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Abstract. Multi-dimensional mean-payoff and energy games provide the math-
ematical foundation for the quantitative study of reactive systems, and play a
central role in the emerging quantitative theory of verification and synthesis. In
this work, we study the strategy synthesis problem for games with such multi-
dimensional objectives along with a parity condition, a canonical way to express
ω-regular conditions. While in general, the winning strategies in such games may
require infinite memory, for synthesis the most relevant problem is the construc-
tion of a finite-memory winning strategy (if one exists). Our main contributions
are as follows. First, we show a tight exponential bound (matching upper and
lower bounds) on the memory required for finite-memory winning strategies in
both multi-dimensional mean-payoff and energy games along with parity objec-
tives. This significantly improves the triple exponential upper bound for multi
energy games (without parity) that could be derived from results in literature for
games on VASS (vector addition systems with states). Second, we present an op-
timal symbolic and incremental algorithm to compute a finite-memory winning
strategy (if one exists) in such games. Finally, we give a complete characteriza-
tion of when finite memory of strategies can be traded off for randomness. In par-
ticular, we show that for one-dimension mean-payoff parity games, randomized
memoryless strategies are as powerful as their pure finite-memory counterparts.

1 Introduction

Two-player games on graphs provide the mathematical foundation to study many im-
portant problems in computer science. Game-theoretic formulations have especially
proved useful for synthesis [18,33,31], verification [2], refinement [29], and compat-
ibility checking [19] of reactive systems, as well as in analysis of emptiness of au-
tomata [35].

Games played on graphs are repeated games that proceed for an infinite number of
rounds. The state space of the graph is partitioned into player 1 states and player 2
states (player 2 is adversary to player 1). The game starts at an initial state, and if the
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current state is a player 1 (resp. player 2) state, then player 1 (resp. player 2) chooses
an outgoing edge. This choice is made according to a strategy of the player: given the
sequence of visited states, a pure (resp. randomized) strategy chooses an outgoing edge
(resp. probability distribution over outgoing edges). This process of choosing edges is
repeated forever, and gives rise to an outcome of the game, called a play, that consists
of the infinite sequence of states that are visited.

Traditionally, games on graphs have been studied with Boolean objectives such as
reachability, liveness, ω-regular conditions formalized as the canonical parity objec-
tives, strong fairness objectives, etc [28,24,25,38,35,27]. While games with quantitative
objectives have been studied in the game theory literature [23,39,30], their application
in synthesis and other problems in verification is quite recent. The two classical quanti-
tative objectives that are most relevant in verification and synthesis are the mean-payoff
and energy objectives. In games on graphs with quantitative objectives, the game graph
is equipped with a weight function that assigns integer-valued weights to every edge.
For mean-payoff objectives, the goal of player 1 is to ensure that the long-run average
of the weights is above a threshold. For energy objectives, the goal of player 1 is to en-
sure that the sum of the weights stays above 0 at all times. In applications of verification
and synthesis, the quantitative objectives that typically arise are (i) multi-dimensional
quantitative objectives (i.e., conjunction of several quantitative objectives), e.g., to ex-
press properties like the average response time between a grant and a request is below
a given threshold ν1, and the average number of unnecessary grants is below threshold
ν2; and (ii) conjunction of quantitative objectives with a Boolean objective, such as a
mean-payoff parity objective that can express properties like the average response time
is below a threshold along with satisfying a liveness property. In summary, the quanti-
tative objectives can express properties related to resource requirements, performance,
and robustness; multiple objectives can express the different, potentially dependent or
conflicting objectives; and the Boolean objective specifies functional properties such as
liveness or fairness. The game theoretic framework of multi-dimensional quantitative
games and games with conjunction of quantitative and Boolean objectives has recently
been shown to have many applications in verification and synthesis, such as synthesiz-
ing systems with quality guarantee [4], synthesizing robust systems [5], performance
aware synthesis of concurrent data structure [10], analyzing permissivity in games and
synthesis [8], simulation between quantitative automata [14], generalizing Boolean sim-
ulation to quantitative simulation distance [11], etc. Moreover, multi-dimensional en-
ergy games are equivalent to a decidable class of games on VASS (vector addition
systems with states) that are the model to verify games over multi-counter systems and
Petri nets [9].

In literature, there are many recent works on the theoretical analysis of
multi-dimensional quantitative games, such as, mean-payoff parity games [16,8],
energy-parity games [13], multi-dimensional energy games [15], and multi-dimensional
mean-payoff games [15,37]. Most of these works focus on establishing the computa-
tional complexity of the problem of deciding if player 1 has a winning strategy. From
the perspective of synthesis and other related problems in verification, the most impor-
tant problem is to obtain a witness finite-memory winning strategy (if one exists). The
winning strategy in the game corresponds to the desired controller for (or implemen-
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tation of) the system in synthesis, and for implementability a finite-memory strategy
is essential. In this work we consider the problem of finite-memory strategy synthesis
in multi-dimensional quantitative games in conjunction with parity objectives, and the
problem of existence of memory-efficient randomized strategies for such games. These
are the core and foundational problems in the emerging theory of quantitative verifica-
tion and synthesis.

Our Contributions. In this work, we study for the first time multi-dimensional energy
and mean-payoff objectives in conjunction with parity objectives. Conjunction of par-
ity objectives with multi-dimensional quantitative objectives has not been considered
before. Since we consider the synthesis of finite-memory strategies, it follows from
the results of [15] that both the problems (multi-dimensional energy with parity and
multi-dimensional mean-payoff with parity) are equivalent. Our main results for finite-
memory strategy synthesis for multi-dimensional energy parity games are as follows. (i)
Optimal memory bounds. We first show that memory of exponential size is sufficient
in multi-dimensional energy parity games. Our result is a significant improvement over
the result that can be obtained naively from the results known in literature that yields a
triple exponential bound, even in the case of multi-dimensional energy games without
parity. Second, we show a matching lower bound by presenting a family of game graphs
where exponential memory is necessary in multi-dimensional energy games (without
parity), even when all the transition weights belong to {−1, 0,+1}. Thus we establish
optimal memory bounds for the finite-memory strategy synthesis problem. (ii) Sym-
bolic and incremental algorithm. We present a symbolic algorithm (in the sense of
[21], i.e., using a compact antichain representation of sets by their minimal elements)
to compute a finite-memory winning strategy, if one exists, for multi-dimensional en-
ergy parity games. Our algorithm is parameterized by the range of energy levels to
consider during its execution. So, we can use it in an incremental approach: first, we
search for finite-memory winning strategies with a small range, and increment the range
only when necessary. We also establish a bound on the maximal range to consider
which ensures completeness of the incremental approach. In the worst case the algo-
rithm requires exponential time. Since exponential size memory is required (and also
the decision problem is coNP-complete [15]), the worst case exponential bound can be
considered as optimal. Moreover, as our algorithm is symbolic and incremental, in most
relevant problems in practice, it is expected to be efficient. We also consider when the
(pure) finite-memory strategies can be traded off for conceptually much simpler ran-
domized strategies. (iii) Randomized strategies. We show that for energy objectives
randomization is not helpful (as energy objectives are similar in spirit with safety objec-
tives), even with only one player, neither it is for two-player multi-dimensional mean-
payoff objectives. However, randomized memoryless strategies suffice for one-player
multi-dimensional mean-payoff parity games. For the important special case of mean-
payoff parity objectives (conjunction of a single mean-payoff and parity objectives), we
show that in games, finite-memory strategies can be traded off for randomized mem-
oryless strategies. An extended version of this work, including proofs, can be found
in [17].

Related Works. Games with a single mean-payoff objective have been studied
in [23,39], and games with a single energy objective in [12]; their equivalence was
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established in [7]. One-dimensional mean-payoff parity games problem has been stud-
ied in [16]: an exponential algorithm was given to decide if there exists a winning
strategy (which in general was shown to require infinite memory); and an improved al-
gorithm was presented in [8]. One-dimensional energy parity games problem has been
studied in [13]: it was shown that deciding the existence of a winning strategy is in
NP ∩ coNP, and an exponential algorithm was given. It was also shown in [13] that,
for one-dimensional energy parity objectives, finite-memory strategies with exponential
memory are sufficient, and the decision problem for mean-payoff parity objective can
be reduced to energy parity objective. Games on VASS with several different winning
objectives have been studied in [9], and from the results of [9] it follows that in multi-
dimensional energy games, winning strategies with finite memory are sufficient (and a
triple exponential bound on memory can be derived from the results). The complexity of
multi-dimensional energy and mean-payoff games was studied in [15,37]. It was shown
in [15] that in general, winning strategies in multi-dimensional mean-payoff games
require infinite memory, whereas for multi-dimensional energy games, finite-memory
strategies are sufficient. Moreover, for finite-memory strategies, the multi-dimensional
mean-payoff and energy games coincide, and optimal computational complexity for de-
ciding the existence of a winning strategy was established as coNP-complete [15,37].
Multi-dimensional mean-payoff games with infinite-memory strategies were studied
in [37], and optimal computational complexity results were established. Various deci-
sion problems over multi-dimensional energy games were studied in [26].

2 Preliminaries

We consider two-player game structures and denote the two players by P1 and P2.

Multi-Weighted Two-Player Game Structures. A multi-weighted two-player game
structure is a tuple G = (S1, S2, sinit, E, k, w) where (i) S1 and S2 resp. denote the
finite sets of states belonging to P1 and P2, with S1 ∩S2 = ∅; (ii) sinit ∈ S = S1 ∪S2

is the initial state; (iii) E ⊆ S×S is the set of edges s.t. for all s ∈ S, there exists s′ ∈ S
s.t. (s, s′) ∈ E; (iv) k ∈ N is the dimension of the weight vectors; and (v) w : E → Z

k

is the multi-weight labeling function. The game structure G is one-player if S2 = ∅.
A play in G is an infinite sequence of states π = s0s1s2 . . . s.t. s0 = sinit and for all
i ≥ 0, we have (si, si+1) ∈ E. The prefix up to the n-th state of play π = s0s1 . . . sn . . .
is the finite sequence π(n) = s0s1 . . . sn. Let First(π(n)) and Last(π(n)) resp. denote
s0 and sn, the first and last states of π(n). A prefix π(n) belongs to Pi, i ∈ {1, 2}, if
Last(π(n)) ∈ Si. The set of plays of G is denoted by Plays(G) and the corresponding
set of prefixes is denoted by Prefs(G). The set of prefixes that belong to Pi is denoted
by Prefsi(G). The energy level vector of a sequence of states ρ = s0s1 . . . sn s.t. for all
i ≥ 0, we have (si, si+1) ∈ E, is EL(ρ) =

∑i=n−1
i=0 w(si, si+1) and the mean-payoff

vector of a play π = s0s1 . . . is MP(π) = lim infn→∞ 1
nEL(π(n)).

Parity. A game structure G is extended with a priority function p : S → N to
Gp = (S1, S2, sinit, E, k, w, p). Given a play π = s0s1s2 . . . , let Inf(π) =
{s ∈ S | ∀m ≥ 0, ∃n > m s.t. sn = s} denote the set of states that appear infinitely
often along π. The parity of a play π is defined as Par(π) = min {p(s) | s ∈ Inf(π)}.
In the following definitions, we denote any game by Gp with no loss of generality.
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Strategies. Given a finite set A, a probability distribution on A is a function p : A �→
[0, 1] s.t.

∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A).

A pure strategy for Pi, i ∈ {1, 2}, in Gp is a function λi : Prefsi(Gp) → S s.t.
for all ρ ∈ Prefsi(Gp), we have (Last(ρ), λi(ρ)) ∈ E. A (behavioral) randomized
strategy is a function λi : Prefsi(Gp) → D(S) s.t. for all ρ ∈ Prefsi(Gp), we have
{(Last(ρ), s) | s ∈ S, λi(ρ)(s) > 0} ⊆ E. A pure strategy λi for Pi has finite-memory
if it can be encoded by a deterministic Moore machine (M,m0, αu, αn) where M is a
finite set of states (the memory of the strategy), m0 ∈ M is the initial memory state,
αu : M × S → M is an update function, and αn : M × Si → S is the next-action
function. If the game is in s ∈ Si and m ∈ M is the current memory value, then the
strategy chooses s′ = αn(m, s) as the next state of the game. When the game leaves
a state s ∈ S, the memory is updated to αu(m, s). Formally, 〈M,m0, αu, αn〉 defines
the strategy λi s.t. λi(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ S∗ and s ∈ Si, where
α̂u extends αu to sequences of states as expected. A pure strategy is memoryless if
|M | = 1, i.e., it does not depend on history but only on the current state of the game.
Similar definitions hold for finite-memory randomized strategies, s.t. the next-action
function αn is randomized, while the update function αu remains deterministic. We
resp. denote by Λi, Λ

PF
i , ΛPM

i , ΛRM
i the sets of general (i.e., possibly randomized and

infinite-memory), pure finite-memory, pure memoryless and randomized memoryless
strategies for player Pi.

Given a prefix ρ ∈ Prefsi(Gp) belonging to player Pi, and a strategy λi ∈ Λi

of this player, we define the support of the probability distribution defined by λi

as Suppλi
(ρ) = {s ∈ S | λi(ρ)(s) > 0}, with λi(ρ)(s) = 1 if λi is pure and

λi(ρ) = s. A play π is said to be consistent with a strategy λi of Pi if for
all n ≥ 0 s.t. Last(π(n)) ∈ Si, we have Last(π(n + 1)) ∈ Suppλi

(π(n)).
Given two strategies, λ1 for P1 and λ2 for P2, we define OutcomeGp(λ1, λ2) =
{π ∈ Plays(Gp) | π is consistent with λ1 and λ2}, the set of possible outcomes of the
game. Note that if both strategies λ1 and λ2 are pure, we obtain a unique play
π = s0s1s2 . . . s.t. for all j ≥ 0, i ∈ {1, 2}, if sj ∈ Si, then we have sj+1 = λi(sj).

Given the initial state sinit and strategies for both players λ1 ∈ Λ1, λ2 ∈ Λ2, we
obtain a Markov chain. Thus, every event A ⊆ Plays(Gp), a measurable set of plays,
has a uniquely defined probability [36]. We denote by P

λ1,λ2
sinit

(A) the probability that a
play belongs to A when the game starts in sinit and is played consistently with λ1 and
λ2. We use the same notions for prefixes by naturally extending them to their infinite
counterparts.

Objectives. An objective for P1 in Gp is a set of plays φ ⊆ Plays(Gp). We consider
several kinds of objectives:

– Multi Energy objectives. Given an initial energy vector v0 ∈ N
k, the objec-

tive PosEnergyGp
(v0) =

{
π ∈ Plays(Gp) | ∀n ≥ 0 : v0 + EL(π(n)) ∈ N

k
}

re-
quires that the energy level in all dimensions stays positive at all times.

– Multi Mean-payoff objectives. Given a threshold vector v ∈ Q
k, the objective

MeanPayoffGp
(v) = {π ∈ Plays(Gp) | MP(π) ≥ v} requires that for all dimen-

sion j, the mean-payoff on this dimension is at least v(j).
– Parity objectives. Objective ParityGp

= {π ∈ Plays(Gp) | Par(π) mod 2 = 0} re-
quires that the minimum priority visited infinitely often be even. When the set of
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priorities is restricted to {0, 1}, we have a Büchi objective. Note that every multi-
weighted game structure G without parity can trivially be extended to Gp with
p : S → {0}.

– Combined objectives. Parity can naturally be combined with multi mean-payoff
and multi energy objectives, resp. yielding MeanPayoffGp

(v) ∩ ParityGp
and

PosEnergyGp
(v0) ∩ ParityGp

.

Sure and Almost-Sure Semantics. A strategy λ1 for P1 is surely winning for an ob-
jective φ in Gp if for all plays π ∈ Plays(Gp) that are consistent with λ1, we have
π ∈ φ. When at least one of the players plays a randomized strategy, the notion of sure
winning in general is too restrictive and inadequate, as the set of consistent plays that
do not belong to φ may have zero probability measure. Therefore, we use the concept
of almost-surely winning. Given a measurable objective φ ⊆ Plays(Gp), a strategy λ1

for P1 is almost-surely winning if for all λ2 ∈ Λ2, we have Pλ1,λ2
sinit

(φ) = 1.

Strategy Synthesis Problem. For multi energy parity games, the problem is to syn-
thesize a finite initial credit v0 ∈ N

k and a pure finite-memory strategy λpf
1 ∈ ΛPF

1

that is surely winning for P1 in Gp for the objective PosEnergyGp
(v0) ∩ ParityGp

,
if one exists. So, the initial credit is not fixed, but is part of the strategy to synthesize.
For multi mean-payoff games, given a threshold v ∈ Q

k, the problem is to synthe-
size a pure finite-memory strategy λpf

1 ∈ ΛPF
1 that is surely winning for P1 in Gp for

the objective MeanPayoffGp
(v) ∩ ParityGp

, if one exists. Note that multi energy and
multi mean-payoff games are equivalent for finite-memory strategies, while in general,
infinite memory may be necessary for the latter [15].

Trading Finite Memory for Randomness. We study when finite memory can be traded
for randomization. The question is: given a strategy λpf

1 ∈ ΛPF
1 which ensures surely

winning of some objective φ, does there exist a strategy λrm
1 ∈ ΛRM

1 which ensures
almost-surely winning for the same objective φ?

3 Optimal Memory Bounds

In this section, we establish optimal memory bounds for pure finite-memory winning
strategies on multi-dimensional energy parity games (MEPGs). Also, as a corollary, we
obtain results for pure finite-memory winning strategies on multi-dimensional mean-
payoff parity games (MMPPGs). We show that single exponential memory is both
sufficient and necessary for winning strategies. Additionally, we show how the parity
condition in a MEPG can be removed by adding additional energy dimensions.

Multi Energy Parity Games. A sample game is depicted on Fig. 1. The key point in
the upper bound proof on memory is to understand that for P1 to win a multi energy
parity game, he must be able to force cycles whose energy level is positive in all dimen-
sions and whose minimal parity is even. As stated in the next lemma, finite-memory
strategies are sufficient for multi energy parity games for both players.

Lemma 1 (Extension of [15, Lemma 2 and 3]). If P1 wins a multi energy parity
game, then he has a pure finite-memory winning strategy. If P2 wins a multi energy
parity game, then he has a pure memoryless winning strategy.
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s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)

(0,−1)

(2, 0)

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Fig. 1. Two-dimensional energy parity game and epSCT representing an arbitrary finite-memory
winning strategy. Circle states belong to P1, square states to P2.

By Lemma 1, we know that w.l.o.g. both players can be restricted to play pure finite
memory strategies. The property on the cycles can then be formalized as follows.

Lemma 2. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game. Let
λpf
1 ∈ ΛPF

1 be a winning strategy of P1 for initial credit v0 ∈ N
k. Then, for all λpm

2 ∈
ΛPM
2 , the outcome is a regular play π = ρ · (η∞)ω , with ρ ∈ Prefs(G), η∞ ∈ S+, s.t.

EL(η∞) ≥ 0 and Par(π) = min {p(s) | s ∈ η∞} is even.

With the notion of regular play of Lemma 2, we generalize the notion of self-covering
path to include the parity condition. We show here that, if such a path exists, then
the lengths of its cycle and the prefix needed to reach it can be bounded. Bounds on
the strategy follow. In [32], Rackoff showed how to bound the length of self-covering
paths in Vector Addition Systems (VAS). This work was extended to Vector Addition
Systems with States (VASS) by Rosier and Yen [34]. Recently, Brázdil et al. introduced
reachability games on VASS and the notion of self-covering trees [9]. Their Zero-safety
problem with ω initial marking is equivalent to multi energy games with weights in
{−1, 0, 1}, and without the parity condition. They showed that if winning strategies
exist for P1, then some of them can be represented as self-covering trees of bounded
depth. Trees have to be considered instead of paths, as in a game setting all the possible
choices of the adversary (P2) must be considered. Here, we extend the notion of self-
covering trees to even-parity self-covering trees, in order to handle parity objectives.

Even-Parity Self-covering Tree. An even-parity self-covering tree (epSCT) for s ∈ S
is a finite tree T = (Q,R), where Q is the set of nodes, Θ : Q �→ S × Z

k is a labeling
function and R ⊂ Q×Q is the set of edges, s.t.

– The root of T is labeled 〈s, (0, . . . , 0)〉.
– If ς ∈ Q is not a leaf, then let Θ(ς) = 〈t, u〉, t ∈ S, u ∈ Z

k, s.t.
• if t ∈ S1, then ς has a unique child ϑ s.t. Θ(ϑ) = 〈t′, u′〉, (t, t′) ∈ E and
u′ = u+ w(t, t′);

• if t ∈ S2, then there is a bijection between children of ς and edges of the game
leaving t, s.t. for each successor t′ ∈ S of t in the game, there is one child ϑ of
ς s.t. Θ(ϑ) = 〈t′, u′〉, u′ = u+ w(t, t′).
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– If ς is a leaf, then let Θ(ς) = 〈t, u〉 s.t. there is some ancestor ϑ of ς in T s.t.
Θ(ϑ) = 〈t, u′〉, with u′ ≤ u, and the downward path from ϑ to ς , denoted by
ϑ � ς , has minimal priority even. We say that ϑ is an even-descendance energy
ancestor of ς .

Intuitively, each path from root to leaf is a self-covering path of even parity in the game
graph so that plays unfolding according to such a tree correspond to winning plays of
Lemma 2. Thus, the epSCT fixes how P1 should react to actions of P2 in order to win
the MEPG (Fig. 1). Note that as the tree is finite, one can take the largest negative
number that appears on a node in each dimension to compute an initial credit for which
there is a winning strategy (i.e., the one described by the tree). In particular, let W
denote the maximal absolute weight appearing on an edge in Gp. Then, for an epSCT T
of depth l, it is straightforward to see that the maximal initial credit required is at most
l ·W as the maximal decrease at each level of the tree is bounded by W . We suppose
W > 0 as otherwise, any strategy of P1 is winning for the energy objective, for any
initial credit vector v0 ∈ N

k.
Let us explicitely state how P1 can deploy a strategy λT

1 ∈ ΛPF
1 based on an epSCT

T = (Q,R). We refer to such a strategy as an epSCT strategy. It consists in following
a path in the tree T , moving a pebble from node to node and playing in the game
depending on edges taken by this pebble. Each time a node ς s.t. Θ(ς) = 〈t, u〉 is
encountered, we do the following.

– If ς is a leaf, the pebble directly goes up to its oldest even-descendance energy
ancestor ϑ. By oldest we mean the first encountered when going down in the tree
from the root. Note that this choice is arbitrary, in a effort to ease following proof
formulations, as any one would suit.

– Otherwise, if ς is not a leaf,
• if t ∈ S2 and P2 plays state t′ ∈ S, the pebble is moved along the edge going

to the only child ϑ of ς s.t. Θ(ϑ) = 〈t′, u′〉, u′ = u+ w(t, t′);
• if t ∈ S1, the pebble moves to ϑ, Θ(ϑ) = 〈t′, u′〉, the only child of ς , and P1

strategy is to choose the state t′ in the game.

If such an epSCT T of depth l exists for a game Gp, then P1 can play the strategy
λT
1 ∈ ΛPF

1 to win the game with initial credit bounded by l ·W .

Bounding the Depth of epSCTs. Consider a multi energy game without parity. Then,
the priority condition on downward paths from ancestor to leaf is not needed and self-
covering trees (i.e., epSCTs without the condition on priorities) suffice to describe win-
ning strategies. One can bound the size of SCTs using results on the size of solutions
for linear diophantine equations (i.e., with integer variables) [6]. In particular, recent
work on reachability games over VASS with weights {−1, 0, 1}, Lemma 7 of [9], states
that if P1 has a winning strategy on a VASS, then he can exhibit one that can be de-
scribed as a SCT whose depth is at most l = 2(d−1)·|S| · (|S| + 1)c·k

2

, where c is a
constant independent of the considered VASS and d its branching degree (i.e., the high-
est number of outgoing edges on any state). Naive use of this bound for multi energy
games with arbitrary integer weights would induce a triple exponential bound for mem-
ory. Indeed, recall that W denotes the maximal absolute weight that appears in a game
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Gp = (S1, S2, sinit, E, k, w, p). A straightforward translation of a game with arbitrary
weights into an equivalent game that uses only weights in {−1, 0, 1} induces a blow-up
by W in the size of the state space, and thus an exponential blow-up by W in the depth
of the tree, which becomes doubly exponential as we have

l = 2(d−1)·W ·|S| · (W · |S|+ 1)c·k
2

= 2(d−1)·2V ·|S| · (W · |S|+ 1)c·k
2

,

where V denotes the number of bits used by the encoding of W . Moreover, the width
of the tree increases as dl, i.e., it increases exponentially with the depth. So straight
application of previous results provides an overall tree of triple exponential size. In
this paper we improve this bound and prove a single exponential upper bound, even
for multi energy parity games. We proceed in two steps, first studying the depth of the
epSCT, and then showing how to compress the tree into a directed acyclic graph (DAG)
of single exponential size.

Lemma 3. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game s.t. W is
the maximal absolute weight appearing on an edge and d the branching degree of Gp.
Suppose there exists a finite-memory winning strategy for P1. Then there is an even-

parity self-covering tree for sinit of depth at most l = 2(d−1)·|S| · (W · |S|+ 1)c·k
2

,
where c is a constant independent of Gp.

Lemma 3 eliminates the exponential blow-up in depth induced by a naive coding of
arbitrary weights into {−1, 0, 1} weights, and implies an overall doubly exponential
upper bound. Our proof is a generalization of [9, Lemma 7], using a more refined anal-
ysis to handle both parity and arbitrary integer weights. The idea is the following. First,
consider the one-player case. The epSCT is reduced to a path. By Lemma 2, it is com-
posed of a finite prefix, followed by an infinitely repeated sequence of positive energy
level and even minimal priority. The point is to bound the length of such a sequence by
eliminating cycles that are not needed for energy or parity. Second, to extend the result
to two-player games, we use an induction on the number of choices available for P2 in
a given state. Intuitively, we show that if P1 can win with an epSCT TA when P2 plays
edges from a set A in a state s, and if he can also win with an epSCT TB when P2 plays
edges from a set B, then he can win when P2 chooses edges from both A and B, with
an epSCT whose depth is bounded by the sum of depths of TA and TB.

From Multi Energy Parity Games to Multi Energy Games. Let Gp be a MEPG and
assume that P1 has a winning strategy in that game. By Lemma 3, there exists an epSCT
whose depth is bounded by l. As a direct consequence of that bounded depth, we have
that P1, by playing the strategy prescribed by the epSCT, enforces a stronger objective
than the parity objective. Namely, this strategy ensures to “never visit more than l states
of odd priorities before seeing a smaller even priority” (which is a safety objective).
Then, the parity condition can be transformed into additional energy dimensions.

While our transformation shares ideas with the classical transformation of parity
objectives into safety objectives, first proposed in [3] (see also [22, Lemma 6.4]), it is
technically different because energy levels cannot be reset (as it would be required by
those classical constructions). The reduction is as follows. For each odd priority, we add
one dimension. The energy level in this dimension is decreased by 1 each time this odd
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priority is visited, and it is increased by l each time a smaller even priority is visited.
If P1 is able to maintain the energy level positive for all dimensions (for a given initial
energy level), then he is clearly winning the original parity objective; on the other hand,
an epSCT strategy that wins the original objective also wins the new game.

Lemma 4. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game with
priorities in {0, 1, . . . , 2 · m}, s.t. W is the maximal absolute weight appearing on an
edge. Then we can construct a multi energy game G with the same set of states, (k+m)
dimensions and a maximal absolute weight bounded by l, as defined by Lemma 3, s.t.
P1 has a winning strategy in G iff he has one in Gp.

Bounding the Width. Thanks to Lemma 4, we continue with multi energy games
without parity. In order to bound the overall size of memory for winning strategies, we
consider the width of self-covering trees. The following lemma states that SCTs, whose
width is at most doubly exponential by application of Lemma 3, can be compressed
into directed acyclic graphs (DAGs) of single exponential width. Thus we eliminate the
second exponential blow-up and give an overall single exponential bound for memory
of winning strategies.

Lemma 5. Let G = (S1, S2, sinit, E, k, w) be a multi energy game s.t. W is the
maximal absolute weight appearing on an edge and d the branching degree of G.
Suppose there exists a finite-memory winning strategy for P1. Then, there exists
λD
1 ∈ ΛPF

1 a winning strategy for P1 described by a DAG D of depth at most

l = 2(d−1)·|S| · (W · |S|+ 1)
c·k2

and width at most L = |S| · (2 · l ·W + 1)k, where
c is a constant independent of G. Thus the overall memory needed to win this game is
bounded by the single exponential l · L.

The sketch of this proof is the following. By Lemma 3, we know that there exists a
tree T , and thus a DAG, that satisfies the bound on depth. We construct a finite se-
quence of DAGs, whose first element is T , so that (1) each DAG describes a winning
strategy for the same initial credit, (2) each DAG has the same depth, and (3) the last
DAG of the sequence has its width bounded by |S| · (2 · l · W + 1)k. This sequence
D0 = T,D1, D2, . . . , Dn is built by merging nodes on the same level of the initial tree
depending on their labels, level by level. The key idea of this procedure is that what
actually matters for P1 is only the current energy level, which is encoded in node labels
in the self-covering tree T . Therefore, we merge nodes with identical states and energy
levels: since P1 can essentially play the same strategy in both nodes, we only keep one
of their subtrees.

Lower Bound. In the next lemma, we show that the upper bound is tight in the sense
that there exist families of games which require exponential memory (in the number
of dimensions), even for the simpler case of multi energy objectives without parity and
weights in {−1, 0, 1} (Fig. 2).

Lemma 6. There exists a family of multi energy games (G(K))K≥1, =
(S1, S2, sinit, E, k = 2 ·K,w : E → {−1, 0, 1}) s.t. for any initial credit, P1 needs ex-
ponential memory to win.
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s1

s1,L

s1,R

sK

sK,L

sK,R

t1

t1,L

t1,R

tK

tK,L

tK,R

Fig. 2. Family of games requiring exponential memory: ∀ 1 ≤ i ≤ K, ∀ 1 ≤ j ≤ k,
w((si, si,L))(j) = 1 if j = 2 · i − 1, = −1 if j = 2 · i, and = 0 otherwise; w((si, si,L)) =
−w((si, si,R)) = w((ti, ti,L)) = −w((ti, ti,R)); w((◦, si)) = w((◦, ti)) = (0, . . . , 0).

The idea is the following: in the example of Fig. 2, if P1 does not remember the exact
choices of P2 (which requires an exponential size Moore machine), there will exist
some sequence of choices of P2 s.t. P1 cannot counteract a decrease in energy. Thus,
by playing this sequence long enough, P2 can force P1 to lose, whatever his initial
credit is.

We summarize our results in Theorem 1.

Theorem 1 (Optimal memory bounds). The following assertions hold: (1) In multi
energy parity games, if there exists a winning strategy, then there exists a finite-memory
winning strategy. (2) In multi energy parity and multi mean-payoff games, if there exists
a finite-memory winning strategy, then there exists a winning strategy with at most ex-
ponential memory. (3) There exists a family of multi energy games (without parity) with
weights in {−1, 0, 1} where all winning strategies require at least exponential memory.

4 Symbolic Synthesis Algorithm

We now present a symbolic, incremental and optimal algorithm to synthesize a finite-
memory winning strategy in a MEG.1 This algorithm outputs a (set of) winning initial
credit(s) and a derived finite-memory winning strategy (if one exists) which is exponen-
tial in the worst-case. Its running time is at most exponential. So our symbolic algorithm
can be considered (worst-case) optimal in the light of the results of previous section.

This algorithm computes the greatest fixed point of a monotone operator that defines
the sets of winning initial (vectors of) credits for each state of the game. As those sets
are upward-closed, they are symbolically represented by their minimal elements. To en-
sure convergence, the algorithm considers only credits that are below some threshold,
noted C. This is without giving up completeness because, as we show below, for a game
G = (S1, S2, sinit, E, k, w), it is sufficient to take the value 2 · l ·W for C, where l is
the bound on the depth on epSCT obtained in Lemma 3 and W is the largest absolute

1 Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the
parity condition by applying the construction of Lemma 4.



126 K. Chatterjee, M. Randour, and J.-F. Raskin

value of weights used in the game. We also show how to extract a finite state Moore ma-
chine from this set of minimal winning initial credits and how to obtain an incremental
algorithm by increasing values for the threshold C starting from small values.

A Controllable Predecessor Operator. Let G = (S1, S2, sinit, E, k, w) be a MEG,
C ∈ N be a constant, and U(C) be the set (S1 ∪ S2) × {0, 1, . . . ,C}k. Let U(C) =
2U(C), i.e., the powerset of U(C), and the operator CpreC : U(C) → U(C) be defined
as follows:

E(V ) = {(s1, e1) ∈ U(C) | s1 ∈ S1 ∧ ∃(s1, s) ∈ E,∃(s, e2) ∈ V : e2 ≤ e1 + w(s1, s)},
A(V ) = {(s2, e2) ∈ U(C) | s2 ∈ S2 ∧ ∀(s2, s) ∈ E,∃(s, e1) ∈ V : e1 ≤ e2 + w(s2, s)},

Cpre
C
(V ) = E(V ) ∪ A(V ). (1)

Intuitively,CpreC(V ) returns the set of energy levels from which P1 can force an energy
level in V in one step. The operator CpreC is ⊆-monotone over the complete lattice
U(C), and so there exists a greatest fixed point for CpreC in the lattice U(C), denoted
by Cpre∗C. As usual, the greatest fixed point of the operator CpreC can be computed
by successive approximations as the last element of the following finite ⊆-descending
chain. We define the algorithm CpreFP that computes this greatest fixed point:

U0 = U(C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) = Un−1. (2)

The set Ui contains all the energy levels that are sufficient to maintain the energy posi-
tive in all dimensions for i steps. Note that the length of this chain can be bounded by
|U(C)| and the time needed to compute each element of the chain can be bounded by a
polynomial in |U(C)|. As a consequence, we obtain the following lemma.

Lemma 7. Let G = (S1, S2, sinit, E, k, w) be a multi energy game and C ∈ N be a
constant. Then Cpre∗C can be computed in time bounded by a polynomial in |U(C)|, i.e.,
an exponential in the size of G.

Symbolic Representation. To define a symbolic representation of the sets manipulated
by the CpreC operator, we exploit the following partial order: let (s, e), (s′, e′) ∈ U(C),
we define

(s, e) � (s′, e′) iff s = s′ and e ≤ e′. (3)

A set V ∈ U(C) is closed if for all (s, e), (s′, e′) ∈ U(C), if (s, e) ∈ V and (s, e) �
(s′, e′), then (s′, e′) ∈ V . By definition of CpreC, we get the following property.

Lemma 8. All sets Ui in eq. (2) are closed for �.

Therefore, all sets Ui in the descending chain of eq. (2) can be symbolically represented
by their minimal elements Min
(Ui) which is an antichain of elements for �.

Even if the largest antichain can be exponential in G, this representation is, in prac-
tice, often much more efficient, even for small values of the parameters. For example,
with C = 4 and k = 4, we have that the cardinality of a set can be as large as |Ui| ≤ 625
whereas the size of the largest antichain is bounded by |Min
(Ui)| ≤ 35. Antichains
have proved to be very effective: see for example [1,20,21]. Therefore, our algorithm is
expected to have good performance in practice.
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Correctness and Completeness. The following two lemmas relate the greatest fixed
point Cpre∗C and the existence of winning strategies for P1 in G.

Lemma 9 (Correctness). Let G = (S1, S2, sinit, E, k, w) be a multi energy game, let
C ∈ N be a constant. If there exists (c1, . . . , ck) ∈ N

k s.t. (sinit, (c1, . . . , ck)) ∈ Cpre∗C,
then P1 has a winning strategy in G for initial credit (c1, . . . , ck) and the memory
needed by P1 can be bounded by |Min
(Cpre∗C)| (the size of the antichain of minimal
elements in the fixed point).

Given the set of winning initial credits output by algorithmCpreFP, it is straightforward
to derive a corresponding winning strategy of at most exponential size. Indeed, for win-
ning initial credit c ∈ N

k, we build a Moore machine which (i) states are the minimal
elements of the fixed point (antichain at most exponential in G), (ii) initial state is any
element (t, u) among them s.t. t = sinit and u ≤ c, (iii) next-action function prescribes
an action that ensures remaining in the fixed point, and (iv) update function maintains
an accurate energy level in the memory.

Lemma 10 (Completeness). Let G = (S1, S2, sinit, E, k, w) be a multi energy game
in which all absolute values of weights are bounded by W . If P1 has a winning strategy
in G and T = (Q,R) is a self-covering tree for G of depth l, then (sinit, (C, . . . ,C)) ∈
Cpre∗C for C = 2 · l ·W .

Remark 1. This algorithm is complete in the sense that if a winning strategy exists
for P1, it outputs at least a winning initial credit (and the derived strategy) for C =
2 · l ·W . However, this is different from the fixed initial credit problem, which consists
in deciding if a particular given credit vector is winning and is known to be EXPSPACE-
hard [9,26]. In general, there may exist winning credits incomparable to those captured
by algorithm CpreFP.

Incrementality. While the threshold 2 · l · W is sufficient, it may be the case that P1

can win the game even if its energy level is bounded above by some smaller value. So,
in practice, we can use Lemma 9, to justify an incremental algorithm that first starts
with small values for the parameter C and stops as soon as a winning strategy is found
or when the value of C reaches the threshold 2 · l ·W and no winning strategy has been
found.

Application of the Symbolic Algorithm to MEPGs and MMPGs. Using the re-
duction of Lemma 4 that allows us to remove the parity condition, and the equivalence
between multi energy games and multi mean-payoff games for finite-memory strategies
(given by [15, Theorem 3]), along with Lemma 7 (complexity), Lemma 9 (correctness)
and Lemma 10 (completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm). Let Gp be a multi en-
ergy (resp. multi mean-payoff) parity game. Algorithm CpreFP is a symbolic and incre-
mental algorithm that synthesizes a winning strategy in Gp of at most exponential size
memory, if a winning (resp. finite-memory winning) strategy exists. In the worst-case,
the algorithm CpreFP takes exponential time.



128 K. Chatterjee, M. Randour, and J.-F. Raskin

5 Trading Finite Memory for Randomness

In this section, we answer the fundamental question regarding the trade-off of mem-
ory for randomness in strategies: we study on which kind of games P1 can replace a
pure finite-memory winning strategy by an equally powerful, yet conceptually simpler,
randomized memoryless one and discuss how memory is encoded into probability dis-
tributions. We summarize our results in Theorem 3 and give a sketch of how they are
obtained in the following.

Energy Games. Randomization is not helpful for energy objectives, even in one-player
games. The proof argument is obtained from the intuition that energy objectives are
similar in spirit to safety objectives. Indeed, consider a game fitted with an energy ob-
jective, and an almost-sure winning strategy λ1. If there exists a single consistent path
that violates the energy objective, then there exists a finite prefix witness to violate
the energy objective. As the finite prefix has positive probability, and the strategy λ1 is
almost-sure winning, it follows that no such path exists. In other words, λ1 is a sure win-
ning strategy. Since randomization does not help for sure winning strategy, it follows
that randomization is not helpful for one-player and two-player energy, multi energy,
energy parity and multi energy parity games.

s1

s2 s3

s4

s5 s6

(1,−1) (−1, 1)

(0, 0) (0, 0)
(1,−1) (−1, 1)

(0, 0) (0, 0)

Fig. 3. Memory is needed to enforce perfect
long-term balance

s1 s21 1

−1

−1

Fig. 4. Mixing strategies that are resp. good
for Büchi and good for energy.

Multi Mean-Payoff (parity) Games. Randomized memoryless strategies can replace
pure finite-memory ones in the one-player multi mean-payoff parity case, but not in the
two-player one, even without parity. The fundamental difference between energy and
mean-payoff is that energy requires a property to be satisfied at all times (in that sense,
it is similar to safety), while mean-payoff is a limit property. As a consequence, what
matters here is the long-run frequencies of weights, not their order of appearance, as
opposed to the energy case.

For the one-player case, we extract the frequencies of visit for edges of the graph
from the regular outcome that arises from the finite-memory strategy of P1. We build
a randomized strategy with probability distributions on edges that yield the exact same
frequencies in the long-run. Therefore, if the original pure finite-memory of P1 is surely
winning, the randomized one is almost-surely winning. For the two-player case, this ap-
proach cannot be used as frequencies are not well defined, since the strategy of P2 is
unknown. Consider a game which needs perfect balance between frequencies of ap-
pearance of two sets of edges in a play to be winning (Fig. 3). To almost-surely achieve
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mean-payoff vector (0, 0), P1 must ensure that the long-term balance between edges
(s4, s5) and (s4, s6) is the same as the one between edges (s1, s3) and (s1, s2). This is
achievable with memory as it suffices to react immediately to compensate the choice of
P2. However, given a randomized memoryless strategy of P1, P2 always has a strategy
to enforce that the long-term frequency is unbalanced, and thus the game cannot be won
almost-surely by P1 with such a strategy.

Single Mean-Payoff Parity Games. Randomized memoryless strategies can replace
pure finite-memory ones for single mean-payoff parity games. We prove it in two steps.
First, we show that it is the case for the simpler case of MP Büchi games. Suppose
P1 has a pure finite-memory winning strategy for such a game. We use the existence
of particular pure memoryless strategies on winning states: the classical attractor for
Büchi states, and a strategy that ensures that cycles of the outcome have positive energy
(whose existence follows from [13]). We build an almost-surely randomized memory-
less winning strategy for P1 by mixing those strategies in the probability distributions,
with sufficient probability over the strategy that is good for energy. We illustrate this
construction on the simple game Gp depicted on Fig. 4. Let λpf

1 ∈ ΛPF
1 be a strategy

of P1 s.t. P1 plays (s1, s1) for 8 times, then plays (s1, s2) once, and so on. This strat-
egy ensures surely winning for the objective φ = MeanPayoffGp

(3/5). Obviously, P1

has a pure memoryless strategy that ensures winning for the Büchi objective: playing
(s1, s2). On the other hand, he also has a pure memoryless strategy that ensures cycles
of positive energy: playing (s1, s1). Let λrm

1 ∈ ΛRM
1 be the strategy defined as fol-

lows: play (s1, s2) with probability γ and (s1, s1) with the remaining probability. This
strategy is almost-surely winning for φ for sufficiently small values of γ (e.g., γ = 1/9).

Second, we extend this result to MP parity games using an induction on the number
of priorities and the size of games. We consider subgames that reduce to the MP Büchi
and MP coBüchi (where pure memoryless strategies are known to suffice [16]) cases.

Summary. We sum up results for these different classes of games in Theorem 3.

Theorem 3 (Trading finite memory for randomness). The following assertions hold:
(1) Randomized strategies are exactly as powerful as pure strategies for energy objec-
tives. Randomized memoryless strategies are not as powerful as pure finite-memory
strategies for almost-sure winning in one-player and two-player energy, multi energy,
energy parity and multi energy parity games. (2) Randomized memoryless strategies
are not as powerful as pure finite-memory strategies for almost-sure winning in two-
player multi mean-payoff games. (3) In one-player multi mean-payoff parity games,
and two-player single mean-payoff parity games, if there exists a pure finite-memory
sure winning strategy, then there exists a randomized memoryless almost-sure winning
strategy.

6 Conclusion

In this work, we considered the finite-memory strategy synthesis problem for games
with multiple quantitative (energy and mean-payoff) objectives along with a parity
objective. We established tight (matching upper and lower) exponential bounds on the
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memory requirements for such strategies (Theorem 1), significantly improving the pre-
vious triple exponential bound for multi energy games (without parity) that could be
derived from results in literature for games on VASS. We presented an optimal sym-
bolic and incremental strategy synthesis algorithm (Theorem 2). Finally, we also pre-
sented a precise characterization of the trade-off of memory for randomness in strategies
(Theorem 3).
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