of pessimistic2 composition; we define a sufficient
and necessary condition such that two marked modal specification can be in-
dependently implemented, the product of any of their implementations being
terminating.

This condition corresponds to the existence of a joint path to a marked state,
for every reachable state of the product of arbitrary implementations. We then

1 This assumption is taken to simplify the presentation. Refinement of signature as
defined in [21] can be handled in the presented theory.

2 The pessimistic view of this approach will be made clearer in the next section.
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(a) C1 over {?r, ?e, ?f, !a, !b}

0 1
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!r

?a

?a

!f

(b) C2 over
{?a, ?b, !r, !f}

0, 0 1, 1 2, 0

6, 2

!r
!a

!r !f

(c) C1 ‖ C2 over {?e, !r, !f, !a, !b}

Fig. 3. Example of composition

consider the less cooperative situation in which any optional behavior is disabled
and check if such paths exist. However, the minimal behavior associated to a
state of a marked modal specification is not unique in general. Consider C1 in
Fig. 2(b), the minimal number of outgoing transition stemming from the initial
state among all the models of C1 is 1 and can be either a transition label by a or
by b. To represent the different minimal possibilities, we thus use an intermediate
structure calledminimal constraint automaton. First we define the set of minimal
constraints associated to a state:

Definition 11 (Minimal constraints). For any state q of a marked modal

specification C defined over Σ, we associate the set ζ(q) ∈ 22
Σ

defined by:

ζ(q) =

⎧⎨⎩
{ must(q) } if must(q) �= ∅
{ {a} | a ∈ may(q) } if must(q) = ∅ and q /∈ F
{ ∅ } if must(q) = ∅ and q ∈ F

Definition 12 (Minimal constraints automaton). Given a state q of a
marked modal specification C over Σ, the minimal constraints automaton
Min(C, q) is the automaton over Σ whose initial state is q; its labeled transi-
tion map is λMin such that λMin(q

′, a) = q′′ if and only if a ∈ X with X ∈ ζ(q′)
and δ(q′, a) = q′′; its set of final states GMin is the set of undelayable bottlenecks
of C.

We identify potential dead-ends, that is pairs of states of two marked modal
specifications C1 and C2 to be composed from which no outgoing transition may
be available in a product of two respective implementations:

Definition 13 (Dead-end). Given q1 and q2 two states respectively from the
marked modal specifications C1 and C2 defined over Σ1 and Σ2, the pair (q1, q2)
is a dead-end if:
– q1 �∈ (F1 \D1) or q2 �∈ (F2 \D2) and,
– there exists X1 ∈ ζ1(q1) and X2 ∈ ζ2(q2) such that: (X1 ∪ (Σ2 \Σ1))∩ (X2 ∪

(Σ1 \Σ2) = ∅.

Example 3. The minimal constraints associated to the initial states of C1 and C2
from Fig. 2 and defined over the same alphabet of actions {a, b} are respectively
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{{a}, {b}} and {{a}}. The pair formed by this two states is thus a dead-end as
for X1 = {b} and X2 = {a}, we have X1 ∩X2 = ∅.

This now leads us to a definition of exception state pairs from which a joint path
to a marked state pair cannot be ensured independently of the implementation
choices to be made:

Definition 14 (Exception state pair). Given q1 and q2 two states respec-
tively from two marked modal specifications C1 and C2, the pair (q1, q2) is an
exception if:
– Min(C1, q1)×Min(C2, q2) is not terminating or,
– there exists a reachable dead-end3 (q′1, q

′
2) in Min(C1, q1)×Min(C2, q2).

We denote by Ex(C1, C2) the set of exception state pairs from C1 and C2. Then
we can define the following criterion characterizing marked modal specifications
having compatible reachability:

Definition 15 (Compatible reachability). Two marked modal specifications
C1 and C2 have a compatible reachability, noted C1 ∼T C2, if there is no exception
state pair that is reachable in Un(C1)×Un(C2).

The soundness and the completeness of the previous definition are then stated
by the following Theorem:

Theorem 3 (Independent implementability). Given two marked modal
specifications C1 and C2, C1 ∼T C2 if and only if for anyM1 |= C1 andM2 |= C2,
the product M1 ×M2 is terminating.

We now define the product of two marked modal specifications with compatible
reachability.

Definition 16 (Pessimistic product). Given two marked modal specifications
C1 = (Q1, q

0
1 , Σ1, δ1,must1,may1, F1) and C2 = (Q2, q

0
2 , Σ2, δ2,must2,may2, F2)

with compatible reachability, the product C1⊗C2 is the marked modal specification
(Q, q0, Σ1 ∪Σ2, δ,must,may , F ) with:
– Q = Q1 ×Q2 and q0 = (q01 , q

0
2);

– for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ1 ∪ Σ2, δ
(
(q1, q2), a

)
is defined as

(δ1(q1, a), δ2(q2, a)) for a ∈ Σ1 ∩ Σ2, (δ1(q1, a), q2) for a ∈ Σ1 \ Σ2 and
(q1, δ2(q2, a)) for a ∈ Σ2 \Σ1;

– may((q1, q2)) =
(
may1(q1) ∪ (Σ2 \Σ1)

)
∩
(
may2(q2) ∪ (Σ1 \Σ2)

)
;

– must((q1, q2)) =
(
must1(q1) ∪ (Σ2 \Σ1)

)
∩
(
must2(q2) ∪ (Σ1 \Σ2)

)
;

– (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.

Now, the product of any modelsM1 of C1 andM2 of C2 is model of C1 ⊗ C2:
3 As the set of states of Min(Ci, qi) is a subset of these of Ci, we can refer to (q′1, q

′
2)

in Min(C1, q1) ×Min(C2, q2) as a pair of states of C1 and C2 and then test if it is a
dead-end in the sense of Def. 13.
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Proposition 2. Given two marked modal specifications C1 and C2, if C1 ∼T C2
then for anyM1 |= C1 andM2 |= C2,M1 ×M2 |= C1 ⊗ C2.

Moreover, C1 ⊗ C2 gives the most precise characterization of the behavior of the
product of any modelsM1 of C1 andM2 of C2:

Proposition 3. Given two marked modal specifications C1 and C2, if C1 ∼T C2
and if there exists a marked modal specification C such that for any M1 |= C1
andM2 |= C2 we have M1 ×M2 |= C then C1 ⊗ C2 ≤ C.

One important principle in modular and concurrent design of systems is the
fact that a property checked on a primary version of some system artifacts
remains true on any refined version of them. This is what allows to guarantee
that the system parts corresponding to compatible interfaces can be designed
concurrently. This is respected for compatible reachability:

Proposition 4. For all marked modal specifications C1, C′1 and C2, if C1 ∼T C2
and C′1 - C1 then C′1 ∼T C2 and C′1 ⊗ C2 - C1 ⊗ C2.

Last, the product is a commutative and associative operator, meaning that in-
terfaces can be assembled in any order without affecting the result.

Proposition 5. The product of marked modal specifications is commutative and
associative. Given three marked modal specifications C1, C2 and C3: C1 ⊗ C2 ≡
C2 ⊗ C1 and C1 ⊗ (C2 ⊗ C3) ≡ (C1 ⊗ C2)⊗ C3.

5.2 Optimistic Composition of Marked Modal Specifications

Consider again C1 and C2 from Fig. 3. They do not have a compatible reachability
as (3, 0) is an exception state pairs because (4, 1) is a reachable dead-end from
it. It is however pessimistic to declare C1 and C2 as not composable. Indeed, the
system potentially formed by any model of C1 and C2 would not be closed as
the occurence of ?e would still be under the control of the environment. Now
by preventing the environment from producing !e when C1 and C2 are in their
initial state, the reachability of the exception state pairs (4, 1) can be avoided.
In this section, let us now be optimistic and declare composable any C1 and C2
if there exists at least one environment, closing the system and preventing the
reachability of the bad states of C1 and C2 in which the reachability property
cannot be guaranteed.

Definition 17 (Legal environment). Given M and E two terminating au-
tomata, E is said to be a legal environment for M, if and only if: the signature
ofM and E are composable;M×E is closed; Em(M) ∼T Em(E), that isM×E
is terminating.

Next, we define, for any automatonM (terminating or not) with r0 ∈ pre∗(G),
the subautomatonM� = (pre∗(G) , r0, Σ, λ�, G) where λ�(r, a) = r′ if and only
if λ(r, a) = r′ and r, r′ ∈ pre∗(G). It corresponds to the potential reachable part
ofM when interacting with a legal environment.
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Definition 18 (Optimistic compatible reachability). Two marked modal
specifications C1 and C2 have an optimistic compatible reachability, noted C1 ∼O
C2 if the pair of initial states (q01 , q

0
2) is not an exception state pairs.

This criterion is sound and complete as stated by the following Theorem:

Theorem 4 (Independent implementability). Given two marked modal
specifications C1 and C2, C1 ∼O C2 if and only if for anyM1 |= C1 andM2 |= C2
there exists a legal environment E for M1 ×M2.

Definition 19 (Optimistic product). Given two marked modal specifications
C1 and C2 over composable signatures μ1 and μ2 and with optimistic compatible
reachability, the optimistic product C1 ‖ C2 is the normal form of the marked
modal specification (Q, q0, Σ1 ∪Σ2, δ,must,may , F ) over μ1 × μ2 with:
– Q = (Q1 ×Q2) \ Ex(C1, C2) and q0 = (q01 , q

0
2);

– for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ1 ∪Σ2:
• if a ∈ Σ1 \ Σ2 and (δ1(q1, a), q2) /∈ Ex(C1, C2): δ

(
(q1, q2), a

)
=

(δ1(q1, a), q2);
• if a ∈ Σ2 \ Σ1 and (q1, δ2(q2, a)) /∈ Ex(C1, C2): δ

(
(q1, q2), a

)
=

(q1, δ2(q2, a));
• if a ∈ Σ1 ∩ Σ2 and (δ1(q1, a), δ2(q2, a)) /∈ Ex(C1, C2): δ

(
(q1, q2), a

)
=

(δ1(q1, a), δ2(q2, a)).
– a ∈ must((q1, q2)) if a ∈

(
must1(q1) ∪ (Σ2 \Σ1)

)
∩
(
must2(q2) ∪ (Σ1 \Σ2)

)
and δ
(
(q1, q2), a

)
is defined;

– (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.

Example 4. The optimistic product of C1 and C2 from Fig. 3 is depicted in
Fig. 3(c). The action ?e is not allowed in the initial state as a legal environement
would never produce !e to prevent the reachability of the exception states (3, 0).

Proposition 6. Given two marked modal specifications C1 and C2, if C1 ∼O C2
then for anyM1 |= C1 andM2 |= C2, (M1 ×M2)

� |= C1 ‖ C2.

The next proposition states that C1 ‖ C2 is the minimal marked modal specifica-
tion w.r.t. refinement enjoying the independent implementability property:

Proposition 7. Given two marked modal specifications C1 and C2, if C1 ∼O C2
and if there exists a marked modal specification C such that for anyM1 |= C1 and
M2 |= C2 there exists a legal environment E forM1×M2 and (M1 ×M2)

� |= C,
then C1 ‖ C2 ≤ C.

Optimistic compatible reachability is preserved by refinement hence allowing
concurrent design of sub-systems. Moreover, the optimistic product is monotonic
with respect to the refinement relation and is also associative which guarantees
independence in the design flow.

Proposition 8. For all marked modal specifications C1, C′1 and C2, if C1 ∼O C2
and C′1 - C1 then C′1 ∼O C2 and C′1 ‖ C2 - C1 ‖ C2.
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Proposition 9. The optimistic product of marked modal specifications is com-
mutative and associative. Given three marked modal specifications C1, C2 and C3:
C1 ‖ C2 ≡ C2 ‖ C1 and C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3.

6 Related Works and Conclusion

Marked modal specifications can be used to express, in a modular manner, that
a system should be capable of reaching one or several marked states representing
either the completion of a composition of services or the quiescence of a network
of interacting agents. They improve the expressive power of deterministic modal
specifications that corresponds to the conjunctive ν-calculus [10] which does not
allow to capture reachability properties.

The same goal can be achieved with automata-theoretic specifications in
which states are annotated with propositional formulas expressing implementa-
tion
variants and, possibly, an obligation of progress. This is the case of annotated
automata [22] and operating guidelines [19,17]. While both formalisms have a
product (or parallel) composition operator, they are missing the optimistic view
of composition and also the conjunction operator that turns out to be instru-
mental as soon as components are described according to several distinct but
interacting viewpoints [21].

The disjunctive variants of modal specifications [13,9] allows to constraint
progress and thus to inductively express reachability. However no implemen-
tation relations including marked states nor optimistic composition have been
proposed for these variants of modal specifications.

Marked modal specifications look similar to the modal specifications with
marked states introduced in [6]. However, these two formalisms are very differ-
ent because the satisfaction relation in [6] admits implementations having final
states corresponding to a state of the specification that is not final. This is appro-
priate in the context of supervisory control synthesis. However, this semantics
does not seem well-suited to a specification algebra with a refinement preorder,
which explains why a different satisfaction relation is used for marked modal
specifications.
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Abstract. We study enumeration problems using probabilistic meth-
ods, with application to verification problems. We consider the enu-
meration of monomials of a polynomial given as a black box, and the
enumeration of discrete points which separate two polytopes in a space of
dimension n, using a random walk which provides witnesses if the volume
of the difference of the polytopes is large enough. The first method allows
to enumerate all words of a given size which distinguish two probabilis-
tic automata with a polynomial delay. The second method enumerates
words which ε-distinguish two nondeterministic finite automata.We also
enumerate strategies which ε-distinguish two Markov Decision Processes
in time polynomial in the dimension of their statistical representation.

1 Introduction

An enumeration problem consists in generating all structures that satisfy a given
property. It can be defined for any NP problem: instead of deciding if there is
one correct solution among an exponential number of candidates, one should list
all the solutions. Enumeration is better understood as a dynamic process which
produces the solutions one at a time. One wants to bound the delay between
two solutions. Enumeration problems can also be defined for large objects given
as a black box. The number of solutions to enumerate can then be infinite and
we either restrict the solutions set or sample them uniformly at random.

We study two enumeration problems with direct applications to verification.
First, the enumeration of the monomials of a large multivariate polynomial given
as a black box, i.e., the polynomial can be evaluated on specific values for the
variables, in one call. One of the monomials of a polynomial can be produced
with a number of calls polynomial in the number of variables and the degree [13].
Also, if the polynomial is multilinear, the polynomial can be interpolated with a
polynomial number of calls to the black box between each produced monomial
[20]. Second, the enumeration of points which separate two polytopes whose
difference has a large enough volume. The Polytope Separator algorithm solves
this problem, and is based on a random walk as the one used to compute the
volume of a polytope [11] and is polynomial in the dimension of the space.

In model checking, we compare schemas, such as regular expressions or Büchi
automata on words. One may ask to enumerate all the words which distinguish
two regular expressions or Büchi automata: they represent the counter-examples.
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Given formulas ψ1 and ψ2 in some logic, we want to enumerate the structures
U such that ψ1 and ψ2 disagree on U . This may be computationally hard, so
we study if we can realize it with high probability. If it is still hard, we relax
the exact enumeration to an approximate enumeration. We set a distance on the
structures and define, for ε ∈ [0, 1], U |=ε ψ if there exists a structure U ′, ε-close
to U such that U ′ |= ψ. The approximate ε-version is to enumerate U such that
U |= ψ1 and U �|=ε ψ2 (or symmetrically).

In probabilistic model checking, given two probabilistic automata A1 and A2,
we want to enumerate the words w such that Pr[w ∈ A1] �= Pr[w ∈ A2]. There is
a deterministic polynomial algorithm to distinguish two probabilistic automata
[21] and a recent more efficient probabilistic algorithm [12] based on polynomials
associated to the automata. We apply enumeration methods to these structured
multilinear polynomials and obtain probabilistic algorithms to generate all the
words which distinguish the two automata.

It is computationally hard to separate nondeterministic automata or Markov
Decision Processes (MDPs), even with probabilistic methods, unless PSPACE =
BPP. We thus only solve approximate versions of these problems. In both cases,
we represent the objects to compare by polytopes and apply our Polytope Sep-
arator algorithm to generate counter-examples. On nondeterministic automata,
we use the word embedding introduced in [8]. We want to ε-distinguish (for the
distance introduced in [5]) two MDPs with traces on the same alphabet Σ. We
represent them by the k-gram (for k = 1/ε) of the stationary distributions of
their traces, i.e. vectors of dimension |Σ|k. We show how to find strategies which
ε-distinguish the MDPs in polynomial time in the size of the MDPs and the
dimension, whereas previous methods were exponential in the dimension.

Our main results are probabilistics methods for:

• Enumerating efficiently points in the difference of two polytopes (Theor. 4).
• Enumerating words that ε-distinguish nondeterministic automata (Theor. 5).
• Enumerating strategies which ε-distinguish two MDPs (Theor. 6).

In section 2, we show how to enumerate words which distinguish two probabilistic
automata. Section 3 presents the Polytope Separator algorithm. We apply it in
section 4, to enumerate words which ε-distinguish two regular expressions and
in section 5 to enumerate strategies which ε-distinguish two MDPs.

2 Enumeration of Monomials and Separation of
Probabilistic Automata

2.1 Equivalence Testing

In this section, we compare two probabilistic automata denoted by A and B.

Definition 1. A probabilistic automaton is a tuple A = (S,Σ,M,α, η) where S
is a set of n states, Σ a finite alphabet, M is a collection of transition matrices
M for each letter σ ∈ Σ: M : Σ → Rn×n where each M(σ) is a probabilistic



230 S. Peyronnet, M. De Rougemont and Y. Strozecki

transition matrix, α is an initial probabilistic distribution of states, η is the final
vector in Rn.

Let w = w1w2 . . . wk be a word, we let A(w) = α(
∏

i=1...k M(wi))η denote the
probability that w is accepted by A. The number of states of A and B is bounded
by n and their number of transitions is bounded by m.

We associate a classical polynomial PA to the automaton A. The set of its
|Σ|n variables is {Xσ,i}σ∈Σ,i≤n. It encodes the words of size less or equal to n
and their probability to be accepted by A:

PA(x) =

n∑
k=0

∑
w∈Σk

A(w)Xw1,1Xw2,2 . . . Xwk,k.

The polynomial PA has an exponential number of monomials and thus seems
hard to evaluate. We give another form of PA, which allows to evaluate it in
polynomial time since it involves only polynomial size sums and products:

PA = α

⎛⎝ n∑
k=0

k∏
j=1

∑
σ∈Σ

Xσ,jM(σ)

⎞⎠ η

Given two probabilistic automata A and B, we wish to decide if A ≡ B, i.e. if
all words are accepted with the same probability. The deterministic algorithm of
[21] decides this property with complexity in O(n3|Σ|). It is also possible to use
the polynomial representation of A and B to design a probabilistic algorithm to
test if A and B have the same language (see [12]). Indeed, deciding whether PA

is equal to PB is equivalent to deciding whether A ≡ B. To do that, it is enough
to compute PA − PB on random integer points by the Schwarz-Zippel Lemma.

Lemma 1. [Schwarz-Zippel [18,22]] Let P be a nonzero polynomial with n vari-
ables of total degree D, if x1, . . . , xn are randomly chosen integers in a set S of
size D

ε then the probability that P (x1, . . . , xn) = 0 is bounded by ε.

The complexity of this testing procedure is equal to the one of the evaluation
of PA and PB, which can be done very efficiently by a succession of products
of a vector by the matrices representing the transitions of A and B. Since the
transition probabilities are in R we count the number of arithmetic operations
in the complexity of the following algorithms. It can be turned into roughly the
same boolean complexity by considering transition matrices with small rational
numbers as coefficients.

Theorem 1 (In [12]). Let A and B be two automata with at most n states
and m transitions. We can decide with probability 1 − ε whether A ≡ B in
O(nm log(ε−1)) arithmetic operations. If A and B are not equivalent, a minimal
counter-example can be produced in the same time.

The algorithm which produces a counter-example, that is a word which has not
the same probability to be accepted by A and B, is given in Section 2.4 of [12].
It can also be seen as a specialization of Alg. 1 given in [20] which produces a
monomial of any multilinear polynomial.
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2.2 Producing All Counter-Examples

In some practical context it is interesting to produce many counter-examples
which will be used as a test bed to separate a program from its specification.

We leverage the polynomial representation to design an algorithm which enu-
merates all counter-examples: the monomials of PA − PB are the words which
separate A from B and their coefficient is the difference of accepting probability
for A and B. Since PA−PB is multilinear, all its monomials can be enumerated
with a polynomial delay thanks to Theorem 2 of [20]. We describe here a spe-
cialization of this algorithm to the polynomial PA − PB, which is simpler and
has a better complexity. It is easy to change the definition of PA and PB so that
they represent the words of size l accepted by A and B for any given integer l.
As a consequence, we can state the following theorem.

Theorem 2. Let A and B be two probabilistic automata with at most m transi-
tions and n states. There is a probabilistic algorithm to enumerate with probabil-
ity 1− ε all words of size less than l which separate A and B. The delay between
the production of two counter-examples is in O(ml3 log(|Σ|ε−1)) arithmetic op-
erations and the time to produce all of them is linear in their number.

Proof. Let P be the polynomial PA − PB and let w = w1w2 . . . wk be a word.
We denote by Pw the polynomial P where for each i ≤ k we have substituted
1 to Xi,wi and 0 to Xi,σ for σ �= wi. The algorithm relies on the fact, that for
each i ≤ l, a monomial of P contains exactly one of the variables of {Xi,σ}σ∈Σ .

Therefore we have Pw =
∑
σ∈Σ

Xk+1,σPwσ.

Let T be the tree whose nodes are labeled by a prefix of a word which separates
A from B. The children of a node labeled by w are all nodes labeled by wσ for
some σ ∈ Σ. Therefore the leaves of this tree are labeled by all the separating
words. A node of label w is in T if and only if Pw is not zero, which can be
tested thanks to the Schwarz-Zippel lemma. Therefore a depth-first traversal of
T generates all the separating words.

Now, let study the complexity of this procedure. First, the error in the Schwarz-
Zippel Lemma can be bounded by ε′, if we do log(ε′−1) independent random
evaluations of the polynomial, so that we only use random integers less than
2l. Note that we can test whether Pwσ is identically zero for each σ ∈ Σ at
once. We substitute the same random integers to the variables {Xi,σ}i>k+1, in
all Pwσ. With probability 1− |Σ|ε′, all Pwσ will evaluate to some non zero value
if they are not identically zero. Thanks to the particular structure of P , we can
compute all Pwσ on these random values in time O(ml log(ε′−1)).

The probabilistic test is used in the algorithm at most |Σ|l times which is the
maximal number of leaves in T . Therefore, we must choose ε′ = εΣ−l−1 so that
the whole algorithm succeeds with probability 1− ε.

When we traverse a leaf, we find a counter-example, but we still have to
compute its coefficient in P that is the difference of probability to be accepted
by A and B. This can be done by a single evaluation of P in O(ml) operations.
Finally the delay between the production of two counter-examples is bounded
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by the time to visit at most 2l nodes since l is the depth of T , hence it is in
O(ml3 log(|Σ|ε−1) arithmetic operations.

Producing all the words which separate two automata, can be helpful to compute
a distance between automata, at least when it depends on all accepted words
of a given size. We show that computing such a distance or an approximation
of it is usually hard. Enumeration may thus be the best way to approach this
problem. Indeed the delay of the algorithm is polynomially bounded, thus any
increase in computing time enables to produce more counter-examples which in
turn allow to compute a better approximation of the distance.

The maximal distance is defined as the maximum of |A(w) − B(w)| over all
words w. The problem to decide whether a probabilistic automaton computes
a word with a probability greater than some given positive rational is called
the Emptiness problem. The emptiness problem is undecidable [17], and can be
reduced to the computation of the maximal distance. Indeed, if one wants to
decide whether an automaton A accepts a word with probability larger than
q ∈ Q, it is equivalent to test whether the maximal distance of A and B is larger
than q, where B accepts all words with probability 0.

To overcome the undecidability, we have to change the distance: we consider
the bounded maximal distance that is the maximum of |A(w) − B(w)| over all
words w of size n. The n-Emptiness problem is the Emptiness problem restricted
to words of size n, where n is part of the instance and given in unary. Note that
the n-Emptiness problem can be reduced to the computation of the bounded
maximal distance in the same way as the unbounded version.

Some relaxed version of the n-Emptiness problem is proved to be NP-hard
in [5]. Hence the bounded maximal distance is hard to compute, in fact ap-
proximating this distance is still hard. The hardness of the bounded maximal
distance together with the representation of a probabilistic automata by a mul-
tilinear polynomial can be used to show that enumeration in some order may be
hard, a result of self interest.

Proposition 1. Let P be a multilinear polynomial given by a black box. There
is no polynomial delay algorithm to produce the monomials in decreasing order
of coefficient unless P = NP.

In this section, we have seen that we can distinguish two probabilistic automata
in polynomial time, while deciding if they are far for the bounded maximal
distance is hard. In the next sections, we are interested with the separation of
non-deterministic automa or MDPs which is hard, and to make these problems
tractable, we choose to assume some properties on distances between these ob-
jects. Moreover, the algorithms for producing one or all counter-example to the
equivalence of two automata are Bellagio algorithms: They are probabilistic but
they always produce the same objects in the same order (see [9]). The random-
ness is useful only to make them polynomially faster. The algorithms presented
in the next sections rely on a random walk and by their very nature they produce
counter-examples which depend on the randomness.
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3 Separation of Two Polytopes

This section considers polytopes and their geometric difference. A polytope can
be represented by a set of points, of which it is the convex hull, it is then called
a V-polytope. It can also be represented by a set of linear inequalities, it is then
called a H-polytope. In general, the number of extremal vertices can be expo-
nential in the number of inequalities and vice-versa. One way to abstract away
the representation is to represent a polytope by a so-called strong membership
oracle: the oracle is given a point and answers whether it belongs to the polytope.

From a H-polytope or a V-polytope, we can simulate a strong membership
oracle. For a V-polytope, defined by a set of points S, we check if the point
given to the oracle is in the convex hull of S, that is the point is a convex
combination of points in S. This problem can be reduced to solving a system
of linear inequalities in a time polynomial in S. For a H-polytope, defined by a
system of linear inequalities, we only have to test if the input point satisfies the
inequalities in time linear in the size of the system.

From an algorithmic point of view, the representation is crucial. The problem
to separate two polytopes is easy for H-polytopes. Let K1 and K2 be two H-
polytopes represented respectively by the sets of inequalities S and {e1, . . . em}.
Let ēi denote the negation of ei. The set of inequalities S∪{ēi} defines a polytope,
from which a point can be found in polynomial time. Since K1 \K2 is equal to
the union of the points satisfying S ∪ {ēi} for all i, we have a polynomial time
algorithm to decide whether K1 \K2 = ∅ and to produce one of its elements.

However, we need another method when the representation is different. This
is why we design a complex algorithm to find a point in the difference of two
polytopes through a random walk. Moreover, the random walk method enables
us to sample almost uniformly the difference of two polytopes. This should be
seen as the best approximation to the enumeration of all points, an unfeasible
task since the difference of two polytopes has an infinite number of points.

3.1 Hardness and Relation between Distances

Let K ∈ Rn be a polytope, we denote by V(K) the volume of the polytope. Let
d(x, y) be the L1 distance on Rn. The distance of a point x to a compact K is
d(x,K) = miny∈K d(x, y), and this minimum is realized by some point of K. We
denote by diam(K) the diameter of K, that is the largest distance between two
points of K. Let K1 and K2 be two convex polytopes in Rn, we consider the two
following distances between these objects:

1. Hausdorff pseudo-distance: dH(K1,K2) = maxx∈K1 d(x,K2)
We symmetrize and normalize this distance:

dh(K1,K2) = max

{
dH(K1,K2)

diam(K1)
,
dH(K2,K1)

diam(K2)

}
2. Volume of the difference as a pseudo-distance: dVOL(K1,K2) = V(K1 \K2)



234 S. Peyronnet, M. De Rougemont and Y. Strozecki

We symmetrize and normalize this distance:

dvol(K1,K2) = max

{
dVOL(K1,K2)

V(K1)
,
dVOL(K2,K1)

V(K2)

}
Remark that dvol is not defined when K1 and K2 are of volume 0 which happens
if their dimensions are lower than the dimension of the space in which they are
embedded. It is always possible to assume that at least one of the polytope is of
positive volume (if it is not a singleton): we compute an affine subspace generated
by the points of the polytope and restrict the whole space to this subspace. The
two distances are related, as the following lemma states (proof in appendix).

Lemma 2. For all polytopes K1 and K2 such that K1 ∩K2 �= ∅ we have:

dh(K1,K2)
n ≤ dvol(K1,K2)

K1

K2

Fig. 1. The polytopes: K1 in hard lines and K2 in hard lines and dotted lines

The inequality is tight, see for instance Fig. 1 in dimension two, a situation easily
generalizable to any dimension. Moreover, dvol(K1,K2) cannot be bound by some
continuous increasing function of dh(K1,K2). Indeed, in Fig. 2, dvol(K1,K2) =

1
2

while dh(K1,K2) =
1
2l2 where l can be made arbitrarily large.

l

1
l

1
2l

Fig. 2. The polytope K1 in hard lines and the polytope K2 in dotted lines

In fact, the Hausdorff distance is hard to compute, while it is possible to
approximate the volume distance (if it is not too small). The proof that the
Hausdorff distance is hard to approximate relies on the hardness to approximate
the diameter of a polytope, as stated in Theorem 3.

Theorem 3 (Theorem 1.2 of [2]). The diameter of a H-polytope is NP-hard
to approximate within a factor polynomial in the dimension.
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In Prop. 2 (proof in appendix), we show that the Hausdorff distance and its
normalized version are hard to compute. This motivates our choice of the volume
distance to design an algorithm to separate two sufficiently different polytopes.

Proposition 2. The approximation of the functions dH or dh within a factor
polynomial in the dimension over H-polytopes is NP-hard.

3.2 Sampling the Difference

Our goal is to design an algorithm that provides a witness to the fact that two
polytopes K1 and K2 are different. To do so, our algorithm is sampling points
in each polytope. If dvol(K1,K2) is large enough, the algorithm samples points
in the difference between K1 and K2 with high probability. Sampling uniformly
points of a convex body is a well-studied algorithmic problem. Our algorithm is
based on known results [14,11,19].

To sample points, we use the Ball Walk. The idea of this walk is to pick a
uniform random point y from the ball of a given radius centered at the current
point x. If y is in the polytope, we proceed from y, otherwise from x.

In order to speed up the convergence of random walks within polytopes, it
is convenient to pre-process the polytopes by putting them into quasi-isotropic
position [19]. Once this is done, sampling becomes easier. Finding the exact
isotropic position is hard, so we consider algorithms for putting a convex body
into nearly isotropic position (see for instance [14,11]).

Definition 2. Let K be a polytope with center of gravity b(K). Let 0 < γ < 1.
K is in γ-nearly isotropic position if ||b(K)|| ≤ γ, and if ∀v ∈ Rn, we have:

(1 − γ)||v||2 ≤ 1

vol(K)

∫
K−b(K)

(v�x)2dx ≤ (1 + γ)||v||2.

Th. 6 of [19] states that, for 0 < γ < 1, there is a randomized algorithm that finds
an affine transformation A such that AK is γ-nearly isotropic, with probability
at least 2/3. The number of oracle calls of the algorithm is O(n5| ln γ| lnn).
This algorithm to put a convex body K into γ-nearly isotropic position is called
QISO . QISO(K, γ) is a γ-nearly isotropic version of K, with prob. at least 2/3.
We sketch the idea of this algorithm. First, pairwise “nearly” independent points
are “nearly” uniformly drawn fromK. Then, an affine transformationA bringsK
into nearly isotropic position.A depends mainly on the barycenter of the sampled
points. The idea is to center the polytope around the origin by translating the
center of gravity, but also to “round” it. If the sampling is close to the uniform
distribution, then with high probability we obtain the nearly isotropic position.
However, sampling pairwise “nearly” independent points is a difficult task, for
which a bootstrapping step is required (thus the overall complexity).

Once the nearly isotropic position has been computed, we can use the Ball
Walk in order to efficiently sample points uniformly at random from our poly-
tope. To do so, we use the algorithm P−B : P−B(x, δ) is a random point, dis-
tributed uniformly in B(x, δ) (δ ∈ R). Then, Alg. 1 picks at random a point of
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Algorithm 1. B-W(S, x, k, δ)

Input: S : set (as a strong membership oracle) ; x : point ; k : int
Output: a point of S
begin

if k = 0 then
return x

y =P-B(x, δ);
if y ∈ S then

B-W(S, y, k − 1, δ)

B-W(S, x, k − 1, δ)
end

a set given by a strong membership oracle (SMO). The parameter k in Alg. 1
is set at the mixing time of a Ball Walk, thus Alg. 1 outputs a point almost
uniformly distributed in S. The parameter δ is the step size of the Ball Walk.
Finally, by using Alg. 2 twice (i.e., on (K1,K2, γ, ε) and (K2,K1, γ, ε)) we find
with high probability a witness that K1 �= K2 if dvol(K1,K2) ≥ ε. The use of
Alg. 2 on both (K1,K2, γ, ε) and (K2,K1, γ, ε) is called the Polytope Separator.

Algorithm 2. E-C(J,K, γ, ε)

Input: J , K : polytopes ; γ, ε ∈]0, 1[
Output: x such that x ∈ J and x �∈ K
begin

k = n3 · (2 + ln(2n)) · ln(2/ε);
Jiso =QISO(J,γ);
for m = 1 to 2

ε
ln(3) do

y=B-W(Jiso,P-B(0, 1), k, 1/
√
n);

Compute x ∈ J corresponding to y ∈ Jiso;
if x ∈ J and x �∈ K then

return x

return FAIL
end

Theorem 4. Let K1 and K2 be two polytopes, given as SMOs. For all ε > 0,
if dvol(K1,K2) ≥ ε, then the Polytope Separator outputs a point x such that
x ∈ K1∧x �∈ K2 or x ∈ K2∧x �∈ K1 with probability greater than 2/3. Moreover,
the running time of this algorithm is polynomial in n and ε−1.

Proof. Without loss of generality, we consider only the case (K1,K2, γ, ε) and
not the symmetric case (K2,K1, γ, ε). First, we prove the correctness. Since the
parameter k = n3 · (2 + ln(2n)) · ln(2/ε) is the mixing time for a Ball Walk
[10] when δ = 1/

√
n, the algorithm outputs a point ε

2 -nearly uniform in K1.
Since dvol(K1,K2) ≥ ε, there is a fraction ε of K2 which is not in K1. Thus the
probability of not finding a point x ∈ K1 such that x �∈ K2 after sampling m
points is (1 − ε

2 )
m (the Ball Walk is ε

2 -nearly uniform with high probability).
By taking m = 2

ε ln(3) the probability of not finding a point x ∈ K1 such that
x �∈ K2 is upper bounded by 1/3. So the algorithm is correct. The complexity



Approximate Verification and Enumeration Problems 237

can be decomposed as follows. To put a polytope in quasi-isotropic position, we
need O(n5| ln γ| lnn) oracle calls (see [19]). The mixing time of the Ball Walk
is essentially O(n3) when δ = 1/

√
n (see [11,10]). The Ball Walk is repeated

4
ε ln(3) at most. Thus the complexity in terms of oracles calls is polynomial in n
and ε−1. The cost of a call depends on the representation of the polytope, but
is always polynomial. The running time is then polynomial in n and ε−1.

4 Approximate Separation of Regular Languages

We apply the Polytope Separator to a verification problem: the approximate
separation of regular languages given by non deterministic regular automata.

4.1 Statistical Embeddings on Words

We recall how certain polytopes can be associated with regular expressions in
the context of approximate verification [8]. For a word w, let ustatk(w) be the
density vector of all the n−k+1 subwords of length k of the word w, also called
the k-gram of w or the shingles’s density vector in [3]. For example, for binary
words and k = 2 there are 4 possible subwords of length 2, which we take in lex-
icographic order. For the binary word w = 000111, ustat2(w) = (2/5, 1/5, 0, 2/5)
as there are 2 subwords 00, 1 subword 01, no 10 subword and 2 subword 11
among the possible 5 subwords. We extend the definition of ustat to cyclic words
of length n > k by considering all the n subwords of length k. This represen-
tation is useful to design property testers [8] which approximately decide if two
words are close or far, or if a word is close or far to a regular expression.

The edit distance between two words is the minimal number of insertions,
deletions and substitutions of a letter required to transform one word into the
other. The edit distance with moves (EDM ) allows one additional operation:
Moving one arbitrary substring to another position in a single step. More in-
formation on these distances can be found in [4]. Two words are ε-close if

dist(w,w′) = EDM (w,w′)
max{|w|,|w′|} ≤ ε. They are ε-far if they are not ε-close. The distance

of a word w to a regular expression r is minw′∈r{dist(w,w′)}.
Note that for the 2n binary words of length n, there are only a polynomial

number of possible ustatk vectors. An ε-tester to decide if w ∈ r or if w is ε-
far from r uses this property as it constructs Hr = {ustatk(w) : w ∈ r} for
k = 1/ε, which is a finite union of polytopes. Consider the nondeterministic
automaton A associated with the regular expression r, and Ak the automaton
where a transition is made of k transitions in A. A finite set of Ak loops is
Ak compatible if all the loops can occur one after the other (in any order) in
one accepting path of Ak. Each polytope is the convex hull of ustatk(l) vectors
of compatible loops l of Am for m ≥ k. The distance of a word w to r is
approximately the L1-distance between ustatk(w) and Hr (see [8] for the proofs
of what is stated in this paragraph).

As an example, let r = (0110)∗(11)∗, A an automaton for r, and k = 2.
The Ak-loops of r are (0110)l and (11)l, for any l. These loops are Ak-
compatible. Let ustat2((0110)

l) = ( l−1
4l−1 ,

l
4l−1 ,

l
4l−1 ,

l
4l−1 ) which converges to
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s1 = (1/4, 1/4, 1/4, 1/4) when l → ∞ and s2 = ustat2((11)
l) = (0, 0, 0, 1). Then

we haveHr = Convex− Hull(s1, s2), which is a segment. Although the dimension
of the si’s is large (2

k), each vector is sparse and has at most |A| nonzero entries.

4.2 Construction and Separation of the Statistical Polytopes

Given two regular languages r1, r2, we want to enumerate the words which are
in r1 but not in r2, or in r2 but not in r1. Since the equivalence of two regular
languages is PSPACE-complete, the enumeration of one word is hard. We relax
the problem: we wish to enumerate words in r1 but ε-far from r2, or in r2 but
ε-far from r1 using the relative edit distance with moves between words.

To compare two regular expressions r1 and r2, we construct the polytopes Hr1

and Hr2 . We show how to use the Polytope Separator of section 3 to generate
ustat vectors which separate r1 from r2. In particular the Polytope Separator has
a complexity polynomial in the dimension, while previous techniques introduced
in [8], were exponential in the dimension. This approach generalizes to infinite
words, to context-free properties and also to unranked ordered trees.

Let A be an automaton with n states and M its transition matrix, i.e.,
M(i, j) = a if there is an a-transition between state i and state j. For simplicity
let us assume that A is strongly connected. If it is not, we have to construct
the graph of strongly connected components and to associate a polytope to each
components. Let k = 1/ε, we consider Ak the automaton with k transitions
in A. The transition matrix Mk of Ak is defined by Mk(i, j) = {u1, . . . , up}
where each ul is a word of length k such that j can be reached from i following
ul in A. We do not iterate Mk+1, . . . ,Mn since their coefficients are sets that
may grow exponentially large. Instead, we replace the words by their ustatk. Let
U1 = ustatk[M

k], i.e., U1(i, j) = {ustatk(u1), . . . , ustatk(up)}. In addition to the
ustat vector of a word, we need to remember its prefix wi and suffix vi of length
k − 1. Let p denotes the function prefix (resp. suffix s) which remove the last
(resp. first) letter of a word, i.e., wi = p(ui) and vi = s(ui). Let us define the
extended U as: U1

e (i, j) = {(ustatk(u1), w1, v1), . . . (ustatk(up), wp, vp)}.
For m = 1, . . . , n− k + 1, let Um+1

e be the matrix such that for each pair of
states (i, j), Um+1

e (i, j) contains the ustatk vectors of words of length k+m+ 1
linking state i to state j. We build Um+1

e from Um
e : in each coefficient, we remove

the first letter of the suffix v and add the new letter a, that is the new suffix
is v′ = s(v).a. We also modify the ustat to take into account the addition of a
letter. Formally Um+1

e is defined as follows:

Um+1
e (i, j) = {(m·ustatk

m+1 + ustatk(v.a)
m+1 , w, v′) | ∃l (ustatk, w, v) ∈ Um

e (i, l),
A(l, j) = a}.

When i = j, we reached a loop. We define Hm+1 as the ustatk of the loops
seen as cyclic words: we adjust the ustatk in Um

e with the ustatk of the k extra
words. It is possible, as we kept the prefix w and the suffix v of length k − 1.

Hm+1 = {ustatk. m
k+m+1 + ustatk(v.a).

1
k+m+1 + ustatk(a.w).

1
k+m+1 + · · · +

ustatk(s(v).a.w[1]).
1

k+m+1 | ∃i, l (ustatk, w, v) ∈ Um
e (i, l), A(l, i) = a}

We stop at Un
e , and build the polytope H which is the convex hull of all the

Hm for all m ≤ n. H contains all the ustat of the loops of length less than n.
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Algorithm 3. Construction of the ustat polytope

Input: A: automata; k: integer
Output: The polytope H associated with A
begin

Compute Ak; U1
e ;H1;

for m = 1 to n− k + 1 do
Compute Um+1

e and Hm

return H = Hull{∪mHm}
end

Lemma 3. We can construct a V-representation of H of size poly(n, k) in time
poly(n, k).

Proof. Being of length less than n, basic loops appear at some stage m in Um
e .

Each entry of the matrix is a set of polynomial size, since the set of possible ustat
vectors is polynomially bounded. The time to build H is polynomially bounded.

Theorem 5. Given two regular expressions r1, r2 on words and ε, if
dvol(Hr1 , Hr2) ≥ λ we can generate ε-separating words in time polynomial in
the dimension and 1/λ.

Proof. Construct Hr1 and Hr2 as explained in the previous lemma. From each
polytope, we build a membership oracle which takes a ustat vector x and answers
YES if the L1 distance of x to the polytope is greater than ε and NO otherwise.
We apply the Polytope Separator on these two oracles. It outputs a separating
ustat vector with high probability if it exists.

Given a separating ustat vector x in Hr1 , which is not in Hr2 , we can generate
a large word w from x as follows: pick a starting word u of length k according
to the x distribution, and let v be its suffix of length k − 1. Then pick the next
letter according to the conditional distribution x(u|v), i.e., the distribution of
words which have v as a prefix. We repeat this process to obtain a word w of size
n, for a large enough n, such that ustatk(w) is ε-close to x. By the completeness
of the edit distance with moves [8], the word w is ε′-far from r2.

Notice that the process has two probabilistic components: the random walk in
the polytopes to find a separator x and then the generator to find w from x.

5 Approximate Separation of MDPs

In this section, we give a second application of the Polytope Separator algorithm
to verification: the approximate separation of MDPs.

5.1 Statistical Analysis of MDPs

We recall how certain polytopes can be associated with MDPs in the context of
(state, action) frequencies [5]. Let Σ be a finite alphabet (set of actions) and S
the set of states. If S is finite, Δ(S) denotes the set of distributions over S.
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Definition 3. A Markov Decision Process is a tuple S = (S,Σ, P,Δ0(S)). S is a
finite set of states,Σ is a set of actions, and P : S×Σ×S → [0; 1] is the transition
relation. The probability to go from state s to state t, when action a ∈ Σ is chosen,
is denoted P (s, a, t) or P (t|s, a). Δ0(S) is the initial distribution.

If there is no action a from s, P (t|s, a) = 0 for all t ∈ S. A run on S is a finite or
infinite alternating sequence of states and actions, which begins and ends with a
state. We write Ω∗ for the set of finite runs, Ω for the set of infinite runs on S.
If n ∈ N and r ∈ Ω, we write r|n for the sequence of the first n− 1 state-action
couples in r and the n-th state in r. The trace Tr(r) of a run r is the sequence of
actions. If n ∈ N, Xn and Yn are the random variables which associate to a run
r its n-th state and its n-th action. A policy on S is a function σ : Ω∗ → Δ(Σ).
A policy resolves the non determinism of the system by choosing a distribution
on the set of available actions from the last state of the given run. We write HR
for the set of History dependent and Randomized policies.

Let σ be a policy on S, k ∈ N and T ≥ 0. Let ŷTk be the random variable which
associates to all r ∈ Ω the k-gram of its prefix of length T , i.e. ŷTk = ustatk(r|T ) ∈
[0; 1](S×Σ)k . Given an initial distribution α, the expected state-action frequency
vector yTσ,α,k is Eσ,α[ŷ

T
k ], i.e. the expectation of ŷTk . It may converge as T → +∞,

to the limit point yσ,α,k. Consider the set of possible yσ,α,k over all the strategies
in HR,

Hk(α) =
⋃

σ∈HR

yσ,α,k.

Theanalysis ofMDPswith this state action frequencyvectorwas initiated in [6] and
[16] for k = 1 and generalized in [5] for an arbitrary k, by introducing the newMDP

Sk = (S′, Σ, P ′, α) which iterates k transitions in S, i.e. S′ = (
∏k−1

i=1 S × Σ) × S
and with probabilities adjusted to k transitions. The polytopeHk associated to S
is equal to the polytopeH1 associated to Sk and they are independent of the initial
distribution α. The polytope H1 has an efficient representation by the following
system of linear equalities and inequalities, for each s′ ∈ S′:∑

s∈S′

∑
a∈Σ

P ′(s′|s, a) · y(s, a) =
∑
a′∈Σ

y(s′, a′) (1)

Each equation corresponds to the conservation of densities in state s′, and we
have |S′| such equations.

We are interested in the set of possible traces of an MDP, as we want to
compare two MDPs with entirely different states but with the same action set.
Hence, we consider the similar vector on the traces x̂T

σ,α,k = ustatk(Tr(r|T )) ∈
[0; 1]Σ

k

and its limit xσ,α,k when T → +∞. For all v ∈ Σk we have:

xσ,α,k[v] =
∑

u∈(S×Σ)k s.t. Tr(u)=v

yσ,α,k[u] (2)

i.e., the projection vector on the actions. We are mainly interested in the pro-
jection of the polytope Hk, also independent of α, that we denote by π(Hk) and
which is defined as follows: π(Hk) = {xσ,α,k}.



Approximate Verification and Enumeration Problems 241

The ε-distance between two weakly communicating MDPs S1,S2, introduced
in [5], is the the Haussdorf distance between π(H1,k) and π(H2,k) for k = 1/ε.
A vector x ε-distinguishes two MDPs if it is inside one polytope and ε-far from
the other one. It corresponds to strategies which separate the most the traces
of the MDPs for the edit distance with moves between traces. Precisely, let
distk(x,S) = Infz∈π(Hk)||x− z||1. Then

distk(S1,S2) = max
x1∈π(H1,k)
x2∈π(H2,k)

{distk(x1,S2), distk(x2,S1)}

We can easily compute distk(x,S) with a linear program while distk(S1,S2) is
hard (in the dimension), even to approximate, as we could otherwise approx-
imate the diameter which is hard [2]. Other metrics to compare probabilistic
systems are related to bisimulation [7,1], L1 or L2 distances between distribu-
tions, Kullback–Leibler divergence, and D̄ distance [15].

5.2 Construction and Separation of the Statistical Polytopes

We want to apply the separator algorithm to ε-distinguish two MDPs on the
same action set. We construct the polytopes π(Hk,1) and π(Hk,2) as defined
previously. We then define an oracle which takes x, π(Hk,1) and ε and answers
YES if dist(x, π(Hk,1)) ≤ ε. Let us recall how to efficiently compute distk(x,S) =
Minz∈π(Hk)||x−z||1 with a linear program. Let y ∈ [0; 1](S×Σ)k and its projection

x ∈ [0; 1](Σ)k . Let us write A.y = b for the equations (1) of section 5.1 and the
equality

∑
u y[u] = 1. Let x = C.y the equations (2) of section 5.1 and let us

assume that all variables are ≥ 0 and ≤ 1.
We want to compute Minz∈π(Hk)||x− z||1 such that z = C.y and A.y = b.
We have to consider the sum of the absolute values of x[u] − z[u], so let

t[u] = |x[u] − z[u]| where t ∈ [0; 1](Σ)k is a new vector. Then t[u] ≥ x[u] − z[u]

and t[u] ≥ −x[u] + z[u]. If e is the vector in [0; 1](Σ)k with all components equal
to 1, we can write: Mint∈R(Σ)k et · t s.t. t ≥ x− C.y ; t ≥ −x+ C.y ; A.y = b.

The Oracle necessary for the separator algorithm takes x, π(Hk,1), ε as inputs
and answers YES if distk(x, π(Hk,1)) computed by the above linear program is
larger than ε and NO otherwise.

Theorem 6. Given two communicating MDPs on the same action set Σ,
π(Hk,1), π(Hk,2) and ε, if dvol(π(Hk,1), π(Hk,2)) ≥ λ we can generate ε-
separating x vectors in polynomial time in the dimension and 1/λ.

Notice that the separator algorithm outputs a separating x, the statistics of the
stationary distribution of a strategy in one of the MDP which is outside of the
polytope of the other MDP. The set of saturating constraints in the linear system
gives some information on the strategies whose statistics are close to x.
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Abstract. We show that the existence of a quantized controller for a
given Discrete Time Linear Hybrid System (DTLHS) is undecidable.
This is a relevant class of controllers since control software always im-
plements a quantized controller. Furthermore, we investigate the rela-
tionship between dense time modelling and discrete time modelling by
showing that any Rectangular Hybrid Automaton (and thus, any Timed
Automaton) can be modelled as a DTLHS.

1 Introduction

Many embedded systems are software based control systems. A software based
control system consists of two main subsystems: the controller and the plant.
Typically, the plant is a physical system consisting, for example, of mechanical
or electrical devices while the controller consists of control software running on
a microcontroller. In an endless loop, each T seconds (sampling time), the con-
troller, after an Analog-to-Digital (AD) conversion (quantization), reads sensor
outputs from the plant and, possibly after a Digital-to-Analog (DA) conversion,
sends commands to plant actuators. The controller selects commands in order
to guarantee that the closed loop system (that is, the system consisting of both
plant and controller) meets given safety and liveness properties, i.e. system level
specifications.

Formal verification of system level specifications for software based control
systems requires modelling both continuous systems (typically, the plant) as
well as discrete systems (the controller). This is typically done using Hybrid
Systems (e.g., see [3,2,11,14,9]).

In [15], we presented a constructive necessary condition and a constructive
sufficient condition for the existence of a (quantized sampling) controller for a
software based control system when the plant is modelled using a Discrete Time
Linear Hybrid System (DTLHS).

From [12] we know that the existence of a sampling controller is undecidable
even for relatively simple linear hybrid automata. Considering that, given a
quantization schema (i.e. number of bits used in AD conversion), the number
of quantized sampling controllers is finite and that when using DTLHSs also
the plant is modelled using a discrete model of time, one may be led to think
that the existence of a quantized sampling controller might be decidable. In this
paper we show that this problem is also undecidable.

A. Roychoudhury and M. D’Souza (Eds.): ICTAC 2012, LNCS 7521, pp. 243–258, 2012.
© Springer-Verlag Berlin Heidelberg 2012



244 F. Mari et al.

Furthermore, we investigate the relationship between dense time modelling
and discrete time modelling by showing that the class of Rectangular Hybrid
Automata (RHA) [13] (and thus, the class of Timed Automata (TA) [3,14]) can
be encoded into the class of DTLHSs.

Our Main Contributions. A DTLHS (e.g., see [5,15] and citations thereof)
is a discrete time hybrid system whose dynamics is defined as a linear predi-
cate, i.e. a boolean combination (without negation) of linear constraints on its
continuous as well as discrete variables. A large class of hybrid systems, includ-
ing mixed-mode analog circuits, can be modelled using DTLHSs. System level
safety as well as liveness specifications may be modelled as sets of states defined
in turn as linear predicates. In our setting, as always in control problems, liveness
constraints define the set of states that any evolution of the closed loop system
should eventually reach (goal states). Our main contributions are the following.

First, we show that the existence of a quantized sampling controller for DTLHSs,
meeting given safety and liveness specifications is undecidable (Section 5). We
prove such a result by showing that any two-counter machine can be coded as
a DTLHS thereby extending to DTLHSs the proof technique in [12].

Despite that, the non-complete algorithm in [15] usually succeeds in control
software synthesis for meaningful hybrid systems. The main ingredient of our
approach in [15] is to reduce the nondeterminism of a finite state abstraction of
a given DTLHS: in Section 6, we show that also finding the “best” abstraction
(in order to maximize the possibilities of finding a controller) involves to solve
an undecidable problem.

Finally, we show that any RHA can be modelled as a DTLHS (Section 7).
Since a TA is also an RHA, this implies that any TA can be modelled as a
DTLHS. Such an embedding sheds light on how, by exploiting availability of
real valued state and input variables, dense time behaviours can be modelled
using discrete time behaviours.

Related Work. TAs [3,14] are a subset of RHAs [13] which, in turn, are a
subset of Linear Hybrid Automata (LHA) [2,11]. Undecidability results of the
control synthesis problem for dense as well as discrete time linear hybrid systems
have been presented in [13,12,19,4]. A more general problem is considered in [7],
namely the discrete time control with unknown sampling rate, that is undecid-
able even for TA. Moreover, we note that none of the above papers addresses
the issue of quantized control. In [15], we presented a non-complete algorithm
for DTLHS quantized sampling control synthesis from formal system level spec-
ifications, without addressing the issue of decidability.

Indeed, to the best of our knowledge, no previously published work has ad-
dressed the issue of decidability of existence of a quantized sampling controller
for DTLHSs.

The relationship between dense time models and discrete time models has
been extensively studied in control engineering (e.g., see [6]) with the goal of
approximating dense time dynamics with discrete time ones. Here we present
an exact representation of RHA as DTLHSs thus showing that, as long as real
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valued variables are available, interesting dense time behaviors can also be exactly
modelled using a discrete time approach.

2 Background

We denote with [n] the initial segment {1, . . . , n} of the natural numbers. We
denote with X = x1, . . . , xn a finite sequence of distinct variables, that we may
regard, when convenient, as a set. Each variable x ranges on a known (bounded
or unbounded) interval Dx either of the reals (continuous variables) or of the
integers (discrete variables). We denote with DX the set

∏
x∈X Dx. If X = ∅

then DX = {ε}, where ε is an arbitrary constant. Boolean variables are discrete
variables ranging on the set B = {0, 1}. If x is a boolean variable, we write
x̄ for its complement. We denote with Xr (resp. Xd, Xb) the sequence of real
(resp. discrete, boolean) variables in X .

A linear expression L(X) over a sequence of variables X is a linear combina-
tion

∑
i aixi of variables in X with rational coefficients. A linear constraint over

X (or simply a constraint) is an expression of the form L(X) �� b where L(X)
is a linear expression over X , �� is one of ≤, ≥, = and b is a rational constant.

Predicates are inductively defined as follows. A constraint C(X) over a se-
quence of variables X is a predicate on X . If A(X) and B(X) are predicates on
X , then (A(X) ∧ B(X)) and (A(X) ∨ B(X)) are predicates on X . Parentheses
may be omitted, assuming usual associativity and precedence rules of logical
operators. A conjunctive predicate is a conjunction of constraints.

Let P (X) be a predicate. A variable x ∈ X is said to be bounded in P if there
exist a, b ∈ Dx such that P (X) implies a ≤ x ≤ b. In such a case, we denote a
with inf(x) and b with sup(x). A predicate P is bounded if all its variables are
bounded. Let a be a rational number and x be a bounded variable. We write
sup(ax) (resp. inf(ax)) for a sup(x) (resp. a inf(x)) if a ≥ 0 and for a inf(x)
(resp. a sup(x)) if a < 0. We write sup(L(X)) for

∑n
i=1 sup(aixi) and inf(L(X))

for
∑n

i=1 inf(aixi).
A valuation over a sequence of variables X is a function v that maps each

variable x ∈ X to a value v(x) in Dx. We also call valuation the sequence of
values X∗ = v(x1), . . . , v(xn). A satisfying assignment to a predicate P over
X is a valuation X∗ such that P (X∗) holds. Two predicates P and Q over
X are equivalent if they have the same set of satisfying assignments. They are
equisatisfiable, if P is satisfiable if and only if Q is satisfiable.

Given a constraint C(X) and a fresh boolean variable y �∈ X , the guarded
constraint y → C(X) (if y then C(X)) denotes the predicate ((y = 0) ∨ C(X)).
Similarly, we use ȳ → C(X) to denote the predicate ((y = 1)∨C(X)). A guarded
predicate is a conjunction of either constraints or guarded constraints. A bounded
guarded predicate can be transformed into a conjunctive predicate, by observing
that a guarded constraint z → (L(X) ≤ b) (resp. z̄ → (L(X) ≤ b)) is equivalent
to the constraint (sup(L(X))−b)z+L(X) ≤ sup(L(X)) (resp. (b−sup(L(X)))z+
L(X) ≤ b). Therefore, the following proposition holds.
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Proposition 1. For each bounded guarded predicate P (X), there exists an equiv-
alent conjunctive predicate Q(X).

3 Labeled Transition Systems

In this section we define the reachability and the control problem for Labeled
Transition Systems (LTSs), by extending to possibly infinite LTSs the definitions
in [18,8] for finite LTSs.

An LTS S is a tuple (S, A, T ) where S is a possibly infinite (even possibly
uncountable) set of states, A is a possibly infinite (even possibly uncountable)
set of actions, and T : S × A × S → B is the transition relation of S. Given a
state s ∈ S and an action a ∈ A, we denote with Adm(S, s) the set of actions
admissible in s, that is Adm(S, s) = {a ∈ A | ∃s′T (s, a, s′)} and with Img(S, s, a)
the set of next states from s via a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}.
S is said to be deterministic if, for all s ∈ S, a ∈ A, |Img(S, s, a)| ≤ 1. We call
self-loop a transition of the form T (s, a, s).

Given two LTSs S1 = (S1, A1, T1) and S2 = (S2, A2, T2), we say that S1 and S2

are isomorphic, notation S1 � S2, if there exist two bijective maps fS : S1 → S2

and fA : A1 → A2 such that for all s ∈ S1, for all a ∈ A1 T1(s, a, s′) holds if and
only if T2(fS(s), fA(a), fS(s′)) holds.

Given two LTSs S1 = (S, A, T1) and S2 = (S, A, T2), we say that S1 refines
S2 (notation S1 � S2) iff T1(s, a, s′) implies T2(s, a, s′) for each state s, s′ ∈ S
and action a ∈ A. The refinement relation is a partial order on LTSs. Informally
speaking, the LTS S1 refines the LTS S2 if the set of transitions of S1 is a subset
of the set of transitions of S2.

A run or path for an LTS S is a sequence π = s0, a0, s1, a1, s2, a2, . . . of states
st and actions at s. t. ∀t ≥ 0 T (st, at, st+1). The length |π| of a finite run is the
number of actions in π. The t-th state element of π is denoted by π(S)(t), and
π(A)(t) denotes the t-th action element of π, that is π(S)(t)=st, and π(A)(t)=at.

Definition 1. A reachability problem is a triple (S, I, G), where S is an LTS
(S, A, T ), and I, G ⊆ S. G is reachable from I if there exists a run π of S such
that π(S)(0) ∈ I and π(S)(t) ∈ G for some t ∈ N.

3.1 LTS Control Problem

A controller for an LTS S is used to restrict the dynamics of S so that all states
in the initial region will reach in one or more steps the goal region. A strong
controller ensures that the closed loop system meets liveness specifications under
a pessimistic view of nondeterminism (worst case distance Js defined below),
whereas a weak controller assumes an optimistic view of nondetermism (best
case distance Jw defined below). In the following, we formalize such concepts by
defining strong and weak solutions to an LTS control problem. In what follows,
let S = (S, A, T ) be an LTS, I, G ⊆ S be, respectively, the initial and goal
regions of S.
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Definition 2. A controller for S is a function K : S×A → B such that ∀s ∈ S,
∀a ∈ A, if K(s, a) then ∃s′ T (s, a, s′). The domain of K is the set dom(K) of
all states for which at least a control action is enabled. Formally, dom(K) =
{s ∈ S | ∃a K(s, a)}.

S(K) denotes the closed loop system, that is the LTS (S, A, T (K)), where
T (K)(s, a, s′) = T (s, a, s′) ∧ K(s, a).

We call a path π fullpath if either it is infinite or its last state π(S)(|π|) has no
successors (i.e. Adm(S, π(S)(|π|)) = ∅). We denote with Path(s, a) the set of
fullpaths starting in state s with action a, i.e. the set of fullpaths π such that
π(S)(0) = s and π(A)(0) = a.

Given a path π in S, we define j(S, π, G) as follows. If there exists n > 0
such that π(S)(n) ∈ G, then j(S, π, G) = min{n | n > 0 ∧ π(S)(n) ∈ G}.
Otherwise, j(S, π, G) = +∞. We require n > 0 since our systems are non-
terminating and each controllable state (including a goal state) must have a
path of positive length to a goal state. Taking sup∅ = +∞ and inf ∅ = +∞,
the worst case distance (pessimistic view) of a state s from the goal region
G is Js(S, G, s) = sup{js(S, G, s, a) | a ∈ Adm(S, s)}, where js(S, G, s, a) =
sup{j(S, G, π) | π ∈ Path(s, a)}. The best case distance (optimistic view) of
a state s from the goal region G is Jw(S, G, s) = sup{jw(S, G, s, a) | a ∈
Adm(S, s)}, where jw(S, G, s, a) = inf{j(S, G, π) | π ∈ Path(s, a)}.
Definition 3. A control problem for S is a triple P = (S, I, G). A strong (resp.
weak) solution to P is a controller K for S, such that I ⊆ dom(K) and for all
s ∈ dom(K), Js(S(K), G, s) (resp. Jw(S(K), G, s)) is finite.

Example 1. Let S1 = (S1, A1, T1) be the LTS in Fig. 1 and let S2 = (S2, A2, T2)
be the LTS in Fig. 2. S1 is the integer interval [−1, 2] and S2 = [−2, 5]. A1 =
A2 = {0, 1} and the transition relations T1 and T2 are defined by all continuous
arrows in the pictures (dotted arrows will be considered later in Example 4). Let
I1 = S1, I2 = S2 and let G = {0}.

There is no strong solution to the control problem (S1, I1, G). Because of the
self-loops of the state 1, we have that both js(S1, G, 1, 0) = +∞ and js(S1, G, 1, 1)
= +∞. On the other hand, the controller K1, defined by K1(s, a) ≡ a = 0, that
enables action 0 in all states, is a weak solution.
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The controller K2, defined by K2(s, a) ≡ ((s = 2 ∨ s = 1) ∧ a = 1) ∨ (s �=
1 ∧ s �= 2 ∧ a = 0) is a the most general optimal strong solution to the control
problem (S2, I2, G).

We end this section, by recalling a well-known result that relates strong and
weak solutions that will be useful in the sequel.

Proposition 2. Let (S, I, G) be a control problem. Then each strong solution
is also a weak solution. If S is deterministic, then each weak solution is also a
strong solution.

4 Discrete Time Linear Hybrid Systems

Discrete Time Linear Hybrid Sytems (DTLHSs) can effectively model linear
algebraic constraints involving both continuous as well as discrete variables.
Many embedded control systems can be modeled as DTLHSs. As an example,
in [15] it is provided a DTLHS model of a buck DC-DC converter, i.e. a mixed-
mode analog circuit that converts the DC input voltage to a desired DC output
voltage. The dynamics of a DTLHS is given in terms of a suitable LTS.

Definition 4. A DTLHS H is a tuple (X, U, Y, N) where:
X = Xr∪Xd is a finite sequence of real (Xr) and discrete (Xd) present state

variables. We denote with X ′ the sequence of next state variables obtained by
decorating with ′ all variables in X.

U = U r ∪Ud is a finite sequence of input variables, that models controllable
inputs.

Y = Y r ∪ Y d is a finite sequence of auxiliary variables. Auxiliary variables
are typically used to model modes (e.g., from switching elements such as diodes)
or uncontrollable inputs (e.g., disturbances).

N(X, U, Y, X ′) is a predicate over X ∪ U ∪ Y ∪ X ′ defining the transition
relation (next state) of the system.
H is bounded if N is a bounded predicate. It is conjunctive if N is a conjunctive
predicate. It is deterministic iff N(x, u, y, x′) ∧ N(x, u, ỹ, x̃′) implies x′ = x̃′.

Definition 5. Let H = (X, U, Y, N) be a DTLHS. The dynamics of H is defined
by the labeled transition system LTS(H) = (DX , DU , N̄) where: N̄ : DX × DU ×
DX → B is a function s.t. N̄(x, u, x′) = ∃ y ∈ DY N(x, u, y, x′). A state x for
H is a state x for LTS(H) and a path for H is a path for LTS(H).

4.1 DTLHS Reachability and Control Problem

Definition 6. Let H = (X, U, Y, N) be a DTLHS and let I and G be linear
predicates over X. The DTLHS reachability problem R = (H, I, G) is defined
as the LTS reachability problem (LTS(H), I, G).

Similarly, the DTLHS control problem (H, I, G) is defined as the LTS control
problem (LTS(H), I, G).
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Example 2. Let T be the positive constant 1/10 (sampling time). We define the
DTLHS H = ({x}, {u}, ∅, N) where x is a continuous variable, u is a boolean
variable, and N(x, u, x′) ≡ [u → x′ = x+(5/4−x)T ]∧ [u → x′ = x+(x− 7/4)T ].
Finally, let I(x) ≡ −1 ≤ x ≤ 5/2 and G(x) ≡ 0 ≤ x ≤ 1/2.

Let us consider the control problem P = (H, I, G). A controller may drive
the system into the goal G, by enabling a suitable action in such a way that
x′ < x when x > 1/2 and x′ > x when x < 0. Indeed, the controller: K(x, u) =
(−1 ≤ x < 0 ∧ u) ∨ (0 ≤ x < 2 ∧ u) ∨ (1 ≤ x ≤ 5/2 ∧ u) is a weak
solution to P . K is not a strong controller, because it allows infinite paths to be
executed. For example, K enables the action u = 0 in the state x = 5/4. Since
N(5/4, 0, 5/4) holds, the closed loop system H(K) may loop forever along the path
5/4, 0, 5/4, 0 . . ..

A strong controller K ′ for H is K ′(x, u) = (−1 ≤ x < 0 ∧ u) ∨ (0 ≤ x <
3/2 ∧ u) ∨ (3/2 ≤ x ≤ 5/2 ∧ u).

4.2 Quantized Control Problem

In order to manage real variables, in classical control theory the concept of
quantization is introduced (e.g., see [10]). Quantization is the process of approx-
imating a continuous interval by a set of integer values. A quantized feedback
control system uses two converters to translate continuous variables into dis-
crete variables (AD converter) and vice versa (DA converter). In the following
we formally define a quantized feedback control problem for DTLHSs.

A quantization function γ : R �→ Z is a non-decreasing function, such that for
any bounded interval I = [a, b] ⊂ R, γ(I) is a bounded integer interval. We will
denote γ(I) as Î = [γ(a), γ(b)]. For ease of notation, we extend quantizations to
integer intervals, by stipulating that in such a case the quantization function is
the identity function.

Definition 7. Let H = (X, U, Y, N) be a DTLHS, and let W = X ∪ U ∪ Y . A
quantization Q for H is a pair (A, Γ ), where:

A is a predicate over W that explicitely bounds each variable in W . For each
w ∈ W Aw = {w∗ | ∃w1, . . . , wnA(w1, . . . , w

∗, . . . , wn)} denotes the admissible
region of w, and AW =

∏
w∈W Aw denotes the admissible region of Γ .

Γ is a set of maps {γw | w ∈ W and γw is a quantization function }.
Let W = [w1, . . . wk] and v = [v1, . . . vk] ∈ AW . We write Γ (v) for the tuple
[γw1(v1), . . . γwk

(vk)].

A control problem admits a quantized solution if control decisions can be made
by just looking at quantized values. This enables a software implementation for
a controller.

Definition 8. Let H = (X, U, Y, N) be a DTLHS, Q = (A, Γ ) be a quantization
for H and P = (H, I, G) be a DTLHS control problem. A Q Quantized Feedback
Control (QFC) strong (resp. weak) solution to P is a strong (resp. weak) solution
K(x, u) to P such that K(x, u)=K̂(Γ (x), Γ (u)) where K̂ : Γ (AX)×Γ (AU )→B.
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Example 3. Let P , K and K ′ be as in Example 2. Let us consider the quantiza-
tions Q1 = (A1, Γ1), where A1 = I, Γ1 = {γx} and γx(x) = �x�. The set Γ1(Ax)
of quantized states is the integer interval [−1, 2]. Let K̂(s, a) = (a = 0 ∧ s �=
0) ∨ (a = 1 ∧ s ∈ {0, 1}). The controller K ′′(x, u) = K̂(Γ1(x), Γ1(u)) is exactly
K, and therefore it is a QFC weak solution to P .

No Q QFC strong solution can exist, because in state 1 either enabling action
1 or action 0 allows infinite loops to be potentially executed in the closed loop
system.

The strong controller K ′ in Example 2 can be obtained as a quantized con-
troller decreasing the quantization step, for example, by considering the quanti-
zation Q2 = (A2, Γ2), where A2 = A1, Γ2 = {γ̃x} and γ̃x(x) = �2x�.

5 Quantized Feedback Control Problem Undecidability

In this section we prove the undecidability of the DTLHS quantized feedback
control problem. Along the same lines of similar undecidability proofs [13,12],
we first show that a two-counter machine M can be encoded as a deterministic
DTLHS HM without controllable inputs in such a way that M halts if and only if
HM reaches a goal region. This immediately implies that DTLHS reachability is
undecidable. Since HM has no controllable inputs, existence of a weak controller
is equivalent to a reachability problem. For the same reason, actions enabled
by any controller for HM do not depend on state variables. As a consequence,
a quantized weak control problem is equivalent to a DTLHS control problem.
Finally, by Proposition 2, weak solutions to deterministic LTS control problems
are also strong solutions. Therefore, since HM is deterministic, the quantized
strong control problem for DTLHS is undecidable, too.

Two-Counter Machines. A two-counter machine [16] M consists of two coun-
ters that store unbounded natural numbers and a finite control that is a finite
sequence of statements 〈1 : stmt1, . . . , n : stmtn〉, where stmt ::= inc i k | dec i k
| beq i k | halt, with i ∈ {0, 1}. Computations start from the statement labeled 1.
The execution of j : inc i k increments the counter i and then jumps to the state-
ment labeled k. Similarly, the execution of j : dec i k decrements the counter i
(leaving it unchanged if it is 0) and then jumps to the statement labeled k. If the
counter i is 0, the execution of j : beq i k causes a jump to the statement labeled
k. Otherwise, the statement labeled j + 1 will be executed. Finally, the execu-
tion stops if a halt statement is executed. The halting problem for two-counter
machine is undecidable [16].

Lemma 1. For any two-counter machine M , there exists a bounded, conjunc-
tive, and deterministic DTLHS HM , and two predicates I and G such that M
halts if and only if G is reachable from I in HM .

Proof. Let M be a two-counter machine and let HM be the DTLHS (X , U , Y ,
N), where Xr = {x0, x1}, Xd = {l, g}, and U = Y = ∅. Since we are dealing
with bounded DTLHSs, we use two real variables x0 and x1 to encode values
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stored in counters. Each natural number m is encoded by the rational number
1/2m. Variables xi are both bounded by the predicate 0 ≤ xi ≤ 1. A discrete
variable l stores the label of the statement currently under execution and it is
bounded by 0 ≤ l ≤ n, where n is the number of statements in the finite control
of M . Finally, the boolean variable g encodes termination of the computation
of M . The transition relation N encodes the execution of the control program.
Let U(X) be the predicate

∧
x∈X x′ = x. A program 〈1 : stmt1, . . . , n : stmtn〉

is encoded by the predicate N =
∧n

j=1�j : stmtj�, where:

�j : dec i k� ≡ (l �= j) ∨ (((xi = 1) ∨ (x′
i = 2xi)) ∧

∧ ((xi �= 1) ∨ (x′
i = 1)) ∧ (l′ = k) ∧ U(x1−i, g))

�j : inc i k� ≡ (l �= j) ∨ ((x′
i = xi/2) ∧ (l′ = k) ∧ U(x1−i, g))

�j : beq i k� ≡ (l �= j) ∨ (((xi �= 1) ∨ (l′ = k)) ∧
∧ ((xi = 1) ∨ (l′ = l + 1)) ∧ U(x1−i, g))

�j : halt� ≡ (l �= j) ∨ ((l′ = j) ∧ (g′ = 1) ∧ U(x0, x1))

We observe that we use negation as syntactic sugar to improve readability. In-
deed, since xi can assume only values of the form 1/2m for some m ∈ N, the
condition xi �= 1 can be replaced by the constraint xi ≤ 1/2. Moreover, since
l is a discrete variable, the condition l �= j can be replaced by the predicate
(l ≤ j − 1) ∨ (l ≥ j + 1).

It is possible to check that N({l, 1/2m, 1/2p, g}, ε, {l′, 1/2m′ , 1/2p′ , g′}) if and only
if after executing the statement labeled l with m and p as counter values, M will
execute the statement labeled l′ with m′ and p′ as counter values. Moreover if
g = 0, g′ will be 1 if and only if the statement labeled l is a halt statement.

Let I be the predicate l = 1 ∧ g = 0 and G be the predicate g = 1. G is
reachable from I in HM if and only if the computation of M terminates.

Finally, we show that N can be written as a conjunctive predicate. Any
predicate P (X) can be written as an equivalent DNF

∨q
i=1

∧mi

j=1 Cij(X), where
Cij(X) are constraints. By introducing q fresh boolean auxiliary variables z1,
. . . , zq this is equisatisfiable to

∧q
i=1(zi →

∧mi

j=1 Cij(X)) ∧ ∑q
i=1 zi ≥ 1, which

in turn is equivalent to
∧q

i=1

∧mi

j=1(zi → Cij(X)) ∧ ∑q
i=1 zi ≥ 1. Since N is

bounded, by Proposition 1 this can be transformed into a conjunctive predicate.
For example we have:

�j : halt� ≡ (zj,1 → (l ≥ j + 1)) ∧ (zj,2 → (l ≤ j − 1)) ∧ (zj,3 → (l′ = j))∧
∧ (zj,3 → (g′ = 1)) ∧ (zj,3 → (x′

0 = x0)) ∧ (zj,3 → (x′
1 = x1)) ∧ ∑3

i=1 zj,i ≥ 1

An immediate consequence of Lemma 1 is the undecidability of the DTLHS
reachability problem.

Theorem 1. The reachability problem for bounded and conjunctive DTLHSs is
undecidable.

Theorem 2. Existence of strong and weak solutions to a control problem for a
bounded and conjunctive DTLHS is undecidable.
Proof. For any two-counter machine M , the DTLHS HM has no controllable
actions. Let K be the controller that enables all actions, i.e. such that ∀x ∈ DX
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K(x, ε) holds. K is a weak solution to the control problem (HM , I, G) if and
only if G is reachable from I (observe that states in G are controlled by K).
Moreover, since the transition relation of HM is deterministic, by Proposition 2,
K is a weak solution to (HM , I, G) if and only if it is a strong solution.

Theorem 3. Existence of QFC strong and weak solutions to a DTLHS control
problem is undecidable.
Proof. The controller K considered in the proof of Theorem 2 is a quantized
controller. Indeed, for any quantization Q = (A, Γ ), let K̂ be defined by ∀s ∈
Γ (AX) K̂(s, ε). We have that K(x, ε) = K̂(Γ (x), ε).

6 Abstraction Based Control Synthesis

A typical approach to the automatic synthesis of controllers consists of building
a suitable finite state abstraction Ĥ of a hybrid system H, computing an abstrac-
tion Î (resp. Ĝ) of the initial (resp. goal) region I (resp. G) so that any solution
to the LTS control problem (Ĥ, Î, Ĝ) is a finite representation of a solution to
(H, I, G). For example, this can be done by giving conditions ensuring that the
abstract system satisfies some equivalence relation with respect to the concrete
system (e.g. see [17] or [1]).

In our approach, the abstraction induced by a quantization is a design con-
straint rather than a methodological tool, since it depends on the number of bits
used by AD/DA conversions. In [15], we give a constructive sufficient condition
ensuring that the controller computed for Ĥ is indeed a quantized controller
for H. Such a condition stems from the notion of control abstraction. Control
abstractions form a family of abstractions induced by a given quantization.

In this section, we show that finding the “best” control abstraction (in order to
maximize the possibilities of finding a solution to the original control problem)
is also undecidable.

We start by briefly summarizing some definitions and results of [15].

Definition 9. Let H = (X, U, Y, N) be a DTLHS and Q = (A, Γ ) be a quanti-
zation for H.

An action u ∈ AU is A-admissible in x ∈ AX if for all x′, (∃y ∈ AY :
N(x, u, y, x′)) implies x′ ∈ AX .

An action a ∈ Γ (AU ) is Q-admissible in s ∈ Γ (AX) if for all x ∈ Γ−1(s),
u ∈ Γ−1(a), u is A-admissible for x in H.

The Q-abstraction of H is the LTS Ĥ = (S, A, T ) such that Γ (AX) = S,
Γ (AU ) = A, and for all s, s′ ∈ S, a ∈ A we have T (s, a, s′) iff there exists
x ∈ Γ−1(s), x′ ∈ Γ−1(s′), u ∈ Γ−1(a), y ∈ Dy such that N(x, u, y, x′) and a is
Q-admissible in s.

The Q abstraction could be a highly non-deterministic LTS, thus making prob-
lematic the existence of a strong solution to the (abstract) control problem. In
particular, for small values of the sampling time, the Q-abstraction may contain
a large number of self-loops.
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Example 4. Let H be the DTLHS of Example 2, and let Q1 = (A1, Γ1) and
Q2 = (A2, Γ2) be quantizations in Example 3. Then, the Q1-abstraction of H
is the LTS S′

1, obtained from the LTS S1 in Example 1, by adding all dotted
self-loops in Fig. 1. The Q2-abstraction of H is the LTS S′

2, obtained from the
LTS S2 in Example 1, by adding all dotted self-loops in Fig. 2.

Let I1, I2, and G as in Example 1. Because of self-loop nondeterminism, no
strong solution exists for control problems (S′

1, I1, G) and (S′
2, I2, G).

On the other hand, if by repeatedly performing an action a in an abstract state
s, it is guaranteed that the system will leave the region represented by s after a
finite number of steps, a self–loop T (s, a, s) can be eliminated and the action a
can be enabled by a strong controller in state s.

Definition 10. Let H = (X, U, Y, N) be a DTLHS, and let Ĥ = (S, A, T ) be its
Q-abstraction.

A self–loop T (s, a, s) is non-eliminable if there exists at least an infinite run
π = x0u0x1u1x2 . . . in H such that ∀t ∈ N xt ∈ Γ−1(ŝ) and at ∈ Γ−1(â).

Otherwise, a self-loop T (s, a, s) not satisfying the above property is said to be
an eliminable self loop.

Definition 11. Given the Q-abstraction Ĥ of H, we call Q-control abstraction
any refinement C � Ĥ that omits some eliminable self–loops.

The following theorem [15] states that it is correct to consider control abstrac-
tions when looking for a QFC strong solution to a DTLHS control problem.

Theorem 4. Let H = (X, U, Y, N) be a DTLHS, Q = (A, Γ ) be a quantizantion
and let the LTS Ĥ be a Q control abstraction of H. If I ⊆ Γ−1(Î) and G ⊇
Γ−1(Ĝ), then a strong solution K̂ to the control problem (Ĥ, Î, Ĝ) is a quantized
solution to (H, I, G).

Since self–loop nondeterminism is an obstruction in finding a strong solution to
an LTS control problem, and the set of control abstractions is a finite lattice
with respect to the refinement relation �, it would be convenient considering
the minimum control abstraction when looking for a quantized strong solution
to a DTLHS control problem.

Theorem 5. Finding the minimum control abstraction is undecidable.
Proof. We will show that it is undecidable to state if a self–loop is non-eliminable.

Let M be a two-counter machine. We encode M in a DTLHS HM = (X , U ,
Y , N), where Xr = {x0, x1, l}, Xd = {g}, and U = Y = ∅. N = (

∨n
j=1 l =

j) ∧ (
∨n

j=1 l′ = j) ∧∧n
j=1�j : stmtj�, where �j : stmtj� is defined as in the proof

of Lemma 1.
Let Q = (A, Γ ) be the quantization defined as follows: Ax0 = Ax1 = [0, 1],

Al = [1, n], Ag = B = {0, 1}, AU = {0}, γx0(x) = γx1(x) = γl(x) = 1. Note that
we have only two abstract states: 〈x̂0, x̂1, l̂, g〉 = 〈1, 1, 1, 0〉 and 〈x̂0, x̂1, l̂, g〉 =
〈1, 1, 1, 1〉. Then, the self–loop (〈1, 1, 1, 0〉, 0, 〈1, 1, 1, 0〉) is non-eliminable iff there
exists an infinite run on M . Being the latter an undecidable problem, we cannot
decide if a self–loop is eliminable or non-eliminable.
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Example 5. Let us consider again the DTLHS H, and the quantizations Q1

and Q2 in Example 4. The LTS S1 (resp. S2) in Example 1 is the minimal Q1

(resp. Q2) control abstractions of H, where all eliminable self-loops have been
eliminated.

Self loops T (1, 0, 1) and T (1, 1, 1) in S1 are not eliminable because of the
infinite paths 5/4, 0, 5/4, 0, 5/4 . . . and 7/4, 1, 7/4, 1, 7/4 . . .. The same concrete paths
make abstract self-loops T (2, 0, 2) and T (3, 1, 3) not eliminable in S2.

7 Dense Time Rectangular Hybrid Automata as DTLHSs

In this section we show that DTLHSs are expressive enough to faithfully encode
a relevant class of dense time hybrid systems, namely Rectangular Hybrid Au-
tomata (RHA) [13], a proper superclass of Timed Automata [3]. More precisely,
we show that for every RHA A there exists a DTLHS HA that has the same
dynamics, i.e. such that LTS(HA) � LTS(A) (Theorem 6). As a byproduct of
this encoding, we obtain alternative proofs of Theorems 1 and 2.

Rectangular Hybrid Automata. We define RHA following the presentation
in [13]. Given a positive n > 0, a subset of R

n is called a region. A closed
and bounded region is called a compact. A region R ⊆ R

n is rectangular if it
is a cartesian product of (possibly unbounded) intervals (finite endpoints are
rationals). We write Ri for the projection of R on the i-th coordinate, so that
R =

∏
i∈[n] Ri. The set of rectangular regions in R

n is denoted by Rn.
An n-dimensional RHA A consists of a finite directed multigraph (V, E), a

finite observation alphabet Σ, three vertex labeling functions init : V → Rn,
inv : V → Rn, and flow : V → Rn, and four edge labeling functions pre : E →
Rn, post : E → Rn, jump : E → P([n]), and obs : E → Σ. The set V of vertices
is the set of control modes, and the set E of edges is the set of control switches.

A variable xi is bounded if for every control mode v, the region inv(v)i is a
bounded interval. A variable xi is monotone if for every control mode v, either
flow(v)i ⊂ R<0 or flow(v)i ⊂ R>0. A variable xi is closed if for every con-
trol mode and every control switch e, the intervals inv(v)i, flow(v)i, init(v)i,
pre(e)i, and post(e)i are closed intervals. A rectangular automata is bounded
(resp. monotone, closed) if all its variables are bounded (resp. monotone, closed).

The rectangular automaton A defines a labeled transition system LTS(A) =
(S, A, T ), where:

States: The set of states S is V × R
n. Each subset Z ⊆ S is called a zone of

A. A state (v, x) is an initial state of A if x ∈ init(v). The initial zone of A,
denoted by Init(A), is the set of all initial states of A.

Actions: The set of actions A is Σ ∪ R
+. Each transition labeled with a ∈ Σ

corresponds to a jump step, whose observation is a. Each transition labeled
with t ∈ R

+ corresponds to a flow step, whose duration is t ≥ 0.
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Transition Relation: The transition relation T is defined by jump and flow
transitions as follows. For each edge e = (v, w) of A, T e((v, x), a, (w, y))
holds iff x ∈ pre(e), y ∈ post(e), for every i �∈ jump(e) we have xi = yi, and
a = obs(e). For all t ∈ R

+, T flow((v, x), t, (v, y)) holds iff either t = 0 and
x = y or t > 0 and (y − x)/t ∈ flow(v). Finally, the transition relation T of
A is
⋃

e∈E T e ∪ T flow.

We observe that, thanks to convexity of rectangular regions, we have that a flow
transition T flow((v, x), t, (v, y)) can be performed if and only if there exists a
smooth function f : [0, t] → inv(v) with first derivative f ′ such that f(0) = x,
f(t) = y, and for all s ∈ (0, t) f ′(s) ∈ flow(v). In the following, for the sake of
readability, we consider the case Σ = E and obs(e) = e.

Theorem 6. For any closed RHA A there exists a DTLHS HA such that
LTS(A) � LTS(HA).

Proof. Let A be a closed n dimensional RHA. First, we define a DTLHS HA
that encodes A. Let V be the set of m vertices, and E be the set of l edges of
A. Let | · |V : V → [m] and | · |E : E → [l] be two encoding functions of the set of
vertices and the set of edges into initial segments of natural numbers. Since both
vertex and edge labeling functions define rectangular regions, they can be easily
represented as conjunctive predicates. Let inv(v) =

∏
i∈[n][αv,i, αv,i], init(v) =∏

i∈[n][βv,i
, βv,i], pre(e) =

∏
i∈[n][βv,i

, βv,i], and post(e) =
∏

i∈[n][αe,i, αe,i]. We
define the following predicates:

invv(x) ≡ ∧
i∈[n] αv,i ≤ xi ≤ αv,i initv(x) ≡ ∧

i∈[n] βv,i
≤ xi ≤ βv,i

pree(x) ≡ ∧
i∈[n] αe,i ≤ xi ≤ αe,i poste(x) ≡ ∧

i∈[n] βe,i
≤ x′

i ≤ βe,i

The DTLHS HA = (X, U, Y, N) is defined as follows:

State Variables: The set of present state variables is X=Xr ∪ Xd, where Xr

= {x1, . . . , xn} and Xd = {q}. Each xi encodes one continuous variable of A,
and q encodes the set of vertices V of A. Continuous variables are bounded
by invv (see the definition of N below), and q ranges over [m].

Input Variables: The set of input variable is U=U r∪Ud, where U r = {t} and
Ud = {r}. The variable t ≥ 0 encodes flow transition durations. The variable
r ∈ {0, . . . , l} encodes the edge taken in a jump transition. The variable r
assumes the value 0 when a flow transition is taken.

Transition Relation: The transition relation predicate N is defined as fol-
lows. Let flow(v) =

∏
i∈[n][γv,i

, γe,i]. For each vertex v ∈ V , we define the
predicate flowv as follows:

flowv(q, x, t, q′, x′) ≡ invv(x′) ∧ q′ = q ∧ ∧
i∈[n] xi + γ

v,i
t ≤ x′

i ≤ xi + γv,it

For each edge e = (v, w) ∈ E, we define the predicate jumpe as follows:

jumpe(q, x, q′, x′) ≡ q = |v|V ∧ q′ = |w|V ∧ pree(x) ∧ poste(x′)
∧ ∧

i�∈jump(e) xi = x′
i
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Finally, we define the transition relation N as follows:

N(x, q, t, x′, q′) ≡ ((r �= 0) ∨ (
∧

v∈V (q �= |v|V ) ∨ flowv(q, x, t, q′, x′)))
∧ ∧

e∈E((r �= |e|E) ∨ jumpe(q, x, q′, x′))

Now we show that LTS(A) = (S, A, T ) is isomorphic to LTS(HA) = (DX ,DU , N).
Let us consider the map fS : V ×R

n → [m]×R
n defined by fS(v, x) = (|v|V , x)

and the map fA : Σ ∪ R → {0, . . . , l}×R defined by fA(a) = (0, a) if a ∈ R and
fA(a) = (|a|E , 0) if a ∈ E. We have:

Flow Transitions: For all v ∈ V , t ≥ 0 we have T flow((v, x), t, (w, y)) if and
only if v = w and either t = 0 and x = y or t > 0 and (y − x)/t ∈ flow(v),
i.e. for all i ∈ [n] (yi − xi)/t ∈ flow(v)i. In turn, this is equivalent to
flowv(|v|V , x, t, |w|V , y) (observe that t = 0 implies x = x′), and hence if and
only if N((|v|V , x), (0, t), (|w|V , y)).

Jump Transitions: For all e = (v, w) ∈ E we have T e((v, x), t, (v, y)) if and
only if x ∈ pre(e), y ∈ post(e), and for all i ∈ [n] such that i �∈ jump(e),
xi = yi. Again, this is equivalent to jumpe(|v|V , x, |w|V , y) and hence if and
only if N((|v|V , x), (|e|E , 0), (|w|V , y)).

Corollary 1. Let A be a closed RHA and let HA be the DTLHS that encodes
A. If A is bounded, then HA is bounded and conjunctive.

Proof. If the RHA A is monotone and bounded, then the DTLHS HA is bounded.
Each continuous variable xi is bounded by

∧
v∈V invv(xi). If inv(v)i is bounded,

then invv(xi) is bounded.
If A is monotone and bounded, for every mode v there is an upper bound T

to flow transition durations. Therefore, the predicate N implies the constraint
0 ≤ t ≤ T .

If A is bounded but not monotone, a bit more involved definition of HA
is required. Without going into details, in such a case the definition of HA
stems from the fact that a flow transition T flow((v, x), t, (v, y)) is equivalent to
a sequence of flow transitions T flow((v, x1), t1, (v, x2)), T flow((v, x2), t2, (v, x3)),
. . . , T flow((v, xn), tn, (v, xn+1)), with x1 = x, xn+1 = y, and

∑n
i=1 ti = t.

If HA is bounded, then N can be transformed into a conjunctive predicate as
discussed in the proof of Lemma 1.

Undecidability Results Revisited

The reachability problem for RHAs is a pair (A, Z) where A is an RHA and Z is a
zone of A and it is defined as the LTS reachability problem (LTS(A), init(A), Z).

The reachability problem is undecidable for a restricted class of RHA, namely
Simple Rectangular Automata (SRA) [13]. Since SRA are bounded rectangular
automata, Corollary 1 gives immediately an alternative proof of Theorem 1.

Given an SRA S, the DTLHS HS obtained by applying the encoding in the
proof of Theorem 6 has a unique initial state and it is deterministic. In such a
case, finding weak and strong solutions can be easily reduced to a reachability
problem, thus obtaining an alternative proof of Theorem 2. On the other hand,
a proof for Theorem 3 does not follow immediately.
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8 Conclusions
We have shown that, for DTLHSs, existence of a quantized sampling controller
meeting given (safety and liveness) system level specifications is undecidable.
The relevance of such a problem stems from the fact that the control software
implementing the controller in a software based control system always yields a
quantized sampling controller.

Furthermore, we have shown that Rectangular Automata (RA), and thus
Timed Automata (TA), can be modelled as DTLHSs. This shows how, by exploit-
ing availability of real valued variables, dense time behaviors can be modelled
using discrete time behaviors.

Investigating interesting classes of (discrete time) hybrid systems for which
quantized sampling control is decidable appears to be an interesting future work.

Acknowledgments. We are grateful to our anonymous referees for their helpful
comments. Our work has been partially supported by: MIUR project DM24283
(TRAMP) and by the EC FP7 project GA218815 (ULISSE).

References

1. Agrawal, M., Thiagarajan, P.S.: The Discrete Time Behavior of Lazy Linear Hybrid
Automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69.
Springer, Heidelberg (2005)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of Hybrid Systems.
Theoretical Computer Science 138(1), 3–34 (1995)

3. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

4. Asarin, E., Bouajjani, A.: Perturbed Turing Machines and Hybrid Systems. In:
LICS, pp. 269–278 (2001)

5. Bemporad, A., Morari, M.: Verification of Hybrid Systems via Mathematical Pro-
gramming. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 31–45. Springer, Heidelberg (1999)

6. Brogan, W.L.: Modern Control Theory, 3rd edn. Prentice-Hall, Inc., Upper Saddle
River (1991)

7. Cassez, F., Henzinger, T.A., Raskin, J.-F.: A Comparison of Control Problems for
Timed and Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

8. Cimatti, A., Roveri, M., Traverso, P.: Strong planning in non-deterministic domains
via Model Checking. In: AIPS, pp. 36–43 (1998)

9. Frehse, G.: Phaver: algorithmic verification of Hybrid Systems past Hytech. Int.
J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)

10. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE
Trans. on Automatic Control 50(11), 1698–1711 (2005)

11. Henzinger, T., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for Hybrid Sys-
tems. STTT 1(1), 110–122 (1997)

12. Henzinger, T.A., Kopke, P.W.: Discrete-time Control for Rectangular Hybrid Au-
tomata. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997.
LNCS, vol. 1256, pp. 582–593. Springer, Heidelberg (1997)



258 F. Mari et al.

13. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about Hy-
brid Automata? J. of Computer and System Sciences 57(1), 94–124 (1998)

14. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal: Status & Developments. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 456–459. Springer, Heidelberg (1997)

15. Mari, F., Melatti, I., Salvo, I., Tronci, E.: Synthesis of Quantized Feedback Con-
trol Software for Discrete Time Linear Hybrid Systems. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 180–195. Springer, Heidelberg
(2010)

16. Minsky, M.L.: Recursive unsolvability of Post’s problem of "tag" and other topics
in theory of Turing Machines. The Annals of Mathematics 74(3), 437–455 (1961)

17. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

18. Tronci, E.: Automatic synthesis of controllers from formal specifications. In:
ICFEM, pp. 134–143. IEEE (1998)

19. Vidal, R., Schaffert, S., Shakernia, O., Lygeros, J., Sastry, S.: Decidable and semi-
decidable controller synthesis for classes of Discrete Time Hybrid Systems. In:
CDC, pp. 1243–1248. IEEE Computer Society (2001)



Author Index

Akshay, S. 1
Aoki, Toshiaki 183

Beneš, Nikola 120
Bihary, Sidharth 159

Caillaud, Benoît 213
Cranen, Sjoerd 198

Dai, Liyun 61
De Rougemont, Michel 228
de Ruiter, Joeri 168
D’Souza, Deepak 16

Fokkink, Wan 168
Foster, Simon 46

Genest, Blaise 1

Hélouët, Loïc 1
Hidalgo-Herrero, Mercedes 105

Keiren, Jeroen J.A. 198
Křetínský, Jan 120

Laos, Jose Alfonso Corso 159
Lodha, Sachin 151

Mari, Federico 243
Matteplackel, Raj Mohan 16
Melatti, Igor 243

Nikolić, Ðurica 74

Ortega-Mallén, Yolanda 105

Patwardhan, Nikhil 151
Peranandam, P. 164
Peyronnet, Sylvain 228

Raclet, Jean-Baptiste 213
Ramesh, S. 164
Raviram, S. 164
Riesco, Adrián 90, 136
Rodríguez-Hortalá, Juan 136
Roy, Ashim 151
Roy, Suman 159
Rypáček, Ondřej 46

Salvo, Ivano 243
Samborski-Forlese, Julian 30
Sánchez, César 30
Sánchez-Gil, Lidia 105
Satpathy, M. 164
Spoto, Fausto 74
Strozecki, Yann 228
Struth, Georg 46
Sundaram, Sharada 151

Thomas, Dilys 151
Tronci, Enrico 243

Willemse, Tim A.C. 198
Williams, David M. 168

Xia, Bican 61

Yang, Shaofa 1
Yatake, Kenro 183


	Title
	Preface
	Organization
	Table of Contents
	Symbolically Bounding the Drift in Time-Constrained MSC Graphs
	Introduction
	Preliminaries
	Drift-Boundedness
	The Main Results
	Full TC-MSC Graphs

	Emptiness for K-Drift-Bounded TC-MSC Graphs
	Checking K-Drift-Boundedness of TC-MSC Graphs
	Conclusion
	References

	A Compositional Hierarchical Monitoring Automaton Construction for LTL
	Introduction
	Preliminaries
	Hierarchical Buchi Automata
	Monitoring HBA for LTL
	Monitoring Automaton Construction for LTL
	Optimality of Our Constructions
	Conclusion
	References

	How to Translate Efficiently Extensions of Temporal Logics into Alternating Automata
	Introduction
	Preliminaries
	Specular Automata Pairs
	Alternating Frames
	Automata and Games
	Specular Pairs and Complementation

	Temporal Logic to Specular Automata
	Conclusions
	References

	Correctness of Object Oriented Models by Extended Type Inference
	Introduction
	Agda Preliminaries
	Overview of the Encoding
	Class Graphs in Agda
	A Class Graph Example
	Object Graphs in Agda
	Populating Correct Object Graphs
	Type Checking Bidirectionality Constraints
	A Bidirectionality Example
	Related Work
	Conclusion and Future Work
	References

	Non-termination Sets of Simple Linear Loops
	Introduction
	Preliminaries
	Two-Variable Case
	More Variables
	Conclusion
	References

	Definite Expression Aliasing Analysis for Java Bytecode
	Introduction
	Operational Semantics
	Alias Expressions
	Definite Expression Aliasing Analysis
	The Abstract Constraint Graph

	Experiments
	Conclusion
	References

	Using Semantics Specified in Maude to Generate Test Cases
	Introduction
	Related Work
	Preliminaries
	Maude
	Narrowing

	Using Semantics to Generate Test Cases
	Maude Prototype
	Code Coverage
	Property-Driven Test-Case Generation
	Implementation Notes

	Concluding Remarks and Ongoing Work
	References

	A Locally Nameless Representation for a Natural Semantics for Lazy Evaluation
	Motivation
	The Locally Nameless Representation
	Locally Nameless Syntax
	Variable Opening and Variable Closing
	Local Closure, Free Variables and Substitution

	Natural Semantics for Lazy -Calculus
	Locally Nameless Heaps
	Locally Nameless Semantics

	Related Work
	Conclusions
	Future Work
	References

	Modal Process Rewrite Systems
	Introduction
	Refinement Problems
	Modal Transition Systems
	Modal Process Rewrite Systems

	Undecidability Results
	Decidability Results
	Visibly PDA
	Birefinement

	Conclusions
	References

	S-Narrowing for Constructor Systems
	Introduction
	Prelimininaries and Formal Setting
	Basic Syntax
	A Proof Calculus for Constructor Systems with Extra Variables

	S-Narrowing and S-Unification
	S-Unification
	S-Narrowing

	Maude Prototype and Sample Application
	Implementation Notes
	Prototype
	The Dolev-Yao Intruder Model Using S-Narrowing

	Concluding Remarks and Ongoing Work
	References

	Data Privacy Using MASKETEERTM
	Introduction
	Masking Approaches
	Masking Challenges
	Information Retrieval from Masked Data
	Masking Best Practices
	Conclusion
	References

	A Conformance Checker Tool CSPConCheck
	Introduction
	Description of CSPConCheck Tool
	Functionalities of CSPConCheck
	Experimental Results
	References

	SmartTestGen+: A Test Suite Booster for Enhanced Structural Coverage
	Introduction
	SmartTestGen+ Architecture
	Experimental Results
	Summary
	References

	Model Checking under Fairness in ProB and Its Application to Fair Exchange Protocols
	Introduction
	CSP
	Model Checking under Fairness Constraints in ProB
	An Intruder Model in CSP for Verifying Liveness
	Roscoe's Intruder Model for Verifying Safety
	Cederquist-Dashti Resilient Channel Assumption
	An Intruder Model without Resilient Channels
	An Intruder Model with Resilient Channels
	Conclusion

	Related Work
	Discussion and Future Work
	References

	Model Checking of OSEK/VDX OS Design Model Based on Environment Modeling
	Introduction
	RTOS Model and Its Environment
	Environment Generator
	Verification of RTOS Model
	Approach
	Environment Models
	Verification Results

	Discussion
	Effectiveness
	Verification Coverage

	Related Work
	Conclusion
	References

	A Cure for Stuttering Parity Games
	Introduction
	Preliminaries
	Governed Stuttering Bisimulation
	Properties of Governed Stuttering Bisimulation
	Governed Stuttering Bisimilarity is an Equivalence
	Quotienting
	Governed Stuttering Bisimilarity Refines Winner Equivalence
	Decidability

	Experiments
	Test Sets
	Measurements: Size and Time
	Discussion

	Related Work
	Concluding Remarks
	References

	Ensuring Reachability by Design
	Introduction
	Modeling with Marked Modal Specifications
	Background on Automata
	Marked Modal Specifications

	Refinement of Marked Modal Specifications
	Conjunction of Marked Modal Specification
	Product of Marked Modal Specifications
	Pessimistic Composition of Marked Modal Specifications
	Optimistic Composition of Marked Modal Specifications

	Related Works and Conclusion
	References

	Approximate Verification and Enumeration Problems
	Introduction
	Enumeration of Monomials and Separation of Probabilistic Automata
	Equivalence Testing
	Producing All Counter-Examples

	Separation of Two Polytopes
	Hardness and Relation between Distances
	Sampling the Difference

	Approximate Separation of Regular Languages
	Statistical Embeddings on Words
	Construction and Separation of the Statistical Polytopes

	Approximate Separation of MDPs
	Statistical Analysis of MDPs
	Construction and Separation of the Statistical Polytopes

	References

	Undecidability of Quantized State Feedback Control for Discrete Time Linear Hybrid Systems
	Introduction
	Background
	Labeled Transition Systems
	LTS Control Problem

	Discrete Time Linear Hybrid Systems
	DTLHS Reachability and Control Problem
	Quantized Control Problem

	Quantized Feedback Control Problem Undecidability
	Abstraction Based Control Synthesis
	Dense Time Rectangular Hybrid Automata as DTLHSs
	Conclusions
	References

	Author Index



