

Lecture Notes in Computer Science 7454
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Maciej Koutny Irek Ulidowski (Eds.)

CONCUR 2012 –
Concurrency Theory

23rd International Conference, CONCUR 2012
Newcastle upon Tyne, UK, September 4-7, 2012
Proceedings

13

Volume Editors

Maciej Koutny
Newcastle University
School of Computing Science
Claremont Tower
Claremont Road
Newcastle upon Tyne, NE1 7RU, UK
E-mail: maciej.koutny@ncl.ac.uk

Irek Ulidowski
University of Leicester
Department of Computer Science
Computer Science Building
University Road
Leicester, LE1 7RH, UK
E-mail: i.ulidowski@mcs.le.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32939-5 e-ISBN 978-3-642-32940-1
DOI 10.1007/978-3-642-32940-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012945070

CR Subject Classification (1998): F.3, D.2.4, D.2, D.3, C.2.4, C.2, H.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 23rd International Conference on
Concurrency Theory (CONCUR 2012) held in Newcastle upon Tyne, UK, during
September 4–7, 2012. The aim of the CONCUR conference series is to bring
together researchers, developers and students in order to advance the theory of
concurrency and to promote its applications.

This edition of the conference was an official event of The Alan Turing Year,
a centenary celebration of the life and work of Alan Turing. To mark this special
occasion, the conference programme included two invited talks on the historical
context of his work and on its relevance to the current developments in the field
of concurrency theory, presented by Brian Randell (Newcastle University) and
Jos Baeten (CWI), respectively. The conference programme was further greatly
enhanced by the invited talks by Gordon Plotkin (University of Edinburgh) and
Peter Sewell (University of Cambridge).

CONCUR 2012 attracted 97 submissions, and we would like to thank every-
one who submitted. Each submission was reviewed by at least three reviewers
who provided detailed evaluations as well as constructive comments and recom-
mendations. After careful reviewing and extensive discussions, the Programme
Committee decided to accept 35 papers for presentation at the conference. We
would like to thank the Programme Committee members and all the additional
reviewers for their truly professional work and strong commitment to the success
of CONCUR 2012. We are also grateful to the authors for taking into account
the comments and suggestions provided by the referees during the preparation
of the final versions of their papers.

The conference was organised jointly with the 22nd International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS 2012)
and the 7th Symposium on Trustworthy Global Computing (TGC 2012). In
addition, CONCUR included eight satellite workshops:

– Combined 19th International Workshop on Expressiveness in Concurrency
and 9th Workshop on Structural Operational Semantics (EXPRESS/SOS),
organised by Bas Luttik and Michel Reniers

– 4th Workshop on Games for Design, Verification and Synthesis (GASICS),
organised by Kim G. Larsen, Nicolas Markey, Jean-François Raskin, and
Wolfgang Thomas

– First International Workshop on Hybrid Systems and Biology (HSB), organ-
ised by Luca Bortolussi

– Workshop on Trustworthy Cyber-Physical Systems (TCPS), organised by
John Fitzgerald, Terrence Mak, Alexander Romanovsky, and Alex Yakovlev

– Young Researchers Workshop on Concurrency Theory (YR-CONCUR), or-
ganised by Benedikt Bollig

VI Preface

– 11th International Workshop on Foundations of Coordination Languages
and Self-Adaptive Systems (FOCLASA), organised by Natallia Kokash, and
António Ravara

– 6th Workshop on Membrane Computing and Biologically Inspired Process
Calculi (MeCBIC), organised by Bogdan Aman, and Gabriel Ciobanu

– Trends in Concurrency Theory (TRENDS), organised by Jos Baeten, and
Bas Luttik

We would like to thank everyone who contributed to the organisation of
CONCUR 2012, especially the workshop organisation chairs Jason Steggles and
Emilio Tuosto, and the workshop organisers. Furthermore, we thank Microsoft
Research Cambridge, Formal Methods Europe, the School of Computing Science
and Centre for Software Reliability of Newcastle University, and the Department
of Computer Science of the University of Leicester for their financial support.

We are also grateful to Andrei Voronkov for the conference software system
EasyChair, which was extremely helpful for the Programme Committee discus-
sions and the production of the proceedings.

June 2012 Maciej Koutny
Irek Ulidowski

Organisation

Steering Committee

Roberto Amadio Université Paris Diderot, France
Jos Baeten CWI Amsterdam, The Netherlands
Eike Best Universität Oldenburg, Germany
Kim Larsen Aalborg University, Denmark
Ugo Montanari Università di Pisa, Italy
Scott Smolka SUNY, Stony Brook University, USA

Programme Committee

Luca Aceto Reykjavik University, Iceland
Eike Best Universität Oldenburg, Germany
Roberto Bruni Università di Pisa, Italy
Tomáš Brázdil Masaryk University, Czech Republic
Luis Caires Universidade Nova de Lisboa, Portugal
Luca Cardelli Microsoft Research, UK
Gabriel Ciobanu Romanian Academy, Romania
Pedro R. D’Argenio Universidad Nacional de Córdoba, Argentina
Philippe Darondeau INRIA, France
Luca De Alfaro University of California, Santa Cruz, USA
Rocco De Nicola IMT Lucca, Italy
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Paul Gastin ENS Cachan, France
Keijo Heljanko Aalto University, Finland
Jane Hillston University of Edinburgh, UK
Jetty Kleijn Leiden University, The Netherlands
Maciej Koutny Newcastle University, UK
Barbara König Universität Duisburg-Essen, Germany
Cosimo Laneve University of Bologna, Italy
Gavin Lowe University of Oxford, UK
Mohammadreza Mousavi Eindhoven University of Technology,

The Netherlands
Uwe Nestmann Technische Universität Berlin, Germany
Catuscia Palamidessi Ecole Polytechnique, France
Wojciech Penczek IPI PAN and University of Podlasie, Poland
Iain Phillips Imperial College London, UK
Shaz Qadeer Microsoft Research, USA
Jean-François Raskin Université Libre de Bruxelles, Belgium

VIII Organisation

Philippe Schnoebelen LSV - CNRS and ENS Cachan, France
Irek Ulidowski University of Leicester, UK
Franck Van Breugel York University, Canada
Rob Van Glabbeek NICTA, Australia
Björn Victor Uppsala University, Sweden
Shoji Yuen Nagoya University, Japan

Conference Co-chairs

Maciej Koutny Newcastle University, UK
Irek Ulidowski University of Leicester, UK

Workshop Co-chairs

Jason Steggles Newcastle University, UK
Emilio Tuosto University of Leicester, UK

Organising Committee

Joan Atkinson Newcastle University, UK
Denise Carr Newcastle University, UK
Roy Crole University of Leicester, UK
Victor Khomenko Newcastle University, UK
Delong Shang Newcastle University, UK
Claire Smith Newcastle University, UK
Jason Steggles Newcastle University, UK
Emilio Tuosto University of Leicester, UK
Irek Ulidowski University of Leicester, UK
Alexandre Yakovlev Newcastle University, UK

Additional Reviewers

Agrigoroaiei, Oana
Akshay, S.
Aldini, Alessandro
Alglave, Jade
Aman, Bogdan
Babiak, Tomas
Badouel, Eric
Bartoletti, Massimo
Berdine, Josh
Berger, Martin
Bernardi, Giovanni

Bernardo, Marco
Berwanger, Dietmar
Bettini, Lorenzo
Birgisson, Arnar
Blume, Christoph
Bollig, Benedikt
Bonchi, Filippo
Bono, Viviana
Borgstrom, Johannes
Bradley, Jeremy
Bravetti, Mario

Organisation IX

Bruggink, Harrie Jan Sander
Bulling, Nils
Carayol, Arnaud
Chatzikokolakis, Konstantinos
Chen, Xiwen
Cheney, James
Cimini, Matteo
Coppo, Mario
Costa Seco, João
Cyriac, Aiswarya
Czerwiński, Wojciech
De Boer, Frank
Demangeon, Romain
Deng, Yuxin
Dias, Ricardo
Dingel, Juergen
Doyen, Laurent
Dubrovin, Jori
Emmi, Michael
Esik, Zoltan
Ferreira, Carla
Ferrer Fioriti, Luis Maŕıa
Finkel, Alain
Fleischhack, Hans
Forejt, Vojtech
Fournet, Cedric
Fu, Yuxi
Furusawa, Hitoshi
Gan, Xiang
Ganty, Pierre
Garg, Deepak
Gay, Simon
Gazda, Maciej
Gebler, Daniel
Geeraerts, Gilles
Giachino, Elena
Gibson-Robinson, Thomas
Giro, Sergio
Golas, Ulrike
Goltz, Ursula
Gorrieri, Roberto
Gotsman, Alexey
Grossman, Dan
Hahn, Ernst Moritz
Haller, Philipp

Harju, Tero
Hasuo, Ichiro
Helouet, Loic
Hermida, Claudio
Heunen, Chris
Hicks, Michael
Hildebrandt, Thomas
Hirschkoff, Daniel
Hirschowitz, Tom
Holik, Lukas
Honsell, Furio
Hoogeboom, Hendrik Jan
Horne, Ross
Huisman, Marieke
Hym, Samuel
Hüttel, Hans
Imai, Keigoi
Jacobs, Bart
Jancar, Petr
Janicki, Ryszard
Kerstan, Henning
Khomenko, Victor
Kiefer, Stefan
Klaedtke, Felix
Knapik, Micha�l
Knight, Sophia
Koutavas, Vasileios
Krcal, Jan
Kretinsky, Jan
Kucera, Antonin
Kuznetsov, Petr
Kähkönen, Kari
Köpf, Boris
Küfner, Philipp
Křetinský, Jan
Křetinský, Mojmı́r
Laarman, Alfons
Labella, Anna
Lammich, Peter
Lanese, Ivan
Lange, Julien
Laroussinie, Francois
Lasota, S�lawomir
Launiainen, Tuomas
Lding, Christof

X Organisation

Lee, Mat́ıas D.
Liang, Hongjin
Lluch Lafuente, Alberto
Lodaya, Kamal
Long, Huan
Loreti, Michele
Luttik, Bas
Mardare, Radu
Markey, Nicolas
Mayr, Richard
Meski, Artur
Meyer, Roland
Mikučionis, Marius
Monmege, Benjamin
Monniaux, David
Morvan, Christophe
Mukund, Madhavan
Nakata, Akio
Neuhäußer, Martin R.
Norman, Gethin
Obdrzalek, Jan
Ogawa, Mizuhito
Olesen, Mads Chr.
Ouaknine, Joel
Padovani, Luca
Panangaden, Prakash
Parker, David
Pashalidis, Andreas
Peters, Kirstin
Pinna, G. Michele
Pérez, Jorge A.
Pó�lrola, Agata
Randour, Mickael
Rehak, Vojtech
Ridge, Tom
Roscoe, Bill
Ruppert, Eric
Sack, Joshua
Sarkar, Susmit
Sawa, Zdenek

Schmitz, Sylvain
Seki, Hiroyuki
Serre, Olivier
Sokolova, Ana
Sproston, Jeremy
Steffen, Martin
Steggles, Jason
Stevens, Perdita
Stirling, Colin
Strejcek, Jan
Stückrath, Jan
Sutre, Grégoire
Swamy, Nikhil
Sznajder, Nathalie
Szreter, Maciej
Talupur, Murali
Tanabe, Yoshinori
Tarasyuk, Igor
Toninho, Bernardo
Tuosto, Emilio
Turon, Aaron
Van Bakel, Steffen
Vandin, Andrea
Varghese, Thomas M.
Vicary, Jamie
Vogler, Walter
Vytiniotis, Dimitrios
Weber, Tjark
Wieringa, Siert
Wilkeit, Elke
Willemse, Tim
Winkowski, Józef
Winskel, Glynn
Worrell, James
Zanella Béguelin, Santiago
Zantema, Hans
Zavattaro, Gianluigi
Zeitoun, Marc
Zielonka, Wies�law
Zufferey, Damien

Table of Contents

Invited Talks

Turing Meets Milner . 1
Jos C.M. Baeten, Bas Luttik, and Paul van Tilburg

Concurrency and the Algebraic Theory of Effects (Abstract) 21
Gordon D. Plotkin

A Turing Enigma . 23
Brian Randell

False Concurrency and Strange-but-True Machines (Abstract) 37
Peter Sewell

Reachability Analysis

Concurrent Games on VASS with Inhibition . 39
Béatrice Bérard, Serge Haddad, Mathieu Sassolas, and
Nathalie Sznajder

Reachability Problem for Weak Multi-Pushdown Automata 53
Wojciech Czerwiński, Piotr Hofman, and S�lawomir Lasota

Reachability and Termination Analysis of Concurrent Quantum
Programs . 69

Nengkun Yu and Mingsheng Ying

Qualitative and Timed Systems

Making Weighted Containment Feasible: A Heuristic Based on
Simulation and Abstraction . 84

Guy Avni and Orna Kupferman

Avoiding Shared Clocks in Networks of Timed Automata 100
Sandie Balaguer and Thomas Chatain

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 115
Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin

Quantitative Languages Defined by Functional Automata 132
Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin

XII Table of Contents

Behavioural Equivalences

A Comparison of Succinctly Represented Finite-State Systems 147
Romain Brenguier, Stefan Göller, and Ocan Sankur

All Linear-Time Congruences for Familiar Operators Part 2: Infinite
LTSs . 162

Antti Valmari

Temporal Logics

Quantified CTL: Expressiveness and Model Checking
(Extended abstract) . 177

Arnaud Da Costa, François Laroussinie, and Nicolas Markey

What Makes Atl Decidable? A Decidable Fragment of Strategy
Logic . 193

Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and
Moshe Y. Vardi

Session Types

Specifying Stateful Asynchronous Properties for Distributed
Programs . 209

Tzu-Chun Chen and Kohei Honda

Synthesising Choreographies from Local Session Types 225
Julien Lange and Emilio Tuosto

Abstraction

A Theory of History Dependent Abstractions for Learning Interface
Automata . 240

Fides Aarts, Faranak Heidarian, and Frits Vaandrager

Linearizability with Ownership Transfer . 256
Alexey Gotsman and Hongseok Yang

Mobility and Space in Process Algebras

Nested Protocols in Session Types . 272
Romain Demangeon and Kohei Honda

Intensional and Extensional Characterisation of Global Progress in the
π-Calculus . 287

Luca Fossati, Kohei Honda, and Nobuko Yoshida

Table of Contents XIII

Duality and i/o-Types in the π-Calculus . 302
Daniel Hirschkoff, Jean-Marie Madiot, and Davide Sangiorgi

Spatial and Epistemic Modalities in Constraint-Based Process
Calculi . 317

Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and
Frank D. Valencia

Stochastic Systems

Fluid Model Checking . 333
Luca Bortolussi and Jane Hillston

Playing Stochastic Games Precisely . 348
Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Aistis Simaitis,
Ashutosh Trivedi, and Michael Ummels

Efficient Modelling and Generationof Markov Automata 364
Mark Timmer, Joost-Pieter Katoen, Jaco van de Pol, and
Mariëlle I.A. Stoelinga

Exact Fluid Lumpability for Markovian Process Algebra 380
Max Tschaikowski and Mirco Tribastone

Probabilistic Systems

Compositionality of Probabilistic Hennessy-Milner Logic through
Structural Operational Semantics . 395

Daniel Gebler and Wan Fokkink

Coalgebraic Trace Semantics for Probabilistic Transition Systems
Based on Measure Theory . 410

Henning Kerstan and Barbara König

Petri Nets and Non-sequential Semantics

Modeling Interval Order Structures with Partially Commutative
Monoids . 425

Ryszard Janicki, Xiang Yin, and Nadezhda Zubkova

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 440
Roland Meyer, Victor Khomenko, and Reiner Hüchting

Algebraic Structure of Combined Traces . 456
�Lukasz Mikulski

Verification of Petri Nets with Read Arcs . 471
César Rodŕıguez and Stefan Schwoon

XIV Table of Contents

Verification

Efficient Checking of Link-Reversal-Based Concurrent Systems 486
Matthias Függer and Josef Widder

Efficient Coverability Analysis by Proof Minimization 500
Alexander Kaiser, Daniel Kroening, and Thomas Wahl

A Framework for Formally Verifying Software Transactional Memory
Algorithms . 516

Mohsen Lesani, Victor Luchangco, and Mark Moir

Propositional Dynamic Logic with Converse and Repeat for
Message-Passing Systems . 531

Roy Mennicke

Decidability

MSO Decidability of Multi-Pushdown Systems via Split-Width 547
Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar

Decidability Problems for Actor Systems . 562
Frank S. de Boer, Mahdi M. Jaghoori, Cosimo Laneve, and
Gianluigi Zavattaro

Author Index . 579

Erratum

Decidability Problems for Actor Systems .
Frank S. de Boer, Mahdi M. Jaghoori, Cosimo Laneve, and
Gianluigi Zavattaro

E1

Turing Meets Milner

Jos C.M. Baeten1,2, Bas Luttik2,3, and Paul van Tilburg2

1 Centrum Wiskunde & Informatica (CWI),
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3 Department of Computer Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{j.c.m.baeten,s.p.luttik,p.j.a.v.tilburg}@tue.nl

Abstract. We enhance the notion of a computation of the classical the-
ory of computing with the notion of interaction from concurrency theory.
In this way, we enhance a Turing machine as a model of computation to
a Reactive Turing Machine that is an abstract model of a computer as
it is used nowadays, always interacting with the user and the world.

1 Introduction

What is a computation? This is a central question in the theory of computing,
dating back to the work of Alan Turing in 1936 [24]. The classical answer is that
a computation is given by a Turing machine, with the input given on its tape at
the beginning, after which a deterministic sequence of steps takes place, leaving
the output on the tape at the end. A computable function is a function of which
the transformation of input to output can be computed by a Turing machine.

A Turing machine can serve in this way as a basic model of a computation,
but cannot serve as a basic model of a computer. Well, it could up to the advent
of the terminal in the 1970s. Before that, input was given as a stack of punch
cards at the start, and output of a computation appeared as a printout later.
The terminal made direct interaction with the computer possible. Nowadays, a
computer is interacting continuously, with the user at the click of a mouse or
with many other computers all over the world through the Internet.

An execution of a computer is thus not just a series of steps of a computation,
but also involves interaction. It cannot be modeled as a function, and has inher-
ent nondeterminism. In this paper, we make the notion of an execution precise,
and compare this to the notion of a computation. To illustrate the difference
between a computation and an execution, we can say that a Turing machine
cannot fly an airplane, but a computer can. An automatic pilot cannot know all
weather conditions en route beforehand, but can react to changing conditions
run-time.

Computability theory is firmly grounded in automata theory and formal lan-
guage theory. It progresses from the study of finite automata to pushdown au-
tomata and Turing machines. Of these different classes of automata, it studies

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J.C.M. Baeten, B. Luttik, and P. van Tilburg

the languages, the sets of strings, induced by them. We can view a language as
an equivalence class of automata (under language equivalence).

The notion of interaction has been studied extensively in concurrency theory
and process theory exemplified by the work of Robin Milner [17]. Milner has
played a central role in the development of concurrency theory. He proposed
a powerful parallel composition operator that is used to compose systems in
parallel, including their interaction [19]. The semantics of concurrency theory
is mostly given in terms of transition systems, which are almost like automata.
However, there are important differences.

First of all, a notion of final state, of termination, is often missing in con-
currency theory. The idea is that concurrency theory often deals with so-called
reactive systems, which need not terminate but are always on, reacting to stimuli
from the environment. As a result, termination is often neglected in concurrency
theory, but is nevertheless an important ingredient, as shown and fully worked
out in [1]. Using this presentation of concurrency theory as a starting point, we
obtain a full correspondence with automata theory: a finite transition system is
exactly a finite automaton. On the other hand, we stress that we fully incor-
porate the reactive systems approach of concurrency theory: non-terminating
behaviour is also relevant behaviour, which is taken into account.

A second difference between automata theory and concurrency theory is that
transition systems need not be finite. Still, studying the subclass of finite transi-
tion systems yields useful insights for the extension to pushdown automata and
Turing machines.

The third and main difference between automata theory and concurrency the-
ory is that language equivalence is too coarse to capture a notion of interaction.
Looking at an automaton as a language acceptor, acceptance of a string repre-
sents a particular computation of the automaton, and the language is the set of
all its computations. The language-theoretic interpretation abstracts from the
moments of choice within an automaton. For instance, it does not distinguish be-
tween, on the one hand, the automaton that first accepts an a and subsequently
chooses between accepting a b or a c, and, on the other hand, the automaton that
starts with a choice between accepting ab and accepting ac. As a consequence,
the language-theoretic interpretation is only suitable under the assumption that
an automaton is a stand-alone computational device; it is unsuitable if some
form of interaction of the automaton with its environment (user, other automata
running in parallel, etc.) may influence the course of computation.

Therefore, other notions of equivalence are studied in concurrency theory,
capturing more of the branching structure of an automaton. Prominent among
these is bisimulation equivalence [21]. When silent steps are taken into account,
the preferred variant is branching bisimilarity, arguably preserving all relevant
moments of choice in a system [15]. Moreover, it is important to keep track of
possible divergencies as advocated in the work on CSP [16].

In this paper we study the notion of a computation, taking interaction into
account. We define, next to the notion of a computable function, the notion
of an executable process. An executable process is a behaviour that can be

Turing Meets Milner 3

exhibited by a computer (interacting with its environment). An executable pro-
cess is a divergence-preserving branching bisimulation equivalence class of transi-
tion systems defined by a Reactive Turing Machine. A Reactive Turing Machine
is an adaptation of the classical Turing Machine that can properly deal with
ubiquitous interaction. Leading up to the definition of the Reactive Turing Ma-
chine, we reconsider some of the standard results from automata theory when
automata are considered modulo divergence-preserving branching bisimilarity in-
stead of language equivalence.

There have been attempts before to add a notion of interaction to computabil-
ity theory, see e.g. [12,10,11]. These attempts do not take full advantage of the
results of concurrency theory. We find that interaction is still not given the sta-
tus it deserves; in all the formalisations of interaction machines we could find,
the notion of interaction itself is still very implicit. It is added as an asymmetric
notion (e.g., by allowing an algorithm to query its environment, or by assuming
that the environment periodically writes a write-only input tape and reads a
read-only output tape of a Turing machine). The focus remains completely on
the computational aspect, and interaction is included as a second-class citizen,
only to the extent that it may have a benificial effect on computational power.

This paper is an update of [7] with results from [23], [8] and [6].
In Section 2 we briefly review the process theory we use. In Section 3 we

consider finite-state processes, defined as divergence-preserving branching bisim-
ulation equivalence classes of finite labeled transition systems (finite automata).
The section illustrates the correspondence between finite automata and linear re-
cursive specifications that can be thought of as the process-theoretic counterpart
of regular grammars.

In Section 4 we consider pushdown processes, defined as divergence-preserving
branching bisimulation equivalence classes of labeled transition systems asso-
ciated with pushdown automata. We investigate the correspondence between
pushdown processes and processes definable by sequential recursive specifica-
tions, which can be thought of as the process-theoretic counterpart of context-
free grammars. We show this correspondence is not optimal, and define a new
grammar that fits better, based on the universality of the stack process.

In Section 5 we define executable processes, defined as divergence-preserving
branching bisimulation equivalence classes of labeled transition systems associ-
ated with Reactive Turing Machines. We highlight the relationship of computable
functions and executable processes, laying the foundations of executability the-
ory alongside computability theory. We define a new grammar for executable
processes, based on the universality of the queue process.

2 Process Theory

In this section we briefly recap the basic definitions of the process algebra TCP∗τ
(Theory of Communicating Processes with silent step and iteration). This pro-
cess algebra has a rich syntax, allowing to express all key ingredients of concur-
rency theory and includes a full incorporation of regular expressions. It also has
a rich theory, fully worked out in [1].

4 J.C.M. Baeten, B. Luttik, and P. van Tilburg

Syntax. We presuppose a finite action alphabet A, and a countably infinite set of
names N . The actions in A denote the basic events that a process may perform.
We furthermore presuppose a finite data alphabet D, a finite set C of channels,
and assume that A includes special actions c?d, c!d, c!?d (d ∈ D, c ∈ C), which,
intuitively, denote the events that datum d is received, sent, or communicated
along channel c.

Let N ′ be a finite subset of N . The set of process expressions P over A and
N ′ is generated by the following grammar:

p ::= 0 | 1 | a.p | τ.p | p · p | p∗ | p+ p | p ‖ p | ∂c(p) | τc(p) | N

(a ∈ A, N ∈ N ′, c ∈ C) .

Let us briefly comment on the operators in this syntax. The constant 0 denotes
inaction or deadlock, the unsuccessfully terminated process. It can be thought of
as the automaton with one initial state that is not final and has no transitions.
The constant 1 denotes the successfully terminated process. It can be thought
of as the automaton with one initial state that is final, without transitions.
For each action a ∈ A there is a unary operator a. denoting action prefix; the
process denoted by a.p can do an a-transition to the process denoted by p. The τ -
transitions of a process will, in the semantics below, be treated as unobservable,
and as such they are the process-theoretic counterparts of the so-called λ- or ε-
transitions in the theory of automata and formal languages. We write Aτ for A∪
{τ}. The binary operator · denotes sequential composition. The unary operator ∗

is iteration orKleene star. The binary operator + denotes alternative composition
or choice. The binary operator ‖ denotes parallel composition; actions of both
arguments are interleaved, and in addition a communication c!?d of a datum d
on channel c can take place if one argument can do an input action c?d that
matches an output action c!d of the other component. The unary operator ∂c(p)
encapsulates the process p in such a way that all input actions c?d and output
actions c!d are blocked (for all data) so that communication is enforced. Finally,
the unary operator τc(p) denotes abstraction from communication over channel
c in p by renaming all communications c!?d to τ -transitions.

Let N ′ be a finite subset of N , used to define processes by means of (recur-
sive) equations. A recursive specification E over N ′ is a set of equations of the

form N
def
= p with as left-hand side a name N and as right-hand side a process

expression p. It is required that a recursive specification E contains, for every
N ∈ N ′, precisely one equation with N as left-hand side.

One way to formalize our operational intuitions for the syntactic construc-
tions of TCP∗τ , is to associate with every process expression a labeled transition
system.

Definition 1 (Labeled Transition System). A labeled transition system L
is defined as a four-tuple (S,→, ↑, ↓) where:

1. S is a set of states,
2. → ⊆ S ×Aτ × S is an Aτ -labeled transition relation on S,

Turing Meets Milner 5

3. ↑ ∈ S is the initial state,
4. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s
a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

A labeled transition system with a finite set of states is exactly a finite (non-
deterministic) automaton.

We use Structural Operational Semantics [22] to associate a transition relation
with process expressions: we let → be the Aτ -labeled transition relation induced
on the set of process expressions P by the operational rules in Table 1. Note
that the operational rules presuppose a recursive specification E.

Table 1. Operational rules for TCP∗
τ and a recursive specification E (a ranges over

Aτ , d ranges over D, and c ranges over C)

1 ↓ p∗ ↓ a.p
a−−→ p

p
a−−→ p′

(p + q) a−−→ p′
q

a−−→ q′

(p + q) a−−→ q′
p ↓

(p + q) ↓
q ↓

(p + q) ↓

p
a−−→ p′

p · q a−−→ p′ · q
p ↓ q

a−−→ q′

p · q a−−→ q′
p ↓ q ↓
p · q ↓

p
a−−→ p′

p∗ a−−→ p′ · p∗

p
a−−→ p′

p ‖ q a−−→ p′ ‖ q
q

a−−→ q′

p ‖ q a−−→ p ‖ q′
p ↓ q ↓
p ‖ q ↓

p
c!d−−→ p′ q

c?d−−−→ q′

p ‖ q c!?d−−−→ p′ ‖ q′
p

c?d−−−→ p′ q
c!d−−→ q′

p ‖ q c!?d−−−→ p′ ‖ q′

p a−−→ p′ a �= c?d, c!d

∂c(p)
a−−→ ∂c(p

′)

p ↓
∂c(p) ↓

p
c!?d−−−→ p′

τc(p)
τ−−→ τc(p

′)

p
a−−→ p′ a �= c!?d

τc(p)
a−−→ τc(p

′)

p ↓
τc(p) ↓

p
a−−→ p′ (N

def
= p) ∈ E

N
a−−→ p′

p ↓ (N
def
= p) ∈ E

N ↓

Let → be an Aτ -labeled transition relation on a set S of states. For s, s′ ∈ S
and w ∈ A∗ we write s

w−−� s′ if there exist states s0, . . . , sn ∈ S and actions
a1, . . . , an ∈ Aτ such that s = s0

a1−−→ · · · an−−→ sn = s′ and w is obtained from
a1 · · · an by omitting all occurrences of τ . ε denotes the empty word. We say a

6 J.C.M. Baeten, B. Luttik, and P. van Tilburg

state t ∈ S is reachable from a state s ∈ S if there exists w ∈ A∗ such that
s

w−−� t.

Definition 2. Let E be a recursive specification and let p be a process expres-
sion. We define the labeled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated
with p and E as follows:

1. the set of states Sp consists of all process expressions reachable from p;
2. the transition relation →p is the restriction to Sp of the transition relation

→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and
4. the set of final states consists of all process expressions q ∈ Sp such that q↓,

i.e., ↓p = ↓ ∩ Sp .

If we start out from a process expression not containing a name, then the tran-
sition system defined by this construction is finite and so is a finite automaton.

Given the set of (possibly infinite) labeled transition systems, we can divide
out different equivalence relations on this set. Dividing out language equivalence
throws away too much information, as the moments where choices are made are
totally lost, and behavior that does not lead to a final state is ignored. An equiva-
lence relation that keeps all relevant information, and has many good properties,
is branching bisimulation as proposed by van Glabbeek and Weijland [15]. For
motivations to use branching bisimulation as the preferred notion of equivalence,
see [13]. Moreover, by taking divergence into account, as advocated e.g. in [16],
most of our results do not depend on fairness assumptions. Divergence-preserving
branching bisimulation is called branching bisimulation with explicit divergence
in [15].

Let → be an Aτ -labeled transition relation, and let a ∈ Aτ ; we write s
(a)−−→ t

if s a−−→ t or a = τ and s = t.

Definition 3 (Divergence-preserving branching bisimilarity). Let L1 =
(S1,→1, ↑1, ↓1) and L2 = (S2,→2, ↑2, ↓2) be labeled transition systems. A branch-
ing bisimulation from L1 to L2 is a binary relation R ⊆ S1×S2 such that ↑1 R ↑2
and, for all states s1 and s2, s1 R s2 implies

1. if s1
a−−→1s

′
1, then there exist s′2, s

′′
2 ∈ S2 such that s2

ε−−�2s
′′
2

(a)−−→2s
′
2, s1 R s′′2

and s′1 R s′2;

2. if s2
a−−→2 s′2, then there exist s′1, s

′′
1 ∈ S1 such that s1

ε−−�1 s′′1
(a)−−→1 s′1,

s′′1 R s2 and s′1 R s′2;
3. if s1↓1, then there exists s′2 such that s2

ε−−�2 s′2 and s′2↓2; and
4. if s2↓2, then there exists s′1 such that s1

ε−−→1 s′1 and s′1↓1.

The labeled transition systems L1 and L2 are branching bisimilar (notation:
L1 ↔b L2) if there exists a branching bisimulation from L1 to L2.

A branching bisimulation R from L1 to L2 is divergence-preserving if for all
states s1, s2, s1 R s2 implies

Turing Meets Milner 7

5. if there exists an infinite sequence s1,0, s1,1, s1,2, . . . such that s1 = s1,0,
s1,i

τ−−→1 s1,i+1 and s1,iRs2 for all natural numbers i, then there exists a
state s2

′ such that s2
ε−−�2 s2

′ with at least one step and s1,iRs2
′ for some

natural number i; and
6. if there exists an infinite sequence s2,0, s2,1, s2,2, . . . such that s2 = s2,0,

s2,i
τ−−→2 s2,i+1 and s1Rs2,i for all natural numbers i, then there exists a

state s1
′ such that s1

ε−−�1 s1
′ with at least one step and s1

′Rs2,i for some
natural number i.

Labeled transition systems L1 and L2 are divergence-preserving branching bisim-
ilar (notation: L1 ↔Δ

b L2) if there exists a divergence-preserving branching
bisimulation from L1 to L2.

(Divergence-preserving) branching bisimilarity is an equivalence relation on la-
beled transition systems [9,14]. A branching bisimulation from a transition sys-
tem to itself is called a branching bisimulation on this transition system. Each
transition system has a maximal branching bisimulation, identifying as many
states as possible, found as the union of all possible branching bisimulations. Di-
viding out this maximal branching bisimulation, we get the quotient of the tran-
sition system w.r.t. the maximal branching bisimulation. We define the branching
degree of a state as the cardinality of the set of outgoing edges of its equivalence
class in the maximal divergence-preserving branching bisimulation.

A transition system has finite branching if all states have a finite branching
degree. We say a transition system has bounded branching if there exists a natural
number n ≥ 0 such that every state has a branching degree of at most n.
Divergence-preserving branching bisimulations respect branching degrees.

3 Regular Processes

A computer with a fixed-size, finite memory is a finite-state system, which can
be modeled as a finite automaton. Automata theory starts with the notion of
a finite automaton. As nondeterminism is relevant and basic in concurrency
theory, we look at a nondeterministic finite automaton. A nondeterministic finite
automaton is exactly a finite labeled transition system (see Definition 1).

Two examples of finite automata are given in Figure 1.
A finite automatonM = (S,→, ↑, ↓) is deterministic if, for all states s, t1, t2 ∈

S and for all actions a ∈ A, s a−−→ t1 and s a−−→ t2 implies t1 = t2, and if s τ−−→ t1,
then not s

a−−→ t2.
The upper automaton in Figure 1 is nondeterministic and has an unreachable

c-transition. The lower automaton is deterministic and does not have unreach-
able transitions.

In the theory of automata and formal languages, finite automata are consid-
ered as language acceptors.

Definition 4 (Language equivalence). The language L(L) accepted by a la-
beled transition system L = (S,→, ↑, ↓) is defined as

L(L) = {w ∈ A∗ | ∃s ∈ ↓ such that ↑ w−−� s} .

8 J.C.M. Baeten, B. Luttik, and P. van Tilburg

c

a

a a

a
τ

b

b

a

a

a
a

b

b

Fig. 1. Two examples of finite automata

Labeled transition systems L1 and L2 are language equivalent (notation: L1 ≡
L2) if L(L1) = L(L2).

The language of both automata in Figure 1 is {aaa} ∪ {ab2n−1 | n ≥ 1}; the
automata are language equivalent.

A language L ⊆ A∗ accepted by a finite automaton is called a regular lan-
guage. A regular process is a divergence-preserving branching bisimilarity class
of labeled transition systems that contains a finite automaton.

A standard result in automata theory is that every silent step τ and all nonde-
terminism can be removed from a finite automaton. These results are no longer
valid when we consider finite automata modulo branching bisimulation. Not
every regular process has a representation as a finite automaton without τ -
transitions, and not every regular process has a representation as a deterministic
finite automaton. In fact, it can be proved that there does not exist a finite au-
tomaton without τ -transitions that is branching bisimilar with the upper finite
automaton in Figure 1. Nor does there exist a deterministic finite automaton
branching bisimilar with the upper finite automaton in Figure 1.

Regular expressions. A regular expression is a process expression using only the
first 7 items in the definition of process syntax above, that is, it does not contain
parallel composition, encapsulation, abstraction or recursion. Not every regular
process is given by a regular expression, see [18,2]. We show a simple example
in Figure 2 of a finite transition system that is not bisimilar to any transition
system that can be associated with a regular expression.

However, if we can also use parallel composition and encapsulation, then we
can find an expression for every finite automaton, see [5]. Abstraction and re-
cursion are not needed for this result. We can illustrate this with the finite
automaton in Figure 2. Then, we can define the following expressions for states
s, t:

s = (ts?b.(st!a.1+ 1))∗, t = (st?a.(ts!b.1+ 1))∗ .

Turing Meets Milner 9

s t

a

b

Fig. 2. Not bisimilar to a regular expression

The expressions give the possibilities to enter a state, followed by the possibilities
to leave a state, and then iterate. With s and t as defined just now, the automaton
associated, according to the operational rules, to the expression

∂st,ts(((st!a.1+ 1) · s) ‖ 1 · t)

is isomorphic (and hence also divergence-preserving branching bisimilar) to the
finite automaton in Figure 2 (replacing label a by st!?a and label b by ts!?b).

Regular grammars. In the theory of automata and formal languages, the no-
tion of grammar is used as a syntactic mechanism to describe languages. The
corresponding mechanism in concurrency theory is the notion of recursive spec-
ification.

If we use only the syntax elements 0, 1, N (N ∈ N ′), a. (a ∈ Aτ) and
+ of the definition above, then we get so-called linear recursive specifications.

That is, in a linear recursive specification, we do not use sequential composition,
parallel composition, encapsulation and abstraction.

Every linear recursive specification, according to the operational rules, gener-
ates a finite automaton, and conversely, every finite automaton can be specified,
up to isomorphism, by a linear recursive specification. We illustrate the con-
struction with an example.

S T

U

V

a

b
a

a

a

Fig. 3. Example automaton

Consider the automaton depicted in Figure 3. Note that we have labeled each
state of the automaton with a unique name; we are going to define a recursive
specification E over the finite set of names thus associated with the states of the
automaton. We define each of the names with an equation, in such a way that
the labeled transition system TE(S) generated by the operational semantics in
Table 1 is isomorphic (so certainly divergence-preserving branching bisimilar)
with the automaton in Figure 3.

10 J.C.M. Baeten, B. Luttik, and P. van Tilburg

The recursive specification for the finite automaton in Figure 3 is:

S
def
= a.T, T

def
= a.U + b.V, U

def
= a.V + 1, V

def
= 0.

This result can be viewed as the process-theoretic counterpart of the result from
the theory of automata and formal languages that states that every language
accepted by a finite automaton is generated by a so-called right-linear grammar.
There is no reasonable process-theoretic counterpart of the similar result in the
theory of automata and formal languages that every language accepted by a
finite automaton is generated by a left-linear grammar. If we use action postfix
instead of action prefix, then on the one hand not every finite automaton can
be specified, and on the other hand, by means of a simple recursive equation we
can specify an infinite transition system (see [3]).

We conclude that the classes of processes defined by right-linear and left-linear
grammars do not coincide.

4 Pushdown and Context-Free Processes

As an intermediate between the notions of finite automaton and Turing machine,
the theory of automata and formal languages treats the notion of pushdown au-
tomaton, which is a finite automaton with a stack as memory. Several definitions
of the notion appear in the literature, which are all equivalent in the sense that
they accept the same languages.

Definition 5 (Pushdown automaton). A pushdown automaton M is defined
as a sixtuple (S,A,D,→, ↑, ↓) where:

1. S a finite set of states,
2. A is a finite action alphabet,
3. D is a finite data alphabet, and ∅ �∈ D is a special symbol denoting an empty

stack,
4. → ⊆ S×Aτ ×(D∪{∅})×D∗×S is an Aτ ×(D∪{∅})×D∗-labeled transition

relation on S,
5. ↑ ∈ S is the initial state, and
6. ↓ ⊆ S is the set of final states.

If (s, a, d, δ, t) ∈ →, we write s
a[d/δ]−−−−→ t.

The pair of a state together with particular stack contents will be referred to as

the configuration of a pushdown automaton. Intuitively, a transition s
a[d/δ]−−−−→ t

(with a ∈ A) means that the automaton, when it is in a configuration consisting
of a state s and a stack with the datum d on top, can execute a, replace d by

the string δ and move to state t. Likewise, writing s
a[∅/δ]−−−−→ t means that the

automaton, when it is in state s and the stack is empty, can consume input
symbol a, put the string δ on the stack, and move to state t. Transitions of

Turing Meets Milner 11

the form s
τ [d/δ]−−−−→ t or s

τ [∅/δ]−−−−→ t do not entail the consumption of an input
symbol, but just modify the stack contents.

When considering a pushdown automaton as a language acceptor, it is gener-
ally assumed that it starts in its initial state with an empty stack. A computation
consists of repeatedly consuming input symbols (or just modifying stack contents
without consuming input symbols). When it comes to determining whether or
not to accept an input string there are two approaches: “acceptance by final
state” (FS) and “acceptance by empty stack” (ES). The first approach accepts
a string if the pushdown automaton can move to a configuration with a final
state by consuming the string, ignoring the contents of the stack in this configu-
ration. The second approach accepts the string if the pushdown automaton can
move to a configuration with an empty stack, ignoring whether the state of this
configuration is final or not. These approaches are equivalent from a language-
theoretic point of view, but not from a process-theoretic point of view. We also
have a third approach in which a configuration is terminating if it consists of a
terminating state and an empty stack (FSES). We note that, from a process-
theoretic point of view, the ES and FSES approaches lead to the same notion
of pushdown process, whereas the FS approach leads to a different notion. We
choose the FS approach here, as this gives us more flexibility, allows us to define
more pushdown processes. For further details, see [3,23].

Definition 6. Let M = (S,A,D,→, ↑, ↓) be a pushdown automaton. The labeled
transition system T (M) associated with M is defined as follows:

1. the set of states of T (M) is S × D∗;
2. the transition relation of T (M) satisfies

(a) (s, dζ)
a−−→(t, δζ) iff s

a[d/δ]−−−−→ t for all s, t ∈ S, a ∈ Aτ , d ∈ D, δ, ζ ∈ D∗,
and

(b) (s, ε)
a−−→ (t, δ) iff s

a[∅/δ]−−−−→ t;
3. the initial state of T (M) is (↑, ε); and
4. the set of final states is {(s, ζ) | s↓, ζ ∈ D∗}.

This definition now gives us the notions of pushdown language and pushdown
process: a pushdown language is the language of the transition system associated
with a pushdown automaton, and a pushdown process is a divergence-preserving
branching bisimilarity class of labeled transition systems containing a labeled
transition system associated with a pushdown automaton.

s t u v
a[∅/1]

a[1/11]

b[1/ε]

b[1/ε]

τ [∅/ε]

Fig. 4. Example pushdown automaton

12 J.C.M. Baeten, B. Luttik, and P. van Tilburg

(s, ε) (t, 1) (t, 11) (t, 111)

(v, ε) (u, ε) (u, 1) (u, 11)

a a a

b b b

bbτ

a

b

Fig. 5. A pushdown process

As an example, the pushdown automaton in Figure 4 defines the infinite
transition system in Figure 5, that accepts the language {anbn | n ≥ 0}.

Context-free grammars. We shall now consider the process-theoretic version of
the standard result in the theory of automata and formal languages that the set
of pushdown languages coincides with the set of languages generated by context-
free grammars. As the process-theoretic counterparts of context-free grammars
we shall consider so-called sequential recursive specifications in which only the
constructions 0, 1, N (N ∈ N ′), a. (a ∈ Aτ), · and + occur, so adding
sequential composition to linear recursive specifications.

Sequential recursive specifications can be used to specify pushdown processes.
To give an example, the process expression X defined in the sequential recursive
specification

X
def
= 1+ a.X · b.1

has a labeled transition system that is divergence-preserving branching bisimilar
to the one in Figure 5, which is associated with the pushdown automaton in
Figure 4.

The notion of a sequential recursive specification naturally corresponds with
with the notion of context-free grammar: for every pushdown automaton there
exists a sequential recursive specification such that their transition systems
are language equivalent, and, vice versa, for every sequential recursive speci-
fication there exists a pushdown automaton such that their transition systems
are language equivalent. A similar result with language equivalence replaced by
divergence-preserving branching bisimilarity does not hold. There are pushdown
processes that are not recursively definable by a sequential recursive specifi-
cation, and also there are sequential recursive specifications that define non-
pushdown processes. Extra restrictions are necessary in order to retrieve the
desired equivalence, see [3,23]. Here, we limit ourselves by just giving examples
illustrating the difficulties involved.

Consider the pushdown automaton in Figure 6, which generates the transi-
tion system shown in Figure 7 (omitting the τ -step, this preserves divergence-
preserving branching bisimilarity). In [20], Moller proved that this transition
system cannot be defined with a BPA recursive specification, where BPA is the
restriction of sequential recursive specifications by omitting the τ -prefix and the

Turing Meets Milner 13

c[∅/ε]
c[1/1]

b[1/ε] b[1/ε]

a[∅/1]
a[1/11]

τ [∅/ε]

Fig. 6. Pushdown automaton that does not have a sequential recursive specification

c c c c

bbb b

a a a

bbb

a

b

Fig. 7. Transition system of automaton of Figure 6

constant 0 and by disallowing 1 to occur as a summand in a nontrivial alter-
native composition. Moller’s proof can be modified to show that the transition
system is not definable with a sequential recursive specification either. We con-
clude that not every pushdown process is definable with a sequential recursive
specification.

Another example of a pushdown automaton that does not have a sequential
recursive specification is the stack itself, used as memory in the definition of a
pushdown automaton. The stack can be modeled as a pushdown process, in fact
(as we will see shortly) it can be considered the prototypical pushdown process.
Given a finite nonempty data set D, the stack Stio has an input channel i over
which it can receive elements of D and an output channel o over which it can
signal that it is empty, and send elements of D. The stack process is given by
a pushdown automaton with one state ↑ (which is both initial and final) and

transitions ↑ i?d[∅/d]−−−−−−→ ↑, ↑ i?d[e/de]−−−−−−→ ↑, and ↑ o!∅[∅/ε]−−−−−→ ↑, ↑ o!d[d/ε]−−−−−−→ ↑ for all
d, e ∈ D. As the transition system generated by this pushdown automaton has
infinitely many final states that are not branching bisimilar (as we are using FS
termination), it can be shown there is no sequential recursive specification for
it. If we allow termination only when the stack is empty, then we can find the
following sequential recursive specification:

S
def
= 1+ o!∅.1+

∑
d∈D

i?d.T · o!d.S T
def
= 1+

∑
d∈D

i?d.T · o!d.T.

Conversely, not every sequential recursive specification defines a pushdown pro-

cess. To give an example, the sequential recursive equationX
def
= X ·a.1 generates

an infinitely branching transition system, which can only be given a pushdown

14 J.C.M. Baeten, B. Luttik, and P. van Tilburg

automaton at the cost of introducing divergencies. This infinite branching is due
to the unguardedness of the equation, but even guarded sequential recursive
specifications do not always define a pushdown process. To give an example,
consider the following recursive specification:

X
def
= a.X · Y + b.1, Y

def
= 1+ c.1.

The labeled transition system associated with X , which is depicted in
Figure 8, has finite but unbounded branching. We claim this cannot be a push-
down process.

X X · Y X · Y 2 X · Y 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

Fig. 8. Process with unbounded branching

Because of these difficulties with the correspondence between pushdown pro-
cesses and sequential recursive specifications, we consider another type of gram-
mar for pushdown processes. This type of grammar includes a specification for
the stack process Stio defined above (that can terminate irrespective of the
contents) as a standard component. We present a specification for it in our full
process theory, only sequential composition and iteration are not used (see [23,6])

We start out from the observation that an unbounded stack can be seen as a
buffer of capacity one (for the top of the stack) communicating with a copy of
the unbounded stack. An unbounded stack with input port i and output port o
is equal to a regular Top process with external input i, internal input j, external
output o, internal output p, communicating with an unbounded stack with input
port j and output port p. See Figure 9.

Topio
jp∅ Stjp

i

o

j

p

Fig. 9. Intuition for specification of always terminating stack
.

In a formula, we want to achieve

St io ↔Δ
b τjp(∂jp(Top

io
jp∅ ‖ Stjp)).

Turing Meets Milner 15

In turn, the stack with input j and output p will satisfy

Stjp ↔Δ
b τio(∂io(Top

jp
io ∅ ‖ St io)).

We do this by the following specification ESt over names St io and St jp, with
auxiliary variables Topiojp∅, Top

jp
io ∅ and Topiojpd, Top

jp
io d for every d ∈ D:

St io
def
= 1+ o!∅.St io +

∑
d∈D

i?d.τjp(∂jp(Top
io
jpd ‖ Stjp))

Stjp
def
= 1+ p!∅.Stjp +

∑
d∈D

j?d.τio(∂io(Top
jp
io d ‖ St io))

Topiojp∅
def
= 1+ o!∅.Topiojp∅+

∑
d∈D

i?d.Topiojpd

Topjpio ∅
def
= 1+ p!∅.Topjpio ∅+

∑
d∈D

j?d.Topjpio d

Topiojpd
def
= 1+ o!d.(p?∅.Topiojp∅+

∑
e∈D

p?e.Topiojpe) +
∑
f∈D

i?f.j!d.Topiojpf

Topjpio d
def
= 1+ p!d.(o?∅.Topjpio ∅+

∑
e∈D

o?e.Topjpio e) +
∑
f∈D

j?f.i!d.Topjpio f

The last two equations occur for every d ∈ D. Notice that the subspecification
of the Top processes define these as regular processes.

On the basis of this specification, the divergence-preserving branching bisim-
ilarities above are straightforward to prove.

The stack process can be used to make the interaction between control and
memory in a pushdown automaton explicit [19,4]. This is illustrated by the
following theorem, stating that every pushdown process is equal to a regular
process interacting with a stack.

Theorem 1. For every pushdown automaton M there exists a regular process
expression p and a linear recursive specification E, and for every regular pro-
cess expression p and linear recursive specification E there exists a pushdown
automaton M such that

T (M) ↔b TE∪ESt(τi,o(∂i,o(p ‖ St io))) .

5 Computable Processes

We proceed to give a definition of a Turing machine that can interact. The
classical definition of a Turing machine uses the memory tape to hold the input
string at system start up. Staying true to the principle that all interaction with
the device should be modeled explicitly, we do not want to fix the input string
beforehand, but want to be able to input symbols one at a time.

Definition 7 (Reactive Turing Machine). A Reactive Turing Machine M
is defined as a six-tuple (S,A,D,→, ↑, ↓) where:

16 J.C.M. Baeten, B. Luttik, and P. van Tilburg

1. S is a finite set of states,
2. A is a finite action alphabet, Aτ also includes the silent step τ ,
3. D is a finite data alphabet, we add a special symbol � standing for a blank

and put D� = D ∪ {�},
4. → ⊆ S ×Aτ ×D� ×D� ×{L,R}×S is a finite set of transitions or steps,
5. ↑ ∈ S is the initial state,
6. ↓ ⊆ S is the set of final states.

If (s, a, d, e,M, t) ∈ →, we write s
a[d/e]M−−−−−−→ t, and this means that the machine,

when it is in state s and reading symbol d on the tape, will execute input action
a, change the symbol on the tape to e, will move one step left if M = L and
right if M = R and thereby move to state t. It is also possible that d and/or
e is �: if d is �, then, intuitively, the reading head is looking at an empty cell
on the tape and writes e; if e is � (and d is not), then d is erased, leaving an
empty cell. At the start of a Turing machine computation, we will assume the
Turing machine is in the initial state, and that the memory tape is empty (only
contains blanks). The action alphabet A is used for input and output actions,
and τ -labeled steps are internal steps (steps of a classical Turing machine).

By looking at all possible executions, we can define the transition system of
a Turing machine. The states of this transition system are the configurations of
the Reactive Turing Machine, consisting of a state, the current tape contents,
and the position of the read/write head. We represent the tape contents by an
element of D∗

�
, replacing exactly one occurrence of a type symbol d by a marked

symbol d̄, indicating that the read/write head is on that symbol. We denote by
D̄� = {d̄ | d ∈ D�} the set of marked tape symbols; a tape instance is a sequence
δ ∈ (D� ∪ D̄�) such that δ contains exactly one element of D̄�.

A tape instance thus is a finite sequence of symbols that represents the con-
tents of a two-way infinite tape. We do not distinguish between tape instances
that are equal modulo the addition or removal of extra occurrences of a blank at
the left or right extremes of the sequence. The set of configurations of a Reactive
Turing Machine now consists of pairs of a state and a tape instance. In order
to concisely describe the semantics of a Reactive Turing Machine in terms of
transition systems on configurations, we use some additional notation.

If δ ∈ D�, then δ̄ is the tape instance obtained by placing the marker on
the right-most symbol of δ if this exists, and is �̄ otherwise. Likewise, δ̄ is the
tape instance obtained by placing the marker on the left-most symbol of δ if this
exists, and is �̄ otherwise.

Definition 8. Let M = (S,A,D,→, ↑, ↓) be a Reactive Turing Machine. The
labeled transition system of M , T (M), is defined as follows:

1. The set of states is the set of configurations {(s, δ) | s ∈ S, δ a tape instance}.
2. The transition relation → is the least relation satisfying, for all a ∈ Aτ , d, e ∈

D�, δ, ζ ∈ D∗
�
:

– (s, δd̄ζ)
a−−→ (t, δ̄ eζ) iff s

a[d/e]L−−−−−→ t,

– (s, δd̄ζ)
a−−→ (t, δē ζ) iff s

a[d/e]R−−−−−→ t.

Turing Meets Milner 17

3. The initial state is (↑, �̄);
4. (s, δ) ↓ iff s ↓.

Now we define an executable process as the divergence-preserving branching
bisimulation equivalence class of a transition system of a Reactive Turing
Machine.

As an example of a Reactive Turing Machine, we define the (first-in first-out)
queue over a data set D. It has the initial and final state at the head of the
queue. There, output of the value at the head can be given, after which one
move to the left occurs. If an input comes, then the position travels to the left
until a free position is reached, where the value input is stored, after which the
position travels to the right until the head is reached again. We show the Turing
machine in Figure 10 in case D = {0, 1}. A label containing an n, like τ [n/n]L
means there are two labels τ [0/0]L and τ [1/1]L.

The queue process is an executable process, but not a pushdown process.

i?0[n/n]L

o!n[n/�]L

i?1[n/n]L

τ [n/n]L

τ [n/n]L τ [n/n]R

τ [�/0]R

τ [�/1]R

τ [�/�]L

i?n[�/n]R

Fig. 10. Reactive Turing Machine for the FIFO queue

A transition system is computable if it is finitely branching and there is a
coding of the states such that the set of final states is decidable, and for each
state, the set of its outgoing transitions can be computed. The following results
are in [8]. First of all, it is easy to see that the transition system defined by a
Reactive Turing Machine is computable.

Theorem 2. Every boundedly branching computable transition system is
executable.

Theorem 3. The parallel composition of two executable transition systems is
again executable.

18 J.C.M. Baeten, B. Luttik, and P. van Tilburg

Theorem 4. For each n, Reactive Turing Machine exists, that is universal for
all Reactive Turing Machines that have a transition system with branching degree
bounded by n.

A truly universal Reactive Turing Machine can only be achieved at the cost of
introducing divergencies.

As in the case of the pushdown automaton, we can make the interaction
between the finite control and the memory explicit, and turn this into a recursive
specification.

Theorem 5. For every Reactive Turing Machine M there exists a regular pro-
cess expression p and a linear recursive specification E such that

T (M) ↔Δ
b TE∪EQ(τi,o(∂i,o(p ‖ Qio))) .

In this theorem, we use the queue process as defined above, and its specification
EQ to be defined next. By putting a finite control in parallel with a queue,
we can simulate the tape process of a Reactive Turing Machine. The control of
the Turing machine together with this control, can be specified as a finite-state
process. Instead of the queue process, we could have used two stacks, or have
given a direct specification of the tape process.

We finish by giving a finite recursive specification EQ for a queue with input
channel i and output channel o, Qio (see [23,6]). It follows the same pattern as
the one for the stack in Figure 9: a queue with input port i and output port o is
the same as the queue with input port i and output port 	 communicating with
a regular head process with input 	 and output o. See Figure 11.

Q i� H �oi o�

Fig. 11. Intuition for specification of always terminating queue
.

In a formula, we want to achieve

Q io ↔Δ
b τ�(∂�(Q

i� ‖ H �o)).

In turn, the queue with input i and output 	 will satisfy

Q i� ↔Δ
b τo(∂o(Q

io ‖ H o�)).

We do this by the following specification over names Q io and Q i�, with auxiliary
variables H �o and H o�, where the Head processes are just always terminating
one place buffers:

Turing Meets Milner 19

Q io
def
= 1+

∑
d∈D

i?d.τ�(∂�(Q
i� ‖ (1+ o!d.H �o)))

Q i�
def
= 1+

∑
d∈D

i?d.τo(∂o(Q
io ‖ (1+ 	!d.H o�)))

H �o def
= 1+

∑
e∈D

	?e.(1+ o!e.H �o)

H o� def
= 1+

∑
e∈D

o?e.(1+ 	!e.H o�).

Now, the theorem above implies that recursive specifications over our syntax
(even omitting sequential composition and iteration) constitute a grammar for
all executable processes. The queue is shown to be a prototypical executable
process.

6 Conclusion

We discussed in this paper the notion of an execution, that enhances a compu-
tation by taking interaction into account. We did this by marrying computabil-
ity theory, moving up from finite automata through pushdown automata to
Turing machines, with concurrency theory, not using language equivalence but
divergence-preserving branching bisimilarity on automata.

Every undergraduate curriculum in computer science contains a course on
automata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency
theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing, see [6]. This paper
provides a glimpse of what happens to the Chomsky hierarchy in a concurrency
setting, taking a labeled transition system as a central notion, and dividing out
bisimulation semantics on such transition systems.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories
of Communicating Processes). Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press (2009)

2. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular
expressions under bisimulation. Journal of the ACM 54(2), 6.1–6.28 (2007)

20 J.C.M. Baeten, B. Luttik, and P. van Tilburg

3. Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A.: A Process-
Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 1–33. Springer, Heidelberg (2010)

4. Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A Context-Free Process as
a Pushdown Automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)

5. Baeten, J., Luttik, B., Muller, T., van Tilburg, P.: Expressiveness modulo bisim-
ilarity of regular expressions with parallel composition (extended abstract). In:
Fröschle, S., Valencia, F.D. (eds.) Proceedings EXPRESS 2010. EPTCS, vol. 41,
pp. 1–15 (2010)

6. Baeten, J.C.M.: Models of Computation: Automata, Formal Languages and Com-
municating Processes. Technische Universiteit Eindhoven (2011), Syllabus 2IT15

7. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Computations and Interaction. In:
Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536, pp. 35–54. Springer,
Heidelberg (2011)

8. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Reactive Turing Machines. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 348–359. Springer,
Heidelberg (2011)

9. Basten, T.: Branching bisimilarity is an equivalence indeed! Information Processing
Letters 58(3), 141–147 (1996)

10. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms, ii. ACM Trans.
Comput. Log. 8(3) (2007)

11. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms, iii. ACM Trans.
Comput. Log. 8(3) (2007)

12. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algo-
rithms i: Axiomatization. Logical Methods in Computer Science 3(4) (2007)

13. van Glabbeek, R.J.: What is Branching Time Semantics and why to use it? Bulletin
of the EATCS 53, 190–198 (1994)

14. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching bisimilarity with explicit
divergence. Fundamenta Informaticae 93(4), 371–392 (2009)

15. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
17. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer (1980)
18. Milner, R.: A complete inference system for a class of regular behaviours. Journal

of Comput. System Sci. 28(3), 439–466 (1984)
19. Milner, R.: Elements of interaction. Communications of the ACM 36(1), 78–89

(1993)
20. Moller, F.: Infinite Results. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996.

LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)
21. Park, D.M.R.: Concurrency and Automata on Infinite Sequences. In: Deussen, P.

(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
22. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.

Program. 60-61, 17–139 (2004)
23. van Tilburg, P.J.A.: From Computability to Executability (A Process-Theoretic

View on Automata Theory). PhD thesis, Eindhoven University of Technology
(2011)

24. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265
(1936)

Concurrency and the Algebraic Theory of Effects

(Abstract)

Gordon D. Plotkin

LFCS, School of Informatics, University of Edinburgh
gdp@inf.ed.ac.uk

The algebraic theory of effects [7,8,4] continues Moggi’s monadic approach to
effects [5,6,1] by concentrating on a particular class of monads: the algebraic ones,
that is, the free algebra monads of given equational theories. The operations of
such equational theories can be thought of as effect constructors, as it is they
that give rise to effects. Examples include exceptions (when the theory is that of
a set of constants with no axioms), nondeterminism (when the theory could be
that of a semilattice, for nondeterminism, with a zero, for deadlock), and action
(when the theory could be a set of unary operations with no axioms).

Two natural, apparently unrelated, questions arise: how can exception han-
dlers and how can concurrency combinators be incorporated into this picture?
For the first, in previous work with Pretnar [9], we showed how free algebras
give rise to a natural notion of computation handling, generalising Benton and
Kennedy’s exception handling construct. The idea is that the action of a unary
deconstructor on a computation (identified as an element of a free algebra) is the
application to it of a homomorphism, with the homomorphism being obtained
via the universal characterisation of the free algebra. This can be thought of as
an account of unary effect deconstructors.

In general, such unary deconstructors can be defined using parameters, and si-
multaneously defined unary deconstructors are also possible. The more complex
definitions are reduced to the simple homomorphic ones by using homomor-
phisms to power and product algebras. This is entirely analogous to treatments
of (simultaneous) primitive recursion on natural numbers, or of structural recur-
sion on lists.

For the second, turning to, for example, CCS, the evident theory, at least for
strong bisimulation, is that of nondeterminism plus action. Then restriction and
relabelling are straightforwardly dealt with as unary deconstructors. However
the concurrency combinator is naturally thought of as a binary deconstructor
and the question arises as to how, if at all, one might understand it, and similar
binary operators, in terms of homomorphisms. This question was already posed
in [9] in the cases of the CCS concurrency and the Unix pipe combinators. In
addition, a treatment of CSP in terms of constructors and deconstructors was
given in [10], but again still leaving open the question of how to treat concurrency.

Following an idea found in the ACP literature [2], concurrency combinators
can generally be split into a sum of left and right combinators, according to
which of their arguments’ actions occur first. This leads to a natural simulta-
neous recursive definition of the left and right combinators, with a symmetry

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 21–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 G.D. Plotkin

between recursion variables and parameters; however the definition is not in the
form required for unary deconstructors. We give a general theory of such binary
deconstructors, in which solutions to the equations are found by breaking the
symmetry and defining unary deconstructors with higher-order parameters.1 The
theory applies to CCS and other process calculi, as well as to shared memory par-
allelism. In this way we demonstrate a possibility: that the monadic approach,
which has always included (algebraic) monads for interaction and for shared
variable parallelism—see [1,3,4]—can be fruitfully integrated with the world of
concurrency.

References

1. Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theor. Comput. Sci. 37, 77–121 (1985)

3. Cenciarelli, P., Moggi, E.: A syntactic approach to modularity in denotational
semantics. In: Proc. 5th. Biennial Meeting on Category Theory and Computer
Science. CWI Technical report (1993)

4. Hyland, M., Plotkin, G., Power, J̇.: Combining effects: sum and tensor. Theor.
Comput. Science 357(1-3), 70–99 (2006)

5. Moggi, E.: Computational lambda-calculus and monads. In: Proc. 4th. LICS,
pp. 14–23. IEEE Press (1989)

6. Moggi, E.: Notions of computation and monads. Inf. and Comp. 93(1), 55–92 (1991)
7. Plotkin, G., Power, J.: Notions of Computation Determine Monads. In: Nielsen,

M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

8. Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Categor.
Struct. 11(1), 69–94 (2003)

9. Plotkin, G., Pretnar, M.: Handlers of Algebraic Effects. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)

10. van Glabbeek, R., Plotkin, G.: On CSP and the algebraic theory of effects. In:
Jones, C.B., Roscoe, A.W., Wood, K.R. (eds.) Reflections on the work of C.A.R.
Hoare, pp. 333–370. Springer (2010)

1 The idea was also found independently by both Alex Simpson and Paul Levy.

A Turing Enigma

Brian Randell

School of Computing Science
Newcastle University

Newcastle upon Tyne, NE1 7RU
United Kingdom

Brian.Randell@ncl.ac.uk

Abstract. I describe my investigations into the highly-secret role that Alan Tur-
ing played during World War II, after his pre-war theoretical work on computabil-
ity and the concept of a universal machine, in the development of the world’s first
electronic computers. These investigations resulted in my obtaining and publish-
ing, in 1972, some limited information about Turing’s contributions to the work
on code-breaking machines at Bletchley Park, the fore-runner of the UK Gov-
ernment Communications Headquarters (GCHQ). Some years later I was able to
obtain permission to compile and publish the first officially-authorised account of
the work, led by T.H. (Tommy) Flowers at the Post Office Dollis Hill Research
Station, on the construction of a series of special purpose electronic computers
for Bletchley Park, computers that made a vital contribution to the Allied war
effort.

Keywords: Alan Turing, Tommy Flowers, Enigma, Colossus, Bletchley Park.

1 Introduction

There are many who are far better equipped than I am to speak of the various aspects
of the late great Alan Turing’s scientific career that are of direct technical relevance to
the CONCUR community. Instead, at the conference organisers’ request, in this year in
which the hundredth anniversary of his birth is being celebrated, I am going to tell you
of a historical investigation that I undertook some forty years ago into the then complete
mystery of what Alan Turing had worked on, in great secrecy, during World War II.

In about 1971 my growing interest in the history of computing led to my assembling,
with a view to publishing in book form, a representative set of papers and reports docu-
menting the many fascinating inventions and projects that eventually culminated in the
development of the “modern” electronic computer,

I took Charles Babbage’s work as my main starting point, and decided on a cut-
off date of 1949, when the first practical stored program electronic computer became
operational. So I planned on including material on ENIAC, EDVAC, the Manchester
“Baby” machine, and the Cambridge EDSAC, but decided to leave coverage of all the
many subsequent machines to other would-be computer historians.

I circulated a list of my planned set of documents to a number of colleagues for
comment – one of the responses I received queried the absence of Alan Turing from my
list. My excuse was that, to the best of my knowledge, Turing’s work on computers at

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 23–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

24 B. Randell

the National Physical Laboratory (NPL) had post-dated Manchester’s and Cambridge’s
successful efforts, and that his pre-war work on computability, in which he described
what we now call a Turing Machine, was purely theoretical, and so fell outside the
chosen scope of my collection.

I had first become interested in computers in 1956 in my last year at Imperial College.
There weren’t many books on computers at that time – one was Faster than Thought [1].
My 1955 copy of this book was probably my first source of knowledge about both Bab-
bage and Turing, and indeed about the work of the various early UK computer projects,
though soon afterwards I had learned much more about Babbage, and his collabora-
tion with Lady Lovelace, from the excellent Dover paperback Charles Babbage and his
Calculating Engines [13]. In Bowden I had read:

“The basic concepts and abstract principles of computation by a machine were
formulated by Dr. A.M. Turing, F.R.S. in a paper read before the London Math-
ematical Society in 1936, but work on such machines in Britain was delayed
by the war. In 1945, however, an examination of the problems was made at the
National Physical Laboratory by Mr. J.R. Womersley, then Superintendent of
the Mathematics Division of the Laboratory. He was joined by Dr. Turing and
a small staff of specialists . . . ”

However, piqued by the query about my having omitted Turing from my envisaged
collection, I set out to try to find out more about Turing’s work during the interval 1936-
1945. I obtained a copy of the 1959 biography by his mother, Mrs Sara Turing [26], to
find that its only indication of what her son had done during World War II was the
following:

“ . . . immediately on the declaration of war he was taken on as a Tempo-
rary Civil Servant in the Foreign Office, in the Department of Communica-
tions . . . At first even his whereabouts were kept secret, but later it was divulged
that he was working at Bletchley Park, Bletchley. No hint was ever given of the
nature of his secret work, nor has it ever been revealed.”

In fact by this time I had learned somehow that his wartime work had related to code-
breaking, though neither I nor any of my colleagues were familiar with the name Bletch-
ley Park. On rechecking my copy of David Kahn’s magnificent tome The Codebreak-
ers [10] I found Kahn’s statement that Bletchley Park was what the Foreign Office “eu-
phemistically called its Department of Communications”, i.e. was the centre of Britain’s
wartime code-breaking efforts. However Kahn gave little information about what was
done at Bletchley Park, and made no mention of Turing.

At about this stage I came across the following statement by Lord Halsbury [6]:

“One of the most important events in the evolution of the modern computer was
a meeting of two minds which cross-fertilised one another at a critical epoch
in the technological development which they exploited. I refer of course to the
meeting of the late Doctors Turing and von Neumann during the war, and all
that came thereof . . . ”

A Turing Enigma 25

I wrote to Lord Halsbury, who in 1949 was Managing Director of the National Re-
search Development Corporation, the UK government body that had provided financial
support to several of the early UK computer projects. Unfortunately he could not recol-
lect the source of his information, his response (quoted in [16]) to my query being:

“I am afraid I cannot tell you more about the meeting between Turing and von
Neumann except that they met and sparked one another off. Each had, as it
were, half the picture in his head and the two halves came together during the
course of their meeting. I believe both were working on the mathematics of the
atomic bomb project.”

Inquiries of those of Turing’s colleagues who were still at NPL produced little, but
Donald Davies, who was then Superintendent of the Division of Computing Science
at NPL, arranged for me to visit Mrs Turing. She was very helpful and furnished me
with several further leads, but was not really able to add much to the very brief, and
unspecific, comments in her book.

Various other leads proved fruitless, and my enthusiasm for the search was beginning
to wane. I eventually had the opportunity to inspect a copy of Turing’s report giving
detailed plans for the ACE [25]. This proved to postdate, and even contain a reference
to, von Neumann’s First Draft of a Report on the EDVAC [14] so I did not examine it
as carefully as I later realised I should have. However, I did note that Turing’s report
alluded to the fact that he had obtained much experience of electronic circuits.

2 Secret Wartime Computers

But then my investigation took a dramatic turn.
I had written to a number of people, seeking to understand more fully whether and

if so how Turing had contributed to the initial development of practical stored program
computers. One of my enquiries — to Donald Michie — elicited the following response
(quoted in [16]) :

“I believe that Lord Halsbury is right about the von Neumann-Turing meet-
ing The implication of Newman’s obituary notice, as you quote it1, is
quite misleading; but it depends a bit on what one means by: a ‘computer’.
If we restrict this to mean a stored-program digital machine, then Newman’s
implication is fair, because no-one conceived this device (apart from Babbage)
until Eckert and Mauchly (sometimes attributed to von Neumann). But if one
just means high-speed electronic digital computers, then Turing among others
was thoroughly familiar during the war with such equipment, which predated
ENIAC (itself not a stored-program machine) by a matter of years.”

1 The obituary notice for Turing [15], written by Professor M.H.A. Newman, who was associ-
ated with the post-war computer developments at Manchester University, stated that:

“At the end of the war many circumstances combined to turn his attention to the new
automatic computing machines. They were in principle realisations of the ‘universal
machine’ which he had described in the 1937 paper for the purpose of a logical argu-
ment, though their designers did not yet know of Turing’s work.”

26 B. Randell

I then found that there had in fact already been several (rather obscure) references in
the open literature to the work at Bletchley Park with which Turing was associated,
of which the most startling was a paper by I.J. (Jack) Good [5]. This gave a listing of
successive generations of general purpose computers, including:

“Cryptanalytic (British): classified, electronic, calculated complicated Boolean
functions involving up to about 100 symbols, binary circuitry, electronic clock,
plugged and switched programs, punched paper tape for data input, typewriter
output, pulse repetition frequency 105, about 1000 gas-filled tubes; 1943 (M.H.A.
Newman, D. Michie, I.J. Good and M. Flowers. Newman was inspired by his
knowledge of Turing’s 1936 paper).” [(Tommy) Flowers’ initials were in fact
“T.H.”]

Furthermore Good’s paper went on to claim that there was a causal chain leading from
Turing’s 1936 paper [24] through the wartime cryptanalytic machine, to the first Manch-
ester computers, although it states that the main influence was from von Neumann’s
plans for the IAS machine (at Princeton University’s Institute for Advanced Study).

Further details of Turing’s role, and the war-time code-breaking machines, were pro-
vided in a letter I received from Tommy Flowers (quoted in [16]):

“In our war-time association, Turing and others provided the requirements for
machines which were top secret and have never been declassified. What I can
say about them is that they were electronic (which at that time was unique
and anticipated the ENIAC), with electromechanical input and output. They
were digital machines with wired programs. Wires on tags were used for semi-
permanent memories, and thermionic valve bi-stable circuits for temporary
memory. For one purpose we did in fact provide for variable programming
by means of lever keys which controlled gates which could be connected in
series and parallel as required, but of course the scope of the programming was
very limited. The value of the work I am sure to engineers like myself and
possibly to mathematicians like Alan Turing, was that we acquired a new un-
derstanding of and familiarity with logical switching and processing because
of the enhanced possibilities brought about by electronic technologies which
we ourselves developed. Thus when stored program computers became known
to us we were able to go right ahead with their development. It was lack of
funds which finally stopped us, not lack of know-how.”

Another person whom I had contacted in an effort to check the story of the Turing/von
Neumann meeting was Dr S. Frankel, who had known von Neumann whilst working at
Los Alamos. Although unable to help in this matter, he provided further evidence of the
influence of Turing’s pre-war work (quoted in [16]):

“I know that in or about 1943 or ‘44 von Neumann was well aware of the fun-
damental importance of Turing’s paper of 1936 ‘On computable numbers . . . ’
which describes in principle the ‘Universal Computer’ of which every modern
computer (perhaps not ENIAC as first completed but certainly all later ones)
is a realization. Von Neumann introduced me to that paper and at his urging I
studied it with care.”

A Turing Enigma 27

By now I realised that I was onto a very big story indeed, and that I had been very wrong
to omit Turing’s name from the list of pioneers whose work should be covered in my
planned collection of documents on the origins of digital computers.

I prepared a confidential draft account of my investigation, which I sent to each of
the people who I had quoted, for their comments and to obtain permission to publish
what they had told me, and in the hope that my draft might prompt yet further revela-
tions. This hope was fulfilled, when in response Donald Michie amplified his comments
considerably. The information (quoted more fully in [16]) that he provided included:

“Turing was not directly involved in the design of the Bletchley electronic ma-
chines, although he was in touch with what was going on. He was, however,
concerned in the design of electromagnetic devices used for another cryptan-
alytic purpose; the Post Office engineer responsible for the hardware side of
this work was Bill Chandler . . . First machines: The ‘Heath Robinson’ was de-
signed by Wynn Williams . . . at the Telecommunications Research Establish-
ment at Malvern, and installed in 1942/1943. All machines, whether ‘Robin-
sons’ or ‘Colossi’, were entirely automatic in operation, once started. They
could only be stopped manually! Two five-channel paper tape loops, typically
of more than 1000 characters length, were driven by pulley-drive (aluminium
pulleys) at 2000 characters/sec. A rigid shaft, with two sprocket wheels, en-
gaged the sprocket-holes of the two tapes, keeping the two in alignment. Sec-
ond crop: The ‘Colossi’ were commissioned from the Post Office, and the first
installation was made in December 1943 (the Mark 1). This was so successful
that by great exertions the first of three more orders (for a Mark 2 version) was
installed before D-day (June 6th 1944). The project was under the direction of
T.H. Flowers, and on Flowers’ promotion, A.W.M. Coombs took over the re-
sponsibility of coordinating the work. The design was jointly done by Flowers,
Coombs, S.W. Broadbent and Chandler . . . There was only one pulley-driven
tape, the data tape. Any pre-set patterns which were to be stepped through these
data were generated internally from stored component-patterns. These compo-
nents were stored as ring registers made of thyrotrons and could be set manu-
ally by plug-in pins. The data tape was driven at 5000 characters/sec, but (for
the Mark 2) by a combination of parallel operations with short-term memory
an effective speed of 25,000/sec was obtained . . . The total number of Colossi
installed and on order was about a dozen by the end of the war, of which about
10 had actually been installed.”

So now the names of these still-secret machines had become known to me, and it had
become possible for me to attempt to assess the Colossi with respect to the modern
digital computer. It seemed clear that their arithmetical, as opposed to logical, capa-
bilities were minimal, involving only counting, rather than general addition or other
operations. They did, however, have a certain amount of electronic storage, as well as
paper-tape ‘backing storage’. Although fully automatic, even to the extent of providing
printed output, they were very much special purpose machines, but within their field

28 B. Randell

of specialization the facilities provided by plug-boards and banks of switches afforded
a considerable degree of flexibility, by at least a rudimentary form of programming.
There seemed, however, no question of the Colossi being stored program computers,
and the exact sequence of developments, and patterns of influence, that led to the first
post-war British stored program computer projects remained very unclear.

At about this stage in my investigation I decided “nothing ventured nothing gained”
and wrote directly to Mr Edward Heath, the Prime Minister, urging that the UK Govern-
ment declassify Britain’s wartime electronic computer developments. In January 1972
my request was regretfully denied but Mr Heath assured me that a detailed report on the
project would be commissioned, though it would have to remain classified. (His reply
to me was for some time the only unclassified official document I knew of that in effect
admitted that Britain had built an electronic computer during World War II!)

The classified official history that the Prime Minister had commissioned following
my request was, it turns out, compiled by one of the engineers involved with Colos-
sus, Don Horwood [8]. Tony Sale recently described Horwood’s report as having been
“absolutely essential” to him when he set out in 1993 to recreate the Colossus [22].

3 The Stored Program Concept

The earliest suggestion that instructions be stored in the main computer memory, that I
knew of, was contained in von Neumann’s famous EDVAC report [14]. This describes
the various purposes for which memory capacity was needed — intermediate results,
instructions, tables of numerical constants — ending:

“The device requires a considerable memory. While it appeared that various
parts of this memory have to perform functions which differ somewhat in their
nature and considerably in their purpose, it is nevertheless tempting to treat the
entire memory as one organ, and to have its parts even as interchangeable as
possible for the various functions enumerated above.”

On the other hand, a later report by Eckert and Mauchly [4] claims that in early 1944,
prior to von Neumann’s association with the EDVAC project, they had designed a “mag-
netic calculating machine” in which the program would “be stored in exactly the same
sort of memory device as that used for numbers”.

These accounts imply that the idea of storing the program in the same memory as
that used for numerical values arose from considerations of efficient resource utiliza-
tion, and the need to fetch and decode instructions at a speed commensurate with that
of the basic computer operations. The question of who first had the idea of, and an un-
derstanding of the fundamental importance of, the full stored program concept, that is
of an extensive addressable internal memory, used for both instructions and numerical
qualities, together with the ability to program the modification of stored instructions,
has been for years a very vexed one. In particular there is no consensus regarding the
relative contributions of Eckert, Mauchly, von Neumann and Goldstine – a controversy
that I did not wish to enter into.

A Turing Enigma 29

What was indisputable was that the various papers and reports emanating from the
EDVAC group, from 1945 onwards, were a source of inspiration to computer designers
in many different countries, and played a vital part in the rapid development of the
modern computer. But Alan Turing’s role remained obscure.

The initial major goals of my investigation, which were to check out the story of a
decisive wartime meeting of von Neumann and Turing, and to establish whether Turing
had played a direct role in the development of the stored program computer concept, had
not been achieved. Instead, and perhaps more importantly, I had to my own surprise by
this stage accumulated evidence that in 1943, two to three years before ENIAC, which
hitherto had been generally accepted as having been the world’s first electronic digital
computer, became operational, a group of people directed by M.H.A. Newman and
T.H. Flowers, and with which Alan Turing was associated, had built a working special
purpose electronic digital computer, the Colossus.

I had established that this computer was developed at the Post Office’s Dollis Hill
Research Station, and installed at Bletchley Park. The Colossus, and its successors,
were in at least a limited sense ‘program-controlled’. Moreover, there were believable
claims that Turing’s classic pre-war paper on computability, a paper which is usually
regarded as being of ‘merely’ theoretical importance, was a direct influence on the
British machine’s designers, and also on von Neumann, at a time when he was becoming
involved in American computer developments.

Having obtained permission from all my informants to use the information that they
had provided to me, I and Donald Michie were keen that a summary of my investiga-
tion [16] be placed in the public domain. The vehicle we chose was his 1972 Machine
Intelligence Workshop, the proceedings of which were published by Edinburgh Univer-
sity Press.

Afterwards, I managed to persuade Donald to contribute a two page summary of
my findings, and thus at last some coverage of Turing, to my collection of historical
computer documents – a collection that was published in 1973 by Springer-Verlag as
The Origins of Digital Computers: Selected Papers [17].

4 Ultra Revelations

There things rested, and it seemed possible that it might be a long time before any-
thing more would become public about Bletchley Park, Alan Turing’s work there, or
the Colossus Project.

But then in spring 1974 the official ban on any reference to Ultra, a code name for
information obtained at Bletchley Park from decrypted German message traffic, was
relaxed somewhat, and Frederick Winterbotham’s book The Ultra Secret [27] was pub-
lished. This was the “story of how, during World War II, the highest form of intelli-
gence, obtained from the ‘breaking’ of the supposedly ‘unbreakable’ German machine
cyphers, was ‘processed’ and distributed with complete security to President Roosevelt,
Winston Churchill, and all the principal Chiefs of Staff and commanders in the field
throughout the war”. The book caused a sensation, and brought Bletchley Park, the
Enigma cipher machine, and the impact on the war of the breaking of wartime Enigma
traffic, to the general public’s attention in a very big way.

30 B. Randell

The book’s one reference to computers came in the statement, “It is no longer a
secret that the backroom boys of Bletchley used the new science of electronics to help
them . . . I am not of the computer age nor do I attempt to understand them, but early in
1940 I was ushered with great solemnity into the shrine where stood a bronze coloured
face, like some Eastern Goddess who was destined to become, the oracle of Bletchley”.
No mention was made of Alan Turing, or any of the others who I had learned were
involved with Bletchley’s code-breaking machines.

A further, even more sensational, book Bodyguard of Lies [3] then revealed more
about how the Germans had been using Enigma cipher machines, and gave some infor-
mation about the work of first the Polish cryptanalysts, and then of Turing and others at
Bletchley Park on a machine called the “Bombe” that was devised for breaking Enigma
codes. However it made no mention of computers and referred to electronics only in
connection with radar and radio; its main topic was the immense impact of all this work
on the Allies’ conduct of the war.

Emboldened by what seemed to be a rather significant change in Government pol-
icy concerning discussion of Bletchley Park’s activities, I made some enquiries as to
whether another request to declassify the Colossus Project might now have a chance of
being treated favourably. I was strongly urged not to write to the Prime Minister again
– apparently my earlier request had caused considerable waves on both sides of the
Atlantic. Instead, on the advice of David Kahn, I wrote on 4 Nov 1974 to Sir Leonard
Hooper, who David Kahn described as being the former head of GCHQ, and who was
by then an Under Secretary in the Cabinet Office, I believe with the title Co-ordinator
for Intelligence and Security. After a brief exchange of correspondence, in a letter from
Sir Leonard dated 22 May 1975 I received the welcome news that “approval had been
given for the release of some information about the equipment”, and that it was pro-
posed to release some wartime photographs of Colossus to the Public Record Office. I
was invited to come to London for discussions at the Cabinet Office. This visit occurred
on 2 July 1975.

When I arrived, somewhat nervously, in the Cabinet Office building I was escorted to
a panelled room where I met Sir Leonard Hooper, his personal assistant, and a Dr Ralph
Benjamin. (I do not recall whether it was then, or later, that I learned that Dr Benjamin
was GCHQ Chief Scientist.) I was shown the photographs, and we discussed in detail
the wording of the explanatory document.

And then I was told that the Government were willing to facilitate my interviewing
the people who had led the Colossus Project, after they had been briefed as to just what
topics they were allowed to discuss with me. This was with a view to my being allowed
to write a history of the project, providing that I would submit my account for approval
prior to publication. Needless to say I agreed.

The photographs and explanatory document were made available at the Public Record
Office (now The National Archives) on the 25th October 1975, and I had the pleasure
of sending a letter (now on display in the Turing Exhibition at Bletchley Park) to Mrs
Turing, informing her that “the Government have recently made an official release of
information which contains an explicit recognition of the importance of your son’s work
to the development of the modern computer”.

A Turing Enigma 31

During the period October-December 1975 I interviewed the leading Colossus de-
signers: Tommy Flowers (twice), Bill Chandler, Sidney Broadhurst, and Allen ‘Doc’
Coombs. I found all four of them to be delightful individuals, immensely impressive,
and amazingly modest about their achievements. All were unfailingly pleasant and help-
ful as they tried to recollect happenings at Dollis Hill and Bletchley Park. I had the fur-
ther pleasure of interviewing Max Newman and Donald Michie, and David Kahn kindly
interviewed Jack Good for me at his home in Roanoke, Virginia. I also corresponded,
in some cases quite intensively, with all these interviewees, and with a considerable
number of other people, including several of the Americans who had been stationed at
Bletchley Park.

Each interview was tape-recorded, and I had the tapes transcribed in full. The people
I interviewed and corresponded with were being asked to recall happenings of thirty
or so years earlier, and to do so without any opportunity of inspecting original files
and documents. Secrecy considerations had been paramount and had given rise to a
rigid compartmentalisation of activities. Few had any detailed knowledge of the work
of people outside their own small group. Many of them had made conscious efforts to
try and forget about their wartime work.

Piecing together all the information I thus obtained, and even establishing a reason-
ably accurate chronology, was therefore very difficult. I was greatly aided in this task by
the advice I’d read in Kenneth May’s magnificent Bibliography and Research Manual
on the History of Mathematics [12]. For example, the techniques that he described for
creating and using a set of correlated card indexes greatly helped me in sorting out a
major chronological confusion amongst my interviewees concerning the development
of the Robinson machines.

What became clear from my discussions with the Colossus designers was that their
interactions with Turing had mainly occurred on projects that preceded Colossus. My
investigation led me to summarize their and other’s attitude to him as follows (quoted
from [18]):

“Turing, clearly, was viewed with considerable awe by most of his colleagues
at Bletchley because of his evident intellect and the great originality and impor-
tance of his contributions, and by many with considerable discomfort because
his personality was so outlandish. Many people found him incomprehensible,
perhaps being intimidated by his reputation but more likely being put off by
his character and mannerisms. But all of the Post Office engineers who worked
with him say that they found him very easy to understand — Broadhurst char-
acterised him as ‘a born teacher — he could put any obscure point very well’.
Their respect for him was immense, though as Chandler said ‘the least said
about him as an engineer the better’. This point is echoed by Michie who said
‘he was intrigued by devices of every kind, whether abstract or concrete – his
friends thought it would be better if he kept to the abstract devices but that
didn’t deter him’.”

I submitted the draft of my paper on Colossus to Dr Benjamin on 12 April 1976. Sub-
sequent correspondence and discussions with Dr Benjamin and Mr Horwood led to my
incorporating a number of relatively small changes into the paper and its abstract, the

32 B. Randell

main effect of which was to remove any explicit indication that the projects I was de-
scribing were in fact related to code-breaking. I was merely allowed to say that “The
nature of the work that was undertaken at Bletchley Park during World War II is still
officially secret but statements have been appearing in published works in recent years
which strongly suggest that it included an important part of the British Government’s
cryptologic effort”. This, and the fact I was allowed to retain references to books such
as The Ultra Secret and Bodyguard of Lies, however meant that readers would be left in
little doubt as to what Turing and his colleagues had been engaged in, and the purpose
of the Robinson and Colossus machines.

5 The Outing of Colossus

The cleared paper was then submitted to the International Conference on the History of
Computing, which was held in Los Alamos in June 1976. (No attempt is made to detail
the contents of this 21,000-word paper here!)

Doc Coombs and his wife were planning to be on vacation in the States at about
the time of the conference, so to my delight he suggested that he accompany me to the
conference and I arranged for him to participate. It is fair to say that my presentation
created a sensation – how could it not, given the material I had been allowed to gather?

I have recently found that Bob Bemer has reported2 his impressions of the event:

“I was there at a very dramatic moment of the invitational International Re-
search Conference on the History of Computing, in Los Alamos . . . Among
the many that I conversed with was a medium-sized Englishman named Dr.
A.W.M. Coombs, who was so excited about something that he was literally
bouncing up and down. Not being bashful I asked (and he didn’t mind) about
the cause of his excitement, and he replied ‘You’ll know tomorrow morning
– you’ll know’. Saturday morning we regathered in the Auditorium of the
Physics Division. I sat third row from the front, a couple seats in from the
right, to get a good view of all the famous attendees. To my left in the same
row, three empty seats intervening, was the bouncy Englishman, all smiles and
laughter. In front of him, two seats to his left, was Professor Konrad Zuse . . . In
the fifth row, again to the left, was Dr. John Mauchly, of ENIAC fame. On stage
came Prof. Brian Randell, asking if anyone had ever wondered what Alan Tur-
ing had done during World War II? He then showed slides of a place called
Bletchley Park, home base of the British cryptographic services during that pe-
riod. After a while he showed us a slide of a lune-shaped aperture device he
had found in a drawer whilst rummaging around there3. Turned out it was part
of a 5000-character-per-second (!) paper tape reader. From there he went on
to tell the story of Colossus, the world’s really first electronic computer . . . I
looked at Mauchly, who had thought up until that moment that he was involved
in inventing the world’s first electronic computer. I have heard the expression

2 http://www.bobbemer.com/COLOSSUS.HTM (checked 14 May 2012).
3 In fact it was one of the Colossus team that found this aperture device, which is now on show

with some other small Colossus artefacts at Newcastle University.

A Turing Enigma 33

many times about jaws dropping, but I had really never seen it happen before.
And Zuse – with a facial expression that could have been anguish. I’ll never
know whether it was national, in that Germany lost the war in part because he
was not permitted to build his electronic computer, or if it was professional,
in that he could have taken first honors in the design of the world’s most mar-
velous tool. But my English friend was the man doing the day-to-day running
of Colossus. I saw then why he was so terribly excited. Just imagine the relief
of a man who, a third of a century later, could at last answer his children on
‘What did you do in the war, Daddy?’.”

The conference organisers hurriedly organised an additional evening session, at
which Doc Coombs and I fielded a barrage of questions from a packed audience. Doc
Coombs’ role at this session became that of adding detail to some of the events that my
paper described rather guardedly, and mine became at least in part that of endeavouring
to make sure that his splendidly ebullient character did not lead him to too many indis-
cretions. (Tommy Flowers had beforehand warned me that “in his natural exuberance
[Doc Coombs] is likely to give away too much for the Foreign Office and you should
be careful not to provoke him!”)

My paper was promptly published and circulated widely as a Newcastle University
Computing Laboratory Technical Report [18] - the proceedings of the Los Alamos con-
ference did not appear until four years later [20]. In addition, a summary version of my
paper, including all the Colossus photographs, was published in the New Scientist in
February 1977 [19], after I had also cleared this with the authorities. This version was
afterwards included in the third and final edition of my book The Origins of Digital
Computers [21] in place of the earlier two-page account by Michie.

Some time in early 1976, I believe, I became aware that BBC Television were plan-
ning the Secret War series, and that the sixth, and originally last, episode (entitled Still
Secret) was going to be about Enigma. I met with the producer of this episode, Do-
minic Flessati, told him — very guardedly — about the Colossus, and showed him the
Colossus photographs, at which he became very excited.

The result of this meeting was that Flessati revised his plans for the sixth episode in
The Secret War series, so as to cover Colossus as well as Enigma. The BBC brought
their formidable research resources to bear on the making of this episode. The Enigma
section of the episode gave extensive details of the work of the Polish cryptanalysts who
originally broke Enigma, how the Enigma worked, and how Bletchley Park made use of
a large number of machines, the so-called “bombes”, designed by Alan Turing and Gor-
don Welchman to break Enigma traffic on an industrial scale. It also took the Colossus
story on somewhat further than I had managed. For the Colossus section of Still Secret
they interviewed Tommy Flowers, Gordon Welchman, Max Newman, and Jack Good,
mainly on camera, and filmed a number of scenes at Dollis Hill and Bletchley Park, as
well as showing the official Colossus photographs.

Whereas I had had to be very guarded in my paper regarding the purpose of the
Colossus, Still Secret made it abundantly clear that Colossus was used to help break
high-level German messages sent in a telegraphic code, via a machine that it said was
called a Geheimschreiber (“secret writer”). However the machine that it described, and
whose workings it showed, was a teleprinter-based device made by Siemens & Halske.

34 B. Randell

It was in fact a number of years before this inaccurate identification of the target of the
Colossus project was corrected and it became known that the Colossus was in fact used
to help break teleprinter messages that were enciphered using a separate ciphering de-
vice (the SZ40/42 made by Lorenz AG) to which an ordinary teleprinter was connected,
rather than an enciphering teleprinter.

6 The Aftermath

The TV series was very successful when it was broadcast in early 1977. Undoubtedly
it, and the accompanying book [9] by the overall editor of the series, did much to bring
Bletchley Park, Alan Turing, the Enigma and the Colossus to public attention, though
it was some years before there was a general awareness that Colossus was not used
against Enigma, and one still occasionally sees confusion over this point.

My original query, concerning the story of a wartime meeting between Turing and
von Neumann at which the seeds of the modern computer were planted remained —
and remains — unanswered. The present general consensus, with which I tend to agree,
dismisses this as a legend. However I should mention that after my account was pub-
lished one senior US computer scientist, well-connected with the relevant authorities
there, did hint to me rather strongly that it would be worth my continuing my quest!
But nothing ever came of this, I’m afraid.

I did feel that my investigations had cleared up some of the more important miscon-
ceptions and misattributions regarding the stored program computer concept, not least
exactly what the concept involved. However, my investigation of Turing’s postwar work
at NPL did not match the thoroughness with which Carpenter & Doran [2] analyzed his
1945 design for ACE. Their comparison of the fully-developed stored program facili-
ties that Turing proposed in 1945 for the ACE against the rather rudimentary ones in
the EDVAC report that slightly predated it [14], and which he cited, indicate to me that
I really should have included at least some of Turing’s 1945 Report, in my collection of
selected papers.

There was one very amusing aftermath, as far as I was concerned, of my involvement
with the BBC television programme. I had been asked by Domenic Flessati to tell him
the next time I would be in London after the TV series had been broadcast, so that we
could have a celebratory dinner. This I did, and we met on the front steps of Bush House,
where he introduced me to Sue Bennett, his researcher for Still Secret, in the following
terms “Miss Bennett, I’d like you to meet Professor Randell, the ‘Deep Throat’ of the
Secret War series.” I’m rarely left speechless, but this was one of the occasions!

One final happening in 1977 needs to be mentioned – the conferment on Tommy
Flowers of an Honorary Doctorate by Newcastle University, an event that was reported
prominently by The Times the next day [23]. I take great pride in the fact that I played a
role in arranging this very belated public recognition for his tremendous achievement.

7 Concluding Remarks

By way of a Conclusion, one further Newcastle-related incident is worth reporting. At
my invitation Professor Harry Hinsley, a Bletchley Park veteran and senior author of

A Turing Enigma 35

the multi-volume official history British Intelligence in the Second World War [7], gave
a Public Lecture at Newcastle University, soon after the first volume was published in
1979. His lecture was on the subject of the impact of Bletchley Park’s activities on
the war. One of the questions he received after his lecture was “If this work was so
significant, why didn’t it shorten the War?” His reply was short and to the point: “It did,
by about two years!”

As I indicated earlier, the request that I devote this lecture to my investigation into
Turing’s wartime work was motivated by the overall relevance of his career to the CON-
CUR community. Interestingly, there is a link between my 1970s historical investigation
and my own most recent computer science research, which in fact is directly related to
your topic of concurrency. This research concerns a new formalism, based on occur-
rence nets, for representing the activity of a complex evolving system [11]. One of the
potential applications of this research is to the design of software for supporting large-
scale crime and accident investigations.

I have in this lecture described the problems that I had in piecing together a coherent
account of the work at Bletchley Park from a large amount of fragmentary evidence,
e.g. even the basic problem of establishing an overall chronology of events. I have
mentioned that I had been greatly helped in overcoming these problems by the use of
Kenneth May’s card index system. I now realise how much more useful to me might
have been the sort of (criminal) investigation support system that is now one focus of
my current research – but that is another story, for another time.

References

1. Bowden, B.V.: Faster Than Thought, Pitman, London (1953)
2. Carpenter, B., Doran, R.: The other Turing machine. Comp. J. 20(3), 269–279 (1977)
3. Cave Brown, A.: Bodyguard of Lies: The vital role of deceptive strategy in World War II.

Harper and Row, New York (1975)
4. Eckert, J.: Disclosure of a magnetic calculating machine. Tech. rep. (1945) (unpublished

typescript); reprinted in: Eckert, J.P.: The ENIAC. In: A History of Computing in the Twen-
tieth Century, pp. 525–539. Academic Press, New York (1980)

5. Good, I.: Some future social repercussions of computors. Int. J. of Environmental Stud-
ies 1(1), 67–79 (1970)

6. Halsbury, L.: Ten years of computer development. Comp. J. 1, 153–159 (1959)
7. Hinsley, F., Thomas, E., Ransom, C., Knight, R.: British Intelligence in the Second World

War (5 vols.). Her Majesty’s Stationery Office, London (1979-1990)
8. Horwood, D.: A technical description of Colossus I. Tech. Rep. Report P/0921/8103/16,

Government Code and Cypher School (August 1973), National Archives HW 25/24
9. Johnson, B.: The Secret War. British Broadcasting Corporation, London (1978)

10. Kahn, D.: The Codebreakers. MacMillan, New York (1967)
11. Koutny, M., Randell, B.: Structured occurrence nets: A formalism for aiding system failure

prevention and analysis techniques. Fundamenta Informaticae 97(1-2), 41–91 (2009)
12. May, K.: Bibliography and Research Manual on the History of Mathematics. University of

Toronto Press (1973)
13. Morrison, P., Morrison, E.: Charles Babbage and his Calculating Engines. Dover Publications

Inc., New York (1961)

36 B. Randell

14. von Neumann, J.: First draft of a report on the EDVAC. contract no. w-670-ord-4926. Tech.
rep., Moore School of Electrical Engineering. University of Pennsylvania, Philadelphia, PA
(1945); extracts reprinted in: Randell, B.(ed.) Origins of Digital Computers: Selected Papers.
Springer (1973)

15. Newman, M.: Alan Mathison Turing 1912-1954. Biographical Memoirs of Fellows of the
Royal Society 1, 253–263 (1955)

16. Randell, B.: On Alan Turing and the origins of digital computers. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, vol. 7, pp. 3–20. Edinburgh Univ. Press (1972)

17. Randell, B.: The Origins of Digital Computers: Selected Papers. Springer, Heidelberg (1973)
18. Randell, B.: The Colossus. Tech. Rep. 90, Computing Laboratory (1976)
19. Randell, B.: Colossus: Godfather of the computer. New Scientist 73(1038), 346–348 (1977);

reprinted in: Randell, B.(ed.) Origins of Digital Computers: Selected Papers, 3rd edn.
Springer (1982)

20. Randell, B.: The Colossus. In: Metropolis, N., Howlett, J., Rota, G. (eds.) A History of Com-
puting in the Twentieth Century, pp. 47–92. Academic Press, New York (1980); Proceedings
of the 1976 Los Alamos Conference on the History of Computing

21. Randell, B.: The Origins of Digital Computers: Selected Papers, 3rd edn. Springer, Heidel-
berg (1982)

22. Swade, D.: Pre-electronic Computing. In: Jones, C.B., Lloyd, J.L. (eds.) Festschrift Randell.
LNCS, vol. 6875, pp. 58–83. Springer, Heidelberg (2011)

23. Times: Computer pioneer: Mr. Thomas Flowers. The Times, p.16 (May 14,1977), Gale
CS270237870

24. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc. s2 42, 230–267 (1936)

25. Turing, A.M.: Proposals for the development in the Mathematics Division of an Automatic
Computing Engine (ACE). Tech. Rep. Report E882, National Physical Laboratory (1945);
reprinted with foreword by: Davies, D.W.: NPL Report Comm. Sci. 57 (April 1972)

26. Turing, S.: Alan M. Turing. W. Heffer and Sons, Cambridge (1959)
27. Winterbotham, F.: The Ultra Secret. Weidenfeld and Nicolson, London (1974)

False Concurrency

and Strange-but-True Machines

(Abstract)

Peter Sewell

University of Cambridge

Concurrency theory and real-world multiprocessors have developed in parallel
for the last 50 years, from their beginnings in the mid 1960s. Both have been very
productive: concurrency theory has given us a host of models, calculi, and proof
techniques, while engineered multiprocessors are now ubiquitous, from 2–8 core
smartphones and laptops through to servers with 1024 or more hardware threads.
But the fields have scarcely communicated, and the shared-memory interaction
primitives offered by those mainstream multiprocessors are very different from
the theoretical models that have been heavily studied.

My colleagues and I have been working at this interface: establishing rig-
orous and accurate concurrency semantics for multiprocessors (x86 [1,2], IBM
POWER [3,8], and ARM) and for the C11 and C++11 programming lan-
guages [4], and reasoning about them, developing the CompCertTSO verified
compiler from a concurrent C-like language to x86 [5,6], verified compilation
schemes from C/C++11 to POWER/ARM [7,8], and verified concurrent algo-
rithms and optimisations [9,10]. The models and reasoning principles are new,
but we draw on the toolbox established in the theoretical world. In this talk I
will highlight a few examples of this work.

For more details, see http://www.cl.cam.ac.uk/users/pes20/weakmemory.

Acknowledgments. This work has been supported by funding from EP-
SRC grants EP/F036345, EP/H005633, and EP/H027351, ANR project Par-
Sec (ANR-06-SETIN-010), ANR grant WMC (ANR-11-JS02-011), and INRIA
associated team MM.

References

1. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

2. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Communications
of the ACM 53(7), 89–97 (2010) (Research Highlights)

3. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proc. PLDI (2011)

4. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Proc. POPL (2011)

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 37–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 P. Sewell

5. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. In: Proc. POPL (2011)

6. Vafeiadis, V., Zappa Nardelli, F.: Verifying Fence Elimination Optimisations. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011)

7. Batty, M., Memarian, K., Owens, S., Sarkar, S., Sewell, P.: Clarifying and Com-
piling C/C++ Concurrency: from C++11 to POWER. In: Proc. POPL (2012)

8. Sarkar, S., Memarian, K., Owens, S., Batty, M., Sewell, P., Maranget, L., Alglave,
J., Williams, D.: Synchronising C/C++ and POWER. In: Proc. PLDI (2012)

9. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

10. Ševč́ık, J.: Safe optimisations for shared-memory concurrent programs. In:
Proc. PLDI (2011)

Concurrent Games on VASS with Inhibition�

Béatrice Bérard1, Serge Haddad2, Mathieu Sassolas3, and Nathalie Sznajder1

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
{Beatrice.Berard,Nathalie.Sznajder}@lip6.fr

2 ENS Cachan, LSV, CNRS UMR 8643 & INRIA, Cachan, France
Serge.Haddad@lsv.ens-cachan.fr

3 Département d’Informatique, Université Libre de Bruxelles, Bruxelles, Belgium
mathieu.sassolas@ulb.ac.be

Abstract. We propose to study concurrent games on a new extension
of Vector Addition Systems with States, where inhibition conditions are
added for modeling purposes. Games are a well-suited framework to solve
control problems, and concurrent semantics reflect realistic situations
where the environment can always produce a move before the controller,
although it is never required to do so. This is in contrast with previous
works, which focused mainly on turn-based semantics. Moreover, we con-
sider asymmetric games, where environment and controller do not have
the same capabilities, although they both have restricted power. In this
setting, we investigate reachability and safety objectives, which are not
dual to each other anymore, and we prove that (i) reachability games
are undecidable for finite targets, (ii) they are 2-EXPTIME-complete for
upward-closed targets and (iii) safety games are co-NP-complete for fi-
nite, upward-closed and semi-linear targets. Moreover, for the decidable
cases, we build a finite representation of the corresponding controllers.

1 Introduction

Context. Games on infinite structures, and their relation to control theory, have
been largely studied in the last ten years [1], [16], [17], [11], [12], [19], [18], [5],
[7]. Given a plant in an environment and a specification, controllability asks if
there exists a controller such that the controlled plant satisfies the specification.
When the answer is positive, the synthesis problem requires to build a con-
troller. This problem can be expressed as a game with two players, environment
and controller, and the question becomes the existence (and construction) of a
controller strategy to win the game.

In this context, various parameters come into play. The underlying models can
be continuous or discrete transition systems, the latter being those considered
here. The game semantics can be turn-based or concurrent, with identical or

� Work partially supported by projects CoChaT (DIGITEO-2009-27HD), ImpRo
(ANR-2010-BLAN-0317), ERC Starting Grant inVEST (279499) and the Euro-
pean Union Seventh Framework Programme [FP7/2007-2013] under grant agreement
257462 HYCON2 NOE.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 39–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

40 B. Bérard et al.

asymmetrical rules for the two players, with or without the ability to waive a
move, and so on. Finally, different winning objectives can be considered: from
basic reachability or avoidance objectives (w.r.t. some target set S of system
configurations) to general LTL specifications [19,18,3]. In addition, the target
set S can be specified in several ways: a finite set, an upward-closed set (with
respect to some ordering), a set of (bounded) linear constraints, a semi-linear
set, etc.

Related Work. In [12,11], the underlying models are Symbolic Transition Sys-
tems or Assignment Program Models with turn-based semantics and avoidance
objectives, for which controllability is undecidable. Abstract interpretation tech-
niques are proposed to compute over-approximations of the subset of unsafe
states [12] and decidability results are obtained for particular cases, among them
Petri nets with upward-closed targets [11]. In [1,16,17], the authors introduce
monotonic game structures, which also include Petri nets. The games are turn-
based and symmetrical, with safety, reachability and parity objectives for finite
and upward-closed target sets. While the problems are still undecidable, the au-
thors investigate subclasses like B-game structures [16,17] or B-downward closed
games [1] (where A and B are the two players), thus breaking the symmetry, and
they establish decidability results for these games.

Vector Addition Systems with States (VASS) were also used as a model for
control and two-player games. A possibly infinitely branching extension of VASS
is studied in [5], again with a turn-based symmetrical game, reachability objec-
tives, and a target set containing configurations where one of the counters is
null. Decidability is obtained in this case, with an EXPSPACE upper bound,
while adding the selection of control states again brings undecidability. Among
other results, the complexity bound mentioned above is improved in [7] in the
more general framework of Energy and Mean-Payoff games, which is another way
of dealing with VASS with specific targets corresponding to minimal or mean
values for the counters.

Contribution. In this work, we consider another extension of VASS, called
VASSI, obtained by adding inhibition conditions, which correspond to inhibitor
arcs in Petri nets (as is done in [3] with boundedness constraints). This feature is
useful for modeling purposes: for instance, consider the cooling system of a plant,
where temperature can increase when the water level is below some threshold.
This can be described by an environment’s transition with inhibition conditions
(see Fig. 1 in Section 2).

Concerning semantics, we consider concurrent and asymmetric games: we ar-
gue that such games are more realistic than turn-based symmetric games in the
context of controllability problems, since usually the environment can always
produce a move, whatever the controller is willing to do. Along the same line,
no player is forced to play. Moreover, environment and controller do not have
the same capabilities. They both have restricted power but in an asymmetrical
way. Our model is described in Section 2.

Concurrent Games on VASS with Inhibition 41

Note that in this setting, safety and reachability are not dual objectives with
respect to the two players. Also, contrary to [1,16,17], the games are not mono-
tonic anymore. We prove in Section 3 that reachability games are undecidable
for finite target sets (hence also for semi-linear sets) and 2EXPTIME-complete
for upward-closed targets. On the other hand, we establish in Section 4 that
safety games are co-NP-complete for semi-linear targets, as well as finite and
upward-closed sets (see summary in Table 1). For decidable games, we also pro-
vide finite representations of controllers, the one for safety games implementing
a most permissive strategy. Detailed proofs can be found in [2].

Table 1. Summary of results

Objective/Target Finite Semi-linear Upward-closed

Reachability Undecidable =⇒ Undecidable 2-EXPTIME-complete

Safety co-NP-complete co-NP-complete co-NP-complete

2 Games on VASS with Inhibition Conditions

We denote by A∗ (resp. Aω) the set of finite (resp. infinite) sequences of elements
of a set A, with ε the empty sequence, and |w| the length of w ∈ A∗. A finite
sequence u is a prefix of w, if there is a sequence v such that uv = w. We write
A+ = A∗ \ {ε} and A∞ = A∗ ∪ Aω. The set of all subsets of A is denoted by
P(A) and � denotes the disjoint union of subsets.

We write Z (resp. N) for the set of integers (resp. nonnegative integers). For
n ∈ N, let [n] denote the set {1, . . . , n}. For a vector v = (vj)j∈[n] ∈ Zn and
for i ∈ [n], let v(i) = vi be the ith component of v and v[i] = (vj)j∈[i] be the
projection of v onto its first i components. The vector with all components equal
to 0 is denoted by 0. Given v1, v2 ∈ Nn, operations are defined componentwise:
v1 ≥ v2 if v1(i) ≥ v2(i) for all i ∈ [n], and v1 + v2 is defined by (v1 + v2)(i) =
v1(i) + v2(i) for all i ∈ [n].

We extend the definition of Vector Addition System with States to include
inhibition conditions.

Definition 1 (Vector Addition Systems with States and Inhibition
conditions). A Vector Addition System with States and Inhibition conditions
(VASSI) is a tuple V = (Q,n, T, α, β, δ, Inh) where

– Q is a finite set of states,

– n ∈ N is the number of counters (called the dimension),

– T is the set of transitions, α, β : T → Q associate respectively with each
t ∈ T , its source and target states,

– δ : T → Zn is the displacement function,

– and Inh : T → (N \ {0} ∪ {∞})n is the inhibition function.

42 B. Bérard et al.

A configuration of a VASSI V = (Q,n, T, α, β, δ, Inh) is a pair c = (q,m) ∈ C =
Q × Nn. The semantics of V is given by the transition system TV = (C,→),
where →⊆ C × C is the transition relation defined by (q,m) → (q′,m′) if and
only if there is a transition t ∈ T such that α(t) = q, β(t) = q′, m < Inh(t) and
m′ = m+δ(t); note that since m′ ∈ Nn, m+δ(t) ≥ 0. In such a case, we say that

t is fireable in (q,m) and we may also write the transition as (q,m)
t−→ (q′,m′).

A run of TV (or, equivalently, of V) is a sequence of configurations ρ =
c0c1 · · · ∈ C∞ such that ci → ci+1 for all 0 ≤ i < |ρ|.

Given c, c′ ∈ C two configurations, we say that c′ is reachable from c if there
is a finite run c0c1 . . . ck of V with c = c0 and c′ = ck. Like above, we may also
write c

τ−→ c′, indicating the corresponding sequence of transitions τ = t1t2 . . . tk,
which forms what we call a fireable path in the underlying graph (Q, T).

Our games are played by two players (environment and controller) on a sub-
class of VASSI, where the set of transitions is partitioned into controllable and
uncontrollable transitions, with the additional constraint that uncontrollable
transitions can only increase the values of the counters (as in [16,17]) and con-
trollable transitions cannot be inhibited:

Definition 2 (Asymmetric VASSI). An Asymmetric VASSI (shortly
AVASSI) is a VASSI where the set of transitions is partitioned into two sub-
sets: T = Tc � Tu, and such that δ(Tu) ⊆ Nn and Inh(Tc) = {(∞)n}.

If we consider that environment sends events to the system through a unidi-
rectional channel, the counters can represent the number of environment events
the system is aware of that have not been handled yet (actual content of events
is abstracted away). The system does not necessarily observe all the events in
the channel (due to delay of transmission from a sensor for instance), hence it
cannot test the value 0 of the counter (which corresponds to the fact that the
transition cannot be inhibited).

To illustrate this definition, we give another example where our model is
appropriate: the case of a (simple) cooling system is depicted by the AVASSI
in Fig. 1, where the three counters represent respectively the amount of water
in a tank, the temperature, and the cost associated with pumping water into
the tank. A transition of the controller is represented by a solid line and labeled
by a column vector corresponding to the displacement function δ. A transition
of the environment is represented by a dotted line and labeled by two column
vectors corresponding to the displacement function δ and the inhibition func-
tion Inh. When the pump is on, the controller can add water into the tank. The
environment can increase the global cost. When the pump is off, the controller
can choose to empty the tank. In both cases, when the water gets below some
threshold x, cooling is prevented, which is described by an environment’s transi-
tion with inhibition condition that increases the temperature counter. Of course,
this toy example could be made more realistic.

Strategies. Given an AVASSI V , a strategy for the controller is a mapping
f : C+ → 2Tc that gives the subset of fireable transitions of Tc permitted after
a sequence of configurations. A strategy f is memoryless if f(ρ1 · c) = f(ρ2 · c),

Concurrent Games on VASS with Inhibition 43

on off

⎛⎝ 0
1
0

⎞⎠⎛⎝ x
∞
∞

⎞⎠ ⎛⎝ 0
1
0

⎞⎠⎛⎝ x
∞
∞

⎞⎠
⎛⎝ 1

0
0

⎞⎠ ⎛⎝−10
0

⎞⎠

⎛⎝ 0
0
0

⎞⎠
⎛⎝ 0

0
2

⎞⎠⎛⎝ 0
0
1

⎞⎠⎛⎝∞∞
∞

⎞⎠
Fig. 1. Cooling system as an AVASSI. Solid edges belong to the controller while dotted
edges belong to the environment.

for all ρ1, ρ2 ∈ C∗, c ∈ C. In this case, we may simply define it as a mapping
f : C → 2Tc .

Outcome of a Strategy. Given an AVASSI V and a strategy f : C+ → 2Tc ,
a run ρ = c0c1 · · · ∈ C∞ is f -consistent (and also called an f -run) if, at each
step, either a transition permitted by the strategy has been fired, or the envi-
ronment has played instead, i.e. for all 0 < i < |ρ|, there exists a transition

t ∈ f(c0 . . . ci−1) ∪ Tu such that ci−1
t−→ ci.

An f -run ρ is f -maximal if it is infinite or such that f(ρ) = ∅. Given a
configuration c ∈ C, we define Outcome(f,V , c) as the set of f -maximal f -runs
of V that start in c.

Winning Condition and Winning Strategies.Given a AVASSI V , a winning
condition is a set of sequences W ⊆ C∞. A run is winning if it belongs to W and
a strategy f is winning from configuration c ∈ C for W if Outcome(f,V , c) ⊆ W .

Control Problem. The control problem for AVASSI can be expressed as
follows: given an AVASSI V , an initial configuration c0 ∈ C, and a winning
condition W , does there exist a winning strategy for the controller for W
from c0? We consider in this work two variants of winning conditions: given a
AVASSI, and a set of configurations S ⊆ C (the target),

− a reachability objective is defined by W = C∗ · S · C∞,
− a safety objective is defined by W = (C \ S)∞.

In the rest of the paper, we call these problems respectively reachability game
and safety game and we consider three types of targets: finite sets, upward-closed
sets, and semi-linear sets of configurations.

Upward-Closed Sets. Let (A,�) be an ordered set. A subset S ⊆ A is upward-
closed if for all a1 ∈ S and a2 ∈ A, if a1 � a2, then a2 ∈ S. Such a set can be
represented by a finite set of minimal elements.

In this work, we consider upward-closed sets of configurations with respect
to the covering order on configurations of an AVASSI: (q1,m1) covers (q2,m2),
written (q1,m1) � (q2,m2), if q1 = q2 and m1 ≥ m2.

44 B. Bérard et al.

Semi-linear Sets. A linear set is a subset of Nn (for n > 0) of the form
{v+ k1u1 + · · ·+ kpup | k1, · · · , kp ∈ N} where v, u1, · · · , up ∈ Nn. A semi-linear
set is a finite union of linear-sets. Semi-linear sets are closed by intersection,
complementation, and application of a linear mapping. Moreover, emptiness of
a semi-linear set is decidable. Remark that finite sets and upward-closed sets are
particular cases of semi-linear sets.

In the sequel, we consider semi-linear sets over the set of configurations seen
as NQ	[n]: a configuration (q,m) is represented by the vector (1q,m), with 1q
the vector defined by 1q(q) = 1 and 1q(q

′) = 0 for q′ �= q.

3 Reachability Games

Finite Targets. In the simplest case where the target is a finite set of configu-
rations, reachability games are undecidable.

Theorem 3. Reachability games are undecidable on AVASSI for finite targets.

Proof (Sketch). The proof works by reduction of the halting problem for a two-
counter machine. The goal of this game is then to reach a state end with the
two counters equal to 0. As usual, the instruction not readily implementable on
VASS (hence on AVASSI) is the conditional instruction that compares the value
of a counter with 0. In our encoding, this choice is made by the environment:
first, a widget allows the controller to reach the winning configuration when
the environment tries to block the game. Moreover, when the counter is greater
than 0, the environment is prevented from firing the transition mimicking the
fact that the counter is empty, due to inhibition condition. Then, the only case
where the environment can deviate from the actual simulation of the machine is
when the counter is empty. If (and only if) it cheats, another widget allows the
controller to reach the winning configuration. ��

A direct consequence of this result is that the control problem for reachability
objective with semi-linear targets is also undecidable.

Upward-Closed Targets. We now consider the case of upward-closed targets:

Theorem 4. Reachability games on AVASSI with upward-closed targets are
2-EXPTIME-complete.

Before giving the proof of Theorem 4, we establish in Proposition 5 (reminiscent
of [15]) an upper bound on the “size” of the optimal winning strategy, when it
exists. By “size”, we mean the depth of the tree of possible configurations en-
countered while playing according to this strategy, where branches stop growing
as soon as they reach a winning configuration.

In this section, we say that a run is a min-winning f -run if it is winning while
none of its prefixes is. It is sufficient to consider only those runs, since any suffix
starting from a configuration covering the target is irrelevant to the winning
condition.

Concurrent Games on VASS with Inhibition 45

Let an input consist of an AVASSI V = (Q,n, T, α, β, δ, Inh), with an initial
configuration c0 ∈ C, and an upward-closed set as target, given by the finite
set of its minimal elements B = {b1, . . . , bm}. We denote by K the size of this
input, i.e., the space needed to describe V , c0 and B. We define δmax = 1 +
maxt∈T ;i∈[n](|δ(t)(i)|) and Inhmax = 1+maxt∈T ;i∈[n]{Inh(t)(i) | Inh(t)(i) < ∞}.

Proposition 5. For an AVASSI V and an upward-closed target described by
B = {b1, . . . , bm}, there is a winning strategy for the reachability game if and
only if there is a winning strategy f such that all the min-winning f -runs have

length less than or equal to 2K
K+1

.

Proof. We proceed inductively on the AVASSI obtained by projecting onto the
p first counters and removing transitions of the environment that contained
inhibition conditions on the omitted counters. Formally for p ≤ n, let Vp =
(Q, p, Tp, αp, βp, δp, Inhp), where Tp = Tc � {t ∈ Tu | Inh(t)(i) = ∞, for all p <
i ≤ n}, αp and βp are the functions α and β restricted on Tp, and δp and Inhp
are respectively the functions δ and Inh restricted to Tp and projected onto the
first p dimensions. We set Cp = Q × Np. We say that a run (resp. strategy) is
p-winning if it is winning in Vp for the projection of B (minimal elements of the
target) on the first p components. In particular, n-winning means winning.

A run ρp = c1 . . . ck ∈ C+
p of Vp is p-covering if it is a minimal p-winning run:

ck covers b[p] for some b ∈ B and for all i < k, for all b ∈ B, ci does not cover
b[p]. Note that any p-winning run starts with a p-covering run.

Given c ∈ Cp and f : C+
p → 2Tc a strategy, we define size(f, p, c) = max{|σ| |

σ is a prefix of ρ, ρ ∈ Outcome(f,Vp, c) and σ is p-covering} if f is p-winning
from c, and size(f, p, c) = ∞ otherwise. From a configuration c, a strategy f
reaches the target (in Vp) in at most size(f, p, c) steps (which can be infinite if
the strategy f is not p-winning).

A strategy f is (p, c)-optimal if size(f, p, c) ≤ size(f ′, p, c) for any strategy
f ′ : C+

p → 2Tc . We denote by fp,c a (p, c)-optimal strategy. Note that since the
objective here is reachability, fp,c can be assumed memoryless. If it is not, it
is possible to define another (p, c)-optimal strategy that is memoryless in the
following way: if fp,c is winning, for all d ∈ C, we let f ′p,c(d) = fp,c(σd) where
σd is one of the longest fp,c-run having not covered the target yet. If fp,c is not
winning, we let f ′p,c(d) = fp,c(σd) for some fp,c-run σ.

We now assume that there exists a winning strategy from the initial config-
uration. In the rest of this proof, we therefore consider only configurations for
which there exists a winning strategy: Cw

p = {c ∈ Cp | ∃f, p-winning from c}.
Let

	(p) = max{size(fp,c, p, c) | c ∈ Cw
p , fp,c is a p-winning strategy from c}

be the maximal number of steps required to win in Vp with an optimal winning
strategy.

46 B. Bérard et al.

1 begin
2 C := the set of configurations with counters bounded by c0 + δmax · L;
3 CA, CE := copies of C; ∀c ∈ C, cA (resp. cE) is the copy of c in CA (resp. CE);
4 mark(c):= false for each c in CA � CE;
5 If cA ∈ CA, succ(cA) := successors of c in CA by transitions of Tu and

cE ∈ CE;
6 If cE ∈ CE, succ(cE) := successors of c in CA by transitions of Tc;
7 forall the configurations c in CA � CE do
8 if c � b for some b ∈ B then mark(c):= true;

9 while not end do
10 end:= true;
11 forall the c ∈ CA do
12 if all c′ ∈ succ(c) such that mark(c’)=true then mark(c):=true;

end:=false;

13 forall the c ∈ CE do
14 if there is c′ ∈ succ(c) such that mark(c’)=true then mark(c):=true;

end:=false;

15 return mark(c0,A);

Algorithm 1. Guessing a winning strategy

In order to bound 	(n), we compute by induction on p ≤ n an upper bound
for 	(p). To do so, we use the fact that 	(0) ≤ |Q| and 	(p+1) ≤ (2K)p+2 · ((p)+
1)p+1 + 	(p) (this can be done by induction on p). This recurrence relation can
now be used in order to bound 	(n). Let g be the function defined by g(0) = 2K

and g(p+ 1) = g(p)2p+4. We show by recurrence that 	(p) ≤ g(p) for all p. The
case p = 0 is trivial. Now assume the inequality holds for p. By the previous
recurrence relation, we have:

	(p+ 1) ≤
(
2K
)p+2 · ((p) + 1)p+1 + 	(p) ≤

(
2K
)p+2 · (g(p) + 1)p+1 + g(p)

≤
(
2K
)p+2 · g(p)p+2 (since g(p) ≥ p+ 2)
≤ g(p)p+2 · g(p)p+2 ≤ g(p)2p+4

Hence: 	(p+ 1) ≤ g(p+ 1).
On the other hand, one can show that g(p) = 2K·2

p·(p+1)!. Therefore

L = 	(n) ≤ g(n) ≤ 2K·2
n·(n+1)! ≤ 2K·n

n+1 ≤ 2K·K
K ≤ 2K

K+1

. ��

Proof (Theorem 4). Having a bound L = 2K
K+1

on the size of the optimal
strategy gives us the decision procedure described by Algorithm 1, which runs
in doubly exponential time.

We now prove the lower bound. As in [8], we reduce the following problem:
given an alternating counter machine of size N , does it have a halting com-

putation in which the value of each counter is bounded by 22
N

? This problem
is AEXPSPACE-hard, hence 2-EXPTIME-hard [6]. Given such an alternat-
ing counter machine, we build an AVASSI with an upward-closed target for which

Concurrent Games on VASS with Inhibition 47

�

�1 �2

Check x = 0

�′2

x++ x−−

(a) Case of an existential state.

�t1

�1

t2

�2

Check x = 0

�′2Halt

x++ x−−

(b) Case of a universal state.

Fig. 2. Simulation of a state � of the machine with available transitions t1: x++ goto

�1 and t2: if x = 0 then x − − goto �2 else goto �′2. Two cases corresponding to
whether � is an existential state or a universal one.

there is a winning strategy if and only if there is a 22
N

-bounded halting compu-

tation in the counter machine. We know from Lipton [13] that a 22
N

-bounded
counter machine of size N can be simulated by a Petri net of size O(N2). This
construction is easily adapted to our case.

The VASS hence built (in which the set of states contains the set of states
of the counter machine) can be turned into an AVASSI in the following way: to
each existential state of the counter machine corresponds a state of the AVASSI
from which all the outgoing transitions are controllable (and simulate the in-
structions available from this state in the machine). To each universal state of
the counter machine corresponds a state of the AVASSI from which all the outgo-
ing transitions are uncontrollable and lead to intermediate states simulating the
instructions. An additional controllable transition to a winning state forces the
environment to play. From each intermediate state, there is a single transition,
which is controllable, leaving no choice to the controller. This transition simu-
lates the instruction1. The target is the set of configurations in an halting state.
An example of this simulation in the case of existential and universal states are
depicted Fig. 2. ��

Observe that an alternate proof for deciding reachability games with upward-
closed targets can be performed using the classical construction of controllable
predecessors. In this case, it can be shown that if a set of configurations is upward-
closed, then so is the set of its controllable predecessors. Since the covering order
is a well-quasi-ordering, this construction terminates, but this does not provide
a complexity upper bound. However, using this alternate construction gives a
finite representation of a controller. We do not detail it here as it is standard.

4 Safety Games

In this section, we prove the co-NP-completeness of safety games with semi-
linear, finite and upward-closed targets, and we give the construction of the
most permissive strategy. We first establish:

1 The environment cannot decrement vectors: it cannot perform the instruction itself.

48 B. Bérard et al.

Theorem 6. Safety games on AVASSI with semi-linear targets are in co-NP.

Proof. To solve a safety game with target S, we consider the AVASSI restricted
to uncontrollable transitions. Indeed, if only uncontrollable transitions are al-
lowed, and the target cannot be reached, then an obvious winning strategy for
the controller is to forbid every controllable transition. Conversely, if the set
of configurations S to avoid can be reached by using only uncontrollable tran-
sition, there can be no winning strategy for the controller: any run obtained
by firing only uncontrollable transitions is an f -run, for any strategy f . Let
Target =

⋃
i∈I
{
m∗i +

∑
u∈Ui

yu · u
∣∣ yu ∈ N

}
be the semi-linear target and let V

be an AVASSI restricted to uncontrollable transitions.
We first introduce some additional notations. Transition t is said enabled in

configuration c = (q,m) if it is not inhibited by m, i.e. m < Inh(t). The set of
transitions enabled in (q,m) is denoted by En(q,m); we also use the notation
En(m) since q is not relevant here. A path τ = t1 · · · tk in (Q, T) is fireable

from configuration c = (q,m) iff for all j ∈ [k], tj ∈ En(m +
∑j−1
i=1 δ(ti)). We

define the flow vector Flow(t) ∈ {−1, 0, 1}Q ranging over Q as follows: (i) for
q ∈ Q \ {α(t), β(t)}, Flow(t)(q) = 0; (ii) if α(t) = β(t), then Flow(t)(α(t)) = 0;
(iii) if α(t) �= β(t), then Flow(t)(α(t)) = −1 and Flow(t)(β(t)) = 1.

The decision procedure described by Algorithm 2 proceeds as follows.

– It (non deterministically) builds a linear system S with two sets of variables:
X , the number of occurrences of some transitions in a sequence τ , and Y ,
the coefficients of a linear set U of Target.

– It guesses a small potential solution of this system (in case of non emptiness)
as in [14, Chap. 13]2 and returns true if it is an actual solution.

The sequence τ (which is not built) is of the form τ = τ1t1τ2 . . . tkτk+1 with k ≤
|T |. The algorithm guesses the following items: k, {ti}1≤i≤k, connected subgraphs
{(Qi, Ti)}1≤i≤k+1 of (Q, T) such that Ti is exactly the set of transitions fired in
τi and finally a linear subset U of Target. The set of variables is X = {xi,t |
1 ≤ i ≤ k + 1 ∧ t ∈ Ti} and Y = {yu | u ∈ U}. The system S checks if there is

a fireable sequence τ whose Parikh vector is
∑k
i=1 1ti +

∑k+1
i=1

∑
t∈Ti

xi,t1t and
whose final marking belongs to U .

Complexity. The construction of the set of transitions appearing in the solu-
tion is done in polynomial time, and the number of variables created is at most
|T |(|T | + 1). The coefficients of S are either coefficients of δ(t) or the integers
occurring in U . Hence the size of the system is polynomial. Furthermore, the
bound on the small solution provided in [14, Chap. 13] has a polynomial repre-
sentation in the size of the system. Therefore in our case, this solution can be
guessed and checked in polynomial time w.r.t. the input of the safety problem.

Soundness. Assume the algorithm returns true and consider the corresponding
solution. For 1 ≤ i ≤ k + 1, since transitions in Ti form a connected subgraph

2 If the integer system AX = B, with A an (m,n) matrix, has a feasible solution,
then it has a feasible solution with coefficients bounded by n× (ma)2m+4, where a
is greater than the maximal absolute value of all coefficients of A and B.

Concurrent Games on VASS with Inhibition 49

1 begin
2 Choose k ≤ |T |; Choose q ∈ Q;
3 β(t0) := q0 (t0 is a fictitious transition);
4 α(tk+1) := q (tk+1 is a fictitious transition);
5 X = ∅; i := 1;
6 while i ≤ k + 1 do
7 if i ≤ k then choose ti ∈ T ;
8 Choose (Qi, Ti) a connected subgraph containing β(ti−1) and α(ti);
9 X := X ∪ {xi,t | t ∈ Ti};

10 if i ≤ k then T ′
i := Ti ∪ {ti} else T ′

i := Ti;
11 i := i+ 1;

12 Choose a linear set U =
(
m∗ +

∑
u∈U yu · u

) ∈ Target;
13 Define the linear system S ;
14

S :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀x ∈ X,x ≥ 1 ∧
∀1 ≤ i ≤ k + 1, 1β(ti−1) +

∑
t∈Ti

xi,tFlow(t) = 1α(ti) (∗)
∀1 ≤ i ≤ k + 1, ∀t ∈ T ′

i ,
m0 +

∑
j≤i

∑
t∈Tj

xj,tδ(t) +
∑

j<i δ(ti) < Inh(t) (∗∗)
m0 +

∑k+1
i=1

∑
t∈Ti

xi,t · δ(t) +∑k
i=1 δ(ti) = m∗ +

∑
u∈U yu · u (∗ ∗ ∗)

15 Choose small values for (xi,t)i≤k+1,t∈T and (yu)u∈U ;
16 return whether (xi,t)i≤k+1,t∈T , (yu)u∈U is a solution for S

Algorithm 2. Guessing a Parikh vector for a firing sequence to an offending
configuration

(when the underlying graph is seen as an undirected one), condition (∗) of S is
an Euler condition ensuring that one can derive a path τi from β(ti−1) to α(ti)
in which every transition t ∈ Ti appears exactly xi,t times. Let us denote mi
the marking reached after the sequence τ1t1 . . . τi. Condition (∗∗) ensures that
transitions of T ′i are enabled in mi, thus they are also enabled in any previous
marking occurring along the sequence (since the marking does not decrease after
a transition firing). Thus by recurrence, τ1t1 . . . τk+1 is a firing sequence. At last
condition (∗ ∗ ∗) ensures that marking mk+1 ∈ U ⊆ Target.

Completeness. Let c0
t1−→ · · · ck−1

tk−→ · · · be a fireable sequence of transitions
from c0, and let IInh be the subset of indices of those transition occurrences that
actually disable other transitions: j ∈ IInh if and only if En(cj) � En(cj−1). In
the worst case, each transition firing with index in IInh inhibits exactly one other
transition. Then, there cannot be more elements in IInh than the total number
of transitions: |IInh| ≤ |T |.

Now, assume there is a reachable configuration mf = m∗ +
∑
u∈U βu · u in

some linear subset U ⊂ Target. Let τ1t1 · · · τktkτk+1 be the sequence of transi-
tions leading to this configuration, where the transitions ti are exactly the ones
inducing a modification in the set of enabled transitions. By the above obser-
vation, k ≤ |T |. Let Ti be the transitions occurring in τi. Since the enabled
transitions are unchanged during the firing of τi, transitions Ti for i ≤ k (resp.
i = k + 1) are still enabled before the firing of ti (resp. in mf). So denoting by

50 B. Bérard et al.∑
t∈Ti

αi,t1t the Parikh vector of τi, the αi,t’s and the βu’s are a solution of the
corresponding system S. Using the results of [14, Chap. 13], the algorithm will
then find a small solution of S.

Summarizing the results, the problem of existence of a winning strategy to
ensure a safety objective is in co-NP. ��

In general, the set of reachable markings of a Petri Net (and therefore configu-
rations of a VASS) is not semi-linear [10]. However, it was shown to be the case
for some restricted models [9,4]. If one determinizes Algorithm 2 and one sets
for Target all the possible markings, one obtains:

Theorem 7. Let V = (Q,n, T, α, β, δ, Inh) be a VASSI s.t. δ(T) ⊆ Nn. Then its
set of reachable configurations is effectively semi-linear.

By a reduction from 3-SAT, we also obtain the following result.

Theorem 8. Safety games on AVASSI with finite targets or upward-closed tar-
gets are co-NP-hard even with |Q| = 1.

Proof (Sketch). The idea behind the construction is to associate a counter with
each literal (a variable or its negation). By deciding to increment a literal or
its negation, the environment choses a valuation of variables. Then it can mark
clauses as satisfied (through a counter per clause) only when they agree with
the chosen valuation. The goal (for the environment) is to reach (or cover) the
configuration where all clauses are marked, hence when the whole formula is
true. ��

Corollary 9. Safety games on AVASSI with finite, upward-closed or semi-linear
targets are co-NP-complete.

Construction of the Most Permissive Strategy. We show now how to build
off-line the most permissive strategy.

Theorem 10. The most permissive strategy for safety games on AVASSI with
semi-linear targets can be represented by a finite-state machine.

Proof. If we determinize again Algorithm 2 and take the (finite) union on all
linear sets U ∈ Target of all possible systems of equations obtained, we get the
set of configurations from which the system cannot avoid the target and deduce
that this set is semi-linear. These configurations happen to be exactly the ones
the strategy should avoid.

One can then compute, for a given controllable transition t, the set of config-
urations from which this transition is allowed. Let PreForbid(t) = {(q,m) ∈ C |
∃(q′,m′) ∈ Forbid, q = q′ − Flow(t),m = m′ − δ(t)}. Since Forbid is semi-linear
and the image of a semi-linear by an affine application is still semi-linear, we get
that PreForbid(t) is semi-linear, for any controllable transition t. Then, the set of
configurations from which t is allowed is given by C \ PreForbid(t), which is still
semi-linear. ��

Concurrent Games on VASS with Inhibition 51

5 Conclusion

We solve reachability and safety games with concurrent semantics for an ex-
tension of VASS with inhibition conditions, for finite, upward-closed and semi-
linear targets. When the reachability games are decidable, the procedures are
elementary. For safety games, which are co-NP-complete, the procedure allows
to construct the most permissive strategy. Future work includes studying more
complex winning objectives, e.g., parity games. Another direction could concern
games on continuous models, like timed extensions of Petri nets.

References

1. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games.
J. Log. Comput. 18(1), 153–169 (2008)

2. Bérard, B., Haddad, S., Sassolas, M., Sznajder, N.: Concurrent games on VASS
with inhibition. Technical Report LSV-12-10, LSV, ENS Cachan (2012)

3. Bollue, K., Slaats, M., Abraham, E., Thomas, W., Abel, D.: Synthesis of Behavioral
Controllers for DES: Increasing Efficiency. In: WODES 2010, IFAC (2010)

4. Bouziane, Z., Finkel, A.: Cyclic petri net reachability sets are semi-linear effectively
constructible. Electr. Notes Theor. Comput. Sci. 9, 15–24 (1997)

5. Brázdil, T., Jančar, P., Kučera, A.: Reachability Games on Extended Vector Ad-
dition Systems with States. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199,
pp. 478–489. Springer, Heidelberg (2010)

6. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation J. ACM 28(1), 114–133
(1981)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean-payoff
and energy games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2010. LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, vol. 8, pp. 505–516 (2010)

8. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness
problems for branching vector addition systems. In: Proc. of the 29th Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2009). Leibniz International Proceedings in Informatics, Leibniz-Zentrum für In-
formatik, vol. 4, pp. 181–192 (December 2009)

9. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundam. Inform. 31(1), 13–25 (1997)

10. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979)

11. Kumar, R., Garg, V.: On computation of state avoidance control for infinite state
systems in assignment program framework. IEEE Trans. Autom. Sci. Eng. 2(1),
87–91 (2005)

12. Le Gall, T., Jeannet, B., Marchand, H.: Supervisory Control of Infinite Symbolic
Systems using Abstract Interpretation. In: CDC 2005, pp. 31–35. IEEE Press
(2005)

13. Lipton, R.: The reachability problem requires exponential space. Technical Re-
port 62, Dept. of Computer Science. Yale University (1976)

14. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: algorithms and
complexity. Prentice-Hall (1982)

52 B. Bérard et al.

15. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223–231 (1978)

16. Raskin, J.F., Samuelides, M., Van Begin, L.: Petri games are monotonic but difficult
to decide. Technical Report 508, Université Libre de Bruxelles (2003)

17. Raskin, J.F., Samuelides, M., Van Begin, L.: Games for counting abstractions.
Electr. Notes Theor. Comput. Sci. 128(6), 69–85 (2005)

18. Serre, O.: Parity Games Played on Transition Graphs of One-Counter Processes. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351.
Springer, Heidelberg (2006)

19. Sreenivas, R.S.: Some observations on supervisory policies that enforce liveness in
partially controlled free-choice petri nets. Math. Comp. Simul. 70(5-6), 266–274
(2006)

Reachability Problem
for Weak Multi-Pushdown Automata

Wojciech Czerwiński, Piotr Hofman, and Sławomir Lasota�

Institute of Informatics, University of Warsaw
{wczerwin,sl}@mimuw.edu.pl

Abstract. This paper is about reachability analysis in a restricted subclass of
multi-pushdown automata: we assume that the control states of an automaton are
partially ordered, and all transitions of an automaton go downwards with respect
to the order. We prove decidability of the reachability problem, and computability
of the backward reachability set. As the main contribution, we identify relevant
subclasses where the reachability problem becomes NP-complete. This matches
the complexity of the same problem for communication-free vector addition sys-
tems (known also as commutative context-free graphs), a special case of stateless
multi-pushdown automata.

1 Introduction

This paper is about reachability analysis of multi-pushdown systems, i.e., systems with
a global control state and multiple stacks. The motivation for our work is twofold. On
one side, a practical motivation coming from context-bounded analysis of recursive
concurrent programs [23, 20, 3]. On the other side, a theoretical motivation coming
from partially-commutative context-free grammars, developed recently in [11–13].

Context bounded analysis. Multi-pushdown systems may be used as an abstract model
of concurrent programs with recursive procedures. As multi-pushdown systems are a
Turing-complete model of computation, they are only applicable for verification un-
der further tractable restrictions. One remarkably successful restriction is imposing
a bound on the number of context switches; between consecutive context switches,
the system may only perform operations on one stack (local operations). In [23], the
context-bounded reachability has been shown decidable, by reduction to reachability
of ordinary pushdown systems [5]. This line of research, with applications in formal
verification, has been continued successfully, e.g., in [6, 20, 3].

Weak control states. As our starting point we observe that if the number of context
switches is bounded, one may safely assume that the control state space is weak, in
the sense that there is a partial order on control states such that transitions go only
downwards with respect to the order. Indeed, the local state space of every thread may
be eliminated using a stack, and the global control state essentially enumerates context

� The first author acknowledges a partial support by the Polish MNiSW grant N N206 568640.
The other authors acknowledge a partial support by the Polish MNiSW grant N N206 567840.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 53–68, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

54 W. Czerwiński, P. Hofman, and S. Lasota

switches. Roughly speaking, the model investigated in this paper extends the above
one with respect to operations allowed between two context switches, namely, we do
not restrict these operations to one stack only. Thus, if k is the number of stacks, we
assume that transitions of a system are of the following form:

q, X
a−→ q′, α1, . . . , αk, (1)

to mean that in state q, symbol X is popped from one of the stacks, and sequences of
symbols α1, . . . , αk, respectively, are pushed on stacks. Wlog. one may assume that the
symbols of different stacks are different.

Partially-commutative context-free grammars. A special case of the model investigated
in this paper is stateless multi-pushdown systems. This is still a quite expressible model
that subsumes, among the others, context-free graphs (so called Basic Process Alge-
bra [8]) and communication-free Petri nets (so called Basic Parallel Processes [8]). In
the stateless case, transitions (1) may be understood as productions of a grammar, with
the nonterminal symbols on the right-hand side (stack symbols) subject to a commu-
tativity law. More precisely, for any two symbols X and Y from different stacks, we
impose the commutativity law

XY = YX.

One easily observes that this is a special case of independence relation over nonterminal
symbols, as defined in trace theory [14]1. In multi-pushdown systems, the dependency
relation (complement of independence relation) is always transitive. A general theory
of context-free grammars modulo dependency relation that is not necessarily transitive,
has been studied recently in [13]; complexity of bisimulation equivalence checking has
been investigated in [11, 12]. The present paper complements these results by focusing
on reachability analysis.

Contributions. This paper contains two main results. First, we prove decidability of
reachability for weak multi-pushdown automata. Our argument is based on a suitable
well order on the set of configurations, that strongly depends on the assumption that the
control states are weak.

Second, we identify additional restrictions under which the problem is NP-complete;
one such restriction is stateless multi-pushdown systems. Our result subsumes (and
gives a simpler algorithm for) the case of communication-free Petri nets; reachability
thereof is NP-complete as shown in [15]. The last result is similar to NP-completeness
of the word problem for partially-commutative context-free grammars [16], where one
asks if the given input word is accepted. The reachability question is more difficult to
answer, as an input word is not given in advance. In fact the main technical difficulty is
to show existence of a polynomial witness for reachability.

As further results, we investigate forward and backward reachability sets, and prove
that the backward reachability set of a regular set of configurations is regular and com-
putable, while the forward reachability set needs not be regular in general. Finally,

1 Note however that the independence is imposed on nonterminal symbols, and not on input
letters, as usually in trace theory.

Reachability Problem for Weak Multi-Pushdown Automata 55

we identify the decidability border for reachability of weak multi-pushdown systems.
Roughly speaking, the problem becomes undecidable when one asks about reachability
of a given regular set of configurations, instead of a single configuration.

The standard techniques useful for analysis of pushdown systems, such as pumping
or the automaton-based approach of [5], do not extend to the multi-pushdown setting.
This is why the proofs of our results are based on new insights. The NP-membership
proofs are, roughly speaking, based on polynomial witnesses obtained by careful elim-
ination of ’irrelevant’ transitions. On the other hand, the decidability results are based
on a suitable well order on configurations.

Related research. Multi-pushdown systems are a fundamental model of recursive multi-
threaded programs. This is why different instantiations of the multi-pushdown paradigm
have been appearing in the literature recently, most often in the context of formal verifi-
cation. We only mention here a few relevant positions we are aware of, without claiming
completeness. All the papers cited below bring some restricted decidability results for
reachability or model checking.

Most often, a model has global control states, subject to some restriction. For in-
stance, the author of [1] assumes that the stacks are ordered, and pop operation can
only be performed on the first nonempty stack. Another example is the model intro-
duced in [7] and then further investigated e.g. in [6, 2, 4], that allows for unbounded
creation of new stacks; on the other hand, operations on each stack are local, thus no
communication between threads is allowed.

Another possible approach is to replace global state space with some communication
mechanism between threads. Some successful results on analysis of multi-threaded pro-
grams communicating via locks, in a restricted way, has been reported in [18, 17, 9].

In [21] the algorithm for reachability over PA [8] graphs has been provided. The
PA class is a generalization of both BPA and BPP that allows, similarly like multi-
pushdown systems, both for sequential and interleaved behavior. Finally, in [19] the
reachability problem has been shown decidable for Process Rewrite Systems [22] ex-
tended with weak control states.

Outline. In the following Section 2 we define the model we work with. Then in Sec-
tion 3 we state all our results. In the remaining sections we provide proofs of some of
the results. The other proofs are omitted due to space limitation.

2 Multi-pushdown Automata

A multi-pushdown automaton (MPDA) is like a single-pushdown one. In a single step
one symbol is popped from one of stacks2, and a number of symbols are pushed on the
stacks. Assume there is k stacks. A transition of an automaton is thus of the form:

q, X
a−→ q′, α1, . . . , αk, (2)

2 If we allowed for popping from more than one stack at a time, the model would clearly become
Turing-complete, even with 1 state only.

56 W. Czerwiński, P. Hofman, and S. Lasota

to mean that when an automaton reads a in state q, it pops X from one of the stacks,
pushes the sequence of symbols αi on the ith stack, for i = 1 . . . k, and goes to state
q′. We allow for silent transitions with a = ε. Observe that wlog. one may assume that
stack alphabets are disjoint.

Formally, the ingredients of a MPDA are: a finite set of states Q, the number of stacks
k, pairwise-disjoint finite stack alphabets S1 . . . Sk, an input alphabet A, and a finite set
of transition rules:

−→ ⊆ Q× (
⋃
i≤k

Si)× (A ∪ {ε})× Q× S1
∗ × . . .× Sk

∗ (3)

written as in (2). A configuration of a MPDA is a tuple 〈q, β1, . . . , βk〉 ∈ Q × S1
∗ ×

. . .× Sk
∗. The transition rules (2) induce the transition relation over all configurations

in a standard way:

q, X
a−→ q′, α1, . . . , αk X ∈ Si βi = Xβ

〈q, β1, . . . βi . . . , βk〉 a−→ 〈q′, α1β1, . . . αiβ . . . , αkβk〉

thus defining the configuration graph of a MPDA. For a configuration 〈q, α1, . . . , αk〉,
its size is defined as the sum of lengths of the words αi, i ≤ k. The same applies to a
right-hand side of any transition rule q X

a−→ q′ α1 . . . αk.
An MPDA is stateless if there is just one state (or equivalently no states). Transition

rules of an automaton are then of the form:

X
a−→ α1, . . . , αk (4)

and configurations are of the form 〈β1, . . . , βk〉.
A less severe restriction on control states is the following one. We say that an au-

tomaton is weak if there is a partial order ≤ on its states such that every transition (2)
satisfies q′ ≤ q. Clearly, every stateless automaton is weak.

Remark 1. Note that stateless one-stack automata are essentially context-free gram-
mars in Greibach normal form. Thus the configuration graphs are precisely context-free
graphs, called also BPA graphs [22, 8]. Another special case is many stacks with sin-
gleton alphabets. The stacks are thus essentially counters without zero tests. In this
subclass, stateless automata corresponds to communication-free Petri nets [15], called
also BPP [10], or commutative context-free graphs [12]. The BPA and BPP classes are
members of the Process Rewrite Systems hierarchy of [22] that contains, among the
others, pushdown systems and unrestricted Petri nets.

Example 1. Assuming a distinguished initial state and acceptance by all stacks empty,
weak MPDAs can recognize non-context-free languages. For instance, the language

{anbncn : n ≥ 0} (5)

is recognized by an automaton described below. The automaton has two states q1, q2
and two stacks. The alphabets of the stacks are {X,B,D} and {C}, respectively. The

Reachability Problem for Weak Multi-Pushdown Automata 57

starting configuration is (q1,XD, ε). Besides the transition rules, we also present the
automaton in a diagram, using push and pop operations with natural meaning.

q1 q2

a, pop X
push XB,C

ε,
pop X

b, pop B

c, pop C

ε, pop D

q1, X
a−→ q1, XB, C

q1, X
ε−→ q1, ε, ε

q1, B
b−→ q1, ε, ε

q1, D
ε−→ q2, ε, ε

q2, C
c−→ q2, ε, ε

The automaton is weak and uses ε-transitions, which may be however easily eliminated.
Acceptance by empty stacks may be easily simulated using acceptance by states. The
language (5) is not recognized by a stateless automaton, as shown in [13].

Example 2. Non-context-free languages are recognized even by stateless MPDAs with
singleton stack alphabets. The class of languages recognized by this subclass is called
commutative context-free languages [16], see also [13]. One example is the commuta-
tive closure of the language of the previous example: the set of all words with the same
number of occurrences of a, b and c.

In the sequel we do not care about initial states nor about acceptance condition, as
we will focus on the configuration graph of an automaton. Furthermore, as we only
consider reachability problem, the labeling of transitions with input alphabet letters
will be irrelevant, thus we write −→ instead of

a−→ from now on.
Using a standard terminology, we say that a MPDA is normed if for any state q and

any configuration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈p, ε, . . . , ε〉

for whatever state p. In general, whenever a MPDA is not assumed to be normed we call
it unnormed for clarity. Note that in all examples above the automata were normed. In
fact normedness is not a restriction as far as languages are considered. In the sequel we
will however analyze the configuration graphs, and then normedness will play a role.

Further, we say that a MPDA is strongly normed if for any state q and any configu-
ration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈q, ε, . . . , ε〉

containing only transitions that do not change state. Intuitively, whatever is the state
q we start in, any top-most symbol X in any stack may „disappear”. For stateless au-
tomata, strong normedness is the same as normedness.

3 Reachability

Regular Sets. We will consider various reachability problems in the configuration
graph of a given MPDA. Therefore, we need a finite way of describing infinite sets

58 W. Czerwiński, P. Hofman, and S. Lasota

of configurations. A standard approach is to consider regular sets. Below we adapt this
approach to the multi-stack scenario we deal with.

Consider the configurations of a stateless MPDA, S = S1
∗ × . . . × Sk

∗. There is a
natural monoid structure in S, with pointwise identity 〈ε, . . . , ε〉 and multiplication

〈α1, . . . , αk〉 · 〈β1, . . . , βk〉 = 〈α1 β1, . . . , αk βk〉.

Call a subset L ⊆ S regular if there is a finite monoid M and a monoid morphism
γ : S → M that recognizes L, which means that L = γ−1(N) for some subset N ⊆ M .
Without loss of generality one may assume that the monoid M is a product of finite
monoids M = M1 × . . .×Mk, and that

γ = γ1 × . . .× γk where γi : Si
∗ → Mi for i = 1 . . . k.

Thus we may use an equivalent but more compact representation of regular sets, based
on automata: a regular set L is given by a tuple of (nondeterministic) finite automata
B1 . . .Bk over alphabets S1 . . . Sk, respectively, together with a set

F ⊆ Q1 × . . .×Qk

of accepting tuples of states, where Qi denotes the state space of automaton Bi.
Unless stated otherwise, in the sequel we always use such representations of regular

sets of configurations. If there are more than one state, we assume a representation for
every state. In particular, when saying ”polynomial wrt. L”, for a regular language L,
we mean polynomial wrt. the sum of sizes of automata representing L.

Remark 2. Clearly, the cardinality of the set F of accepting tuples may be exponential
wrt. the cardinalities of state spaces of automata Bi. However, complexities we derive
in the sequel will never depend on cardinality of F .

Example 3. Assume that there are two stacks. An example of properties we can define
is: „odd number of elements on the first stack and symbol A on the top of the second
stack, or an even number of the elements on the first stack and the odd number of
elements on the second stack". On the other hand, ”all stacks have equal size" is not a
regular property according to our definition.

Remark 3. We have deliberately chosen a notion of regularity of languages of tuples
of words. Another possible approach could be to consider regular languages of words,
over the product alphabet (S1 ∪ ⊥) × . . . × (Sk ∪ ⊥), where the additional symbol ⊥
is necessary for padding. This would yield a larger class, for instance the last language
from Example 3 would be regular. The price to pay would be however undecidability
of the reachability problems. The undecidability will be discussed below.

Reachability. In this paper we consider the following reachability problem:

INPUT: a MPDA A and two regular sets of configurations L,K ⊆ S.
QUESTION: is there a path in the configuration graph from L to K?

Reachability Problem for Weak Multi-Pushdown Automata 59

We will write L �A K if a path from L to K exists in the automatonA. The sets L and
K we call source and target sets, respectively. We will distinguish special cases, when
either L or K or both the sets are singletons, thus obtaining four different variants of
reachability altogether. For brevity we will use symbol ’1’ for a singleton, and symbol
’REG’ for a regular set, and speak of 1�REG reachability (when L is a singleton),
REG�REG reachability (the unrestricted case), and likewise for REG�1 and 1�1.

Before stating the results, we note that all the problems we consider here are NP-
hard:

Lemma 1. The 1�1 reachability is NP-hard for strongly normed stateless MPDAs,
even if all stack alphabets are singletons.

The above fact follows immediately from NP-completeness of the reachability problem
for communication-free Petri nets, see [15] for details.

Results. In presence of states, the 1�1 reachability problem is obviously undecidable,
because the model is Turing powerful. Undecidability holds even for normed MPDAs.
We will thus consider only stateless or weak MPDAs from now on.

We start by observing that out of four combinations of the reachability problem, it
is sufficient to consider only two, namely the REG�1 and REG�REG cases. Indeed, as
far as complexity is concerned, we observe the following collapse:

1�1 = REG�1 1�REG = REG�REG (6)

independently of a restriction on automata. The first equality follows from our first
result:

Lemma 2. Suppose A is a weak MPDA. Let L be a regular set of configurations of A
and let t be a configuration of A. Then

L �A t =⇒ s �A t for some s ∈ L of size polynomial wrt. A, L and t .

Indeed, the reduction from REG�1 to 1�1 is by nondeterministic guessing a source
configuration of polynomial size.

The second equality (6) will follow from our results listed below.
Before stating the remaining results, we summarize all of them in the following

table. We distinguish cases, corresponding to strongly normed/normed/unnormed case
and stateless/weak case. Each entry of the table contains the complexity of REG�REG

reachability problem. Additionally, the complexity of REG�1 reachability problem is
given in cases it is different from the complexity of REG�REG reachability.

For clarity, we do not distinguish stateless strongly normed case from stateless nor-
med one, as these two cases obviously coincide.

[REG�1]
strongly normed normed unnormed

REG�REG

stateless NP-compl. (Thm. 2)
[NP-compl. (Thm. 3)]
undecidable (Thm. 1)

weak NP-compl. (Thm. 2)
[decidable] [decidable (Thm. 4)]

undecidable (Thm. 1) undecidable

60 W. Czerwiński, P. Hofman, and S. Lasota

Now we discuss the results in detail. We first observe an apparent decidability fron-
tier witnessed by stateless unnormed MPDAs and weak normed MPDAs:

Theorem 1. The 1�REG reachability is undecidable for stateless unnormed MPDAs
and for weak normed MPDAs.

The proof is by reduction of the nonemptiness of intersection of context-free languages
and uses three stacks. The case of two stacks remains open.

Thus lack of strong normedness combined with a regular target set yields undecid-
ability in case of stateless automata. Surprisingly, restricting additionally:

– either the automaton to be strongly normed,
– or the target set to a singleton,

makes a dramatical difference for complexity of the problem, as summarized in Theo-
rems 2, 3 and 4 below. In the first theorem we only assume strong normedness:

Theorem 2. The REG�REG reachability is NP-complete for strongly normed weak
MPDAs.

Theorem 2 is the main result of this paper. It is proved by showing that reachability is al-
ways witnessed by a polynomial witness, obtained by careful elimination of ’irrelevant’
transitions.

In the following two theorems we do not assume strong normedness, thus according
to Theorem 1 we have to restrict target set to singleton. Under such a restriction, we are
able to prove NP-completeness only in the class of stateless MPDA, while for all weak
MPDA we merely state decidability:

Theorem 3. The REG�1 reachability is NP-complete for stateless unnormed MPDAs.

Theorem 4. The REG�1 reachability is decidable for weak unnormed MPDAs.

Theorem 3 is shown similarly to Theorem 2, while the proof of Theorem 4 is based on
a well order, the point-wise extension of a variant of Higman ordering.

Open Questions. Except for two entries in the summarizing table above, we know the
exact complexity of the reachability problem. The important open question that remains
is the actual complexity of 1�1 reachability for (normed and unnormed) weak MPDAs.
Another interesting question is whether undecidability carries over to automata with two
stacks only.

Reachability Set. Now we consider the problem of computing the whole reachability
set. For a given automaton A, and a set L of configurations, we consider forward and
backward reachability sets of L, defined as:

{s : L �A s} and {s : s �A L},

respectively. It turns out that the backward reachability set may be computed under the
strong normedness assumption.

Reachability Problem for Weak Multi-Pushdown Automata 61

Theorem 5. For weak strongly normed MPDAs, the backward reachability set of a
regular set is an effectively computable regular set.

Roughly speaking, we show that the backward reachability set is upward closed with
respect to the point-wise extension of a suitable variant of Higman ordering.

On the other hand, the forward reachability set needs not be regular, even in the case
of strongly normed stateless automata, as shown in the following example.

Example 4. Consider a stateless automaton with two stacks, over alphabets {A,X} and
{B}, and the following transition rules:

X −→ XA, B X → ε, ε A → ε, ε B → ε, ε.

The set of configurations reachable from the configuration (X, ε) is not regular:

{(Ai,Bj) : i, j ∈ N} ∪ {(XAk,Bl) : k ≥ l}.

Relaxed Regularity. The relaxed definition of regularity, as discusses in Remark 3,
makes the reachability problem intractable in all cases. The following theorem is shown
by reduction from the Post Correspondence Problem:

Theorem 6. The 1�REG reachability is undecidable for stateless strongly normed
MPDAs, under the relaxed notion of regularity.

Furthermore, the backward reachability set of a relaxed regular set is not necessarily
regular, even in stateless strongly normed MPDAs. The illustrating example is omitted
due to space limitation.

4 Proof of Lemma 2

Consider a MPDA A and a regular set L of configurations of A. Let s ∈ L be source
configuration and let t be an arbitrary target configuration. Suppose s �A t . We will
show that the size of s may be reduced, while preserving membership in L. The crucial
but simple idea of the proof will rely on an analysis of relevance of symbol occurrences,
to be defined below.

Symbol occurrences. Suppose that there is a path π from s to t , consisting of consec-
utive transitions s −→ s1 −→ s2 . . . −→ sn = t . We will consider all individual
occurrences of symbols that appear in the configurations. For instance, in the following
exemplary sequence of two-stack configurations

〈q,AA,C〉 −→ 〈q,BBA,DC〉 −→ 〈q,ABBA,DC〉 (7)

there are altogether 14 symbol occurrences: 3 in the first configuration, 5 in the second
one and 6 in the third one.

Recall that every transition si −→ si+1 is induced by some transition rule X −→ α
of the automaton. Then there is a distinguished occurrence of symbol X in si that is

62 W. Czerwiński, P. Hofman, and S. Lasota

involved in the transition. In the sequel we use the term symbol occurrence involved in
a transition.

Precisely one occurrence of symbol in si is involved in the transition si −→ si+1; for
every other occurrence of a symbol in si there is a corresponding occurrence of the same
symbol in si+1. (Note that we always make a difference between corresponding symbol
occurrences from different configurations.) All remaining occurrences of symbols in
si+1 are created by the transition; we call these occurrences fresh.

We define the descendant relation as follows. All fresh symbol occurrences in si+1

are descendants of the symbol occurrence in si involved in the transition si −→ si+1.
Moreover, a symbol occurrence in si+1 corresponding to a symbol occurrence in si is
its descendant too. We will use term descendant for the reflexive-transitive closure of
the relation defined above and the term ancestor for its inverse relation. In particular,
every symbol occurrence in t is descendant of a unique symbol occurrence in s . The
descendant relation is a forest, i.e., a disjoint union of trees.

Example 5. As an example, consider again the sequence of transitions (7), with symbol
occurrences identified by subscripts 1 . . . 14:

〈q,A1A2,C3〉 −→ 〈q,B4B5A6,D7C8〉 −→ 〈q,A9B10B11A12,D13C14〉 (8)

Say the transitions are induced by the following two transition rules:

q, A −→ q, BB, D q, D −→ q, A, D

The descendant relation can be presented as the following forest:

A1

B4

B5

D7

B10

B11 A9

D13 C3 C8 C14

A2 A6 A12

The symbol occurrences involved in the two transitions (8) are A1 in the first configu-
ration and D7 in the second one. The fresh symbol occurrences are B4, B5 and D7 in
the second configuration, and A9 and D13 in the third one.

Relevant symbol occurrences. As the automaton A is weak, the number of transitions
in π that change state is bounded by the number of states of A. All remaining transitions
in π do not change state.

Consider all the occurrences of all symbols in all configurations along the path π,
including configurations s and t themselves. A symbol occurrence is called relevant if
some of its descendants:

– belongs to the target configuration t ; or
– is involved in some transition in π that changes state.

Otherwise, a symbol occurrences is irrelevant. In particular, all symbol occurrences in
t are relevant. Referring back to our example, all symbol occurrences appearing in (8)
are relevant.

Reachability Problem for Weak Multi-Pushdown Automata 63

Note that if t is not the empty configuration then every configuration in π contains
at least one relevant symbol occurrence. On the other side, in every configuration, the
number of relevant occurrences is always bounded by the sum of the size of t and the
number of states of A.

Small source configuration. So prepared, we are ready to prove that there is a config-
uration s ′ ∈ L of polynomial size with s ′ �A t . We will rely on the following claim:

Lemma 3. For any configuration s ′ obtained from s by removing some irrelevant sym-
bol occurrences, it holds s ′ �A t .

The lemma follows from the following two observations: (1) all the transitions in π
involving symbol occurrences remaining in s ′ and their descendants may be re-done;
(2) the resulting configuration will be exactly t , as only irrelevant symbol occurrences
have been removed from s .

Recall that the language L is represented by a tuple B1 . . .Bk of deterministic finite
automata, one automaton per stack. Consider the content of a fixed ith stack in s , say
w ∈ A∗i . Let n be the number of states of Bi. The run of the automaton Bi over w
labels every position of w by some state. We will use a standard pumping argument
to argue that every block of consecutive irrelevant symbol occurrences in s may be
reduced in length to at most n. Indeed, upon every repetition of a state of Bi, the word
w may be shortened by removing the induced infix, while preserving membership in
L. By repeating the pumping argument for all blocks of consecutive irrelevant symbol
occurrences in all stacks in s , one obtains a configuration s ′, still belonging to L, of
quadratic size. By Lemma 3 we know that s ′ � t , as required.

5 Proof of Theorem 2

NP-hardness follows from Lemma 1. The proof of membership in NP relies on the
following two core lemmas:

Lemma 4. The 1�1 reachability problem is in NP for strongly normed weak MPDAs.

Lemma 5. Let A be a strongly normed weak MPDA and let L,K be regular sets of
configurations. If L � K then s � t for some s ∈ L and t ∈ K of size polynomial
wrt. the sizes of A, L and K .

The two lemmas easily yield a decision procedure for REG�REG reachability: guess
configurations s ∈ L and t ∈ K of size bounded by a polynomial deduced from the
proof of Lemma 5, and then apply the procedure of Lemma 4 to check if s � t .

The rest of this section is devoted to the part of the proof of Lemma 4. The remaining
part of the proof, together with the proof of Lemma 5, are omitted.

5.1 Proof of Lemma 4

Consider a MPDA A and two configurations s and t . We will define a nondeterministic
polynomial-time decision procedure for s �A t .

64 W. Czerwiński, P. Hofman, and S. Lasota

Stateless assumption. For simplicity, we assume that both s and t have the same control
state. Thus we can treat transitions that lead from s to t as stateless transitions. At the
very end of the proof, we will discuss how to generalize it to the general case of strongly
normed weak MPDAs.

Polynomial witness. Our aim is to show that if there is a path from s to t then there is
a path of polynomial length. So stated, the above claim may not be verbally true, even
in the case of context-free graphs, as witnessed by the following simple example.

X1 −→ X2X2 X2 −→ X3X3 . . . Xn−1 −→ XnXn Xn −→ ε (9)

The example scales with respect to n, and thus the shortest path from the configuration
X1 to Xn is of exponential length. As a conclusion, one must use some subtle analysis
in order to be able to reduce the length of a witness of existence of the path as required.
Note that X1 is relevant and thus can not be simply omitted.

Proof idea. As a first step towards a polynomial bound on the witness of the path from s
to t , we will modify the notion of transition. Intuitively speaking, our aim is to consider
exclusively relevant symbol occurrences.

By a subword we mean any subsequence of a given word. For instance, aaccbc is a
subword of aacabbcbcbc. Further, by a subtransition of X −→ α1 . . . αk we mean any
X −→ β1 . . . βk such that the following conditions hold:

– subword: βi is a subword of αi, for all i ∈ {1 . . . k}; and
– nonemptiness: β1 . . . βk �= ε, i.e., at least one of words βi is nonempty.

Note that relying on the notion of relevance one easily deduces that whenever there
is a sequence of transitions from s to t , then there is also sequence of subtransitions.
Indeed, it is sufficient to remove irrelevant symbol occurrences in all transitions along
the path from s to t .

Clearly, the converse implication is not true in general. For instance, if we add sym-
bols X0, A and the transition X0 −→ X1A to the example (9), there is a sequence of
subtransitions from the configuration X0 to Xn. Our aim now it to modify the notion
of subtransition in such a way that the converse implication does hold as well, i.e., that
existence of a sequence of subtransitions implies existence of a sequence of transitions.
This requires certain amount of boring book-keeping, as defined in detail below.

Marked subtransitions. We will need an additional copy of every stack alphabet Ai,
denoted by Āi, for i = 1 . . . k. Thus for every a ∈ Ai there is a corresponding marked
symbol ā ∈ Āi. Formally, let the ith stack alphabet be Ai ∪ Āi.

A marked subword of a word w ∈ A∗i is any word in (Ai∪ Āi)
∗ that may be obtained

from w by the following marking procedure:

– color arbitrary occurrences in w (the idea is to color irrelevant symbol occurrences),
– mark every occurrence that is followed by any colored occurrence,
– and finally remove colored occurrences.

Reachability Problem for Weak Multi-Pushdown Automata 65

For instance, according to the coloringaacabbcbcbc, a marked subword of aacabbcbcbc
is āāc̄cbc.

Recall that a word w ∈ A∗i represents a content of the ith stack, with the left-most
symbol being the top-most. Intuitively, the idea behind the notion of marked subword
is to keep track of removed occurrences that are covered by other symbols on the stack.

A notion of marked subtransition is a natural adaptation of the notion of subtransi-
tion. Compared to subtransitions, there are two differences: ’subword’ is replaced with
’marked subword’; and whenever the left-side symbol is marked, then it may only put
marked symbols on its stack. Formally, a marked subtransition of X −→ α1 . . . αk is
any X −→ β1 . . . βk such that the following conditions hold:

– subword: βi is a marked subword of αi, for all i ∈ {1 . . . k};
– nonemptiness: β1 . . . βk �= ε, i.e., at least one of words βi is nonempty; and
– marking inheritance: if X ∈ Āi is marked then all symbols in βi are marked.

Note that there are exponentially many different marked subtransitions, but each one is
of polynomial size. Finally, note that every subtransition is obtained from some transi-
tion by the marking procedure as above, applied to every stack separately.

By the nonemptiness assumption on marked subtransitions we obtain a simple but
crucial observation:

Lemma 6. Along a sequence of marked subtransitions, the size of configuration can
not decrease.

A marked subconfiguration of a configuration 〈α1, . . . , αk〉 is any tuple 〈β1, . . . , βk〉
such that βi is a marked subword of αi for all i ∈ {1 . . . k}.

Lemma 7. For two configurations s and t , the following conditions are equivalent:

(1) there is a sequence of transitions from s to t ,
(2) there is a sequence of marked subtransitions from u to t , for some marked subcon-

figuration u of s .

Proof. The implication from (1) to (2) follows immediately. The sequence of marked
subtransitions is obtained by application of the marking procedure to all transitions. For
every transition, color in the marking procedure precisely those symbol occurrences
that are irrelevant.

Now we show the implication from (2) to (1). The proof uses strong normedness.
Assume a sequence π of marked subtransitions from u to t , for some marked sub-

configuration u of s . Recall that each subtransition in π has its original transition of A.
We claim that there is a sequence of transitions from s to t, that contains the original
transitions of all the marked subtransitions appearing in π, and canceling sequences

q X −→ . . . −→ 〈q, ε, . . . , ε〉 (10)

for some stack symbols X , existing due to strong normedness assumption.
The sequence of transitions from s to t is constructed by reversing the marking pro-

cedure. For the ease of presentation, beside letters from Ai, we will also use colored
letters.

66 W. Czerwiński, P. Hofman, and S. Lasota

Start with the configuration s , and choose any coloring of symbol occurrences in s
that induces u as the outcome of the marking procedure. Then consecutively apply the
following rule:

– If the top-most symbol X on some stack is colored, apply a canceling sequence for
X.

– Otherwise, apply the original transition of the next subtransition from π, using
again some coloring that could have been used in the marking procedure.

For correctness, we need to show that all colored occurrences of symbols are eventually
canceled out, as this guarantees that the final configuration is precisely t.

Let’s inspect π. As no symbol in t is marked, every marked symbol occurrence even-
tually disappears as a result of firing of some subtransition. Recall that marking of a
symbol X̄ disappears only if the subtransition pushes nothing on the stack of X̄ . As a
consequence, every colored symbol occurrence will eventually appear on the top of its
stack. Thus the canceling sequence for X will be eventually applied. ��

Lemma 8. For two configurations u and v , if there is a sequence of marked subtransi-
tions from u to v , then there is such a sequence of polynomial length wrt. the sizes of u ,
v and A.

This is the last lemma needed for NP-membership. Its proof is omitted.

Decision procedure. Now we drop the stateless assumption. Note that the notion of
marked subconfiguration and marked subtransition may be easily adapted to transitions
that change state. We do not impose however the nonemptiness condition on transitions
that change state, which is in accordance with the intuition that irrelevant symbol oc-
currences are removed in the marking procedure. Using Lemmas 6, 7 and 8 we will
define the nondeterministic decision procedure for strongly normed weak MPDAs.

Let the two given configurations s and t have control states q and p, respectively. In
the first step, the algorithm guesses a number of marked subconfigurations t1 . . . tn−1,
where n is not greater than the number of states of A, and marked subtransitions that
change state:

t1 −→ s1 t2 −→ s2 . . . tn−1 −→ sn−1

such that si and ti+1 have the same control states for i ∈ {0 . . . n−1}. For convenience,
we write s0 instead of s and tn instead of t . In particular, we assume that the control
state of t1 is q, and the control state of sn−1 is p. Relying on Lemma 6, it is sufficient
to consider configurations of sizes satisfying the following inequalities:

size(si) ≤ size(ti+1) for i ∈ {1 . . . n− 1}. (11)

In the second phase, the algorithm guesses, for i ∈ {0 . . . n − 1}, a sequence of sub-
transitions from si to ti+1 of length bounded by polynomial derived from the proof of
Lemma 8; and checks that the respective sequences of subtransitions lead from si to
ti+1, as required by Lemma 7. ��

Reachability Problem for Weak Multi-Pushdown Automata 67

Acknowledgements. We are grateful to anonymous reviewers for careful reading and
many valuable comments.

References

1. Atig, M.F.: From Multi to Single Stack Automata. In: Gastin, P., Laroussinie, F. (eds.) CON-
CUR 2010. LNCS, vol. 6269, pp. 117–131. Springer, Heidelberg (2010)

2. Atig, M.F., Bouajjani, A.: On the Reachability Problem for Dynamic Networks of Concurrent
Pushdown Systems. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 1–2.
Springer, Heidelberg (2009)

3. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs
with dynamic creation of threads. Logical Methods in Computer Science 7(4) (2011)

4. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: POPL, pp. 203–214
(2012)

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

6. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of multithreaded
software with asynchronous communication. In: Software Verification: Infinite-State Model
Checking and Static Program Analysis (2006)

7. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular Symbolic Analysis of Dynamic Networks
of Pushdown Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 473–487. Springer, Heidelberg (2005)

8. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures. In: Hand-
book of Process Algebra, pp. 545–623. Elsevier (2001)

9. Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under Contextual Locking. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 437–450. Springer, Hei-
delberg (2012)

10. Christensen, S.: Decidability and Decomposition in process algebras. PhD thesis, Dept. of
Computer Science. University of Edinburgh, UK (1993)

11. Czerwiński, W., Fröschle, S., Lasota, S.: Partially-Commutative Context-Free Processes. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 259–273. Springer,
Heidelberg (2009)

12. Czerwiński, W., Fröschle, S., Lasota, S.: Partially-commutative context-free processes: ex-
pressibility and tractability. Information and Computation 209, 782–798 (2011)

13. Czerwiński, W., Lasota, S.: Partially-commutative context-free languages (submitted, 2012)
14. Diekert, V., Rozenberg, G.: The book of traces. World Scientific (1995)
15. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes.

Fundam. Inform. 31(1), 13–25 (1997)
16. Huynh, D.T.: Commutative grammars: The complexity of uniform word problems. Informa-

tion and Control 57(1), 21–39 (1983)
17. Kahlon, V.: Reasoning about Threads with Bounded Lock Chains. In: Katoen, J.-P., König,

B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 450–465. Springer, Heidelberg (2011)
18. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning About Threads Communicating via Locks. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 505–518. Springer,
Heidelberg (2005)

68 W. Czerwiński, P. Hofman, and S. Lasota

19. Kretínský, M., Rehák, V., Strejcek, J.: Reachability is decidable for weakly extended process
rewrite systems. Inf. Comput. 207(6), 671–680 (2009)

20. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. Formal Methods in System Design 35(1), 73–97 (2009)

21. Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. Theor. Comput.
Sci. 274(1-2), 89–115 (2002)

22. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000)
23. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software. In:

Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer,
Heidelberg (2005)

Reachability and Termination Analysis

of Concurrent Quantum Programs

Nengkun Yu and Mingsheng Ying

Tsinghua University, China
University of Technology, Sydney, Australia

nengkunyu@gmail.com, Mingsheng.Ying@uts.edu.au

Abstract. We introduce a Markov chain model of concurrent quantum
programs. This model is a quantum generalization of Hart, Sharir and
Pnueli’s probabilistic concurrent programs. Some characterizations of the
reachable space, uniformly repeatedly reachable space and termination
of a concurrent quantum program are derived by the analysis of their
mathematical structures. Based on these characterizations, algorithms
for computing the reachable space and uniformly repeatedly reachable
space and for deciding the termination are given.

Keywords: Quantum computation, concurrent programs, reachability,
termination.

1 Introduction

Research on concurrency in quantum computing started about 10 years ago, and
it was motivated by two different requirements:

– Verification of quantum communication protocols : Quantum communica-
tion systems are already commercially available from Id Quantique, MagiQ
Technologies, SmartQuantum and NEC. Their advantage over classical com-
munication is that security is provable based on the principles of quantum
mechanics. As is well known, it is very difficult to guarantee correctness
of even classical communication protocols in the stage of design. Thus, nu-
merous techniques for verifying classical communication protocols have been
developed. Human intuition is much better adapted to the classical world
than the quantum world. This will make quantum protocol designers to com-
mit many more faults than classical protocol designers. So, it is even more
critical to develop formal methods for verification of quantum protocols (see
for example [10], [11], [4]). Concurrency is a feature that must be encom-
passed into the formal models of quantum communication systems.

– Programming for distributed quantum computing: A major reason for dis-
tributed quantum computing, different from the classical case, comes from
the extreme difficulty of the physical implementation of functional quan-
tum computers (see for example [1], [21]). Despite convincing laboratory
demonstrations of quantum computing devices, it is beyond the ability of

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 69–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

70 N. Yu and M. Ying

the current physical technology to scale them. Thus, a natural idea is to use
the physical resources of two or more small capacity quantum computers to
simulate a large capacity quantum computer. In fact, various experiments in
the physical implementation of distributed quantum computing have been
frequently reported in recent years. Concurrency naturally arises in the stud-
ies of programming for distributed quantum computing.

The majority of work on concurrency in quantum computing is based on process
algebras [13], [15], [8], [9], [14], [6], [22], [7], [3]. This paper introduces a new
model of concurrent quantum programs in terms of quantum Markov chains.
This model is indeed a quantum extension of Hart, Sharir and Pnueli’s model of
probabilistic concurrent programs [12], [19]. Specifically, a concurrent quantum
program consists of a finite set of processes. These processes share a state Hilbert
space, and each of them is seen as a quantum Markov chain on the state space.
The behaviour of each processes is described by a super-operator. This descrip-
tion of a single process follows Selinger, D’Hont and Panangaden’s pioneering
works [18], [5] on sequential quantum programs where the denotational semantics
of a quantum program is given as a super-operator. The super-operator descrip-
tion of sequential quantum programs was also adopted in one of the authors’
work on quantum Floyd-Hoare logic [20]. Similar to the classical and probabilis-
tic cases [12], an execution path of a concurrent quantum program is defined
to be an infinite sequence of the labels of their processes, and a certain fairness
condition is imposed on an execution path to guarantee that all the processes
fairly participate in a computation.

Reachability and termination are two of the central problems in program
analysis and verification. The aim of this paper is to develop algorithms that
compute the reachable states and decide the termination, respectively, of a con-
current quantum program. To this end, we need to overcome two major diffi-
culties, which are peculiar to the quantum setting and would not arise in the
classical case:

– The state Hilbert space of a quantum program is a continuum and thus
doomed-to-be infinite even when its dimension is finite. So, a brute-force
search is totally ineffective although it may works well to solve a correspond-
ing problem for a classical program. We circumvent the infinity problem of
the state space by finding a finite characterization for reachability and termi-
nation of a quantum program through a careful analysis of the mathematical
structure underlying them.

– The super-operators used to describe the behaviour of the processes are op-
erators on the space of linear operators on the state space, and they are
very hard to directly manipulate. In particular, algorithms for computing
super-operators are lacking. We adopt a kind of matrix representation for
super-operators that allows us to conduct reachability and termination anal-
ysis of quantum programs by efficient matrix algorithms.

The paper is organized as follows. For convenience of the reader we briefly recall
some basic notions from quantum theory and fix the notations in Sec. 2; but

Concurrent Quantum Programs 71

we refer to [17] for more details. A Markov chain model of concurrent quantum
programs is defined in Sec. 3, where we also give a running example of quantum
walks. In Sec. 4, we present a characterization for reachable space and one for
uniformly repeatedly reachable space of a quantum program, and develop two
algorithms to compute them. A characterization of termination of a quantum
program with fair execution paths and an algorithm for deciding it are given in
Sec. 5. It should be pointed out that termination decision in Sec. 5 is based on
reachability analysis in Sec. 4. A brief conclusion is drawn in Sec. 6.

2 Preliminaries and Notations

2.1 Hilbert Spaces

The state space of a quantum system is a Hilbert space. In this paper, we only
consider a finite dimensional Hilbert space H, which is a complex vector space
equipped with an inner product 〈·|·〉. A pure state of a quantum system is rep-
resented by a unit vector, i.e., a vector |ψ〉 with 〈ψ|ψ〉 = 1. Two vectors |ϕ〉, |ψ〉
in H are orthogonal, written |ϕ〉 ⊥ |ψ〉, if their inner product is 0. A basis of H
is orthonormal if its elements are mutually orthogonal, unit vectors. The trace
of a linear operator A on H is defined to be tr(A) =

∑
i〈i|A|i〉, where {|i〉} is an

orthonormal basis of H. For a subset V of H, the subspace spanV spanned by V
consists of all linear combinations of vectors in V . For any subspace X of H, its
orthocomplement is the subspace X⊥ = {|ϕ〉 ∈ H : |ϕ〉 ⊥ |ψ〉 for all |ψ〉 ∈ X}.
The join of a family {Xi} of subspaces is

∨
iXi = span(

⋃
iXi). In particular, we

write X ∨Y for the join of two subspaces X and Y . A linear operator P is called
the projection onto a subspace X if P |ψ〉 = |ψ〉 for all |ψ〉 ∈ X and P |ψ〉 = 0
for all |ψ〉 ∈ X⊥. We write PX for the projection onto X .

A mixed state of a quantum system is represented by a density operator.
A linear operator ρ on H is called a density operator (resp. partial density
operator) if ρ is positive-semidefinite in the sense that 〈φ|ρ|φ〉 ≥ 0 for all |φ〉,
and tr(ρ) = 1 (resp. tr(ρ) ≤ 1). For any statistical ensemble {(pi, |ψi〉)} of
pure quantum states with pi > 0 for all i and

∑
i pi = 1, ρ =

∑
i pi|ψi〉〈ψi| is

a density operator. Conversely, each density operator can be generated by an
ensemble of pure states in this way. In particular, we write ψ for the density
operator |ψ〉〈ψ| generated by a single pure states |ψ〉. The support of a partial
density operator ρ, written supp(ρ), is the space spanned by its eigenvectors
with nonzero eigenvalues.

Lemma 1. For any p > 0 and partial density operators ρ, σ, we have: (1)
supp(pρ) = supp(ρ); (2) supp(ρ) ⊆ supp(ρ + σ); (3) supp(ρ + σ) = supp(ρ) ∨
supp(σ).

2.2 Super-Operators

A super-operator is a mathematical formalism used to describe a broad class
of transformations that a quantum system can undergo. A super-operator on

72 N. Yu and M. Ying

H is a linear operator E from the space of linear operators on H into itself,
satisfying (1) tr[E(ρ)] ≤ tr(ρ) for any ρ; (2) Complete positivity(CP): for any
extra Hilbert space Hk, (Ik⊗E)(A) is positive provided A is a positive operator
on Hk⊗H, where Ik is the identity operation on Hk. Furthermore, if tr[E(ρ)] =
tr(ρ) for any ρ, then E is said to be trace-preserving. Each super-operator E
enjoys the Kraus representation: there exists a set of operators {Ei} satisfying

(1) E(ρ) =
∑
i EiρE

†
i for all density operators ρ; (2)

∑
iE

†
iEi ≤ I, with equality

for trace-preserving E , where I is the identity operator. In this case, we write E =∑
iEi ·E

†
i . The image of subspaceX ofH under E is E(X) =

∨
|ψ〉∈X supp(E(ψ)),

and the pre-image of X under E is E−1(X) = {|ψ〉 ∈ H : supp(E(ψ)) ⊆ X}.

Lemma 2. (1) supp(ρ) ⊆ supp(σ) ⇒ supp(E(ρ)) ⊆ supp(E(σ)), and supp(ρ) =
supp(σ) ⇒ supp(E(ρ)) = supp(E(σ)).

(2) supp(E(ρ)) ⊆ supp((E + F)(ρ)). (3) E(X) = supp(E(PX)).
(4) X ⊆ Y ⇒ E(X) ⊆ E(Y). (5) E(X) ⊆ (E + F)(X).

(6) If E =
∑
iEi ·E

†
i , then E−1(X) = [supp(E∗(PX⊥))]⊥, where E∗ =

∑
iE

†
i ·

Ei is the (Schrödinger-Heisenberg) dual of E.

2.3 Matrix Representation of Super-Operator

The matrix representation of a super-operator is usually easier to manipulate
than the super-operator itself. If E =

∑
iEi ·E

†
i and dimH = d, then the matrix

representation of E is the d2 × d2 matrix M =
∑
iEi ⊗ E∗i , where A∗ stands

for the conjugate of matrix A, i.e., A∗ = (a∗ij) with a∗ij being the conjugate
of complex number aij , whenever A = (aij). According to [24], we have the
following

Lemma 3. (1) The modulus of any eigenvalue of M is less or equal to 1.
(2) We write |Φ〉 =

∑
j |jj〉 for the (unnormalized) maximally entangled state

in H⊗H, where {|j〉} is an orthonormal basis of H. Then for any d× d matrix
A, we have (E(A) ⊗ I)|Φ〉 = M(A⊗ I)|Φ〉.

2.4 Quantum Measurements

A quantum measurement is described by a collection {Mm} of operators, where
the indexes m refer to the measurement outcomes. It is required that the mea-
surement operators satisfy the completeness equation

∑
mM †

mMm = IH. If the
system is in state ρ, then the probability that measurement result m occurs is
given by p(m) = tr(M †

mMmρ), and the state of the system after the measure-

ment is
MmρM

†
m

p(m) .

3 A Model of Concurrent Quantum Programs

Our model is a quantum extension of Hart, Sharir and Pnueli’s probabilistic
concurrent programs [12]. A concurrent quantum program consists of a finite set

Concurrent Quantum Programs 73

K = {1, 2, · · · ,m} of quantum processes, and these processes have a common
state space, which is assumed to be a d-dimensional Hilbert space H. With each
k ∈ K we associate a trace-preserving super-operator Ek, describing a single
atomic action or evolution of process k. Also, we assume a termination condi-
tion for the program. At the end of each execution step, we check whether this
condition is satisfied or not. The termination condition is modeled by a yes-no
measurement {M0,M1}: if the measurement outcome is 0, then the program ter-
minates, and we can imagine the program state falls into a terminal (absorbing)
space and it remains there forever; otherwise, the program will enter the next
step and continues to perform a quantum operation chosen from K.

Definition 1. A concurrent quantum program defined on a d-dimensional
Hilbert space H is a pair P = ({Ek : k ∈ K}, {M0,M1}), where:
1. Ek is a super-operator on H for each k ∈ K;
2. {M0,M1} is a measurement on H as the termination test.

Any finite string s1s2 · · · sm or infinite string s1s2 · · · si · · · of elements of K is
called an execution path of the program. Thus, the sets of finite and infinite
execution paths of program P are

S = Kω = {s1s2 · · · si · · · : si ∈ K for every i ≥ 1},
Sfin = K∗ = {s1s2 · · · sn : n ≥ 0 and si ∈ K for all 1 ≤ i ≤ n},

respectively. A subset of S is usually called a schedule.
For simplicity of presentation, we introduce the notation Fk for any k ∈ K

which stands for the super-operator defined by Fk(ρ) = Ek(M1ρM
†
1) for all den-

sity operators ρ. Assume the initial state is ρ0. The execution of the program
under path s = s1s2 · · · sk · · · ∈ S can be described as follows. At the first step,
we perform the termination measurement {M0,M1} on the initial state ρ0. The
probability that the program terminates; that is, the measurement outcome is
0, is tr[M0ρ0M

†
0]. On the other hand, the probability that the program does

not terminate; that is, the measurement outcome is 1, is ps1 = tr[M1ρ0M
†
1], and

the program state after the outcome 1 is obtained is ρs1 = M1ρ0M
†
1/p

s
1. We

adopt Selinger’s normalization convention [18] to encode probability and density

operator into a partial density operator ps1ρ
s
1 = M1ρ0M

†
1 . Then this (partial)

state is transformed by the quantum operation Es1 to Es1(M1ρ0M
†
1) = Fs1(ρ0).

The program continues its computation step by step according to the path s.
In general, the (n + 1)th step is executed upon the partial density operator
psnρ

s
n = Fsn ◦ · · · ◦ Fs2 ◦ Fs1(ρ0), where psn is the probability that the pro-

gram does not terminate at the nth step, and ρsn is the program state after
the termination measurement is performed and outcome 1 is reported at the
nth step. For simplicity, let Ff denote the super-operator Fsn ◦ · · · ◦ Fs2 ◦ Fs1
for string f = s1s2 · · · sn. Thus, psnρsn = Fs[n](ρ0), where s[n] is used to de-
note the head s1s2 · · · sn for any s = s1s2 · · · sn · · · ∈ S. The probability that
the program terminates in the (n+ 1)th step is then tr(M0(Fs[n](ρ0))M †

0), and
the probability that the program does not terminate in the (n + 1)th step is

psn+1 = tr(M1(Fs[n](ρ0))M †
1).

74 N. Yu and M. Ying

3.1 Fairness

To guarantee that all the processes in a concurrent program can fairly participate
in a computation, a certain fairness condition on its execution paths is needed.

Definition 2. An infinite execution path s = s1s2...si... ∈ S is fair if each
process appears infinitely often in s; that is, for each k ∈ K, there are infinitely
many i ≥ 1 such that si = k.

We write F = {s : s ∈ S is fair} for the schedule of all fair execution paths.

Definition 3. A finite execution path σ = s1s2 · · · sn ∈ Sfin is called a fair
piece if each process appears during σ; that is, for each k ∈ K, there exists i ≤ n
such that si = k.

Ffin is used to denote the set of all fair pieces:Ffin = {σ : σ ∈ Sfin is a fair piece}.
It is obvious that F = Fωfin; in other words, every fair infinite execution path
s ∈ F can be divided into an infinite sequence of fair pieces: s = f1f2 · · · fk · · · ,
where fi ∈ Ffin for each i > 0. The fairness defined above can be generalized by
introducing the notion of fairness index, which measures the occurrence frequency
of every process in an infinite execution path.

Definition 4. For any infinite execution path s ∈ F , its fairness index f(s) is
the minimum, over all processes, of the lower limit of the occurrence frequency
of the processes in s; that is,

f(s) = min
k∈K

lim
t→∞

inf
n>t

s(n, k)

n
,

where s(n, k) is the number of occurrences of k in s[n].

For any δ ≥ 0, we write Fδ for the set of infinite execution paths whose fairness
index is greater than δ: Fδ = {s : s ∈ S and f(s) > δ}. Intuitively, within
an infinite execution path in Fδ, each process will be woken up with frequency
greater than δ. It is clear that F0 � F.

3.2 Running Example

We consider two quantum walks on a circle C3 = (V,E) with vertices V =
{0, 1, 2} and edges E = {(0, 1), (1, 2), (2, 0)}. The first quantum walk W1 =
({W1}, {M0,M1}) is given as follows:

– The state space is the 3−dimensional Hilbert space with computational basis
{|i〉|i ∈ V };

– The initial state is |0〉; this means that the walk starts at the vertex 0;
– A single step of the walk is defined by the unitary operator:

W1 =
1√
3

⎛⎝1 1 1
1 w w2

1 w2 w

⎞⎠ ,

where w = e2πi/3. Intuitively, the probabilities of walking to the left and to
the right are both 1/3, and there is also a probability 1/3 of not walking.

Concurrent Quantum Programs 75

– The termination measurement {M0,M1} is defined by

M0 = |2〉〈2|, M1 = I3 − |2〉〈2|,

where I3 is the 3× 3 unit matrix.

The second walkW2 = ({W2}, {M0,M1}) is similar to the first one, but its single
step is described by unitary operator

W2 =
1√
3

⎛⎝1 1 1
1 w2 w
1 w w2

⎞⎠ .

Then we can put these two quantum walks together to form a concurrent pro-
gram P = ({W1,W2}, {M0,M1}). For example, the execution of this concurrent
program according to unfair path 1ω /∈ F is equivalent to a sequential program
({W1}, {P0, P1}); and the execution of P according to fair path (12)ω ∈ F is as
follows: we perform the termination measurement {M0,M1} on the initial state
ρ0, then the nonterminating part of the program state is transformed by the
super-operator U1 = W1 · W †

1 , followed by the termination measurement, and

then the application of the super-operator U2 = W2 ·W †
2 , and this procedure is

repeated infinitely many times.

4 Reachability

Reachability is at the centre of program analysis. A state is reachable if some
finite execution starting in the initial state ends in it. What concerns us in the
quantum case is the subspace of H spanned by reachable states.

Definition 5. The reachable space of program P = ({Ek : k ∈ K}, {M0,M1})
starting in the initial state ρ0 is

HR =
∨

s∈S,j≥0

supp Fs[j](ρ0) =
∨

f∈Sfin

supp Ff(ρ0).

We have the following closed form characterization of the reachable space.

Theorem 1. HR = supp(
∑d−1
i=0 F i(ρ0)), where d = dimH is the dimension of

H, and F =
∑
k∈K Fk.

Proof: We write X for the right-hand side. From Lemma 1, we see that X =∨
{suppFf(ρ0) : f ∈ Sfin, |f | < d}, where |f | denotes the length of string f .

According to the definition of reachable space, we know that X ⊆ HR. To
prove the inverse part X ⊇ HR, for each n ≥ 0, we define subspace Yn as
follows: Yn := supp(

∑n
i=0 F i(ρ0)). Due to Lemma 1, we know that Y0 ⊆ Y1 ⊆

· · · ⊆ Yn ⊆ · · · . Suppose r is the smallest integer satisfying Yr = Yr+1. We
observe that Yn+1 = supp(ρ + F(PYn)) for all n ≥ 0. Then it follows that
Yn = Yr for all n ≥ r. On the other hand, we have Y0 � Y1 � · · · � Yr.

76 N. Yu and M. Ying

So, 0 < d0 < d1 < · · · < dr ≤ d, where d0 is the rank of ρ0, and di is the
dimension of subspace Yi for 1 ≤ i ≤ r. Therefore, we have r ≤ d − 1 and
Yd−1 = Yr ⊇ Yn for all n. Finally, for any f ∈ Sfin, it follows from Lemma 2
that supp(Ff (ρ0)) ⊆ supp(F |f |(ρ0)) ⊆ Y|f | ⊆ Yd−1 = X. Thus, HR ⊆ X . �
Now we are able to present an algorithm computing reachable subspace using
matrix representation of super-operators. We define G =

∑
k∈K Fk/|K|.

Algorithm 1. Computing reachable space

input : An input state ρ0, and the matrix representation G of G
output : An orthonormal basis B of HR.

|x〉 ← (I −G/2)−1(ρ0 ⊗ I)|Φ〉;
(* |Φ〉 =∑j |jAjB〉 is the unnormalized maximally entangled state in H⊗H *)
for j = 1 : d do
|yj〉 ← 〈jB |x〉;

end
set of states B ← ∅;
integer l ← 0;
for j = 1 : d do
|z〉 ← |yj〉 −∑l

k=1〈bk|yj〉|bk〉;
if |z〉 �= 0 then

l ← l + 1;
|bl〉 ← |z〉/

√〈z|z〉;
B ← B ∪ {|bl〉};

end
end
return

Theorem 2. Algorithm 1 computes the reachable space in time O(d4.7454) ,
where d = dimH.

Proof: It follows from Lemma 3(1) that I−G/2 is invertible, and
∑∞
i=0(G/2)i =

(I −G/2)−1. We write ρ =
∑∞
i=0 Gi(ρ0)/2i, and have

(ρ⊗ I)|Φ〉 =
∞∑
i=0

(G/2)i(ρ0 ⊗ I)|Φ〉,

and the existence of ρ immediately follows from Lemma 3. We further see that
|x〉 = (ρ⊗ I)|Φ〉 =

∑
j ρ|jA〉|jB〉 and |yi〉 = ρ|jA〉. Note that B is obtained from

{|yj〉} by the Gram-Schmidt procedure. So, supp(ρ) = span{ρ|j〉} = spanB. It

is clear that HR = supp(
∑d−1
i=0 F i(ρ0)) ⊆ supp(ρ). Therefore, HR = supp(ρ) =

spanB, and the algorithm is correct.
The complexity comes from three the following parts: (1) it costs O(d2∗2.3727)

to compute (I − G/2)−1 by using Coppersmith-Winograd algorithm [2]; (2) it
requires O(d4) to obtain |x〉 from (I −G/2)−1; (3) the Gram-Schmidt orthonor-
malization is in time O(d3). So, the time complexity is O(d4.7454) in total. �

Concurrent Quantum Programs 77

An advantage of Algorithm 1 is that we can store (I − G/2)−1. Then for any
input state ρ0, we only need O(d4) to compute the space reachable from ρ0.

Definition 6. The uniformly repeatedly reachable space of program P = ({Ek :
k ∈ K}, {M0,M1}) starting in the initial state ρ0 is

HURR =
⋂
n≥0

∨
s∈S,j≥n

supp Fs[j](ρ0) =
⋂
n≥0

∨
{supp Ff (ρ0) : f ∈ Sfin, |f | ≥ n}.

The uniformly repeatedly reachable space enjoys the following closed form,

Theorem 3. HURR = supp(
∑2d−1

i=d F i(ρ0)), where d = dimH, and F =
∑

k∈K Fk.

Proof: For each n ≥ 0, we define subspace Zn as follows: Zn :=
∨
j≥n supp F j(ρ0).

It is obvious that Z0 ⊇ Z1 ⊇ · · · ⊇ Zn ⊇ · · · . Suppose r is the smallest integer
satisfying Zr = Zr+1. By noting that Zn+1 = supp(F(PZn)), we can show that
Zn = Zr for all n ≥ r. On the other hand, we have Z0 � Z1 � · · · � Zr. So,
d0 > d1 > · · · > dr ≥ 0, and di is the dimension of subspace Zi for 0 ≤ i ≤ r.
Therefore, we have r ≤ d0 ≤ d and Zd = Zr. Therefore, HURR =

⋂
n≥0 Zn = Zd.

It is obvious that Zd is the reachable space starting in state Fd(ρ0). Using The-

orem 1 we obtain Zd = supp(
∑d−1
i=0 F i(Fd(ρ0))) = supp(

∑2d−1
i=d F(ρ0)). �

We can give an algorithm computing the uniformly repeatedly reachable space
by combining the above theorem and matrix representation of super-operators.

Algorithm 2. Compute uniformly repeatedly reachable space

input : An input state ρ0, and the matrix representation G of G
output : An orthonormal basis BURR of HURR.

|x〉 ← Gd(I −G/2)−1(ρ0 ⊗ I)|Φ〉;
(* |Φ〉 =∑j |jAjB〉 is the unnormalized maximally entangled state in H⊗H *)
for j = 1 : d do
|yj〉 ← 〈jB |x〉;

end
set of states BURR ← ∅;
integer l ← 0;
for j = 1 : d do
|z〉 ← |yi〉 −∑l

k=1〈bk|yj〉|bk〉;
if |z〉 �= 0 then

l ← l + 1;
|bl〉 ← |z〉/

√〈z|z〉;
BURR ← BURR ∪ {|bl〉};

end
end
return

Theorem 4. Algorithm 2 computes the uniformly repeatedly reachable space in
time O(d4.7454 log d), where d = dimH.

Proof: This theorem is a corollary of Theorem 2. Here, log d in the complexity
comes from computing Md using the method of exponentiation by squaring.

78 N. Yu and M. Ying

5 Termination

Another important problem concerning the behaviour of a program is its termi-
nation.

Definition 7. Let the program P = ({Ek : k ∈ K}, {M0,M1}). Then P with
input ρ0 terminates for execution path s ∈ S if psnρ

s
n = Fs[n] = 0 for some

positive integer n.

Definition 8. 1. If a program P with input ρ0 terminates for all s ∈ A, then
we say that it terminates in schedule A.

2. If there is a positive integer n such that psnρ
s
n = 0 for all s ∈ A, then it is

said that the program P with input ρ0 uniformly terminates in schedule A.

We first prove the equivalence between termination and uniform termination. Of
course, this equivalence comes from finiteness of the dimension of the state space.

Theorem 5. The program P = ({Ek : k ∈ K}, {M0,M1}) with initial state ρ0
terminates in the biggest schedule S = Kω if and only if it uniformly terminates
in schedule S.

Proof. The “if” part is obvious. We prove the “only if” part in two steps:
(1) We consider the case of |K| = 1, where {Ek : k ∈ K} is a singleton {E}.

Now the program is indeed a sequential program, and it is a quantum loop [23].

We write F(ρ) = E(M1ρM
†
1) for all ρ. What we need to prove is that if P

terminates, i.e., Fn(ρ0) = 0 for some n, then it terminates within d steps, i.e.,
Fd(ρ0) = 0. If ρ0 is a pure state |ψ〉, then we define the termination sets as
follows: Xn := {|ψ〉 : Fn(ψ) = 0} for each integer n > 0.

(1.1) If |ϕ〉, |χ〉 ∈ Xn, then Fn(ϕ + χ) = 0, which leads to α|ϕ〉 + β|χ〉 ∈ Xn
for any α, β ∈ C. Thus Xn is a subspace of H.

(1.2) Since Fn(ψ) = 0 ⇒ Fn+1(ψ) = 0, it holds that that Xn ⊆ Xn+1 for any
n > 0. So, we have the inclusion relation X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · .

Now suppose t is the smallest integer satisfying Xt = Xt+1. Invoking Lemma
2, we obtain that supp(F∗t(I)) = X⊥

t = X⊥
t+1 = supp(F∗t+1(I)), where F∗(·)

denotes the (Schrödinger-Heisenberg) dual of F(·). We have supp(F∗n(I)) =
supp(F∗t(I)), which leads to Xn = Xt for all n ≥ t. Now, it holds that X1 �
X2 � · · · � Xt = Xt+1 = Xt+2 = · · · . This implies d1 < d2 · · · < dt, where di is
the dimension of subspace Xi. Thus, t ≤ d. If Fn(ψ) = 0, then |ψ〉 ∈ Xn ⊆ Xd,
and Fd(ψ) = 0.

In general, if ρ0 is a mixed input state ρ0 =
∑

pi|ψi〉〈ψi| with all pi > 0, and
Fn(ρ0) = 0, then Fn(ψi) = 0 for all i. Therefore, Fd(ψi) = 0 for all i, and it
follows immediately that Fd(ρ0) = 0.

(2) For the general case of |K| ≥ 2, we assume that P starting in ρ0 terminates
in S, i.e., for any s ∈ S, there exists an integer ns such that Fs[ns](ρ0) = 0. Our
purpose is to show that there exists an integer n such that Fs[n](ρ0) = 0 for
all s ∈ S. Indeed, we can choose n = d. We do this by refutation. Assume that
Fs[d](ρ0) �= 0 for some s ∈ S. We are going to construct an execution path

Concurrent Quantum Programs 79

s ∈ S such that Fs[n](ρ0) �= 0 for any n ≥ 0. Let F =
∑
k∈K Fk. Then the

assumption means that there exist f ∈ Kd such that Ff (ρ0) �= 0, and it follows
that Fd(ρ0) �= 0. Now we consider the loop program ({F}, {M0,M1}) with initial
state ρ0. Applying (1) to it, we obtain F2d(ρ0) �= 0. Then there exist g1, h1 ∈ Kd

such that Fh1(Fg1(ρ0)) = Fg1h1(ρ0) �= 0, and Fd(Fg1(ρ0)) �= 0. Applying (1)
again leads to F2d(Fg1(ρ0)) �= 0, which means that there exist h2, g2 ∈ K2d such
that Fh2(Fg1g2(ρ0)) = Fg2h2(Fg1(ρ0)) �= 0. Thus, we have Fd(Fg2g1(ρ0)) �= 0.
Repeating this procedure, we can find an infinite sequence g1, g2, ... ∈ Kd. Put
s = g1g2... ∈ S. Then it holds that Ts[kd](ρ0) �= 0 for any integer k. Thus, we
have Ts[n](ρ) �= 0 for all n. �

Now we are ready to consider termination under fairness. Of course, any permu-
tation of K is a fair piece. We write PK for the set of permutations of K. For
σ = s1s2 · · · sm ∈ PK , a finite execution path of the form s1σ1s2σ2 · · ·σm−1sm
is called an expansion of σ. Obviously, for any σ ∈ PK , all of its expansions are
in Ffin. We will use a special class of fair pieces generated by permutations:

Π = {s1σ1s2σ2 · · ·σm−1sm : s1s2 · · · sm ∈ PK and |σi| < d for every 1 ≤ i < m},

where d is the dimension of the Hilbert space H of program states. It is easy to
see that Π � Ffin.

Theorem 6. A program P = ({Ek : k ∈ K}, {M0,M1}) with initial state ρ0
terminates in the fair schedule F if and only if it terminates in the schedule Πω.

Proof. The “only if” part is clear because Πω ⊆ F . To prove the “if” part,
assume P terminates in the schedule Πω. We proceed in four steps:

(1) Since Π is a finite set, we can construct a new program P ′ = ({Ff : f ∈
Π}, {0, I}). (We should point out that Ff is usually not trace-preserving, and
thus P ′ is indeed not a program in the sense of Definition 1. However, this does
not matter for the following arguments.) It is easy to see that the termination
of P with ρ0 in schedule Πω implies the termination of P ′ with ρ0 in Πω. Note
that Πω is the biggest schedule in P ′, although it is not the biggest schedule
in P . So, we can apply Theorem 5 to P ′ and assert that (

∑
f∈Π Ff)d(ρ0) = 0.

That is equivalent to

supp[(
∑
f∈Π

Ff)d(ρ0)] = {0} (0− dimensional subspace). (1)

(2) For each σ ∈ PK , we set Aσ = {σ′ ∈ Π : σ′ is an expansion of σ}. Then⋃
σ∈PK

Aσ = Π . Moreover, we write Gσ =
∑
f∈Aσ

Ff for every σ ∈ PK . It is worth

noting that
∑
σ∈PK

Gσ =
∑
f∈Π Ff is not true in general because it is possible

that Aσ1 ∩ Aσ2 �= ∅ for different σ1 and σ2. But by Lemma 1.1 and 3 we have

supp[(
∑
σ∈PK

Gσ)(ρ0)] = supp[(
∑
f∈Π

Ff)(ρ0)],

80 N. Yu and M. Ying

and furthermore, it follows from Eq. (1) that

supp[(
∑
σ∈PK

Gσ)d(ρ0)] = supp[(
∑
f∈Π

Ff)d(ρ0)] = {0}. (2)

(3) For each fair piece σ′ ∈ Ffin, and for any ρ, we can write σ′ = s1f1s2 · · ·
sm−1fm−1sm for some σ0 = s1s2 · · · sm ∈ PK , and f1, ..., fm−1 ∈ Sfin. Fur-

thermore, we write G =
∑d−1
i=0 (

∑m
k=1 Fk)i. First, a routine calculation leads to

Gσ0 = Fsm ◦ G ◦ Fsm−1 · · · Fs2 ◦ G ◦ Fs1 . Second, it follows from Theorem 1 that
for each 1 ≤ i ≤ m − 1, and for any ρ, supp(Ffi(ρ)) ⊆ supp(G(ρ)). Repeatedly
applying this inclusion together with Lemma 2.1 we obtain

supp(Fσ′(ρ)) = supp[(Fsm ◦ Ffm−1 ◦ Fsm−1 ◦ · · · ◦ Fs2 ◦ Ff1 ◦ Fs1)(ρ)]
⊆ supp[(Fsm ◦ G ◦ Fsm−1 ◦ · · · ◦ Fs2 ◦ G ◦ Fs1)(ρ)]

= supp(Gσ0 (ρ)) ⊆ supp(
∑
σ∈Π

Fσ)(ρ).
(3)

(4) Now we are able to complete the proof by showing that for any fair execution
path s ∈ F , s has an initial segment t such that Ft(ρ0) = 0. In fact, s can be
written as an infinite sequence of fair piece, i.e., s = σ′1σ

′
2 · · · , where each σ′i

is a fair piece. We take t to be the initial segment of s containing the first d
fair pieces, i.e., t = σ1σ2 · · ·σd. Repeatedly applying Eq. (3) and Lemma 2.1 we
obtain

suppFt(ρ0) = supp[(Fσ′
d
◦ · · · ◦ Fσ′

2
◦ Fσ′

1
)(ρ0)]

⊆ supp[(
∑
p∈Π

Fp)d(ρ)] = {0}.

Thus, Ft(ρ) = 0. �

The above theorem can be slightly strengthened by employing the notion of
fairness index in Definition 4. First, we have:

Lemma 4. Πω � F 1
md

.

Proof. For any s = σ1σ2 · · · ∈ Πω with σi ∈ Π , we know that σi(|σi|, k) ≥ 1 for
any k ∈ K and |σi| < md, where σi(|σi|, k) is the number of occurrences of k
in σi. Then the occurrence frequency f(s) > 1

md , which means that Πω ⊆ F 1
md

.

On the other hand, we choose an arbitrary s ∈ F 1
md

. Then 1mds ∈ F 1
md

but

1mds /∈ Πω. �

Actually, what we proved in Theorem 6 is that for any two schedules A,B
between Πω and F , i.e., Πω ⊂ A,B ⊂ F , a program terminates in schedule A
if and only if it terminates in schedule B . Combining Theorem 6 and Lemma 4
yields:

Concurrent Quantum Programs 81

Corollary 1. For any 0 ≤ δ, ε ≤ 1
md , a program terminates in schedule Fδ if

and only if it terminates in schedule Fε. �

Now an algorithm checking termination of a concurrent quantum program can
be developed based on Theorem 5.

Algorithm 3. Decide termination of a concurrent quantum program

input : An input state ρ0, and the matrix representation of each Fi i.e,Ni

output : b.(If the program terminates under F , b = 0; Otherwise, b = 1.)

N ← 0;
for k = 1 : m do

N ← Ni +N ;
end
G← I ;
for k = 1 : d− 1 do

G← I +NG;
end
(*Compute the matrix representation of G*)
M ← 0;
Generate PK ;
for p = p1p2 · · · pm ∈ PK do

L← Np1 ;
for l = 2 : m do

L← NplGL;
end
(*Compute the matrix representation of Fp*)
M ←M + L;

end
(*Compute the matrix representation of

∑
p∈PK

Fp*)

|x〉 ← Md(ρ0 ⊗ I)|Φ〉;
if |x〉 �= 0 then

b← 1;
end
if |x〉 = 0 then

b← 0;
end
return b

Theorem 7. Algorithm 3 decides termination of a concurrent quantum program
in timeO((mm+d)d4.7454), wherem is the number of the processes, and d = dimH.

Proof: In the algorithm, we use the for loop to compute the matrix representation
G of G =

∑d−1
i=0 (

∑m
k=1 Fk)i. Then the matrix representation of Fσ = Fs1 ◦ G ◦

Fs2 · · · G ◦Fsm(·) is obtained for any σ = s1s2 · · · sm ∈ PK . All Fσs are added up
to M . Then M becomes the matrix representation of

∑
σ∈PK

Fσ. Consequently,
we can apply Theorem 6 to assert that this algorithm outputs 0 if the program
terminates in the fair schedule F ; otherwise, 1.

82 N. Yu and M. Ying

To analyse its complexity, the algorithm can be divided into three steps: (1)
Computing G costs O(m+d d2∗2.3727) = O(m+d5.7454); (2) Computing M costs
m!∗2m∗O(d2∗2.3727) = O(mm d4.7454); (3) Computing |x〉 costs O(d4.7454 log d).
So the total cost is O((mm + d)d4.7454). �

6 Conclusion

In this paper, we studied two of the central problems, namely, reachability and
termination for concurrent quantum programs. A concurrent quantum program
is modeled by a family of quantum Markov chains sharing a state Hilbert space
and a termination measurement, with each chain standing for a participating
process. This model extends Hart, Sharir and Pnueli’s model of probabilistic
concurrent programs [12] to the quantum setting. We show that the reachable
space and the uniformly repeatedly reachable space of a concurrent quantum
program can be computed and its termination can be decided in time O(d4.7454),
O(d4.7454 log d), O((mm + d)d4.7454), respectively, where m is the number of
participating processes, and d is the dimension of state space.

For further studies, an obvious problem is: how to improve the above algorithm
complexities? In this paper, reachability and termination of quantum programs
were defined in a way where probabilities are abstracted out; that is, only reacha-
bility and termination with certainty are considered. A more delicate, probability
analysis of the reachability and termination is also an interesting open problem.
The algorithms for computing the reachable space and checking termination of
a quantum program presented in this paper are all algorithms for classical com-
puters. So, another interesting problem is to find efficient quantum algorithms
for reachability and termination analysis of a quantum program.

Acknowledgment. We are grateful to Dr Yangjia Li, Runyao Duan and Yuan
Feng for useful discussions. This work was partly supported by the Australian
Research Council (Grant No. DP110103473).

References

1. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum com-
putation over noisy channels. Physical Review A 59, 4249–4254 (1999)

2. Don, C., Shmuel, W.: Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation 9, 251–280 (1990)

3. Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calcu-
lus, Ph.D. thesis. University of Warwick (2011)

4. Davidson, T.A.S., Gay, S., Nagarajan, R., Puthoor, I.V.: Analysis of a quan-
tum error correcting code using quantum process calculus. In: Proceedingds of
QPL 2011, the 8th Workhop on Quantum Physics and Logic, pp. 107–120 (2011)

5. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Mathematical
Structures in Computer Science 16, 429–451 (2006)

6. Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Probabilistic bisimulations for quantum
processes. Information and Computation 205, 1608–1639 (2007)

Concurrent Quantum Programs 83

7. Feng, Y., Duan, R.Y., Ying, M.S.: Bisimulation for quantum processes. In: Pro-
ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pp. 523–534 (2011)

8. Gay, S.J., Nagarajan, R.: Communicating Quantum Processes. In: Proceedings of
the 32nd ACM Symposium on Principles of Programming Languages (POPL),
pp. 145–157 (2005)

9. Gay, S.J., Nagarajan, R.: Types and typechecking for communicating quantum
processes. Mathematical Structures in Computer Science 16, 375–406 (2006)

10. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A Model Checker for Quantum
Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008)

11. Gay, S.J., Papanikolaou, N., Nagarajan, R.: Specification and verification of quan-
tum protocols. In: Gay, S.J., Mackie, I. (eds.) Semantic Techniques in Quantum
Computation, pp. 414–472. Cambridge University Press (2010)

12. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs.
ACM Transactions on Programming Languages and Systems 5, 356–380 (1983)

13. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the
First ACM Conference on Computing Frontiers, pp. 111–119 (2004)

14. Lalire, M.: Relations among quantum processes: bisimilarity and congruence.
Mathematical Structures in Computer Science 16, 407–428 (2006)

15. Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed
quantum computation: operational semantics. In: Proceedings of the 2nd Interna-
tional Workshop on Quantum Programming Languages (2004)

16. Li, Y.Y., Yu, N.K., Ying, M.S.: Termination of nondeterministic quantum pro-
grams. Short presentation of LICS (2012), (For full paper, see arXiv : 1201.0891)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

18. Selinger, P.: Towards a quantum programming language. Mathematical Structure
in Computer Science 14, 527–586 (2004)

19. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM Jour-
nal on Computing 13, 292–314 (1984)

20. Ying, M.S.: Floyd-Hoare logic for quantum programs. ACM Transactions on Pro-
gramming Languages and Systems 33, art. no: 19 (2011)

21. Ying, M.S., Feng, Y.: An algebraic language for distributed quantum computing.
IEEE Transactions on Computers 58, 728–743 (2009)

22. Ying, M.S., Feng, Y., Duan, R.Y., Ji, Z.F.: An algebra of quantum processes. ACM
Transactions on Computational Logic 10, art. no. 19 (2009)

23. Ying, M.S., Feng, Y.: Quantum loop programs. Acta Informatica 47, 221–250
(2010)

24. Ying, M.S., Yu, N.K., Feng, Y., Duan, R.Y.: Verification of Quantum Programs,
arXiv:1106.4063

Making Weighted Containment Feasible:
A Heuristic Based on Simulation and Abstraction

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. Weighted automata map input words to real numbers and are useful in
reasoning about quantitative systems and specifications. The containment prob-
lem for weighted automata asks, given two weighted automata A and B, whether
for all words w, the value that A assigns to w is less than or equal to the value
B assigns to w. The problem is of great practical interest, yet is known to be
undecidable. Efforts to approximate weighted containment by weighted variants
of the simulation pre-order still have to cope with large state spaces. One of the
leading approaches for coping with large state spaces is abstraction. We intro-
duce an abstraction-refinement paradigm for weighted automata and show that it
nicely combines with weighted simulation, giving rise to a feasible approach for
the containment problem. The weighted-simulation pre-order we define is based
on a quantitative two-player game, and the technical challenge in the setting ori-
gins from the fact the values that the automata assign to words are unbounded.
The abstraction-refinement paradigm is based on under- and over-approximation
of the automata, where approximation, and hence also the refinement steps, refer
not only to the languages of the automata but also to the values they assign to
words.

1 Introduction

Traditional automata accept or reject their input, and are therefore Boolean. A weighted
finite automaton (WFA, for short) has real-valued weights on its transitions and it maps
each word to a real value. Applications of weighted automata include formal verifica-
tion, where they are used for the verification of quantitative properties [10,11,17,25,32],
as well as text, speech, and image processing, where the weights of the automaton are
used in order to account for the variability of the data and to rank alternative hypotheses
[15,30].

Technically, each transition in a WFA is associated with a weight, the value of a run
is the sum of the weights of the transitions traversed along the run, and the value of a
word is the value of the maximal run on it.1 The rich structure of weighted automata
makes them intriguing mathematical objects. Fundamental problems that have been
solved decades ago for Boolean automata are still open or known to be undecidable in
the weighted setting [29]. For example, while in the Boolean setting, nondeterminism
does not add to the expressive power of the automata, not all weighted automata can be

1 The above semantics, which we are going to follow in the paper, is a special case of the general
setting, were each weighted automaton is defined with respect to an algebraic semiring.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 84–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Making Weighted Containment Feasible 85

determinized, and the problem of deciding whether a given nondeterministic weighted
automaton can be determinized is still open, in the sense we do not even know whether
it is decidable.

A problem of great interest in the context of automata is the containment problem.
In the Boolean setting, the containment problem asks, given two automata A and B,
whether all the words in Σ∗ that are accepted by A are also accepted by B. In the
weighted setting, the “goal” of words is not just to get accepted, but also to do so
with a maximal value. Accordingly, the containment problem for WFAs asks, given
two WFAs A and B, whether every word accepted by A is also accepted by B, and
its value in A is less than or equal to its value in B. We then say that B contains A,
denoted A ⊆ B. In the Boolean setting, the containment problem is PSPACE-complete
[31]. In the weighted setting, the problem is in general undecidable [1,24]. The prob-
lem is indeed of great interest: In the automata-theoretic approach to reasoning about
systems and their specifications, containment amounts to correctness of systems with
respect to their specifications. The same motivation applies for weighted systems, with
the specifications being quantitative [10].

Even in the Boolean setting, where the containment problem is decidable, its PSPACE
complexity is an obstacle in practice and researchers have suggested two orthogonal
methods for coping with it. One is to replace containment by a pre-order that is easier
to check, with the leading such pre-order being the simulation preorder [28]. Simula-
tion can be checked in polynomial time and symbolically [20,28], and several heuristics
for checking containment by variants of simulation have been studied and used in prac-
tice [23,26]. A second method, useful also in other paradigms for reasoning about the
huge, and possibly infinite, state space of systems is abstraction [3,8]. Essentially, in
abstraction we hide some of the information about the system. This enables us to reason
about systems that are much smaller, yet it gives rise to a 3-valued solution: yes, no, and
unknown [5]. In the latter case, the common practice is to refine the abstraction, aim-
ing to add the minimal information that would lead to a definite solution. In particular,
in the context of model checking, the method of counterexample guided abstraction-
refinement (CEGAR) has proven to be very effective [13].

In this paper we study a combination of the above two methods in the setting of
weighted automata. Abstraction frameworks in the 3-valued Boolean semantics are typ-
ically based on modal transition systems (MTS) [27]. Such systems have two types of
transitions: may transitions, which over-approximate the transitions of the concrete sys-
tem, and must transitions, which under-approximate them. The over and under approxi-
mation refer to the ability of the automaton to take transitions, and hence to its language.
In our weighted setting, we combine this with the weights of the transitions: may tran-
sitions over-approximate the actual weight and must transitions under-approximate it.
This is achieved by defining the weight of may and must transitions according to the
maximal and minimal weight, respectively, of the transitions that induce them.

The simulation preorder in the Boolean setting has a game-theoretic characteriza-
tion. We extend this approach to the weighted setting and define weighted simulation
between two WFAs A and B by means of a game played between an antagonist, who
iteratively generates a word w and an accepting run r of A on it, and a protagonist, who
replies with a run r′ of B on w. The goal of the antagonist is to generate w and r so that

86 G. Avni and O. Kupferman

either r′ is not accepting, or its value is smaller than the value of r. The goal of the pro-
tagonist is to continue the game forever without the antagonist reaching his goal. We say
that A is simulated by B, denoted A ≤ B iff the protagonist has a winning strategy. The
above definition is similar to the definition of quantitative simulation in [12,14], and has
the flavor of the energy games in [4]. In these works, however, the winning condition
in the game refers only to the weight along the traversed edges. This corresponds to the
case the WFAs in question are such that all states are accepting. Even richer than our
setting are energy parity games [9]. Both energy games and parity energy games can be
decided in NP ∩ co-NP. Our main challenge then is to develop an algorithm that would
maintain the simplicity of the algorithm in [4] in the richer setting, which is simpler
than the one of parity games. We do this by performing a preprocessing on the arena
of the game, one after which we can perform only local changes in the algorithm of
[4]. This is not easy, as like in parity energy games a winning strategy in the simulation
game need not be memoryless. Our main contribution, however, is not the study of sim-
ulation games and their solution – the main ideas here are similar to these in [4,9], but
the ability to combine simulation with abstraction and refinement, which we see as our
main contribution.

Having defined over- and under-approximations of WFAs and the weighted simula-
tion relation, we suggest the following heuristic for checking whether A ⊆ B. For a
WFA U and an abstraction function α, let Uα↓ and Uα↑ be the weighted under and over
approximations of U according to α. Let α and β be approximation functions for A and
B, respectively. It is not hard to see that if Aα↑ ⊆ Bβ↓ , then A ⊆ B, and that if Aα↓ �⊆ Bβ↑ ,
then A �⊆ B. We show that the above is valid not just of containment but also for our
weighted-simulation relation. This gives rise to the following heuristics. We start by
checking Aα↑ ≤ Bβ↓ and Aα↓ �≤ Bβ↑ , for some (typically coarse) initial abstraction func-
tions α and β. As we prove in the paper, if we are lucky and one of them holds, we are
done. Otherwise, the winning strategies of the antagonist in the first case and the pro-
tagonist in the second case suggest a way to refine α and β, and we repeat the process
with the refined abstractions. While refinement in the Boolean case only splits abstract
states in order to close the gap between may and must transitions, here we also have
refinement steps that tighten the weights along transitions. Note that while repeated re-
finement can only get us to a solution to the A ≤ B problem, they also make it more
likely that one of our checks returns an answer that would imply a definite solution to
the undecidable A ⊆ B problem.

Note that our abstraction-refinement procedure combines two games. The first, which
corresponds to Aα↑ ≤ Bβ↓ , approximates the simulation question A ≤ B from below.

The second, which corresponds to Aα↓ ≤ Bβ↑ , approximates it from above. Such dual
approximations have proven useful also in the Boolean setting [6,16,18,21,22], where
games combine may and must transitions, and also in settings in which games that are
determined are approximated by means other than abstraction. For example, when LTL
realizability is done by checking the realizability of approximations of both the specifi-
cation and its negation [7].

Due to the lack of space, some proofs are only sketched. The full proofs can be found
in the full version in the authors’ homepages.

Making Weighted Containment Feasible 87

2 Weighted Automata and Their Abstraction

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,Δ,Q0, τ, F 〉, where Σ is an alphabet, Q is a set of states, Δ ⊆ Q×Σ×Q
is a transition relation, Q0 ⊆ Q is a set of initial states, τ : Δ → IR is a function that
maps each transition to a real value in IR, and F ⊆ Q is a set of accepting states. We
assume that there are no dead-end states in A. That is, for every q ∈ Q there is a letter
σ ∈ Σ and state q′ ∈ Q such that Δ(q, σ, q′).

A run ofA on a word u = u1, . . . , un ∈ Σ∗ is a sequence of states r = r0, r1, . . . , rn
such that r0 ∈ Q0 and for every 0 ≤ i < n we have Δ(ri, ui+1, ri+1). The run r is
accepting iff rn ∈ F . The value of the run, denoted val(r, u), is the sum of transi-
tions it traverses. That is, val(r, u) =

∑
0≤i<n τ(〈ri, ui+1, ri+1〉). Since A is non-

deterministic, there can be more than one run on a single word. We define the value that
A assigns to u ∈ Σ∗, denoted val(A, u), as the value of the maximal-valued accepting
run of A on u. That is, val(A, u) = max{val(r, u) : r is an accepting run of A on u}.
As in NFAs, the language of A, denoted L(A), is the set of words in Σ∗ that A accepts.

We say that A is deterministic if |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, there is
at most one state q′ ∈ Q such that Δ(q, σ, q′).

An abstraction function for a WFA A is a function α : Q → A, for a set A, which
we assume to be smaller than Q. We refer to the members of Q as the concrete states
and to these of A as the abstract states. The function α induces a partition of Q, and we
sometimes refer to abstract states as sets of concrete states. In particular, for a concrete
state c ∈ Q and an abstract state a ∈ A, we use the notation c ∈ a to indicate that
α(c) = a.

Consider a WFA A and an abstraction function α. For parameters β ∈ {may,must}
and γ ∈ {max,min}, the abstraction of A according to α, β, and γ is the WFA
Aγβ [α] = 〈Σ,A,Δβ , A0, τγ , Fβ〉, where A0 = {α(q0) : q0 ∈ Q0}, and Δβ , τγ , and Fβ
are defined as follows:

– Consider a, a′ ∈ A and σ ∈ Σ. We define Δmust ⊆ A × Σ × A so that
Δmust(a, σ, a

′) iff for every c ∈ a there is c′ ∈ a′ such that Δ(c, σ, c′). We de-
fine Δmay ⊆ A × Σ × A so that Δmay(a, σ, a′) iff there exists c ∈ a and c′ ∈ a′

such that Δ(c, σ, c′).
– We define the minimum-value function, denoted τmin, of an abstract transition to

be the minimum over the values of concrete transitions that induce it. Formally,
for 〈a, σ, a′〉 ∈ Δβ , we define τmin(〈a, σ, a′〉) = min{τ(〈c, σ, c′〉) : c ∈ a, c′ ∈
a′, and Δ(c, σ, c′)}. Similarly, we define the maximal-value function as τmax, with
τmax((〈a, σ, a′〉) = max{τ(〈c, σ, c′〉) : c ∈ a, c′ ∈ a′, and Δ(c, σ, c′)}.

– We define Fmay = {a ∈ A : a ∩ F �= ∅} and Fmust = {a ∈ A : a ⊆ F}.

Note that without weights, our definition coincides with the standard over- and under-
approximations studied in the Boolean case. In the weighted setting, the abstraction
approximates, in addition to the transitions, the value that the concrete WFA assigns
to words. The two interesting combinations are then the under-approximating WFA
Aα↓ = Aminmust[α] and the over-approximating WFA Aα↑ = Amaxmay [α]. When α is not
important or clear form the context, we omit it.

88 G. Avni and O. Kupferman

We refer to runs of A↓ as must-runs, runs of A↑ as may-runs, and runs of A as
concrete-runs. Note that for every must-run r = r0, . . . , rn of A↓ on some word u ∈
Σ∗, there is a matching run r′ = r′0, . . . , r

′
n of A on u such that, for every 0 ≤ i ≤ n,

we have r′i ∈ ri. Similarly, for every run r = r0, . . . , rn of A on some word u, the
sequence r′ = α(r0), . . . , α(rn) is a run of A↑ on u.

In the Boolean setting, language containment refers to words accepted by the au-
tomaton. That is, for two NFAs A and B, we say that A ⊆ B iff L(A) ⊆ L(B). In the
weighted setting, language containment is more involved, as we also have a require-
ment on the values the automata assign to words. For two WFAs, we say that A ⊆ B iff
L(A) ⊆ L(B) and for every w ∈ L(A) we have val(A, w) ≤ val(B, w).

The containment problem gets as input two automata A and B, and decides whether
A ⊆ B. The problem is known to be PSPACE-complete in the Boolean setting [33] and
undecidable in the weighted setting [1,24].

Since, in practice, WFAs are typically very large, we would like to reason on their
abstractions. As Theorem 1 below shows, A↓ and A↑ under- and over-approximatesA,
making such a reasoning possible.

Theorem 1. Consider a WFA A and an abstraction function α. Then, Aα↓ ⊆ A ⊆ Aα↑ .

Proof: We start by proving that A↓ ⊆ A. Consider a word u = u1, . . . , un ∈ L(A↓).
We prove that u ∈ L(A) and val(A↓, u) ≤ val(A, u). Let r = a0, . . . , an ∈ A∗ be
an accepting run of A↓ on u. Since a0 ∈ A0, there is a concrete state c0 ∈ (a0 ∩ Q0).
Since r is a must-run, there is a concrete run r′ = c0, . . . , cn of A on u such that, for
1 ≤ i ≤ n, we have ci ∈ ai. Since r is accepting, rn ⊆ F , implying that cn ∈ F . Thus,
r′ is accepting and u ∈ L(A).

It is left to prove that val(A↓, u) ≤ val(A, u). We show that for every accepting run
r of A↓ on u and every concrete run r′ that corresponds to it, val(r, u) ≤ val(r′, u).
Indeed, by the definition of τmin, we have val(r, u) =

∑
0≤i≤n τmin(ri, ui+1, ri+1) ≤∑

0≤i≤n τ(ri, ui+1, ri+1) = val(r′, u), so we are done.
The proof of the second claim is similar and is presented in the full version. ��

3 Weighted Simulation

As discussed in Section 1, the pre-order of simulation [28] is used in the Boolean setting
as a heuristic for checking containment. In this section we define weighted simulation
and show that it enjoys the appealing properties of simulation in the Boolean setting.
In Section 4, we show that weighted simulation can be checked by reasoning about
abstractions of the WFAs in question.

3.1 Defining the Weighted Simulation Relation

Given two WFAs A and B, deciding whether A ⊆ B can be thought of as a two-
player game of one round: Player 1, the Player whose goal it is to show that there
is no containment, chooses a word w and a run r1 of A on w. Player 2 then replies
by choosing a run r2 of B on w. Player 1 wins if r1 is accepting and r2 is not or if
val(r1, w) > val(r2, w). While this game clearly captures containment, it does not

Making Weighted Containment Feasible 89

lead to interesting insights or algoritmic ideas about checking containment. A useful
way to view simulation is as a “step-wise” version of the above game in which in each
round the players proceed according to a single transition of the WFAs.

We continue to describe the simulation game formally. A game between Player 1 and
Player 2 is a pair 〈G,Γ 〉, for an arena G and an objective Γ for Player 1. Consider two
WFAs A and B, where for γ ∈ {A,B}, let γ = 〈Σ,Qγ , Δγ , q

γ
0 , Fγ , τγ〉. For simplicity,

we assume that the WFAs are full, in the sense that each state and letter have at least
one successor.

The arena of the game that corresponds to A ≤ B is G = 〈V,E, v0, τ〉. The set V
of vertices is partitioned into two disjoint sets: V1 = QA ×QB are vertices from which
Player 1 proceeds, and V2 = QA×Σ×QB are vertices from which Player 2 proceeds.
The players alternate moves, thus E ⊆ (V1 × V2) ∪ (V2 × V1). Each play starts in the
initial vertex v0 = 〈qA0 , qB0 〉 ∈ V1, and τ : E → IR is the weight function. We define
E = E1 ∪E2 and τ as follows:

– E1 = {〈〈p, q〉, 〈p′, σ, q〉〉 : 〈p, σ, p′〉 ∈ ΔA and q ∈ QB}.
– E2 = {〈〈p, σ, q〉, 〈p, q′〉〉 : 〈q, σ, q′〉 ∈ ΔB and p ∈ QA}.
– For e1 = 〈〈p, q〉, 〈p′, σ, q〉〉 ∈ E1, we define τ(e1) = τA(〈p, σ, p′〉).
– For e2 = 〈〈p, σ, q〉, 〈p, q′〉〉 ∈ E2, we define τ(e2) = −τB(〈q, σ, q′〉).

Thus, edges in E1 leave vertices in V1 and correspond to Player 1 choosing a letter and
a transition in A. Edges in E2 leave vertices in V2 and correspond to Player 2 choosing
a transition in B.

A play of the game is a (possibly infinite) sequence of vertices π = π0, π1, . . .,
where π0 = v0, and for every i ≥ 0 we have E(vi, vi+1). Every finite play has a
value, denoted val(π), which is the sum of the edges that are traversed along it: i.e.,
val(π) =

∑
0≤i<|π| τ(〈πi, πi+1〉). We use π[i : j], for i < j, to refer to the sub-play

πi, . . . , πj .
A strategy for player i ∈ {1, 2} is a function ρi : V

∗ · Vi → V . Let Si be the set
of all strategies for player i. Two strategies ρ1 ∈ S1 and ρ2 ∈ S2, induce a single play
obtained when both players follow their strategies. Formally, the outcome of ρ1 and ρ2,
denoted out(ρ1, ρ2), is the infinite play π = π1, π2, . . ., where for every i ≥ 0, we have
π2i+1 = ρ1(π[0 : 2i]) and π2i+2 = ρ2(π[0 : 2i + 1]). We say that a strategy ρi is
memoryless if it depends only on the current vertex. Formally, ρi(u1 · v) = ρi(u2 · v)
for all u1, u2 ∈ V ∗ and v ∈ Vi.

It is left to define the objective of the game. A finite play π is winning for Player 1
if the last vertex of π is in FA × (QB \ FB) or the last vertex of π is in FA × FB and
val(π) > 0. The objectiveΓ ⊆ V ω of Player 1, namely the set of plays that are winning
for Player 1 is defined so that an infinite play π is in Γ iff it has a finite prefix that is
winning according to the definition above. Note that for an infinite play π, if π /∈ Γ ,
then it is winning for Player 2. Thus, the objective of Player 2 is Γ = V ω \ Γ . Also
note that once the play has a prefix that is winning for Player 1, there is no actual need
for the play to continue. A winning strategy for Player 1 is a strategy ρ1 ∈ S1 such that
for every strategy ρ2 ∈ S2, the play out(ρ1, ρ2) is in Γ . A winning strategy for Player 2
is defined symmetrically. We define the simulation relation so that A ≤ B iff Player 2
has a winning strategy in G.

90 G. Avni and O. Kupferman

Theorem 2. Simulation is strictly stronger than containment: (1) for all WFAs A and
B, if A ≤ B, then A ⊆ B. (2) There are WFAs A and B such that A ⊆ B and A �≤ B.

Proof: We start with the first claim. Recall that A ⊆ B iff L(A) ⊆ L(B) and for every
u ∈ L(A) we have val(A, u) ≤ val(B, u). We prove that if A �⊆ B then Player 1 has a
winning strategy. Thus, there is no winning strategy for Player 2 and A �≤ B.

Assume that A �⊆ B. That is, there exists a word u ∈ Σ∗ such that u ∈ L(A)\L(B),
or u ∈ L(A) and val(A, u) > val(B, u). Consider the strategy ρ1 ∈ S1 in which
Player 1 selects the word u and chooses the run r1 that maximizes the value of u in
A. In the full version, we show that for every strategy ρ2 ∈ S2 of Player 2, the play
out(ρ1, ρ2) is winning for Player 1. Thus, ρ1 is a winning strategy of Player 1 and we
are done.

The proof of the send claim is described in the full version. While the claim easily
follows form the analogous claim in the Boolean setting, the example there is such that
A is simulated by B in the Boolean sense, and the weights of the WFAs are these that
wreck the simulation. ��

As in the Boolean setting, simulation and containment do coincide in case the simulat-
ing automaton is deterministic. Indeed, then, there is only one Player 2 strategy, so the
“step-wise nature” of simulation does not play a role.

Theorem 3. If B is a DWFA, then A ⊆ B iff A ≤ B.

Another property of simulation that stays valid in the weighted setting is its transitivity.

Theorem 4. For WFAs A, B, and C, if A ≤ B and B ≤ C, then A ≤ C.

Unlike the Boolean case, here Player 1 need not have a memoryless strategy, as we
demonstrate below. The WFAs we use in the example are used also in [9] in order to
show that Player 2 has no memoryless winning strategy in energy parity games.

Example 1. We show a family of WFAs A1,A2, . . . and a WFA B such that for all
n ≥ 1, Player 1 wins the simulation game corresponding to An and B, but he has no
memoryless winning strategy. Moreover, a winning strategy for Player 1 needs memory
of size Ω(m ·W), where m is the size of An × Bn and W is the maximal weight.

Consider the WFAs An and B in Figure 1. Since L(B) = a∗, then clearly L(An) ⊆
L(B). However, An �⊆ B, since for w = an · a2Wn+1an, we have cost(An, w) = 1 >
0 = cost(B, w).

We claim that in the simulation game (on bottom) that corresponds to the two WFAs,
there is a winning Player 1 strategy (i.e., An �≤ B) and that every such winning strategy
for Player 1 requires Ω(m · W) memory. Indeed, a winning Player 1 strategy must
proceed to the state (qn, s0) and loop there for at least 2Wn+1 rounds before returning
to the initial state. Thus, a winning strategy must “count” to 2Wn+ 1.

Before we turn to study a solution to the simulation game, observe that the set of win-
ning plays for Player 1 is open since it is defined by prefixes. By the Gale-Stewart
theorem [19], every game that satisfies this property is determined, hence we have the
following.

Theorem 5. The simulation game is determined. That is, Player 1 or Player 2 has a
winning strategy.

Making Weighted Containment Feasible 91

An
q0 q1 q2 . . . qn

a,−W

a,−W

a,−W

a,−W

a,−W

a,−W

a, 1
B

s0 a, 0

An × B

q0, s0 q1, s0 q2, s0 . . . qn, s0 qn, a, s0

q1, a, s0 q2, a, s0

q0, a, s0 q1, a, s0

−W 0 −W 0

0 −W 0 −W

0

−W

0

1

Fig. 1. WFAs An and B such that An �≤ B yet Player 1 does not have a memoryless strategy in
the corresponding simulation game

3.2 Solving the Simulation Game

The simulation game stands between the energy games of [4], where the NFAs have no
acceptance conditions, and the energy parity games of [9], where the winning condition
is richer than the one of WFAs. Both these games are determined and can be decided
in NP ∩ co-NP. It is thus not surprising that we are going to show that the same holds
for our simulation game. Our main challenge is to develop an algorithm that would
maintain the simplicity of the algorithm in [4] in the richer setting of WFAs. The setting
is indeed richer, and in particular, as in energy parity games, Player 1 need not have a
memoryless winning strategy. We do this by performing a preprocessing on the arena
of the game, one after which we can perform only local changes in the algorithm of [4].
Our main contribution, however, is not the study of simulation games and their solution
– the main ideas here are similar to these in [4,9]. Rather, it is the combination of these
ideas in an abstraction-refinement paradigm, to be described in Section 4.

Reducing 〈G,Γ 〉 to a Simpler game 〈G′, Γ ′〉. Consider an arena G = 〈V,E, v0, τ〉.

– Let W1 ⊆ V be the set of vertices from which Player 1 wins the reachability game
with objective FA × (QB \ FB). That is, v ∈ W1 iff Player 1 can force the game
that starts in v to a vertex in FA × (QB \ FB).

– Let W2 ⊆ V be the vertices from which Player 2 wins the safety game with objec-
tive ((QA \ FA)×QB) ∪ V2. That is, v ∈ W2 iff Player 1 can force the game that
starts in v to stay in vertices in ((QA \ FA)×QB) ∪ V2.

It is not hard to see that W1 ∩ W2 = ∅. We can therefore distinguish between three
cases: If v0 ∈ W1, then Player 1 wins the game. If v0 ∈ W2, Player 2 wins the game.
Otherwise, we define a new game, which excludes states from W1 ∪W2.

We define the new game 〈G′, Γ ′〉 on the arena G′ = 〈V ′, E′, v0, τ ′〉. The set V ′ of
vertices are {vsink} ∪ (V \ (W1 ∪W2)). The set V ′1 of vertices of Player 1 is V1 ∩ V ′,
and the set V ′2 of vertices of Player 2 is V2 ∩ V ′. We say that a vertex v ∈ V ′ is a
dead-end iff adj(v) ⊆ (W1 ∪W2), where adj(v) is defined with respect to E. That is,
adj(v) = {v′ ∈ V : E(v, v′)}. The set E′ of edges restricts the set E to vertices in
V ′ and includes, in addition, an edge from every dead-end vertex in V ′ to vsink and an

92 G. Avni and O. Kupferman

edge from vsink to itself. Recall that we assume that the WFAs on which the simulation
game are defined are total, and thus there are no dead-ends in G. Hence, a vertex is a
dead-end in G′ when all its successors in G are in W1 ∪ W2. Finally, τ ′ assigns the
same value as τ for the edges in E, and assigns 0 to the new edges.

A finite play π is winning for Player 1 in the new game iff the last vertex in π is in
FA × FB and val(π) > 0. As in the original game, Player 2 wins an infinite play iff
it does not have a finite prefix that is winning for Player 1. Note that an infinite play π
satisfies this condition, i.e., π ∈ Γ ′, if either one of two conditions: either π is contained
in V and π ∈ Γ , or π has a finite prefix π[0 : i] that ends in a dead-end vertex, i.e.,
for every k > i we have πk = vsink , and for every j ≤ i, we have that π[0 : j] is not
winning for Player 1.

As we prove in the full version, the characteristics of the vertices in W1 and W2, as
well as the dead-end states enable us to construct, given a winning strategy for Player 1
in G′, a winning strategy for him in G, and similarly for Player 2. Hence, we have the
following.

Lemma 1. Player 1 wins 〈G,Γ 〉 iff he wins 〈G′, Γ ′〉.

It is thus left to show how to solve the game 〈G′, Γ ′〉.

Solving the Game 〈G′, Γ ′〉. We say that a strategy of Player 1 is an almost mem-
oryless strategy if, intuitively, in every play, when visiting a vertex, Player 1 plays in
the same manner except for, possibly, the last visit to the vertex. Formally, consider a
Player 1 strategy ρ1. Consider a vertex v ∈ V1. We say that ρ1 is almost memoryless
for v iff there are two vertices v1, v2 ∈ V2 such that for every Player 2 strategy ρ2, if
out(ρ1, ρ2)[0 : n] = v, then either out(ρ1, ρ2)[n+1] = v1, or out(ρ1, ρ2)[n+1] = v2
and for every index n′ > n+ 1 we have out(ρ1, ρ2)[n

′] �= v. We say that ρ1 is almost
memoryless iff it is almost memoryless for every vertex in V1.

Lemma 2. If Player 1 has a winning strategy in 〈G′, Γ ′〉, then he also has an almost
memoryless winning strategy.

Proof: Assume ρ1 is a Player 1 winning strategy. Our goal is to construct an almost
memoryless winning strategy ρ′1 from ρ1. Intuitively, we divide the Player 1 strategy
into two “phases”: in the first phase, which we refer to as the “accumulation phase”,
Player 1’s goal is to force the game into accumulating a high value. In the second phase,
which we refer to as the “reachability phase”, his goal is to force the game to a winning
position, which is a vertex in FA × FB . Since all the vertices in V ′ are not in W2,
Player 1 can force the game to a winning position from every vertex in V ′. Also, since
reaching a winning position is done in a memoryless manner, it does not involve a play
with cycles, and thus, we bound the maximal value that Player 1 needs to accumulate
in the first phase. The technical details can be found in the full version. ��

For Player 2, our situation is even better as, intuitively, cycles in the game are either
good for Player 2, in which case a strategy for him would always proceed to these
cycles, or bad for Player 2, in which case a strategy for him would never enter them.
Formally, as proven in the full version, we have the following.

Making Weighted Containment Feasible 93

Lemma 3. If Player 2 has a winning strategy in 〈G′, Γ ′〉, then he also has a winning
memoryless strategy.

Before turning to prove the complexity results, we remind the reader of the Bellman-
Ford algorithm. The algorithm gets as input a weighted directed graph 〈V , E , θ〉, where
V is a set of vertices, E ⊆ V × V is a set of edges, and θ : E → IR is a weight function.
The algorithm also gets a distinguished source vertex s ∈ V . It outputs a function
C : V → IR, where for every v ∈ V , the value C(v) is the value of the shortest path
between s and v. If there is a negative cycle connected to s, the algorithm reports that
such a cycle exists but it cannot return a correct answer since no shortest path exists.

We continue to prove the complexity that follows.

Theorem 6. Solving simulation games is in NP ∩ co-NP.

Proof: We first show membership in co-NP. We show that we can check in PTIME,
given a memoryless Player 2 strategy, whether it is a winning strategy for Player 2.
Given a memoryless Player 2 strategy, we trim every edge that starts from vertices in
V ′2 and does not agree with the strategy. We run the longest path version of the Bellman-
Ford algorithm on the trimmed arena. Given a directed graph and a source vertex, the
algorithm returns a function C : V → IR that assigns to every vertex the longest path
from the source vertex, and reports if there is a positive valued cycle in the graph.

In the full version, we prove that the strategy is winning iff there is no positive cycle
in the trimmed arena, and if every vertex v ∈ FA × FB has C(v) ≤ 0.

We proceed to show membership in NP. For that, we show that we can check in
PTIME, given a memoryless Player 1 strategy ρ1, whether it can serve as the strategy
to be used in the “accumulation phase” of the game in a way that induces an almost
memoryless winning strategy for Player 1. Intuitively, we check if Player 2 can play
against ρ1 in a way that closes a cycle that is winning for Player 2, or if Player 2 can
reach the vertex vsink in a play that is not losing. If he cannot, we show that ρ1 either
forces the game into a vertex in FA × FB after a positive-valued play, or ρ1 forces the
game to close a positive valued cycle.

The algorithm, described in the full version, is similar to the algorithm in [4] with
a small adjustment, which in turn is an adjustment of the Bellman-Ford algorithm: we
restrict the vertices considered by the algorithm to ones in FA × FB , and we take into
an account the ability to reach vsink . ��

4 An Abstraction-Refinement-Based Algorithm for Deciding
Simulation

In this section we solve the weighted-simulation problem A ≤ B by reasoning about
abstractions of A and B. Recall that for every WFA A, we have that A↓ ⊆ A ⊆ A↑. We
first argue that this order is maintained for the simulation relation. We then use this fact
in order to check simulation (and hence, also containment) with respect to abstractions.

94 G. Avni and O. Kupferman

Theorem 7. For every WFA A and abstraction function α, we have Aα↓ ≤ A ≤ Aα↑ .

Proof: We construct the required winning strategies for Player 2. We start with the
claim A↓ ≤ A and show that Player 2 has a winning strategy in the game that corre-
sponds to A↓ and A. Intuitively, whenever Player 1 selects a letter and a must-transition
to proceed with in A↓, the winning Player 2 strategy selects a matching concrete tran-
sition in A and proceeds with it. Thus, the winning Player 2 strategy maintains the
invariant that when the game reaches a vertex 〈a, c〉, then c ∈ a. Recall that A↓ under-
approximates A in three ways: the transition relation, the weight function, and the def-
inition of the accepting states. Consequently, as we formally prove in the full version
by induction on the length of the prefix, all the prefixes of the play are not winning for
Player 1. The proof of the second claim is similar. ��

We note that beyond the use of Theorem 7 in practice, it provides an additional witness
to the appropriateness of our definition of weighted simulation.

Recall that our algorithm solves the weighted-simulation problem A ≤ B by reason-
ing about abstractions of A and B. We first show that indeed we can conclude about the
existence of simulation or its nonexistence by reasoning about the abstractions:

Theorem 8. Consider two WFAs A and B and abstraction functions α and β.

– If Aα↑ ≤ Bβ↓ , then A ≤ B.

– If Aα↓ �≤ Bβ↑ , then A �≤ B.

Our algorithm proceeds as follows. We start by checking whether Aα↑ ≤ Bβ↓ and

Aα↓ �≤ Bβ↑ , for some (typically coarse) initial abstraction functions α and β. By Theo-
rem /refrefinement-thm, if we are lucky and one of them holds, we are done. Otherwise,
the winning strategies of the Player 2 in the first case and Player 1 in the second case
suggest a way to refine α and β, and we repeat the process with the refined abstractions.
While refinement in the Boolean case only splits abstract states in order to close the gap
between may and must transitions, here we also have refinement steps that tighten the
weights along transitions. Below is a formal description of the algorithm.

Input: Two WFAs A and B, with abstraction functions α and β
Output: yes if A ≤ B and no otherwise

while true do
if Player 2 wins the game that corresponds to Aα↑ and Bβ↓ then return yes
else let ρ1 be a winning Player 1 strategy in the game

if Player 1 wins the game that corresponds to Aα↓ and Bβ↑ then return no
else let ρ2 be a winning Player 2 strategy in the game

α′, β′ = refine(A,B, α, β, ρ1, ρ2)
set: α = α′ and β = β′

end while

By Theorem 8, if the algorithm returns yes, then A simulates B, and if the algorithm
returns no, then A does not simulate B. If Aα↑ �≤ Bβ↓ and Aα↓ ≤ Bβ↑ , then the answer is

Making Weighted Containment Feasible 95

indefinite and we refine the abstractions. This is done by the procedure refine, described
below.

Recall that we refine α and β in case both Aα↑ �≤ Bβ↓ and Aα↓ ≤ Bβ↑ . When this hap-
pens, the algorithm for checking simulation generates a winning strategy ρ1 of Player 1
in the game corresponding to Aα↑ �≤ Bβ↓ and a winning strategy ρ2 of Player 2 in the

game corresponding to Aα↓ ≤ Bβ↑ . The procedure refine gets as input the WFAs A and
B, the abstraction functions α and β, and the winning strategies ρ1 and ρ2. It returns
two new abstraction functions α′ and β′.

In order to see the idea behind refine, assume that Player 1 wins in the concrete
game. Then, ρ2 is winning in a spurious manner in the game that corresponds to Aα↓ ≤
Bβ↑ . Our goal in the refinement process is to remove at least one of the reasons ρ2
is winning. Also, if Player 1 wins in the concrete game, then refinement in the game
corresponding to Aα↑ ≤ Bβ↓ should reveal the fact that ρ1 is winning. The situation is
dual if Player 2 wins the concrete game. Since during the refinement process we cannot
know which of the players wins the concrete game, we perform refinements to the two
games simultaneously until we reach a definite answer. Since we assume that the WFAs
are finite, we are guaranteed to eventually terminate. Thus, our procedure is complete
(it attempts, however, to solve only the simulation, rather than containment, problem).

Observe that the arenas on which the strategies are defined have the same vertices
but different edges. Edges that appear in one game but not the other correspond to
may transitions that are not must transitions. Our refinement procedure is based on
the algorithm for solving the simulation game as described in Section 3.2. Recall that
the algorithm first performs a pre-processing stage in which it removes two sets of
vertices: vertices from which Player 1 wins (namely the set W1), and vertices from
which Player 2 wins (namely the set W2). The first set of vertices are the winning
vertices in the un-weighted reachability game with objective FA × (QB \ FB). The
second set of vertices are the winning vertices in the un-weighted safety game with
objective ((QA \ FA)×QB) ∪ V2.

Since the two winning sets depend on the edges of the game, the sets we remove are
not the same in the two games. We refer to the vertices after their removal as V ′A↑,B↓

and V ′A↓,B↑
, and we refine them until the initial vertex is in both sets.

We describe the refinement according to the strategy ρ1. Refinement according to ρ2
is dual.

Recall that, by Theorem 2, if Player 1 wins, then he has an almost-memoryless win-
ning strategy. Thus, we assume ρ1 is almost memoryless. Also recall that ρ1 is winning
in the game played on the vertices V ′A↑,B↓

, and since ρ2 is winning in the game played
on the vertices V ′A↓,B↑

, the strategy ρ1 is not winning in this game.
We proceed as in the algorithm for solving simulation games: we “guess” the strategy

ρ1 and check if (actually, how) Player 2 can win against this strategy. Since ρ1 is not
winning in the game played on the vertices V ′A↑,B↓

, we find at least one path π that is
winning for Player 2. As seen in the algorithm, π is either a path that reaches vsink
or is a lasso contained in the vertices V ′A↑,B↓

\ {vsink}. More formally, π is of the
form π1 · πω2 . The path π1 is a simple path that uses vertices from V ′A↑,B↓

\ {vsink}
and it (and every prefix of it) is not losing for Player 2. The path π2 is either the cycle
that is the single vertex vsink or it is a cycle contained in V ′A↑,B↓

\ {vsink}. In the

96 G. Avni and O. Kupferman

second case, val(π2) ≤ 0, and for every 0 ≤ i ≤ |π2|, if π2[i] ∈ FA × FB , then
val(π1) + val(π2[0 : i]) ≤ 0.

Since π is not a path in V ′A↓,B↑
, at least one of the following three cases hold:

– π uses a vertex in V ′A↑,B↓
\ V ′A↓,B↑

,
– π traverses an edge that corresponds to a may but not must transition, or
– the sum of the edges traversed in π is larger in the one game than in the other.

In the first case, we refine the vertices V ′A↑,B↓
and V ′A↓,B↑

, as described above. In the
second case, the refinement is similar to the one done in the Boolean setting, where we
close the gap between may and must transitions. Finally, in the third case, we split states
in order to tighten the weights on the transitions. Recall that these weights are defined
by taking the minimum or maximum of the corresponding set of transitions. Therefore,
splitting of states indeed tightens the weights.

Example 2. Consider the two simulation games G1 and G2 in Figure 2. The game G1

corresponds to A↑ and B↓, and G2 corresponds to A↓ and B↑, for some two WFAs
A and B with abstraction functions. In the figure, we use circle and boxes in order to
denote, respectively, the nodes in which Player 1 and Player 2 proceed. In G1, we define
FA × (QB \FB) = {s4}, FA ×FB = {s5, s6}, and (QA \FA)×QB = {s4}, and the
definition is similar in G2. Due to lack of space, we omit the letters from the arenas.

We show that Player 1 wins G1 in three different ways and Player 2 wins G2. In the
first strategy, in G1, Player 1 proceeds from s0 to s1. Player 2 is then forced to continue
to s4, which is losing for Player 2 since it is a vertex in FA × (QB \ FB). In the second
winning strategy, Player 1 proceeds from s0 to s2. The game continues by alternating
between s2 and s6. Since the cycle has a positive value and s6 ∈ FA×FB, Player 1 wins
the prefix s0s2s6s2s6s2s6. Finally, in the third strategy, Player 1 proceeds from s0 to
s3. Player 2 is then forced to proceed to s6. Since s6 ∈ FA ×FB and val(s0s2s6) > 0,
Player 1 wins the prefix. Clearly, in G2, the Player 2 strategy that proceeds from s1 to
s5 is winning.

We proceed to describe the refinement of the abstractions using these strategies. First,
note that in G1, by playing the first strategy described above, Player 1 can force the game
to a vertex in FA × (QB \ FB) from the initial vertex. Thus, s0 /∈ V ′A↑,B↓

. We start by
refining the set of Player 1 winning vertices in the reachability game with objective
FA × (QB \ FB). In this process we refine the vertex s1.

Next, we apply the third Player 1 winning strategy on G2 and see how Player 2 can
win against it. Player 2 wins because Player 1 uses the edge 〈s0, s3〉, which is not in
G2. We refine s0, and after the refinement the strategy is no longer valid for Player 1 in
G1. After these two refinements, Player 1 can still win in G1 using the second strategy,
and we apply it in G2. The outcome of the game against a winning Player 2 strategy is
s0(s2s6)

ω. In this path, we find the failure vertex s2 and refine it in order to tighten the
values of the edges.

The two resulting games after these three refinements are G′1 and G′2 (see the right
side of Figure 2). Player 1 wins in G′2 by proceding from s0 to s2, and thus we are done.

Note that since not all the values on the edges are the same in G′1 and G′2, the re-
finement is not exauhsted. That is, the arenas are not QA ×QB. Thus, the abstraction-
refinement algorithm successfully decides simulation on a smaller state space than the

Making Weighted Containment Feasible 97

G1

s0

s1

s2

s3

s4

s5

s6

0

−5

0

2

0

3

1

1

−3

G2

s0

s1

s2

s3

s4

s5

s6

0

−8

2

−2

−3

3

1

5

−3

G′
1

s3

s4

s5

s6

−5

0

−2

−2

−1

3

1

1

−3

G′
2

s3

s4

s5

s6

−5

0

−1

−1

−1

2

1

5

−3

Fig. 2. An example of applying the refinement algorithm on two simulation games

concrete one. Since, however, we found that A �≤ B, then by Theorem 2, it might still
be the case that A ⊆ B.

5 Directions for Future Research

We introduced the notions of abstraction and simulation for weighted automata and ar-
gue that they form a useful heuristic for checking containment – a problem of practical
interest that is known to be undecidable. In the Boolean setting, researchers have sug-
gested ways for closing the gap between containment and simulation [23,26]. Some,
like these that extend the definition of simulation with a look ahead, are easy to ex-
tend to the weighted setting. Other ways require special treatment of the accumulated
weights and are subject to future research. Finally, the rich weighted setting allows one
to measure the differences between systems. For example, we can talk about one WFA
t-approximating another WFA, in the sense that the value of a word in the second is at
most t times its value in the first [2]. Our weighted simulation corresponds to the special
case t = 1 and we plan to study approximated weighted simulation.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s Decidable about Weighted Automata? In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer,
Heidelberg (2011)

2. Aminof, B., Kupferman, O., Lampert, R.: Formal Analysis of Online Algorithms. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 213–227. Springer, Heidelberg
(2011)

3. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,
Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys (2006)

4. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted
Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

5. Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal
Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287.
Springer, Heidelberg (1999)

6. Ball, T., Kupferman, O.: An abstraction-refinement framework for multi-agent systems. In:
Proc. 21st LICS (2006)

98 G. Avni and O. Kupferman

7. Boker, U., Kupferman, O.: Co-ing Büchi made tight and helpful. In: Proc. 24th LICS,
pp. 245–254 (2009)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In: Proc. 4th POPL, pp. 238–252
(1977)

9. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199,
pp. 599–610. Springer, Heidelberg (2010)

10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantative languages. In: Proc. 17th CSL,
pp. 385–400 (2008)

11. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic Weighted Automata. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidel-
berg (2009)

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-
titative languages. LMCS 6(3) (2010)

13. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)

14. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation Distances. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer, Heidelberg
(2010)

15. Culik, K., Kari, J.: Digital images and formal languages. In: Handbook of Formal Languages,
vol. 3: Beyond Words, pp. 599–616 (1997)

16. de Alfaro, L., Roy, P.: Solving Games Via Three-Valued Abstraction Refinement. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 74–89. Springer, Heidel-
berg (2007)

17. Droste, M., Gastin, P.: Weighted Automata and Weighted Logics. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 513–525. Springer, Heidelberg (2005)

18. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning:
Abstraction and refinement for the full μ-calculus. Inf. Comput. 205(8), 1130–1148 (2007)

19. Gale, D., Stewart, F.M.: Infinite games of perfect information. Ann. Math. Studies 28,
245–266 (1953)

20. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)

21. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-Guided Control. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 886–902. Springer, Heidelberg (2003)

22. Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin, J.-F.: Abstract Interpretation of Game
Properties. In: SAS 2000. LNCS, vol. 1824, pp. 220–240. Springer, Heidelberg (2000)

23. Kesten, Y., Piterman, N., Pnueli, A.: Bridging the Gap between Fair Simulation and Trace
Inclusion. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 381–393.
Springer, Heidelberg (2003)

24. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. International Journal of Algebra and Computation 4(3), 405–425 (1994)

25. Kuperberg, D.: Linear temporal logic for regular cost functions. In: Proc. 28th STACS,
pp. 627–636 (2011)

26. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In:
Proc. 6th PODC, pp. 137–151 (1987)

27. Larsen, K.G., Thomsen, G.B.: A modal process logic. In: Proc. 3rd LICS (1988)
28. Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd IJCAI,

pp. 481–489 (1971)

Making Weighted Containment Feasible 99

29. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23(2), 269–311 (1997)

30. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted finite-state transducers in speech recognition.
Computer Speech and Language 16(1), 69–88 (2002)

31. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squar-
ing requires exponential time. In: Proc. 13th SWAT, pp. 125–129 (1972)

32. Schützenberger, M.P.: On the definition of a family of automata. Information and Con-
trol 4(2-3), 245–270 (1961)

33. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)

Avoiding Shared Clocks in Networks
of Timed Automata

Sandie Balaguer and Thomas Chatain�

INRIA & LSV (CNRS & ENS Cachan), Cachan, France
{balaguer,chatain}@lsv.ens-cachan.fr

Abstract. Networks of timed automata (NTA) are widely used to model
distributed real-time systems. Quite often in the literature, the automata
are allowed to share clocks. This is a problem when one considers imple-
menting such model in a distributed architecture, since reading clocks a
priori requires communications which are not explicitly described in the
model. We focus on the following question: given a NTA A1 ‖ A2 where
A2 reads some clocks reset by A1, does there exist a NTA A′

1 ‖ A′
2 with-

out shared clocks with the same behavior as the initial NTA? For this,
we allow the automata to exchange information during synchronizations
only. We discuss a formalization of the problem and give a criterion us-
ing the notion of contextual timed transition system, which represents
the behavior of A2 when in parallel with A1. Finally, we effectively build
A′

1 ‖ A′
2 when it exists.

Keywords: networks of timed automata, shared clocks, implementation
on distributed architecture, contextual timed transition system, behav-
ioral equivalence for distributed systems.

1 Introduction

Timed automata [3] are one of the most famous formal models for real-time
systems. They have been deeply studied and very mature tools are available,
like Uppaal [22], Epsilon [16] and Kronos [13].

Networks of Timed Automata (NTA) are a natural generalization to model
real-time distributed systems. In this formalism each automaton has a set of
clocks that constrain its real-time behavior. But quite often in the literature,
the automata are allowed to share clocks, which provides a special way of mak-
ing the behavior of one automaton depend on what the others do. Actually
shared clocks are relatively well accepted and can be a convenient feature for
modeling systems. Moreover, since NTA are almost always given a sequential se-
mantics, shared clocks can be handled very easily even by tools: once the NTA is
transformed into a single timed automaton by the classical product construction,
the notion of distribution is lost and the notion of shared clock itself becomes
meaningless. Nevertheless, implementing a model with shared clocks in a dis-
tributed architecture is not straightforward since reading clocks a priori requires
communications which are not explicitly described in the model.
� This work is partially supported by the French ANR project ImpRo.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 100–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Avoiding Shared Clocks in Networks of Timed Automata 101

Our purpose is to identify NTA where sharing clocks could be avoided,
i.e. NTA which syntactically use shared clocks, but whose semantics could be
achieved by another NTA without shared clocks. We are not aware of any previ-
ous study about this aspect. To simplify, we look at NTA made of two automata
A1 and A2 where only A2 reads clocks reset by A1. The first step is to formalize
what aspect of the semantics we want to preserve in this setting. Then the idea
is essentially to detect cases where A2 can avoid reading a clock because its
value does not depend on the actions that are local to A1 and thus unobservable
to A2. To generalize this idea we have to compute the knowledge of A2 about
the state of A1. We show that this knowledge is maximized if we allow A1 to
communicate its state to A2 each time they synchronize on a common action.

In order to formalize our problem we need an appropriate notion of behavioral
equivalence between two NTA. We explain why classical comparisons based on
the sequential semantics, like timed bisimulation, are not sufficient here. We need
a notion that takes the distributed nature of the system into account. That is, a
component cannot observe the moves and the state of the other and must choose
its local actions according to its partial knowledge of the state of the system.
We formalize this idea by the notion of contextual timed transition systems
(contextual TTS).

Then we express the problem of avoiding shared clocks in terms of contextual
TTS and we give a characterization of the NTA for which shared clocks can
be avoided. Finally we effectively construct a NTA without shared clocks with
the same behavior as the initial one, when this is possible. A possible interest is
to allow a designer to use shared clocks as a high-level feature in a model of a
protocol, and rely on our transformation to make it implementable.

Related work. The semantics of time in distributed systems has already been
debated. The idea of localizing clocks has already been proposed and some au-
thors [1,6,19] have even suggested to use local-time semantics with independently
evolving clocks. Here we stay in the classical setting of perfect clocks evolving
at the same speed. This is a key assumption that provides an implicit synchro-
nization and lets us know some clock values without reading them.

Many formalisms exist for real-time distributed systems, among which NTA [3]
and time Petri nets [24]. So far, their expressiveness was compared [7,12,15,26]
essentially in terms of sequential semantics that forget concurrency. In [5], we
defined a concurrency-preserving translation from time Petri nets to networks
of timed automata.

While partial-order semantics and unfoldings are well known for untimed sys-
tems, they have been very little studied for distributed real-time systems [11,14].
Partial order reductions for (N)TA were proposed in [6,23,25]. Behavioral equiva-
lence relations for distributed systems, like history-preserving bisimulations were
defined for untimed systems only [8, 20].

Finally, our notion of contextual TTS deals with knowledge of agents in distri-
buted systems. This is the aim of epistemic logics [21], which have been extended
to real-time in [18,27]. Our notion of contextual TTS also resembles the technique
of partitioning states used in timed games with partial observability [9, 17].

102 S. Balaguer and T. Chatain

Organization of the paper. The paper is organized as follows. Section 2 recalls
basic notions about TTS and NTA. Section 3 presents the problem of avoiding
shared clocks on examples and rises the problem of comparing NTA component
by component. For this, the notion of contextual TTS is developed in Section 4.
The problem of avoiding shared clocks is formalized and characterized in terms
of contextual TTS. Then Section 5 presents our construction.

The proofs are given in a research report [4].

2 Preliminaries

2.1 Timed Transition Systems

The behavior of timed systems is often described as timed transition systems.
Definition 1. A timed transition system (TTS) is a tuple (S, s0, Σ,→) where
S is a set of states, s0 ∈ Q is the initial state, Σ is a finite set of actions disjoint
from IR≥0, and → ⊆ S × (Σ ∪ IR≥0)× S is a set of edges.

For any a ∈ Σ ∪ IR≥0, we write s
a−→ s′ if (s, a, s′) ∈ →, and s

a−→ if for some
s′, (s, a, s′) ∈ →. A path of a TTS is a possibly infinite sequence of transitions
ρ = s

d0−→ s′0
a0−→ · · · sn

dn−→ s′n
an−−→ · · ·, where, for all i, di ∈ IR≥0 and ai ∈ Σ.

A path is initial if it starts in s0. A path ρ = s
d0−→ s′0

a0−→ · · · sn
dn−→ s′n

an−−→
s′n · · · generates a timed word w = (a0, t0)(a1, t1) . . . (an, tn) . . . where, for all i,
ti =

∑i
k=0 dk. The duration of w is δ(w) = supi ti and the untimed word of w

is λ(w) = a0a1 . . . an . . ., and we denote the set of timed words over Σ and of
duration d as TW(Σ, d) = {w | δ(w) = d∧ λ(w) ∈ Σ∗}. Lastly, we write s

w−→ s′

if there is a path from s to s′ that generates the timed word w.
In the following definitions, we use two TTS T1 = (S1, s

0
1, Σ1,→1) and T2 =

(S2, s
0
2, Σ2,→2), and Σ �εi denotes Σi \ {ε}, where ε is the silent action.

Product of TTS. The product of T1 and T2, denoted by T1 ⊗ T2, is the TTS(
S1 × S2, (s

0
1, s

0
2), Σ1 ∪Σ2,→

)
, where → is defined as:

– (s1, s2)
a−→ (s′1, s2) iff s1

a−→1 s′1, for any a ∈ Σ1 \Σ �ε2 ,
– (s1, s2)

a−→ (s1, s
′
2) iff s2

a−→2 s′2, for any a ∈ Σ2 \Σ �ε1 ,
– (s1, s2)

a−→ (s′1, s
′
2) iff s1

a−→1 s′1 and s2
a−→2 s′2, for any a ∈ (Σ �ε1 ∩Σ �ε2) ∪ IR≥0.

Timed Bisimulations. Let ≈ be a binary relation over S1×S2. We write s1 ≈ s2
for (s1, s2) ∈ ≈. ≈ is a strong timed bisimulation relation between T1 and T2 if
s01 ≈ s02 and s1 ≈ s2 implies that, for any a ∈ Σ ∪ IR≥0, if s1

a−→1 s′1, then, for
some s′2, s2

a−→2 s′2 and s′1 ≈ s′2; and conversely, if s2
a−→2 s′2, then, for some s′1,

s1
a−→1 s′1 and s′1 ≈ s′2.
Let ⇒i (for i ∈ {1, 2}) be the transition relation defined as:

– s
ε
=⇒i s

′ if s(ε−→i)
∗s′,

– ∀a ∈ Σ, s a
=⇒i s

′ if s(ε−→i)
∗ a−→i (

ε−→i)
∗s′,

– ∀d ∈ IR≥0, s
d
=⇒i s

′ if s(ε−→i)
∗ d0=⇒i (

ε−→i)
∗ · · · dn=⇒i (

ε−→i)
∗s′, where

∑n
k=0 dk = d.

Avoiding Shared Clocks in Networks of Timed Automata 103

Then, ≈ is a weak timed bisimulation relation between T1 and T2 if s01 ≈ s02
and s1 ≈ s2 implies that, for any a ∈ Σ ∪ IR≥0, if s1

a−→1 s′1, then, for some s′2,
s2

a
=⇒2 s′2 and s′1 ≈ s′2; and conversely. We write T1 ≈ T2 (resp. T1 ∼ T2) when

there is a strong (resp. weak) timed bisimulation between T1 and T2.

2.2 Networks of Timed Automata

The set B(X) of clock constraints over the set of clocks X is defined by the
grammar g ::= x �� k | g ∧ g, where x ∈ X , k ∈ IN and �� ∈ {<,≤,=,≥, >}.
Invariants are clock constraints of the form i ::= x ≤ k | x < k | i ∧ i.
Definition 2. A network of timed automata (NTA) [3] is a parallel composition
A1 ‖ · · · ‖ An of timed automata (TA), with Ai = (Li, 	

0
i , Xi, Σi, Ei, Inv i) where

Li is a finite set of locations, 	0i ∈ Li is the initial location, Xi is a finite set of
clocks, Σi is a finite set of actions, Ei ⊆ Li ×B(Xi)×Σi × 2Xi ×Li is a set of
edges, and Inv i : Li → B(Xi) assigns invariants to locations.

If (, g, a, r, 	′) ∈ Ei, we also write 	
g,a,r−−−→ 	′. For such an edge, g is the guard, a

the action and r the set of clocks to reset. Ci ⊆ Xi is the set of clocks reset by
Ai and for i �= j, Ci ∩ Cj may not be empty.

Semantics. To simplify, we give the semantics of a network of two TA A1 ‖ A2.
We denote by ((1, 	2), v) a state of the NTA, where 	1 and 	2 are the current
locations, and v : X → IR≥0, with X = X1 ∪X2, is a clock valuation that maps
each clock to its current value. A state is legal only if its valuation v satisfies
the invariants of the current locations, denoted by v |= Inv1(1) ∧ Inv2(2).
For each set of clocks r ⊆ X , the valuation v[r] is defined by v[r](x) = 0 if
x ∈ r and v[r](x) = v(x) otherwise. For each d ∈ IR≥0, the valuation v + d is
defined by (v + d)(x) = v(x) + d for each x ∈ X . Then, the TTS generated by
A1 ‖ A2 is TTS(A1 ‖ A2) = (S, s0, Σ1∪Σ2,→), where S is the set of legal states,
s0 = ((01, 	

0
2), v0), where v0 maps each clock to 0, and → is defined by

– Local action: ((1, 	2), v)
a−→ ((′1, 	2), v

′) iff a ∈ Σ1 \ Σ �ε2 , 	1
g,a,r−−−→ 	′1, v |= g,

v′ = v[r] and v′ |= Inv1(
′
1), and similarly for a local action in Σ2 \Σ �ε1 ,

– Synchronization: ((1, 	2), v)
a−→ ((′1, 	

′
2), v

′) iff a �= ε, 	1
g1,a,r1−−−−→ 	′1,

	2
g2,a,r2−−−−→ 	′2, v |= g1 ∧ g2, v′ = v[r1 ∪ r2] and v′ |= Inv1(

′
1) ∧ Inv2(

′
2),

– Time delay: ∀d ∈ IR≥0, ((1, 	2), v)
d−→ ((1, 	2), v+ d) iff ∀d′ ∈ [0, d], v+ d′ |=

Inv1(1) ∧ Inv2(2).

A run of a NTA is an initial path in its TTS. The semantics of a TA A alone can
also be given as a TTS denoted by TTS(A) with only local actions and delay.
A TA is non-Zeno iff for every infinite timed word w generated by a run, time
diverges (i.e. δ(w) = ∞). This is a common assumption for TA. In the sequel,
we always assume that the TA we deal with are non-Zeno.

Remark 1. Let A1 ‖ A2 be such that X1 ∩X2 = ∅. Then TTS(A1)⊗TTS(A2) is
isomorphic to TTS(A1 ‖ A2). This is not true in general when X1 ∩X2 �= ∅. For
example, in Fig. 2, performing (b, 0.5)(e, 1) is possible in TTS(A1) ⊗ TTS(A2)
but not in TTS(A1 ‖ A2), since b resets x which is tested by e.

104 S. Balaguer and T. Chatain

A1

x ≤ 2

A2

x ≥ 1, a, {x} x ≤ 2 ∧ y ≤ 3, b

Fig. 1. A2 could avoid reading clock x which belongs to A1

3 Need for Shared Clocks

3.1 Problem Setting

We are interested in detecting the cases where it is possible to avoid sharing
clocks, so that the model can be implemented using no other synchronization
than those explicitly described by common actions.

To start with, let us focus on a network of two TA, A1 ‖ A2, such that A1 does
not read the clocks reset by A2, and A2 may read the clocks reset by A1. We
want to know whether A2 really needs to read these clocks, or if another NTA
A′1 ‖ A′2 could achieve the same behavior as A1 ‖ A2 without using shared clocks.

First remark that our problem makes sense only if we insist on the distributed
nature of the system, made of two separate components. On the other hand, if
the composition operator is simply used as a convenient syntax for describing a
system that is actually implemented on a single sequential component, then a
product automaton perfectly describes the system and all clocks become local.

So, let us consider the example of Fig. 1, made of two TA, supposed to describe
two separate components. Remark that A2 reads clock x which is reset by A1.
But a simple analysis shows that this reading could be avoided: because of the
condition on its clock y, A2 can only take transition b before time 3; but x
cannot reach value 2 before time 3, since it is reset between time 1 and 2. Thus,
forgetting the condition on x in A2 would not change the behavior of the system.

3.2 Transmitting Information during Synchronizations

Consider now the example of Fig. 2. Here also A2 reads clock x which is reset
by A1, and here also this reading could be avoided. The idea is that A1 could
transmit the value of x when synchronizing, and A2 could copy this value locally
to a new clock x′. Afterwards, any reading of x in A2 could be replaced by
the reading of x′. Therefore A2 can be replaced by A′2 pictured in Fig. 2, while
preserving the behavior of the NTA, but also the behavior of A2 w.r.t. A1.

We claim that we cannot avoid reading x without this copy of clock. Indeed,
after the synchronization, the maximal delay depends on the exact value of x,
and even if we find a mechanism to allow A′2 to move to different locations
according to the value of x at synchronization time, infinitely many locations
would be required (e.g., if s occurs at time 2, x may have any value in (1, 2]).

Coding Transmission of Information. In order to model the transmission of infor-
mation during synchronizations, we allow A′1 and A′2 to use a larger synchroniza-
tion alphabet than A1 and A2. This allows A′1 to transmit discrete information
like its current location, to A′2.

Avoiding Shared Clocks in Networks of Timed Automata 105

x ≤ 3

x ≤ 3

A1

�s

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e
{y}

x′ ≤ 4

y ≥ 2
s

x′ := x

x′ ≥ 1
e
{y}

A′
2

Fig. 2. A2 reads x which belongs to A1 and A′
2 does not

But we saw that A′1 also needs to transmit the exact value of its clocks. For
this we allow an automaton to copy its neighbor’s clocks into local clocks during
synchronizations. This is denoted as updates of the form x′ := x in A′2 (see
Fig. 2). This is a special case of updatable timed automata as defined in [10].
Moreover, as shown in [10], the class we consider, with diagonal-free constraints
and updates with equality (they allow other operators) is not more expressive
than classical TA for the sequential semantics (any updatable TA of the class is
bisimilar to a classical TA), and the emptiness problem is PSPACE-complete.

Semantics. TTS(A1 ‖ A2) can be defined as previously, with the difference
that the synchronizations are now defined by: ((1, 	2), v)

a−→ ((′1, 	
′
2), v

′) iff
	1

g1,a,r1−−−−→1 	′1, 	2
g2,a,r2,u−−−−−−→2 	′2 where u is a partial function from X2 to X1,

v |= g1 ∧ g2, v′ = (v[r1 ∪ r2])[u], and v′ |= Inv(′1) ∧ Inv(′2). The valuation v[u]
is defined by v[u](x) = v(u(x)) if u(x) is defined, and v[u](x) = v(x) otherwise.

Here, we choose to apply the reset r1 ∪ r2 before the update u, because we
are interested in sharing the state reached in A1 after the synchronization, and
r1 may reset some clocks in C1 ⊆ X1.

3.3 Towards a Formalization of the Problem

We want to know whether A2 really needs to read the clocks reset by A1, or
if another NTA A′1 ‖ A′2 could achieve the same behavior as A1 ‖ A2 without
using shared clocks. It remains to formalize what we mean by “having the same
behavior” in this context.

First, we impose that the locality of actions is preserved, i.e. A′1 uses the same
set of local actions as A1, and similarly for A′2 and A2. For the synchronizations,
we have explained earlier why we allow A′1 and A′2 to use a larger synchronization
alphabet than A1 and A2. The correspondence between the two alphabets will
be done by a mapping ψ (this point will be refined later).

Now we have to impose that the behavior is preserved. The first idea that
comes in mind is to impose bisimulation between ψ(TTS(A′1 ‖ A′2)) (i.e.

106 S. Balaguer and T. Chatain

p0x ≤ 1

p1 p2

A1

q0y ≤ 2

q1 y ≤ 2 q2y ≤ 2

q3 q4 q5 q6

A2

y ≤ 2

r1 y ≤ 2 r2y ≤ 2

A′
2

x = 1
d

x = 1
e{x}

y = 2
c

y = 2
c

y = 2∧
x = 1

a

y = 2∧
x = 2
b

y = 2∧
x = 1

b

y = 2∧
x = 2
a

y = 2
c

y = 2
c

y = 2
a

y = 2
b

Fig. 3. A2 needs to read the clocks of A1 and TTS(A1 ‖ A2) ∼ TTS(A1 ‖ A′
2)

TTS(A′1 ‖ A′2) with synchronization actions relabeled by ψ) and TTS(A1 ‖ A2).
But this is not sufficient, as illustrated by the example of Fig. 3 (where ψ is
the identity). Intuitively A2 needs to read x when in q1 (and similarly in q2) at
time 2, because this reading determines whether it will perform a or b, and the
value of x cannot be inferred from its local state given by q1 and the value of
y. Anyway TTS(A1 ‖ A′2) is bisimilar to TTS(A1 ‖ A2), and A′2 does not read
x. For the bisimulation relation R, it suffices to impose (p1, q1) R (p1, r1) and
(p2, q1) R (p2, r2).

What we see here is that, if we focus on the point of view of A2 and A′2, these
two automata do not behave the same. As a matter of fact, when A2 fires one
edge labeled by c, it has not read x yet, and there is still a possibility to fire
a or b, whereas when A′2 fires one edge labeled by c, there is no more choice
afterwards. Therefore we need a relation between A′2 and A2, and in the general
case, a relation between A′1 and A1 also.

4 Contextual Timed Transition Systems

As we are interested in representing a partial view of one of the components,
we need to introduce another notion, that we call contextual timed transition
system. This resembles the powerset construction used in game theory to capture
the knowledge of an agent about another agent.

Notations. S = Σ �ε1 ∩Σ �ε2 denotes the set of common actions. Q1 denotes the set
of states of TTS(A1). When s = ((1, 	2), v) is a state of TTS(A1 ‖ A2), we also
write s = (s1, s2), where s1 = (1, v|X1

) is in Q1, and s2 = (2, v|X2\X1
), where

v|X is v restricted to X .

Definition 3 (UR(s)). Let TTS(A1) = (Q1, s0, Σ1,→1) and s ∈ Q1. The set of
states of A1 reachable from s by local actions in 0 delay (and therefore not observ-
able by A2) is denoted by UR(s) = {s′ ∈ Q1 | ∃w ∈ TW(Σ1 \Σ �ε2 , 0) : s

w−→1 s′}.

Avoiding Shared Clocks in Networks of Timed Automata 107

Contextual States. The states of this contextual TTS are called contextual states.
They can be regarded as possibly infinite sets of states of TTS(A1 ‖ A2) for
which A2 is in the same location and has the same valuation over X2 \ X1.
A2 may not be able to distinguish between some states (s1, s2) and (s′1, s2). In
TTSA1(A2), these states are grouped into the same contextual state. However,
when X2 ∩X1 �= ∅, it may happen that A2 is able to perform a local action or
delay from (s1, s2) and not from (s′1, s2), even if these states are grouped in a
same contextual state.

Definition 4 (Contextual TTS). Let TTS(A1 ‖ A2) = (Q, q0, Σ1 ∪Σ2,⇒).
Then, the TTS of A2 in the context of A1, denoted by TTSA1(A2), is the TTS
(S, s0, (Σ2 \ S) ∪ (S×Q1),→), where

– S = {(S1, s2) | ∀s1 ∈ S1, (s1, s2) ∈ Q},
– s0 = (S0

1 , s
0
2), s.t. (s01, s02) = q0 and S0

1 = UR(s01),
– → is defined by

• Local action: for any a ∈ Σ2 \ S, (S1, s2)
a−→ (S′1, s

′
2) iff ∃s1 ∈ S1 :

(s1, s2)
a
=⇒ (s1, s

′
2), and S′1 = {s1 ∈ S1 | (s1, s2) a

=⇒ (s1, s
′
2)}

• Synchronization: for any (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1−−→ (UR(s′1), s

′
2) iff

∃s1 ∈ S1 : (s1, s2)
a
=⇒ (s′1, s

′
2)

• Local delay: for any d ∈ IR≥0, (S1, s2)
d−→ (S′1, s

′
2) iff ∃s1 ∈ S1,

w ∈ TW(Σ1 \ Σ �ε2 , d) : (s1, s2)
w
=⇒ (s′1, s

′
2), and S′1 = {s′1 | ∃s1 ∈ S1,

w ∈ TW(Σ1 \Σ �ε2 , d) : (s1, s2)
w
=⇒ (s′1, s

′
2)}

For example, consider A1 and A2 of Fig. 3. The initial state is
(
{(p0, 0)}, (q0, 0)

)
.

From this contextual state, it is possible to delay 2 time units and reach the
contextual state

(
{(p1, 2), (p2, 1)}, (q0, 2)

)
. Indeed, during this delay, A1 has to

perform either e and reset x, or d. Now, from this contextual state, we can take
an edge labeled by c, and reach

(
{(p1, 2), (p2, 1)}, (q1, 2)

)
. Lastly, from this new

state, a can be fired, because it is enabled by ((p2, 1), (q1, 2)) in the TTS of the
NTA, and the reached contextual state is

(
{(p2, 1)}, (q3, 2)

)
.

We say that there is no restriction in TTSA1(A2) if whenever a local step
is possible from a reachable contextual state, then it is possible from all the
states (s1, s2) that are grouped into this contextual state. In the example above,
there is a restriction in TTSA1(A2) because we have seen that a is enabled only
by ((p2, 1), (q1, 2)), and not by all states merged in

(
{(p1, 2), (p2, 1)}, (q1, 2)

)
.

Formally, we use the predicate noRestrictionA1(A2) defined as follows.

Definition 5 (noRestrictionA1(A2)). The predicate noRestrictionA1(A2) holds
iff for any reachable state (S1, s2) of TTSA1(A2), both

– ∀a ∈ Σ2 \ S, (S1, s2)
a−→ (S′1, s

′
2) ⇐⇒ ∀s1 ∈ S1, (s1, s2)

a
=⇒ (s1, s

′
2), and

– ∀d ∈ IR≥0, (S1, s2)
d−→ ⇐⇒ ∀s1 ∈ S1, ∃w ∈ TW(Σ1 \Σ �ε2 , d) : (s1, s2)

w
=⇒

Remark 2. If A2 does not read X1, then noRestrictionA1(A2).

108 S. Balaguer and T. Chatain

A1 A2

x < 1, a

a
x ≥ 1, b, {x}

Fig. 4. TTSQ1(A1)⊗ TTSA1(A2) ≈ TTSQ1(A1 ‖ A2), although there is a restriction
in TTSA1(A2)

Sharing of Information on the Synchronizations. Later we assume that during
a synchronization, A1 is allowed to transmit all its state to A2, that is why, in
TTSA1(A2), we distinguish the states reached after a synchronization according
to the state reached in A1. We also label the synchronization edges by a pair
(a, s1) ∈ S×Q1 where a is the action and s1 the state reached in A1.

For the sequel, let TTSQ1(A1) (resp. TTSQ1(A1 ‖ A2)) denote TTS(A1) (resp.
TTS(A1 ‖ A2)) where the synchronization edges are labeled by (a, s1), where
a ∈ S is the action, and s1 is the state reached in A1.

We can now state a nice property of unrestricted contextual TTS that is
similar to the distributivity of TTS over the composition when considering TA
with disjoint sets of clocks (see Remark 1). We say that a TA is deterministic if
it has no ε-transition and for any location 	 and action a, there is at most one
edge labeled by a from 	.

Lemma 1. If there is no restriction in TTSA1(A2), then TTSQ1(A1) ⊗
TTSA1(A2) ≈ TTSQ1(A1 ‖ A2). Moreover, when A2 is deterministic, this con-
dition becomes necessary.

The example of Fig. 4 shows that the reciprocal does not hold when A2 is not
deterministic.

4.1 Need for Shared Clocks Revisited

We have argued in Section 3.3 that the existence of a NTA A′1 ‖ A′2 without
shared clocks and such that ψ(TTSQ′

1
(A′1 ‖ A′2)) ∼ TTSQ1(A1 ‖ A2) is not suffi-

cient to capture the idea that A2 does not need to read the clocks of A1. We are
now equipped to define the relations we want to impose on the separate compo-
nents, namely ψ(TTSQ′

1
(A′1)) ∼ TTSQ1(A1) and ψ(TTSA′

1
(A′2)) ∼ TTSA1(A2).

And since we have seen the importance of using labeling the synchronization
actions in contextual TTS by labels in S ×Q1 rather than in S, the correspon-
dence between the synchronization labels of A′1 ‖ A′2 with those of A1 ‖ A2 is
now done by a mapping ψ : S′ ×Q′1 → S×Q1.

This settles the problem of the example of Fig. 3 where TTSA1(A
′
2) �∼

TTSA1(A2) (here A′1 = A1), but as shown in Fig. 5, a problem remains. In this
example, we can see that A2 needs to read clock x of A1 to know whether it has
to perform a or b at time 2, and yet TTSA1(A2) ∼ TTSA1(A

′
2) (here again

A′1 = A1). The intuition to understand this is that the contextual TTS merge too
many states for the two systems to remain differentiable. However we remark that

Avoiding Shared Clocks in Networks of Timed Automata 109

A1

x ≤ 1

A2

y ≤ 2

A′
2

y ≤ 2x = 1, d

x = 1, e, {x}

y = 2 ∧ x = 2, a

y = 2 ∧ x = 1, b

y = 2, a

y = 2, b

Fig. 5. A2 needs to read the clocks of A1 and TTSA1(A2) ∼ TTSA1(A
′
2)

here, the first condition that we have required in Section 3, namely the global
bisimulation between ψ(TTS(A′1 ‖ A′2)) and TTS(A1 ‖ A2), does not hold.

Now we show that the conjunction of global and local bisimulations actually
gives the good definition.

Definition 6 (Need for shared clocks). Given A1 ‖ A2 such that A1 does not
read the clocks of A2, A2 does not need to read the clocks of A1 iff there exists
a NTA A′1 ‖ A′2 without shared clocks (but with clock copies during synchroniza-
tions), using the same sets of local actions and a synchronization alphabet S′

related to the original one by a mapping ψ : S′ ×Q′1 → S×Q1, and such that

1. ψ(TTSQ′
1
(A′1 ‖ A′2)) ∼ TTSQ1(A1 ‖ A2) and

2. ψ(TTSQ′
1
(A′1)) ∼ TTSQ1(A1) and

3. ψ(TTSA′
1
(A′2)) ∼ TTSA1(A2).

Notice that this does not mean that the clock constraints that read X1 can
simply be removed from A2 (see Fig. 2).

Lemma 2. When noRestrictionA1(A2) holds, any NTA A′1 ‖ A′2 without shared
clocks and that satisfies items 2 and 3 of Definition 6 also satisfies item 1.

We are now ready to give a criterion to decide the need for shared clocks.

Theorem 1. When noRestrictionA1(A2) holds, A2 does not need to read the
clocks of A1. When A2 is deterministic, this condition becomes necessary.

We remark from the proof that when there is a restriction in TTSA1(A2), even
infinite A′1 and A′2 would not help. Next section will be devoted to the con-
structive proof of the direct part of this theorem. The indirect part follows from
Lemma 1. The counterexample in Fig. 4 also works here to argue that the condi-
tions of Lemma 2 and Theorem 1 are not necessary when A2 is not deterministic.
Indeed A′2 with only one unguarded edge labeled by a and A′1 = A1 satisfy the
three items of Definition 6 but there is a restriction in TTSA1(A2).

5 Constructing a NTA without Shared Clocks

This section is dedicated to proving Theorem 1 by constructing suitable A′1 and
A′2. To simplify, we assume that in A2, the guards on the synchronizations do
not read X1.

110 S. Balaguer and T. Chatain

5.1 Construction

First, our A′1 is obtained from A1 by replacing all the labels a ∈ S on the
synchronization edges of A1 by (a, 	1) ∈ S× L1, where 	1 is the output location
of the edge. Therefore the synchronization alphabet between A′1 and A′2 will be
S′ = S×L1, which allows A′1 to transmit its location after each synchronization.

Then, the idea is to build A′2 as a product A1,2 ⊗ A2,mod (⊗ denotes the
product of TA as it is usually defined [3]), where A2,mod plays the role of A2 and
A1,2 acts as a local copy of A′1, from which A2,mod reads clocks instead of reading
those of A′1. For this, as long as the automata do not synchronize, A1,2 will evolve,
simulating a run of A′1 that is compatible with what A′2 knows about A′1. And,
as soon as A′1 synchronizes with A′2, A′2 updates A1,2 to the actual state of A′1. If
the clocks of A1,2 always give the same truth value to the guards and invariants
of A2,mod than the actual value of the clocks of A′1, then our construction behaves
like A1 ‖ A2. To check that this is the case, we equip A′2 with an error location, �,
and edges that lead to it if there is a contradiction between the values of the
clocks of A′1 and the values of the clocks of A1,2. The guards of these edges are
the only cases where A′2 reads clocks of A′1. Therefore, if � is not reachable,
they can be removed so that A′2 does not read the clocks of A′1. More precisely,
a contradiction happens when A2,mod is in a given location and the guard of an
outgoing edge is true according to A1,2 and false according to A′1, or vice versa,
or when the invariant of the current location is false according to A′1 (whereas
it is true according to A1,2, since A2,mod reads the clocks of A1,2).

Namely, Smod = A′1 ‖ (A1,2 ⊗ A2,mod) where A1,2 and A2,mod are defined as
follows. A1,2 = (L1, 	

0
1, X

′
1, S

′ ∪ {ε}, E′1, Inv ′1), where

– each clock x′ ∈ X ′
1 is associated with a clock c(x′) = x ∈ X1 (c is a bijection

from X ′
1 to X1). γ′ denotes the clock constraint where any clock x of X1 is

substituted by x′ of X ′
1.

– ∀	 ∈ L1, Inv
′
1() = Inv1()

′

– E′1= {	1
g′,εa,r

′

−−−−−→ 	2 | ∃a ∈ Σ1 \Σ �ε2 : 	1
g,a,c(r′)−−−−−→ 	2 ∈ E1}

∪ {	 �,(a,�2),c−−−−−−→ 	2 | 	 ∈ L1 ∧ a ∈ S ∧ ∃	1
g,a,r−−−→ 	2 ∈ E1}

where ' means true, and c denotes the assignment of any clock x′ ∈ X ′
1 with

the value of its associated clock c(x′) = x ∈ X1 (written x′ := x in Fig. 6).

A2,mod = (L2 ∪ {�}, 	02, X2 ∪X ′
1, (Σ2 \Σ1) ∪ S′, E′2, Inv

′
2), where

– ∀	 ∈ L2, Inv
′
2() = Inv2()

′ and Inv ′2(�) = ',

– E′2= {	1
g′,a,r−−−→ 	2 | 	1

g,a,r−−−→ 	2 ∈ E2 ∧ a /∈ S}
∪ {	1

g,(a,�),r−−−−−→ 	2 | 	1
g,a,r−−−→ 	2 ∈ E2 ∧ a ∈ S ∧ 	 ∈ L1}

∪ {	 ¬Inv2(�),ε,∅−−−−−−−−→ � | 	 ∈ L2}
∪ {	 g′∧¬g,ε,∅−−−−−−→ � | 	 g,a,r−−−→ 	′ ∈ E2 ∧ a /∈ S}
∪ {	 ¬g′∧g,ε,∅−−−−−−→ � | 	 g,a,r−−−→ 	′ ∈ E2 ∧ a /∈ S}.

For the example of Fig. 2, A1,2 and A2,mod are pictured in Fig. 6.

Avoiding Shared Clocks in Networks of Timed Automata 111

x′ ≤ 3

x′ ≤ 3

A1,2

�s

x′ ≤ 4 �

A2,mod

x′ ≥ 1
εa

x′ = 3
εc

x′ < 1
εb
{x′}

y ≥ 2
(s, �s)

x′ ≥ 1
e

{y}

¬(x ≤ 4)

x′ ≥ 1 ∧ x < 1

x′ < 1 ∧ x ≥ 1
(s, �s)
x′ := x

(s, �s)

x′ := x

(s, �s), x
′ := x

Fig. 6. A1,2 and A2,mod for the example of Fig. 2

Lemma 3. � is reachable in Smod iff there is a restriction in TTSA1(A2).

We first give a case for which Theorem 1 can be proved easily. We say that A1

has no urgent synchronization if for any location, when the invariant expires, a
local action is enabled. Under this assumption, we show that A′2 = A1,2⊗A′2,mod ,
where A′2,mod is A2,mod without location � (that is unreachable by Lemma 3) and
its ingoing edges, is suitable. Indeed, A′2 does not read X1 and ψ(TTSA′

1
(A′2)) ∼

TTSA1(A2), where for any ((a, 	1), s1) ∈ S′×Q′1, ψ(((a, 	1), s1)) = (a, s1). Item 2
of Definition 6 is immediate, and item 1 holds by Lemma 2.

When A1 has urgent synchronizations, this construction allows one to check
the absence of restriction in TTSA1(A2), but it does not give directly a suitable
A′2. We will give the idea of the construction of A′2 for the general case later.

In the example of Fig. 2, � is not reachable in Smod (see Fig. 6), therefore A2

does not need to read X1. For an example where � is reachable, consider the same

example with an additional edge
�,f,{x}−−−−−→ from the end location of A1 to a new

location. Location � can now be reached in Smod , for example consider a run
where s is performed at time 2 leading to a state where v(x) = 2 and v(x′) = 2,
and then A1 immediately performs f and resets x, leading to a state where
the valuation v′ is such that v′(x) = 0 and v′(x′) = 2, and satisfies guard
x′ ≥ 1 ∧ x < 1 in Smod . Therefore, with this additional edge in A1, A2 needs to
read X1. Indeed, without this edge, A2 knows that A1 cannot modify x after the
synchronization, but with this edge, A2 does not know whether A1 has performed
f and reset x, while this may change the truth value of its guard x ≥ 1.

5.2 Complexity

The reachability problem for timed automata is known to be PSPACE-
complete [2]. We will reduce this problem to our problem of deciding whether
A2 needs to read the clocks of A1. Consider a TA A over alphabet Σ, with some
location 	. Build the TA A2 as A augmented with two new locations 	′ and 	′′

and two edges, 	 �,ε,∅−−−→ 	′ and 	′
x=1,a,∅−−−−−→ 	′′, where x is a fresh clock, and a is

112 S. Balaguer and T. Chatain

some action in Σ. Let A1 be the one of Fig. 4 with an action b /∈ Σ. Then, 	 is
reachable in A iff A2 needs to read x which belongs to A1. Therefore the problem
of deciding whether A2 needs to read the clocks of A1 is also PSPACE-hard.

Moreover, we can show that when A2 is deterministic, our problem is
in PSPACE. Indeed, by Theorem 1 and Lemma 3, � is not reachable iff
noRestrictionA1(A2) iff A2 does not need to read the clocks of A1. Since the
size of the modified system on which we check the reachability of � is polyno-
mial in the size of the original system, our problem is in PSPACE.

5.3 Dealing with Urgent Synchronizations

If we use exactly the same construction as before and allow urgent synchroniza-
tions, the following problem may occur. Remind that A1,2 simulates a possible
run of A′1 while A′1 plays its actual run. There is no reason why the two runs
should coincide. Thus it may happen that the run simulated by A1,2 reaches a
state where the invariant expires and only a synchronization is possible. Then
A′2 is expecting a synchronization with A′1, but it is possible that the actual A′1
has not reached a state that enables this synchronization. Intuitively, A′2 should
then realize that the simulated run cannot be the actual one and try another
run compatible with the absence of synchronization.

But it is simpler to avoid this situation, by forcing A1,2 to simulate one of the
runs of A′1 (from the state reached after the last synchronization) that has max-
imal duration1 before it synchronizes again with A2,mod (or never synchronizes
again if possible). This choice of a run of A′1 is as valid as the others, and subtle
situation described above.

For example, consider automaton A1 in Fig. 2 without the edge labeled by c
and with guard x ≤ 1 instead of x < 1. We can see that A1,2 has to fire b at time
1 and is able to wait 3 time units before synchronizing, although it is still able
to synchronize at any time (we add the same dashed edges as in Fig. 6). This
can be generalized for any A1. The idea is essentially to force A1,2 to follow the
appropriate finite or ultimately periodic path in the region automaton [3] of A1.

6 Conclusion

We have shown that in a distributed framework, when locality of actions and syn-
chronizations matter, NTA with shared clocks cannot be easily transformed into
NTA without shared clocks. The fact that the transformation is possible can be
characterized using the notion of contextual TTS which represents the knowledge
of one TA about the other. Checking the resulting criterion is PSPACE-complete.

One conclusion is that, contrary to what happens when one considers the
sequential semantics, NTA with shared clocks are strictly more expressive if we
take distribution into account. This somehow justifies why shared clocks were
introduced: they are actually more than syntactic sugar.
1 There may not be any maximum if some time constraints are strict inequalities, but

the idea can be adapted even to this case.

Avoiding Shared Clocks in Networks of Timed Automata 113

Another interesting point is the use of transmitting information during syn-
chronizations. It is noticeable that infinitely precise information is required in
general. This advocates the interest of updatable (N)TA used in an appropriate
way, and more generally gives a flavor of a class of NTA closer to implementation.

Perspectives. Our first perspective is to generalize our result to the symmetrical
case where A1 also reads clocks from A2. Then of course we can tackle general
NTA with more than two automata.

Another line of research is to focus on transmission of information. The goal
would be to minimize the information transmitted during synchronizations, and
see for example where are the limits of finite information. Even when infinitely
precise information is required to achieve the exact semantics of the NTA, it
would be interesting to study how this semantics can be approximated using
finitely precise information.

Finally, when shared clocks are necessary, one can discuss how to minimize
them, or how to implement the model on a distributed architecture and how to
handle shared clocks with as few communications as possible.

References

1. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
Timed Automata with Independently Evolving Clocks. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Hei-
delberg (2008)

2. Alur, R., Dill, D.: Automata for Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

3. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Balaguer, S., Chatain, T.: Avoiding shared clocks in networks of timed automata.
Rapport de recherche 7990, INRIA (2012)

5. Balaguer, S., Chatain, T., Haar, S.: A concurrency-preserving translation from time
Petri nets to networks of timed automata. FMSD (2012)

6. Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial Order Reductions for Timed
Systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 485–500. Springer, Heidelberg (1998)

7. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
Expressiveness of Timed Automata and Time Petri Nets. In: Pettersson, P., Yi,
W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg
(2005)

8. Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri
nets. Acta Inf. 28(3), 231–264 (1991)

9. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed Control with Partial
Observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

10. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2-3), 291–345 (2004)

11. Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Unfoldings for Networks of
Timed Automata. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 292–306. Springer, Heidelberg (2006)

114 S. Balaguer and T. Chatain

12. Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition
time Petri nets. Fundam. Inform. 88(3), 225–249 (2008)

13. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
Model-Checking Tool for Real-Time Systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

14. Cassez, F., Chatain, T., Jard, C.: Symbolic Unfoldings for Networks of Timed
Automata. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 307–321. Springer, Heidelberg (2006)

15. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed au-
tomata. Jour. of Systems and Software (2006)

16. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed Modal Specification - Theory
and Tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 253–267.
Springer, Heidelberg (1993)

17. David, A., Larsen, K.G., Li, S., Nielsen, B.: Timed testing under partial observ-
ability. In: ICST, pp. 61–70. IEEE Computer Society (2009)

18. Dima, C.: Positive and negative results on the decidability of the model-checking
problem for an epistemic extension of timed CTL. In: TIME, pp. 29–36. IEEE
Computer Society (2009)

19. Dima, C., Lanotte, R.: Distributed Time-Asynchronous Automata. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 185–200. Springer,
Heidelberg (2007)

20. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inf. 37(4/5), 229–327 (2001)

21. Halpern, J.Y., Fagin, R., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Jour. on Software Tools
for Technology Transfer 1(1-2), 134–152 (1997)

23. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock
explosion problem of timed automata. Theor. Comput. Sci. 345(1), 27–59 (2005)

24. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols – implica-
tions of a theorical study. IEEE Transactions on Communications 24 (1976)

25. Minea, M.: Partial Order Reduction for Model Checking of Timed Automata. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446.
Springer, Heidelberg (1999)

26. Srba, J.: Comparing the Expressiveness of Timed Automata and Timed Extensions
of Petri Nets. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 15–32. Springer, Heidelberg (2008)

27. Woźna, B., Lomuscio, A.: A Logic for Knowledge, Correctness, and Real Time.
In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 1–15.
Springer, Heidelberg (2005)

Strategy Synthesis
for Multi-Dimensional Quantitative Objectives

Krishnendu Chatterjee1,�, Mickael Randour2,��, and Jean-François Raskin3,���

1 IST Austria (Institute of Science and Technology Austria)
2 Institut d’Informatique, Université de Mons (UMONS), Belgium

3 Départment d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. Multi-dimensional mean-payoff and energy games provide the math-
ematical foundation for the quantitative study of reactive systems, and play a
central role in the emerging quantitative theory of verification and synthesis. In
this work, we study the strategy synthesis problem for games with such multi-
dimensional objectives along with a parity condition, a canonical way to express
ω-regular conditions. While in general, the winning strategies in such games may
require infinite memory, for synthesis the most relevant problem is the construc-
tion of a finite-memory winning strategy (if one exists). Our main contributions
are as follows. First, we show a tight exponential bound (matching upper and
lower bounds) on the memory required for finite-memory winning strategies in
both multi-dimensional mean-payoff and energy games along with parity objec-
tives. This significantly improves the triple exponential upper bound for multi
energy games (without parity) that could be derived from results in literature for
games on VASS (vector addition systems with states). Second, we present an op-
timal symbolic and incremental algorithm to compute a finite-memory winning
strategy (if one exists) in such games. Finally, we give a complete characteriza-
tion of when finite memory of strategies can be traded off for randomness. In par-
ticular, we show that for one-dimension mean-payoff parity games, randomized
memoryless strategies are as powerful as their pure finite-memory counterparts.

1 Introduction

Two-player games on graphs provide the mathematical foundation to study many im-
portant problems in computer science. Game-theoretic formulations have especially
proved useful for synthesis [18,33,31], verification [2], refinement [29], and compat-
ibility checking [19] of reactive systems, as well as in analysis of emptiness of au-
tomata [35].

Games played on graphs are repeated games that proceed for an infinite number of
rounds. The state space of the graph is partitioned into player 1 states and player 2
states (player 2 is adversary to player 1). The game starts at an initial state, and if the

� Author supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN
Grant No S11407 (RiSE), ERC Start Grant (279307: Graph Games), Microsoft faculty
fellowship.

�� Author supported by F.R.S.-FNRS. fellowship.
��� Author supported by ERC Starting Grant (279499: inVEST).

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 115–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

116 K. Chatterjee, M. Randour, and J.-F. Raskin

current state is a player 1 (resp. player 2) state, then player 1 (resp. player 2) chooses
an outgoing edge. This choice is made according to a strategy of the player: given the
sequence of visited states, a pure (resp. randomized) strategy chooses an outgoing edge
(resp. probability distribution over outgoing edges). This process of choosing edges is
repeated forever, and gives rise to an outcome of the game, called a play, that consists
of the infinite sequence of states that are visited.

Traditionally, games on graphs have been studied with Boolean objectives such as
reachability, liveness, ω-regular conditions formalized as the canonical parity objec-
tives, strong fairness objectives, etc [28,24,25,38,35,27]. While games with quantitative
objectives have been studied in the game theory literature [23,39,30], their application
in synthesis and other problems in verification is quite recent. The two classical quanti-
tative objectives that are most relevant in verification and synthesis are the mean-payoff
and energy objectives. In games on graphs with quantitative objectives, the game graph
is equipped with a weight function that assigns integer-valued weights to every edge.
For mean-payoff objectives, the goal of player 1 is to ensure that the long-run average
of the weights is above a threshold. For energy objectives, the goal of player 1 is to en-
sure that the sum of the weights stays above 0 at all times. In applications of verification
and synthesis, the quantitative objectives that typically arise are (i) multi-dimensional
quantitative objectives (i.e., conjunction of several quantitative objectives), e.g., to ex-
press properties like the average response time between a grant and a request is below
a given threshold ν1, and the average number of unnecessary grants is below threshold
ν2; and (ii) conjunction of quantitative objectives with a Boolean objective, such as a
mean-payoff parity objective that can express properties like the average response time
is below a threshold along with satisfying a liveness property. In summary, the quanti-
tative objectives can express properties related to resource requirements, performance,
and robustness; multiple objectives can express the different, potentially dependent or
conflicting objectives; and the Boolean objective specifies functional properties such as
liveness or fairness. The game theoretic framework of multi-dimensional quantitative
games and games with conjunction of quantitative and Boolean objectives has recently
been shown to have many applications in verification and synthesis, such as synthesiz-
ing systems with quality guarantee [4], synthesizing robust systems [5], performance
aware synthesis of concurrent data structure [10], analyzing permissivity in games and
synthesis [8], simulation between quantitative automata [14], generalizing Boolean sim-
ulation to quantitative simulation distance [11], etc. Moreover, multi-dimensional en-
ergy games are equivalent to a decidable class of games on VASS (vector addition
systems with states) that are the model to verify games over multi-counter systems and
Petri nets [9].

In literature, there are many recent works on the theoretical analysis of
multi-dimensional quantitative games, such as, mean-payoff parity games [16,8],
energy-parity games [13], multi-dimensional energy games [15], and multi-dimensional
mean-payoff games [15,37]. Most of these works focus on establishing the computa-
tional complexity of the problem of deciding if player 1 has a winning strategy. From
the perspective of synthesis and other related problems in verification, the most impor-
tant problem is to obtain a witness finite-memory winning strategy (if one exists). The
winning strategy in the game corresponds to the desired controller for (or implemen-

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 117

tation of) the system in synthesis, and for implementability a finite-memory strategy
is essential. In this work we consider the problem of finite-memory strategy synthesis
in multi-dimensional quantitative games in conjunction with parity objectives, and the
problem of existence of memory-efficient randomized strategies for such games. These
are the core and foundational problems in the emerging theory of quantitative verifica-
tion and synthesis.

Our Contributions. In this work, we study for the first time multi-dimensional energy
and mean-payoff objectives in conjunction with parity objectives. Conjunction of par-
ity objectives with multi-dimensional quantitative objectives has not been considered
before. Since we consider the synthesis of finite-memory strategies, it follows from
the results of [15] that both the problems (multi-dimensional energy with parity and
multi-dimensional mean-payoff with parity) are equivalent. Our main results for finite-
memory strategy synthesis for multi-dimensional energy parity games are as follows. (i)
Optimal memory bounds. We first show that memory of exponential size is sufficient
in multi-dimensional energy parity games. Our result is a significant improvement over
the result that can be obtained naively from the results known in literature that yields a
triple exponential bound, even in the case of multi-dimensional energy games without
parity. Second, we show a matching lower bound by presenting a family of game graphs
where exponential memory is necessary in multi-dimensional energy games (without
parity), even when all the transition weights belong to {−1, 0,+1}. Thus we establish
optimal memory bounds for the finite-memory strategy synthesis problem. (ii) Sym-
bolic and incremental algorithm. We present a symbolic algorithm (in the sense of
[21], i.e., using a compact antichain representation of sets by their minimal elements)
to compute a finite-memory winning strategy, if one exists, for multi-dimensional en-
ergy parity games. Our algorithm is parameterized by the range of energy levels to
consider during its execution. So, we can use it in an incremental approach: first, we
search for finite-memory winning strategies with a small range, and increment the range
only when necessary. We also establish a bound on the maximal range to consider
which ensures completeness of the incremental approach. In the worst case the algo-
rithm requires exponential time. Since exponential size memory is required (and also
the decision problem is coNP-complete [15]), the worst case exponential bound can be
considered as optimal. Moreover, as our algorithm is symbolic and incremental, in most
relevant problems in practice, it is expected to be efficient. We also consider when the
(pure) finite-memory strategies can be traded off for conceptually much simpler ran-
domized strategies. (iii) Randomized strategies. We show that for energy objectives
randomization is not helpful (as energy objectives are similar in spirit with safety objec-
tives), even with only one player, neither it is for two-player multi-dimensional mean-
payoff objectives. However, randomized memoryless strategies suffice for one-player
multi-dimensional mean-payoff parity games. For the important special case of mean-
payoff parity objectives (conjunction of a single mean-payoff and parity objectives), we
show that in games, finite-memory strategies can be traded off for randomized mem-
oryless strategies. An extended version of this work, including proofs, can be found
in [17].

Related Works. Games with a single mean-payoff objective have been studied
in [23,39], and games with a single energy objective in [12]; their equivalence was

118 K. Chatterjee, M. Randour, and J.-F. Raskin

established in [7]. One-dimensional mean-payoff parity games problem has been stud-
ied in [16]: an exponential algorithm was given to decide if there exists a winning
strategy (which in general was shown to require infinite memory); and an improved al-
gorithm was presented in [8]. One-dimensional energy parity games problem has been
studied in [13]: it was shown that deciding the existence of a winning strategy is in
NP ∩ coNP, and an exponential algorithm was given. It was also shown in [13] that,
for one-dimensional energy parity objectives, finite-memory strategies with exponential
memory are sufficient, and the decision problem for mean-payoff parity objective can
be reduced to energy parity objective. Games on VASS with several different winning
objectives have been studied in [9], and from the results of [9] it follows that in multi-
dimensional energy games, winning strategies with finite memory are sufficient (and a
triple exponential bound on memory can be derived from the results). The complexity of
multi-dimensional energy and mean-payoff games was studied in [15,37]. It was shown
in [15] that in general, winning strategies in multi-dimensional mean-payoff games
require infinite memory, whereas for multi-dimensional energy games, finite-memory
strategies are sufficient. Moreover, for finite-memory strategies, the multi-dimensional
mean-payoff and energy games coincide, and optimal computational complexity for de-
ciding the existence of a winning strategy was established as coNP-complete [15,37].
Multi-dimensional mean-payoff games with infinite-memory strategies were studied
in [37], and optimal computational complexity results were established. Various deci-
sion problems over multi-dimensional energy games were studied in [26].

2 Preliminaries

We consider two-player game structures and denote the two players by P1 and P2.

Multi-Weighted Two-Player Game Structures. A multi-weighted two-player game
structure is a tuple G = (S1, S2, sinit, E, k, w) where (i) S1 and S2 resp. denote the
finite sets of states belonging to P1 and P2, with S1 ∩S2 = ∅; (ii) sinit ∈ S = S1 ∪S2

is the initial state; (iii) E ⊆ S×S is the set of edges s.t. for all s ∈ S, there exists s′ ∈ S
s.t. (s, s′) ∈ E; (iv) k ∈ N is the dimension of the weight vectors; and (v) w : E → Zk

is the multi-weight labeling function. The game structure G is one-player if S2 = ∅.
A play in G is an infinite sequence of states π = s0s1s2 . . . s.t. s0 = sinit and for all
i ≥ 0, we have (si, si+1) ∈ E. The prefix up to the n-th state of play π = s0s1 . . . sn . . .
is the finite sequence π(n) = s0s1 . . . sn. Let First(π(n)) and Last(π(n)) resp. denote
s0 and sn, the first and last states of π(n). A prefix π(n) belongs to Pi, i ∈ {1, 2}, if
Last(π(n)) ∈ Si. The set of plays of G is denoted by Plays(G) and the corresponding
set of prefixes is denoted by Prefs(G). The set of prefixes that belong to Pi is denoted
by Prefsi(G). The energy level vector of a sequence of states ρ = s0s1 . . . sn s.t. for all
i ≥ 0, we have (si, si+1) ∈ E, is EL(ρ) =

∑i=n−1
i=0 w(si, si+1) and the mean-payoff

vector of a play π = s0s1 . . . is MP(π) = lim infn→∞
1
nEL(π(n)).

Parity. A game structure G is extended with a priority function p : S → N to
Gp = (S1, S2, sinit, E, k, w, p). Given a play π = s0s1s2 . . . , let Inf(π) =
{s ∈ S | ∀m ≥ 0, ∃n > m s.t. sn = s} denote the set of states that appear infinitely
often along π. The parity of a play π is defined as Par(π) = min {p(s) | s ∈ Inf(π)}.
In the following definitions, we denote any game by Gp with no loss of generality.

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 119

Strategies. Given a finite set A, a probability distribution on A is a function p : A (→
[0, 1] s.t.

∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A).

A pure strategy for Pi, i ∈ {1, 2}, in Gp is a function λi : Prefsi(Gp) → S s.t.
for all ρ ∈ Prefsi(Gp), we have (Last(ρ), λi(ρ)) ∈ E. A (behavioral) randomized
strategy is a function λi : Prefsi(Gp) → D(S) s.t. for all ρ ∈ Prefsi(Gp), we have
{(Last(ρ), s) | s ∈ S, λi(ρ)(s) > 0} ⊆ E. A pure strategy λi for Pi has finite-memory
if it can be encoded by a deterministic Moore machine (M,m0, αu, αn) where M is a
finite set of states (the memory of the strategy), m0 ∈ M is the initial memory state,
αu : M × S → M is an update function, and αn : M × Si → S is the next-action
function. If the game is in s ∈ Si and m ∈ M is the current memory value, then the
strategy chooses s′ = αn(m, s) as the next state of the game. When the game leaves
a state s ∈ S, the memory is updated to αu(m, s). Formally, 〈M,m0, αu, αn〉 defines
the strategy λi s.t. λi(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ S∗ and s ∈ Si, where
α̂u extends αu to sequences of states as expected. A pure strategy is memoryless if
|M | = 1, i.e., it does not depend on history but only on the current state of the game.
Similar definitions hold for finite-memory randomized strategies, s.t. the next-action
function αn is randomized, while the update function αu remains deterministic. We
resp. denote by Λi, Λ

PF
i , ΛPMi , ΛRMi the sets of general (i.e., possibly randomized and

infinite-memory), pure finite-memory, pure memoryless and randomized memoryless
strategies for player Pi.

Given a prefix ρ ∈ Prefsi(Gp) belonging to player Pi, and a strategy λi ∈ Λi
of this player, we define the support of the probability distribution defined by λi
as Suppλi

(ρ) = {s ∈ S | λi(ρ)(s) > 0}, with λi(ρ)(s) = 1 if λi is pure and
λi(ρ) = s. A play π is said to be consistent with a strategy λi of Pi if for
all n ≥ 0 s.t. Last(π(n)) ∈ Si, we have Last(π(n + 1)) ∈ Suppλi

(π(n)).
Given two strategies, λ1 for P1 and λ2 for P2, we define OutcomeGp(λ1, λ2) =
{π ∈ Plays(Gp) | π is consistent with λ1 and λ2}, the set of possible outcomes of the
game. Note that if both strategies λ1 and λ2 are pure, we obtain a unique play
π = s0s1s2 . . . s.t. for all j ≥ 0, i ∈ {1, 2}, if sj ∈ Si, then we have sj+1 = λi(sj).

Given the initial state sinit and strategies for both players λ1 ∈ Λ1, λ2 ∈ Λ2, we
obtain a Markov chain. Thus, every event A ⊆ Plays(Gp), a measurable set of plays,
has a uniquely defined probability [36]. We denote by Pλ1,λ2

sinit
(A) the probability that a

play belongs to A when the game starts in sinit and is played consistently with λ1 and
λ2. We use the same notions for prefixes by naturally extending them to their infinite
counterparts.

Objectives. An objective for P1 in Gp is a set of plays φ ⊆ Plays(Gp). We consider
several kinds of objectives:

– Multi Energy objectives. Given an initial energy vector v0 ∈ Nk, the objec-
tive PosEnergyGp

(v0) =
{
π ∈ Plays(Gp) | ∀n ≥ 0 : v0 + EL(π(n)) ∈ Nk

}
re-

quires that the energy level in all dimensions stays positive at all times.
– Multi Mean-payoff objectives. Given a threshold vector v ∈ Qk, the objective

MeanPayoffGp
(v) = {π ∈ Plays(Gp) | MP(π) ≥ v} requires that for all dimen-

sion j, the mean-payoff on this dimension is at least v(j).
– Parity objectives. Objective ParityGp

= {π ∈ Plays(Gp) | Par(π) mod 2 = 0} re-
quires that the minimum priority visited infinitely often be even. When the set of

120 K. Chatterjee, M. Randour, and J.-F. Raskin

priorities is restricted to {0, 1}, we have a Büchi objective. Note that every multi-
weighted game structure G without parity can trivially be extended to Gp with
p : S → {0}.

– Combined objectives. Parity can naturally be combined with multi mean-payoff
and multi energy objectives, resp. yielding MeanPayoffGp

(v) ∩ ParityGp
and

PosEnergyGp
(v0) ∩ ParityGp

.

Sure and Almost-Sure Semantics. A strategy λ1 for P1 is surely winning for an ob-
jective φ in Gp if for all plays π ∈ Plays(Gp) that are consistent with λ1, we have
π ∈ φ. When at least one of the players plays a randomized strategy, the notion of sure
winning in general is too restrictive and inadequate, as the set of consistent plays that
do not belong to φ may have zero probability measure. Therefore, we use the concept
of almost-surely winning. Given a measurable objective φ ⊆ Plays(Gp), a strategy λ1

for P1 is almost-surely winning if for all λ2 ∈ Λ2, we have Pλ1,λ2
sinit

(φ) = 1.

Strategy Synthesis Problem. For multi energy parity games, the problem is to syn-
thesize a finite initial credit v0 ∈ Nk and a pure finite-memory strategy λpf1 ∈ ΛPF1

that is surely winning for P1 in Gp for the objective PosEnergyGp
(v0) ∩ ParityGp

,
if one exists. So, the initial credit is not fixed, but is part of the strategy to synthesize.
For multi mean-payoff games, given a threshold v ∈ Qk, the problem is to synthe-
size a pure finite-memory strategy λpf1 ∈ ΛPF1 that is surely winning for P1 in Gp for
the objective MeanPayoffGp

(v) ∩ ParityGp
, if one exists. Note that multi energy and

multi mean-payoff games are equivalent for finite-memory strategies, while in general,
infinite memory may be necessary for the latter [15].

Trading Finite Memory for Randomness. We study when finite memory can be traded
for randomization. The question is: given a strategy λpf1 ∈ ΛPF1 which ensures surely
winning of some objective φ, does there exist a strategy λrm1 ∈ ΛRM1 which ensures
almost-surely winning for the same objective φ?

3 Optimal Memory Bounds

In this section, we establish optimal memory bounds for pure finite-memory winning
strategies on multi-dimensional energy parity games (MEPGs). Also, as a corollary, we
obtain results for pure finite-memory winning strategies on multi-dimensional mean-
payoff parity games (MMPPGs). We show that single exponential memory is both
sufficient and necessary for winning strategies. Additionally, we show how the parity
condition in a MEPG can be removed by adding additional energy dimensions.

Multi Energy Parity Games. A sample game is depicted on Fig. 1. The key point in
the upper bound proof on memory is to understand that for P1 to win a multi energy
parity game, he must be able to force cycles whose energy level is positive in all dimen-
sions and whose minimal parity is even. As stated in the next lemma, finite-memory
strategies are sufficient for multi energy parity games for both players.

Lemma 1 (Extension of [15, Lemma 2 and 3]). If P1 wins a multi energy parity
game, then he has a pure finite-memory winning strategy. If P2 wins a multi energy
parity game, then he has a pure memoryless winning strategy.

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 121

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)

(0,−1)

(2, 0)

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Fig. 1. Two-dimensional energy parity game and epSCT representing an arbitrary finite-memory
winning strategy. Circle states belong to P1, square states to P2.

By Lemma 1, we know that w.l.o.g. both players can be restricted to play pure finite
memory strategies. The property on the cycles can then be formalized as follows.

Lemma 2. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game. Let
λpf1 ∈ ΛPF1 be a winning strategy of P1 for initial credit v0 ∈ Nk. Then, for all λpm2 ∈
ΛPM2 , the outcome is a regular play π = ρ · (η∞)ω , with ρ ∈ Prefs(G), η∞ ∈ S+, s.t.
EL(η∞) ≥ 0 and Par(π) = min {p(s) | s ∈ η∞} is even.

With the notion of regular play of Lemma 2, we generalize the notion of self-covering
path to include the parity condition. We show here that, if such a path exists, then
the lengths of its cycle and the prefix needed to reach it can be bounded. Bounds on
the strategy follow. In [32], Rackoff showed how to bound the length of self-covering
paths in Vector Addition Systems (VAS). This work was extended to Vector Addition
Systems with States (VASS) by Rosier and Yen [34]. Recently, Brázdil et al. introduced
reachability games on VASS and the notion of self-covering trees [9]. Their Zero-safety
problem with ω initial marking is equivalent to multi energy games with weights in
{−1, 0, 1}, and without the parity condition. They showed that if winning strategies
exist for P1, then some of them can be represented as self-covering trees of bounded
depth. Trees have to be considered instead of paths, as in a game setting all the possible
choices of the adversary (P2) must be considered. Here, we extend the notion of self-
covering trees to even-parity self-covering trees, in order to handle parity objectives.

Even-Parity Self-covering Tree. An even-parity self-covering tree (epSCT) for s ∈ S
is a finite tree T = (Q,R), where Q is the set of nodes, Θ : Q (→ S × Zk is a labeling
function and R ⊂ Q×Q is the set of edges, s.t.

– The root of T is labeled 〈s, (0, . . . , 0)〉.
– If ς ∈ Q is not a leaf, then let Θ(ς) = 〈t, u〉, t ∈ S, u ∈ Zk, s.t.

• if t ∈ S1, then ς has a unique child ϑ s.t. Θ(ϑ) = 〈t′, u′〉, (t, t′) ∈ E and
u′ = u+ w(t, t′);

• if t ∈ S2, then there is a bijection between children of ς and edges of the game
leaving t, s.t. for each successor t′ ∈ S of t in the game, there is one child ϑ of
ς s.t. Θ(ϑ) = 〈t′, u′〉, u′ = u+ w(t, t′).

122 K. Chatterjee, M. Randour, and J.-F. Raskin

– If ς is a leaf, then let Θ(ς) = 〈t, u〉 s.t. there is some ancestor ϑ of ς in T s.t.
Θ(ϑ) = 〈t, u′〉, with u′ ≤ u, and the downward path from ϑ to ς , denoted by
ϑ � ς , has minimal priority even. We say that ϑ is an even-descendance energy
ancestor of ς .

Intuitively, each path from root to leaf is a self-covering path of even parity in the game
graph so that plays unfolding according to such a tree correspond to winning plays of
Lemma 2. Thus, the epSCT fixes how P1 should react to actions of P2 in order to win
the MEPG (Fig. 1). Note that as the tree is finite, one can take the largest negative
number that appears on a node in each dimension to compute an initial credit for which
there is a winning strategy (i.e., the one described by the tree). In particular, let W
denote the maximal absolute weight appearing on an edge in Gp. Then, for an epSCT T
of depth l, it is straightforward to see that the maximal initial credit required is at most
l ·W as the maximal decrease at each level of the tree is bounded by W . We suppose
W > 0 as otherwise, any strategy of P1 is winning for the energy objective, for any
initial credit vector v0 ∈ Nk.

Let us explicitely state how P1 can deploy a strategy λT1 ∈ ΛPF1 based on an epSCT
T = (Q,R). We refer to such a strategy as an epSCT strategy. It consists in following
a path in the tree T , moving a pebble from node to node and playing in the game
depending on edges taken by this pebble. Each time a node ς s.t. Θ(ς) = 〈t, u〉 is
encountered, we do the following.

– If ς is a leaf, the pebble directly goes up to its oldest even-descendance energy
ancestor ϑ. By oldest we mean the first encountered when going down in the tree
from the root. Note that this choice is arbitrary, in a effort to ease following proof
formulations, as any one would suit.

– Otherwise, if ς is not a leaf,
• if t ∈ S2 and P2 plays state t′ ∈ S, the pebble is moved along the edge going

to the only child ϑ of ς s.t. Θ(ϑ) = 〈t′, u′〉, u′ = u+ w(t, t′);
• if t ∈ S1, the pebble moves to ϑ, Θ(ϑ) = 〈t′, u′〉, the only child of ς , and P1

strategy is to choose the state t′ in the game.

If such an epSCT T of depth l exists for a game Gp, then P1 can play the strategy
λT1 ∈ ΛPF1 to win the game with initial credit bounded by l ·W .

Bounding the Depth of epSCTs. Consider a multi energy game without parity. Then,
the priority condition on downward paths from ancestor to leaf is not needed and self-
covering trees (i.e., epSCTs without the condition on priorities) suffice to describe win-
ning strategies. One can bound the size of SCTs using results on the size of solutions
for linear diophantine equations (i.e., with integer variables) [6]. In particular, recent
work on reachability games over VASS with weights {−1, 0, 1}, Lemma 7 of [9], states
that if P1 has a winning strategy on a VASS, then he can exhibit one that can be de-
scribed as a SCT whose depth is at most l = 2(d−1)·|S| · (|S| + 1)c·k

2

, where c is a
constant independent of the considered VASS and d its branching degree (i.e., the high-
est number of outgoing edges on any state). Naive use of this bound for multi energy
games with arbitrary integer weights would induce a triple exponential bound for mem-
ory. Indeed, recall that W denotes the maximal absolute weight that appears in a game

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 123

Gp = (S1, S2, sinit, E, k, w, p). A straightforward translation of a game with arbitrary
weights into an equivalent game that uses only weights in {−1, 0, 1} induces a blow-up
by W in the size of the state space, and thus an exponential blow-up by W in the depth
of the tree, which becomes doubly exponential as we have

l = 2(d−1)·W ·|S| · (W · |S|+ 1)c·k
2

= 2(d−1)·2V ·|S| · (W · |S|+ 1)c·k
2

,

where V denotes the number of bits used by the encoding of W . Moreover, the width
of the tree increases as dl, i.e., it increases exponentially with the depth. So straight
application of previous results provides an overall tree of triple exponential size. In
this paper we improve this bound and prove a single exponential upper bound, even
for multi energy parity games. We proceed in two steps, first studying the depth of the
epSCT, and then showing how to compress the tree into a directed acyclic graph (DAG)
of single exponential size.

Lemma 3. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game s.t. W is
the maximal absolute weight appearing on an edge and d the branching degree of Gp.
Suppose there exists a finite-memory winning strategy for P1. Then there is an even-

parity self-covering tree for sinit of depth at most l = 2(d−1)·|S| · (W · |S|+ 1)c·k
2

,
where c is a constant independent of Gp.

Lemma 3 eliminates the exponential blow-up in depth induced by a naive coding of
arbitrary weights into {−1, 0, 1} weights, and implies an overall doubly exponential
upper bound. Our proof is a generalization of [9, Lemma 7], using a more refined anal-
ysis to handle both parity and arbitrary integer weights. The idea is the following. First,
consider the one-player case. The epSCT is reduced to a path. By Lemma 2, it is com-
posed of a finite prefix, followed by an infinitely repeated sequence of positive energy
level and even minimal priority. The point is to bound the length of such a sequence by
eliminating cycles that are not needed for energy or parity. Second, to extend the result
to two-player games, we use an induction on the number of choices available for P2 in
a given state. Intuitively, we show that if P1 can win with an epSCT TA when P2 plays
edges from a set A in a state s, and if he can also win with an epSCT TB when P2 plays
edges from a set B, then he can win when P2 chooses edges from both A and B, with
an epSCT whose depth is bounded by the sum of depths of TA and TB.

From Multi Energy Parity Games to Multi Energy Games. Let Gp be a MEPG and
assume that P1 has a winning strategy in that game. By Lemma 3, there exists an epSCT
whose depth is bounded by l. As a direct consequence of that bounded depth, we have
that P1, by playing the strategy prescribed by the epSCT, enforces a stronger objective
than the parity objective. Namely, this strategy ensures to “never visit more than l states
of odd priorities before seeing a smaller even priority” (which is a safety objective).
Then, the parity condition can be transformed into additional energy dimensions.

While our transformation shares ideas with the classical transformation of parity
objectives into safety objectives, first proposed in [3] (see also [22, Lemma 6.4]), it is
technically different because energy levels cannot be reset (as it would be required by
those classical constructions). The reduction is as follows. For each odd priority, we add
one dimension. The energy level in this dimension is decreased by 1 each time this odd

124 K. Chatterjee, M. Randour, and J.-F. Raskin

priority is visited, and it is increased by l each time a smaller even priority is visited.
If P1 is able to maintain the energy level positive for all dimensions (for a given initial
energy level), then he is clearly winning the original parity objective; on the other hand,
an epSCT strategy that wins the original objective also wins the new game.

Lemma 4. Let Gp = (S1, S2, sinit, E, k, w, p) be a multi energy parity game with
priorities in {0, 1, . . . , 2 · m}, s.t. W is the maximal absolute weight appearing on an
edge. Then we can construct a multi energy game G with the same set of states, (k+m)
dimensions and a maximal absolute weight bounded by l, as defined by Lemma 3, s.t.
P1 has a winning strategy in G iff he has one in Gp.

Bounding the Width. Thanks to Lemma 4, we continue with multi energy games
without parity. In order to bound the overall size of memory for winning strategies, we
consider the width of self-covering trees. The following lemma states that SCTs, whose
width is at most doubly exponential by application of Lemma 3, can be compressed
into directed acyclic graphs (DAGs) of single exponential width. Thus we eliminate the
second exponential blow-up and give an overall single exponential bound for memory
of winning strategies.

Lemma 5. Let G = (S1, S2, sinit, E, k, w) be a multi energy game s.t. W is the
maximal absolute weight appearing on an edge and d the branching degree of G.
Suppose there exists a finite-memory winning strategy for P1. Then, there exists
λD1 ∈ ΛPF1 a winning strategy for P1 described by a DAG D of depth at most

l = 2(d−1)·|S| · (W · |S|+ 1)
c·k2 and width at most L = |S| · (2 · l ·W + 1)k, where

c is a constant independent of G. Thus the overall memory needed to win this game is
bounded by the single exponential l · L.

The sketch of this proof is the following. By Lemma 3, we know that there exists a
tree T , and thus a DAG, that satisfies the bound on depth. We construct a finite se-
quence of DAGs, whose first element is T , so that (1) each DAG describes a winning
strategy for the same initial credit, (2) each DAG has the same depth, and (3) the last
DAG of the sequence has its width bounded by |S| · (2 · l · W + 1)k. This sequence
D0 = T,D1, D2, . . . , Dn is built by merging nodes on the same level of the initial tree
depending on their labels, level by level. The key idea of this procedure is that what
actually matters for P1 is only the current energy level, which is encoded in node labels
in the self-covering tree T . Therefore, we merge nodes with identical states and energy
levels: since P1 can essentially play the same strategy in both nodes, we only keep one
of their subtrees.

Lower Bound. In the next lemma, we show that the upper bound is tight in the sense
that there exist families of games which require exponential memory (in the number
of dimensions), even for the simpler case of multi energy objectives without parity and
weights in {−1, 0, 1} (Fig. 2).

Lemma 6. There exists a family of multi energy games (G(K))K≥1, =
(S1, S2, sinit, E, k = 2 ·K,w : E → {−1, 0, 1}) s.t. for any initial credit, P1 needs ex-
ponential memory to win.

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 125

s1

s1,L

s1,R

sK

sK,L

sK,R

t1

t1,L

t1,R

tK

tK,L

tK,R

Fig. 2. Family of games requiring exponential memory: ∀ 1 ≤ i ≤ K, ∀ 1 ≤ j ≤ k,
w((si, si,L))(j) = 1 if j = 2 · i − 1, = −1 if j = 2 · i, and = 0 otherwise; w((si, si,L)) =
−w((si, si,R)) = w((ti, ti,L)) = −w((ti, ti,R)); w((◦, si)) = w((◦, ti)) = (0, . . . , 0).

The idea is the following: in the example of Fig. 2, if P1 does not remember the exact
choices of P2 (which requires an exponential size Moore machine), there will exist
some sequence of choices of P2 s.t. P1 cannot counteract a decrease in energy. Thus,
by playing this sequence long enough, P2 can force P1 to lose, whatever his initial
credit is.

We summarize our results in Theorem 1.

Theorem 1 (Optimal memory bounds). The following assertions hold: (1) In multi
energy parity games, if there exists a winning strategy, then there exists a finite-memory
winning strategy. (2) In multi energy parity and multi mean-payoff games, if there exists
a finite-memory winning strategy, then there exists a winning strategy with at most ex-
ponential memory. (3) There exists a family of multi energy games (without parity) with
weights in {−1, 0, 1} where all winning strategies require at least exponential memory.

4 Symbolic Synthesis Algorithm

We now present a symbolic, incremental and optimal algorithm to synthesize a finite-
memory winning strategy in a MEG.1 This algorithm outputs a (set of) winning initial
credit(s) and a derived finite-memory winning strategy (if one exists) which is exponen-
tial in the worst-case. Its running time is at most exponential. So our symbolic algorithm
can be considered (worst-case) optimal in the light of the results of previous section.

This algorithm computes the greatest fixed point of a monotone operator that defines
the sets of winning initial (vectors of) credits for each state of the game. As those sets
are upward-closed, they are symbolically represented by their minimal elements. To en-
sure convergence, the algorithm considers only credits that are below some threshold,
noted C. This is without giving up completeness because, as we show below, for a game
G = (S1, S2, sinit, E, k, w), it is sufficient to take the value 2 · l ·W for C, where l is
the bound on the depth on epSCT obtained in Lemma 3 and W is the largest absolute

1 Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the
parity condition by applying the construction of Lemma 4.

126 K. Chatterjee, M. Randour, and J.-F. Raskin

value of weights used in the game. We also show how to extract a finite state Moore ma-
chine from this set of minimal winning initial credits and how to obtain an incremental
algorithm by increasing values for the threshold C starting from small values.

A Controllable Predecessor Operator. Let G = (S1, S2, sinit, E, k, w) be a MEG,
C ∈ N be a constant, and U(C) be the set (S1 ∪ S2) × {0, 1, . . . ,C}k. Let U(C) =
2U(C), i.e., the powerset of U(C), and the operator CpreC : U(C) → U(C) be defined
as follows:

E(V) = {(s1, e1) ∈ U(C) | s1 ∈ S1 ∧ ∃(s1, s) ∈ E,∃(s, e2) ∈ V : e2 ≤ e1 + w(s1, s)},
A(V) = {(s2, e2) ∈ U(C) | s2 ∈ S2 ∧ ∀(s2, s) ∈ E,∃(s, e1) ∈ V : e1 ≤ e2 + w(s2, s)},

Cpre
C
(V) = E(V) ∪ A(V). (1)

Intuitively,CpreC(V) returns the set of energy levels from which P1 can force an energy
level in V in one step. The operator CpreC is ⊆-monotone over the complete lattice
U(C), and so there exists a greatest fixed point for CpreC in the lattice U(C), denoted
by Cpre∗C. As usual, the greatest fixed point of the operator CpreC can be computed
by successive approximations as the last element of the following finite ⊆-descending
chain. We define the algorithm CpreFP that computes this greatest fixed point:

U0 = U(C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) = Un−1. (2)

The set Ui contains all the energy levels that are sufficient to maintain the energy posi-
tive in all dimensions for i steps. Note that the length of this chain can be bounded by
|U(C)| and the time needed to compute each element of the chain can be bounded by a
polynomial in |U(C)|. As a consequence, we obtain the following lemma.

Lemma 7. Let G = (S1, S2, sinit, E, k, w) be a multi energy game and C ∈ N be a
constant. Then Cpre∗C can be computed in time bounded by a polynomial in |U(C)|, i.e.,
an exponential in the size of G.

Symbolic Representation. To define a symbolic representation of the sets manipulated
by the CpreC operator, we exploit the following partial order: let (s, e), (s′, e′) ∈ U(C),
we define

(s, e) � (s′, e′) iff s = s′ and e ≤ e′. (3)

A set V ∈ U(C) is closed if for all (s, e), (s′, e′) ∈ U(C), if (s, e) ∈ V and (s, e) �
(s′, e′), then (s′, e′) ∈ V . By definition of CpreC, we get the following property.

Lemma 8. All sets Ui in eq. (2) are closed for �.

Therefore, all sets Ui in the descending chain of eq. (2) can be symbolically represented
by their minimal elements Min�(Ui) which is an antichain of elements for �.

Even if the largest antichain can be exponential in G, this representation is, in prac-
tice, often much more efficient, even for small values of the parameters. For example,
with C = 4 and k = 4, we have that the cardinality of a set can be as large as |Ui| ≤ 625
whereas the size of the largest antichain is bounded by |Min�(Ui)| ≤ 35. Antichains
have proved to be very effective: see for example [1,20,21]. Therefore, our algorithm is
expected to have good performance in practice.

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 127

Correctness and Completeness. The following two lemmas relate the greatest fixed
point Cpre∗C and the existence of winning strategies for P1 in G.

Lemma 9 (Correctness). Let G = (S1, S2, sinit, E, k, w) be a multi energy game, let
C ∈ N be a constant. If there exists (c1, . . . , ck) ∈ Nk s.t. (sinit, (c1, . . . , ck)) ∈ Cpre∗C,
then P1 has a winning strategy in G for initial credit (c1, . . . , ck) and the memory
needed by P1 can be bounded by |Min�(Cpre

∗
C)| (the size of the antichain of minimal

elements in the fixed point).

Given the set of winning initial credits output by algorithmCpreFP, it is straightforward
to derive a corresponding winning strategy of at most exponential size. Indeed, for win-
ning initial credit c ∈ Nk, we build a Moore machine which (i) states are the minimal
elements of the fixed point (antichain at most exponential in G), (ii) initial state is any
element (t, u) among them s.t. t = sinit and u ≤ c, (iii) next-action function prescribes
an action that ensures remaining in the fixed point, and (iv) update function maintains
an accurate energy level in the memory.

Lemma 10 (Completeness). Let G = (S1, S2, sinit, E, k, w) be a multi energy game
in which all absolute values of weights are bounded by W . If P1 has a winning strategy
in G and T = (Q,R) is a self-covering tree for G of depth l, then (sinit, (C, . . . ,C)) ∈
Cpre∗C for C = 2 · l ·W .

Remark 1. This algorithm is complete in the sense that if a winning strategy exists
for P1, it outputs at least a winning initial credit (and the derived strategy) for C =
2 · l ·W . However, this is different from the fixed initial credit problem, which consists
in deciding if a particular given credit vector is winning and is known to be EXPSPACE-
hard [9,26]. In general, there may exist winning credits incomparable to those captured
by algorithm CpreFP.

Incrementality. While the threshold 2 · l · W is sufficient, it may be the case that P1

can win the game even if its energy level is bounded above by some smaller value. So,
in practice, we can use Lemma 9, to justify an incremental algorithm that first starts
with small values for the parameter C and stops as soon as a winning strategy is found
or when the value of C reaches the threshold 2 · l ·W and no winning strategy has been
found.

Application of the Symbolic Algorithm to MEPGs and MMPGs. Using the re-
duction of Lemma 4 that allows us to remove the parity condition, and the equivalence
between multi energy games and multi mean-payoff games for finite-memory strategies
(given by [15, Theorem 3]), along with Lemma 7 (complexity), Lemma 9 (correctness)
and Lemma 10 (completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm). Let Gp be a multi en-
ergy (resp. multi mean-payoff) parity game. Algorithm CpreFP is a symbolic and incre-
mental algorithm that synthesizes a winning strategy in Gp of at most exponential size
memory, if a winning (resp. finite-memory winning) strategy exists. In the worst-case,
the algorithm CpreFP takes exponential time.

128 K. Chatterjee, M. Randour, and J.-F. Raskin

5 Trading Finite Memory for Randomness

In this section, we answer the fundamental question regarding the trade-off of mem-
ory for randomness in strategies: we study on which kind of games P1 can replace a
pure finite-memory winning strategy by an equally powerful, yet conceptually simpler,
randomized memoryless one and discuss how memory is encoded into probability dis-
tributions. We summarize our results in Theorem 3 and give a sketch of how they are
obtained in the following.

Energy Games. Randomization is not helpful for energy objectives, even in one-player
games. The proof argument is obtained from the intuition that energy objectives are
similar in spirit to safety objectives. Indeed, consider a game fitted with an energy ob-
jective, and an almost-sure winning strategy λ1. If there exists a single consistent path
that violates the energy objective, then there exists a finite prefix witness to violate
the energy objective. As the finite prefix has positive probability, and the strategy λ1 is
almost-sure winning, it follows that no such path exists. In other words, λ1 is a sure win-
ning strategy. Since randomization does not help for sure winning strategy, it follows
that randomization is not helpful for one-player and two-player energy, multi energy,
energy parity and multi energy parity games.

s1

s2 s3

s4

s5 s6

(1,−1) (−1, 1)

(0, 0) (0, 0)
(1,−1) (−1, 1)

(0, 0) (0, 0)

Fig. 3. Memory is needed to enforce perfect
long-term balance

s1 s21 1

−1

−1

Fig. 4. Mixing strategies that are resp. good
for Büchi and good for energy.

Multi Mean-Payoff (parity) Games. Randomized memoryless strategies can replace
pure finite-memory ones in the one-player multi mean-payoff parity case, but not in the
two-player one, even without parity. The fundamental difference between energy and
mean-payoff is that energy requires a property to be satisfied at all times (in that sense,
it is similar to safety), while mean-payoff is a limit property. As a consequence, what
matters here is the long-run frequencies of weights, not their order of appearance, as
opposed to the energy case.

For the one-player case, we extract the frequencies of visit for edges of the graph
from the regular outcome that arises from the finite-memory strategy of P1. We build
a randomized strategy with probability distributions on edges that yield the exact same
frequencies in the long-run. Therefore, if the original pure finite-memory of P1 is surely
winning, the randomized one is almost-surely winning. For the two-player case, this ap-
proach cannot be used as frequencies are not well defined, since the strategy of P2 is
unknown. Consider a game which needs perfect balance between frequencies of ap-
pearance of two sets of edges in a play to be winning (Fig. 3). To almost-surely achieve

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 129

mean-payoff vector (0, 0), P1 must ensure that the long-term balance between edges
(s4, s5) and (s4, s6) is the same as the one between edges (s1, s3) and (s1, s2). This is
achievable with memory as it suffices to react immediately to compensate the choice of
P2. However, given a randomized memoryless strategy of P1, P2 always has a strategy
to enforce that the long-term frequency is unbalanced, and thus the game cannot be won
almost-surely by P1 with such a strategy.

Single Mean-Payoff Parity Games. Randomized memoryless strategies can replace
pure finite-memory ones for single mean-payoff parity games. We prove it in two steps.
First, we show that it is the case for the simpler case of MP Büchi games. Suppose
P1 has a pure finite-memory winning strategy for such a game. We use the existence
of particular pure memoryless strategies on winning states: the classical attractor for
Büchi states, and a strategy that ensures that cycles of the outcome have positive energy
(whose existence follows from [13]). We build an almost-surely randomized memory-
less winning strategy for P1 by mixing those strategies in the probability distributions,
with sufficient probability over the strategy that is good for energy. We illustrate this
construction on the simple game Gp depicted on Fig. 4. Let λpf1 ∈ ΛPF1 be a strategy
of P1 s.t. P1 plays (s1, s1) for 8 times, then plays (s1, s2) once, and so on. This strat-
egy ensures surely winning for the objective φ = MeanPayoffGp

(3/5). Obviously, P1

has a pure memoryless strategy that ensures winning for the Büchi objective: playing
(s1, s2). On the other hand, he also has a pure memoryless strategy that ensures cycles
of positive energy: playing (s1, s1). Let λrm1 ∈ ΛRM1 be the strategy defined as fol-
lows: play (s1, s2) with probability γ and (s1, s1) with the remaining probability. This
strategy is almost-surely winning for φ for sufficiently small values of γ (e.g., γ = 1/9).

Second, we extend this result to MP parity games using an induction on the number
of priorities and the size of games. We consider subgames that reduce to the MP Büchi
and MP coBüchi (where pure memoryless strategies are known to suffice [16]) cases.

Summary. We sum up results for these different classes of games in Theorem 3.

Theorem 3 (Trading finite memory for randomness). The following assertions hold:
(1) Randomized strategies are exactly as powerful as pure strategies for energy objec-
tives. Randomized memoryless strategies are not as powerful as pure finite-memory
strategies for almost-sure winning in one-player and two-player energy, multi energy,
energy parity and multi energy parity games. (2) Randomized memoryless strategies
are not as powerful as pure finite-memory strategies for almost-sure winning in two-
player multi mean-payoff games. (3) In one-player multi mean-payoff parity games,
and two-player single mean-payoff parity games, if there exists a pure finite-memory
sure winning strategy, then there exists a randomized memoryless almost-sure winning
strategy.

6 Conclusion

In this work, we considered the finite-memory strategy synthesis problem for games
with multiple quantitative (energy and mean-payoff) objectives along with a parity
objective. We established tight (matching upper and lower) exponential bounds on the

130 K. Chatterjee, M. Randour, and J.-F. Raskin

memory requirements for such strategies (Theorem 1), significantly improving the pre-
vious triple exponential bound for multi energy games (without parity) that could be
derived from results in literature for games on VASS. We presented an optimal sym-
bolic and incremental strategy synthesis algorithm (Theorem 2). Finally, we also pre-
sented a precise characterization of the trade-off of memory for randomness in strategies
(Theorem 3).

References

1. Abdulla, P.A., Chen, Y.-F., Holı́k, L., Mayr, R., Vojnar, T.: When Simulation Meets An-
tichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174.
Springer, Heidelberg (2010)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5),
672–713 (2002)

3. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety
games. ITA 36(3), 261–275 (2002)

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis
through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

5. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:
Proc. of FMCAD, pp. 85–92. IEEE (2009)

6. Borosh, I., Treybig, B.: Bounds on positive integral solutions of linear diophantine equations.
Proc. of the American Mathematical Society 55(2), 299–304 (1976)

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under
energy constraints. In: Proc. of HSCC, pp. 61–70. ACM (2010)

8. Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring Permissiveness in Parity
Games: Mean-Payoff Parity Games Revisited. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 135–149. Springer, Heidelberg (2011)

9. Brázdil, T., Jančar, P., Kučera, A.: Reachability Games on Extended Vector Addition Systems
with States. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis,
P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)

10. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative Synthe-
sis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

11. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput.
Sci. 413(1), 21–35 (2012)

12. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur,
R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

13. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199,
pp. 599–610. Springer, Heidelberg (2010)

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput.
Log. 11(4) (2010)

15. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and en-
ergy games. In: Proc. of FSTTCS. LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl - LZI (2010)

16. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Proc. of LICS,
pp. 178–187. IEEE Computer Society (2005)

17. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-dimensional quantita-
tive objectives. CoRR, abs/1201.5073 (2012), http://arxiv.org/abs/1201.5073

http://arxiv.org/abs/1201.5073

Strategy Synthesis for Multi-Dimensional Quantitative Objectives 131

18. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress
of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)

19. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design. In: Hen-
zinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer,
Heidelberg (2001)

20. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for
Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

21. Doyen, L., Raskin, J.-F.: Antichain Algorithms for Finite Automata. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)

22. Doyen, L., Raskin, J.-F.: Games with imperfect information: Theory and algorithms. In: Lec-
tures in Game Theory for Computer Scientists, pp. 185–212 (2011)

23. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of
Game Theory 8(2), 109–113 (1979)

24. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: Proc.
of FOCS, pp. 328–337. IEEE (1988)

25. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proc. of FOCS,
pp. 368–377. IEEE (1991)

26. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted Automata.
In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer,
Heidelberg (2011)

27. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

28. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. of STOC, pp. 60–65.
ACM (1982)

29. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. Information and Computa-
tion 173(1), 64–81 (2002)

30. Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4),
1565–1581 (1998)

31. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190
(1989)

32. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci. 6, 223–231 (1978)

33. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes.
SIAM Journal of Control and Optimization 25(1), 206–230 (1987)

34. Rosier, L.E., Yen, H.-C.: A multiparameter analysis of the boundedness problem for vector
addition systems. J. Comput. Syst. Sci. 32(1), 105–135 (1986)

35. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, vol.3:
Beyond Words, ch. 7, pp. 389–455. Springer (1997)

36. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
Proc. of FOCS, pp. 327–338. IEEE Computer Society (1985)

37. Velner, Y., Rabinovich, A.: Church Synthesis Problem for Noisy Input. In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 275–289. Springer, Heidelberg (2011)

38. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

39. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Com-
puter Science 158, 343–359 (1996)

Quantitative Languages
Defined by Functional Automata�

Emmanuel Filiot1, Raffaella Gentilini2, and Jean-François Raskin1

1 Université Libre de Bruxelles
2 Università degli Studi di Perugia

Abstract. A weighted automaton is functional if any two accepting runs on the
same finite word have the same value. In this paper, we investigate functional
weighted automata for four different measures: the sum, the mean, the discounted
sum of weights along edges and the ratio between rewards and costs. On the
positive side, we show that functionality is decidable for the four measures. Fur-
thermore, the existential and universal threshold problems, the language inclu-
sion problem and the equivalence problem are all decidable when the weighted
automata are functional. On the negative side, we also study the quantitative
extension of the realizability problem and show that it is undecidable for sum,
mean and ratio. We finally show how to decide whether the language associated
with a given functional automaton can be defined with a deterministic one, for
sum, mean and discounted sum. The results on functionality and determinizabil-
ity are expressed for the more general class of functional weighted automata over
groups. This allows one to formulate within the same framework new results re-
lated to discounted sum automata and known results on sum and mean automata.
Ratio automata do not fit within this general scheme and specific techniques are
required to decide functionality.

1 Introduction

Recently, there have been several efforts made to lift the foundations of computer aided
verification and synthesis from the basic Boolean case to the richer quantitative case,
e.g. [10,8,2]. This paper belongs to this line of research and contributes to the study of
quantitative languages over finite words.

Our paper proposes a systematic study of the algorithmic properties of several
classes of functional weighted automata (defining quantitative languages). A functional
weighted automaton is a nondeterministic weighted automaton such that any two ac-
cepting runs ρ1, ρ2 on a word w associate with this word a unique value V(ρ1) = V(ρ2).
As we show in this paper, several important verification problems are decidable for non-
deterministic functional weighted automata while they are undecidable (or not known
to be decidable) for the full class of nondeterministic weighted automata. As functional
weighted automata are a natural generalization of unambiguous weighted automata,
and as unambiguity captures most of the nondeterminism that is useful in practice, our

� This work was partially supported by ERC Starting Grant (279499: inVEST). We are very
grateful to some anonymous reviewer for suggesting us the encoding of discounted-sum au-
tomata as a automata over a left semiring.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 132–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quantitative Languages Defined by Functional Automata 133

results are both theoretically and practically important. Also, the notion of functional-
ity leads to useful insight into the relation between deterministic and nondeterministic
weighted automata and into algorithmic idea for testing equivalence for example.

In this paper, we study automata in which an integer weight, or a pair of integer
weights, is associated with each of their transitions. From those weights, an (accepting)
run ρ on a word w associates a sequence of weights with the word, and this sequence
is mapped to a rational value by a measure function. We consider four different mea-
sure functions1: (i) Sum computes the sum of the weights along the sequence, (ii)
Avg returns the mean value of the weights, (iii) Dsum computes the discounted sum
of the weights for a given discount factor λ ∈ Q∩]0, 1[, and (iv) Ratio is applied to a
sequence of pairs of weights, and it returns the ratio between the sum of weights appear-
ing as the first component (rewards) and the sum of the weights appearing as the second
component (costs). All those measures are motivated by applications in computer aided
verification and synthesis, see for example [12,7]. The value associated with a word w
is obtained by combining all the values of the accepting runs on w with a particular
operation (usually max or min). The value of w is denoted by LA(w).

Contributions. Classical results on weighted automata consider operations over semir-
ings: the value of a run is obtained as the multiplication of the values along its tran-
sitions, and the values of all runs on the same input word are combined with addition
[13]. Since we focus on functional automata, all the accepting runs have the same value,
and so we do not need addition. Whenever it is possible, we phrase our results in the
general framework of functional weighted automata over a group. In particular, Sum,
Avg, and Dsum can be seen as operations over a group. For Ratio however, we always
need specific techniques.

We first show that functionality is decidable in PTime for weighted automata over
a group (operations on group elements are assumed to be computable in polynomial
time). This implies that functionality is PTime for Dsum automata and generalizes
know results for Sum and Avg automata. By using a pumping argument, we show that
functionality is in CoNP for Ratio-automata.

Then we solve the following decision problems, along the line of [10]. First, we con-
sider threshold problems. The existential (universal, respectively) threshold problem
asks, given a weighted automaton A and a threshold ν ∈ Q, if there exists a word (if
for all words, respectively) w accepted by A: LA(w) ≥ ν. Those problems can be seen
as generalizations of the emptiness and universality problems for finite state automata.
Second, we consider the quantitative language inclusion problem that asks, given two
weighted automata A and B, if all words accepted by A are also accepted by B, and for
all accepted words w of A, we have LA(w) ≤ LB(w). We show that all those problems
are decidable for the four classes of measure functions that we consider in this paper
when the automaton is functional. For Ratio, we show decidability of the problem us-
ing a recent algorithm to solve quadratic diophantine equations [15], this is a new deep
result in mathematics and the complexity of the algorithm is not yet known. We also

1 We do not consider the measure functions Min and Max that map a sequence to the minimal
and the maximal value that appear in the sequence as the nondeterministic automata that use
those measure functions can be made deterministic and all the decision problems for them
have known and simple solutions.

134 E. Filiot, R. Gentilini, and J.-F. Raskin

show that the equivalence problem can be decided in polynomial space for Ratio via an
easy reduction to functionality. Note that those decidability results are in sharp contrast
with the corresponding results for the full class of nondeterministic weighted automata:
for that class, only the existential threshold problem is known to be decidable, the lan-
guage inclusion problem is undecidable for Sum, Avg, and Ratio while the problem is
open for Dsum.

Finally, we consider a (finite word) quantitative variant of the realizability problem
introduced by Church, which is related to the synthesis of reactive systems [23,25] and
can be formalized as a game in which two players (the system and the environment) al-
ternate in choosing letters in their respective alphabet of signals. The system can decide
to stop the game. By doing so, they form a word which is obtained by concatenating
the successive choices of the players. The realizability problem asks, given a weighted
automaton A and an alphabet Σ = Σ1 × Σ2, if there exists a strategy for choosing
the letters in Σ1 in the word forming game such that no matter how the adversary
chooses his letters in Σ2, the word w that is obtained belongs to the language of A and
A(w) ≥ 0. We show that this problem is undecidable for Sum, Avg, and Ratio even
when considering unambiguous automata (the case Dsum is left open). However, we
show that the realizability problem is decidable for the deterministic versions of the
automata studied in this paper. This motivates the determinizability problem.

The determinizability problem asks, given a functional weighted automaton A, if the
quantitative language defined by A is also definable by a deterministic automaton. This
problem has been solved for Sum, Avg in [17]. It is known that Dsum-automata are
not determinizable in general [10]. We give here a decidable necessary and sufficient
condition for the determinizability of functional weighted automata over a group, and
we show how to construct a deterministic automaton from the functional one when this
is possible. As a corollary, we obtain a decidable characterization of determinizable
functional Sum-, Avg- and Dsum-automata. While it was known for Sum and Avg, it
is new for Dsum.

Related Works. Motivated by open problems in computer-aided verification, our work
follows the same line as [10]. However [10] is concerned with weighted automata on
infinite words, either non-deterministic, for which some important problems are unde-
cidable (e.g. inclusion of Avg-automata), or deterministic ones, which are strictly less
expressive than functional automata. The Ratio measure is not considered either. Their
domains of quantitative languages are assumed to be total (as all states are accepting
and their transition relation is total) while we can define partial quantitative languages
thanks to an acceptance condition.

Except for realizability, our results for Sum-automata (and to some extent Avg-
automata) are not new. Functionality is known to be in PTime [17], and emptiness, in-
clusion, equivalence (for functional Sum-automata) are already known to be decidable
[20,21]. Moreover, it is known that determinizability of functional Sum-automata is de-
cidable in PTime [17], as well as for the strictly more expressive class of polynomially
ambiguous Sum-automata [16], for which the termination of Mohri’s determinization
algorithm [13] is decidable. Weighted automata over semirings have been extensively
studied [13], and more generally rational series [5]. Mohri’s determinization algorithm
has been generalized in [17] to arbitrary semirings, in which a general condition for its

Quantitative Languages Defined by Functional Automata 135

termination, called the twins property, is given. However, this sufficient condition only
applies to commutative semirings, and therefore cannot directly be used for Dsum au-
tomata. However, our determinization algorithm for functional weighted automata over
a group is similar to Mohri’s algorithm and is, in that sense, not new. We rephrase the
twinning property on groups that are not necessarily commutative and prove that it is a
sufficient and necessary condition for a functional weighted automata over a group to
be determinizable.

The techniques we use for deciding functionality and determinization are also in-
spired by techniques from word transducers [24,6,4,11,26]. In particular, our procedure
to decide functionality of weighted automata also allows us to decide functionality of
a word transducer, seen as a weighted automaton over the free group. It generalizes to
arbitrary groups the procedure of [4] which was used to show that functionality of word
transducers is in PTime. As in [4], it relies on a notion of delay between two runs. This
notion of delay is also used for the determinization of weighted automata over a group.

In [9], Boker et. al. show that Dsum-automata on infinite words with a trivial accept-
ing condition (all states are accepting), but not necessarily functional, are determiniz-
able for any discount factor of the form 1/n for some n ∈ N≥2, while we consider
arbitrary discounted factors. Their proof is based on a notion of recoverable gap, simi-
lar to that of delays. Finally in [14], the relation between discounted weighted automata
over a semiring and weighted logics is studied.

To the best of our knowledge, our results on Dsum and Ratio-automata, as well as on
the realizability problem, are new. Our main and most technical results are functional-
ity and inclusion of Ratio-automata, undecidability of the realizability of unambiguous
Sum-automata, and solvability of the deterministic versions of the realizability prob-
lem. The latter reduce to games on graphs that are to the best of our knowledge new,
namely finite Sum,Avg,Dsum,Ratio-games on weighted graphs with a combination of
a reachability objective and a quantitative objective.

2 Quantitative Languages and Functionality

Let Σ be a finite alphabet. We denote by Σ+ the set of non-empty finite words over Σ.
A quantitative language L over Σ is a mapping L : Σ+ → Q∪ {⊥}2. For all w ∈ Σ+,
L(w) is called the value of w. L(w) =⊥ means that the value of w is undefined. We set
⊥< v for all v ∈ Q.

Let n ≥ 0. Given a finite sequence v = v0 . . . vn of integers (resp. a finite sequence
v′ = (r0, c0) . . . (rn, cn) of pairs of natural numbers, ci > 0 for all i) and λ ∈ Q such
that 0 < λ < 1, we define the following functions:

Sum(v) =

n∑
i=0

vi Avg(v) =
Sum(v)

n+ 1
Dsum(v) =

n∑
i=0

λivi Ratio(v′) =

∑n
i=0 ri∑n
i=0 ci

Weighted Automata. Let V ∈{Sum,Avg,Dsum,Ratio}. A weighted V -automaton over
Σ is a tuple A=(Q, qI , F, δ, γ) where Q is a finite set of states, F is a set of final states,

2 As in [10], we do not consider the empty word as our weighted automata do not have initial
and final weight functions. This eases our presentation but all our results carry over to the more
general setting with initial and final weight function [13].

136 E. Filiot, R. Gentilini, and J.-F. Raskin

qIstart

qa

qb

a|1, b|0

a|0, b|1

a|1, b|0

a|0, b|1

pIstart

p

q

pf

qf

a|1, b|0

a|0, b|1

a|1, b|0

a|0, b|1

a|1

b|1

Fig. 1. Examples of Sum-automata

δ ⊆ Q×Σ×Q is the transition relation, and γ : δ → Z (resp. γ : δ → N×(N − 0)
if V = Ratio) is a weight function. The size of A is defined by |A| = |Q| + |δ| +∑
t∈δ log2(γ(t)). Note that (Q, qI , F, δ) is a classical finite state automaton. We say

that A is deterministic (resp. unambiguous) if (Q, qI , F, δ) is. In the sequel, we use the
term V -automata to denote either Sum, Dsum, Avg or Ratio-automata.

A run ρ of A over a word w = σ0 . . . σn ∈ Σ+ is a sequence ρ =
q0σ0q1σ1 . . . σnqn+1 such that q0 = qI and for all i ∈ {0, . . . , n}, (qi, σi, qi+1) ∈ δ.
It is accepting if qn+1 ∈ F . We write ρ : q0

w−→ qn+1 to denote that ρ is a run on w
starting at q0 and ending in qn+1. The domain of A, denoted by dom(A), is defined as
the set of words w ∈ Σ+ on which there exists some accepting run of A.

The function V is naturally extended to runs as follows:

V (ρ) =

{
V (γ(q0, σ0, q1) . . . γ(qn, σn, qn+1)) if ρ is accepting
⊥ otherwise

The relation RVA = {(w, V (ρ)) | w ∈ Σ+, ρ is an accepting run of A on w} is called
the relation induced byA. It is functional if for all wordsw ∈ Σ+, we have |{v | (w, v) ∈
RVA , v �=⊥}| ≤ 1. In that case we say that A is functional. The quantitative language
LA : Σ+ → Q ∪ {⊥} defined by A is defined by LA : w (→ max{v | (w, v) ∈ RVA}
where max ∅ =⊥.

Example 1. Fig. 1 illustrates two Sum-automata over the alphabet {a, b}. The
first automaton (on the left) defines the quantitative language w ∈ Σ+ (→
max(#a(w),#b(w)), where #α(w) denotes the number of occurrences of the letter
α in w. Its induced relation is {(w,#a(w)) | w ∈ Σ+} ∪ {(w,#b(w)) | w ∈ Σ+}.
The second automaton (on the right) defines the quantitative language that maps any
word of length at least 2 to the number of occurrences of its last letter.

We say that a state q is co-accessible (resp. accessible) by some word w ∈ Σ∗ if there
exists some run ρ : q

w−→ qf for some qf ∈ F (resp. some run ρ : qI
w−→ q). If such a

word exists, we say that q is co-accessible (resp. accessible). A pair of states (q, q′) is
co-accessible if there exists a word w such that q and q′ are co-accessible by w.

Quantitative Languages Defined by Functional Automata 137

Functional Weighted Automata. The Sum-automaton on the left of Fig. 1 is not func-
tional (e.g. the word abb maps to the values 1 and 2), while the one of the right is func-
tional (and even unambiguous). Concerning the expressiveness of functional automata,
we can show that deterministic automata are strictly less expressive than functional au-
tomata which are again strictly less expressive than non-deterministic automata. Let
V ∈ {Sum,Avg,Ratio}. The automata of Fig. 1 can be seen as V -automata (with a
constant cost 1 if V = Ratio). The right V -automaton cannot be expressed by any de-
terministic V -automaton because the value of a word depends on its last letter. The left
V -automaton cannot be expressed by any functional V -automaton. It is easy to verify
that the above results hold also for Dsum-automata. Therefore, for the four measures
that we consider, i.e. for V ∈ {Sum,Avg,Ratio,Dsum}, deterministic V -automata are
strictly less expressive than functional V -automata which are again strictly less expres-
sive than non-deterministic V -automata.

Functional V -automata are equally expressive as unambiguous V -automata (i.e. at
most one accepting run per input word). However we inherit the succinctness prop-
erty of non-deterministic finite state automata wrt unambiguous finite state automata,
as a direct consequence functional V -automata are exponentially more succinct than
unambiguous V -automata. Moreover, considering unambiguous V -automata does not
simplify the proofs of our results neither lower the computational complexity of the ver-
ification and determinizability problems. Finally, testing functionality often relies on a
notion of delay that gives strong insights that are useful for determinization procedures,
and allows us to test equivalence of functional (and even unambiguous) Ratio-automata
with a better complexity than using our results on inclusion.

3 Functionality Problem

In this section, we consider the problem of deciding whether a weighted automaton is
functional. In particular, Subsection 3.1 provides a general functionality test applying
to a broad class of weighted automata, where the edges are labelled by elements of a
weight-set W , having the algebraic structure of a group (W, ·, 1). A group is a structure
(S, ·, 1), where S is a set, · : S × S → S is an associative operation, 1 ∈ S is a
two sided identity element for · over S, and each element s ∈ S admits an inverse
s−1 ∈ S, such that s−1 · s = s · s−1 = 1 (the inverse is unique). Given a run ρ =
q0σ0q1σ1 . . . σnqn+1 of a weighted automaton A = (Q, qI , F, δ, γ) over the weight-set
group (W, ·, 1), the value V (ρ) is defined as ⊥ if ρ is not accepting and as the product

γ(q0, σ0, q1) ·γ(q1, σ1, q2) · . . . ·γ(qn, σn, qn+1) otherwise. We often write ρ : p
w|v−−→ q

to denote a run from a state p to a state q on w ∈ Σ∗ such that the product of the
weights along its transitions is v. We assume that the operations over group elements
are computable in polynomial time in the size of their representation.

As shown in Remark 1 below, V -automata can be coded as weighted automata over
groups, for each measure V ∈ {Sum,Avg,Dsum}. Therefore, the functionality test
for weighted automata over groups developed in Subsection 3.1 applies to V -automata,
V ∈ {Sum,Avg,Dsum}, and allows to extend known results on decidability of the
functionality problem for Sum-automata [17] to Avg- and Dsum-automata.

138 E. Filiot, R. Gentilini, and J.-F. Raskin

Algorithm 1. Functionality test for weighted automata over a group.
Data: A weighted automaton A = (Q, qI , F, δ, γ) over a group.
Result: Boolean certifying whether A is functional.

1 CoAcc← all co-accessible pairs of states;
2 visited ← ∅ ; delay(qI , qI)← 1;PUSH(S, ((qI , qI), (1, 1))) ;
3 while S �= ∅ do
4 ((p, q), (α, β))← POP(S);
5 if (p, q) ∈ F 2 ∧ α · β−1 �= 1 then returns No;
6 if (p, q) ∈ visited then

if delay(p, q) �= α · β−1 then returns No
else

7 visited← visited ∪ {(p, q)}; delay(p, q)← α · β−1;
8 foreach (p′, q′) ∈ CoAcc s.t. ∃a ∈ Σ · (p, a, p′) ∈ δ ∧ (q, a, q′) ∈ δ do

PUSH(S, ((p′, q′), (α · γ(p, a, p′), β · γ(q, a, q′))) ;
9 return Yes

Remark 1. We show that V -automata, V ∈ {Sum,Avg,Dsum}, can be seen as
weighted automata over groups. Sum-automata are associated with the group (Z,+, 0).

For Avg-automata, consider the group (Z2, ·, (0, 0)), where · is the pairwise
sum. An Avg-automaton A can be seen as a weighted automaton on (Z2, ·, (0, 0)),
by replacing each weight v in A with the pair (v, 1). Then, each run ρ =
(q0, w0, q1) . . . (qn, wn, qn+1) gets valued V (ρ) = (

∑n
i=0 γ(qi, wi, qi+1), n + 1) cod-

ing Avg(ρ) =
∑n

i=0 γ(qi,wi,qi+1)

n+1 .
For Dsum-automata, consider the group (W, ·, 1), where W = Q2, · is defined by

(a, x) · (b, y) = (1ya+ b, xy), (0, 1) is the identity element, and given (a, x) ∈ W , the

inverse (a, x)−1 is given by (a, x)−1 = (−xa, x−1). Given λ ∈ Q∩]0, 1[, a Dsum-
automaton A on Σ can be seen as a weighted automaton on (W, ·, 1), by replacing each
weight a in A with the pair (a, λ), a ∈ Z. Let w = w0 . . . wn ∈ Σ, and consider a run
ρ : q0

w−→ qn+1 on w in A. Then, ρ is valued by the pair (a, x) = (1
λn γ(q0, w0, q1) +

· · ·+ γ(qn, wn, qn+1), λ
n+1). Hence, (a, x) codes the value axλ = Dsum(ρ).

We also prove that functionality is decidable for Ratio-automata. However it is open if
they can be encoded in terms of weighted automata over a group (see Section 3.2).

3.1 Functionality of Weighted Automata over a Group

We start to introduce the notion of delay between two runs in a given weighted automa-
ton over a group weight-set (W, ·, 1), which turns out to be the main ingredient of the
functionality algorithm in Figure 1.

Definition 1 (Delay). Let A = (Q, qI , F, δ, γ) be a weighted automaton over a weight-
set group (W, ·, 1) and let p, q ∈ Q. A value d ∈ W is a delay for (p, q) if A admits two
runs ρ : qI

w−→ p, ρ′ : qI
w−→ q on w ∈ Σ∗ s.t. delay(ρ, ρ′)=def (V (ρ))−1 · V (ρ′) = d.

Quantitative Languages Defined by Functional Automata 139

The following lemma shows that at most one delay can be associated with co-accessible
pairs of states in a functional weighted automaton over a weight-set group (W, ·, 1).
This is related to the uniqueness of inverse elements.

Lemma 1 (One Delay). Let A = (Q, qI , F, δ, γ) be a functional weighted automaton
over a weight-set group (W, ·, 1). For all pairs of states (p, q): If (p, q) is co-accessible,
then (p, q) admits at most one delay.

We are now ready to define an algorithm (Algorithm 1) that checks the functionality of
a weighted automaton over a weight-set group (W ·, 1). In a first step, such a procedure
computes all co-accessible pairs of states. Then, it explores the set of accessible pairs of
states in a forward manner and computes the delays associated with those pairs. If two
different delays are associated with the same pair, or if a pair of final states with a delay
different from 1 (the neutral element of the group) is reached, the test stops and returns
that the automaton is not functional (by Lemma 1 and by definition of functionality).
Otherwise, it goes on until all co-accessible (and accessible) pairs have been visited and
concludes that the automaton is functional.

If the algorithm returns NO, it is either because a pair of accepting states with non-1
delay has been reached, which gives a counter-example to functionality, or because a
pair of states with different delays has been found, so A is not functional by Lemma 1.

To establish the converse, we need the following lemma, which says that when A
is not functional, it admits two accepting runs witnessing non-functionality (i.e. on the
same word w and with different values) satisfying that any pair of states that repeats
twice has two different delays.

Lemma 2. Let A=(Q, qI , F, δ, γ) be a weighted automaton over a weight-set group
(W, ·, 1). If A is not functional, there exists a word w=σ0 . . . σn and two accepting runs
ρ=q0σ0 . . . qn+1, ρ

′=q′0σ0 . . . q
′
n+1 on it such that V (ρ) �= V (ρ′) and for all positions

i < j in w, if (pi, qi)=(pj , qj) then delay(ρi, ρ
′
i)�=delay(ρj , ρ

′
j), where ρi and ρ′i (resp.

ρj and ρ′j) denote the prefixes of the runs ρ and ρ′ until position i (resp. position j).

If there are two runs witnessing non-functionality without repetitions of pairs of states,
the algorithm can find a pair of final states with a non-1 delay. Otherwise the algorithm
will return NO at line 6, if not before. Therefore we get:

Theorem 1. Let A = (Q, qI , F, δ, γ) be a weighted automaton over a weight-set group.
Algorithm 1 returns YES on A iff A is functional and terminates within O(|A|2) steps.

Remark 2. Functionality of Sum-automata have been shown decidable in [17]. Our
functionality algorithm on weighted automata over groups specialized for
Sum-automata corresponds to the functionality algorithm for Sum-automata defined
in [17]. Algorithm 1 can also be applied to word transducers for which functionality
have been shown decidable in PTIME with similar techniques in [4].

Corollary 1. Functionality is decidable in PTime for V -automata,V ∈ {Avg,Dsum}.

Remark 3. Our functionality test can be applied to a more general framework, where
functionality is defined modulo an equivalence relation ∼W (instead of equality) over

140 E. Filiot, R. Gentilini, and J.-F. Raskin

the values of the weighted automata (on groups). In particular, ∼W needs to fullfill
the following properties to be able to show uniqueness of the delay (modulo ∼W) and
termination of the functionality test: (1) it is a congruence, i.e. ∀a, b, c, d ∈ W if a ∼W
b and c ∼W d, then a · c ∼W b · d; (2) for all a, b, c ∈ W if a �W b then a · c �W b · c.

3.2 Functionality of Ratio-automata

Unlike Sum, Avg and Dsum-automata, it is unclear whether Ratio-automata can be
encoded in term of weighted automata over a group. Intuitively, to provide such an
encoding we would assign to each edge a pair of natural numbers, where the first com-
ponent is the reward and the second component is the cost. Thus, each run ρ is assigned
the value (n,m), where n (resp. m) is the sum of the rewards (resp. costs) along the
run, and two runs ρ, ρ′ with values (n,m), (n′,m′) need to be considered equivalent iff
nm′ = n′m. Unfortunately, the induced equivalence relation (where (n,m) is equiva-
lent to (n′,m′) iff nm′ = n′m) is not a congruence. Therefore, the results developed in
the previous subsection do not apply to this class of weighted automata (at least to this
encoding) as the quotient of the set of pairs by this equivalence relation is not a group
(cfr. Remark 3). In fact, it is still open whether there exists a good notion of delay for
Ratio-automata that would allow us to design an efficient algorithm to test functionality.
However deciding functionality can be done by using a short witness property:

Lemma 3 (Pumping). Let A be a Ratio-automaton with n states. A is not functional
iff there exist w ∈ Σ+ s.t. |w|<4n2 and two accepting runs ρ, ρ′ on w s.t. Ratio(ρ) �=
Ratio(ρ′).

Proof. We prove the existence of a short witness for non-functionality. The other direc-
tion is obvious. Let w be a word such that |w| ≥ 4n2 and there exists two accepting
runs ρ1, ρ2 on w such that Ratio(ρ) �= Ratio(ρ′). Since |w| ≥ 4n2, there exist states
p, q ∈ Q, pf , qf ∈ F and words w0, w1, w2, w3, w4 such that w = w0w1w2w3w4 and
ρ, ρ′ can be decomposed as follows:

ρ : qI
w0|(r0,c0)−−−−−−→ p

w1|(r1,c1)−−−−−−→ p
w2|(r2,c2)−−−−−−→ p

w3|(r3,c3)−−−−−−→ p
w4|(r4,c4)−−−−−−→ pf

ρ′ : qI
w0|(r′0,c′0)−−−−−−→ q

w1|(r′1,c′1)−−−−−−→ q
w2|(r′2,c′2)−−−−−−→ q

w3|(r′3,c′3)−−−−−−→ q
w4|(r′4,c′4)−−−−−−→ qf

where ri, ci denotes the sum of the rewards and the costs respectively on the subruns of
ρ on wi, and similarly for r′i, c

′
i.

By hypothesis we know that (
∑4
i=0 ri) · (

∑4
i=0 c

′
i) �= (

∑4
i=0 ci) · (

∑4
i=0 r

′
i). For all

subsets X ⊆ {1, 2, 3}, we denote bywX the word w0wi1 . . . wikw4 ifX = {i1 < · · · <
ik}. For instance, w{1,2,3} = w, w{1} = w0w1w4 and w{} = w0w4. Similarly, we
denote by ρX , ρ

′
X the corresponding runs on wX . We will show that there exists X �

{1, 2, 3} such that Ratio(ρX) �= Ratio(ρ′X). Suppose that for all X � {1, 2, 3}, we
have Ratio(ρX) = Ratio(ρ′X). We now show that it implies that Ratio(ρ) = Ratio(ρ′),
which contradicts the hypothesis. For all X ⊆ {1, 2, 3}, we let:

LX = (
∑

i∈X∪{0,4}
ri) · (

∑
i∈X∪{0,4}

c′i) RX = (
∑

i∈X∪{0,4}
ci) · (

∑
i∈X∪{0,4}

r′i)

By hypothesis,L{1,2,3} �= R{1,2,3} and for all X � {1, 2, 3},LX = RX . The following
equalities can be easily verified:

Quantitative Languages Defined by Functional Automata 141

L{} + L{1,2} + L{1,3} + L{2,3} − L{1} − L{2} − L{3} = L{1,2,3}
R{} + R{1,2} + R{1,3} + R{2,3} − R{1} − R{2} − R{3} = R{1,2,3}

Then, since by hypothesis we have LX = RX for all X � {1, 2, 3}, we get
L{1,2,3} = R{1,2,3}, which is a contradiction. Thus there exists X � {1, 2, 3} such
that LX �= RX . In other words, there exists X � {1, 2, 3} such that Ratio(ρX) �=
Ratio(ρ′X). This shows that when a witness of non-functionality has length at least
4n2, we can find a strictly smaller witness of functionality. ��

As a consequence, we can design an NP procedure that will check non-functionality by
guessing runs of length at most 4n2, where n is the number of states:

Theorem 2. Functionality is decidable in CoNP for Ratio-automata.

4 Verification Problems

In this section, we investigate several decision problems for functional V -automata as
defined in [10], V ∈ {Sum,Avg,Dsum,Ratio}. Given two V -automata A,B over Σ
(and with the same discount factor when V = Dsum) and a threshold ν ∈ Q, we define
the following decision problems, where � ∈ {>,≥}:
�ν-Emptiness L�νA �= ∅ holds if there exists w ∈ Σ+ such that LA(w) � ν
�ν-Universality LA � ν holds if for all w ∈ dom(A), LA(w) � ν.
Inclusion LA ≤ LB holds if for all w ∈ Σ+, LA(w) ≤ LB(w)
Equivalence LA = LB holds if for all w ∈ Σ+, LA(w) = LB(w)

Theorem 3. Let ν ∈ Q. The >ν-emptiness (resp. ≥ν-emptiness) problem is in PTime
for Sum-, Avg-, Ratio-, and Dsum-automata (resp. Sum-, Avg-, and Ratio-automata).

Proof. For Sum-automata, let A be a Sum-automaton. Wlog we assume that all states
of A are both accessible from an initial state and co-accessible from a final state (such
property can be ensured via a PTime transformation). First, L�νA �= ∅ if A contains a
strictly positive cycle, otherwise one inverts the weights and computes a shortest path
from an initial to a final state. If the sum β of such a path satisfies −ν � β then the
language is non-empty. Both steps are handled by the classical Bellman-Ford algorithm.

For Avg-automata, let A be an Avg-automaton. We can assume ν = 0 since the �ν-
emptiness problem for Avg-automata reduces to the �0-emptiness problem for Sum-
automata, by simply reweighting the input automaton. L�0A �= ∅ iff A admits a path to a
final state whose sum of the weights is �0, that can be easily checked in PTime.

For Dsum, we reduce the problem to deciding whether there exists an infinite path
with strictly positive discounted sum in a weighted graph, which is known to be decid-
able in PTime [3]. The graph is obtained by removing non co-accessible states from the
automaton and by adding 0 cost loops on final states. If the language is non-empty, there
exists a strictly positive path in the graph to a final state that can be extended into an
infinite strictly positive path due to added loops. Conversely, suppose that there exists
a strictly positive infinite path in the graph. From any state in this path, we can reach a
final state in a bounded number of steps (at most n if the automaton has n states). By
playing a sufficiently long prefix of this infinite path we ensure that the discounted sum
remains stricly positive if one deviates, in order to reach a final state.

142 E. Filiot, R. Gentilini, and J.-F. Raskin

Finally, let A be a Ratio-automaton, let ν = m/n. We consider the Sum automaton
A′, where each edge of A having reward r and cost c is replaced by an edge of weight
rn− cm. It can be easily proved that L�νA �= ∅ iff L�νA′ �= ∅. ��

It is open how to decide ≥ ν for Dsum-automata. Dually:

Theorem 4. Let ν ∈ Q. The ≥ν-universality (resp.>ν-universality) problem is PTime
for Sum-, Avg-, Ratio-, and Dsum-automata (resp. Sum-, Avg-, and Ratio-automata).

It is known that inclusion is undecidable for non-deterministic Sum-automata [19,1],
and therefore also for Avg and Ratio-automata. To the best of our knowledge, it is open
whether it is decidable for Dsum-automata. This situation is strikingly different for
functional automata as the inclusion problem is decidable for all the measures:

Theorem 5. Let V ∈{Sum,Avg,Dsum,Ratio} and let A,B be two V -automata with
B functional. The inclusion problem LA≤ LB is decidable. If V ∈{Sum,Avg,Dsum}
then it is PSpace-c and if additionally B is deterministic, it is in PTime.

Proof. Let V ∈ {Sum,Avg,Dsum}. In a first step, we test the inclusion of the domains
dom(A) ⊆ dom(B) (it is well-known from theory of finite automata to be in PSpace-c
and in PTime if B is deterministic). Then we construct the product A× B as follows:

(p, q)
a|nA−nB−−−−−−→ (p′, q′) ∈ δA×B iff p

a|nA−−−→ p′ ∈ δA and q
a|nB−−−→ q′ ∈ δB . Then

LA �≤ LB iff L>0
A×B �= ∅, which is decidable by Theorem 3.

Let V = Ratio. As for the other measures we first check inclusion of the domains.
We then define the productA×B of A andB as follows: (p, q)

a|(r1,c1,r2,c2)−−−−−−−−−→ (p′, q′) ∈
δA×B iff p

a|(r1,c1)−−−−−→ p′ ∈ δA and q
a|(r2,c2)−−−−−→ q′ ∈ δB . For all t ∈ δA×B , we let rA(t)

be the reward of the transition t projected on A. The values cA(t), rB(t) and cB(t) are
defined similarly. We let F (A × B) be the Parikh image of the transitions of A × B,
i.e. the set of total functions α : δA×B → N such that there exists w ∈ Σ+ and an
accepting run ρ of A×B on w that passes by t exactly α(t) times, for all t ∈ δA×B . It
is well-known by Parikh’s theorem that F (A × B) can be effectively represented by a
set of linear constraints. We now define the set of vectors Γ that are the Parikh images
of accepting runs of A×B which, when projected on A, has a strictly bigger ratio value
than the one obtained by the projection on B.

Γ = {α : δA×B → N | α ∈ F (A×B),

∑
t∈δA×B

α(t).rA(t)∑
t∈δA×B

α(t).cB(t)
>

∑
t∈δA×B

α(t).rB(t)∑
t∈δA×B

α(t).cA(t)
}

It is easy to check that Γ �= ∅ iff LA �≤ LB . The set Γ can be defined as the solutions
over natural numbers of a system of equations in linear and quadratic forms (i.e. in
which products of two variables are permitted). There is one variable xt for each t ∈
δA×B that gives the number of times t is fired in an accepting run of A × B. It is
decidable whether such a system has a solution [27,15]. ��

There is no known complexity bound for solving quadratic equations, so the proof above
does not give us a complexity bound for the inclusion problem of functional Ratio-
automata. However, thanks to the functionality test, which is in PSpace for Ratio-
automata, we can test equivalence of two functional Ratio-automata A1 and A2 in

Quantitative Languages Defined by Functional Automata 143

PSpace: first check in PSpace that dom(A1) = dom(A2) and check that the union of
A1 and A2 is functional. This algorithm can also be used for the other measures:

Theorem 6. Let V ∈{Sum,Avg,Dsum,Ratio}. Equivalence of functional V -automata
is PSpace-c.

5 Realizability Problem

In this section, we consider the problem of quantitative language realizability. The
realizability problem is better understood as a game between two players: the ’Player
input’ (the environment, also called Player I) and the ’Player output’ (the controller,
also called Player O). Player I (resp. Player O) controls the letters of a finite alphabet
ΣI (resp. ΣO). We assume that ΣO ∩ ΣI = ∅ and that ΣO contains a special symbol
whose role is to stop the game. We let Σ = ΣO ∪ΣI .

Formally, the realizability game is a turn-based game played on an arena defined by a
weighted automaton A=(Q=QO �QI , q0, F, δ=δI ∪ δO, γ), whose set of states is par-
titioned into two sets QO and QI , δO⊆QO×ΣO×QI , δI⊆QI×ΣI×QO, and such that
dom(A)⊆(Σ\{#})∗#. Player O starts by giving an initial letter o0 ∈ ΣO, Player I re-
sponds providing a letter i0 ∈ ΣI , then Player O gives o1 and Player I responds i1, and
so on. Player O has also the power to stop the game at any turn with the distinguishing
symbol #. In this case, the game results in a finite word (o0i0)(o1i1) . . . (oj ij)# ∈ Σ∗,
otherwise the outcome of the game is an infinite word (o0i0)(o1i1) · · · ∈ Σω.

The players play according to strategies. A strategy for Player O (resp. Player I) is
a mapping λO : (ΣOΣI)

∗ → ΣO (resp. λI : ΣO(ΣIΣO)
∗ → ΣI). The outcome of

the strategies λO, λI is the word w = o0i0o1i1 . . . denoted by outcome(λO , λI) such
that for all 0 ≤ j ≤ |w| (where |w| = +∞ if w is infinite), oj = λO(o0i0 . . . ij−1)
and ij = λ(o0i0 . . . oj), and such that if # = oj for some j, then w = o0i0 . . . oj . We
denote by ΛO (resp. ΛI) the set of strategies for Player O (resp. Player I).

A strategy λO ∈ ΛO is winning for Player O if for all λI ∈ ΛI , outcome(λO, λI) is
finite and LA(outcome(λO , λI)) > 0. The quantitative language realizability problem
for the weighted automaton A asks whether Player O has a winning strategy and in
that case, we say that A is realizable. Our first result on realizability is negative: we
show that it is undecidable for weighted functional Sum-, Avg-automata, and Ratio-
automata. In particular, we show that the halting problem for deterministic 2-counter
Minsky machines [22] can be reduced to the quantitative language realizability problem
for (functional) Sum-automata (resp. Avg-automata).

Theorem 7. Let V ∈ {Sum,Avg,Ratio}. The realizability problem for functional V -
automata is undecidable.

The proof of Theorem 7 relies on the use of a nondeterminism. When the automata
are deterministic, we recover decidability by considering suitable variants of classical
games played on graphs, and prove that they are solvable in NP ∩ coNP.

Theorem 8. Let V ∈ {Sum,Avg,Dsum,Ratio}. The realizability problem for deter-
ministic V -automata is in NP ∩ coNP.

144 E. Filiot, R. Gentilini, and J.-F. Raskin

6 Determinizability Problem

A weighted automaton A = (Q, qI , F, δ, γ) is determinizable if it is effectively equiv-
alent to a deterministic automaton3. Weighted automata are not determinizable in gen-
eral. For example, consider the right automaton on Fig. 1. Seen as a Sum, Avg or
Dsum-automaton (for any λ), it cannot be determinized, because there are infinitely
many delays associated with the pair of states (p, q). Those delays can for instance be
obtained by the family of words of the form an. To ease notations, for all weighted
automaton A over an alphabet Σ, we assume that there exists a special ending symbol
∈ Σ such that any word w ∈ dom(A) is of the form w′# with w′ ∈ (Σ −#)∗.

Determinizability is already known to be decidable in PTime for functional Sum-
automata [17]4. Determinizable functional Sum-automata are characterized by the so
called twinning property, that has been introduced for finite word transducers [11]. It
has been used as a sufficient condition for the termination of Mohri’s determinization
algorithm [13] for (non-functional) weighted automata over the tropical semiring, and
as a sufficient condition for the termination of a determinization algorithm for more
general commutative semirings [17] (the commutativity hypothesis is necessary). How-
ever in this paper, we consider group weight-set that are not necessarily abelian.

As for functionality, we express our results for groups, and get as a corollary the
decidability of determinizability for Sum, Avg and Dsum-automata. In particular, we
give a general determinization procedure for a functional weighted automaton over a
group, and introduce a twinning property that is a sufficient condition of its termination.
The procedure is similar to the one of [13] but adapted to groups.

Determinization Procedure. First, we define a determinization procedure that con-
structs a deterministic automaton Ad = (Qd, fd, Fd, δd, γd) (which may have infinitely
many states) from a functional automaton A = (Q, qI , F, δ, γ) over a weight-set group
(W, ·, 1). Wlog we assume that all states of A are co-accessible (otherwise we can re-
move non co-accessible states in linear time) and that δ is totally ordered by some order
�δ. The procedure extends the subset construction to partial functions that associate a
delay with a state. At any step, a particular transition of A is chosen and the delays are
computed relatively to this transition. We use �δ to choose this particular transition, so
different orders �δ may give different deterministic automata.

We let D the set of delays delay(ρ, ρ′) for any two runs ρ, ρ′ on the same word. We
first define Q′ = DQ, the set of partial functions from states Q to delays.We let f ′I :
qI (→ 1 and F ′ is defined as {f ∈ Q′ | dom(f)∩F �= ∅}. Then, given partial functions
f, f ′ ∈ Q′ and a symbol a ∈ Σ, we let t0 be the smallest transition (for �δ) from a state
q ∈ dom(f) to a state q′ ∈ dom(f ′) on a, and we let γ′(f, a, f ′) = f(q) · γ(t0) and
(f, a, f ′) ∈ δ′ iff for all q′ ∈ dom(f ′) there exists q ∈ dom(f) such that (q, a, q′) ∈ δ

f ′(q′) = γ′(f, a, f ′)−1 · f(p) · γ(q, a, q′)
Let Qd ⊆ Q′ be the accessible states of A′ := (Q′, f ′I , F

′, δ′, γ′). We define Ad =
(Qd, fd, δd, γd) as the restriction of A′ to the accessible states.

The automaton Ad may be infinite, however it is equivalent to A.
3 With the existence of an ending symbol, the notion of determinizability corresponds to the

notion of subsequentializability [11].
4 See [18,16] for determinizability results on more general classes of Sum-automata.

Quantitative Languages Defined by Functional Automata 145

Lemma 4. For all w ∈ Σ+, LA(w) = LAd
(w).

Proof. First note that since all states of A are co-accessible and A is functional, if two
runs ρ and ρ′ over the same input word reach the same state, they have the same value.
Next, it is not difficult to show by induction on the length of the input words that if a
run of Ad over some word u reaches a state f , then for all states q ∈ dom(f), f(q) =
delay(ρ, ρ′) for any run ρ of A on u that reaches q and any run ρ′ on u that reaches
some state p such that f(p) = 1 (such a state p necessarily exists by construction of A′).
Moreover, the value of the run of Ad on u equals the value of any run on u that reaches
some state p such that f(p) = 1. Finally, since we assume that the words accepted by
A all terminate by a unique occurrence of a special symbol # and all states of A are
co-accessible, when reading #, Ad necessarily go to a state f such that f(p) = 1 for
all states p ∈ dom(f), otherwise A would not be functional. ��

We define a twinning property that is sufficient for Ad to be finite:

Definition 2. Two states p, q of A are twinned if both p and q are co-accessible and
for all words w1, w2 ∈ Σ∗, for all runs ρ1 : qI

w1−−→ p, ρ2 : p
w2−−→ p, ρ′1 : qI

w1−−→ q,
ρ′2 : q

w2−−→ q, we have delay(ρ1, ρ
′
1) = delay(ρ1ρ2, ρ

′
1ρ
′
2). The automaton A satisfies

the twinning property if all pairs of states are twinned.

Lemma 5. If A satisfies the twinning property, then there are at most |Σ||Q|2 delays
delay(ρ, ρ′) for any two runs ρ, ρ′ on the same input, and thus Ad is finite.

Lemma 6. It is decidable in CoNP whether A satisfies the twinning property.

Under some condition (called the infinitary condition), the twinning property is also
a necessary condition. The infinitary condition expresses that iterating two runs on a
parallel loop induce infinitely many delays: if we take the premisses of the twinning
property, then we require that if delay(ρ1, ρ′1) �= delay(ρ1ρ2, ρ

′
1ρ
′
2) then for all 1 ≤ i <

j, we have delay(ρ1(ρ2)i, ρ′1(ρ
′
2)
i) �= delay(ρ1(ρ2)

j , ρ′1(ρ
′
2)
j).

Lemma 7. If the twinning property does not hold and A satisfies the infinitary condi-
tion, then A is not determinizable.

It is not difficult to show that Sum-, Avg- and Dsum-automata satisfy the infinitary
condition, therefore:

Theorem 9. A functional Dsum- (resp. Sum-, Avg-) automaton is determinizable iff it
satisfies the twinning property. Therefore determinizability is decidable in CoNP for
functional Dsum- (resp. Sum-, Avg-) automata.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s Decidable about Weighted Automata? In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Hei-
delberg (2011)

2. Aminof, B., Kupferman, O., Lampert, R.: Rigorous approximated determinization of
weighted automata. In: LICS, pp. 345–354 (2011)

146 E. Filiot, R. Gentilini, and J.-F. Raskin

3. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI Student
Session, pp. 91–98 (2006)

4. Beal, M.-P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: An efficient proce-
dure for deciding functionality and sequentiality. TCS 292 (2003)

5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on
TCS, vol. 12. Springer (1988)

6. Blattner, M., Head, T.: Single-valued a-transducers. JCSS 15(3), 310–327 (1977)
7. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:

FMCAD, pp. 85–92. IEEE (2009)
8. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with

accumulative values. In: LICS, pp. 43–52 (2011)
9. Boker, U., Henzinger, T.A.: Determinizing discounted-sum automata. In: CSL, pp. 82–96

(2011)
10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput.

Log 11(4) (2010)
11. Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-

séquentielles en tant que relations rationnelles. TCS 5(3), 325–337 (1977)
12. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking

discounted temporal properties. TCS 345(1), 139–170 (2005)
13. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer (2009)
14. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting. Theor.

Comput. Sci. 410(37), 3481–3494 (2009) ISSN: 0304-3975
15. Grunewald, F., Segal, D.: On the integer solutions of quadratic equations. Journal für die

reine und angewandte Mathematik 569, 13–45 (2004)
16. Kirsten, D.: A burnside approach to the termination of mohri’s algorithm for polynomially

ambiguous min-plus-automata. ITA 42(3), 553–581 (2008)
17. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. Journal of Automata,

Languages and Combinatorics 10(2/3), 287–312 (2005)
18. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and sequentiality

from a finitely ambiguous max-plus automaton. TCS 327(3), 349–373 (2004)
19. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring

is undecidable. Journal of Algebra and Computation 4(3), 405–425 (1994)
20. Krob, D., Litp, P.: Some consequences of a fatou property of the tropical semiring. J. Pure

Appl. Algebra 93, 231–249 (1994)
21. Lombardy, S., Mairesse, J.: Series which are both max-plus and min-plus rational are unam-

biguous. ITA 40(1), 1–14 (2006)
22. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
23. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symposium on Prin-

ciples of Programming Languages (POPL). ACM (1989)
24. Schützenberger, M.P.: Sur Les Relations Rationnelles. In: Brakhage, H. (ed.) GI-Fachtagung

1975. LNCS, vol. 33, pp. 209–213. Springer, Heidelberg (1975)
25. Thomas, W.: Church’s Problem and a Tour through Automata Theory. In: Avron, A., Der-

showitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS, vol. 4800, pp. 635–655.
Springer, Heidelberg (2008)

26. Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inf. Com-
put. 118(2), 327–340 (1995)

27. Karianto, W., Krieg, A., Thomas, W.: On Intersection Problems for Polynomially Gener-
ated Sets. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 516–527. Springer, Heidelberg (2006)

A Comparison of Succinctly Represented

Finite-State Systems�

Romain Brenguier1, Stefan Göller2, and Ocan Sankur1

1 LSV, CNRS & ENS Cachan, France
2 Institut für Informatik, Universität Bremen, Germany

Abstract. We study the succinctness of different classes of succinctly
presented finite transition systems with respect to bisimulation equiv-
alence. Our results show that synchronized product of finite automata,
hierarchical graphs, and timed automata are pairwise incomparable in
this sense. We moreover study the computational complexity of deciding
simulation preorder and bisimulation equivalence on these classes.

1 Introduction

In formal verification model checking is one of the most successful approaches; it
asks to test automatically whether a given systemmeets a given specification. Un-
fortunately, model checking tools have to deal with a combinatorial blow up of the
state space, commonly known as the state explosion problem, that can be seen as
one of the biggest challenges in real-world problems. Different sources of explosion
arise, for instance the number of program variables or clocks, the number of con-
current components, or the number of different subroutines, just to mention few
of them. Numerous techniques to tame the state explosion problem have been in-
troduced such as abstraction methods, partial order reduction or counterexample
guided abstraction refinement.

Flip side of the coin, when modeling everyday systems that are potentially ex-
ponentially big (also called the flattened system or just flat system), it is desirable
to have succinct representations for them. Three fundamental models include (i)
products of flat systems, (ii) timed automata (more precisely the transitions sys-
tems evolving from the time-abstract semantics of timed automata), and (iii)
hierarchical systems, each of them successfully being used to tame the state ex-
plosion problem in their dimension (these dimensions are pairwise orthogonal):
(i) Products of flat systems allow to succinctly account for the number of concur-
rently running components, (ii) Timed automata [2] allow to succinctly model
the behavior of programs involving program variables or clocks, and finally (iii)
hierarchical systems (also known as hierarchical state machines [3] or hierarchi-
cal structures [15]) allow to succinctly represent systems that are decomposed
from numerous sub-systems. See also [17] for a recent work, where web services
are modeled as the asynchronous product of flat systems.

An important algorithmic question in this context is whether two given (suc-
cinctly presented) systems behave equivalently, or whether one system can be

� This work has been partly supported by project ImpRo (ANR-10-BLAN-0317).

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 147–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 R. Brenguier, S. Göller, and O. Sankur

simulated by another one. For instance, if it turns out that a complex system (im-
plementation) is behaviorally equivalent to a simple system (implementation),
the system designer can well replace the complex one by the simple one.

Numerous notions of behavioral equivalences have been proposed by van
Glabbeek [20,21]. Among them, bisimulation equivalence is undoubtedly the cen-
tral one of them in formal verification. For instance beautiful characterizations
of the bisimulation-invariant fragments of established logics such as first-order
logic and monadic second-order have been proven in terms of modal logic [19]
and the modal μ-calculus [8], respectively; we refer to [16] for a further such
characterization in terms of CTL∗.

Our contributions and related work. In the first part of this paper we study
the succinctness with respect to bisimulation equivalence of three established
models of succinctly representing finite systems, namely products of flat systems,
timed automata, and hierarchical systems. The main contribution of this paper
is to pinpoint to the sources of succinctness when comparing any two of the
(orthogonally defined) three models of systems, mainly focusing on the different
proof ideas for establishing exponential succinctness. We show that each of the
three models can be exponentially more succinct than any of the other two. Such
a rigorous comparison of fundamental models for succinctly representing finite
systems has not yet been carried out in the context of formal verification to the
best of the authors’ knowledge.

In the second part of this paper we study the computational complexity of
simulation preorder and bisimulation equivalence checking for products of flat
systems, timed systems and hierarchical systems. We provide a general reduction
that shows EXPTIME-hardness (and thus completeness) of checking simulation
preorder on hierarchical systems and on timed automata. The former is a new
result; the latter was already proven in [13] but we believe our proof is more
direct. Moreover, our reduction is quite generic, and can be easily applied to a
wide range of succinctly presented models.

We also study the problem of deciding simulation preorder and bisimulation
equivalence between one of the three above-mentioned succinct systems and a flat
system. We show that checking the simulation preorder of a hierarchical system
by a flat system is PSPACE-complete. The problem is known to be EXPTIME-
complete for (synchronization-free) non-flat systems and timed automata [5].

Via a standard reduction to model checking EF logic we describe a PSPACE
algorithm to check bisimilarity of any of the discussed succinctly presented finite
systems and a flat system. Essentially since reachability of all of these systems
is in PSPACE, it follows that the problem is PSPACE-complete; the upper bound
was left open in [5], where it was shown to be PSPACE-hard.

Finally, we study language inclusion between the three above-mentioned suc-
cinct models. We show that checking untimed language equivalence (and in fact
language universality) is EXPSPACE-hard (and thus EXPSPACE-complete) for
hierarchical systems and timed automata. We would like to mention that this
problem has been wrongly cited in the literature as being in PSPACE for timed
automata [1,18]. Our results are summarized in Table 1.

A Comparison of Succinctly Represented Finite-State Systems 149

Table 1. Complexity results

Hierarchical Timed Prod. of Flat

Simulation EXPTIME-c EXPTIME-c [13] EXPTIME-c [7]
Bisimulation PSPACE-hard EXPTIME-c [13] EXPTIME-c [9]
Bis. with Flat PSPACE-c PSPACE-c PSPACE-c [5]
Sim. by Flat PSPACE-c EXPTIME-c [5] EXPTIME-c [7,5]
Language Inc. EXPSPACE-c EXPSPACE-c EXPSPACE-c [13]

2 Definitions

A transition system (also flat system or just system) over a finite alphabet Σ is

a tuple T = (S, (
σ−→)σ∈Σ), where S is an arbitrary set of states and each relation

σ−→⊆ S × S, is the set of σ-labeled transitions. Its size is |T | = |S| +
∑
σ |

σ−→ |.
We say that an action σ ∈ Σ is enabled at state s ∈ S if there is a transition
s
σ−→ s′ for some s′ ∈ S. T is deterministic if each

σ−→ is a partial function.
An initialized transition system is (S, s0, (

σ−→)σ∈Σ), where s0 ∈ S is the initial
state. A simulation is a relation R ⊆ S × S, with the following property: for
any states s, t ∈ S with sRt, for any σ ∈ Σ and s′ ∈ S such that s

σ−→ s′, there
exists t′ ∈ S with t

σ−→ t′ and s′Rt′. A simulation is a bisimulation whenever
it is symmetric. For two states s, t ∈ S, we write s) t (resp. s ∼ t) if there
exists a simulation (resp. bisimulation) R ⊆ S × S such that sRt. An initialized

transition system T = (S, s0, (
σ−→)σ∈Σ) is simulated by an initialized transition

system T ′ = (S′, s′0, (
σ−→
′
)σ∈Σ), if there is a simulation R in the disjoint union of

T and T ′ such that s0Rs′0. We extend notations) and ∼ to initialized transition
systems. We also define ∼k, bisimilarity up-to k steps : we have s ∼k t for two
states s, t ∈ S if, and only if the unfolding of T from s up-to k steps is bisimilar
to the unfolding at t up-to k steps. A path of T is a sequence of states that
are connected by transitions. The length of a path of a transition system is the
number of transitions it contains. For a path π, πi denotes the i-th state it
visits, and we denote by πi...j the subpath of π from πi to πj . For any initialized
transition system T , we define L(T) as the language accepted by T , that is the
set of words made of the transition labels in all paths of T starting at s0.

A product of flat systems is a tuple S = (T1, . . . , Tk), where Ti = (Si, (
σ−→i)σ∈Σ)

is a flat system for each 1 ≤ i ≤ k. S defines a transition system T (S) =

(
∏
i Si, (

σ−→)σ∈Σ), where (si)i
σ−→ (ti)i if, and only if, for all 1 ≤ i ≤ k, either

si
σ−→ ti in Ti, or ti = si and σ is not enabled at si. An example is given in Fig. 1.
Hierarchical systems are a modeling formalism used to succinctly describe

finite systems, by allowing the reuse of subsystems. A hierarchical system is de-
fined by a simple grammar that generates a single transition system, in which
each nonterminal defines a system by explicitly introducing states and transi-
tions, and using other nonterminals. The reuse relation is required to be acyclic,
so as to ensure that the generated transition system is finite. These were intro-
duced in [14] in the context of VLSI design.

150 R. Brenguier, S. Göller, and O. Sankur

0

1

2

...

p1−1

β1

α

α

α

α

α ‖

0

1

2

...

p2−1

β2

α

α

α

α

α ‖ ... ‖

0

1

2

...

pn−1

βn

α

α

α

α

α

Fig. 1. The system An, where p1, . . . , pn are the first n prime numbers, is defined as
the product of components Fi made of a α-cycle of length pi, along where each state
corresponds to a value modulo pi. The self-loop βi is only available at state 0, which is
also the initial state. Then, when the system reads a word αm, one can read the values
m mod pi for all 1 ≤ i ≤ n, looking at the states of all components.

An n-pointed system is a transition system with n selected states, numbered
from 1 to n. It is denoted by a pair (T , τ), where T = (S, (

σ−→)σ∈Σ) is a transition
system and τ : {1, . . . , n} → S an injection.

Definition 1. A hierarchical system [15] is a tuple H = (N, I, P) where

1. N is a finite set of nonterminals. Each B ∈ N has a rank denoted by
rank(B) ∈ N. I is the initial nonterminal with rank(I) = 0.

2. P is the set of productions, that contains for each B ∈ N a unique pro-
duction B → (A, τ, E) where (A, τ) is a rank(B)-pointed system with the set
of states A, and E is the set of references with E ⊆ {(B′, σ) | B′ ∈ N, σ :
{1, . . . , rank(B′)} → A is injective}.

3. Define relation EH ⊆ N ×N as follows: (B,C) ∈ EH if, and only if for the
unique production B → (A, τ, E), E contains some reference of the form
(C, σ). We require that EH is acyclic.

Its size is defined as |H | =
∑

(B→(A,τ,E))∈P |A| + |E|. For any production B →
(A, τ, E), the states τ(i) are called contact states. Each production produces
an n-pointed system, that is, a finite system with n contact states. In fact,
a hierarchical system H = (N, I, P) describes a single finite system, obtained by
taking, for each production B → (A, τ, E), the disjoint union of the (explicitly
given) system A and those systems defined by nonterminals B′ for all references
(B′, σ) ∈ E, and merging the i-th contact state of B′ with σ(i). Thus, the
function σ is used to merge the contact states of the references with the states
at the current level. Figure 2 gives an example of a hierarchical system.

Formally, each nonterminal B, produces a rank(B)-pointed system denoted
evalH(B) (also written as eval(B) in the rest) as follows. If the production B →
(A, τ, E) satisfiesE = ∅, then eval(B) is the rank(B)-pointed system (A, τ). Oth-
erwise, let E = {(B1, σ1), . . . , (Bk, σk)} and consider systems eval(Bi) = (Ai, τi)
for each i. Let U denote the disjoint union of all Ai and A. We let eval(B) =
(U/≡, π≡ ◦ τ), where≡ is the equivalence relation generated by {(σi(j), τi(j)), 1 ≤
i ≤ k, 1 ≤ j ≤ rank(Bi)}, and π≡ is the projection to the equivalence classes.
Thus, ≡ merges contact state j of system Ai with the state σi(j), for each

A Comparison of Succinctly Represented Finite-State Systems 151

1 ≤ i ≤ k. Note that eval(B) is well-defined since EH is acyclic. We define the
generated transition system T (H) of H as eval(I).

We denote by unfolding(H) the tree defined as follows. States are labeled by
nonterminals, and the root is the initial nonterminal S. The children of each state
labeled by nonterminal B are given as follows. If B → (A, τ, E) is the production
of nonterminal B, and if (B1, σ1), . . . , (Bk, σk) are the references in E, then B
has a child for each 1 ≤ i ≤ k, labeled by Bi. Observe that for each state v
of eval(H), there is a unique state in unfolding(H) labeled by a nonterminal
B → (A, τ, E), such that v is an internal state in A, i.e. v ∈ A \ range(τ). We
denote this state by unfolding(H, v)

For any nonterminal B in H , an inner path in B is a path of eval(B) that
does not contain any contact states of eval(B), except possibly for the first and
the last states. An inner path of B is traversing if its first and last states are
contact states of eval(B).

G1
1 2

Gi
1 2

Gi−1 Gi−1 2 ≤ i ≤ n1 2 1 2

eval(G3) =
1 2

Fig. 2. The figure shows a hierarchical system with nonterminals Gi for 1 ≤ i ≤ n. G1

produces an explicit system with no references, with two contact states (shown by 1
and 2). Gi creates three states, where the leftmost and the rightmost are two contact
states, and uses two references to Gi−1. The dashed arrows show how to merge the
contact states of each copy Gi−1 with the states of Gi. For instance, the contact state 1
of the leftmost copy of Gi−1 is merged with contact state 1 of Gi. Then, for n = 3,
eval(G3) is the system depicted on the bottom.

Timed automata are finite automata equipped with a finite set of real-valued
clocks. Clocks grow at a constant rate, and are used to enable/disable the tran-
sitions of the underlying finite automaton. They can be reset during transitions.

To formally define timed automata, we need the following notations. Given a
finite set of clocks X , we call valuations the elements of RX≥0. For a subset R ⊆ X
and a valuation v, v[R ← 0] is the valuation defined by v[R ← 0](x) = v(x) for
x ∈ X \ R and v[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v,
the valuation v+ d is defined by (v + d)(x) = v(x) + d for all x ∈ X . We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock. An atomic clock constraint is a formula
of the form k � x �′ l or k � x− y �′ l where x, y ∈ X , k, l ∈ Z∪{−∞,∞} and
�,�′ ∈ {<,≤}. Guards are conjunctions of atomic clock constraints. The set
ΦX denotes the guards over clocks X . A valuation v satisfies a guard g, denoted
v |= g, if all constraints are satisfied when each x ∈ X is replaced with v(x).

Definition 2 ([2]). A timed automaton A is a tuple (L, Σ,X , 	0, E), consisting
of finite sets L of locations, a finite alphabet Σ, X of clocks, E ⊆ L×ΦX ×Σ×
2X × L of edges, and where 	0 ∈ L is the initial location.

152 R. Brenguier, S. Göller, and O. Sankur

	0

α,y<2n,x=1,x:=0

Fig. 3. A timed automaton with
one location and two clocks x, y,
modelling a “counter” ranging
from 0 to 2n that can only be incre-
mented. At any state (�0, v) with
v(x) = 0, v(y) encodes the value
of the counter. Taking the self-loop
increments the counter. Any run
stops after at most 2n increments.

We are interested in the time-abstract seman-
tics of timed automata in the following sense.
A timed automaton A = (L, Σ,X , 	0, E), de-
fines a transition system on the state space
L × RX≥0, with the initial state (0,0). There

is a transition (, v)
σ−→ (′, v′) if, and only if

there is d ≥ 0 and an edge (, g, σ,R, 	′) such
that v + d |= g and (v + d)[R ← 0] = v′. Al-
though timed automata define infinite transi-
tion systems, it is well-known that any timed
automaton A is bisimilar to a computable flat
system T (A), whose size can be exponentially
larger than that of A [2]. See Figure 3 for
a timed automaton bisimilar to a large flat
system.

3 Succinctness

We compare hierarchical systems, products of flat systems, and timed automata
with respect to succinctness of models. Our results show that these classes are
pairwise incomparable in terms of succinctness: inside each class, there are infi-
nite families of models which are exponentially more succinct than any bisimilar
family of models in another class.

3.1 Hierarchical Systems vs. Products of Flat Systems

We show that hierarchical systems can be exponentially more succinct than
products of flat systems: it is easy to define long finite chains with the former,
as in Fig. 2, although this is not possible with the latter.

Theorem 1. Hierarchical systems can be exponentially more succinct than prod-
ucts of flat systems.

The other direction, in the next theorem, is more difficult.

Theorem 2. Products of flat systems can be exponentially more succinct than
hierarchical systems.

This theorem also establishes a non-trivial property of hierarchical systems, giv-
ing insight into the differences with the other classes. It shows that any hierarchi-
cal graph of size n defining an exponentially large graph contains necessarily two
states that are bisimilar up-to Ω(n) steps. The proof is based on the observation
that this is not the case for products of flat systems.

We consider the system An described in Fig. 1. We first give simple properties
of An, based on the Chinese Remainder Theorem:

Theorem 3 (Chinese Remainder Theorem). Let p1, . . . , pn denote pair-
wise coprime numbers. For any integers a1, . . . , an, there exists a unique m ∈
[0, p1p2 . . . pn − 1] such that m ≡ ai mod pi for all 1 ≤ i ≤ n.

A Comparison of Succinctly Represented Finite-State Systems 153

Let p1, . . . , pn denote the first n prime numbers, and consider An given as the
product of components F1, . . . , Fn. Observe that An has p1p2 · · · pn states. By
the Chinese Remainder Theorem, all bisimulation classes of An are singletons.
In fact, consider a state s reached from the initial state by reading αm. While
executing the word αpn from s, measuring the minimal distance to some state
that enables βi, we can deduce mmodulo pi for each 1 ≤ i ≤ n, and this uniquely
determines m modulo p1 · · · pn. This is formalized in the following lemma. In
the rest of the section, we refer to states of An by natural numbers from 0 to
p1p2 · · · pn − 1.

Lemma 1. For any pair of states 0 ≤ c < c′ < p1p2 · · · pn of An, c �∼pn c′.
Moreover, c ∼pn c′ if, and only if c ∼ c′.

Let us first explain the idea of the proof of Theorem 2. Any (sufficiently large)
hierarchical graph of size polynomial in n that is bisimilar to An contains two
occurrences of a nonterminal since An contains an exponential number of states.
Similarly, some contact states of a same nonterminal appear several times. We
will show moreover that for any hierarchical graph, there is a bisimilar one whose
size is polynomially bounded, with the property that for some nonterminal B,
the same contact state of two different copies of eval(B) belong to inner paths of
eval(B) that are bisimilar up-to pn steps. Thus, both occurrences of the contact
state must be bisimilar to the same state of An by Lemma 1. However, we also
show that these are reachable from the initial states in less than p1p2 · · · pn steps,
which leads to a contradiction. We now give a formal proof following these ideas.

The size of An can be seen to be polynomially bounded in n from below and
above since pn ∼ n log(n) for large n by the Prime Number Theorem. Assume
there are hierarchical systems Hn such that T (Hn) ∼ T (An) for all n ≥ 0,
such that |Hn| ≤ f(n) for some polynomial f . We first show, in the following
lemma, that each Hn can be assumed to satisfy the following Property ($): for
all nonterminals B, all traversing paths of eval(B) have length either 0 or at
least pn + 2.

Lemma 2. For any family (Hn)n≥0 of pointed hierarchical systems, there exist
pointed hierarchical systems (H ′

n)n≥0 such that |H ′
n| ≤ p(|Hn|) for some polyno-

mial p, T (Hn) ∼ T (H ′
n) and H ′

n satisfies Property ($), for all n ≥ 0.

The idea of the transformation is the following. We consider each production
B → (A, τ, E), in the reverse topological order w.r.t. EHn . Then, for all produc-
tions C → (A′, τ ′, E′) with (C,B) ∈ EHn , we add to A′ a copy of each traversing
path ρ of A of size less than pn + 2, and remove all edges labeled by α leaving
the first state of ρ. The construction is illustrated in Fig. 4.

Proof of Theorem 2. We assume that Property ($) holds, by Lemma 2. Consider
any n ≥ 0, such that 12f(n)4 < p1p2 · · · pn, and let us write Hn = (N, I, P).
Consider a path π obtained in Hn by reading αp1···pn from the initial state.
For all nonterminals B ∈ N , with the unique production B → (A, τ, E), and
i ∈ {1, . . . , range(τ)}, let us mark by (B, i) in π all states that are equivalent,
under relation ≡, to the state τ(i) of A. A single state in eval(Hn) can be marked

154 R. Brenguier, S. Göller, and O. Sankur

by several pairs (B, i) since the equivalence ≡ merges states. For example, if we
were to apply this marking to the graph of Fig. 2, then the leftmost state would
be marked by (G1, 1), (G2, 1), . . . , (Gn, 1), since at each production Gi, this state
is merged with contact state 1 of the leftmost occurrence of nonterminal Gi−1.
Note that at least one state among any consecutive |Hn| states must be marked
by some (B, i) in π. Otherwise π would not visit any contact states, and therefore
would stay inside the same explicit graph, which has size less than |Hn|, and some
state would appear twice since p1p2 · · · pn > f(n) ≥ |Hn|. Then, a same state
of T (Hn) would be bisimilar to two distinct states of T (An), which contradicts

Lemma 1. Since the number of pairs (B, i) is bounded by |Hn| at least m = |π|
|Hn|2

states of π are marked by some pair (B, i). Observe that m = |π|/|Hn|2 =
Ω(2n/f(n)2). Now, at least half the states marked by (B, i) mark the beginning
of traversing paths of eval(B).

Among these states, assume that there are πj and πj′ for 0 ≤ j < j′ <
p1 · · · pn, such that the traversing paths starting at these states have positive
length (therefore, at least pn + 2, thus contain at least pn inner states). By
assumption, these states are bisimilar to the states of An corresponding to the
numbers j and j′ respectively. Consider the inner paths πj...j+pn and πj′...j′+pn
of eval(B). These paths belong to different instances of the production of B,
so the visited states are pairwise disjoint. However, states πj and πj′ , seen as
states of eval(B) are bisimilar, since they correspond to the same contact state
of eval(B). Since all α-labelled transitions from πj lead to bisimilar states in
eval(B), all internal paths starting at πj are bisimilar. In particular, πj and πj′

are bisimilar up-to pn steps, since they stay inside eval(B). So, each βi is enabled
in πj+k iff it is enabled at πj′+k, for all 1 ≤ k ≤ pn. But then πj and πj′ must
be bisimilar to the same state of An by Lemma 1, and this is a contradiction.

Assume now that there is no more than one state πj marked by (B, i) with a
positive-length traversing path; so there are at least m/2− 1 states correspond-
ing to beginnings of traversing paths of length 0 (consisting of single states). Let
(αj)1≤j denote the indices such that παj is marked by (B, i) and is a travers-
ing path of length 0. We argue that some state marked by a pair (B′, i′) with
(B, i) �= (B′, i′), that is the beginning or the end of a traversing path of positive
length must occur in πα1...α1+|Hn|. Consider the nonterminal C labeling the state
unfolding(Hn, πα1). By definition, πα1 is an inner state of C, so πα1 is part of
an inner path of eval(C). Since the structure defined in the production of C has
size less than |Hn|, πα1...α1+|Hn| must visit a state labeled by (B′, i′) that is the
beginning or the end of an inner path of positive length: this is either a contact
state of eval(C) (the end of the inner path containing πα1), or the beginning of
an inner path inside eval(B′), where (C,B′) ∈ EHn . In fact, if this subpath does
not visit contact states of C and if it only contains inner paths of length 0 for
other nonterminals B′, then it stays inside the explicit graph defined in the pro-
duction of C. This is again a contradiction with the bisimilarity with An since a
state then must appear twice. This shows that every chunk of |Hn| starting at
some παi contains a state marked by some other (B′, i′), which is the beginning
or the end of some traversing path of positive length of eval(B′). Then, at least

A Comparison of Succinctly Represented Finite-State Systems 155

Bk
Bm′

σ(i) σ(j)
α α α α

β1 β2

τm′ (i) τm′ (j)

α
α α α

α

α β1

β2

Fig. 4. The construction of Theorem 2 that removes a small traversing path created
in a production Bm′ → (Am′ , τm′ , Em′). Here, Bm′ has an internal path of length 4
between τm′(i) and τm′(j), where internal states are represented by unfilled states.
The contact states τm′(i) and τm′(j) are to be merged with the states σ(i) and σ(j)
created in the production of Bk. The construction removes all edges of Am′ leaving
τm′(i) (shown by dotted arrows). Then, the red dashed path ρ′ is added instead from
σ(i) and σ(j) in Ak.

m/2−1
2|Hn|2 states are marked by the same (B′, i′), and are the beginning of traversing

paths of positive length, and we can apply the previous case.

3.2 Timed Automata vs. Product of Flat Systems

Theorem 4. Timed automata can be exponentially more succinct than products
of flat systems.

Proof. The proof immediately follows from Theorem 1 and the fact that the
timed automaton of Fig. 3 is time-abstract bisimilar to the system Gn. ��

We now show that products of flat systems can be more succinct than timed
automata. This result requires new techniques since the nature of state-space
explosion of timed automata is different; it is due to the complex relation between
its clock values, rather than to its structure. To show this result, we use the
well-known notion of zones, which are convex sets of the state space with integer
corners. We only need the fact that zones are closed under basic operations
such as time predecessors and intersection. We refer to [4] for definitions and
properties of zones.

The main idea behind the proof is the following: a state in the transition sys-
tem defined by a timed automaton can have an exponential number of a priori
pairwise non-bisimilar successors but we show that the pairwise non-bisimilarity
of an exponential number of successors of a state cannot be detected by looking
only one step further in the transition system. This important property is es-
tablished using geometric properties of regions, and it is inherent to transition
systems defined by timed automata. We show, on the other hand, that such
a system can be defined by a small product of automata (system A′n defined
below), which yields the following theorem.

Theorem 5. Products of flat systems can be exponentially more succinct than
timed automata.

156 R. Brenguier, S. Göller, and O. Sankur

For any n ≥ 1, we define the finite transition system Tn on the set of states
Sn = {(c1, . . . , cn) | ∀1 ≤ i ≤ n, 0 ≤ ci < pi}, where pi is the i+2-th prime num-
ber (so that we have pi ≥ 5, see below). From any state (c1, . . . , cn) ∈ Sn and

any vector (b1, . . . , bn) ∈ {1, 2}n, there is a transition (c1, . . . , cn)
α−→ (c1 + b1

mod p1, . . . , cn + bn mod pn). Moreover, we have a self-loop (c1, . . . , cn)
βi−→

(c1, . . . , cn) whenever ci ≡ 0 mod pi. Tn can be defined by adapting the sys-
tem An of Fig. 1, by adding an edge from x to x + 2 (modulo pi) inside each
component Fi. Let us call A′n this product of flat systems. It is clear that A′n
has size O(n2 log(n)) since pn ∼ n logn.

The following lemma shows that states of Tn cannot simulate each other.

Lemma 3. For all states c, c′ of Tn, there is no simulation R such that c R c′.

Proof (of Thm. 5). We consider any timed automaton Tn bisimilar to Tn (thus,
to A′n). By definition, all states of Tn have 2n transitions, all leading to pairwise
non-bisimilar states. We show that such a branching is not possible in Tn unless
Tn has exponential size.

We consider the state c = (p1 − 1, . . . , pn − 1) of Tn, which is reachable. Let
(, v) be any state of Tn that is bisimilar to c. In Tn, c has 2n α-successors.
Moreover, for each 1 ≤ i ≤ n, βi is enabled in exactly half of these successor
states. In fact, for any subset P ⊆ {β1, . . . , βn}, there is a successor where the
set of enabled transition labels is exactly P ∪ {α}. Let E() denote the number
of edges from 	. For each successor c′ of c, pick a transition from (, v) in Tn,
leading to a state bisimilar to c′. Then, at least 2n/E() of these transitions are
along some edge e = (, φ, α,R, 	′). This means that there exist d1, . . . , dm ≥ 0
with m = +2n/E(), such that states (, v+di) satisfy the guard φ; and the states
(′, v′i) = (′, (v+ di)[R ← 0]) are each bisimilar to a successor of c. States (, v′i)
are therefore pairwise non-simulating, by Lemma 3. Let us note here that R
cannot be empty, since otherwise (′, v + di) can simulate (′, v + dj) whenever
di ≤ dj , which contradicts Lemma 3. We are going to show that there must
be Ω(2n) edges leaving 	′.

Valuations v + di belong to a line of direction 1, that contains v. So the
projections v′i = (v + di)[R ← 0] also belong to a line D. Consider the set
g1, . . . , gm of guards of the edges leaving 	′. Such a transition can be taken from
v′i if, and only if v′i+ d ∈ gj for some delay d ≥ 0. This condition is equivalent to
v′i ∈

∧
x∈R(x = 0) ∧ Pre(gi), where Pre gives the set of time-predecessors of gi,

i.e. Pre(gi) = {v | ∃d ≥ 0, v+d |= gi}. It is well-known that the right hand side of
the above expression can be expressed by a guard [4]. Therefore, for simplicity,
but without loss of generality, let us replace gi by the right hand side of the
above. Thus, we have now a line D that contains all valuations v′i, and convex
sets defined by the guards. The intersection of each guard with D is a segment.
From now on, we are only interested in valuations and segments that lie in D.
Each segment along D thus can be seen as an interval.

Now, we will show that only a small number of bisimulation classes can be
distinguished inside D, looking only at the immediate enablement of m guards.
For a set of real intervals I = {I1, . . . , In}, we denote by χI the equivalence

A Comparison of Succinctly Represented Finite-State Systems 157

relation among real numbers given by (x, y) ∈ χI if, and only if x ∈ I ⇔ y ∈ I,
for all I ∈ I. When I is finite, this relation is finite too. For instance, if I =
{[a, b]}, then χI has index 2. We denote by |χI | the index of χI .

Lemma 4. Let I be a finite set of real intervals, and let J be a real interval.
Then |χI∪{J}| ≤ |χI |+ 2.

Now, using m guards, one can only define 2m subsets of D which are pairwise
distinguished with respect to the satisfaction of all guards gi. By the previous
lemma, there are at most 2m equivalence classes defined by χ{g1,...,gE(�′)}. On the

other hand, any pair of states v′i and v′j can be distinguished by the satisfaction of
some guard gk, since this is the case for the 2

n successors of c = (p1−1, . . . , pn−1)
inside Tn. It follows that 2m ≥ 2n/E(). Therefore, |Tn| ≥ m = Ω(2n). ��

3.3 Timed Automata vs. Hierarchical Systems

Theorem 6. Timed automata can be exponentially more succinct than hierar-
chical systems, and vice versa.

The proof of the first direction is similar to that of Theorem 2: we give a timed
automaton that describes a system similar to An. The other direction uses the
techniques of Theorem 5.

4 Complexity of Preorder Checking

4.1 Hardness of Simulation

The main result of this section is that deciding simulation between two hierar-
chical systems is EXPTIME-complete. Our proof is based on a simple reduction
from countdown games [10]. Our reduction is quite generic, and it can be applied
to any class with a set of simple properties (discussed at the end of the section).
As an example, we apply the reduction to timed automata. Note the EXPTIME-
hardness of checking simulation for timed automata was already proved in [13]
by a reduction based on Turing machines; we obtain here a simpler proof.

Theorem 7. Checking simulation between two hierarchical systems (resp. two
timed automata) is EXPTIME-complete.

Our reduction is based on countdown games [10], defined as follows. A count-
down game C is played on a weighted graph (S, T), whose edges are labeled with
positive integer weights encoded in binary. A move of the game from configu-
ration (s, c) ∈ S × N is determined jointly by both players, as follows. First,
Eve chooses a number d ≤ c such that (s, d, s′) ∈ T for some state s′. Then
Adam chooses a state s′ ∈ S such that (s, d, s′) ∈ T . The resulting configuration
is (s′, c−d). The game stops when Eve has no available moves: configuration (s, c)
is winning for Eve if c = 0. Given a countdown game, one can build an equiva-
lent turn-based graph game of exponential size with a reachability objective. We

158 R. Brenguier, S. Göller, and O. Sankur

note that given a countdown game and an initial configuration, the existence of
a winning strategy for Eve is EXPTIME -complete [10].

We first reduce the problem of determining the winner in countdown games to
the simulation problem on finite automata, that may have exponential size. We
then show how these automata can be described in polynomial size by hierar-
chical systems and timed automata. This proves the EXPTIME-hardness (thus,
completeness) of the simulation problem on these classes.

Consider a countdown game C = (S, T) with initial state q ∈ S and initial
value c. Let Σ denote the set of constants used in C. We define two finite au-
tomata on the alphabet Γ = Σ ∪ {e, α, β}. The first one, called CounterC(c), is
a directed path of length c with some additional states, defined in Fig. 5. The
bottom left state is the initial state. Intuitively, this is used to count down from c
when simulating the countdown game.

... ...

e Σ e Σ e Σ e Σ e
β

α α α α α

Fig. 5. System CounterC(c)

The second automaton is called ControlC , and has the same structure as the
game C = (S, T), except that each transition labeled by k ∈ Σ is replaced by a
module ChainC(k), which is roughly a directed path of length k + 1 labeled by
αk. In addition, in every state, an edge leads to a sink state by any symbol of
Γ \ {α} from all but the last state, and by any symbol in Γ \ {e} from the last
state. Sink states have self-loops on all symbols. The module is given in Fig. 6.

...α α α

α α α e

Fig. 6. Module ChainC(k). Here, x de-
notes the complement of the set {x}. All
gray states at the bottom in the figure are
sink states with (omitted) self-loops on all
symbols.

s1

ChainC(5) s2

ChainC(5) s3 ...

ChainC(3) s4 ...

5

e

5 e

3 e

{β
,3
,5
}

Fig. 7. A part of ControlC for a count-
down game C with states s1, s2, s3, s4 and
edges (s1, 5, s2), (s1, 5, s3), (s1, 3, s4)

Now, automaton ControlC is defined by replacing each transition labeled by k
in the game C, with an instance of module ChainC(k), as shown in Fig. 7. More-
over, from each state si, there is an edge going to a sink state, labeled by all

A Comparison of Succinctly Represented Finite-State Systems 159

labels in Γ \ (Σ(si) ∪ {β}), where Σ(si) denotes the set of labels of the edges
leaving si in game C. This ensures that a path in ControlC encodes a correct
simulation of the game. The initial state of ControlC is the initial state of C.

Proposition 1. For any countdown game C = (S, T) with initial state s1 and
initial value c, CounterC(c)) ControlC if, and only if Eve does not have a
winning strategy in C from configuration (s1, c).

We now explain how this reduction can be applied to hierarchical systems
and timed automata, in polynomial time. For hierarchical systems, in order to
succinctly represent CounterC(c) and modules ChainC(k), we use the trick of
Fig. 2. For instance, in order to define ChainC(k), one can generate all systems
G1, G2, . . . , G�log(k)� and combine these according to the binary representation
of k. For timed automata, a pair of clocks can be simply used to count up-
to k, as in Fig. 3. Thus, modules CounterC(c) and ChainC(k) can be defined in
polynomial space in these classes, which yields a polynomial-time reduction.

4.2 Simulation and Bisimulation with a Flat System

We show that checking whether a hierarchical graph is simulated by a finite au-
tomaton is PSPACE-complete. The PSPACE-membership follows from the fact
that simulation by a finite automaton can reduced to μ-calculus model-checking
(see e.g. [12]), which is in turn in PSPACE [6]. The corresponding lower bound
can in fact be deduced from results from [11] and [12] by using lengthy defini-
tions, however, we decided to give a direct reduction from quantified Boolean
satisfiability problem.

Theorem 8. Checking whether a flat system simulates a hierarchical system is
PSPACE-complete.

Second, we show that the problems of checking bisimilarity between a timed
automaton and a flat system, and between a hierarchical system and a flat
system are PSPACE-complete. In fact, one can reduce bisimilarity with a flat
system to model checking CTL’s fragment EF (where formulas are represented
as DAGs) in polynomial time [12]. This yields a polynomial space algorithm for
this problem since EF model-checking is easily seen to be in PSPACE for products
of flat systems, timed automata and hierarchical systems since reachability for
all these systems is in PSPACE.

Theorem 9. Checking bisimilarity between a timed automaton (resp. hierarchi-
cal system, product of flat systems) and a flat system is PSPACE-complete.

The PSPACE-hardness for product of finite automata was already proved in [5].
For timed automata, it follows from PSPACE-hardness of control state reachabil-
ity that checking any relation between time-abstract language equivalence and
time-abstract bisimulation between a timed automaton and a finite automaton
is PSPACE-hard. For hierarchical systems, we observe that the reduction of [12]
that shows the PSPACE-hardness of checking bisimulation between a pushdown
automaton and a finite automaton can be adapted to hierarchical systems.

160 R. Brenguier, S. Göller, and O. Sankur

4.3 Language Inclusion and Universality

Given any timed automaton A, one can effectively construct an exponential-size
finite automaton, called the region automaton that is time-abstract bisimilar
to A [2]. Then, using region automata, one can decide the inclusion between
the untimed languages of two timed automata in exponential space. The exact
complexity of these problems had not been characterized, and the problem was
wrongly cited in the literature as being PSPACE in [1,18]. In this section, we
prove that untimed language universality and inclusion are actually EXPSPACE-
complete. The result holds already for two clocks. For one clock, the problem is
PSPACE-complete. Language inclusion can also be decided in exponential space
for hierarchical systems, since the system generated has at most exponential size.
We adapt the proof to hierarchical systems, and obtain the same complexity
results.

Theorem 10. Checking untimed language universality is EXPSPACE-complete
for timed automata with two clocks, and PSPACE-complete with one clock. Lan-
guage universality is EXPSPACE-complete for hierarchical systems.

To prove this, we consider the acceptance problem on exponential-space Turing
machines, and show how to compute timed automata (resp. hierarchical systems)
that accept all words but those encoding correct accepting executions.

5 Conclusion

In this paper, we compared products of automata, timed automata and hier-
archical systems, which are used to succinctly describe finite-state systems. We
showed that each of them contains models that are exponentially more succinct
than the others, formalizing the intuition that the nature of the state space ex-
plosion is different in each formalism. Several variants of these systems were not
considered in this paper. For instance, silent transitions improve succinctness in
general: the main argument in the proof of Theorem 5 does not hold for timed
automata with silent transitions. One could also study different synchronization
semantics for products of automata. We also studied the computational complex-
ity of several preorder and equivalence relations. The complexity of bisimilarity
between hierarchical systems remains open.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, NY (2007)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

3. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273–303 (2001)

A Comparison of Succinctly Represented Finite-State Systems 161

4. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

5. Bozzelli, L., Legay, A., Pinchinat, S.: Hardness of Preorder Checking for Basic
Formalisms. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355,
pp. 119–135. Springer, Heidelberg (2010)

6. Göller, S., Lohrey, M.: Fixpoint logics over hierarchical structures. Theory Comput.
Syst. 48(1), 93–131 (2011)

7. Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent
transition systems. Inf. Comput. 173, 143–161 (2002)

8. Janin, D., Walukiewicz, I.: On the Expressive Completeness of the Propositional
mu-Calculus with Respect to Monadic Second Order Logic. In: Montanari, U., Sas-
sone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg
(1996)

9. Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite
nets. Theoretical Computer Science 154(1), 107–143 (1996)

10. Jurdziński, M., Laroussinie, F., Sproston, J.: Model Checking Probabilistic Timed
Automata with One or Two Clocks. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 170–184. Springer, Heidelberg (2007)

11. Kučera, A., Mayr, R.: Why Is Simulation Harder than Bisimulation? In: Brim, L.,
Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp.
594–610. Springer, Heidelberg (2002)

12. Kučera, A., Mayr, R.: On the complexity of checking semantic equivalences be-
tween pushdown processes and finite-state processes. Information and Computa-
tion 208(7), 772–796 (2010)

13. Laroussinie, F., Schnoebelen, P.: The State Explosion Problem from Trace to
Bisimulation Equivalence. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784,
pp. 192–207. Springer, Heidelberg (2000)

14. Lengauer, T., Wanke, E.: Efficient solution of connectivity problems on hierarchi-
cally defined graphs. SIAM J. Comput. 17(6), 1063–1080 (1988)

15. Lohrey, M.: Model-checking hierarchical structures. J. Comput. Syst. Sci. 78(2),
461–490 (2012)

16. Moller, F., Rabinovich, A.M.: Counting on CTL*: on the expressive power of
monadic path logic. Inf. Comput. 184(1), 147–159 (2003)

17. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. Logical
Methods in Computer Science 4(2) (2008)

18. Srba, J.: Comparing the Expressiveness of Timed Automata and Timed Extensions
of Petri Nets. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 15–32. Springer, Heidelberg (2008)

19. van Benthem, J.: Modal Correspondence Theory. PhD thesis, University of Ams-
terdam (1976)

20. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
278–297. Springer, Heidelberg (1990)

21. van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

All Linear-Time Congruences

for Familiar Operators Part 2: Infinite LTSs

Antti Valmari

Tampere University of Technology,
Department of Software Systems,

Tampere, Finland
Antti.Valmari@tut.fi

Abstract. In a previous publication, we enumerated all stuttering-in-
sensitive linear-time (in a well-defined sense) congruences with respect
to action prefix, hiding, relational renaming, and parallel composition for
finite labelled transition systems. There are 20 of them. They are built
from the alphabet, traces, two kinds of divergence traces, and five kinds
of failures. Now we remove the finiteness assumption. To re-establish
the congruence property, four kinds of infinite traces are needed. Some
congruences split to two and some to three, yielding altogether 40 congru-
ences. Like its predecessor, because of lack of space, also this publication
concentrates on proving the absence of more congruences.

Keywords: process algebra, semantics, compositionality, verification.

1 Introduction

Process algebra researchers have introduced numerous equivalence notions for
comparing the behaviours of systems or subsystems. It is desirable that an
equivalence is a congruence, that is, if a subsystem is replaced by an equiva-
lent subsystem, then the system as a whole remains equivalent. Whether or not
an equivalence is a congruence depends on the set of operators used in building
systems from subsystems.

We say that “∼=1” is weaker than “∼=2” or that “∼=2” implies “∼=1”, if and
only if P ∼=2 Q implies P ∼=1 Q for every P and Q, but not vice versa. We say
that “∼=” preserves a property, if and only if P ∼= Q implies that either none or
both of P and Q have the property. If, for instance, “∼=” preserves deadlocks, P
is complicated, Q is simple, and we can reason that P ∼= Q, then we can analyse
the deadlocks of P by analysingQ. On the other hand, if “∼=” also preserves some
other information (say, livelocks) about which P and Q disagree, then P �∼= Q,
and we cannot reason that P ∼= Q. Therefore, we would ideally like to use the
weakest possible deadlock-preserving congruence in this analysis task.

Finding the weakest congruence that preserves a given property has been
tedious. A handful of such results has been published (e.g., [1,3,5,6,8,11], please
see [9] for comments on some of them), but if none of them directly matches,
then the user is more or less left with empty hands. Two more powerful results

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 162–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 163

were discussed in Chapters 11 and 12 of [7]. With the CSP set of operators and a
certain notion of finite linear-time observations, there are only three congruences.
Therefore, if the given property meets that notion, to find the weakest congruence
that preserves it, it suffices to test the three congruences. If also infinite behaviour
is observable, another set of only three congruences is obtained.

Behaviours of (sub)systems are often represented as labelled transition sys-
tems, abbreviated LTS. In [9], we proved — but only for finite LTSs — that
another region contains precisely twenty congruences. Four of them are the same
as in [7] and two are trivial. The remaining fourteen are obtained because [9]
covers a different set of properties and uses a smaller set of operators than [7].
The operators in [9] are parallel composition, hiding, relational renaming, and
action prefix. Only execution of visible actions, deadlock, and livelock were con-
sidered as directly observable. That is what was meant by abstract linear-time.
It is slightly more general than the stuttering-insensitive linear temporal logic
of [4]. Then the congruence requirement brought refusal sets into consideration
in the end, but not in the middle, of a trace. The additional two congruences
in [7] assume the ability to also observe refusal sets in the middle of a trace.

In this publication we extend the results of [9] by removing the finiteness
assumption. Because of lack of space, we concentrate on proving that there are
no other congruences than those that we discuss, and skip the proofs that they
indeed are congruences.

Section 2 presents the background definitions and introduces the strongest
abstract linear-time congruence (in our sense). Congruences that are weaker
than it are found in Sections 3 to 5. Finally Fig. 6 summarizes the publication.

2 Basic Definitions

We reserve the symbol τ to denote so-called invisible actions. A labelled transition
system or LTS is the tuple (S,Σ,Δ, ŝ), where τ /∈ Σ,Δ ⊆ S× (Σ ∪ {τ})×S, and
ŝ ∈ S. We call S the set of states, Σ the alphabet, Δ the set of transitions, and ŝ
the initial state. Unless otherwise stated, L1 denotes the LTS (S1, Σ1, Δ1, ŝ1), and
similarly with L, L′, L2, and so on. When we show an LTS as a drawing, unless
otherwise stated, its alphabet is precisely the labels in the drawing excluding τ .

LTSs L1 and L2 are bisimilar, denoted with L1 ≡ L2, if and only if there is
a relation “∼” ⊆ S1 × S2 such that (1) Σ1 = Σ2, (2) ŝ1 ∼ ŝ2, and (3) for every
s1 ∈ S1, s2 ∈ S2, s

′
1 ∈ S1, s

′
2 ∈ S2, and a ∈ Σ ∪ {τ} such that s1 ∼ s2, (3a) if

(s1, a, s
′
1) ∈ Δ1, then there is an s′ such that s′1 ∼ s′ and (s2, a, s

′) ∈ Δ2, and
(3b) if (s2, a, s

′
2) ∈ Δ2, then there is an s′ such that s′ ∼ s′2 and (s1, a, s

′) ∈ Δ1.
It is well known that bisimilarity is a very strong equivalence. For the purposes of
this publication, it can and will be used like identity. This implies that only the
states and transitions that are reachable from the initial state matter, because
any LTS is bisimilar to its reachable part.

If Φ is any set of pairs, we define D(Φ) := {a | ∃b : (a, b) ∈ Φ}, R(Φ) := {b |
∃a : (a, b) ∈ Φ}, and Φ(a, b) :⇔ (a, b) ∈ Φ ∨ a = b /∈ D(Φ). The operators that
we use for building systems are defined as follows:

164 A. Valmari

Action prefix. Let a �= τ . The LTS L′ = a.L is defined as S′ = S ∪ {ŝ′}, where
ŝ′ /∈ S, Σ′ = Σ ∪ {a}, and Δ′ = Δ ∪ {(ŝ′, a, ŝ)}. That is, a.L executes a and
then behaves like L.

Hiding. Let A be a set. The LTS L′ = L \A is defined as S′ = S, Σ′ = Σ \A,
Δ′ = {(s, a, s′) | ∃b : (s, b, s′) ∈ Δ ∧ (a = b /∈ A∨a = τ ∧b ∈ A)}, and ŝ′ = ŝ.
That is, L\A behaves otherwise like L, but all labels in A are replaced by τ .

Relational renaming. Let Φ be a set of pairs such that τ /∈ D(Φ) ∪ R(Φ). The
LTS L′ = LΦ is defined as S′ = S, ŝ′ = ŝ, Σ′ = {b | ∃a ∈ Σ : Φ(a, b)}, and
Δ′ = {(s, b, s′) | ∃a : (s, a, s′) ∈ Δ ∧ Φ(a, b)}. That is, LΦ behaves otherwise
like L, but the labels of transitions are changed. A label may be replaced
by more than one label, resulting in more than one copy of the original
transition. If Φ does not specify any new label for a transition, it keeps its
original label. This is in particular the case with τ -transitions.

Parallel composition. The LTS L = L1 || L2 is defined as S = S1 × S2, Σ =
Σ1 ∪Σ2, ŝ = (ŝ1, ŝ2), and ((s1, s2), a, (s

′
1, s

′
2)) ∈ Δ if and only if (1) a /∈ Σ2,

(s1, a, s
′
1) ∈ Δ1, and s′2 = s2, (2) a /∈ Σ1, s

′
1 = s1, and (s2, a, s

′
2) ∈ Δ2, or

(3) a ∈ Σ1 ∩ Σ2, (s1, a, s
′
1) ∈ Δ1, and (s2, a, s

′
2) ∈ Δ2. That is, if a belongs

to the alphabets of both L1 and L2, it is executed simultaneously by both.
If a = τ or a belongs to the alphabet of precisely one of L1 and L2, then it
is executed by one of L1 and L2 while the other stays in the state where it
is. Clearly L2 ||L1 ≡ L1 ||L2 and L1 || (L2 ||L3) ≡ (L1 ||L2) ||L3, so we may
write L1 || · · · || Ln without confusion.

The CSP language [2,7] has these operators (and many more), and every major
process-algebraic language has at least something similar. Therefore, requiring
the congruence property with respect to these operators is justified. One has to
keep in mind, however, that if the language does not have all these operators,
then it may have more abstract linear-time congruences than the ones in this
publication. Indeed, we will see after Theorem 1 that the difference between
functional and relational renaming matters. It is thus a good idea to declare:

In the theorems of this publication, “∼=” is a congruence means that it
is an equivalence and for all LTSs L and L′, if L ∼= L′, then a.L ∼= a.L′,
L \A ∼= L′ \A, LΦ ∼= L′Φ, L || L′′ ∼= L′ || L′′, and L′′ || L ∼= L′′ || L′.

It follows by structural induction that if f(L1, . . . , Ln) is any expression only
made of these four operators and Li ∼= L′i for 1 ≤ i ≤ n, then f(L1, . . . , Ln) ∼=
f(L′1, . . . , L

′
n).

For discussing abstract equivalences, it is handy to have notation for talking
about paths between states such that only the non-τ labels along the path are
shown. Let Σ∗ and Σω denote the sets of all finite and infinite sequences of
elements of Σ. By s=ε⇒ s′ we mean that there are s0, . . . , sn such that s = s0,
sn = s′, and (si−1, τ, si) ∈ Δ for 1 ≤ i ≤ n. By s=a1a2 · · · an⇒ s′, where
a1a2 · · · an ∈ Σ∗, we mean that there are s0, s

′
0, . . . , sn, s

′
n such that s0 = s,

s′n = s′, si=ε⇒ s′i for 0 ≤ i ≤ n, and (s′i−1, ai, si) ∈ Δ for 1 ≤ i ≤ n. If we do
not want to mention s′, we write s=a1a2 · · · an⇒, and s=a1a2 · · ·⇒ denotes the
similar notion for infinite sequences a1a2 · · ·. An infinite path can also consist

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 165

of an uninterrupted infinite sequence of invisible transitions. This is denoted
with s−τω→.

Let s ∈ S. We say that s is a deadlock or deadlocked if and only if ∀a : ∀s′ :
(s, a, s′) /∈ Δ. We say that s is stable if and only if ∀s′ : (s, τ, s′) /∈ Δ.

The linear-time semantics of L (in our sense) consists of its complete — i.e.,
deadlocking or infinite — executions. The abstract linear-time semantics con-
sists of their abstractions, i.e., deadlocking traces, infinite traces, and divergence
traces. It is well known that to obtain a congruence and preserve deadlocks, the
semantics must also preserve stable failures (see, e.g., [8]). We also define traces.

– Tr(L) := {σ ∈ Σ∗ | ŝ=σ⇒}
– Inf (L) := {ξ ∈ Σω | ŝ=ξ⇒}
– Div(L) := {σ ∈ Σ∗ | ∃s : ŝ=σ⇒ s ∧ s−τω→}
– Sf (L) := {(σ,A) ∈ Σ∗×2Σ | ∃s : ŝ=σ⇒ s∧∀a ∈ A∪{τ} : ∀s′ : (s, a, s′) /∈ Δ}

We do not introduce notation for deadlocking traces, because σ is a deadlocking
trace if and only if (σ,Σ) ∈ Sf (L).

For uniformity, from now on we denote the alphabet of L with Σ(L). We
say that the equivalence induced by Σ, Sf , Div, and Inf is the one defined by
Σ(L) = Σ(L′) ∧ Sf (L) = Sf (L′) ∧ Div(L) = Div(L′) ∧ Inf (L) = Inf (L′). It is
a congruence [10]. It has traditionally been called chaos-free failures divergences
equivalence or CFFD-equivalence. We will denote it with “

.
=”.

CFFD-equivalence preserves full information on traces even without explicitly
mentioning them, because of the following easily proven fact:

Tr(L) = Div(L) ∪ {σ | (σ, ∅) ∈ Sf (L)} (1)

We will also need the following.

Inf (L) ⊆ {a1a2 · · · ∈ Σω | ∀i : a1a2 · · · ai ∈ Tr(L)} (2)

In [9], the so-called finite CFFD-equivalence was used whose definition is other-
wise the same but lacks Inf (L) = Inf (L′). In the case of finite LTSs, it coincides
with CFFD-equivalence, because of the following (see, e.g., [10]):

Inf (L) = {a1a2 · · · ∈ Σω | ∀i : a1a2 · · · ai ∈ Tr(L)} , if L is finite.

Our goal is to find all congruences that are implied by “
.
=”. For any stuttering-

insensitive linear-time property in the sense of [4] (and a bit more), its optimal
congruence is among them. To break our task into smaller parts, let us consider
all possibilities when Σ = ∅. Then Sf (L) is either ∅ or {(ε, ∅)} and Div (L) is
either ∅ or {ε}. By (1) they cannot both be empty, because ε is a trace of every
LTS. This leaves three possibilities. They can be drawn as follows.

τ τ τ

We will study each of the cases ∼= τ, ∼= τ τ �∼= τ, and τ �∼= �∼=
τ τ (not assuming τ �∼= τ τ) in turn.

166 A. Valmari

3 When Deadlock ∼= Livelock

We define the dullest congruence by L ∼= L′ holds for every L and L′. It is
obviously the weakest of all congruences. The next theorem implies that it is
the only congruence that does not imply Σ(L) = Σ(L′), that is, preserve Σ. Its
proof in [9] does not rely on the finiteness assumption. (However, it does rely on
how the definitions of L \A and LΦ treat actions who are not in Σ(L).)

Theorem 1. If “∼=” is implied by “≡”, is a congruence, and does not preserve
Σ, then “∼=” is the dullest congruence.

With only functional renaming, the following would be a congruence: L ∼= L′ if
and only if (Σ(L) \Σ(L′)) ∪ (Σ(L′) \Σ(L)) is finite.

It is easy to check from the definitions that the equivalence induced by Σ is
a congruence. The next lemma will be needed soon.

Lemma 1. Any congruence that preserves Inf also preserves Σ and Tr.

Proof. Let “∼=” be a congruence that preserves Inf . Then a �∼= a , so “∼=”
preserves Σ by Theorem 1. Let L ∼= L′, Σ = Σ(L) = Σ(L′), and b /∈ Σ ∪ {τ}.
If σ = a1a2 · · · an ∈ Tr(L), then let T bσ be a1 a2 · · · an b with the alphabet
Σ ∪ {b}. We have σbω ∈ Inf (L || T bσ) = Inf (L′ || T bσ), yielding σ ∈ Tr(L′). So
Tr(L) ⊆ Tr(L′). By symmetry, Tr(L′) ⊆ Tr(L). ��

Many of the subsequent proofs use the following lemma. In it, X1, . . . , Xk are
functions from LTSs to sets, like Tr and Sf . A similar lemma without Inf was
presented and proven in [9]. The lemma is so central that we show its proof,
although it is essentially the same as in [9].

Lemma 2. Assume that “∼=” is an equivalence, is implied by “
.
=”, and pre-

serves Σ and X1, . . . , Xk. Assume that there is a function f such that for
every LTS L we have L ∼= f(L), and Sf (f(L)), Div(f(L)), and Inf (f(L)) can
be represented as functions of Σ(L) and X1(L), . . . , Xk(L). Then “∼=” is the
equivalence induced by Σ and X1, . . . , Xk.

Proof. Obviously “∼=” implies the equivalence induced by Σ and X1, . . . , Xk.
To prove the implication in the opposite direction, let Σ(L) = Σ(L′) and

Xi(L) = Xi(L
′) for 1 ≤ i ≤ k. We need to prove that L ∼= L′. We have

Σ(f(L)) = Σ(L) = Σ(L′) = Σ(f(L′)), because L ∼= f(L) and “∼=” pre-
serves Σ. When X ∈ {Sf ,Div , Inf }, let λX be the function that represents
X(f(L)) as was promised. Then X(f(L)) = λX(Σ(L), X1(L), . . . , Xk(L)) =
λX(Σ(L′), X1(L

′), . . . , Xk(L
′)) = X(f(L′)). We get f(L)

.
= f(L′). So L ∼=

f(L)
.
= f(L′) ∼= L′ and L ∼= L′. ��

The following theorem and its proof are adapted from [9] by adding Inf and not
assuming that Tr is preserved. The proof illustrates, in a simple context, the use
of Lemma 2. Although the f in the proof preserves the congruence, it throws
away all information on Sf and Div . This is possible because of the assumption
∼= τ. Although Div(f(L)) is neither ∅ nor Σ(L)∗, it contains no genuine

information, because it is fully determined by Tr(L).

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 167

τ
b1

a1

am
τ

... τ
b2

a1

am
τ

... τ
b3

a1

am
τ

... · · ·

Fig. 1. An LTS for detecting the infinite trace b1b2 · · ·. {a1, . . . , am} may be infinite

Theorem 2. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Inf ,

and ∼= τ, then “∼=” is the equivalence induced by Σ, Tr, and Inf .

Proof. By Lemma 1, “∼=” preserves Σ and Tr . Let f(L) = L || τ. We have
L ≡ L || ∼= L || τ = f(L). Clearly Sf (f(L)) = ∅, Div(f(L)) = Tr(L), and
Inf (f(L)) = Inf (L). Lemma 2 gives the claim if we choose k = 2, X1 = Tr , and
X2 = Inf . ��

In forthcoming proofs, we will play trickery with renaming and hiding so that
precisely those actions synchronize whom we want to synchronize. To facilitate
that, we introduce the following notation for temporarily attaching an integer i
to symbols other than τ .

– If a �= τ /∈ A and aj �= τ for 1 ≤ j, then a[i] := (a, i), A[i] := {a[i] | a ∈ A},
(a1a2 · · · an)[i] := a

[i]
1 a

[i]
2 · · · a[i]n , and (a1a2 · · ·)[i] := a

[i]
1 a

[i]
2 · · ·.

– .L/[i] := LΦ, where Φ = {(a, a[i]) | a ∈ Σ}.
– +L,[i] := LΦ, where Φ = {(a[i], a) | a[i] ∈ Σ}.

Let Run(A) denote the LTS whose alphabet is A, who has one state, and whose
transitions are {(ŝ, a, ŝ) | a ∈ A}. We are ready to present the first significantly
new result of this publication.

Theorem 3. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Tr but

not Inf , and ∼= τ, then “∼=” is the equivalence induced by Σ and Tr.

Proof. There are M1, M2, and ξ such that M1
∼= M2 and ξ ∈ Inf (M1)\Inf (M2).

Because “∼=” preserves Tr , Theorem 1 implies that it also preserves Σ, so we
may let ΣM = Σ(M1) = Σ(M2). Let b1b2 · · · = ξ[1]. Let A be any set such that
τ /∈ A. Let {a1, a2, . . . [, am]} = A[2], where “[, am]” emphasizes that A may be
finite or infinite. When i ∈ {1, 2}, let

MA
i = + (Tξ || .Mi/[1]) \Σ[1]

M ,[2] ,

where Σ(Tξ) = Σ
[1]
M ∪ A[2] and otherwise Tξ is like in Fig. 1. Because X [i] and

Y [j] are disjoint whenever i �= j, we have Σ(MA
1) = Σ(MA

2) = A. Thanks
to the τ -loops in Fig. 1, Sf (MA

1) = Sf (MA
2) = ∅. By (2), M1 can execute

any finite prefix of ξ. This yields Tr(MA
1) = Div(MA

1) = A∗. By the congruence
propertyMA

1
∼= MA

2 . Because “∼=” preservesTr , alsoTr(MA
2) = Div(MA

2) = A∗.
Since M1 can but M2 cannot execute ξ completely, we get Inf (MA

1) = Aω and
Inf (MA

2) = ∅.
Let L be any LTS and A = Σ(L). We can reason Run(A) ≡ Run(A) || ∼=

Run(A) || τ .
= MA

1
∼= MA

2 , and L ≡ L ||Run(A) ∼= L ||MA
2 . Lemma 2 gives the

claim if we choose k = 1, X1 = Tr , and f(L) = L ||MA
2 , because then L ∼= f(L),

Sf (f(L)) = ∅, Div(f(L)) = Tr(L), and Inf (f(L)) = ∅. ��

168 A. Valmari

The above proof constructed a function f(L) that throws away all information
(modulo “

.
=”) except Σ and Tr, while preserving “∼=”. Information on Sf and

Div was thrown away using the assumption that ∼= τ. Information on Inf
was thrown away by starting with an arbitrary difference on Inf , and amplifying

it to a function f ′(L,M) = L||+ (Tξ ||.M/[1])\Σ[1]
M ,[2] so that f ′(L,M1) preserves

Inf (L) while f ′(L,M2) wipes it out. The permission to also throw away all
information on Sf and Div simplified the design. We have L ∼= f ′(L,M1) ∼=
f ′(L,M2) = f(L), where the first “∼=” takes care of Sf and Div , and the second
of Inf . In the construction of f , despite the use of notation defined in this section,
ultimately only operators from Section 2 were used.

The following theorem was proven in [9] with the same method. The proof did
not discuss Inf , but its f has Inf (f(L)) = ∅ by (2), because it has Tr(f(L)) =
{ε}. So Lemma 2 of this publication applies.

Theorem 4. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Σ but

not Tr, and ∼= τ, then “∼=” is the equivalence induced by Σ.

In conclusion, altogether precisely four abstract linear-time congruences satisfy
∼= τ: those induced by the first zero, one, two, or three of Σ, Tr , and Inf .

That also the last two are congruences is widely known and proven, e.g., in [10].

4 When Deadlock ∼= Bothlock �∼= Livelock

The following results are from [9], with easy modifications to cover Inf :

Theorem 5. If “∼=” is a congruence, “
.
=” implies “∼=”, and τ τ �∼= τ,

then “∼=” preserves Sf .
If “∼=” is a congruence, “

.
=” implies “∼=”, “∼=” preserves Sf but not Tr, and

∼= τ τ , then “∼=” is the equivalence induced by Σ and Sf .
If “∼=” is a congruence, “

.
=” implies “∼=”, “∼=” preserves Sf and Inf , and

∼= τ τ , then “∼=” is the equivalence induced by Σ, Tr, Sf , and Inf .

These leave a gap between (Σ,Tr , Sf) and (Σ,Tr , Sf , Inf). To fill it, we need
a more complicated construction than in the proof of Theorem 3, because this
time Sf has to be preserved. We will use the “internal choice” operator of CSP.
It is equivalent to the CCS expression τ.P + τ.Q, and it can be built from our
operators as follows:

L1 � L2 :=
(
(LC || c1..L1/[1] || c2..L2/[2]) \ {c1, c2}

)
Φ ,

where Φ = {(a[i], a) | 1 ≤ i ≤ 2 ∧ a ∈ Σi}, c1 = 1[0], c2 = 2[0], and LC has
SC = {ŝC , sC}, ΣC = {c1, c2}, ΔC = {(ŝC , c1, sC), (ŝC , c2, sC)}, and ŝC �= sC .
(Here c1 and c2 could be any distinct new symbols.)

The CFFD-semantics of this operator is simple:

Σ(L � L′) = Σ(L) ∪Σ(L′)
Sf (L � L′) = Sf (L) ∪ Sf (L′)

Div(L � L′) = Div(L) ∪Div(L′)
Inf (L � L′) = Inf (L) ∪ Inf (L′)

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 169

RA
1

τ τ a1

am

...

τ
RA

2
τ τ

τ

τ

τ

τ

τ

· · ·
· · ·

τ

a1

am

...

a1

am

...

a1

am

...

a1

am

... · · ·

Fig. 2. RA
1 has Σ(RA

1) = A = {a1, . . . [, am]}, Sf (RA
1) = A∗ ×{∅}, Div(RA

1) = A∗, and
Inf (RA

1) = Aω. RA
2 has the same except Inf (RA

2) = ∅.

Theorem 6. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Tr and

Sf but not Inf , and ∼= τ τ , then “∼=” is the equivalence induced by Σ, Tr,
and Sf .

Proof. Let M1
∼= M2, ξ ∈ Inf (M1) \ Inf (M2), b1b2 · · · = ξ[1], and A be any set

such that τ /∈ A. By Theorem 1, “∼=” preserves Σ. Let ΣM = Σ(M1) = Σ(M2).
When i ∈ {1, 2}, let

MA
i = + (Tξ || .Mi/[1]) \Σ[1]

M ,[2] ,

where Σ(Tξ) = Σ
[1]
M ∪ A[2] and otherwise Tξ is like in Fig. 1.

Because Tξ does not have stable states, we have Sf (MA
1) = Sf (MA

2) = ∅.
Because .M2/[1] lacks the infinite trace b1b2 · · ·, MA

2 has no infinite traces. Let
RA1 and RA2 be the LTSs in Fig. 2. We have Div(RA2) = A∗. These imply MA

2 �
RA2

.
= RA2 . On the other hand, MA

1 has Aω as its infinite traces, Inf (RA1) =
Aω, Sf (RA1) = Sf (RA2), and also Div(RA1) = A∗, so MA

1 � RA2
.
= RA1 . As a

consequence, RA1
.
= MA

1 �RA2
∼= MA

2 �RA2
.
= RA2 .

By choosing A = Σ(L) and f(L) = L ||RA2 we get L ≡ L || ∼= L || τ τ .
=

L || RA1 ∼= L || RA2 , so L ∼= f(L). We have Sf (f(L)) = Sf (L), Div(f(L)) =
Tr(f(L)) = Tr(L), and Inf (f(L)) = ∅. Lemma 2 gives the claim. ��

To summarize, precisely three absract linear-time congruences satisfy ∼=
τ τ �∼= τ: those induced by (Σ, Sf), (Σ,Tr , Sf), and (Σ,Tr , Sf , Inf).

5 When Deadlock �∼= The Other Two

In this section we need new semantic sets. Minimal divergence traces minD
are divergence traces whose proper prefixes are not divergence traces. Finite
extensions of minimal divergence traces extT are an alternative representation
for the same information (assuming that Σ is available). Also infinite extensions
extI can be derived from minD . Always-nondivergent traces anT are traces
who and whose proper prefixes are not divergence traces, and similarly with
always-nondivergent infinite traces anI . Eventually-always-nondivergent infinite
traces eanI may have a finite number of divergence traces as prefixes. Always-
eventually-nondivergent infinite traces aenI have an infinite number of prefixes
that are not divergence traces.

– minD(L) := {a1 · · · an ∈ Div (L) | ∀i; 0 ≤ i < n : a1 · · · ai /∈ Div(L)}
– extT (L) := {a1 · · · an ∈ Σ(L)∗ | ∃i; 0 ≤ i ≤ n : a1 · · ·ai ∈ minD(L)}

170 A. Valmari

– extI (L) := {a1a2 · · · ∈ Σ(L)ω | ∃i; i ≥ 0 : a1 · · · ai ∈ minD(L)}
– anT (L) := Tr(L) \ extT (L)
– anI (L) := Inf (L) \ extI (L)
– eanI (L) := {a1a2 · · · ∈ Inf (L) | ∃n;n ≥ 0 : ∀i; i ≥ n : a1 · · · ai /∈ Div(L)}
– aenI (L) := {a1a2 · · · ∈ Inf (L) | ∀n;n ≥ 0 : ∃i; i ≥ n : a1 · · ·ai /∈ Div(L)}

Lemma 3. Any congruence that preserves minD also preserves anT and anI .
Any congruence that preserves Div also preserves Tr and eanI .

Proof. The anT - and Tr -claims have been proven in [9].
Let L ∼= L′ and a1a2 · · · ∈ anI (L). Then Σ(L) = Σ(L′) by Theorem 1, and

none of a1 · · · ai is in minD(L). Furthermore, ε ∈ minD((L || T) \Σ(L)), where
T = a1 a2 · · · with Σ(T) = Σ(L). So ε ∈ minD((L′ || T) \ Σ(L′)). Since
minD(L′ || T) = minD(L || T) = ∅, we have a1a2 · · · ∈ anI (L′).

Let ΣL = Σ(L), ξ ∈ eanI (L), and L ∼= L′. If no prefix of ξ is in Div (L),
then let i = 1, and otherwise let i be 2 plus the length of the longest prefix of ξ
that is in Div(L). Let ai /∈ ΣL ∪ {τ} and, when 1 ≤ j �= i, let aj be such that
ξ = a1 · · ·ai−1ai+1 · · ·. Let T be the LTS whose alphabet is ΣL∪{ai} and whose
graph is a1 a2 · · ·. We have ai ∈ Div((L||T)\ΣL) = Div ((L′||T)\ΣL). When
j ≥ 0, none of a1 · · · ai−1ai+1 · · · ai+j is in Div (L′), because Div(L′) = Div (L).
As a consequence, ξ ∈ Inf (L′) and ξ ∈ eanI (L′). ��

In [9], the following four additional kinds of failures were defined.

– nF (L) := {(σ,A) ∈ Sf (L) | σ /∈ Div(L)}
– snF (L) := {(σ,A) ∈ nF (L) | ∀a ∈ A : σa /∈ Div (L)}
– anF (L) := {(σ,A) ∈ Sf (L) | σ /∈ extT (L)}
– sanF (L) := {(σ,A) ∈ anF (L) | ∀a ∈ A : σa /∈ minD(L)}

In [9] it was proven that for finite LTSs, only the following 15 congruences
(without Y1, Y2, and Y3) exist in addition to those found in Sections 3 and 4:

– (Σ,X,minD , Y1) where X is anT , sanF , anF , or Sf .
– (Σ,Tr , X,minD , Y2) where X is none, sanF , anF , or Sf .
– (Σ,X,Div , Y3) where X is

Tr , (Tr & sanF), (Tr & anF), snF , (anF & snF), nF , or Sf .

Without the finiteness assumption, some Yi are needed by Lemma 3. Similar
adaptations of the results in [9] as in Section 3 tell that Y1 is anI , but let Y2 and
Y3 be anything between what Lemma 3 says and Inf . Other than that, they do
not leave room for additional congruences. Using functions f of Lemma 2 of the
form g(f2(L)), where the f2 are given below and the g are from [9], it is possible
to prove that Y2 is anI or Inf , and Y3 is eanI , aenI , or Inf . Because of lack of
space, we only show the proofs when g is the identity function (that is, X = Sf).

We need a construction that preserves anI but not Inf . Our construction will
block infinite traces after a minimal divergence trace, while not affecting them
before a minimal divergence trace. Blocking does not have the desired effect
unless all executions of the same minimal divergence trace switch it on. Forcing

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 171

the execution of the switch at every divergent state does not suffice, because
the same trace may have two executions, one leading to a divergent and the
other to a nondivergent state. Even if we knew that this is the case with some
nondivergent state, we could not blindly implement the switch there, because it
may also be reachable via another, always-nondivergent trace.

To cope with this problem, we use the function Una that was defined in [9]
to solve another problem of a similar nature. We first define the determinization
of L as the LTS Det(L) := (SD, Σ,ΔD, ŝD), where Sσ = {s | ŝ=σ⇒ s}, SD =
{Sσ | σ ∈ Tr(L)}, ΔD = {(Sσ, a, Sσa) | a �= τ ∧ σa ∈ Tr(L)}, and ŝD = Sε.
We define Una(L) := L || Det(L). One may check that Det(L) and Una(L) are
LTSs, and Una(L) ≡ L. We say that a state of Una(L) is potentially divergent if
it can be reached via a divergence trace, and certainly nondivergent otherwise.
The following lemma is from [9].

Lemma 4. If state sU of Una(L) is potentially divergent, then all traces that
lead to it belong to Div(L). If state sU of Una(L) is certainly nondivergent, then
no trace that leads to it belongs to Div(L).

Then we define a function PD that makes the following property hold while
preserving CFFD-equivalence: for every state s, either no or all traces that lead
to s has a divergence trace as a prefix. This is obtained by adding a component
to Una(L) that remembers if the execution has gone through a divergence trace.
Formally, by PD(L) we mean the LTS (SP, Σ,ΔP, ŝP) that is obtained as follows.
Let [σ] = pre if σ ∈ anT (L) and [σ] = post otherwise. Let στ = σ and σa = σa
if a ∈ Σ. First L is replaced by Una(L) = (SU, Σ,ΔU, ŝU). Then let

– SP = {(sU, [σ]) | ŝU=σ⇒ sU},
– ΔP = {((sU, [σ]), a, (s′U, [σa])) | ŝU=σ⇒ sU ∧ (sU, a, s

′
U) ∈ ΔU}, and

– ŝP = (ŝU, [ε]).

We say that (sU, x) is pre-divergent if x = pre and post-divergent otherwise.

Lemma 5. We have PD(L) ≡ L. If state sP of PD(L) is pre-divergent, then all
traces that lead to it belong to anT (L). If state sP of PD(L) is post-divergent,
then no trace that leads to it belongs to anT (L).

Proof. The subscripts U or P of states reveal which LTS is in question. We
have PD(L) ≡ Una(L) ≡ L, because the relation (sU, [σ]) ∼ s′U ⇔ sU = s′U is
a bisimulation between SP and SU. If [σ

a] = pre, then σa ∈ anT (L), implying
σ ∈ anT (L) and [σ] = pre. Thus PD(L) has no transitions from post-divergent to
pre-divergent states. Let ŝP=ρ⇒ (sU, x) and ρ ∈ Div(L). Because (sU, x) ∈ SP,
there is a σ such that ŝU=σ⇒ sU and x = [σ]. Because ρ ∈ Div(L), sU is
potentially divergent. So all traces that lead to it are divergence traces. That
includes σ, thus x = post. As a consequence, each trace that has a divergence
trace as a prefix only leads to post-divergent states.

If an execution of PD(L) leads to a post-divergent state, then ŝP is post-diver-
gent or the execution contains a transition of the form ((sU, pre), a, (s

′
U, post)).

In the first case, [ε] = post, so ε ∈ Div(L). In the second case, by the definition

172 A. Valmari

a c b1
τ

b2 · · ·· · ·τ
bn−1

τ
bn

Fig. 3. An LTS fragment for detecting the divergence trace b1b2 · · · bn

of ΔP, there is a σ such that ŝU=σ⇒ sU, σ ∈ anT (L), and σa /∈ anT (L). This
implies σa ∈ Div(L). So s′U is potentially divergent and all traces that lead
to it are divergence traces. As a consequence, each post-divergent state has a
divergence trace in each of its histories. ��

Armed with PD, we can attack the case where Tr , Sf , and minD are preserved,
but Div and Inf are not. This time there is no unique next congruence, but
two. Therefore, the proof consists of two parts, where the first throws away
information on divergence traces that are not minimal, and the second on infinite
traces that are not always-nondivergent. To be compatible with the functions
in [9], we must have Sf (f2(L)) = Sf (L), complicating the construction.

Theorem 7. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves

Tr, Sf , and minD but neither Div nor Inf , then “∼=” is the equivalence induced
by Σ, Tr, Sf , minD, and anI .

Proof. Let M1
∼= M2, σ ∈ Div(M1) \ Div(M2), b1 · · · bn = σ[1], c = 1[0], and

d = 2[0]. Let ΣM = Σ(M1) = Σ(M2). For any LTS L, let ΣL = Σ(L) and let
g(L) be the LTS that is obtained as follows. First L is replaced by PD(.L/[2]).
Then each transition (s, a, s′) where s is pre-divergent and s′ is post-divergent is
replaced by a copy of the LTS fragment shown in Fig. 3. If ŝP is pre-divergent,
then it is the new initial state. Otherwise a copy of Fig. 3 is added such that
its a-transition is left out, the start state of the c-transition is the new initial

state, and the LTS fragment leads to ŝP. The alphabet of g(L) is {c}∪Σ
[1]
M ∪Σ

[2]
L .

When completing a minimal divergence trace of .L/[2], g(L) executes cσ[1] before
continuing, but otherwise it behaves like .L/[2].

Let N ′
0 = . We will introduce N ′

1, N
′
2, and ΣN later. When i ∈ {1, 2} and

j ∈ {0, 1, 2}, let M ′
i = c..Mi �M2/[1] and

fi,j(L) = + (g(L) ||M ′
i ||N ′

j) \ ({c, d} ∪Σ
[1]
M ∪Σ

[3]
N) ,[2] .

We show now that L
.
= f2,0(L). Clearly N ′

0 has no effect to the behaviour. Before
completing any minimal divergence trace, f2,0(L) behaves like L. When g(L) exe-
cutes c, one of the two copies ofM2 inM ′

2 is switched on. Then g(L) tries to execute
σ[1]. If it fails becauseM2 blocks it, then f2,0(L) diverges due to the τ -loops inFig. 3.
That is still equivalent to L, because the trace that has been executed is a minimal
divergence trace. For the same reason it is okay ifM2 diverges before completing σ.
The execution of σmay also succeed, because σ ∈ Div(M1) ⊆ Tr(M1) = Tr(M2).
In that case, g(L) continues like L. Because σ /∈ Div(M2),M2 is left in a nondiver-
gent state, having no effect on the further behaviour.

Because M ′
1 has a copy of both M1 and M2, f1,0(L) behaves otherwise like

f2,0(L), but it has additional behaviour caused byM1 starting inM ′
1, executing σ

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 173

a1

am

. . .

c

c

τ τ

τ

τ

τ

τ

τ

· · ·
· · ·

τ

a1

am

...

a1

am

...

a1

am

...

a1

am

... · · ·

τ
d

τ
e1
τ

a1

am

... τ
e2
τ

a1

am

... τ
e3
τ

a1

am

... · · ·

Fig. 4. A switchable LTS for detecting the infinite trace e1e2 · · ·

completely, and diverging. In that case, every subsequent state of f1,0(L) is diver-
gent. Thus L

.
= f2,0(L) ∼= f1,0(L), Tr(f1,0(L)) = Tr(L), Sf (f1,0(L)) = Sf (L),

minD(f1,0(L)) = minD(L), Div(f1,0(L)) = extT (L) ∩ Tr(L), anI (f1,0(L)) =
anI (L), and Inf (f1,0(L)) = Inf (L).

Because Inf is not preserved, there are N1, N2, and ξ such that N1
∼= N2

and ξ ∈ Inf (N1) \ Inf (N2). Let e1e2 · · · = ξ[3], ΣN = Σ(N1) = Σ(N2), and

{a1, a2, . . . [, am]} = Σ
[2]
L . When j ∈ {1, 2}, let N ′

j = Tξ || d..Nj/[3], where Tξ is

the LTS in Fig. 4 with the alphabet {c, d}∪Σ[2]
L ∪Σ[3]

N . (We haveΣ(N ′
0) �= Σ(N ′

1),
but that will not matter.)

If j ∈ {1, 2}, c makes Tξ enter one of its two branches. Its initial state and
upper branch can parallel any finite execution of g(L). Because Tξ never refuses

any other subset of Σ
[2]
L than ∅, and because of the stable states initially and

in its upper branch, Sf (f1,j(L)) = Sf (f1,0(L)). Furthermore, Div (f1,j(L)) =
Div(f1,0(L)), because Tξ cannot diverge before executing c, and all traces that
involve the execution of c are in Div(f1,0(L)). In its lower branch Tξ switches
Nj on by executing d. Thanks to the initial state of Tξ and because N2 cannot
execute ξ, we have Inf (f1,2(L)) = anI (f1,0(L)). Because N1 can execute ξ, we
have Inf (f1,1(L)) = Inf (f1,0(L)). We get f1,0(L)

.
= f1,1(L) ∼= f1,2(L).

For compatibility with the naming conventions outside this proof, let f2(L) =
f1,2(L). So L ∼= f2(L), Sf (f2(L)) = Sf (L), Div(f2(L)) = extT (L) ∩ Tr(L), and
Inf (f2(L)) = anI (L). By Lemma 3, “∼=” preserves anI . Therefore, f2 qualifies
as the f of Lemma 2. ��

The case where Div is preserved but Inf is not splits to two.

Theorem 8. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf

and Div but not aenI , then “∼=” is the equivalence induced by Σ, Sf , Div , and
eanI .

Proof. LetM1
∼= M2 and ξ ∈ aenI (M1)\aenI (M2). LetΣM = Σ(M1) = Σ(M2),

c = 0[0], c1 = 1[0], and c2 = 2[0]. Because Div is preserved, M1 and M2 agree on
which prefixes of ξ are divergence traces. Infinitely many of them are not, by the
definition of aenI . So non-empty σ1, σ2, σ3, . . . exist such that σ1σ2σ3 · · · = ξ[1]

and σ1, σ1σ2, σ1σ2σ3, . . . are not divergence traces. Let Tξ be the LTS whose

alphabet is {c, c1, c2} ∪Σ
[1]
M and whose graph is

174 A. Valmari

c1 c σ1 c2 c1 σ2 c2 c1 σ3 · · · .
For any LTS L, let g(L) be the LTS that is obtained as follows. First L is

replaced by Una(.L/[2]). Then each transition whose new label a is visible and

who ends in a potentially divergent state is replaced by a c1 τ c2 . The

alphabet of the result is {c1, c2} ∪Σ
[2]
L , where ΣL = Σ(L). When i ∈ {1, 2}, let

fi(L) = + (g(L) || Tξ || c..Mi/[1]) \ ({c, c1, c2} ∪Σ
[1]
M) ,[2] .

Each time when g(L) is about to enter a potentially divergent state, it executes
c1. This makes Tξ move one step and then let c..Mi/[1] try to execute up to a
nondivergent state. If it succeeds, Tξ lets g(L) continue by executing c2. In the
opposite case, g(L) is trapped in the τ -loop between c1 and c2.

The LTS M1 has every prefix of ξ as its trace. By Lemma 3, “∼=” preserves Tr .
So both .M1/[1] and .M2/[1] may succeed in executing σ1σ2 · · ·σi for any i. This
implies Tr(f1(L)) = Tr(f2(L)) = Tr(L). Clearly g(L) mimics the divergence
traces of L. When M1 or M2 diverges, g(L) is in a τ -loop and the trace that has
been executed is a divergence trace. Thus Div (f1(L)) = Div(f2(L)) = Div (L).

When g(L) is in a stable state (other than the start states of c1), then
c..M1/[1] and c..M2/[1] do not diverge, so Sf (f1(L)) = Sf (f2(L)) = Sf (L).
Because M2 does but M1 does not necessarily prevent g(L) from infinitely many
times continuing after a divergence trace, we have Inf (f1(L)) = Inf (L) but
Inf (f2(L)) = eanI (L). So L

.
= f1(L) ∼= f2(L). By Lemma 3, “∼=” preserves

eanI . Lemma 2 yields the claim. ��

Theorem 9. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf ,

Div, and aenI but not Inf , then “∼=” is the equivalence induced by Σ, Sf , Div,
and aenI .

Proof. We proceed similarly to earlier proofs. Because Div is preserved, M1 and
M2 agree on which prefixes of a ξ ∈ Inf (M1) \ Inf (M2) are divergence traces.
From some point on all of them are, because aenI is preserved.

We abbreviate potentially divergent as pd and certainly nondivergent as cn.
To get g(L), each transition of Una(L) whose label a is visible is replaced by

– a[2] c1 , if it starts in a cn and ends in a pd state;
– a[2] c2 , if it starts and ends in a pd state;
– a[3] , if it starts in a pd and ends in a cn state;
– a[2] , if it starts and ends in a cn state.

If the initial state of Una(L) is pd, then a c1-transition is added to its front. The

alphabet of g(L) is {c1, c2} ∪Σ
[2]
L ∪Σ

[3]
L .

Let b1b2 · · · = ξ[1]. Let Tξ be the LTS whose alphabet is {c, c1, c2}∪Σ
[1]
M ∪Σ

[3]
L

and whose graph is in Fig. 5. When i ∈ {1, 2}, let

fi(L) =
(
(g(L) || Tξ || c..Mi/[1]) \ ({c, c1, c2} ∪Σ

[1]
M)
)
Φ ,

where Φ renames each a[2] and each a[3] to a.

All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs 175

c1 τ τ τ · · ·
τ τ τ · · ·Σ

[3]
L

c2 c2 c2 c2
· · ·
· · ·c

τ
b1

τ
c2

τ
b2

τ
c2

· · ·
· · ·

Fig. 5. An LTS for detecting an infinite trace with only finitely many nondivergent
prefixes. The thick arrows with Σ

[3]
L denote that there is a transition from each start

state of the thick arrows to their common end state for each a ∈ Σ
[3]
L .

Σ

Tr

Inf

Sf

minD
anT
anI

Div
eanI

aenI

sanF

CSP, anF

snF

nF

NDFD

CFFD

Fig. 6. All abstract linear-time congruences with respect to a.L, L\A, LΦ, and L ||L′.
Names in italics indicate the new preserved set(s). Other names are the names of the
congruences. There is a path from “∼=1” down to “∼=2” if and only if “∼=1” implies “∼=2”.

While g(L) traverses among cn states, f1(L) and f2(L) behave like L. When
g(L) enters a pd state, Tξ prepares for an arbitrary finite number of transitions
between pd states. As long as Tξ is in its middle row excluding its leftmost state,
g(L) can execute transitions at will. These states of Tξ are stable and offer all
actions in Σ(g(L)) ∩Σ(Tξ) except c1 that also g(L) refuses, so Sf is preserved.
If g(L) enters a cn state, then Tξ goes back to its initial state. As a consequence,
f1(L) and f2(L) have at least the same stable failures, divergence traces, and

176 A. Valmari

always-eventually-nondivergent infinite traces as L, and no extra stable failures,
divergence traces, or infinite traces have so far been found.

If g(L) executes more transitions between pd states than Tξ has been pre-
pared for, Tξ reaches the leftmost state of its middle row. Then it executes c,
switching M1 or M2 on. From then on all states are divergent and g(L) is pre-
vented from leaving pd states, so no new stable failures or divergence traces are
introduced. f2(L) does not introduce new infinite traces either, while f1(L) may
execute all the remaining infinite traces of L. So Sf (f1(L)) = Sf (f2(L)) = Sf (L),
Div(f1(L)) = Div (f2(L)) = Div(L), Inf (f1(L)) = Inf (L), and Inf (f2(L)) =
aenI (L). Clearly L

.
= f1(L) ∼= f2(L), thus Lemma 2 yields the claim. ��

6 Conclusions

Fig. 6 summarizes the results of this publication and [9].

Acknowledgements. I thank the anonymous reviewers for helpful comments.

References

1. De Nicola, R., Vaandrager, F.: Three Logics for Branching Bisimulation. Journal
of the ACM 42(2), 458–487 (1995)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

3. Kaivola, R., Valmari, A.: The Weakest Compositional Semantic Equivalence Pre-
serving Nexttime-less Linear Temporal Logic. In: Cleaveland, W.R. (ed.) CONCUR
1992. LNCS, vol. 630, pp. 207–221. Springer, Heidelberg (1992)

4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

5. Puhakka, A.: Weakest Congruence Results Concerning “Any-Lock”. In: Kobayashi,
N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 400–419. Springer,
Heidelberg (2001)

6. Puhakka, A., Valmari, A.: Weakest-Congruence Results for Livelock-Preserving
Equivalences. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 510–524. Springer, Heidelberg (1999)

7. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)
8. Valmari, A.: The Weakest Deadlock-Preserving Congruence. Information Process-

ing Letters 53(6), 341–346 (1995)
9. Valmari, A.: All Linear-Time Congruences for Finite LTSs and Familiar Operators.

In: Brandt, J., Heljanko, K. (eds.) 12th Int. Conf. on Application of Concurrency
to System Design, pp. 12–21. IEEE, USA (2012)

10. Valmari, A., Tienari, M.: Compositional Failure-Based Semantic Models for Basic
LOTOS. Formal Aspects of Computing 7(4), 440–468 (1995)

11. van Glabbeek, R.J.: The Coarsest Precongruences Respecting Safety and Liveness
Properties. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323,
pp. 32–52. Springer, Heidelberg (2010)

Quantified CTL: Expressiveness
and Model Checking

(Extended Abstract)

Arnaud Da Costa1, François Laroussinie2, and Nicolas Markey1

1 LSV – CNRS & ENS Cachan
2 LIAFA – Univ. Paris Diderot & CNRS

Abstract. While it was defined long ago, the extension of CTL with
quantification over atomic propositions has never been studied exten-
sively. Considering two different semantics (depending whether proposi-
tional quantification refers to the Kripke structure or to its unwinding
tree), we study its expressiveness (showing in particular that QCTL co-
incides with Monadic Second-Order Logic for both semantics) and char-
acterize the complexity of its model-checking problem, depending on the
number of nested propositional quantifiers (showing that the structure
semantics populates the polynomial hierarchy while the tree semantics
populates the exponential hierarchy). We also show how these results
apply to model checking ATL-like temporal logics for games.

1 Introduction

Temporal logics. Temporal logics extend propositional logics with modalities for
specifying constraints on the order of events in time. Since [25,5,26], they have
received much attention from the computer-aided-verification community, since
they fit particularly well for expressing and automatically verifying (e.g. via
model checking) properties of reactive systems. Two important families of tem-
poral logics have been considered: linear-time temporal logics (e.g. LTL [25]) can
be used to express properties of one single execution of the system under study,
while branching-time temporal logics (e.g. CTL [5,26] and CTL∗ [10]) consider
the execution tree. Since the 90s, many extensions of these logics have been
introduced, of which alternating-time temporal logics (such as ATL, ATL∗ [1])
extend CTL towards the study of open systems (involving several agents).

In this landscape of temporal logics, both CTL and ATL enjoy the nice property
of having polynomial-time model-checking algorithms. In return for this, both
logics have quite limited expressiveness. Several extensions have been defined in
order to increase this limited expressive power.

Our Contributions. We are interested in the present paper in the extension of
CTL (and CTL∗) with propositional quantification [28,11]. In that setting, propo-
sitional quantification can take different meaning, depending whether the extra
propositions label the Kripke structure under study (structure semantics) or its

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 177–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 A. Da Costa, F. Laroussinie, and N. Markey

execution tree (tree semantics). While these extensions of CTL with propositional
quantification have been in the air for thirty years, they have not been extensively
studied yet: some complexity results have been published for existential quantifi-
cation [15], for the two-alternation fragment [16] and for the full extension [12]; but
expressiveness issues, as well as a complete study of model checking for the whole
hierarchy, have been mostly overlooked.We answer these questions in the present
paper: in terms of expressiveness, we prove that QCTL and QCTL∗ are equally ex-
pressive, and coincide with Monadic Second-Order Logic. Regarding model check-
ing, we consider both prenex-normal-form formulas (EQCTL) and general formu-
las (QCTL), and our results are summarized in the table below (where k in EQkCTL
and QkCTL refers to some measure of quantification height of formulas, see Sec-
tion 2.4). Finally, we also characterize the model- and formula-complexities of our
problems, when one of the inputs to the model-checking problem is fixed. By lack
of spaces, most proofs are omitted. They can be found in [8].

structure semantics tree semantics

EQkCTL ΣP
k -c.

k-EXPTIME-c.
QkCTL ΔP

k+1[O(log n)]-c.

EQkCTL∗, QkCTL∗

PSPACE-c.

k+1-EXPTIME-c.

EQCTL, QCTL,
EQCTL∗,QCTL∗

non-elementary

Applications to alternating-time temporal logics. ATL also has several flaws in
terms of expressiveness: namely, it can only focus on (some) zero-sum properties,
i.e., on purely antagonist games, in which two coalitions fight with opposite
objectives. In many situations, games are not purely antagonist, but involve
several independent systems, each having its own objective. Recently, several
extensions of ATL have been defined to express properties of such non-zero-sum
games. Among those, our logic ATLsc [7] extends ATL with strategy contexts,
which provides a way of expressing interactions between strategies. Other similar
approaches include Strategy Logics [4,19] or (B)SIL [32].

Interestingly, the model-checking problem for these extensions of ATLsc (and
also for Strategy Logics) can be seen as a QCTL model-checking problem1: strat-
egy quantification in ATL is naturally encoded using propositional quantification
of QCTL; since this labelling is persistent, it can encode interactions between
strategies. We give the full encoding in Section 5. Notice that while the tree
semantics of QCTL encodes plain strategies, the structure semantics also finds
a meaning in that translation, as it may correspond to memoryless strategies.

Related Works. Propositional quantification was also defined and studied on
LTL [28,29,14], where the model-checking problem for the k-alternation fragment

1 Notice that the link between games and propositional quantification already emerges
in Qdμ [24], which extends the decision μ-calculus with some flavour of propositional
quantification. Also, the main motivation of [16] for studying the two-alternation
fragment of QCTL is a hardness result for the control and synthesis of open systems.

Quantified CTL: Expressiveness and Model Checking 179

was settled complete for k-EXPSPACE. In the branching-time setting, the results
are more sparse: CTL and CTL∗ with only existential quantification was studied
in [15], where model checking is shown NP- and PSPACE-complete resp. (for the
structure semantics) and EXPTIME- and 2-EXPTIME-complete resp. (for the
tree semantics). The two-alternation fragment was then studied in [16] (only for
the tree semantics): model checking is 2-EXPTIME- and 3-EXPTIME-complete,
respectively for CTL or CTL∗. Finally, satisfiability of the full extension (with
arbitrary quantification) was studied in [12].

Several other semantics have also been defined in the literature: the amorphous
semantics is somewhat intermediary between structure- and tree semantics, and
considers bisimilar structures before labelling with extra atomic propositions [12].
Alternative semantics are proposed and studied in [27,23].

Besides the above-mentioned applications of QCTL to open systems, let us
mention that QCTL has also been used in the setting of three-valued model
checking, where partial Kripke structures are considered (i.e., Kripke structures
where the truth value of some atomic propositions may be unknown) [3].

2 Preliminaries

2.1 Kripke Structures and Trees

We fix once and for all a set AP of atomic propositions.

Definition 1. A Kripke structure S is a 3-tuple 〈Q,R, 	〉 where Q is a countable
set of states, R ⊆ Q2 is a total2 relation and 	 : Q → 2AP is a labelling function.

An execution (or path) in S is an infinite sequence ρ = (qi)i∈N s.t. (qi, qi+1) ∈ R
for all i. We use Exec(q) to denote the set of executions issued from q and Execf(q)
for the set of all finite prefixes of executions of Exec(q). Given ρ ∈ Exec(q) and
i ∈ N, we write ρi for the path (qi+k)k∈N of Exec(qi) (the i-th suffix of ρ), ρi for
the finite prefix (qk)k≤i (the i-th prefix), and ρ(i) for the i-th state qi.

Definition 2. Let Σ and S be two finite sets. A Σ-labelled S-tree is a pair T =
〈T, l〉, where T ⊆ S∗ is a non-empty set of finite words on S s.t. for any non-
empty word n = m · s in T with m ∈ S∗ and s ∈ S, the word m is also in T ;
and l : T → Σ is a labelling function.

The unwinding of a finite-state Kripke structure S = 〈Q,R, 	〉 from a state
q ∈ Q is the (finitely-branching) 2AP-labelled Q-tree TS(q) = 〈Execf(q), 	T 〉 with
	T (q0 · · · qi) = 	(qi). Note that TS(q) = 〈Execf(q), 	T 〉 can be seen as an (infinite-
state) Kripke structure where the set of states is Execf(q), labelled according
to 	T , and with transitions (m,m · s) for all m ∈ Execf(q) and s ∈ Q s.t. m · s ∈
Execf(q).

Definition 3. For P ⊆ AP, two (possibly infinite-state) Kripke structures S =
〈Q,R, 	〉 and S ′ = 〈Q′, R′, 	′〉 are P -equivalent (denoted by S ≡P S ′) whenever
Q = Q′, R = R′, and 	(q) ∩ P = 	′(q) ∩ P for any q ∈ Q.

2 I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ R.

180 A. Da Costa, F. Laroussinie, and N. Markey

In other terms, S ≡P S ′ if S ′ can be obtained from S by modifying the labelling
function of S for propositions in P .

2.2 CTL and Quantified Extensions

Definition 4. The syntax of QCTL∗ is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | Eϕpath | Aϕpath | ∃p. ϕstate

ϕpath, ψpath ::=ϕstate | ¬ϕpath | ϕpath ∨ψpath | Xϕpath | ϕpath Uψpath

where p ranges over AP. Formulas defined as ϕstate are called state-formulas, while
ϕpath defines path-formulas. Only state formulas are QCTL∗ formulas.

We use standard abbreviations as: ' = p∨¬ p, ⊥ = ¬', Fϕ = 'Uϕ, Gϕ =
¬F ¬ϕ, and ∀p · ϕ = ¬∃p · ¬ϕ. The logic QCTL is a fragment of QCTL∗ where
temporal modalities are under the immediate scope of path quantifiers:

Definition 5. The syntax of QCTL is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | ∃p. ϕstate |
Eϕstate Uψstate | Aϕstate Uψstate | EXϕstate | AXϕstate.

Standard definition of CTL∗ and CTL are obtained by removing the use of quan-
tification over atomic proposition (∃p.ϕ) in the formulas. In the following, ∃ and ∀
are called (proposition) quantifiers, while E and A are path quantifiers.

Given QCTL∗ (state) formulas ϕ and (ψi)i and atomic propositions (pi)i
appearing free in ϕ (i.e., not appearing as quantified propositions), we write
ϕ[(pi → ψi)i] (or ϕ[(ψi)i] when (pi)i are understood from the context) for the
formula obtained from ϕ by replacing each occurrence of pi with ψi. Given two
sublogics L1 and L2 of QCTL∗, we write L1[L2] = {ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈
L2}.

2.3 Structure- and Tree Semantics

Formulas of the form ∃p.ϕ can be interpreted in different manners (see [15,12,27]).
Here we consider two semantics: the structure semantics and the tree semantics.

Structure Semantics. Given a QCTL∗ state formula ϕ, a (possibly infinite-
state) Kripke structure S = 〈Q,R, 	〉 and a state q ∈ Q, we write S, q |=s ϕ to
denote that ϕ holds at q under the structure semantics. This is defined as for
CTL∗, with the following addition:

S, q |=s ∃p.ϕstate iff ∃S ′ ≡AP\{p} S s.t. S ′, q |=s ϕstate

Intuitively, ∃p.ϕ holds true at state q of structure S if it is possible to modify
the p-labelling of S in such a way that ϕ holds at q.

Quantified CTL: Expressiveness and Model Checking 181

Example 6. As an example, consider the formula selfloop = ∀z.(z⇒ EX z).
If a state q in S satisfies this formula, then the particular labelling in which
only q is labelled with z implies that q has to carry a self-loop. Conversely, any
state that carries a self-loop satisfies this formula (for the structure semantics).

Let ϕ be a QCTL∗ formula, and consider now the formula

uniq(ϕ) = EF (ϕ)∧∀z.
(
EF (ϕ∧ z)⇒ AG (ϕ⇒ z)

)
.

In order to satisfy such a formula, at least one ϕ-state must be reachable. Assume
now that two different such states q and q′ are reachable: then for the particular
labelling where only q is labelled with z, the second part of the formula fails to
hold. Hence uniq(ϕ) holds in a state (under the structure semantics) if, and only
if, exactly one reachable state satisfies ϕ.

Tree Semantics. The tree-semantics is obtained from the structure seman-
tics by seeing the execution tree as an infinite-state Kripke structure. We write
S, q |=t ϕ to denote that formula ϕ holds at q under the tree semantics. Formally,
seeing TS(q) as an infinite-state Kripke structure, we define:

S, q |=t ϕ iff TS(q), q |=s ϕ
Clearly enough, selfloop is always false under the tree semantics, while uniq(ϕ)
holds if, and only if, ϕ holds at only one node of the execution tree.

Example 7. Formula acyclic = AG
(
∃z. (z ∧ uniq(z)∧ AX AG ¬ z)

)
expresses

that all infinite paths (starting from the current state) are acyclic, which for
finite Kripke structures is always false under the structure semantics and always
true under the tree semantics.

Equivalences between QCTL∗ Formulas. We consider two kinds of equiva-
lences depending on the semantics we use. Two state formulas ϕ and ψ are said
s-equivalent (resp. t-equivalent), written ϕ ≡s ψ (resp. written ϕ ≡t ψ) if for
any finite-state Kripke structure S and any state q of S, it holds S, q |=s ϕ iff
S, q |=s ψ (resp. S, q |=t ϕ iff S, q |=t ψ). We write ϕ ≡s,t ψ when the equivalence
holds for both ≡s and ≡t.

Note that both equivalences ≡s and ≡t are substitutive, i.e., a subformula ψ
can be replaced with any equivalent formula ψ′ without changing the truth value
of the global formula. Formally, if ψ ≡s ψ′ (resp. ψ ≡t ψ′), we have Φ[ψ] ≡s Φ[ψ′]
(resp. Φ[ψ] ≡t Φ[ψ′]) for any QCTL∗ formula Φ.

2.4 Fragments of QCTL∗.

In the sequel, besides QCTL and QCTL∗, we study several interesting fragments.
The first one is the fragment of QCTL in prenex normal form, i.e., in which
propositional quantification must be external to the CTL formula. We write
EQCTL and EQCTL∗ for the corresponding logics3

3 Notice that the logics named EQCTL and EQCTL∗ defined in [15] are restrictions of
our prenex-normal-form logics where only existential quantification is allowed. They
correspond to our fragments EQ1CTL and EQ1CTL∗.

182 A. Da Costa, F. Laroussinie, and N. Markey

We also study the fragments of these logics with limited quantification. For
prenex-normal-form formulas, the fragments are defined as follows:

– for any ϕ ∈ CTL and any p ∈ AP, ∃p.ϕ is an EQ1CTL formula, and ∀p.ϕ is
in AQ1CTL;

– for any ϕ ∈ EQkCTL and any p ∈ AP, ∃p.ϕ is in EQkCTL and ∀p.ϕ is in
AQk+1CTL. Symmetrically, if ϕ ∈ AQkCTL, then ∃p.ϕ is in EQk+1CTL while
∀p.ϕ remains in AQkCTL.

Using similar ideas, we define fragments of QCTL and QCTL∗. Again, the
definition is inductive: Q1CTL is the logic CTL[EQ1CTL], and Qk+1CTL =
Q1CTL[QkCTL].

The corresponding extensions of CTL∗, which we respectively denote with
EQkCTL∗, AQkCTL∗ and QkCTL∗, are defined in a similar way.

Remark 8. Notice that EQkCTL and AQkCTL are (syntactically) included in
QkCTL, and EQkCTL∗ and AQkCTL∗ are fragments of QkCTL∗.

3 Expressiveness

In this section we present several results about the expressiveness of our logics
for both semantics. We show that QCTL, QCTL∗ and Monadic Second-Order
Logic are equally expressive. First we show that any QCTL formula is equiva-
lent to a formula in prenex normal form (which extends to QCTL∗ thanks to
Proposition 12).

3.1 Prenex Normal Form

By translating path quantification into propositional quantification, we can
extract propositional quantification out of purely temporal formulas: for in-
stance, EX (Q.ϕ) where Q is some propositional quantification is equivalent to

∃z.Q.
(
uniq(z)∧ EX (z ∧ϕ)

)
. This generalizes to full QCTL for both semantics:

Proposition 9. In both semantics, EQCTL and QCTL are equally expressive.

3.2 QCTL and Monadic Second-Order Logic

We briefly review Monadic Second-Order Logic (MSO) over trees and over finite
Kripke structures (i.e., labeled finite graphs). In both case, we use constant
monadic predicates Pa for a ∈ AP and a relation Edge either for the immediate
successor relation in an S-tree 〈T, l〉 or for the relation R in a finite KS 〈Q,R, 	〉.

MSO is built with first-order (or individual) variables for nodes or vertices
(denoted with lowercase letters x, y, ...), monadic second-order variables for sets
of nodes (denoted with uppercase letters X,Y, ...). Atomic formulas are of the
form x = y, Edge(x, y), x ∈ X , Pa(x). Formulas are constructed from atomic

Quantified CTL: Expressiveness and Model Checking 183

formulas using the Boolean connectives and the first- and second-order quanti-
fier ∃. We write ϕ(x1, ..., xn, X1, ..., Xk) to state that x1, ..., xn and X1, ..., Xk
may appear free (i.e. not within the scope of a quantifier) in ϕ. A closed for-
mula contains no free variable. We use the standard semantics for MSO, writ-
ing M, s1, ..., sn, S1, ..., Sk |= ϕ(x1, ..., xn, X1, ..., Xk) when ϕ holds on M when
si (resp. Sj) is assigned to the variable xi (resp. Xj) for i = 1, ..., n (resp.
j = 1, ..., k).

In the following, we compare the expressiveness of our logics with MSO over
the finite Kripke structures (the structure semantics) and the execution trees
corresponding to a finite Kripke structure (tree semantics). First note that MSO
formulas may express properties directly over trees or graphs, while our logics are
interpreted over states of these structures. Therefore we use MSO formulas with
one free variable x, which represents the state where the formula is evaluated.
Moreover, we restrict the evaluation ofMSO formulas to the reachable part of the
model from the given state. This last requirement makes an important difference
for the structure semantics, since MSO can express that a graph is connected.

Formally, for the tree semantics, we say that ϕ(x) ∈ MSO is t-equivalent
to some QCTL∗ formula ψ (written ϕ(x) ≡t ψ) when for any finite Kripke
structure S and any state q ∈ TS , it holds TS(q), q |= ϕ(x) iff TS(q), q |= ψ.
Similarly, for the structure semantics: ϕ(x) is s-equivalent to ψ (written ϕ(x) ≡s
ψ) iff for any finite Kripke structure S and any state q ∈ S, it holds Sq, q |= ϕ(x)
iff Sq, q |= ψ, where Sq is the reachable part of S from q. For these definitions,
we have:

Proposition 10. Under both semantics, MSO and QCTL are equally expressive.

Sketch of proof. One inclusion is straightforward: CTL is easily translated into
MSO, and propositional quantification (for both semantics) can be encoded using
second-order quantification. Conversely, every MSO formula Φ(x) can be trans-

lated into an equivalent QCTL formula Φ̂. QCTL propositional quantifications are
used to encode both first-order and second-order quantification in Φ (but in the
first-order case, we require that only one state is labeled by the dedicated propo-
sition). Then an MSO subformula of the form xi ∈ Xj is rewritten in QCTL
as EF (pxi ∧ pXj) where pxi (resp. pXj) is the proposition associated with xi
(resp. Xj). A formula of the form Edge(xi, xj) is rewritten as EF (pxi ∧ EX pxj),
and xi = xj is replaced by EF (pxi ∧ pxj). Other cases use the same ideas. ��

Remark 11. One can also notice that it is easy to express fixpoint operators
with QCTL in both semantics, thus μ-calculus can be translated into QCTL.
This provides another proof of the previous result for the tree semantics, since
the μ-calculus extended with counting capabilities has the same expressiveness
as MSO on trees [20].

3.3 QCTL and QCTL∗

Finally, we show that QCTL∗ and QCTL are equally expressive for both semantics.
The main idea of the proof is an inductive replacement of quantified subformulas
with extra atomic propositions.

184 A. Da Costa, F. Laroussinie, and N. Markey

Proposition 12. In the tree and structure semantics, every QCTL∗ formula is
equivalent to some QCTL formula.

Proof. This was shown in [12] for the tree semantic. We give another translation,
which is correct for both semantics. Consider a QCTL∗ formula Φ, and write k
for the number of subformulas of Φ that are not in QCTL. If k = 0, Φ already
belongs to QCTL. Otherwise let ψ be one of the inner-most Φ-subformulas in
QCTL∗ \QCTL. Let (αi)1≤i≤m be the largest ψ-subformulas belonging to QCTL.
These are state formulas, so that ψ is equivalent (for both semantics) to:

∃p1...∃pm.
(
ψ[(αi ← pi)i=1,...,m]∧

∧
i=1,...,m

AG (pi ⇔ αi)
)

Let Ω be ψ[(αi ← pi)i=1,...,m]. Then Ω is a CTL∗ formula: every subformula
of the form ∃p.ξ in ψ appears in some QCTL formula αi, since ψ is one of the
smallest QCTL∗\QCTL subformula. As every CTL∗ formula is equivalent to some

μ-calculus formula, Ω is equivalent to some QCTL formula Ω̃ (see Remark 11).
Hence

ψ ≡s,t ∃p1...∃pm.
(
Ω̃ ∧

∧
i=1,...,m

AG (pi ⇔ αi)
)

Now, consider the formula obtained from Φ by replacing ψ with the right-hand-
side formula above. This formula is equivalent to Φ and has at most k − 1 sub-
formulas in QCTL∗ \ QCTL, so that the induction hypothesis applies. ��
From Propositions 9, 10 and 12, we get:

Corollary 13. In both semantics, EQCTL, QCTL and QCTL∗ and MSO are
equally expressive.

Remark 14. In [12], French considers a variant of QCTL∗ (which we call
FQCTL∗), with propositional quantification within path formulas: ∃p. ϕpath is a
valid path formula, meaning that ϕpath holds along ρ after modifying the labelling
with p:

S, ρ |=s ∃p.ϕpath iff ∃S ′ ≡AP\{p} S s.t. S ′, ρ |=s ϕpath.

For the tree semantics, QCTL is as expressive as FQCTL∗ [12]. For the structure
semantics, we show that FQCTL∗ is strictly more expressive than MSO. Formula

EG
(
∃z.∀z′.[uniq(z)∧ uniq(z′)∧ z ∧¬ z′]⇒X (¬ zU z′)

)
.

expresses the existence of an (infinite) path along which, between any two oc-
currences of the same state, all the other reachable states will be visited. This
precisely characterizes the existence of a Hamilton cycle. This is known not to
be expressible in MSO [9, Cor. 6.3.5], it can be expressed in Guarded Second
Order Logic GSO (also called MS2 in [6]), in which quantification over sets of
edges is allowed (in addition to quantification over sets of states). Still, FQCTL∗

Quantified CTL: Expressiveness and Model Checking 185

is strictly more expressive than GSO, as it is easy to modify the above formula
to express the existence of Euler cycles:

EG
(
∃x.∃y.∀x′.∀y′.

[
tr(x, y)∧ tr(x′, y′)∧ next tr(x, y)∧¬ next tr(x′, y′)

]
⇒X (¬ next tr(x, y)U next tr(x′, y′))

)
where tr(x, y) = uniq(x)∧ uniq(y)∧ EF (x∧X y) states that x and y mark the
source and target of a reachable transition, and next tr(x, y) = x∧X y states
that the next transition along the current path jumps from x to y.

Proposition 15. Under the structure semantics, FQCTL∗ is more expressive
than QCTL∗ and MSO.

Still, FQCTL∗ model checking (see next section) is decidable: for the tree seman-
tics, it suffices to translate FQCTL∗ to QCTL [12]. The problem in the structure
semantics can then be encoded in the tree semantics: we first assume that each
state of the input Kripke structure S is labelled with its name (so that any
two different states can be distinguished). Then any quantification ∃p.ϕ in the
structure semantics is considered in the tree semantics, with the additional re-
quirement that any two copies of the same state receive the same p-labelling.

4 QCTL Model Checking

We now consider the model-checking problem for QCTL∗ and its fragments under
both semantics: given a finite Kripke structure S, a state q and a formula4 ϕ,
is ϕ satisfied in state q in S under the structure (resp. tree) semantics? Some
results already exist, e.g. for EQ1CTL and EQ1CTL∗ under both semantics [15].
Hardness results for EQ2CTL and EQ2CTL∗ under the tree semantics can be
found in [16]. Here we extend these results to all the fragments of QCTL∗ we
have defined. We also characterize the model- and formula-complexities [31] of
model-checking for these fragments.

4.1 Model Checking for the Structure Semantics

Formulas in Prenex Normal Form. Prenex-normal-form formulas are (tech-
nically) easy to handle: a formula in EQkCTL can be model-checked by non-
determinisitically guessing a labelling and applying a model-checking procedure
for AQk−1CTL. We easily derive the following results.

Theorem 16. Under the structure semantics, model checking EQkCTL is ΣP
k -

complete, model checking AQkCTL is ΠP
k -complete, and model checking EQkCTL∗,

AQkCTL∗, EQCTL and EQCTL∗ is PSPACE-complete.

4 For standard notions of size for S and ϕ, unless specified otherwise (see Theorem 18).

186 A. Da Costa, F. Laroussinie, and N. Markey

General Case. If we drop the prenex-normal-form restriction, we get

Theorem 17. For the structure semantics, model checking is ΔP
k+1[O(log n)]-

complete for QkCTL, and PSPACE-complete for QkCTL∗, QCTL and QCTL∗.

Sketch of proof. The algorithm in ΔP
k+1[O(log n)] is obtained by first noticing

that a formula ϕ ∈ Qk+1CTL can be written as Φ[(qi → ∃Pi. ψi)i] with Φ being
a CTL formula involving fresh atomic propositions qi, and ∃Pi. ψi (with ∃Pi
denoting a sequence of existential quantifications) are subformulas of ϕ with
ψi ∈ QkCTL. The algorithm then consists in asking independant oracles for the
sets of states satisfying ∃Pi. ψi, and applying a CTL model-checking algorithm.
Hardness is proved by encoding PARITY (ΣP

k), which aims at deciding whether
the number of positive instances of ΣP

k in a given set of instances is even [13]. ��

Formula- and Program-Complexity. Most of the proofs above can be
adapted to use a fixed formula or a fixed model. One notable exception is QCTL:
when model checking a fixed formula of QCTL (hence with fixed alternation
depth), there is no hope of being able to encode arbitrary alternation: the pro-
gram complexity of QCTL model checking thus lies in the small gap between PH
and PSPACE (unless the polynomial-time hierarchy collapses).

Theorem 18. Under the structure semantics, the formula-complexity (i.e.,
when the model is fixed) of model checking is ΣP

k -complete for EQkCTL, ΠP
k -

complete for AQkCTL; it is ΔP
k+1[O(log n)]-complete for QkCTL when considering

the DAG-size of the formula. It is PSPACE-complete for EQkCTL∗, AQkCTL∗,
QkCTL∗, EQCTL, QCTL, EQCTL∗, and QCTL∗.

The program-complexity (i.e., when the formula is fixed) of model check-
ing is ΣP

k -complete for EQkCTL and EQkCTL∗, ΠP
k -complete for AQkCTL and

AQkCTL∗, and ΔP
k+1[O(log n)]-complete for QkCTL and QkCTL∗ (for positive k).

It is PH-hard but not in PH (unless the polynomial-time hierarchy collapses), and
in PSPACE but not PSPACE-hard for EQCTL, QCTL, EQCTL∗ and QCTL∗.

4.2 Model Checking for the Tree Semantics

Theorem 19. Model checking EQkCTL, AQkCTL and QkCTL under the tree
semantics is k-EXPTIME-complete (for positive k).

Sketch of proof. Since EQkCTL and AQkCTL are dual and contained in QkCTL,
it suffices to prove hardness for EQkCTL and membership for QkCTL. We briefly
sketch the proof here.

� Hardness in k-EXPTIME. The reduction uses the ideas of [16,29]: we encode an
alternating Turing machine M whose tape has size k-exponential. An execution
of M on an input word y of length n is then a tree. Our reduction consists in
building a Kripke structure K and an EQkCTL formula ϕ such that ϕ holds true
in K (for the tree semantics) iff M accepts y. The encoding is depicted on Fig. 1.

Quantified CTL: Expressiveness and Model Checking 187

The main tool in this proof is a set of (polynomial-size) formulas of EQkCTL
that are able to relate two states that are at distance k-exponential. This is used
in our reduction to ensure that the content of one cell of the Turing machine is
preserved from one configuration to the next one, unless the tape head is around.

Our set of formulas will ensure the following (see Fig. 2): given a tree labeled
with propositions s and t (among others), both s and t appear exactly once along
each branch, and the distance between them is F (k, n), defined as

F (0, n) = n F (k + 1, n) = F (k, n) · 2F (k,n).

The formulas for k = 0 are easy to write. Given a formula for level k, we build the
formula for level k+1 as follows: we add a new proposition r, which is required
to hold at s and t, and at distance F (k, n) from each other inbetween. We then
use existential quantification over another proposition in order to implement a
counter enforcing that there are exactly 2F (k,n) occurrences of r between s and t.

1
1
0
0

F (k, n)

0
1
0
0

1
1
0
0

0
1
0
0

0
0
0
0

1
0
0
0

Fig. 1. A run ofM

s

t

F (k, n)
s

t

F (k, n)

Fig. 2. Chunks of height F (k, n)

� Membership in k-EXPTIME. Our algorithm for QkCTL model checking uses
alternating parity tree automata[21,30]. The construction is inductive: we be-
gin with building automata for the innermost CTL formulas [18], and then use
projection to encode existential quantification. This requires turning the alter-
nating automata into non-deterministic ones, which comes with an exponential
blowup [22]. We apply this procedure recursively, until the last propositional
quantifier. We end up with a non-deterministic parity tree automaton with size
k-exponential and index (k − 1)-exponential; emptiness is then solved in time
k-exponential [17]. We apply a CTL model-checking algorithm to handle the pos-
sible outermost CTL operators. This whole algorithm runs in k-EXPTIME. ��

Theorem 20. Model checking EQkCTL∗, AQkCTL∗ and QkCTL∗ under the tree
semantics are (k+1)-EXPTIME-complete (for positive k).

Proof. The proof techniques are the same as in the previous proof. Member-
ship requires that we build an automaton for a CTL∗ formula, which entails
an additional exponential blowup. Hardness is proven by using CTL∗ to have
yardstickn0 (s, t) enforce that the distance between s and t is 2n. ��

188 A. Da Costa, F. Laroussinie, and N. Markey

Formula- and Program-Complexity. The reductions above can be made to
work with a fixed model. When fixing the formula, the problem becomes much
easier (in terms of theoretical complexity):

Theorem 21. Under the tree semantics, the formula-complexity of model-
checking is k-EXPTIME-complete for EQkCTL, QkCTL, EQkCTL∗ and QkCTL∗

with k ≥ 1. It is non-elementary for EQCTL, QCTL, EQCTL∗ and QCTL∗.
The program-complexity of model-checking is PTIME-complete for all those

fragments of QCTL∗.

5 Using QCTL for Specifying Multi-Agent Systems

Extending CTL with propositional quantification has already found several ap-
plications for reasoning about complex systems. In this section, we show how a
model-checking problem involving a multi-agent system (typically a concurrent
game) and a property written in ATLsc (see below) is logspace-reducible to a
QCTL model-checking problem.

5.1 Basic Definitions

Definition 22 ([1]). A Concurrent Game Structure (CGS) C is a 7-tuple
〈Q,R, 	,Agt,M,Mov,Edge〉 where: 〈Q,R, 	〉 is a Kripke structure, Agt =
{A1, ..., Ap} is a finite set of agents, M is a non-empty set of moves, Mov : Q×
Agt → P(M)�{∅} defines the set of available moves of each agent in each state,
and Edge : Q×MAgt → R is a transition table associating, with each state q and
each set of moves of the agents, the resulting transition departing from q.

The size of a CGS C is |Q|+|Edge|. For a state q ∈ Q, we write Next(q) for the set
of all transitions corresponding to possible moves from q, and Next(q, Aj ,mj),
with mj ∈ Mov(q, Aj), for the restriction of Next(q) to possible transitions from q
when player Aj plays move mj . We extend Mov and Next to coalitions (i.e., sets
of agents) in the natural way. A path in C is a path in its underlying Kripke
structure. For a finite prefix π of a path, we write last(π) = πi for its last state.

A strategy for some player Ai ∈ Agt is a function fi that maps any history to
a possible move for Ai, i.e., satisfying fi(π) ∈ Mov(last(π), Ai). A strategy for
a coalition A is a mapping assigning a strategy to each agent in A. The set of
strategies for A is denoted Strat(A). The domain dom(FA) of FA ∈ Strat(A) is A.
Given a coalition B, the strategy (FA)|B (resp. (FA)�B) denotes the restriction
of FA to the coalition A ∩ B (resp. A � B). Given two strategies F ∈ Strat(A)
and F ′ ∈ Strat(B), we define F ◦F ′ ∈ Strat(A

⋃
B) as (F ◦F ′)|Aj

(ρ) = F|Aj
(ρ)

(resp. F ′|Aj
(ρ)) if Aj ∈ A (resp. Aj ∈ B � A).

Let ρ be a history. A strategy FA = (fj)Aj∈A for some coalition A induces a
set of paths from ρ, called the outcomes of FA after ρ, and denoted Out(ρ, FA):
an infinite path π = ρ · q1q2 . . . is in Out(ρ, FA) iff, writing q0 = last(ρ), for
all i ≥ 0 there is a set of moves (mik)Ak∈Agt such that mik ∈ Mov(qi, Ak) for
all Ak ∈ Agt, mik = fAk

(π|ρ|+i) if Ak ∈ A, and qi+1 ∈ Next(qi,Agt, (m
i
k)Ak∈Agt).

We now introduce the extension of ATL with strategy contexts [2,7]:

Quantified CTL: Expressiveness and Model Checking 189

Definition 23. The syntax of ATLsc is defined by the following grammar (where
p ranges over AP and A over 2Agt):

ϕstate, ψstate ::=p | ¬ϕstate | ϕstate ∨ψstate | ·〉A〈·ϕstate | 〈·A·〉ϕpath

ϕpath, ψpath ::=Xϕstate | ϕstate Uψstate | ϕstate Wψstate.

That a formula ϕ in ATLsc is satisfied by a state q of a CGS C under a strategy
context F ∈ Strat(B) (for some coalition B), denoted C, q |=F ϕ, is defined as
follows (omitting Boolean operators and path modalities):

C, q |=F ·〉A〈·ϕstate iff C, q |=F�A ϕstate

C, q |=F 〈·A·〉ϕpath iff ∃FA ∈ Strat(A).∀ρ′ ∈ Out(q, FA ◦F). C, ρ′ |=FA ◦F ϕpath

In the following we will use 〈·A·〉ϕstate as a shorthand for 〈·A·〉⊥Uϕstate.

5.2 From ATLsc to QCTL∗ and QCTL Model Checking

Let C = 〈Q,R, 	,Agt,M,Mov,Edge〉 be a CGS, andM be {m1, . . . ,mk}. We con-
sider the following sets of fresh atomic propositions: PQ = {pq | q ∈ Q},
PjM = {mj1, . . . ,m

j
k} for every Aj ∈ Agt, and PM =

⋃
Aj∈Agt P

j
M.

Let SC be the Kripke structure 〈Q,R, 	+〉 where for any state q, we have:
	+(q) = 	(q) ∪ {pq}. SC is the Kripke structure underlying C, in which every
state q is labelled with its own atomic proposition pq. In the following, every
labelling function we consider coincides with 	+ on AP\PM.

A strategy for an agent Aj can be seen as a function labelling the execution

tree of SC with PjM. More precisely, a strategy for Aj is a labelling function

fj : Exec
f() → PjM. A memoryless strategy for Aj corresponds to a labelling

function fj : Q → PjM, i.e., a labelling of the Kripke structure SC .
Let F ∈ Strat(C) be a strategy context and Φ ∈ ATLsc. We reduce the question

whether C, q |=F Φ to a model-checking instance for QCTL∗ over SC . For this,

we define a QCTL∗ formula Φ̂C inductively; for non-temporal formulas,

·̂〉A〈·ϕ
C
= ϕ̂

C�A
ϕ̂∧ψ

C
= ϕ̂

C
∧ ψ̂

C ¬̂ψ
C
= ¬ ϕ̂

C
P̂C = P

For a formula of the form 〈·A·〉Xϕ with A = {Aj1 , . . . , Ajl}, we let:

̂〈·A·〉Xϕ
C
= ∃mj11 ...mj1k ...m

jl
1 ...m

jl
k .
∧
Aj∈A

AG (Φstrat(Aj))∧ A
(
Φ
[A∪C]
out ⇒X ϕ̂C∪A

)

where: Φstrat(Aj) =
∨
q∈Q

(
pq ∧

∨
mi∈Mov(q,Aj)

(mji ∧
∧
l �=i ¬mjl)

)
Φ
[A]
out = G

∧
q∈Q

m∈Mov(q,A)

(
(pq ∧Pm)⇒X

(∨
q′∈Next(q,A,m)

pq′
))

190 A. Da Costa, F. Laroussinie, and N. Markey

where m is a move (mj)Aj∈A ∈ Mov(q, A) for A and Pm is the propositional
formula

∧
Aj∈Amj characterizing m. Formula Φstrat(Aj) ensures that, the la-

belling of propositions mji s describes a feasible strategy for Aj . Formula Φ
[A]
out

characterizes the outcomes of the strategy for A that is described by the atomic

propositions in the model. Note that Φ
[A]
out is based on the transition table Edge

of C. Then:

Theorem 24. Let q be a state in C. Let Φ be an ATLsc formula and F be a
strategy context for some coalition C. Let T ′ be the execution tree TSC (q) with
a labelling function 	′ s.t. for every π ∈ Execf(q) of length i and any Aj ∈ C,

	′(π) ∩ PjM = mji iff F (π)|Aj
= mi. Then C, q |=F Φ iff T ′, q |= Φ̂C .

We get a non-elementary model-checking algorithm for ATLsc, similar to [7].

Remark 25. The translation above assumes the tree semantics. However, it also
makes sense in the structure semantics, where quantification then corresponds
to the selection of a memoryless strategy. A variant of Theorem 24 can be stated
for the structure semantics for QCTL and memoryless strategies for ATLsc.

Remark 26. Our reduction above is into QCTL∗ but we can use Proposition 12 to
get an equivalent QCTL formula. This may increase the quantifier height of the
formula. For the tree semantics, a direct translation into QCTL exists: instead of

using Φ
[A]
out, we can use an extra atomic proposition pout for labelling outcomes.

This yields a QCTL formula with the same quantifier height.

Using a converse translation, from QCTL to ATLsc, we can prove:

Theorem 27. Model-checking the fragment of ATLsc with at most k non-trivial
nested strategy quantifiers is k-EXPTIME-complete.

Strategy logic (SL) [4,19] is another temporal logic for non-zero-sum games,
which has explicit first-order quantification over strategies. Our results above
can be adapted to SL, correcting a wrong claim in [19, Theorem 4.2]:

Theorem 28. The model-checking problems for QCTL, ATLsc and SL are inter-
reducible (in logarithmic space). They all are non-elementary.

6 Conclusions and Future Works

We have proposed a complete picture of CTL extended with propositional quan-
tifiers w.r.t. expressiveness and model-checking. On the expressiveness side,
we proved how adding quantification on top of CTL fills in the gap between
temporal logics and monadic second-order logic. As for model checking, we ex-
haustively characterized the complexity of QCTL and its variants, completing
the earlier results from [15,12]. Finally, we provided an application (which was
our original motivation) of QCTL for reasonning about multi-agent systems. Sat-
isfiability of fragments of QCTL∗ is part of our future work.

Quantified CTL: Expressiveness and Model Checking 191

References

[1] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
J. ACM 49(5), 672–713 (2002)

[2] Brihaye, T., Da Costa, A., Laroussinie, F., Markey, N.: ATL with Strategy Con-
texts and Bounded Memory. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS,
vol. 5407, pp. 92–106. Springer, Heidelberg (2008)

[3] Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 274–287. Springer, Heidelberg (1999)

[4] Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy Logic. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer,
Heidelberg (2007)

[5] Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
using Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs
1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[6] Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic,
a Language Theoretic Approach. Cambridge University Press (2011)

[7] Da Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expres-
siveness and model checking. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 120–132. LZI
(2010)

[8] Da Costa, A., Laroussinie, F., Markey, N.: Quantified CTL: expressiveness
and model checking. Research Report LSV-12-02, Laboratoire Spécification et
Vérification, ENS Cachan, France (2012)

[9] Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer (1995)

[10] Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

[11] Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Inf.& Cont. 61(3),
175–201 (1984)

[12] French, T.: Decidability of Quantifed Propositional Branching Time Logics. In:
Stumptner, M., Corbett, D.R., Brooks, M. (eds.) AI 2001. LNCS (LNAI), vol. 2256,
pp. 165–176. Springer, Heidelberg (2001)

[13] Gottlob, G.: NP trees and Carnap’s modal logic. J. ACM 42(2), 421–457 (1995)

[14] Kesten, Y., Pnueli, A.: A complete proof systems for QPTL. In: LICS 1995,
pp. 2–12. IEEE Comp. Soc. Press (1995)

[15] Kupferman, O.: Augmenting Branching Temporal Logics with Existential Quan-
tification over Atomic Propositions. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939,
pp. 325–338. Springer, Heidelberg (1995)

[16] Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open Systems in
Reactive Environments: Control and Synthesis. In: Palamidessi, C. (ed.) CONCUR
2000. LNCS, vol. 1877, pp. 92–107. Springer, Heidelberg (2000)

[17] Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-
ness. In: STOC 1998, pp. 224–233. ACM Press (1998)

[18] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model-checking. J. ACM 47(2), 312–360 (2000)

[19] Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: FSTTCS
2010. LIPIcs, vol. 8, pp. 133–144. LZI (2010)

[20] Moller, F., Rabinovich, A.: Counting on CTL*: on the expressive power of monadic
path logic. Inf.& Comp. 184(1), 147–159 (2003)

192 A. Da Costa, F. Laroussinie, and N. Markey

[21] Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. TCS 54(2-3),
267–276 (1987)

[22] Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra. TCS 141(1-2), 69–107 (1995)

[23] Patthak, A.C., Bhattacharya, I., Dasgupta, A., Dasgupta, P., Chakrabarti, P.P.:
Quantified computation tree logic. IPL 82(3), 123–129 (2002)

[24] Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Ex-
pressive Constraints on Strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T.,
Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidel-
berg (2007)

[25] Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE
Comp. Soc. Press (1977)

[26] Queille, J.-P., Sifakis, J.: Specification and Verification of Concurrent Systems
in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

[27] Riedweg, S., Pinchinat, S.: Quantified Mu-Calculus for Control Synthesis. In:
Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 642–651. Springer,
Heidelberg (2003)

[28] Sistla, A.P.: Theoretical Issues in the Design and Verification of Distributed Sys-
tems. PhD thesis, Harvard University, Cambridge, Massachussets, USA (1983)

[29] Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logics. TCS 49, 217–237 (1987)

[30] Thomas, W.: Languages, automata and logics. In: Handbook of Formal Languages,
pp. 389–455. Springer (1997)

[31] Vardi, M.Y.: The complexity of relational query languages. In: STOC 1982,
pp. 137–146. ACM Press (1982)

[32] Wang, F., Huang, C.-H., Yu, F.: A Temporal Logic for the Interaction of Strategies.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 466–481.
Springer, Heidelberg (2011)

What Makes ATL∗ Decidable?
A Decidable Fragment of Strategy Logic

Fabio Mogavero1,�, Aniello Murano1,��, Giuseppe Perelli1, and Moshe Y. Vardi2,���

1 Università degli Studi di Napoli "Federico II", Napoli, Italy
2 Rice University, Houston, TX-USA

{mogavero,murano}@na.infn.it,
perelli.gi@gmail.com, vardi@cs.rice.edu

Abstract. Strategy Logic (SL, for short) has been recently introduced by
Mogavero, Murano, and Vardi as a formalism for reasoning explicitly about strate-
gies, as first-order objects, in multi-agent concurrent games. This logic turns out to
be very powerful, strictly subsuming all major previously studied modal logics for
strategic reasoning, including ATL, ATL∗, and the like. The price that one has to
pay for the expressiveness of SL is the lack of important model-theoretic properties
and an increased complexity of decision problems. In particular, SL does not have
the bounded-tree model property and the related satisfiability problem is highly un-
decidable while for ATL∗ it is 2EXPTIME-COMPLETE. An obvious question that
arises is then what makes ATL∗ decidable. Understanding this should enable us to
identify decidable fragments of SL. We focus, in this work, on the limitation of
ATL∗ to allow only one temporal goal for each strategic assertion and study the
fragment of SL with the same restriction. Specifically, we introduce and study the
syntactic fragment One-Goal Strategy Logic (SL[1G], for short), which consists of
formulas in prenex normal form having a single temporal goal at a time for every
strategy quantification of agents. We show that SL[1G] is strictly more expressive
than ATL∗. Our main result is that SL[1G] has the bounded tree-model property
and its satisfiability problem is 2EXPTIME-COMPLETE, as it is for ATL∗.

1 Introduction

In open-system verification [4,14], an important area of research is the study of modal
logics for strategic reasoning in the setting of multi-agent games [2,11,22]. An impor-
tant contribution in this field has been the development of Alternating-Time Temporal
Logic (ATL∗, for short), introduced by Alur, Henzinger, and Kupferman [2]. ATL∗ al-
lows reasoning about strategic behavior of agents with temporal goals. Formally, it is
obtained as a generalization of the branching-time temporal logic CTL∗ [6], where the
path quantifiers there exists “E” and for all “A” are replaced with strategic modalities of
the form “〈〈A〉〉” and “[[A]]”, for a set A of agents. Such strategic modalities are used to
express cooperation and competition among agents in order to achieve certain temporal

� Part of this research was done while visiting the Rice University.
�� Work supported in part by University of Naples Federico II under the F.A.R.O. project.

��� Work supported in part by NSF grants CNS 1049862 and CCF-1139011, by BSF grant
9800096, and by gift from Intel.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 193–208, 2012.
© Springer-Verlag Berlin Heidelberg 2012

194 F. Mogavero et al.

goals. In particular, these modalities express selective quantifications over those paths
that are the results of infinite games between a coalition and its complement. ATL∗

formulas are interpreted over concurrent game structures (CGS, for short) [2], which
model interacting processes. Given a CGS G and a set A of agents, the ATL∗ formula
〈〈A〉〉ψ holds at a state s of G if there is a set of strategies for the agents in A such
that, no matter which strategy is executed by the agents not in A, the resulting outcome
of the interaction in G satisfies ψ at s. Several decision problems have been investi-
gated about ATL∗; both its model-checking and satisfiability problems are decidable in
2EXPTIME [26].

Despite its powerful expressiveness, ATL∗ suffers from the strong limitation that
strategies are treated only implicitly through modalities that refer to games between
competing coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman
introduced Strategy Logic (CHP-SL, for short) [3], a logic that treats strategies in
two-player turn-based games as first-order objects. The explicit treatment of strate-
gies in this logic allows the expression of many properties not expressible in ATL∗.
Although the model-checking problem of CHP-SL is known to be decidable, with
a non-elementary upper bound, it is not known if the satisfiability problem is decid-
able [3]. While the basic idea exploited in [3] of explicitly quantify over strategies is
powerful and useful [8], CHP-SL still suffers from various limitations. In particular, it
is limited to two-player turn-based games. Furthermore, CHP-SL does not allow dif-
ferent players to share the same strategy, suggesting that strategies have yet to become
truly first-class objects in this logic. For example, it is impossible to describe the classic
strategy-stealing argument of combinatorial games such as Hex and the like [1].

These considerations led us to introduce a new Strategy Logic, denoted SL, as a
more general framework than CHP-SL, for explicit reasoning about strategies in multi-
agent concurrent games [18]. Syntactically, SL extends the linear-time temporal-logic
LTL [24] by means of strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], as
well as agent binding (a, x), where a is an agent and x a variable. Intuitively, these ele-
ments can be read as “there exists a strategy x”, “for all strategies x”, and “bind agent
a to the strategy associated with x”, respectively. For example, in a CGS G with agents
α, β, and γ, consider the property “α and β have a common strategy to avoid a failure”.
This property can be expressed by the SL formula 〈〈x〉〉[[y]](α, x)(β, x)(γ, y)(G ¬fail).
The variable x is used to select a strategy for the agents α and β, while y is used to
select another one for agent γ such that their composition, after the binding, results in a
play where fail is never met. Additional material can be found in [16].

The price that one has to pay for the expressiveness of SL w.r.t. ATL∗ is the lack of
important model-theoretic properties and an increased complexity of decision problems.
In particular, in [18], it was shown that SL does not have the bounded-tree model property
and the related satisfiability problem is highly undecidable, precisely,Σ1

1 -HARD. Hence,
a natural question that arises is what makes ATL∗ decidable. Understanding the reasons
for the decidability of ATL∗ should enable us to identify decidable fragments of SL.

In this work, we focus on the limitation of ATL∗ to allow only one temporal goal
for each strategic assertion and study the fragment of SL with the same restriction.
Specifically, we introduce the syntactic fragment One-Goal Strategy Logic (SL[1G], for
short), which consists of formulas in a special prenex normal form having a single

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 195

temporal goal at a time, for every strategy quantification of agents. This means that ev-
ery temporal formula ψ is prefixed with a quantification-binding prefix that quantifies
over a tuple of strategies and bind all agents to strategies. It is worth noting that SL[1G]
still retains the ability to alternate strategy quantifiers as it is for SL, which is not al-
lowed in ATL∗. Roughly speaking, SL[1G] is ATL∗ augmented with this no-limitation
on quantifier alternation and with the possibility to force agents to share strategies. This
makes SL[1G] strictly more expressive and much more flexible than ATL∗, as is shown
in [16]. With SL[1G] one can express, for example, visibility constraints on strategies
among agents, i.e., only some agents from a coalition have knowledge of the strategies
taken by those in the opponent coalition, via the quantifier alternation. Also, by means
of strategy sharing, one can describe the fact that, in the Hex game, the strategy-stealing
argument does not let the player who adopts it to win. Observe that these properties can-
not be expressed neither in ATL∗ nor in CHP-SL.

In this paper, we show that the satisfiability problem for SL[1G] is also 2EXPTIME-
COMPLETE. Thus, in spite of its expressiveness, SL[1G]has the same computational com-
plexities as ATL∗. From this result, we conclude that the one-goal restriction is the key
aspect to the elementary complexity of ATL∗, while the arbitrary quantifier alternation
does not let the complexity of the satisfiability problem to rise to non-elementary, as it
usually happens in other logics, such as MSOL [25]. In [16], we also introduce SL[NG]
and SL[BG] as two additional fragments of SL that strictly include SL[1G]. In SL[NG] we
allow writing nesting and boolean combinations of temporal goals, while in SL[BG] we
forbid the nesting, but still allow the boolean combinations. Both fragments do not sat-
isfy important model-theoretic properties and have an highly undecidable satisfiability
problem. Hence, at the present time, SL[1G] is the most general fragment of SL that sub-
sumes ATL∗ while keeping its positive model-theoretic and computational properties.

To achieve our main result, we use a fundamental property of the semantics of SL[1G]
called elementariness, which allows us to simplify reasoning about strategies by reduc-
ing it to a set of reasonings about actions. This intrinsic characteristic of SL[1G] means
that, to choose an existential strategy, we do not need to know the entire structure of
universally-quantified strategies, as it is the case for SL, but only their values on the
histories of interest. Technically, to formally describe this property, we make use of the
machinery of dependence maps, which is introduced to define a Skolemization proce-
dure for SL, inspired by the one in first-order logic. Using elementariness, we show that
SL[1G] satisfies the bounded tree-model property. This allows us to efficiently make use
of a tree automata-theoretic approach [27,29] to solve the satisfiability problem. Given
a formula ϕ, we build an alternating co-Büchi tree automaton [13,21], whose size is
only exponential in the size of ϕ, accepting all bounded-branching tree models of the
formula. Then, together with the complexity of automata-nonemptiness checking, we
get that the satisfiability procedure for SL[1G] is 2EXPTIME. For completeness, we re-
port that in [16] we already prove that the model-checking problem for SL[1G] remains
2EXPTIME-COMPLETE, while it is non-elementarily decidable for SL.

Related works. Several works have focused on extensions of ATL∗ to incorporate more
powerful strategic constructs. Among them, we recall the Alternating-TimeμCALCULUS

(AμCALCULUS, for short) [2], Game Logic (GL, for short) [2], Quantified Decision
Modality μCALCULUS (QDμ, for short) [23], Coordination Logic (CL, for short) [7],

196 F. Mogavero et al.

and some other extensions considered in [5], [19], and [30]. AμCALCULUS and QDμ
are intrinsically different from SL[1G] (as well as from CHP-SL and ATL∗) as they are
obtained by extending the propositional μ-calculus [12] with strategic modalities. CL is
similar to QDμ, but with LTL temporal operators instead of explicit fixpoint constructors.
GL and CHP-SL are orthogonal to SL[1G]. Indeed, they both use more than a tempo-
ral goal, GL has quantifier alternation fixed to one, and CHP-SL only works for two
agents.

Due to lack of space, proofs are reported in [17]. Also, see [16] for more on SL[1G].

2 Preliminaries

A concurrent game structure (CGS, for short) [2] is a tuple G � 〈AP,Ag,Ac, St, λ, τ,
s0〉, where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac
and St are enumerable non-empty sets of actions and states, s0 ∈ St is a designated
initial state, and λ : St → 2AP is a labeling function that maps each state to the set
of atomic propositions true in that state. Let Dc � AcAg be the set of decisions, i.e.,
functions from Ag to Ac representing the choices of an action for each agent. Then,
τ : St × Dc → St is a transition function mapping a pair of a state and a decision to
a state. If the set of actions is finite, i.e., b = |Ac| < ω, we say that G is b-bounded, or
simply bounded. If both the sets of actions and states are finite, we say that G is finite.

A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states
ρ ∈ St∗ (resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[(resp., i ∈ N), there exists a
decision d ∈ Dc such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). A track ρ
is non-trivial if |ρ| > 0, i.e., ρ �= ε. Trk ⊆ St+ (resp., Pth ⊆ Stω) denotes the set of
all non-trivial tracks (resp., paths). Moreover, Trk(s) � {ρ ∈ Trk : fst(ρ) = s} (resp.,
Pth(s) � {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp., paths) starting
at a state s ∈ St.

A strategy is a partial function f : Trk ⇀ Ac that maps each non-trivial track in
its domain to an action. For a state s ∈ St, a strategy f is said s-total if it is defined
on all tracks starting in s, i.e., dom(f) = Trk(s). Str � Trk ⇀ Ac (resp., Str(s) �
Trk(s) → Ac) denotes the set of all (resp., s-total) strategies.

For all tracks ρ ∈ Trk, by (f)ρ ∈ Str we denote the translation of f along ρ, i.e., the
strategy with dom((f)ρ) � {lst(ρ) · ρ′ : ρ · ρ′ ∈ dom(f)}1 such that (f)ρ(lst(ρ) · ρ′) �
f(ρ · ρ′), for all ρ · ρ′ ∈ dom(f).

Let Var be a fixed set of variables. An assignment is a partial function χ : Var ∪
Ag ⇀ Str mapping variables and agents in its domain to a strategy. An assignment χ
is complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). For a state s ∈ St, it is said
that χ is s-total if all strategies χ(l) are s-total, for l ∈ dom(χ). Asg � Var∪Ag ⇀ Str
(resp., Asg(s) � Var∪Ag ⇀ Str(s)) denotes the set of all (resp., s-total) assignments.
Moreover, Asg(X) � X → Str (resp., Asg(X, s) � X → Str(s)) indicates the subset
of X-defined (resp., s-total) assignments, i.e., (resp., s-total) assignments defined on
the set X ⊆ Var ∪ Ag. For all tracks ρ ∈ Trk, by (χ)ρ ∈ Asg(lst(ρ)) we denote the
translation of χ along ρ, i.e., the lst(ρ)-total assignment with dom((χ)ρ) � dom(χ),
such that (χ)ρ(l) � (χ(l))ρ, for all l ∈ dom(χ). For all elements l ∈ Var ∪ Ag, by

1 By lst(ρ) � (ρ)|ρ|−1 we denote the last state of ρ.

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 197

χ[l (→ f] ∈ Asg we denote the new assignment defined on dom(χ[l (→ f]) � dom(χ)∪
{l} that returns f on l and χ otherwise, i.e., χ[l (→ f](l)� f and χ[l (→ f](l′)�χ(l′), for
all l′∈dom(χ)\{l}.

A path π ∈ Pth(s) starting at a state s ∈ St is a play w.r.t. a complete s-total
assignment χ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that (π)i+1 =
τ((π)i, d), where d(a) � χ(a)((π)≤i), for each a ∈ Ag. The partial function play :
Asg× St ⇀ Pth, with dom(play) � {(χ, s) : Ag ⊆ dom(χ) ∧ χ ∈ Asg(s) ∧ s ∈ St},
returns the (χ, s)-play play(χ, s) ∈ Pth(s), for all (χ, s) in its domain.

For a state s ∈ St and a complete s-total assignment χ ∈ Asg(s), the i-th global
translation of (χ, s), with i ∈ N, is the pair of a complete assignment and a state
(χ, s)i � ((χ)(π)≤i

, (π)i), where π = play(χ, s).
From now on, we use CGS names with subscript to extract the components from their

tuple-structures. For example, s0G = s0 is the starting state of the CGS G.

3 One-Goal Strategy Logic

In this section, we introduce syntax and semantics of One-Goal Strategy Logic (SL[1G],
for short), as a syntactic fragment of SL, which we also report here for technical reasons.
For more about SL[1G], see [16].

SL Syntax. SL syntactically extends LTL by means of two strategy quantifiers, exis-
tential 〈〈x〉〉 and universal [[x]], and agent binding (a, x), where a is an agent and x is a
variable. Intuitively, these elements can be read, respectively, as “there exists a strategy
x”, “for all strategies x”, and “bind agent a to the strategy associated with the variable
x”. The formal syntax of SL follows.

Definition 1 (SL Syntax). SL formulas are built inductively from the sets of atomic
propositions AP, variables Var, and agents Ag, by using the following grammar, where
p ∈ AP, x ∈ Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

By sub(ϕ) we denote the set of all subformulas of the SL formula ϕ. By free(ϕ) we
denote the set of free agents/variables of ϕ defined as the subset of Ag∪Var containing
(i) all agents a for which there is no binding (a, x) before the occurrence of a temporal
operator and (ii) all variables x for which there is a binding (a, x) but no quantification
〈〈x〉〉 or [[x]]. A formulaϕ without free agents (resp., variables), i.e., with free(ϕ)∩Ag =
∅ (resp., free(ϕ) ∩ Var = ∅), is named agent-closed (resp., variable-closed). If ϕ is
both agent- and variable-closed, it is named sentence. By snt(ϕ) we denote the set of
all sentences that are subformulas of ϕ.

SL Semantics. As for ATL∗, we define the semantics of SL w.r.t. concurrent game
structures. For a CGS G, a state s, and an s-total assignment χ with free(ϕ) ⊆ dom(χ),
we write G, χ, s |= ϕ to indicate that the formula ϕ holds at s under the assignment χ.
The semantics of SL formulas involving p, ¬, ∧, and ∨ is defined as usual in LTL and
we omit it here (see [16], for the full definition). The semantics of the remaining part,
which involves quantifications, bindings, and temporal operators follows.

198 F. Mogavero et al.

Definition 2 (SL Semantics). Given a CGS G, for all SL formulas ϕ, states s ∈ St,
and s-total assignments χ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the relation G, χ, s |= ϕ
is inductively defined as follows.

1. G, χ, s |=〈〈x〉〉ϕ iff there is an s-total strategy f∈Str(s) such that G, χ[x (→ f], s |=ϕ;
2. G, χ, s |=[[x]]ϕ iff for all s-total strategies f∈Str(s) it holds that G, χ[x (→ f], s |=ϕ.

Moreover, if free(ϕ) ∪ {x} ⊆ dom(χ) ∪ {a} for an agent a ∈ Ag, it holds that:

3. G, χ, s |= (a, x)ϕ iff G, χ[a (→ χ(x)], s |= ϕ.

Finally, if χ is also complete, it holds that:

4. G, χ, s |= X ϕ if G, (χ, s)1 |= ϕ;
5. G, χ, s |= ϕ1U ϕ2 if there is an index i ∈ N with k ≤ i such that G, (χ, s)i |= ϕ2

and, for all indexes j∈N with k≤ j<i, it holds that G, (χ, s)j |=ϕ1;
6. G, χ, s |= ϕ1R ϕ2 if, for all indexes i ∈ N with k≤ i, it holds that G, (χ, s)i |=ϕ2

or there is an index j∈N with k≤j<i such that G, (χ, s)j |=ϕ1.

Intuitively, at Items 1 and 2, respectively, we evaluate the existential 〈〈x〉〉 and univer-
sal [[x]] quantifiers over strategies, by associating them to the variable x. Moreover, at
Item 3, by means of an agent binding (a, x), we commit the agent a to a strategy asso-
ciated with the variable x. It is evident that the LTL semantics is simply embedded into
the SL one.

A CGS G is a model of an SL sentence ϕ, denoted by G |= ϕ, iff G, ∅, s0 |= ϕ,
where ∅ is the empty assignment. Moreover, ϕ is satisfiable iff there is a model for it.
Given two CGSs G1, G2 and a sentence ϕ, we say that ϕ is invariant under G1 and G2

iff it holds that: G1 |= ϕ iff G2 |= ϕ. Finally, given two SL formulas ϕ1 and ϕ2 with
free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, if, for all CGSs
G, states s ∈ St, and free(ϕ1)-defined s-total assignments χ ∈ Asg(free(ϕ1), s), it
holds that if G, χ, s |= ϕ1 then G, χ, s |= ϕ2. Accordingly, we say that ϕ1 is equivalent
to ϕ2, in symbols ϕ1 ≡ ϕ2, if ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1.

s0∅

s1
p

s2
p, q

s3
q

00 01

10

11

∗∗
∗∗ ∗∗

Fig. 1. A CGS G

As an example, consider the SL sentence ϕ =
〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)(X p)∧(α, y)(β, z)(X q)). Note
that both agents α and β use the strategy associated
with y to achieve simultaneously the LTL goals X p
and X q, respectively. A model for ϕ is the CGS G �
〈{p, q}, {α, β}, {0, 1}, {s0, s1, s2, s3}, λ, τ, s0〉, where
λ(s0) � ∅, λ(s1) � {p}, λ(s2) � {p, q},λ(s3) � {q},
τ(s0, (0, 0)) � s1, τ(s0, (0, 1)) � s2, τ(s0, (1, 0)) �
s3, and all the remaining transitions go to s0. See the
representation of G depicted in Figure 1, in which ver-
texes are states of the game and labels on edges rep-
resent decisions of agents or sets of them, where the
symbol ∗ is used in place of every possible action. Clearly, G |= ϕ by letting, on s0, the
variables x to chose action 0 (the formula (α, x)(β, y)(X p) is satisfied for any choice
of y, since we can move from s0 to either s1 or s2, both labeled with p) and z to choose
action 1 when y has action 0 and, vice versa, 0 when y has 1 (in both cases, the formula
(α, y)(β, z)(X q) is satisfied, since one can move from s0 to either s2 or s3, both labeled
with q).

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 199

SL[1G] Syntax. To formalize the syntactic fragment SL[1G] of SL, we need first to
define the concepts of quantification and binding prefixes.

Definition 3 (Prefixes). A quantification prefix over a set V ⊆ Var of variables is a
finite word ℘ ∈ {〈〈x〉〉, [[x]] : x ∈ V}|V| of length |V| such that each variable x ∈ V
occurs just once in ℘. A binding prefix over a set V ⊆ Var of variables is a finite word
(∈ {(a, x) : a ∈ Ag ∧ x ∈ V}|Ag| of length |Ag| such that each agent a ∈ Ag occurs
just once in (. Finally, Qnt(V) ⊆ {〈〈x〉〉, [[x]] : x ∈ V}|V| and Bnd(V) ⊆ {(a, x) :
a ∈ Ag ∧ x ∈ V}|Ag| denote, respectively, the sets of all quantification and binding
prefixes over variables in V.

We can now define the syntactic fragment we want to analyze. The idea is to force
each group of agent bindings, represented by a binding prefix, to be coupled with a
quantification prefix.

Definition 4 (SL[1G] Syntax). SL[1G] formulas are built inductively from the sets of
atomic propositions AP, quantification prefixes Qnt(V), for V ⊆ Var, and binding
prefixes Bnd(Var), by using the following grammar, with p ∈ AP, ℘ ∈ ∪V⊆VarQnt(V),
and (∈ Bnd(Var):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘(ϕ,

with ℘ ∈ Qnt(free((ϕ)), in the formation rule ℘(ϕ.

In the following, for a goal we mean an SL agent-closed formula of the kind (ψ, where
ψ is variable-closed and (∈ Bnd(free(ψ)). Note that, since (ϕ is a goal, it is agent-
closed, so, free((ϕ) ⊆ Var. Moreover, an SL[1G] sentence ϕ is principal if it is of the
form ϕ = ℘(ψ, where (ψ is a goal and ℘ ∈ Qnt(free((ψ)). By psnt(ϕ) ⊆ snt(ϕ) we
denote the set of principal subsentences of the SL[1G] formula ϕ.

As an example, let ϕ1 = ℘(1ψ1 and ϕ2 = ℘((1ψ1 ∧ (2ψ2), where ℘ = [[x]]〈〈y〉〉[[z]],
(1 = (α, x)(β, y)(γ, z), (2 = (α, y)(β, z)(γ, y), ψ1 = X p, and ψ2 = X q. Then, it is
evident that ϕ1 ∈ SL[1G] but ϕ2 �∈ SL[1G], since the quantification prefix ℘ of the latter
does not have in its scope a unique goal.

It is fundamental to observe that the formula ϕ1 of the above example cannot be
expressed in ATL∗, as proved in [16] and reported in the following theorem, since its 2-
quantifier alternation cannot be encompassed in the 1-alternation ATL∗ modalities. On
the contrary, each ATL∗ formula of the type 〈〈A〉〉ψ, where A = {α1, . . . , αn} ⊆ Ag =
{α1, . . . , αn, β1, . . . , βm} can be expressed in SL[1G] as follows: 〈〈x1〉〉 · · · 〈〈xn〉〉[[y1]]
· · · [[ym]](α1, x1) · · · (αn, xn)(β1, y1) · · · (βm, ym)ψ.

Theorem 1. SL[1G] is strictly more expressive than ATL∗.

We now give two examples in which we show the importance of the ability to write
specifications with alternation of quantifiers greater than 1 along with strategy sharing.

Example 1 (Escape from Alcatraz2). Consider the situation in which an Alcatraz pris-
oner tries to escape from jail by helicopter with the help of an accomplice. Due to his
panoramic point of view, assume that the accomplice has the full visibility on the behav-
iors of guards, while the prisoner does not have the same ability. Therefore, the latter

2 We thank Luigi Sauro for having pointed out this example.

200 F. Mogavero et al.

has to put in practice an escape strategy that, independently of guards moves, can be
supported by his accomplice to escape. We can formalize such an intricate situation
by means of an SL[1G] sentence with alternation 2, where the prisoner has to choose a
uniform strategy w.r.t. those chosen by the guards, as follows. First, let GA be a CGS

modeling the possible situations in which the agents “p” prisoner, “g” guards, and “a”
accomplice can reside, together with all related possible moves. Then, verify the exis-
tence of an escape strategy by checking GA |= 〈〈x〉〉[[y]]〈〈z〉〉(p, x)(g, y)(a, z)(F freeP).

Example 2 (Stealing-Strategy in Hex). Hex is a two-player game, red vs blue, in which
each player in turn places a stone of his color on a single empty hexagonal cell of the
rhomboidal playing board having opposite sides equally colored, either red or blue. The
goal of each player is to be the first to form a path connecting the opposing sides of the
board marked by his color. It is easy to prove that the stealing-strategy argument does not
lead to a winning strategy in Hex, i.e., if the player that moves second copies the moves
of the opponent, he surely loses the play. It is possible to formalize this fact in SL[1G]
as follows. First model Hex with a CGS GH whose states represent a possible possible
configurations reached during a play between “r” red and “b” blue. Then, verify the
negation of the stealing-strategy argument by checking GH |= 〈〈x〉〉(r, x)(b, x)(F cncr).
Intuitively, this sentence says that agent r has a strategy that, once it is copied (bound) by
b it allows the former to win, i.e., to be the first to connect the related red edges (F cncr).

4 Strategy Quantifications

We now define the concept of dependence map. The key idea is that every quantification
prefix of an SL formula can be represented by a suitable choice of a dependence map
over strategies. Such a result is at the base of the definition of the elementariness prop-
erty and allows us to prove that SL[1G] is elementarily satisfiable, i.e., we can simplify a
reasoning about strategies by reducing it to a set of local reasonings about actions [16].

Dependence Map. First, we introduce some notation regarding quantification pre-
fixes. Let ℘ ∈ Qnt(V) be a quantification prefix over a set V(℘) � V ⊆ Var of vari-
ables. By 〈〈℘〉〉 � {x ∈ V : ∃i ∈ [0, |℘|[. (℘)i = 〈〈x〉〉} and [[℘]] � V \ 〈〈℘〉〉 we denote,
respectively, the sets of existential and universal variables quantified in ℘. For two vari-
ables x, y ∈ V, we say that x precedes y in ℘, in symbols x<℘y, if x occurs before y in
℘. Moreover, by Dep(℘) � {(x, y) ∈ V × V : x ∈ [[℘]], y ∈ 〈〈℘〉〉 ∧ x<℘y} we denote
the set of dependence pairs, i.e., a dependence relation, on which we derive the param-
eterized version Dep(℘, y) � {x ∈ V : (x, y) ∈ Dep(℘)} containing all variables
from which y depends. Also, we use ℘ ∈ Qnt(V) to indicate the quantification derived
from ℘ by dualizing each quantifier contained in it, i.e., for all i ∈ [0, |℘|[, it holds that
(℘)i = 〈〈x〉〉 iff (℘)i = [[x]], with x ∈ V. Clearly, 〈〈℘〉〉 = [[℘]] and [[℘]] = 〈〈℘〉〉. Finally,
we define the notion of valuation of variables over a generic set D as a partial function
v : Var ⇀ D mapping every variable in its domain to an element in D. By ValD(V) �
V → D we denote the set of all valuation functions over D defined on V ⊆ Var.

We now give the semantics for quantification prefixes via the following definition of
dependence map.

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 201

Definition 5 (Dependence Maps). Let ℘ ∈ Qnt(V) be a quantification prefix over
a set of variables V ⊆ Var, and D a set. Then, a dependence map for ℘ over
D is a function θ : ValD([[℘]]) → ValD(V) satisfying the following proper-
ties: (i) θ(v)�[[℘]] = v, for all v ∈ ValD([[℘]]); (ii) θ(v1)(x) = θ(v2)(x), for all
v1, v2 ∈ ValD([[℘]]) and x ∈ 〈〈℘〉〉 such that v1�Dep(℘,x) = v2�Dep(℘,x). DMD(℘)
denotes the set of all dependence maps of ℘ on D.

Intuitively, Item (i) asserts that θ takes the same values of its argument w.r.t. the univer-
sal variables in ℘ and Item (ii) ensures that the value of θ w.r.t. an existential variable x
in ℘ does not depend on variables not in Dep(℘, x). To get better insight into this def-
inition, a dependence map θ for ℘ can be considered as a set of Skolem functions that,
given a value for each universal variable, return a possible value for all the existential
variables in a way that is consistent w.r.t. the order of quantifications in ℘.

We now state a fundamental theorem that describes how to eliminate strategy quan-
tifications of an SL formula via a choice of a dependence map over strategies. This pro-
cedure, easily proved to be correct by induction on the structure of the formula in [16],
can be seen as the equivalent of the Skolemization in first order logic [10].

Theorem 2 (SL Strategy Quantification). Let G be a CGS and ϕ = ℘ψ an SL sen-
tence, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a de-
pendence map θ ∈ DMStr(s0)(℘) such that G, θ(χ), s0 |= ψ, for all χ ∈ Asg([[℘]], s0).

The above theorem substantially characterizes SL semantics by means of the concept
of dependence map. In particular, it shows that if a formula is satisfiable then it is
always possible to find a suitable dependence map returning the existential strategies
in response to the universal ones. Such a characterization enables the definition of an
alternative semantics of SL, based on the choice of a subset of dependence maps that
meet a certain given property. We do this with the aim of identifying semantic fragments
of SL having better model properties and easier decision problems. With more details,
given a CGS G, one of its states s, and a property P, we say that a sentence ℘ψ is
P-satisfiable in G, in symbols G |=P ℘ψ, if there exists a dependence map θ meeting
P such that, for all assignment χ ∈ Asg([[℘]], s), it holds that G, θ(χ), s |= ψ. An
alternative semantics identified by a property P is even more interesting if there exists a
syntactic fragment corresponding to it, i.e., each satisfiable sentence of such a fragment
is P-satisfiable and vice versa. In the following, we put in practice this idea in order to
show that SL[1G] has the same complexity of ATL∗w.r.t. the satisfiability problem.

Elementary Quantifications. According to the above description, we now introduce
a suitable property of dependence maps, called elementariness, together with the related
alternative semantics. Then, in Theorem 3, we state that SL[1G] has the elementariness
property, i.e., each SL[1G] sentence is satisfiable iff it is elementarily satisfiable. Intu-
itively, a dependence map θ ∈ DMT→D(℘) over functions from a set T to a set D is
elementary if it can be split into a set of dependence maps over D, one for each element
of T, represented by a function θ̃ : T → DMD(℘). This idea allows us to greatly sim-
plify the reasoning about strategy quantifications, since we can reduce them to a set of
quantifications over actions, one for each track in their domains.

Note that sets D and T, as well as U and V used in the following, are generic and
in our framework they may refer to actions and strategies (D), tracks (T), and variables

202 F. Mogavero et al.

(U and V). In particular, observe that functions from T to D represent strategies. We
prefer to use abstract name, as the properties we describe hold generally.

To formally develop the above idea, we have first to introduce the generic concept
of adjoint function. From now on, we denote by ĝ : Y → (X → Z) the operation
of flipping of a generic function g : X → (Y → Z), i.e., the transformation of g
by swapping the order of its arguments. Such a flipping is well-grounded due to the
following chain of isomorphisms: X → (Y → Z) ∼= (X×Y) → Z ∼= (Y×X) → Z ∼=
Y → (X → Z).

Definition 6 (Adjoint Functions). Let D, T, U, and V be four sets, and m : (T →
D)U → (T → D)V and m̃ : T → (DU → DV) two functions. Then, m̃ is the adjoint of
m if m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T → D)U, x ∈ V, and t ∈ T.

Intuitively, a function m transforming a map of kind (T → D)U into a new map of
kind (T → D)V has an adjoint m̃ if such a transformation can be done pointwisely
w.r.t. the set T, i.e., we can put out as a common domain the set T and then transform
a map of kind DU in a map of kind DV. Observe that, if a function has an adjoint, this
is unique. Similarly, from an adjoint function it is possible to determine the original
function unambiguously. Thus, it is established a one-to-one correspondence between
functions admitting an adjoint and the adjoint itself.

The formal meaning of the elementariness of a dependence map over generic func-
tions follows.

Definition 7 (Elementary Dependence Maps). Let ℘ ∈ Qnt(V) be a quantification
prefix over a set V ⊆ Var of variables, D and T two sets, and θ ∈ DMT→D(℘) a de-
pendence map for ℘ over T → D. Then, θ is elementary if it admits an adjoint function.
EDMT→D(℘) denotes the set of all elementary dependence maps for ℘ over T → D.

As mentioned above, we now introduce an important variant of SL[1G] semantics based
on the property of elementariness of dependence maps over strategies. We refer to the
related satisfiability concept as elementary satisfiability, in symbols |=E.

The new semantics of SL[1G] formulas involving atomic propositions, Boolean con-
nectives, temporal operators, and agent bindings is defined as for the classic one, where
the modeling relation |= is substituted with |=E, and we omit to report it here. In the
following definition, we only describe the part concerning the quantification prefixes.
Observe that by ζ� : Ag → Var, for (∈ Bnd(Var), we denote the function associating
to each agent the variable of its binding in (.

Definition 8 (SL[1G] Elementary Semantics). Let G be a CGS, s ∈ St one of its states,
and ℘(ψ an SL[1G] principal sentence. Then G,∅, s |=E ℘(ψ iff there is an elementary
dependence map θ ∈ EDMStr(s)(℘) for ℘ over Str(s) such that G, θ(χ) ◦ ζ�, s |=E ψ,
for all χ ∈ Asg([[℘]], s).

It is immediate to see a strong similarity between the statement of Theorem 2 of SL

strategy quantification and the previous definition. The only crucial difference resides
in the choice of the kind of dependence map. Moreover, observe that, differently from
the classic semantics, the quantifications in a prefix are not treated individually but as
an atomic block. This is due to the necessity of having a strict correlation between the
point-wise structure of the quantified strategies.

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 203

Finally, we state the following fundamental theorem which is a key step in the proof
of the bounded model property and decidability of the satisfiability for SL[1G], whose
correctness has been proved in [16]. The idea behind the proof of the elementariness
property resides in the strong similarity between the statement of Theorem 2 of SL

strategy quantification and the definition of the winning condition in a classic turn-based
two-player game. Indeed, on one hand, we say that a sentence is satisfiable iff “there
exists a dependence map such that, for all all assignments, it holds that ...”. On the other
hand, we say that the first player wins a game iff “there exists a strategy for him such
that, for all strategies of the other player, it holds that ...”. The gap between these two
formulations is solved in SL[1G] by using the concept of elementary quantification. So,
we build a two-player turn-based game in which the two players are viewed one as a
dependence map and the other as a valuation over universal quantified variables, both
over actions, such that the formula is satisfied iff the first player wins the game. This
construction is a deep technical evolution of the proof method used for the dualization
of alternating automata on infinite objects [20]. Precisely, it uses Martin’s Determinacy
Theorem [15] on the auxiliary turn-based game to prove that, if there is no dependence
map of a given prefix that satisfies the given property, there is a dependence map of the
dual prefix satisfying its negation.

Theorem 3 (SL[1G] Elementariness). Let G be a CGS and ϕ an SL[1G] sentence. Then,
G |=ϕ iff G |=E ϕ.

In order to understand what elementariness means from a syntactic point of view, note
that in SL[1G] it holds that ℘(X ψ ≡ ℘(X ℘(ψ, i.e., we can requantify the strategies
to satisfy the inner subformula ψ. This equivalence is a generalization of what is well
know to hold for CTL∗: EX ψ ≡ EX Eψ. Moreover, note that, as reported in [16], ele-
mentariness does not hold for more expressive fragments of SL, such as SL[BG].

5 Model Properties

We now investigate basic model properties of SL[1G] that turn out to be important on
their own and useful to prove the decidability of the satisfiability problem.

First, recall that the satisfiability problem for branching-time logics can be solved
via tree automata, once a kind of bounded tree-model property holds. Indeed, by using
it, one can build an automaton accepting all models of formulas, or their encoding. So,
we first introduce the concepts of concurrent game tree, decision tree, and decision-
unwinding and then show that SL[1G] is invariant under decision-unwinding, which
directly implies that it satisfies an unbounded tree-model property. Finally, by using
a sharp technique that is precisely described in [17], we further prove that the above
property is actually a bounded tree-model property.

Tree-Model Property. We now introduce two particular kinds of CGS whose struc-
ture is a directed tree. As already explained, we do this since the decidability procedure
we give in the last section of the paper is based on alternating tree automata.

Definition 9 (Concurrent Game Trees). A concurrent game tree (CGT, for short) is a
CGS T � 〈AP,Ag,Ac, St, λ, τ, ε〉, where (i) St ⊆ Δ∗ is a Δ-tree for a given set Δ of

204 F. Mogavero et al.

directions and (ii) if t·e ∈ St then there is a decision d ∈ Dc such that τ(t, d) = t·e, for
all t ∈ St and e ∈ Δ. Furthermore, T is a decision tree (DT, for short) if (i) St = Dc∗

and (ii) if t · d ∈ St then τ(t, d) = t · d, for all t ∈ St and d ∈ Dc.

Intuitively, CGTs are CGSs with a tree-shaped transition relation and DTs have, in addi-
tion, states uniquely determining the history of computation leading to them.

At this point, we can define a generalization for CGSs of the classic concept of un-
winding of labeled transition systems, namely decision-unwinding. Note that, in general
and differently from ATL∗, SL is not invariant under decision-unwinding, as we show
later. On the contrary, SL[1G] satisfies such an invariance property. This fact allows us
to show that this logic has the unbounded tree-model property.

Definition 10 (Decision-Unwinding). Let G be a CGS. Then, the decision-unwinding
of G is the DT GDU � 〈AP,Ag,AcG ,DcG

∗, λ, τ, ε〉 for which there is a surjective func-
tion unw : DcG

∗ → StG such that (i) unw(ε) = s0G , (ii) unw(τ(t, d)) = τG(unw(t), d),
and (iii) λ(t) = λG(unw(t)), for all t ∈ DcG

∗ and d ∈ DcG .

Note that each CGS G has a unique associated decision-unwinding GDU .
We say that a sentence ϕ has the decision-tree model property if, for each CGS G, it

holds that G |= ϕ iff GDU |= ϕ. By using a standard proof by induction on the structure
of SL[1G] formulas, we can show that this logic is invariant under decision-unwinding,
i.e., each SL[1G] sentence has decision-tree model property, and, consequently, that it
satisfies the unbounded tree-model property. For the case of the combined quantifica-
tion and binding prefixes ℘(ψ, we can use a technique that allows to build, given an
elementary dependence map θ satisfying the formula on a CGS G, an elementary de-
pendence map θ′ satisfying the same formula over the DT GDU , and vice versa. This
construction is based on a step-by-step transformation of the adjoint of a dependence
maps into another, which is done for each track of the original model. This means that
we do not actually transform the strategy quantifications but the equivalent infinite set
of action quantifications.

Theorem 4 (SL[1G] Positive Model Properties). For SL[1G] it holds that: (i) it is
invariant under decision-unwinding and (ii) it has the decision-tree model property.

Although this result is a generalization of that proved to hold for ATL∗, it actually rep-
resents an important demarcation line between SL[1G] and SL. Indeed, as we show in
the following theorem, SL does not satisfy neither the tree-model property nor, conse-
quently, the invariance under decision-unwinding.

Theorem 5 (SL Negative Model Properties). For SL it holds that: (i) it does not have
the decision-tree model property and (ii) it is not invariant under decision-unwinding.

Bounded Tree-Model Property. We now have all tools we need to prove the bounded
tree-model property for SL[1G], which we recall SL does not satisfy [18]. Actually, we
prove here a stronger property, which we name bounded disjoint satisfiability.

To this aim, we first introduce the new concept, called disjoint satisfiability, regarding
the satisfiability of different instances of the same subsentence of the original specifica-
tion, which intuitively states that these instances can be checked on disjoint subtrees of
the tree model. With more detail, this property asserts that, if two instances use part of

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 205

the same subtree, they are forced to use the same dependence map as well. This intrin-
sic characteristic of SL[1G] is fundamental to build a unique automaton that checks the
truth of all subsentences, by simply merging their respective automata, without using a
projection operation that eliminates their proper alphabets, which otherwise can be in
conflict. In this way, we can avoid an exponential blow-up.

In the following theorem, we finally describe the crucial step behind our automata-
theoretic decidability procedure for SL[1G]. At an high-level, the proof proceeds as
follows. We start from the satisfiability of the specification ϕ over a DT T , whose
existence is ensured by Item (ii) of Theorem 4 of SL[1G] positive model properties.
Then, by means of Theorem 3 on the SL[1G] elementariness, we construct the adjoint
functions of the dependence maps used to verify the satisfiability of the sentences on T .
Finally, by using a fundamental and very technical property of dependence maps, called
overlapping [17], we transform the dependence maps over actions, contained in the
ranges of the adjoint functions, in a bounded version, which preserves the satisfiability
of the sentences on a bounded pruning T ′ of T .

Theorem 6 (SL[1G] Bounded Tree-Model Property). Let ϕ be an SL[1G] satisfiable
sentence. Then, there exists a bounded CGT T such that T |= ϕ. Moreover, for all
φ ∈ psnt(ϕ), it holds that T satisfies φ disjointly over the set {s ∈ St : T , ∅, s |= φ}.

6 Satisfiability Procedure

We finally solve the satisfiability problem for SL[1G] and show that it is 2EXPTIME-
COMPLETE, as for ATL∗. The algorithmic procedures is based on an automata-theoretic
approach, which reduces the decision problem for the logic to the emptiness problem
of a suitable universal Co-Büchi tree automaton (UCT, for short) [9]. From an high-
level point of view, the automaton construction seems similar to what was proposed in
literature for CTL∗ [13] and ATL∗ [26]. However, our technique is completely new, since
it is based on the novel notions of elementariness and disjoint satisfiability.

Principal Sentences. To proceed with the satisfiability procedure, we have to intro-
duce a concept of encoding for an assignment and the labeling of a DT.

Definition 11 (Assignment-Labeling Encoding). Let T be a DT, t ∈ StT one of its
states, and χ ∈ AsgT (V, t) an assignment defined on the set V ⊆ Var. A (ValAcT (V)×
2AP)-labeled DcT -tree T ′ � 〈StT , u〉 is an assignment-labeling encoding for χ on T
if u(lst((ρ)≥1))=(χ̂(ρ), λT (lst(ρ))), for all ρ ∈ TrkT (t).

Observe that there is a unique assignment-labeling encoding for each assignment over
a given DT.

Now, we prove the existence of a UCT UAc
�ψ for each SL[1G] goal (ψ having no

principal subsentences. UAc
�ψ recognizes all the assignment-labeling encodings T ′ of

an a priori given assignment χ over a generic DT T , once the goal is satisfied on T
under χ. Intuitively, we start with a UCW, recognizing all infinite words on the alphabet
2AP that satisfy the LTL formula ψ, obtained by a simple variation of the Vardi-Wolper
construction [28]. Then, we run it on the encoding tree T ′ by following the directions
imposed by the assignment in its labeling.

206 F. Mogavero et al.

Lemma 1 (SL[1G] Goal Automaton). Let (ψ an SL[1G] goal without principal subsen-
tences andAc a finite set of actions. Then, there exists an UCT UAc

�ψ � 〈ValAc(free((ψ))

× 2AP,Dc,Q�ψ, δ�ψ, q0�ψ,ℵ�ψ〉 such that, for all DTs T with AcT = Ac, states t ∈
StT , and assignments χ ∈ AsgT (free((ψ), t), it holds that T , χ, t |= (ψ iff T ′ ∈
L(UAc

�ψ), where T ′ is the assignment-labeling encoding for χ on T .

We now introduce a new concept of encoding regarding the elementary dependence
maps over strategies.

Definition 12 (Elementary Dependence-Labeling Encoding). Let T be a DT, t ∈
StT one of its states, and θ ∈ EDMStrT (t)(℘) an elementary dependence map over
strategies for a quantification prefix℘ ∈ Qnt(V) over the set V ⊆ Var. A (DMAcT (℘)×
2AP)-labeled Δ-tree T ′ � 〈StT , u〉 is an elementary dependence-labeling encoding for
θ on T if u(lst((ρ)≥1))=(θ̃(ρ), λT (lst(ρ))), for all ρ∈TrkT (t).

Observe that also in this case there exists a unique elementary dependence-model en-
coding for each elementary dependence map over strategies.

Finally, in the next lemma, we show how to handle locally the strategy quantifications
on each state of the model, by simply using a quantification over actions modeled by
the choice of an action dependence map. Intuitively, we guess in the labeling what is the
right part of the dependence map over strategies for each node of the tree and then verify
that, for all assignments of universal variables, the corresponding complete assignment
satisfies the inner formula.

Lemma 2 (SL[1G] Sentence Automaton). Let ℘(ψ be an SL[1G] principal sentence
without principal subsentences and Ac a finite set of actions. Then, there exists an
UCT UAc

℘�ψ � 〈DMAc(℘) × 2AP,Dc,Q℘�ψ, δ℘�ψ, q0℘�ψ,ℵ℘�ψ〉 such that, for all DTs
T with AcT = Ac, states t ∈ StT , and elementary dependence maps over strategies
θ ∈ EDMStrT (t)(℘), it holds that T , θ(χ), t |=E (ψ, for all χ ∈ AsgT ([[℘]], t), iff
T ′ ∈ L(UAc

℘�ψ), where T ′ is the elementary dependence-labeling encoding for θ on T .

Full Sentences. By summing up all previous results, we are now able to solve the
satisfiability problem for the full SL[1G] fragment.

To construct the automaton for a given SL[1G] sentence ϕ, we first consider all UCT

UAc
φ , for an assigned bounded set Ac, previously described for the principal sentences

φ ∈ psnt(ϕ), in which the inner subsentences are considered as atomic propositions.
Then, thanks to the disjoint satisfiability property, we can merge them into a unique
UCT Uϕ that supplies the dependence map labeling of internal components UAc

φ , by
using the two functions head and body contained into its labeling. Moreover, observe
that the final automaton runs on a b-bounded decision tree, where b is obtained from
Theorem 6 on the bounded-tree model property.

Theorem 7 (SL[1G] Automaton). Let ϕ be an SL[1G] sentence. Then, there exists an
UCT Uϕ such that ϕ is satisfiable iff L(Uϕ) �= ∅.

Finally, by a simple calculation of the size of Uϕ and the complexity of the related
emptiness problem, we state in the next theorem the precise computational complexity
of the satisfiability problem for SL[1G].

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 207

Theorem 8 (SL[1G] Satisfiability). The satisfiability problem for SL[1G] is 2EXPTIME-
COMPLETE.

References
1. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to Combinato-

rial Game Theory. AK Peters (2007)
2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. JACM 49(5),

672–713 (2002)
3. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy Logic. IC 208(6), 677–693 (2010)
4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2002)
5. Da Costa, A., Laroussinie, F., Markey, N.: ATL with Strategy Contexts: Expressiveness and

Model Checking. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 120–132 (2010)
6. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” Revisited: On Branching Ver-

sus Linear Time. JACM 33(1), 151–178 (1986)
7. Finkbeiner, B., Schewe, S.: Coordination Logic. In: Dawar, A., Veith, H. (eds.) CSL 2010.

LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)
8. Fisman, D., Kupferman, O., Lustig, Y.: Rational Synthesis. In: Esparza, J., Majumdar, R.

(eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,

vol. 2500. Springer, Heidelberg (2002)
10. Hodges, W.: Model theory. Encyclopedia of Mathematics and its Applications. Cambridge

University Press (1993)
11. Jamroga, W., van der Hoek, W.: Agents that Know How to Play. FI 63(2-3), 185–219 (2004)
12. Kozen, D.: Results on the Propositional mu-Calculus. TCS 27(3), 333–354 (1983)
13. Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata Theoretic Approach to Branching-

Time Model Checking. JACM 47(2), 312–360 (2000)
14. Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. IC 164(2), 322–344 (2001)
15. Martin, A.D.: Borel Determinacy. AM 102(2), 363–371 (1975)
16. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning About Strategies: On the

Model-Checking Problem. Technical Report 1112.6275, arXiv (December 2011)
17. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: A Decidable Fragment of Strategy Logic.

Technical Report 1202.1309, arXiv (February 2012)
18. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning About Strategies. In: FSTTCS 2010.

LIPIcs, vol. 8, pp. 133–144 (2010)
19. Mogavero, F., Murano, A., Vardi, M.Y.: Relentful Strategic Reasoning in Alternating-Time

Temporal Logic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355,
pp. 371–386. Springer, Heidelberg (2010)

20. Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. TCS 54(2-3), 267–276
(1987)

21. Muller, D.E., Schupp, P.E.: Simulating Alternating Tree Automata by Nondeterministic
Automata: New Results and New Proofs of Theorems of Rabin, McNaughton, and Safra.
TCS 141(1-2), 69–107 (1995)

22. Pauly, M.: A Modal Logic for Coalitional Power in Games. JLC 12(1), 149–166 (2002)
23. Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Expressive Con-

straints on Strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.)
ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007)

24. Pnueli, A.: The Temporal Logic of Programs. In: FOCS 1977, pp. 46–57 (1977)
25. Rabin, M.O.: Decidability of Second-Order Theories and Automata on Infinite Trees.

TAMS 141, 1–35 (1969)

208 F. Mogavero et al.

26. Schewe, S.: ATL* Satisfiability Is 2EXPTIME-Complete. In: Aceto, L., Damgård, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)

27. Vardi, M.Y.: Why is Modal Logic So Robustly Decidable? In: DCFM 1996, pp. 149–184.
American Mathematical Society (1996)

28. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-
tion. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)

29. Vardi, M.Y., Wolper, P.: Automata-Theoretic Techniques for Modal Logics of Programs.
JCSS 32(2), 183–221 (1986)

30. Wang, F., Huang, C.-H., Yu, F.: A Temporal Logic for the Interaction of Strategies. In:
Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901,
pp. 466–481. Springer, Heidelberg (2011)

Specifying Stateful Asynchronous Properties
for Distributed Programs

Tzu-Chun Chen and Kohei Honda

Queen Mary College, University of London

Abstract. Having stateful specifications to track the states of processes, such as
the balance of a customer for online shopping or the booking number of a trans-
action, is needed to verify real-life interacting systems. For safety assurance of
distributed IT infrastructures, specifications need to capture states in the pres-
ence of asynchronous interactions. We demonstrate that not all specifications are
suitable for asynchronous observations because they implicitly rely on an order-
preservation assumption. To establish a theory of asynchronous specifications,
we use the interplay between synchronous and asynchronous semantics, through
which we characterise the class of specifications suitable for verifications through
asynchronous interactions. The resulting theory offers a general semantic setting
as well as concrete methods to analyse and determine semantic well-formedness
(healthiness) of specifications with respect to asynchronous observations, for both
static and dynamic verifications. In particular, our theory offers a key criterion for
suitability of specifications for distributed dynamic verifications.

1 Introduction

The purpose of this paper is to introduce a theory of specification for communicating
processes under the condition that the observation is done asynchronously, motivated
by a semantic problem in specifications for distributed systems.

The semantic problem arose in a concrete engineering setting, through our
collaboration with the design and development of a large IT infrastructure for ocean
sciences [17], which is a typical large-scale distributed system. In that infrastructure,
applications are predominantly built as asynchronous interactions among distributed
components. Since some of these components may be contributed by the third party so
that they may be buggy or untrusted, we cannot completely rely on static verification.
To detect undesirable behaviours during runtime is thus needed. We start from consider
having system-level observers observe the endpoint behaviours, and wish to provide a
basis for dynamically safe-behaviours enforcement. However, putting system-level ob-
server at every endpoint is expensive and they might be polluted by the malicious end-
point. To concur this problem, an ideal setting comes to have remotely located observer
(e.g., “outline monitor” [9]), who would be asynchronously inspecting behaviours of a
component against a specification. For this endeavour, we need to formulate an expres-
sive specification language usable for asynchronously monitoring components. We then
came across a basic issue in the semantics of a specification language in the presence of
asynchronous communication. The issue makes naturally written specifications seman-
tically nonsensical, thus posing a fundamental challenge to our endeavour to provide a
consistent specification-verification framework.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 209–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 T.-C. Chen and K. Honda

The combination of asynchrony and state is omnipresent in specifications for dis-
tributed systems capturing real-life scenarios, where e.g. the (expected) states of par-
ticipants in the applications, such as the credit of a client for online shopping, or the
purchase number for a transaction, play a critical role. When an observer (e.g. a trusted
monitor) is located at an observee, the order of the observee’s actions the observer sees
is exactly the same as the one happening at the observee. However, when she sits re-
motely outside the observee, the order of actions that she observes may not necessarily
be the same as the one happening at the observee. We call the former kind of observation
synchronous, and the latter asynchronous. Although the synchronous observation can
capture more precisely the “actual” behaviour of the observee, in distributed systems,
asynchronous observations are the norm and often a necessity.

Contributions. In the remainder, §2 illustrates the background, including the semantic
issue in asynchronous specifications, through concrete examples. Starting from these
motivating examples, the paper presents the following contributions:

1. Introduction of an intuitive, semantically well-founded protocol-centred specifica-
tion method suitable for asynchronous stateful behaviour (called SP for stateful
protocols), enriching [4] with set-based stateful operations (§2, §3).

2. Identification (first to our knowledge) of a semantic issue when specifying asyn-
chronous interaction behaviour combined with updatable states (§2).

3. Formal analysis of the issue through asynchronous trace semantics, reaching sev-
eral criteria for asynchronous verifiability of specifications (healthiness conditions
[11]) including a decidable one admitting a rich set of specifications (§4).

Finally in §5, we examine the practical implications of the theory, discuss related work
and conclude with further topics. For the space sake, the proofs of the technical results
as well as further examples are left to the full version [5].

2 Motivating Examples

2.1 Using State(s) in Protocol Specifications

Before formally introducing the syntax and semantics of specifications, we discuss key
ideas through simple examples. Our specification language is based on multiparty ses-
sion types [3, 13] annotated by logical formulae, extending [4] with local state(s).

We first motivate the use of state in specifications, considering the scenario below:

(step 1). Buyer sends a product name (denoted by PName) to Seller, then Seller replies
with its price, and Buyer decides to purchase (then go to step 2) or not (then termi-
nate). We assume shipping is done independently.

(step 2). Seller sends the Buyer an invoice for the purchased product.

In [4, 8, 13], this scenario can only be realised as a single protocol between Buyer and
Seller; while, by using state(s), it can be realised using two protocols, one for each step.
Separating protocols has a merit in flexibility: when Buyer and Seller finish step 1, both
can terminate, and an invoice may be issued any time later. Below we present a stateful
specification that realising using two separate protocols.

Specifying Stateful Asynchronous Properties for Distributed Programs 211

Example 1 (SP for a cross-session Purchase-and-Invoice scenario)

Gpcs = B → S : Request(PName : string).

S → B : Confirm(PNameConf : string,Price : int)〈PNameConf = PName ∧ Price ≥ 0 ; ε〉〈truth;ε〉.
B → S : {OK(UserID : int)〈UserID �= 0;ε〉〈truth;ε〉.

S → B : (PNo : int)〈PNo �∈ dom(PLog);PLog := PLog∪{PNo (→ (UserID,PName,Price)}〉〈truth;ε〉
end

KO().end}

Givc = S → B : (PNo : string, Invoice : int)〈PNo ∈ dom(PLog) ∧ Invoice = PLog(PNo) ; ε〉〈truth;ε〉.end

Above Gpcs and Givc denote stateful protocols, or SPs from now on for short, respec-
tively corresponding to steps 1 and 2. Each specifies the flow of interactions which the
participants, S (for seller) and B (for buyer), should realise at each session. 〈...; ...〉〈...; ...〉
are the obligations for sender (the former) and receiver (the latter), where the block be-
fore “;” is the predicate and the one after is the state(s) updating rule. 〈truth;ε〉 means
no obligation. The syntax is formally introduced in §3. In this example, the state of S,
represented by the field PLog (the Purchase Log, which we consider to be a key-value
store, mapping distinct keys to values), links the two protocols. Both specifications can
be read intuitively. First, in Gpcs,

1. B first sends a request (Request is an operator name), with the message value
PName of type string, which is a product name.

2. S confirms by sending the same product name and its price, where the latter should
be a non-negative integer as annotated.

3. If B says OK and sends its identity, then (in practice, after authentication etc.) S
sends back a fresh purchase number PNo, i.e. it should not be in the domain of
PLog. As a result, this new key and the corresponding information is added to
PLog. On the other hand, if B says KO, the conversation terminates.

Note our specifications use local state to record an abstraction of preceding interactions
across sessions, used for constraining future behaviours. Our ultimate aim is to specify
visible behaviours: thus the stipulated state does not have to come from an actual state
of a process: we may call it a “ghost state” following JML [1].

2.2 Synchrony and Asynchrony in Specification

The next example illustrates the central topic of this paper, asynchrony in specifications,
showing how a specification can be “too synchronous” for asynchronous observations.
We focus on a part of the previous example. The purchase number allocator S will,
upon a request from a buyer B at each session, issue a purchase number incrementing
the previously issued one: so S issues e.g. 1, 2, 3, . . . in a sequence of sessions. Figure
2 (a) shows the corresponding protocol Gsync which the participants, S and B, should
realise at each session. c is a local state of S, denoting the next purchase number.

Example 2 (SPs for purchase number allocator: synchronous v.s. asynchronous)

(a) synchronous spec

Gsync = B → S : req(ε).
S → B : ans(x : int)

〈x = c; c := c+1〉〈truth;ε〉.
end

(b) asynchronous spec

Gasync = B → S : req(ε).
S → B : ans(x : int)

〈x �∈ c; c := c∪{x}〉〈truth;ε〉.
end

212 T.-C. Chen and K. Honda

In the first line of Gsync, B requests S a purchase number by sending req(ε), where
ε means there is no message value in this request. In the second line, an integer x is
sent from S to B, for which 〈x = c;c := c+ 1〉 specifies the obligation for S, while no
obligation i.e. 〈truth;ε〉 for B. The first part “x= c” says that x should be equal to c. The
second part “c := c+1” says that, after sending, S will increase c by 1, which constrains
further behaviours of S in later sessions.

Gsync is an example of a SP which makes sense synchronously but not asynchronously.
It seems an intuitively sensible specification: however, for a remote observer, even if S
actually sends the series of purchase numbers 1,2,3,4, . . . in this order, they may ar-
rive at the observer as e.g. 2,4,1,3, . . ., under the practical assumption that the order of
messages belonging to distinct sessions may not be preserved. In particular, this remote
observer will consider S as being ill-behaved with respect to Gsync: the correctness for
S (which is synchronous) and the correctness for its observer (which is asynchronous)
are incongruent.

As a remedy, we present Gasync in Example 2(b), which is intended for asynchronous
observation. We now use the set of purchase numbers: c, whose type is a set of integers,
corresponds to PLog in Example 2.1. The new specification just says, in brief, that
“S always sends a fresh number”. If the behaviour of S satisfies this condition at S,
then even though messages from S may arrive out-of-order, the remote observer can
verify that they are correct w.r.t. Gasync, so that the actions of S and their asynchronous
observation by a remote observer coincide. We shall later verify this statement formally.

2.3 Capturing Causality Using Sets

While Gasync gives a reasonable specification, it is not a strongest possible specification
if our target is a server that issues purchase numbers incrementally based on the previous
numbers. For example, if the same buyer sequentially repeats a series of request-reply
sessions, that buyer (and an observer sitting in-between) will surely observe 1,2,3,4 in
this order, but this point is not captured by Gasync.

Example 3 (A refinement of Gasync)

Gass = B → S : req(ε)〈truth ; ε〉〈truth ; t := t+1,c := c�{t}〉.
S → B : ans(x : int)〈x ∈ c; c := c\{x}〉〈truth ; ε〉.
end

Gass in Example 3 is a refinement of Gasync in Example 2: while still being suitable for
asynchronous observations, it can capture a stronger causal constraint. It uses two states:
t, a counter, and c, a collection of valid numbers to be issued. t and c are incremented
when receiving a request, while the sent value is taken off from c. The basic idea is that,
if S receives n requests, then (assuming the server issues the purchase numbers starting
from 1) as a whole the numbers which can be issued are among {1,2, ..,n}. And if S
issues a number from this set, the remaining numbers are what it can issue.

To understand Gass as a specification, consider two sessions following the protocol,
s1 and s2. Assume the initial states are t (→ 0 and c (→ {}. Then Gass says the traces
in Figure 1 are valid ones (we list the traces together with step-by-step state change:
(I,II,III) are categories each stipulating how states will change).

Specifying Stateful Asynchronous Properties for Distributed Programs 213

cases 1st 2nd 3rd 4th

(I) actions: s1[B,S]?req(ε) s2[B,S]?req(ε) s1[S,B]!ans(1) s2[S,B]!ans(2)
s2[B,S]?req(ε) s1[B,S]?req(ε) s1[S,B]!ans(1) s2[S,B]!ans(2)
s1[B,S]?req(ε) s2[B,S]?req(ε) s2[S,B]!ans(1) s1[S,B]!ans(2)
s2[B,S]?req(ε) s1[B,S]?req(ε) s2[S,B]!ans(1) s1[S,B]!ans(2)

(I) states: t (→ 1,c (→ {1} t (→ 2,c (→ {1,2} t (→ 2,c (→ {2} t (→ 2,c (→ {}

(II) actions: s1[B,S]?req(ε) s2[B,S]?req(ε) s1[S,B]!ans(2) s2[S,B]!ans(1)
s2[B,S]?req(ε) s1[B,S]?req(ε) s1[S,B]!ans(2) s2[S,B]!ans(1)
s1[B,S]?req(ε) s2[B,S]?req(ε) s2[S,B]!ans(2) s1[S,B]!ans(1)
s2[B,S]?req(ε) s1[B,S]?req(ε) s2[S,B]!ans(2) s1[S,B]!ans(1)

(II) states: t (→ 1,c (→ {1} t (→ 2,c (→ {1,2} t (→ 2,c (→ {1} t (→ 2,c (→ {}

(III) actions: s1[B,S]?req(ε) s1[S,B]!ans(1) s2[B,S]?req(ε) s2[S,B]!ans(2)
s2[B,S]?req(ε) s2[S,B]!ans(1) s1[B,S]?req(ε) s1[S,B]!ans(2)

(III) states: t (→ 1,c (→ {1} t (→ 1,c (→ {} t (→ 2,c (→ {2} t (→ 2,c (→ {}

Fig. 1. The valid traces from Gass

Above, s1[B,S]?req(ε) denotes an input ? from B to S at session s1 carrying a req-
message without value; s1[S,B]!ans(1) is an output ! from S to B at s1 carrying a ans-
message with value 1. (I) and (II) are the traces where a remote observer observes that
two consecutive inputs have arrived first. Note that, even if S may have indeed outputted
immediately after the first input, we can have these traces, due to asynchrony. Even
then, unlike Gasync, the observer is sure that the returned values should be no more than
2, i.e. it is either 1 or 2. In (III), the observer observes the second request only after
the answer to the first request: the request-answer order in each session is preserved
because without the request, its answer cannot occur. Unlike Gasync, the observer can
expect, based on Gass, that the first answer is surely 1; and the second is surely 2.
This example shows how we can represent causality while (intuitively) keeping the
asynchronous nature of specifications.

3 Asynchronous Specifications

3.1 Syntax of Protocols and Specifications

Grammar of global and local stateful protocols. Figure 2 summarises the grammar of
global SPs (G, . . .), which specify the interaction structure of a session from a global
viewpoint; and local SPs (T, . . .) which specify protocols for endpoints, to be projected
from G. Their syntax extends [4] with local states and operations on them: by adding
simple state update, we obtain a rich class of stateful specifications.

214 T.-C. Chen and K. Honda

S ::= nat | bool | string | . . .
| S1 ×S2 | set(S) | map(S1,S2)

e ::= x | v | f | op(e1,,en)

G ::= p→ q : {li(xi : Si)〈Ai;Ei〉〈A′
i;E ′

i 〉.Gi}i∈I G-cm

| G1 | G2, role(G1)∩ role(G2) = /0 G-par

| end G-end

A ::= truth | false | e1 = e2 | e1 > e2

| e1 ∈ e2 | A1 ∧A2 | ¬A

E ::= ε | E, f := e

T ::= p!{li(xi : Si)〈Ai;Ei〉.Ti}i∈I L-sel

| p?{li(xi : Si)〈Ai;Ei〉.Ti}i∈I L-bra

| end L-end

Fig. 2. The grammar of stateful protocols

A SP uses a state consisting of zero or more fields. A field gets read in a predicate
A and gets read and written in an update E . We call 〈A;E〉 obligation. We use updates
instead of post-conditions for usability in runtime verification. (S, . . .) are sorts (types of
expressions), and (e, . . .) are expressions, where op(e1, ...,en) is the operation op on pa-
rameters e1, ...,en. We use product S1×S2, set set(S) and (finite) function map(S1,S2).
Sets and functions play important roles in asynchronous specifications. In expressions,
x is a variable, v is a value, f is a (mutable) field. In E , f := e is assigned by e. The gram-
mar of G and T is simplified for distilled presentation. In particular we omit recursion,
which however can be added preserving all results, see §5.

In G, p→ q describes the communication from sender p to receiver q, while p! and
p? are endpoint actions for output (to p) and input (from p). In li(xi : Si), li is the label
for a branch: when li is chosen, the interaction variable is xi, and Si is its type. In G-cm,
the first obligation 〈A;E〉 is for the sender, indicating a sender should guarantee that its
message satisfies A and as a result E is done; the second obligation 〈A′;E ′〉 is for the
receiver, indicating it can expect a message to satisfy A′ and as a result E ′ is done. In
G-par, its side condition (where role(G) denotes the set of roles in G) demands no role
is shared by G1 and G2, Rule L-sel is for sender’s behaviours, while rule L-bra is for
receiver’s behaviours. Parallel composition specifies two interactions in parallel, while
end denotes the end of interactions.

As a notational convention, if an obligation is trivial (i.e. the predicate is truth and
the update is ε) then it is omitted. Further, if either the predicate or the update is trivial
in an obligation, then it is omitted.

Well-formedness and projection. Assume p→ q : {li(xi : Si)〈Ai;Ei〉〈A′
i;E ′

i 〉.Gi}i∈I is inside
a context, with possibly preceding interactions. The following well-formedness condi-
tions, based on [4], stipulate consistency of global protocols:

(1) (a) ∀i ∈ I, field(A′
i) = /0 (where field(A) denotes the sets of field names occurring in

A); and (b) ∀i ∈ I, Ai implies A′
i.

(2) (history sensitivity) Ai and Ei only refer to interaction variables which p, a sender,
has sent or received before, as well as xi. Similarly for A′

i and E ′
i for a receiver.

(3) (temporal satisfiability) at each step, and for any state, there is always a branch i
and a value xi that satisfy Ai (hence A′

i, i.e. at each step).

(1-a) says that a predicate of a receiver is stateless (generally, if a receiving-side predi-
cate relies on its own local state, then a sender may not be able to find a “proper” value

Specifying Stateful Asynchronous Properties for Distributed Programs 215

to send). (1-b) says that, in every interaction, the predicate at sender always imply the
predicate at the receiver: together with (1-a), this means that if a sender sends a message
that satisfies the sender’s predicate, then automatically the receiver’s predicate is satis-
fied (the latter however is useful for the receiver to know what it can expect). (2) and
(3) are from [4]. All examples treated in this paper are easily well-formed. Henceforth
we assume all global SPs we treat are well-formed.

A global protocol is useful to capture the overall interaction scenario, while a local
protocol specifies what the endpoint is expected to do. They are linked by endpoint
projection. Leaving its formal definition to [5], we illustrate the idea by an example.

Example 4 (endpoint projection). The local SPs projected from Gass are:

Gass � B = TB = S!req(ε).S?ans(x : int).end
Gass � S = TS = B?req(ε)〈truth; t := t+1 c := c�{t}〉.B!ans(x : int)〈x ∈ c ; c := c\{x}〉.end

Specifications. A specification is a triple Θ ::= 〈Γ ;Δ ;D〉 which gives a behavioural
specification of a local process (endpoint) as its interface. Γ , Δ and D, separated by “;”
in Θ , are given by:

Γ ::= /0 | Γ ,a : I(G[p]) | Γ ,a : O(G[p]) | Γ , f : S Δ ::= /0 | Δ ,s[p] :T D ::= /0 | D, f (→ v

Above, I (resp. O) is a mode denoting input (resp. output) capability. Γ , shared environ-
ment, describes the permitted behaviour at each shared channel; and the type of each
field. When a process has a : I(G[p]), it can accept invitations via a shared channel
a to play the role p following what (the p-projection of) G specifies; while a :O(G[p])
is its dual. In Δ , session environment, s[p] : T describes the session behaviour (T) in
a session s as p. D is a set of (ghost) states of a local process (endpoint): the states in
D ∈ Θ belong to an endpoint participant in a session. Each D is a map from fields to
values. In formulae, a field f itself represents its current value.

Example 5. Based on Gass in Example 3 and its local SPs in Example 4, we give a
local specification Θass for server, playing role S, and ΘB1 and ΘB2 for two buyers B1

and B2, each playing role B in Gass, assuming there are two ongoing sessions s1 and s2.

TS = B?req(ε)〈truth; t := t+1 c := c�{t}〉.B!ans(x : int)〈x ∈ c ; c := c\{x}〉.end
Θass = 〈Γ ′

Ser,ser : I(Gass[S]) ; Δ ′
Ser,s1[S] : TS,s2[S] : TS ; D′

Ser, t (→ 0,c (→ {}〉

TB = S!req(ε).S?ans(x : int).end, ΘB1 = 〈Γ ′
B1
,b1 : O(Gass[B]); Δ ′

B1
, s1[B] : TB; DB1〉

ΘB2 = 〈Γ ′
B2
,b2 : O(Gass[B]); Δ ′

B2
,s2[B] : TB; DB2〉

The data storage in Θass is D′
Ser, t,c. In this protocol, no state in D′

Ser is used. Similarly,
no state in DB1 or DB2 is used. Although we do not illustrate the whole procedures of
session establishment (by using rules [REQ-INI], [REQ] and [ACC] defined in Figure 3),
it shows that buyers B1 and B2 are the invitors requesting S to join session s1 and s2.

3.2 Semantics of Specifications

We present the semantics of specifications as a labelled transition system (LTS). The

transition is of the form Θ 	−→Θ ′, which intuitively means Θ as a specification allows a

216 T.-C. Chen and K. Honda

process to do an action 	, and the resulting process should conform to Θ ′. For actions
labels, we use a(s[p] : G) for sending an invitation when s is fresh to the sender, and
use a〈s[p] : G〉 for sending an invitation when s is not fresh. a(s[p] : G) for accepting
an invitation when s is fresh to the receiver (which is the only case we consider), and
s[p,q]!l(v) and s[p,q]?l(v) for sending and receiving in a session. We do not use τ since
it is irrelevant in the present work (because, in brief, τ is always possible and has no
effects on specifications). The LTS is defined in Figure 3 below: the induced transition

is deterministic: if Θ 	−→Θ ′ and Θ 	−→Θ ′′, then Θ ′ =Θ ′′.

[REQ-INI]
a : O(G[p j]) ∈ Γ , s �∈ dom(Δ), role(G) = {pi}i∈I

〈Γ ; Δ ,{s[pi] : G � pi}i∈I ; D〉 a(s[p j]:G)−−−−−−→ 〈Γ ; Δ ,{s[pi] : G � pi}i∈I\{ j}; D〉

[REQ]
a : O(G[p j]) ∈ Γ , role(G) = {pi}i∈I

〈Γ ; Δ ,s[p j] : G � p j; D〉 a〈s[p j]:G〉−−−−−−→ 〈Γ ; Δ ; D〉

[ACC]
s �∈ dom(Δ), T = G � q, field(T) ∈ D

〈Γ ,a : I(G[q]); Δ ; D〉 a(s[q]:G)−−−−−→ 〈Γ ,a : I(G[q]); Δ ,s[q] : T ; D〉

[SEL]
T = q!{li(xi : Si)〈Ai;Ei〉.T ′

i }i∈I , Γ 2v : S j, Γ |=A j{v/x j}, s �∈ dom(Δ)

〈Γ ; Δ ,s[p] : T ; D〉 s[p,q]!l j(v)−−−−−−→ 〈Γ ; Δ ,s[p] : T ′
j{v/x j}; DafterE{v/x j}〉

[BRA]
T = p?{li(xi : Si)〈Ai;Ei〉.T ′

i }i∈I , Γ 2 v : S j, Γ |=A j{v/x j}, s �∈ dom(Δ)

〈Γ ; Δ ,s[q] :T ; D〉 s[p,q]?l j(v)−−−−−−→ 〈Γ ; Δ ,s[q] :T ′
j{v/x j}; DafterE{v/x j}〉

[PAR]
Θ1

	−→ Θ2, bn()∩n(Θ3) = /0

Θ1,Θ3
	−→ Θ2,Θ3

Fig. 3. Labelled transition system for specifications

The first two rules are for invitations. [REQ-INI] is used when s is fresh, i.e. when the
first request happens to the sender to ask someone for playing role p j in a fresh s. The
round parenthesis in a(s[p j] : G) indicates s in this label is a binding occurrence and we
record all capabilities except the passed one in the linear typing environment; otherwise
we use [REQ]. [REQ] says that, when s is not fresh in the session environment, and if Θ
has an output channel a with G, (1) the target behaviour is permitted to send a request
a〈s[p j] : G〉 to ask someone to play role p j in session s; and (2) after requesting, we take
off the capability at p j. Rule [ACC] says that, if s is a new session, and all states declared
in G � q, field(G � q), are in D, when Θ has an input channel a with G for accepting to
play role q, it accepts this request and plays session role s[q] specified by G � q.

Rule [SEL] is for sending a message in a session. The premise says that, first, the type
T should be a selection type; the passed value v has type S j from the j-th branch of T
under Γ (note that, when v is a name, Γ needs to have the knowledge of its type, but it
is not needed if v is a non-channel value, like 3 or ”hello” whose type is automatically
known without Γ); and A j after substitution holds under Γ . The condition s �∈ dom(Δ)
says that, when an agent communicates in a session, it is playing only a single role (this

Specifying Stateful Asynchronous Properties for Distributed Programs 217

restriction can be taken off but simplifies the technical development). In the conclusion,
T ′

j substitutes v for x j and prepares for the next action, and the state is updated by
DafterE j{v/x j}. To illustrate the updating of D by E j, assume E j is defined as f :=
f�{x j}, and currently f (→ {10}. After substituting 5 for x j, D is updated to f (→ {10,5}.
Rule [BRA] is a symmetric rule of [SEL]. Finally [PAR], where bn(·) is the set of bound
names and n(·) is the set of names, says if Θ1 and Θ3 are composable, after action
happens and Θ1 becomes as Θ2, they are still composable.

3.3 Processes and Satisfaction

Definition 6 (trace). A trace (s,s′, . . .) is a sequence of actions where we assume a
request/accept action introducing the session channel, say s, binds the later occurrences
of s. Based on this binding, we only consider traces which satisfy the standard binding
conventions, i.e. two binding occurrences never coincide and if free s occurs then it
cannot do so before a binding occurrence (by an accept or request).

Below sbj() denotes the subject of 	, given as, for a request/accept, the initial shared
channel (e.g. sbj(a〈s[p j] : G〉) = a); and, for a session action, the session channel with
the interacting role (e.g. sbj(s[p,q]!l j(v)) = s[q], sbj(s[p,q]?l j(v)) = s[p]).

Definition 7 (legal unit permutation). Let 	1 · 	2 be a trace. Then a permutation from
	1 · 	2 to 	2 · 	1 is legal if one of the following conditions holds:

1. 	1 and 	2 are both inputs and either both are session actions and sbj(1) �= sbj(2)
to the same receiver, or one of them is an accept action and 	1 does not bind 	2.

2. 	1 and 	2 are both outputs and either both are session actions and sbj(1) �= sbj(2)
to the same sender, or one of them is a request action and 	1 does not bind 	2.

3. 	1 is an output and 	2 is an input and 	1 does not bind 	2.

Such a permutation is called a legal unit permutation. We write s� s′ when s′ is the
result of applying zero or more legal unit permutations. In this case s′ is a permutation
variant of s and this permutation is called a legal permutation.

Example 8 (legal permutation). In Figure 1, all traces in (I) and (II) are permutation
variants to each other. The traces in (III) can legally permute to any trace in (I) and (II),
but not the converse.

The following simple definition of processes is enough for our purpose: we can readily
use the π-calculus with session primitives and its weak (τ-abstracted) LTS to induce
this abstract notion of processes.

Definition 9 (process). A process (P,Q, ..) is a prefix-closed set of traces.

The following defines the notion of synchronous and asynchronous observables as the
sets of traces observed by a synchronous observer (i.e. as it is) and by an asynchronous
observer (i.e. up to legal permutations).

Definition 10 (synchronous and asynchronous observable). (1) Obss(P)
def
= P. (2)

Obsa(P) is the set of all legal permutation variants of the traces in P.

218 T.-C. Chen and K. Honda

Definition 11 (|Θ |: valid traces of Θ). We define |Θ |, the set of valid traces of Θ , as
finite sequences from the LTS of Θ defined in Figure 3.

Intuitively, a valid trace is a trace that Θ approves. The following says that a process
P synchronously (resp. asynchronously) satisfies Θ if, w.r.t. synchronous (resp. asyn-
chronous) observables, P always does valid outputs as far as it receives valid inputs.

Definition 12 (satisfaction up to observables). A process Obss(P) synchronously sat-
isfies Θ , denoted P |=sync Θ , when the following two conditions hold:

1. (output safety) Obss(P)⊂ |Θ |.
2.a (input consistency) Whenever s ∈ Obss(P) and s · 	 ∈ |Θ | where 	 is an input,

s · 	′ ∈Obss(P) and 	′ is an input with the same subject as 	, then s · 	 ∈ Obss(P).

A process P asynchronously satisfies Θ , denoted P |=async Θ , if, after replacing each
Obss(P) with Obsa(P), it satisfies condition 1. above, as well as:

2.b (input consistency) Whenever s ∈Obsa(P) and s · 	∈ |Θ | where 	 is an input, then
s · 	 ∈Obsa(P).

Note that a synchronous process (2.a) can accept a valid input only when it is ready to
receive it; while an asynchronous process (2.b) can, and should, accept any valid input.

Example 13 (valid/invalid traces of Gass). We consider Θass from Example 5 which
uses the local SP from Gass in Example 3 for the server side. Then, for example, the
trace s2[B,S]?req(ε) · s2[S,B]!ans(1) · s1[B,S]?req(ε) · s1[S,B]!ans(2) is valid for Θass,
but s2[B,S]?req(ε) · s2[S,B]!ans(2) · s1[B,S]?req(ε) · s1[B,S]!ans(1) is not its trace (vio-
lation is at the second step), i.e. it is not permitted by Θass.

4 Theory of Asynchronous Specifications

4.1 Asynchronously Verifiable Specifications

We say Θ is asynchronous if it is suitable for a remote observer to verify a process
behaviour. In this case, we do not want the conformance of a trace to change depending
on an accidental reordering due to asynchrony: i.e. we want its validity to be robust
w.r.t. legal permutations.

Definition 14 (asynchronously verifiable specification). We say Θ is asynchronously
verifiable or simply asynchronous when s ∈ |Θ | and s� s′ imply s′ ∈ |Θ |.

To check violation of asynchrony of a specification, we only have to find a single ac-
ceptable trace whose permutation is not acceptable.

Example 15. Let Tsync be the local SP at server, projected from Gsync. Then Θsync =
〈Γ ′

Ser,ser : I(Gsync[S]) ; Δ ′
Ser,s[S] : Tsync ; D′

Ser,c〉, where I contains the sessions using
Gsync, is not asynchronous by the traces given in §2.

Specifying Stateful Asynchronous Properties for Distributed Programs 219

On the other hand, checking asynchrony by Definition 14 means we should verify the
property for all traces, which are usually infinitely many. Later we shall find methods by
which we can validate the asynchrony of, for example, Θass and all the corresponding
specifications that use Gpcs/Givc and Gasync.

The following characterisation says that, if a specification Θ is asynchronous, the
anomaly we discussed in §2.2, for Gsync in Figure 2(a), can never take place: if a
synchronous observer recognises that P conforms to Θ , i.e. if P conforms to Θ syn-
chronously, then an asynchronous observer will also do the same.

Proposition 16. Θ is asynchronous iff, for each P, P |=sync Θ implies P |=async Θ .

The next result says that asynchronous verifiability is consistent with the asynchronous
trace equivalence. Below let P ≈async Q mean Obsa(P) = Obsa(Q). In [14], we have
shown how ≈async (but not its synchronous counterpart) can be used for non-trivial
optimising transformation.

Proposition 17. If P ≈async Q and P |=async Θ then Q |=async Θ .

4.2 Asynchrony in Specifications through Commutativity

A basic issue in Definition 14 and its characterisation in Proposition 16 is that they
do not directly mention the (intensional) structure of specifications. Thus it does not
offer engineers insights as to how one may design her/his specifications. Extending the
usage of the term in [11], we may call a criterion for specifications which a designer
can use for ensuring robustness w.r.t. asynchrony, healthiness condition. The following
definition is a first step towards such a criterion.

Definition 18 (confluence). Θ is confluent if, whenever Θ s−→ Θ ′, if Θ ′ 	1·	2−−→ Θ ′′ and

	2 · 	1 � 	1 · 	2, then Θ ′ 	2·	1−−→Θ ′′ again.

I.e. the specification accepts the same sequence of values regardless of legal permuta-
tions and the resulting states are the same. Immediately confluence means asynchrony.

Lemma 19. Θ is asynchronous iff s · 	1 · 	2 ∈ |Θ | and 	1 · 	2 � 	2 · 	1 imply s · 	2 · 	1 ∈
|Θ | for each s, 	1 and 	2.

Proposition 20. If Θ is confluent then it is asynchronous.

Note that the other way round is not true. Given Θ is asynchronous, for any s, 	1, and

	2, s·	1·	2 ∈ |Θ | implies s·	2·	1 ∈ |Θ |. However, it is possible that Θ s−→ Θ ′ 	1·	2−−→ Θ ′′

while Θ s−→Θ ′ 	2·	1−−→Θ ′′′, where Θ ′′ �=Θ ′′′.
We can easily find a specification which is not confluent (for example, if a speci-

fication just does the same counting as Gsync). To check confluence, we still need to
consider all possible transition derivatives of Θ . However we can observe that, in such
a derivative, the obligations used to check confluence are already present in Θ . This
suggests we only have to look at the obligations occurring in Θ and check their com-
mutativity w.r.t. their legal unit permutations. This method demands designers to look at
only Θ , so that it clearly helps her/his design process. The method treats a predicate and
an update in an obligation as functions (operations) on state, as follows. Let † ∈ {?, !}.

220 T.-C. Chen and K. Honda

Definition 21 (predicate/update functions). Let ξ def
= r † l(x : S)〈A;E〉 with the as-

sociated state D whose domain is f1, ..., fn. W.l.o.g. we regard E to be a simultaneous
substitution of the form f1 := e1, ..., fn := en. Then we define:

pred(ξ) def
= λ x, f1, ..., fn.(A) upd(ξ) def

= λ x, f1, ..., fn.〈e1, ..,en〉

We call pred(ξ) (resp. upd(ξ)) the predicate function (resp. update function) of ξ .

Example 22. Below we project Gsync and Gass (all from §2) to the server. For simplicity
we assume its local state only consists of those fields specified in global SP.

Gsync � S = B?req(ε)〈truth;ε〉 . B!ans(x : int)〈x = c ; c := c+1〉

Gass � S = B?req(ε)〈truth; t := t+1 c := c�{t}〉 . B!ans(x : int)〈x ∈ c ; c := c\{x}〉

Then the following table gives the functions induced by obligations in these local types.

input output

Gsync � S ξ0
def
= B?req(ε)〈truth;ε〉 ξ1

def
= B!ans(x : int)〈x = c;c := c+1〉

pred(ξ0)
def
= λε ,c.(truth) pred(ξ1)

def
= λx,c.(x = c)

upd(ξ0)
def
= λε ,c.〈ε〉 upd(ξ1)

def
= λx,c.〈c+1〉

Gass � S ξ2
def
= B?req(ε)〈truth; t := t+1 c := c�{t}〉 ξ3

def
= B!ans(x : int)〈x ∈ c ; c := c\{x}〉

pred(ξ2)
def
= λε ,c.(truth) pred(ξ3)

def
= λx,c.(x ∈ c)

upd(ξ2)
def
= λε ,c.〈t+1 c∪{t}〉 upd(ξ3)

def
= λx,c.〈c\{x}〉

Once we can treat obligations as operations on state(s), we can define their commuta-
tivity. Since the commutativity we need is asymmetric (corresponding to asymmetric
permutations induced by asynchrony, cf. Definition 7), we define semi-commutativity,
which plays a key role in validating specifications later. A precursor of the following
construction in a different setting is found in [7] (see §5 for discussions).

Definition 23 (semi-commutativity). Assume w.l.o.g., ξi and ξ j use f as the field.
Then we say ξi commutes over ξ j if, for any message values vi and v j (for ξi and ξ j),
and the value of initial state w (for f), the following conditions hold. If pred(ξi)(vi,w)
and pred(ξ j)(v j,upd(ξi)(vi,w)) are both true, then

1. pred(ξ j)(v j ,w) and pred(ξi)(vi,upd(ξ j)(v j ,w)) are both true.
2. upd(ξ j)(v j,upd(ξi)(vi,w)) = upd(ξi)(vi,upd(ξ j)(v j,w)).

If ξi commutes over ξ j and vice versa, then we say ξi and ξ j are commutative.

Example 24. We show ξ1 in Example 22 does not commute over itself (i.e. ξ1, ξ1 is
not commutative). Let f = c. We know pred(ξ1)(1,1), pred(ξ1)(2,upd(ξ1)(1,1)) and
pred(ξ1)(2,2) are all truth, however pred(ξ1)(2,1) = false. Similarly, ξ0 does not
commute over ξ1 (however ξ0,ξ0 are commutative).

Specifying Stateful Asynchronous Properties for Distributed Programs 221

Using this notion, the healthiness condition for asynchronous specification can be con-
cisely stated as follows. Below we say an obligation is usable in Θ if it occurs in a local
SP in Θ or in the projection of a global SP in Θ to its potentially local role, where by
“potentially local” we mean that the role has a potential to be played locally (e.g. for the
global SP carried by an input shared channel type, only the specified role is potentially
local).

Definition 25 (commutativity). Given Θ , let ξ1, ..,ξn be all the obligations usable in
Θ . Then we say Θ is commutative if the following conditions hold.

1. For (possibly identical) ξ ′
1 and ξ ′

2 from {ξ1, ..,ξn}, if both are inputs or both are
outputs, then ξ ′

1 and ξ ′
2 are commutative.

2. For distinct ξ ′
1 and ξ ′

2 from {ξ1, ..,ξn}, if ξ ′
1 is an output and ξ ′

2 is an input then ξ ′
1

commutes over ξ ′
2.

I.e. Θ is action confluent when all obligations used in the specifications for the target
process commute over each other up to legal permutations. We can easily show:

Proposition 26. If Θ is commutative then it is confluent (hence asynchronous).

Note that the other way round is not true: Θ is confluent does not imply that it is
commutative. Since, based on Definition 18, Θ is confluent, then whenever Θ s−→ Θ ′,

Θ ′ 	1·	2−−→ Θ ′′ and 	1 ·	2 � 	2 ·	1 imply Θ ′ 	2·	1−−→ Θ ′′. Θ ′ is commutative, but Θ ′ cannot
imply that Θ is commutative.

This method can be strengthened by adding an invariant (including correlation among
states) in state and checking that invariant continues to hold at each step. We can now
show all our example specifications except the one induced by Gsync is asynchronous.
Below we let Θasync’s shared environment contains a : I(Gasync[S]), and let Θasync’s data
storage contains c (→ {}. By inspecting the (semi-)commutativity of induced predicates
and operations, we easily obtain:

Proposition 27. Θasync and Θass at server are both commutative, hence asynchronous.

We can similarly check a specification induced by Gpcs and Givc are commutative.
The valuation of commutativity is essentially satisfiability of a formula whose free

variables are universally quantified. Thus if the logic (for predicates) we use for our
specification language is decidable, commutativity is decidable. In particular, by [20]:

Proposition 28. With the SP language given in §3 restricting operations on integers to
be the addition and the subtraction, then the commutativity is decidable.

We discuss practical implications of these results in the next section.

5 Related Work and Further Topics

Practical implications of the Theory The characterisation results in §4 offer not only
a decision procedure for a rich subset of specifications, but also a basic insight on the

222 T.-C. Chen and K. Honda

design methodology for asynchronous specifications. In particular it sheds light on the
use of operations on sets in our examples in §2. Because checking commutativity solely
relies on the obligations occurring in protocols, adding the recursion to the syntax:

G ::= ... | μX .G | X T ::= ... | μX .T | X

does not change the nature of commutativity checking nor the resulting guarantee.
If Θ is asynchronous and a process behaves properly w.r.t. Θ synchronously, an

asynchronous observer will also judge the induced (permuted) trace to be proper w.r.t.
Θ . It is however easy to see that the converse is not true: consider a server that violates
Θass by responding 2 to the first request, 1 to the second, but these are delayed by
asynchrony, leading to a valid trace when they arrive at the remote observer (for a
concrete analysis, see the Appendix in our full version [5]). A key consistency property
is that any further legal permutation of this valid trace is again valid. For example, if a
system monitor for the server is sitting between Client and Server, and if this monitor
observes a valid trace of Server against the specification she has, Client will observe
no worse behaviour. This monotonicity gives a basis for an application of the presented
framework such as runtime monitoring.

Related works and further topics The semantic differences between synchronous and
asynchronous communications have been studied for several decades: early works in-
clude [2,6,10,12]. The permutations associated with asynchronous communication used
in Definition 7 are noted in these works (and implicit in such work as [15]). Their more
explicit presentation in the categorical setting is found in [19]. There is also a study in
component validation based on asynchronous histories such as [18]. In spite of these
precursors and close technical connection, the existing works (except [16] which how-
ever focuses on synchronous specifications and proof rules for their verifications) may
not have pointed out the concrete semantic issues which stateful behavioural specifi-
cations and asynchronous observables can induce, and how this issue can be resolved
through the interplay between synchronous and asynchronous semantics.

As observed in §4.2, a close analogue of commutativity of operations used for
our characterisation result (Definition 23) appears in [7], where the authors study a
method for checking commutativity (called diamond connectivity) of operations with
pre-conditions in object-oriented programs, with a view to preventing the simultaneous
issuance of these operations when they are not commutative. They translate the origi-
nal model of methods in OCL to Alloy, which is analysed through simulation by Alloy
Analyser. They do not (aim to) determine a class of specifications suitable for asyn-
chronously communicating processes. In contrast, our aim is to stipulate a general class
of specifications for communicating processes suitable for asynchronous observations,
and identify its subclass amenable for automatic verification. Following this principle,
we use a semi-commutativity to capture asymmetry in asynchronous communications:
as seen in the Proposition 27 (the proofs are in our full version [5]), we crucially use
this semi-commutativity when verifying Gass is asynchronous.

Among further topics, we are currently exploring and analysing concrete forms of
asynchronously verifiable specifications with different structures, informed by use cases
from [17] as well as our theory, with a view to their usage in monitoring. One of the

Specifying Stateful Asynchronous Properties for Distributed Programs 223

challenges is to find a solid (asynchronous) specification framework for inherently con-
flicting operations, such as two consecutive and overwriting updates on the same datum.

Acknowledgements. We thank the reviewers for their valuable comments and our col-
leagues in Mobility Reading Group for discussions. This work is supported by Ocean
Observatories Initiative [17] and EPSRC grants EP/F002114/1 and EP/G015481/1.

References

1. The Java Modeling Language (JML) homepage, http://www.jmlspecs.org/
2. Amadio, R., Castellani, I., Sangiorgi, D.: On Bisimulations for the Asynchronous π-

Calculus. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 147–162. Springer, Heidelberg (1996)

3. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg
(2008)

4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract for Dis-
tributed Multiparty Interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

5. Chen, T.-C., Honda, K.: Full Version of this paper, to appear as an EECS technical report,
Queen Mary. University of London

6. de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The Failure of Failures in
a Paradigm for Asynchronous Communication. In: Groote, J.F., Baeten, J.C.M. (eds.)
CONCUR 1991. LNCS, vol. 527, pp. 111–126. Springer, Heidelberg (1991)

7. Dennis, G., Seater, R., Rayside, D., Jackson, D.: Automating commutativity analysis at the
design level. In: ISSTA 2004, pp. 165–174. ACM, New York (2004)

8. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous Distributed
Monitoring for Multiparty Session Enforcement. In: Bruni, R., Sassone, V. (eds.) TGC 2011.
LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

9. Falcone, Y.: You Should Better Enforce Than Verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010)

10. He, J., Josephs, M., Hoare, T.: A theory of synchrony and asynchrony. In: Programming
Concepts and Methods. IFIP, pp. 459–478 (1990)

11. Hoare, C., Jifeng, H.: Unifying theories of programming. Prentice Hall series in computer
science. Prentice Hall (1998)

12. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America,
P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL
2008, pp. 273–284. ACM (2008)

14. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful Sessions in
Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–353. Springer, Heidel-
berg (2010)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–564 (1978)

 http://www.jmlspecs.org/

224 T.-C. Chen and K. Honda

16. A multiparty multi-session logic, http://www.cs.le.ac.uk/people/lb148/
StatefulAssertions/main-long.pdf

17. Ocean Observatories Initiative (OOI), http://www.oceanleadership.org/
programs-and-partnerships/ocean-observing/ooi/

18. Owe, O., Steffen, M., Torjusen, A.B.: Model Testing Asynchronously Communicating Ob-
jects using Modulo AC Rewriting. ENCS 264(3), 69–84 (2010)

19. Selinger, P.: First-Order Axioms for Asynchrony. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 376–390. Springer, Heidelberg (1997)

20. Zarba, C.G.: Combining Sets with Integers. In: Armando, A. (ed.) FroCoS 2002. LNCS
(LNAI), vol. 2309, pp. 103–116. Springer, Heidelberg (2002)

http://www.cs.le.ac.uk/people/lb148/StatefulAssertions/main-long.pdf
http://www.cs.le.ac.uk/people/lb148/StatefulAssertions/main-long.pdf
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

Synthesising Choreographies from Local Session Types$

Julien Lange and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. Designing and analysing multiparty distributed interactions can be
achieved either by means of a global view (e.g. in choreography-based approaches)
or by composing available computational entities (e.g. in service orchestration).

This paper proposes a typing systems which allows, under some conditions,
to synthesise a choreography (i.e. a multiparty global type) from a set of local
session types which describe end-point behaviours (i.e. local types).

1 Introduction

Communication-centred applications are paramount in the design and implementation
of modern distributed systems such as those in service-oriented or cloud computing.
Session types [8] and their multiparty variants [7,9] offer an effective formal framework
for designing, analysing, and implementing this class of applications. Those theories
feature rather appealing methodologies that consists of (i) designing a global view of
the interactions – aka global type –, (ii) effective analysis of such a global view, (iii)
automatic projection of the global view to local end-points – aka local types –, and (iv)
type checking end-point code against local types. Such theories guarantee that, when
the global view enjoys suitable properties (phase (ii)), the end-points typable with local
types enjoy e.g., liveness properties like progress.

A drawback of such approaches is that they cannot be applied when the local types
describing the communication patterns of end-points are not obtained by an a priori
designed global view. For instance, in service-oriented computing, one typically has
independently developed end-points that have to be combined to form larger services.
Hence, deciding if the combined service respects its specification becomes non trivial.
To illustrate this, we introduce a simple example used throughout the paper.

Consider a system SBS = b1[P1] | s1[S1] | b2[P2] | s2[S2] consisting of two buyers
(b1 and b2) and two servers (s1 and s2) running in parallel, so that

P1 = t1!order.p1?price.r?price.(c1!.t1!addr⊕c2!.no1!) is the behaviour of b1
P2 = t2!order.p2?price.r!price.(c2?.t2!addr+c1?.no2!) is the behaviour of b2
Si = ti?order.pi!price.(ti?addr+noi?), i ∈ {1,2} is the behaviour of si

with a!e (resp. a?e) representing the action of sending (resp. receiving) a message of
type e on a channel a (we omit e when the message is immaterial), ⊕ representing
an internal choice, and + a choice made by the environment. Intuitively, the overall
behaviour of SBS should be that either b1 or b2 purchase from their corresponding seller.

$ Work partially supported by the Leverhulme Trust Programme Award “Tracing Networks”.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 225–239, 2012.
© Springer-Verlag Berlin Heidelberg 2012

226 J. Lange and E. Tuosto

A natural question arises: is this intended behaviour actually realised by SBS? Arguably,
it is not immediate to answer such a question, even more so if a system involves a large
number of participants, with possibly complex behaviours.

We propose to construct a global view of distributed end-points like SBS by a
straightforward extension of the multiparty session types introduced in [9]. Such types
formalise a global view of the behaviour which, for SBS, resembles the informal di-
agram below, where the choreography of the overall protocol becomes much clearer.

An advantage of our approach is that we can reuse the results of the theory of mul-
tiparty session types to prove properties of end-points e.g. safety and progress. In fact,
we show that when the choreography can be constructed, its projections correspond to
the initial end-points. Therefore, the well-formedness of the synthesised global chore-
ography guarantees progress and safety properties of end-points.

We assume that session types are extracted from programs (relying on e.g. [6, 8, 9]),
and that they are readily available before addressing the construction of a global type.

Contributions. We introduce a theory to assign a global type to a set of local types. If it
exists, such global type is unique (Theorem 2) and well-formed (Theorem 3); also, its
projections are equivalent to the original local types (Theorem 7). We show a subject
reduction result (Theorem 4) as well as progress and safety properties (Theorems 5
and 6) guaranteed by our theory. Finally, we show that for every well-formed global
type, an equivalent global type can be assigned to its projections (Theorem 8).

Synopsis. In § 2, we give the syntax and semantics of the local types from which it
is possible to construct a global type. In § 3, we present an extension of the global
types in [9]. In § 4, we introduce a typing systems for local types and we give our main
results. Finally, in § 5 we conclude, and discuss related and future work. Due to space
restriction, we omitted the proofs, which are available in [11].

2 Local Types

We use CCS-like processes (with guarded external and internal choices) to infer a global
type from local types that correspond to the participants in the inferred choreography.
Hereafter, P is a denumerable set of participant names (ranged over by s, r, n, . . .) and
C is a denumerable set of channel names (ranged over by a, b, . . .).

Synthesising Choreographies from Local Session Types 227

Syntax. The syntax of local types below is parametrised wrt basic data types such as
bool,int, . . . (ranged over by e):

S,T ::= S | S′ | n[P] | a : ρ | 0

P,Q ::=
⊕

i∈I ai!ei.Pi | ∑i∈I ai?ei.Pi | µx.P | x

A system S consists of the parallel composition of processes and queues. A process n[P]
is a behaviour P identified by n∈ P; we assume that the participant names are all differ-
ent. A behaviour is either an external choice, an internal choice, or a recursive process.
An internal choice

⊕
i∈I ai!ei.Pi is guarded by output prefixes ai!ei representing the

sending of a value of sort ei on channel ai. An external choice ∑i∈I ai?ei.Pi is guarded
by input prefixes ai?ei representing the reception of a value of type ei on channel ai.
(we overload 0 to denote either an internal or external choice where I = /0). We adopt
asynchronous (order-preserving) communications and assume that the channels in the
guards of choices are pairwise distinct. In µx.P, µx is a binder for the free occurrences
of x in P. Moreover, all such free occurrences are prefix guarded in P. We consider
closed behaviours only that is, behaviours with no free occurrences of recursion vari-
ables, and, for simplicity, we assume that bound variables are pairwise distinct.

A program is a system with no queues, while a runtime system is a system S having
exactly one queue a : ρ per channel name a ∈ C in S. In the following, S,T, . . . denote
either a program or runtime system.

Semantics. The semantics of local types is a labelled transition system (LTS) with labels

λ ::= α | a ·e | e ·a | n[α] | n : α where α ::= a!e | a?e

Label α indicates either sending or reception by a process. Labels a ·e and e ·a respec-
tively indicate push and pop operations on queues. Label n[α] indicates a communica-
tion action done by participant n while n : a!e and n : a?e indicate a synchronisation
between n and a queue.

Assume the usual laws for commutative monoids for | and 0 on systems and µx.P≡
P[µx.P/x]. The LTS

λ−→ is the smallest relation closed under the following rules:

[INT]
⊕

i∈I ai!ei.Pi
a j !ej−→ Pj j ∈ I [EXT] ∑i∈I ai?ei.Pi

a j?ej−→ Pj j ∈ I

[PUSH] a : ρ a·e−→ a : ρ ·e [POP] a : e ·ρ e·a−→ a : ρ

[IN]
S
n[a?e]−→ S′ T

e·a−→ T ′

S | T
n :a?e−→ S′ | T ′

[OUT]
S
n[a!e]−→ S′ T

a·e−→ T ′

S | T
n :a!e−→ S′ | T ′

[BOX]
P

α−→ P′

n[P]
n[α]−→ n[P′]

[EQ-P]
P ≡ Q

α−→ Q′ ≡ P′

P
α−→ P′

[EQ-S]
S ≡ T

λ−→ T ′ ≡ S′

S
λ−→ S′

Rules [INT] and [EXT] are trivial. By [PUSH] (resp. [POP]), a queue receives a (resp. sends the
first) datum (resp. if any). Processes can synchronise with queues according to rules [IN]

and [OUT]. The remaining rules are standard. Let S −→ iff there are S′ and λ s.t. S
λ−→ S′

and
λ1...λn
=⇒ (resp. =⇒) be the reflexive transitive closure of

λ−→ (resp. −→).

228 J. Lange and E. Tuosto

3 Global Types

Global types specify an ordering of the interactions in choreographies. The syntax for
global types in [9] is extended with a generalised sequencing G ;G ′ so that (i) our theory
can type more systems and (ii) subject reduction can be established (cf. Example 3).

Global types have the following syntax:

G ::= s→r :a〈e〉 .G | G ;G ′ | G +G ′ | G | G ′ | µχ.G | χ | 0

The prefix s→r :a〈e〉 represents an interaction where s ∈ P sends a value of sort e to
r ∈ P on a ∈ C (we let ι range over interactions s→r : a〈e〉 and assume that s �= r).
In generalised sequencing G ;G ′, the interactions in G ′ are enabled only after the ones
in G . The production G +G ′ indicates a (exclusive) choice of interactions. Concurrent
interactions are written G | G ′. In a recursive global type µχ.G , χ is bound and guarded
in G . We assume that global types are closed and often omit trailing occurrences of 0.

Example 1. The first two interactions between bi and si in the example of § 1 are

Gi = bi→si :ti〈order〉 .si→bi : pi〈price〉 i ∈ {1,2} (3.1)

The type Gi says that a participant bi sends a message of type order to participant si
on channel ti, then si replies with a message of type price on channel pi. 4

The smallest equivalence relation satisfying the laws for commutative monoids for | ,
+, and 0 and the axioms below is the structural congruence for global types:

G ;0 ≡ G 0 ;G ≡ G (G ;G ′) ;G ′′ ≡ G ;(G ′ ;G ′′)

ι .(G ;G ′)≡ (ι .G) ;G ′ µχ.G ≡ G [µχ.G/χ]

The syntax of global types may specify behaviours that are not implementable. The rest
of this section borrows from [5] and [9] and adapts the requirements a global type must
fulfil to ensure that the ordering relation it prescribes is indeed feasible.

3.1 Channel Usage and Linearity

It is paramount that no race occurs on the channels of a global type (i.e. a datum sent
on a channel is received by its intended recipient). As in [9], we require that a global
type is linear, that is actions on channels shared by different participants are temporally
ordered. For this, we use generic environments (ranged over by C) which keep track of
channel usage. Such environments are trees defined as follows:

•
c

C

c
���

�
���

�

C1 C2

root only C is a child of c C1 and C2 are children of c

Each node c has a label c of the form ◦, s→r:a, or µχ respectively representing the root
of choice or concurrent branches, an interaction between s and r on a, and a recursive

Synthesising Choreographies from Local Session Types 229

behaviour. Immaterial components of a label are left unspecified by using a wild-card
, e.g. → : a matches any label representing an interaction on a. Write c ∈ C when c

is a node in C, and c1 ≺ c2 iff c1,c2 ∈C and c2 is a node in the sub-tree rooted at c1.
We adapt the definitions in [9] to our framework.

Definition 1 (Dependency relations [9]). Fix C, we define the following relations:

c1 ≺II c2 if c1 ≺ c2 and ci = si→r :ai i ∈ {1,2}
c1 ≺IO c2 if c1 ≺ c2 and c1 = s1→r :a1 and c2 = r→s2 :a2

c1 ≺OO c2 if c1 ≺ c2 and ci = s→ri :a i ∈ {1,2}

An input dependency from c1 to c2 is a chain of the form c1 ≺φ1 . . .≺φk c2 (k ≥ 0) such
that φi ∈ {II,IO} for 1 ≤ i ≤ k−1 and φk = II. An output dependency from c1 to c2 is
a chain c1 ≺φ1 . . .≺φk c2 (k ≥ 1) such that φi ∈ {OO,IO}.

Definition 2 (Linearity [9]). C is linear if and only if whenever c1 ≺ c2 with c1 = →
:a and c2 = → :a then there is both input and output dependencies from c1 to c2.

We also define a function $ to append trees as follows

c

C0

$C′ =

c

C0 $C′
, •$C =C,

c
���

�
���

�

C1 C2

$C′ =

c
���

�
���

�

C1 $C′ C2 $C′

and a partial function to append a tree C′ to a tree C while preserving linearity: C�C′ =
C$C′ if C$C′ is linear, otherwise C� C′ = ⊥. Also, let T (G) be the total function
(cf. [11]) which returns a tree C corresponding to the use of channels in G .

3.2 Well-Formed Global Types

We define the conditions for a global type to be well-formed. We write P (G) (resp.
C (G)) for the set of participant (resp. channel) names in G , and fv(G) for the set of
free variables in G , similarly for a system S. We give a few accessory functions. Let

R(G)
def
= {s→r :a | G ≡ (s→r :a〈e〉 .G1+G2 | G3) ;G4}

FP(G)
def
=

{
FP(G1)∪FP(G2), G = G1 | G2

{P (G)}, otherwise

FO(P ,G)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FO({s,r}∪P ,G1), G = s→r :a〈e〉 .G1

FO(/0,G1)∪FO(/0,G2), G = G1 | G2

FO(P ,G1), G = G1+G2 and FO(P ,G1) = FO(P ,G2)

FO(P ,G1), G = µχ.G1

FO(/0,G2), G = G1 ;G2

{P}, G = 0 or G = χ
⊥, otherwise

230 J. Lange and E. Tuosto

R(G) is the ready set of G , and FP(G) is the family of sets of its participants running in
different concurrent branches. That is, N ∈ FP(G) iff all n ∈ N are in a same top-level
thread of G . FO(G ,P) is the family of sets of participants of G , so that for all N,M ∈
FO(P ,G), the participants in N and those in M are in different concurrent branches in

the last part of G ; define FO(G)
def
= FO(/0,G). Note that FO(,) is a partial function.

Example 2. Let Gi, j = b1→b2 :ci〈〉 .(bi→si :ti〈addr〉 | bj→sj :no j〈〉) describe each
of the branches of the or box in the example of § 1, where i �= j ∈ {1,2}, then

R(G1,2) = {b1→b2 :c1} , FP(G1,2) = {b1,s1,b2,s2} , FO(G1,2) = {{b1,s1},{b2,s2}}

The global type below corresponds to the whole protocol of § 1

G = (G1 | G2) ;b2→b1 :r〈price〉 .(G1,2+G2,1)

hence R(G) = {bi→si :ti}i=1,2, FP(G) = FP(G1,2), and FO(G) = FO(G1,2). 4

Well-Formedness. The well-formedness of a global type G depends on how it uses
channels; a judgement of the form C 2G states that G is well-formed according to the
channel environment C (cf. § 3.1); G is well-formed if • 2G can be derived from the
rules given in Fig. 1. We assume that each premise of the rules in Fig. 1 does not hold if
any of the functions used are not defined (e.g., in [WF- ;], if FO(G) = ⊥ then C 2G ;G ′ is
not derivable). Hereafter, we assume that a node c is fresh (i.e. c �∈C). The environment
C permits to tackle one of the main requirements for a global type to be well-formed:
there should not be any race on channels. In the following, we discuss the rules of
Fig. 1, which are grouped according to three other requirements: sequentiality, single
threadness, and knowledge of choice.

Sequentiality [5]. Rules [WF-.], [WF- ;] and [WF- ;-0] ensure that sequentiality is preserved.
In [WF-.], the ordering dependency between a prefix and its continuation allows us to
implement each participant so that at least one action of the first prefix always happens
before an action of the second prefix. More concretely, this rules out, e.g.

s1→r1 :a〈e〉.s2→r2 :b〈e′〉 ✘

where, evidently, it is not possible to guarantee that s2 sends after r1 receives on a.
Since we are working in an asynchronous setting, we do not want to force both send
and receive actions of the first prefix to happen before both actions of the second one.
Rule [WF- ;] requires the following for generalised sequencing. (i) For each pair of “first”
participants in G ′, there exist two concurrent branches of G such that these two partici-
pants appear in different branches. This is to avoid global types of the form, e.g.

(s1→r1 :a〈e〉 | s2→r2 :b〈e〉) ;s1→r1 :c〈e〉 ✘

since there is no possible sequencing between the prefix on b and the one on c. (ii) For
all top-level concurrent branches in G , there is a participant in that branch which is also
in one of the branches of G ′. This requirement discards global types of the form, e.g.

(s1→r1 :a〈e〉 | s2→r2 :b〈e〉 | s3→r3 :c〈e〉) ;s1→r2 :d〈e〉 ✘

Synthesising Choreographies from Local Session Types 231

[WF-.]
∀ s′→r′ : ∈ R(G) : {s′,r′}∩{s,r} �= /0 C�c 2G c= s→r :a

C 2s→r :a〈e〉 .G

[WF- ;]

∀ s→r : ∈ R(G ′) .∃N1 �= N2 ∈ FO(G) .s ∈ N1 ∧r ∈ N2
∀N ∈ FP(G) .∃N′ ∈ FP(G ′) .N ∩N′ �= /0 C 2G C�T (G) 2G ′

C 2G ;G ′

[WF- |]
P (G)∩P (G ′) = /0 C (G)∩C (G ′) = /0 C 2G C 2G ′

C 2G | G ′

[WF-µχ]
χ ∈ fv(G)⇒ #FO(G) = 1 C$c 2G c= µχ

C 2µχ.G

[WF- ;-0]
C 2G

C 2G ;0
[WF-χ]

C�C(µχ)
C 2χ

[WF-0]
C 20

[WF-+]
∀ s→r :a ∈ R(G).∀ s′→r′ :b ∈ R(G ′) .s= s′ ∧a �= b C 2G C 2G ′

C 2G +G ′

Fig. 1. Rules for Well-formedness

since it is not possible to enforce an order between s3 and r3 and the others. (iii) G and
G ′ are also well-formed. Observe that (i) implies that for G ;G ′ to be well-formed, G is
of the form G1 | G2, with G1 �= 0 and G2 �= 0. Both [WF-.] and [WF- ;] are only applicable
when linearity is preserved. Finally, rule [WF- ;-0] is a special case of G ;G ′.

Single threadness [9]. A participant should not appear in different concurrent branches
of a global type, so that each participant is single threaded. This is also reflected in
the calculus of § 2, where parallel composition is only allowed at the system level.
Therefore, in [WF- |], the participant (resp. channel) names in concurrent branches must
be disjoints. Rule [WF-µχ] adds a new node in C to keep track of recursive usage of the
channels, and requires that G is single threaded, i.e. concurrent branches cannot appear
under recursion. If that was the case, a participant would appear in different concurrent
branches of the unfolding of a recursive global type. Rule [WF-χ] unfolds C at µχ to
ensure that the one-time unfolding of C preserves linearity (see [9] for details). For this
we define C(µχ) to be the subtree of C rooted at the deepest node of C labelled by µχ
(note that this node is unique since bound variables are distinct).

Knowledge of choice [5, 9]. Whenever a global type specifies a choice of two sets of
interactions, the decision should be made by exactly one participant. For instance,

s1→r1 :a1〈e〉 .G1 + s2→r2 :a2〈e′〉 .G2 ✘

specifies a choice made by s1 in the first branch and by s2 in the second one; this kind
of choreographies cannot be implemented (without using hidden interactions). Also, we
want to avoid global types where a participant n behaves differently in choice branches
without being aware of the choice made by others. For instance, in

s→r :a〈e〉 .n→r :c〈e〉 .G1 + s→r :b〈e〉 .n→r :d〈e〉 .G2 ✘

232 J. Lange and E. Tuosto

where n ignores the choice of s and behaves differently in each branch. On the other
hand, we want global types of the following form to be accepted.

s→r :a〈e〉 .n→s :b〈e〉 .s→n :c〈e〉 .n→r :d〈e〉
+

s→r :a′〈e〉 .n→s :b〈e〉 .s→n :c′〈e〉 .n→r :d′〈e〉
✔

Indeed, in this case n behaves differently in each branch, but only after “being in-
formed” by s about the chosen branch.

Together with the projection map defined below, rule [WF-+] guarantees that “knowl-
edge of choice” is respected. In particular, the rule requires that the participant who
makes the decision is the same in every branch of a choice, while the channels guarding
the choice must be distinct.

Definition 3 (). The projection of a global type G wrt. n ∈ P (G) is defined as

G	n
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a?e.G ′	n, if G = s→n :a〈e〉 .G ′

a!e.G ′	n, if G = n→r :a〈e〉 .G ′

G ′	n, if G = s→r :a〈e〉 .G ′ and s �= n �= r

G1	n �G2	n, if G = G1+G2

Gi	n, if G = G1 | G2 and n �∈ P (G j), i �= j ∈ {1,2}
G1	n [G2	n/0], if G = G1 ;G2

µχ.G ′	n, if G = µχ.G ′

G , if G = χ or G = 0

⊥, otherwise

We say that a global type is projectable if G	n is defined for all n ∈ P (G).

The projection map is similar to the one given in [9], but for the generalised sequencing
case and the use of � to project choice branches. Observe that if G = G1 ;G2, we
replace 0 by the projection of G2 in the projection of G1. Function � basically merges
(if possible) the behaviour of a participant in different choice branches; � is defined
only when the behaviour is the same in all branches, or if it differs after having received
enough information about the branch which was chosen. The definition of � is given
in [11]. A global type may be projected even if is not well-formed, but in that case none
of the properties given below are guaranteed to hold.

4 Synthesising Global Types

We now introduce a typing systems to synthesise a global type G from a system S so that
S satisfies safety and progress properties (e.g. no race on channels and no participant
gets stuck). Also, the set of typable systems corresponds exactly to the set of systems
obtained by projecting well-formed global types. To synthesise G from a system S, a
careful analysis of what actions can occur at each possible state of S is necessary.

Synthesising Choreographies from Local Session Types 233

If S ≡ n[P] | S′ then S(n) denotes P (if S �≡ n[P] | S′ then S(n) = ⊥). We define the
ready set of a system as follows:

R(S) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{ai|i ∈ I}∪R(S′) if S ≡ r[∑i∈I ai?ei.Pi] | S′

{ai|i ∈ I}∪R(S′) if S ≡ s[
⊕

i∈I ai!ei.Pi] | S′

{a}∪R(S′) if S ≡ a : e ·ρ | S′

/0 if S ≡ 0

We overload R() on behaviours as expected, and define R(S)
def
= {a∈C |a ∈ R(S) or a∈

R(S)}, and S6⇐⇒ ∃a ∈ C : a ∈ R(S)∧a ∈ R(S); we write S �6 if S6 does not hold.

4.1 Validation Rules

A judgement of the form A ; Γ ; C 2 S � G says that the system S forms a choreography
defined by a global type G , under the environments A, Γ, and C. The environment A
is a superset of the channel names used in S, and corresponds to the channels that S is
entitled to use. The environment Γ maps participant names and local recursion variables
to global recursion variables (◦ is the empty context Γ). The channel environment C
records the use of channels. Hereafter, we use · for the disjoint union of environments.

Programs. A global type G can be synthesised from the program S if the judgement

C (S) ; ◦ ; • 2 S � G

(stating that S is entitled to use all its channels in empty environments) is derivable from
the rules in Fig. 2 (driven by the ready set of S and the structure of its processes).

Rule [.] validates prefixes provided that the system is entitled to linearly use the
channel a, that the continuation is typable, and that no other interactions are possible in
S. For instance, [.] does not apply to

s1[a!e.P1] | r1[a?e.Q1] | s2[b!e.P2] | r2[b?e.Q2] ✘

because there is no ordering relation between the actions on a and b; in this case either
[|] or [;] should be used. Rule [|] validates concurrent branches when they can be vali-
dated using a partition A1 and A2 of the channels (recall that P (S)∩P (S′) = /0). Rule [;]

splits the system into two sequential parts and it relies on the function split() defined
in § 4.2; for now it suffices to notice that linearity is checked for in the second part of
the split by adding the channel environment corresponding to G1 to C (recall that C�C′

is undefined if C$C′ is not linear).
Rule [⊕] introduces the global type choice operator, it requires that both branches are

typable and that no other interactions are possible in S. Rule [+] allows to discharge a
branch of an external choice; together with the premises of [|], rule [+] discards systems
such as the one on the left below (due to a race on b) but permits those like the one on
the right (as only the channels guarding the choice must be in A).

r1[a?e+b?e] | s2[b!e] | r2[b?e] ✘ s1[a!e] | r1[a?e+c?e.b?e] | s2[b!e] | r2[b?e] ✔

234 J. Lange and E. Tuosto

[.]
{a}∪A ; Γ ; C�c 2 s[P] | r[Q] | S � G c= s→r :a S �6

{a}∪A ; Γ ; C 2 s[a!e.P] | r[a?e.Q] | S � s→r :a〈e〉 .G

[|]
A1 ; ◦ ; C 2 S � G A2 ; ◦ ; C 2 S′ � G ′ A1 ∩A2 = /0

A1 ∪A2 ; Γ ; C 2 S | S′ � G | G ′

[;]
A ; ◦ ; C 2 S1 � G1 split(S) = (S1,S2) A ; ◦ ; C�T (G1) 2 S2 � G2

A ; Γ ; C 2 S � G1 ;G2

[⊕]
A ; Γ ; C 2 s[P] | S � G A ; Γ ; C 2 s[Q] | S � G ′ S �6

A ; Γ ; C 2 s[P⊕Q] | S � G +G ′

[+]
R(Q)⊆ A A ; Γ ; C 2 r[P] | S � G S �6

A ; Γ ; C 2 r[P+Q] | S � G

[µ]

∃1 ≤ i, j ≤ k .(ni[Pi] | nj[Pj])6
A ; Γ · (n1,x1) : χ, . . . ,(nk,xk) : χ ; C$µχ 2 n1[P1] | . . . | nk[Pk] � G

A ; Γ ; C 2 n1[µx1.P1] | . . . | nk[µxk.Pk] � µχ.G

[X]
∀1 ≤ i ≤ k .Γ(ni,xi) = χ C�C(µχ)

A ; Γ ; C 2 n1[x1] | . . . | nk[xk] � χ

[eq]
S ≡ S′ A ; Γ ; C 2 S′ � G

A ; Γ ; C 2 S � G
[0]

∀n ∈ P (S) .S(n) = 0 C (S) = /0
A ; Γ ; C 2 S � 0

Fig. 2. Validation Rules for Programs

Rules [µ] and [X] handle recursive systems. The former rule “guesses” the participants
involved in a recursive behaviour. If two of them interact, [µ] validates the recursion
provided that the system can be typed when such participants are associated to the
global recursion variable χ (assuming that χ is not in Γ). Rule [X] checks that all the
participants in the recursion have reached a local recursion variable corresponding to
the global recursion, and that the unfolding of C on µχ preserves linearity.

Rule [0] only applies when all the participants in S end, while [eq] validates a system
up to structural congruence.

Theorem 1 (Decidability). Typability is decidable.

The proofs follows from the fact that the typing is done wrt to the (finite) partitions of
channels in a system, and that the number of required behaviour unfoldings is finite.

Theorem 2 (Unique typing). If A ; Γ ; C 2 S � G and A ; Γ ; C 2 S � G ′ then G ≡ G ′.

Theorem 3 (Well-formedness). If A ; Γ ; C 2 S � G then • 2G and G is projectable.

The proofs for these two theorems are by induction on the structure of the derivation.

Runtime systems. To prove subject reduction we have to deal with queues. Hereafter,
∗ �∈ P is a distinguished name to denote an anonymous participant, and ∗→r :a〈e〉 .G
denotes the presence of message of sort e on channel a for participant r.

Synthesising Choreographies from Local Session Types 235

Example 3. Let S = s[a!e.b!e] | r[b?e.c?e] | n[a?e.c!e] | a : [] | b : [] | c : []. Consider
the judgement

A ; Γ ; C 2 S � s→n :a〈e〉 .s→r :b〈e〉 .n→r :c〈e〉

If S evolves to S′ = s[b!e] | r[b?e.c?e] | n[a?e.c!e] | a : e | b : [] | c : [], the identity of
the sender of e on a (i.e. s) is lost. However, the judgement

A ; Γ ; C 2 S′ � (∗→n :a〈e〉 | s→r :b〈e〉) ;n→r :c〈e〉

types S′ using ∗. Observe that general sequencing (;) is now used to type S′. 4
Runtime systems can be handled by slightly extending Def. 1 so that we have1

c1 ≺OO c2 if c1 ≺ c2 and c1 = ∗→r :a and c2 = s→r :a

and by adding two rules to the validation rules for handling queues:

[ρ]
{a}∪A ; ◦ ; C�c 2 a : ρ | r[P] | S � G c= ∗→r :a S �6

{a}∪A ; Γ ; C 2 a : e ·ρ | r[a?e.P] | S � ∗→r :a〈e〉 .G [[]]
A ; Γ ; C 2 S � G

A ; Γ ; C 2 a : [] | S � G

Rule [ρ] is similar to rule [.], except that a non-empty queue replaces the sender, and Γ
is emptied. Rule [[]] simply allows to remove empty queues from the system.

Theorem 4. If A ; ◦ ; C 2 S � G , S
λ−→ S′, and C (λ) �∈C then A ; ◦ ; C 2 S′ � G ′

The proof is by case analysis on the different types of transitions a system can make. The
recursive case follows from the fact that reduction preserves closeness of behaviours.

4.2 Splitting Systems

The purpose of systems’ splitting is to group participants according to their interactions.
For this we use judgements of the form

Ψ; Θ 2 S
 Ω (4.1)

which reads as “S splits as Ω under Ψ and Θ”. The environment Ψ is a set of (pairwise
disjoint) ensembles that is disjoint sets N ⊆ P (S) containing participants that interact
with each other for a while; and then some of them may interact with participants in
other ensembles in Ψ. The environment Θ is a set of (pairwise disjoint) duos, that is
two-element sets of participants {s,r∈P (S) : r �= s} representing the first participants
able to interact once the first part of the split is finished. Under suitable conditions,
one could identify when n ∈ N has to interact with a participant of another ensemble.
In other words, one can divide S(n) as P1 · ε ·P2: the interactions in P1 happen with
participants in the ensemble of n, while P2 starts interacting with a participant in another
ensemble. Finally, the environment Ω assigns behaviours augmented with a separator ε
to participant names, and lists of sorts to queues a.

Given a judgement as (4.1), we say that N,M ∈ Ψ are Θ-linked (N
Θ
) M in symbols)

iff ∃D ∈ Θ : N ∩D∩M �= /0; also, we say that n,m ∈ P (S) are Ω-linked (n Ω
) m in sym-

bols) iff C (Ω(n))∩ C (Ω(m)) �= /0. We define S[N]
def
= ∏n∈N n[S(n)] | ∏a∈C (S)a : S(a).

1 This extension makes sense since the order of messages is preserved in the calculus.

236 J. Lange and E. Tuosto

[ε]
n ∈ N,m ∈ M (n[P] | m[Q])6 Ψ ·N\{n} ·M\{m}; Θ 2 S
 Ω

Ψ ·N ·M; Θ · {n,m} 2 n[P] | m[Q] | S
 Ω ·n : ε ·m : ε

[sync]
s,r ∈ N Ψ ·N; Θ 2 s[P] | r[Q] | S
 Ω ·s : π ·r : ϕ

Ψ ·N; Θ 2 s[a!e.P] | r[a?e.Q] | S
 Ω ·s : a!e.π ·r : a?e.ϕ

[+]
m,n ∈ N (m[P] | n[Q])6 Ψ ·N; Θ 2 m[P] | n[Q] | S
 Ω ·m : π

Ψ ·N; Θ 2 m[P+P′] | n[Q] | S
 Ω ·m : π

[⊕]

n,m ∈ N (n[P⊕P′] | m[Q])6 Ω 7 Ω′

Ψ ·N; Θ 2 n[P] | m[Q] | S
 Ω ·n : π Ψ ·N; Θ 2 n[P′] | m[Q] | S
 Ω′ ·n : ϕ
Ψ ·N; Θ 2 n[P⊕P′] | m[Q] | S
 Ω�Ω′ ·n : π⊕ϕ

[ax]
{ /0}; /0 2 0
 /0

[0]
Ψ\n; Θ 2 S
 Ω

Ψ; Θ 2 n[0] | S
 Ω ·n : 0

[rem]
(n[P] | S) �6 P �≡ 0 Ψ\n; Θ 2 S
 Ω

Ψ; Θ 2 n[P] | S
 Ω ·n : ε

[q]
r ∈ N Ψ ·N; Θ 2 r[P] | S
 Ω ·r : π ·a : ρ

Ψ ·N; Θ 2 r[a?e.P] | a : e ·ρ | S
 Ω ·r : a?e.π ·a : e ·ρ

Fig. 3. Splitting Systems

Definition 4. The judgement Ψ; Θ 2 S
 Ω is coherent if it can be derived from the
rules in Fig. 3, Θ �= /0, and for all N ∈ Ψ, S[N]6 and the following conditions hold

∃!n ∈ N :
(
(∃!m ∈ N \ {n} : S[N \ {n}] �6 ∧ S[N \ {m}] �6) or (S[N \ {n}] �6)

)
(4.2)

� is total on N and ↔Θ is total on Ψ (4.3)

where ↔Θ
def
=

Θ
)

∗
is the reflexive and transitive closure of

Θ
) and � def

=
Ω
)

+
is the transi-

tive closure of
Ω
).

Essentially, Def. 4 ensures that rule [;] is the only rule of Fig. 2 applicable when the
system can be split. Condition (4.2) ensures that, in each ensemble N, there is a unique
pair of synchronising participants or there is a unique participant that can synchronise
with a queue a. Condition (4.3) is the local counterpart of the well-formedness rule for
global types of the form G ;G ′. The totality of � on N guarantees that the participants
in an ensemble share channels. The totality of ↔Θ on Ψ guarantees that each ensemble
in Ψ has one “representative” which is one of the first participants to interact in the
second part of the split. Together with condition Θ �= /0, the condition on ↔Θ ensures
that there are (at least) two ensembles of participants in Ψ. Note that (4.3) also ensures
that all the set of participants in Ψ are interdependent (i.e. one cannot divide them into
independent systems, in which case rule [|] should be used).

A judgement (4.1) is to be derived with the rules of Fig.3 (we omit rules for commu-
tativity and associativity of systems). The derivation is driven by the structure of up to
two processes in S, and whether they are in the same ensemble and/or form a duo.

Synthesising Choreographies from Local Session Types 237

Rule [ε] marks two processes m and n as “to be split” when m and n form a duo in Θ
and are in different ensembles of Ψ. The continuation of the system is to be split as well,
with m and n removed from the system and from the environments. Rule [sync] records
in Ω the interactions of participants in a same ensemble of Ψ. Rule [+] discharges the
branch of an external choice for participants in a same ensemble while [⊕] deals with
internal choice. The premise Ω 7 Ω′ holds only when Ω and Ω′ have the same do-
main and differ only up to external choice, i.e. for each n either its split is the same in
both branches, or its split is an external choice (guarded by different channels); Ω�Ω′

merges Ω and Ω′ accordingly (cf. [11]). The additional premise s[P⊕P′] | r[Q] 6 is
required so that the split is done before a branching if a participant cannot interact
with one of its peer in N after the branching. Rule [ax] terminates a derivation (all en-
vironments emptied) while [0] completes the split of a process (abusing notation, Ψ\n
denotes the removal of n from any N ∈ Ψ). Rule [rem] marks a process to be split when
it cannot interact with anyone in S. The premise P �≡ 0 allows to differentiate a process
which terminates after the split, from others which terminate before. In the latter case,
rule [0] is to be used. Rule [q] records in Ω interactions with non-empty queues.

We now define a (partial) function split which splits a system into two parts.

Definition 5 (split()). Let Ψ; Θ 2 S
 Ω be a coherent judgement. Define
split(S) = (S1,S2) where

– ∀n ∈ P (S).S1(n) = S(n)−Ω(n) and S2(n) = S(n)%Ω(n)
– ∀a ∈ C (S).S1(a) = Ω(a) and S2(a) = S(a)\Ω(a)

if S(n)%Ω(n) �=⊥ for all n ∈ P (S), and split(S) =⊥ otherwise.

The auxiliary functions − and % used in Def. 5 are defined in [11]; we give here
their intuitive description. Let n ∈ P (S), and Ψ; Θ 2 S
 Ω be a coherent judgement.
Function S(n)−Ω(n) returns the “first part” of the split of n, that is the longest common
prefix of S(n) and Ω(n), while S(n)%Ω(n) is partial and returns the remaining part of
the behaviour of S(n) after Ω(n).

Example 4. Taking SBS as in § 1, we have split(SBS) = (S1,S2) so that

S1(b1) = t1!order.p1?price S2(b1) = r?price.(c1!.t1!addr⊕c2!.no1!)
S1(si) = ti?order.pi!price S2(si) = ti?addr+noi?

Note that {{b1,s1},{b2,s2}} ; {{b1,b2}} 2 SBS
 Ω is coherent. 4

4.3 Properties of Synthesised Global Type

Progress and safety. If a system is typable, then it will either terminate or be able to
make further transitions (e.g. if there are recursive processes).

Theorem 5. If A ; ◦ ; C 2 S � G then S −→ S′, or ∀n ∈ P (S) .S(n) = 0 and all queues
in S are empty.

Let us add the rule [ERROR] below to the semantics given in § 2.

[ERROR]
S

a?e′−→ S′ T
e·a−→ T ′

S | T −→ error
e �= e′

238 J. Lange and E. Tuosto

Theorem 6. If A ; ◦ ; C 2 S �G , then S is race free and S=⇒−→ error is not possible.

The proofs of Theorems 5 and 6 are by contradiction, using Theorem 4.

Behavioural equivalences. We show that there is a correspondence between the original
system and the projections of its global type. First, let us introduce two relations.

Definition 6 (� and ≈). P � Q if and only if Q
α−→ Q′ implies P

α−→ P′ for some

P′ � Q′. Also, S ≈ T iff whenever S
λ−→ S′ then T

λ−→ T ′ and S′ ≈ T ′; and whenever

T
λ−→ T ′ then S

λ−→ S′ and S′ ≈ T ′ where λ ∈ {n : a!e, n : a?e}.

The behaviour of a participant in S is a simulation of the projection of a synthesised
global type from S onto this participant. Intuitively, the other direction is lost due to
rule [+], indeed external choice branches which are never chosen are not “recorded” in
the synthesised global type.

Lemma 1. If A ; ◦ ; C 2 S � G then ∀n ∈ P (S) . G	n� S(n).

The proof is by case analysis on the transitions of S, using Theorem 4.
Since the branches that are not recorded in a synthesised global type are only those

which are never chosen, we have the following result.

Theorem 7. If A ; ◦ ; C 2 S � G then ∏n∈P (S) n[G	n]≈ S.

The proof is by case analysis on the transitions of S, using Theorem 4 and Lemma 1.
Our completeness result shows that every well-formed and projectable global type is

inhabited by the system consisting of the parallel composition of all its projections.

Theorem 8. If • 2G and G is projectable, then there is G ′ ≡ G such that A ; Γ ; C 2
∏n∈P (G) n[G	n] � G ′.

The proof is by induction on the structure of (well-formed) G .

5 Concluding Remarks

We presented a typing systems to synthesise a choreography (i.e. a global type) from
a set of end-point types (i.e. local types). Such a global type is unique, well-formed,
and its projections are equivalent to the original local types. We have shown safety
and progress properties for the local session types which also enjoy a subject reduction
theorem.

In [12] local and global graphs are used to construct choreographies. A global graph
is a disjoint union of local graphs, which resemble local types. We contend that global
types are more suitable than global graphs to represent choreographies; in fact, differ-
ently from the approach in [12], our work allows us to reuse most of the theories and
techniques based on multiparty global types.

Our work lies on the boundary between theories based on global types (e.g. [1,5,7,9])
and the ones based on the conversation types [3]. Our work relies on global types, but
uses it the other way around. We start from local types and construct a global type. We

Synthesising Choreographies from Local Session Types 239

have discussed the key elements of the global types in § 3. Conversation types [3] aban-
don global views of distributed interactions in favour of a more flexible type structure
allowing participants to dynamically join and leave sessions. The approach in [6] fills
the gap between the theories based on session types and those based on behavioural con-
tracts [4]. We are also inspired from [13], where session types are viewed as CCS-like
“projections” of process behaviours. The connectedness conditions for a choreography
given in [2] is similar to our notion of well-formed global type.

We aim to extend our framework to session delegation and to expand our theory to
indicate designers the reasons why a choreography cannot be synthesised so to improve
specifications. We will study a more precise comparison between our work and the
different theories cited above, in particular with [2] and [3]. Finally, we are considering
implementing an algorithm from the rules of Fig. 2 and Fig. 3, and integrate it in an
existing tool [10] implementing the framework from [1].

Acknowledgements. We thank the anonymous reviewers for their valuable comments.

References

1. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract for Dis-
tributed Multiparty Interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

2. Bravetti, M., Lanese, I., Zavattaro, G.: Contract-Driven Implementation of Choreographies.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 1–18. Springer,
Heidelberg (2009)

3. Caires, L., Vieira, H.T.: Conversation Types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

4. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Contracts for
Web Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

5. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On Global Types and Multi-party Ses-
sions. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 1–28.
Springer, Heidelberg (2011)

6. Castagna, G., Padovani, L.: Contracts for Mobile Processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211–228. Springer, Heidelberg (2009)

7. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL (2011)
8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for

Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
(2008)

10. Lange, J., Tuosto, E.: A modular toolkit for distributed interactions. In: PLACES (2010)
11. Lange, J., Tuosto, E.: Synthesising choreographies from local session types (extended ver-

sion). CoRR, abs/1204.2566 (2012)
12. Mostrous, D., Yoshida, N., Honda, K.: Global Principal Typing in Partially Commutative

Asynchronous Sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 316–332.
Springer, Heidelberg (2009)

13. Padovani, L.: On projecting processes into session types. MSCS 22, 237–289 (2012)

A Theory of History Dependent Abstractions

for Learning Interface Automata�

Fides Aarts, Faranak Heidarian��, and Frits Vaandrager

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. History dependent abstraction operators are the key for scal-
ing existing methods for active learning of automata to realistic appli-
cations. Recently, Aarts, Jonsson & Uijen have proposed a framework
for history dependent abstraction operators. Using this framework they
succeeded to automatically infer models of several realistic software com-
ponents with large state spaces, including fragments of the TCP and
SIP protocols. Despite this success, the approach of Aarts et al. suffers
from limitations that seriously hinder its applicability in practice. In this
article, we get rid of some of these limitations and present four impor-
tant generalizations/improvements of the theory of history dependent
abstraction operators. Our abstraction framework supports: (a) inter-
face automata instead of the more restricted Mealy machines, (b) the
concept of a learning purpose, which allows one to restrict the learn-
ing process to relevant behaviors only, (c) a richer class of abstractions,
which includes abstractions that overapproximate the behavior of the
system-under-test, and (d) a conceptually superior approach for testing
correctness of the hypotheses that are generated by the learner.

1 Introduction

Within process algebra [10], the most prominent abstraction operator is the τI
operator from ACP, which renames actions from a set I into the internal action
τ . In order to establish that an implementation Imp satisfies a specification Spec,
one typically proves τI(Imp) ≈ Spec, where ≈ is some behavioral equivalence or
preorder that treats τ as invisible. In state based models of concurrency, such as
TLA+ [22], the corresponding abstraction operator is existential quantification,
which hides certain state variables. Both τI and ∃ abstract in a way that does not
depend on the history of the computation. In practice, however, we frequently
describe and reason about reactive systems in terms of history dependent ab-
stractions. For instance, most of us have dealt with the following protocol: “If
you forgot your password, enter your email and user name in the form below.
You will then receive a new, temporary password. Use this temporary password

� Supported by STW project 11763 ITALIA. For a full version with all the proofs we
refer to http://www.mbsd.cs.ru.nl/publications/papers/fvaan/AHV12/

�� Supported by NWO/EW project 612.064.610 ARTS.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 240–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Theory of History Dependent Abstractions 241

to login and immediately select a new password.” Here, essentially, the huge
name spaces for user names and passwords are abstracted into small sets with
abstract values such as “temporary password” and “new password”. The choice
which concrete password is mapped to which abstract value depends on the
history, and may change whenever the user selects a new password.

History dependent abstractions turn out to be the key for scaling methods for
active learning of automata to realistic applications. During the last two decades,
important developments have taken place in the area of automata learning, see
e.g. [6, 9, 17, 18, 23, 27, 30, 31]. Tools that are able to learn automata models au-
tomatically, by systematically “pushing buttons” and recording outputs, have
numerous applications in different domains. For instance, they support under-
standing and analyzing legacy software, regression testing of software compo-
nents [20], protocol conformance testing based on reference implementations,
reverse engineering of proprietary/classified protocols, fuzz testing of protocol
implementations [12], and inference of botnet protocols [11]. State-of-the-art
methods for learning automata such as LearnLib [18, 27, 30], the winner of the
2010 Zulu competition on regular inference, are currently able to only learn au-
tomata with at most in the order of 10,000 states. Hence, powerful abstraction
techniques are needed to apply these methods to practical systems. Dawn Song et
al. [11], for instance, succeeded to infer models of realistic botnet command and
control protocols by placing an emulator between botnet servers and the learning
software, which concretizes the alphabet symbols into valid network messages
(for instance, by adding sequence numbers) and sends them to botnet servers.
When responses are received, the emulator does the opposite — it abstracts the
response messages into the output alphabet and passes them on to the learning
software. The idea of an intermediate component that takes care of abstraction
and concretization is very natural and is used, implicitly or explicitly, in many
case studies on automata learning and model-based testing.

History dependent abstractions can be described formally using the state op-
erator known from process algebra [8], but this operator has been mostly used to
model state bearing processes, rather than as an abstraction device. Implicitly,
history dependent abstractions play an important role in the work of Pistore et
al. [16, 29]: whereas the standard automata-like models for name-passing pro-
cess calculi are infinite-state and infinite-branching, they provide models using
the notion of a history dependent automaton which, for a wide class of processes
(e.g. finitary π-calculus agents), are finite-state and may be explored using model
checking techniques. Aarts, Jonsson and Uijen [2] formalized the concept of his-
tory dependent abstractions within the context of automata learning. Inspired
by ideas from predicate abstraction [24] and abstract interpretation [13], they
defined the notion of a mapper A, which is placed in between the teacher or
system-under-test (SUT), described by a Mealy machine M, and the learner.
The mapper transforms the concrete actions of M (in a history dependent man-
ner) into a small set of abstract actions. Each mapper A induces an abstraction
operator αA that transforms a Mealy machine over the concrete signature into
a Mealy machine over the abstract signature. A teacher for M and a mapper

242 F. Aarts, F. Heidarian, and F. Vaandrager

Fig. 1. Active learning with an abstraction mapping

for A together behave like a teacher for αA(M). Hence, by interacting with the
mapper component, the learner may learn an abstract Mealy machine H that
is equivalent (≈) to αA(M). Mapper A also induces a concretization operator
γA. The main technical result of [2] is that, under some strong assumptions,
αA(M) ≈ H implies M ≈ γA(H). Aarts et al. [2] demonstrated the feasibility
of their approach by learning models of fragments of realistic protocols such as
SIP and TCP [2], and the new biometric passport [3]. The learned SIP model,
for instance, is an extended finite state machine with 29 states, 3741 transitions,
and 17 state variables with various types (booleans, enumerated types, (long)
integers, character strings,..). This corresponds to a state machine with an astro-
nomical number of states and transitions, thus far fully out of reach of automata
learning techniques.

Despite its success, we observed that the theory of [2] has several limitations
that seriously hinder its applicability in practice. In this article, we overcome
some of these limitations by presenting four important improvements to the
theory of history dependent abstraction operators.

From Mealy machines to interface automata. The approach of [2] is based on
Mealy machines, in which each input induces exactly one output. In practice,
however, inputs and outputs often do not alternate: a single input may sometimes
be followed by a series of outputs, sometimes by no output at all, etc. For this
reason, our approach is based on interface automata [15], which have separate
input and output transitions, rather than the more restricted Mealy machines.

In a (deterministic) Mealy machine, each sequence of input actions uniquely
determines a corresponding sequence of output actions. This means that the
login protocol that we described above cannot be modeled in terms of a Mealy
machine, since a single input (a request for a temporary password) may lead
to many possible outputs (one for each possible password). Our theory applies
to interface automata that are determinate in the sense of Milner [28]. In a
determinate interface automaton multiple output actions may be enabled in a
single state, which makes it straightforward to model the login protocol. In order
to learn the resulting model, it is crucial to define an abstraction that merges
all outputs that are enabled in a given state to a single abstract output.

Learning purposes. In practice, it is often neither feasible nor necessary to learn a
model for the complete behavior of the SUT. Typically, it is better to concentrate
the learning efforts on certain parts of the state space. This can be achieved using
the concept of a learning purpose [4] (known as test purpose within model-based

A Theory of History Dependent Abstractions 243

testing theory [21, 32, 36]), which allows one to restrict the learning process to
relevant interaction patterns only. In our theory, we integrate the concept of a
mapper component of [2] with the concept of a learning purpose of [4]. This
integration constitutes one of the main technical contributions of this article.

Forgetful abstractions. The main result of [2] only applies to abstractions that
are output predicting. This means that no information gets lost and the inferred
model is behaviorally equivalent to the model of the teacher: M ≈ γA(H).
In order to deal with the complexity of real systems, we need to support also
forgetful abstractions that overapproximate the behavior of the teacher. For this
reason, we replace the notion of equivalence ≈ by the ioco relation, which is one
of the main notions of conformance in model-based black-box testing [33,34] and
closely related to the alternating simulations of [5].

Handling equivalence queries. Active learning algorithms in the style of An-
gluin [6] alternate two phases. In the first phase an hypothesis is constructed
and in the second phase, called an equivalence query by Angluin [6], the correct-
ness of this hypothesis is checked. In general, no guarantees can be given that
the answer to an equivalence query is correct. Tools such as LearnLib, “approx-
imate” equivalence queries via long test sequences, which are computed using
some established algorithms for model-based testing of Mealy machines. In the
approach of [2], one needs to answer equivalence queries of the form αA(M) ≈ H.
In order to do this, a long test sequence for H that is computed by the learner is
concretized by the mapper. The resulting output of the SUT is abstracted again
by the mapper and sent back to the learner. Only if the resulting output agrees
with the output of H the hypothesis is accepted. This means that the outcome
of an equivalence query depends on the choices of the mapper. If, for instance,
the mapper always picks the same concrete action for a given abstract action
and a given history, then it may occur that the test sequence does not reveal
any problem, even though αA(M) �≈ H. Hence the task of generating a good
test sequence is divided between the learner and the mapper, with an unclear
division of responsibilities. This makes it extremely difficult to establish good
coverage measures for equivalence queries. A more sensible approach, which we
elaborate in this article, is to test whether the concretization γA(H) is equiva-
lent to M, using state-of-the-art model based testing algorithms and tools for
systems with data, and to translate the outcomes of that experiment back to
the abstract setting.

We believe that the theoretical advances that we describe in this article will
be vital for bringing automata learning tools and techniques to a level where
they can be used routinely in industrial practice.

2 Preliminaries

2.1 Interface Automata

We model reactive systems by a simplified notion of interface automata [15],
essentially labeled transition systems with input and output actions.

244 F. Aarts, F. Heidarian, and F. Vaandrager

Definition 1 (IA). An interface automaton (IA) is a tuple I = 〈I, O,Q, q0,→〉
where I and O are disjoint sets of input and output actions, respectively, Q is a
set of states, q0 ∈ Q is the initial state, and →⊆ Q×(I∪O)×Q is the transition
relation.

We write q
a−→ q′ if (q, a, q′) ∈→. An action a is enabled in state q, denoted

q
a−→, if q

a−→ q′ for some state q′. We extend the transition relation to sequences
by defining, for σ ∈ (I ∪ O)∗,

σ−→∗ to be the least relation that satisfies, for

q, q′, q′′ ∈ Q and a ∈ I ∪O, q
ε−→∗ q, and if q

σ−→∗ q
′ and q′

a−→ q′′ then q
σa−−→∗ q

′′.
Here we use ε to denote the empty sequence. We say that state q is reachable
if q0

σ−→∗ q, for some σ. We write q
σ−→∗ if q

σ−→∗ q′, for some q′. We say that
σ ∈ (I ∪ O)∗ is a trace of I if q0

σ−→∗, and write Traces(I) for the set of traces
of I.

A bisimulation on I is a symmetric relation R ⊆ Q×Q s.t. (q0, q0) ∈ R and

(q1, q2) ∈ R ∧ q1
a−→ q′1 ⇒ ∃q′2 : q2

a−→ q′2 ∧ (q′1, q
′
2) ∈ R.

We say that two states q, q′ ∈ Q are bisimilar, denoted q ∼ q′, if there exists
a bisimulation on I that contains (q, q′). Recall that relation ∼ is the largest
bisimulation and that ∼ is an equivalence relation [28].

Interface automaton I is said to be:

– deterministic if for each state q ∈ Q and for each action a ∈ I ∪O, whenever
q
a−→ q′ and q

a−→ q′′ then q′ = q′′.
– determinate [28] if for each reachable state q ∈ Q and for each action a ∈

I ∪O, whenever q
a−→ q′ and q

a−→ q′′ then q′ ∼ q′′.
– output-determined if for each reachable state q ∈ Q and for all output actions

o, o′ ∈ O, whenever q
o−→ and q

o′−→ then o = o′.
– behavior-deterministic if I is both determinate and output-determined.
– active if each reachable state enables an output action.
– output-enabled if each state enables each output action.
– input-enabled if each state enables each input action.

An I/O automaton (IOA) is an input-enabled IA. Our notion of an I/O automa-
ton is a simplified version of the notion of IOA of Lynch & Tuttle [25] in which
the set of internal actions is empty, the set of initial states has only one member,
and the task partition has only one equivalence class.

2.2 The ioco Relation

A state q of I is quiescent if it enables no output actions. Let δ be a special action
symbol. In this article, we only consider IAs I in which δ is not an input action.
The δ-extension of I, denoted Iδ, is the IA obtained by adding δ to the set of
output actions, and δ-loops to all the quiescent states of I. Write Oδ = O∪{δ}.
Write outI(q), or just out(q) if I is clear from the context, for {a ∈ O | q a−→},
the set of output actions enabled in state q. For S ⊆ Q a set of states, write

A Theory of History Dependent Abstractions 245

outI(S) for
⋃
{outI(q) | q ∈ S}. Write I after σ for the set {q ∈ Q | q0 σ−→∗ q}

of states of I that can be reached via trace σ. Let I1 = 〈I1, O1, Q1, q
0
1 ,→1〉,

I2 = 〈I2, O2, Q2, q
0
2 ,→2〉 be IAs with I1 = I2 and Oδ1 = Oδ2. Then I1 and I2 are

input-output conforming, denoted I1 ioco I2, if

∀σ ∈ Traces(Iδ2) : out(Iδ1 after σ) ⊆ out(Iδ2 after σ).

Informally, an implementation I1 is ioco-conforming to specification I2 if any
experiment derived from I2 and executed on I1 leads to an output from I1 that
is allowed by I2. The ioco relation is one of the main notions of conformance in
model-based black-box testing [33, 34].

2.3 XY -Simulations

In the technical development of this paper, a major role is played by the no-
tion of an XY -simulation. Below we recall the definition of XY -simulation, as
introduced in [4].

Let I1 = 〈I, O,Q1, q
0
1 ,→1〉 and I2 = 〈I, O,Q2, q

0
2 ,→2〉 be IAs with the same

sets of input and output actions. Write A = I ∪ O and let X,Y ⊆ A. An XY -
simulation from I1 to I2 is a binary relation R ⊆ Q1 ×Q2 that satisfies, for all
(q, r) ∈ R and a ∈ A,

– if q
a−→ q′ and a ∈ X then there exists a r′ ∈ Q2 s.t. r

a−→ r′ and (q′, r′) ∈ R,
and

– if r
a−→ r′ and a ∈ Y then there exists a q′ ∈ Q1 s.t. q

a−→ q′ and (q′, r′) ∈ R.

We write I1 ∼XY I2 if there exists anXY -simulation from I1 to I2 that contains
(q01 , q

0
2). Since the union of XY -simulations is an XY -simulation, I1 ∼XY I2

implies that there exists a unique maximal XY -simulation from I1 to I2. The
notion of XY -simulation offers a natural generalization of several fundamental
concepts from concurrency theory: AA-simulations are just bisimulations [28],
A∅-simulations are (forward) simulations [26], OI-simulations are alternating
simulations [5], and, for B ⊆ A, AB-simulations are partial bisimulations [7].
We write I1 ∼ I2 instead of I1 ∼AA I2.

2.4 Relating Alternating Simulations and ioco

The results below link alternating simulation and the ioco relation. Variations
of these results occur in [4, 35].

Definition 2 (� and). Let I1 and I2 be IAs with inputs I and outputs O,
and let A = I ∪ O and Aδ = A ∪ {δ}. Then I1 � I2 ⇔ Iδ1 ∼OδI Iδ2 and
I1 I2 ⇔ Iδ1 ∼AδI Iδ2 .
In general, I1 � I2 implies I1 ∼OI I2, but the converse implication does not
hold. Similarly, I1 I2 implies I1 ∼AI I2, but not vice versa.

Lemma 1. Let I1 and I2 be determinate IAs. Then I1 � I2 implies I1 ioco I2.
Lemma 2. Let I1 be an IOA and let I2 be a determinate IA. Then I1 ioco I2
implies I1 � I2.

246 F. Aarts, F. Heidarian, and F. Vaandrager

3 Basic Framework for Inference of Automata

We present (a slight generalization of) the framework of [4] for learning interface
automata. We assume there is a teacher, who knows a determinate IA T =
〈I, O,Q, q0,→〉, called the system under test (SUT). There is also a learner,
who has the task to learn about the behavior of T through experiments. The
type of experiments which the learner may do is restricted by a learning purpose
[4,21,32,36], which is a determinate IA P = 〈I, Oδ, P, p0,→P〉, satisfying T � P .

In practice, there are various ways to ensure that T � P . If T is an IOA
then T � P is equivalent to T ioco P by Lemmas 1 and 2, and so we may use
model-based black-box testing to obtain evidence for T � P . Alternatively, if T
is an IOA and P is output-enabled then T � P trivially holds.

After doing a number of experiments, the learner may formulate a hypothesis,
which is a determinate IA H with outputs Oδ satisfying H P . Informally, the
requirement H P expresses that H only displays behaviors that are allowed
by P , but that any input action that must be explored according to P is indeed
present in H. Hypothesis H is correct if T ioco H. In practice, we will use
black-box testing to obtain evidence for the correctness of the hypothesis. In
general, there will be many H’s satisfying T ioco H P (for instance, we may
take H = P), and additional conditions will be imposed on H, such as behavior-
determinacy. In fact, in the full version of this article we establish that if T is
behavior-determininistic there always exists a behavior-deterministic IA H such
that T ioco H P . If, in addition, T is an IOA then this H is unique up to
bisimulation equivalence.

Example 1 (Learning purpose). A trivial learning purpose Ptriv is displayed in
Figure 2 (left). Here notation i : I means that we have an instance of the
transition for each input i ∈ I. Notation o : O is defined similarly. Since Ptriv

is output-enabled, T � Ptriv holds for each IOA T . If H is a hypothesis, then
H Ptriv just means that H is input enabled.

i : I o : O

δ

Fig. 2. A trivial learning purpose (left) and a learning purpose with a nontrivial δ-
transition (right)

The learning purpose Pwait displayed in Figure 2 (right) contains a nontrivial
δ-transition. It expresses that after each input the learner has to wait until the
SUT enters a quiescent state before offering the next input. It is straightforward
to check that T � Pwait holds if T is an IOA.

We now present the protocol that learner and teacher must follow. At any time,
the teacher records the current state of T , initially q0, and the learner records

A Theory of History Dependent Abstractions 247

the current state of P , initially p0. Suppose the teacher is in state q and the
learner is in state p. In order to learn about the behavior of T , the learner may
engage in four types of interactions with the teacher:

1. Input. If a transition p
i−→P p′ is enabled in P , then the learner may present

input i to the teacher. If i is enabled in q then the teacher jumps to a state

q′ with q
i−→ q′ and returns reply ' to the learner. Otherwise, the teacher

returns reply ⊥. If the learner receives reply ' it jumps to p′, otherwise it
stays in p.

2. Output. The learner may send an output query Δ to the teacher. Now there
are two possibilities. If state q is quiescent, the teacher remains in q and
returns answer δ. Otherwise, the teacher selects an output transition q

o−→ q′,
jumps to q′, and returns o. The learner jumps to a state p′ that can be
reached by the answer o or δ.

3. Reset. The learner may send a reset to the teacher. In this case, both learner
and teacher return to their respective initial states.

4. Hypothesis. The learner may present a hypothesis to the teacher: a determi-
nate IA H with outputs Oδ such that H P . If T ioco H then the teacher
returns answer yes. Otherwise, by definition, Hδ has a trace σ such that an
output o that is enabled by T δ after σ, is not enabled by Hδ after σ. In
this case, the teacher returns answer no together with counterexample σo,
and learner and teacher return to their respective initial states.

The next lemma, which is easy to prove, implies that the teacher never returns

⊥ to the learner: whenever the learner performs an input transition p
i−→P p′,

the teacher can perform a matching transition q
i−→ q′. Moreover, whenever the

teacher performs an output transition q
o−→ q′, the learner can perform a matching

transition p
o−→P p′.

Lemma 3. Let R be the maximal alternating simulation from T δ to Pδ. Then,
for any configuration of states q and p of teacher and learner, respectively, that
can be reached after a finite number of steps (1)-(4) of the learning protocol, we
have (q, p) ∈ R.

We are interested in effective procedures which, for any finite (and some infi-
nite) T and P satisfying the above conditions, allows a learner to come up with
a correct, behavior-deterministic hypothesis H after a finite number of interac-
tions with the teacher. In [4], it is shown that any algorithm for learning Mealy
machines can be transformed into an algorithm for learning finite, behavior-
deterministic IOAs. Efficient algorithms for learning Mealy machines have been
implemented in the tool Learnlib [30].

4 Mappers

In order to learn a “large” IA T , with inputs I and outputs O, we place a mapper
in between the teacher and the learner, which translates concrete actions in I

248 F. Aarts, F. Heidarian, and F. Vaandrager

and O to abstract actions in (typically smaller) sets X and Y , and vice versa.
The task of the learner is then reduced to inferring a “small” IA with alphabet
X and Y . Our notion of mapper is essentially the same as the one of [2].

Definition 3 (Mapper). A mapper for a set of inputs I and a set of outputs
O is a tuple A = 〈I, X, Y, Υ 〉, where

– I = 〈I, Oδ, R, r0,→〉 is a deterministic IA that is input- and output-enabled

and has trivial δ-transitions: r
δ−→ r′ ⇔ r = r′.

– X and Y are disjoint sets of abstract input and output actions with δ ∈ Y .
– Υ : R×Aδ → Z, where A = I ∪O and Z = X ∪Y , maps concrete actions to

abstract ones. We write Υr(a) for Υ (r, a) and require that Υr respects inputs,
outputs and quiescence: (Υr(a) ∈ X ⇔ a ∈ I) ∧ (Υr(a) = δ ⇔ a = δ).

Mapper A is output-predicting if ∀o, o′ ∈ O : Υr(o) = Υr(o
′) ⇒ o = o′, that is,

Υr is injective on outputs, for each r ∈ R. Mapper A is surjective if ∀z ∈ Z ∃a ∈
Aδ : Υr(a) = z, that is, Υr is surjective, for each r ∈ R. Mapper A is state-free
if R is a singleton set.

Example 2. Consider a system with input actions LOGIN (p1), SET (p2) and
LOGOUT . Assume that the system only triggers certain outputs when a user
is properly logged in. Then we may not abstract from the password parameters
p1 and p2 entirely, since this will lead to nondeterminism. We may preserve
behavior-determinism by considering just two abstract values for p1: ok and nok.
Since passwords can be changed using the input SET (p2) when a user is logged
in, the mapper may not be state-free: it has to record the current password and
whether or not the user is logged (T and F, respectively). The input transitions
are defined by:

(p, b)
LOGIN (p)−−−−−−−→ (p,T), p �= p1 ⇒ (p, b)

LOGIN (p1)−−−−−−−→ (p, b),

(p,T)
SET (p2)−−−−−→ (p2,T), (p,F)

SET (p2)−−−−−→ (p,F), (p, b)
LOGOUT−−−−−−→ (p,F)

For input actions, abstraction Υ is defined by

Υ(p,b)(LOGIN (p1)) =

{
LOGIN (ok) if p1 = p
LOGIN (nok) otherwise

Υ(p,b)(SET (p2)) = SET

For input LOGOUT and for output actions, Υ(p,b) is the identity. This mapper
is surjective, since no matter how the password has been set, a user may always
choose either a correct or an incorrect login.

Example 3. Consider a system with three inputs IN1 (n1), IN2 (n2), and IN3 (n3),
in which an IN3 (n3) input triggers an output OK if and only if the value of n3

equals either the latest value of n1 or the latest value of n2. In this case, we
may not abstract away entirely from the values of the parameters, since that
leads to nondeterminism. We may preserve behavior-determinism by a mapper

A Theory of History Dependent Abstractions 249

that records the last values of n1 and n2. Thus, if D is the set of parameter
values, we define the set of mapper states by R = (D∪{⊥})× (D∪{⊥}), choose
r0 = (⊥,⊥) as initial state, and define the input transitions by

(v1, v2)
IN1 (n1)−−−−−→ (n1, v2), (v1, v2)

IN2 (n2)−−−−−→ (v1, n2), (v1, v2)
IN3 (n3)−−−−−→ (v1, v2)

Abstraction Υ abstracts from the specific value of a parameter, and only records
whether it is fresh, or equals the last value of IN1 or IN2 . For i = 1, 2, 3:

Υ(v1,v2)(INi(ni)) =

⎧⎨⎩
INi(old1) if ni = v1
INi(old2) if ni = v2 ∧ ni �= v1
INi(fresh) otherwise

This abstraction is not surjective: for instance, in the initial state IN1 (old1) is
not possible as an abstract value, and in any state of the form (v, v), IN1 (old2)
is not possible.

Each mapper A induces an abstraction operator on interface automata, which
abstracts an IA with actions in I and O into an IA with actions in X and Y .
This abstraction operator is essentially just a variation of the state operator
well-known from process algebras [8].

Definition 4 (Abstraction). Let T = 〈I, O,Q, q0,→〉 be an IA and let A =
〈I, X, Y, Υ 〉 be a mapper with I = 〈I, Oδ, R, r0,→〉. Then αA(T), the abstraction
of T , is the IA 〈X,Y,Q × R, (q0, r0),→abst〉, where transition relation →abst is
given by the rule:

q
a−→ q′ r

a−→ r′ Υr(a) = z

(q, r)
z−→abst (q′, r′)

Observe that if T is determinate then αA(T) does not have to be determinate.
Also, if T is an IOA then αA(T) does not have to be an IOA (if A is not surjec-
tive, as in Example 3, then an abstract input will not be enabled if there is no
corresponding concrete input). If T is output-determined then αA(T) is output-
determined, but the converse implication does not hold. The following lemma
gives a positive result: abstraction is monotone with respect to the alternating
simulation preorder.

Lemma 4. If T1 � T2 then αA(T1) � αA(T2).
The concretization operator is the dual of the abstraction operator. It transforms
each IA with abstract actions in X and Y into an IA with concrete actions in I
and O.

Definition 5 (Concretization). Let H = 〈X,Y, S, s0,→〉 be an IA and let
A = 〈I, X, Y, Υ 〉 be a mapper with I = 〈I, Oδ, R, r0,→〉. Then γA(H), the con-
cretization of H, is the IA 〈I, Oδ , R×S, (r0, s0),→conc〉, where transition relation
→conc is given by the rule:

r
a−→ r′ s

z−→ s′ Υr(a) = z

(r, s)
a−→conc (r′, s′)

250 F. Aarts, F. Heidarian, and F. Vaandrager

Whereas the abstraction operator does not preserve determinacy in general, the
concretization of a determinate IA is always determinate. Also, the concretiza-
tion of an output-determined IA is output-determined, provided the mapper is
output-predicting.

Lemma 5. If H is determinate then γA(H) is determinate.

Lemma 6. If A is output-predicting and H is output-determined then γA(H) is
output-determined.

In an abstraction of the form γA(H) it may occur that a reachable state (r, s) is
quiescent, even though the contained state s of H enables some abstract output
y: this happens if there exists no concrete concrete output o such that Υr(o) = y.
This situation is ruled out by following definition.

Definition 6. γA(H) is quiescence preserving if, for each reachable state (r, s),
(r, s) quiescent implies s quiescent.

Concretization is monotone with respect to the preorder, provided the con-
cretization of the first argument is quiescence preserving.

Lemma 7. Suppose γA(H1) is quiescence preserving. Then H1 H2 implies
γA(H1) γA(H2).

The lemma below is a key result of this article. It says that if T is ioco-
conforming to the concretization of an hypothesis H, and this concretization
is quiescence preserving, then the abstraction of T is ioco-conforming to H
itself.

Lemma 8. If γA(H) is quiescence preserving then T ioco γA(H) ⇒
αA(T) ioco H.

By using a mapper A, we may reduce the task of learning an IA H such
that T ioco H P to the simpler task of learning an IA H′ such that
αA(T) ioco H′ αA(P). However, in order to establish the correctness of this
reduction, we need two technical lemmas that require some additional assump-
tions on P and A. It is straightforward to check that these assumptions are met
by the mappers of Examples 2 and 3, and the learning purposes of Example 1.

Definition 7. Let A = 〈I, X, Y, Υ 〉 be a mapper for I and O. We define ≡A
to be the equivalence relation on I ∪ Oδ which declares two concrete actions
equivalent if, for some states of the mapper, they are mapped to the same abstract
action: a ≡A b ⇔ ∃r, r′ : Υr(a) = Υr′(b). Let T = 〈I, O,Q, q0,→〉 be an IA.
We call P and A compatible if, for all concrete actions a, b with a ≡A b and for

all p, p1, p2 ∈ P , (p
a−→⇔ p

b−→) ∧ (p
a−→ p1 ∧ p

b−→ p2 ⇒ p1 ∼ p2).

Lemma 9. Suppose αA(P) is determinate and P and A are compatible. Then
γA(αA(P)) P.

Lemma 10. Suppose A and P are compatible, αA(P) is determinate and H
αA(P). Then γA(H) is quiescence preserving.

A Theory of History Dependent Abstractions 251

5 Inference Using Abstraction

Suppose we have a teacher equipped with a determinate IA T , and a learner
equipped with a determinate learning purpose P such that T � P . The learner
has the task to infer some H satisfying T ioco H P . After the preparations
from the previous section, we are now ready to show how, in certain cases, the
learner may simplify her task by defining a mapper A such that αA(T) and
αA(P) are determinate, P and A are compatible, and T respects A in the sense

that, for i, i′ ∈ I and q ∈ Q, i ≡A i′ ⇒ (q
i−→⇔ q

i′−→). Note that if T is an IOA
it trivially respects A. In these cases, we may reduce the task of the learner to
learning an IA H′ satisfying αA(T) ioco H′ αA(P). Note that αA(P) is a
proper learning purpose for αA(T) since it is determinate and, by monotonicity
of abstraction (Lemma 4), αA(T) � αA(P).

We construct a teacher for αA(T) by placing a mapper component in between
the teacher for T and the learner for P , which translates concrete and abstract
actions to each other in accordance with A. Let T = 〈I, O,Q, q0,→〉, P =
〈I, Oδ, P, p0,→P〉, A = 〈I, X, Y, Υ 〉, and I = 〈I, Oδ, R, r0,→〉. The mapper
component maintains a state variable of type R, which initially is set to r0.
The behavior of the mapper component is defined as follows:

1. Input. If the mapper is in state r and receives an abstract input x ∈ X from
the learner, it picks a concrete input i ∈ I such that Υr(i) = x, forwards i
to the teacher, and waits for a reply ' or ⊥ from the teacher. This reply is
then forwarded to the learner. In case of a ' reply, the mapper updates its

state to the unique r′ with r
i−→ r′. If there is no i ∈ I such that Υr(i) = x

then the mapper returns a ⊥ reply to the learner right away.
2. Output. If the mapper receives an output query Δ from the learner, it for-

wards Δ to the teacher. It then waits until it receives an output o ∈ Oδ from
the teacher, and forwards Υr(o) to the learner.

3. Reset. If the mapper receives a reset from the learner, it resets its state to
r0 and forwards reset to the teacher.

4. Hypothesis. If the mapper receives a hypothesis H from the learner then,
by Lemma 10, γA(H) is quiescence preserving, Since H αA(P), mono-
tonicity of concretization (Lemma 7) implies γA(H) γA(αA(P)). Hence,
by Lemma 9, γA(H) P . This means that the mapper may forward γA(H)
as a hypothesis to the teacher. If the mapper receives response yes from
the teacher, it forwards yes to the learner. If the mapper receives response
no with counterexample σo, where σ = a1 · · · an, then it constructs a run
(r0, s0)

a1−→ (r1, s1)
a2−→ · · · an−−→ (rn, sn) of (γA(H))δ with (r0, s0) = (r0, s0).

It then forwards no to the learner, together with counterexample z1 · · · zny,
where, for 1 ≤ j ≤ n, zj = Υrj−1(aj) and y = Υrn(o). Finally, the mapper
returns to its initial state.

The next lemma implies that, whenever the learner presents an abstract input x
to the mapper, there exists a concrete input i such that Υr(i) = x, and the teacher
will accept input i from the mapper. So no ⊥ replies will be sent. Moreover,

252 F. Aarts, F. Heidarian, and F. Vaandrager

whenever the teacher sends a concrete output o to the mapper, the learner
accepts the corresponding abstract output Υr(o) from the mapper.

Lemma 11. Let S be the maximal alternating simulation from T δ to Pδ. Then,
for any configuration of states q, r1 and (p, r2) of teacher, mapper and learner,
respectively, that can be reached after a finite number of steps (1)-(5) of the learn-
ing protocol, we have (q, p) ∈ S and (p, r1) ∼ (p, r2) (here ∼ denotes bisimulation
equivalence in αA(P)).

We claim that, from the perspective of a learner with learning purpose αA(P),
a teacher for T and a mapper for A together behave exactly like a teacher
for αA(T). Since we have not formalized the notion of behavior for a teacher
and a mapper, the mathematical content of this claim may not be immediately
obvious. Clearly, it is routine to describe the behavior of teachers and mappers
formally in some concurrency formalism, such as Milner’s CCS [28] or another
process algebra [10]. For instance, we may define, for each IA T , a CCS process
Teacher(T) that describes the behavior of a teacher for T , and for each mapper
A a CCS process Mapper(A) that models the behavior of a mapper for A. These
two CCS processes may then synchronize via actions taken fromAδ, actionsΔ, δ,
', ⊥ and reset, and actions hypothesis(H), where H is an interface automaton.
If we compose Teacher(T) and Mapper(A) using the CCS composition operator
|, and apply the CCS restriction operator \ to internalize all communications
between teacher and mapper, the resulting process is observation equivalent
(weakly bisimilar) to process Teacher(αA(T)): (Teacher(T) | Mapper(A)) \ L ≈
Teacher(αA(T)), where L = Aδ ∪ {Δ, δ,',⊥, reset, hypothesis}. It is in this
precise, formal sense that one should read the following theorem.

Theorem 1. Let T , A and P be as above. A teacher for T and a mapper for
A together behave like a teacher for αA(T).

Since a teacher for T and a mapper for A together behave like a teacher for
αA(T), it follows that we have reduced the task of learning an H such that
T ioco H P to the simpler task of learning an H such that αA(T) ioco H
αA(P): whenever the learner receives the answer yes from the mapper, indicat-
ing that αA(T) ioco H we know, by definition of the behavior of the mapper
component, that γA(H) is quiescent preserving and T ioco γA(H). Moreover,
by Lemmas 7 and 9, γA(H) P .

Recall that for output-predicting abstractions, if H is behavior-deterministic
then γA(H) is behavior-deterministic. This implies that, for such abstractions,
provided T is an IOA, whenever the mapper returns yes to the learner, γA(H)
is the unique IA (up to bisimulation) that satisfies T ioco γA(H) P .

6 Conclusions and Future Work

We have provided several generalizations of the framework of [2], leading to a
general theory of history dependent abstractions for learning interface automata.
Our work establishes some interesting links between previous work on concur-
rency theory, model-based testing, and automata learning.

A Theory of History Dependent Abstractions 253

The theory of abstractions presented in this paper is not complete yet and
deserves further study. The link between our theory and the theory of abstract
interpretation [13, 14] needs to be investigated further. Also the notion of XY -
simulation, which offers a natural generalization of several fundamental concepts
from concurrency theory (bisimulations, simulations, alternating simulations and
partial bisimulations), deserves further study.

A major challenge will be the development of algorithms for the automatic
construction of mappers: the availability of such algorithms will boost the appli-
cability of automata learning technology. In [19], a method is presented that is
able to automatically construct certain state-free mappers. In [1], we present our
prototype tool Tomte, which is able to automatically construct mappers for a
restricted class of scalarset automata, in which one can test for equality of data
parameters, but no operations on data are allowed. Both [1,19] use the technique
of counterexample-guided abstraction refinement: initially, the algorithms starts
with a very course abstraction A, which is subsequently refined if it turns out
that αA(T) is not behavior-deterministic.

Finally, an obvious challenge is to generalize the theory of this paper to SUTs
that are not determinate.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata Learn-
ing through Counterexample-Guided Abstraction Refinement. In: Proc. FM 2012.
LNCS. Springer (to appear, 2012)

2. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-
tion Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

3. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and Abstraction of the Biomet-
ric Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415,
pp. 673–686. Springer, Heidelberg (2010)

4. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

5. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement
Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

7. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In:ACC2011, pp. 4496–4501(2011)

8. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process
algebra. Information and Computation 78(3), 205–245 (1988)

9. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

10. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland (2001)

254 F. Aarts, F. Heidarian, and F. Vaandrager

11. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal mod-
els of botnet command and control protocols. In: ACM Conference on Computer
and Communications Security, pp. 426–439. ACM (2010)

12. Comparetti, P., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specifica-
tion extraction. In: IEEE Symposium on Security and Privacy, pp. 110–125. IEEE
(2009)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL, pp. 238–252 (1977)

14. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM TOPLS 19(2), 253–291 (1997)

15. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26,
109–120 (2001)

16. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification
environment for mobile processes. ACM TOSEM 12(4), 440–473 (2003)

17. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (April 2010)

18. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

19. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet
Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

20. Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata
Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 315–327. Springer, Heidelberg (2003)

21. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315
(2005)

22. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

23. Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151.
Springer, Heidelberg (2007)

24. Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. FMSD 6(1), 11–44 (1995)

25. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

26. Lynch, N., Vaandrager, F.: Forward and backward simulations, I: Untimed systems.
Inf. Comput. 121(2), 214–233 (1995)

27. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

28. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

29. Montanari, U., Pistore, M.: Checking Bisimilarity for Finitary Pi-Calculus. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer,
Heidelberg (1995)

30. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. STTT 11(5), 393–407 (2009)

31. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In:
Proc. STOC, pp. 411–420. ACM (1989)

A Theory of History Dependent Abstractions 255

32. Rusu, V., du Bousquet, L., Jéron, T.: An Approach to Symbolic Test Generation.
In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945,
pp. 338–357. Springer, Heidelberg (2000)

33. Tretmans, J.: Test generation with inputs, outputs, and repetitive quiescence.
Software–Concepts and Tools 17, 103–120 (1996)

34. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

35. Veanes, M., Bjørner, N.: Input-Output Model Programs. In: Leucker, M., Morgan,
C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 322–335. Springer, Heidelberg (2009)

36. de Vries, R.G., Tretmans, J.: Towards Formal Test Purposes. In: FATES 2001,
BRICS Notes NS-01-4, pp. 61–76. Univ. Aarhus (2001)

Linearizability with Ownership Transfer

Alexey Gotsman and Hongseok Yang

1 IMDEA Software Institute
2 University of Oxford

Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Unfortunately, it assumes a complete isolation
between a library and its client, with interactions limited to passing values of
a given data type. This is inappropriate for common programming languages,
where libraries and their clients can communicate via the heap, transferring the
ownership of data structures, and can even run in a shared address space with-
out any memory protection. In this paper, we present the first definition of lin-
earizability that lifts this limitation and establish an Abstraction Theorem: while
proving a property of a client of a concurrent library, we can soundly replace the
library by its abstract implementation related to the original one by our generali-
sation of linearizability. We also prove that linearizability with ownership transfer
can be derived from the classical one if the library does not access some of data
structures transferred to it by the client.

1 Introduction
The architecture of concurrent software usually exhibits some forms of modularity. For
example, concurrent algorithms are encapsulated in libraries and complex algorithms
are often constructed using libraries of simpler ones. This lets developers benefit from
ready-made libraries of concurrency patterns and high-performance concurrent data
structures, such as java.util.concurrent for Java and Threading Building Blocks for
C++. To simplify reasoning about concurrent software, we need to exploit the available
modularity. In particular, in reasoning about a client of a concurrent library, we would
like to abstract from the details of a particular library implementation. This requires an
appropriate notion of library correctness.

Correctness of concurrent libraries is commonly formalised by linearizability [12],
which fixes a certain correspondence between the library and its specification. The latter
is usually just another library, but implemented atomically using an abstract data type.
A good notion of linearizability should validate an Abstraction Theorem [9]: it is sound
to replace a library with its specification in reasoning about its client.

The classical linearizability assumes a complete isolation between a library and
its client, with interactions limited to passing values of a given data type as parame-
ters or return values of library methods. This notion is not appropriate for low-level
heap-manipulating languages, such as C/C++. There the library and the client run in a
shared address space; thus, to prove the whole program correct, we need to verify that
one of them does not corrupt the data structures used by the other. Type systems [5]
and program logics [13] usually establish this using the concept of ownership of data
structures by a program component. When verifying realistic programs, this owner-
ship of data structures cannot be assigned statically; rather, it should be transferred

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 256–271, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Linearizability with Ownership Transfer 257

between the client and the library at calls to and returns from the latter. The times when
ownership is transferred are not determined operationally, but set by the proof method:
as O’Hearn famously put it, “ownership is in the eye of the asserter” [13]. However,
ownership transfer reflects actual interactions between program components via the
heap, e.g., alternating accesses to a shared area of memory. Such interactions also exist
in high-level languages providing basic memory protection, such as Java.

For an example of ownership transfer between concurrent libraries and their clients
consider a memory allocator accessible concurrently to multiple threads. We can think
of the allocator as owning the blocks of memory on its free-list; in particular, it can
store free-list pointers in them. Having allocated a block, a thread gets its exclusive
ownership, which allows accessing it without interference from the other threads. When
the thread frees the block, its ownership is returned to the allocator.

As another example, consider any container with concurrent access, such as a con-
current set from java.util.concurrent or Threading Building Blocks. A typical use of
such a container is to store pointers to a certain type of data structures. However, when
verifying a client of the container, we usually think of the latter as holding the owner-
ship of the data structures whose addresses it stores [13]. Thus, when a thread inserts a
pointer to a data structure into a container, its ownership is transferred from the thread
to the container. When another thread removes a pointer from the container, it acquires
the ownership of the data structure the pointer identifies. If the first thread tries to ac-
cess a data structure after a pointer to it has been inserted into the container, this may
result in a race condition. Unlike a memory allocator, the container code usually does
not access the contents of the data structures its elements identify, but merely ferries
their ownership between different threads. For this reason, correctness proofs for such
containers [1,6,17] have so far established their classical linearizability, without taking
ownership transfer into account.

We would like to use the notion of linearizability and, in particular, an Abstrac-
tion Theorem to reason about above libraries and their clients in isolation, taking into
account only the memory that they own. When clients use the libraries to implement
the ownership transfer paradigm, the correctness of the latter cannot be defined only in
terms of passing pointers between the library and the client; we must also show that they
perform ownership transfer correctly. So far, there has been no notion of linearizabil-
ity that would allow this. In the case of concurrent containers, we cannot use classical
linearizability established for them to validate an Abstraction Theorem that would be
applicable to clients performing ownership transfer. This paper fills in these gaps.

Contributions. In this paper, we generalise linearizability to a setting where a library
and its client execute in a shared address space, and boundaries between their data
structures can change via ownership transfers (Section 3). Linearizability is usually de-
fined in terms of histories, which are sequences of calls to and returns from a library in
a given program execution, recording parameters and return values passed. To handle
ownership transfer, histories also have to include descriptions of memory areas trans-
ferred. However, in this case, some histories cannot be generated by any pair of a client
and a library. For example, a client that transfers an area of memory upon a call to a
library not communicating with anyone else cannot then transfer the same area again
before getting it back from the library upon a method return.

258 A. Gotsman and H. Yang

We propose a notion of balancedness that characterises those histories that treat
ownership transfer correctly. We then define a linearizability relation between bal-
anced histories, matching histories of an implementation and a specification of a library
(Section 3). We show that the proposed linearizability relation on histories is correct
in the sense that it validates a Rearrangement Lemma (Lemma 13, Section 4): if a his-
tory H ′ linearizes another history H , and it can be produced by some execution of a
library, then so can the history H . The need to consider ownership transfer makes the
proof of the lemma highly non-trivial. This is because changing the history from H ′ to
H requires moving calls and returns to different points in the computation. In the set-
ting without ownership transfer, these actions are thread-local and can be moved easily;
however, once they involve ownership transfer, they become global and the justifica-
tion of their moves becomes subtle, in particular, relying on the fact that the histories
involved are balanced (see the discussion in Section 4).

To lift the linearizability relation on histories to libraries and establish the Abstrac-
tion Theorem, we define a novel compositional semantics for a language with libraries
that defines the denotation of a library or a client considered separately in an environ-
ment that communicates with the component correctly via ownership transfers (Sec-
tion 6). To define such a semantics for a library, we generalise the folklore notion of its
most general client to allow ownership transfers, which gives us a way to generate all
possible library histories and lift the notion of linearizabiliy to libraries. We prove that
our compositional semantics is sound and adequate with respect to the standard non-
compositional semantics (Lemmas 16 and 17). This, together with the Rearrangement
Lemma, allows us to establish the Abstraction Theorem (Theorem 19, Section 7).

To avoid having to prove the new notion of linearizability from scratch for libraries
that do not access some of the data structures transferred to them, such as concurrent
containers, we propose a frame rule for linearizability (Theorem 22, Section 8). It en-
sures the linearizability of such libraries with respect to a specification with ownership
transfer given their linearizability with respect to a specification without one.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing ver-
ification methods (Section 7). We have also developed a logic, based on separation
logic [14], for establishing our linearizability. Due to space constraints, the details of
the logic are outside the scope of this paper. For the same reason, proofs of most theo-
rems are given in [10, Appendix B].

2 Footprints of States

Our results hold for a class of models of program states called separation algebras [4],
which allow expressing the dynamic memory partitioning between libraries and clients.

Definition 1. A separation algebra is a set Σ, together with a partial commutative,
associative and cancellative operation ∗ on Σ and a unit element ε ∈ Σ. Here unity,
commutativity and associativity hold for the equality that means both sides are defined
and equal, or both are undefined. The property of cancellativity says that for each θ ∈
Σ, the function θ ∗ · : Σ ⇀ Σ is injective.

Linearizability with Ownership Transfer 259

We think of elements of a separation algebra Σ as portions of program states and the
∗ operation as combining such portions. The partial states allow us to describe parts
of the program state belonging to a library or the client. When the ∗-combination of
two states is defined, we call them compatible. We sometimes use a pointwise lifting
∗ : 2Σ × 2Σ → 2Σ of ∗ to sets of states.

Elements of separation algebras are often defined using partial functions. We use the
following notation: g(x)↓ means that the function g is defined on x, dom(g) denotes
the set of arguments on which g is defined, and g[x : y] denotes the function that has
the same value as g everywhere, except for x, where it has the value y. We also write
for an expression whose value is irrelevant and implicitly existentially quantified.

Below is an example separation algebra RAM:

Loc = {1, 2, . . .}; Val = Z; RAM = Loc ⇀fin Val.

A (partial) state in this model consists of a finite partial function from allocated memory
locations to the values they store. The ∗ operation on RAM is defined as the disjoint
function union �, with the everywhere-undefined function [] as its unit. Thus, the ∗
operation combines disjoint pieces of memory.

We define a partial operation \ : Σ × Σ ⇀ Σ, called state subtraction, as follows:
θ2 \ θ1 is a state in Σ such that θ2 = (θ2 \ θ1) ∗ θ1; if such a state does not exist, θ2 \ θ1
is undefined. When reasoning about ownership transfer between a library and a client,
we use the ∗ operation to express a state change for the component that is receiving the
ownership of memory, and the \ operation, for the one that is giving it up.

Our definition of linearizability uses a novel formalisation of a footprint of a state,
which, informally, describes the amount of memory or permissions the state includes.

Definition 2. A footprint of a state θ in a separation algebra Σ is the set of states
δ(θ) = {θ′ | ∀θ′′. (θ′ ∗ θ′′)↓ ⇔ (θ ∗ θ′′)↓}.

The function δ computes the equivalence class of states with the same footprint as θ. In
the case of RAM, we have δ(θ) = {θ′ | dom(θ) = dom(θ′)} for every θ ∈ RAM. Thus,
states with the same footprint contain the same memory cells.

Let F(Σ) = {δ(θ) | θ ∈ Σ} be the set of footprints in a separation algebra Σ. We
now lift the ∗ and \ operations on Σ to F(Σ). First, we define the operation ◦ : F(Σ)×
F(Σ) ⇀ F(Σ) for adding footprints. Consider l1, l2 ∈ F(Σ) and θ1, θ2 ∈ Σ such that
l1 = δ(θ1) and l2 = δ(θ2). If θ1 ∗ θ2 is defined, we let l1 ◦ l2 = δ(θ1 ∗ θ2); otherwise
l1 ◦ l2 is undefined. Choosing θ1 and θ2 differently does not lead to a different result
[10, Appendix B]. For RAM, ◦ is just a pointwise lifting of ∗. To define a subtraction
operation on footprints, we use the following condition.

Definition 3. The ∗ operation of a separation algebra Σ is cancellative on footprints
when for all θ1, θ2, θ′1, θ

′
2 ∈ Σ, if θ1 ∗ θ2 and θ′1 ∗ θ′2 are defined, then

(δ(θ1 ∗ θ2) = δ(θ′1 ∗ θ′2) ∧ δ(θ1) = δ(θ′1)) ⇒ δ(θ2) = δ(θ′2).

For example, the ∗ operation on RAM satisfies this condition.
When ∗ of Σ is cancellative on footprints, we can define an operation \ : F(Σ) ×

F(Σ) ⇀ F(Σ) of footprint subtraction as follows. Consider l1, l2 ∈ F(Σ). If for
some θ1, θ2, θ ∈ Σ, we have l1 = δ(θ1), l2 = δ(θ2) and θ2 = θ1 ∗ θ, then we let

260 A. Gotsman and H. Yang

l2 \ l1 = δ(θ). When such θ1, θ2, θ do not exist, l2 \ l1 is undefined. Again, we can
show that this definition is well-formed [10, Appendix B]. We say that a footprint l1 is
smaller than l2, written l1 � l2, when l2 \ l1 is defined. In the rest of the paper, we fix
a separation algebra Σ with the ∗ operation cancellative on footprints.

3 Linearizability with Ownership Transfer

In the following, we consider descriptions of computations of a library providing sev-
eral methods to a multithreaded client. We fix the set ThreadID of thread identifiers and
the set Method of method names. A good definition of linearizability has to allow re-
placing a concrete library implementation with its abstract version while keeping client
behaviours reproducible. For this, it should require that the two libraries have similar
client-observable behaviours. Such behaviours are recorded using histories, which we
now define in our setting.

Definition 4. An interface action ψ is an expression of the form (t, call m(θ)) or
(t, ret m(θ)), where t ∈ ThreadID, m ∈ Method and θ ∈ Σ.

An interface action records a call to or a return from a library method m by thread t.
The component θ in (t, call m(θ)) specifies the part of the state transferred upon the
call from the client to the library; θ in (t, ret m(θ)) is transferred in the other direction.
For example, in the algebra RAM (Section 2), the annotation θ = [42 : 0] implies the
transfer of the cell at the address 42 storing 0.

Definition 5. A history H is a finite sequence of interface actions such that for every
thread t, its projection H |t to actions by t is a sequence of alternating call and return
actions over matching methods that starts from a call action.

In the following, we use the standard notation for sequences: ε is the empty sequence,
α(i) is the i-th element of a sequence α, and |α| is the length of α.

Not all histories make intuitive sense with respect to the ownership transfer reading
of interface actions. For example, let Σ = RAM and consider the history

(1, callm1([10 : 0])) (2, callm2([10 : 0]))(2, ret m2([])) (1, ret m1([])).

The history is meant to describe all the interactions between the library and the client.
According to the history, the cell at the address 10 was first owned by the client, and
then transferred to the library by thread 1. However, before this state was transferred
back to the client, it was again transferred from the client to the library, this time by
thread 2. This is not consistent with the intuition of ownership transfer, as executing the
second action requires the cell to be owned both by the library and by the client, which
is impossible in RAM.

As we show in this paper, histories that do not respect the notion of ownership, such
as the one above, cannot be generated by any program, and should not be taken into
account when defining linearizability. We use the notion of footprints of states from
Section 2 to characterise formally the set of histories that respect ownership.

A finite history H induces a partial function �H�� : F(Σ) ⇀ F(Σ), which tracks
how a computation with the history H changes the footprint of the library state:

Linearizability with Ownership Transfer 261

�ε��l = l; �Hψ��l = �H��l ◦ δ(θ), if ψ = (, call (θ)) ∧ (�H��l ◦ δ(θ))↓;
�Hψ��l = �H��l \ δ(θ), if ψ = (, ret (θ)) ∧ (�H��l \ δ(θ))↓;
�Hψ��l = undefined, otherwise.

Definition 6. A history H is balanced from l ∈ F(Σ) if �H��(l) is defined.

Let BHistory = {(l, H) | H is balanced from l} be the set of balanced histories and
their initial footprints.

Definition 7. Linearizability is a binary relation) on BHistory defined as follows:
(l, H)) (l′, H ′) holds iff (i) l′ � l; (ii) H |t = H ′|t for all t ∈ ThreadID; and (iii)
there exists a bijection π : {1, . . . , |H |} → {1, . . . , |H ′|} such that for all i and j,

H(i) = H ′(π(i)) ∧ ((i < j ∧H(i) = (, ret) ∧H(j) = (, call)) ⇒ π(i) < π(j)).

A history H ′ linearizes a history H when it is a permutation of the latter preserving
the order of actions within threads and non-overlapping method invocations. We addi-
tionally require that the initial footprint of H ′ be smaller than that of H , which is a
standard requirement in data refinement [8]. It does not pose problems in practice, as
the abstract library generating H ′ usually represents some of the data structures of the
concrete library as abstract data types, which do not use the heap.

Definition 7 treats parts of memory whose ownership is passed between the library
and the client in the same way as parameters and return values in the classical defini-
tion [12]: they are required to be the same in the two histories. In fact, the setting of
the classical definition can be modelled in ours if we pass parameters and return values
via the heap. The novelty of our definition lies in restricting the histories considered to
balanced ones. This restriction is required for our notion of linearizability to be correct
in the sense of the Rearrangement Lemma established in the next section.

4 Rearrangement Lemma

Intuitively, the Rearrangement Lemma says that, if H) H ′, then every execution trace
of a library producing H ′ can be transformed into another trace of the same library that
differs from the original one only in interface actions and produces H , instead of H ′.
This property is the key component for establishing the correctness of linearizability on
libraries, formulated by the Abstraction Theorem in Section 7.

Primitive Commands. We first define a set of primitive commands that clients and
libraries can execute to change the memory atomically. Consider the set 2Σ ∪ {'} of
subsets of Σ with a special element ' used to denote an error state, resulting, e.g.,
from dereferencing an invalid pointer. We assume a collection of primitive commands
PComm and an interpretation of every c ∈ PComm as a transformer f tc : Σ → (2Σ ∪
{'}), which maps pre-states to states obtained when thread t ∈ ThreadID executes c
from a pre-state. The fact that our transformers are parameterised by t allows atomic
accesses to areas of memory indexed by thread identifiers. This idealisation simplifies
the setting in that it lets us do without special thread-local or method-local storage for
passing method parameters and return values. For our results to hold, we need to place
some standard restrictions on the transformers f tc (see [10, Appendix A]).

262 A. Gotsman and H. Yang

Traces. We record information about a program execution, including internal actions
by components, using traces.

Definition 8. An action ϕ is either an interface action or an expression of the form
(t, c), where t ∈ ThreadID and c ∈ PComm. We denote the set of all actions by Act.

Definition 9. A trace τ is a finite sequence of actions such that its projection history(τ)
to interface actions is a history. A trace η is a client trace, if

∀i, j, t, c. i < j ∧ η(i) = (t, call)∧ η(j) = (t, c) ⇒ ∃k. i < k < j ∧ η(k) = (t, ret).

A trace ξ is a library trace, if

∀i, t, c. ξ(i)= (t, c) ⇒ ∃j. j < i ∧ ξ(j)= (t, call) ∧ ¬∃k. i <k < j ∧ ξ(k)= (t, ret).

In other words, a thread in a client trace cannot execute actions inside a library method,
and in a library trace, outside it. We denote the set of all traces by Trace. In the follow-
ing, η denotes client traces, ξ, library traces, and τ , arbitrary ones.

In this section, we are concerned with library traces only. For a library trace ξ, we
define a function �ξ�lib : 2Σ → (2Σ ∪{'}) that evaluates ξ, computing the state of the
memory after executing the sequence of actions given by the trace. We first define the
evaluation of a single action ϕ by �ϕ�lib : Σ → (2Σ ∪ {'}):

�(t, c)�libθ = f tc(θ); �(t, call m(θ0))�libθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅;
�(t, ret m(θ0))�libθ = if (θ \ θ0)↓ then {θ \ θ0} else '.

The evaluation of call and return actions follows their ownership transfer reading ex-
plained in Section 3: upon a call to a library, the latter gets the ownership of the specified
piece of state; upon a return, the library gives it up. In the former case, only transfers
of states compatible with the current library state are allowed. In the latter case, the
computation faults when the required piece of state is not available, which ensures that
the library respects the contract with its client.

Let us lift �ϕ�lib to 2Σ pointwise: for p ∈ 2Σ we let �ϕ�libp =
⋃
{�ϕ�libθ | θ ∈ p},

if ∀θ ∈ p. �ϕ�libθ �= '; otherwise, �ϕ�libp = '. We then define the evaluation �ξ�lib :
2Σ → (2Σ ∪ {'}) of a library trace ξ as follows:

�ε�libp = p; �ξϕ�libp = if (�ξ�libp �= ') then �ϕ�lib(�ξ�libp) else '.

In the following, we write �ξ�libθ for �ξ�lib({θ}). Using trace evaluation, we can define
when a particular trace can be safely executed.

Definition 10. A library trace ξ is executable from θ when �ξ�libθ �∈ {∅,'}.

Proposition 11. If ξ is a library trace executable from θ, then history(ξ) is balanced
from δ(θ).

Definition 12. Library traces ξ and ξ′ are equivalent, written ξ ∼ ξ′, if ξ|t = ξ′|t for
all t ∈ ThreadID, and the projections of ξ and ξ′ to non-interface actions are identical.

Lemma 13 (Rearrangement). Assume (δ(θ), H)) (δ(θ′), H ′). If a trace ξ′ is exe-
cutable from θ′ and history(ξ′) = H ′, then there exists a trace ξ executable from θ′

such that history(ξ) = H and ξ ∼ ξ′.

Linearizability with Ownership Transfer 263

The proof transforms ξ′ into ξ by repeatedly swapping adjacent actions according to
a certain strategy to make the history of the trace equal to H . The most subtle place
in the proof is swapping (t1, ret m1(θ1)) and (t2, call m2(θ2)), where t1 �= t2. The
justification of this transformation relies on the fact that the target history H is balanced.
Consider the case when θ1 = θ2 = θ. Then the two actions correspond to the library
first transferring θ to the client and then getting it back. It is impossible for the client
to transfer θ to the library earlier, unless it already owned θ before the return in the
original trace (this may happen when θ describes only partial permissions for a piece
of memory, and thus, its instances can be owned by the client and the library at the
same time). Fortunately, using the fact that H is balanced, we can prove that the latter
is indeed the case, and hence, the actions commute.

So far we have used the notion of linearizability on histories, without taking into
account library implementations that generate them. In the rest of the paper, we lift
this notion to libraries, written in a particular programming language, and prove an
Abstraction Theorem, which guarantees that a library can be replaced by another library
linearizing it when we reason about its client program.

5 Programming Language

We consider a simple concurrent programming language:

C ::= c |m |C;C |C +C |C∗ L ::= {m=C; . . . ; m=C} S ::= letL inC ‖ . . . ‖C

A program consists of a library L implementing methods m ∈ Method and its client
C1 ‖ . . . ‖Cn, given by a parallel composition of threads. The commands include prim-
itive commands c ∈ PComm, method calls m ∈ Method, sequential composition
C;C′, nondeterministic choice C + C′ and iteration C∗. We use + and ∗ instead of
conditionals and while loops for theoretical simplicity: the latter can be defined in the
language as syntactic sugar. Methods do not take arguments and do not return values:
these can be passed via special locations on the heap associated with the identifier of
the thread calling the method. We assume that every method called in the program is
defined by the library, and that there are no nested method calls.

An open program is one without a library (denoted C) or a client (denoted L):

C ::= let [−] in C ‖ . . . ‖ C L ::= let L in [−] P ::= S | C | L

In C, we allow the client to call methods that are not defined in the program (but belong
to the missing library). We call S a complete program. Open programs represent a
library or a client considered in isolation. The novelty of the kind of open programs
we consider here is that we allow them to communicate with their environment via
ownership transfers. We now define a way to specify a contract this communication
follows.

A predicate is a set of states from Σ, and a parameterised predicate is a mapping
from thread identifiers to predicates. We use the same symbols p, q, r for ordinary and
parameterised predicates. When p is a parameterised predicate, we write pt for the pred-
icate obtained by applying p to a thread t. Both kinds of predicates can be described
syntactically, e.g., using separation logic assertions ([14] and [10, Appendix C]).

264 A. Gotsman and H. Yang

We describe possible ownership transfers between components with the aid of
method specifications Γ , which are sets of Hoare triples {p}m {q}, at most one for
each method. Here p and q are parameterised predicates such that pt describes pieces of
state transferred when thread t calls the method m, and qt, those transferred at its return.
Note that the pre- and postconditions in method specifications only identify the areas of
memory transferred; in other words, they describe the “type” of the returned data struc-
ture, but not its “value”. As usual for concurrent algorithms, a complete specification of
a library is given by its abstract implementation (Section 7).

For example, as we discussed in Section 1, clients of a memory allocator transfer the
ownership of memory cells at calls to and returns from it. In particular, the specifications
of the allocator methods look approximately as follows:

{emp}alloc{(r=0∧ emp)∨ (r �=0∧Block(r))} {Block(blk)}free(blk){emp}

Here r denotes the return value of alloc; blk, the actual parameter of free; emp, the
empty heap ε; and Block(r), a block of memory at address r managed by the allocator.

To define the semantics of ownership transfers unambiguously, we require pre- and
postconditions to be precise.

Definition 14. A predicate r ∈ 2Σ is precise [13] if for every state θ there exists at
most one substate θ1 satisfying r, i.e., such that θ1 ∈ r and θ = θ1 ∗ θ2 for some θ2.

Note that, since the ∗ operation is cancellative, when such a substate θ1 exists, the cor-
responding substate θ2 is unique and is denoted by θ \ r. Informally, a precise predicate
carves out a unique piece of the heap. A parameterised predicate r is precise if so is rt
for every t.

A specified open program is of the form Γ 2 C or L : Γ . In the former, the spec-
ification Γ describes all the methods without implementations that C may call. In the
latter, Γ provides specifications for the methods in the open program that can be called
by its external environment. In both cases, Γ specifies the type of another open program
that can fill in the hole in C or L. When we are not sure which form a program has, we
write Γ 2 P : Γ ′, where Γ is empty if P does not have a client, Γ ′ is empty if it does
not have a library, and both of them are empty if the program is complete.

For open programs Γ 2 C = let [−] in C1 ‖ . . . ‖ Cn and L : Γ = let L in [−], we
denote by C(L) the complete program let L in C1 ‖ . . . ‖ Cn.

6 Client-Local and Library-Local Semantics

We now give the semantics to complete and open programs. In the latter case, we define
component-local semantics that include all behaviours of an open program under any
environment satisfying the specification associated with it. In Section 7, we use these
to lift linearizability to libraries and formulate the Abstraction Theorem.

We define program semantics in two stages. First, given a program, we generate the
set of all its traces possible. This is done solely based on the structure of its statements,
without taking into account restrictions arising from the semantics of primitive com-
mands or ownership transfers. The next step filters out traces that are not consistent
with these restrictions using a trace evaluation process similar to that in Section 4.

Linearizability with Ownership Transfer 265

�c�Γt S = {(t, c)}; �C1 +C2 �Γt S = �C1 �Γt S ∪ �C2 �Γt S; �C∗ �Γt S = ((�C �Γt)S)
∗;

�m�Γt S = {(t, call m(θp)) τ (t, ret m(θq)) | τ ∈ S(m, t) ∧ θp ∈ pmt ∧ θq ∈ qmt };
�C1;C2 �Γt S = {τ1τ2 | τ1 ∈ �C1 �Γt S ∧ τ2 ∈ �C2 �Γt S};
�C1 ‖ . . . ‖ Cn �ΓS =

⋃{τ1 ‖ . . . ‖ τn | ∀t = 1..n. τt ∈ �Ct �
Γ
t S};

� let {m = Cm | m ∈M} in C1 ‖ . . . ‖Cn � = prefix(�C1 ‖ . . . ‖Cn �Γε(λm, t. �Cm �t()));

�Γ � let [−] in C1 ‖ . . . ‖ Cn � = prefix(�C1 ‖ . . . ‖ Cn �Γ (λm, t. {ε}));
� let {m = Cm | m ∈M} in [−] : Γ � =

prefix
(⋃

k≥1�Cmgc ‖ . . . (k times) . . . ‖ Cmgc �
Γ (λm, t. �Cm �t())

)
.

Fig. 1. Trace sets of commands and programs. Here Γε =
{{{ε}}m{{ε}} | m ∈M

}
, Γ =

{{pm}m {qm} | m ∈ M}, M = {m1, . . . ,mj}, Cmgc = (m1 + . . . + mj)
∗, and prefix(T)

is the prefix closure of T . Also, τ ∈ τ1 ‖ . . . ‖ τn if and only if every action in τ is done by a
thread t ∈ {1, . . . , n} and for all such t, we have τ |t = τt.

Trace Sets. Consider a program Γ 2 P : Γ ′ and let M ⊆ Method be the set of
methods implemented by its library or called by its client. We define the trace set �Γ 2
P : Γ ′ � ∈ 2Trace of P in Figure 1. We first define the trace set �C �Γt S of a command
C, parameterised by the identifier t of the thread executing it, a method specification
Γ , and a mapping S ∈ M × ThreadID → 2Trace giving the trace set of the body of
every method that C can call when executed by a given thread. The trace set of a client
�C1 ‖ . . . ‖ Cn �ΓS is obtained by interleaving traces of its threads.

The trace set �C(L)� of a complete program is that of its client computed with respect
to a mapping λm, t. �Cm �t() associating every method m with the trace set of its
body Cm. Since we prohibit nested method calls, �Cm � does not depend on the Γ
and S parameters. Since the program is complete, we use a method specification Γε
with empty pre- and postconditions for computing �C1 ‖ . . . ‖Cn �. We prefix-close
the resulting trace set to take into account incomplete executions. A program Γ 2 C
generates client traces �Γ 2 C �, which do not include internal library actions. This is
enforced by associating an empty trace with every library method. Finally, a program
L : Γ ′ generates all possible library traces �L : Γ ′ �. This is achieved by running
the library under its most general client, where every thread executes an infinite loop,
repeatedly invoking arbitrary library methods.

Evaluation. The set of traces generated using � ·� may include those not consistent with
the semantics of primitive commands or expected ownership transfers. We therefore
define the meaning of a program �Γ 2 P : Γ ′� ∈ Σ → (2Trace ∪ {'}) by evaluating
every trace in �Γ 2 P : Γ ′ � to determine whether it is executable.

First, consider a library L : Γ ′. In this case we use the evaluation function �·�lib
defined in Section 4. We let �L : Γ ′�θ = ', if

∃ξ, t. (∃c. �ξ�libθ �= ' ∧ ξ (t, c) ∈ �L : Γ ′ � ∧ f tc(θ) = ') ∨
(∃m, θq. �ξ�libθ �= ' ∧ ξ (t, ret m(θq)) ∈ �L : Γ ′ �

∧ ∀θ′q. ξ (t, ret m(θ′q)) ∈ �L : Γ ′ � ⇒ �ξ (t, ret m(θ′q))�libθ = ').

Thus, the library has no semantics if a primitive command in one of its executions

266 A. Gotsman and H. Yang

faults, or the required piece of state is not available for transferring to the client at a
method return. Otherwise, �L : Γ ′�θ = {ξ | ξ ∈ �L : Γ ′ � ∧ �ξ�libθ �∈ {∅,'}}. This
gives a library-local semantics to L, in the sense that it takes into account only the
part of the program state owned by the library and considers its behaviour under any
client respecting Γ ′. This generalises the standard notion of the most general client to
situations where the library performs ownership transfers. Lemma 16 below confirms
that the client defined by �L : Γ ′ � and �·�lib is indeed most general, as it reproduces
library behaviours under any possible clients.

To give a semantics to Γ 2 C, we define an evaluation function �η�client : 2Σ →
(2Σ ∪ {'}) for client traces η. To this end, we define the evaluation of a single action
ϕ by �ϕ�client : Σ → (2Σ ∪ {'}) and then lift it to client traces as in Section 4:

�(t, c)�clientθ = f tc(θ); �(t, call m(θ0))�clientθ = if (θ \ θ0)↓ then {θ \ θ0} else ';

�(t, ret m(θ0))�clientθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅.

When a thread t calls a method m in Γ , it transfers the ownership of the specified piece
of state to the library being called. The evaluation faults if the state to be transferred
is not available, which ensures that the client respects the specifications of the library.
When the method returns, the client receives the ownership of the specified piece of
state, which has to be compatible with the state of the client. We let �Γ 2 C�θ = ', if

∃η, t. (∃c. �η�clientθ �= ' ∧ η (t, c) ∈ �Γ 2 C � ∧ f tc(θ) = ') ∨
(∃m, θp. �η�clientθ �= ' ∧ η (t, call m(θp)) ∈ �Γ 2 C �

∧ ∀θ′p. η (t, callm(θ′p)) ∈ �Γ 2 C � ⇒ �η (t, ret m(θ′p))�clientθ = ').

Otherwise, �Γ 2 C�θ = {η | η ∈ �Γ 2 C � ∧ �η�clientθ �∈ {∅,'}}. This gives a client-
local semantics to C, in the sense that it takes into account only the part of the state
owned by the client and considers its behaviour when using any library respecting Γ .

Finally, for a complete program C(L), we let �C(L)�θ = ', if ∃τ. τ ∈ �C(L)� ∧
�τ�libθ = '; otherwise, �C(L)�θ = {τ | τ ∈ �C(L)� ∧ �τ�libθ �= ∅} (note that using
�·�client here would yield the same result). For a set of initial states I ⊆ Σ, let

�(Γ 2 P : Γ ′), I� = {(θ, τ) | θ ∈ I ∧ τ ∈ �Γ 2 P : Γ ′�θ}.

Definition 15. A program Γ 2 P : Γ ′ is safe at θ, if �Γ 2 P : Γ ′�θ �= '; P is safe for
I ⊆ Σ, if it is safe at θ for all θ ∈ I .

Commands fault when accessing memory cells that are not present in the state they are
run from. Thus, the safety of a program guarantees that it does not touch the part of
the heap belonging to its environment. Besides, calls to methods in Γ and returns from
methods in Γ ′ fault when the piece of state they have to transfer is not available. Thus,
the safety of the program also ensures that it respects the contract with its environment
given by Γ or Γ ′.

While decomposing the verification of a closed program into the verification of its
components, we rely on the above properties to ensure that we can indeed reason about
the components in isolation, without worrying about the interference from their envi-
ronment. In particular, our definition of linearizability on libraries considers only safe
libraries (Section 7).

Linearizability with Ownership Transfer 267

Soundness and Adequacy. The client-local and library-local semantics are sound and
adequate with respect to the global semantics of the complete program. These properties
are used in the proof of the Abstraction Theorem.

Let ground be a function on traces that replaces the state annotations θ of all interface
actions with ε. For a trace τ , we define its projection client(τ) to actions executed by
the client code: we include ϕ = (t,) with τ = τ ′ϕτ ′′ into the projection, if (i) ϕ is
an interface action; or (ii) ϕ is outside an invocation of a method, i.e., it is not the case
that τ |t = τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action. We also use
a similar projection lib(τ) to library actions.

The following lemma shows that a trace of C(L) generates two traces in the client-
local and library-local semantics with the same history. The lemma thus carries over
properties of the local semantics, such as safety, to the global one, and in this sense is
the statement of the soundness of the former with respect to the latter.

Lemma 16 (Soundness). Assume Γ 2 C and L : Γ safe for I1 and I2, respectively.
Then so is C(L) for I1 ∗ I2 and

∀(θ, τ) ∈ �C(L), I1 ∗ I2�. ∃(θ1, η) ∈ �C, I1�. ∃(θ2, ξ) ∈ �L, I2�. θ = θ1 ∗ θ2 ∧
history(η) = history(ξ) ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

The following lemma states that any pair of client-local and library-local traces agreeing
on the history can be combined into a trace of C(L). It thus carries over properties of
the global semantics to the local ones, stating the adequacy of the latter.

Lemma 17 (Adequacy). If L : Γ and Γ 2 C are safe for I1 and I2, respectively, then

∀(θ1, η) ∈ �C, I1�. ∀(θ2, ξ) ∈ �L, I2�. ((θ1 ∗ θ2)↓ ∧ history(η) = history(ξ)) ⇒
∃τ. (θ1 ∗ θ2, τ) ∈ �C(L), I1 ∗ I2� ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

7 Abstraction Theorem

We are now in a position to lift the notion of linearizability on histories to libraries and
prove the central technical result of this paper—the Abstraction Theorem. We define
linearizability between specified libraries L : Γ , together with their sets of initial states
I . First, using the library-local semantics, we define the set of histories of a library L
with the set of initial states I: history(L, I) = {(δ(θ0), history(τ)) | (θ0, τ) ∈ �L, I�}.

Definition 18. Consider L1 : Γ and L2 : Γ safe for I1 and I2, respectively. We say
that (L2, I2) linearizes (L1, I1), written (L1, I1)) (L2, I2), if

∀(l1, H1) ∈ history(L1, I1). ∃(l2, H2) ∈ history(L2, I2). (l1, H1)) (l2, H2).

Thus, (L2, I2) linearizes (L1, I1) if every behaviour of the latter may be reproduced in
a linearized form by the former without requiring more memory.

Theorem 19 (Abstraction). If L1 : Γ , L2 : Γ , Γ 2 C are safe for I1, I2, I , respec-
tively, and (L1, I1)) (L2, I2), then C(L1) and C(L2) are safe for I ∗ I1 and I ∗ I2,
respectively, and

∀(θ1, τ1) ∈ �C(L1), I ∗ I1�. ∃(θ2, τ2) ∈ �C(L2), I ∗ I2�. client(τ1) = client(τ2).

268 A. Gotsman and H. Yang

Thus, when reasoning about a client C(L1) of a library L1, we can soundly replace L1

with a library L2 linearizing it: if a linear-time safety property over client actions holds
of C(L2), it will also hold of C(L1). In practice, we are usually interested in atomicity
abstraction, a special case of this transformation when methods in L2 are atomic. The
theorem is restricted to safety properties as, for simplicity, in this paper we consider
only finite histories and traces. Our results can be generalised to the infinite case as
in [9]. The requirement that C be safe in the theorem restricts its applicability to healthy
clients that do not access library internals.

To prove Theorem 19, we first lift Lemma 13 to traces in the library-local semantics.

Corollary 20. If (δ(θ), H)) (δ(θ′), H ′) and L is safe at θ′, then

∀ξ′ ∈ �L�θ′. history(ξ′) = H ′ ⇒ ∃ξ ∈ �L�θ′. history(ξ) = H.

Thus, if (L1, I1)) (L2, I2), then the set of histories of L1 is a subset of those of L2:
linearizability is a sound criterion for proving that one library simulates another.

Proof of Theorem 19. The safety of C(L1) and C(L2) follows from Lemma 16. Take
(θ, τ1) ∈ �C(L1), I ∗ I1�. We transform the trace τ1 of C(L1) into a trace τ2 of C(L2)
with the same client projection using the local semantics of L1, L2 and C. Namely,
we first apply Lemma 16 to generate a pair of a library-local initial state and a trace
(θ1l , ξ1) ∈ �L1, I1� and a client-local pair (θc, η) ∈ �C, I�, such that θ = θc ∗ θ1l ,
client(τ1) = ground(η) and history(η) = history(ξ1). Since (L1, I1)) (L2, I2),
for some (θ2l , ξ2) ∈ �L2, I2�, we have δ(θ2l) � δ(θ1l) and (δ(θ1l), history(ξ1)))
(δ(θ2l), history(ξ2)). By Corollary 20, ξ2 can be transformed into a trace ξ′2 such that
(θ2l , ξ

′
2) ∈ �L2, I2� and history(ξ′2) = history(ξ1) = history(η). Since δ(θ2l) � δ(θ1l)

and (θc ∗ θ1l)↓, we have (θc ∗ θ2l)↓. We then use Lemma 17 to compose the library-local
trace ξ′2 with the client-local one η into a trace τ2 such that (θc∗θ2l , τ2) ∈ �C(L2), I∗I2�
and client(τ2) = ground(η) = client(τ1). ��

Establishing Linearizability with Ownership Transfer and Its Applications. We
have developed a logic for proving linearizability in the sense of Definition 18, which
generalises an existing proof system [16] based on separation logic [14] to the set-
ting with ownership transfer. The logic uses the usual method of proving linearizability
based on linearization points [1,12,16] and treats ownership transfers between a library
and its environment in the same way as transfers between procedures and their callers
in separation logic. Due to space constraints, the details of the logic are beyond the
scope of this paper and are described in [10, Appendix D]. We mention the logic here
to emphasise that our notion of linearizability can indeed be established effectively.

The Abstraction Theorem is not just a theoretical result: it enables composi-
tional reasoning about complex concurrent algorithms that are challenging for existing
verification methods. For example, the theorem can be used to justify Vafeiadis’s com-
positional proof [16, Section 5.3] of the multiple-word compare-and-swap (MCAS) al-
gorithm implemented using an auxiliary operation called RDCSS [11] (the proof used
an abstraction of the kind enabled by Theorem 19 without justifying its correctness). If
the MCAS algorithm were verified together with RDCSS, its proof would be extremely
compicated. Fortunately, we can consider MCAS as a client of RDCSS, with the two
components performing ownership transfers between them. The Abstraction Theorem

Linearizability with Ownership Transfer 269

then makes the proof tractable by allowing us to verify the linearizability of MCAS
assuming an atomic specification of the inner RDCSS algorithm.

8 Frame Rule for Linearizability
Libraries such as concurrent containers are used by clients to transfer the ownership of
data structures, but do not actually access their contents. We show that for such libraries,
the classical linearizability implies linearizability with ownership transfer.

Definition 21. A method specification Γ ′ = {{rm}m {sm} | m ∈ M} extends a
specification Γ = {{pm}m {qm} | m ∈ M}, if ∀t. rmt ⊆ pmt ∗Σ ∧ smt ⊆ qmt ∗Σ.

For example, Γ might say that a method m receives a pointer x as a parameter:
{∃x. param[t] (→ x}m {param[t] (→ }, where t is the identifier of the thread call-
ing m. Then Γ ′ may mandate that the cell the pointer identifies be transferred to the
method: {∃x. param[t] (→ x ∗ x (→ }m {param[t] (→ }. For a history H , let �H	Γ
be the result of replacing every action ϕ in H by the action �ϕ	Γ defined as follows:

�(t, call m(θ))	Γ = (t, callm(θ \ pmt)); �(t, ret m(θ))	Γ = (t, ret m(θ \ qmt)).

�H	Γ is undefined if so is the result of any of the \ operations above. The operation
selects the extra pieces of state not required by Γ .

Theorem 22 (Frame rule). Assume (i) for all i ∈ {1, 2}, Li : Γ and Li : Γ ′ are safe
for Ii and Ii ∗ I , respectively; (ii) (L1 : Γ, I1)) (L2 : Γ, I2); (iii) Γ ′ extends Γ ; and
(iv) for every (θ0, θ

′
0) ∈ I1 × I and ξ ∈ �L1 : Γ ′�(θ0 ∗ θ′0), the trace �history(ξ)	Γ is

executable from θ′0. Then (L1 : Γ ′, I1 ∗ I)) (L2 : Γ ′, I2 ∗ I).
The proof of the theorem relies on Corollary 20. The linearizability relation established
in the theorem enables the use of the Abstraction Theorem for clients performing owner-
ship transfer. The safety requirement on L1 and L2 with respect to Γ ′ is needed because
Γ ′ not only transfers extra memory to the library in its preconditions, but also takes it
back in its postconditions. The requirement (iv) ensures that the extra memory required
by postconditions in Γ ′ comes from the extra memory provided in its preconditions and
the extension of the initial state, not from the memory transferred according to Γ .

9 Related Work

In our previous work, we proved Abstraction Theorems for definitions of linearizability
supporting reasoning about liveness properties [9] and weak memory models [3]. These
definitions assumed that the library and its client operate in disjoint address spaces and,
hence, are guaranteed not to interfere with each other and cannot communicate via the
heap. Lifting this restriction is the goal of the present paper. Although we borrow the
basic proof structure of Theorem 19 from [3], including the split into Lemmas 13, 16
and 17, the formulations and proofs of the Abstraction Theorem and the lemmas here
have to deal with technical challenges posed by ownership transfer that did not arise
in previous work. First, their formulations rely on the novel forms of client-local and
library-local semantics, and in particular, the notion of the most general client (Sec-
tion 6), that allow a component to communicate with its environment via ownership

270 A. Gotsman and H. Yang

transfers. Proving Lemmas 16 and 17 then involves a delicate tracking of a splitting
between the parts of the state owned by the library and the client, and how ownership
transfers affect it. Second, the key result needed to establish the Abstraction Theorem
is the Rearrangement Lemma (Lemma 13). What makes the proof of this lemma dif-
ficult in our case is the need to deal with subtle interactions between concurrency and
ownership transfer that have not been considered in previous work. Namely, changing
the history of a sequential library specification for one of its concurrent implementation
in the lemma requires commuting ownership transfer actions; justifying the correctness
of these transformations is non-trivial and relies on the notion of history balancedness
that we propose.

Recently, there has been a lot of work on verifying linearizability of common algo-
rithms; representative papers include [1, 6, 16]. All of them proved classical lineariz-
ability, where libraries and their clients exchange values of a given data type and do not
perform ownership transfers. This includes even libraries such as concurrent containers
discussed in Section 1, that are actually used by client threads to transfer the ownership
of data structures. The frame rule for linearizability we propose (Theorem 22) justifies
that classical linearizability established for concurrent containers entails linearizabil-
ity with ownership transfer. This makes our Abstraction Theorem applicable, enabling
compositional reasoning about their clients.

Turon and Wand [15] have proposed a logic for establishing refinements between
concurrent modules, likely equivalent to linearizability. Their logic considers libraries
and clients residing in a shared address space, but not ownership transfer. It assumes
that the client does not access the internal library state; however, their paper does not
provide a way of checking this condition. As a consequence, Turon and Wand do not
propose an Abstraction Theorem strong enough to support separate reasoning about a
library and its client in realistic situations of the kind we consider.

Elmas et al. [6, 7] have developed a system for verifying concurrent programs based
on repeated applications of atomicity abstraction. They do not use linearizability to
perform the abstraction. Instead, they check the commutativity of an action to be incor-
porated into an atomic block with all actions of other threads. In particular, to abstract
a library implementation in a program by its atomic specification, their method would
have to check the commutativity of every internal action of the library with all actions
executed by the client code of other threads. Thus, the method of Elmas et al. does not
allow decomposing the verification of a program into verifying libraries and their clients
separately. In contrast, our Abstraction Theorem ensures the atomicity of a library under
any healthy client.

Ways of establishing relationships between different sequential implementations of
the same library have been studied in data refinement, including cases of interactions
via ownership transfer [2, 8]. Our results can be viewed as generalising data refinement
to the concurrent setting.

Acknowledgements. We would like to thank Anindya Banerjee, Josh Berdine, Xinyu
Feng, Hongjin Liang, David Naumann, Peter O’Hearn, Matthew Parkinson, Noam
Rinetzky and Julles Villard for helpful comments. Yang was supported by EPSRC.

Linearizability with Ownership Transfer 271

References
1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison Under Abstraction for

Verifying Linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

2. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence
in object-oriented programs. JACM 52(6) (2005)

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Correctness on
the TSO Memory Model. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS,
vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

4. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic. In: LICS
(2007)

5. Clarke, D.G., Noble, J., Potter, J.M.: Simple Ownership Types for Object Containment. In:
Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 53–76. Springer, Heidelberg (2001)

6. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying Linearizability Proofs
with Reduction and Abstraction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

7. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL (2009)
8. Filipović, I., O’Hearn, P., Torp-Smith, N., Yang, H.: Blaiming the client: On data refinement

in the presence of pointers. FAC 22(5) (2010)
9. Gotsman, A., Yang, H.: Liveness-Preserving Atomicity Abstraction. In: Aceto, L., Hen-

zinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 453–465. Springer,
Heidelberg (2011)

10. Gotsman, A., Yang, H.: Linearizability with ownership transfer (extended version) (2012),
www.software.imdea.org/~gotsman

11. Harris, T., Fraser, K., Pratt, I.: A Practical Multi-Word Compare-and-Swap Operation. In:
Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer, Heidelberg (2002)

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS 12(3) (1990)

13. O’Hearn, P.: Resources, concurrency and local reasoning. TCS 375(1-3) (2007)
14. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS (2002)
15. Turon, A., Wand, M.: A separation logic for refining concurrent objects. In: POPL (2011)
16. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD Thesis. University of

Cambridge (2008)
17. Vafeiadis, V.: Automatically Proving Linearizability. In: Touili, T., Cook, B., Jackson, P.

(eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

www.software.imdea.org/~gotsman

Nested Protocols in Session Types

Romain Demangeon and Kohei Honda

Queen Mary, University of London

Abstract. We propose an improvement to session-types, introducing
nested protocols, the possibility to call a subprotocol from a parent
protocol. This feature adds expressiveness and modularity to the ex-
isting session-type theory, allowing arguments to be passed and enabling
higher-order protocols definition. Our theory is introduced through a
new type system for protocols handling subprotocol calls, and its imple-
mentation in a session-calculus. We propose validation and satisfaction
relations between specification and implementation. Sound behaviour is
enforced thanks to the usage of kinds and well-formedness, allowing us
to ensure progress and subject reduction. In addition, we describe an
extension of our framework allowing subprotocols to send back results.

1 Introduction

Decentralised computation is becoming more and more popular thanks to the
fast growth of web services and other distributed computing technologies. In
such a distributed framework, agents (users, servers, applications) are inter-
acting through message-passing communications, without central control. The
programmatic coordination of a large number of independent entities interacting
with each other inside a network is a challenging task: without global control,
the only place where coordination can come from is local endpoints. How can we
specify and ensure correctly coordinated behaviour without having any global
control? Session types [11] provide a powerful expressive framework to help solv-
ing this issue, focusing on the notion of session seen as a unit of conversation
among participants called roles. The expected scenario of the session is described
in a global protocol given as a global type, projected into end-point specifications
called local types, describing the behaviour of each role. Those are enforced lo-
cally, either through a static analysis of programs (static validation [8,3,13]) or
at run-time (monitoring [2]). If each agent in the network conforms to its local
type, it is guaranteed that their overall interactions conform to the global spec-
ification. In the past few years, the theory of session types has been extended in
several directions. On the one hand, new features added to the language of the
global types allow one to specify more accurately the interactions inside a proto-
col, for instance by including logical assertions [3], or information flow [4]. This
“internal expressiveness” ensure the satisfaction of auxiliary properties: security
(“the messages between Alice and Bob cannot be read by Carol”), or governance
(“Alice can send a buying request to Bob only if she has enough money on her
bank account”). On the other hand, extensions of the session mechanisms al-
low greater control over, for example, how participants join or leave a session

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 272–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stratified Protocols in Session Types 273

(through dynamic multiparty session [9] or through a reputation system [10]) or
how sessions can be parametrised, increasing “external expressiveness”.

Real-world specifications for decentralised networks are large, complex and
often highly modular: for example, such specifications are found in many use
cases from the development of a large-scale distributed infrastructure for ocean
sciences, Ocean Observatories Initiative [15], with whom we are collaborating.
Among the use cases in the project, several protocols, used in different contexts,
share the same shape. Moreover, some protocols call other protocols. In order to
be able to specify, verify, simplify and organise such complex protocol frameworks
effectively, solid improvements to the theory of session-types are needed.

In this paper, we present a novel approach to session-types that addresses the
structuring principle itself of protocols, increasing both internal and external ex-
pressiveness. We introduce nesting of protocols, that is, the possibility to define
a subprotocol independently of its parent protocol, which calls the subprotocol
explicitly. Through a call, arguments can be passed, such as values, roles and
other protocols, allowing higher-order description. At the programming level,
subprotocols are realised as subsessions : one agent creates a new private ses-
sion, inviting roles of the parent session (internal invitations) as well as other
agents from the network (external invitations). Uninvited participants of the
parent session do not have access to the subsession, allowing one to model pri-
vate interactions inside public sessions. This contrasts with the current use of
subprotocols in the protocol description language Scribble [16], where they only
correspond to the in-lining mechanism. As an example, we noticed that in several
use cases described in [15], a negotiation procedure Nego between two agents is
invoked inside a main protocol, and other participants do not take part in that
negotiation. The Nego procedure has its own description, subject to independent
modifications and can be invoked in different contexts for different purposes. The
theory we propose introduces such modularity in the framework of session types,
yielding a solid, formal verification method for distributed programs.

One strong motivation for introducing subprotocols and subsession is that
they are a powerful structuring tool: cross-cutting features such as login, nego-
tiations or security controls can be abstracted from the targeted protocols in a
compositional way, becoming subprotocols. If we update a login protocol to en-
force stronger security checks, specifications of applications using it do not need
be updated. Moreover, nesting allows one to call multiple copies of the same pro-
tocol with different arguments, improving flexibility and readability. This allows
us to clean up and reorganise a large protocol database in [15], by unifying many
protocols with the same shape into one parametrised protocol. Another direct
benefit from nesting is allowing a better separation of the different branches by
inviting participants only when necessary, reducing complexity and resource us-
age. For instance, in protocol P involving Alice,Bob and Carol, if Carol interacts
only if a certain condition is met, we can have Carol act in a separate subpro-
tocol, inviting Carol only if her presence is required. In our framework, internal
invitations to a subsession are sent inside the parent-session, targeting a specific

274 R. Demangeon and K. Honda

participant through a linear channel. This extends the existing session-calculi
where invitations are always done externally, through shared channels.

We propose in Section 2 a syntax for nested protocols, with dedicated con-
structors for protocol definitions and protocol calls. In order to ensure sound
composition, we introduce the notion of kinds, “types for types”, and define a
notion of well-formedness. In Section 3, we describe a session-calculus (based on
the π-calculus [14]) handling subsessions. We describe in Section 4 a static val-
idation and a run-time satisfaction, each linking specifications and processes in
the session-calculus. We sketch the main properties of typed processes. Finally
we propose an extension to our theory in Section 5, allowing a subsession to have
a goal: a result that is returned to its parent session.

2 Nested Protocols

Global types. Throughout the paper, we use G for global types, T for local types,
l for communication labels, s, k for session names, a, b for shared channels, 	 for
transition labels, r, r′ for role identifiers and P for protocol identifiers. We use v
to describe values, which can be base type variables (integers, strings, . . .), labels
or protocol identifiers. x, y are variables, possibly abstracting any value. For any
identifier e, we use ẽ to abstract the sequence e1, . . . , en of unspecified length n.
We use R+ (resp. R∗) for the reflexive (resp. reflexive-transitive) closure of the
relation R. We assume a Barendregt convention for bound variables.

Global types describe protocols from the network point of view: they consist
of sequences of interactions between roles. We choose the already existing syntax
of multi-party session types (e.g., in [3,1]) as a basis. The syntax for our global
types is given by the following grammar:

G ::= let P = λr̃1, ỹ �→ new r̃2.G in G′ (declaration)
| r calls P〈r̃, ỹ〉.G (call)
| r1 → r2 : Σi∈I{li(xi).Gi} (com)
| G1 ⊕r G2 | G1 ‖ G2 | μt.G | t (choice,par,rec,rec-var)

Communications between two roles are specified with r1 → r2 : Σi∈I{li(xi :

Si).Gi}, stating that r1 has a directed choice between several labels l̃ proposed
by r2. Each branch expects a value xi and executes the continuation Gi. When
I is a singleton, we write r1 → r2 : l(x : S). Primitive ⊕r is located choice:
the choice for one participant r between two distinct protocol branches. Parallel
composition is denoted by ‖ and recursion by the two operators μt and t. We
assume a congruence over global types, handling implicit unfolding of recursion.

The new primitives addressing protocol stratification are let and calls. We
describe the declaration of an auxiliary protocol, to be called by a main protocol,
by the notation let P = λr̃1, ỹ (→ new r̃2.G1 in G2. In this notation, the pro-
tocol G1 is identified by P in the main protocol G2. The participants of G1 are
explicitly separated into two groups, r̃1 are internally invited from the parent
session and thus given as arguments to P together with values ỹ; whereas r̃2 are
externally invited from the network at the beginning of G1. The counterpart of

Stratified Protocols in Session Types 275

this constructor is the protocol call r calls P(r̃, ṽ) stating that participant r
executes an auxiliary protocol P with role arguments r̃, value arguments ṽ. Note
that ṽ can contain protocol identifiers, thus allowing higher-order programming.

Kinds. As protocols can be abstracted, called and used as arguments, we in-
troduce a simple and concise discipline for protocols, which ensures that they
are used in an adequate way, well-formedness. In order to formalise this no-
tion, we type all objects appearing in specifications with kinds (types for types)
K,S ::= Role | Val | 4 | (K1 × · · · × Kn) → K. We use Val to denote the
value-kinds, which are first-order types for values (like Nat for integers) or data
types (such as Req in Section 2), 4 to denote protocol type and → to denote
parametrisation. The presence of higher-order calls allows us to treat protocols
whose kinds have shapes like Role × (Role → 4) → 4, describing a protocol
parametrised by a role and another protocol, the latter parametrised by a role.
In the following, we will sometimes adopt an à la Church notation for protocol
constructors, as in let P = λbuyer : Role, price : Nat (→ new r̃.G in G′, in
order to specify the kinds of the arguments passed to a protocol.

We define well-formedness to rule out unsound protocols. For instance, a pro-
tocol where P has kind Role → 4 but is used with kind Nat → 4 is not well-
kinded. A protocol containing (r1 → r2 : ok)⊕r0 (r2 → r1 : ko) is not projectable
as r1 has no mean to know which branch r0 chooses, and thus is not able to
know if it must perform an input or an output. In order to define projectability,
which ensures that a global type can be coherently projected into local types,
we define the restriction of a protocol to a role, noted (G)|r as the global type
obtained by removing every constructor of G where r does not appear. A proto-
col is projectable if for every choice (directed or located), the difference between
the branches are only visible to the roles involved in that choice.

Definition 1 (Well-Formedness).
A global-type G is well-kinded if there exists τ from all identifiers of G to types
satisfying, for all subprotocols of G:

1. let P = (λỹ (→ new r̃·) in · is s.t. τ(P) = τ(ỹ) → 4, and ∀i, τ(ri) = Role.
2. r calls P〈ỹ〉.G is s.t. τ(r) = Role, τ(P) = τ(ỹ) → 4.
3. for all identifiers r in r → r′ : l(x : S).G and G1 ⊕r G2, τ(r) = Role.

A global type G is projectable if:
1. for each subterm of G of the form G1⊕r0G2, for any free r �=r0, (G1)|r=

(G2)|r.
2. for each subterm of G of the form r → r′ : Σi∈I{li(xi : Si).Gi}, for any

role free role r /∈ {r, r′} and for all {i, j} ⊆ I, (Gi)|r = (Gj)|r.
A protocol G is well-formed when it is well-kinded and projectable, and satisfies
the standard linearity condition [1].

There exists in [9,12] mergeability conditions that allows the authors to be less
restrictive in the definition of projectability. Our framework could accommodate
this refinement. We do not present it here, for the sake of clarity.

276 R. Demangeon and K. Honda

Motivating Examples. In this section, we motivate our contribution with three
examples extracted from concrete specifications and illustrate higher-order pro-
gramming with a fourth one.

Resource usage. The following example is inspired by the use cases (UC R2.34,
UC R2.32) from the OOI project [15]. A negotiation procedure Nego is first
defined independently, to be used in several different protocols. This negotiation
procedure involves two participants trying to agree on a contract: first participant
specifies a request, second participant offers a corresponding contract, then both
participants enter a loop when the first one can either accept the contract, which
ends the protocol or make a counter-offer.

let Nego = λr1, r2 �→
r1 → r2 : ask(terms).
μt.
r2 → r1 : proposition(contract2).
r1 → r2 : {accept.end

counter(contract1).t}
in

client→ agent : request(coord). agent→ instr : connect
instr→ agent : available. agent→ client : ack.
agent calls Nego(agent, client).
μt.
client→ instr : {abort(coord).end

command(code).
instr→ client : result(data).t}

The main protocol UseRes consists of several interactions between three partic-
ipants (client, agent, instr), processed in the following order: first client sends
a request to agent for an instrument he wants to use, agent tries to connect
to instr which acknowledges when available. Then, agent negotiates a contract
with client (by calling protocol Nego). After a successful negotiation, client and
instr interact inside a loop, the client sending commands and receiving data.
The negotiation phase is considered external: should the auxiliary protocol be
modified, for instance to enforce another negotiation policy, the main protocol
would remain the same.

Client-Middleware-Server. The protocol CMS, presented of the left side of Fig-
ure 1 describing a typical service interaction. This protocol initially involves two
participants, client starts the interactions by sending a request to the middleware
middle. If the latter is able to treat the request directly, it answers to client, if
not, it contacts server, calling subprotocol Contact with itself as role argument.
In the subprotocol, middle performs an external invitation of server, forwards
the request and waits for an answer. After the subprotocol is completed, the
answer is forwarded to the client. Nesting, in this example, allows us to invite
server to participate only when necessary: if middle can treat the request, server
is not even invited. Using subprotocols in such a way allows us to cut a great
deal of unnecessary traffic caused by external invitations, saving bandwidth.

Stratified Protocols in Session Types 277

let Contact = λagent, req �→
new server.
agent → server : request(req).
server → agent : answer(ans).
end

in

client → middle : request(req0).
(middle → client : answer(ans0).end)

⊕middle

(middle calls Contact(middle, req0).
middle → client : answer(ans0).end)

let Treat =
λr1, r2 �→

new worker.
r1 → worker : raw(data).
worker → r2 : processed(data).
end

in

paralleln(
source calls Treat(source, target)
).

end

Fig. 1. Protocols CMS and ANF

Dynamic distribution. We then describe on the right side of Figure 1 a third
example, inspired by a concrete protocol from the Array Network Facility, used
for processing seismic data. Here, the operator paralleln(G) is used as a short-
cut for n parallel copies of the protocol G. In this protocol, data comes in a raw
state from a participant source and should reach participant target processed. In
the body of each of the n parallel executions, source calls the subprotocol Treat
inviting a new participant worker and using it to process data. This protocol is
run in networks where many computing units can accept temporarily the worker
role. In this example, stratification is used to present in a clean way the execution
of thousands of copies of the same protocol. As each copy is implemented by a
different session, the different calls to the subprotocol are actually independent
from each other.

Marketplace. Finally, we propose a protocol for a virtual marketplace in which
participants have the possibility to engage in trade actions with other partici-
pants. General protocols Buy and Sell are defined to handle these buying and
selling. The encounter between two agents follows the same procedure (hand-
shake, authentication, possibility to cancel the transaction) whatever the reason
of their meeting is. This common procedure is abstracted in Meet and a protocol
identifier Action is given as an argument to Meet calls, meant to be substituted
by Buy or Sell (or any similar protocol). Thus, Meet is an higher-order protocol,
parametrised with protocol Action.

let Buy = λ agent : Role, seller : Role, item : Tradable �→ . . .
in let Sell = λ agent : Role, buyer : Role, item : Tradable �→ . . .
in let Meet = λ agent : Role,partner : Role,

item : Tradable, Action : (Role→ Role→ Tradable→ �) �→ . . .
agent calls Action〈partner, item〉 . . .
in . . .
alice calls Meet〈bob, kettle, Buy〉. carol calls Meet〈bob, teacup, Sell〉 . . .

The protocols presented in this section are well-formed: notice that protocol
CMS is projectable, in each branch of the choice ⊕middle, the restriction on

278 R. Demangeon and K. Honda

client is “middle → client : answer.end”. Kinds for subprotocols presented in the
examples are as follows: Nego : Role × Role → 4, Contact : Role × Req → 4,
Treat : Role × Role → 4, Buy, Sell : Role × Role × Tradable → 4, Meet :
Role× Role× Tradable× (Role× Role× Tradable→ 4) → 4

Local types and Projection. Local types describe a global conversation from
the partial point-of-view of a participant and are used to validate and monitor
distributed programs. Their syntax is given by:

T ::= get[r]?i∈I{li(xi : Si).Ti} | send[r]!i∈I{li(xi : Si).Ti}
| T ‖ T | T ⊕ T | μt.T | t | end

| call P : G with (ṽ as ỹ : S̃)&(r̃2).T
| ent P [r]〈ṽ〉 from r.T | req P [r]〈ṽ〉 to r.T

Creating a subsession for protocol P having global type G is specified by call P :
G with (ṽ as ỹ : S̃)&(r̃2), with ṽ as value arguments and involving external invita-
tions for roles r̃2. Internal invitations are handled using two specific constructors,
as they are meant to be performed on the parent session channel: ent specifies the
act of accepting such an invitation, req specifies the dual action. Syntax contains
endpoint primitives for communications, specified by get for the receiver side and
send for the sender side, as well as constructors for parallel, choice and recursion.
We handle equivalence of types through recursions and parallel compositions im-
plicitly. In the following, we omit trailing occurrences of end.

Projection from global to local types is defined w.r.t. a protocol environment,
associating protocols identifiers to their contents. Environment is updated by
let in constructors. We present below the projection rule for call and let. For
the former the result of the projection depends on the participant we project
on, rproj. If it is the subprotocol initiator rA it is responsible for creating the
subsession (call) and sending the internal invitations (req). If it participates
in the subprotocol, it has to accept an internal invitation (ent). Projection on
other constructors is standard.

(let P = λr̃1.ỹ (→ new r̃2.GP in G′) ⇓Env
rp = G′ ⇓Env,P�→(r̃1,ỹ;r̃2;GP)

rp

(rA calls P(r̃0, ṽ).G) ⇓Env,P�→(r̃1,ỹ;r̃2;GP)
rp =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if rp = rA, rA /∈ r̃0

call P : GP with (ṽ as ỹ)&(r̃2).[(G) ⇓Env,P�→(r̃1,ỹ;r̃2;GP)
rp

‖ req P [r10]〈ṽ〉 to r00 ‖ · · · ‖ req P [r1n]〈ṽ〉 to r0n]
if rp = rA and rA = r0i

call P : GP with (ṽ as ỹ)&(r̃2).[(G) ⇓Env,P�→(r̃1,ỹ;r̃2,GP)
rp

‖ ent P [r1i]〈ṽ〉 from rA ‖ req P [r10]〈ṽ〉 to r00 ‖ · · · ‖ req P [r1n]〈ṽ〉 to r0n]
if rp �= rA and rp = r0i

ent P [r1i]〈ṽ〉 from rA.(G) ⇓Env,P�→(r̃1,ỹ;r̃2;GP)
rp

Otherwise

(G) ⇓Env,P�→(r̃1,ỹ;r̃2;GP)
rp

Stratified Protocols in Session Types 279

If the initiator rA of the subsession also takes part in it, the projection on rA

specifies that it invites itself. It is easy to add to our language a dedicated con-
structor handling session-invitation directly, without inducing communication at
the network level. For the sake of clarity, we do not include such a constructor
in this paper.

We present below the projection of CMS on its two roles. GCMS is the global
type of the whole protocol and GC the global type of Contact.

GCMS ⇓∅client = send[middle]!{request(req0)}.get[middle]?{answer(ans0)}
GCMS ⇓∅middlew = get[client]?{request(req0)}.

send[client]!{answer(ans0)}
⊕
(call Contact : GC with (req0 as req : Req)&(server).
(req Contact[agent]〈req〉 to middle ‖
ent Contact[agent]〈req〉 from middle ‖
send[client]!{answer(ans0)}))

3 Session-Calculus

Our session-calculus, based on the π-calculus [14], contains usual primitives from
existing session-calculi [3], as well as dedicated primitives for session creation and
internal (on-session) invitations. Names are divided into shared channels a, b, u
(standard π-names) and session channels s, k. The former are used to send and
receive external invitations, the latter to handle all session interactions.

P ::= 0 | P |P | a(x).P | a〈s〉.P | P + P
| k?[r, r]i∈I{li(xi).Pi} | k![r, r]l〈v〉.P | (νu) P
| new s on s with (ṽ)&(ã as r̃).P
| s ↓ [r, r : r](x).P | s ↑ [r, r : r]〈s〉.P | μX(x).P 〈v〉 | X〈v〉

We denote by k?[r1, r2]i∈I{li(xi).Pi} a branching input on session k from r1 to
r2, with continuations (Pi)i∈I . The dual primitive is k![r1, r2]l〈v〉.P . Creation
of a subsession is done with new s on k with (ṽ)&(ã as r̃2) with s being the
subsession, k the parent session, ṽ the arguments and ã the channels on which
the external invitations are sent. Operator s ↓ [r1, r2 : r3](x).P is the action of
waiting on s for an internal invitation sent by r1 to r2 in order to play role r3

in a subsession x. Finally, s ↑ [r1, r2 : r3]〈s〉.P is its dual action. Inputs and
outputs on shared channels, choice, parallel composition and inactive process 0
are inherited from the π-calculus. We omit trailing occurrences of 0. Structural
congruence ≡ for processes is defined in the usual way.

Semantics is given by reduction rules below, defined w.r.t. a notion of evalua-
tion context E ::= [] | P | E | (νa) E. The crucial rule of our system is (subs)
where a session creation operator new is destructed in order to create external

280 R. Demangeon and K. Honda

invitations on shared channels. (join) handles internal session invitation, other
rules are standard:

(comS)
E[s![r1, r2]lj〈ṽ〉.P | s?[r1, r2]i∈I{li(x̃i).Pi}]→ E[P | Pj{ṽ/x̃j}]

(comC)
E[a〈ṽ〉.P | a(ỹ).Q]→ E[P | Q{ṽ/ỹ}]

(subs)
r̃
2 = (r21, . . . , r

2
n) ã = (a1, . . . , an)

E[new s on k with (ṽ)&(ã as r̃
2).P]→ E[P | a1〈s[r21]〉 | . . . | an〈s[r2n]〉]

(join)
E[s ↑ [r, r′ : r′′]〈k〉.P | s ↓ [r, r′ : r′′](x).Q]→ E[P | Q{k/x}]

(choice)
Pi → P ′

i

E[(P1 + P2)]→ E[P ′
i]

As an example consider the following processes:

Palice = a(x).x![client,middle]request(“kettle”).x?[middle, client]answer(ans0)
Pbob = a〈s〉.s?[client,middle]request(req0).

(s![middle, client]answer(ans0)
+ (new k on s with (req0)&(c as server).

s ↑ [middle,middle : agent]〈k〉 | s ↓ [middle,middle : agent](z).
z![agent, server]request〈req0〉.z?[server, agent]answer(ansr).
s![middle, client]answer〈ansr〉)

Pcarol = c(y).y?[agent, server]request(req).y![server, agent]answer(ans)

Palice, Pbob and Pcarol are processes ready to play, respectively roles client, middle
and server in the CMS protocol. Palice (resp. Pcarol) is a simple process, ready to
accept an external invitation to the parent session on a (resp. to the child session
on c) and to behave as expected. Pbob is more complex: it sends an invitation
on a, and after receiving a request it chooses, as specified in Figure 1, between
answering directly on the session channel or contacting the server through a
subsession. In this case, the new session channel k is created and one internal
invitation to play role agent in k is sent and accepted by Pbob itself, then it
proceeds as expected. We describe a reduction sequence for the composition of
these three processes:

Palice | Pcarol | Pbob →→ s?[middle, client]answer(ans0) | Pcarol

| (. . .) + (new k on s with (req0)&(c as server) . . .)
→ s?[middle, client]answer(ans0) | Pcarol | c〈k〉

| s ↑ [middle,middle : agent]〈k〉 | s ↓ [middle,middle : agent](z) . . .
→ s?[middle, client]answer(ans0) | Pcarol

| c〈k〉 | k![middle, server]request(req0) . . .
→ s?[middle, client]answer(ans0)

| k![agent, server]request(req0) . . .
| k?[agent, server]request(req) . . . →→→ 0

After two communications on a and s, the reduct of Pbob reaches the located
choice. We suppose it chooses the second branch. Thus, an output on c containing
session name k is created. Then the internal self-invitation for k is performed,

Stratified Protocols in Session Types 281

and, finally, the external invitation of Pcarol on c. Three reductions can still be
played, two on k and one on s.

Validation. We describe a static way to ensuring that processes conforms to for-
mal specifications. The global environment Γ relates shared channels to the type
of the invitation they carry, protocol names to their code and session channels
to the global type they implement. a : T [r] means that a is used to send and
receive invitations to play role r with local type T , P : (r̃1, ỹ; r̃2;GP) describes
the participants, arguments and code of protocol P , finally, s : G means that
protocol G can be implemented on s. The session environment Δ relates pairs
of session channels and roles s[r] to local types. s[r] : T means that in session
s, participant r still has to perform the actions of T . s[r]• : T (resp. s[r]◦ : T)
stands for the capability to invite externally (resp. internally) someone to play
role r in s. In the following, we consider only environments which are mappings,
and we will write Δ(s[r]). Additionally, we write Δ(s) = 0 when s does not
appear in Δ and s[r] to denote either s[r]◦, s[r]• or s[r]. We allow ”garbage
collection” for session environment: (Δ, s[r] : end) = Δ.

Γ ::= ∅ | Γ, a : T [r] | Γ,P : (r̃1, ỹ; r̃2;GP) | Γ, s : G
Δ ::= ∅ | Δ, s[r] : T | Δ, s[r]• : T | Δ, s[r]◦ : T

A typing judgement Γ 2 P �Δ means that under the global environment Γ , the
process P is validated by the session environment Δ. We use 2 v : S to notify
that value v has kind S. The validation rules are as follows:

(I,O)
Γ
 P � Δ, x[r] : T Γ (a) = T [r]

Γ
 a(x).P � Δ

Γ
 P � Δ Γ (a) = T [r]

Γ
 a〈s〉.P � Δ, s[r]• : T

(C)
(Γ
 Pi � Δ, s[r′] : Ti
 yi : Si)i∈I

Γ
 s?[r, r′]i∈I{li(yi).Pi} � Δ, s[r′] : get[r]?i∈I{li(xi : Si).Ti}

(S)
Γ
 P � Δ, s[r] : Tj
 v : Sj

Γ
 s![r, r′]lj〈v〉.P � Δ, s[r] : send[r′]!i∈I{li(xi : Si).Ti}

(P)
Γ
 P � Δ, s[r] : T Γ (P) = (r̃1, ỹ; r̃2;G) G{ṽ/ỹ} ⇓r′′= T ′′

Γ
 s ↑ [r, r′ : r′′]〈k〉.P � Δ, s[r] : req P[r′′]〈ṽ〉 to r′.T, k[r′′]◦ : T ′′

(J)
Γ
 P � Δ, s[r′].T, x[r′′] : T ′′ Γ (P) = (r̃1, ỹ; r̃2;G) G{ṽ/ỹ} ⇓r′′= T ′′

Γ
 s ↓ [r, r′ : r′′](x).P � Δ, s[r′] : ent P[r′′]〈ṽ〉 from r.T

(New)

Γ
 P � Δ, s[r] : T, k[r11]
◦ : T ′

1, . . . , k
◦[r1n] : T

′
n, k

•[r21] : T
′
n+1, . . . , k

•[r2m] : T ′
n+m

Γ (P) = (r̃1, ỹ; r̃2;G) ∀i, Γ (ai) = T ′
i+n[ri+n]

∀i, G{ṽ/ỹ} ⇓
r1
i
= T ′

i ∀j,G{ṽ/ỹ} ⇓
r2
j
= T ′

j+n
 ṽ : S Γ (k) : P{ṽ/ỹ}
Γ
 new k on s with (ṽ)&(ã as r̃2).P � Δ, s[r] : call P : G with (ṽ as ỹ : ˜S)&(r̃2).T

(N,P)
Γ
 0 � ∅

Γ
 P1 � Δ1 Γ
 P2 � Δ2

Γ
 P1 | P2 � Δ1 ⊗Δ2

(S1)
Γ
 P1 � Δ, s[r] : T1 Γ
 P2 � Δ, s[r] : T2

Γ
 P1 + P2 � Δ, s[r] : T1 ⊕ T2

(S2,R)
Γ
 P � Δ, s[r] : Ti i ∈ {1, 2}

Γ
 P � Δ, s[r] : T1 ⊕ T2

Γ, a : T [r]
 P � Δ

Γ
 (νa) P � Δ

Rule (New) is the crux of this type system, as it ensures subsessions are called
in a sound way. To type the process new k on s with (ṽ)&(ã as r̃2).P , the session

282 R. Demangeon and K. Honda

channel k should be associated with a protocol G{ṽ/ỹ} matching the one present

in the local type of r in the parent session s: call P : G with (ṽ as ỹ : S̃)&(r̃2).T
and global environment Γ should map P to (r̃1, ỹ; r̃2;G). The endpoint projec-
tions (Tp)1≤p≤n+m of P are divided into two sets, the ones that correspond
to roles (r1i)1≤i≤n internally invited, and the ones that correspond to roles
(r2j)1≤j≤m externally invited through ã. Capabilities (k[ri]

◦ : Ti)i, (k[rj]
• : Tj)j

for both types of invitations are given to the continuation process P . Rule (P)
types a process whose role r on session s consists in sending a internal invitation
to play role r′′ in session k. The process is required to hold the capability for
k[r′′], we ensure it corresponds to the type of the invitation. Its counterpart (J)
ensures that role r of session s after receiving an invitation for k[r′′], gets the cor-
responding local type T ′′ in its Δ. Rules (I) and (O) handle external invitations.
As in the internal case, we ensure that the sending process has the correspond-
ing capability. Rules (C) and (S) address branching communications on session
channels. In both rules we ensure that the values communicated xi, v have the
same value-type as the identifiers yi in the type. Summations are handled by two
rules (S1) and (S2). If the local type specifies a choice between two branches, the
process can either implement this choice with the + constructor, or implement
only one branch of the choice. This illustrates the fact that the decision can be
made at implementation time (for instance a middleware implementing CMS
which always contacts the server) or at run-time (a middleware which can pro-
ceed both ways according to the request). Rule (Pa) requires a small explanation,
as it allows one to split local types into two branches. We define the ⊗ operator
with Δ1⊗∅ = Δ1, Δ1⊗ (Δ2, s[r] : T) = (Δ1, s[r] : T)⊗Δ2 if Δ1(s[r]) = 0 and
(Δ1, s[r] : T1) ⊗ (Δ2, s[r] : T2) = (Δ1, s[r] : T1 ‖ T2) ⊗Δ2. Thus, when split-
ting the session environment in a parallel constructor, we allow the splitting of
a single local type composed of two parallel subtypes. Finally, rule (N) specifies
that the session environment should be empty to type 0. This ensures that the
processes eventually complete the local types of their specification.

Following the typing rules, one can type the processes introduced in Section 3
as follows: Γ 2 Palice � ∅, Γ 2 Pbob � s[middle] : Tmiddle, s[client]

• : Tclient, Γ 2
Pcarol�∅ with Γ = a : Tclient, c : Tserver, Contact : (agent, req; server;GContact), s :
CMS, k : Contact, GContact ⇓∅server= Tserver, and Tclient = GCMS ⇓∅client,
Tmiddle = GCMS ⇓∅middle as defined in Section 2.

Session environments for Palice and Pcarol are empty: processes are not bound
to do anything as long as they did not receive an invitation. Session environment
for Pbob contains both the local type for the role middle played by the process
and the capability to send an external invitation for client in the same session.
The capability to send an external invitation to server is not created yet.

4 Properties

In this section we justify our theory with two main propositions, subject reduc-
tion and progress. First, we define a satisfaction relation relating dynamically
processes and specifications. We introduce Labelled Transition Systems for both

Stratified Protocols in Session Types 283

the processes and the specification. Labels are defined by 	 ::= τ | a〈v〉 | a〈v〉 |
s?[r, r′]l〈k〉 | s![r, r′]l〈k〉 | s ↓ [r, r′ : r′′]〈k〉 | s ↑ [r, r′ : r′′]〈k〉 The subject
of a label sbj() is defined intuitively for all labels, knowing that sbj(τ) = 0.
Labels a〈v〉, a〈v〉, s![r, r′]l〈k〉, s ↑ [r, r′ : r′′]〈k〉 and τ (resp. s?[r, r′]l〈k〉 and
s ↓ [r, r′ : r′′]〈k〉) are denoted as output labels (resp. input labels). In the satis-
faction relation defined below, output labels are the ones played by the process,
to which the specification must answer (thus τ and a〈v〉 are considered outputs),
and the input labels are the ones the specification plays, to which the process

must answer. Transitions for processes P
�−→ P ′ follow the reduction semantics.

The most relevant transitions for specifications, defined w.r.t. a global environ-
ment Γ , are presented in Figure 2.

Definition 2 (Satisfaction). We say that RΓ is a satisfaction relation between
process P and specification Δ, if:

whenever Δ
�−→
Γ

Δ′ with an input label 	, then P
�−→ P ′ and P ′RΓΔ′,

whenever P
�−→ P ′ with an output label 	, then Δ

�−→
Γ

Δ′ and P ′RΓΔ′.
The largest relation RΓ is called satisfaction w.r.t. Γ denoted sat(P,Δ)Γ . In

this case, we say that P satisfies Δ w.r.t. Γ (we omit this last part when Γ is
clear from context)

We justify the soundness of our framework by relating the static validation to
the dynamic satisfaction, through correspondence. If a process is validated by a
specification Δ, it is able to behave as described in Δ. From this property, we
derive subject reduction, which ensures that validation is preserved by reduction.
A session environment is coherent if it is composed of projections of well-formed
global types. A coherent session environment is simple if it consists of a single

(Ssub)

Γ (P) = (r̃1, ỹ : ˜S; r̃2;GP) ∀i,GP{ṽ/ỹ} ⇓
r1
i
= T ′

i

∀j,GP{ṽ/ỹ} ⇓
r2j
= T ′′

j Γ (k) = G{ṽ/ỹ}

s[r] : call P : G with (ṽ as ỹ : ˜S)&(r̃2).T
τ−→
Γ

s[r] : T, (k[r1i] : T
′
i)i, (k[r

2
j] : T

′′
j)j

(Sout)
Γ (a) = T [r]

k[r]• : T
a〈k〉−−−→
Γ

∅
(Sin)

Γ (a) = T [r]

∅ a〈k〉−−−→
Γ

k[r] : T

(ScomC)
k[r′′]• : T ′′ τ−→

Γ
k[r′′] : T ′′

(Sjoin)
Γ (P) = (r̃1, ỹ : ˜S; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r′] : ent P[r′′]〈ṽ〉 from r.T
s↓[r,r′:r′′]〈k〉−−−−−−−−−→

Γ
s[r′] : T, k : [r′′] : T ′′

(Sparti)
Γ (P) = (r̃1, ỹ : ˜S; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r] : req P[r′′]〈ṽ〉 to r′.T, k[r′′]◦ : T ′′ s↑[r,r′:r′′]〈k〉−−−−−−−−−→
Γ

s[r] : T

(Sinvit)
Γ (P) = (r̃1, ỹ : ˜S; r̃2;GP) GP{ṽ/ỹ} ⇓r′′= T ′′

s[r] : ent P[r′′]〈ṽ〉 from r.T, s[r′] : req P[r′′]〈ṽ〉 to r.T ′, k[r′′]◦ : T ′′
τ−→
Γ

s[r] : T, s[r′] : T ′, k[r′′] : T ′′

Fig. 2. Transitions for specifications (excerpt)

284 R. Demangeon and K. Honda

session. A process is unblocked if it does not contain hidden channels and if
its session channel is never under a prefix whose subject is a shared channel,
except when the latter binds the former. If an unblocked process is validated
by a simple coherent session environment, interactions at session channels can
proceed. If, further, the original global type is non-recursive, the process can
eventually complete all interactions at its session-environment.

Proposition 3 (Soundness of the type system)
(Correspondence) If Γ 2 P � Δ then sat(P,Δ)Γ .
(Subject Reduction) If Γ 2 P � Δ and P → P ′ then there exists Δ′ s.t.

Γ 2 P ′ � Δ′.
(Progress) If P is unblocked and Γ 2 P � Δ such that Δ is simple, then there

exists P ′ s.t. P →+ P ′, Γ 2 P ′ � Δ′ and Δ′ is coherent.
(Coherence) If P is unblocked and Γ 2 P � Δ such that Δ is simple, and

moreover Δ does not contain recursions, then there exists P ′ s.t. P →∗ P ′ and
Γ 2 P ′ � ∅.

5 Returning a Result

We introduce the notion of result of a session as an object (which can be a
value or even a protocol), sent back to the initiator of the session. Protocols with
results allow us to describe complex governance properties, such as ensuring
that a privately negotiated price corresponds to the one proposed publicly in
the parent protocol. Suppose we want to ensure that, in CMS, the answer ans
given in the subprotocol Contact by server is the same as ans0 sent by middle to
client. Information can be transmitted from a parent session to a subsession, but
the converse is not possible. Continuation-Passing-Style is a possible solution: we
convert the end of the CMS protocol into a continuation K, send it as argument
when calling Contact and call K inside Contact with ans. However, this may
not lead to a clean descriptive framework. Thus we choose to use a dedicated
mechanism. The syntax of global types with results adds r returns(res : S)
and (res : S) ← r calls P〈r̃, ṽ〉 (replacing end and r calls P〈ṽ〉). The former
constructor ends the session by specifying that the protocol returns the value
identified in the session by res and that r is responsible for doing it, the latter
specifies that we call a subprotocol which eventually produces a result res. Kinds
ensure that the returned result has the type expected by the initiator.

We present corresponding modifications to CMS. Inside the Contact protocol,
we ask agent to send the result ans back to the parent protocol. In the latter, the
result ans0 is expected when calling Contact, thus we ensure that the answer
sent by the server in the subprotocol is the same as the one sent to client in the
parent one. Local types use similar constructors and implementation of result is
done through cross-session communications.

let Contact = (agent, req : Req){
. . . agent returns(ans : Req)
in

. . . ans0 : Req← middle calls Contact〈middle, req0〉 . . .

Stratified Protocols in Session Types 285

In the framework presented above, subsessions are executed in parallel with
the parent session. The result mechanism allows one to include synchronisation
between the two sessions:

. . . Alice waits for contract calling Nego(Alice,Carol).
Alice→ Bob : Data(contract) . . .

Here participant Alice starts a negotiation subsession with Carol. When the
negotiation is over, she sends the result of the subsession to Bob, participant
of the parent session not invited in the subsession. This has two advantages,
first Bob can know the result of a subsession without going through the internal
invitation procedure, and it prevents both Alice and Bob to perform actions in
the parent session as long as the subsession is not over.

6 Conclusion and Future Works

To our knowledge, there does not exist other works addressing the notion of
nested session types, or protocol calls inside session types. The closest contribu-
tion is [9], which introduces parametrisation of protocols through dynamic ses-
sion types. Parametrisation allows one single two-party protocol to be applied to
each pair of agents in a large network. Our framework contains more than simple
parametrisation, it presents nesting and introduces kinds and higher-order pro-
gramming. Another related work is [7]: the authors describe a global language
for choreographies, implementing global types, protocols interleaved in the same
choreography can be merged together into a single global type, removing costly
invitations. The authors actually proceed in a direction different from ours, by
trying to unify every protocol into a single superprotocol. Their approach focuses
on implementation, while ours focus on types. We believe session type theory
benefits independently from both methods. Our contribution makes use of the
same formal framework as [3,13,2]. Each of these contributions adds expressive-
ness, in different directions (logical assertions, ghost states, monitoring), to a
large common theory for validation of distributed programs with session types.
The whole theory (including this work) is put in practise by the development of
the Scribble language [16] and the collaboration with the OOI project [15].

We are currently investigating how the result mechanism can be improved (in
the context of [16]). Currently, the result is sent to the initiator. Broadcasting
the result to every member of the subsession might also be a desirable feature.
Moreover, our results are restricted to value-types, but some use cases of [15]
specify that a negotiation subprotocol produces a contract that is used in the
parent protocol to control interactions. Although it leads to technical challenges,
we believe our framework can eventually accommodate such behaviours by using
dependent types, introducing abstract logical predicate decided at run-time in-
side global types. Exceptions handling in a distributed asynchronous framework,
remains a challenging task, even if some progress have been made in [6] and [5].
Yet exceptions are absolutely necessary when specifying real-world protocols. We
believe that nested protocols give a simple way to handle exceptions, by making
explicit blocks of computation.

286 R. Demangeon and K. Honda

Acknowledgements. We thank the CONCUR reviewers for their comments,
our colleagues in Mobility Reading Group for discussions, and the OOI project
and Matthew Arrott for their feedback. This work is supported by Ocean Obser-
vatories Initiative [15] and EPSRC grants EP/F002114/1 and EP/G015481/1.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433.
Springer, Heidelberg (2008)

2. Bocchi, L., Denéilou, P.-M., Demangeon, R., Honda, K., Hu, R., Neykova, R.,
Yoshida, N.: Dynamic and static safety validation in distributed programs through
multiparty sessions (submitted, 2012)

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract
for Distributed Multiparty Interactions. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

4. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. In: EXPRESS. EPTCS, vol. 64, pp. 16–30 (2011)

5. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8, pp. 338–351. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

6. Carbone, M., Honda, K., Yoshida, N.: Structured Interactional Exceptions in
Session Types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 402–417. Springer, Heidelberg (2008)

7. Carbone, M., Montesi, F.: Merging multiparty protocols in multiparty choreogra-
phies (unpublished, presented at PLACES, 2012)

8. Coppo, M., Dezani-Ciancaglini, M.: Structured Communications with Concurrent
Constraints. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474,
pp. 104–125. Springer, Heidelberg (2009)

9. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL,
pp. 435–446 (2011)

10. Bono, V., Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: A Reputation System
for Multirole Sessions. In: Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173,
pp. 1–24. Springer, Heidelberg (2012)

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In: Hankin, C. (ed.)
ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

12. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Cerone, A., Gruner, S. (eds.)
SEFM, pp. 323–332. IEEE Computer Society (2008)

13. Bocchi, L., Demangeon, R., Yoshida, N.: A multiparty multi-session logic (submit-
ted, 2012)

14. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

15. Ocean Observatories Initiative (OOI), http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/

16. Scribble Project homepage, www.scribble.org

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
www.scribble.org

Intensional and Extensional Characterisation
of Global Progress in the π-Calculus

Luca Fossati1,2, Kohei Honda1, and Nobuko Yoshida2

1 Queen Mary University of London
2 Imperial College London

Abstract. We introduce an observational theory of global progress properties
such as non-blockingness and wait-freedom based on a linear π-calculus. The the-
ory uniformly captures such properties both extensionally and intensionally, by
using fair transition relations and partial failures, which represent stalling activi-
ties. A fairness-enriched bisimilarity preserves these properties and is a congru-
ence. The framework is applied to the semantic characterisation and separation
results for concurrent data structures including different queue implementations.

1 Introduction

Imperative concurrent data structures such as lock-based and lock-free queues play a
fundamental role in practice, and have been extensively studied from the algorithmic
viewpoint [13,24]. But our understanding still lacks a rigorous semantic foundation that
supports diverse engineering concerns, from observational specification and verification
of properties to correctness arguments for optimisation.

For example, we may wish to replace a queue implementation [9,20,21] with a better
one sharing the same interface. Can we exactly identify the similarities and differences
in their observable effects? Can such identifications be extended to concurrent data
structures based on message passing? To answer these questions, we need a uniform
theory based on externally observable behaviour, which is applicable to a large class of
concurrent data structures and which can accurately identify and classify their global
progress properties such as non-blockingness (lock-freedom) and wait-freedom.

Previous studies presented intensional definitions of global progress that mainly per-
tain to internal structures of programs. For example, the standard algorithmic under-
standing of non-blockingness (lock-freedom) [12, 24] says that, in a non-blocking data
structure, “some process can always complete its pending operation in a finite num-
ber of its own steps, regardless of the execution speed of other processes” (the quote is
from [24]). Wait-freedom is obtained by replacing “some process” with “all processes”.
This description critically relies on the internal functioning of a program (e.g. “its own
steps”). Existing formal accounts [5, 10], based on program logics, are along the same
line (cf. §5). But for some engineering concerns such as comparing the observable be-
haviour of two components for substitutivity, an extensional understanding is essential.

This paper introduces a behavioural theory of imperative concurrent data structures
based on a linear π-calculus [15, 16, 28], where global progress properties are charac-
terised both intensionally and extensionally. The intensional characterisations offer a

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 287–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 L. Fossati, K. Honda, and N. Yoshida

faithful formalisation of the existing notions of global progress, while their extensional
counterparts capture a wider class of properties solely based on external observables,
independently of internal implementations. The theory uses fair transitions and partial
failures to capture global progress, and linear interactions to encode atomic operations
such as semaphores and compare-and-swap (cas). Exploiting the fine-grainedness and
expressiveness of the π-calculus, our theory is independent from synchronisation prim-
itives and programming language constructs and it is uniformly applicable to a large
class of behaviours, extending global progress properties to (say) higher-order func-
tions, objects and message-passing programs.

Summary of Contributions. In §2 we introduce a linear π-calculus with the key atomic
agents and its properties used in the paper. Our main technical contributions include:

– A behavioural theory of the linear π-calculus based on an asynchronous fair typed
LTS with partial failures, rigorously characterising intensional and extensional glo-
bal progress, the latter preserved by a fairness-enriched bisimilarity (§3).

– A classification of global progress properties from the literature and beyond, show-
ing inclusions and separations among them (cf. Theorems 3.11 and 3.14).

– An application to the semantic analysis of lock-based and non-lock-based queues
in the π-calculus (Theorem 4.2) (§4), which leads to concise proofs of semantic
linearisability (Theorem 4.3) and separation (Theorem 4.6).

To our knowledge, the present work offers the first comprehensive observational theory
of global progress applicable to a wide range of concurrent data structures, as well
as being the first to verify non-blockingness of a non-trivial concurrent data structure
[21] as a behavioural property in the π-calculus. § 5 presents comparisons with related
works. [6] lists auxiliary definitions, further reasoning examples and proofs.

2 The π-Calculus with Linear Types

2.1 Processes, Reduction and Types

Processes. Following [15,25,28], we use the asynchronous π-calculus augmented with
branching. We use channel names (a, b, c, g, h, r, u, . . .); value variables (x, y, . . .); pro-
cess variables (X,Y, . . .); constants (k, k′, . . .), including booleans and numerals; val-
ues (v, v′, . . .) which are the union of channel names and constants; and expressions
(e, e′, . . .), inductively generated from values, value variables and first-order operations
on them (e.g. −e, e1+e2, e1∧e2, ¬e and e1=e2. We write +x (+e) for a vector of variables
(resp. expressions). Processes (P,Q, ...) are given by the following grammar.

P ::= u{li(�xi).Pi}i∈I | u l〈�e〉 | if e then P else Q

| P |Q | (ν u)P | (μX(�x).P)〈�e〉 | X〈�x〉 | 0

A branching u{li(+xi).Pi}i∈I offers a non-empty set of branches, each with a branch
label li, formal parameters +xi and continuation Pi. Dually, a selection u l〈+e〉 chooses l
and passes +e after evaluation. In both, u occurs as subject; +xi and +e as objects. Branch-
ings/selections are encodable but play a key role in typing [15]. We also use the con-
ditional if e then P else Q; parallel composition P |Q; hiding (ν u)P where u is

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 289

bound in P ; recursion (μX(+x).P)〈+e〉, where X,+x are bound in P and P is an input
prefix. X〈+e〉 instantiates X with actual parameters +e.

Branchings and selections are often called inputs and outputs, respectively. W.l.o.g.
we use a unique fixed branch label for all single-branch inputs and omit it, as in u(+x).P
for input and u〈+e〉 for output. We write u(+a)P for (ν +a)(u〈+a〉|P); a and a.P for a〈〉
and a().P , resp.; and the replication !u{li(+xi).Pi}i for (μX().u{li(+xi).(Pi|X〈〉)})〈〉.

Reduction. The structural congruence ≡ is defined by the standard rules including
the unfolding of recursion: (μX(+x).P)〈+e〉 ≡ P{(μX(+x).P)/X}{+e/+x}. The reduction
relation −→ over processes modulo ≡, is generated from:

u{li(�xi).Pi}i∈I | u lj〈�e〉 −→ Pj{�v/�xj} (j ∈ I, �e ↓ �v)
if e then P else Q −→ P (e ↓ tt) if e then P else Q −→ Q (e ↓ ff)

where +e ↓ +v says that the pointwise evaluation of +e is +v. The first rule says that an
input interacts with an output at u, the former’s j-th branch Pj is chosen, and +xj are
instantiated with the evaluation of +e. We close the relation under | and ν .

Types and Environments. Given base types θ, types (τ, τ ′, . . .) are as follows:

τ ::= &L
i∈I li(�τi) | ⊕L

i∈Ili(�τi) | &NL
i∈I li(�τi) | ⊕NL

i∈I li(�τi) | ⊥ | θ θ ::= bool | int

The types of both input (&) and output (⊕) channels have either a linear (L) or a non-
linear (NL) modality. Each element in the vector +τi should not be ⊥. Type ⊥ indicates
that both an input and an output are present at a linear channel. We define τ , the dual of
τ , by exchanging all occurrences of & in τ with ⊕ and vice versa. We write ↑L(+τ) for a
singleton index set ⊕L

1∈{1}l1(+τ). Similarly for ↓L(+τ), ↑NL(+τ) and ↓NL(+τ).
An environment (Γ,Δ, . . .) is a finite map of type assignments of the form u : τ

(channel/variable to type) or X : +τ (process variable to a vector of its argument types).
A typing judgement is written Γ 2 P which reads: “P has typing Γ ”. The typing rules
follow [15] and are left to [6]. They ensure: for a linear input (output) channel, exactly
one input (resp. output) occurs; for a non-linear input, at most one input and zero or
arbitrarily many outputs occur; similarly for a non-linear output except an input never
occurs there. The typing also prohibits the use of name matching from expressions.

The subsequent development does not depend on details of typing rules as far as the
basic properties of typed processes are preserved, which we shall discuss later in §2.2

Linearity Annotations. We add linear annotations to typable processes. A linearly
typed input/output name u corresponds to a linear input/output, uL{li(+xi).Pi}i∈I and
uLl〈+e〉 respectively. If P and/orQ contain free linear channel names/variables, we write
ifLv thenP elseQ (linear conditional). A linear reduction, denoted−→L, is induced
by interaction at a linear channel or by reducing a linear conditional.

Example 2.1 (atomicity through linearity). We encode atomic operations such as ato-
mic read, write and cas, as reduction sequences starting with an initial non-linear inter-
action for invocation, and ending with a series of linear interactions, the last being the
final response. An example follows (for readability, we use recursive equations, which
are easily encodable through recursions).

290 L. Fossati, K. Honda, and N. Yoshida

Ref〈u, v〉 def
= u { read(z) : zL〈v〉 | Ref〈u, v〉, write(y, z) : zL | Ref〈u, y〉}

Refcas〈u, v〉 def
= u

⎧⎨⎩
read(z) : zL〈v〉 | Refcas〈u, v〉, write(y, z) : zL | Refcas〈u, y〉,
cas(x, y, z) : ifLx=v then zL〈tt〉 | Refcas〈u, y〉

else zL〈ff〉 | Refcas〈u, v〉

⎫⎬⎭
Above, Ref〈u, v〉 represents an atomic reference, to which Refcas〈u, v〉 adds the stan-
dard cas operation. The following example performs a cas atomic operation:

Refcas〈a, 0〉|(ν c)(acas〈0, 1, c〉|cL(x).P)

−→ (ν c)((if 0 = 0 then c〈tt〉 | Refcas〈a, 1〉 else c〈ff〉 | Refcas〈a, 0〉) | cL(x).P)

−→L (ν c)(cL〈tt〉 | Refcas〈a, 1〉 | cL(x).P) −→L Refcas〈a, 1〉 | P{tt/x}

it is atomic since linear reductions necessarily take place (i.e. no other reduction may
suppress them or interfere with their outcome). We shall formalise this shortly.

Example 2.2 (mutex agents). The following are two different mutex implementations.

Let if cas(u, v, w) thenP elseQ
def
=(ν c)(u cas〈v, w, c〉|c(x).if x thenP elseQ)

and CAS(u, v, w)
def
= if cas(u, v, w) then 0 else 0. Then:

Mtx〈u〉def
= u(x).x(h)h.Mtx〈u〉

Mtxspin〈u〉def
=(ν c)(Refcas〈c, 0〉 | !u(x).μX.(if cas(c,0,1) then x(h)h.CAS(c,1,0) else X))

When Mtx〈u〉 gets locked, u becomes unavailable until it gets unlocked [17]; while
Mtxspin〈u〉 is always available and uses cas to make clients spin until they are served.

2.2 Labelled Transition and Bisimilarity

Untyped Labelled Transitions. The LTS uses the actions (, 	′, . . .) given as:

� ::= τττ | (ν �c)a l〈�v〉 | (ν �c)a l〈�v〉

Above the channels in +c are pairwise distinct and disjoint from a, and occur in +v. For
single-branch value passing, we write (ν +c)a〈+v〉 and (ν +c)a〈+v〉. If +c is empty, we omit
(ν +c), writing e.g. a l〈+v〉. We now define the untyped LTS over closed processes, i.e.
processes without free process/value variables. First let P

τττ−→ Q iff P −→ Q. Then:

(Bra) P
(ν �c)a l〈�v〉−−−−−−→ P |a l〈�v〉 (Sel) (ν �c)(P |a l〈�v〉) (ν �c)a l〈�v〉−−−−−−→ P

In (Bra), we assume no name in +c occurs in P . In (Sel), the names in +c occur in +v. We

close the relation under ≡ by P
�−→ Q when P ≡ P0, P0

�−→ Q0 and Q0 ≡ Q.

Typed Transitions. The typed LTS requires environment transitions [28], denotedΓ
�−→

Γ ′ (which reads: “Γ allows the action 	 and becomes Γ ′ after that action”) generated
from the rules below. For readability we assume carried types consist only of: a base
type and a non-base type, for input transitions; a base type and three non-base types,
for output transitions (where the message carries a constant, a free linear name, a free

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 291

non-linear name, and a bound name). The rules can be easily generalised (i.e. an output
message may carry zero or more base type expressions, free linear names, and so on).

Γ, a :&NL{li(θiτi)}i∈I

(ν c)alj〈wc〉−−−−−−−→ Γ, c :τj , a :&
NL{li(θiτi)}i∈I

Γ, b′ :τ ′
j , b

′′ :τ ′′
j ,

a :⊕NL
i∈Ili(θi τ

′
i τ

′′
i τ ′′′

i)

(ν c)a lj〈wb′b′′c〉−−−−−−−−−−→ Γ, b′′ :τ ′′
j , c :τ

′′′
j ,

a :⊕NL
i∈Ili(θi τ

′
i τ

′′
i τ ′′′

i)
(j ∈ I)

Γ, a :&L{li(θiτi)}i∈I
(ν c)alj〈wc〉−−−−−−−→ Γ, c :τj , a :⊥

Γ, b′ :τ ′
j , b

′′ :τ ′′
j , a :⊕L

i∈Ili(θi τ
′
i τ

′′
i τ ′′′

i)
(ν c)a lj〈wb′b′′c〉−−−−−−−−−−→ Γ, b′′ :τ ′′

j , c :τ
′′′
j (j ∈ I)

where, for all i ∈ I , τ ′i is a linear type, while τ ′′i is a non-linear type. In the first rule, the
type of a allows an input via a and, by its non-linearity, it does not change afterwards.
Similarly in the second rule; further a linear b′ disappears; a non-linear b′′ does not; and
a bound c becomes free. The last two rules are the linear variants of the former two,
only differing in the resulting type of a. We also set Γ

τττ−→ Γ for each Γ . We then set:

Γ � P
�−→ Δ � Q

def⇔ Γ � P , P
�−→ Q and Γ

�−→ Δ.

Proposition 2.3. Our typed LTS is consistent: (Γ 2 P ∧Γ
�−→ Δ∧P

�−→ Q) ⇒ Δ 2 Q.

The following example highlights how the typing controls transitions.

Example 2.4 (typed LTS). Let τ
def
= ↑L(int), τ ′ def

= ↓NL(τ) and Γ
def
= a : τ ′, c : τ . Let

P
def
= !a(x).x〈2〉 | a〈c〉. Then: Γ 2 P

(ν g)a〈g〉−−−−−−→ Γ, g : τ 2 P |a〈g〉. But Γ 2P � a〈c〉−−→
since Γ � a〈c〉−−→. This message is to be consumed by the unique input !a(x).x〈2〉.

Henceforth we always assume that processes and transitions are typed, even when we

leave environments implicit as in P
�−→ Q. We use the standard notation P

�̂
=⇒ Q

standing for P
τττ−→
∗
Q when 	 = τττ and P

τττ−→
∗ �−→ τττ−→

∗
Q otherwise. P

s−→ P ′ stands for

P
�1−→ . . .

�n−→ P ′, where s = 	1 . . . 	n; we say that P ′ is a transition derivative of P .

Proposition 2.5. The key properties of linear actions/reductions follow.

(1 - partial confluence [16]) Let P
�−→ Q1 and P −→L Q2, where Q1 �≡ Q2. Then there

is R s.t. Q1 −→L R and Q2
�−→ R.

(2 - linear normal form) For any P , we have P −→∗
L Q �−→L for a unique Q.

(3 - asynchrony) Let 	 be an input whose subject is not bound in s, then P
s−→ �−→ Q

implies P
�−→ s−→ Q. While if 	 is a free output, P

�−→ s−→ Q implies P
s−→ �−→ Q.

Bisimilarity. Based on the typed LTS, we introduce the standard typed weak bisimi-
larity [28]. Henceforth we assume a relation R over typed processes is typed, relating
Γ 2 P and Δ 2 Q only if Γ = Δ, in which case we write Γ 2 PRQ.

Definition 2.6 (bisimilarity). A symmetric relation R over closed terms is a (weak)

bisimulation if PRQ and P
�−→ P ′ imply Q

�̂
=⇒ Q′ such that P ′RQ′. The largest

bisimulation, denoted ≈, is extended to open terms in the standard way.

292 L. Fossati, K. Honda, and N. Yoshida

Proposition 2.7. (1) ≈ is a typed congruence. (2) −→L⊂≈.

By Prop. 2.5 (1) and Prop. 2.7 (2), linear reductions are semantically neutral. Further by
Prop. 2.5 (2) any transition can be completed by consuming all linear reductions. This is
why a reduction sequence like the one in Ex. 2.1, consisting of one non-linear reduction
followed by some linear ones, may be semantically considered as a single action.

3 An Observational Theory of Global Progress

The framework given in this section allows unboundedly many concurrent operations,
hence also an execution in which new requests keep on coming and no operation makes
progress (i.e. no request is answered). To avoid such anomalies, we shall use:

– Fairness : ensuring that every active operation eventually makes progress.

But this prevents the standard representation of stalling activities. Consider a concurrent
thread inside a critical section protected by a lock. By fairness it will eventually exit,
then we cannot model the effect of the thread stalling inside and blocking other threads.
To avoid this issue, we combine fairness with:

– Failures : allowing an active output process to arbitrarily reduce to the inaction 0.

With fairness and failures, we accurately represent and differentiate a wide range of
global progress properties over a general class of concurrent behaviours.

3.1 Fair and Failing Sequences

Fairness. First we define enabledness: a conditional is enabled if it can reduce; an
input/output message is enabled if it can reduce by synchronisation.

Henceforth Φ, Ψ, . . . range over possibly infinite typed transition sequences, also

written Φ : P1
�1−→ P2

�2−→ · · · , omitting environments. A transition sequence Φ is
maximal if it is either infinite or ends with a process in which no occurrence of con-
ditional, output or linear input is enabled. We assume we can identify an occurrence
across transitions through residuals (a rigorous treatment is in [4]). Now we define fair-
ness.

Definition 3.1 (fairness). A transition sequence Φ is fair if Φ is maximal and no single
occurrence of conditional, output or linear input is infinitely often enabled in Φ.

Def. 3.1 uses strong fairness [8]. This does not lose generality because strongly fair
transition sequences in the π-calculus correspond to weakly fair runs in concurrent
programs. We encode an execution step which is continuously enabled in a program, as
an output which is infinitely often enabled by a recursively re-appearing dual input.

Example 3.2 (fairness). In (!a.a)|a | (!b.b)|b, if we always reduce the a redex, we have
a non-fair transition sequence, because the same occurrence of b is enabled infinitely
often. By alternating the reductions on a and b we have a fair sequence, as each output
occurrence is enabled twice, before the reduction on the other side and before its own.

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 293

Failing reduction and blocking. We capture stalling by adding the following failing
transitions (or failures), where we assume neither u nor the conditional are linear.

u lj〈�e〉 −→ 0 if v then P else Q −→ 0

Since linear transitions are non-failing, so are atomic operations (cf. Example 2.1).

Definition 3.3 (failing sequence). A transition sequence is failing if it contains a fail-
ing transition. It is finitely failing if the number of failing transitions is finite.

The purpose is to observationally capture how a failure in a component blocks others.
Given a transition sequence Φ and assuming no request came prior to Φ, ended(Φ,Qi)
is the set of output subjects occurring in Φ before Qi (by abusing notation, we denote
an occurrence of Qi in Φ by Qi). Intuitively, it denotes the set of “threads which have
answered”. Let allowed(Γ) be the set of subjects of transition labels allowed by Γ (i.e.

the subject of 	 in Γ
�−→ Γ ′). A channel g is pending at a process occurrence Γi 2 Pi in

Φ, if it is allowed by Γi but the corresponding answer has not been sent yet. Then:

pending(Φ, Γi � Pi)
def
= allowed(Γi) \ ended(Φ,Pi) (3.1)

denotes the set of pending channels at Γi 2 Pi in Φ.

Definition 3.4 (blocked output). Let Φ be a possibly failing transition sequence. c is
blocked at Γ 2 P in Φ if c ∈ pending(Φ, Γ 2 P) and no output at c appears in any
transition sequence from Γ 2 P , not restricted to the remaining of Φ. blocked(Φ, Γ 2
P) (or blocked(Γ 2 P), or blocked(P), if Φ and Γ are implicit) denotes the set of
blocked names at P . We set blocked(Φ)=∪i≥0blocked(Pi).

Example 3.5 (blocked output). To see how failing reductions induce blocked outputs,

consider Lck〈u〉 def
= (νm)(!u(z).m(c)c(h).(z|h) |Mtx〈m〉) which represents a server

offering one operation, to take a lock and release it immediately. Then consider Γ 2
Lck〈u〉 |u〈z′〉 |u〈z′′〉 where Γ 2 z′ and Γ 2 z′′. This reduces to the following process,
where a failure at h′ would block z′′, since m would become permanently unavailable:

(νm)(!u(z).m(c)c(h).(z|h) | z′|(ν h′)(h′ |h′.Mtx〈m〉)) |u〈z′′〉

3.2 Intensional Global Progress Properties

We start from resilience, laying the basis for uniformly defining diverse global progress
properties. Varying resilience gives intensional/extensional variants of such properties:
the former faithfully formalise the standard understanding; the latter generalise it. We
first give the intensional version. Below, |S| indicates the cardinality of a set S.

Definition 3.6 (strict resilience). A closed P is strictly resilient if for each finitely
failing and fair Φ from P , |blocked(Φ)| is not greater than the number of failures in Φ.

By requiring less blocked outputs than failures, strict resilience ensures each failure
may block only locally. It is intensional, as it assumes the number of failures is known.

Strict resilience can be weakened by requiring the number of blocked outputs to
be less than, say, n times the number of failures. This gives a whole range of re-
silience properties, with the extensional one (defined shortly) representing a limiting
point, while the others are intensional in nature. Here is an example of strict resilience.

294 L. Fossati, K. Honda, and N. Yoshida

Example 3.7 (strict resilience). 1. Consider Γ 2 Lck〈u〉 |u〈z′〉 |u〈z′′〉 |u〈z′′′〉, ob-
tained by adding another request in parallel to Ex. 3.5. By the same reductions as in
Ex. 3.5, both z′′ and z′′′ become blocked. Hence this process is not strictly resilient.

2. In contrast, Ref〈u, v〉 (an atomic reference) is strictly resilient: sinceu is continuously
available, it is impossible that an operation gets blocked by another’s failure.

We show informally (details in [6]) that strict resilience coincides with obstruction-
freedom (OF) [12], assuming each operation is performed by one sequential thread. OF
ensures the completion of an operation that is performed in isolation. Since OF allows
any operation that has not failed to complete, it implies strict resilience. Now assume
strict resilience. Executing opi in isolation is equivalent to making all other operations
fail first, so that only opi progresses, and by strict resilience it completes, obtaining OF.

Using strict resilience, we formalise non-blockingness and wait-freedom in our cal-
culus. FT(P) denotes the set of finitely-failing and fair transition sequences from P .

Definition 3.8 (intensional NB/WF). A strictly resilient P is:

1. intensionally non-blocking (INB) if for any Φ ∈ FT(P) s.t. Δ 2 Q is in Φ and
allowed(Δ) \ blocked(Φ) �=∅, some output occurs in Φ after Q.

2. intensionally wait-free (IWF) if for any Φ ∈ FT(P) s.t. Δ 2 Q is in Φ and c ∈
allowed(Δ) \ blocked(Φ), an output at c occurs in Φ after Q.

INB asks that, in every execution, some non-blocked outputs eventually occur; IWF re-
places “some” with “all”. Without resilience, the set allowed(Δ) \ blocked(Φ) could
be empty for all Φ and Δ, i.e. when a failure in one component blocks all other compo-
nents. Then both properties would be trivially satisfied and any lock-based implemen-
tation would become non-blocking, defying the general understanding. Refcas〈u, v〉 is
a simple example of both INB and IWF, more complex examples are in § 4. We write
INB and IWF, for the sets of INB and IWF processes, resp.

3.3 Extensional Global Progress and Classification Results

First we relax strict resilience to get “extensional” properties which are strictly more in-
clusive than their intensional counterparts, offering an observational basis for reasoning
about global progress. Then we classify these extensional properties.

Definition 3.9 (extensional resilience/NB/WF). P is (extensionally) resilient iff, for
any finitely failing and fair Φ from P , |blocked(Φ)| is finite. P is non-blocking, NB
(resp. wait-free, WF) if it satisfies (1) (resp. (2)) of Def. 3.8, replacing strict resilience
with resilience. Henceforth NB and WF denote, resp., the sets of NB and WF processes.

Example 3.10. Let eRK〈u〉def
=(ν u0)(Mtx〈u0〉|eRK〈u,0,u0〉), where:

eRK〈u, n, ui〉 def
= !u(x).ifLn = K then (ν ui+1)(C(ui+1, x)|Mtx〈ui+1〉|eRK〈u, 0, ui+1〉)

else (C(ui, x)|eRK〈u, n+ 1, ui〉)
representing a server which, after invocation on u, spawns unboundedly many dedicated
servers (u0, u1, . . .), each realising a mutex and treating up to K (reasonably defined)
clients C(ui, x). A failure inside the critical section of a dedicated server only blocks
up to K outputs, while u is always available: eRK〈u〉 is resilient but not strictly so.

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 295

Extensional resilience abstracts away from counting failures. This makes sense, just as
it makes sense to abstract away from τ -actions in weak process equivalences.

Theorem 3.11 (relating prop. (1)). IWF � INB, INB � NB and IWF � WF.

The inclusions are by definition. CQemp(r) in § 4 shows the first strictness. Ex. 3.10
shows the last one, since all non-blocked threads enter their critical section by strong
fairness. By a slight modification (external “spinning” cas) we show the second.

Next we define the variants of NB and WF obtained by disabling failures.

Definition 3.12 (WNB, WWF, RBL). P is weakly non-blocking (WNB) (weakly wait-
free, WWF) if it satisfies (1) (resp. (2)) of Def. 3.8 restricted to non-failing transitions.
It is reliable (RBL) if it is strictly resilient w.r.t. non-failing transitions (i.e. no blocked
outputs). RBL / WNB / WWF denote the sets of RBL/WNB/WWF processes, resp.

Example 3.13. 1. Lck〈u〉 (Ex. 3.5) is WWF, as every request is served, by fairness.
2. Let Lckspin〈u〉 be the same agent but replacing Mtx〈m〉 with Mtxspin〈m〉. Lckspin〈u〉

is WNB but not WWF, since in an infinite execution a thread may spin forever.

Theorem 3.14. 1. P ≈ Q implies (P ∈ RBL ⇐⇒ Q ∈ RBL).
2. We have NB ∪ WWF � WNB � RBL and WF � NB ∩ WWF.

(1) is because reliability is an existential requirement. (2) underpins the inclusions
among behavioural properties. NB � WNB also says that, if an execution of a NB
process shows no output, a failure has occurred. The diagram below contains the ex-
amples seen so far plus LQemp(r) and CQemp(r) from § 4. While not in this picture,
NB � INB and IWF � WF (cf. Theorem 3.11). Also, resilience contains NB and is
contained in RBL (both by definition), but is incomparable with WNB and WWF.

RBL
Lckspin〈u〉

WNB

CQemp(r)

NB

Ref〈u, v〉
Refcas〈u, v〉

WF

LQemp(r)
Lck〈u〉
WWF

3.4 Fair Preorder and Preservation

We defined observable generalisations of global progress properties. Now we identify
a behavioural pre-order/equivalence which preserves them, and offers a basis to reason
about them. Define Φ̂ by abstracting away all τ -actions from Φ. Then let:

WFT(Γ � P)
def
= {〈Φ̂, blocked(Φ)〉 | Φ ∈ FT(Γ � P)}

where: Φ̂ tells us what visible sequences are possible in the presence of stalled threads;
and blocked(Φ) is used to identify such stalled threads. And now the fair pre-order:

Definition 3.15. A fair preorder R is a weak bisimulation s.t. for any Γ 2 PRQ,
WFT(Γ 2 P) ⊇ WFT(Γ 2 Q). A fair bisimulation is a symm. fair preorder, 	fair is
the max. fair preorder, ≈fair is the max. fair bisimulation and
fair = (fair \ ≈fair).

296 L. Fossati, K. Honda, and N. Yoshida

	fair is preserved by all operators except a parallel composition involving a free non-
linear input (which may be unavailable). Since such channel can be replaced by a repli-
cated channel up to ≈fair, 	fair is practically a pre-congruence. Since WFT(Γ 2 P)
includes blocked outputs information, 	fair preserves WF and NB.

Theorem 3.16. Let P 	fair Q. Then if P ∈ NB so is Q, and if P ∈ WF so is Q.

Example 3.17 (reasoning with 	fair). We separate bisimilar processes by showing fair
witnesses which distinguish them. Lckspin〈u〉 ≈ Lck〈u〉 but Lckspin〈u〉
fair Lck〈u〉.
For the latter, we have a fair sequence from Lckspin〈u〉 where a thread does infinitely
many (useless but fair) cycles and never answers, which is impossible in Lck〈u〉.

4 Application: Semantic Separation of Queues

Specification. We now apply the observational theory of §3 to the semantic analysis
of two imperative queues. We start from an abstract specification of a queue, which
is given as an intuitive state-based abstraction. A queue state (st, st′, . . .) is a triple
〈Rs, Vs, As〉, where (1) Rs is a set of requests, each of the form enq(v, g) or deq(g)
s.t. v and g are respectively its value and continuation name (2) Vs is a value se-
quence v1 · · · vn, s.t. v1 is the head and vn is the tail; (3) As is a set of answers of the
form g〈+v〉, in which g is the continuation name and +v a single value or ε. An abstract
queue (p, q, . . .) is a pair AQ(r, st) of a queue state st and a channel r, its subject (e.g.
AQ(r, 〈{enq(6, g1), deq(g2)}, 2·3·1, {g3〈5〉}〉) is an abstract queue with subject r, two
requests, three values and one answer). A special case is the empty queue:

AQemp(r)
def
= AQ(r, 〈∅, ε, ∅〉)

We define a LTS over abstract queues, where an input corresponds to asynchronously
receiving a request and an output corresponds to asynchronously emitting an answer:

AQ(r, 〈Rs,Vs,As〉) (ν g)r&enq〈v,g〉−−−−−−−−−−→AQ(r, 〈Rs � enq(v, g),Vs,As〉)
AQ(r, 〈Rs, Vs, As〉) (ν g)r&deq〈g〉−−−−−−−−→ AQ(r, 〈Rs � deq(g), Vs, As〉)
AQ(r, 〈Rs � enq(v, g), Vs, As〉) τ−→ AQ(r, 〈Rs, Vs·v, As � g〉)
AQ(r, 〈Rs � deq(g), v ·Vs, As〉) τ−→ AQ(r, 〈Rs, Vs, As � g〈v〉〉)
AQ(r, 〈Rs � deq(g), ε, As〉) τ−→ AQ(r, 〈Rs, ε, As � g〈null〉〉)

AQ(r, 〈Rs, Vs, As � g〈v〉〉) g〈v〉−−−→ AQ(r, 〈Rs, Vs, As〉)
where Rs � deq(g) denotes the union of Rs and {deq(g)} if deq(g) �∈ Rs. Above and
henceforward, we use null as a special value which can be given any type but which
differs from any channel name. This can be translated away through branching/selection

in the standard way (cf. [6]). A τττ -action is also denoted AQ(r, st)
com(g)−−−−−→ AQ(r, st′)

and called commit action or commit. It represents a state change.
Equipping abstract queues with our linear typing is straightforward. Then we get a

typed LTS over abstract queues. For instance, the example above is typed under:

r : &NL{enq(int ↑NL ()), deq(↑NL (int))}, g1 : ↑NL (), g2 : ↑NL (int), g3 : ↑NL (int)

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 297

Lock-Based Queue. Define a lock-based queue from empty configuration LQemp(r):

LQemp(r) def
= (νh, t, s, l)(Mtx〈l〉 | LQ(r, h, t, l) | LPtr(h, s) | LPtr(t, s) | LENode(s, 0))

LQ(r, h, t, l)
def
= ! r&{enq(v, u) : l(g)g(y).P lck

enq (v, t, y, u), deq(u) : l(g)g(y).P
lck
deq (h, t, y, u)}

where LPtr(h, s), LPtr(t, s) and LENode(s, 0) are (non-CAS) references from § 2. The
queue is represented as a linked list. Pointers h and t store the names of the head and tail
nodes, resp.: when they coincide, the list is empty, with a single dummy node (as above).
The key steps are the non-linear interactions with Mtx〈l〉. P lckenq (v, t, y) and P lckdeq (h, t, y)
are the obvious list manipulation followed by lock release, and are omitted.

CAS-Based Queue. The cas-based queue (cf. [21]) is also encoded as a linked list:

CQemp(r) def
= (νh, t, nd0, nxt0)

(
CQ(r, h, t) | Ptr(h, nd0, 0) | Ptr(t, nd0, 0) |

Node(nd0, 0, nxt0) | Ptr(nxt0, null, 0)

)
CQ(r, h, t)

def
= ! r&{enq(v, g) : Enqueuecas〈v, t, g〉, deq(g) : Dequeuecas〈h, t, g〉}

Node(nd, v, ptr) def
= Ref〈nd, 〈v, ptr〉〉 and Ptr(ptr, nxt, ctr) def

= Refcas〈ptr, 〈nxt, ctr〉〉
represent nodes and pointers, resp. A node stores a value and the name of a pointer,
which stores the name of the next node, or null, and a counter incremented at each
successful cas. To scan, from h, we reach the initial (dummy) node, read its pointer
name, then the first value node, and so on. Enqueue and dequeue are as follows:

1Enqueuecas〈x, tail, u〉 = (ν node) ((ν nlPtr)
2 (Ptr(nlPtr, null, 0) | Node(node, x, nlPtr)) |
3 (μXtag (u

′).
4 tail � read(last, ctrT).
5 last � read(tPtr, ∗).
6 tPtr � read(next, ctr).

7 ifL(next = null) then

8 ifLcas(tPtr,〈next,ctr〉,〈node,ctr+ 1〉)
9 then CAS(t,〈last, ctrT 〉,〈node, ctrT + 1〉);
10 u′

11 else Xtag〈u′〉
12 else CAS(t, 〈last, ctrT 〉, 〈next, ctrT + 1〉);
13 Xtag〈u′〉) 〈u〉)

1Dequeuecas〈head, tail, u〉 = (μXtag(u
′).

2 head � read(hn, h ctr).
3 tail � read(tn, t ctr).
4 hn � read(∗,hp).
5 hp � read(next, ∗).
6 ifL (hn = tn) then

7 ifL(next = null) then

8 u′〈null〉
9 else

10 CAS(tail,〈tn,t ctr〉,〈next,t ctr + 1〉);Xtag〈u′〉
11 else
12 next � read(x, ∗).
13 ifL(cas(head, 〈hn, ctr〉, 〈next, ctr + 1〉)) then
14 u′〈x〉
15 else Xtag〈u′〉)〈u〉

The notations if cas(u, v, w) then P else Q and CAS(u, v, w);P are from § 2;
x � read(+y).P is short for (νc)(x read〈c〉|cL(+y).P), where ∗ is for irrelevant val-
ues. Enqueuecas〈x, t, u〉 uses cas to append a node and to swing the tail pointer t.
Dequeuecas〈h, t, g〉 uses it to swing head and tail forward. Both slightly simplify the
original algorithms [21]. CQemp(r), LQemp(r) and AQ(r, 〈∅, ε, ∅〉) are all typed un-
der r : &NL{enq(α ↑NL ()), deq(↑NL (α))}, for some type α.

Functional Correctness. We outline the proof of functional correctness of CQemp(r),
given as its bisimilarity to the empty abstract queue AQemp(r) (details in [6]). We use

molecular actions P
�(−→ Q, which consist of a transition P

�−→ followed by all available
linear actions (thus representing atomic operations, cf. Ex. 2.1). The one-step transition
�(−→ is justified by Prop. 2.5(1,2) and does not change ≈ nor global progress properties.

We call cas-queue process any molecular action derivative of CQemp(r).

298 L. Fossati, K. Honda, and N. Yoshida

Among molecular actions, a commit action marks an irreversible state change: in an
enqueue operation, it is a successful cas action on the last pointer in the linked list,
adding a new node; in a dequeue operation on a non-empty queue, it is the cas on the
head pointer; while if the queue is empty, it is the last read action before checking that
the successor of the first (dummy) node is null. All other actions are non-commit.

In the proof, a cas-queue process is reduced to a unique normal form, of the shape:

(νh, t, nd0..ndn, nxt0..nxtn)(CQ(r, h, t) | LL |∏1≤i≤mPi)

where LL
def
=

(
Ptr(h, ndH , ctrH)|Ptr(t, ndT , ctrT)|

Π0≤i≤n(Node(ndi, vi, nxti)|Ptr(nxti, ndi+1, ctri))

)
,

ndn+1 = null
∧

0 ≤ H ≤ T = n

LL is called the linked-list sub-process and each Pi is a thread sub-process in a local
normal form (LNF): i.e. either Pi is ready to commit in the next step or it is an answer,
say g〈+v〉, to an enqueue/dequeue request. The idea is that we can reach a normal form
just using non-commit actions, written

nc(−−→ below.

Proposition 4.1. If P is a cas-queue process, P
nc(−−→
∗
P ′ and P ′ is in NF.

The above normalisability result is obtained as a corollary of a stronger linearisability
result, transforming an execution into a chain of enqueue/dequeue operations. This is
achieved through local permutations among molecular actions from different threads.
The permutation cases reflect the classification of molecular actions.

Given a relation Rcas between cas-queue processes and abstract queues s.t.: (1)

CQemp(r)RcasAQemp(r); (2) If P RcasQ, P
�(−→ P ′, Q

�−→ Q′ and 	 is an input/out-
put/commit label, then P ′RcasQ

′; (3) If P RcasQ and P
nc(−−→ P ′ then P ′RcasQ. By

Prop. 4.1, we can normalise each cas-queue process. Then we show that a normal form
has the same action capability as the related abstract queue, thus establishing the bisim-
ilarity of Rcas. By a similar but simpler argument for LQemp(r), we obtain:

Theorem 4.2 (functional correctness). CQemp(r) ≈ LQemp(r) ≈ AQemp(r).

Global Progress and Separation. By linearising executions of CQemp(r), we easily
see that a failure blocks exactly one output, i.e. CQemp(r) is strictly resilient. As for
non-blockingness, consider a process Δ 2 P in the non-failing post-fix of a finitely fail-
ing fair transition sequence Φ from CQemp(r), s.t. c ∈ allowed(Δ) \ blocked(Φ).
Since c is not blocked, its sub-process either reduces to normal form and outputs or en-
gages in an infinite loop without committing (fairness). But in the latter case (infinitely
many) other threads would commit and output: CQemp(r) is NB but not WF.

LQemp(r) is not resilient because a failure in the critical section blocks all threads.
Then it is neither WF nor NB. But in the absence of failures, every thread in a transition
sequence from LQemp(r) can enter the critical section by fairness. To summarise:

Theorem 4.3 (glob. prog.). CQemp(r) ∈ (NB \ WF) and LQemp(r) ∈ (WWF \
NB).

We show that CQemp(r) and LQemp(r) are strictly ordered by 	fair. A key lemma is:

Lemma 4.4 WFT(P) ⊆ WFT(Q) iff it is so w.r.t. molecular action sequences.

The above allows us to use molecular action sequences to show the following:

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 299

Lemma 4.5 WFT(CQemp(r)) � WFT(LQemp(r)).

For inclusion, given two processes in the bisimulation from the proof of Theorem 4.2,
we map a fair finitely failing molecular trace of the cas-queue process to one of the
lock-queue process, where a failure is mapped to a failure before lock acquisition.

For strictness suppose, in a molecular transition sequence from LQemp(r), a thread
fails in the critical section and then infinitely many other requests come, generating
threads which may only progress up to some point and then are blocked. Such a se-
quence is finitely failing, maximal (because no thread can progress further) and trivially
fair. Since CQemp(r) is resilient, it admits no fair and finitely failing sequence with
the same external behaviour. The bisimilarity comes from Theorem 4.2. Then:

Theorem 4.6 LQemp(r)
fair CQemp(r).

5 Related Work and Further Topics

Logical Formalisation of Global Progress. To our knowledge, [5] offered the first
formal characterisation of intensional non-blockingness and wait-freedom, using linear
temporal logic. That work uses fairness and stalling actions as ours, but over simple
while programs, rather than the π-calculus. Later, [10] captured stalling actions by an
unfair scheduler, which leads to a simple setup, but forces the execution of an atomic
operation in a single step, unlike what happens in practice. Both of these works aim
to give formal accounts of intensional global progress, referring to program counters
([5]) and state transformations (atomic formulae in [10]). In contrast, we emphasise
observationality through an LTS-based characterisation, thus capturing both extensional
and intensional properties in a uniform way. Further, through the π-calculus, our theory
can cover a wide range of behaviours beyond first-order concurrent data structures. The
simple linear π-calculus used in this paper can already represent higher-order functions,
objects, higher-order pointers, and client-server interactions.

Another limitation of previous formalisations is that they only allow boundedly many
threads, whereas our extensional setting allows new operations to be requested at any
time, spawning unboundedly many concurrent threads. As we showed in [6], such dif-
ferent approaches induce two semantically distinct classes: there exists a π-calculus
process which is non-blocking if the execution model allows only a bounded number of
threads, but not so in general.

Fairness and Progress in Process Algebras. We adapted fairness from [4] to our
asynchronous, typed framework, where types play a key role (defining “enabled transi-
tions”). The use of fairness in defining progress properties was first suggested in [27].
In [7], a well-known distributed consensus algorithm is studied through a transition re-
lation on configurations with state changes in the algorithm, where fairness is combined
with failures to capture a global termination. Indeed, our π-calculus approach could be
applied to uniformly encompass such properties as those found in [7], to compare them
to and distinguish them from those we have already defined.

Several recent works [1, 17, 28] study progress properties enforced by typing in the
π-calculus, where they statically ensure liveness by compositional typing rules. Among

300 L. Fossati, K. Honda, and N. Yoshida

them, [17] defines two notions of progress using fairness, which essentially correspond
to our reliability and weak wait-freedom. While linear typing is also a key element in
our theory, [1,17,28] ensure liveness by inductively building up local causal chains, thus
enforcing local progress at every interaction in the chain. Michael-Scott queue satisfies
a more subtle notion of progress, where some output eventually occurs. Further, [1, 17]
study progress through an invisible action at a specified redex, while we use visible
transitions to capture progress as an observational property. This allows us to reason
about its preservation by different kinds of behavioural equivalences.

Linearisability. The proofs of functional correctness in § 4 use a version of linearis-
ability [14], relying on local permutability of actions. Linearisability has already been
applied to Michael-Scott’s queue ([2] and others). [11] shows the composition of lin-
earisable libraries preserves non-blockingness. They abstractly define linearisation rely-
ing on separate tools for its concrete realisation. Their definition is based on begin-end
(less fine-grained) rather than commit. [2] uses commits, but coarser than ours: instead
of local permutations, it suspends execution of the simulating process B until the simu-
lated one A commits. Then A is suspended and B completes. [23] exploits modularity
in the search for atomicity violations, and reduces the state-explosion by requesting
non-commuting operations before and after the one being tested.

The above works share with ours: a semantic understanding of non-blockingness,
modularity, and reasoning with critical permutations; but the formal framework is quite
different. Apart from the intensional/extensional characterisation of global progress,
the π-calculus allows a uniform behavioural analysis at a very fine granularity level,
enabling a rigorous operational reasoning on linearisability through local permutations
of transitions. It would be interesting to see if we can apply our bisimilarity technique
to justify the automated proofs in [2].

Further discussions on related works are found in the long version [6].

Further Results and Topics. The current formal framework and proof techniques for
concrete data structures outlined in §4, are readily applicable to a wide range of concur-
rent behaviours. We chose Michael-Scott’s cas-based queue because it is arguably one
of the most subtle non-blocking data structures widely used in practice and not requiring
atomic operations more powerful than cas. As a further result, in [6] we have reasoned
about stacks including Treiber’s stack [26], obtaining the corresponding results with
isomorphic (but much simpler) arguments.

As another line of study, the intensional formalisations and reasoning techniques
on them can be exploited further, enriched by existing studies, to obtain a comprehen-
sive technical framework for verifying both intensional and extensional properties of
concurrent data structures.

References

1. Acciai, L., Boreale, M.: Responsiveness in process calculi. TCS 409(1), 59–93 (2008)
2. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison Under Abstraction for

Verifying Linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

Intensional and Extensional Characterisation of Global Progress in the π-Calculus 301

3. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-Calculus. In: Abramsky, S. (ed.)
TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

4. Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing semantics.
LMCS 5(2:15), 27 pages (2007)

5. Dongol, B.: Formalising Progress Properties of Non-blocking Programs. In: Liu, Z.,
Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 284–303. Springer, Heidelberg
(2006)

6. Fossati, L., Honda, K., Yoshida, N.: The extended version of the present paper (June 2012),
http://www.eecs.qmul.ac.uk/˜luca/CONCURextended.pdf

7. Fuzzati, R., Merro, M., Nestmann, U.: Distributed Consensus, revisited. Acta Inf. 44(6),
377–425 (2007)

8. Francez, N.: Fairness. Springer (1986)
9. Goetz, B.: Java Concurrency in Practice. Addison-Wesley (2008)

10. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving that non-blocking algorithms
don’t block. In: POPL 2009, pp. 16–28. ACM (2009)

11. Gotsman, A., Yang, H.: Liveness-Preserving Atomicity Abstraction. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 453–465. Springer,
Heidelberg (2011)

12. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended
queues as an example. In: ICDCS 2003, pp. 522–529. IEEE Computer Society (2003)

13. Herlihy, M., Sharit, B.: The Art of Multiprocessor Programming. Morgan Kaufmann (2009)
14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

TOPLAS 12(3), 463–492 (1990)
15. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In:

POPL 2002, pp. 81–92. ACM (2002)
16. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-calculus. TOPLAS 21(5),

914–947 (1999)
17. Kobayashi, N., Sangiorgi, D.: A Hybrid Type System for Lock-Freedom of Mobile Processes.

TOPLAS 32(5:16), 49 pages (2010)
18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM 21(7), 558–564 (1978)
19. Lauer, H.C., Needham, R.M.: On the duality of operating system structures. SIGOPS Oper-

ating Systems Review 13(2), 3–19 (1979)
20. Lea, D., et al.: Java Concurrency Package (2003), http://gee.cs.oswego.edu/dl
21. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-

rent queue algorithms. In: PODC 1996, pp. 267–275. ACM (1996)
22. Sangiorgi, D.: The name discipline of uniform receptiveness. TCS 221(1-2), 457–493 (1999)
23. Schacham, O., Bronson, N., Aiken, A., Sagiv, M., Vechev, M., Yahav, E.: Testing atomicity

of composed concurrent operations. In: OOPSLA 2011, pp. 51–64. ACM (2011)
24. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson–

Prentice Hall (2006)
25. Tokoro, M., Vasconcelos, V.: A Typing System for a Calculus of Objects. In: Nishio, S.,

Yonezawa, A. (eds.) ISOTAS 1993. LNCS, vol. 742, pp. 460–474. Springer, Heidelberg
(1993)

26. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (1986)

27. Walker, D.: Automated analysis of mutual exclusion algorithms using CCS. Formal Aspects
of Computing 1(3), 273–292 (1989)

28. Yoshida, N., Berger, M., Honda, K.: Strong Normalisation in the π-Calculus. Information
and Computation 191(2), 145–202 (2004)

http://www.eecs.qmul.ac.uk/~luca/CONCURextended.pdf
http://gee.cs.oswego.edu/dl

Duality and i/o-Types in the π-Calculus

Daniel Hirschkoff1, Jean-Marie Madiot1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 INRIA/Università di Bologna, Italy

Abstract. We study duality between input and output in the π-calculus.
In dualisable versions of π, including πI and fusions, duality breaks with
the addition of ordinary input/output types. We introduce π, intuitively
the minimal symmetrical conservative extension of π with input/output
types. We prove some duality properties for π and we study embeddings
between π and π in both directions. As an example of application of
the dualities, we exploit the dualities of π and its theory to relate two
encodings of call-by-name λ-calculus, by Milner and by van Bakel and
Vigliotti, syntactically quite different from each other.

1 Introduction

It is common in mathematics to look for dualities; dualities may reveal underly-
ing structure and lead to simpler theories. In turn, dualities can be used to relate
different mathematical entities. In this work, our goal is to study dualities in the
typed π-calculus, and to exploit them to understand the possible relationships
between encodings of functions as π-calculus processes.

Reasoning about processes usually involves proving behavioural equivalences.
In the case of the π-calculus, there is a well-established theory of equivalences
and proof techniques. In some cases, it is necessary to work in a typed setting.
Types allow one to express constraints about the observations available to the
context when comparing two processes. One of the simplest and widely used
such discipline is given by input/output-types [SW01] — i/o-types in the sequel.

In the π-calculus (simply called π below), the natural form of duality comes
from the symmetry between input and output. There are several variants of
π where processes can be ‘symmetrised’ by replacing inputs with outputs and
vice versa. The π-calculus with internal mobility, πI [San96], is a subcalculus of
π where only bound outputs are allowed (a bound output, that we shall note
a(x).P , is the emission of a private name x on some channel a). In πI, duality can
be expressed at an operational level, by exchanging (bound) inputs and bound
outputs: the dual of a(x).x(y).0 is a(x).x(y).0.

Other well-known variants of π with dualities are the calculi in the fusion
family [PV98, Fu97, GW00]. In fusions, a construct for free input acts as the dual
of the free output construct of π, and the calculus has only one binder, restriction.
Interaction on a given channel has the effect of fusing (that is, identifying) names.

The discipline of simple types can be adapted both to πI and to fusions, while
preserving dualities. The situation is less clear for i/o-types, which can be very

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 302–316, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Duality in the π-Calculus 303

useful to establish equivalences between processes. Let us give some intuitions
about why it is so. In i/o-types, types are assigned to channels and express
capabilities : a name of type oT can be used only to emit values of type T , and
similarly for the input capability (iT). This is expressed by the following typing
rules for i/o-types in π:

Γ 2 a : iT Γ, x : T 2 P

Γ 2 a(x).P

Γ 2 a : oT Γ 2 b : T Γ 2 P

Γ 2 ab.P

The rule for input can be read as follows: process a(x).P is well-typed provided
(i) the typing environment, Γ , ensures that the input capability on a can be
derived, and (ii) the continuation of the input can be typed in an environment
where x is used according to T . The typing rule for output checks that (i) the
output capability on a is derivable, (ii) the emitted value, b, has the right type,
and (iii) the continuation P can be typed. As an example, a : i(iT) 2 a(x).xt.0
cannot be derived, because only the input capability is received on a, which
prevents xt.0 from being typable.

I/o-types come with a notion of subtyping, that makes it possible to relate
type 0T (which stands for both input and output capabilities) with input and
output capabilities (in particular, we have 0T ≤ iT and 0T ≤ oT). We stress
an asymmetry between the constraints attached to the transmitted name in the
two rules above. Indeed, while in a reception we somehow enforce a “contract”
on the usage of the received name, in the rule for output this is not the case: we
can use subtyping in order to derive type, say, iU for b when typechecking the
output, while b’s type can be 0U when typechecking the continuation P .

The starting point of this work is the conflict between the asymmetry inher-
ent to i/o-types and the symmetries we want to obtain via duality. For example
i/o-types can be adapted to πI, but duality cannot be applied to the resulting
typings. In fusion calculi, the conflict with the asymmetry of i/o-types is even
more dramatic. Indeed, subtyping in i/o-types is closely related to substitution,
since replacing a name with another makes sense only if the latter has a more
general type. Fusions are intuitively substitutions operating in both directions,
which leaves no room for subtyping. In work in preparation [HMS12], we investi-
gate this relationship between subtyping and substitution, and compare several
variants of existing calculi, including the one presented in this paper.

In this paper, in order to work in a setting that provides a form of duality and
where i/o-types can be used, we introduce a calculus named π (Section 2). π is an
extension of π with constructs for free input and bound output (note that bound
output is not seen as a derived construct in π). In π, we rely on substitutions
as the main mechanism at work along interactions. To achieve this, we forbid
interactions involving a free input and a free output: the type system rules out
processes that use both kinds of prefixes on the same channel.

Calculus π contains π, and any π process that can be typed using i/o-types can
be typed in exactly the same way in π. Moreover π contains a ‘dualised’ version
of π: one can choose to use some channels in free input and bound output. For
such channels, the typing rules intuitively enforce a ‘contract’ on the usage of the

304 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

transmitted name on the side of the emitter (dually to the typing rules presented
above). We show how π can be related to π, by translating π into a variant of
the π-calculus with i/o-types in a fully abstract way. This result shows that π
and π are rather close in terms of expressiveness.

We also define a notion of typed barbed congruence in π, which allows us
to validate at a behavioural level the properties we have mentioned above: two
processes are equivalent if and only if their duals are. To our knowledge, no
existing calculus with i/o-types enjoys this form of duality for behaviours.

As an application of π, its dualities, and its behavioural theory, we use π
to relate two encodings of call-by-name λ-calculus. The first one is the ordinary
encoding by Milner [Mil92], the second one is by van Bakel and Vigliotti [vBV09].
The two encodings are syntactically quite different. Milner’s is input-based, in
that an abstraction interacts with its environment via an input. In contrast, van
Bakel and Vigliotti’s is output-based. Moreover, only the latter makes use of link
processes, that is, forwarders that under certain conditions act as substitutions.

Van Bakel and Vigliotti actually encode strong call-by-name — reductions
may also take place inside a λ-abstraction. We therefore compare van Bakel and
Vigliotti’s encoding with the strong variant of Milner’s encoding, obtained by
replacing an input with a delayed input, following [Mer00] (in a delayed input
a(x):P , the continuation P may perform transitions not involving the binder x
even when the head input at a has not been consumed).

We exploit π (in fact the extension of π with delayed input) to prove that the
two encodings are the dual of one another. This is achieved by first embedding
the π-terms of the λ-encodings into π, and then applying behavioural laws of π.
The correctness of these transformations is justified using i/o-types (essentially
to express the conditions under which a link can be erased in favour of a substi-
tution). Some of the transformations needed for the λ-encodings, however, are
proved in this paper only for barbed bisimilarity; see the concluding section for
a discussion.

Paper outline. Section 2 introduces π, and presents its main properties. To
analyse dualities in encodings of λ into π, in Section 3, we extend π, notably
with delayed prefixes. As the addition of these constructs is standard, they are
omitted from the original syntax so to simplify the presentation. Section 4 gives
concluding remarks.

2 π, a Symmetric π-Calculus

In this section, we present π, a π-calculus with i/o-types that enjoys duality
properties. We define the syntax and operational semantics for π processes in
Section 2.1, introduce types and barbed congruence in Section 2.2, establish
duality in Section 2.3, and present results relating π and π in Section 2.4.

2.1 Syntax and Operational Semantics

We consider an infinite set of names, ranged over using a, b, . . . , x, y, The
syntax of π is as follows:

Duality in the π-Calculus 305

P ::= 0 | P |P | !P | α.P | (νa)P α ::= ρb | ρ(x) ρ ::= a | a

π differs from the usual π-calculus by the presence of the free input ab and bound
output a(x) prefixes. Note that in π, the latter is not a notation for (νx)ax.P ,
but a primitive construct. These prefixes are the symmetric counterpart of ab
and a(x) respectively. Given a process P , fn(P) stands for the set of free names
of P — restriction, bound input and bound output are binding constructs. Given
ρ of the form a or a, n(ρ) is defined by n(a) = n(a) = a.

Structural congruence is standard, and defined as in π (in particular, there are
no axioms involving prefixes). The reduction laws allow communication involving
two prefixes only if at least one of them is bound :

ab.P | a(x).Q → P | Q[b/x] P → Q if P ≡→≡ Q
ab.P | a(x).Q → P | Q[b/x] (νa)P → (νa)Q if P → Q

a(x).P | a(x).Q → (νx)(P | Q) P | R → Q | R if P → Q

Note that ab | ac is a process of π that has no reduction; this process is ruled
out by the type system presented below.

2.2 Types and Behavioural Equivalence

Types are a refinement of standard i/o-types: in addition to capabilities (ranged
over using c), we annotate types with sorts (s), that specify whether a name can
be used in free input (sort e) or in free output (r) — note that a name cannot
be used to build both kinds of free prefixes.

T ::= csT | 1 c ::= i | o | 0 s ::= e | r

If name a has type crT , we shall refer to a as an r-name, and similarly for e.
The subtyping relation is the smallest reflexive and transitive relation ≤ sat-

isfying the rules of Figure 1. As in the π-calculus ir is covariant and or is con-
travariant. Dually, ie is contravariant and oe is covariant. Note that sorts (e, r)
are not affected by subtyping.

The type system is defined as a refinement of input/output types, and is given
by the rules of Figure 2. There is a dedicated typing rule for every kind of prefix
(free, ρb, or bound, ρ(x)), according to the sort of the involved name. We write
Γ (a) for the type associated to a in Γ . T↔ stands for T where we switch the
top-level capability: (csT)↔ = csT where o = i, i = o, 0 = 0.

The typing rules for r-names impose a constraint on the receiving side: all
inputs on an r-channel should be bound. Note that a(x).P and (νx)ax.P are
not equivalent from the point of view of typing: typing a bound output on an
r-channel (a) imposes that the transmitted name (x) is used according to the
“dual constraint” w.r.t. what a’s type specifies: this is enforced using T↔ (while
names received on a are used according to T). Symmetrical considerations can
be made for e-names, that impose constraints on the emitting side.

We write Γ 2 P,Q when both Γ 2 P and Γ 2 Q can be derived.

306 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

�sT ≤ isT �sT ≤ osT

T1 ≤ T2

irT1 ≤ irT2

T1 ≤ T2

orT2 ≤ orT1

T1 ≤ T2

ieT2 ≤ ieT1

T1 ≤ T2

oeT1 ≤ oeT2

Fig. 1. Subtyping

Γ � a : irT Γ, x : T � P

Γ � a(x).P

Γ � a : ieT Γ, x : T↔ � P

Γ � a(x).P

Γ � a : oeT Γ, x : T � P

Γ � a(x).P

Γ � a : orT Γ, x : T↔ � P

Γ � a(x).P

Γ � a : ieT Γ � b : T Γ � P

Γ � ab.P

Γ � a : orT Γ � b : T Γ � P

Γ � ab.P

Γ, a : T � P

Γ � (νa)P

Γ � P Γ � Q

Γ � P | Q
Γ � P

Γ � !P Γ � 0

Γ (a) ≤ T

Γ � a : T

Fig. 2. π: Typing rules

Remark 1 (“Double contract”). We could adopt a more liberal typing for bound
outputs on r names, and use the rule

Γ 2 a : orT Γ, x : T ′ 2 P T ′ ≤ T

Γ 2 a(x).P

(and its counterpart for inputs on e-names). This would have the effect of typ-
ing a(x).P like (νx)ax.P . We instead chose to enforce what we call a “double
contract”: the same way a receiving process uses the bound name according to
the type specified in the channel that is used for reception, the continuation of a
bound output uses the emitted name according to T↔, the symmetrised version
of T . This corresponds to a useful programming idiom in π, where it is common
to create a name, transmit one capability on this name and use locally the other,
dual capability. This idiom is used e.g. in [Vas09] and in [SW01, Sect. 5.7.3]. This
choice moreover makes the proofs in Section 3.2 easier.

Observe that when a typable process reduces according to

a(x).P | a(x).Q → (νx)(P | Q) ,

if a has type, say, 0r(osT), then in the right hand side process, name x is given
type 0sT , and the 0 capability is “split” into isT (used by P) and osT (used by
Q) — it would be the other way around if a’s sort were e.

Duality in the π-Calculus 307

Lemma 1 (Properties of typing)

1. (Weakening) If Γ 2 P then Γ, a : T 2 P .
2. (Strengthening) If Γ, a : T 2 P and a �∈ fn(P) then Γ 2 P .
3. (Narrowing) If Δ ≤ Γ and Γ 2 P then Δ 2 P .
4. (Substitution) If Γ, x : T 2 P and Γ 2 b : T then Γ 2 P [b/x].

Proposition 1 (Subject reduction). If Γ 2 P and P → Q then Γ 2 Q.

Proof. By transition induction. Lemma 1 (4) is used when a bound prefix com-
municates with a free prefix; Lemma 1 (3) is used for the interaction between
two bound prefixes, since T and T↔ have a common subtype. ��

Definition 1 (Contexts). Contexts are processes with one occurrence of the
hole, written [−]. They are defined by the following grammar:

C ::= [−] | C|P | P |C | !C | α.C | (νa)C .

Definition 2. Let Γ,Δ be typing environments. We say that Γ extends Δ if the
support of Δ is included in the support of Γ , and if Δ 2 x : T entails Γ 2 x : T
for all x. A context C is a (Γ/Δ)-context, written Γ/Δ 2 C, if C can be typed
in the environment Γ , the hole being well-typed in any context that extends Δ.

As a consequence of the previous definition and of Lemma 1, it is easy to show
that if Δ 2 P and Γ/Δ 2 C, then Γ 2 C[P].

We now move to the definition of behavioural equivalence.

Definition 3 (Barbs). Given ρ ∈ {a, a}, where a is a name, we say that P
exhibits barb ρ, written P↓ρ, if P ≡ (νc1 . . . cn)(α.Q | R) where α ∈ {ρ(x), ρb}
with a �∈ {c1, . . . , cn}. We extend the definition to weak barbs: P ⇓ρ stands for
P ⇒↓ρ where ⇒ is the reflexive transitive closure of →.

Definition 4 (Typed barbed congruence). Barbed bisimilarity is the largest
symmetric relation ≈̇ such that whenever P ≈̇Q, P ↓ρ implies Q ⇓ρ and P → P ′

implies Q ⇒ ≈̇P ′. When Δ 2 P,Q, we say that P and Q are barbed congruent
at Δ, written Δ� P ∼=c Q, if for all (Γ/Δ)-context C, C[P] ≈̇ C[Q].

2.3 Duality

Definition 5 (Dual of a process). The dual of a process P , written P , is
the process obtained by transforming prefixes as follows: ab = ab, ab = ab,
a(x) = a(x), a(x) = a(x), and applying dualisation homeomorphically to the
other constructs.

Lemma 2 (Duality for reduction). If P → Q then P → Q.

Dualising a type means swapping i/o capabilities and e/r sorts.

Definition 6 (Dual of a type). The dual of T , written T , is defined by setting
csT = cs T , with r = e, e = r, i = o, and o = i. We extend the definition to typing
environments, and write Γ for the dual of Γ .

308 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

Lemma 3 (Duality for typing)

1. If T1 ≤ T2 then T1 ≤ T2.
2. If Γ 2 P then Γ 2 P .
3. If Γ/Δ 2 C then Γ/Δ 2 C.

Proof. (1): the covariant type operators (ir and oe) are dual of each other, and
so are the contravariant operators (or and ie). (2) follows from the shape of the
typing rules, e.g., the dual of the rule for ir is an instance of the rule for ir = oe.
(3) holds because if Φ extends Δ then Φ extends Δ (item (1)). ��

Most importantly, duality holds for typed barbed congruence. The result is easy
in the untyped case, since duality preserves reduction and dualises barbs. On
the other hand, we are not aware of the existence of another system having this
property in presence of i/o-types.

Theorem 1 (Duality for ∼=c). If Δ� P ∼=c Q then Δ� P ∼=c Q.

Proof. By Lemma 3, we only have to prove that if P ≈̇Q then P ≈̇Q, i.e., duality
preserves reduction and swaps barbs. ��

2.4 Embeddings between π and π

From π to πio. As explained in Section 1, the π-calculus with i/o-types (that we
note πio) is an asymmetric calculus. In some sense, π can be seen as a ‘dualisation’
of πio. This can be formulated rigorously by projecting π into πio. To define this
projection, which we call a partial dualisation, we work in an extended version
of πio, where capabilities are duplicated: in addition to the i, o, 0 capabilities, we
also have capabilities i, o and 0, that intuitively correspond to the image of the
“e-part” of π through the encoding. The additional capabilities act exactly like
the corresponding usual capabilities, in particular w.r.t. subtyping and duality.
We write πio

2 for the resulting calculus. We discuss below (Remark 3) to what
extent the addition of these capabilities is necessary. We also rely on πio

2 to
prove that π is a conservative extension of the π-calculus in Theorem 2 — πio

2

is actually close, operationally, to both calculi.

Definition 7 (Partial dualisation). We define a translation from typed pro-
cesses in π to πio

2 . The translation acts on typing derivations: given a derivation
δ of Γ 2 P (written δ :: Γδ 2 P), we define a πio

2 process noted [P]δ as follows:

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = ceT

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = crT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = ceT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = crT

[(νa)P]δ = [P]δ
′

[0]δ = 0 [!P]δ = ![P]δ
′

[P | Q]δ = [P]δ
′
1 | [Q]δ

′
2

In the above definition, δ′ is the subderivation of δ, in case there is only one,
and δ′1 and δ′2 are the obvious subderivations in the case of parallel composition.

Duality in the π-Calculus 309

We extend the definition to types: T ∗ stands for T where all occurrences of cr

(resp. ce) are replaced with c (resp. c, the dual of c). We define accordingly Γ ∗.

Remark 2. The same translation could be defined for a simply typed version of
π. Indeed, [·] does not depend on capabilities (i/o/0), but only on sorts (r/e).

Lemma 4. If δ :: Γ 2 P (in π), then Γ ∗ 2 [P]δ (in πio
2).

Proof. In moving from Γ to Γ ∗, we replace ie (resp. oe, ir, or) with o (resp. i,
i, o). This transformation preserves the subtyping relation. Moreover, the rules
to type prefixes ir, or, ie, oe in π correspond to the rules for i, o, o, i in πio

2 . ��

Lemma 5. Whenever δ1 :: Γ 2 P and δ2 :: Γ 2 P , we have Γ ∗� [P]δ1 9c [P]δ2 .

Proof. The relationR �
= {([P]δ1 , [P]δ2) | δ1, δ2 ::Γ 2P} is a strong bisimulation

in π and is substitution-closed; hence R is included in 9c, since [P]δi is typable
in Γ ∗ (by Lemma 4). ��

Lemma 6. If δP :: Γ 2 P and δQ :: Γ 2 Q then we have the following:

1. (P and Q have the same barbs) iff ([P]δP and [Q]δQ have the same barbs)
2. if P → P ′ then [P]δP → [P ′]δ for some δ :: Γ 2 P ′.
3. if [P]δP → P1 then P1 = [P ′]δ with P → P ′ for some δ :: Γ 2 P ′.
4. P ≈̇ Q iff [P]δP ≈̇ [Q]δQ .

Proof. (4) is a consequence of (1), (2), (3). For (1) remark that if Γ (a) = crT
then P and [P]δP have the same barbs on a; if Γ (a) = ceT , they have dual barbs
on a, but in this case so do Q and [Q]δQ . For (2) and (3), we remark that [·]δ
is compositional and preserves the fact that two prefixes can interact — even
when moving to a different δ. ��

Proposition 2 (Full abstraction). If δP :: Γ 2 P and δQ :: Γ 2 Q then

Γ � P ∼=c Q (in π) iff Γ ∗ � [P]δP ∼=c [Q]δQ (in πio
2) .

Proof. Soundness: given a derivation γ :: Δ/Γ 2 C, we build [C]γ which is a
(Δ∗/Γ ∗)-context. Then [C]γ [[P]δP] = [C[P]]βP for some βP and we can rely on
barbed congruence in πio

2 to establish [C[P]]βP ≈̇ [C[Q]]βQ . By Lemma 6, we
deduce C[P] ≈̇ C[Q].
Completeness: we define the reverse translation {·} of [·] and reason as above to
prove its soundness. Thanks to the fact that δP :: Γ 2 P implies {[P]δP }δ∗P = P
where δ∗P :: Γ ∗ 2 [P]δ is the derivation obtained by Lemma 4, the soundness of
{·} implies the completeness of [·] , and vice versa. ��

Remark 3 (πio
2 vs πio). We can make two remarks about the above result.

First, it would seem natural to project directly onto πio, by mapping capabil-
ities ir and oe into i, and or and ie into o. However, the result of Proposition 2
would not hold in this case. The intuitive reason is that in doing so, we would
allow two names having different sorts in π to be equated in the image of the

310 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

encoding, thus giving rise to additional observations (since we cannot equate
names having different sorts in π). Technically, this question is reminiscent of
the problem of closure of bisimilarity under substitutions in the π-calculus.

Second, the key ingredient in the definition of partial dualisation is to preserve
the distinction between names having originally different sorts in the π process.
It is possible to define an encoding of πio

2 into a dyadic version of πio (without
the extra capabilities), in order to do so.

Lemma 7. Suppose Δ 2 P,Q holds in πio.
Then Δ� P ∼=c Q (in πio) iff Δ� P ∼=c Q (in πio

2).

Proof. The right-to-left implication is immediate because any πio-context is a
πio
2 -context. To show the converse, we observe that a (Γ/Δ)-context in πio

2 is a
(Γ ′/Δ)-context in πio, where Γ ′ is Γ where every c capability is replaced with c.

From πio to π. π contains πio, the π-calculus with i/o-types: the rules for r-
channels are exactly those of πio, and typability of e-free processes coincides with
typability in πio. More precisely we can say that π is a conservative extension
of πio. In πio we rely on typed barbed congruence as defined in [SW01], which
is essentially the same as ∼=c in π. Before presenting the result, the following
remark introduces some notation.

Remark 4. Suppose δ :: Γ 2 P , in πio. Then δr :: Γ r 2 P in π, where Γ r stands
for Γ in which all types are decorated with r and δr stands for δ where all usages
of the typing rule for restriction introduce an r-type. Moreover [P]δ

r

= P .

Theorem 2 (Conservative extension). Suppose Γ 2 P,Q holds in πio.
Then Γ � P ∼=c Q (in πio) iff Γ r � P ∼=c Q (in π).

Proof. We use πio
2 as an intermediate calculus. By Remark 4, let δP , δQ be deriva-

tions of Γ r 2 P and Γ r 2 Q such that P = [P]δP and Q = [Q]δQ . By Proposi-
tion 2, the right hand side is equivalent to (Γ r)∗ � [P]δP ∼=c [Q]δQ (in πio

2). By
hypothesis, and since (Γ r)∗ = Γ , the latter is equivalent to Γ �P ∼=c Q (in πio

2).
Lemma 7 allows us to finish the proof. ��

The result above shows that π can be embedded rather naturally into π. This is
in contrast with fusion calculi, where the equivalence on π-calculus terms induced
by the embedding into fusions does not coincide with a barbed congruence or
equivalence in the π-calculus.

Remark 5 (π and existing symmetric calculi). π contains the π-calculus, and
hence contains (the typed version of) πI, the π-calculus with internal mobility
(see [SW01]). On the other hand, because free inputs and free outputs are not
allowed to interact in π, π fails to represent the fusion calculus. As mentioned
above, we have not succeeded in defining a ‘symmetrical version’ of i/o-types
that would be suitable for fusions.

Duality in the π-Calculus 311

3 Application: Relating Encodings of the λ-Calculus

In this section, we use π to reason about encodings of the (call-by-name) λ-
calculus into the π-calculus. To do so, we need to extend π (Section 3.1). We
then justify the validity of a transformation that makes use of link processes
in Section 3.2. Finally, we show how duality, together with the latter transfor-
mation, allows us to relate Milner’s encoding with the one of van Bakel and
Vigliotti.

3.1 Extending π

Based on π, we develop an extension, called πa, with forms of asynchronous
communication and polyadicity. The extension to polyadic communication is
standard. Asynchronous communication is added via the inclusion of delayed
prefixes: a(x):P (resp. a(x):P) stands for a (bound) delayed input (resp. output)
prefix. The intuition behind delayed prefixes is that they allow the continua-
tion of the prefix to interact, as long as the performed action is not causally
dependent on the prefix itself — this is made more precise below. Intuitively
asynchrony is useful when reasoning about encodings of the λ-calculus because
in a β-reduction (λx.M)N → M [N/x] the “output” part N has no continuation.
It is also useful to have asynchrony in input because the considered λ-strategy
allows reduction under a λ-abstraction. Moreover asynchrony allows us to derive
some transformation laws involving link processes (Section 3.2). Note that syn-
chronous prefixes are still necessary, to encode the argument of an application.

Delayed prefixes are typed like bound input and output prefixes in Section 2.
Types are refined with two new sorts that enforce asynchrony: d to force inputs
to be bound and delayed, a to force outputs to be bound and delayed — we call
such outputs asynchronous. For instance, if we have a : 0rdT for some T , then all
inputs at a are bound and delayed. We also include recursive types.

T ::= ct〈s1T1, . . . ,
sn Tn〉 | 1 | μX.T | X s ::= e | r t ::= d | a

In the polyadic case, e/r sorts are given to each element of the transmitted
tuple. We present here only the typing rule for delayed input, in polyadic form,
to illustrate how we extend the type system of Section 2.

Γ 2 a : it〈s1T1, . . .
snTn〉 Γ, x1 : T s11 , . . . , xn : T snn 2 P

Γ 2 a(x1, . . . , xn):P

(with T r = T and T e = T↔). The sort d (resp. a) is forbidden in the rules to
type non-delayed input (resp. output) prefixes.

The definition of operational semantics is extended as follows to handle de-
layed prefixes (below, ρ(y)P stands for either ρ(y).P or ρ(y):P):

P | ρ(x):Q ≡ ρ(x):(P | Q) if x /∈ fn(P)
ρ1(y):ρ2(x):P ≡ ρ2(x):ρ1(y):P if n(ρ1) �= x, x �= y, y �= n(ρ2)

(νy)ρ(x):P ≡ ρ(x):(νy)P if x �= y, y �= n(ρ)

312 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

ρ(x):(ρ(y)P | Q) → (νy)(P | Q)[y/x]
ρ(x):(ρb.P | Q) → (P | Q)[b/x]

ρ(x):P → ρ(x):Q if P → Q

Barbs are defined as in Section 2, with an additional clause saying that if ρ is a
barb of P and n(ρ) �= x, then ρ is a barb of ρ′(x):P .

The results of Section 2 hold for this extended calculus, with similar proofs:

Proposition 3 (Duality, extended calculus)

1. Duality of typing: Γ 2 P ⇒ Γ 2 P .
2. Duality of barbed congruence: Γ � P ∼=c Q ⇒ Γ � P ∼=c Q.

The counterpart of Theorem 2 also holds in πa, which stands for the extended
calculus of this section, where types also specify how names have to be used in
delayed prefixes. It can be stated w.r.t. πio,a, which is defined as πio with addi-
tional typing information to specify which names have to be used asynchronously.

Theorem 3 (Conservative extension, extended calculus). Suppose we
have Γ 2 P,Q in πio,a. Then Γ �P ∼=c Q (in πio,a) iff Γ r�P ∼=c Q (in πa) .

The extensions πa and πio,a are asynchronous versions of π and πio in the sense
that interaction is no longer a synchronous handshaking between two processes:
for at least one of the processes, the occurrence of the interaction is not observ-
able because the consumed action is not blocking for a continuation.

3.2 Reasoning about Links, a transformation from oe
a to ira

The main result of this section is a technical lemma about the validity of a trans-
formation which is used for the analysis of λ-calculus encodings in Section 3.3.
A reader not interested in this result may safely skip this section.

Differently from partial dualisation (Definition 7), the transformation, writ-
ten 〈〈·〉〉er, modifies prefixes, beyond simple dualisation, by introducing link pro-
cesses. It also acts on types, by mapping e-names onto r-names.

Definition 8. We set 〈〈ab.P 〉〉er = a(x).(x
 b | 〈〈P 〉〉er), where x
 b =
!x(z).bz is called a link process. We also define 〈〈ρ(x).P 〉〉er = ρ(x).〈〈P 〉〉er and
similarly for delayed prefixes. 〈〈·〉〉er leaves free outputs unchanged and acts home-
omorphically on the other constructors.

The transformation 〈〈·〉〉er removes all free inputs and inserts free outputs (in the
link process). We therefore expect it to return plain π processes. Moreover, the
process computed in the translation of free input behaves as expected provided
only the input capability is transmitted (the link process at the receiver’s side
exerts the input capability on x). Accordingly, we define Toe = μX.oeaX =
oeao

e
ao

e
a · · · , and Tir = μX.iraX = irai

r
ai

r
a · · · . We let Γir (resp. Γoe) range over

environments mapping all names to some craTir (resp. ceaToe), for c ∈ {i, o, 0}.
Lemma 8 (Typing for 〈〈·〉〉er). If Γoe 2 P then Γir 2 〈〈P 〉〉er for some Γir.

Proof. We prove by induction on P that if Γ 2 P then Γ 2 〈〈P 〉〉er. In the case
for ν we always introduce the type 0raTir. For bound prefixes we replace ceaToe
with craTir, and for free inputs we type links with Tir types. ��

Duality in the π-Calculus 313

As this result shows, 〈〈·〉〉er yields processes that only transmit the input capabil-
ity. This is reminiscent of the localised π-calculus [SW01] where only the output
capability is passed.

It can be noted that Lemma 8 holds because we enforce a “double contract”
in the typing rules (cf. Remark 1), which allows us to typecheck bound prefixes
as e-names (before the transformation) and as r-names (after).

The relationship between P and 〈〈P 〉〉er is given in terms of barbed expan-
sion precongruence, which is a preorder in between strong and weak barbed
congruence.

Definition 9 (Barbed expansion precongruence). Barbed expansion is the

largest relation �̇ such that whenever P �̇ Q,

– if P → P ′ then Q →⇒ Q′ with P ′ �̇ Q′;
– if Q → Q′ then P → P ′ or P = P ′ with P ′ �̇ Q′;
– P ↓ ρ implies Q ⇓ ρ, and Q ↓ ρ implies P ↓ ρ.

We call (resp. typed) barbed expansion precongruence (�c) the induced (resp.
typed) precongruence.

Lemma 9 (Properties of links)

1. a : iraTir, b : o
r
aTir � a
 b �c (νx)(a
 x | x
 b).

2. If Γoe, a : Toe 2 P then Γir � 〈〈P 〉〉er[b/a] �c (νa)(a
 b | 〈〈P 〉〉er).

Proof. 1. The law is valid for the ordinary π-calculus (and is substitution-closed);
Lemma 3 transfers the result to π.

2. By typing, a free output involving a in 〈〈P 〉〉er is necessarily in a link; in
this case, we can use (1). The other kind of interaction is with some a(x):Q in
〈〈P 〉〉er, and b(x):Q[b/a] behaves like (νa)(a
 b | a(x):Q[b/a]). ��

We use Lemma 9 to deduce operational correspondence.

Lemma 10 (Operational correspondence). Suppose that Γoe 2 P .

1. P ↓ ρ iff 〈〈P 〉〉er ↓ ρ.
2. If P → P ′ then 〈〈P 〉〉er →�c 〈〈P ′〉〉er.
3. If 〈〈P 〉〉er → P1 then P → P ′ and P1 �c 〈〈P ′〉〉er for some P ′.

A version of these results in the weak case can also be proved, for barbed ex-
pansion. Notably, P and 〈〈P 〉〉er exhibit the same weak barbs.

Lemma 11. If Γoe 2 P,Q then P ≈̇ Q iff 〈〈P 〉〉er ≈̇ 〈〈Q〉〉er.

Proof. We show that �̇{(〈〈P 〉〉er, 〈〈Q〉〉er) | P ≈̇ Q}�̇ and {(P,Q) | 〈〈P 〉〉er ≈̇
〈〈Q〉〉er} are weak barbed bisimulations. We then use the adaptation of Lemma 10
to the weak case, for barbed expansion. ��

314 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

Lemma 12. If Γoe 2 P,Q and Γir � 〈〈P 〉〉er ∼=c 〈〈Q〉〉er then Γoe � P ∼=c Q.

Proof. We define a type system with marks on types, such that only Tir-types
are marked. The marking propagates onto the names of the typed processes.
We modify the encoding 〈〈·〉〉er to only operate on marked prefixes. For every
(Δ/Γoe)-context C, its encoding 〈〈C〉〉er is a (Δ′/Γir)-context. Thanks to the
compositionality of 〈〈·〉〉er, the hypothesis of the lemma implies the equivalence
〈〈C[P]〉〉er ≈̇ 〈〈C[Q]〉〉er. We then adapt the proof of Lemma 11 to this marked
encoding. ��

3.3 An Analysis of van Bakel and Vigliotti’s Encoding

As announced in Section 1, we start from an adaptation of Milner’s call-by-name
(cbn) encoding of [Mil92] to strong cbn, which also allows reductions to occur
under λ. We obtain this by using a delayed prefix in the clause for λ-abstraction.
The encoding, noted �·�M, is defined as follows:

�x�Mp = xp �λx.M�Mp = p(x, q):�M�Mq

�MN�Mp = (νq)
(
�M�Mq | (νx)(q〈x, p〉 | !x(r).�N�Mr)

)
The other encoding we analyse, taken from [vBV09], is written �·�B:

�x�Bp = x(p′):p′
 p �λx.M�Bp = p(x, q):�M�Bq

�MN�Bp = (νq)
(
�M�Bq | q(x, p′).(p′
 p | !x(r).�N�Br)

)
Note that �·�B is written in [vBV09] using asynchronous free output and restric-
tion instead of delayed bound output. We can adopt this more concise notation
since (νx)(ax | P) and a(x):P are strongly bisimilar processes, and similarly
for x(p′):p′
 p and x(p′).p′
 p. (Another difference is that the replication
in the encoding of the application is guarded, as in [vBV10], to force a tighter
operational correspondence between reductions in λ and in the encodings.)

As remarked above, �·�B and �·�M differ considerably because they engage in
quite different dialogues with their environments: in �·�M a function receives its
argument via an input, in �·�B it interacts via an output. Differences are also
visible in the encodings of variables and application (e.g. the use of links).

To compare the encodings �·�M and �·�B, we introduce an intermediate en-
coding, noted �·�I , which is defined as the dual of �·�M (in π):

�x�Ip = xp �λx.M�Ip = p(x, q):�M�Iq

�MN�Ip = (νq)
(
�M�Iq | (νx)(q〈x, p〉 | !x(r).�N�Ir)

)
Note that while �·�M and �·�B can be expressed in π, �·�I uses free input, and
does thus not define π-calculus processes.

The three encodings given above are based on a similar usage of names. Two
kinds of names are used: we refer to names that represent continuations (p, p′, q, r
in the encodings) as handles, and to names that stand for λ-calculus parameters
(x, y, z) as λ-variables. Here is how these encodings can be typed in π:

Duality in the π-Calculus 315

Lemma 13 (Typing the encodings). �·�M, �·�B and �·�I yield processes
which are typable with the respective typing environments ΓM, ΓB, ΓI , where:

– ΓM types λ-variables with oraH and handles with H = μX.ird〈oraX,X〉;
– ΓB uses respectively irdG and ora〈ordG,G〉 where G = μY.ira〈ordY, Y 〉;
– ΓI is the dual of ΓM (that is, it uses iedH and H = μZ.oea〈iedZ,Z〉).

Encoding �·�I can be obtained from �·�M by duality. The only difference between
�·�I and �·�B is the presence of two links. We rely on a link transformation similar
to the one of Section 3.2 to move from �·�I to �·�B. Thus, by composing the results
on duality and on the transformation, we are able to go from �·�M to �·�B.

Proposition 4. Given two λ-terms M and N , we have �M�Mp ≈̇ �N�Mp if and

only if �M�Bp ≈̇ �N�Bp (both equivalences are in πio,a).

Proof. By duality, �M�Mp ≈̇ �N�Mp iff �M�Ip ≈̇ �N�Ip . To establish that this is

equivalent to �M�Bp ≈̇ �N�Bp , we rely on an adaptation of Lemma 11. For this,
we define a transformation that exploits the ideas presented in Section 3.2. In
particular, handles (p, p′, q, r) are treated like in Definition 8. The handling of λ-
variables (x, y, z) is somehow orthogonal, and raises no major difficulty, because
such names are always transmitted as bound (fresh) names. ��

Remark 6 (Call by name). To forbid reductions under λ-abstractions, we could
adopt Milner’s original encoding, and use an input prefix instead of delayed
input in the translation of abstractions. Accordingly, adapting Van Bakel and
Vigliotti’s encoding to this strategy would mean introducing a free input prefix
— which is rather natural in π, but is not in the π-calculus.

4 Concluding Remarks

We have presented several properties of π, and established relationships with the
π-calculus with i/o-types (πio).

The calculus π enjoys properties of dualities while being “large”, in the sense
that it incorporates many of the forms of prefix found in dialects of the π-calculus
(free input, bound input, and, in the extension in Section 3.1, also delayed input,
plus the analogue for outputs), and a non-trivial type system based on i/o-types.
This syntactic abundance makes π a possibly interesting model in which to study
various forms of dualities. This is exemplified in our study of encodings of the
λ-calculus, where we have applied π and its theory to explain a recent encoding
of cbn λ-calculus by van Bakel and Vigliotti: it can be related, via dualities, to
Milner’s encoding.

It would be interesting to strengthen the full abstraction in Lemma 11 from
barbed bisimilarity to barbed congruence. This would allow us to replace barbed
bisimilarity with typed barbed congruence in Proposition 4 as well (using the
type environments of Lemma 13). While we believe the result to be true, the
proof appears difficult because the link transformation modifies both processes

316 D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi

and types, so that the types needed for barbed congruence in the two encodings
are different. Therefore also the sets of contexts to be taken into account are
different. The problem could be tackled by combining the theory on delayed
input and the link bisimilarity in [MS04], and adapting it to a typed setting.

We plan to further investigate the behavioural theory of π, and study in par-
ticular other transformations along the lines of Section 3.2, where link processes
are used to implement substitutions. It would be interesting to provide general
results on process transformations in terms of links, when the direction and the
form of the links vary depending on the types of the names involved. Currently
we only know how to handle them when the calculus is asynchronous and lo-
calised [MS04].

As already mentioned, another interesting issue is how to accommodate i/o-
types into πI and fusion calculi while maintaining the dualities of the untyped
calculi.

Acknowledgments. This work was supported by the french ANR projects
Recre, 2009-BLAN-0169-02 Panda, and 2010-BLAN-0305-01 PiCoq.

References

[Fu97] Fu, Y.: The χ-calculus. In: Proc. of APDC 1997, pp. 74–81. IEEE Computer
Society Press (1997)

[GW00] Gardner, P., Wischik, L.: Explicit Fusions. In: Nielsen, M., Rovan, B. (eds.)
MFCS 2000. LNCS, vol. 1893, pp. 373–382. Springer, Heidelberg (2000)

[HMS12] Hirschkoff, D., Madiot, J.M., Sangiorgi, D.: On subtyping in symmetric ver-
sions of the π-calculus (in preparation, 2012)

[Mer00] Merro, M.: Locality in the pi-calculus and applications to distributed objects.
PhD thesis, École des Mines, France (2000)

[Mil92] Milner, R.: Functions as processes. Mathematical Structures in Computer
Science 2(2), 119–141 (1992)

[MS04] Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Mathemat-
ical Structures in Computer Science 14(5), 715–767 (2004)

[PV98] Parrow, J., Victor, B.: The fusion calculus: expressiveness and symmetry in
mobile processes. In: Proc. of LICS, pp. 176–185. IEEE (1998)

[San96] Sangiorgi, D.: π-calculus, internal mobility, and agent-passing calculi. Se-
lected papers from TAPSOFT 1995, pp. 235–274. Elsevier (1996)

[SW01] Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes.
Cambridge University Press (2001)

[Vas09] Vasconcelos, V.T.: Fundamentals of Session Types. In: Bernardo, M.,
Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 158–186.
Springer, Heidelberg (2009)

[vBV09] van Bakel, S., Vigliotti, M.G.: A Logical Interpretation of the λ-Calculus
into the π-Calculus, Preserving Spine Reduction and Types. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 84–98. Springer,
Heidelberg (2009)

[vBV10] van Bakel, S., Vigliotti, M.G.: Implicative logic based encoding of the λ-
calculus into the π-calculus (2010), http://www.doc.ic.ac.uk/~svb/

http://www.doc.ic.ac.uk/~svb/

Spatial and Epistemic Modalities
in Constraint-Based Process Calculi

Sophia Knight2, Catuscia Palamidessi2, Prakash Panangaden3, and Frank D. Valencia1

1 CNRS and LIX École Polytechnique de Paris
2 INRIA and LIX École Polytechnique de Paris

3 School of Computer Science, McGill University

Abstract. We introduce spatial and epistemic process calculi for reasoning about
spatial information and knowledge distributed among the agents of a system. We
introduce domain-theoretical structures to represent spatial and epistemic infor-
mation. We provide operational and denotational techniques for reasoning about
the potentially infinite behaviour of spatial and epistemic processes. We also give
compact representations of infinite objects that can be used by processes to sim-
ulate announcements of common knowledge and global information.

Introduction

Distributed systems have changed substantially in the recent past with the advent of
phenomena like social networks and cloud computing. In the previous incarnation of
distributed computing [16] the emphasis was on consistency, fault tolerance, resource
management and related topics; these were all characterized by interaction between pro-
cesses. Research proceeded along two lines: the algorithmic side which dominated the
Principles Of Distributed Computing conferences and the more process algebraic ap-
proach epitomized by CONCUR where the emphasis was on developing compositional
reasoning principles. What marks the new era of distributed systems is an emphasis on
managing access to information to a much greater degree than before.

Epistemic concepts were crucial in distributed computing as was realized in the mid
1980s with Halpern and Moses’ groundbreaking paper on common knowledge [13].
This led to a flurry of activity in the next few years [11] with many distributed protocols
being understood from an epistemic point of view. The impact of epistemic ideas in
the concurrency theory community was slower in coming. In an invited talk by one of
us [20] at a joint PODC-CONCUR conference in 2008, this point was emphasized and
a plea was made for epistemic ideas to be exploited more by concurrency theorists.

The goal of the present paper is simple: to put epistemic concepts in the hands of
programmers rather than just appearing in post-hoc theoretical analyses. One could
imagine the incorporation of these ideas in a variety of process algebraic settings – and
indeed we expect that such formalisms will appear in due course – but what is partic-
ularly appealing about the concurrent constraint programming (ccp) paradigm [24,25]
is that it was designed to give programmers explicit access to the concept of partial
information and, as such, had close ties with logic [21,18]. This makes it ideal for the
incorporation of epistemic concepts by expanding the logical connections to include

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 317–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

318 S. Knight et al.

modal logic [15]. In particular, agents posting and querying information in the presence
of spatial hierarchies for sharing information and knowledge, e.g. friend circles and
shared albums in social networks or shared folders in cloud storage, provide natural ex-
amples of managing information access. These domains raise important problems such
as the design of models to predict and prevent privacy breaches, which are common-
place nowadays.

Contributions. In ccp [24,25] processes interact with each other by querying and post-
ing information to a single centralized shared-store. The information and its associated
partial order are specified as a constraint system, which can be seen as a Scott informa-
tion system without consistency structure [1]. The centralized notion of store, however,
makes ccp unsuitable for systems where information and processes can be shared or
spatially distributed among certain groups of agents. In this paper we enhance and gen-
eralize the theory of ccp for systems with spatial distribution of information.

In Section 1 we generalize the underlying theory of constraint systems by adding
space functions to their structure. These functions can be seen as topological and closure
operators and they provide for the specification of spatial and epistemic information.
In Section 2 we extend ccp with a spatial/epistemic operator. The spatial operator can
specify a process, or a local store of information, that resides within the space of a given
agent (e.g., an application in some user’s account, or some private data shared with a
specific group). This operator can also be interpreted as an epistemic construction to
specify that the information computed by a process will be known to a given agent. It
is crucial that one make the distinction between agent and process. The processes are
programs, they are mindless and do not “know” anything; the agents are other primitive
entities in our model that can be viewed as spatial locations (a passive view) or as
active entities that control a locus of information and interact with the global system by
launching processes.

It also worth noticing that the ccp concept of local variables cannot faithfully model
what we are calling local spaces, since in our spatial framework we can have inconsis-
tent local stores without propagating their inconsistencies towards the global store.

In Section 3 we give a natural notion of observable behaviour for spatial/epistemic
processes. Recursive processes are part of our framework, accordingly the notion of
observable may involve limits of the spatial information in fair, possibly infinite, com-
putations. These limits may result in infinite or, more precisely, non-compact objects
involving unbounded nestings of spaces, or epistemic specifications such as common
knowledge. We then provide a finitary characterization of these observables avoiding
complex concepts such as fairness and limits. We also provide a compositional deno-
tational characterization of the observable behaviour. Finally, in Section 4 we address
the technical issue of giving finite approximations of non-compact information. (An
extended version of this work is at http://www.lix.polytechnique.fr/∼fvalenci/papers/
eccp-extended.pdf.)

1 Space and Knowledge in Constraint Systems

In this section we introduce two new notions of constraint system for reasoning about
distributed information and knowledge in ccp. We presuppose basic knowledge of do-
main theory and modal logic [1,22].

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 319

Flat Constraint Systems. The ccp model is parametric in a constraint system (cs)
specifying the structure and interdependencies of the information that processes can
ask of and add to a central shared store. This information is represented as assertions
traditionally referred to as constraints. Following [8,21] we regard a cs as a complete
algebraic lattice in which the ordering) is the reverse of an entailment relation: c) d
means d entails c, i.e., d contains “more information” than c. The top element false
represents inconsistency, the bottom element true is the empty constraint, and the least
upper bound (lub) � is the join of information.

⊔
S is the lub of the elements in S.

Definition 1 (cs). A constraint system (cs) C = (Con ,Con0,),�, true, false) is a
complete algebraic lattice where Con , the set of constraints, is a partially ordered set
wrt), Con0 is the subset of compact elements of Con , � is the lub operation defined
on all subsets, and true, false are the least and greatest elements of Con , respectively.

Remark 1. Recall that C is a complete lattice iff each subset of Con has a least upper
bound in Con . Also c ∈ Con is compact (finite) iff for any directed subset D of Con ,
c)
⊔

D implies c) d for some d ∈ D. C is algebraic iff for each c ∈ Con, the set of
compact elements below it forms a directed set and the lub of this directed set is c.

Example 1. We briefly explain the Herbrand cs from [24,25]. This cs captures syntac-
tic equality between terms t, t′, . . . built from a first-order alphabet L with countably
many variables x, y, . . ., function symbols, and equality =. The constraints are sets of
equalities over the terms of L (e.g., {x = t, y = t} is a constraint). The relation c) d
holds if the equalities in c follow from those in d (e.g., {x = y}) {x = t, y = t}). The
constraint false is the set of all term equalities in L and true is (the equivalence class
of) the empty set. The compact elements are the (equivalence clases of) finite sets of
equalities. The lub is (the equivalence class of) set union. (See [24,25] for full details).

Spatial Constraint Systems. A crucial issue in distributed and multi-agent scenarios
is that agents may have their own space for their local information or for performing
their computations. We shall address this issue by introducing a notion of space for
agents. In our approach each agent i has a space si. We can then think of si(c) as an
assertion stating that c holds within a space attributed to agent i. Thus, given a store
s = si(c)� sj(d)� e we may think of c and d as holding within the spaces that agents i
and j have in s, respectively. Similarly, si(sj(c)) can be viewed as a hierarchical spatial
specification stating that c holds within the space the agent i attributes to agent j.

An n-agent spatial constraint system (n-scs) is a cs parametric in n structure-
preserving constraint mappings s1, . . . , sn capturing the above intuitions.

Definition 2 (scs). An n-agent spatial constraint system (n-scs) C is a cs equipped
with n lub and bottom preserving maps s1, . . . , sn over its set of constraints Con . More
precisely, each si : Con → Con must satisfy the following properties: (S.1) si(true) =
true, and (S.2) si(c � d) = si(c) � si(d).

Henceforth, given an n-scs C, we refer to each si as the space (function) of agent
i in C. We use (Con ,Con0,),�, true, false , s1, . . . , sn) to denote the corresponding

320 S. Knight et al.

n-scs with space functions s1, . . . , sn. We shall simply write “scs” when n is unimpor-
tant. Intuitively, S.1 states that having an empty local store amounts to nothing and S.2
allows us to join pieces of information of agent i. From S.2 one can draw the immediate
inference that space functions are monotone: Property S.3 below says that if c can be
derived from d then any agent should be able to derive c from d within its own space.

Corollary 1. Let C be an n-scs with space functions s1, . . . , sn. Then for each si the
following property holds: (S.3) If c) d then si(c)) si(d).

Inconsistency Confinement. In an scs nothing prevents us from having si(false) �=
false . Intuitively, inconsistencies generated by an agent may be confined within its own
space. It is also possible to have si(c) � sj(d) �= false even when c � d = false ;
i.e. we may have agents whose information is inconsistent with that of other agents.
This reflects the distributive nature of the agents as they may have different information
about the same incident. The following notions capture the above-mentioned situations.

Definition 3. An n-scs C = (Con ,Con0,),�, true, false, s1, . . . , sn) is said to be
(i, j) space-consistent wrt (c, d) iff si(c) � sj(d) �= false . Also, C is said to be (i, j)
space-consistent iff it is (i, j) space-consistent wrt to each (c, d) ∈ Con × Con . Fur-
thermore, C is space-consistent iff it is (i, j) space-consistent for all i, j ∈ {1, . . . , n}.

We will see an important class of logical structures characterized as space-consistent
scs’s in Applications (Section 1). From the next proposition we conclude that to check
(i, j) space-consistency it is sufficient to verify whether si(false) � sj(false) �= false .

Proposition 1. Let C be an n-scs with space functions s1, . . . , sn. Then (1) C is (i, j)
space-consistent if si(false) � sj(false) �= false and (2) if C is (i, j) space-consistent
then si(false) �= false.

Distinctness preservation. Analogous to inconsistency confinement, we could have
si(c) = si(d) for c �= d. Depending on the intended model this could be interpreted
as saying that agent i cannot distinguish c from d. For some applications, however, one
may require the space functions to preserve distinctness

Definition 4. An n-scs C preserves distinctness iff all its space functions are injective.

Shared and Global Information. We conclude by introducing a lub construction that
captures the intuition that a given constraint holds in a shared space and globally.

Definition 5. Let C be an n-scs with space functions s1, . . . , sn. Group-spaces sG(·)
and global information gG(·) of G ⊆ {1, . . . , n} are defined thus: sG(c) =

⊔
i∈G si(c)

and gG(c) =
⊔∞
j=0 s

j
G(c), where s0G(c) = c and sk+1

G (c) = sG(s
k
G(c)).

The constraint gG(c) is easily seen to entail c and si1(si2(. . . (sim(c)) . . .)) for any
{i1, . . . , im} ⊆ G. Thus it realizes the intuition that c holds globally wrt G: c holds in
each nested space involving only the agents in G.

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 321

Epistemic Constraint Systems. We now wish to use si(c) to represent not only some
information c that agent i has but rather a fact that he knows. In this case, (i, j)-space
consistency wrt any pair of inconsistent information (Definition 3) would not be con-
sidered admissible. For in epistemic reasoning if an agent knows facts, those facts must
be true, hence asserting that an agent i knows false or inconsistent information would
be a fallacy. Thus, si(false) = false and si(c) � sj(d) = false if c � d = false .

The domain theoretical nature of constraint systems allows for a rather simple and el-
egant characterization of knowledge by requiring our space functions to be Kuratowski
closure operators [17]: i.e., lub and bottom preserving closure operators.

Definition 6 (n-ecs). An n-agent epistemic constraint system (n-ecs) C is an n-scs
whose space functions s1, . . . , sn are also closure operators. Thus, in addition to S.1,
S.2 in Def. 2, each si also satisfies: (E.1) c) si(c) and (E.2) si(si(c)) = si(c).

Intuitively, in an n-ecs, si(c) states that the agent i has knowlege of c in its store si. The
axiom E.1 says that if agent i knows c then c must hold, hence si(c) has at least as much
information as c. The epistemic principle that an agent i is aware of its own knowledge
(the agent knows what he knows) is realized by E.2. Also the epistemic assumption that
agents are idealized reasoners follows from S.3 in Corollary 1; for if c is a consequence
of d (c) d) then if d is known to agent i, so is c, si(c)) si(d).

Common Knowledge. Epistemic constructions such as “the agent i knows that agent j
knows c” can be expressed as si(sj(c)). The group knowledge of a fact c in a group of
agents G happens when all the agents in G know c. This can be represented as sG(c) in
Definition 5. Similarly, common knowlege of a fact c in a group G happens when all the
agents in G know c, they all know that they know c, and so on ad infinitum. This can be
captured by the lub construction gG(c) in Definition 5.

Remark 2. Consider an n-ecs C whose compact elements Con0 are closed under the
space functions: i.e., if c ∈ Con0 the si(c) ∈ Con0. Clearly Con0 is closed under group
knowledge sG(c) since G is finite. It is not necessarily closed under common knowledge
gG(c) because, in general,

⊔∞
j=1 s

j
G(c) cannot be finitely approximated. Nevertheless,

in Applications (Section 1) we shall identify families of scs’s where Con0 is closed
under common knowledge, and in Section 4 we address the issue of using suitable
over-approximations of common knowledge.

The following proposition states two distinctive properties of ecs’s: They are not space-
consistent, as argued above, and those whose space function is not the identity do not
preserve distinctness. We use id for the identity space function.

Proposition 2. Let C be an n-ecs with space functions s1, . . . , sn. For each i, j ∈
{1, . . . , n}: (1)C is not (i, j)-space consistent, and (2) if si �= id then si is not injective.

Applications. We shall now illustrate important families of scs’s. The families reveal
meaningful connections between our scs’s and models of knowledge and belief [11].

322 S. Knight et al.

Aumann Constraint Systems. Aumann structures [11] are an alternative event-based
approach to modelling knowledge. An Aumann structure is a tuple A = (S,P1, ...,Pn)
where S is a set of states and each Pi is a partition on S for agent i. We call these
partitions information sets. If two states t and u are in the same information set for
agent i, it means that in state t agent i considers state u possible, and vice versa. An
event in an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The
conjunction of two events is their intersection and knowledge operators are defined as
Ki(e) = {t ∈ S | Pi(t) ⊆ e} where Pi(t) denotes the set where t appears in Pi.

We define the Aumann n-ecs C(A) as follows: The constraints are the events, i.e.,
Con = {e | e is an event in A}, e1) e2 iff e2 ⊆ e1, � is the set intersection of two
events, true is the event containing every state in S, and false is the event containing
no states. The space function for each agent i is given by si(e) = Ki(e). ��

Theorem 1. For any Aumann structure A = (S,P1, ...,Pn), C(A) is an n-ecs.

Aumann constraint systems are ecs’s, thus they are not space-consistent (Proposition
2). We shall now identify a meaningful scs that is space-consistent.

Kripke Constraint Systems. A Kripke structure can be seen as a labeled transition sys-
tem (LTS) where the labels represent agents and the transitions represent accessibility

relations for the agents: if s
i−→ t then in state s, agent i considers t possible. An epis-

temic Kripke structure is an LTS where the transition relations are equivalences. In the
following scs, the constraints are sets of pointed Kripke structures, i.e., sets of pairs
(M, s) where M is a Kripke structure and s is a state of M .

Consider a set of Kripke structures M over agents {1, ..., n}. Let ΔM be the set
{(M, t) | M ∈ M and t ∈ St(M)} where St(M) denotes the set of states of M .
Define an n-scs C(ΔM) as follows: Let Con = P(ΔM) and c1) c2 iff c2 ⊆ c1. This
generates a complete algebraic lattice, where c1 � c2 is the set intersection of c1 and
c2. The compact elements of the lattice are the cofinite sets, that is, if ΔM\c is a finite
set, then c is a compact element in the lattice. Finally, define si(c) = {(M, t) | ∀t′ ∈
St(M)

[
t
i−→M t′ =⇒ (M, t′) ∈ c

]
}– this definition is reminiscent of the semantics of

the box modality in modal logic [22]. ��
The following theorem gives us a taxonomy of scs’s for the above construction.

Theorem 2. For any non-empty set of Kripke structures M over agents {1, ..., n}, (1)
C(ΔM) is an n-scs, (2) if M is the set of all pointed Kripke structures, C(ΔM) is a
space-consistent n-scs, and (3) if M is the set of all pointed Kripke structures whose
accessibility relations are equivalences then C(ΔM) is an n-ecs.

Remark 3. Consider the modal formulae given by φ := p | φ ∧ φ | �iφ, where p
is a basic proposition, and the corresponding usual notion of satisfaction over Kripke
models for propositions, conjunction and the box modality (see [22]). We abuse the
notation and use a formulaφ to denote the set of all pointed Kripke structures that satisfy
φ. With the help of the above theorem, one can establish a correspondence between the
n-scs satisfying the premise in (2) and the modal system Kn [11] in the sense that φ is
above φ′ in the lattice iff we can derive in Kn that φ implies φ′ (written 2KN φ ⇒ φ′).
Similarly, for the n-scs satisfying (3) and the epistemic system S4n [11].

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 323

We conclude by giving sufficient conditions for compactness of the constraints in
C(ΔM). The compact elements of C(ΔM) are the cofinite subsets of ΔM. If ΔM

is a finite set (this occurs if M is a finite set of finite state Kripke structures), then every
subset of ΔM is cofinite, and therefore each element of the lattice is compact, even
gG(c) (Remark 2). Thus, if ΔM is finite then each constraint in C(ΔM) is compact.

2 Space and Knowledge in Processes

We now introduce two ccp variants: spatial ccp (sccp) and epistemic ccp (eccp). The
former is a conservative extension of ccp to model agents with spaces, possibly nested,
in which they can store information and run processes. Its underlying cs is an scs. The
latter extends the former with additional rules to model agents that interact by asking
and computing knowledge within the spatial information distribution. Its underlying scs
is an ecs. For semantic reasons, we require our scs be continuous and space-compact.

Definition 7. An n-scs C = (Con ,Con0,),�, true, false, s1, . . . , sn) is said to be
continuous iff for every directed set S ⊆ Con and every si, si(

⊔
S) =

⊔
e∈S si(e).

Furthermore C is said to be space-compact iff for every si, si(c) ∈ Con0 if c ∈ Con0.

Our examples (Applications, Section 1) can be shown to be continuous. Aumann ecs’s
are space-compact under the additional condition that every set in each partition is finite.
A Kripke scs is space-compact if the inverse of the accessibility relation is finitely-
branching. In the special case of Kripke ecs’s this is the same as requiring each agent’s
accessibility relation to be finitely-branching since these relations are reflexive.

Syntax. The following syntax of processes will be common to both calculi. 1

Definition 8. Let C = (Con ,Con0,),�, true, false, s1, . . . , sn) be a continuous and
space compact n-scs. Let A = {1, ..., n} be the set of agents. Assume a countable
set of variables Vars = {X ,Y , . . .}. The terms are given by the following syntax:

P,Q . . . ::= 0 | tell(c) | ask(c) → P | P ‖ Q | [P]i | X | μX.P

where c ∈ Con0, i ∈ A, and X ∈ Vars. A term T is said to be closed iff every variable
X in T occurs in the scope of an expression μX.P . We shall refer to closed terms as
processes and use Proc to denote the corresponding set.

Before giving semantics to our processes, we give some intuitions about their behaviour.
The basic processes are tell, ask, and parallel composition and they are defined as in
standard ccp [25]. Intuitively, tell(c) in a store d adds c to d to make c available to
other processes with access to this store. This addition, represented as d�c, is performed
whether or not d � c = false . The process ask(c) → P in a store e may execute P if c
is entailed by e, i.e., c) e . The process P ‖ Q stands for the parallel execution of P
and Q. The following example will be referred to throughout the paper.

Example 2. Let us take P = tell(c) and Q = ask(c) → tell(d). From the above
intuitions, it follows that in P ‖ Q both c and d will be added to the store.

1 For the sake of space and clarity, we dispense with the local/hiding operator.

324 S. Knight et al.

Spatial Processes. Our spatial ccp variant can be thought of as a shared-spaces model
of computation. Each agent i ∈ A may have computational spaces of the form [·]i
where processes as well as other agents’ spaces may reside. It also has a space function
si representing the information stored in its spaces. Recall that si(c) states that c holds
in the space of agent i. Similarly, si(sj(c)) means that c holds in the store that agent
j has within the space of agent i. Unlike any other ccp calculus, it is possible to have
agents with inconsistent information since c � d = false does not necessarily imply
si(c) � sj(d) = false (see space-consistent ecs in Definition 3).

The spatial construction [P]i represents a process P running within the space of
agent i. Any information c that P produces is available to processes that lie within the
same space. We shall use [P]G, where G ⊆ A, as an abbreviation of ‖i∈G [P]i.

Example 3. Consider [P]i ‖ [Q]i with P and Q as in Ex. 2. From the above intuitions it
follows that both c and d will be added to store of agent i, i.e., we will have si(c)�si(d).
Similarly, [P ‖ Q]i will produce c � d in the store of agent i, i.e., si(c � d) which from
the scs axioms is equivalent to si(c) � si(d). In fact, we will equate the behaviour of
[P]i ‖ [Q]i with that of [P ‖ Q]i. In [P]j ‖ [Q]i for i �= j, d will not necessarily be
added to the space of i because c is not made available for agent i. Also in P ‖ [Q]i, d
is not added to the the space of i. In this case, however, we may view the c told by P as
being available at an outermost space that does not belong to any agent. This does not
mean that c holds everywhere, i.e., globally (Def. 5). Finally, consider [P]{i,j} ‖ [[Q]i]j .
Here d will not necessarily be added to the space agent i has within the space of agent
j because in an scs although si(c) and sj(c) hold, sj(si(c)) may not hold.

Epistemic Processes. For our epistemic ccp variant, we shall further require that the
underlying scs be epistemic, i.e., an ecs. This gives the operator [P]i additional be-
haviour. From an epistemic point of view, the information c produced by P not only
becomes available to agent i, as in the spatial case, but also it becomes a fact. This does
not necessarily mean, of course, that c will be available everywhere, as there are facts
that some agents may not know. It does mean, however, that unlike the spatial case,
we cannot allow agents’ spaces to include inconsistent information, as facts cannot be
contradictory–in an ecs, c � d = false implies si(c) � sj(d) = false .

Operationally, [P]i causes any information c produced by P to become available not
only in the space of agent i but also in any space in which [P]i is included. This is
because epistemically si(c) = c � si(c) so if sj(si(c)) holds, then sj(c � si(c)) also
holds, and similarly c � sj(c � si(c)). This can be viewed as saying that c propagates
outward in space.

Example 4. Consider [Q ‖ [P]i]j with P and Q as in Example 2. Notice that from ex-
ecuting P we obtain sj(si(c)). In the spatial case, Q will not necessarily tell d because
in an scs, sj(si(c)) may not entail sj(c). On the other hand, in the epistemic case, Q
will tell d since in any ecs, sj(si(c)) = sj(c � si(c)) which entails sj(c).

Infinite Processes. Unbounded behaviour is specified using recursive definitions of the
form μX.P whose behaviour is that of P [μX.P/X], i.e., P with every free occurrence
of X replaced with μX.P. We assume that recursion is ask guarded: i.e., for every

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 325

Table 1. Rules for sccp and eccp (see Convention 1). The projection ci is given in Definition 9.
The symmetric right rule for PL, PR, is omitted. Rule E only applies to eccp.

T〈tell(c), d〉−→〈0, d ! c〉 A
c " d

〈ask (c) → P, d〉−→〈P, d〉
PL

〈P, d〉−→〈P ′, d′〉
〈P ‖ Q, d〉−→〈P ′ ‖ Q, d′〉

R
〈P [μX.P/X], d〉−→γ

〈μX.P, d〉−→γ
S

〈P, ci〉−→〈P ′, c′〉
〈[P]i , c〉−→〈[P ′]i , c ! si(c

′)〉
E

〈P, c〉−→〈P ′, c′〉
〈[P]i , c〉−→〈[P]i ‖ P ′, c′〉

μX.P , each occurrence of X in P occurs under the scope of an ask process. For sim-
plicity we assume an implicit “ask(true) → ” in unguarded occurrences of X .

Recursive definitions allow us to define complex spatial and epistemic situations.

Given G ⊆ A and a basic process P we define global (G,P)
def
= P ‖ μX. [P ‖ X]G .

Intuitively, in global (G,P) any information c produced by P will be available at any
space or any nesting of spaces involving only the agents in G. Consider the process
global (G,P) ‖

[
[. . . [Q]km . . .]k2

]
k1

where G = {k1, ..., km} ⊆ A, with P and Q as

in Example 2. The process global (G,P) eventually makes c available in the (nested)
space

[
[. . . [·]km . . .]k2

]
k1

and thus Q will tell d in that space.

Spatial and Epistemic Reduction Semantics. We now define a structural operational
semantics (sos) for sccp and eccp. We begin with the sos for the spatial case. The sos
for the epistemic case extends the spatial one with an additional rule and the assumption
that the underlying scs is an ecs. Henceforth we shall use the following convention:

Convention 1. The relations in following sections assume an underlying continuous
and space-compact n-scs C = (Con ,Con0,),�, true, false , s1, . . . , sn). We some-
times index them with “s” if they are interpreted for sccp, and with “e” if they are
interpreted for eccp. We often omit the indexes when they are irrelevant or obvious.

A configuration is a pair 〈P, c〉 ∈ Proc × Con where c represents the current spatial
distribution of information in P . We use Conf with typical elements γ, γ′, . . . to denote
the set of configurations. The sos for sccp is given by means of the transition relation
between configurations −→s ⊆ Conf ×Conf obtained by replacing −→ with −→s in
the rules A, T, PL (and its symmetric version), R, and S in Table 1.

The rules A, T, PL, and R for the basic processes and recursion are standard in ccp
and they are easily seen to realize the above intuitions (see [25]). The rule S for the
new spatial operator is more involved and we explain it next. First we introduce the
following central notion defining the projection of a spatial constraint c for agent i.

Definition 9 (Views). The agent i’s view of c, ci, is given by ci =
⊔
{d | si(d)) c}.

Intuitively, ci represents all the information the agent i may see or have in c. For exam-
ple if c = si(d) � sj(e) then agent i sees d, so d) ci. Observe that if si(d) = si(d

′)
then (si(d))

i entails both d and d′. This is intended because si(d) = si(d
′) means that

326 S. Knight et al.

agent i cannot distinguish d from d′. The constraint ci enjoys the following property
which will be useful later on.

Lemma 1. For any constraint c, c � si(c
i) = c.

Let us now describe the rule S for the spatial operator. First, in order for [P]i with store
c to make a reduction, the information agent i sees or has in c must allow P to make the
reduction. Hence we run P with store ci. Second, the information d that P ’s reduction
would add to ci is what [P]i adds to the space of agent i as stated in Proposition 3
below.

Proposition 3. If 〈P, ci〉 −→ 〈P ′, ci � d〉 then 〈[P]i , c〉 −→ 〈[P ′]i , c � si(d)〉.

Next we show an instructive reduction involving the use of the S rule.

Example 5. Take R = [P]i ‖ [Q]i with P and Q as in Example 2. One can verify
that 〈R, true〉 −→ 〈[0]i ‖ [Q]i, si(c)〉 −→ 〈[0]i ‖ [0]i, si(c) � si(d)〉. Recall that
si(c) � si(d) = si(c � d). A more interesting example is T = [tell(c′)]i ‖ [Q]i under
the assumption that si(c) = si(c

′). We have 〈T, true〉 −→ 〈[0]i ‖ [Q]i, si(c
′)〉 −→

〈[0]i ‖ [0]i, si(c
′) � si(d)〉. d is told by Q within the space of i because si(c) = si(c

′),
so c and c′ are regarded as equivalent by i.

Epistemic Semantics. The eccp sos assumes that the underlying scs is an ecs. As ex-
plained earlier given [P]i, the information c produced by P not only becomes available
to agent i but also becomes a fact within the hierarchy of spaces in which [P]i is in-
cluded. This means that c is available not only in the space of agent i but also in any
space in which [P]i is included. We can view this as saying that c propagates outwards
through the spaces [P]i is in and this is partly realized by the equation si(c) = c� si(c)
which follows from E.1 in ecs (Definition 6). Mirroring this constraint equation and
epistemic reasoning, the behaviour of [P]i and P ‖ [P]i must also be equated (since
P can only produce factual information). This makes [P]i reminiscent of the replica-
tion/bang operator in the π-calculus [19]. For eccp we include Rule E in Table 1. As
illustrated in Example 6, Rule E is necessary for the behaviour of [P]i and P ‖ [P]i to
be the same, corresponding to the epistemic principles we wish to mimic.

The sos of eccp is given by the transition relation between configurations −→e ⊆
Conf ×Conf obtained by replacing −→ with −→e in the rules in Table 1 and assuming
the underlying scs to be an ecs.

Example 6. Let R = [P ‖ [Q]i]j and T = [P ‖ [Q]i ‖ Q]j with P and Q as in Exam-
ple 2. We wish to equate R and T to mimic epistemic principles. Even assuming an
ecs, with only the rules of sccp (i.e., without Rule E), T can produce sj(d), d in the
store of agent j, but R is not necessarily able to do this: One can verify that there are
T ′, e′ s.t. 〈T, true〉 −→∗

s 〈T ′, e′〉 and sj(d)) e′, while, in general, for all R′, e′′ s.t.,
〈R, true〉 −→∗

s 〈R′, e′′〉 we have sj(d) �) e′′. With the rules of eccp, however, one can
verify for each e′ s.t. 〈T, true〉 −→∗

e 〈T ′, e′〉 there exists e′′, 〈R, true〉 −→∗
e 〈R′, e′′〉

such that e′) e′′ (and vice-versa with the roles of R and T interchanged).

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 327

3 Observable Behaviour of Space and Knowledge

A standard notion of observable behaviour in ccp involves infinite fair computations and
information constructed as the limit of finite approximations. For our calculi, however,
these limits may result in infinite (or non-compact) objects involving arbitrary nesting
of spaces, or epistemic specifications such as common knowledge. In this section we
provide techniques useful for analyzing the observable behaviour of such processes
using simpler finitary concepts and compositional reasoning.2

The notion of fairness is central to the definition of observational equivalence for
ccp. We introduce this notion following [12]. Any derivation of a transition involves an
application of Rule A or Rule T. We say that P is active in a transition t = γ−→γ′ if
there exists a derivation of t where rule A or T is used to produce a transition of the
form 〈P, d〉−→γ′′. Moreover, we say that P is enabled in γ if there exists γ′ such that
P is active in γ−→γ′. A computation γ0−→γ1−→γ2−→ . . . is said to be fair if for
each process enabled in some γi there exists j ≥ i such that the process is active in γj .

Observing Limits. A standard notion of observables for ccp is the results computed by a
process for a given initial store. The result of a computation is defined as the least upper
bound of all the stores occurring in the computation, which, thanks to the monotonic
properties of our calculi, form an increasing chain. More formally, given a finite or
infinite computation ξ of the form 〈Q0, d0〉−→〈Q1, d1〉−→〈Q2, d2〉−→ . . . the result
of ξ, denoted by Result(ξ), is the constraint

⊔
i di. In our calculi all fair computations

from a configuration have the same result: Let γ be a configuration and let ξ1 and ξ2
be two computations of γ. We can show that if ξ1 and ξ2 are fair, then Result(ξ1) =

Result(ξ2). We can then set Result(γ)
def
= Result(ξ) for any fair computation ξ of γ.

Definition 10. (Observational equivalence) Let O : Proc → Con0 → Con be given
by O(P)(d) = Result(〈P, d〉). We say that P and Q are observationally equivalent,
written P ∼o Q, iff O(P) = O(Q).

Example 7. The observation we make of the recursive process global (G, tell(c)) on
input true is the limit gG(c) (Definition 5). I.e., O(global (G, tell(c)))(true) = gG(c).

The relation ∼o can be shown to be a congruence, i.e., it is preserved under arbitrary
contexts. Recall that a context C is a term with a hole •, so that replacing it with a
process P yields a process term C(P). E.g., if C = [•]i then C(tell(d)) = [tell(d)]i .

Theorem 3. P ∼o Q iff for every context C, C(P) ∼o C(Q).

Observing Barbs. In the next section we shall show that the above notion of observa-
tion has pleasant and useful closure properties like those of basic ccp. Some readers,
however, may feel uneasy with observable behaviour involving notions such as infinite
fair computations and limits, i.e., possibly infinite (or non-compact) elements. Never-
theless, we can give a finitary characterization of behavioral equivalence for our calculi,
involving only finite computations and compact elements.

2 See Convention 1.

328 S. Knight et al.

A barb is an element of Con0, i.e., a compact element. We say that γ = 〈P, d〉
satisfies the barb c, written γ ↓c, iff c) d; γ weakly satisfies the barb c, written γ ⇓c,
iff there is γ′ s.t. γ−→∗γ′ and γ′ ↓c. E.g., 〈tell(c) ‖ ask c → [tell(d)]i , true〉 ⇓si(d).

Definition 11. P and Q are barb equivalent, written P ∼b Q, iff ∀d ∈ Con0, 〈P, d〉
and 〈Q, d〉 weakly satisfy the same barbs.

We now establish the correspondence between our process equivalences. First we recall
some facts from domain theory central to our proof of the correspondence. Two (possi-
bly infinite) chains d0) d1) · · ·) dn) . . . and e0) e1) · · ·) en) . . . are said
to be cofinal if for all di there exists an ej such that di) ej and vice versa.

Lemma 2. Let d0) d1) · · ·) dn) . . . and e0) e1) · · ·) en) . . . be two
chains. (1) If they are cofinal, then they have the same limit, i.e.,

⊔
di =

⊔
ei. (2) If all

elements of both chains are compact and
⊔

di =
⊔

ei, then the two chains are cofinal.

The proof of the correspondence shows that the stores of any pair of fair computations
of equivalent processes form pairs of cofinal chains. It also uses a relation between weak
barbs and fair computations: Let 〈P0, d0〉−→〈P1, d1〉−→ . . .−→〈Pn, dn〉−→ . . . be
a fair computation. We can show that if 〈P0, d0〉 ⇓c then there exists a store di s.t.,
c) di. With these observations we can show that two processes are not observationally
equivalent on a given input iff there is a compact element that tells them apart.

Theorem 4. ∼o = ∼b .

Denotational Semantics. Here we define a denotational characterization of observ-
able behaviour that allows us to reason compositionally about our spatial/epistemic
processes. First we can show that the behaviour of a process P , O(P), is a closure
operator on). The importance of O(P) being a closure operator on) is that it is
fully determined by its fixed points fix(O(P)) = {d | O(P)(d) = d}. More precisely,
O(P)(c) =

⊔
{d ∈ Con | c) d and d ∈ fix(O(P))}. Therefore,

Corollary 2. O(P) = O(Q) iff fix(O(P)) = fix (O(Q)).

We now give a compositional denotational semantics [[P]] that captures exactly the set
of fixed points of O(P). More precisely, let I be an assignment function from Var , the
set of process variables, to P(Con). Given a term T , [[T]]I is meant to capture the fixed
points of T under the assignment I . Notice that if T is a process P , i.e., a closed term,
the assignment is irrelevant so we simply write [[P]]. The denotation for processes in
sccp is given by the equations DX, D0, DT, DA, DP and DS in Table 2. The denotation
for the processes in eccp is given by the same rules except that the rule DS is replaced
with the rule DE in Table 2.

The denotations of the basic operators are the same as in standard ccp [25] and are
given by equations D0, DT, DA and DP. E.g., DA says that the set of fixed points of
ask c → P are those d that do not entail c or that if they do entail c then they are fixed
points of P. The denotation of a term X under I is I(X) (see DX). The equation DR for
μX.P follows from the Knaster-Tarski theorem in the complete lattice (P(Con),⊆).

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 329

Table 2. Denotational Equations for sccp and eccp. I : Var → P(Con).

DX [[X]]I = I(X) DP [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I D0 [[0]]I = {d | d ∈ Con}
DT [[tell(c)]]I = {d | c " d} DA [[ask(c)−→P]]I = {d | c " d and d ∈ [[P]]I} ∪ {d | c �" d}

DR [[μX.P]]I =
⋂{S ⊆ P(Con) | [[P]]I[X:=S] ⊆ S}

DS [[[P]i]]I = {d | di ∈ [[P]]I} (for sccp) DE [[[P]i]]I = {d | di ∈ [[P]]I} ∩ [[P]]I (for eccp)

The denotation of [P]i in the spatial case is given by equation DS. It says that d is
a fixed point for [P]i if di ∈ [[P]]. Recall that di is i’s view of d, so if di ∈ [[P]], then
i’s view of d is a fixed point for P . In the operational semantics, the S rule is the only
applicable rule for this case. We can use Lemma 1, which says that d = d � si(d

i), to
prove that if di is a fixed point for P then d is a fixed point for [P]i.

The denotation of [P]i in the epistemic case is given by DE instead of DS. It says
that d is a fixed point for [P]i if di ∈ [[P]], as in the spatial case, and d is fixed point of
P . The additional requirement follows from the operational semantics rule E which it
amounts to run [P]i in parallel with (an evolution of) P .

From the above observations we can show that in fact [[P]] = fix(O(P)). Hence,
from Corollary 2 we obtain a compositional characterization of observational equiva-
lence, and thus from Theorem 4 also for barb equivalence.

Theorem 5. P∼oQ iff [[P]] = [[Q]].

4 Compact Approximation of Space and Knowledge

An important semantic property of global information/common knowledge gG(c) (Def-
inition 5) in the underlying scs is that it preserves the continuity of the space functions.
I.e., one can verify that gG(

⊔
D) =

⊔
d∈D gG(d) for any directed set D ⊆ Con .

In contrast gG(c) does not preserve the compactness of the space functions (Remark
2). This means that, although, the limit of infinite computation may produce gG(c), we
cannot have a process that refers directly to gG(c) since processes can only ask and tell
compact elements. The reason for this syntactic restriction is illustrated below:

Example 8. Suppose we had a process P = ask gG(c) → tell(d) asking whether
group G has common knowledge of c and if so posting d. Note that O(P)(true) =
true and O(P)(gG(c)) = gG(c) � d. Now for Q = global (G, tell(c)) we have
O(Q)(true) = gG(c). But one can verify that O(P ‖ Q)(true) = gG(c), and thus
O(P ‖ Q)(O(P ‖ Q)(true)) = O(P ‖ Q)(gG(c)) = gG(c) � d. This would mean
that the observation function is not idempotent, contradicting the fact that O(P) is a
closure operator, a crucial property for full abstraction of our denotational semantics.

Nevertheless, asking and telling information of the form gG(c) could be useful in certain
protocols to state in one computational step, rather than computing as a limit, common
knowledge or global information about certain states of affairs c (e.g., mutual agree-
ment). To address this issue we extend the underlying scs with compact elements of the

330 S. Knight et al.

form aG(c) which can be thought of as (over-)approximations of gG(c). The approxi-
mation aG(c) can then be used in our processes to simulate the use of gG(c). We refer
to aG(c) as a announcement of c for the groupG to convey the meaning that gG(c) is at-
tained in one step as in a public announcement. We can only define the announcements
over a finite subset of compact elements S, since an infinite set would conflict with the
continuity aG(·). We only consider announcements for the entire set of agents A (for
arbitrary groups the construction follows easily). The above-mentioned extension of an
scs C1 into an scs C2(S) with announcement over S is given below:

Definition 12. Let C1 = (Con1,Con1
0,)1, s

1
1, . . . , s

1
n) be an scs over agents A =

{1, . . . , n}. For S ⊆fin Con1
0, define lattice C2(S) = (Con2,Con2

0,)2, s
2
1, . . . , s

2
n)

as follows. The set Con2 is given by two rules: (1) Con1 ⊆ Con2, and (2) for any
finite nonempty indexing set I , if ci ∈ S for all i ∈ I then aA(

⊔
i∈I c) ∈ Con2. The

ordering)2 is given by the following rules: (1))1 ⊆)2, (2) d)2 aA(
⊔
i∈I ci) if d ∈

Con1 and d)1 gA(
⊔
i∈I ci), and (3) aA(

⊔
i∈I ci))2 aA(

⊔
j∈J cj) if gA(

⊔
i∈I ci))1

gA(
⊔
j∈J cj). Furthermore, for all i ∈ A, for any aA(d) ∈ Con2, s2i (aA(d)) = aA(d)

and for each e ∈ Con1, s2i (e) = s1i (e).

The next theorem states the correctness of the above construction. Intuitively, the lattice
C2(S) above must be an scs and the announcement of a certain fact in c ∈ S must
behave similarly to common knowledge or global information of the same fact.

Theorem 6. Let C1 = (Con1, Con1
0,)1, ...) be a continuous space-compact n-scs

(n-ecs) and let S ⊆fin Con1
0. Let C2(S) = (Con2, Con2

0,)2, ...) as in Def. 12, then
(1) C2(S) is a continuous, space-compact n-scs (n-ecs), (2) ∀aA(c) ∈ Con2, aA(c) ∈
Con2

0, and (3) ∀d ∈ Con1, ∀aA(c) ∈ Con2, d)2 aA(c) iff d)1 gA(c).

Related Work. There is a huge volume of work on epistemic logic and its applications
to distributed systems; [11] gives a good summary of the subject. This work is all aimed
at analyzing distributed protocols using epistemic logic as a reasoning tool. While it has
been very influential in setting the stage for the present work it is not closely connected
to the present proposal to put epistemic concepts into the programming formalism.

Epistemic logic for process calculi has been discussed in [7,9,14]. In all of these
works, however, the epistemic logic is defined outside of the process calculus, with the
processes as models for the logic, whereas our processes have epistemic (or spatial)
logic terms within the constraint system, as well as knowledge or space constructions
on the processes.

The issue of extending ccp to provide for distributed information has been previ-
ously addressed in [23]. In [23] processes can send constraints using communication
channels much like in the π-calculus. This induces a distribution of information among
the processes in the system. This extension, however, is not conservative wrt to ccp and
hence does not share the goal of the present paper.

Another closely related work is the Ambient calculus [6], an important calculus for
spatial mobility. Ambient allows the specification of processes that can move in and
out within their spatial hierarchy. It does not, however, address posting and querying
epistemic information within a spatial distribution of processes. Adding Ambient-like
mobility to our calculi is a natural research direction.

Spatial and Epistemic Modalities in Constraint-Based Process Calculi 331

One very interesting approach related to ours in spirit – but not in conception or
details – is the spatial logic of Caires and Cardelli [4,5]. In this work they also take spa-
tial location as the fundamental concept and develop modalities that reflect locativity.
Rather than using modal logic, they use the name quantifier which has been actively
studied in the theory of freshness of names in programming languages. Their language
is better adapted to the calculi for mobility where names play a fundamental role. In ef-
fect, the concept of freshness of a name is exploited to control the flow of information.
It would be interesting to see how a name quantified scs would look and to study the
relationship with the Caires-Cardelli framework.

Finally, the process calculi in [2,3,10] provide for the use of assertions within π-like
processes. They are not concerned with spatial distribution of information and knowl-
edge. These frameworks are very generic and offer several reasoning techniques. There-
fore, it would be interesting to see how the ideas here developed can be adapted to them.

Acknowledgments. We thank Raluca Diaconu for her insights and discussions on
some preliminary ideas of this work. This work has been partially supported by the
project ANR-09-BLAN-0169-01 PANDA and European project MEALS.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Maibaum, T.S.E., Abramsky, S., Gabbay, D.M.
(eds.) Handbook of Logic in Computer Science, vol. III. Oxford University Press (1994)

2. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal
data, and logic. In: LICS (2009)

3. Buscemi, M.G., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

4. Caires, L., Cardelli, L.: A spatial logic for concurrency - i. Inf. and Comp (2003)
5. Caires, L., Cardelli, L.: A spatial logic for concurrency - ii. Theor. Comp. Sci. (2004)
6. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
7. Chadha, R., Delaune, S., Kremer, S.: Epistemic Logic for the Applied Pi Calculus. In:

Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS, vol. 5522,
pp. 182–197. Springer, Heidelberg (2009)

8. de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in
constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)

9. Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and Epistemic Approaches to Protocol
Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS
(LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)

10. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: Operational and
phase semantics. Inf. Comput. 165(1), 14–41 (2001)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press
(1995)

12. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent con-
straint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)

13. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment.
In: Proc. of Principles of Distributed Computing, pp. 50–61 (1984)

14. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach.
Journal of Computer Security 12(1), 3–36 (2004)

332 S. Knight et al.

15. Kripke, S.: Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik (1963)

16. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
17. McKinsey, J.C.C., Tarski, A.: The algebra of topology. The Annals of Mathematics, second

series (1944)
18. Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent con-

straint programming. Nordic Journal of Computing 2, 182–221 (1995)
19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes i and ii. Information and

Computation 100, 1–77 (1992)
20. Panangaden, P.: Knowledge and Information in Probabilistic Systems. In: van Breugel, F.,

Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, p. 4. Springer, Heidelberg (2008)
21. Panangaden, P., Saraswat, V., Scott, P., Seely, R.: A Hyperdoctrinal View of Concurrent Con-

straint Programming. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1992.
LNCS, vol. 666, pp. 457–476. Springer, Heidelberg (1993)

22. Popkorn, S.: First Steps in Modal Logic. Cambridge University Press (1994)
23. Réty, J.-H.: Distributed concurrent constraint programming. Fundam. Inform. (1998)
24. Saraswat, V.A.: Concurrent Constraint Programming Languages. PhD thesis, CMU (1989)
25. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint

programming. In: POPL 1991 (1991)

Fluid Model Checking

Luca Bortolussi1 and Jane Hillston2

1 Department of Mathematics and Geosciences
University of Trieste, Italy
CNR/ISTI, Pisa, Italy
luca@dmi.units.it

2 Laboratory for the Foundations of Computer Science,
School of Informatics, University of Edinburgh, UK

jane.hillston@ed.ac.uk

Abstract. In this paper we investigate a potential use of fluid approx-
imation techniques in the context of stochastic model checking of CSL
formulae. We focus on properties describing the behaviour of a single
agent in a (large) population of agents, exploiting a limit result known
also as fast simulation. In particular, we will approximate the behaviour
of a single agent with a time-inhomogeneous CTMC which depends on
the environment and on the other agents only through the solution of
the fluid differential equation. We will prove the asymptotic correctness
of our approach in terms of satisfiability of CSL formulae and of reach-
ability probabilities. We will also present a procedure to model check
time-inhomogeneous CTMC against CSL formulae.

Keywords: Stochastic model checking, fluid approximation, mean field
approximation, reachability probability.

1 Introduction

In recent years, there has been growing interest in fluid approximation techniques
in the formal methods community [3, 7, 16, 20]. These techniques, also known
as mean field approximation, are useful for analysing quantitative models of
population processes based on continuous time Markov Chains (CTMC), when
populations are large. They work by approximating the discrete state space of
the CTMC by a continuous one, and by approximating the stochastic dynamics
of the process with a deterministic one, expressed by means of a set of ordinary
differential equations (ODE). The asymptotic correctness of this approach is
guaranteed by limit theorems [11,22], showing the convergence of the CTMC to
the fluid ODE for systems of increasing population numbers.

Another possibility to analyse such quantitative systems is to use techniques
like quantitative model checking. As far as stochastic model checking is consid-
ered, there are some consolidated approaches based mainly on checking Contin-
uous Stochastic Logic (CSL) formulae [2], which have led to widespread software
tools [24]. All these methods, however, suffer (in a more or less relevant way)
from the curse of state space explosion, which severely hampers their practical

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 333–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

334 L. Bortolussi and J. Hillston

applicability. In order to mitigate these combinatorial barriers, many techniques
have been developed, often based on some notion of abstraction or approximation
of the original process [18, 19].

In this paper, we will precisely target this problem, trying to see to what extent
fluid approximation techniques can be used to scale up the model checking of
CTMC. We will not tackle this problem in general, but rather we will focus on
a restricted subset of system properties: the behaviour of single agents within a
large population. In fact, even if large systems behave almost deterministically,
the evolution of a single agent in a large population is always stochastic. Single
agent properties are interesting in many application domains. For instance, in
performance models of computer networks, like client-server interaction, one
is often interested in the behaviour and in quality-of-service metrics of a single
client (or a single server), such as the waiting time of the client or the probability
of a time-out. Single agent properties also hold interest in other contexts, like
ecology, socio-technical systems, emergency egress.

The use of fluid approximation in this context is based on the fast simula-
tion theorem [11, 13], which characterizes the limit behaviour of a single agent
as depending on the rest of the system only through the solution of the fluid
equation. Our idea is simply to abstract the system and study the evolution of
a single agent (or of a subset of agents) by means of this limit characterization.
This has the effect of drastically reducing the dimension of the state space by
several orders of magnitude. Furthermore, the limit CTMC is independent of
the population size. The unavoidable error introduced by mean field approx-
imation will be small for systems with large populations, which are precisely
those in which current tools suffer severely from state space explosion, and that
can benefit most from a fluid approximation. However, fluid approximation is
often acceptably good also for small populations. Related work in this direction
is [13], in which the authors study policies to balance the load between servers,
and [14, 15], in which an approach similar to fast simulation is considered to
study first passage times in PEPA models, using a probe-based specification.

In the rest of the paper, we will focus on how to analyse single agent prop-
erties expressed by means of the branching-time temporal logic CSL. In order
to do this, we have to cope with the fact that the limit of the model of a single
agent is a time-inhomogeneous CTMC (ICTMC). This introduces some addi-
tional complexity in the approach, as reachability and model checking of ICTMC
are far more difficult than the homogeneous-time case. To the best of the au-
thors’ knowledge, in fact, there is no known algorithm to solve CSL model check-
ing in general. Related work on ICTMC focussed on uniformization [1], on the
Hennessy-Milner Logics [17], under the assumption of piecewise constant rates,
and on time-unbounded LTL properties [9]. We will discuss a general method
in Sections 3 and 4, based on the solution of variants of the Kolmogorov equa-
tions, which is expected to work for small state spaces and controlled dynamics
of the fluid approximation. The main problem with ICTMC model checking is
that the truth of a formula can depend on the time at which the formula is
evaluated. This creates problems especially when nesting until formulae. Hence,

Fluid Model Checking 335

we need to impose some regularity on the dependency of rates on time to con-
trol the complexity of time-dependent truth. We will see that the requirement,
that the rate functions are piecewise analytic, is intimately connected not only
with the decidability of the model checking for ICTMC, but also with the lifting
of convergence results from CTMC and their reachability probability to truth
values of CSL formulae (Theorems 3 and 5).

The paper is organized as follows: in Section 2,we introduce preliminary notions,
while in Section 3 we consider the reachability problem. In Section 4, instead, we
focus on the CSL model checking problem for ICTMC, exploiting the routines for
reachability developed earlier.We also consider the convergence of truth values for
formulae about single agent properties. Finally, in Section 5, we discuss open issues
and future work. Proof of lemmas and theorems can be found in [6].

2 Preliminaries

We first introduce a notation to describe population CTMC models, following

[4, 5]. Let Y
(N)
i (t) ∈ S, S = {1, . . . , n}, be the state of agent i in a pool of N

agents, at time t. We assume that its n × n infinitesimal generator matrix is
Q(N)(x), depending on the fraction of agents x ∈ [0, 1]n in each state of S. This

last quantity is computed from Y
(N)
i as X̂

(N)
i (t)= 1

N

∑N
j=1 1{Y

(N)
j (t)= i}, where

1{. . .} is the indicator function. It can be shown that X̂(N)(t) is a CTMC [4] on
the state space D(N) = {0, 1

N , 2
N , . . . , 1}n, and it is usually called the occupancy

measure. We will denote such a model by X̂ (N) = (S,N,Q(N),x
(N)
0), where

x
(N)
0 ∈ D(N) is the initial state.

Example 1. We now introduce a running example: we will consider a model
of a simple client-server system, in which a pool of clients submits queries
to a group of servers, waiting for a reply. For simplicity, we assume a fixed
server capacity and ignore their dynamics, so that we only need to describe
clients. The client model is shown in Fig. 1(a): a client submits a request to
a server and waits for it to reply. It can time-out if too much time passes,
after which it takes a period to recover. Hence, a client has four states S =
{1(request), 2(wait), 3(recover), 4(think)}. To aid readability we will denote the
states as S = {rq = 1, w = 2, rc = 3, t = 4} , and the global system by the 4
variables Xrq, Xw, Xrc, and Xt. Let ki denote the rate at which a single client

completes action i. The generator matrix Q(N) = Q of the single client is

Q(X) =

⎛⎜⎜⎝
qrq,rq(X) krqmin{1, m/Xrq} 0 0

0 qw,w(X) min{kw, krpm/Xrq} kto
kt 0 qt,t(X) 0
krc 0 0 qrc,rc(X)

⎞⎟⎟⎠
rq
w
t
rc

In the previous rate functions, m represents the server to client ratio, so that
we have M = mN servers in total. The use of min guarantees that at most
M clients can be served at a given time. The assumption of a constant number
of available servers is obviously a simplification. However, more realistic models

336 L. Bortolussi and J. Hillston

require a modelling language allowing explicit synchronization. All results of this
paper still hold in such a larger setting [6].

Given a model X̂ (N), its drift (i.e., the average infinitesimal variation given that
the process is in state x) is F (N)(x) = xTQ(N)(x) (with x column vector of length
n). Assume that Q(N)(x) converges uniformly to Q(x), a Lipschitz continuous

generator matrix, when N → ∞, and that x
(N)
0 → x0. Let x(t) be the solution

of the ODE dx
dt = F (x) = xTQ(x). Then

Theorem 1 (Deterministic approximation [10,22]). Let X̂(N)(t) and x(t)
be defined as before. Then, for any finite time horizon T < ∞, it holds that
sup0≤t≤T ||X̂(N)(t)− x(t)|| → 0 almost surely, as N → ∞.

We now turn our attention back to a single or few individuals in the population,
whose dynamics remains stochastic also in the limit. However, Theor. 1 implies
that this dynamics, in the limit, becomes essentially dependent on the other
agents only through the solution of the fluid equation. This result is often known
in the literature [11] as fast simulation [13]. To formalize this, fix an integer k > 0

and let Z
(N)
k = (Y

(N)
1 , . . . , Y

(N)
k) be the process tracking the state of k selected

agents among the population, with state space S = Sk. Notice that k is fixed and

independent ofN . We stress that Z
(N)
k is not a CTMC. In fact, it is the projection

of the Markov process (Y
(N)
1 (t), . . . , Y

(N)
N (t)) on the first k coordinates, and the

projection of a Markov process is generally not Markov. However, the process

(Z
(N)
k (t), X̂(N)(t)) is Markov. Consider now zk(t), a time-inhomogeneous CTMC

on S defined by P{zk(t+ dt) = (z1, . . . , j, . . . , zk) | zk(t) = (z1, . . . , i, . . . , zk)} =
qi,j(x(t))dt, where Q(x) = (qij(x)) is the limit of Q(N)(x). We have the following

Theorem 2 (Fast simulation theorem [11]). For any T < ∞, P{Z(N)
k (t) �=

zk(t), for some t ≤ T } → 0, as N → ∞.

This theorem states that, in the limit of an infinite population, each fixed set
of k agents will behave independently, sensing only the mean state of the global
system, described by the fluid limit x(t).

Continuous Stochastic Logic. We recall the definition of CSL formulae and
their satisfiability, for a generic stochastic process Z(t), with state space S. Let
the labelling function L : S → 2P associate with each state s ∈ S the subset of
atomic propositions L(s) ⊂ P = {a1, . . . , ak . . .} true in that state. A path of

Z(t) is a sequence σ = s0
t0−→ s1

t1−→ . . ., such that the probability of going from

si to si+1 at time Ti =
∑i
j=0 ti, is greater than zero. Denote with σ@t the state

of σ at time t. We assume that all subsets of paths considered are measurable;
this will hold for all sets considered here. A time-bounded CSL formula ϕ is
defined by the following syntax:

ϕ = a | ϕ1 ∧ ϕ2 | ¬ϕ | P��p(ϕ1U
[T1,T2]ϕ2).

The satisfiability relation of ϕ with respect to a labelled stochastic process Z(t)
is given by the following rules (we report only non-trivial ones):

Fluid Model Checking 337

– s, t0 |= P��p(ϕ1U
[T1,T2]ϕ2) if and only if P{σ | σ, t0 |= ϕ1U

[T1,T2]ϕ2} �� p.
– σ, t0 |= ϕ1U

[T1,T2]ϕ2 if and only if ∃t̄ ∈ [t0 + T1, t0 + T2] s.t. σ@t̄, t̄ |= ϕ2 and
∀t0 ≤ t < t̄, σ@t, t |= ϕ1.

Notice that we are considering a fragment of CSL without the next temporal oper-
ator, and allowing only time-bounded properties. This last restriction is connected
with the nature of convergence theorems 1 and 2, which hold only on finite time
horizons (see also Remark 1). Model checking a time-homogeneous CTMC Z(t)
against an until CSL formula can be reduced to the computation of two reachabil-
ity problems, which themselves can be solved by transient analysis [2].

3 Reachability

In this section, we will focus on reachability properties of a single agent (or a
fixed set of agents), in a population of increasing size. Essentially, we want to
compute the probability of the set of traces reaching some goal state G ⊆ S
within T units of time, starting at time t0 from state s and avoiding unsafe
states in U ⊆ S. This probability will be denoted by Preach(Z, t0, T,G, U)[s],

where Z(t) is a stochastic process (either Z
(N)
k (t) or zk(t)). The key point is

that the reachability probability of the limit CTMC zk(t) obtained by Theorem
2 approximates the reachability probability of a single agent in a large population

of size N , i.e. the reachability probability for Z
(N)
k (t).

In the rest of the section, wewill focus specifically on the time-varying reachabil-
ity for an ICTMC Z(t), assuming that goal and unsafe sets depend on time t (i.e. a
state may belong toG or U depending on time t). The interest in time-varying sets
is intimately connected with CSL model checking. In fact, the reachability prob-
ability and a-fortiori the truth value of a CSL formula in a state s for a ICTMC
Z(t), depends on the initial time at which we start evaluating the formula.

Let Z(t) be an ICTMC on S, with rate matrix Q(t) and initial state Z(0) =
Z0 ∈ S. LetΠ(t1, t2) be the probabilitymatrix ofZ(t), in which entry πs1,s2(t1, t2)
gives the probability of being in state s2 at time t2, given that we were in state s1
at time t1 [26]. TheKolmogorov forward and backward equations describe the time
evolution of Π(t1, t2) as a function of t2 and t1, respectively. More precisely, the

forward equation is ∂Π(t1,t2)
∂t2

= Π(t1, t2)Q(t2), while the backward equation is
∂Π(t1,t2)
∂t1

= −Q(t1)Π(t1, t2).
We will solve the reachability problem in a standard way, by reducing it to the

computation of transient probabilities in a modified ICTMC [2], in which goal
and unsafe sets are made absorbing. The main difficulty with time varying sets is
that, at each time Ti in which the goal or the unsafe set changes, also the modified
Markov chain that we need to consider to compute the reachability probability
changes structure. This can have the effect of introducing a discontinuity in the
probability matrix. In particular, if at time Ti a state s becomes a goal state,
then the probability πs1,s(t, Ti) suddenly needs to be added to the reachability
probability of s1: A change in the goal set at time Ti introduces a discontinuity in
the reachability probability at time Ti. Similarly, if a state s was safe and then

338 L. Bortolussi and J. Hillston

becomes unsafe at time Ti, we have to discard the probability of trajectories
being in it at time Ti, as those trajectories become suddenly unsafe.

In the following, let G(t) and U(t) be the goal and unsafe sets, and assume
that the set of time points in which G or U change value (in at least one state)
is finite and equal to T1 ≤ T2 . . . ≤ Tk. Let T0 = t and Tk+1 = t+ T .

In order to compute the reachability probability, we can exploit the semi-group
property of the Markov process: Π(T0, Tk+1) =

∏k
i=0 Π(Ti, Ti+1). We proceed

in the following way:

1. We double the state space, letting S̃ = S ∪ S̄, where a state s̄ ∈ S̄ represents
state s when it is a goal state. Hence, in the probability matrix Π̃, π̃s1,s̄2 is
the probability of having reached s2 avoiding unsafe states, while s2 was a
goal state.

2. Consider a discontinuity time Ti and let t1 ∈ [Ti−1, Ti) and t2 ∈ (Ti, Ti+1].
Define W (t) = S \ (G(t) ∪ U(t)). Then, for s1 ∈ W (t1) and s2 ∈ W (t2),
the probability of being in s2 at time t2, given that we were in s1 at time
t1 and avoiding both unsafe and goal sets, can be written as π̃s1,s2(t1, t2) =∑
s∈W (t1)∩W (t2)

π̃s1,s(t1, Ti)π̃s,s2(Ti, t2).

3. Consider again a discontinuity time Ti and let t1 ∈ [Ti−1, Ti) and t2 ∈
(Ti, Ti+1]. Suppose s2 ∈ W (t1) and s2 ∈ G(t2). Then, the probability of
reaching the goal state s2 at time t2, given that at time t1 we were in s1,
can be written as π̃s1,s2(t1, Ti)+

∑
s∈W (t1)∩W (t2)

π̃s1,s(t1, Ti)π̃s,s̄2 (Ti, t2). The
first term is needed because all safe trajectories that are in state s2 at time
Ti suddenly become trajectories satisfying the reachability problem, hence
we have to add them to the reachability probability.

All the previous remarks can be formally incorporated into the semi-group ex-
pansion of Π̃(t, t + T) by multiplying on the right each term Π̃(Ti, Ti+1) by a
suitable 0/1 matrix, depending only on the structural changes at time Ti+1. Let
|S| = n and let ζW (Ti) be the n × n matrix equal to 1 only on the diagonal
elements corresponding to states sj belonging to both W (T−i) and W (T+

i) (i.e.
states that are safe and not goals both before and after Ti), and equal to 0
elsewhere. Furthermore, let ζG(Ti) be the n× n matrix equal to 1 in the diago-
nal elements corresponding to states sj belonging to W (T−i) ∩G(T+

i), and zero

elsewhere. Finally, let ζ(Ti) be the 2n× 2n matrix ζ(Ti) =

(
ζW (Ti) ζG(Ti)

0 I

)
.

Consider now the ICTMC Z̃ on S̃, with rate matrix Q̃(t), defined by making
absorbing (and hence setting their exit rate to zero) all unsafe and goal states,
and all states in S̄. Furthermore, transitions leading from a safe state s to a
goal state s′ are readdressed to the copy s̄′ of s′. Non-null rates are derived from
Q(t). Now let Π̃(t1, t2) be the probability matrix associated with the ICTMC
Q̃(t). Given the interval I = [t, t + T], we indicate with T1, . . . , TkI the ordered
sequence of discontinuity points of goal and unsafe sets internal to I. Let

Υ (t, t+ T) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · · · ζ(TkI)Π̃(TkI , t+ T).

Fluid Model Checking 339

Then, it holds that Ps(t) = Preach(Z, t, T,G, U)[s] =
∑
s̄1∈S̄ Υs,s̄1 (t, t + T) +

1{s ∈ G(t)}, where the first term takes into account the probability of reaching
a goal state starting from a non-goal state, while the second term is needed to
properly account for states s ∈ G(t), for which Ps(t) has to be equal to 1 (a formal
proof can be given by induction on the number of discontinuity points). Υ (t, t+T)
can be obtained by computing each Π̃(Ti, Ti+1), by solving the associated forward
Kolmogorov equation and then multiplying those matrices and the appropriate ζ
ones, according to the definition of Υ .

If we want to compute P (t) as a function of t, we can derive a differen-
tial equation for computing Υ (t, t + T) as a function of t. Defining Γ (T1, Tk) =
ζ(T1)Π̃(T1, T2)ζ(T2) · · · Π̃(Tk−1, Tk)ζ(Tk), writing Υ (t, t+T) = Π̃(t, T1)Γ (T1, Tk)
Π̃(Tk, t+T), differentiating with respect to t and applying the forward or back-

ward equation for Π̃ , we derive that dΥ (t,t+T)
dt = −Q̃(t)Υ (t, t + T) + Υ (t, t +

T)Q̃(t + T). This equation holds until either t or t + T becomes equal to a
discontinuity point. When this happens, the integration has to be stopped and
restarted, recomputing Υ accordingly. This procedure can be easily turned into
a proper algorithm.

Limit Behaviour. We consider now the limit behaviour of the time-varying

reachability probability for Z
(N)
k , proving that it converges (almost everywhere)

to that of zk. We state this result in a more general form, assuming that also the
goal and unsafe sets depend on N , and converge (in a sense specified below) to
some limit sets G and U . This is needed to reason about CSL model checking.

However, both the previous algorithm to compute reachability for time-varying
sets and the convergence proof rely on some regularity assumptions of the func-
tions involved. In particular, we want a guarantee that the number of disconti-
nuities in goal and unsafe sets, hence the number of zeros of P (t)−p, where P (t)
is the reachability probability, is finite in any compact time interval [0, T]. This
is unfortunately not true in general, as even a smooth function can be equal to
zero on infinitely many points. To avoid these issues, we will require that the

rate functions of zk and of Z
(N)
k are piecewise real analytic functions.

A function f : I → R, I an open subset of R, is said to be analytic [21] in I if
and only if for each point t0 of I there is an open neighbourhood of I in which f
coincides with its Taylor series expansion around t0. Hence, f is locally a power
series. For a piecewise analytic function, we intend a function from I → R, I
interval, such that there exists I1, . . . , Ik disjoint open intervals, with I =

⋃
j Īj ,

such that f is analytic in each Ij . A similar definition holds for functions from Rn

to R, considering their multi-dimensional Taylor expansion. Most of the functions
encountered in practice are piecewise analytic (PWA). In fact, PWA functions
include polynomials, the exponential, logarithm, sine, cosine. Furthermore, they
are closed by addition, product, composition, division (for non-zero analytic
functions), differentiation and integration. Furthermore, the number of zeros of
a PWA function f , different from the constant function zero, in any bounded
interval I, is finite. This holds also for all derivatives of f . Furthermore, the
solution of an ODE defined by an analytic vector field is analytic. Hence, if

340 L. Bortolussi and J. Hillston

the rate functions of zk and Z
(N)
k are PWA, then all the probability functions

computed solving the differential equations introduced above are PWA.
Additionally, we also need some regularity on the time-dependency of goal

and unsafe sets (at least for the limit model) and on the way goal and unsafe
sets at level N converge to these limit sets.

Definition 1. A time-dependent subset V (t) of S, t ∈ I, is robust if and only
if for each s ∈ S, the indicator function Vs : I → {0, 1} of s has only a fi-
nite number of discontinuities and it is either right or left continuous in those
discontinuity points. Let Disc(V) be the set of all discontinuities of V .

A sequence of time-varying sets V (N)(t), t ∈ I, converges robustly to a time-
varying set V (t), t ∈ I, if and only if, for each open neighbourhood U of Disc(V),
there is an N0 ∈ N such that, ∀N ≥ N0, V

(N)(t) = V (t), for each t ∈ I \ U
The following lemma contains the convergence result for the reachability problem
with respect to robust (limit) goal and unsafe sets. Its proof, which can be found
in [6], relies on the notion of robustness introduced above and on properties of
PWA functions.

Lemma 1. Let X (N) be a sequence of CTMC models and let Z
(N)
k and zk be

defined from X (N), as in Section 2, with piecewise analytic rates in a compact
interval [0, T ′], for T ′ sufficiently large.

Let G(t), U(t), t ∈ [t0, t1 + T] be robust time-varying sets, and let G(N)(t),
U (N)(t) be sequences of time-varying sets converging robustly to G and U , respec-

tively. Furthermore, let P (t) = Preach(zk, t, T,G, U) and P (N)(t) = Preach(Z
(N)
k ,

t, T,G(N), U (N)), t ∈ [t0, t1].

Finally, fix p ∈ [0, 1], ��∈ {≤, <,>,≥}, and let Vp(t) = 1{P (t) �� p}, V (N)
p (t) =

1{P (N)(t) �� p}, with 1{·} the indicator function. Then

1. For all but finitely many t ∈ [t0, t1], P (N)(t) → P (t) in probability, with
uniform speed (i.e. independently of t).

2. For almost every p ∈ [0, 1], Vp is robust and the sequence V
(N)
p converges

robustly to Vp.

The values of p that we need to discard in point 2 above are essentially those
for which the zeros of Ps(t) − p are tangential to p, for some s (i.e., for which
P ′s(t) = 0). These generate removable discontinuities in the time dependent
truth (for which the left and right limits coincide) and convergence may fail
for them (suppose we are solving Ps(t) > p, and in such a zero, Vs(t) = 0 but

Vs(t
−) = Vs(t

+) = 1, if P
(N)
s (t) > Ps(t) for all N , then V

(N)
s (t) = 1 for all N ,

even when P
(N)
s (t) → Ps(t)).

Example 2. Let’s go back to our running example, and consider the reachabil-
ity property [F [0,T]timeout], i.e. [true U [0,T]timeout], the probability of doing a
timeout within T units of time. In Fig. 1(b), we show the reachability probability
of z1(t), for a single client, starting at t0 = 0 as a function of T (for state rq). In
Fig. 1(c), instead, we show the dependency of such a reachability probability on the

Fluid Model Checking 341

(a) Client model

0 200 400 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 clients, 15 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

(b) P=?(F
≤T timeout), T varying

●

●
●

●

0 5 10 15 20

0.
30

0.
34

0.
38

100 clients, 15 servers

initial time

pr
ob

ab
ili

ty

●

●
●

●

stat mc (10000 runs)
fluid mc

(c) P=?(F
≤50timeout), t0 varying

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 clients, 15 servers

time

pr
ob

ab
ili

ty

R(0)=1
W(0)=1
T(0)=1
A(0)=1

(d) [P=?(F
≤T (P>0.325(F

≤50timeout))

Fig. 1. Figure 1(a): client model of Section 2. Figure 1(b): reachability probability of
P=?[F

≤T timeout], as a function of T . Parameters are: N = 100, m = 0.15, kr =,
krp = 0.5, kt = 1, kto = 0.01, kw = krc = 100. The stochastic trajectory is gener-
ated using statistical sampling from 10000 runs. It took about 285 seconds to be gener-
ated.The fluid trajectory took instead 0.2 seconds. Figure 1(c): reachability probability of
P=?[F

≤50timeout], as a function of the initial time t0. Each point of the statistical model
has been generated in about 16-20 seconds. The whole fluid trajectory took 0.12 seconds.
Figure 1(d): probability of P=?[F

≤T (P>0.325[F
≤50timeout]] as a function of T . Notice

discontinuities in the probability, caused by states changing status from non-goal to goal.

initial time t0, forT = 50. Furthermore,we compare the results with those estimated

for Z
(N)
1 (t), with N = 100, using a statistical model checking-based approach. The

results for the fluid approximation are quite accurate, and the speed-up achieved is
of about 3 orders of magnitude (for the probability shown in Fig. 1(b)).

4 CSL Model Checking

We turn now to consider the model checking of CSL formulae and the relationship

between the truth of formulae for Z
(N)
k and zk. As mentioned above, the truth

value of until formulae in each state for a ICTMC depends on the time at which
we evaluate them. When we consider nested until formulae, we are therefore
forced to solve reachability problems for time-varying sets, using the method

342 L. Bortolussi and J. Hillston

of Section 3. We will focus on computing path probability of until formulae, as
boolean combination and atomic formulae are dealt with straightforwardly (for
conjunction/disjunction, take the min/max of time-varying truth functions).

Consider the path formula ϕ1U
[T,T ′]ϕ2. To compute its probability for ini-

tial time t0 ∈ [t0, t1],
1 we solve two reachability problems separately and then

combine the results.
The first reachability problem is for unsafe set U = �¬ϕ1� and goal set G(t+

T) = �ϕ1� (only at the final time) and empty before. In fact, this reachability
problem can be solved in a simpler way than the method of Section 3: it just
requires trajectories not to enter an unsafe state, and then collects the probability
to be in a safe state at the time t+ T , for t ∈ [t0, t1].

2 Let Υ 1 be the probability
matrix of this reachability problem computed with (a variant of) the procedure
of the section 3.

The second reachability problem is for unsafe set U = �¬ϕ1� and goal set
G = �ϕ2�, and is solved for initial time t ∈ [t0 + T, t1 + T], and time horizon
T ′ − T . Let Υ 2 be the function computed by the algorithm in Section 3 for this
second problem. Then, for each state s, safe at time t, we compute Ps(t) =∑
s1∈¬U(t+T)

∑
s2∈S Υ

1
s,s1 (t, t+T)Υ 2

s1,s̄2(t+T, t+T ′), which is the probability of
the until formula in state s. Then, we can determine if state s at time t satisfies
P��p(ϕ1U

[T,T ′]ϕ2) by solving the inequality Ps(t) �� p.
This provides an algorithm to approximately solve the CSL model checking

for ICTMC recursively on the structure of the formula, provided that the number
of discontinuities of sets satisfying a formula is finite and that we are able to find
all the zeros of the computed probability functions, to construct the appropriate
time-dependent satisfiability sets (or approximations thereof).

In order to study in more detail the previous algorithm, in particular for what
concerns its correctness and its termination, we assume to carry out computa-
tions using interval arithmetic procedures, in such a way that the approximation
error can be made arbitrarily small [25].

The approach presented above relies, in addition to the solution ofODEs, also on
two other key numerical operations: given a computable real numberp, determine if
p is zero and andgiven an analytic function f , find all the zeros of such a function (or
better an interval approximation of these zeros of arbitrary accuracy). However, it
is not known if these two operations can be carried out effectively for any input that
we can generate.3To avoid these problems, wewill restrict the admissible constants

1 The appropriate values of t0 and t1 are to be deduced from ϕ1, ϕ2 and the super-
formula of the until, in a standard way.

2 In particular, we can get rid of the copy S̄ of the state space, and define a simplified
Υ function using ζW matrices instead of ζ ones.

3 The decidability of the zero test, at least for a subset of transcendental numbers gener-
ated using the exponential, is equivalent to the decidability of first order formulae on
the real field extendedwith the exponential, which in turn is equivalent to the Schaunel
conjecture [27]. Identifying zeros of a PWA function, instead, is troublesome when the
zeros are not simple, i.e. when the function and derivatives up to order j ≥ 1 are all
zero [29].

Fluid Model Checking 343

in the path quantification of until CSL formulae, in order to guarantee that we will
always find decidable instances of both problems above. Following [12], we thus
introduce a notion of robust CSL formula and prove decidability for this subset
of formulae. This will make CSL model checking for ICTMC quasi-decidable [12],
which should be enough in practice, as the set of CSL formulae which is not robust
is a closed set of measure zero (see Theor. 4).

In order to introduce the concept of robust CSL formula, consider a CSL
formula ϕ and let p1, . . . , pk be the constants appearing in the P��p operators of
until sub-formulae of ϕ. We will treat ϕ = ϕ(p1, . . . , pk) as a function of those
p1, . . . , pk. Furthermore, we will call the until sub-formulae of ϕ top until sub-
formulae if they are not sub-formulae of other until formulae. The other until
formulae will be called dependent. Finally, given two robust time-varying sets
V1 and V2, we say that V1 and V2 are boolean compatible if they do not have
discontinuities for the same state s happening at the same time instant t.

Definition 2. A CSL formula ϕ = ϕ(p), p ∈ [0, 1]k is robust if and only if

1. there is an open neighbourhood W of p in [0, 1]k such that for each p1 ∈ W ,

s, 0 |= ϕ(p) ⇔ s, 0 |= ϕ(p1).

2. The time-varying sets of states in which any dependent until sub-formula of
ϕ holds are robust and boolean compatible among them.

Condition 1 in the previous definition guarantees that P (0) �= p for top until
formulae, so that the zero test is decidable, while condition 2 guarantees that all
zeros of function P (t) − p that we encounter are simple. These facts, combined
with properties of PWA functions and with the arbitrary precision of interval
arithmetic routines, are the key ingredients to prove the following

Theorem 3. The CSL model checking for ICTMC, for piecewise analytic inter-
val computable rate functions, is correct and decidable for a robust CSL formula
ϕ(p1, . . . , pk).

We turn now to characterise the set of robust formulae from a topological and
measure-theoretic point on view. Again, exploiting the conditions of robustness
of CSL formulae and the properties of PWA functions, we have the following

Theorem 4. Given a CSL formula ϕ(p), with p ∈ [0, 1]k, then the set
{p | ϕ(p) is robust} is (relatively) open in [0, 1]k and has Lebesgue measure 1.

The fact that the robust set of thresholds for a formula is open and has measure
one implies that it is very unlikely that we will find an instance of the CSL model
checking problem that behaves badly (if we choose threshold randomly from a
grid of rationals, we can make this probability smaller than any ε > 0, for a grid
sufficiently large [6]). In addition, decidability (and the truth value of a formula)
is resistant to small perturbations of the thresholds, explaining the use of the
term robust. In particular, Theor. 3 and 4 make the CSL model checking for
ICTMC quasi-decidable, according to the definition of [12].

A complexity analysis of the algorithm presented here is sketched in [6].

344 L. Bortolussi and J. Hillston

Convergence for CSL Formulae. We now focus attention on the convergence
of CSL model checking when looking at single agent properties, restricting to
robust CSL formulae. The following theorem is proved by structural induction,
applying Lemma 1 in order to deal with the case of until formulae.

Theorem 5. Let X (N) be a sequence of CTMC models and let Z
(N)
k and zk be

defined from X (N), as in Section 2.

Assume that Z
(N)
k , zk have piecewise analytic infinitesimal generator matrices.

Let ϕ(p1, . . . , pk) be a robust CSL formula. Then, there exists an N0 such that,
for N ≥ N0 and each s ∈ S

s, 0 �
Z

(N)
k

ϕ ⇔ s, 0 �zk ϕ.

Corollary 1. Given a CSL formula ϕ(p), with p ∈ [0, 1]k, then the subset of
[0, 1]k in which convergence holds has Lebesgue measure 1 and is open in [0, 1]k.

The previous theorem shows that the results that we obtain abstracting a single
agent in a population of size N by means of the fluid approximation is consistent.
However, the theorem excludes the sets of constants p for which the formula is
not robust. This shows that convergence and decidability are intimately con-
nected. Notice that this limitation for convergence is unavoidable and is present
also in the case of sequences of processes converging to a time-homogeneous
CTMC. In this case, in fact, the reachability probability of an until formula is
constant with respect to the initial time, and if it equals the constant p appear-
ing in its path quantifier (in the limit model) convergence of truth values can
fail (by the same argument sketched at the end of Section 3).

However, the constants p appearing in a formula that can make convergence
fail depend only on the limit CTMC zk, hence we can detect potentially danger-
ous situations while solving the CSL model checking for the limit process.

Remark 1. The version of CSL considered in this paper lacks the (time bounded)
next operator XIϕ1 . However, it can be easily dealt with by computing the
integrals giving associated path probability, taking into account discontinuities
of �ϕ1�, and proving decidability and convergence with arguments similar to
those used here. Dealing with steady state operators, instead is more difficult,
as limit theorems 1 and 2 hold only for finite time horizons. However, for “well-
behaved” fluid ODEs, convergence can be extended to the time-limit [4]. Finally,
dealing with time unbounded operators for ICTMC requires additional regularity
properties of rate functions, in order to control the behaviour on non-compact
time domains (e.g., convergence to steady state or periodic behaviour).

Remark 2. The CSL model checking problems for the processes Z
(N)
k (t) and

(Z
(N)
k (t), X̂(N)(t)) are different, in the sense that the same formula can have dif-

ferent truth values in those two models. This is because the state spaces of the

two processes are different: Z
(N)
k (t) is defined on S, while (Z

(N)
k (t), X̂(N)(t))

on S × D(N). Furthermore, while the latter process is a time-homogeneous

Fluid Model Checking 345

CTMC, the former is not a Markov process and the reachability probability,
even for time-constant sets, depends on the initial time. We can see this as
follows: compute the reachability probability PU,G(s, x, T) for each state (s,x)

of (Z
(N)
k , X̂(N)) with time horizon T . Fix a state s ∈ S of Z

(N)
k , and con-

sider the probability Ps,x(t|s) of being in (s,x) conditional of being in state s.

Then Preach(Z
(N)
k , t, T,G, U)[s] =

∑
x∈D̂ Ps,x(t|s)PU,G(s, x, T), which depends

on time via Ps,x(t|s). Hence, CSL satisfiability for Z
(N)
k depends on the time at

which we evaluate the formula. Therefore, we need to consider time-varying sets
also in this case, and this can introduce discontinuities on the path probabil-

ity of until formulae, while no discontinuities can be observed in (Z
(N)
k , X̂(N)).

However, in [6], it is shown that this discrepancy is absorbed in the limit: for N

large enough, CSL formulas evaluated in Z
(N)
k (t) and (Z

(N)
k (t), X̂(N)(t)) will be

equi-satisfiable.

Example 3. Going back to Ex. 1, consider the path formula (F [0,50]timeout)
for the limit model of a single client. Its path probability depends on the initial
time, and so does the truth value of the CSL formula P>0.325(F

[0,50]timeout).
In Fig. 1(d), the probability of the path formula

F [0,T](P>0.325(F
[0,50]timeout)),

is shown as a function of the time horizon T . In the figure, it is evident how
this probability has discontinuities at those time instants in which the truth value
function of its until sub-formula change.

5 Conclusions

In this paper we exploited a corollary of fluid limit theorems to approximate
properties of the behaviour of single agents in large population models. In partic-
ular, we focussed on reachability and stochastic model checking of CSL formulae.
The method proposed requires us to model check a time-inhomogeneous CTMC
of size equal to the number of internal states of the agent (which is usually very
small). The approach can provide in some cases a good approximation also for
moderately small populations, as the examples here and in [6] show, giving a
huge improvement in terms of computational efficiency.

We then focussed on the reachability problem for ICTMC, in the case of time
varying sets. We provided an algorithm for this problem, and we also proved
convergence of the reachability probabilities computed for the single agent in a
finite population of size N to those of the limit fluid CTMC. Finally, we focussed
on model checking CSL formulae for ICTMC proposing an algorithm working
for a subset of CSL with only the time bounded until operator. We also showed
a decidability and a convergence result for robust formulae, proving that the set
of non-robust formulae is closed and has measure zero.

There are many issues that we wish to tackle in the future. First, we would
like to better understand the quality of convergence both theoretically and ex-
perimentally. In this direction, we need to investigate in more detail the effect

346 L. Bortolussi and J. Hillston

of nesting of temporal operators on the quality of the approximation. From a
theoretical point of view, this can be done by lifting the error bounds on fast
simulation [11] to bounds on the probability for a path formula (also with nested
temporal operators) and on truth profiles.

Furthermore, we want to investigate the connections between single agent
properties and system level properties. We believe this approach can become
a powerful tool to investigate the relationship between microscopic and macro-
scopic characterisations of systems, and to understand their emergent behaviour.
In addition, we would like to provide a working implementation of the model
checking algorithm for ICTMC, studying its computational cost in practice (and
how easy is in practice to find a non computable instance). Furthermore, we aim
at extending the CSL model checking for ICTMC to include time bounded next
operator, time unbounded and steady state operators, and rewards. Another line
of investigation is to consider different temporal logics, such as MTL [8, 9].

References

1. Andreychenko, A., Crouzen, P., Wolf, V.: On-the-fly Uniformization of Time-
Inhomogeneous Infinite Markov Population Models. In: Proceedings of QAPL 2011.
ENTCS, vol. 57, pp. 1–15 (2011)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Continuous-
Time Markov Chains by Transient Analysis. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)

3. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field analysis for the
evaluation of gossip protocols. In: Proceedings of QEST 2009, pp. 247–256. IEEE
Computer Society (2009)

4. Benäım, M., Le Boudec, J.: A class of mean field interaction models for computer
and communication systems. Performance Evaluation (2008)

5. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by
mean field method. In: Proceedings of QEST 2008, pp. 215–224. IEEE Computer
Society (2008)

6. Bortolussi, L., Hillston, J.: Fluid model checking. CoRR 1203.0920 (2012),
http://arxiv.org/abs/1203.0920

7. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming —
from ordinary differential equations and back. Trans. Comp. Sys. Bio. XI (2009)

8. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-Bounded Verification
of CTMCs against Real-Time Specifications. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)

9. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: LTL Model Checking of Time-
Inhomogeneous Markov Chains. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 104–119. Springer, Heidelberg (2009)

10. Darling, R.W.R.: Fluid limits of pure jump Markov processes: A practical guide
(2002), http://arxiv.org/abs/math.PR/0210109

11. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov
chains. Probability Surveys 5 (2008)

12. Franek, P., Ratschan, S., Zgliczynski, P.: Satisfiability of Systems of Equations of
Real Analytic Functions Is Quasi-decidable. In: Murlak, F., Sankowski, P. (eds.)
MFCS 2011. LNCS, vol. 6907, pp. 315–326. Springer, Heidelberg (2011)

http://arxiv.org/abs/1203.0920
http://arxiv.org/abs/math.PR/0210109

Fluid Model Checking 347

13. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
In: Proceedings of ACM SIGMETRICS 2010, pp. 13–24 (2010)

14. Hayden, R.A., Bradley, J.T., Clark, A.: Performance Specification and Evaluation
with Unified Stochastic Probes and Fluid Analysis. IEEE Trans. Soft. Eng.

15. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time dis-
tributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

16. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST
2005, pp. 33–42. IEEE Computer Society (2005)

17. Katoen, J.-P., Mereacre, A.: Model Checking HML on Piecewise-Constant Inho-
mogeneous Markov Chains. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS,
vol. 5215, pp. 203–217. Springer, Heidelberg (2008)

18. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based proba-
bilistic predicate abstraction in PRISM. Electr. Notes Theor. Comput. Sci. 220(3),
5–21 (2008)

19. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction Refinement
for Probabilistic Software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)

20. Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of
the Mean-Field Approach and Simulation in a Peer-to-Peer Botnet Case Study. In:
Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg
(2011)

21. Krantz, S., Harold, P.R.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser
(2002)

22. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7, 49–58 (1970)

23. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology
Transfer 6(2), 128–142 (2004)

24. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology
Transfer 6(2), 128–142 (2004)

25. Neumaier, A.: Interval Methods for Systems of Equations. University Press, Cam-
bridge (1990)

26. Norris, J.R.: Markov Chains. Cambridge University Press (1997)
27. Richardson, D.: Zero tests for constants in simple scientific computation. Mathe-

matics in Computer Science 1(1), 21–37 (2007)
28. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill (1976)
29. Taylor, P.: A lambda calculus for real analysis. Journal of Logic and Analysis 2(5),

1–115 (2010)

Playing Stochastic Games Precisely

Taolue Chen1, Vojtěch Forejt1, Marta Kwiatkowska1, Aistis Simaitis1,
Ashutosh Trivedi2, and Michael Ummels3

1 Department of Computer Science, University of Oxford, Oxford, UK
2 University of Pennsylvania, Philadelphia, USA

3 Technische Universität Dresden, Germany

Abstract. We study stochastic two-player games where the goal of one
player is to achieve precisely a given expected value of the objective
function, while the goal of the opponent is the opposite. Potential appli-
cations for such games include controller synthesis problems where the
optimisation objective is to maximise or minimise a given payoff function
while respecting a strict upper or lower bound, respectively. We consider
a number of objective functions including reachability, ω-regular, dis-
counted reward, and total reward. We show that precise value games
are not determined, and compare the memory requirements for winning
strategies. For stopping games we establish necessary and sufficient con-
ditions for the existence of a winning strategy of the controller for a
large class of functions, as well as provide the constructions of compact
strategies for the studied objectives.

1 Introduction

Two-player zero-sum stochastic games [13] naturally model controller synthesis
problems [12] for systems exhibiting both the controllable and the uncontrol-
lable nondeterminism coupled with stochastic behaviour. In such games two
players—Min (the controller) and Max (the environment)—move a token along
the edges of a graph, called a stochastic game arena, whose vertices are parti-
tioned into those controlled by either of the players and the stochastic vertices.
Player chooses an outgoing edge when the token is in a state controlled by her,
while in a stochastic state the outgoing edge is chosen according to a state-
dependent probability distribution. Starting from an initial state, choices made
by players and at the stochastic vertices characterise a run in the game. Edge-
selection choices of players are often specified by means of a strategy, which is a
partial function from the set of finite runs to probability distributions over en-
abled edges. Fixing an initial state and strategies for both players determines a
probability space on the runs of the stochastic game. In classical stochastic games
players Min and Max are viewed as optimisers as their goals are to minimise and
maximise, respectively, the expectation of a given real-valued function of the
run called the payoff function. Payoff functions are often specified by annotating
the vertices with rewards, and include total reward, discounted reward, average
reward [8], and more recently ω-regular objectives [3].

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 348–363, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Playing Stochastic Games Precisely 349

In this paperwe take a different stand from thewell-establishednotion of viewing
players as optimiserswhich, even thoughuseful inmany applications, is inadequate
for the problems requiring precision. Among others, such precision requirements
may stem from: a) controller design under strict regulatory or safety conditions, or
b) optimal controller design minimising or maximising some payoff function while
requiring that a given lower or upper bound is respected. For instance, consider
the task of designing a gambling machine to maximise profit to the “house” while
ensuring theminimum expected payback to the customers established by a law or a
regulatory body [14,2]. Given that such a task can be cast as a controller synthesis
problem using stochastic games, the objective of the controller is to ensure that
the machine achieves the expected payback exactly equal to the limit set by the
regulatory body—higher paybacks will result in a substantial decrease in profits,
while lower paybacks will make the design illegal. There are examples from other
domains, e.g., ensuring precise ‘coin flipping’ in a security protocol (e.g., Crowds),
keeping the expected voltage constant in energy grid, etc.

In order to assist in designing the above-mentioned controllers, we consider
the problem of achieving a precise payoff value in a stochastic game. More specif-
ically, we study games played over a stochastic game arena between two players,
Preciser and Spoiler, where the goal (the winning objective) of the Preciser is
to ensure that the expected payoff is precisely a given payoff value, while the
objective of the Spoiler is the contrary, i.e., to ensure that the expected value is
anything but the given value. We say that the Preciser wins from a given state if
he has a winning strategy, i.e., if he has a strategy such that, for all strategies of
Spoiler, the expected payoff for the given objective function is precisely a given
value x. Similarly, the Spoiler wins from a given state if she has a strategy such
that, for all strategies of Preciser, the payoff for the given objective function is
not equal to x. The winning region of a player is the set of vertices from which
that player wins. Observe that the winning regions of Preciser and Spoiler are
disjoint. We say that a game is determined if winning regions of the players
form a partition of the states set of the arena. Our first result (Section 3.1) is
that stochastic games with precise winning objectives are not determined even
for reachability problems. Given the non-determinacy of the stochastic precise
value games, we study the following two dual problems. For a fixed stochastic
game arena G, an objective function f , and a target value x,

– the synthesis problem is to decide whether there exists a strategy π of Preciser
such that, for all strategies σ of Spoiler, the expected value of the payoff is
equal to x, and to construct such a strategy if it exists;

– the counter-strategy problem is to decide whether, for a given strategy σ of
Spoiler, there exists a counter-strategy π of Preciser such that the expected
value of the payoff is equal to x1.

Consider the case when Spoiler does not control any states, i.e., when the stochas-
tic game arena is a Markov decision process [11]. In this case, both the synthesis

1 We do not consider the construction of π here. Note that the problem of constructing
a counter-strategy is not well defined, because the strategy σ can be an arbitrary
(even non-recursive) function.

350 T. Chen et al.

and the counter-strategy problems overlap and they can be solved using opti-
misation problems for the corresponding objective function. Assuming that, for
some objective function, Preciser achieves the value h while maximising, and
value l while minimising, then any value x ∈ [l, h] is precisely achievable by
picking minimising and maximising strategies with probability θ and (1 − θ)
respectively, where θ = h−x

h−l if l �= h and θ = 1 if l = h. Notice that such a
strategy will require just one bit of memory for all the objectives for which there
exist memoryless strategies for the corresponding optimisation problems in a
Markov decision process, including a large class of objective functions [11], such
as expected reachability reward, discounted reward, and total reward objectives.

It seems natural to conjecture that a similar approach can be used for the game
setting, i.e., Preciser can achieve any value between his minimising and maximis-
ing strategies by picking one of the strategies with an appropriate probability.
Unfortunately, the same intuition does not carry over to stochastic games be-
cause, once Preciser fixes his strategy, Spoiler can choose any of her sub-optimal
(i.e., not optimising) counter-strategies to ensure a payoff different from the
target value. Intuitively, the strategy of Preciser may need to be responsive to
Spoiler actions and, therefore, it should require memory.

Strategies are expressed as strategy automata [6,1] that consist of—i) a set of
memory elements, ii) a memory update function that specifies how memory is
updated as the transitions occur in the game arena, and iii) a next move function
that specifies a distribution over the successors of game state, depending on the
memory element. Memory update functions in strategy automata can be either
deterministic or stochastic [1]. We show that the choice of how the memory is
updated drastically influences the size of memory required. In Section 3.2 we
show that deterministic update winning strategies require at least exponential
memory size in precise value games. Although we are not aware of the exact
memory requirement for deterministic memory update strategies, we show in
Section 4 that, if stochastic update strategies are used, then memory need is
linear in the size of the arena for the reachability, ω-regular properties and
discounted and total reward objectives. We study precise value problems for
these objectives and show necessary and sufficient conditions for the existence of
winning strategies for controller synthesis problem in stopping games (Section 4)
and counter-strategy problem in general (Section 5).

Contributions. The contributions of the paper can be summarised as follows.

– We show that stochastic games with precise value objectives are not deter-
mined even for reachability objectives, and we compare the memory require-
ments for different types of strategies.

– We solve the controller synthesis problem for precise value in stopping games
for a large class of functions and provide a construction for compact win-
ning strategies. We illustrate that for non-stopping games the problem is
significantly harder to tackle.

– We solve the counter strategy as well as discounted reward controller syn-
thesis problem for general games.

The proofs that have been omitted from this paper can be found in [5].

Playing Stochastic Games Precisely 351

Related Work. We are not aware of any other work studying precise value
problem for any objective function. There is a wealth of results [8,10,3] study-
ing two-player stochastic games with various objective functions where players
optimise their objectives. The precise value problem studied here is a special
case of multi-objective optimisation, where a player strives to fulfill several (in
our case two) objectives at once, each with a certain minimum probability.
Multi-objective optimisation has been studied for Markov decision processes
with discounted rewards [4], long-run average rewards [1], as well as reachability
and ω-regular objectives [7]; however, none of these works consider multi-player
optimisation.

2 Preliminaries

We begin with some background on stochastic two-player games.

Stochastic Game Arena. Before we present the definition, we introduce the
concept of discrete probability distributions. A discrete probability distribution
over a (countable) set S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1.

We write D(S) for the set of all discrete distributions over S. Let supp(μ) =
{s ∈ S |μ(s)>0} be the support set of μ ∈ D(S). We say a distribution μ ∈ D(S)
is a Dirac distribution if μ(s) = 1 for some s ∈ S. Sometimes we abuse the
notation to identify a Dirac distribution μ with its unique element in supp(μ).

We represent a discrete probability distribution μ ∈ D(S) on a set S =
{s1, . . . , sn} as a map [s1 (→ μ(s1), . . . , sn (→ μ(sn)] ∈ D(S) and we omit the
states outside supp(μ) to improve presentation.

Definition 1 (Stochastic Game Arena). A stochastic game arena is a tuple
G = 〈S, (S , S , S), Δ〉 where:

– S is a countable set of states partitioned into sets of states S , S , and S ;
– Δ : S × S → [0, 1] is a probabilistic transition function such that Δ(〈s, t〉) ∈

{0, 1} if s ∈ S ∪ S and
∑
t∈S Δ(〈s, t〉) = 1 if s ∈ S .

A stochastic game arena is finite if S is a finite set. In this paper we omit
the keyword “finite” as we mostly work with finite stochastic game arenas and
explicitly use “countable” for the arenas for emphasise when they are not finite.

The sets S and S represent the sets of states controlled by players Preciser
and Spoiler, respectively, while the set S is the set of stochastic states. A game
arena is a Markov decision process if the set of states controlled by one of the
players in an empty set, while it is a Markov chain if the sets of states controlled
by both players are empty. For a state s ∈ S, the set of successor states is denoted

by Δ(s)
def
= {t ∈ S | Δ(〈s, t〉)>0}. We assume that Δ(s) �= ∅ for all s ∈ S.

Paths. An infinite path λ of a stochastic game arena G is an infinite sequence
s0s1 . . . of states such that si+1 ∈ Δ(si) for all i ≥ 0. A finite path is a finite
such sequence. For a finite or infinite path λ we write len(λ) for the number of
states in the path. For i < len(λ) we write λi to refer to the i-th state si of

352 T. Chen et al.

λ. Similarly, for k ≤ len(λ) we denote the prefix of length k of the path λ by

Pref(λ, k)
def
= s0s1 . . . sk−1. For a finite path λ = s0s1 . . . sn we write last(λ) for

the last state of the path, here last(λ) = sn. For a stochastic game arena G we
write ΩG

+ for the set of all finite paths, ΩG for the set of all infinite paths, ΩG,s
for the set of infinite paths starting in state s. If the starting state is given as
a distribution α : S → [0, 1] then we write ΩG,α for the set of infinite paths
starting from some state in supp(α).

Strategy. Classically, a strategy of Preciser is a partial function π : ΩG
+ → D(S),

which is defined for λ ∈ ΩG
+ only if last(λ) ∈ S , such that s ∈ supp(π(λ)) only if

Δ(〈last(λ), s〉) = 1. Such a strategy π is memoryless if last(λ) = last(λ′) implies
π(λ) = π(λ′) for all λ, λ′ ∈ ΩG

+. If π is a memoryless strategy for Preciser then
we identify it with a mapping π : S → D(S). Similar concepts for a strategy
σ of the Spoiler are defined analogously. In this paper we use an alternative
formulation of strategy [1] that generalises the concept of strategy automata [6].

Definition 2. A strategy of Preciser in a game arena G = 〈S, (S , S , S), Δ〉
is a tuple π = 〈M, πu, πn, α〉, where:

– M is a countable set of memory elements.
– πu : M× S → D(M) is a memory update function,
– πn : S ×M → D(S) is a next move function such that πn(s,m)[s′] = 0 for

all s′ ∈ S \Δ(s),
– α : S → D(M) defines an initial distribution on the memory elements for a

given initial state of G.

A strategy σ for Spoiler is defined in an analogous manner. We denote the set
of all strategies for Preciser and Spoiler by Π and Σ, respectively.

A strategy is memoryless if |M| = 1. We say that a strategy requires finite mem-
ory if |M| < ∞ and infinite memory if |M| = ∞. We also classify the strategies
based on the use of randomisation. A strategy π = 〈M, πu, πn, α〉 is pure if πu,
πn, and α map to Dirac distributions; deterministic update if πu and α map to
Dirac distributions, while πn maps to an arbitrary distributions; and stochas-
tic update where πu, πn, and α can map to arbitrary distributions. Stochastic
update strategies are convenient because, for example, they allow to randomly
choose between several other strategies in α, thus making the implementation
of exact value problem for MDPs (as discussed in the introduction) straightfor-
ward. Note that from an implementation point of view, the controller using a
stochastic update or a deterministic update strategy where πn uses randomisa-
tion has to be equipped with a random number generator to provide a correct
realisation of the strategy.

Markov Chain Induced by Strategy Pairs. Given a stochastic game arena
G and an initial state distribution α, a strategy π = 〈M1, πu, πn, α1〉 of Preciser
and a strategy σ = 〈M2, σu, σn, α2〉 of Spoiler induce a countable Markov chain
G(α, π, σ) = 〈S′, (∅, ∅, S′), Δ′〉 with starting state distribution α(π, σ) where

Playing Stochastic Games Precisely 353

– S′ = S ×M1 ×M2,
– Δ′ : S′ × S′→[0, 1] is such that for all (s,m1,m2), (s

′,m′1,m
′
2) ∈ S′ we have

Δ′(〈(s,m1,m2), (s
′,m′1,m

′
2)〉) =⎧⎪⎨⎪⎩

πn(s,m1)[s
′] · πu(m1, s

′)[m′1] · σu(m2, s
′)[m′2] if s ∈ S ,

σn(s,m2)[s
′] · πu(m1, s

′)[m′1] · σu(m2, s
′)[m′2] if s ∈ S ,

Δ(〈s, s′〉) · πu(m1, s
′)[m′1] · σu(m2, s

′)[m′2] if s ∈ S .

– α(π, σ) : S′ → [0, 1] is defined such that for all (s,m1,m2) ∈ S′ we have that
α(π, σ)[s,m1,m2] = α[s] · α1(s)[m1] · α2(s)[m2].

To analyze a stochastic game G under a strategy pair (π, σ) ∈ Π×Σ and a start-
ing state distribution α we define the probability measure over the set of paths
Ωπ,σG,α of G(α, π, σ) with starting state distribution α(π, σ) in the following man-

ner. The basic open sets of Ωπ,σG,α are the cylinder sets Cyl(P)
def
= P ·S′ω for every

finite path P = s′0s
′
1 . . . s

′
k of G(s, π, σ), and the probability assigned to Cyl(P)

equals α(π, σ)[s′1] ·
∏k
i=0 Δ

′(〈s′i, s′i+1〉). This definition induces a probability mea-
sure on the algebra of cylinder sets which, by Carathéodory’s extension theorem,
can be extended to a unique probability measure on the σ-algebra B′ generated
by these sets. We denote the resulting probability measure by Prπ,σG,α. Often, we
are only interested in the states visited on a path through G(s, π, σ) and not the
memory contents. Let B be the σ-algebra generated by the cylinder subsets of
Sω. We obtain a probability measure P on B by setting P (A) = Prπ,σG,α(ρ

−1(A)),

where ρ is the natural projection from S′
ω
to Sω. We abuse notation slightly and

denote this probability measure also by Prπ,σG,α. Our intended measurable space
will always be clear form the context.

The xpected value of a measurable function f : S′
ω → R ∪ {∞} or f : Sω →

R ∪ {∞} under a strategy pair (π, σ) ∈ Π×Σ and a starting state distribution α

is defined as Eπ,σG,α[f]
def
=
∫
f dPrπ,σG,α. The conditional expectation of a measurable

function f given an event A ∈ B (A ∈ B′) such that Prπ,σG,α(A) > 0 is defined

analogously, i.e. Eπ,σG,α[f | A] =
∫
f dPrπ,σG,α(· | A), where Prπ,σG,α(· | A) denotes the

usual conditional probability measure (conditioned on A).

3 Stochastic Games with Precise Objectives

We start this section by providing generic definitions of the two types of problems
that we consider – controller synthesis and counter strategy. Then we show that
the games are not determined even for reachability objectives and discuss the
memory requirements for deterministic update strategies.

In a stochastic game with precise objective on arena G, with starting state s,
objective function f : ΩG,s → R, and target value x ∈ Q, we say that a strat-
egy π of player Preciser is winning if Eπ,σG,s [f] = x for all σ ∈ Σ. Analogously, a

strategy σ of player Spoiler is winning if Eπ,σG,s [f]�=x for all π ∈ Π . It is straight-
forward to see that for every starting state at most one player has a winning
strategy. In Section 3.1 we show via an example that there are games where no

354 T. Chen et al.

s1

s2

s3

s4

s5

0.5

0.5
s0 s2

s1

s3

0.5 0.5

Fig. 1. Two stochastic game arenas where we depict stochastic vertices as circles and
vertices of players Preciser and Spoiler as boxes and diamonds, respectively

player has a winning strategy from some given state, i.e. stochastic games with
precise objective are in general not determined. Hence, we study the following
two problems with applications in controller synthesis of systems.

Definition 3 (Controller synthesis problem). Given a game G, a state s,
an objective function f : ΩG,s → R, and a target value x ∈ Q, the controller
synthesis problem is to decide whether player Preciser has a winning strategy.

Definition 4 (Counter-strategy problem). Given a game G, a state s, an
objective function f : ΩG,s → R, and a target value x ∈ Q, the counter-strategy
problem asks whether Spoiler has no winning strategy, i.e., whether for every
strategy σ of Spoiler there exists a strategy π of Preciser such that Eπ,σG,s [f] = x.

In this paper we study the study controller synthesis and counter-strategy prob-
lems for the following objective functions:

– Reachability (with respect to a target set T ⊆ S) defined as fTreach(λ)
def
= 1 if

∃i ∈ N : λi ∈ T , and fTreach(λ)
def
= 0 otherwise.

– ω-regular (with respect to an ω-regular property given as a deterministic
parity automaton A [9]; we write L(A) for the language accepted by A)

defined as fAomega(λ)
def
= 1 if λ ∈ L(A), and fAomega(λ)

def
= 0 otherwise.

– Total reward (with respect to a reward structure r : S → R≥0) defined as

f rtotal(λ)
def
=
∑∞
i=0 r(λi) .

– Discounted reward (with respect to a discount factor δ ∈ [0, 1) and a reward

structure r : S → R≥0) defined as f δ,rdisct(λ)
def
=
∑∞
i=0 r(λi) · δi .

3.1 Determinacy

In this section, we show that our games are, in general, not determined, i.e., a
positive answer to the counter-strategy problem does not imply a positive answer
to the controller synthesis problem. To see this, consider the game arena G given
in Figure 1 (left) w.r.t the reachability function fTreach with target set T = {s4}.

Proposition 1. Preciser has no winning strategy on G from state s1 for objective
function fTreach and target value x = 0.5.

Playing Stochastic Games Precisely 355

s1

a1

b1

sf1

st1

s2

a2

b2

sf2

st2

s3 sn

an

bn

sfn

stn

sd

st

sf

1−x1

1−x1
x1

x1
1−x2

1−x2
x2

x2

1−xn

1−xn

xn

xn

Fig. 2. Exponential deterministic update memory for Preciser

Proof. Assume that π = 〈M, πu, πn, α〉 is a solution the controller synthesis
problem. We define two memoryless Spoiler strategies σ = 〈M2, σu, σn, α2〉
and σ′ = 〈M2, σu, σ

′
n, α2〉, where M2 = {init}, σu(init , s1) = α2(s1) = init ,

σn(s3, init) = s4, and σ′n(s3, init) = s5. From the strategy construction and the
fact that 0.5 of the probability mass is under control of Spoiler in s3, we get that

Eπ,σG,s1 [f
T
reach]− Eπ,σ

′

G,s1 [f
T
reach] = 0.5 =⇒ Eπ,σG,s1 [f

T
reach] �= 0.5 or Eπ,σ

′

G,s1 [f
T
reach] �= 0.5,

and thus π cannot be a solution to the controller synthesis problem. ��

Proposition 2. Spoiler has no winning strategy on G from state s1 for objective
function fTreach and target value x = 0.5.

Proof. Let σ = 〈M, σu, σn, α〉 be any strategy for Spoiler. Then any strategy
π = 〈M, πu, πn, α〉 for Preciser with πu(m, s2) = σu(m, s3) and πn(s2,m)[s4] =
σn(s3,m)[s5] for all m ∈ M satisfies Eπ,σG,s1 [f

T
reach] = 0.5. ��

3.2 Memory Requirements

In this section we show that if deterministic update strategies are used, then the
required size of the memory may be exponential in the size of the game. On
the other hand, we later prove that stochastic update strategies require memory
linear in the size of the game arena.

Proposition 3. In the controller synthesis problem, Preciser may need memory
exponential in the size of the game while using deterministic update strategy.

Proof. Consider the game G in Figure 2 with the target set T shaded in gray,
and constants xi set to 2−(i+1). Observe that under any strategy of Spoiler, the
probability of runs that end in state sti or sfi is exactly

∑n
i=1 xi ·β(i−1), where

β(k) =
∏k
j=1(1− xj).

We now construct a deterministic update strategy π = 〈M, πu, πn, α〉, which
ensures that the probability to reach T is exactly 0.5. Intuitively, the strategy
remembers the exact history, and upon arriving to sd it looks at which states
ai for 1 ≤ i ≤ n were visited on a prefix of a history (and hence how much of
the probability mass was directed to sti), and sets the probability of going to
sf so that it “compensates” for these paths to target states to get the overall
probability to reach target equal to 0.5. Formally,

356 T. Chen et al.

– M = {Pref(λ, k) : λ ∈ ΩG,s1 , k ∈ {1, . . . , 2n}}
– πu(m, s) equals [m·s (→ 1] if m·s ∈ M, and [m (→ 1] otherwise.
– πn(sd,m) = [st (→ p, sf (→ 1− p], s. t. p · β(n) +

∑
ai∈m xi · β(i− 1) = 0.5

– α(s) = [s (→ 1]

Note that p above surely exists, because β(n) ≥ β(∞) > 1
2 . We argue that

any strategy needs at least 2n memory elements to achieve 0.5. Otherwise, there
are two different histories s1t1s2t2 . . . sntnsd and s1t

′
1s2t

′
2 . . . snt

′
nsd where ti, t

′
i ∈

{ai, bi} after which π assigns the same distribution [st (→ y, sf (→ 1−y]. Let k be
the smallest number such that tk �= t′k, and w.l.o.g. suppose tk = ak. Let σ ∈ Σ
be a deterministic strategy that chooses to go to ti in si, and let σ′ ∈ Σ be a
deterministic strategy that chooses to go to t′i in si. Then the probability to reach
a target state under π and σ is at least

∑
i<k,ti=ai

xi·β(i−1)+xk·β(k−1)+y·β(n),
and under π and σ′— at most

∑
i<k,ti=ai

xi·β(i−1)+
∑
k<i≤n xi·β(i−1)+y·β(n).

Because xk·β(k− 1) > (
∑
k<i≤n xi)·β(k − 1) >

∑
k<i≤n xi·β(i− 1), we obtain a

contradiction.
Note that by replacing the states ai and bi with gadgets of i + 1 stochastic

states the example can be altered so that the only probabilities assigned by the
probabilistic transition function are 0, 1 and 1

2 .

4 Controller Synthesis Problem

In this section we present our results on controller synthesis problem. We say
that a state is terminal if no other state is reachable from it under any strategy
pair. We call a stochastic game stopping if a terminal state is reached with
probability 1 under any pair of strategies. We define conditions under which the
controller synthesis problem has a solution for a general class of functions, the
so-called linearly bounded functions—under stopping games assumption. We say
that an objective function is linearly bounded if there are x1 and x2 such that
for any ω that contains k nonterminal states we have |f(ω)| ≤ x1 · k + x2. We
observe that objective functions define in previous section are linearly-bounded
and present compact winning strategies for those objective.

4.1 Conditions for the Existence of Winning Strategies

We define ExactG(s, f)
def
= {x ∈ R | ∃π ∈ Π . ∀σ ∈ Σ : Eπ,σG,s [f] = x} to be the set

of values for which Preciser has a winning strategy on G from s with objective
function f . Given a function f : ΩG → R, a finite path u·s ∈ ΩG

+ and an infinite
path v ∈ ΩG , we define a curried function fu·s(s ·v) = f(u·s·v), where s ∈ S.
Given a finite path as the history of the game, the following lemma presents
conditions under which player Preciser cannot win the game for any value.

Lemma 1. Given a game G, a finite path w·s ∈ ΩG
+, where s ∈ S and a func-

tion f , if inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [fw·s] > sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s], then Preciser cannot achieve

any exact value after that path, i.e., ExactG(s, fw·s) = ∅.

Playing Stochastic Games Precisely 357

Proof. For every Preciser strategy π ∈ Π , we have that

inf
σ∈Σ

Eπ,σG,s [fw·s] ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s] < inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [fw·s] ≤ sup
σ∈Σ

Eπ,σG,s [fw·s].

Hence, for any of the strategy π of Preciser, Spoiler can ensure one of the two
distinct values inf

σ∈Σ
Eπ,σG,s [fw·s] or sup

σ∈Σ
Eπ,σG,s [fw·s], and therefore Preciser cannot

guarantee any exact value after history w·s, so ExactG(s, fw·s) = ∅. ��

Let Ωno
G,f ⊆ ΩG

+ be a set paths in G such that a path w is in Ωno
G,f if and only

if w satisfies the condition in Lemma 1, i.e., after w Preciser cannot guarantee
any exact value for a function f . The above proposition characterises the states
from which Preciser cannot achieve any exact value.

Proposition 4. In a game G, and a state s ∈ S, if for any strategy of Preciser,
Spoiler has a strategy to make sure that at least one path from Ωno

G,f has positive
probability, then ExactG(s, f) = ∅, i.e.,

∀π ∈ Π . ∃σ ∈ Σ : Prπ,σG,s (
⋃

w∈Ωno
G,f

Cyl(w)) > 0 ⇒ ExactG(s, f) = ∅.

In the next theorem we complement the proposition by describing the states with
nonempty sets ExactG(s, f), for the class of linearly-bounded objective functions.

Theorem 1. Given a stopping game G, a linearly bounded objective function f
satisfying Ωno

G,f = ∅, a state s ∈ S, and a value x ∈ R,

x ∈ ExactG(s, f) ⇐⇒ inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [f] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f].

Proof (Sketch). The “⇒” direction of the theorem is straightforward. To show
“⇐” direction, we construct a strategy to achieve any given probability x.

Let π− and π+ be minimising and maximising pure deterministic update
strategies 2. Let w·s ∈ ΩG

+. We define minimum and maximum expected values
achievable by Preciser after a finite path w·s as:

val−(w·s) = inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [fw·s] and val+(w·s) = sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s].

We will now construct a stochastic update strategy for Preciser, which is winning
from all s ∈ S. Given any l ≤ y ≤ h, we define c(y, l, h) as h−y

h−l if l �= h and

1 otherwise. For a finite path w ∈ ΩG
+ such that val−(w) ≤ y ≤ val+(w),

we define β(y, w) = c(y, val−(w), val+(w)). The strategy π = 〈M, πu, πn, α〉 is
defined by

2 Note that thanks to our restrictions on f and G these always exist.

358 T. Chen et al.

– M = {〈w, val−(w)〉, 〈w, val+(w)〉 | w ∈ ΩG
+},

– πu(〈w·s, y〉, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈w·s·t, y〉, if s ∈ S ,

[〈w·s·t, val−(w·s·t)〉 (→ β(y, w·s·t),
〈w·s·t, val+(w·s·t)〉 (→ 1− β(y, w·s·t)], if s ∈ S ,

〈w·s·t, val−(w·s·t)〉, if s ∈ S and y = val−(w·s),
〈w·s·t, val+(w·s·t)〉, if s ∈ S and y = val+(w·s),

– πn(s, 〈w, y〉) =
{
π−(w) if y = val−(w),

π+(w) otherwise

– α(s) = [〈s, val−(s)〉 (→ β(x, s), 〈s, val+(s)〉 (→ 1− β(x, s)],

for all w ∈ ΩG
+, s, t ∈ S, and 〈w, y〉, 〈w·s, y〉 ∈ M. The correctness of the

strategy follows from the proof in [5]. ��

4.2 Compact Strategies for Objective Functions

In this section, using the results from Theorem 1, we construct stochastic up-
date strategies for the functions defining reachability, total expected reward,
discounted reward and ω-regular objectives, all of which are linearly bounded.
For all games, and objective functions in this section we assume that Ωno

G,f = ∅.

Proposition 5. Reachability, ω-regular, total reward and discounted reward ob-
jectives are linearly-bounded.

From Theorem 1 and Proposition 5 it follows that for in a game G, a state s
and value x, if f is reachability, ω-regular, total reward or discounted reward
objectives satisfying the assumptions of Theorem 1, then player Preciser has a
winning strategy if and only if inf

π∈Π
sup
σ∈Σ

Eπ,σG,s [f] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f]. The

construction from Theorem 1 only provides strategy having countable memory.
In this section we show that these objectives allow for a compact strategy.

Proposition 6 (Reachability). If there exists a winning strategy for Preciser
in stopping game G for reachability function fTreach, then there exists a stochastic
update winning strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|.

Proof (Sketch). Let f = fTreach and π− and π+ be the pure memoryless de-
terministic update strategies achieving, for every w · s ∈ ΩG

+, the minimum
and maximum expected value for f . By Theorem 1 there exists a stochastic
update strategy π�, which achieves the precise reachability probability. How-
ever, the construction only provides a strategy having countable memory. We
will construct a stochastic update strategy which is equivalent to π�, but has
memory size at most 2·|S|. The strategy π = 〈M, πu, πn, α〉 is defined as
follows:

Playing Stochastic Games Precisely 359

– M = {〈s, val−(s)〉, 〈s, val+(s)〉 | s ∈ S},

– πu(〈s, y〉, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈t, y〉 if s ∈ S ,

[〈t, val−(t)〉 (→ β(y, t),

〈t, val+(t)〉 (→ 1− β(y, t)] if s ∈ S ,

〈t, val−(t)〉 if s ∈ S and y = val−(s),

〈t, val+(t)〉 if s ∈ S and y = val+(s),

– πn(s, 〈s, y〉) =
{
π−(s) if y = val−(s),

π+(s) otherwise

– α(s) = [〈s, val−(s)〉 (→ β(x, s), 〈s, val+(s)〉 (→ 1− β(x, s)],

for all s, t ∈ S, and 〈s, y〉 ∈ M.
Let us look at the functions of the strategy individually. The initial distribu-

tion functions of π� and π are the same. For the next move functions, since π−

and π+ are memoryless, we have that for any path w·s ∈ ΩG
+, π−(w·s) = π−(s)

and π+(w·s) = π+(s). It follows that πn(s, 〈w·s, y〉) = πn(s, 〈s, y〉). For the mem-
ory update function πu, it is equivalent to the memory update function of π�

(i.e., produces the same distributions for all paths) if the target states are treated
as terminal, i.e., for reachability function it does not matter what actions are
played after the target has been reached. ��

The proofs for the following two propositions are similar (see [5] for details).

Proposition 7 (ω-regular). If there exists a winning strategy for Preciser in
stopping game G for ω-regular objective function fAomega and objective given as a
deterministic parity automaton A, then there exists a stochastic update winning
strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|·|A|.

Proposition 8 (Total reward). If there exists a winning strategy for Preciser
in a stopping game G for total reward function f rtotal, then there exists a stochastic
update winning strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|.

Since discounted objective implicitly mimics stopping mechanism, using Proposi-
tion 8 and Theorem 1 we show that for the discounted objectives we can construct
compact strategies for arbitrary finite games without the stopping assumption.

Theorem 2. Given a game arena G, a discounted reward function f = f δ,rdisct,
satisfying Ωno

G,f = ∅, a state s ∈ S, and a value x ∈ R.

x ∈ ExactG(s, f) ⇐⇒ inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [f] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f].

Proof. The proof employs a standard construction [11] that reduces the ex-
pected discounted reward problem to expected total reward problem. Let G =
〈S, (S , S , S), Δ〉, and let f δ,rdisct be given by a reward structure r and a discount
factor 0 < δ < 1, we define a stopping game G′ = 〈S ∪ S′, (S , S , S ∪ S′), Δ′〉
and a total reward objective function f rtotal as follows. The set S

′ contains states

360 T. Chen et al.

s̄ for all s ∈ S and a distinguished state $. The set Δ′ is defined as follows: for
all s, t we define Δ′(s, t̄) = Δ(s, t), Δ(t̄, t) = 1 − δ and Δ(t̄, $) = δ. We make
the state $ terminal by putting Δ′($, $) = 1. The reward structure r′ for f rtotal
in G′ is defined by r′(s) = r(s) for all s ∈ S and r(s′) = 0 otherwise. There is a
straightforward bijection between the strategies of G and G′ that for any π and

σ returns π′ and σ′ such that Eπ,σG,s [f
δ,r
disct] = Eπ

′,σ′

G′,s [f rtotal]. The theorem is then
obtained by using Theorem 1 and Proposition 8. ��

4.3 Complexity

We discuss the complexity of the controller synthesis problem for the objectives
considered in Section 4.2 where compact strategies do exist. As we
discussed in previous section, controller synthesis essentially boils down to com-
puting the extreme values of the corresponding game. Assume that we have
an oracle to decide the following: (1) given any state of the game s, whether
supπ∈Π infσ∈Σ Eπ,σG,s [f] ≥ infπ∈Π supσ∈Σ Eπ,σG,s [f] and (2) given any state of the

game s, whether infπ∈Π supσ∈Σ Eπ,σG,s [f]≤ x ≤ supπ∈Π infσ∈Σ Eπ,σG,s [f]. By Propo-
sition 4 and Theorem 1, together with Proposition 6 – 8 the controller synthesis
problem is decidable in polynomial time if we have oracles for (1) and (2).

For the considered objectives, (1) and (2) are decidable in NP ∩ co-NP since
games with these objectives admit pure memoryless strategies for both players
(in the product of the game with the deterministic parity automaton at least
in the case of ω-regular objectives; cf. [3]). It is easy to see that PNP∩co-NP =
NP ∩ co-NP. Hence, we can conclude that the controller-synthesis problem is
in NP ∩ co-NP for the objectives studied in Section 4.2.

4.4 Non-stopping Games

It is natural to ask whether the result of Theorem 1 can be transferred to non-
stopping games. The following proposition provides a negative answer.

Proposition 9. There is a game G and a reachability objective f , a state s ∈ S
and a number inf

π∈Π
sup
σ∈Σ

Eπ,σG,s [f] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f] such that Ωno
G,f = ∅ and

x �∈ ExactG(s, f).

To prove Proposition 9, consider the game G from Figure 1 (right), where the
target state is marked with gray colour. For each state s ∈ {s0, s1, s3} we have
infπ∈Π supσ∈Σ Eπ,σG,s [f] = 0.5, and for state s2 we have infπ∈Π supσ∈Σ Eπ,σG,s2 [f] =
0.0. On the other hand, for each state s ∈ {s1, s2, s3} we have that supπ∈Π infσ∈Σ
Eπ,σG,s [f] = 0.5, while for state s0 we have supπ∈Π infσ∈Σ Eπ,σG,s0 [f] = 1. However,
for example in state s0 we get Exact (s, f) = {1}. For any value 0.5 ≤ x < 1, any
strategy π that should achieve x must in s0 pick the transition to the terminal
state with probability 2 · x−1, because otherwise Spoiler could propose a counter
strategy σ which deterministically goes up from s1, and thus Eπ,σG,s [f] �= x. Let
us suppose that π has this property, then it must further ensure that from s1

Playing Stochastic Games Precisely 361

the target state is reached with probability 0.5, which means that it can never
randomise in s0 or s1, except for the very first step: if it randomised, Spoiler could
propose a winning counter-strategy that would go to central vertex immediately
after the first randomisation took place. But this means that the strategy π must
always keep going from s2 to s3 and from s0 to s1 deterministically, to which
Spoiler can respond by a strategy σ that always goes from s1 to s2 and from s3
to s0 deterministically, hence avoiding to enter the target state at all.

An interesting point to make is that even though Preciser has not any strategy
that would ensure reaching the target from s0 in G with probability x for a
given 0.5 ≤ x < 1, he has got an “ε-optimal” strategy for any ε > 0, i.e. for
any x there is a strategy π of Preciser such that for all σ of Spoiler we get
x− ε ≤ Eπ,σG,s0 [f] ≤ x+ ε. For example, if x = 0.5, the strategy π can be defined
so that in s0 it picks the transition to s1 with probability 1 − ε, and the other
available transition with probability ε, while in s2 it takes the transition to s3
with probability 1− ε

1−ε , and the other available transition with probability ε
1−ε .

Again, one might ask whether ε-optimal strategies always exist. Unfortu-
nately, this is also not the case, as can be seen when the transition from s0
to the target state is redirected to the non-target terminal state.

5 Counter-Strategy Problem

In this section we discuss the counter-strategy problem, which, given a game G,
a state s, and an objective function f , asks whether for any strategy of Spoiler
there exists a counter-strategy for Preciser such that the expected value of f is
exactly x. Let us characterise the set of all values for which counter-strategy
exists by defining CExactG(s, f) = {x ∈ R | ∀σ ∈ Σ . ∃π ∈ Π : Eπ,σG,s [f] = x} .

Lemma 2. Given a game G, a finite path w · s ∈ ΩG
+, where s ∈ S and a func-

tion f , if sup
σ∈Σ

inf
π∈Π

Eπ,σG,s [fw·s] > inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [fw·s], then Preciser cannot achieve

any exact value after that path, i.e., CExactG(s, fw·s) = ∅.

Proof. Let x∗ = sup
σ∈Σ

inf
π∈Π

Eπ,σG,s [fw·s] and x∗ = inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [fw·s] such that x∗ >

x∗; and let σ∗, σ∗ ∈ Σ be the corresponding strategies of Spoiler. Notice that for
any arbitrary strategy π of Preciser we have that

Eπ,σ∗G,w0
[fw·s] ≤ x∗ < x∗ ≤ Eπ,σ

∗

G,w0
[fw·s].

Hence, if x ≤ x∗ then there is no strategy of Preciser that yields expectation
at most x against σ∗, while if x > x∗ then there is no strategy of Preciser that
yields expectation at least x against σ∗. Hence, CExactG(s, fw·s) = ∅. ��

Let Ωnoc
G,f ⊆ ΩG

+ be a set paths in G such that a path w is in Ωnoc
G,f if and only

if w satisfies the condition in Lemma 2, i.e., after w Preciser cannot propose a
counter strategy to achieve any exact value, for a function f .

362 T. Chen et al.

Proposition 10. In an game G, and a state s ∈ S, if there exists a strategy of
Spoiler, such that for all strategies of Preciser at least one path from Ωnoc

G,f has a
positive probability, then CExactG(s, f) = ∅, i.e.,

∃σ ∈ Σ . ∀π ∈ Π : Prπ,σG,s (
⋃

w∈Ωnoc
G,f

Cyl(w)) > 0 ⇒ CExactG(s, f) = ∅.

Using the results above we are now ready to characterise the states from which
Preciser has, for any Spoiler strategy, a winning counter strategy to achieve ex-
actly the specified value x. The following theorem is proved in [5].

Theorem 3. In a game G with Ωnoc

G,f = ∅, and a state s ∈ S, x ∈ CExactG(s, f)

if and only if sup
σ∈Σ

inf
π∈Π

Eπ,σG,s [f] ≤ x ≤ inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [f].

6 Conclusion and Future Work

In this paper we studied a novel kind of objectives for two-player stochastic
games, in which the role of one player is to achieve exactly a given expected
value, while the role of the other player is to get any other value. We settled the
controller synthesis problem for stopping games with linearly bounded objective
functions and for arbitrary finite games with discounted reward objective. We
solved the counter strategy problem for arbitrary finite games and arbitrary
payoff functions. There are two main directions for future work: 1. relaxing the
restrictions on the game arenas, i.e., studying the controller-synthesis problem
for non-stopping games; 2. modifying the problem so that the role of preciser is
to reach a value from certain interval, rather than one specific number.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt is supported by a
Royal Society Newton Fellowship. Ashutosh Trivedi is supported by NSF awards
CNS 0931239, CNS 1035715, CCF 0915777. Michael Ummels is supported by the
DFG project SYANCO.

References

1. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on mul-
tiple mean-payoff objectives in Markov decision processes. In: LICS, pp. 33–42
(2011)

2. Cabot, A.N., Hannum, R.C.: Gaming regulation and mathematics: A marriage of
necessity. John Marshall Law Review 35(3), 333–358 (2002)

3. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. J. Com-
put. Syst. Sci. 78(2), 394–413 (2012)

4. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov Decision Processes with
Multiple Objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

Playing Stochastic Games Precisely 363

5. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Trivedi, A., Ummels, M.: Play-
ing stochastic games precisely. Technical Report No. CS-RR-12-03, Department of
Computer Science, University of Oxford (June 2012)

6. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: LICS, pp. 99–110. IEEE Computer Society (1997)

7. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. LMCS 4(4) (2008)

8. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)
9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)
10. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO Science

Series C, vol. 570. Kluwer Academic Publishers (2004)
11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley (1994)
12. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc.

IEEE 77(1) (1989)
13. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39 (1953)
14. State of New Jersey, 214th legislature, as amended by the General Assembly

on 01/10/2011 (November 2010), http://www.njleg.state.nj.us/2010/Bills/
S0500/12 R4.PDF

http://www.njleg.state.nj.us/2010/Bills/S0500/12_R4.PDF
http://www.njleg.state.nj.us/2010/Bills/S0500/12_R4.PDF

Efficient Modelling and Generation

of Markov Automata�

Mark Timmer1, Joost-Pieter Katoen1,2, Jaco van de Pol1,
and Mariëlle I.A. Stoelinga1

1 Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

{timmer,vdpol,m.i.a.stoelinga}@cs.utwente.nl
2 Software Modeling and Verification Group

RWTH Aachen University, Germany
katoen@cs.rwth-aachen.de

Abstract. This paper introduces a framework for the efficient mod-
elling and generation of Markov automata. It consists of (1) the data-rich
process-algebraic language MAPA, allowing concise modelling of systems
with nondeterminism, probability and Markovian timing; (2) a restricted
form of the language, the MLPPE, enabling easy state space generation
and parallel composition; and (3) several syntactic reduction techniques
on the MLPPE format, for generating equivalent but smaller models.

Technically, the framework relies on an encoding of MAPA into the
existing prCRL language for probabilistic automata. First, we identify a
class of transformations on prCRL that can be lifted to the Markovian
realm using our encoding. Then, we employ this result to reuse prCRL’s
linearisation procedure to transform any MAPA specification to an equiv-
alent MLPPE, and to lift three prCRL reduction techniques to MAPA.
Additionally, we define two novel reduction techniques for MLPPEs. All
our techniques treat data as well as Markovian and interactive behaviour
in a fully symbolic manner, working on specifications instead of models
and thus reducing state spaces prior to their construction. The framework
has been implemented in our tool SCOOP, and a case study on polling
systems and mutual exclusion protocols shows its practical applicability.

1 Introduction

In the past decade, much research has been devoted to improving the efficiency
of probabilistic model checking: verifying properties on systems that are gov-
erned by, in general, both probabilistic and nondeterministic choices. This way,
many models in areas like distributed systems, networking, security and systems
biology have been successfully used for dependability and performance analysis.

Recently, a new type of model that captures much richer behaviour was in-
troduced: Markov automata (MAs) [5,4,3]. In addition to nondeterministic and

� This research has been partially funded by NWO under grants 612.063.817 (SYRUP)
and Dn 63-257 (ROCKS).

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 364–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Modelling and Generation of Markov Automata 365

probabilistic choices, MAs also contain Markovian transitions, i.e., transitions
subject to an exponentially distributed delay. Hence, MAs can be seen as a uni-
fication of probabilistic automata (PAs) [16,18] (containing nondeterministic and
probabilistic transitions) and interactive Markov chains (IMCs) [8] (containing
nondeterministic and Markovian transitions). They provide a natural semantics
for a wide variety of specification languages for concurrent systems, including
Generalized Stochastic Petri Nets [12], the domain-specific language AADL [2]
and (dynamic) fault trees [1]; i.e., MAs are very general and, except for hard
real-time deadlines, can describe most behaviour that is modelled today.

Example 1. Figure 1 shows the state space of a polling system with two arrival
stations and probabilistically erroneous behaviour (inspired by [17]). Although
probability can sometimes be encoded in rates (e.g., having (0, 0, 0) −0.1λ1−−−→ (1, 0, 1)
and (0, 0, 0) −0.9λ1−−−→ (0, 0, 1) instead of the current λ1-transition from (0, 0, 0) and
the τ -transition from (1, 0, 0)), the transitions leaving (1, 1, 0) cannot be encoded
like that, due to the nondeterminism between them. Thus, this system could not
be represented by an IMC (and neither a PA, due to the Markovian rates). ��

Although several formalisms to specify PAs and IMCs exist [10,6], no data-
rich specification language for MAs has been introduced so far. Since realistic
systems often consist of a very large number of states, such a method to model
systems on a higher level, instead of explicitly providing the state space, is
vital. Additionally, the omnipresent state space explosion also applies to MAs.
Therefore, high-level specifications are an essential starting point for syntactic
optimisations that aim to reduce the size of the state spaces to be constructed.

Our approach. We introduce a new process-algebraic specification language for
MAs, called MAPA (Markov Automata Process Algebra). It is based on the
prCRL language for PAs [10], which was in turn based on μCRL [7]. MAPA sup-
ports the use of data for efficient modelling in the presence of nondeterministic
and probabilistic choices, as well as Markovian delays. We define a normal form

0, 0, 0

1, 0, 0

0, 1, 0

0, 0, 1

1, 0, 1

0, 1, 1

1, 1, 1 1, 1, 0

λ1

λ2

9
10

1
10

τ

9
10

1
10τ

μ
λ1

λ2

λ2

μ

μ

λ1

μ

9
10

1
10 τ

9
10

1
10

τ

Fig. 1. A queueing system, consisting of a server and two stations. The two stations
have incoming requests with rates λ1, λ2, which are stored until fetched by the server. If
both stations contain a job, the server chooses nondeterministically. Jobs are processed
with rate μ, and when polling a station, there is a 1

10
probability that the job is

erroneously kept in the station after being fetched. Each state is represented as a tuple
(s1, s2, j), with si the number of jobs in station i, and j the number of jobs in the
server. For simplicity we assume that each component can hold at most one job.

366 M. Timmer et al.

MAPA

MLPPE

prCRL

LPPE

∼

enc

linearise

dec
reducereduce

Fig. 2. Linearising MAPA specifications using prCRL linerarisation

for MAPA: the Markovian Linear Probabilistic Process Equation (MLPPE). Like
the LPPE for prCRL, it allows for easy state space generation and parallel com-
position, and simplifies the definition of syntactic reduction techniques. These
reduce the MA underlying a MAPA specification prior to its generation.

We present an encoding of MAPA into prCRL, to exploit many useful results
from the prCRL context. This is non-trivial, since strong bisimulation (or even
isomorphism) of PAs does not guarantee bisimulation of the MAs obtained af-
ter decoding. Therefore, we introduce a notion of bisimulation on prCRL terms,
based on the preservation of derivations. We show that, for any prCRL trans-
formation f that respects our derivation-preserving bisimulation, dec ◦ f ◦ enc
preserves strong bisimulation, i.e., dec (f(enc (M))) is strongly bisimilar to M
for every MAPA specification M . This implies that many useful prCRL transfor-
mations are directly applicable to MAPA specifications. We show that this is the
case for the linearisation procedure of [10]; as a result, we can reuse it to trans-
form any MAPA specifications to an equivalent MLPPE. We show that three
previously defined reduction techniques also respect derivation-preserving bisim-
ulation. Hence, they can now be applied to Markovian models as well. Moreover,
we describe two novel reduction techniques for MLPPEs. We implemented the
complete framework in our tool SCOOP [21], and show its applicability using the
aforementioned polling system and a probabilistic mutual exclusion protocol.

Figure 2 summarises the procedure of encoding a specification into prCRL,
linearising, reducing, decoding, and possibly reducing some more, obtaining an
efficient MLPPE that is strongly bisimilar to the original specification. Since
MAs generalise many existing formalisms (LTSs, DTMCs, CTMCs, IMCs, PAs),
we can just as well use MAPA and all our reduction techniques on such models.
Thus, this paper provides an overarching framework for efficiently modelling and
optimising specifications for all of these models.

Overview of the paper. We introduce the preliminaries of MAs in Section 2, and
the language MAPA in Section 3. The encoding in prCRL, as well as lineari-
sation, is dealt with in Section 4. Then, Section 5 presents various reductions
techniques, which are applied to a case study in Section 6. The paper is concluded
in Section 7. Due to space limitations, we refer to [19] for the (straightforward)
definition of parallel composition and all complete proofs.

2 Preliminaries

Definition 1 (Basics). Given a set S, an element s ∈ S and a sequence
σ = 〈s1, s2, . . . , sn〉 ∈ S∗, we use s+ σ to denote 〈s, s1, s2, . . . , sn〉.

Efficient Modelling and Generation of Markov Automata 367

A probability distribution over a countable set S is a function μ : S → [0, 1]
such that

∑
s∈S μ(s) = 1. We denote by Distr(S) the sets of all such functions.

For S′ ⊆ S, let μ(S′) =
∑
s∈S′ μ(s). We define the lifting μf ∈ Distr(T) of μ

over a function f : S → T by μf (t) = μ(f−1(t)). Note that, for injective f ,
μf (f(s)) = μ(s) for every s ∈ S. We let supp(μ) = {s ∈ S | μ(s) > 0} be
the support of μ, and write 1s for the Dirac distribution for s, determined by
1s(s) = 1.

Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence
class induced by s, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}. We denote the set of all
such equivalence classes by S/R. Given two probability distributions μ, μ′ over S,
we write μ ≡R μ′ to denote that μ([s]R) = μ′([s]R) for every s ∈ S.

An MA is a transition system in which the set of transitions is partitioned into
interactive transitions (which are equivalent to the transitions of a PA) and
Markovian transitions (which are equivalent to the transitions of an IMC). The
following definition formalises this, and provides notations for MAs. We assume
a countable universe Act of actions, with τ ∈ Act the invisible internal action.

Definition 2 (Markov automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, ↪−→,�〉, where
– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions;
– ↪−→ ⊆ S ×A× Distr(S) is the interactive transition relation;
– � ⊆ S × R>0 × S is the Markovian transition relation.

If (s, a, μ) ∈ ↪−→, we write s
α

↪−→ μ and say that the action a can be executed from
state s, after which the probability to go to s′ ∈ S is μ(s′). If (s, λ, s′) ∈ �, we
write s λ� s′ and say that s moves to s′ with rate λ.

The rate between two states s, s′ ∈ S is rate(s, s′) =
∑

(s,λ,s′)∈� λ, and the

outgoing rate of s is rate(s) =
∑
s′∈S rate(s, s

′). We require rate(s) < ∞ for
every state s ∈ S. If rate(s) > 0, the branching probability distribution after
this delay is denoted by Ps and defined by Ps(s′) =

rate(s,s′)
rate(s) for every s′ ∈ S.

Remark 1. As we focus on data with possibly infinite domains, we need count-
able state spaces. Although this is problematic for weak bisimulation [5], it does
not hinder us since we only depend on strong bisimulation.

We do need a finite exit rate for every state. After all, given a state s with
rate(s) = ∞, there is no obvious measure for the next state distribution of s.
Also, if all states reachable from s would be considered equivalent by a bisimu-
lation relation, the bisimulation quotient would be ill-defined as it would yield a
Markovian transition with rate∞ (which is not allowed). Fortunately, restricting
to finite exit rates is no severe limitation; it still allows infinite chains of states
connected by finite rates, as often seen in the context of queueing systems. Also,
it still allows infinite branching with for instance rates 1

2λ,
1
4λ,

1
8λ, ��

Following [5], we define a special action χ(r) to denote a delay with rate r,
enabling a uniform treatment of interactive and Markovian transitions via ex-
tended actions. As usual [8,5], we employ the maximal progress assumption: time

368 M. Timmer et al.

is only allowed to progress in states without outgoing τ -transitions (since they
are assumed to be infinitely fast). This is taken into account by only having
extended actions representing Markovian delay from states that do not enable
an interactive transition s

τ
↪−→ μ′.

Definition 3 (Extended action set). Let M = 〈S, s0, A, ↪−→,�〉 be an MA,
then the extended action set of M is given by Aχ = A ∪ {χ(r) | r ∈ R>0}.
Given a state s ∈ S and an action α ∈ Aχ, we write s −α→ μ if either

– α ∈ A and s
α

↪−→ μ, or

– α = χ(rate(s)), rate(s) > 0, μ = Ps and there is no μ′ such that s
τ

↪−→ μ′.

Based on extended actions, we introduce strong bisimulation and isomorphism.

Definition 4 (Strong bisimulation). Let M = 〈S, s0, A, ↪−→,�〉 be an MA,
then an equivalence relation R ⊆ S×S is a strong bisimulation if for every pair
(s, s′) ∈ R, action a ∈ Aχ and transition s −a→ μ, there is a μ′ such that s′ −a→ μ′

and μ ≡R μ′.
Two states s, t ∈ S are strongly bisimilar (denoted by s ∼ t) if there exists

a bisimulation relation R such that (s, t) ∈ R. Two MAs M1,M2 are strongly
bisimilar (denoted M1 ∼ M2) if their initial states are strongly bisimilar in
their disjoint union.

Definition 5 (Isomorphism). Let M = 〈S, s0, A, ↪−→,�〉 be an MA, then two
states s, s′ ∈ S are isomorphic (denoted by s ∼= s′) if there exists a bijection
f : S → S such that f(s) = s′ and ∀t ∈ S, μ ∈ Distr(S), a ∈ Aχ . t −a→ μ ⇔
f(t) −a→ μf . Two MAs M1,M2 are isomorphic (denoted M1

∼= M2) if their
initial states are isomorphic in their disjoint union.

Obviously, isomorphism implies strong probabilistic bisimulation, as the reflexive
and symmetric closure of {(s, f(s)) | s ∈ S} is a bisimulation relation.

MAs generalise many classes of systems. Most importantly for this paper,
they generalise Segala’s PAs [16].

Definition 6 (Probabilistic automata). A probabilistic automaton (PA) is
an MA M = 〈S, s0, A, ↪−→,�〉 without any Markovian transitions, i.e., � = ∅.

The definitions of strong bisimulation and isomorphism for MAs correspond to
those for PAs, if the MA only contains interactive transitions. So, if two PAs are
strongly bisimilar or isomorphic, so are their corresponding MA representations.
Therefore, we use the same notations for strong bisimulation and isomorphism
of PAs as we do for MAs.

Additionally, we can obtain IMCs by restricting to Dirac distributions for the
interactive transitions, CTMCs by taking ↪−→ = ∅, DTMCs by taking � = ∅ and
having only one transition (s, a, μ) ∈ ↪−→ for every s ∈ S, and LTSs by taking
� = ∅ and using only Dirac distributions for the interactive transitions [4].
Hence, the results in this paper can be applied to all these models.

Efficient Modelling and Generation of Markov Automata 369

3 Markov Automata Process Algebra

We introduce Markov Automata Process Algebra (MAPA), a language in which
all conditions, nondeterministic and probabilistic choices, and Markovian delays
may depend on data parameters. We assume an external mechanism for the
evaluation of expressions (e.g., equational logic, or a fixed data language), able
to handle at least boolean and real-valued expressions. Also, we assume that
any expression that does not contain variables can be evaluated. Note that this
restricts the expressiveness of the data language. In the examples we use an
intuitive data language, containing basic arithmetic and boolean operators.

We generally refer to data types with upper-case letters D,E, . . . , and to
variables with lower-case letters u, v,

Definition 7 (Process terms). A process term in MAPA is any term that
can be generated by the following grammar:

p ::= Y (t) | c ⇒ p | p+ p |
∑

x:D p | a(t)
∑
• x:D f : p | (λ) · p

Here, Y is a process name, t a vector of expressions, c a boolean expression,
x a vector of variables ranging over a (possibly infinite) type D, a ∈ Act a
(parameterised) atomic action, f a real-valued expression yielding values in [0, 1],
and λ an expression yielding positive real numbers (rates). We write p = p′ for
syntactically identical process terms. Note that, if |x| > 1, D is a Cartesian
product, as for instance in

∑
(m,i):{m1,m2}×{1,2,3} send(m, i)

Given an expression t, a process term p and two vectors x = (x1, . . . , xn),
d = (d1, . . . , dn), we use t[x := d] to denote the result of substituting every xi
in t by di, and p[x := d] for the result of applying this to every expression in p.

In a process term, Y (t) denotes process instantiation, where t instantiates Y ’s
process variables as defined below (allowing recursion). The term c ⇒ p behaves
as p if the condition c holds, and cannot do anything otherwise. The + operator
denotes nondeterministic choice, and

∑
x:D p a (possibly infinite) nondetermin-

istic choice over data type D. The term a(t)
∑
• x:D f : p performs the action a(t)

and then does a probabilistic choice over D. It uses the value f [x := d] as the
probability of choosing each d ∈ D. Finally, (λ) ·p can behave as p after a delay,
determined by a negative exponential distribution with rate λ.

Definition 8 (Specifications). A MAPA specification is given by a tuple M =
({Xi(xi : Di) = pi}, Xj(t)) consisting of a set of uniquely-named processes Xi,
each defined by a process equation Xi(xi : Di) = pi, and an initial process
Xj(t). In a process equation, xi is a vector of process variables with type Di,
and pi (the right-hand side) is a process term specifying the behaviour of Xi.

A variable v in an expression in a right-hand side pi is bound if it is an
element of xi or it occurs within a construct

∑
x:D or

∑
• x:D such that v is an

element of x. Variables that are not bound are said to be free.
A prCRL specification [10] is a MAPA specification without rates.

We generally refer to process terms with lower-case letters p, q, r, and to processes
with capitals X,Y, Z. Also, we will often write X(x1 : D1, . . . , xn : Dn) for

370 M. Timmer et al.

constant queueSize = 10, nrOfJobTypes = 3

type Stations = {1, 2}, Jobs = {1, . . . ,nrOfJobTypes}
Station(i : Stations, q : Queue, size : {0..queueSize})

= size < queueSize⇒ (2i+ 1) ·∑j:Jobs arrive(j) · Station(i, enqueue(q, j), size+ 1)

+ size > 0 ⇒ deliver(i,head(q))
∑•

k∈{1,9}

k
10

: k = 1⇒ Station(i, q, size)

+ k = 9⇒ Station(i, tail(q), size− 1)

Server =
∑

n:Stations

∑
j:Jobs poll(n, j) · (2 ∗ j) · finish(j) · Server

γ(poll, deliver) = copy

System = τ{copy,arrive,finish}(∂{poll,deliver}(Station(1, empty, 0) || Station(2, empty, 0) ||Server))

Fig. 3. Specification of a polling system

X((x1, . . . , xn) : (D1×· · ·×Dn)). The syntactic sugar introduced for prCRL [10]
can be lifted directly to MAPA. Most importantly, we write a(t) ·p for the action
a(t) that goes to p with probability 1.

Parallel composition. Using MAPA processes as basic building blocks, we sup-
port the modular construction of large systems via top-level parallelism, encap-
sulation, hiding, and renaming. This can be defined straightforwardly [19].

Example 2. Figure 3 shows the specification for a slightly more involved variant
of the system explained in Example 1. Instead of having just one type of job,
as was the case there, we now allow a number of different kinds of jobs (with
different service rates). Also, we allow the stations to have larger buffers.

The specification uses three data types: a set Stations with identifiers for the
two stations, a set Jobs with the possible incoming jobs, and a built-in type
Queue. The arrival rate for station i is set to 2i + 1, so in terms of the rates in
Figure 1 we have λ1 = 3 and λ2 = 5. Each job j is served with rate 2j.

The stations receive jobs if their queue is not full, and are able to deliver
jobs if their queue is not empty. As explained before, removal of jobs from the
queue fails with probability 1

10 . The server continuously polls the stations and
works on their jobs. The system is composed of the server and two stations,
communicating via the poll and deliver actions. ��

3.1 Static and Operational Semantics

Not all syntactically correct MAPA specifications are meaningful. The following
definition formulates additional well-formedness conditions. The first two con-
straints ensure that a specification does not refer to undefined variables or pro-
cesses, the third is needed to obtain valid probability distributions, and the fourth
ensures that the specification has a unique solution (modulo strong probabilistic
bisimulation). Additionally, all exit rates should be finite. This is discussed in
Remark 2, after providing the operational semantics and MLPPE format.

Efficient Modelling and Generation of Markov Automata 371

To define well-formedness, we require the concept of unguardedness. We say
that a process term Y (t) can go unguarded to Y . Moreover, c ⇒ p can go
unguarded to Y if p can, p+ q if either p or q can, and

∑
x:D p if p can, whereas

a(t)
∑
• x:D f : p and (λ) · p cannot go unguarded anywhere.

Definition 9 (Well-formed). A MAPA specification M = ({Xi(xi : Di) =
pi}, Xj(t)) is well-formed if the following four constraints are all satisfied:

– There are no free variables.
– For every instantiation Y (t′) occurring in some pi, there exists a process

equation (Xk(xk : Dk) = pk) ∈ M such that Xk = Y and t′ is of type Dk.
Also, the vector t used in the initial process is of type Dj .

– For every construct a(t)
∑
• x:D f : p occurring in a right-hand side pi it holds

that
∑

d∈D f [x := d] = 1 for every possible valuation of the free variables in
f [x := d] (the summation now used in the mathematical sense).

– For every process Y , there is no sequence of processes X1, X2, . . . , Xn (with
n ≥ 2) such that Y = X1 = Xn and every pj can go unguarded to pj+1.

We assume from now on that every MAPA specification is well-formed.

The operational semantics of well-formed MAPA is given by an MA, based on
the SOS rules in Figure 4. These rules provide derivations for process terms,
like for classical process algebras, but additionally keep track of the rules used
in a derivation. A mapping to MAs is only provided for process terms without
free variables; this is consistent with our notion of well-formedness. Note that,
without the new MStep rule, the semantics corresponds precisely to prCRL [10].

Definition 10 (Derivations). An α-derivation from p to β is a sequence of
SOS rules D such that p −α→D β. We denote the set of all derivations by Δ, and
the set of Markovian derivations from p to p′ by

MD(p, p′) = {(λ,D) ∈ R×Δ | p −λ→D p′,MStep ∈ D}.

Note that NSum is instantiated with a data element to distinguish between, for
instance,

∑
d:{1,2} a(d) · p −a(d1)−−−→NSum(d1) p and

∑
d:{1,2} a(d) · p −a(d2)−−−→NSum(d2) p.

Inst
p[x := d] −α−→D β

Y (d) −α−→Inst+D β
if Y (x : D) = p Implies

p −α−→D β

c⇒ p −α−→Implies+D β
if c holds

NChoiceL
p −α−→D β

p+ q −α−→NChoiceL+D β
NChoiceR

q −α−→D β

p+ q −α−→NChoiceR+D β

NSum(d)
p[x := d] −α−→D β∑

x:D p −α−→NSum(d)+D β
if d ∈ D MStep

−
(λ) · p −λ−→MSum p

PSum
−

a(t)
∑•
x:D

f : p −a(t)−−→PSum μ
where μ(p[x := d]) =

∑
d′∈D

p[x:=d]=p[x:=d′]

f [x := d′], for every d ∈ D

Fig. 4. SOS rules for MAPA

372 M. Timmer et al.

Example 3. Consider p = (λ1) · q + (
∑
n:{1,2,3} n < 3 ⇒ (λ2) · q). We derive

−
(λ2) · q −λ2−→〈MStep〉 q

1 < 3⇒ (λ2) · q −λ2−→〈Implies,MStep〉 q∑
n:{1,2,3} n < 3⇒ (λ2) · q −λ2−→〈NSum(1),Implies,MStep〉 q

(λ1) · q +∑n:{1,2,3} n < 3⇒ (λ2) · q −λ2−→〈NChoiceR,NSum(1),Implies,MStep〉 q
NChoiceR

NSum(1)

Implies

MStep

So, p −λ2−→D q with D = 〈NChoiceR,NSum(1), Implies,MStep〉. Similarly,
we can find one other derivation D′ with rate λ2 using NSum(2), and finally
p −λ1−→D′′ q with D′′ = 〈NChoiceL,MStep〉. Since these are the only derivations
from p to q, we find MD(p, q) = {(λ2,D), (λ2,D′), (λ1,D′′)}. ��

Definition 11 (Operational semantics). The semantics of a MAPA specifi-
cation M = ({Xi(xi : Di) = pi}, Xj(t)) is an MA M = 〈S, s0, A, ↪−→,�〉, where
– S is the set of all MAPA process terms without free variables, and s0 = Xj(t);
– A = {a(t) | a ∈ Act, t is a vector of expressions without free variables}
– ↪−→ is the smallest relation such that (p, a, μ) ∈ ↪−→ if p −a→D μ is derivable

using the SOS rules in Figure 4 for some D such that MStep �∈ D;
– � is the smallest relation such that (p, λ, p′) ∈ � if MD(p, p′) �= ∅ and

λ =
∑

(λ′,D)∈MD(p,p′) λ
′.

Note that, for �, we sum the rates of all Markovian derivations from p to p′.
For Example 3, this yields p λ� q with λ = λ1 + 2λ2. Just applying the SOS
rules as for ↪−→ would yield (λ) · p′ + (λ) · p′ λ� p′. However, as the race between
the two exponentially distributed transitions doubles the speed of going to p,
we want to obtain (λ) · p′ + (λ) · p′ 2λ� p′. This issue has been recognised before,
leading to state-to-function transition systems [11], multi-transition systems [9],
and derivation-labelled transitions [15]. Our approach is based on the latter.

An appealing implication of the derivation-based semantics is that parallel
composition can easily be defined for MAPA: we can do without the extra clause
for parallel self-loops that was needed in [5]. See [19] for more details.

Given a MAPA specification M and its underlying MA M, two process terms
in M are isomorphic if their corresponding states in M are isomorphic. Two
specifications with underlying MAs M1,M2 are isomorphic if M1 is isomorphic
to M2. Bisimilar process terms and specifications are defined in the same way.

3.2 Markovian Linear Probabilistic Process Equations

To simplify state space generation and enable reduction techniques, we introduce
a normal form for MAPA: the MLPPE. It generalises the LPPE format for
prCRL [10], which in turn was based on the LPE format for μCRL [7]. In the
LPPE format, there is precisely one process, which consists of a nondeterministic
choice between a set of summands. Each of these summands potentially contains
a nondeterministic choice, followed by a condition, an interactive action and a
probabilistic choice that determines the next state. The MLPPE additionally
allows summands with a rate instead of an action.

Efficient Modelling and Generation of Markov Automata 373

Definition 12 (MLPPEs). An MLPPE (Markovian linear probabilistic pro-
cess equation) is a MAPA specification of the following format:

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni)

+
∑
j∈J

∑
dj :Dj

cj ⇒ (λj) ·X(nj)

The first |I| nondeterministic choices are referred to as interactive summands,
the last |J | as Markovian summands.

The two outer summations are abbreviations of nondeterministic choices between
the summands. The expressions ci, bi, fi and ni may depend on g and di, and
fi and ni also on ei. Similarly, cj, λj and nj may depend on g and dj.

Each state of an MLPPE corresponds to a valuation of its global variables,
due to the recursive call immediately after each action or delay. Therefore, every
reachable state in the underlying MA can be uniquely identified with one of the
vectors g′ ∈ G (with the initial vector identifying the initial state). From the
SOS rules, it follows that for all g′ ∈ G, there is a transition g′

a(q)
↪−−−→ μ if and

only if for at least one summand i ∈ I there is a local choice d′i ∈ Di such that

ci ∧ ai(bi) = a(q) ∧ ∀e′i ∈ Ei . μ(ni[ei := e′i]) =
∑

e′′
i ∈Ei

ni[ei:=e′
i]=ni[ei:=e′′

i]

fi[ei := e′′i],

where, for readability, the substitution [(g,di) := (g′,d′i)] is omitted from ci, bi,
ni and fi. Additionally, there is a transition g′ λ� g′′ if and only if λ > 0 and

λ =
∑

(j,d′
j)∈J×Dj

cj[(g,dj):=(g′,d′
j)]∧nj [(g,dj):=(g′,d′

j)]=g′′

λj [(g,dj) := (g′,d′j)]

Remark 2. For the semantics to be an MA with finite outgoing rates, we need∑
p′
∑

(λ,D)∈MD(p,p′) λ < ∞ for every process term p. One way of enforcing this
syntactically is to require all data types in Markovian summands to be finite. ��

4 Encoding in prCRL

To apply MLPPE-based reductions while modelling in the full MAPA language,
we need an automated way for transforming MAPA specifications to strongly
bisimilar MLPPEs. Instead of defining such a linearisation procedure for MAPA,
we exploit the existing linearisation procedure for prCRL. That is, we show how
to encode a MAPA specification into a prCRL specification and how to decode
a MAPA specification from a prCRL specification. That way, we can apply the
existing linearisation procedure, as depicted earlier in Figure 2. Additionally, the
encoding enables us to immediately apply many other useful prCRL transfor-
mations to MAPA specifications. In this section we explain the encoding and
decoding procedures, and prove the correctness of our method.

374 M. Timmer et al.

enc (Y (t)) = Y (t)
enc (c⇒ p) = c⇒ enc (p)
enc (p+ q) = enc (p) + enc (q)
enc

(∑
x:D p

)
=

∑
x:D enc (p)

enc
(
a(t)

∑
•

x:D f : p
)
= a(t)

∑
•

x:D f : enc (p)

dec (Y (t)) = Y (t)
dec (c⇒ p) = c⇒ dec (p)
dec (p + q) = dec (p) + dec (q)
dec

(∑
x:D p

)
=

∑
x:D dec (p)

dec
(
a(t)

∑
•

x:D f : p
)
= a(t)

∑
•

x:D f : dec (p)
(a �= rate)

enc ((λ) · p) = rate(λ)
∑
•

x:{∗} 1 : enc (p) (x does not occur in p)

dec (rate(λ)
∑
•

x:{∗} 1 : p) = (λ) · dec (p)

Fig. 5. Encoding and decoding rules for process terms

4.1 Encoding and Decoding

The encoding of MAPA terms is straightforward. The (λ)·p construct of MAPA is
the only one that has to be encoded, since the other constructs all are also present
in prCRL. We chose to encode exponential rates by an action rate(λ) (which
is assumed not to occur in the original specification). Since actions in prCRL
require a probabilistic choice for the next state, we use

∑
• x:{∗} 1 : p such that x

is not used in p. Here, {∗} is a singleton set with an arbitrary element. Figure 5
shows the appropriate encoding and decoding functions.

Definition 13 (Encoding). Given a MAPA specification M = ({Xi(xi : Di) =
pi}, Xj(t)) and a prCRL specification P = ({Yi(yi : Ei) = qi}, Yj(u)), let

enc (M) = ({Xi(xi : Di) = enc (pi)}, Xj(t))
dec (P) = ({Yi(yi : Ei) = dec (qi)}, Yj(u))

where the functions enc and dec for process terms are given in Figure 5.

Remark 3. It may appear that, given the above encoding and decoding rules,
bisimilar prCRL specifications always decode to bisimilar MAPA specifications.
However, this is not the case. Consider the bisimilar prCRL terms rate(λ) ·X +
rate(λ) ·X and rate(λ) ·X . The decodings of these two terms, (λ) ·X + (λ) ·X
and (λ) ·X , are clearly not bisimilar in the context of MAPA.

An obvious solution may seem to encode each rate by a unique action, yielding
rate1(λ) ·X + rate2(λ) ·X , preventing the above erroneous reduction. However,
this does not work in all occasions either. Take for instance a MAPA specification
consisting of two processes X = Y + Y and Y = (λ) ·X . Encoding this to X =
Y +Y and Y = rate1(λ)·X enables the reduction to X = Y and Y = rate1(λ)·X ,
which is incorrect since it halves the rate of X .

Note that an ‘encoding scheme’ that does yield bisimilar MAPA specifications
for bisimilar prCRL specifications exists. We could generate the complete state
space of a MAPA specification, determine the total rate from p to p′ for every
pair of process terms p, p′, and encode each of these as a unique action in the
prCRL specification. When decoding, potential copies of this action that may
arise when looking at bisimilar specifications can then just be ignored. However,
this clearly renders useless the whole idea of reducing a linear specification before
generation of the entire state space. ��

Efficient Modelling and Generation of Markov Automata 375

Derivation-preserving bisimulation. The observations above suggest that we
need a stronger notion of bisimulation if we want two bisimilar prCRL speci-
fications to decode to bisimilar MAPA specifications: all bisimilar process terms
should have an equal number of rate(λ) derivations to every equivalence class (as
given by the bisimulation relation). We formalise this by means of a derivation-
preserving bisimulation. It is defined on prCRL terms instead of states in a PA.

Definition 14 (Derivation preservation1). Let R be a bisimulation relation
over prCRL process terms. Then, R is derivation preserving if for every pair
(p, q) ∈ R, every equivalence equivalence class [r]R and every rate λ:

|{D ∈ Δ | ∃r′ ∈ [r]R . p −rate(λ)−−−−→D 1r′}| =
|{D ∈ Δ | ∃r′ ∈ [r]R . q −rate(λ)−−−−→D 1r′}|.

Two prCRL terms p, q are derivation-preserving bisimilar, denoted p ∼dp q, if
there exists a derivation-preserving bisimulation relation R such that (p, q) ∈ R.

The next theorem states that derivation-preserving bisimulation is a congru-
ence for every prCRL operator. The proof can be found in [19].

Theorem 1. Derivation-preserving bisimulation is a congruence for prCRL.

Our encoding scheme and notion of derivation-preserving bisimulation allow us
to reuse prCRL transformations for MAPA specifications. The next theorem
confirms that a function dec ◦ f ◦ enc : MAPA → MAPA respects bisimulation if
f : prCRL → prCRL respects derivation-preserving bisimulation.

Theorem 2. Let f : prCRL → prCRL such that f(P) ∼dp P for every prCRL
specification P . Then, dec (f(enc (M))) ∼ M for every MAPA specification M
without any rate action.

Proof (sketch). It can be shown that (a)m
a

↪−→ μ (with a �= rate) is a transition in
an MA if and only if enc (m) −a→ μenc, and that (b) every derivation m −λ→D m′ in
an MA corresponds one-to-one to a derivation enc (m) −rate(λ)−−−−→D′ 1enc(m′), with D′
obtained from D by substituting PSum for MStep. Using these two obser-
vations, and taking R as the derivation-preserving bisimulation relation for
f(P) ∼dp P , it can be shown that R′ = {(dec (p) , dec (q)) | (p, q) ∈ R} is a
bisimulation relation, and hence dec (f(P)) ∼ dec (P). Taking P = enc (M), and
noting that dec (enc (M)) = M , the theorem follows. ��

We can now state that the linearisation procedure from [10] (here referred to
by linearise) can be used to transform a MAPA specification to an MLPPE.
Under the observation that a prCRL specification P and its linearisation are
derivation-preserving bisimilar (proven in [19]), it is an immediate consequence
of Theorem 2. The fact that M ′ is an MLPPE follows from the proof in [10]
that linearise(enc (M)) is an LPPE, and the observation that decoding does not
change the structure of a specification.

1 We could even be a bit more liberal (although technically slightly more involved),
only requiring equal sums of the λs of all rate-transitions to each equivalence class.

376 M. Timmer et al.

Theorem 3. Let M be a MAPA specification without any rate action, and let
M ′ = dec (linearise(enc (M))). Then, M ∼ M ′ and M ′ is an MLPPE.

5 Reductions

We discuss three symbolic prCRL reduction techniques that, by Theorem 2, can
directly be applied to MAPA specifications. Also, we discuss two new techniques
that are specific to MAPA. Note that, since MAs generalise LTSs, CTMCs,
DTMCs, PAs and IMCs, all techniques also are applicable to these subclasses.

5.1 Novel Reduction Techniques

Maximal progress reduction. No Markovian transitions can be taken from states
that also allow a τ -transition. Hence, such Markovian transitions (and their
target states) can safely be omitted. This maximal progress reduction can be
applied during state space generation, but it is more efficient to already do
this on the MLPPE level: we can just omit all Markovian summands that are
always enabled together with non-Markovian summands. Note that, to detect
such scenarios, some heuristics or theorem proving have to be applied, as in [14].

Summation elimination. Summation elimination [10] aims to remove unneces-
sary summations, transforming

∑
d:N d = 5 ⇒ send(d) · X to send(5) · X (as

there is only one possible value for d) and
∑
d:{1,2} a ·X to a ·X (as the summa-

tion variable is not used). This technique would fail for MAPA, as the second
transformation changes the number of a-derivations; for a = rate(λ), this would
change behaviour. Therefore, we generalise summation elimination to MLPPEs.
Interactive summands are handled as before, but for Markovian summands the
second kind of reduction is altered. Instead of reducing

∑
d:D(λ) ·X to (λ) ·X ,

we now reduce to (|D|×λ) ·X . That way, the total rate to X remains the same.

5.2 Generalisation of Existing Techniques

Constant elimination [10] detects if a parameter of an LPPE never changes value.
Then, the parameter is omitted and every reference to it replaced by its initial
value. Expression simplification [10] evaluates functions for which all parameters
are constants and applies basic laws from logic. These techniques do not change
the state space, but improve readability and speed up state space generation.
Dead-variable reduction [14] additionally reduces the number of states. It takes
into account the control flow of an LPPE and tries to detect states in which
the value of some data variable is irrelevant. Basically, this is the case if that
variable will be overwritten before being used for all possible futures.

It is easy to see that all three techniques are derivation preserving. Hence, by
Theorem 2 we can reuse them unchanged for MAPA using dec (reduce(enc (M)).

Efficient Modelling and Generation of Markov Automata 377

6 Case Study and Implementation

We extended our tool SCOOP [21], enabling it to handle MAPA. We imple-
mented the encoding scheme, linked it to the original linearisation and derivation-
preserving reduction techniques, and implemented the novel reductions.
Table 1 shows statistics of the MAs generated from several variations of
Figure 3; queue-i-j denotes the variant with buffers of size i and j types of
jobs2. The primed specifications were modified to have a single rate for all types
of jobs. Therefore, dead-variable reduction detects that the queue contents are
irrelevant.

We also modelled a probabilistic mutex exclusion protocol, based on [13]. Each
process is in the critical section for an amount of time governed by an exponen-
tial rate, depending on a nondeterministically chosen job type. We denote by
mutex-i-j the variant with i processes and j types of jobs.

Note that the MLPPE optimisations impact the MA generation time signifi-
cantly, even for cases without state space reduction. Also note that earlier case
studies for prCRL or μCRL would still give the same results; e.g., the results
in [14] that showed the benefits of dead-variable reduction are still applicable.

Table 1. State space generation using SCOOP on a 2.4 GHz 8 GB Intel Core 2 Duo
MacBook (MLPPE in number of parameters / symbols, time in seconds)

Original Reduced
Spec. States Trans. MLPPE Time States Trans. MLPPE Time Red.
queue-3-5 316,058 581,892 15 / 335 87.4 218,714 484,548 8 / 224 20.7 76%
queue-3-6 1,005,699 1,874,138 15 / 335 323.3 670,294 1,538,733 8 / 224 64.7 80%
queue-3-6’ 1,005,699 1,874,138 15 / 335 319.5 74 108 5 / 170 0.0 100%
queue-5-2 27,659 47,130 15 / 335 4.3 23,690 43,161 8 / 224 1.9 56%
queue-5-3 1,191,738 2,116,304 15 / 335 235.8 926,746 1,851,312 8 / 224 84.2 64%
queue-5-3’ 1,191,738 2,116,304 15 / 335 233.2 170 256 5 / 170 0.0 100%
queue-25-1 3,330 5,256 15 / 335 0.5 3,330 5,256 8 / 224 0.4 20%
queue-100-1 50,805 81,006 15 / 335 8.9 50,805 81,006 8 / 224 6.6 26%
mutex-3-2 17,352 40,200 27 / 3,540 12.3 10,560 25,392 12 / 2,190 4.6 63%
mutex-3-4 129,112 320,136 27 / 3,540 95.8 70,744 169,128 12 / 2,190 30.3 68%
mutex-3-6 425,528 1,137,048 27 / 3,540 330.8 224,000 534,624 12 / 2,190 99.0 70%
mutex-4-1 27,701 80,516 36 / 5,872 33.0 20,025 62,876 16 / 3,632 13.5 59%
mutex-4-2 360,768 1,035,584 36 / 5,872 435.9 218,624 671,328 16 / 3,632 145.5 67%
mutex-4-3 1,711,141 5,015,692 36 / 5,872 2,108.0 958,921 2,923,300 16 / 3,632 644.3 69%
mutex-5-1 294,882 1,051,775 45 / 8,780 549.7 218,717 841,750 20 / 5,430 216.6 61%

7 Conclusions and Future Work

We introduced a new process-algebraic framework with data, called MAPA, for
modelling and generating Markov automata. We defined a special restricted for-
mat, the MLPPE, that allows easy state space generation and parallel composi-
tion. We showed how MAPA specifications can be encoded in prCRL, an existing
language for probabilistic automata. Based on the novel concept of derivation-
preservation bisimulation, we proved that many useful prCRL transformations

2 See fmt.cs.utwente.nl/~timmer/scoop/papers/concur/ for the tool and models.

fmt.cs.utwente.nl/~timmer/scoop/papers/concur/

378 M. Timmer et al.

can directly be used on MAPA specifications. This includes a linearisation pro-
cedure to turn MAPA processes into strongly bisimilar MLPPEs, and several ex-
isting reduction techniques. Also, we introduced two new reduction techniques.
A case study demonstrated the use of the framework and the strength of the
reduction techniques. Since MAs generalise LTS, DTMCs, CTMCs, IMCs and
PAs, we can use MAPA and all our reduction techniques on all such models.

Future work will focus on developing more reduction techniques for MAPA.
Most importantly, we will investigate a generalisation of confluence reduction [20].

Acknowledgements. We thank Erik de Vink for his many helpful comments
on an earlier draft of this paper, as well as Pedro d’Argenio for his useful insights.

References

1. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using
Input/Output interactive Markov chains. In: DSN, pp. 708–717 (2007)

2. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. The Computer
Journal 54(5), 754–775 (2011)

3. Deng, Y., Hennessy, M.: On the Semantics of Markov Automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318.
Springer, Heidelberg (2011)

4. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and Composition in a
Stochastic World. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

5. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

6. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

7. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Algebra of Com-
municating Processes, Workshops in Computing, pp. 26–62 (1995)

8. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

9. Hillston, J.: Process algebras for quantitative analysis. In: LICS, pp. 239–248 (2005)
10. Katoen, J.P., van de Pol, J., Stoelinga, M., Timmer, M.: A linear process-algebraic

format with data for probabilistic automata. TCS 413(1), 36–57 (2012)
11. Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labeled state-to-function

transition systems of stochastic process languages. In: ACCAT (to appear, 2012)
12. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets

for the performance evaluation of multiprocessor systems. ACM Transactions on
Computer Systems 2(2), 93–122 (1984)

13. Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Dis-
tributed Computing 1(1), 53–72 (1986)

14. van de Pol, J., Timmer, M.: State Space Reduction of Linear Processes Using
Control Flow Reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 54–68. Springer, Heidelberg (2009)

Efficient Modelling and Generation of Markov Automata 379

15. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)
16. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. Ph.D. thesis, MIT (1995)
17. Srinivasan, M.M.: Nondeterministic polling systems. Management Science 37(6),

667–681 (1991)
18. Stoelinga, M.I.A.: An introduction to probabilistic automata. Bulletin of the

EATCS 78, 176–198 (2002)
19. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling and

generation of Markov automata (extended version). Tech. Rep. TR-CTIT-12-16,
CTIT, University of Twente (2012)

20. Timmer, M., Stoelinga, M., van de Pol, J.: Confluence Reduction for Probabilistic
Systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605,
pp. 311–325. Springer, Heidelberg (2011)

21. Timmer, M.: SCOOP: A tool for symbolic optimisations of probabilistic processes.
In: QEST, pp. 149–150 (2011)

Exact Fluid Lumpability

for Markovian Process Algebra

Max Tschaikowski and Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität Munich, Germany
{tschaikowski,tribastone}@pst.ifi.lmu.de

Abstract. We study behavioural relations for process algebra with a
fluid semantics given in terms of a system of ordinary differential equa-
tions (ODEs). We introduce label equivalence, a relation which is shown
to induce an exactly lumped fluid model, a potentially smaller ODE sys-
tem which can be exactly related to the original one. We show that,
in general, for two processes that are related in the fluid sense nothing
can be said about their relationship from stochastic viewpoint. However,
we identify a class of models for which label equivalence implies a cor-
respondence, called semi-isomorphism, between their transition systems
that are at the basis of the Markovian interpretation.

Keywords: Stochastic process algebra, ordinary differential equations,
equivalence relations.

1 Introduction

Aggregation of discrete-state models has been a long-standing research problem
to tackle the complexity of large-scale parallel systems. In the case of continuous-
time Markov chains (CTMCs) induced by a process algebra (e.g., [10,8,2]) a
classical solution has been offered by notions of behavioural equivalence which
induce lumping, where a (hopefully much smaller) CTMC may be defined which
preserves most of the system’s original stochastic behaviour (e.g., [4]).

More recently, fluid semantics for process algebra have become popular for a
description based on a system of ordinary differential equations (ODEs) which,
especially in the case of large population processes, is very accurate but typi-
cally much more compact than the lumped CTMC. The relationship between
the CTMC and the fluid semantics has been studied in the context of PEPA [9],
Cardelli’s stochastic interacting processes [5], and stochastic Concurrent Con-
straint Programming [3]. The significant computational savings provided by
differential analysis, together with its widespread use in computational sys-
tems biology, have also stimulated the development of process algebra directly
equipped with an ODE semantics [13].

Unfortunately, ODE models of realistic complex systems may still be too
large for feasible analysis. This problem has motivated work on ODE aggrega-
tions in diverse contexts such as control theory [1], theoretical ecology [12], and
economics [11].

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 380–394, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Exact Fluid Lumpability for Markovian Process Algebra 381

In this paper, for the first time, we study aggregation of ODEs induced by a
stochastic process algebra. We carry out this investigation in the context of a
fluid framework for PEPA [7], grouped PEPA (GPEPA), which we overview in
Section 2. In principle, however, with suitable syntactical changes our approach
is applicable to other compositional methods equipped with a fluid semantics.
At the core of this study is the general notion of exact fluid lumpability (Sec-
tion 3) which, intuitively, is defined as a partition over the ODEs of a model
whereby two ODEs belonging to the same partition element have undistinguish-
able solutions; an aggregated ODE model may be defined which only considers
such elements. In Section 4, we define a notion of behavioural equivalence, called
label equivalence, which induces exactly fluid lumpable partitions. We also study
conditions under which it is possible to construct coarser ODE partitions by
suitably merging distinct label equivalences. A running example, presented for
the illustrative purposes, suggests that this theory is particularly convenient in
practice to exploit symmetries in large-scale models with replicated behaviour,
as the lumped ODE model becomes independent from the number of replicas.
The paper is concluded with a characterisation of the relationship between la-
bel equivalence and stochastic notions of behavioural equivalence for PEPA, in
Section 4.2, and by concluding remarks in Section 5.

An extended version of this paper with proofs is available as a technical report
at the authors’ web pages.

2 Preliminaries

We study PEPA (cf. [10]) without the hiding operator. The syntax and semantics
are briefly overviewed in Sect. 2.1. The full language does not pose technical dif-
ficulties but comes at the cost of extra definitions, sacrificing space. This caveat
notwithstanding, for the sake of conciseness we shall refer to our simplified ver-
sion still as PEPA. In Sect. 2.2, we introduce a new, but simple, behavioural
relation between PEPA processes, called semi-isomorphism, which will be in-
strumental for the characterisation of label equivalence.

2.1 PEPA

Definition 1. The syntax of a PEPA component is given by the grammar

S ::= (α, r).S | S + S | A P ::= S | P ��
L

P with A
def
= S (constant).

The first rule describes sequential components. The term (α, r).S (prefix) denotes
a process which can perform a transition of type α ∈ A, with an exponentially
distributed delay with mean 1/r, after which the process behaves as S. The
(positive) real r is called the rate of action α. (Passive rates are not allowed in
our fluid framework.) The S + S (choice) is capable of performing the transi-
tions of its operands. The second rule describes a model component, which may
simply be a sequential component or a cooperation P ��

L
P : The two operands

382 M. Tschaikowski and M. Tribastone

(α, r).P
(α,r)−−−→ P

P
(α,r)−−−→ P ′

P +Q
(α,r)−−−→ P ′

P1
(α,r1)−−−−→ P ′

1

P1 ��
L

P2
(α,r1)−−−−→ P ′

1
��
L

P2

α /∈ L

P
(α,r)−−−→ P ′

A
(α,r)−−−→ P ′

A
def
= P

Q
(α,r)−−−→ Q′

P +Q
(α,r)−−−→ Q′

P2
(α,r2)−−−−→ P ′

2

P1 ��
L

P2
(α,r2)−−−−→ P1 ��

L
P ′
2

α /∈ L

P1
(α,r1)−−−−→ P ′

1 P2
(α,r2)−−−−→ P ′

2

P1 ��
L

P2
(α,R)−−−−→ P ′

1
��
L

P ′
2

α ∈ L, R =
r1

rα(P1)

r2
rα(P2)

min(rα(P1), rα(P2))

Fig. 1. Structured operational semantics of PEPA

behave independently of each other whenever they do not perform transitions
with actions belonging to the cooperation set L. Otherwise, a synchronisation
occurs and the operands proceed together.

In this paper, we will present simple examples which are slight variations of

(A ��
∅

. . . ��
∅
A︸ ︷︷ ︸

NA copies

)��
{α}

(B ��
∅

. . . ��
∅
B︸ ︷︷ ︸

NB=NA copies

) ��
{α}

(C ��
∅

. . . ��
∅
C︸ ︷︷ ︸

NC copies

) (1)

where the sequential components are defined as follows:

A
def
= (α, r).A′ B

def
= (α, r/2).B′ + (α, r/2).B′ C

def
= (α, u).C′

A′
def
= (β, s).A B′

def
= (β, s).B C ′

def
= (γ, w).C

Actions of type α are synchronised, whereas β- and γ-actions may be performed
independently by each component. The total rate at which some action may be
performed is defined through the following.

Definition 2 (Apparent Rate). The apparent rate of action α in a PEPA
component P , denoted by rα(P), is defined as follows:

rα((β, r).S) :=

{
r , β = α

0 , else

rα(P ��
L

Q) :=

{
rα(P) + rα(Q) , α �∈ L

min(rα(P), rα(Q)) , else.

rα(A) := rα(S), A
def
= S

rα(P +Q) := rα(P) + rα(Q)

Using the structured operational semantics of PEPA, cf. Figure 1, we write

P
(α,r)−−−→ P ′ whenever there is an α-transition with rate r from process P to

process P ′. We say that P ′ is a derivative of P . For instance, if A
def
= (α, r).A′,

Exact Fluid Lumpability for Markovian Process Algebra 383

then A
(α,r)−−−→ A′ may be inferred. The following definitions formalise the notion

of state space of a PEPA component.

Definition 3 (Derivative Set). The derivative set of a PEPA component P ,
denoted by ds(P), is defined as the smallest set such that P ∈ ds(P); and if

P ′ ∈ ds(P) and P ′
(α,r)−−−→ P ′′ then P ′′ ∈ ds(P).

Definition 4 (Derivation Graph). Let Act := A× R>0 denote the set of all
activities of PEPA. The derivation graph dg(P) of a PEPA component P has
ds(P) as the set of nodes. The multiset of transitions T ⊆ ds(P)×Act× ds(P)
is such that

P0
(α,r)−−−→ P1 ⇔ (P0, (α, r), P1) ∈ T ,

with multiplicity equal to the number of distinct derivations of P0
(α,r)−−−→ P1.

2.2 Semi-isomorphism

In PEPA, isomorphism is defined as a map between the derivative sets of two
processes which induces a one-to-one correspondence, i.e., a graph isomorphism,
between their derivation graphs [10, Sect. 6.2]. Here we introduce a slightly
weaker notion, called semi-isomorphism, which relates two processes with re-
spect to their merged derivation graphs (cf. Definition 6), defined as the graphs
obtained by replacing multiple equally-labelled transitions between two states
with a single transition with the same action type and a rate which is the sum
across all such transition rates.

Definition 5 (Semi-Isomorphism). Two PEPA processes P and Q are semi-
isomorphic if there is a bijection σ : ds(P) → ds(Q) which satisfies

∑
Pi

(α,r)−−−→Pj

r

=
∑
σ(Pi)

(α,r)−−−→σ(Pj)
r for all Pi, Pj ∈ ds(P) and α ∈ A. We shall call such a σ

a semi-isomorphism.

Definition 6 (Merged Derivation Graph). The merged derivation graph
dgm(P) of P arises from dg(P), if, for all α ∈ A, all α-transitions between
any two states whose rate-sum across all transitions is equal to q are replaced by
a single transition (α, q).

Though easy to prove, due to its importance the following is stated as a theorem.

Theorem 1. Let σ : ds(P) → ds(Q) be a semi-isomorphism between the PEPA
processes P and Q. Then it holds that dgm(P) and dgm(Q) stand in a one-to-one
correspondence.

For instance, let us consider processes A and B in (1). Then, it can be shown
that A is semi-isomorphic to B. However, A and B are not isomorphic because
the number of transitions in their derivation graphs is different.

In general, it is easy to see that PEPA isomorphism induces semi-isomorphism
and that the CTMCs of semi-isomorphic PEPA processes stand in a one-to-one
correspondence.

384 M. Tschaikowski and M. Tribastone

2.3 Fluid Process Algebra

The derivative set of (1) is known to have 2NA+NA+NC states (recall that NB :=
NA). The fluid semantics of GPEPA provides an approximation to the expecta-
tion values of the population of components exhibiting states A, A′, B, B′, C
and C′, using a system of only 2+2+2 coupled ODEs. In the interest of clarity
and succinctness, we also provide here a simplified version of GPEPA, called
Fluid Process Algebra (FPA), which can be shown to be as expressive as the full
GPEPA (without the hiding operator).

Definition 7 (FPA Model). An FPA model M is given by the grammar

M ::= M ��
L

M | H{P}

where L ⊆ A, P is as in Definition 1, and H is a label. We require that each
label be unique in an FPA model.

We call H{P} a fluid atom. The size of the ODE system will be as large as the
sum of the sizes of the derivative sets of all fluid atoms in a model. We denote
by Triple the FPA model to be studied for the differential analysis of (1), i.e.,

Triple := A1{A} ��{α}
B1{B}��

{α}
C1{C} (2)

The next definitions will be needed for the setup of the fluid framework.

Definition 8. Let M be an FPA model. We define then

– G(M) as the set of labels of M , e.g., G(Triple) = {A1,B1,C1}.
– B(M,H) as the PEPA derivative set of the fluid atom which is labelled with

H, e.g. B(Triple,A1) = ds(A) = {A,A′}.
– B(M) as {(H,P) | H ∈ G(M) ∧ P ∈ B(M,H)}.
– A population function V : X → R≥0 with B(M) ⊆ X.
– An initial population function V (0) : X → N0.

Function V (0) deserves more explanation. It essentially encodes the size of the
system. For instance, the initial populations present in (1) are recovered by

V(A1,A)(0) = NA, V(B1,B)(0) = NA, V(C1,C)(0) = NC ,

V(A1,A′)(0) = 0, V(B1,B′)(0) = 0, V(C1,C′)(0) = 0. (3)

Definition 9 (Parameterised Apparent Rate). Let M be an FPA model,
α ∈ A and V a population function. The apparent rate of M with respect to V
is defined as

rα(M0 ��
L

M1, V) :=

{
min(rα(M0, V), rα(M1, V)) , α ∈ L,

rα(M0, V) + rα(M1, V) , α /∈ L.

rα(H{P}, V) :=
∑

Pi∈ds(P)

V(H,Pi)rα(Pi),

where rα(Pi) denotes the apparent rate of a PEPA component Pi according to
Definition 2.

Exact Fluid Lumpability for Markovian Process Algebra 385

For instance, in (2) it holds that rα(A1{A}, V) = rV(A1,A), which gives the
apparent rate at which a population of V(A1,A) A-components exhibits action α.

Definition 10 (Parameterised Component Rate). Let M be an FPA model,
α ∈ A and V a population function. The component rate of (H,P) ∈ B(M) with
respect to V is then defined as follows.

– Synchronised cooperation: if H ∈ G(Mi), i = 0, 1, and α ∈ L then

Rα(M0 ��
L

M1, V,H, P) :=
Rα(Mi, V,H, P)

rα(Mi, V)
min(rα(M0, V), rα(M1, V)).

– Unsynchronised cooperation: if H ∈ G(Mi), i = 0, 1, and α /∈ L then

Rα(M0 ��
L

M1, V,H, P) := Rα(Mi, V,H, P).

– Fluid atom:

Rα(H ′{P ′}, V,H, P) :=

{
V (H,P)rα(P) , H = H ′ ∧ P ∈ ds(P ′)

0 , otherwise.

These quantities are used to define the ODE system to be analysed.

Notation. The derivative of V(H,P) is denoted by Newton’s dot notation V̇(H,P).
To enhance readability, time t will be suppressed in the representation of ODEs,
i.e. V̇(H,P) denotes V̇(H,P)(t) and V(H,P) denotes V(H,P)(t).

Definition 11. Let M be an FPA model. The initial value problem for M is

V̇(H,P) =
∑
α∈A

((∑
P ′∈B(M,H)

pα(P
′, P)Rα(M,V,H, P ′)

)
−Rα(M,V,H, P)

)
where pα(P, P

′) := (1/rα(P))
∑
P

(α,r)−−−→P ′
r, with initial condition given by V (0).

For instance, the initial value problem of (2) and (3) is given by the initial
condition (3) and the ODE system

V̇(A1,A) = −min
(
rV(A1,A), rV(B1,B), uV(C1,C)

)
+ sV(A1,A′)

V̇(A1,A′) = −sV(A1,A′) +min
(
rV(A1,A), rV(B1,B), uV(C1,C)

)
V̇(B1,B) = −min

(
rV(A1,A), rV(B1,B), uV(C1,C)

)
+ sV(B1,B′)

V̇(B1,B′) = −sV(B1,B′) +min
(
rV(A1,A), rV(B1,B), uV(C1,C)

)
V̇(C1,C) = −min

(
rV(A1,A), rV(B1,B), uV(C1,C)

)
+ wV(C1,C′)

V̇(C1,C′) = −wV(C1,C′) +min
(
rV(A1,A), rV(B1,B), uV(C1,C)

)
.

(4)

Remark 1. In general, it can be shown that for any fluid atomH{P} it holds that∑
P ′∈B(M,H) V̇(H,P ′) = 0. For instance, in (2) we have that V̇(A1,A)+ V̇(A1,A′) = 0.

Throughout the paper, for the sake of brevity we will write one of the ODEs for a
fluid atom in terms of the derivatives of its other states, e.g., V̇(A1,A′) = −V̇(A1,A)

instead of its explicit form as in (4).

386 M. Tschaikowski and M. Tribastone

3 Exact Fluid Lumpability

The goal of this section is to develop a simplification technique to reduce the
computational cost of fluid analysis. The idea is to partition the set G(M) of an
FPA model M in such a way that the fluid atoms belonging to the same block
have, intuitively, the same ODE trajectories. Notice that a necessary condition is
that any two fluid atoms within the same block must have the same initial con-
dition. Such a partitioning allows one to relate the solution of the original ODE
system to that of a smaller, collapsed ODE system with the ODEs of only one
label for each element of the partition. The name of exactly fluid lumpable par-
titions stems from the parallel with the theory of exact lumpability for Markov
chains, where a partition over the state space has to satisfy the requirement that
states within the same block must have the same initial probability [4].

3.1 Motivating Example

Let us consider a variation of Triple (2) which corresponds to the PEPA model
where (1) is replicated D times and further composed with NU components

defined as U
def
= (γ, z).U ′, U ′

def
= (δ, z′).U . The FPA encoding is given then by

Sys ′ :=
((

A1{A}��{α}
B1{B}��{α}

C1{C}
)��

∅
. . .

. . . ��
∅

(
AD{A}��{α}

BD{B}��{α}
CD{C}

))��
{γ}

U{U} (5)

with initial values

V(Ad,A)(0) = NA V(Bd,B)(0) = NA V(Cd,C)(0) = NC

V(Ad,A
′)(0) = 0 V(Bd,B

′)(0) = 0 V(Cd,C
′)(0) = 0 (6)

V(U,U)(0) = NU V(U,U′)(0) = 0

for 1 ≤ d ≤ D. Since each Ad{A} ��{α}
Bd{B}��

{α}
Cd{C}, with 1 ≤ d ≤ D, con-

tributes |ds(A)|+|ds(B)|+|ds(C)| = 6 ODEs, the size of the fluid approximation
of Sys ′ is 6D + |ds(U)| = 6D + 2, which is given by the following ODE system.

V̇(Ad,A) = −min
(
rV(Ad,A), rV(Bd,B), uV(Cd,C)

)
+ sV(Ad,A

′)

V̇(Ad,A
′) = −V̇(Ad,A)

V̇(Bd,B) = −min
(
rV(Ad,A), rV(Bd,B), uV(Cd,C)

)
+ sV(Bd,B

′)

V̇(Bd,B
′) = −V̇(Bd,B)

V̇(Cd,C) = −min
(
rV(Ad,A), rV(Bd,B), uV(Cd,C)

)
+ (7)

+
wV(Cd,C

′)

w
∑D

d′=1 V(Cd′ ,C
′)
min

(
w

D∑
d′=1

V(Cd′ ,C
′), zV(U,U)

)
V̇(Cd,C

′) = −V̇(Cd,C)

V̇(U,U) = −min
(
w

D∑
d′=1

V(Cd′ ,C
′), zV(U,U)

)
+ z′V(U,U′)

V̇(U,U′) = −V̇(U,U)

Exact Fluid Lumpability for Markovian Process Algebra 387

for all 1 ≤ d ≤ D. When D is large, ODE analysis may become problematic
from a computational viewpoint.

Assume now that the solution satisfies

V(A1,A)(t) = V(Ad,A)(t) V(A1,A′)(t) = V(Ad,A′)(t)
V(B1,B)(t) = V(Bd,B)(t) V(B1,B′)(t) = V(Bd,B′)(t)
V(C1,C)(t) = V(Cd,C)(t) V(C1,C′)(t) = V(Cd,C′)(t)

(8)

and
V(Ad,A)(t) = V(Bd,B)(t) V(Ad,A′)(t) = V(Bd,B′)(t) (9)

for all 1 ≤ d ≤ D and t ≥ 0. Although these can be written as

V(A1,A)(t) = V(Ad,A)(t) V(A1,A′)(t) = V(Ad,A′)(t)
V(A1,A)(t) = V(Bd,B)(t) V(A1,A′)(t) = V(Bd,B′)(t)
V(C1,C)(t) = V(Cd,C)(t) V(C1,C′)(t) = V(Cd,C′)(t)

(10)

for all 1 ≤ d ≤ D and t ≥ 0, we prefer to state them as two separate groups of
equations because (8) and (9) will be shown to be inferred from two relations,
called projected label equivalences (cf. Definition 15), directly arising from two
distinct label equivalences on G(Sys ′); (10) is instead induced by the transitive
closure of the union of such relations, which will yield a coarser partition but
does not arise from a label equivalence.

Simplifying (7) for a fixed d, say d = 1, and using (10) allows us to rewrite the
fractions and summations in the right-hand sides in a way that is independent
from labels different than A1, C1, and U:

V̇(A1,A) = −min
(
rV(A1,A), uV(C1,C)

)
+ sV(A1,A′) V̇(A1,A′) = −V̇(A1,A)

V̇(C1,C) = −min
(
rV(A1,A), uV(C1,C)

)
+ V̇(C1,C′) = −V̇(C1,C) (11)

+ (1/D)min
(
wD · V(C1,C′), zV(U,U)

)
V̇(U,U) = −min

(
wD · V(C1,C′), zV(U,U)

)
+ z′V(U,U ′) V̇(U,U ′) = −V̇(U,U)

By using the same initial populations as in (7) and assuming that the above ODE
system has a unique solution, through (10) we can exactly relate the solution
of (7), which has (2 + 2 + 2)D + 2 equations, to that of (11), which has only
(2 + 2) + 2 equations, thus making the problem independent from D.

3.2 Definitions

Definition 12 (Exact Fluid Lumpability). Let M be an FPA model and
H = {H1, . . . , Hn} a partition of G(M). We call H exactly fluid lumpable, if,
for all Hi ∈ H, there are Hi ∈ Hi and a family of bijections σ•,

σH : B(M,Hi) −→ B(M,H), for all H ∈ Hi \ {Hi},

such that for all initial populations V (0) which satisfy

∀Hi ∈ H∀H ∈ Hi \ {Hi}∀P ∈ B(M,Hi)
(
V(Hi,P)(0) = V(H,σH (P))(0)

)
,

388 M. Tschaikowski and M. Tribastone

the same holds for all t ≥ 0 in the corresponding fluid approximation V , i.e.

∀t ≥ 0∀Hi ∈ H∀H ∈ Hi \ {Hi}∀P ∈ B(M,Hi)
(
V(Hi,P)(t) = V(H,σH (P))(t)

)
.

We shall say that σ• establishes the exact fluid lumpability of H and that Hi \
{Hi} is related to Hi, 1 ≤ i ≤ n.

For instance, assumption (10) holds if{
H1, H2, H3

}
=
{
{A1,B1, . . . ,AD,BD}, {C1, . . . ,CD}, {U}

}
(12)

is an exactly fluid lumpable partition which is established by the family

σH(A1, T) :=

⎧⎪⎨⎪⎩
(H,T) , H ∈ {A2, . . . ,AD} ∧ T ∈ {A,A′}
(H,B) , H ∈ {B2, . . . ,BD} ∧ T = A

(H,B′) , H ∈ {B2, . . . ,BD} ∧ T = A′

σH(C1, T) := (H,T), H ∈ {C2, . . . ,CD} ∧ T ∈ {C,C′}

(13)

Remark 2. Note that Definition 12 requires, for all 1 ≤ i ≤ n, the existence of
an Hi ∈ Hi such that Hi \ {Hi} is related to Hi. However, if one such Hi can
be found for each 1 ≤ i ≤ n, then a suitable family of bijections exists for all
H ′
i ∈ Hi, where 1 ≤ i ≤ n.

Let us fix an FPA model M and assume that H = {H1, . . . , Hn} is exactly fluid
lumpable. We consider the ODE of V(Hi,Pi)

V̇(Hi,Pi) =
∑
α∈A

(∑
P ′∈B(M,Hi)

pα(P
′, Pi)Rα(M,V,Hi, P

′)−Rα(M,V,Hi, Pi)
)

and fix some V(H,P)(t), with H ∈ Hj \ {Hj}, 1 ≤ j ≤ n, on the right-hand-

side of the ODE. Using the assumption on H we infer then that V(H,P)(t) =
V(Hj ,σ

−1
H (P))(t), i.e., we can express the right-hand-side of the ODE using only

the functions {V(Hj ,Pj) | 1 ≤ j ≤ n, Pj ∈ B(M,Hj)}.
This observation leads to the following notion.

Definition 13 (Exactly Lumped Fluid Model). Let H = {H1, , Hn}
be an exactly fluid lumpable partition of G(M) which is established by σ•. More-
over, let Dl(Hi,Pi)

denote the equation which arises from

D(Hi,Pi) :=
∑
α∈A

(∑
P ′∈B(M,Hi)

pα(P
′, Pi)Rα(M,V,Hi, P

′)−Rα(M,V,Hi, Pi)
)

by replacing all V(H,P), where H ∈ Hj \ {Hj} for some 1 ≤ j ≤ n, with
V(Hj ,σ

−1
H (P)). The exactly lumped fluid model of M with respect to σ• and V (0)

is the solution of the lumped ODE system V̇(Hi,Pi) = Dl(Hi,Pi)
, (Hi, Pi) ∈ Bl(M),

subjected to the initial value V (0)|Bl(M), where Bl(M) := {(H,P) ∈ B(M) |
∃1 ≤ i ≤ n(H = Hi)}.

Exact Fluid Lumpability for Markovian Process Algebra 389

For instance, if (12) is established by (13) we infer that the exactly lumped fluid
model of (5) with respect to (13) and (6) is the solution of (11).

Recall that we assumed that the lumped ODE system has a unique solution.
To see this, note that a restriction of a Lipschitz function is again Lipschitz and
that the original ODE system is Lipschitz [6].

4 Construction of Exactly Fluid Lumpable Partitions

This section discusses two related equivalences for the construction of exactly
fluid lumpable partitions. The first, label equivalence, relates tuples of labels.
If two tuples, say (H1, . . . , Hn) and (H ′

1, . . . , H
′
n) are related, then this implies

that the fluid atoms tagged with Hi and H ′
i, 1 ≤ i ≤ n, have the same fluid

approximation. The second relation, called projected label equivalence, is shown
to induce exactly fluid lumpable partitions.

4.1 Label Equivalence and Projected Label Equivalence

Definition 14 (Label Equivalence). Let M be an FPA model and let H =
(H1, . . . ,HN), Hi = (Hi

1, . . . , H
i
Ki

), be a tuple partition on G(M), i.e. such
that for each H ∈ G(M) there exist unique 1 ≤ i ≤ N and 1 ≤ k ≤ Ki with
H = Hi

k. H
i and Hj are said to be label equivalent, written Hi ∼H Hj, if

i) Ki = Kj and there exist bijections σk : B(M,Hi
k) → B(M,Hj

k), for all
1 ≤ k ≤ Ki, such that
– the α-component rate out of (Hi

k, P) with respect to V is equal to the

α-component rate out of (Hj
k, σk(P)) with respect to V σ,

Rα(M,V,Hi
k, P) = Rα(M,V σ, Hj

k, σk(P))

– the sum of α-component rates into (Hi
k, P) with respect to V is equal to

the sum of the α-component rates into (Hj
k, σk(P)) with respect to V σ,∑

P ′∈B(M,Hi
k)

pα(P
′, P)Rα(M,V,Hi

k, P
′)=
∑

P ′∈B(M,Hj
k)

pα(P
′, σk(P))Rα(M,V σ, Hj

k, P
′)

– for all (H,P) ∈ B(M) such that H /∈ H i,Hj it holds Rα(M,V,H, P) =
Rα(M,V σ, H, P) and∑
P ′∈B(M,H)

pα(P
′, P)Rα(M,V,H, P ′) =

∑
P ′∈B(M,H)

pα(P
′, P)Rα(M,V σ, H, P ′)

ii) rα(M,V) = rα(M,V σ)

hold for all population functions V and V σ(H,P) :=

⎧⎪⎨⎪⎩
V(Hj

k,σk(P)) , H = Hi
k

V(Hi
k,σ

−1
k (P)) , H = Hj

k

V(H,P) , otherwise.

390 M. Tschaikowski and M. Tribastone

Informally, two tuples Hi,Hj are label equivalent if the component and appar-
ent rates respect an exchange of fluid atom populations within the tuples. Hence,
label equivalence especially applies to symmetries within the model under study.
For instance, let us fix the subprocess of (5)

Sys :=
(
A1{A}��{α}

B1{B}��{α}
C1{C}

)��
∅

. . . ��
∅

(
AD{A}��{α}

BD{B}��{α}
CD{C}

)
,

the tuple partition H1 := {(A1,B1,C1), . . . , (AD,BD,CD)} of G(Sys) and two
arbitrary 1 ≤ i, j ≤ D. The bijections

σ
(Ai,Bi,Ci),(Aj ,Bj,Cj)
1 : B(Sys ,Ai) → B(Sys ,Aj), (Ai, T) (→ (Aj , T),

σ
(Ai,Bi,Ci),(Aj ,Bj,Cj)
2 : B(Sys ,Bi) → B(Sys,Bj), (Bi, T) (→ (Bj , T),

σ
(Ai,Bi,Ci),(Aj ,Bj,Cj)
3 : B(Sys ,Ci) → B(Sys ,Cj), (Ci, T) (→ (Cj , T),

(14)

establish then (Ai,Bi,Ci) ∼H1 (Aj ,Bj ,Cj). The next theorem relates the fluid
trajectories of label equivalent tuples.

Theorem 2. Let M be an FPA model with fluid approximation V, and H be a
tuple partition on G(M). Then Hi ∼H Hj implies

∀(H,P) ∈ B(M)
(
V(H,P)(0) = V σ(H,P)(0)

)
⇒

∀(H,P) ∈ B(M)∀t ≥ 0
(
V(H,P)(t) = V σ(H,P)(t)

)
,

where V σ is as in Definition 14.

For instance, (Ai,Bi,Ci) ∼H1 (Aj ,Bj ,Cj) and Theorem 2 show that

V(Ai,A)(0) = V(Aj ,A)(0) V(Bi,B)(0) = V(Bj ,B)(0) V(Ci,C)(0) = V(Cj ,C)(0)
V(Ai,A′)(0) = V(Aj ,A′)(0) V(Bi,B′)(0) = V(Bj ,B′)(0) V(Ci,C′)(0) = V(Cj ,C′)(0)

implies

V(Ai,A)(t) = V(Aj ,A)(t) V(Bi,B)(t) = V(Bj ,B)(t) V(Ci,C)(t) = V(Cj ,C)(t)
V(Ai,A′)(t) = V(Aj ,A′)(t) V(Bi,B′)(t) = V(Bj ,B′)(t) V(Ci,C′)(t) = V(Cj ,C′)(t)

for all t ≥ 0, where V denotes the fluid approximation of Sys with respect to a
given V (0).

This example also illustrates that, in general, one has to consider relations
between tuples of labels, rather than just labels. For clarification, assume that
our tuple partition of G(Sys) consists only of trivial tuples, i.e. H2 := {(H) |
H ∈ G(Sys)}. Then, for instance,

σ
(Ai),(Aj)
1 : B(Sys,Ai) → B(Sys,Aj), (Ai, T) (→ (Aj , T),

where 1 ≤ i < j ≤ D, does not establish (Ai) ∼H2 (Aj). This is because the
fluid atoms tagged with Bi and Bj or the fluid atoms tagged with Ci and Cj

Exact Fluid Lumpability for Markovian Process Algebra 391

may have different initial populations. This problem does not manifest itself if
we use the tuple partition H1, where the populations of larger processes, rather
than that of single fluid atoms, are exchanged.

The next theorem states that label equivalence is a congruence with respect
to the parallel composition of FPA.

Theorem 3 (Label Equivalence is a Congruence). Let M be an FPA model
and H be a tuple partition on G(M). Then the following hold:

– ∼H is an equivalence relation on H.
– Fix an action set L, an FPA model M0 and a tuple partition H0 on G(M0).

If Hi ∼H Hj then Hi ∼H′ Hj, where H′ := H∪H0 is a tuple partition on
M ��

L
M0.

As usual, this is a useful tool for compositional reasoning. For instance, let us
consider Sys ′ defined in (5) and fix the tuple partition H′1 := H1∪H0 of G(Sys ′),
where H0 := {(U)} is obviously the only possible tuple partition of G(U{U}).
Theorem 3 implies (Ai,Bi,Ci) ∼H′

1
(Aj ,Bj ,Cj), which yields

H′1/ ∼H′
1
=
{
{(A1,B1,C1), . . . , (AD,BD,CD)}, {(U)}

}
,

as 1 ≤ i, j ≤ D were chosen arbitrarily. This and Theorem 2 show then that{
{A1, . . . ,AD}, {B1, . . . ,BD}, {C1, . . . ,CD}, {U}

}
(15)

is an exactly fluid lumpable partition. This motivates the following.

Definition 15 (Projected Label Equivalence). Fix an FPA model M and
a tuple partition H of G(M). The labels H1, H2 ∈ G(M) are projected label
equivalent, H1 ≈H H2, if Hi ∼H Hj and ki = kj in the unique assignment

H1 = Hi
ki
, H2 = Hj

kj
.

Theorem 4. Fix an FPA model M and a tuple partition H of G(M). The rela-
tion ≈H is then an equivalence relation on G(M) and G(M)/ ≈H is an exactly
fluid lumpable partition.

Note that H′1 induces the exactly fluid lumpable partition (15) via ≈H′
1
which

shows assumption (8) in our running example. Intuitively, this partition relates
all fluid atoms expressed with the same sequential component, A, B, and C, if
they are initialised with the same conditions. However, in general, for the same
model there might be more tuple partitions which allow for a simplification: The
partition H′2 := H2 ∪H0, the family of bijections

σ
(Ai),(Bi)
1 : B(Sys,Ai) → B(Sys,Bi), (Ai, T) (→

{
(Bi, B) , T = A

(Bi, B′) , T = A′
(16)

and Theorem 3 yield (Ai) ∼H′
2
(Bi) for all 1 ≤ i ≤ D. As these are the only

nontrivial relations on H′2, we get H′2/ ∼H′
2
=
{
{(U)}, {(A1), (B1)}, {(C1)}, . . .

. . . , {(AD), (BD)}, {(CD)}
}
. This shows, in turn, that H′2 induces the exactly

fluid lumpable partition

392 M. Tschaikowski and M. Tribastone

G(Sys ′)/ ≈H′
2
=
{
{A1,B1}, {C1}, . . . , {AD,BD}, {CD}, {U}

}
.

Such a partition, instead, relates fluid atoms exhibiting distinct sequential com-
ponents, A and B. This shows the assumption (9) in the example.

However, none of these partitions allows us to consider the coarser one (12)
which shows (10), that is, (8) and (9) at the same time. We now remark that
(12) would be obtained by G(Sys ′)/(≈H′

1
∪ ≈H′

2
)∗, where ∗ denotes the transitive

closure. Crucially, we observe that there exists no tuple partition H of G(Sys ′)
such that G(Sys ′)/ ≈H= G(Sys ′)/(≈H′

1
∪ ≈H′

2
)∗, i.e., a combination of several

projected label equivalences cannot be expressed as a projected label equivalence
in general.

Fortunately, Theorem 5 states that these can be always merged as discussed,
if the model satisfies a property of well-posedness in the following sense.

Definition 16 (Well-Posedness). An FPA model M is well-posed if for all
occurrences M1 ��

L
M2 in M it holds ∃V1

(
rα(M1, V1) > 0

)
∧ ∃V2

(
rα(M2, V2) >

0
)
for all α ∈ L.

Theorem 5. Fix a well-posed FPA model M and a nonempty set of tuple parti-
tions S = {H1, . . . ,Hn} of G(M). Then the partition G(M)/(≈H1 ∪ . . .∪ ≈Hn)

∗

is exactly fluid lumpable.

We wish to stress here that the proof of Theorem 5 is constructive in that it pro-
vides a family of semi-isomorphisms which establish the exact fluid lumpability
of G(M)/(≈H1 ∪ . . .∪ ≈Hn)

∗.
We argue that the assumption of well-posedness is not particularly restrictive.

Essentially, it is introduced to rule out conditions where a fluid atom is capable
of performing an activity of some action type, and it is synchronised with a
process which cannot perform that action. Clearly, this is weaker than a deadlock
situation, where no progress can be made whatsoever, but it may be a symptom
of potential problems in the model description in practice. For instance, let

P
def
= (α, r).P ′ + (β, s).P ′, P ′

def
= (γ, w).P and Q

def
= (β, s).Q′, Q′

def
= (γ, w).Q. Then

Illposed := H1{P} ��
{α,β}

H2{Q} (17)

is not well-posed (alternatively, it is ill-posed), because α-activities cannot be
performed, therefore the contribution of the parametrised component rates for α
will be zero. However, the fluid atom tagged with H1 is allowed to cycle between
its states P and P ′ through β-activities. Thus, (17) essentially behaves like the
well-posed model defined by the sequential components

P̃
def
= (β, s).P̃ ′, P̃ ′

def
= (γ, w).P̃ , Q̃

def
= (β, s).Q̃′, Q̃′

def
= (γ, w).Q̃

and by the model component H̃1{P̃} ��
{β}

H̃2{Q̃}, since it holds that V(H,T)(t) =

V(H̃,T̃)(t) for all (H,T) ∈ B(Illposed) and all t > 0, if the same holds for t = 0.

That is, the ill-posed model (17) is transformed into a well-posed one which has
the same ODE solution.

Exact Fluid Lumpability for Markovian Process Algebra 393

We leave for future work further investigations on well-posedness — e.g.,
whether Theorem 5 still holds also for ill-posed FPA models, or if any ill-posed
model can be systematically transformed into a well-posed one.

4.2 Relationship with Stochastic Behavioural Equivalences

We shall investigate now the relation between the fluid atoms Hi
k{P ik} and

Hj
k{P

j
k} in a relation between tuples (Hi

1, . . . , H
i
K) ∼H (Hj

1 , . . . , H
j
K).

The first observation is that even syntactical equivalence between fluid atoms
is not sufficient for (Hi

k) ∼H (Hj
k) in general. To see this, consider the model

(A1{A} ��{α}
C{C})��

∅
A2{A}, where A and C are as in (1) and the tuple parti-

tion H = {(A1), (C), (A2)} is used. Then it does not hold that (A1) ∼H (A2),
as A1{A} is in a context where it is synchronised with C{C}, whereas A2{A}
progresses independently. Using similar ideas, one can easily construct coun-
terexamples for tuples of length greater than one.

We turn now to a necessary condition for label equivalence to hold. The the-
orem below states that label equivalence and projected label equivalence imply
the notion of semi-isomorphism in the case of well-posed models.

Theorem 6. Fix a well-posed FPA model M , a tuple partition H = {H1, . . .
. . . ,HN} on G(M) and assume that H i ∼H Hj. Then P ik is semi-isomorphic

to P jk for all 1 ≤ k ≤ Ki. Specifically, Hi
k ≈H Hj

k implies that P ik is semi-

isomorphic to P jk for all 1 ≤ k ≤ Ki.

However, if the model is ill-posed, in general label equivalence does not imply
any of the stochastic notions of behavioural equivalence for PEPA [10]. To see
this, consider (17) and fix the tuple partition H = {(H1), (H2)}. One can show
then that (H1) ∼H (H2), essentially because P is hindered in performing its
α action. Because of this, we conclude that label equivalence implies neither
isomorphism, nor strong bisimulation, nor strong equivalence, since each such
relation distinguishes between the types of action performed by a process, and,
clearly, P performs an α-activity whereas Q does not.

5 Conclusion

In Markovian process algebra, notions of equivalence for discrete-state aggrega-
tion are essentially based on equalities between the transition rates from states
of the underlying continuous-time Markov chain. In an analogous way, in this
paper we have presented a behavioural equivalence which relates the continuous
states of the fluid semantics, i.e., the functions that are solutions of the under-
lying ODE system. The comparison here is between the fluxes that define the
vector field governing such a system.

We have taken the path of considering as (fluid) atoms the sequential compo-
nents that make up a model, therefore label equivalence was defined as a relation
over such atoms. There are also other possibilities that we intend to explore in

394 M. Tschaikowski and M. Tribastone

future work. For instance, a fluid atom in effect does not give rise to a single
ODE, but it induces as many ODEs as the size of its derivative set. Therefore,
it is natural to ask whether another behavioural relation could be devised over
elements of derivative sets instead. In principle, such an approach could give rise
to coarser partitions, hence more aggregated systems, than those that are ob-
tainable through label equivalence. However, the simple running example used in
this paper suggests that label equivalence may be highly effective when a model
exhibits replicated behaviour of composite processes.

Exact fluid lumpability, at the basis of label equivalence, considers a form of
invariance between models which holds for all time points for which the ODE so-
lution exists. Of the possible directions for future research, particularly pressing
for us is the characterisation of approximate relations for further state-space re-
duction, and the study of equivalences which hold in specific points, for instance
at equilibrium.

Acknowledgement. This work has been partially supported by the EU project
ASCENS, 257414, and by the DFG project FEMPA.

References

1. Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans.
Autom. Control 13(3), 246–253 (1968)

2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theor. Comput.
Sci. 202(1-2), 1–54 (1998)

3. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To
ordinary differential equations and back. T. Comp. Sys. Biology 11, 216–267 (2009)

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Applied
Probability 31, 59–74 (1994)

5. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391, 190–215 (2008)
6. Hayden, R.: Scalable performance analysis of massively parallel stochastic systems.

Ph.D. thesis, Imperial College London (2011)
7. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process

algebra. Theor. Comput. Sci. 411(22-24), 2260–2297 (2010)
8. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for

MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, Erlangen,
pp. 71–87 (1994)

9. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of Quan-
titative Evaluation of Systems, pp. 33–43. IEEE Computer Society Press (2005)

10. Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, New York (1996)

11. Ijiri, Y.: Fundamental queries in aggregation theory. Journal of the American Sta-
tistical Association 66(336), 766–782 (1971)

12. Iwase, Y., Levin, S.A., Andreasen, V.: Aggregation in model ecosystems I: perfect
aggregation. Ecological Modelling 37 (1987)

13. Kwiatkowski, M., Stark, I.: The Continuous π-Calculus: A Process Algebra for
Biochemical Modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS
(LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)

Compositionality of Probabilistic

Hennessy-Milner Logic
through Structural Operational Semantics

Daniel Gebler1 and Wan Fokkink1,2

{e.d.gebler,w.j.fokkink}@vu.nl
1 VU University Amsterdam

2 Eindhoven University of Technology

Abstract. We present a method to decompose HML formulae for re-
active probabilistic processes. This gives rise to a compositional modal
proof system for the satisfaction relation of probabilistic process algebras.
The satisfaction problem of a probabilistic HML formula for a process
term is reduced to the question of whether its subterms satisfy a derived
formula obtained via the operational semantics.

1 Introduction

Probabilistic process algebras allow one to specify and reason about both quali-
tative and quantitative aspects of system behavior [2,5,12,17]. Transition system
specifications (TSSs) associate to each process term a labeled transition system
(LTS). We consider reactive probabilistic LTSs [22] (essentially Labeled Markov
Chains), which are pure probabilistic systems for which the internal nondeter-
minism (i.e. how does the system react to an action) is fully probabilistic, while
the external nondeterminism (i.e. which action label is selected by the environ-
ment for the system to perform) is unquantified. Modal logics have been designed
to express properties of states in reactive probabilistic LTSs [22].

Larsen and Xinxin [21,23] developed for process languages in the de Simone
format [27] a general approach to obtain a compositional proof system for the
satisfaction relation of Hennessy-Milner logic (HML) formulae [16]. This tech-
nique was extended to TSSs in ready simulation and tyft/tyxt format [11]. We
carry over this line of research to reactive probabilistic LTSs. In particular we
extend the decomposition method from terms to distributions, as well as to
modal operators for probabilistic processes. Thus, we obtain a compositional
proof system for a probabilistic version of HML [24]. Moreover, the decomposi-
tion developed in this paper provides a basis for investigating connections be-
tween behavioral semantics, modal characterizations and structural operational
semantics of probabilistic systems. In particular, it opens the door to deriving
expressive and elegant congruence formats for probabilistic semantics in a struc-
tured way, following the approach of [6].

We develop a number of proof-theoretic facts for probabilistic TSSs. In detail,
we provide an extension of proofs for probabilistic TSSs [20] to support the

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 395–409, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

396 D. Gebler and W. Fokkink

derivation that a transition does not hold. Furthermore, we construct a collection
of derived rules, called ruloids [7], that determine completely the behavior of each
open term. Transition rules of probabilistic TSSs can be partitioned such that
every partition allows to derive transitions of a total probability of 1 and different
partitions are mutually exclusive [20]. We show that this partitioning can be
lifted to ruloids. This fact is a corner stone of our compositional proof systems
for probabilistic HML. Ruloids and ruloid partitions are used to decompose the
diamond modality.

2 Preliminaries

In probabilistic labeled transition systems, transitions carry probabilities. We
consider reactive probabilistic systems where each state is required to be semis-
tochastic, i.e. the sum of the probabilities of all outgoing transitions for an action
is either 0 (action cannot be performed) or 1 (fully quantified dynamic behav-
ior). Dist(S) is the set of probability measures on a countable set S, i.e. all
functions μ ∈ S → [0, 1] with

∑
s∈S μ(s) = 1. Let μ(T) =

∑
s∈T μ(s) for T ⊆ S;

Supp(μ) = {s ∈ S | μ(s) > 0} denotes the support of μ; δs for s ∈ S is the Dirac
distribution with δs(s) = 1 and δs(s

′) = 0 for s′ �= s. {| and |} denotes multisets.

Definition 1. A probabilistic labeled transition system (PLTS) is a tuple M =
(S,Act , I,→), with S a set of states, Act a set of actions, I a set of indices, and
→ ⊆ S ×Act × (0, 1]× I × S, where for each s ∈ S, a ∈ Act,∑

{| p | ∃i ∈ I, s′ ∈ S : (s, a, p, i, s′) ∈ →|} ∈ {0, 1}

s
a,p−−→i s′ denotes (s, a, p, i, s′) ∈ →, and d(s, a) ∈ Dist(S) the measure with

d(s, a)(s′) =
∑

{| p | ∃i ∈ I : s
a,p−−→i s

′|}. Let s
a−→ μ denote that the system

evolves from state s by action a to distribution μ = d(s, a).
The first logical characterization of probabilistic bisimilarity for fully proba-

bilistic reactive systems was provided in [22]. This logic is derived from Hennessy-
Milner logic (HML) by decorating the diamond operator with a probability. It
was generalized to the probabilistic modal logic LN [24] for nondeterministic
probabilistic systems (probabilistic automata). In the following we use this logic.

Definition 2. [24] The syntax of probabilistic HML is:

ϕ ::= ' | ¬ϕ |
∧
j∈J

ϕj | 〈a〉ϕ | [ϕ]p

with p ∈ [0, 1], J a countable index set, and a ∈ Act. Let O denote the set of
probabilistic HML formulae.

Definition 3. [24] Let M = (S,Act , I,→) be a PLTS. The satisfaction relation
of probabilistic HML formulae |= ⊆ Dist(S)×O is defined as follows:

Compositionality of Probabilistic HML through SOS 397

– μ |= ' for each measure μ

– μ |= ¬ϕ iff μ �|= ϕ
– μ |=

∧
j∈J ϕj iff μ |= ϕj for each j ∈ J

– μ |= 〈a〉ϕ iff for each s ∈ Supp(μ) there is a ν ∈ Dist(S) with s
a→ ν and

ν |= ϕ
– μ |= [ϕ]p iff μ({s ∈ S | δs |= ϕ}) ≥ p

We write s |= ϕ for δs |= ϕ.
Structural operational semantics (SOS) is defined by a transition system spec-

ification (TSS), which induces an LTS whose states are closed terms over an al-
gebraic signature. Transitions are obtained inductively from the transition rules
of the TSS. For a signature Σ and an infinite set of variables Var , T(Σ,Var)
denotes the set of open Σ-terms over variables Var , and T (Σ) the set of closed
Σ-terms. Substitutions σ : Var → T(Σ,Var) are extended to open Σ-terms as
usual. Let var (t) denote the set of variables in Σ-term t. Following [1], we develop
separately the concepts of literals, rules and proofs, to emphasize the required
probabilistic extensions to generate well-formed PLTSs. Labels are either pairs
of an action and a probability denoting that the action can be executed with the
given probability, or sets of actions denoting that all actions in the set can (or
cannot) be executed with an unquantified probability.

Definition 4. Let t, t′ ∈ T(Σ,Var). A probabilistic Σ-literal is an expression

t
a,π−−→ι t

′ (positive probabilistic Σ-literal), t
B−→ (positive unquantified Σ-literal)

or t � C−→ (negative unquantified Σ-literal), with a ∈ Act and B,C ⊆ Act. In an
open positive probabilistic Σ-literal, not only t and t′ are open terms, but also π
is a linear function on variables ranging over (0, 1], and ι is a variable ranging
over I. A Σ-literal is closed if t, t′ ∈ T (Σ), π ∈ (0, 1] and ι ∈ I.

A positive Σ-literal is either a positive probabilistic Σ-literal or a positive un-
quantified Σ-literal. An unquantified Σ-literal is either a positive or negative
unquantified Σ-literal. Subscript ι allows to distinguish different occurrences of
the same probabilistic transition [15]. Subscripts are omitted if they are clear
from the context. We say literal for Σ-literal if Σ is clear from the context.

Definition 5. A probabilistic transition rule is of the form r = H

t
a,π−−→ιt′

with H a

set of open Σ-literals, called premises, and t
a,π−−→ι t

′ an open positive probabilistic
Σ-literal, called the conclusion. We call t the source and t′ the target, and write

premises(r) = H, conc(r) = t
a,π−−→ι t

′, action(r) = a, index (r) = ι, source(r) =
t and target(r) = t′.

Open positive probabilistic and negative unquantified Σ-literals are called active
resp. negative premises in [20]; open positive unquantified Σ-literals are called
unquantified premises in [20] and move premises in [28].

A probabilistic TSS (PTSS) consists of a signature Σ, set of actions Act , and
set of probabilistic transition rules R.

398 D. Gebler and W. Fokkink

Definition 6. [20] A reactive probabilistic transition rule r, for f ∈ Σ and
a ∈ Act, is of the form

{xk
ak,πk−−−→ιk yk | k ∈ K} {xl

Bl−→| l ∈ L} {xm � Cm−−→| m ∈ M}
f(x1, . . . , xn)

a,π−−→ι t

with t ∈ T(Σ, {x1, . . . , xn} ∪ {yk | k ∈ K}), K,L,M ⊆ {1, . . . , ar(f)}, for all
k ∈ K, l ∈ L,m ∈ M , ak ∈ Act, Bl, Cm ⊆ Act, πk are variables ranging over
(0, 1], ιk are variables ranging over I, wr ∈ (0, 1], π = wr ∗

∏
k∈K πk and ι =

(r, [ιk]k∈K). We denote weight(r) = wr, pppremises(r) = {xk
ak,πk−−−→ιk yk | k ∈

K}, pupremises(r) = {xl
Bl−→ | l ∈ L}, nupremises(r) = {xm � Cm−−→ | m ∈ M},

var(r) = {x1, . . . , xn} ∪ {yk | k ∈ K} ∪ var (t).

We assume that the set of indices I is totally ordered and closed under building
pairs of a rule name and a list of indices, i.e. for every rule r with positive prob-

abilistic literals {xk
ak,πk−−−→ιk yk | k ∈ K} with ιk ∈ I, we have (r, [ιk]k∈K) ∈ I.

The weight of a rule defines the conditional probability of the conclusion, assum-

ing that all premises hold. We define the operator unquant(t
a,π−−→ t′) = t

{a}−−→
that eliminates the quantification and the target term from a positive proba-
bilistic literal and is identity for unquantified literals. It lifts in a natural way
to sets of literals. Furthermore, for a set of literals H , the normalized set of lit-
erals is defined by merging actions of unquantified literals with equal source,

i.e. norm(H) = {t a,π−−→ t′ | t
a,π−−→ t′ ∈ H} ∪ {t B̂−→ | t ∈ T(Σ,Var), B̂ =

∪
t

B−→∈H
B, B̂ �= ∅} ∪ {t � Ĉ−→ | t ∈ T(Σ,Var), Ĉ = ∪

t�
C−→∈H

C, Ĉ �= ∅}.
A PTSS guarantees congruence of probabilistic bisimilarity [20]. A PTSS is

well-formed if its induced PLTS satisfies the semi-stochasticity property. The
following specification format ensures well-formedness. It is defined using rule
partitions that describe sets of rules for which a given process either allows that
from each rule a transition can be derived (premises of all rules are satisfied) or no
transition can be derived (none of the premises is satisfied) and the rule weights
sum up to a total probability mass of 1. The format is a mild relaxation of [20,
Def. 7.2] by not enforcing equality of positive unquantified premises of rules in a
partition, but only equality of positive premises irrespective of its quantification.
This allows for more compact rules, without semantically redundant positive
unquantified premises just to enforce the partitioning.

Definition 7. [20] In a PTSS (Σ,Act , R), the set Rf,a of reactive probabilistic

transition rules for f ∈ Σ and a ∈ Act, is partitioned into sets Rf,a1 , . . . , Rf,an
such that the following conditions hold:

1. For each set Rf,au :
(a) For each pair r1, r2 ∈ Rf,au we have norm(unquant(pppremises(r1)) ∪

pupremises(r1)) = norm(unquant(pppremises(r2)) ∪ pupremises(r2)).
(b) For each pair r1, r2 ∈ Rf,au we have nupremises(r1) = nupremises(r2).
(c) The sum of weights of rules in Rf,au is 1.

Compositionality of Probabilistic HML through SOS 399

2. Given two sets Rf,au �= Rf,av . For any rules ru ∈ Rf,au and rv ∈ Rf,av there is

an index 1 ≤ i ≤ ar(f) such that ru has a positive premise xi
ai,πi−−−→ιi yi or

xi
Bi−−→ and rv has a negative premise xi �

Ci−→ with ai ∈ Ci or Ci ∩ Bi �= ∅,
respectively, or vica versa.

1(a) and 1(b) ensure that either none or all rules of a partition can be applied,
and 2 that only rules from one single partition can be applied. By 1(c), induced
PLTSs satisfy the semi-stochasticity property [20, Thm. 7.8].

Example 1. If t1 can perform an a-transition to t′1 with probability p1 and t2 to
t′2 with probability p2, their probabilistic alternative composition t1 +p t2 can
perform an a-transitions to t′1 with probability p1 ∗ p and to t′2 with probability
p2 ∗ (1 − p). If only one of the processes can perform an a-transition and this
transition goes to t′ with probability p′, then t1+

p t2 can perform an a-transition
to t′ with probability p′.

x1
a,π1−−−→ι y1 x2

{a}−−→
(r+1

a)

x1 +
p x2

a,π1∗p−−−−→(r+1
a ,ι) y1

x2
a,π2−−−→ι y2 x1

{a}−−→
(r+2

a)

x1 +
p x2

a,π2∗(1−p)−−−−−−−→(r+2
a ,ι) y2

x1
a,π1−−−→ι y1 x2 � {a}−−→

(r+3
a)

x1 +
p x2

a,π1−−−→(r+3
a ,ι) y1

x2
a,π2−−−→ι y2 x1 � {a}−−→

(r+4
a)

x1 +
p x2

a,π2−−−→(r+4
a ,ι) y2

Rules r+1
a to r+4

a for operator + and action a specify a PTSS with partitions
R+,a

1 = {r+1
a , r+2

a }, R+,a
2 = {r+3

a } and R+,a
3 = {r+4

a }. We note that the original

rule format of [20, Def. 7.2] would require additionally the premises x1
{a}−−→ in

r+1
a and x2

{a}−−→ in r+2
a . �

Derivations are defined as inductive applications of closed transition rules. Neg-
ative literals are proved using the negation as failure principle [9] and the sup-
ported proof notion [13, Def. 8].

Definition 8. [20] Let P = (Σ,Act , R) be a PTSS and t, s ∈ T (Σ). A closed

Σ-literal t
a,p−−→i s is derivable, denoted by P 2 t

a,p−−→i s, if there is a closed
substitution instance

{tk
ak,pk−−−→ik sk | k ∈ K} {tl

Bl−→| l ∈ L} {tm � Cm−−→| m ∈ M}
t
a,p−−→i s

of a rule r ∈ R, p = wr ∗
∏
k∈K pk and i = (r, [ik]k∈K) such that

– for all k ∈ K, P 2 tk
ak,pk−−−→ik sk

– for all l ∈ L and for all bl ∈ Bl, P 2 tl
bl,pl−−−→il ul for some pl, il, ul

400 D. Gebler and W. Fokkink

– for all m ∈ M and for all cm ∈ Cm, P �2 tm
cm,pm−−−−→im um for all pm, im, um.

P �2 t
a,p−−→i u denotes there is no derivation of this transition.

P 2 t � a−→ denotes there are no p, i, s such that P 2 t
a,p−−→i s. By P 2 t

B−→ we

denote that for all b ∈ B there are some p, s such that P 2 t
b,p−−→ s. By P 2 t � C−→

we denote that P 2 t � c−→ for all c ∈ C. We write P 2 t
a,p−−→ s if there is a rule r

and a list of indices [ik]k∈K such that P 2 t
a,p−−→(r,[ik]k∈K) s.

We say that literals t
a,p−−→ s and t � a−→ deny each other. A proof system is

consistent if it does not admit proofs of literals denying each other. Consistency
of Def. 8 can be shown similar to consistency of the well-supported proof notion
for nondeterministic TSSs [13]. A TSS is complete if for any t ∈ T (Σ) either

P 2 t
a,p−−→ s for some s ∈ T (Σ) and p ∈ (0, 1] or P 2 t � a−→. PTSSs are GSOS-

type TSSs [7], which guarantees the existence of a strict finite stratification [13].
Stratifiability of a PTSS is a sufficient condition for completeness.

3 Decomposition of Modal Formulae

This section shows how to decompose probabilistic HML formulae wrt. distri-
butions over process terms. Section 3.1 constructs ruloids that are derived rules
describing completely the set of provable literals of a PTSS. Furthermore, the
partitioning of rules to ensure the semi-stochasticity property is lifted to ruloids.
Section 3.2 provides the decomposition method for probabilistic HML formulae.

3.1 Ruloids and Ruloid Partitioning

Ruloids are derived transition rules describing completely the behavior of open
terms [7]. Intuitively, they are compact proofs where intermediate proof steps
are removed. While the source can be any term, the premises are simple and
consist of only variables. Their proof-theoretical closure property (Thm. 1) gives
them a prominent role in decomposing modalities.

The construction of ruloids is motivated by [7, Def. 7.4.2 and Thm. 7.4.3] and
its reformulation in [14, Def. 14]. We prefer the constructive approach of the latter
reference, which separates the definition of ruloids from the proof of their prop-
erties. Ruloids are constructed inductively by composing rules. The base case is
defined by rules being ruloids. A ruloid ρ is constructed by taking an instance of
a rule r and acting for each premise α as follows: If α is a positive literal, then a
ruloid ρα with conclusion α is selected, and all premises of ρα are included in the
premise of ρ. If α is a negative literal, then for every ruloid with conclusion being
negated α, one of its premises is negated and included in the premises of ρ.

Literals(P) denotes the set of literals of PTSS P , and RHS(r) the set of right-
hand side variables of positive probabilistic premises of ruloid ρ. Just like rules
the conclusion of a ruloid is indexed by a pair consisting of the ruloid name
and a list of indices of the positive probabilistic premises. The ruloid name is
the concatenation of the rule name and the ruloid names applied to its positive
premises.

Compositionality of Probabilistic HML through SOS 401

Definition 9. Let P = (Σ,Act, R) be a PTSS. The set of P -ruloids R is the
smallest set such that:

– x
a,π−−→ι y

x
a,π−−→ι y

is a P -ruloid with weight 1 for x, y ∈ Var, a ∈ Act, π a

variable ranging over (0, 1] and ι a variable ranging over I.

–
norm(

⋃
k∈K Hk ∪

⋃
l∈LHl ∪

⋃
m∈M Hm)

σ(f(x1, . . . , xn))
a,π−−→ι σ(t)

is a P -ruloid with weight w = wr ∗
∏
k∈K wk, transition probability

π = w ∗
∏
k∈K

∏
k′∈Kk

πk,k′ , rules rs = r · [ρk]k∈K · [ρl]l∈L and index
ι = (rs, [ιk,k′]k∈K,k′∈Kk

) if there is a rule r

{xk
ak,πk−−−→ιk yk | k ∈ K} {xl

Bl−→ | l ∈ L} {xm � Cm−−→ | m ∈ M}

f(x1, . . . , xn)
a,wr∗

∏
k∈K πk−−−−−−−−−−→(r,[ιk]k∈K) t

in R, and a substitution σ, such that the following properties hold:

• For every positive probabilistic literal xk
ak,πk−−−→ιk yk, either

∗ σ(xk) and σ(yk) are variables and Hk = {σ(xk)
ak,πk−−−→ιk σ(yk)}, or

∗ there is a P -ruloid ρk =
Hk

σ(xk)
ak,πk−−−→ιk

σ(yk)
with weight wk, the posi-

tive probabilistic premises in Hk are indexed by Kk and have proba-
bilistic variables πk,k′ and index variables ιk,k′ with k′ ∈ Kk.

• For every positive unquantified literal xl
Bl−→, either

∗ σ(xl) is a variable and Hl = {σ(xl)
Bl−→}, or

∗ for all b ∈ Bl there is a P -ruloid ρb =
Hb

σ(xl)
b,πb−−→s

for some πb, s and

Hl = ∪b∈Bl
unquant(Hb), ρl = [ρb]b∈Bl

.

• For every negative unquantified literal xm � Cm−−→, either

∗ σ(xm) is a variable and Hm = {σ(xm) �
Cm−−→}, or

∗ Hm = negCm
(hCm(RCm)) with

· Define RCm = {premises(ρ) | ρ ∈ R, conc(ρ) = σ(xm)
c,πc−−−→ s, c ∈

Cm} the set of premises of all P -ruloids with conclusion σ(xm)
c,πc−−−→ s

for some c ∈ Cm, πc, s.
· Define any mapping hCm : RCm → Literals(P) by hCm (L) = l with
l ∈ L for L ∈ RCm .
· Define any mapping negCm

: Literals(P) → Literals(P) that satisfies

negCm
(x

a,π−−→ y) = x � {a}−−→, negCm
(x

A−→) = x � {a}−−→ for some a ∈ A

and negCm
(x � A−→) = x

{a}−−→ for some a ∈ A.

• Right-hand side variables RHS(ρk) are all pairwise disjoint and each
RHS(ρk) is disjoint with {x1, . . . , xn}. All probabilistic variables πk,k′

and index variables ιk,k′ are distinct.

402 D. Gebler and W. Fokkink

The ruloid construction for unquantified literals, i.e. the mapping unquant(Hb)
for positive unquantified literals and negCm

for negative unquantified literals,
prevents that new probabilistic variables are introduced that would modify the
probabilistic weight of the ruloid. Operators denoting parameters of rules like
premises , conc, source carry over to ruloids. Furthermore, the rules applied to
a ruloid ρ are denoted by rules(ρ) = r · [ρk]k∈K · [ρl]l∈L. The set of P -ruloids
for a term t ∈ T(Σ,Var) and action a ∈ Act is denoted by Rt,a = {ρ | ρ ∈
R, source(ρ) = t, action(ρ) = a}.

Example 2. Let P = (Σ,Act , R) be the PTSS from Example 1. Consider the
probabilistic summation (x1 +

p12 x2) +
p23 x3, where only x3 is able to perform

an a-transition. The construction tree of the ruloid is as follows:

x1 � {a}−−→ x2 � {a}−−→
(1)

x1 +
p12 x2 � {a}−−→ x3

a,π3−−−→ι y3
(2)

(x1 +
p12 x2) +

p23 x3
a,π3−−−→(ρ+4

a ,ι) y3

At (1) the rules ρ+1
a to ρ+4

a were applied to assure x1 +
p12 x2 � {a}−−→ by disproving

x1 +
p12 x2

{a}−−→. In fact, the mapping hCm selects for each rule to disprove one
literal from its premise and negCm

generates the literal which refutes it. The
resulting ruloid is:

x1 � {a}−−→ x2 � {a}−−→ x3
a,π3−−−→ι y3

(x1 +p12 x2) +p23 x3
a,π3−−−→(ρ+4

a ,ι) y3
�

The following theorem states the key property of ruloids (called soundness and
specifically witnessing property in [7]). It formalizes a kind of completeness prop-
erty of the form that every transition that can be proven from P has a corre-
sponding P -ruloid where the provable transition is an instance of the conclusion
of the P -ruloid. This shows that ruloids are exhaustive wrt. provable transitions.
This will be used to decompose the diamond modality over an action a by pro-
viding a complete logical characterization of the preconditions and effects of the
possible transitions with label a.

Theorem 1 (Ruloid theorem). Let P = (Σ,Act , R) be a PTSS. Then P 2
σ(t)

a,p−−→ u for t ∈ T(Σ,Var), u ∈ T (Σ) and σ a closed substitution, iff there
is a P -ruloid H

t
a,p−−→v

and a closed substitution σ′ with P 2 σ′(α) for all α ∈ H,

σ′(t) = σ(t) and σ′(v) = u.

Next we construct the partitioning of ruloids. Intuitively, the partitioning of
a set of ruloids is defined as lifting of the partitionings of the rules involved
in their construction. The partitioning of ruloids with variables or terms with
only one function symbol in the source handles explicitly α-equivalence. The

Compositionality of Probabilistic HML through SOS 403

partitioning of ruloids with source t = f(t1, . . . , tn) with at least one ti being
no variable handles α-equivalence indirectly by referring to the partitioning of
rules involved in the construction. Like rule partitions, the ruloid partitions are
well-formed under an adapted notion of derivability. This is required for the
decomposition of the modalities.

Definition 10. Let P = (Σ,Act, R) be a PTSS, t ∈ T(Σ,Var) and a ∈ Act.
The partitioning of ruloids Rt,a is defined by:

– t = x: There is one ruloid partition

{
x

a,π−−→ιy

x
a,π−−→ιy

| y ∈ Var

}
.

– t = f(x1, . . . , xn): For every rule partition Rf,au there is a ruloid partition

Rf(x1,...,xn),au = {σ(r) | r ∈ Rf,au , σ a variable subsitution, σ(xi) = xi for 1 ≤
i ≤ n}.

– t = f(t1, . . . , tn), some ti is no variable: ρ1, ρ2 ∈ Rt,au iff rules(ρ1) = r1 ·
[ρ1k]k∈K1 · [ρ1l]l∈L1 , rules(ρ2) = r2 · [ρ2k]k∈K2 · [ρ2l]l∈L2 , for some v we have
r1, r2 ∈ Rf,av and for each i ∈ K1 ∪ L1 we have ρ1i , ρ

2
i ∈ Rti,aiui

for some ui.

The ruloid partitioning of a term is fully defined by the ruloid partitionings of
its subterms and the rule partitioning of its outermost function symbol. Note
that for case t = f(t1, . . . , tn) the rule partitioning (Def. 7.1a) guarantees that

K1 ∪ L1 = K2 ∪ L2. The ruloid partitions Rf(x1,...,xn),au are the rule partitions
Rf,au including renaming of variables that are not used in the source.

·
r+1
a

r+2
a

r+3
a

r+4
a

·
r+1
a

r+3
a

r+4
a

·
r+1
a

r+2
a r+3

a

r+4
a

ρ1,1 ·
r+1
a

r+2
a

r+3
a

r+4
a

ρ1,123 ρ1,12 ρ1,13 ρ2,123 ρ3,123 ρ2,12 ρ3,13 ρ2,23 ρ3,23 ρ2,2 ρ3,3

Fig. 1. Ruloid derivations for the 3-fold probabilistic sum

Example 3. t = x1 +
p12 (x2 +

p23 x3) generates 12 ruloids (up to α-equivalence
and variants generated by negative unquantified premises). The derivation tree
in Fig. 1 shows the deduction of ruloids by rule concatenation. Ruloid names
denote in the first parameter the target variable and in the second parameter
which variables can perform an a-move. E.g., ruloid ρ1,12 denotes that the target
is y1 and that x1, x2 can move but not x3. The 4 ruloids with target y3 are:

x1
{a}−−→ x2

{a}−−→ x3
a,π3−−−→ι y3

(ρ3,123)

x1 +
p12 (x2 +

p23 x3)
a,π3∗(1−p12)(1−p23)−−−−−−−−−−−−−→(r+2

a r+3
a ,ι) y3

404 D. Gebler and W. Fokkink

x1 � {a}−−→ x2
{a}−−→ x3

a,π3−−−→ι y3 (ρ3,23)

x1 +
p12 (x2 +

p23 x3)
a,π3∗(1−p23)−−−−−−−−→(r+4

a r+2
a ,ι) y3

x1
{a}−−→ x2 � {a}−−→ x3

a,π3−−−→ι y3
(ρ3,13)

x1 +
p12 (x2 +

p23 x3)
a,π3∗(1−p12)−−−−−−−−→(r+2

a r+4
a ,ι) y3

x1 � {a}−−→ x2 � {a}−−→ x3
a,π3−−−→ι y3

(ρ3,3)
x1 +

p12 (x2 +
p23 x3)

a,π3−−−→(r+4
a r+4

a ,ι) y3

Ruloids with target y1 or y2 are constructed similarly. Table 1 shows all ruloid
partitions of the 3-fold probabilistic sum. The weights of every ruloid partition
sum up to 1. E.g., ruloid partition [R+,a

1 , R+,a
1] with ruloids {ρ1,123, ρ2,123, ρ3,123}

has weight p12 + (1 − p12)p23 + (1 − p12)(1 − p23) = 1. There are 12 ruloids for
x1+

p12 (x2+
p23x3), because 3 of the 4 rules of P have a positive literal on x2 which

can be instantiated by the 4 rules specifying the probabilistic sum. �

Table 1. Ruloid partitions for the 3-fold probabilistic sum

Partition Ruloids Ruloid weights

[R+,a
1 , R+,a

1] {ρ1,123, ρ2,123, ρ3,123} weight(ρ1,123) = p12
weight(ρ2,123) = (1− p12)p23
weight(ρ3,123) = (1− p12)(1− p23)

[R+,a
1 , R+,a

2] {ρ1,12, ρ2,12} weight(ρ1,12) = p12, weight(ρ2,12) = 1− p12
[R+,a

1 , R+,a
3] {ρ1,13, ρ3,13} weight(ρ1,13) = p12, weight(ρ3,13) = 1− p12

[R+,a
2] {ρ1,1} weight(ρ1,1) = 1

[R+,a
3 , R+,a

1] {ρ2,23, ρ3,23} weight(ρ2,23) = p23, weight(ρ3,23) = 1− p23
[R+,a

3 , R+,a
2] {ρ2,2} weight(ρ2,2) = 1

[R+,a
3 , R+,a

3] {ρ3,3} weight(ρ3,3) = 1

We define [ρ]α = {ρ′ | rules(ρ) = rules(ρ′)}, the ruloid equivalence class con-
taining all ruloids that were constructed by the same rules applied in the same
order as ρ. This set contains beside ρ all those ruloids which differ from ρ only
by α-equivalence (renaming) or by the selection of premises of rules to refute in
the construction of negative unquantified literals. All ruloids in [ρ]α have equal
weight. The weight of [ρ]α is defined to be weight(ρ′) for any ρ′ ∈ [ρ]α. The
weight of a set of ruloids R is defined as

∑
#∈[R]α

weight(3).

Well-formedness of rule partitions was proved in [20]. The following theorem
shows well-formedness of ruloid partitions. A set of transitions is derivable from
a ruloid partition Rt,au if each transition is derivable from a ruloid ρ ∈ Rt,au and

different transitions t
a,p1−−→ t1 derived from ρ1 and t

a,p2−−→ t2 derived from ρ2 are
derived from ruloids of different equivalence classes [ρ1]α �= [ρ2]α.

Compositionality of Probabilistic HML through SOS 405

Theorem 2 (Well-formedness of ruloid partitions). Let P = (Σ,Act , R)
be a PTSS, t ∈ T(Σ,Var) a term and σ : var(t) → T (Σ) a closed substitution.
If for each xi ∈ var (t) and ai ∈ Act the probability of transitions of σ(xi) with
label ai, if there are any, sum up to 1, then for each a ∈ Act the probability of
transitions of σ(t) derivable from any ruloid partition Rt,au , if there are any, sum
up to 1.

3.2 Decomposition of HML Formulae

We present a method to reduce the question whether a probability distribution
over process terms satisfies a formula ϕ to the question whether its subterms
satisfy one of those formulae obtained by decomposing the formula ϕ using the
SOS rules of the process algebra. A formula ϕ is decomposed wrt. a distribution
μ in multiple mappings ψ : Var → O (Def. 11) such that for each closed sub-
stitution σ : Var → T (Σ) there is one mapping ψ such that for each variable x
of a term in the support of μ its instance σ(x) satisfies the decomposed formula
ψ(x) (Thm. 3).

The decomposition of propositional connectives is from [6,11]. The decompo-
sition of ¬ϕ expresses that none of the decompositions of ϕ hold. The decom-
position of 〈a〉ϕ wrt. distribution μ states that for each term t in the support of
μ the decomposition of ϕ wrt. the distribution induced by some ruloid partition
Rt,au holds. The decomposition of [ϕ]p characterizes that the decomposition of
ϕ holds for some set of terms with probability mass at least p. Different vari-
ants to refute a ruloid (decomposition of negation), different ruloid partitions
Rt,au ,Rt,av of a process term t and action a (decomposition of diamond modality)
and probabilistic branching (decomposition of probability measure modality)
lead to multiple decompositions ψ ∈ P(Var → O).

For μ ∈ Dist(T(Σ,Var)) we define var(μ) = ∪t∈Suppvar (t). A set of ruloids
R is target variable disjoint if for ρ, ρ′ ∈ R with ρ �= ρ′ we have (var(ρ) −
var(source(ρ))) ∩ (var(ρ′) − var(source(ρ′))) = ∅. Variable disjointness of sets
of ruloids prevents unintended variable binding in decompositions where mul-
tiple ruloids are applied. For R a set of ruloids we call R′ ⊆ R minimal rep-
resentative if weight(R′) = weight(R) and for each ρ, ρ′ ∈ R′ with ρ �= ρ′ we
have [ρ]α �= [ρ′]α. Minimal representative subsets of a ruloid partition have
only one representative for each equivalence class while still preserving the to-
tal probability mass of 1. A substitution σ : Var → T(Σ,Var) is lifted to
μ ∈ Dist(T(Σ,Var)) by σ(μ)(t) = μ(σ−1(t)). A substitution σ is called μ-well-
formed if for t, t′ ∈ Supp(μ) with t �= t′ we have σ(t) �= σ(t′). A distribution
μ ∈ Dist(T(Σ,Var)) is called well-formed if there is some μ-well-formed substi-
tution. DT(Σ,Var) ⊆ Dist(T(Σ,Var)) denotes all well-formed distributions.

Definition 11. Let P = (Σ,Act , R) be a PTSS. We define ·−1 : DT(Σ,Var) →
(O → P(Var → O)) as the smallest function satisfying the following conditions:

406 D. Gebler and W. Fokkink

1. μ−1(') = {ψ} with ψ(x) = ' for all x ∈ Var

2. ψ ∈ μ−1(¬ϕ) iff there is a function h : μ−1(ϕ) → var(μ) such that

ψ(x) =

⎧⎨⎩
∧

χ∈h−1(x)

¬χ(x) if x ∈ var (μ)

' if x �∈ var (μ)

3. ψ ∈ μ−1(
∧
i∈I ϕi) iff there are ψi ∈ μ−1(ϕi) for each i ∈ I such that

ψ(x) =
∧
i∈I

ψi(x) for all x ∈ Var

4. ψ ∈ μ−1(〈a〉ϕ) iff for each t ∈ Supp(μ) there is some minimal representative
and target variable disjoint Rt ⊆ Rt,au , a distribution νt ∈ Dist(T(Σ,Var))
defined by νt(target(ρ)) = weight(ρ) for ρ ∈ Rt, some χt ∈ (νt)−1(ϕ) s.t.

ψt(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
ρ∈Rt

H=premises(ρ)

[
χt(x) ∧

(∧
(x

ak,πk−−−−→y)∈H

〈ak〉χt(y)
)
∧

(∧
(x

Bl−−→)∈H

∧
b∈Bl

〈b〉%
)
∧
(∧
(x � Cm−−→)∈H

∧
c∈C

¬〈c〉%
)]

if x ∈ var(μ)

% if x �∈ var(μ)

and ψ(x) =
∧
t∈Supp(μ) ψ

t(x)

5. ψ ∈ μ−1([ϕ]p) iff there is some T ⊆ Supp(μ) with μ(T) ≥ p and for each
t ∈ T there is a ψt ∈ δ−1

t (ϕ) such that

ψ(x) =
∧
t∈T

ψt(x) for all x ∈ Var

The decomposition of ϕ wrt. a term t is defined by t−1(ϕ) = δ−1
t (ϕ). The

decomposition of 〈a〉ϕ wrt. a distribution reflects the universal nature of the
diamond modality that every term in the support of the distribution has to
satisfy 〈a〉ϕ. The decomposition of 〈a〉ϕ wrt. a term t, denoted ψt ∈ t−1(〈a〉ϕ),
uses a set of ruloids with total weight 1, i.e. the diamond modality reasons over
all probabilistic moves (internal nondeterminism), but employs a minimal set of
ruloids (only one single representative per ruloid equivalence class) to prevent
double counting of probabilities.

The main theorem shows that using modal decomposition, the satisfaction
problem of a probabilistic HML formula for a distribution over process terms
can be reduced to the question whether its subterms satisfy the decomposed
formulae.

Theorem 3 (Decomposition theorem). Let P = (Σ,Act , R) be a PTSS. For
any well-formed distribution μ ∈ DT(Σ,Var), closed μ-well-formed substitution
σ : Var → T (Σ) and modal assertion ϕ ∈ O:

σ(μ) |= ϕ ⇔ ∃ψ ∈ μ−1(ϕ).∀t ∈ Supp(μ).∀x ∈ var(t) : σ(x) |= ψ(x)

Compositionality of Probabilistic HML through SOS 407

4 Example: Decomposition of the Probabilistic Sum

Example 4. Consider the probabilistic sum of Example 1. The decomposition of
(x1 +

p x2)
−1(〈a〉[ϕ]q) leads for the partitions R+,a

1 to R+,a
3 to the calculation of

μ−1
i ([ϕ]q) with μ1 = {y1 (→ p, y2 (→ 1− p} (partition R+,a

1), μ2 = δy1 (partition
R+,a

2) and μ3 = δy2 (partition R+,a
3). The calculation of μ−1

2 ([ϕ]q) = {ψ2} with
ψ2(y1) = ϕ and ψ2(z) = ' for z �= y1, and μ−1

3 ([ϕ]q) = {ψ3} with ψ3(y2) = ϕ
and ψ3(z) = ' for z �= y2 is trivial. For partition R+,a

2 this gives ψ2(x1) = 〈a〉ϕ,
ψ2(x2) = ¬〈a〉' and for R+,a

3 this gives ψ3(x1) = ¬〈a〉', ψ3(x2) = 〈a〉ϕ. For
μ−1
1 ([ϕ]q) there are four cases to distinguish, depending on the arithmetic relation

between q, p and 1− p (Def. 11.5):

Case Condition T ⊆ Supp(μ1)
1 q > p, q > 1− p {y1, y2}
2 q < p, q > 1− p {y1}
3 q > p, q < 1− p {y2}
4 q < p, q < 1− p {y1}, {y2}

We omitted the cases where T contains more terms than necessary to satisfy the
required probability mass q. We exemplify the decomposition by instantiating
p and q. The decomposition of case 1 (say for p = 0.3, q = 0.8) gives (x1 +0.3

x2)
−1(〈a〉[ϕ]0.8) = {ψ1

1} with ψ1
1(x1) = ψ1

1(x2) = 〈a〉ϕ. The conditions q > p
and q > 1 − p assert that if both processes x1,x2 can move, none of both alone
has enough probability mass to satisfy the probability measure modality. The
decomposition reflects the intuition that if both processes x1,x2 can perform an
a transition then ϕ has to hold after both transitions. Case 2 (say for p = 0.8, q =
0.3) gives (x1 +

0.8 x2)
−1(〈a〉[ϕ]0.3) = {ψ2

1} with ψ2
1(x1) = 〈a〉ϕ, ψ2

1(x2) = 〈a〉'.
Case 3 (say for p = 0.2, q = 0.7) leads to (x1 +

0.2 x2)
−1(〈a〉[ϕ]0.7) = {ψ3

1} with
ψ3
1(x1) = 〈a〉', ψ3

1(x2) = 〈a〉ϕ. Cases 2 and 3 express that if one of the processes
can perform a transition with enough probability mass to satisfy the probability
measure modality then the target of this transition has to satisfy ϕ, i.e. y1
satisfies ϕ if p > q or y2 satisfies ϕ if 1− p > q. Case 4 (say for p = 0.7, q = 0.2)
results in (x1 +0.7 x2)

−1(〈a〉[ϕ]0.2) = {ψ4
1, ψ

4
2} with ψ4

1(x1) = 〈a〉ϕ, ψ4
1(x2) =

〈a〉', ψ4
2(x1) = 〈a〉', ψ4

2(x2) = 〈a〉ϕ. In this case both probabilistic transitions
have enough probability mass to satisfy the probability measure modality. Thus,
the probabilistic branching lead to two different decompositions ψ4

1 and ψ4
2 . �

5 Future Work

The decomposition method presented in this paper can be extended in the follow-
ing directions. The modal logic employed is LN [24], which takes into account
probabilistic branching. Segala and Lynch provided a variant of probabilistic
simulation where state transitions need to be matched only by convex combi-
nations of distributions (combined transition) [26]. The decomposition method
could be extended to the corresponding logic LNp that provides a modified di-
amond operator which uses combined transitions instead of state transitions.

408 D. Gebler and W. Fokkink

Furthermore, the decomposition method could be adapted to generative PLTSs,
to probabilistic automata [25] which combine nondeterministic and probabilistic
choice using the recently introduced rule format by [10], and to continuous-space
Markov processes using Modular Markovian Logic [8].

Following the approach of [6], the decomposition method can be applied to
systematically develop congruence formats for different behavioral semantics of
probabilistic systems, such as strong and weak variants of bisimulation, simula-
tion, and testing semantics. Behavioral equivalences for stochastic systems are
e.g. Markovian bisimulation, Markovian testing, and probabilistic andMarkovian
trace semantics. Congruence formats have so far only been developed for prob-
abilistic bisimulation for reactive probabilistic systems [4,20], generative proba-
bilistic systems [20] and bisimulation for stochastic systems [18].

Bialgebraic semantics abstracts away from concrete notions of syntax and
system behavior [29]. Klin combines bialgebraic semantics with a coalgebraic
approach to modal logic to prove compositionality of process equivalences for
languages defined by SOS [19]. He developed the SGSOS format to define well-
behaved Markovian stochastic transition systems [18]. A closely related approach
was taken by Bacci and Miculan for probabilistic processes with continuous
probabilities [3]. It is worth investigating how our modal decomposition approach
relates to bialgebraic methods.

Acknowledgements. We are grateful to Simone Tini for discussions on struc-
tural properties of operational semantics for PLTSs, and to Bas Luttik for con-
structive feedback on the presentation of the research results.

References

1. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, pp. 197–292. Elsevier (2001)

2. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis
of probabilistic noninterference. J. Comput. Secur. 12, 191–245 (2004)

3. Bacci, G., Miculan, M.: Structural Operational Semantics for Continuous State
Probabilistic Processes. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS,
vol. 7399, pp. 71–89. Springer, Heidelberg (2012)

4. Bartels, F.: GSOS for probabilistic transition systems. In: Proc. CMCS 2002.
ENTCS, vol. 65, pp. 29–53. Elsevier (2002)

5. Bergstra, J., Baeten, J., Smolka, S.: Axiomatizing probabilistic processes: ACP
with generative probabilities. Inf. Comput. 121, 234–254 (1995)

6. Bloom, B., Fokkink, W., van Glabbeek, R.: Precongruence formats for decorated
trace semantics. ACM TOCL 5, 26–78 (2004)

7. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42,
232–268 (1995)

8. Cardelli, L., Larsen, K.G., Mardare, R.: Modular Markovian Logic. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 380–391.
Springer, Heidelberg (2011)

9. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press (1978)

Compositionality of Probabilistic HML through SOS 409

10. D’Argenio, P.R., Lee, M.D.: Probabilistic Transition System Specification: Congru-
ence and Full Abstraction of Bisimulation. In: Birkedal, L. (ed.) FOSSACS 2012.
LNCS, vol. 7213, pp. 452–466. Springer, Heidelberg (2012)

11. Fokkink, W., van Glabbeek, R., de Wind, P.: Compositionality of Hennessy-Milner
logic by structural operational semantics. Theor. Comput. Sci. 354, 421–440 (2006)

12. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent
systems. In: Proc. IFIP ProCoMet 1990, pp. 443–458. North-Holland (1990)

13. van Glabbeek, R.: The meaning of negative premises in transition system specifi-
cations II. J. Logic Algebr. Program. 60-61, 229–258 (2004)

14. van Glabbeek, R.: On cool congruence formats for weak bisimulations. Theor. Com-
put. Sci. 412, 3283–3302 (2011)

15. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative, and stratified mod-
els of probabilistic processes. Inf. Comput. 121, 59–80 (1995)

16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137–161 (1985)

17. Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In:
Handbook of Process Algebra, pp. 685–710. Elsevier (2001)

18. Klin, B., Sassone, V.: Structural Operational Semantics for Stochastic Process
Calculi. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 428–442.
Springer, Heidelberg (2008)

19. Klin, B.: Structural operational semantics and modal logic, revisited. In: Proc.
CMCS 2010. ENTCS, vol. 264, pp. 155–175. Elsevier (2010)

20. Lanotte, R., Tini, S.: Probabilistic bisimulation as a congruence. ACM TOCL 10,
1–48 (2009)

21. Larsen, K.G.: Context-Dependent Bisimulation Between Processes. Ph.D. thesis,
University of Edinburgh (1986)

22. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94,
1–28 (1991)

23. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. J. Log. Comput. 1, 761–795 (1991)

24. Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete
Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423,
pp. 287–301. Springer, Heidelberg (2007)

25. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, MIT (1995)

26. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
J. of Computing 2, 250–273 (1995)

27. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput.
Sci. 37, 245–267 (1985)

28. Tini, S.: Non-expansive epsilon-bisimulations for probabilistic processes. Theor.
Comput. Sci. 411, 2202–2222 (2010)

29. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proc.
LICS 1997, pp. 280–291. IEEE (1997)

Coalgebraic Trace Semantics for Probabilistic
Transition Systems Based on Measure Theory

Henning Kerstan and Barbara König

Universität Duisburg-Essen, Duisburg, Germany
{henning.kerstan,barbara_koenig}@uni-due.de

Abstract. Coalgebras in a Kleisli category yield a generic definition of trace
semantics for various types of labelled transition systems. In this paper we apply
this generic theory to generative probabilistic transition systems, short PTS, with
arbitrary (possibly uncountable) state spaces. We consider the sub-probability
monad and the probability monad (Giry monad) on the category of measurable
spaces and measurable functions. Our main contribution is that the existence of a
final coalgebra in the Kleisli category of these monads is closely connected to the
measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we
obtain a practical definition of the trace measure for both finite and infinite traces
of PTS that subsumes a well-known result for discrete probabilistic transition
systems.

1 Introduction

Coalgebra [11,16] is a general framework in which several types of transition systems
can be studied (deterministic and non-deterministic automata, weighted automata, tran-
sition systems with non-deterministic and probabilistic branching, etc.). One of the
strong points of coalgebra is that it induces – via the notion of coalgebra homomor-
phism and final coalgebra – a notion of behavioural equivalence for all these types of
systems. The resulting behavioural equivalence is usually some form of bisimilarity.
However, [10] has shown that by modifying the category in which the coalgebra lives,
one can obtain different notions of behavioural equivalence, such as trace equivalence.

We will shortly describe the basic idea: given a functor F , describing the branching
type of the system, a coalgebra in the category Set is a function α : X →FX , where X is
a set. Consider, for instance, the functor FX = Pfin(A×X + 1), where Pfin is the finite
powerset functor and A is the given alphabet. This setup allows us to specify finitely
branching non-deterministic automata where a state x∈X is mapped to a set of tuples of
the form (a,y), where a ∈A,y ∈ X , describing transitions. The set contains the symbol
� (for termination) – the only element contained in the one-element set 1 – whenever x
is a final state.

A coalgebra homomorphism maps sets of states of a coalgebra to sets of states of
another coalgebra, preserving the branching structure. Furthermore, the final coalgebra
– if it exists – is the final object in the category of coalgebras. Every coalgebra has a
unique homomorphism into the final coalgebra and two states are mapped to the same
state in the final coalgebra iff they are behaviourally equivalent.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 410–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Coalgebraic Trace Semantics for PTS Based on Measure Theory 411

Now, applying this notion to the example above induces bisimilarity, whereas usually
the appropriate notion of behavioural equivalence for non-deterministic finite automata
is language equivalence. One of the ideas of [10] is to view a coalgebra
X → P(A× X + 1) not as an arrow in Set, but as an arrow X → A×X + 1 in Rel,
the Kleisli category of the powerset monad. This induces trace equivalence, instead of
bisimilarity, with the underlying intuition that non-determinism is a side-effect that is
“hidden” within the monad. This side effect is not present in the final coalgebra (which
consists of the set A∗ with a suitable coalgebra structure), but in the arrow from a state
x ∈ X to A∗, which is a relation, and relates each state with all words accepted from this
state.

In [10] it is also proposed to obtain probabilistic trace semantics for the Kleisli cat-
egory of the (discrete) subdistribution monad D. Hence coalgebras in this setting are
functions of the form X →D(A×X +1) (modelling probabilistic branching and termi-
nation), seen as arrows in the corresponding Kleisli category. From a general result in
[10] it again follows that the final coalgebra is carried by A∗, where the mapping into
the final coalgebra assigns to each state a probability distribution over its traces. In this
way one obtains the finite trace semantics of generative probabilistic systems [17,8].

The contribution in [10] is restricted to discrete probability spaces, where the proba-
bility distributions always have at most countable support [18]. This might seem suffi-
cient for practical applications at first glance, but it has two important drawbacks: first,
it excludes several interesting systems that involve uncountable state spaces (see for
instance the examples in [15]). Second, it excludes the treatment of infinite traces, as
detailed in [10], since the set of all infinite traces is uncountable and hence needs mea-
sure theory to be treated appropriately. This is an intuitive reason for the choice of the
subdistribution monad – instead of the distribution monad – in [10]: for a given state,
it might always be the case that a non-zero “probability mass” is associated to the in-
finite traces leaving this state, which – in the discrete case – can not be specified by a
probability distribution over all words.

Hence, we generalize the results concerning probabilistic trace semantics from [10]
to the case of uncountable state spaces, by working in the Kleisli category of the (con-
tinuous) subprobability monad over Meas (the category of measurable spaces). Unlike
in [10] we do not derive the final coalgebra via a generic construction (building the
initial algebra of the functor), but we define the final coalgebra directly. Furthermore
we consider the Kleisli category of the (continuous) probability monad (Giry monad)
and treat the case with and without termination. In the former case we obtain a coal-
gebra over the set A∞ (finite and infinite traces over A) and in the letter over the set
Aω (infinite traces), which shows the naturality of the approach. For completeness we
also consider the case of the subprobability monad without termination, which results
in a trivial final coalgebra over the empty set. In all cases we obtain the natural trace
measures as instances of the generic coalgebraic theory.

Since, to our knowledge, there is no generic construction of the final coalgebra for
these cases, we construct the respective final coalgebras directly and show their cor-
rectness by proving that each coalgebra admits a unique homomorphism into the final
coalgebra. Here we rely on the measure-theoretic extension theorem for sigma-finite
pre-measures.

412 H. Kerstan and B. König

2 Background Material and Preliminaries

We assume that the reader is familiar with the basic definitions of category theory. How-
ever, we will provide a brief introduction to measure theory and integration, coalgebra,
coalgebraic trace semantics and Kleisli categories - of course all geared to our needs.
For a more detailed analysis of many of the given proofs we refer to [12] which is the
primary source for the results presented in this paper. Moreover, there is a long version
of this paper ([13]) including all the missing proofs.

2.1 Notation

By 1 we denote a singleton set, its unique element is �. For arbitrary sets X ,Y we
write X ×Y for the usual cartesian product and the disjoint union X +Y is the set
{(x,0),(y,1) | x ∈ X ,y ∈Y}. Whenever X ∩Y = /0 this coincides with (is isomorphic to)
the usual union X ∪Y in an obvious way and we often write X �Y . For set inclusion
we write ⊂ for strict inclusion and ⊆ otherwise. The set of extended reals is the set
R := R∪{±∞} and R+ is the set of non-negative extended reals.

2.2 A Brief Introduction to Measure Theory [2,6]

Measure theory generalizes the idea of length, area or volume. Its most basic definition
is that of a σ -algebra (sigma-algebra). Given an arbitrary set X we call a set Σ of
subsets of X a σ -algebra iff it contains the empty set and is closed under absolute
complement and countable union. The tuple (X ,Σ) is called a measurable space. We
will sometimes call the set X itself a measurable space, keeping in mind that there is
an associated σ -algebra which we will then denote by ΣX . For any subset G ⊆ P(X)
we can always uniquely construct the smallest σ -algebra on X containing G which is
denoted by σX(G). We call G the generator of σX(G), which in turn is called the σ -
algebra generated by G. It is known, that σX is a monotone and idempotent operator.
The elements of a σ -algebra on X are called the measurable sets of X .

Similar to the definition of a σ -algebra we call a subset S ⊆ P(X) a semi-ring of
sets iff it contains the empty set, is closed under pairwise intersection and any relative
complement of two sets in S is the disjoint union of finitely many sets in S. It is easy
to see that every σ -algebra is a semi-ring of sets but the reverse is false.

A non-negative function μ : S → R+ defined on a semi-ring S is called a pre-
measure on X if it assigns 0 to the empty set and is σ -additive, i.e. for a sequence
(Sn)n∈N of mutually disjoint sets in S where (�n∈NSn) ∈ S we must have μ (�n∈NSn) =

∑n∈N μ (Sn). A pre-measure is called σ -finite if there is a sequence (Sn)n∈N of sets in
S such that their union is X and μ (Sn) < ∞ for all n ∈ N. Whenever S is a σ -algebra
we call μ a measure and the tuple (X ,S,μ) a measure space. In that case μ is said to
be finite iff μ(X) < ∞ and for the special cases μ(X) = 1 (or μ(X) ≤ 1) μ is called
a probability measure (or sub-probability measure respectively). The most significant
theorem from measure theory which we will use in this paper is the extension theorem
for σ -finite pre-measures, for which a proof can be found e.g. in [6].

Coalgebraic Trace Semantics for PTS Based on Measure Theory 413

Proposition 1 (Extension Theorem for σ -finite Pre-Measures). Let X be an arbi-
trary set, S ⊆ P(X) be a semi-ring of sets and μ : S → R+ be a σ -finite pre-measure.
Then there exists a uniquely determined measure μ̂ : σX (S)→ R+ such that μ̂ |S = μ .

This theorem can on the one hand be used to construct measures and on the other hand
it provides an equality test for σ -finite measures.

Corollary 2 (Equality of σ -finite Measures). Let X be an arbitrary set, S ⊆P(X) be
a semi-ring of sets and μ ,ν : σX (S)→R be σ -finite measures. Then μ and ν are equal
iff they agree on all elements of the semi-ring.

2.3 The Category of Measurable Spaces and Functions

Let X and Y be measurable spaces. A function f : X → Y is called measurable iff the
pre-image of any measurable set of Y is a measurable set of X . The category Meas
has measurable spaces as objects and measurable functions as arrows. Composition of
arrows is function composition and the identity arrow is the identity function.

The product of two measurable spaces (X ,ΣX) and (Y,ΣY) is the set X ×Y endowed
with the σ -algebra generated by ΣX ∗ ΣY , the set of so-called “rectangles” which is
{SX × SY | SX ∈ ΣX ,SY ∈ ΣY}. It is called the product σ -algebra of ΣX and ΣY and is de-
noted by ΣX ⊗ΣY . Whenever ΣX and ΣY have suitable generators, we can also construct
a possibly smaller generator for the product σ -algebra than the set of all rectangles.

Proposition 3 (Generators for the Product σ -Algebra, [6]). Let X ,Y be arbitrary
sets and GX ⊆ P(X),GY ⊆ P(Y) such that X ∈ GX and Y ∈ GY . Then the following
holds: σX×Y (GX ∗GY) = σX (GX)⊗σY (GY).

We remark that we can construct product endofunctors on the category of measurable
spaces and functions.

Definition 4 (Product Functors). Let Z be a measurable space. The endofunctor
Z × IdMeas maps a measurable space X to (Z×X ,ΣZ ⊗ΣX) and a measurable func-
tion f : X →Y to the measurable function F(f) : Z×X → Z×Y,(z,x) (→ (z, f (x)). The
functor IdMeas ×Z is constructed analogously.

The co-product of two measurable spaces (X ,ΣX) and (Y,ΣY) is the set X +Y en-
dowed with ΣX ⊕ΣY := {SX + SY | SX ∈ ΣX ,SY ∈ ΣY} as σ -algebra, the disjoint union
σ -algebra. Note that in contrast to the product no σ -operator is needed because ΣX ⊕ΣY

itself is already a σ -algebra whereas ΣX ∗ΣY is usually no σ -algebra. For generators of
the disjoint union σ -algebra there is a comparable result to the one given above for the
product σ -algebra.

Proposition 5 (Generators for the Disjoint Union σ -Algebra). Let X ,Y be arbitrary
sets and GX ⊆P(X),GY ⊆P(Y) such that /0∈GX and Y ∈GY . Then the following holds:
σX+Y (GX ⊕GY) = σX(GX)⊕σY (GY).

A short proof for this can be found in [13]. As before we can construct endofunctors,
the co-product functors.

414 H. Kerstan and B. König

Definition 6 (Co-Product Functors). Let Z be a measurable space. The endofunctor
IdMeas +Z maps a measurable space X to (X +Z,ΣX ⊕ΣZ) and a measurable function
f : X →Y to the measurable function F(f) : X +Z →Y +Z which acts like f on X and
like the identity on Z. The functor IdMeas +Z is constructed analogously.

For isomorphisms in Meas we provide the following characterization, where again the
proof can be found in [13].

Proposition 7 (Isomorphisms in Meas). Two measurable spaces X and Y are isomor-
phic in Meas iff there is a bijective function ϕ : X → Y such that1 ϕ (ΣX) = ΣY . If ΣX

is generated by a set S ⊆ P(X) then X and Y are isomorphic iff there is a bijective
function ϕ : X → Y such that ΣY is generated by ϕ (S). In this case S is a semi-ring of
sets (a σ -algebra) iff ϕ(S) is a semi-ring of sets (a σ -algebra).

2.4 Kleisli Categories and Liftings of Endofunctors

Given a monad (T,η ,μ) on a category C we can define a new category, the Kleisli
category of T , where the objects are the same as in C but every arrow in the new
category corresponds to an arrow f : X → TY in C. Thus, arrows in the Kleisli category
incorporate side effects specified by a monad [10,1]. In the following definition we
will adopt the notation used by S. Mac Lane [14, Theorem VI.5.1], as it allows us
to distinguish between objects and arrows in the base category C and their associated
objects and arrows in the Kleisli category K	(T).

Definition 8 (Kleisli Category). Let (T,η ,μ) be a monad on a category C. To each
object X of C we associate a new object XT and to each arrow f : X → TY of C we
associate a new arrow f (: XT → YT . Together these objects and arrows form a new
category K	(T), the Kleisli category of T , where composition of arrows f (: XT → YT

and g(: YT → ZT is defined as: g(◦ f (:= (μZ ◦ T (g) ◦ f)(. For every object XT the
identity arrow is idXT = (ηX)

(.

Given an endofunctor F on C, we now want to construct an endofunctor F on K	(T)
that “resembles” F : Since objects in C and objects in K	(T) are basically the same, we
want F to coincide with F on objects i.e. F(XT) = (FX)T . It remains to define how F
shall act on arrows f (: XT →YT such that it “resembles” F . We note that for the associ-
ated arrow f : X → TY we have F(f) : FX → FTY . If we had a map λY : FTY → T FY
to “swap” the endofunctors F and T , we could simply define F(f () := (λY ◦F(f))(

which is exactly what we are going to do.

Definition 9 (Distributive Law). Let (T,η ,μ) be a monad on a category C and F be
an endofunctor on C. A natural transformation λ : FT ⇒ T F is called a distributive
law iff for all X we have λX ◦F (ηX) = ηFX and μFX ◦T (λX)◦λTX = λX ◦F (μX).

Whenever we have a distributive law we can define the lifting of a functor.

Definition 10 (Lifting of a Functor). Let (T,η ,μ) be a monad on a category C and
F be an endofunctor on C with a distributive law λ : FT ⇒ TF. The distributive law

1 For S ⊆ P(X) and a function f : X →Y let ϕ(S) = {ϕ (SX) | SX ∈ S}.

Coalgebraic Trace Semantics for PTS Based on Measure Theory 415

induces a lifting of F to an endofunctor F : K	(T) → K	(T) where for each object
XT of K	(T) we define F(XT) = (FX)T and for each arrow f (: XT → YT we define
F(f () : F(XT)→ F(YT) via F(f () := (λY ◦F f)(.

2.5 Coalgebraic Trace Semantics

We recall that for an endofunctor F on a category C an (F-)coalgebra is a pair (X ,α)
where X is an object and α : X → FX is an arrow of C. An F-coalgebra homomor-
phism between two F-coalgebras (X ,α),(Y,β) is an arrow ϕ : X → Y in C such that
β ◦ϕ = F(ϕ)◦α . We call an F-coalgebra (Ω ,κ) final iff for every F-coalgebra (X ,α)
there is a unique F-coalgebra-homomorphism ϕX : X → Ω .

By choosing a suitable category and a suitable endofunctor, many (labelled) transi-
tion systems can be modelled as F-coalgebras. The final coalgebra - if it exists - can
be seen as the “universe of all possible behaviours” and the unique map into it yields
a behavioural equivalence: Two states are equivalent iff they are mapped identically
into the final coalgebra. Whenever transition systems incorporate side-effects, these
can be “hidden” in a monad. In this case the final coalgebra of an endofunctor in the
Kleisli category of this monad yields a notion of trace semantics ([9], [18]). In this
case, the side-effects from the original system are not part of the final coalgebra, but are
contained in the unique map into the final coalgebra.

2.6 The Lebesgue Integral

Before we can define the probability and the sub-probability monad, we give a crash
course in integration loosely based on [2,6]. For that purpose let us fix a measurable
space X , a measure μ on X and a Borel-measurable2 function f : X → R. We call f
simple iff it attains only finitely many values, say f (X) = {α1, ...,αN}. The integral of
such a simple function f is then defined to be the μ-weighted sum of the αn, formally∫

X f dμ =∑N
n=1 αnμ(Sn) where Sn = f−1(αn)∈ ΣX . Whenever f is non-negative we can

approximate it from below using non-negative simple functions. In this case we define
the integral to be

∫
X f dμ := sup{

∫
X sdμ | s non-negative and simple s.t. 0 ≤ s ≤ f}. For

arbitrary f we decompose it into its positive part f+ = max{ f ,0} and negative part
f− := max{− f ,0} which are both non-negative and Borel-measurable. We denote that
f = f+− f− and consequently we define the integral of f to be the difference

∫
X f dμ :=∫

X f+ dμ −
∫

X f− dμ if not both integrals on the right hand side are +∞. In the latter
case we say that the integral does not exist. Whenever it exists and is finite we call f
a (μ-)integrable function. Instead of

∫
X f dμ we will sometimes write

∫
X f (x)dμ(x) or∫

x∈X f (x)dμ(x) which is useful if we have functions with more than one argument or
multiple integrals. Note that this does not imply that singleton sets are measurable.

For every measurable set S ∈ ΣX its characteristic function χS : X → {0,1}, which
is 1 iff x ∈ S and 0 otherwise, is integrable and for integrable f the product χS · f
is also integrable and we write

∫
S f dμ for

∫
X χS · f dμ . Some useful properties of the

integral are that it is linear, i.e. for integrable f ,g : X → R we have
∫

α f + β gdμ =
α
∫

f dμ +β
∫

gdμ and monotone, i.e. f ≤ g implies
∫

f dμ ≤
∫

gdμ . We will state one
result explicitly which we will use in our proofs.

2 A function f : X → R is Borel-measurable iff ∀t ∈ R : f−1 ([−∞, t]) ∈ ΣX .

416 H. Kerstan and B. König

Proposition 11 ([2, Theorem 1.6.12]). Let X ,Y be measurable spaces, μ be a mea-
sure on X, f : Y → R be a Borel-measurable function and g : X → Y be a measurable
function. Then μg := μ ◦ g−1 is a measure on Y , the so-called image-measure and f is
μg-integrable iff f ◦g is μ-integrable and in this case we have

∫
S f dμg =

∫
g−1(S) f ◦gdμ

for all S ∈ ΣY .

2.7 The Probability and the Sub-probability Monad

We are now going to present the probability monad (Giry monad) and the sub-probability
monad as presented e.g. in [7] and [15]. First, we define the endofunctors of these
monads.

Definition 12 (Probability and Sub-Probability Functor). The probability-functor
P : Meas → Meas maps a measurable space (X ,ΣX) to the measurable space(
P(X),ΣP(X)

)
where P(X) is the set of all probability measures on ΣX and ΣP(X) is

the smallest σ -algebra such that the evaluation maps:

∀S ∈ ΣX : pS : P(X)→ [0,1],P (→ P(S) (1)

are Borel-measurable. For any measurable function f : X → Y between measurable
spaces (X ,ΣX),(Y,ΣY) the arrow P(f) maps a probability measure P to its image mea-
sure:

P(f) : P(X)→ P(Y),P (→ Pf := P◦ f−1 (2)

If we take sub-probabilities instead of probabilities we can construct the sub-probability
functor S analogously.

Having defined the endofunctors, we continue by constructing the unit and multiplica-
tion natural tranformations.

Definition 13 (Unit and Multiplication). Let T ∈ {S,P}. We obtain two natural trans-
formations η : IdMeas ⇒ T and μ : T 2 ⇒ T by defining ηX ,μX for every measurable
space (X ,ΣX) as follows:

ηX : X → T (X), x (→ δ X
x (3)

μX : T 2(X)→ T (X), μX(P)(S) :=
∫

pS dP ∀S ∈ ΣX (4)

where δ X
x : ΣX → [0,1] is the Dirac measure which is 1 on S ∈ ΣX iff x ∈ S and 0

otherwise. The map pS ist the evaluation map (1) from above.

If we combine all the ingredients we obtain the following result which also guarantees
the soundness of the previous definitions:

Proposition 14 ([7]). (S,η ,μ) and (P,η ,μ) are monads on Meas.

Coalgebraic Trace Semantics for PTS Based on Measure Theory 417

3 Main Results

There is a big variety of probabilistic transition systems [18,8]. We will deal with four
slightly different versions of so-called generative PTS. The underlying intuition is that,
according to a probability measure, an action from the alphabet A and a set of possible
successor states are chosen. We distinguish between probabilistic branching according
to sub-probability and probability measures and furthermore we treat systems without
and with termination.

Definition 15 (Probabilistic Transition System (PTS)). A probabilistic transition sys-
tem is a tuple (A,X ,α) where A is a finite alphabet (endowed with P(A) as σ -
algebra), X is the state space, an arbitrary measurable space with σ -algebra ΣX and
α ∈ {α0,α∗,αω ,α∞} is the transition function where:

α0 : X → S(A×X), α∗ : X → S(A×X + 1)

αω : X → P(A×X), α∞ : X → P(A×X + 1)

Depending on the type of the transition function, we call the PTS a 4-PTS with3

4 ∈ {0,∗,ω ,∞}. For every x ∈ X and every a ∈ A we define the finite sub-probability
measure Px,a : ΣX → [0,1] where Px,a(S) :=α(x)({a}×S) for every S ∈ ΣX . Intuitively,
Px,a(S) is the probability of making an a-transition from the state x ∈ X to any state
y ∈ S. Whenever X is a countable set and ΣX = P(X) we call the PTS discrete.

We will now take a look at a small example ∞-PTS before we continue to build up our
theory.

Example 16 (Discrete PTS with Finite and Infinite Traces). Let A = {a,b},
X = {0,1,2}, ΣX = P(X) and α := α∞ : X → P(A×X + 1) such that we obtain the
following system:

�������	0b,1
��

�������	1
b,1/3
��

1/3

��
a,1/3

���������	2

a,2/3

��

1/3
�� �������	
�������

Obviously � is the unique final state which has only incoming transitions bearing prob-
abilities and no labels. This should be interpreted as follows: “From state 1 the system
terminates immediately with probability 1/3”.

In order to define a trace measure on these probabilistic transition systems, we need
suitable σ -algebras on the sets of words. While the set of all finite words, A∗, is rather
simple - we take P(A∗) as σ -algebra - the set of all infinite words, Aω , and also the
set of all finite and infinite words, A∞, needs some consideration. For a word u ∈ A∗

we call the set of all infinite words that have u as a prefix the ω-cone of u, denoted by

3 The reason for choosing these symbols as type-identifiers will be revealed later in this paper.

418 H. Kerstan and B. König

↑ω {u}, and similarily we call the set of all finite and infinite words having u as a prefix
the ∞-cone ([15, p. 23]) of u and denote it with ↑∞{u}.

A cone can be visualized in the following way: We consider the undirected, rooted
and labelled tree given by T = (A∗,E, l) with edges E := {{u,uv} | u ∈ A∗,v ∈ A},
edge-labelling function l : E → A,{u,uv} (→ v and ε ∈ A∗ as the dedicated root. For
A= {a,b,c} the first three levels of the tree can be depicted as follows:

ε
a

����
����

����
����

����
���

b
c

����
����

����
����

����
���

a
a

��
��
��
��
�
b

c

��
��

��
��

b
a

��
��
��
��

b
c

��
��

��
��

c
a

��
��
��
��

b
c

��
��

��
��

aa ab ac ba bb bc ca cb cc

Given a finite word u ∈ A∗, the ω-cone of u is the set of all infinite paths that begin in
ε and contain the vertex u and the ∞-cone of u is the set of all finite and infinite simple
paths that begin in ε and contain the vertex u (and thus necessarily have a length which
is greater or equal to the length of u). Since the sets of cones are no σ -algebras, we
will of course take the σ -algebra generated by them. However, the sets of cones can be
augmented in such a way that we obtain semi-rings of sets.

Definition 17 (Cones). Let A be a finite alphabet and let)⊂ A∗ ×A∞ denote the
usual prefix relation on words. For u ∈ A∗ we define its ω-cone to be the set ↑ω {u} :=
{v ∈Aω | u) v} and analgously we call ↑∞ {u} := {v ∈ A∞ | u) v} the ∞-cone of u.
Furthermore we define ↑0 {u} := /0,↑∗ {u} := {u}.

With this definition at hand, we can now define the semi-rings we will use to generate
σ -algebras on A∗,Aω and A∞.

Definition 18 (Semi-Rings of Sets of Words). Let A be a finite alphabet. We de-
fine the sets S4 := { /0} ∪ {↑4 {u} | u ∈ A∞} ⊂ P (A4) for 4 ∈ {0,∗,ω} and S∞ :=
{↑∞ {u} | u ∈ A∞}∪S∗ ⊂ P (A∞).

Proposition 19. S0,S∗,Sω and S∞ are semi-rings of sets.

Proving this Proposition is trivial for S0 and S∗. For S∞ we have included a short proof
in the long version of this paper, [13], which can easily be adopted to Sω .

We remark that many interesting sets will be measurable in the σ -algebra generated by
the cones. The singleton-set {u} will be measurable for every u ∈ Aω because {u} =
∩v)u ↑ω {v} = ∩v)u ↑∞ {v} which are countable intersections, or (for ∞-cones only)
the set A∗ = ∪u∈A∗{u} and consequently also the set Aω = A∞ \A∗ will have to be
measurable. The latter will be useful to check to what “extent” a state of a ∞-PTS
accepts finite or infinite words/behaviour. One thing about S0 is worth mentioning: In
fact, the above definition yields S0 = { /0}. While this is certainly odd at first sight, it
will turn out to be a reasonable specification in our setting.

We will now give a definition of the trace measure which can be understood as the
behaviour of a state: it measures the probability of accepting a set of words.

Coalgebraic Trace Semantics for PTS Based on Measure Theory 419

Definition 20 (The Trace Measure). Let (A,X ,α) be a 4-PTS. For every state x ∈ X
the trace (sub-)probability measure tr4(x) : σA4(S4)→ [0,1] is uniquely defined by the
following equations:

∀a ∈ A,∀u ∈ A∗ : tr4(x)
(
↑4 {au}

)
:=
∫

x′∈X
tr4(x′)(↑4 {u})dPx,a(x

′) (5)

and tr4(x)(/0) = 0, tr∗(x)(↑∗ {ε}) = α(x)(1), trω(x)(↑ω {ε}) = 1, tr∞(x)(↑∞ {ε}) = 1
and tr∞(x)({u}) = tr∞(x)(↑∞ {u})−∑a∈A tr∞(x)(↑∞{au}) where applicable.

We need to verify that everything is well-defined. In the next proposition we explicitly
state what has to be shown.

Proposition 21. The equations in Definition 20 yield a σ -finite pre-measure
tr4(x) : S4 → [0,1] for 4 ∈ {0,∗,ω ,∞} and every x ∈ X. Moreover, the unique extension
of this pre-measure is a (sub-)probability measure.

Before we prove this proposition, let us try to get a more intuitive understanding of Def-
inition 20 and especially equation (5). First we check how the above definition reduces
when we consider discrete systems.

Remark 22. Let (A,X ,α) be a discrete4 ∗-PTS, i.e. α : X → S(A× X + 1). Then
tr∗(x)(ε) := α(x)(�) and (5) is equivalent to:

∀a ∈A,∀u ∈ A∗ : tr∗(x)(au) := ∑
x′∈X

tr∗(x′)(u) ·Px,a(x
′)

which is equivalent to the discrete trace distribution presented in [9] for the sub-distri-
bution monad D on Set.

Having seen this coincidence with known results, we proceed to calculate the trace
measure for our example (Ex. 16) which we can only do in our more general setting
because this ∞-PTS is a discrete probabilistic transition system which exhibits both
finite and infinite behaviour.

Example 23 (Example 16 cont.). We calculate the trace measures for the ∞-PTS from
Example 16. We have tr∞(0) = δA∞

bω because

tr∞(0)({bω}) = tr∞(0)
(
∩∞

k=0 ↑∞ {bk}
)
= tr∞(0)

(
A∞ \∪∞

k=0

(
A∞\ ↑∞ {bk}

))
= tr∞(0)(A∞)− tr(0)

(
∪∞

k=0

(
A∞\ ↑∞ {bk}

))
≥ 1−

∞

∑
k=0

tr∞(0)
(
A∞\ ↑∞ {bk}

)
= 1−

∞

∑
k=0

(
1− tr∞(0)

(
↑∞{bk}

))
= 1−

∞

∑
k=0

(1− 1) = 1

Thus we have tr∞(0)(A∗) = tr∞(0)(�u∈A∗ {u}) = 0 and tr∞(0)(Aω) = 1. By induc-
tion we can show that tr∞(2)(

{
ak
}
) = (1/3) · (2/3)k and thus tr∞(2)(A∗) = 1 and

tr∞(2)(Aω) = 0. Furthermore we calculate tr∞(1)({bω}) = 1/3, tr∞(1)(↑∞{a}) = 1/3
and tr∞(1)({ε}) = 1/3 yielding tr∞(1)(A∗) = 2/3 and tr∞(1)(Aω) = 1/3.

4 If Z is a countable set and μ : P(Z)→ [0,1] is a measure, we write μ(z) for μ({z}).

420 H. Kerstan and B. König

Recall, that we still have to prove Proposition 21. In order to simplify this proof, we
provide a few technical results about the sets S∗,Sω ,S∞ for which proofs are given in
[13] or in [12].

Lemma 24 (Countable Unions). Let (Sn)n∈N be a sequence of mutually disjoint sets
in Sω or in S∞ such that �n∈NSn is itself an element of Sω or S∞. Then Sn = /0 for all
but finitely many n.

Lemma 25 (Sigma-Finiteness 1). A non-negative map μ : S∗ → R+ where μ(/0) = 0
is always σ -additive and thus a pre-measure.

Lemma 26 (Sigma-Finiteness 2). A non-negative map μ : Sω → R+ where μ(/0) = 0
is σ -additive and thus a pre-measure iff μ (↑ω {u}) = ∑a∈A μ (↑ω {ua}) for all u ∈A∗.

Lemma 27 (Sigma-Finiteness 3). A non-negative map μ : S∞ → R+ where μ(/0) = 0
is σ -additive and thus a pre-measure iff μ (↑∞ {u}) = μ ({u})+∑a∈A μ (↑∞{ua}) for
all u ∈ A∗.

Using these results, we can now prove Proposition 21.

Proof (of Proposition 21). For 4 = 0 nothing has to be shown because σ /0({ /0}) = { /0}
and tr0(x) : { /0} → [0,1] is already uniquely defined by tr0(x)(/0) = 0. Lemma 25 and
Lemma 27 yield immediately that for 4 ∈ {∗,∞} the equations define a pre-measure.
The only difficult case is 4 = ω where we will, of course, apply Lemma 26. Let u =
u1...um ∈A∗ with uk ∈ A for every k, then multiple application of (5) yields:

trω(x)
(
↑ω {u}

)
=
∫

x1∈X

. . .
∫

xm∈X

1dPxm−1,um(xm) . . .dPx,u1(x1)

and for arbitrary a ∈A we obtain analogously:

trω(x)
(
↑ω {ua}

)
=

∫
x1∈X

. . .

∫
xm∈X

Pxm,a(X)dPxm−1,um(xm) . . .dPx,u1(x1).

All integrals exist and are bounded above by 1 so we can use the linearity and mono-
tonicity of the integral to exchange the finite sum and the integrals to obtain that indeed
∑a∈A trω(x)

(
↑ω {ua}

)
= trω (x)

(
↑ω {u}

)
is valid using the fact that ∑a∈APxm,a(X) =

∑a∈Aα(x)({a}×X) = α(x)(A×X) = 1. Hence also trω (x) : Sω → R+ is σ -additive
and thus a pre-measure.

Now let us check that the pre-measures are σ -finite. For 4 ∈ {ω ,∞} this is obvious
and in these cases the unique extension must be a (sub-)probability measure because
by definition we have trω (x)(Aω) = 1 and tr∞(x)(A∞) = 1 respectively. For the re-
maining case (4= ∗) we remark that A∗ = �u∈A∗ {u} which is countable and disjoint.
Using induction on the length of u ∈A∗ and monotonicity of the integral we can easily
verify that tr∗(x)({u}) is always bounded by 1 and hence also in this case tr∗(x) is
σ -finite. Again by induction we can see that for all n ∈ N0 we have tr∗(x)

(
A≤n

)
≤ 1.

Since tr∗(x) is a measure (and thus non-negative and σ -additive), the sequence given by(
tr∗(x)

(
A≤n

))
n∈N0

is a monotonically increasing sequence of real numbers bounded

Coalgebraic Trace Semantics for PTS Based on Measure Theory 421

above by 1 and hence has a limit. Furthermore, tr∗(x) is continuous from below as a
measure and we have A≤n ⊆A≤n+1 for all n ∈N0 and thus can conclude that

tr∗(x)(A∗) = tr∗(x)

(
∞⋃

n=1

A≤n

)
= lim

n→∞
tr∗(x)

(
A≤n)= sup

n∈N0

tr∗(x)
(
A≤n)≤ 1.

For more details take a look at [12, Proofs of Theorems 4.14 and 4.24]. ��
Now that we know that our definition of a trace measure is mathematically sound, we
remember that we wanted to show that it is “natural”, meaning that it arises from the
final coalgebra in the Kleisli category of the (sub-)probability monad. We now state our
main theorem which presents a close connection between the unique existence of the
map into the final coalgebra and the unique extension of a family of σ -finite measures.

Theorem 28 (Main Theorem). Let T ∈ {S,P}, F be an endofunctor on Meas with a
distributive law λ : FT ⇒ T F and (ΩT ,κ () be an F-coalgebra where ΣFΩ =σFΩ (SFΩ)
for a semi-ring SFΩ . Then (ΩT ,κ () is final iff for every F-coalgebra (XT ,α() there is
a unique (sub-)probability measure tr(x) : ΣΩ → [0,1] for every x ∈ X such that:

∀S ∈ SFΩ :
∫

Ω
pS ◦κ dtr(x) =

∫
FX

pS ◦λΩ ◦F(tr)dα(x) (6)

Proof. We consider the final coalgebra diagram in K	(T):

XT
α(

��

tr(

��

FXT

F(tr()=(λΩ◦F(tr))(

��

ΩT
κ(

�� FΩT

By definition (ΩT ,κ () is final iff for every F-coalgebra (XT ,α() there is a unique arrow
tr(: XT → ΩT making the diagram commute. We define:

g(:= κ (◦ tr((down, right) h(:= F(tr()◦α((right, down)

and note that commutativity of this diagram is equivalent to:

∀x ∈ X ,∀S ∈ SFΩ : g(x)(S) = h(x)(S) (7)

because for every x ∈ X both g(x) and h(x) are (sub-)probability measures and thus
σ -finite measures which allows us to apply Corollary 2. We calculate:

g(x)(S) = (μFΩ ◦T (κ)◦ tr)(x)(S) = μFΩ (T (κ)(tr(x))) (S)

= μFΩ (tr(x)κ) (S) =
∫

pS dtr(x)κ =

∫
pS ◦κ dtr(x)

and if we define ρ := λΩ ◦F(tr) : FX → T FΩ we obtain:

h(x)(S) = (μFΩ ◦T (ρ)◦α)(x)(S) = μFΩ (T (ρ)(α(x))) (S) = μFΩ
(
α(x)ρ

)
(S)

=

∫
pS dα(x)ρ =

∫
pS ◦ρ dα(x) =

∫
pS ◦λΩ ◦F(tr)dα(x)

and thus (7) is equivalent to (6). ��

422 H. Kerstan and B. König

We immediately obtain the following corollary.

Corollary 29. Let in Theorem 28 κ = ηFΩ ◦ϕ , for an isomorphism ϕ : Ω → FΩ in
Meas and let SΩ ⊆ P(Ω) be a semi-ring such that ΣΩ = σΩ (SΩ). Then equation (6)
is equivalent to:

∀S ∈ SΩ : tr(x)(S) =
∫

pϕ(S) ◦λΩ ◦F(tr)dα(x) (8)

Proof. Since ϕ is an isomorphism in Meas we know from Proposition 7 that ΣFΩ =
σΩ (ϕ(SΩ)). For every S ∈ ΣΩ and every u ∈ Ω we calculate:

pϕ(S) ◦κ(u) = pϕ(S) ◦ηFΩ ◦ϕ(u) = δ FΩ
ϕ(u)(ϕ(S)) = χϕ(S)(ϕ(u)) = χS(u)

and hence we have
∫

pϕ(S) ◦κ dtr(x) =
∫

χS dtr(x) = tr(x)(S). ��

Since we want to apply this corollary to sets of words, we now define the necessary
isomorphism ϕ using the characterization given in Proposition 7.

Proposition 30. Let ϕ : A∞ → A×A∞ + 1, ε (→ �, au (→ (a,u). Then ϕ , ϕ |A∗ and
ϕ |Aω are bijective functions5 and the following holds:

σA×Aω (ϕ(Sω)) = P(A)⊗σAω (Sω) (9)

σA×A∗+1(ϕ(S∗)) = P(A)⊗σA∗(S∗)⊕P(1) (10)

σA×A∞+1(ϕ(S∞)) = P(A)⊗σA∞(S∞)⊕P(1) (11)

We recall that – in order to get a lifting of an endofunctor on Meas – we also need a
distributive law for the functors we are using to define PTS. A proof for the following
proposition is given in [12, Prop. and Def. 4.12 and 4.22].

Proposition 31 (Distributive Laws for the (Sub-)Probability Monad). Let T ∈
{S,P}. For every measurable space (X ,ΣX) we define

λX : A×TX → T (A×X), (a,P) (→ δAa ⊗P

where δAa ⊗P denotes the product measure6 of δAa and P. Then we obtain a distributive
law λ : A×T ⇒ T (A×IdMeas). In an analogous manner we obtain another distributive
law λ : A×T + 1 ⇒ T (A× IdMeas + 1) if we define

λX : A×TX + 1 → T (A×X + 1), (a,P) (→ δAa :P,� (→ δA×X+1
�

for every measurable space (X ,ΣX) where (δAa :P)(S) := (δAa ⊗P)(S∩ (A×X)) for
every S ∈ P(A)⊗ΣX ⊕P(1).

With this result at hand we can finally apply Corollary 29 to the measurable spaces
/0,A∗,Aω ,A∞, each of which is of course equipped with the σ -algebra generated by
the semi-rings S0,S∗,Sω ,S∞ as defined in Proposition 19, to obtain the final coalgebra
and the induced trace semantics for PTS as presented in the following corollary.

5 For a function f : X →Y and X ′ ⊂ X we consider f |X ′ to be f |X ′ : X ′ → f (X ′).
6 δAa ⊗P is the unique extension of the measure defined via δAa ⊗P(SA × SX) := δAa (SA) ·

P(SX) for all SA×SX ∈ P(A)∗ΣX .

Coalgebraic Trace Semantics for PTS Based on Measure Theory 423

Corollary 32 (Final Coalgebra and Trace Semantics for PTS). A PTS (A,X ,α) is
an F-coalgebra (XT ,α() in K	(T) and vice versa. In the following table we present the
(carriers of) final F-coalgebras

(
ΩT ,κ (

)
in K	(T) for all suitable choices of T and F

(depending on the type of the PTS).

Type Monad T Endofunctor F Carrier ΩT

0 S A×X (/0,{ /0})T

∗ S A×X + 1 (A∗,σA∗(S∗))T
ω P A×X (Aω ,σAω (Sω))T
∞ P A×X + 1 (A∞,σA∞(S∞))T

In all cases κ = ηFΩ ◦ϕ where ϕ is the isomorphism as defined before. The unique map
tr(into the final coalgebra is tr4(x) as given in Definition 20 for every x ∈ X.

4 Conclusion, Related and Future Work

We have shown how to obtain coalgebraic trace semantics in a general measure-theoretic
setting, thereby allowing uncountable state spaces and infinite trace semantics.

Our work is clearly inspired by [10], generalizing their instantiation to generative
probabilistic systems. Probabilistic systems in the general measure-theoretic setting
were in detail studied by [21], but note that the author considers bisimilarity and con-
structs coalgebras in Meas, whereas we are working in Kleisli categories based on
Meas.

In [5] and [15] a very thorough and general overview of properties of labelled Markov
processes including the treatment of temporal logics is given. However, the authors do
not explicitly cover a coalgebraic notion of trace semantics.

Infinite traces in a general coalgebraic setting have already been studied in [4]. How-
ever, this generic theory, once applied to probabilistic systems, is restricted to coal-
gebras with countable carrier while our setting, which is undoubtedly specific, allows
arbitrary carriers for coalgebras of probabilistic systems.

As future work we plan to apply the minimization algorithm introduced in [1] and
adapt it to this general setting, by working out the notion of canonical representatives
for probabilistic transition system.

Furthermore we plan to define and study a notion of probabilistic trace distance, sim-
ilar to the distance measure studied in [20,19]. We are also interested in algorithms for
calculating this distance, perhaps similar to what has been proposed in [3] for proba-
bilistic bisimilarity.

Acknowledgement. We would like to thank Paolo Baldan, Filippo Bonchi, Mathias
Hülsbusch and Alexandra Silva for discussing this topic with us and giving us some
valuable hints. Moreover, we are grateful for the detailed feedback from our reviewers.

References

1. Adámek, J., Bonchi, F., Hülsbusch, M., König, B., Milius, S., Silva, A.: A Coalgebraic
Perspective on Minimization and Determinization. In: Birkedal, L. (ed.) FOSSACS 2012.
LNCS, vol. 7213, pp. 58–73. Springer, Heidelberg (2012)

424 H. Kerstan and B. König

2. Ash, R.B.: Real Analysis and Probability. Probability and Mathematical Statistics – A Series
of Monographs and Textbooks. Academic Press, New York (1972)

3. Chen, D., van Breugel, F., Worrell, J.: On the Complexity of Computing Probabilistic Bisim-
ilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451. Springer,
Heidelberg (2012)

4. Cîrstea, C.: Generic infinite traces and path-based coalgebraic temporal logics. Electronic
Notes in Theoretical Computer Science 264(2), 83–103 (2010)

5. Doberkat, E.: Stochastic relations: foundations for Markov transition systems. Chapman &
Hall/CRC studies in informatics series. Chapman & Hall/CRC (2007)

6. Elstrodt, J.: Maß- und Integrationstheorie, 5th edn. Springer (2007)
7. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology

and Analysis. Lecture Notes in Mathematics, vol. 915, pp. 68–86. Springer (1981)
8. van Glabbeek, R., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, generative and strati-

fied models of probabilistic processes. Information and Computation 121, 59–80 (1995)
9. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. In: International Workshop on Coal-

gebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science,
vol. 164, pp. 47–65. Elsevier (2006)

10. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Meth-
ods in Computer Science 3(4:11), 1–36 (2007)

11. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of the European
Association for Theoretical Computer Science 62, 222–259 (1997)

12. Kerstan, H.: Trace Semantics for Probabilistic Transition Systems - A Coalgebraic Ap-
proach. Diploma thesis, Universität Duisburg-Essen (September 2011),
http://jordan.inf.uni-due.de/publications/kerstan/kerstan_
diplomathesis.pdf

13. Kerstan, H., König, B.: Coalgebraic trace semantics for probabilistic transition systems
based on measure theory. Tech. rep., Abteilung für Informatik und Angewandte Kognition-
swissenschaft, Universität Duisburg-Essen (2012),
http://jordan.inf.uni-due.de/publications/kerstan/
coalgpts_concur12_long.pdf

14. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)
15. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
16. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249,

3–80 (2000)
17. Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. Ph.D. thesis, Technische

Universiteit Eindhoven (2005)
18. Sokolova, A.: Probabilistic systems coalgebraically: A survey. Theoretical Computer

Science 412(38), 5095–5110 (2011); cMCS Tenth Anniversary Meeting
19. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in proba-

bilistic transition systems. Theoretical Computer Science 360, 373–385 (2005)
20. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems.

Theoretical Computer Science 331, 115–142 (2005)
21. Viglizzo, I.D.: Final Sequences and Final Coalgebras for Measurable Spaces. In: Fiadeiro,

J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629,
pp. 395–407. Springer, Heidelberg (2005)

http://jordan.inf.uni-due.de/publications/kerstan/kerstan_diplomathesis.pdf
http://jordan.inf.uni-due.de/publications/kerstan/kerstan_diplomathesis.pdf
http://jordan.inf.uni-due.de/publications/kerstan/coalgpts_concur12_long.pdf
http://jordan.inf.uni-due.de/publications/kerstan/coalgpts_concur12_long.pdf

Modeling Interval Order Structures
with Partially Commutative Monoids$

Ryszard Janicki, Xiang Yin, and Nadezhda Zubkova

Department of Computing and Software, McMaster University,
Hamilton, Canada L8S 4K1

{janicki,yinx5,zubkovna}@mcmaster.ca

Abstract. Interval order structures are useful tools to model abstract concurrent
histories, i.e. sets of equivalent system runs, when system runs are modeled with
interval orders. The paper shows how interval order structures can be modeled
by partially commutative monoids, called interval traces.

1 Introduction

Most observational semantics of concurrent systems are defined either in terms of se-
quences (i.e. total orders) or step-sequences (i.e. stratified orders). When concurrent
histories are fully described by causality relations, i.e. partial orders, Mazurkiewicz
traces [2,15,16] allow a representation of the entire partial order by a single sequence
(plus independency relation), which provides a simple and elegant connection between
observational and process semantics of concurrent systems. Other relevant observations
can be derived as just stratified or interval extensions of appropriate partial orders.

However when we want to model both causality and “not later than” relationship, we
have to use stratified order structures [2,15], when all observations are step-sequences,
or interval order structures [13,9], when all observations are interval orders.

Comtraces [8] allow a representation of stratified order structures by single step-
sequences (with appropriate simultaneity and serializability relations).

It was argued by Wiener in 1914 [19] (and later more formally in [7]) that any execu-
tion that can be observed by a single observer must be an interval order. It implies that
the most precise observational semantics is defined in terms of interval orders. How-
ever generating interval orders directly is problematic for most models of concurrency.
Unfortunately, the only feasible sequence representation of interval order is by using
sequences of beginnings and endings of events involved [3,7].

The goal of this paper is to provide a monoid based model that would allow a sin-
gle sequence of beginning and endings (enriched with appropriate simultaneity and se-
rializability relations) to represent the entire stratified order structures as well as all
equivalent interval order observations. This will be done by introducing the concept of
interval traces, a mixture of ideas from both Mazurkiewicz traces [2] and comtraces
[8], and proving that each interval trace uniquely determines an interval order structure.

For details regarding order structures models of concurrency and more adequate ref-
erences the reader is referenced to [4,5,12].
$ Partially supported by NSERC Grant of Canada, ORF Grant of Ontario, and McMaster Centre

for Safety-Critical Software Certification.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 425–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

426 R. Janicki, X. Yin, and N. Zubkova

2 Partial Orders and Mazurkiewicz Traces

In this section, we recall some well-known mathematical concepts, notations and results
that will be used frequently in this paper.

Definition 1. A relation < ⊆ X × X is a (strict) partial order if it is irreflexive and
transitive, i.e. for all a,c,b ∈ X, a �< a and a < b < c =⇒ a < c. We also define:

a)< b
df⇐⇒ ¬(a < b)∧¬(b < a)∧a �= b,

a <) b
df⇐⇒ a < b∨a)< b.

Note that a)< b means a and b are incomparable (w.r.t. <) elements of X. ��
Let < be a partial order on a set X . Then:

1. < is total if)<= /0. In other words, for all a,b ∈ X , a < b ∨ b < a ∨ a = b. For
clarity, we will reserve the symbol � to denote total orders;

2. < is stratified if a)< b)< c =⇒ a)< c∨ a = c, i.e., the relation)< ∪ idX ,
where idX is the identity on X , is an equivalence relation on X ;

3. < is interval if for all a,b,c,d ∈ X , a < c ∧ b < d =⇒ a < d ∨b < c, i.e., < has
no restriction that is isomorphic to <4 from Figure 1.

It is clear from these definitions that every total order is stratified and every stratified
order is interval. The following simple concept will often be used in this paper.

Definition 2. For a relation R ⊆ X ×X, any relation Q ⊆ X ×X is an extension of R if
R ⊆ Q. ��

For convenience, we define Total(<)
df
= {�⊆ X ×X |� is a total order and <⊆�}.

In other words, the set Total(<) consists of all the total order extensions of <.
By Szpilrajn’s Theorem [18], we know that every partial order < is uniquely repre-

sented by the the set Total(<). Szpilrajn’s Theorem can be stated as follows:

Theorem 1 (Szpilrajn [18]). For every partial order <, <=
⋂

�∈Total(<)� . ��
For the interval orders, the name and intuition follow from Fishburn’s Theorem:

Theorem 2 (Fishburn [3]). A partial order < on X is interval iff there exists a total
order � on some T and two mappings B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(x) 2. x < y ⇐⇒ E(x)�B(y) ��

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x.
The intuition of Fishburn’s theorem is illustrated in Figure 1 with <3 and �3. For all
x,y ∈ {a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒ E(x)�3 B(y). For better read-
ability in the future we will skip parentheses in B(x) and E(x), and just write Bx and Ex.

A triple (X ,∗,�), where X is a set, ∗ is a total binary operation on X , and � ∈ X , is
called a monoid, if for all a,b,c ∈ X , (a ∗ b)∗ c= a ∗ (b ∗ c), a ∗�= �∗ a = a.

An equivalence relation ∼⊆ X ×X is a congruence in the monoid (X ,∗,�) if for all
a1,a2,b1,b2 ∈ X , a1 ∼ b1 ∧a2 ∼ b2 ⇒ (a1 ∗ a2)∼ (b1 ∗ b2). Traditionally, [a]∼ (or just
[a]) will denote the equivalence class containing a.

Modeling Interval Order Structures with Partially Commutative Monoids 427

�

�

�

�

�

�

�

a

b

c

d
<1

total

�

� �

�

�
�

���

�
�
���

�
�
���

�
�

���

a

b c

d
<2

stratified

�

�

�

�

�

..

{a}

{b,c}

{d}
�2

total

�

� �

�

�
�

���

�
�
���

�

a

b c

d
<3

interval

�

�

�

�

�

�

�

�

�

...

�
�
�
�
�
�
�

B(a)
E(a)
B(b)
B(c)
E(b)
B(d)
E(c)
E(d)
�3

total

� �

� �� �

ba

dc

<4

not interval

Fig. 1. Various types of partial orders (represented as Hasse diagrams). The partial order <1
is an extension of <2, <2 is an extension of <3, and <3 is and extension of <4. Note that
order <1, being total, is uniquely represented by a sequence abcd, the stratified order <2 is
uniquely represented by a step sequence {a}{b,c}{d}, and the interval order <3 is (not uniquely)
represented by a sequence that represents �3, i.e. B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

The triple (X/∼,�, [�]), where [a]� [b] = [a ∗ b], is called the quotient monoid of
(X ,∗,1) under the congruence ∼. The symbols ∗ and � are often omitted if this does
not lead to any discrepancy.

Let M = (X ,∗,�) be a monoid and let EQ = { xi = yi | xi,yi ∈ X , i = 1, . . . ,n }
be a finite set of equations. Define ≡EQ (or just ≡) to be the least congruence on M
satisfying, xi = yi =⇒ xi ≡EQ yi, for each equation xi = yi ∈ EQ. We call the relation
≡EQ the congruence defined by EQ, or EQ-congruence.

The quotient monoid M≡EQ = (X/≡EQ,�, [�]), where [x]� [y] = [x∗ y], is called an
equational monoid (see [10,14] for more details).

Monoids of Mazurkiewicz traces (or traces) (cf. [2,15]) are equational monoids over
sequences. The theory of traces has been utilized to tackle problems from quite diverse
areas including combinatorics, graph theory, algebra, logic and, especially concurrency
theory [2,15]. Applications of traces in concurrency theory are originated from the fact
that traces are sequence representation of partial orders, which gives traces the ability
to model “true concurrency” semantics. We will now recall the definition of a trace
monoid.

Definition 3 ([2,15]). Let M = (Σ∗,∗,λ) be the free monoid generated by Σ , and let the
relation ind ⊆ Σ ×Σ be an irreflexive and symmetric relation (called independency),
and EQ= {ab= ba | (a,b)∈ ind}. Let ≡ind , called trace congruence, be the congruence
defined by EQ. Then the equational monoid M≡ind =

(
Σ∗/≡ind,�, [λ]

)
is a monoid of

traces. The pair (Σ , ind) is called a trace alphabet. ��

The following folklore result (see for example [10] for a proof) allows us to define the
congruence ≡ind explicitly.

Proposition 1. For every monoid of traces the congruence ≡ind can be defined ex-
plicitly as the reflexive and transitive closure of the relation ≈, i.e. ≡ = ≈∗, where
≈⊆ Σ∗ ×Σ∗, and

x ≈ y ⇐⇒ ∃ x1,x2 ∈ Σ∗. ∃ (u = v) ∈ EQ. x = x1 ∗ u ∗ x2 ∧ y = x1 ∗ v∗ x2. ��

428 R. Janicki, X. Yin, and N. Zubkova

We will omit the subscripts ind and ≡sim from trace congruence if it causes no ambigu-
ity, and often write [x]ind , or just [x], instead of [x]≡ind .

Example 1. Let Σ = {a,b,c}, ind = {(b,c),(c,b)}, i.e., EQ = { bc = cb }. Given three
sequences s = abcbca, s1 = abc and s2 = bca, we can generate the traces [s] = {abcbca,
abccba,acbbca,acbcba,abbcca,accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}. Note
that [s] = [s1] � [s2] since [abcbca] = [abc]� [bca] = [abc∗ bca]. ��

Each sequence of events represents a total order of enumerated events in a natural way.
For example s = abbaa represents a total order: a(1) → b(1) → b(2) → a(2) → a(3),
where Σ̂s = {a(1),a(2),a(3),b(1),b(2)} is the set of all enumerated events of s. For precise
definitions see for example [8], here we will be using the following notation.

Definition 4. 1. For each set of events Σ , let Σ̂ = {a(i) | a ∈ Σ , i = 1,2, ...,∞}.
2. For each sequence s ∈ Σ∗, let ŝ ∈ Σ̂∗ denote its enumerated representation. For

example if s = abbaa then ŝ = a(1)b(1)b(2)a(2)a(3).
3. For each sequence s ∈ Σ∗, Σ̂s denotes the set of all enumerated events of s.
4. For each trace [s], we define Σ̂[s] = Σ̂s. ��

Each trace represents a finite partial order in the following sense. For the trace [s] from
Example 1, we have Σ̂[s] =

{
a(1),b(1),c(1),b(2),c(2),a(2)

}
.

The partially ordered set
(
Σ̂[s],<[s]

)
represented by

[s] is depicted as Hasse diagram on the right. In fact,
the total orders induced by the elements of [s] com-
prise all the total extensions of <[s] (see [15,16]),
which by Theorem 1 implies that [s] uniquely deter-
mines the partial order <[s] (called occurrence graph
in [16]).

b(1) �� b(2)

���
��

�

a(1)

						

���
��

� a(2)

c(1) �� c(2)

						

3 Interval Order Structures and Their Partial Order
Representations

Interval order structures provide a more general formalism for analysis of concurrent
systems than partial orders and stratified order structures, as discussed in [9]. The main
goal of this section is to show that each interval trace uniquely determines an interval
order structure.

Definition 5 ([6,13]). An interval order structure is a relational structure S = (X ,≺,�),
such that for all a,b,c,d ∈ X:

I1: a �� a I4: a ≺ b � c ∨ a � b ≺ c =⇒ a � c

I2: a ≺ b =⇒ a � b I5: a ≺ b � c ≺ d =⇒ a ≺ d

I3: a ≺ b ≺ c =⇒ a ≺ c I6: a � b ≺ c � d =⇒ a � d ∨ a = d. ��

Modeling Interval Order Structures with Partially Commutative Monoids 429

Interval order structures were introduced in [13]1 and rediscovered independently in
[6]. Some of their properties have been presented in [9], yet their theory is not as
well-developed and much less often applied than for instance simpler stratified order
structures (c.f. [4,8,11,14]), not to mention just plain partial orders.

In this model the causality relation ≺ represents the “earlier than” relationship, and
the weak causality relation � represents the “not later than” relationship but under
the assumption that the system runs are interval orders. The relation ≺ is always a
partial order, while the relation� may not. The main interpretational difference between
interval order structures and stratified order structures is that for the latter it is assumed
that the systems runs are modeled with stratified orders.

From Definition 5 we can get immediately that ≺ is a partial order, and if < is an
interval order on X , then (X ,<,<)) is an interval order structure, i.e. interval orders
can be interpreted as simple instances of interval order structures.

Definition 6 ([9])

1. An interval order < on X is an interval extension of an interval order structure
S = (X ,≺,�) if ≺⊆< and �⊆<), i.e. if < is an extension of ≺ and <) is an
extension of �.

2. The set of all interval extensions of S will be denoted by Interv(S). ��

Theorem 1 states that each partial order is uniquely represented by its set of total ex-
tensions, we have the similar relationship between interval order structures and interval
orders.

Theorem 3 ([9]). For each interval order structure S = (X ,≺,�), we have

S =
(

X ,
⋂

<∈Interv(S) <,
⋂

<∈Interv(S) <
)
)
. ��

The above theorem is a generalization of Szpilrajn’s Theorem to interval order struc-
tures. It is interpreted as the proof of the claim that interval order structures uniquely
represent sets of equivalent system runs, provided that the system’s operational seman-
tics can be fully described in terms of interval orders (see [4,9] for details).

An example of a simple interval order structure which illustrates the main ideas
behind this concept is shown in Figure 2. The orders <1 and <2 are total, <3 and
<4 are stratified and <5 is interval but not stratified. The elements of Interv(SP) are
all equivalent runs (executions) of the program P and the net NP involving the actions
a, b, c and d, so the interval order structure uniquely defines a concurrent behaviour
(history) of P (see [4] for details). In the present case ≺ equals <5, as there are not so
many partial orders over the four elements set, but the interpretations of <5 and ≺ are
different. The incomparability in <5 is interpreted as simultaneity while in ≺ as having
no causal relationship.

It turns out that every interval order structure can be represented by an appropriate
partial order of beginnings and ends. We will later use this relationship to construct a
monoid model of interval order structures.

1 In a slightly different but equivalent form, with a different interpretation of the relation �, and
initially without Axiom I6, which was added later. Evolution of the definition from [13] is
discussed in [1]. Definition 5 is a little bit modified version of that from [6]. See also [9].

430 R. Janicki, X. Yin, and N. Zubkova

�

�

�

�

�
�

��

�
�
�
�
�
��

	
	
	
	

�

a

b
c

d
≺

�

�

�

�

�
�

��

�
�
�
�
�
��

	
	
	
	

�

�����

a

b
c

d
�

� �

�

�

�

�

�

� �

�
��

�
��

 �
�
�
��Ba

Bc Ec

Eb Bd Ed
Ea

Bb
<1 =<S

� � �

�

�

�

� �

 �
��

�
��

Ba

Bc Ec

Eb Bd Ed

Ea

Bb

<2

Fig. 2. An example of a simple interval order structure SP =(X ,≺,�), with X = {a,b,c,d}. Its set
of all interval extensions Interv(SP) equals to {<1,<2,<3,<4,<5}, where <1,<2,<3,<4,<5,
are partial orders from Figure 3. Partial orders <1 and <2 (in the form of Hasse Diagrams)
represent the interval order structure S via Theorem 4. The partial order <1 is <S, the minimal
partial order for S that satisfies Theorem 4.

Theorem 4 (Abraham, Ben-David, Magidor [1]). A triple S = (X ,≺, �) is an in-
terval order structure if and only if there exists a partial order < on some Y and two
mappings B,E : X → Y such that B(X)∩E(X) = /0 and for each x,y ∈ X:

1. B(x)< E(x), 2. x ≺ y ⇐⇒ Ex < By, 3. x � y ⇐⇒ Bx < Ey. ��

Theorem 4 can be seen as a generalization of Theorem 2 (Fisburn’s Theorem) from
interval orders to interval order structures.

The partial order from Theorem 4 is not unique (see Figure 2), but the least partial
order that satisfies Theorem 4 clearly does exist. We will denote it by <S. Moreover one
can show that the original construction from [1] is such least partial order.

4 Intuition and Motivation of the Model

When a concurrent history (i.e. a set of equivalent systems runs) can fully be repre-
sented by a partial order, trace approach allows to represent it by just one sequence.
For instance a sequence abcbca from Example 1 (together with the relation ind =
{(b,c),(c,b)}) defines uniquely the partial order from the end of Section 2. Any partic-
ular and legal system run can then be obtained as an extension of the partial order that
represent the concurrent history.

If proper modeling of ‘not later than’ relationship is an issue, but possible sys-
tems runs are restricted to stratified orders, then concurrent histories can be adequately
modeled by stratified order structures that can be uniquely represented by equational
monoids called comtraces [8]. In this case a single step-sequence (together with appro-
priate simultaneity and serializability relations) uniquely defines the entire concurrent
history [4,5].

Modeling Interval Order Structures with Partially Commutative Monoids 431

Simple example in Figure 3 (originating form [4]) illustrates the difficulties of mod-
eling ‘not later than’ relationship when no restrictions on the shape of system runs. Here
we have a simple program P and corresponding inhibitor Petri net2 representation of P.
For this example, all possible system runs (observations) that involve all four events a,
b, c, and d, are represented by the set of partial orders Obs(P) = {<1,<2,<3,<4,<5}.
The orders <1 and <2 are total, <3 and <4 are stratified and <5 is interval but not
stratified. However, to derive the observation <5 is in general a non-trivial task, since
the event c is executed simultaneously with the whole sequence bd. Classical semantics
for inhibitor nets generate the set {<1,<2,<3,<4} (c.f. [8]) at most, they are unable
to generate <5. The same incompleteness of observations is typical for practically any
popular model of concurrency.

The concurrent history can in this case be represented by the interval order structure
SP = ({a,b,c,d},≺,�) from Figure 2. One can verify by inspection that Interv(SP) =
{<1,<2,<3,<4,<5}. However, how to derive SP from either P or NP is not clear either
(as opposed to both stratified order structures [5,11] and partial orders [16,17]).

A natural solution is to use Fishburn’s Theorem (Theorem 2) to represent interval
orders by total orders of beginnings and ends since total orders, i.e. sequences, are
easily generated in virtually all formal models of concurrency.

Our goal is to provide a monoid based model that would allow any sequence of
beginnings and ends3 that represent any order from Interv(S) to represent the entire
S = (X ,≺,�). For example BaEaBbEbBcEcBdEd, that represents <1 of Figure 3 via
Theorem 2, or BaEaBbBcEbBdEcEd, that represents <5, or any other representation
of any order from Interv(SP), should also be able to represent the entire interval order
structure SP (from Figure 3).

Our model will use the results and consequences of Theorems 2, 3 and 4.

5 Interval Traces

Interval traces stem from both Mazurkiewicz traces and comtraces, an extension of
Mazurkiewicz traces introduced in [8]. The comtraces were invented to handle explic-
itly ‘simultaneity’ and ‘not later than’ relationships. The major innovation was to use
two relations sim and ser on a given set of events Σ instead of just one. The relation
sim, called simultaneity, is symmetric and irreflexive, the relation ser, called serializ-
ability is a subset of sim. If (a,b) ∈ sim then a and b can be executed simultaneously,
while (a,b)∈ ser means a and b can either be executed simultaneously, or a precedes b.
When operational semantics is expressed in terms of stratified orders or step sequences,
(a,b) ∈ sim means the step {a,b} is allowed, and (a,b) ∈ ser means the both the step
{a,b} and the sequence {a}{b} are allowed (see [5,8] for details). Unfortunately a con-
venient representation of interval orders by sequences, but without using Ba and Ea

2 As inhibitor nets are now a part of popular folklore knowledge, no formal definition is given,
see for instance [8], but the inhibitor arc here forbids the execution of transition b if there is a
token in place s6.

3 A method for generating such sequences of beginning and ends needs to be defined for any
specific model of concurrency, for inhibitor nets one may use for instance “3-phase-firing”
construction first proposed in [20].

432 R. Janicki, X. Yin, and N. Zubkova

�

�

�

�

�

�

�

a

b

c

d

<1

�

�

�

�

�

�

�

a

b

d

c

<2

�

� �

�

�
�
��

�
�
��

�
�
��

�
�
��

a

b

d

c

<3

� �

�

�

�
�
�
��

�
�
��

a

b

d c

<4

�

��

�

�
�
��

�
�
��

�

a

b

d

c

<5

�

a

b
c

d
time

example of intervals
that define <5

��

�
a

� �
��� ���

�
b

�

���

s1

s2 s3

s4

s5 s6

d

�

�

�
���

c
�

�

�

�
�
�
�
�

NP

P: begin int x,y,z:
a: begin x:=0; y:=0; z:=0 end;
cobegin
begin
b: x=0 → y:=y+1;
d: z:=z+1

end;
c: x:=x+1

coend
end P

Fig. 3. An example of a simple concurrent program P and its interval order operational semantics.
The program P can also be adequately modeled by the inhibitor Petri Net NP and partial orders
Obs(P) = {<1,<2,<3,<4,<5} constitute its all possible observations.

concepts and Fishburn Theorem, has not been invented yet (the one proposed in [7] is
problematic). When ‘beginnings’ and ‘ends’ are used to represent events, (a,b) ∈ sim
means that the occurrence Ba before Eb and Bb before Ea is allowed, while (a,b) ∈ ser
means that the occurrences Ba before Eb and Bb before Ea (i.e. a and b simultane-
ously), and Ea before Bb (i.e. a precedes b) are both allowed. It turns out that when
events are represented by their beginning and endings, the two relations sim and ser can
be represented by just one, independency in the sense of Mazurkiewicz traces.

Let Σ be a finite set of events and let E = {Ba | a ∈ Σ}∪{Ea | a ∈ Σ}, be the set of
all beginnings and ends of events in Σ .

Definition 7. 1. A triple (Σ ,sim,ser), where sim,ser ⊆ Σ × Σ are relations, sim is
a symmetric and irreflexive relation, and ser ⊆ sim, is called an external interval
trace alphabet.

2. A pair (E , ind(sim,ser)) is called an internal interval trace alphabet derived from
(Σ ,sim,ser) (or just interval trace alphabet), where ind(sim,ser) ⊆ E ×E is a sym-
metric and irreflexive relation defined as follows:

(a) ({Ba,Ea}×{Ba,Ea})∩ ind(sim,ser) = /0,

(b) (Bb,Ea) ∈ ind(sim,ser)
def⇐⇒ (a,b) ∈ ser,

(c) ((Ba,Bb) ∈ ind(sim,ser)∧ (Ea,Eb) ∈ ind(sim,ser))
def⇐⇒ (a,b) ∈ sim. ��

Modeling Interval Order Structures with Partially Commutative Monoids 433

�

�

�

�

�

�

�

�

�
�

����
�
�

�

a a

c c

b b

d d

sim ser

�

�

�

�

�

�

�

�

�
�

�
��

�
�

�
� �

�
�
�
������ ������

�
�
�
�

�
�
�
�
�

Ba Ea

Bb

Eb

BcEc

Ed

Bd

ind(sim,ser)

Fig. 4. An example of external and internal trace alphabet where Σ = {a,b,c,d}, E =
{Ba,Ea,Bb,Eb,Bc,Ec,Bd,Ed}

The relations sim, ser, ind(sim,ser) are called simultaneity, serializability and indepen-
dency, respectively. In the rest of this paper we will usually write just ind instead of
ind(sim,ser).

The first definition simply characterizes the relations sim and ser. The definition 2(a)
just says that the beginning and the end of the same event are always dependent (as the
end must follow the beginning). The definition 2(b) says that if (a,b) ∈ ser then a and b
may either overlap or a may precede b. The definition 2(c) is based on the observation
that by Fishburn Theorem (Theorem 2) either of the sequences BaBb and EaEb implies
that neither b follows a nor a follows b, i.e. the intervals a and b are just overlapping.

Definition 7 is illustrated in Figure 4, where the relations sim and ser represent the
concurrency structure of the program and an inhibitor net from Figure 3.

Note that (E , ind) is still a trace alphabet, so we can apply the standard theory of
Mazurkiewicz traces. The problem is that not all sequences from E ∗ can be interpreted
as representations of interval orders, for example if a ∈ Σ then EaBa ∈ E ∗, while the
end must always follow the beginning.

Let D ⊆ E and let s ∈ E ∗. We define the projection of s onto D standardly as:
πD(ε) = ε and πD(sα) = if α ∈ D then πD(s)α else πD(s).

For example π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc) = BaBaEaEc.
We can now define the subset Legal(E ∗) of E ∗ that contains all sequences of E ∗ that

can be interpreted as a proper sequence of beginnings and ends.

Definition 8. A string x ∈ E ∗ is a legal sequence iff
∀a,b ∈ Σ , (a,b) /∈ sim ⇐⇒ π{Ba,Ea,Bb,Eb}(x) ∈ (BaEa∪BbEb)∗.

We use Legal(E ∗) to denote the set of all legal sequences of E ∗. ��

For example the string BbBaEbBaEaEc /∈ Legal(E ∗) since BaBaEa /∈ (BaEa)∗.
If (a,c)∈ sim, the string x=BbBaEbBcEaEcBcBaEaEc∈ Legal(E ∗), since we have

π{Ba,Ea}(x) = BaEaBaEa ∈ (BaEa)∗, π{Bb,Eb}(x) = BbEb ∈ (BbEb)∗ and
π{Bc,Ec}(x) = BcEcBcEc ∈ (BcEc)∗. However, if (a,c) /∈ sim, the same string
x = BbBaEbBcEaEcBcBaEaEc /∈ Legal(E ∗), since π{Ba,Ea,Bc,Ec}(x) =
BaBcEaEcBcBaEaEc /∈ (BaEa∪BcEc)∗.

It is worth noting that the set Legal(E ∗) can be easily shown to be a regular language.
We will now show that legality is preserved by all trace operations.

434 R. Janicki, X. Yin, and N. Zubkova

Lemma 1. Let (E , ind) be an interval trace alphabet.

1. For each x,y ∈ E ∗, if x ∈ Legal(E ∗) and y ∈ Legal(E ∗) then xy ∈ Legal(E ∗).
2. For each s ∈ E ∗, we have: s ∈ Legal(E ∗) ⇐⇒ ∀x ∈ [s]ind . x ∈ Legal(E ∗).
3. For each x,y ∈ E ∗,

if [x]ind ⊆ Legal(E ∗) and [y]ind ⊆ Legal(E ∗), then [x]ind � [y]ind = [xy]ind ⊆
Legal(E ∗).

Proof. (sketch) Only (⇒) of 2 is not obvious. In this case we first show that if s ≈ x
then x ∈ Legal(E ∗) and next use Proposition 1. ��

The above three results enable us to provide the following definition:

Definition 9. A trace [x]ind over the interval trace alphabet (E , ind) is called an interval
trace if [x]ind ⊆ Legal(E ∗). ��

Example 2. We can easily check that if Σ = {a,b,c,d}, ind(sim,ser) is that of Figure 4
and

x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
BaEaBbEbBcEcBdEd,BaEaBbEbBdEdBcEc,BaEaBbBcEbEcBdEd,
BaEaBcBbEbEcEdEd,BaEaBcBbEcEbBdEd,BaEaBbBcEcEbBdEd,
BaEaBbEbBcBdEcEd,BaEaBbEbBdBcEcEd,BaEaBbEbBdBcEdEc,
BaEaBbEbBcBdEdEc,BaEaBbBcEbBdEcEd,BaEaBbBcEbBdEdEc,

BaEaBcBbEbBdEdEc,BaEaBcBbEbBdEcEd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

then x = [x]ind(sim,ser)
for any x ∈ x, for example [x]ind(sim,ser)

=

[BaEaBbEbBcEcBdEd]ind(sim,ser)
. Moreover one can show that x is the set of all

sequences of beginnings and ends that are generated by both the program P and the
net NP. ��

6 Interval Order Structures and Interval Traces

We will now show the exact relationship between interval traces and interval order
structures.

First we recall how one can construct a partial order of beginnings and ends from
an interval trace. Assume that a set of events Σ and an interval trace alphabet (E , ind)
are given. Recall that for each sequence x ∈ E ∗, Êx is the set of all elements of x̂, the
enumerated version of x (see Definition 4).

Definition 10. Let x∈ E ∗ be a sequence, x̂ its enumerated version and α , β be elements
of x̂ (i.e. of the form Ba(i) or Ea(i)), such that α �= β , and [x] be an interval trace
generated by x. Then �x ⊆ Êx × Êx and �[x] ⊆ Êx × Êx are the relations defined as
follows:

1. �x is a total order such that α �x β ⇐⇒ α occurs before β in the sequence x;
2. �[x] is a partial order such that α �[x] β ⇐⇒ α �t β for every t ∈ [x]. ��

Modeling Interval Order Structures with Partially Commutative Monoids 435

Note that the relation �[x] is just the standard partial order (or dependency graph) gener-
ated by [x] (treated as standard Mazurkiewicz trace), as illustrated at the end of Section
2 (c.f. [5,16]).

Now, we are ready to define an interval order structure induced by a single sequence
x ∈ E ∗.

Definition 11. For each x ∈ E ∗ , let Sx = (Ê Σ
x ,≺x,�x), where

Ê Σ
x = {a(i) |Ba(i) ∈ Êx}∪{a(i) |Ea(i) ∈ Êx}, and ≺x and �x are relations on Ê Σ

x defined
as follows, for all a,b ∈ Σ :

1. a(i) ≺x b(j) df⇐⇒ Ea(i)�[x] Bb(j). 2. a(i) �x b(j) df⇐⇒ Ba(i)�[x] Eb(j). ��
The resemblance of Definition 11 to the points (2) and (3) of Theorem 4 is not a coin-
cidence, the triple Sx = (Ê Σ

x ,≺x,�x), is indeed an interval order structure.

Proposition 2. If x ∈ Legal(E ∗), then Sx = (Ê Σ
x ,≺x,�x) is an interval order structure.

Proof. Since x ∈ Legal(E ∗), then the property (1) of Theorem 4 is satisfied. Definition
11 implies satisfying (2) and (3) of Theorem 4. Hence, by Theorem 4, Sx is an interval
order structure. ��
We will call Sx = (Ê Σ

x ,≺x,�x) the interval order structure Sx induced by a legal se-
quence x. We will show that Sx plays the same role in our model as a partial order
derived from a single sequence plays in standard trace theory [16], or a stratified or-
der structure derived from a single step-sequence place the theory of comtraces [8]. To
do this we need to show that x ≡ y ⇐⇒ Sx = Sy, and that the set of interval orders
Interv(Sx) is uniquely defined by the elements of [x].

We need the following two lemmas to prove one of our main results. First lemma is
quite technical one, it characterizes the relationships Ba(i)�[x] Bb(j) and Ea(i)�[x] Eb(j).

Lemma 2. For any interval trace alphabet (E , ind), every x ∈ Legal(E ∗), and for all
a(i),b(j) ∈ Ê Σ

x , we have:

1. Ba(i)�[x] Bb(j) ⇐⇒ (Ea(i)�[x] Bb(j))∨ (∃c(k) ∈ Ê Σ
x . Ba(i)�[x] Ec(k)�[x] Bb(j)),

2. Ea(i)�[x] Eb(j) ⇐⇒ (Ea(i)�[x] Bb(j))∨ (∃c(k) ∈ Ê Σ
x . Ea(i)�[x] Bc(k)�[x] Eb(j)).

Proof. 1. (⇐) Obvious.
(⇒) Since x ∈ Legal(E ∗), we have that if (Ba,Bb) /∈ ind then a and b never overlap,
so Ea(i) �[x] Bb(j). Suppose that (Ba,Bb) ∈ ind. This means that if there is x1 ∈ [x]

such that x1 = uBaBbw and x̂1 = ûBa(i)Bb(j)w̃ (w̃ �= ŵ as in w̃ enumeration does not
start from one of the symbols that are also in uBaBb), then x2 = uBbBaw is also in [x],
so Ba(i)�x1 Bb(j) and Bb(j)�x2 Ba(i). Hence ¬(Ba(i)�[x] Bb(j)). If Ba(i)�[x] Bb(j) then

the situation described above does not happen. This means there is γ ∈ Êx such that
Ba(i) �[x] γ �[x] Bb(j). If all γ between Ba(i) and Bb(j) are of type Bc(k), by the same

reasoning as above we conclude that ¬(Ba(i)�[x] Bc(k)) and ¬(Bc(k)�[x] Bb(j)). Hence

at least one γ between Ba(i) and Bb(j) must be equal to Ec(k). If c(k) = a(i), then we have
the case Ea(i)�[x] Bb(j) again.
2. Dually, by exchanging B with E . ��

436 R. Janicki, X. Yin, and N. Zubkova

We will now show that the relationship between �[x] and Sx is a one-to-one correspon-
dence.

Lemma 3. For all x,y ∈ Legal(E ∗), �[x] =�[y] if and only if Sx = Sy.

Proof. (⇒) From Definition 11, we clearly have Sx = Sy.
(⇐) (sketch) To prove that �[x] = �[y] we need to show that α �[x] β ⇐⇒ α �[y] β
where α,β ∈ {Ba(i),Ea(i),Bb(j),Eb(j)} and a(i),b(j) ∈ Ê Σ

x . From Theorem 4(1) we
have Ba(i)�[x] Ea(i), Bb(j)�[x] Eb(j) and Ba(i)�[y] Ea(i), Bb(j)�[y] Eb(j).

We have to consider five cases, in all cases u∈ {x,y}: (1) a(i) ≺u b(j), (2) a(i) �u b(j)

and b(j) �u a(i), (3) a(i) �u b(j) and ¬(a(i) ≺u b(j)), (4) a(i) �u b(j) and ¬(b(j) �u a(i)),
and (5) ¬(a(i) �u b(j)) and ¬(b(j) �u a(i)).

The proofs of all five cases are similar. We provide only the proof of case 2 as cases
3,4,5 are at some points reduced to the case 2, and the case 1 is quite simple.
(Case 2). We have a(i) �u b(j) and b(j) �u a(i) where u ∈ {x,y}. From Def. 11 and
Th. 4(1) we conclude: Ba(i)�[u] Ea(i), Bb(j)�[u] Eb(j), Ba(i)�[u] Eb(j), and Bb(j)�[u]

Ea(i), i.e. only the relationships between Ba(i) and Bb(j), and between Ea(i) and Eb(j),
are not described yet. Suppose Ba(i) �[x] Bb(j) and ¬(Ba(i) �[y] Bb(j)), i.e. (Ba(i) �[x]

Bb(j)∧Bb(j)�[y] Ba(i)) or (Ba(i)�[x] Bb(j)∧Bb(j))�[y]
Ba(i)). By Lemma 2 and Def.

11, Ba(i)�[x] Bb(j) implies (a(i) ≺x b(j))∨ (∃c(k) ∈ Ê Σ
x . a(i) �x c(k)∧c(k) ≺x b(j)). Since

≺x=≺y and �x=�y, it also implies (a(i) ≺y b(j)) or (∃c(k) ∈ Ê Σ
x . a(i) �y c(k)∧ c(k) ≺y

b(j)). Since a(i) ≺y b(j) implies Ea(i)�[y]Bb(j), it clearly contradicts both Bb(j)�[y]Ba(i)

and Bb(j))�[y]
Ba(i). Consider now the case ∃c(k) ∈ Ê Σ

x . a(i) �y c(k) ∧ c(k) ≺y b(j).

From Proposition 2 and axioms I1, I4 of Definition 5 it follows that a(i) �y c(k) implies
¬(c(k) ≺y a(i)). But c(k) ≺y b(j) and Bb(j)�[y] Ba(i) implies c(k) ≺y a(i), a contradiction;

while c(k) ≺y b(j) and Bb(j))�[y]
Ba(i)) implies ¬(Ba(i)�[y] Ec(k)), i.e. ¬(a(i) �x c(k)),

a contradiction again. Hence Ba(i) �[x] Bb(j) ⇐⇒ Ba(i) �[y] Bb(j). Similarly we can

show that Ba(i))�[x]
Bb(j) ⇐⇒ Ba(i))�[y]

Bb(j). The proof that Ea(i)�[x] Eb(j) ⇐⇒
Ea(i)�[y] Eb(j) and Ea(i))�[x]

Eb(j) ⇐⇒ Ea(i))�[y]
Eb(j) is similar.

Hence α �[x] β ⇐⇒ α �[y] β where α,β ∈ {Ba(i),Ea(i),Bb(j),Eb(j)}. ��

The following result, that belongs to the standard trace theory, characterizes the set of
all total extensions of the partial order �[x].

Theorem 5 (Theorem 6.31 in [5], also follows from [16])
For every x ∈ Legal(E ∗), Total(�[x]) = {�t | t ∈ [x]}. ��

We are now able to prove one of our main results, namely that every interval trace
uniquely determines an interval order structure.

Theorem 6. For all x,y ∈ Legal(E ∗), x ≡ y if and only if Sx = Sy.

Proof. (⇒) If x ≡ y then [x] = [y], so �[x] =�[y]. Then by Lemma 3, Sx = Sy.
(⇐) If Sx = Sy then, by Lemma 3, we have �[x] =�[y], and now by Theorem 5,
{�t | t ∈ [x]} = {�t | t ∈ [y]}. From Definition 10 it follows that t = u ⇐⇒ �t = �u,
so [x] = [y], i.e. x ≡ y. ��

Modeling Interval Order Structures with Partially Commutative Monoids 437

The above theorem makes possible the following definition.

Definition 12. For each interval trace [x], the interval order structure S[x] induced by
[x], in defined as S[x] = St , where t ∈ [x]. ��

Theorem 6 alone is not enough to claim that interval traces can represent all the prop-
erties of interval order structures. We also have to show that for any x ∈ Legal(E ∗),
Interv(Sx), the set of all interval order extensions of Ss (see Definition 6) is equal to
the set of all interval orders generated via Fishburn’s Theorem (Theorem 2) from all t̂
(enumerated version of t) such that t ∈ [x].

Definition 13. Let x ∈ Legal(E ∗), and let �x be a relation on Ê Σ
x , defined by

a(i) �x b(j) ⇐⇒ Ea(i)�x Bb(j).
By Theorem 2, the relation �x is an interval order. ��

Our second main result is the following.

Theorem 7. For every x ∈ Legal(E ∗), Interv(Sx) = {�t | t ∈ [x]}.

Proof. (⇐) Let t ∈ [x] and a(i),b(j) ∈. Let us consider the relation ≺x first. We have

a(i) ≺x b(j) Def.11⇐⇒ Ea(i) �[x] Bb(j) Def.10(2)
=⇒ Ea(i) �t Bb(j) Def.13⇐⇒ a(i) �x b(j). Hence, by

Definition 2, the relation �x is an extension of ≺x. Let us now consider the relation �x.

Here we have a(i) �x b(j) Def.11⇐⇒ Ba(i)�[x] Eb(j) Def.10(2)
=⇒ Ba(i)�t Eb(j). Because �t is a

total order, Ba(i)�t Eb(j) ⇐⇒ ¬(Eb(j)�t Ba(i)). But ¬(Eb(j)�t Ba(i))
Def.13⇐⇒ ¬(b(j) �x

a(i)) ⇐⇒ a(i)) �)
x b(j). Hence a(i) �x b(j) =⇒ a(i) �)

x b(j), so, by Definition 2, �x

an extension of �x as well, which means, now by Definition 6, �x∈ Interv(Sx).
(⇒) (sketch) Let <∈ Interv(Sx) and let �< ⊆ Ê Σ

x × Ê Σ
x be a total order representa-

tion of < via Fishburn Theorem (Theorem 2), i.e. a(i) < b(j) ⇐⇒ Ea(i) �< Bb(j).
Furthermore let t< ∈ E ∗ be the sequence representation of the total order �<, i.e.
�< = �t< , where �t< is the total order generated by t< as in Definition 10(1). Note
that, by Definition 13, the interval order < equals the interval order �t< . To show that
<∈ {�t | t ∈ [x]}, we have to prove that t< ∈ [x]. Since <∈ Interv(Sx) then < is an ex-
tension of ≺x and �x, i.e., by Definition 6, ≺x⊆< and �x⊆<). We will show that �<

is a total extension of �[x], i.e. �< ∈ Total(�[x]). To prove this we will just show that

for all α,β ∈ {Ba(i),Ea(i),Bb(j),Eb(j)} we have α �[x] β =⇒ α �< β .

First note that from Theorem 4(1) and Theorem 2(1) we have Ba(i)�[x] Ea(i), Bb(j)�[x]

Eb(j), and Ba(i)�< Ea(i), Bb(j)�< Eb(j). For the remaining four cases we will provide
a proof to one case only, as the proofs of other cases are structurally similar.

Consider Ea(i) and Bb(j). By Definitions 11, 6 and Theorem 2(2), we have: Ea(i)�[x]

Bb(j) Def.11⇐⇒ a(i) ≺x b(j) Def.6
=⇒ a(i) < b(j) Th.2(2)⇐⇒ Ea(i)�< Bb(j).

For all other three case we proceed in a vary similar fashion. This means that indeed
�< ∈Total(�[x]). By Theorem 5, �< ∈ {�t | t ∈ [x]}. But �< =�tx , so tx ∈ [x], which
end the proof of (⇒). ��

Theorems 6 and 7 show that interval traces, i.e. sets of legal sequences of beginnings and
ends, correspond to interval order structures in the same way as Mazurkiewicz traces

438 R. Janicki, X. Yin, and N. Zubkova

correspond to partial orders (dependency graphs of [16]) and comtraces correspond to
stratified order structures.

We will now show that the partial order �[x] equals <Sx
, i.e. it is the least partial

order that satisfies Theorem 4 for Sx.

Proposition 3. For every x ∈ Legal(E ∗), �[x] =<Sx
.

Proof. (sketch) We will show that for each < that satisfies Theorem 4, and every α,β ∈
Êx, we have α �[x] β =⇒ α < β . Since α and β are of the form Ba(i) or Ea(i) where
a ∈ Σ , we have to consider four cases, but again we will provide the full proof for only
one case.

Assume that α = Ba(i),β = Eb(j). In this case we have

Ba(i)�[x] Eb(j) Def.11⇐⇒ a(i) �x b(j) Th.4⇐⇒ Ba(i) < Eb(j).
The remaining three cases are similar. ��

Example 3. Let Σ = {a,b,c,d}. Then we have E = {Ba,Ea,Bb,Eb,Bc,Ec,Bd,Ed}.
Let ser ⊆ sim ⊂ Σ ×Σ be those from Figure 4. From Definition 7 it follows that the
relation ind ⊆ E ×E is also that of Figure 4.

Let x = BaEaBbEbBcEcBdEd ∈ E ∗. Since x ∈ Legal(E ∗) then the interval trace [x]
is defined, and [x] = x, where x is that from Example 2 (it contains fourteen sequences).

The interval order structure S[x] = Sx =(Ê Σ
x ,≺,�), where Ê Σ

x = {a(1),b(1),c(1),d(1)},
and the relations ≺ and � are these from Figure 2, after replacing a with a(1), b with
b(1), etc. The set Êx = {Ba(1),Ea(1),Bb(1),Eb(1),Bc(1),Ec(1),Bd(1),Ed(1)} and the re-
lation �[x] ⊆ Êx× Êx equals <1 also from Figure 2, after replacing Ba with Ba(1), Ea

with Ea(1), etc.
The set Interv(S[x]) = {<1,<2,<3,<4,<5}, where <1, <2, <3, <4 and <5 are in-

terval orders from Figure 3, again after replacing a with a(1), b with b(1), etc.
Moreover <1 =�BaEaBbEbBcEcBdEd, <2 =�BaEaBbEbBdEdBcEc,

<3=�BaEaBbBcEbEcBdEd=�BaEaBcBbEbEcEdEd=�BaEaBcBbEcEbBdEd=�BaEaBbBcEcEbBdEd,
<4=�BaEaBbEbBcBdEcEd=�BaEaBbEbBdBcEcEd=�BaEaBbEbBdBcEdEc=�BaEaBbEbBcBdEdEc,
<4=�BaEaBbBcEbBdEcEd=�BaEaBbBcEbBdEdEc=�BaEaBcBbEbBdEdEc=�BaEaBcBbEbBdEcEd.

Finally note that the results would be the same if x would be replaced by any t ∈ [x]. ��

7 Final Comment

We have introduced the concept of interval traces, a special kind of Mazurkiewicz
traces, that can provide an abstract semantics of concurrent systems when the opera-
tional semantics involves interval orders.

It was proven that interval traces can model interval order structures in the same
manner as classical Mazurkiewicz traces can model partial orders [16] and comtraces
can model stratified order structures [8].

The concept and theory of interval traces stems from three sources: classical traces,
comtraces and the representation theorem of Abraham, Ben-David and Magidor ([1],
Theorem 4 in this paper). Like comtraces, interval traces are generated by two relations
sim and ser on a given set of events, and the interpretation of these relations is the same

Modeling Interval Order Structures with Partially Commutative Monoids 439

as for comtraces. However, comtraces are sets of step sequences of event occurrences,
interval traces are just sets of ordinary sequences (like classical traces) but beginnings
and ends of event occurrences. Like in classical traces, the structure of interval traces is
generated by a single independency relation ind(sim,ser) which is derived from the rela-
tions sim and ser. Technically, interval traces are just a special case of classical traces
that are defined on the set of beginnings and ends of events. The representation theorem
of Abraham, Ben-David and Magidor allows representing interval order structures by
appropriate partial orders of beginnings and ends. We have shown that the partial or-
der generated by a given interval trace uniquely defines an interval order structure via
the Abraham, Ben-David and Magidor theorem. Moreover this partial order is the least
partial order representation of the derived interval order structure.

References

1. Abraham, U., Ben-David, S., Magidor, M.: On global-time and inter-process communication.
In: Semantics for Concurrency, Workshops in Computing, pp. 311–323. Springer, Heiderberg
(1990)

2. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
3. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. Journal of Math-

ematical Psychology 7, 144–149 (1970)
4. Janicki, R.: Relational Structures Model of Concurrency. Acta Inform. 45, 279–320 (2008)
5. Janicki, R., Kleijn, J., Koutny, M.: Quotient Monoids and Concurrent Behaviours. In: Martin-

Vide, C. (ed.) Scientific Applications of Language Methods, pp. 311–385. Imperial College
Press, London (2010)

6. Janicki, R., Koutny, M.: Invariants and Paradigms of Concurrency Theory. In: Aarts, E.H.L.,
van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Hei-
delberg (1991)

7. Janicki, R., Koutny, M.: Structure of Concurrency. Theor. Comput. Sci. 112, 5–52 (1993)
8. Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Inf. Comput. 123(1), 1–16 (1995)
9. Janicki, R., Koutny, M.: Fundamentals of Modelling Concurrency Using Discrete Relational

Structures. Acta Inform. 34, 367–388 (1997)
10. Janicki, R., Lê, D.T.M.: Modelling Concurrency with Comtraces and Generalized Comtraces.

Inf. Comput. 209, 1355–1389 (2011)
11. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Inf. Comput. 190,

18–69 (2004)
12. Kleijn, J., Koutny, M.: Formal Languages and Concurrent Behaviour. Studies in Computa-

tional Intelligence 113, 125–182 (2008)
13. Lamport, L.: The mutual exclusion problem: Part I - a theory of interprocess communication;

Part II - statements and solutions. Journal of ACM 33(2), 313–326 (1986)
14. Lê, D.T.M.: On Three Alternative Characterizations of Combined Traces. Fundam. Informat-

icae 113, 265–293 (2011)
15. Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpretation. TR DAIMI PB-

78, Comp. Science Depart. Aarhus University (1977)
16. Mazurkiewicz, A.: Introduction to Trace Theory. In: [2], pp. 3–42
17. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Behavioural Notions for Elementary Net Sys-

tems. Distributed Computing 4, 45–57 (1990)
18. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Mathematicae 16, 386–389 (1930)
19. Wiener, N.: A contribution to the theory of relative position. Proc. of the Cambridge Philo-

sophical Society 17, 441–449 (1914)
20. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In: Proc. of the

7th Annual Symp. on Computer Architecture, La Baule, France, pp. 89–96 (1980)

A Polynomial Translation of π-Calculus (FCP)

to Safe Petri Nets

Roland Meyer1, Victor Khomenko2, and Reiner Hüchting1

1 University of Kaiserslautern
{meyer,huechting}@cs.uni-kl.de

2 Newcastle University
Victor.Khomenko@ncl.ac.uk

Abstract. We develop a polynomial translation from finite control pro-
cesses (an important fragment of π-calculus) to safe low-level Petri nets.
To our knowledge, this is the first such translation. It is natural (there
is a close correspondence between the control flow of the original speci-
fication and the resulting Petri net), enjoys a bisimulation result, and it
is suitable for practical model checking.

Keywords: finite control process, π-calculus, Petri net, model checking.

1 Introduction

Mobile and reconfigurable systems are common nowadays, e.g. ad-hoc networks
serve a dynamically changing number of clients, and at hardware level, some
Networks-on-Chips can temporarily shut down individual cores to save power.
Even the traditional concurrent systems are notoriously hard to design correctly,
and designing reconfigurable systems, where the interconnect topology evolves
over time, has an additional layer of complexity. Hence formal modelling and
verification become an essential part of the design cycle for such systems.

Several formalisms have been proposed for modelling mobile and reconfig-
urable systems. The main concern in choosing a formalism is the tradeoff between
expressiveness and tractability of the associated verification problems. Expres-
sive formalisms like π-calculus [15] are Turing complete and so not decidable in
general. Fortunately, the ability to change the linkage per se does not lead to
undecidability. One can impose restrictions on dimensions like communication
[1, 11], control [4, 19], and interconnection shape [10, 11] to recover decidability.

Finite Control Processes (FCP) [4] are a fragment of π-calculus that restricts
the control flow to be finite. More precisely, an FCP is a parallel composition
of sequential threads. The control of each thread can be represented by a fi-
nite automaton, and the number of threads is bounded in advance. The threads
communicate synchronously via channels that they create, exchange and destroy
at runtime. These capabilities are often sufficient for modelling mobile applica-
tions and instances of parameterised systems, and the appeal of FCPs is due to
combining this modelling power with decidability of verification [4, 14].

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 440–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 441

In this paper, we contribute to FCP verification, following an established
approach: we translate the process into a safe low-level Petri net (PN). This
translation bridges the gap between expressiveness and verifiability: While π-
calculus is suitable for modelling mobile systems but difficult to verify due to
the complicated semantics, PNs are a low-level formalism equipped with efficient
analysis algorithms. With the translation, all verification techniques and tools
that are available for PNs can be applied to analysing the (translated) process.

There is a large body of literature on π-calculus to PN translations (cf. Sec-
tion 1.1 for a detailed discussion). Complexity-theoretic considerations, how-
ever, suggest that they are all suboptimal for FCPs — either in terms of size
[3, 11, 12, 14] or because of a too powerful target formalism [1, 5, 8]. Indeed, the
following argument shows that a polynomial translation of FCPs into safe low-
level PNs must exist: An FCP can be simulated by a Turing machine with a
tape of length linear in the FCP’s size, which in turn can be simulated by a
safe PN of polynomial (in the tape’s length) size [6]. (This argument is in fact
constructive, but the resulting PN would be large and ugly.)

This reasoning motivated us to look for a natural polynomial translation of
FCPs to safe PNs, which is the main contribution of this paper. We stress that
our translation is not just a theoretical result, but also quite practical: the tran-
sition systems of the FCP and that of its PN representation are bisimilar, which
makes the latter suitable for checking temporal properties of the former. More-
over, we propose a number of optimisations that significantly reduce the size of
the resulting nets. Finally, we perform several experiments to confirm our claim
for practicality.

Technically, our translation relies on three insights: (i) the behaviour of an
FCP νa.(S1 | S2) coincides with the behaviour of (S1{n/a} | S2{n/a}) where the
restricted name a has been replaced by a fresh public name n (a set of fresh names
that is linear in the size of the FCP will be sufficient); (ii) we have to recycle
fresh names, and so implement reference counters for them; and (iii) we hold
substitutions explicit and give them a compact representation by decomposing,
e.g., {a, b/x, y} into {a/x} and {b/y}.

The formal proof of the correctness of our translation and some further details
can be found in the technical report [13].

1.1 Related Work

There are two main approaches to verification of FCPs. The first is to directly
generate the state space of the model as is done (on the fly) in the Mobility
Workbench (MWB) [21]. Scalability of this approach is poor due to the complex
π-calculus semantics, restricting the use of heuristics for pruning and imposing
the need for expensive operations (like equivalence checks [9]) when a new state
is generated. Moreover, symbolic representations are difficult to apply.

The second approach, and the one followed here, is to translate FCPs into
an automata-theoretic model that is then analysed. Although for the π-calculus
several translations have been proposed, none of them provides a polynomial
translation of FCPs into safe PNs. We discuss some of these below.

442 R. Meyer, V. Khomenko, and R. Hüchting

Montanari and Pistore translate FCPs into history dependent automata
(HDA)—finite automata where states are labelled by sets of names that represent
restrictions [16, 19]. For model checking, these automata are further translated
to finite automata [7]. Like in our approach, the idea is to replace restrictions
with fresh names. But their translation stores full substitutions, which may yield
an exponential blow up of the finite automaton. The translation presented here
avoids this blow up by compactly representing substitutions by PN markings.
This, however, needs careful substitution manipulation and reference counting.

To deal with restrictions, Amadio and Meyssonnier [1] replace unused names
by generic free names, and handle a π-calculus subset that is incomparable
with FCPs. This translation instantiates the substitution, i.e. a process like
(x1〈y1〉.x2〈y2〉){a, b, a, b/x1, y1, x2, y2} is represented by a〈b〉.a〈b〉. This creates
an exponential blow up: since the substitution changes over time,m public names
and n variables may yield mn instantiated terms. Moreover, as the number of
processes to be modified by replacement is not bounded, PNs with transfer are
used. As the results of this paper show, transfer nets are an unnecessarily pow-
erful target formalism for FCPs — e.g. reachability is undecidable in such nets.

Busi and Gorrieri study non-interleaving and causal semantics for the π-cal-
culus and provide decidability results for model checking [3,12]. The translations
may be exponential for FCPs due to the instantiation of substitutions.

Devillers et al. [5] achieve a bisimilar translation of π-calculus into high-level
Petri nets, thus using a Turing complete formalism. In [8], this translation is
used for unfolding-based model checking; to avoid undecidability, the processes
are restricted to be recursion-free — a class of limited practical applicability.

In the approach developed in [18], a graphical variant of π-calculus is trans-
lated into high-level PNs. The technique works on a fragment that is equivalent
to FCPs. However, the target formalism is unnecessarily powerful, and the paper
provides no experimental evaluation.

Our earlier translation [11] identifies groups of processes that share restricted
names. In [14], we modify it to generate safe low-level PNs, and use an unfolding
based model checking. The experiments indicate that this technique is more
scalable than the ones above, and it has the advantage of generating low-level
rather than high-level PNs. However, the PN may still be exponentially large.

2 Basic Notions

Petri Nets. A Petri net (PN) is a tuple N
df
= (P, T, F,M0) such that P and T

are disjoint sets of places and transitions, F ⊆ (P×T)∪(T×P) is a flow relation,

and M0 is the initial marking of N . A marking M : P → N df
= {0, 1, 2, . . .} of N

is a multiset of places. We draw PNs in the standard way: places are represented
as circles, transitions as boxes, the flow relation by arcs, and a marking by tokens

within circles. The size of N is ‖N‖ df
= |P |+ |T |+ |F |+ |M0|.

We denote by •z
df
= {y | (y, z) ∈ F} and z•

df
= {y | (z, y) ∈ F} the pre- and

postset of z ∈ P ∪T . A transition t is enabled at marking M , denoted by M [t〉, if
M(p) ≥ 0 for every p ∈ •t. Such a transition can be fired, leading to the marking

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 443

M ′ with M ′(p)
df
= M(p)−F (p, t) +F (t, p) for every p ∈ P . We denote the firing

relation by M [t〉M ′ or by M → M ′ if the identity of the transition is irrelevant.
The set of reachable markings of N is denoted by R(N).

A PN N is k-bounded if M(p) ≤ k for every reachable marking M ∈ R(N)
and every place p ∈ P , and safe if it is 1-bounded. We will focus on safe PNs.

Finite Control Processes. In π-calculus [15, 20], threads communicate via
synchronous message exchange. The key idea in the model is that messages and
the channels they are sent on have the same type: they are just names from

some set Φ
df
= {a, b, x, y, i, f, r, . . .}. This means a name that has been received as

message in one communication may serve as channel in a later interaction. To
communicate, processes consume prefixes π of the form π ::= a〈b〉 � a(x) � τ .
The output prefix a〈b〉 sends name b along channel a. The input prefix a(i)
receives a name that replaces i on channel a. Prefix τ stands for a silent action.

Threads, also called sequential processes, are constructed as follows. A choice
process

∑
i∈I πi.Si over a finite and non-empty set of indices I executes a prefix

πi and then behaves like Si. The special case with I = ∅ is denoted by 0— such a
process has no behaviour. A restriction νr.S generates a name r that is different
from all other names in the system. We denote a (perhaps empty) sequence of
restrictions νr1 . . . νrk by νr̃ with r̃ = r1 . . . rk. To implement parameterised
recursion, we use calls to process identifiers K+ã,. We defer the explanation of
this construct for a moment. To sum up, threads take the form

S ::= K+ã, �
∑
i∈I πi.Si � νr.S.

We use S to refer to the set of all threads. A finite control process (FCP) F is a
parallel composition of a fixed number of threads SInit ,i:

F ::= νã.(SInit ,1 | . . . | SInit ,n).

Our presentation of parameterized recursion using calls K+ã, follows [20]. Pro-

cess identifiers K are taken from some set Ψ
df
= {H,K,L, . . .} and have a defin-

ing equation K(f̃) := S. Thread S can be understood as the implementation
of identifier K. The process has a list of formal parameters f̃ = f1, . . . , fk that
are replaced by factual parameters ã = a1, . . . , ak when K+ã, is executed. Note
that both lists ã and f̃ have the same length. When we talk about an FCP
specification F , we mean process F with all its defining equations.

To implement the replacement of f̃ by ã in calls to process identifiers, we use
substitutions. A substitution is a function σ : Φ → Φ that maps names to names.
If we make domain and codomain explicit, σ : A → B with A,B ⊆ Φ, we require
σ(a) ∈ B for all a ∈ A and σ(x) = x for all x ∈ Φ \A. We use {ã/f̃} to denote

the substitution σ : f̃ → ã with σ(fi)
df
= ai for i ∈ {1, . . . , k}. The application of

substitution σ to S is denoted by Sσ and defined in the standard way [20].
Input prefix a(i) and restriction νr bind the names i and r, respectively. The

set of bound names in a process P = S or P = F is bn (P). A name which is not
bound is free, and the set of free names in P is fn (P). We permit α-conversion
of bound names. Therefore, w.l.o.g., we make the following assumptions common
in π-calculus theory and collectively referred to as no clash (NC) henceforth.

444 R. Meyer, V. Khomenko, and R. Hüchting

For every FCP specification F , we require that: (i) a name is bound at most
once, bound and free names are disjoint, a name f is used at most once in a
formal parameter list, bound names and formal parameters are disjoint, formal
parameters and free names in F are disjoint; (ii) in K(f̃) := S we have fn (S) =
f̃ ; and (iii) if σ = {ã/x̃} is applied to S then bn (S) ∩ (ã ∪ x̃) = ∅.

Assuming (NC), the names in an FCP specification F can be partitioned into
the following sets: set P = fn (F) of public names that are free in F , set R of
names bound by restriction operators, set I of names bound by input prefixes,
and set F of names used as formal parameters in defining equations.

We are interested in the relation between the size of an FCP specification
and the size of its Petri net representation. The size of an FCP specification is
defined as the size of its initial term plus the sizes of the defining equations:

‖0‖df
=1 ‖

∑
i∈I πi.Si‖

df
=3|I|−1+

∑
i∈I ‖Si‖ ‖νr.P‖df

=1+‖P‖ ‖K+ã,‖df
=1+|ã|

‖SInit ,1 | . . . | SInit ,n‖df
=n−1+

∑
1≤i≤n ‖SInit ,i‖ ‖K(f̃) := S‖df

=1+|f̃ |+‖S‖.

To define the behaviour of a process, we rely on structural congruence ≡. It is the
smallest congruence on processes where α-conversion of bound names is allowed,
+ and | are commutative and associative with 0 as the neutral element, and
the following laws for restriction hold:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P νx.(P |Q) ≡ P |(νx.Q), if x /∈ fn (P).

The behaviour of π-calculus processes is determined by the reaction relation
→ [15, 20]. It has the following two axioms for communications and identifier
calls, and an axiom for silent steps (omitted):

(x(y).S +M) |(x〈z〉.S′ +N) → S{z/y} |S′ K+ã, → S{ã/f̃}, if K(f̃) := S.

The remaining rules define→ to be closed under parallel composition, restriction,
and structural congruence. By R(F) we denote the set of all processes reachable
from F . The transition system of FCP F factorises the reachable processes along

structural congruence, T (F)
df
= (R(F)/≡, ↪→, F) where F1 ↪→ F2 if F1 → F2.

Normal Form Assumptions. To ease the definition of the Petri net trans-
lation, we make assumptions about the shape of the specification (cf. [13] for
details). These assumptions are not restrictive, as any FCP can be translated
into the required form. First, we require that the sets of identifiers called (both
directly and indirectly from defining equations) by different threads are disjoint
[14]. We also assume that defining equations do not call themselves. This means,
if K(f̃) := S then S does not contain K+ã,.

We assume there are artificial defining equations KInit ,i(f̃Init ,i) := SInit ,i that
are called by a virtual initialisation step. They allow us to write the initial FCP
as

F = νã.(SInit ,1σ1 | . . . | SInit ,nσn).

We assume fn (SInit ,i) = f̃Init ,i ⊆ F . Substitution σi maps f̃Init ,i into ã and P ,

σi : f̃Init ,i → ã ∪ P . We additionally assume that the SInit ,i are choices or calls.

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 445

3 From Finite Control Processes to Safe Petri Nets

The idea of our translation is to replace restricted names by fresh public names.
Indeed, the behaviour of F = νã.(SInit ,1σ1 | . . . | SInit ,nσn) coincides with that

of SInit ,1σ
′
1 | . . . | SInit ,nσ

′
n with σ′i

df
= σi{ñ/ã}, provided the names ñ are fresh.

These new names are picked from a setN , and since for FCP specifications there
is a bound on the number of restricted names in all processes reachable from
F , a finite N suffices. But how to support name creation and deletion with a
constant number of free names? The trick is to reuse the names: n ∈ N may
first represent a restricted name r1 and later a different restricted name r2. To
implement this recycling of names, we keep track of whether or not n ∈ N is
currently used in the process. This can be understood as reference counting.

The translation takes the finite set of names N as a parameter. The rough

overapproximation |N | df
= |R|+|I|+|F| of its cardinality is sufficient to prove the

polynomiality of the translation. The rationale is that there should be enough
values in N to replace each bound name by a unique value. A better bound on
|N | can be obtained using static analysis, see Section 5.

The resulting PN is a composition

N(F)
df
= NSubst � H(N(SInit ,1) ‖ . . . ‖ N(SInit ,n)).

Petri net N(SInit ,i) is a finite automaton (transitions have one incoming and
one outgoing arc and the initial marking has one token) that reflects the control
flow of thread SInit ,i and explicitly handles the introduction and removal of
name bindings. The transitions of N(SInit ,i) are annotated with synchronisation
actions and sets of commands. Transitions with complementary synchronisation
actions are appropriately merged by the parallel composition ‖. Hiding H then
removes the original transitions. Commands are handled by the implementation
operator �, which connects the control flow to NSubst — a net that compactly
represents the substitutions in a process and implements reference counting.

3.1 Construction of NSubst

The key idea is to decompose a substitution {a, b/x, y} into {a/x} and {b/y}. The
substitution net has corresponding places [x=a] and [y=b] for each component
that may occur in such a decomposition. Moreover, there is a second set of
places [x�=n] and [r∗ �=n]. They implement the reference counter and keep track
of whether an input, a formal parameter, or a restriction is bound to n ∈ N . Note
that the places for the reference counter complement the substitution places. In
particular [r∗ �=n] signals that no restricted name is bound to n. Since at most
one restriction can be bound to n, this one complement place is sufficient. There
are no transitions and hence no arcs. We defer the explanation of the initial

marking for a moment. We have NSubst
df
= (PSubst ∪ PRef , ∅, ∅,M0) where

PSubst
df
= ((I ∪ F)× {=} × P) ∪ ((I ∪ F ∪R)× {=} × N)

PRef
df
= (I ∪ F ∪ {r∗})× {�=} × N .

446 R. Meyer, V. Khomenko, and R. Hüchting

p1 p2 . . . pnp n1 n2 . . . nnn

i1 ©[i1=p1] ©[i1=p2] . . . ©[i1=pnp] ©[i1=n1]
⊙

[i1=n2] . . . ©[i1=nnn]⊙
[i1 �=n1] ©[i1 �=n2] . . .

⊙
[i1 �=nnn]

...
...

...
...

...
...

...
ini ©[ini=p1] ©[ini=p2] . . . ©[ini=pnp] ©[ini=n1] ©[ini=n2] . . . ©[ini=nnn]⊙

[ini �=n1]
⊙

[ini �=n2] . . .
⊙

[ini �=nnn]

f1 ©[f1=p1] ©[f1=p2] . . . ©[f1=pnp]
⊙

[f1=n1] ©[f1=n2] . . . ©[f1=nnn]
©[f1 �=n1]

⊙
[f1 �=n2] . . .

⊙
[f1 �=nnn]

...
...

...
...

...
...

...
fnf ©[fnf=p1] ©[fnf=p2] . . . ©[fnf=pnp] ©[fnf=n1] ©[fnf=n2] . . . ©[fnf=nnn]⊙

[fnf �=n1]
⊙

[fnf �=n2] . . .
⊙

[fnf �=nnn]

r1 ©[r1=n1] ©[r1=n2] . . . ©[r1=nnn]

...
restricted names are never mapped
to public ones, so no places here

...
...

...
rnr ©[rnr=n1] ©[rnr=n2] . . . ©[rnr=nnn]⊙

[r∗ �=n1]
⊙

[r∗ �=n2] . . .
⊙

[r∗ �=nnn]

Fig. 1. Illustration of NSubst with a substitution marking that corresponds to σ :
{i1, f1} → ã ∪ P where σ(i1) = a1 and σ(f1) = a2 with a1 �= a2. The marking
represents a1 by n2 and a2 by n1.

Substitution Markings and Correspondence. A marking M of NSubst is
called a substitution marking if it satisfies the following constraints:

M([r∗ �=n])+
∑
r∈R

M([r=n]) = 1
∑

a∈P∪N
M([x=a]) ≤ 1 M([x=n])+M([x�=n]) = 1.

The first equation holds for every n ∈ N and states that at most one restricted
name is bound to n, and there is a token on [r∗ �=n] iff there is no such binding.
The second inequality states that every name x ∈ I ∪ F ∪ R is bound to at
most one a ∈ P ∪N . The reference counter has to keep track of whether a name
x ∈ I ∪ F maps to a fresh name n ∈ N , which motivates the third equation.

Consider now a substitution σ : (I ′ ∪ F ′ → P ∪ ã) ∪ (R′ → ã) with domain
I ′ ⊆ I, F ′ ⊆ F , R′ ⊆ R, codomain P and some set of names ã, and where the
second component R → ã is injective. A substitution marking M of NSubst is
said to correspond to σ if the following hold:

– For all x ∈ I ∪ F ∪R \ dom(σ) and a ∈ N ∪ P , M([x=a]) = 0.
– For all x ∈ dom(σ) with σ(x) ∈ P , M([x=σ(x)]) = 1.
– For all x ∈ dom(σ) with σ(x) ∈ ã, there is n ∈ N s.t. M([x=n]) = 1.
– The choice of n preserves the equality of names as required by σ, i.e. for all

x, y ∈ dom(σ) with σ(x), σ(y) ∈ ã and all n ∈ N , we have

σ(x) = σ(y) iff M([x=n]) = M([y=n]).

Recall that we translate the specification F = νã.(SInit ,1σ1 | . . . | SInit ,nσn). As
initial marking of NSubst , we fix some substitution marking that corresponds to
σ1 ∪ . . . ∪ σn. As we shall see, every choice of fresh names ñ for ã indeed yields

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 447

bisimilar behaviour. Note that (NC) ensures that the union of substitutions
is again a function. Fig. 1 illustrates NSubst and the concepts of substitution
markings and correspondence.

3.2 Construction of N(SInit)

Petri net N(SInit) reflects the control flow of thread SInit . To synchronise send
and receive prefixes in different threads, we annotate its transitions with labels

from L df
= {τ, send(a, b), rec(a, b) | a, b ∈ P ∪ N}. To capture the effect that

reactions have on substitutions, transitions also carry a set of commands from

C df
= {map(x, b), unmap(x, b), test([x = b]) | x ∈ I ∪ F ∪R and b ∈ P ∪ N}.

These commands maintain the name binding in the overall net. Formally, a
control flow net is a tuple (P, T, F,M0, l, c) where (P, T, F,M0) is a Petri net
and l : T → L and c : T → P(C) are the labellings.

Since SInit is a sequential process, transitions in N(SInit) will always have a
single input and and a single output place. This allows us to understand N(SInit)
as a finite automaton, and hence define it implicitly via a new labelled transition
system for SInit . Recall that S is the set of sequential processes. We extend them
by sequences of names: S × (I ∪ F ∪R)∗. These lists will carry the names that
have been forgotten and should be eventually unmapped in NSubst . Among such
extended processes, we then define the labelled transition relation

� ⊆ (S × (I ∪ F ∪R)∗)× L× P(C)× (S × (I ∪ F ∪R)∗).

Each transition carries a label and a set of commands, and will yield a Petri net
transition. We have the following transitions among extended processes.

Fig. 2. Translation of a re-
striction with the command
map(r, n) implemented

For restrictions νr.S, we allocate a fresh name.
Since we can select any name that is not in use,
such a transition exists for every n ∈ N :

(νr.S, λ)
τ

−−−−−−−�
{map(r,n)}

(S, λ).

Fig. 2 depicts the transition, together with the
implementation of mapping defined below.

Silent actions yield an unlabelled transition as
expected. Communications are more subtle. Con-
sider x〈y〉.S +

∑
i∈I πi.Si that sends y on channel

x. Via appropriate tests, we find the names a and
b that x and y are bound to. These names then de-
termine the transition label. So for all a, b ∈ P∪N ,
we have

(x〈y〉.S +
∑
i∈I πi.Si, λ)

send(a,b)
−−−−−−−−−−−−−−−�
{test([x=a]),test([y=b])}

(S, λ · λ′),

where λ′ = fn
(
x〈y〉.S +

∑
i∈I πi.Si

)
\ fn (S). This means λ′ contains the names

that were free in the choice process but have been forgotten in S. With an

448 R. Meyer, V. Khomenko, and R. Hüchting

Fig. 3. Translation of communication (left), parallel composition and hiding (center),
and implementation of the commands (right)

ordering on P ∪ N , we can understand this set as a sequence. A receive action
in x(y).S +

∑
i∈I πi.Si is handled like a send, but introduces a new binding. For

all a, b ∈ P ∪ N , we have

(x(y).S +
∑
i∈I πi.Si, λ)

rec(a,b)
−−−−−−−−−−−−−−�
{test([x=a]),map(y,b)}

(S, λ · λ′).

Sequence λ′ again contains the names that are no longer in use. There are similar
transitions for the remaining prefixes πi with i ∈ I. Fig. 3(left) illustrates the
transitions for send and receive actions.

For a call to an identifier K+x1, . . . , xn, with K(f1, . . . , fn) := S, the idea
is to iteratively update the substitution, by binding the formal parameters to
the factual ones and then unmapping the names in λ (which will include the
factual parameters). Note that no equation calls itself by our assumption from
Sect. 2, which ensures that we do not accidentally unmap the just mapped formal
parameters. The following transitions are created for each a ∈ P ∪ N :

(K+x1, . . . , xm,, λ)
τ

−−−−−−−−−−−−−−−−−�
{test([xm=a]),map(fm,a)}

(K+x1, . . . , xm−1,, λ′),

where λ′
df
= λ if xm ∈ λ and λ′

df
= λ · xm otherwise. This case distinction ensures

we unmap a name precisely once. When all parameters have been handled, we
unmap the names in λ �= ε. To this end, we create the following transitions for
each a ∈ P ∪ N :

(K+−,, x · λ)
τ

−−−−−−−−−�
{unmap(x,a)}

(K+−,, λ).

When λ = ε has been reached, we transfer the control to the body S of the

defining equation: (K+−,, ε)
τ
−�
∅
(S, ε).

Petri net N(SInit) is the restriction of (S × (I ∪F ∪R)∗,�) to the extended
processes that are reachable from (SInit , ε) via �, and the total size of all nets
N(SInit ,i) is linear in the size of the FCP specification. The initial marking puts
one token on place (SInit , ε) and leaves the remaining places unmarked.

3.3 Operations on Nets

Parallel Composition ‖. Parallel composition of labelled nets is classical in
Petri net theory. The variant we use is inspired by [2]. The parallel composition

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 449

N1 ‖ N2 forms the disjoint union of N1 and N2, and then synchronises the
transitions t1 in N1 that are labelled by l1(t1) = send(a, b) (resp. rec(a, b)) with
the transitions t2 in N2 that are labelled by l2(t2) = rec(a, b) (resp. send(a, b)).
The result is a new transition (t1, t2) without a label, which carries the union of
the commands for t1 and t2. Note that a labelled transition that has been used
for synchronisation in N1 ‖ N2 is still available for further synchronisations with
N3. This in particular implies that ‖ is associative and commutative.

Hiding H. The hiding operator removes from a labelled PN N all transitions
t with l(t) �= τ . Since H(N) contains only τ -labelled transitions, we can omit
the labelling function from the result. The combination of parallel composition
and hiding is illustrated in Fig. 3(center).

Implementation Operation �. Consider the two Petri nets N1 = NSubst =
(P1, ∅, ∅,M0,1) and N2 = H(N(SInit ,1) ‖ . . . ‖ N(SInit ,n)) = (P2, T, F2,M0,2, c)
defined so far. The implementation operation

N1 � N2
df
= (P1 ∪ P2, T, F2 ∪ F,M0,1 ∪M0,2).

yields a standard Petri net without labelling. Its purpose is to implement the
commands carried by the transitions of N2 by adding arcs between the two nets.
We fix a transition t ∈ T and a command c ∈ c(t), and define the arcs that have
to be added between t and some places of N1 to implement c. We do the case
analysis for the possible types of c:

test([x=b]) We add a loop to place [x=b]: ([x=b], t), (t, [x=b]) ∈ F .

map(x, p),map(x, n),map(r, n) A map command differentiates according to
whether the first component is an input or a formal parameter x ∈ I ∪ F ,
or whether it is a restricted name r ∈ R. If x is assigned a public name,
map(x, p) ∈ c(t) with p ∈ P , we just add a token to the substitution net,
(t, [x=p]) ∈ F . If x is assigned some n ∈ N , map(x, n) ∈ c(t), we addition-
ally remove the token from the reference counter: (t, [x=n]), ([x�=n], t) ∈ F . To
represent the restricted name r ∈ R by a name n ∈ N , we first check that no
other name is currently mapped to n using the reference counter for n. In case
n is currently unused, we introduce the binding [r=n] to the substitution net:
([r∗ �=n], t), (t, [r=n]) ∈ F and {([x�=n], t), (t, [x�=n]) | x ∈ I ∪ F} ⊆ F .
unmap(x, p), unmap(x, n), unmap(r, n) An unmap command removes the bind-
ing of x ∈ I ∪ F : ([x=p/n], t) ∈ F ; moreover, in case of n ∈ N , it updates
the reference counter: (t, [x�=n]) ∈ F . When we remove the binding of r ∈ R to
n ∈ N , we update [r∗ �=n] in the reference counter: ([r=n], t), (t, [r∗ �=n]) ∈ F .

Fig. 2 illustrates the implementation of mapping for a restriction, map(r, n).
Tests and mapping of an input name are shown in Fig. 3(right).

3.4 Size of the Translation

The size of the PN generated by our translation is dominated by the number
of transitions modelling communication — in fact they determine the degree of

450 R. Meyer, V. Khomenko, and R. Hüchting

the polynomial giving the asymptotic worst-case size of the PN. In the worst
case, the numbers of sending and receiving actions are O(‖F‖) and almost all
pairs of send/receive actions can synchronise; thus the total number of such
synchronisations is O(‖F‖2). Recall that for a pair of actions x1〈y1〉 and x2(y2),
a separate transition is generated for each a, b ∈ P∪N . In the worst case P∪N =
O(‖F‖), and thus the total number of transitions implementing communication,
as well as the size of the resulting PN, areO(‖F‖4). However, the ‘communication
splitting’ optimisation described in Sect. 5 reduces this size down to O(‖F‖3).

4 Correctness of the Translation

To show the correctness of the proposed translation we relate F and N(F) by
a suitable form of bisimulation. The problem is that N(F) may perform several
steps to mimic one transition of F . The reason is that changes to substitutions
(as induced e.g. by νr.S) are handled by transitions in N(F) whereas F uses
structural congruence. To obtain a clean relationship between the models, we
restrict the transition system of N(F) to so-called stable markings and race
free transition sequences between them. We show below that this restriction is
insignificant, as any transition sequence is equivalent to some race free one.

MarkingM ofN(F) = NSubst�H(N(SInit ,1) ‖ . . . ‖ N(SInit ,n)) is called stable
if, in every control flow net N(SInit ,i), it marks a place (S, λ) where S either is
a choice or a call to a process identifier with full parameter list. We denote by
RStbl (N(F)) the set of stable markings that are reachable in N(F). A transition
sequence M →+ M ′ between stable markings M,M ′ ∈ RStbl (N(F)) is race free
if it corresponds to an identifier call (K+ã,, λ) �+ (S, λ′) with K(f̃) := νr̃.S, to
a silent action, or to the communication of two threads. We denote the fact that
there is such a race free transition sequence by M ⇒ M ′. The stable transition
system of N(F) is now

TStbl (N(F))
df
= (RStbl (N(F)),⇒,M0).

Here, M0 is the initial marking of N(F). By the assumption on SInit ,i from
Sect. 2, the marking is stable.

Theorem 1. The transition system of F and the stable transition system of
N(F) are bisimilar, T (F) ∼ TStbl (N(F)), via the bisimulation B defined below.

To define the bisimulation relation, we use the fact that every process reachable
from F is structurally congruent to a process

νã.(S1σ1 | . . . | Snσn).
Here, Si is a choice or an identifier call that has been derived from S with
K(f̃) := S. Derived means (S, ε) �+ (Si, λi) so that no intermediary process is
a call to a process identifier. As second requirement, we have

σi : fn(Si) ∪ λi → ã ∪ P .

This means the domain of σi are the free names in Si together with the names λi
that have already been forgotten. The two sets are disjoint, fn(Si)∩λi = ∅. The

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 451

above process actually is in standard form [15], but makes additional assumptions
about the shape of threads and the domain of substitutions.

We define B ⊆ R(F)/≡ ×RStbl (N(F)) to contain (G,M1 ∪M2) ∈ B if there
is a process νã.(S1σ1 | . . . | Snσn) ≡ G as above so that the following hold:

– marking M1 of NSubst corresponds to σ1 ∪ . . . ∪ σn; and
– for the control flow marking, we have M2(Si, λi) = 1 for all i ∈ {1, . . . , n}.

To relate T (F) and the full transition system T (N(F)), consider a transition
sequence M1 →+ M2 between stable markings M1,M2 ∈ R(N(F)) that need
not be race free. It can be shown that the transitions can be rearranged to a
race free sequence M1 ⇒+ M2 [13]. With the above bisimilarity, this race free
transition sequence is mimicked by a sequence of π-calculus transitions. In the
reverse direction, a single process transition is still mimicked by a sequence of
Petri net transitions (that happens to be race free).

Theorem 2. The transition systems of F and N(F) are weakly bisimilar,
T (F) ≈ T (N(F)), taking B defined above as a weak bisimulation.

These results allow one to model check temporal properties defined for F using
its Petri net representation N(F). Moreover, [13] explains how to check process
reachability using N(F).

5 Optimisation of the Translation

We briefly describe a number of optimisations of the proposed translation of
FCPs to safe PNs. They can significantly reduce the size of the resulting PN
and increase the efficiency of subsequent model checking. More details can be
found in [13].

Communication Splitting. The size of the translation is dominated by the
number of transitions modelling communication. One can significantly reduce
this number by modelling the synchronisation between x1〈y1〉 and x2(y2) not by a
single atomic step but by a pair of steps. The first step checks that σ(x1) = σ(x2);
it is not executable if the corresponding values are different. The second step
maps y2 to σ(y1). This reduces the number of communication transitions, and
thus the size of the PN, from O(‖F‖4) down to O(‖F‖3). A generalisation of
this idea yields a polynomial translation for polyadic π-calculus, see Sect. 6.

Abstractions of Names. In NSubst (see Fig. 1), each name is represented by
a separate row of places. However, it is often the case that some names can never
be simultaneously active, and so can share the same row of places.

Better Overapproximations for Name Domains. By domain of a name
we refer to an overapproximation of the set of values from P∪N that it can take.
While the overapproximation used in the translation is sufficient to guarantee
its polynomiality, its quality can be substantially improved by static analysis,
resulting in a much smaller PN. In particular, the number of synchronisations

452 R. Meyer, V. Khomenko, and R. Hüchting

between communication actions can be significantly reduced; furthermore, the
number of transitions for passing parameters in calls and the number of places
in NSubst can also decrease substantially.

Better Overapproximation for |N |. The cardinality of N is an important
parameter of the translation. A better approximation can make the translation
more amenable to model checking. In fact, an overapproximation of the number
of names that can be simultaneously active can be taken as |N |.

Sharing Subnets for Unmapping Names. When we callK+ã,, some names
have to be unmapped in the substitution. The subnet for unmapping a particular
name can be shared by all points where such unmapping is necessary. This
reduces the size of the resulting PN. The optimisation is especially effective
when name abstractions are used.

Using Symmetries. The translation introduces a number of symmetries in
the resulting PN, as (i) the values in N (and thus the corresponding columns of
the substitution, see Fig. 1) are interchangeable, and (ii) when an FCP is trans-
lated to the assumed form, some definitions of process identifiers are replicated.
Hence, it is desirable to exploit these symmetries during model checking.

6 Extensions

Match and Mismatch. The match and mismatch operators are a common
extension of π-calculus. Intuitively, the process [x = y].S behaves as S if x = y
and does nothing otherwise, and the process [x �= y].S behaves as S if x �= y and
does nothing otherwise. To handle these operators, we extend the construction
of N(SInit) with the following transitions. For each a ∈ P ∪ N , we have

([x = y].S, λ)
τ

−−−−−−−�
{test([x=a]),
test([y=a])}

(S, λ) ([x �= y].S, λ)
τ

−−−−−−−�
{test([x=a]),
test([y
=a])}

(S, λ).

For the latter rule, new places [x�=a] complementing [x=a] have to be introduced
in the substitution net (some of these places already exist).

In the presence of match/mismatch, the relationship between the FCP and
its PN translation is more subtle: the latter simulates the former only in a
non-deterministic sense, i.e. some executions of the PN are considered invalid
and do not correspond to any executions of the original FCP, in particular,
false deadlocks could be introduced. For example, in [x = y].[u = v].S the first
guard can be true while the second is false, in which case the resulting PN will
get stuck between the guards. This does not happen in the original π-calculus
process. Nevertheless, such invalid executions can easily be distinguished from
valid ones, and so the resulting PN is still suitable for model checking.

Polyadic π-Calculus. Polyadic communication exchanges multiple names in
a single reaction. Intuitively, a sending prefix a〈x1 . . . xn〉 (with n ∈ N) and a
receiving prefix b(y1 . . . yn) (with all yi different) can synchronise iff a = b, and
after synchronisation each yi gets the value of xi.

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 453

A polynomial translation of this extension generalises the ‘communication
splitting’ idea described in Sect. 5: we perform polyadic communication in stages,
where at the first step one checks that σ(a) = σ(b), and the subsequent steps
map, one-by-one, yi to σ(xi) in NSubst .

7 Experimental Results

To demonstrate the practicality of our approach, we implemented the proposed
translation of FCPs to safe PNs in the tool Fcp2Pn and tested the translation
on a number of benchmarks.1

We briefly describe the case studies; see [13] for more details. The NESS (New-
castle E-Learning Support System) series of benchmarks [8] models an electronic
coursework submission system scaled by the number of students. The DNESS
models are refined versions of NESS . The CS (m,n) benchmarks model a client-
server architecture with one server, n clients, and the server spawning m sessions
that handle the clients’ requests. The GSM benchmark is the well-known speci-
fication of the handover procedure in the GSM Public Land Mobile Network. We
use the standard π-calculus model with one mobile station, two base stations,
and one mobile switching center presented in [17]. We also studied a variant of
this benchmark with the sender process modified by dropping a restriction, i.e.
it keeps sending the same message instead of generating a new one every time.
Since the content of the message is not important, this change is inconsequential
from the modelling point of view, but it significantly reduces the size of the re-
sulting PN, as the modified FCP contains no restriction operators and so N = ∅.
The PHONES benchmark is a classical example taken from [15].

The experimental results are given in Table 1, with the columns showing (from
left to right): name of the case study († indicates deadlocks), sizes of the original
FCP and its normal form (see Sect. 2), cardinality of N determined by static
analysis, number of places and transitions in the resulting safe PN, and deadlock
checking time.

Table 1. Experimental results

Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]

NESS (04) 110 110 0 137 145 0.02
NESS (05)† 137 137 0 196 246 0.09
NESS (06) 164 164 0 265 385 0.16
NESS (07)† 191 191 0 344 568 0.45
DNESS (06) 118 118 0 157 103 0.02
DNESS (08) 157 157 0 241 169 0.05
DNESS (10) 196 196 0 341 251 0.13
DNESS (12) 235 235 0 457 349 2.27
DNESS (14) 274 274 0 589 463 1.71

Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]
CS (2,1) 45 54 7 138 149 1.01
CS (2,2) 48 68 10 243 320 0.16
CS (3,2) 51 80 11 284 431 1.28
CS (3,3) 54 94 14 428 728 3.67
CS (4,4) 60 120 18 663 1368 11.73
CS (5,5) 66 146 22 948 2288 46.61
GSM 175 231 12 636 901 4.39
GSM ’ 174 230 0 355 503 3.09
PHONES 157 157 0 131 94 0.01

1 The tool and benchmarks are available from
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/fcp2pn

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/fcp2pn

454 R. Meyer, V. Khomenko, and R. Hüchting

The experiments were conducted on a PC with an Intel Core 2 Quad Q9400
2.66 GHz (quad-core) processor (a single core was used) and 4G RAM. The
deadlock checking was performed with the LoLA tool,2 configured to assume the
safeness of the PN (CAPACITY 1), use the stubborn sets and symmetry reductions
(STUBBORN, SYMMETRY), compress states using P-invariants (PREDUCTION), use a
light-weight data structure for states (SMALLSTATE), and check for deadlocks
(DEADLOCK). The FCP to PN translation times were negligible (< 0.1 sec) in all
cases and so are not reported.

The experiments indicate that the sizes of the PNs grow moderately with the
sizes of the FCPs, and the PNs are suitable for efficient model checking.

8 Conclusions

We developed a polynomial translation from finite control processes (an im-
portant fragment of π-calculus) to safe low-level Petri nets. To our knowledge,
this is the first such translation. Furthermore, there is a close correspondence
between the control flow of the π-calculus specification and the resulting PN,
and the latter is suitable for practical model checking. The translation has been
implemented in a tool Fcp2Pn, and the experimental results are encouraging.

We have also proposed a number of optimisations allowing one to reduce the
size of the resulting PN, as well as a number of extensions, in particular the
match/mismatch operators and polyadic π-calculus.

In future work we plan to further improve the translation by a more thorough
static analysis, and to incorporate the translation into a verification tool-chain.

Acknowledgements. The authors would like to thank Ivan Poliakov for his
help in producing the experimental results. This research was supported by the
Epsrc grant EP/G037809/1 (Verdad).

References

1. Amadio, R., Meyssonnier, C.: On decidability of the control reachability problem
in the asynchronous π-calculus. Nord. J. Comp. 9(1), 70–101 (2002)

2. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science. An EATCS Series. Springer (2001)

3. Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri nets
with inhibitor arcs. J. Log. Alg. Prog. 78(1), 138–162 (2009)

4. Dam, M.: Model checking mobile processes. Inf. Comp. 129(1), 35–51 (1996)
5. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of

general π-calculus terms. For. Asp. Comp. 20(4-5), 429–450 (2008)
6. Esparza, J.: Decidability and Complexity of Petri Net Problems—An Introduction.

In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

2 Available from http://service-technology.org/tools/lola

http://service-technology.org/tools/lola

A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets 455

7. Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification
environment for mobile processes. ACM Trans. Softw. Eng. Methodol. 12(4), 440–
473 (2003)

8. Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings for ver-
ification of mobile systems. In: Proc. of MOCA, Bericht FBI-HH-B-267/06, pp.
161–178. University of Hamburg (2006)

9. Khomenko, V., Meyer, R.: Checking π-calculus structural congruence is graph iso-
morphism complete. In: Proc. of ACSD, pp. 70–79. IEEE Computer Society Press
(2009)

10. Meyer, R.: OnBoundedness in Depth in the π-Calculus. In: Ausiello, G., Karhumäki,
J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer,
Boston (2008)

11. Meyer, R.: A theory of structural stationarity in the π-calculus. Acta Inf. 46(2),
87–137 (2009)

12. Meyer, R., Gorrieri, R.: On the Relationship between π-Calculus and Finite
Place/Transition Petri Nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)

13. Meyer, R., Khomenko, V., Hüchting, R.: A polynomial translation of π-calculus
(FCP) to safe Petri nets. Technical Report CS-TR-1323, Newcastle Univ. (2012)

14. Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of
mobile systems using net unfoldings. Fundam. Inf. 94, 439–471 (2009)

15. Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP (1999)
16. Montanari, U., Pistore, M.: Checking Bisimilarity for Finitary π-Calculus. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer,
Heidelberg (1995)

17. Orava, F., Parrow, J.: An algebraic verification of a mobile network. For. Asp.
Comp. 4(6), 497–543 (1992)

18. Peschanski, F., Klaudel, H., Devillers, R.: A Petri Net Interpretation of Open
Reconfigurable Systems. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS
2011. LNCS, vol. 6709, pp. 208–227. Springer, Heidelberg (2011)

19. Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di Informat-
ica, Università di Pisa (1999)

20. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. CUP
(2001)

21. Victor, B., Moller, F.: The Mobility Workbench: A Tool for the π-Calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

Algebraic Structure of Combined Traces

Łukasz Mikulski

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Toruń, Chopina 12/18, Poland

frodo@mat.umk.pl

Abstract. Traces – and their extension called combined traces (com-
traces) – are two formal models used in the analysis and verification of
concurrent systems. Both models are based on concepts originating in
the theory of formal languages, and they are able to capture the notions
of causality and simultaneity of atomic actions which take place during
the process of a system’s operation. The aim of this paper is a transfer to
the domain of comtraces and developing of some fundamental notions,
which proved to be successful in the theory of traces. In particular, we in-
troduce and then apply the lexicographical canonical form of comtraces,
as well as the representation of a comtrace utilising its linear projections
to binary action subalphabets. We also provide two algorithms related
to the new notions. Using them, one can solve, in an efficient way, the
problem of step sequence equivalence in the context of comtraces. One
may view our results as a first step towards the development of infinite
combined traces, as well as recognisable languages of combined traces.

Introduction

The dynamic behaviours of concurrent systems are usually described as se-
quences of atomic actions of such system, which leads to its formal language
semantics. Using this simple approach we cannot express some phenomena, e.g,
concurrency and causality, that are crucial in the process of understanding and
analysing concurrent behaviours of a system. In case of a particular operational
model, one can consider extending the sequential description by adding some
information about the relevant properties of behaviours. One can do it by con-
sidering sequences of steps of actions and by adding some causal dependencies
between actions. A well known approach that helps to capture concurrency and
causality of a system are traces [1,8].

Consider, for example, the elementary net system with inhibitor arcs [13] in
Example 1(a). We have four actions, a, b, c and d, which may be executed in
the initial marking, and two actions, e and f , which need a previous history of
computation to be enabled. Let us focus on action e. To enable this action we
need to execute actions a and c. We can execute them together or in any order.
To capture the concurrent behaviour of this computation we need to identify
two sequences of executions – ace and cae. Using step semantics, which is not

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 456–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algebraic Structure of Combined Traces 457

necessary in this case, we add also step sequence (ac)(e) as another possible
execution. Traces are sufficient to deal with such behaviours.

The situation is more complex in case of action f . Now we need three tokens in
the pre-set of the considered action, hence actions b, c and d should be executed
before the action f . Because of the presence of inhibitors, there is only one way
to execute them sequentially, they should be executed in the order bcdf . Note
that bdcf or dcbf are not correct sequences of execution. There are, however,
other possibilities to execute the four actions in the step semantics. For instance
all three actions may be executed simultaneously as a step (b, c, d). This gives
(bcd)(f) as our allowed sequence of steps. Another step sequences are (b)(cd)(f)
and (bc)(d)(f). It is important that action d has to be executed not later than
action c, and action c has to be executed not later than action b. In this case
traces are still applicable, but they lose some important behavioural information.

Another case is depicted in Example 1(b). The upper part of the net is identical
to the first case. Here, however, there is a single action g that waits for tokens in
all four middle places. In other words, whole tuple (a, b, c, d) has to be executed
before action g. It is easy to see that because of inhibitors there is no valid
sequential execution of the four actions. After executing one of these action, one
of the remaining becomes disallowed. The only possible execution is the step
sequence (abcd)(f).

Example 1. Two elementary net systems with inhibitor arcs.

a b c d

e f
(a)

a b c d

g
(b)

In this paper, we are concerned with the understanding of the algebraic inner
structure of the combined traces (see [6]). We start by recalling some standard
notions about formal languages, traces and comtraces. In particular, we give the
definition of a lexicographical order on step sequences. We then recall the Foata
canonical form of a comtrace that turns out to be maximal with respect to their
order, and propose another canonical representative - the lexicographical canon-
ical form. In the following sections, we propose an algebraic representation of a
comtrace based on projections onto sequential subalphabets, and give a nonde-
terministic procedure that allows to reconstruct step sequences of the original
comtrace. We also give two strategies of determining such reconstruction, each
of them leading to a proper canonical form of a comtrace. In the next section we
introduce and discuss this specific subclasses of comtraces – the trace-like com-
traces, and weakly simultaneous comtraces. The elements of these subclasses are
fully described by one rather than two relations which brings them closer to the
classical notion of a trace. We link them with the general comtraces by using the
notions of indivisible steps and expansion of the alphabet. In the final section,

458 Ł. Mikulski

we describe some natural applications of the algebraic properties developed in
this paper, and sketch the directions for further research. Proofs of all the results
can be found in [9].

1 Preliminaries

Throughout the paper we use the standard notions of the formal language theory.
In particular, by an alphabet we mean a nonempty finite set Σ, the elements of
which are called (atomic) actions. Finite sequences over Σ are called words. The
set of all finite words, including the empty word λ, is denoted by Σ∗.

Let w = a1 . . . an and v = b1 . . . bm be two words. Then w ◦ v = wv =
a1 . . . anb1 . . . bm is the concatenation of w and v. The alphabet alph(w) of w
is the set of all the actions occurring within w, and #a(w) is the number of
occurrences of an action a within w. By |w| we denote the length of word w.
More generally, for an object X , whenever the notion of size is dear from the
contexts, we denote its size by |X |.

Let w = a1 . . . an be a word. We use the notions of a prefix and a suffix of the
word w. For any k ≤ n, the k-suffix of w, denoted by suff k, is a word ak . . . an.
Similarly, the k-prefix of w, denoted by pref k, is the word a1 . . . ak.

We assume that the alphabet Σ is given together with a total order ≤, called
lexicographical order and extend it to the level of words. Such an order is in-
herited from the first letters on which two words being compared differ. In case
that one word is a prefix of another - the former is the smaller one.

The projection onto binary subalphabet {a, b} is the function Πa,b : Σ∗ → Σ∗

defined as follows: Πa,b(cw) = cΠa,b(w) for c ∈ {a, b}, Πa,b(cw) = Πa,b(w) for
c /∈ {a, b}, and Πa,b(λ) = λ. In the same way we define projection onto a unary
subalphabet {a}, denoted by Πa,a : Σ∗ → Σ∗.

1.1 Elementary Net Systems with Inhibitor Arcs

In this paper we introduce some algebraic properties of combined traces which
are the abstract model that describes causal relationships between executed ac-
tions of a concurrent system. The underlying structure, which was a motivation
to define combined traces, are elementary net systems with inhibitor arcs.

Formally, the elementary net system with inhibitor arcs (or ENI − system)
is a tuple N = (P, T, F, I, M0), where P and T are two disjoint and finite sets
of places and transitions (actions) respectively. Two other elements, F ⊆ (P ×
T)∪ (T ×P) and I ⊆ P ×T are two relations, called flow relation and inhibition
relation. These relations describe possible dynamic behaviours of a net, which
are manifested by executing sets of enabled transitions called steps. Such an
execution leads from one set of places (called marking) to another. The initial
marking M0 ∈ P {0,1}, from which the action of a system begins, is the last
element of the tuple N .

Given an ENI-system N = (P, T, F, I, M0) and x ∈ P ∪ T , the pre-set of
x, denoted by •x, is defined as •x = {y|(y, x) ∈ F}, while the post-set of x,

Algebraic Structure of Combined Traces 459

denoted by x•, is defined as x• = {y|(x, y) ∈ F}. We also use the notion •x•

for the union of the post-set and pre-set of x, calling it the set of neighbouring
places/transitions. Moreover, if x ∈ T , the inh-set of x, denoted by ◦x, is defined
by ◦x = {y|(y, x) ∈ I}. The dot notations are lifted in the usual way to the sets of
elements. Graphically, the places are drawn as circles, transitions as rectangles,
elements of flow relation as arcs, and elements of inhibition relation as arcs with
small circles as arrowheads. Marked places are depicted by drawing small dot
called token inside.

We say that a step S = {t1, t2, . . . , tn} is enabled in marking M if and only if
•S ⊆M , S• ∩M = ∅ and ◦S ∩M = ∅. The execution of the step S leads from
the marking M to the new marking M ′ = M \ •S ∪ S•.

An ENI-system with empty inhibition relation, often considered under the
sequential rather than step semantics, is called an elementary net system (or
EN − system).

Example 2. Consider a system N = (P, T, F, I, M0) depicted below.

1

2

a

3

c

4 5 6 7

d

b

In the initial marking, three steps are enabled – (a), (d) and (ad). Note that after
executing transition d, transition a remains enabled, however, after executing
transition a there is a token in place 3 and transition d is no more enabled.

1.2 Traces

In this section we recall well-known notion of traces (see [4,8]). Traces are an
abstract model describing causal relationships between executed actions in, for
example EN-systems. They capture independence, hence the possibility to be
executed in any order (and also together) for some actions. Structurally, pairs of
actions with disjoint sets of neighbouring places are in the independence relation.

A concurrent alphabet is a pair Ψ = (Σ, dep), where Σ is an alphabet and
dep ⊆ Σ×Σ is a reflexive and symmetric dependence relation. The corresponding
independence relation is given by ind = (Σ ×Σ) \ dep.

A concurrent alphabet Ψ defines an equivalence relation ≡Ψ identifying words
which differ only by the ordering of independent actions. Two words, w, v ∈ Σ∗,
satisfy w ≡Ψ v if there exists a finite sequence of commutations of adjacent in-
dependent actions transforming w into v. More precisely, ≡Ψ is a binary relation
over Σ∗ which is the reflexive and transitive closure of the relation ∼Ψ such that
w ∼Ψ v if there are u, z ∈ Σ∗ and (a, b) ∈ ind satisfying w = uabz and v = ubaz.

Equivalence classes of ≡Ψ are called (Mazurkiewicz) traces (see [4,8,10]), and
the trace containing a given word w is denoted by [w]. The set of all traces over
Ψ is denoted by Σ∗/≡Ψ , and the pair (Σ∗/≡Ψ , ◦) is a (trace) monoid, where

460 Ł. Mikulski

τ ◦ τ ′ = [w ◦w′], for any words w ∈ τ and w′ ∈ τ ′, is the concatenation operation
for traces. Note that trace concatenation is well-defined as [w ◦w′] = [v ◦ v′], for
all w, v ∈ τ and w′, v′ ∈ τ ′. Similarly, for every trace τ = [w] and every action
a ∈ Σ, we can define alph(τ) = alph(w) and #a(τ) = #a(w).

Projections onto unary binary dependent subalphabets (i.e. {a, b} such that
(a, b) ∈ dep) are invariants for traces. Moreover, two words u, w ∈ Σ∗ are in
relation ≡Ψ if and only if ∀(a,b)∈dep Πa,b(u) = Πa,b(w). Following [10], we define
the projection representation of a trace τ as a function Πτ : dep → Σ∗, where
Πτ (a, b) = Πa,b(τ).

A word w ∈ Σ∗ is in Foata canonical form (see [3]) w.r.t. the dependence
relation dep and a lexicographical order ≤ on Σ, if w = w1 . . . wn (n ≥ 0), where
each wi is a nonempty word such that alph(wi) is pairwise independent and wi

minimal w.r.t. lexicographical order ≤ among [wi], and for each i > 1 and a
occurring in wi, there is b occurring in wi−1 such that (a, b) ∈ dep.

Another canonical form of a trace that one may consider is the lexicographical
canonical form (see also [3]). It is based only on the lexicographical order and is
defined as the least representative of a trace with respect to the lexicographical
ordering. The intuition behind the Foata normal form is that it groups actions
into maximally concurrent steps, while the lexicographical canonical form is very
useful in some combinatorial approaches (see also [12]). Each trace contains
exactly one sequence in the Foata canonical form, and exactly one sequence
in the lexicographical canonical form. It may happen that the two versions of
canonical form coincide.

1.3 Comtraces

Whereas traces are good to describe the concurrent behaviour of EN-systems,
they are not sufficient to capture the behaviour of systems with inhibitor arcs.

A comtrace alphabet is a triple Θ = (Σ, sim, ser), where Σ is an alphabet
and ser ⊆ sim ⊆ Σ ×Σ are two relations, respectively called serialisability and
simultaneity; it is assumed that sim is irreflexive and symmetric. Intuitively,
if (a, b) ∈ sim then a and b may occur simultaneously, whereas (a, b) ∈ ser
means that in such a case a may also occur before b (with both executions being
equivalent). The set of all (potential) steps over Θ, or step alphabet, is then
defined as the set S comprising all nonempty sets of actions A ⊆ Σ such that
(a, b) ∈ sim , for all distinct a, b ∈ A. To avoid confusion with the well-established
operation of concatenating sets in formal languages theory, we follow Diekert
([3]) and denote a step containing actions a and b by (ab) rather then {a, b}, etc.
Finite sequences in S∗, including the empty one (λ), are called step sequences.

We now lift a number of notions and notations introduced for words to the
level of step sequences. In what follows, Θ = (Σ, sim, ser) is a fixed comtrace
alphabet. Let w = A1 . . . An and v = B1 . . . Bm be two step sequences. Then
w ◦ v = wv = A1 . . . AnB1 . . . Bm is the concatenation of w and v. The alphabet
alph(w) of w comprises all action occurring within w, and #a(w) is the number
of occurrences of an action a within w.

Algebraic Structure of Combined Traces 461

The comtrace congruence over Θ, denoted by ≡Θ, is the reflexive, symmetric
and transitive closure of the relation ∼Θ⊆ S∗ × S∗ such that w ∼Θ v if there
are u, z ∈ S∗ and A, B, C ∈ S satisfying w = uAz, v = uBCz, A = B ∪ C and
B × C ⊆ ser . Note that B ∩ C = ∅ as ser is irreflexive.

Equivalence classes of the relation ≡Θ are called comtraces (see [5]), and the
comtrace containing a given step sequence w is denoted by [w]. The set of all
comtraces is denoted by S∗/≡, and the pair (S∗/≡, ◦) is a (comtrace) monoid,
where τ ◦ τ ′ = [w ◦ w′], for any step sequences w ∈ τ and w′ ∈ τ ′. Comtrace
concatenation is well-defined as [w ◦w′] = [v ◦ v′], for all w, v ∈ τ and w′, v′ ∈ τ ′.
A comtrace τ is a prefix of a comtrace τ ′ if there is a comtrace τ ′′ such that
τ ◦ τ ′′ = τ ′. As in the case of traces, for every comtrace τ and every a ∈ Σ, we
can define alph(τ) = alph(w) and #a(τ) = #a(w), where w is any step sequence
belonging to τ .

Next, we give the canonical form of a comtrace which essentially captures a
greedy, maximally concurrent, execution of the actions occurring in the comtrace
conforming to the simultaneity and serialisability relations. A step sequence w =
A1 . . . An ∈ S∗ is in Foata canonical form if, for each i ≤ n, whenever Av ≡Θ

Ai . . . Ak for some A ∈ S and v ∈ S∗, then A ⊆ Ai. This canonical form of a
comtrace are widely described in [7]. One can see that all suffixes of step sequence
in Foata canonical form are also in Foata canonical form, and that each comtrace
comprises a unique step sequence in Foata normal form. Note that an alternative
(equivalent) definition of normal form requires that, for every i < k, there is no
∅ = A ⊆ Ai+1 such that Ai ×A ⊆ ser and A× (Ai+1\A) ⊆ ser .

1.4 Relations between Actions

In our discussion, we use a number of relations capturing semantically meaningful
relationships between individual actions (see also [11]):

– Dependence dep = (Σ ×Σ) \ sim, and independence ind = ser ∩ ser−1.
Both relations have their counterparts in trace theory, and we denote them
in the same way. If two actions are dependent then they never occur in a
common step. Two actions are independent if they can be executed in any
order as well as simultaneously (as ser ⊆ sim).

– Semi-independence sin = sim \ ser .
In contrast to the situation found in traces, dependence and independence
do not describe all possible relationships between individual actions in com-
traces. The remaining ones are called, due to the possibility of occurring
together without being fully independent, semi-independent actions. Semi-
independent actions may be further divided into symmetric and antisym-
metric parts:
• Strong simultaneity ssm = sim \ (ser ∪ ser−1) = sin \ ser−1.

If two actions are strongly simultaneous then may occur simultaneously
but cannot be serialised at all.
• Weak dependence wdp = ser−1 \ ser = sin \ sin−1.

Two actions are weakly dependent if they can be serialised only in one way.

462 Ł. Mikulski

Similarly to the case of simultaneity and serialisability [6], each of these relations
can be described semantically by specific relationships between pre-sets, post-
sets and inh-sets of pairs of actions. The following table gives a straightforward
description of the above five relations for ENI-systems.

simultaneity (a, b) ∈ sim •a• ∩ •b• = ∅ ∧ (◦a ∩ •b) ∪ (◦b ∩ •a) = ∅
serialisability (a, b) ∈ ser (a, b) ∈ sim ∧ a• ∩ •b = ∅
dependence (a, b) ∈ dep •a• ∩ •b• = ∅ ∨ (◦a ∩ •b) ∪ (◦b ∩ •a) = ∅
independence (a, b) ∈ ind (a, b) /∈ dep ∧ (◦a ∩ b•) ∪ (◦b ∩ a•) = ∅
semi-independence (a, b) ∈ sin (a, b) /∈ dep ∧ (◦b ∩ a•) = ∅
strong simultaneity (a, b) ∈ ssm (a, b) /∈ dep ∧ (◦b ∩ a•) = ∅ ∧ (◦a ∩ b•) = ∅
weak dependence (a, b) ∈ wdp (a, b) /∈ dep ∧ (◦b ∩ a•) = ∅ ∧ (◦a ∩ b•) = ∅

Example 3. Consider a comtrace alphabet Θ for ENI-system from Example 2.
The simultaneity and serialisability relations are given by:

sim :
a b

cd
ser :

a b

cd

Then the five derived relations on actions are as follows:
ind : dep : sin : ssm : wdp :

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

We also have τ = [w] = [v] = [u], where:
w = (d)(ab)(d), v = (d)(a)(b)(d), u = (ad)(b)(d).

Moreover, u is a step sequence in Foata canonical form. ��

2 Lexicographical Canonical Form

Let (Σ,≤) be a total order on actions. Using the order ≤ we define min(A), the
minimal representative of a step ∅ = A ∈ S as the minimal action in A with
respect to ≤. Note that min(∅) is not defined.

We extend the order on actions to the case of steps (sets of actions). Let
A, B ∈ S be two steps. If the size of A is smaller then the size of B then A≤̂B.
If the sizes are equal, A≤̂B if and only if A = B or A = B and min(A \ B) ≤
min(B \A). In this way, (S, ≤̂) is a totally ordered set.

Using the order ≤̂ we can define lexicographical order on step sequences in
the usual way. The lexicographical canonical form of a comtrace τ , denoted by
minlex(τ), is the least (with respect to the lexicographical order) step sequence
contained in the comtrace. Note that, in contrast to the Foata canonical normal
form, the lexicographical canonical form captures one of the most sequential
executions of a comtrace. Hence the two canonical forms lie on the opposite
sides of the concurrent/sequential spectrum of behaviours. Note that the step
sequence v from Example 3 is in lexicographical canonical form.

Algebraic Structure of Combined Traces 463

Theorem 4. For a given comtrace τ , its Foata normal form is the ≤̂-greatest,
and lexicographical normal form is the ≤̂-least, step sequence contained in τ .

2.1 Indivisible Steps and Sequences

The structure and semantics of relations sim and ser mean that some actions
have to appear simultaneously in every step sequence contained in a comtrace
(in other word, they cannot be separated according to the comtrace congruence).
A very good example of such actions are those in the ssm relation. The strong
simultaneity, however, does not exhaust all situations when actions are “glued”
together in the permanent manner. In this section, we discuss this phenomenon
in depth.

Let us consider a step A ∈ S and a relation ≡A⊆ A × A, such that, for all
a, b ∈ A, we have a ≡A b if and only if (a, b) ∈ sin∗ ∧ (b, a) ∈ sin∗. Intuitively,
the relation ≡A joins actions that can be executed simultaneously, but cannot
be executed in a sequential way (see Example 6).

Lemma 5. For every A ∈ S, ≡A is an equivalence relation.

We say that a step A ∈ S is indivisible if and only if ∀a,b∈A a ≡A b. The set
of all indivisible steps is denoted by Ŝ. By indiv(τ) we denote the set of all
step sequences contained in a comtrace τ and built with indivisible steps only.
Intuitively, we can treat the indivisible step sequences belonging to indiv(τ) as
classical sequences over the alphabet Ŝ. Hence we define two complementary
relations over this alphabet, the independence relation înd and the dependence
relation d̂ep. We say that two indivisible steps A and B are independent if
A×B ⊆ ind = ser ∩ ser−1; otherwise two indivisible steps are dependent.

Example 6. Let us recall the comtrace alphabet from Example 3 and relations
sim and sin, which are crucial in determining indivisible steps. The set of all
possible steps is S = {(a), (b), (c), (d), (ab), (ac), (ad), (bc), (abc)}, while the set
of all indivisible steps is Ŝ = {(a), (b), (c), (d), (ac)} Note that step A = (abc)
is divided by the relation ≡A into two indivisible steps B = (b) and C = (ac)
and step B occurs not later than step C, while step D = (ab) is divided by the
relation ≡D into two, completely independent, indivisible steps (a) and (b).

Moreover, only two sequences of indivisible steps are in the trace τ , defined in
Example 3. These two sequences are v = (d)(a)(b)(d) and v′ = (d)(b)(a)(d). ��

Lemma 7. Let A ∈ S \ Ŝ be a step that is not indivisible. Then there exist two
steps B and C such that A ∼Θ BC. Moreover, A/≡A = B/≡B ∪ C/≡C .

Proposition 8. All steps contained in the lexicographical normal form of a com-
trace are indivisible (minlex(τ) ∈ indiv(τ)).

Theorem 9. Let τ be a comtrace. The set indiv(τ) is a trace over the concurrent
alphabet (Ŝ, d̂ep).

464 Ł. Mikulski

As an immediate corollary of the above facts, we can observe that

Corollary 10. There is a one to one correspondence between the comtraces over
Θ = (Σ, sim, ser) and traces over Φ = (Ŝ, d̂ep) given by the construction of the
set of indivisible steps and dependence relation on them.

τ over Θ ←→ indiv(τ) ←→ τ ′ over Φ

One can think about using the above correspondence to apply the methods of
enumerating all traces of a given size [12] to enumerate comtraces of a given size.

3 Projection Representation of Comtraces

In the trace theory employing projections onto the cliques of the graph of depen-
dence relation (see also [14]) turned out to be a very useful tool. We now extend
this notion, in the case of the binary and unary cliques only (see also [10]), to
define the projection representation of comtraces. In the case of traces, we have
only two kinds of relationships between actions. As independent actions may be
executed in any order (or together in case of step semantics) one can focus on
the order implied by the dependence relation.

In the case of comtraces, the situation is more complicated. However, once
more we can ignore independent actions and store information about the other
three types of relations (dependency, weak dependency and strong simultaneity).
Once more, it is sufficient to store the information in the form of sequences. In
the case of strong simultaneity, however, we need to add a special symbol ⊥
that separates the situations of sequential and simultaneous execution of pairs
of actions being considered.

Let a, b ∈ Σ and (a, b) /∈ ind (possibly a = b). For each such pair we define
the projection function Πa,b : S∗ → (Σ∪{⊥})∗ as follows. First, for a step A ∈ S
we have

Πa,b(A) = Πb,a(A) =

⎧⎪⎪⎨⎪⎪⎩
λ if {a, b} ∩A = ∅
a if a ∈ A ∧ b /∈ A
ba if {a, b} ⊆ A ∧ (a, b) ∈ wdp
⊥ if {a, b} ⊆ A ∧ (a, b) ∈ ssm

Note that in this way we have Πa,a(A) = λ if a /∈ A and Πa,a(A) = a if a ∈ A.
Then, for a step sequence w = A1A2 . . . An we have Πa,b(w) = Πa,b(A1) ◦

Πa,b(A2) ◦ . . . ◦Πa,b(An).

Theorem 11. Let w, u be step sequences over comtrace alphabet Θ =
(S, sim , ser). Then w ≡Θ u ⇔ ∀(a,b)/∈ind Πa,b(w) = Πa,b(u).

The projection representation of a comtrace τ is a function Πτ : (Σ × Σ) \
ind → (Σ ∪ {⊥})∗, given by Πτ (a, b) = Πa,b(τ). Moreover, any function Π :
(Σ × Σ) \ ind → (Σ ∪ {⊥})∗ is called the projection set. Clearly, not every
projection set is a projection representation of a comtrace. In the next section,

Algebraic Structure of Combined Traces 465

we give a procedure that decides whether a given projection set is a projection
representation of a comtrace. Moreover, if the answer is positive, the procedure
computes such a comtrace.

First, however, we provide the algorithm computing projection representation
of a comtrace. This algorithm comes directly from the definition. However, it is
important to discuss the data structures which might be used by this algorithm.
At the beginning, let us consider the input. We get a comtrace alphabet Θ which
consists of the alphabet Σ of size k and two relations, sim and ser , of size at
most k2 each. We also get a step sequence w which steps consist of n occurrences
of atomic actions (elements of Σ) all together. As a result, we obtain the set of
at most k2 sequences (projections onto specified subalphabets).

We process the step sequence w step by step, which means that the algorithm
is online, and after consuming a step we get a result for a proper prefix of w.
The processing of a single step is done according to the definition of projections
onto the pairs in specified relation. It is worth carrying out some preprocessing
and, for every action, compute the list of all subalphabets in which it may occur.
By storing, for every computed projection, the number of the step when it was
lately updated, we avoid problems with the special cases of relations wdp and
ssm (in these cases two rather than one action may be added to one sequence
while processing a single step).

Proposition 12. The procedure of computing Πτ from a step sequence w ∈ τ
has the time and memory complexities of O(nk).

Theorem 13. Testing comtrace equivalence can be done in the time complexity
of O(nk).

3.1 Reconstructing Step Sequence from Projection Function

The idea of constructing a step sequence from a projection set is based on re-
vealing the first possible step whose projection representation would form a set
of prefixes of the given projection set. At first, we identify the set of all possible
elements of such a step. We do it in two stages. We identify the set of condition-
ally possible actions, i.e. those actions whose first occurrences are the first (or
in particular situations the second) letters in all projections, where they could
appear. Note that we treat the special symbol ⊥ as a pair of proper letters,
so its occurrence means that both letter might be conditionally possible. After
this identification, we remove actions that cannot satisfy some of the necessary
conditions. These conditions are related to the cases when the considered ac-
tion appears as the second letter in some sequences connected with the weak
dependence relation or are verified positively because of the special symbol ⊥.

As a result of the first stage, we obtain the set of all actions that may appear
in the first step of the constructed sequence. The second stage consist of dividing
this set into indivisible steps and combining those indivisible steps into one of the
allowed steps. The result is obtained by taking advantage of the weak dependence
relation inside the set of indivisible steps. It is similar to ideas behind the proof
of Lemma 7. Let us look into the details of the proposed procedure.

466 Ł. Mikulski

Let Π be a projection set. We say that an action a ∈ Σ is conditionally possible
for projection function Π if and only if for all b ∈ Σ the following implications
are satisfied:
– (a, b) ∈ dep ⇒ pref 1(Π(a, b)) = a
– (b, a) ∈ wdp ⇒ pref 1(Π(a, b)) = a
– (a, b) ∈ wdp ⇒ pref 1(Π(a, b)) = a ∨ pref 2(Π(a, b)) = ba
– (a, b) ∈ ssm ⇒ pref 1(Π(a, b)) = a ∨ pref 1(Π(a, b)) =⊥

We denote all conditionally possible actions as cpa and define the relation cnd ⊆
Σ×Σ, which describes the conditions that must be satisfied. Only in situations
where (a, b) ∈ wdp ∧ pref 2(Π(a, b)) = ba or (a, b) ∈ ssm ∧ pref 1(Π(a, b)) =⊥
we say that the existence of action b in the constructed step is the necessary
condition for the presence of action a in this step, which is denoted by (a, b) ∈
cnd.

We exclude conditionally possible actions with impossible to satisfy conditions
to form a set of possible actions. Any action a ∈ Σ that is not conditionally pos-
sible in Π is impossible in Π . Moreover, any action a conditionally possible under
impossible condition (i.e. (a, b) ∈ cnd and b is impossible) is also impossible. For-
mally, the set of impossible actions for the projection function Π is the smallest
set imp that satisfies the following conditions:

◦Σ \ cpa ⊆ imp ◦b ∈ imp ∧ (a, b) ∈ cnd⇒ a ∈ imp

By M(Π) we denote the set of actions which are not impossible (which means
that they are possible) for projection set Π . In the set of M(Π)/≡M(Π) of all
possible and indivisible steps we distinguish the allowed subsets. We say that
X ⊆ M(Π)/≡M(Π) is allowed if and only if for every B ∈ X and every action
b ∈ B we have (b, a) ∈ sin∗ ⇒ [a]≡M(Π) ∈ X . Finally, by the allowed step we
mean the union of elements of any allowed subset.

We can extract from Π any step that is the union of indivisible steps contained
in M(Π)/≡M(Π) . Such an extraction extr : ((Σ ×Σ \ ind)∗ → (Σ∪ ⊥)∗)× S→
((Σ ×Σ \ ind)∗ → (Σ∪ ⊥)∗) is done in the following way:

extr(Π, B)(a, b) =

⎧⎪⎪⎨⎪⎪⎩
Π(a, b) if |{a, b} ∩B| = 0
suff 2(Π(a, b)) if |{a, b} ∩B| = 1
suff 2(Π(a, b)) if |{a, b} ∩B| = 2 ∧ (a, b) ∈ ssm
suff 3(Π(a, b)) if |{a, b} ∩B| = 2 ∧ (a, b) ∈ wdp ∪ wdp−1

Example 14. Let us consider the comtrace τ from Example 3.
The projection representation of the comtrace τ (omitting projections to the

unary subalphabets andmultiplications of projections to the samepairs in opposite
order):

Πτ (b, d) = dbd Πτ (c, d) = dd Πτ (a, c) = a Πτ (b, c) = b Πτ (d, a) = da

The set of conditionally possible actions for Πτ is {a, d}, while (a, d) ∈ cnd.
Every conditionally possible action is also possible, so M(Πτ) = {a, d}. It gives
the set of two indivisible steps (a) and (d) and, finally, two steps that may appear
as the first step of constructed sequence: (d) and (ad). ��

Algebraic Structure of Combined Traces 467

Theorem 15. Let Πτ be the projection representation of a comtrace τ , and
M(Π) be a maximal possible step of Πτ . For every allowed set B ∈ S, we have

τ = B ◦ σ, where Πσ = extr(Πτ , B).

By suitably using the extraction function we can compute any representative of
a comtrace τ . In particular, similarly to the case of normal forms, we can do this
using a maximal or minimal strategy. In the maximal strategy, we always take
the whole set M(Π) and, as a result, we obtain the Foata canonical form of the
original comtrace. In the minimal strategy, we take the least in sense of order ≤̂
union of the allowed step obtained from allowed subset M(Π)/≡M(Π) and obtain
the lexicographical canonical form.

The algorithm reconstructing a step sequence from a projection representa-
tion of a comtrace follows the notions defined above. From the technical point
of view, some concrete solutions of data structures are worth noticing. Whole
algorithm can be divided into parts. In each part we compute a set of allowed
steps, choose one, and extract it from the projection set. The procedure repeats
until projection set or computed set of allowed steps is empty. In the first case, it
returns a step sequence consisting of n occurrences of actions. In the second case,
algorithm returns that an input is not a projection representation of a comtrace.

A single part starts from computing the set of conditionally possible actions
and the relation describing the conditions. A good idea is to preprocess for every
atomic action a list of pointers which helps to browse only the projections related
to this action. Doing so, we can check conditional possibility in the time linearly
dependent on the size of alphabet, denoted by k. Simultaneously, we build the
directed graph of conditions. In the time linearly dependent on the number of
arcs in this graph, we remove from the set of conditionally possible actions all
impossible ones (browsing, using DFS, all paths which begins in vertices which
are not conditionally possible).

In the next phase, we compute a vertices induced subgraph of sin relation
that contains all possible actions, and once more using DFS, we compute a
graph of its strongly connected components (called condensation graph [2]). The
condensation graph is an acyclic directed graph. We choose an arbitrary union
of filters of the condensation graph. All actions contained in the elements of
this union forms allowed step. To obtain a Foata canonical form, we take the
maximal union of the filters by choosing the whole condensation graph. Whereas,
if we wish to obtain the lexicographical normal form, we should choose the ≤̂-
smallest allowed step. To compute it, we may consider only the maximal elements
of provided condensation graph.

In the last phase, we need to extract the chosen allowed step. We do it ac-
cording to the definition of extraction operation. During this phase, we can once
more use the precomputed lists of pointers.

Proposition 16. Projection set Π is a projection representation of a comtrace
if and only if the described procedure ends with an empty projection set.

Theorem 17. The procedure of computing canonical forms from a projection
representation of a comtrace has the time complexity of O(nk2).

468 Ł. Mikulski

4 Special Subclasses of Comtraces

4.1 Traces as a Subclass of Comtraces

In Section 1 we defined EN-systems as a special case of ENI-systems without
inhibitors and with the sequential semantics. We also introduced traces as a
model of the causal behaviour of EN-systems. In this section, we show what kind
of comtraces are directly related to systems without inhibitors. We start with a
simple operation that helps to change step semantics into sequential semantics.

Let A ∈ S be a step and ≤ be a total order on actions. We define the lexico-
graphical linearization of step A as

lex(A) =
{

λ for A = ∅
min(A)lex(A \min(A)) for A = ∅.

Weextend the operation lex to step sequence in the usualway, i.e. lex(A1A2 . . . An)
= lex(A1)lex(A2) . . . lex(An).

The comtrace alphabet Θ = (Σ, sim, ser) with the empty relation sin is called
trace-like comtrace alphabet. Moreover, comtraces over this alphabet are called
trace-like comtraces. Such comtraces behave exactly like traces with the step
semantics. We can equip them with a sequential semantics by applying lex op-
erator or by using only indivisible steps. Later in this section we discuss some
properties of this subclass.

Proposition 18. Let τ ∈ S∗ be a trace-like comtrace and w ∈ indiv(τ). Then
each step of w is a singleton.

Corollary 19. Let Θ = (Σ, sim, ser) be a trace-like comtrace alphabet. The
number of all indivisible steps in Ŝ is equal to |Σ|.
Using Theorem 9 and Lemma 19 we can associate an alphabet of indivisible steps
Ŝ with Σ and trace-like comtrace τ over a comtrace alphabet Θ = (Σ, sim, ser)
with a trace σ over the concurrent alphabet Φ = (Σ, d̂ep). We say that such a
trace σ is a trace representation of a trace-like comtrace τ . Note that since the
relation sin is empty, d̂ep = dep.

Theorem 20. Let τ be a trace-like comtrace and σ be its trace representation.
Then Πτ = Πσ.

Theorem 21. Let τ ∈ S∗ be a trace-like comtrace and σ be its trace represen-
tation. Then the linearizations of the Foata and the lexicographical canonical
forms of τ are equal to the Foata and the lexicographical canonical forms of σ,
respectively.

4.2 Weakly Simultaneous Comtraces

Taking into account Vogler’s ST-traces and structures for modelling causality
and start precedences [15], we can make further investigation into the properties

Algebraic Structure of Combined Traces 469

of comtraces connected with the indivisible steps. To obtain structures similar
to those considered by Vogler, we should forbid execution of indivisible steps
which are not singletons. Such a restriction gives a model that is applicable to
the case of elementary nets with read arcs, but it is not expressible in terms of
comtraces. Instead of such a semantic restriction, we introduce another structural
simplification that provides weakly simultaneous comtraces and gives a method
of transforming an arbitrary comtrace alphabet to one satisfying new constraints.
The price is the possibility of an exponential growth of the size of the alphabet.

Let Θ = (Σ, sim , ser) be the comtrace alphabet, S the set of all potential
steps and Ŝ the set of all indivisible steps over this alphabet. For each A ∈ S,
we give Â ⊆ Ŝ in the following way. The indivisible set B ∈ Ŝ is an element of Â
if and only if the elements of B are permanently glued together inside step A,
which means that ∀b1,b2∈B b1 ≡A b2 and ∀a∈A\Bb ∈ B ⇒ a ≡A b.

In this way, with every step sequence w = A1A2 . . . An over the concurrent
alphabet Θ = (Σ, sim, ser), we can associate a step sequence ŵ = Â1Â2 . . . Ân

over the alphabet Θ̂ = (Ŝ, ŝim, ŝer), where (Â, B̂) ∈ ŝim if and only if A×B ⊆
sim and (Â, B̂) ∈ ŝer if and only if A × B ⊆ ser . The main advantage of such
a comtrace alphabet is that if (Â, B̂) ∈ ŝim then (Â, B̂) ∈ ŝer ∪ ŝer−1, in other
words ŝsm = ∅.

Every comtrace over comtrace alphabet that satisfies the above condition is
called a weakly simultaneous comtrace. In this new subclass of comtraces we can
omit, as implied by serialisability, the simultaneity relation. To restrict some
behaviours which are not possible in the case of ST-traces, we should limit the
graphs of wdp relation to acyclic. Comtraces with such a restriction cannot,
however, describe all behaviours covered by ST-traces.

5 Summary and Future Work

In this paper we presented some algebraic aspects of combined traces. Similar
algebraic tools were successfully used in the study of the Mazurkiewicz traces, a
simpler model for capturing and analysing concurrent behaviours.

In particular, we defined lexicographical canonical form of a comtrace and its
projection representation. We gave two simple algorithms which generate these
representations from arbitrary step sequence. Those algorithms seem to have a
potential to provide a base for the development of solutions to some natural
problems related to the comtrace theory. In particular, one can use them to
design efficient methods of the enumeration of all the representatives of a fixed
comtrace, and the enumeration of all comtraces of a given size.

Another interesting direction of further studies would be the notion of recog-
nisable and rational languages of combined traces. The projection representation
seems to be a good start point in this area; in particular, if one recalls Zielonka’s
asynchronous automata [16] for traces. Finally, the projection representation
may find an application in another important aspect of combined trace theory.
A fair strategy of reconstructing step sequences from a projection set might be
useful as a starting point in the theory of infinite combined traces.

470 Ł. Mikulski

Acknowledgments. I would like to thank the anonymous reviewers for
their comments and suggestions. The study is cofounded by the European
Union from resources of the European Social Fund. Project PO KL „Informa-
tion technologies: Research and their interdisciplinary applications”, Agreement
UDA-POKL.04.01.01-00-051/10-00.

References

1. Cartier, P., Foata, D.: Problèmes Combinatoires de Commutation et Réarrange-
ments. LNM, vol. 85. Springer, Berlin (1969)

2. Deo, N.: Graph theory with applications to engineering and computer science.
Prentice-Hall (1974)

3. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Handbook of Formal
Languages, vol. 3, pp. 457–533. Springer (1997)

4. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

5. Janicki, R., Klein, J., Koutny, M.: Quotient monoids and concurrent behaviours. In:
Martín-Vide, C. (ed.) Scientific Applications of Language Methods, ch. 6, pp. 313–
386. Imperial College Press, London (2011)

6. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Information and Computa-
tion 123(1), 1–16 (1995)

7. Janicki, R., Le, D.T.M.: Modelling concurrency with comtraces and generalized
comtraces. Information and Computation 209(11), 1355–1389 (2011)

8. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Daimi
report pb-78, Aarhus University (1977)

9. Mikulski, Ł.: http://www.mat.umk.pl/~frodo/ASCT-appendix.pdf
10. Mikulski, Ł.: Projection representation of Mazurkiewicz traces. Fundamenta Infor-

maticae 85, 399–408 (2008)
11. Mikulski, Ł., Koutny, M.: Hasse diagrams of combined traces. Technical report

cs-tr-1301, Newcastle University (2011)
12. Mikulski, Ł., Piątkowski, M., Smyczyński, S.: Algorithmics of posets generated by

words over partially commutative alphabets. In: Holub, J., Žďárek, J. (eds.) Pro-
ceedings of the Prague Stringology Conference 2011, pp. 209–219. Czech Technical
University in Prague, Czech Republic (2011)

13. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: Reisig, W., Rozenberg,
G. (eds.) APN 1998. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998)

14. Shields, M.W.: Concurrent machines. The Computer Journal 28(5), 449–465 (1985)
15. Vogler, W.: Partial order semantics and read arcs. Theoretical Computer Sci-

ence 286(1), 33–63 (2002)
16. Zielonka, W.: Asynchronous automata [4]. In: Diekert, V., Rozenberg, G. (eds.)

The Book of Traces, ch. 7, pp. 205–247. World Scientific, Singapore (1995)

http://www.mat.umk.pl/~frodo/ASCT-appendix.pdf

Verification of Petri Nets with Read Arcs

César Rodŕıguez and Stefan Schwoon

LSV (ENS Cachan & CNRS & INRIA), France

Abstract. Recent work studied the unfolding construction for contex-
tual nets, i.e. nets with read arcs. Such unfoldings are more concise and
can usually be constructed more efficiently than for Petri nets. However,
concrete verification algorithms exploiting these advantages were lacking
so far. We address this question and propose SAT-based verification al-
gorithms for deadlock and reachability of contextual nets. Moreover, we
study optimizations of the SAT encoding and report on experiments.

1 Introduction

Petri nets are a well-known model for concurrent systems. McMillan [17] intro-
duced unfoldings as a tool for verifying properties of such nets. Roughly speaking,
the unfolding of a net N is an acyclic net bisimilar to N . McMillan showed that
for bounded nets one can use a finite prefix P of the unfolding to check certain
properties of N , e.g. reachability of markings or deadlock-freeness; McMillan
himself proposed a deadlock-checking algorithm based on this idea.

The interest of unfoldings lies in the fact that, while P is in general larger
than N , it is smaller than the full reachability graph. Moreover, deadlock or
reachability checking are NP-complete for P but PSPACE-complete forN . Thus,
the unfolding technique represents a time/space tradeoff for verifying Petri nets.
This tradeoff is particularly attractive when testing multiple properties of the
same net because P needs to be constructed only once.

The publication of [17] triggered a large body of research. To name a few
items, the necessary size of P has been reduced [9], efficient tools for generating
P have been implemented [16, 24], and unfoldings-based verification algorithms
have been developed [7, 10, 11, 14, 18]. An extensive survey can be found in [8].

Recently, unfoldings of contextual nets (c-nets) have been studied, i.e. nets
with read arcs that check for the presence of tokens without consuming them.
Their unfoldings can be exponentially more compact than for Petri nets. It is
thus natural to base verification on unfoldings of c-nets rather than Petri nets.

Previous work on c-net unfoldings has concentrated on their construction: [2]
gave an abstract algorithm, and [1, 22] provided efficient construction methods.
However, concrete verification algorithms making use of them are still missing. In
this paper, we aim to close this gap. Our contributions are twofold: we investigate
SAT-encodings of unfoldings, and we extend them to c-nets.

Concerning the first point, recall that given a finite complete prefix P of a
bounded Petri net N , deciding deadlock-freeness, reachability, or coverability
on N is NP-complete. Thus, previous works consisted in reductions to different

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 471–485, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

472 C. Rodŕıguez and S. Schwoon

NP-complete problems: McMillan [17] employed a branch-and-bound technique,
Heljanko [11] a stable-models encoding, and Melzer and Römer [18] used mixed
integer linear programming, later improved by Khomenko and Koutny [14, 15].
The technique used by Esparza and Schröter [10] is an ad-hoc algorithm based
on additional information obtained while computing the unfolding.

The previous decade has seen the emergence of powerful SAT solvers. It is
natural to profit from these advances and reduce to SAT instead; all the more so
because unfoldings are 1-safe nets, so the marking of a place naturally translates
to a boolean variable. Indeed, SAT solving has already been proposed for the
similar problem of model-checking merged processes [13], and [8] gives an explicit
SAT encoding for Petri net unfoldings. However, we are not aware of a publicly
available tool that uses this idea. We examine the performance of the encoding
and propose some optimizations.

Our principal contribution consists in extending the techniques for deadlock
checking and reachability to unfoldings of c-nets. Thus, we intend to leverage
their advantages w.r.t. ordinary unfoldings, i.e. faster construction and smaller
size. It is worth noting that the smaller size of c-net unfoldings does not auto-
matically translate to an easier SAT problem, for the following reasons: First,
the presence of read arcs may cause so-called cycles of asymmetric conflict.
Thus, a SAT encoding requires acyclicity constraints, which are not necessary
for conventional unfoldings. Secondly, an event in a c-net unfolding can occur
in multiple different execution contexts, called histories, and the constructions
proposed in [1,2,22] require to annotate events with potentially many such histo-
ries. In contrast, every event in a Petri net unfolding has only one history. Some
verification algorithms for Petri nets rely on this fact and do not easily adapt to
c-nets. We propose solutions for both problems. Our encoding does not refer to
the histories at all, and the effect of the acyclicty constraints can be palliated
by several strategies. We add that the SAT-encoding for c-net unfoldings was
already briefly sketched in [25], but without considering these problems.

To our knowledge, this is the first paper proposing practical verification algo-
rithms using unfoldings of c-nets. These algorithms are provided as an add-on to
the tool Cunf, which is freely available [20]. The tool is more efficient than pre-
vious approaches when applied to Petri net unfoldings, and even more efficient
than that when used on c-net unfoldings.

The paper is structured as follows: In Section 2, we recall notation and pre-
vious results. In Section 3 we explain how unfoldings can be used to check for
deadlock and reachability, and in Section 4, we discuss the reduction of the prob-
lem to SAT. We report on experiments in Section 5 and conclude in Section 6.
A longer version of this paper is available at [21].

2 Basic Notions

In this section, we establish our basic definitions and recall previous results. Due
to space constraints, this section is quite concise (see [2, 22] for background).

Verification of Petri Nets with Read Arcs 473

2.1 Contextual Nets

A contextual net (c-net) is a tuple N = 〈P, T, F, C,m0〉, where P and T are
disjoint sets of places and transitions, F ⊆ (P ×T)∪ (T ×P) is the flow relation,
C ⊆ P × T is the context relation and m0 : P → N is the initial marking. A pair
(p, t) ∈ C is called read arc. A Petri net is a c-net without read arcs. N is called
finite if P and T are finite sets. Fig. 1 (a) depicts a c-net. Read arcs are drawn
as undirected lines, here between p and C.

For x ∈ P ∪ T , let •x := { y ∈ P ∪ T | (y, x) ∈ F } the preset of x and
x• := { y ∈ P ∪ T | (x, y) ∈ F } the postset of x. The context of a place p
is defined as p := { t ∈ T | (p, t) ∈ C }, and the context of a transition t as
t := { p ∈ P | (p, t) ∈ C }. These notions extend to sets in the usual fashion.

A function m : P → N is called marking of N . A transition t is enabled at m
if m(p) ≥ 1 for all all p ∈ t ∪ •t. Such, t can fire, leading to marking m′, where
m′(p) = m(p)−|{p}∩ •t|+ |{p}∩ t•| for all p ∈ P . We say that some marking m
is reachable if it can be obtained by a finite sequence of firings starting at m0.
A marking m is deadlocked if it does not enable any transition.

N is called k-bounded if m(p) ≤ k for all reachable m and p ∈ P , and safe if it
is 1-bounded. For safe nets, we treat markings as sets of places carrying tokens.

e1(A)
e2(B)

e4(D)

c2(q)

e3(C)

c6(s) c7(s)

c9(q)

c1(p)

c3(r)

c8(p)

c4(r) c5(s)

e5(E)

(b)

A
B

C

D

sr
E

qp

(a)

Fig. 1. (a) A safe c-net N ; and (b) an unfolding prefix P for N

2.2 Occurrence Nets

Let N = 〈P, T, F, C,m0〉 be a c-net. For t, t′ ∈ T , we write t <· t′ if t•∩(•t′∪t′) �=
∅. We write < for the transitive closure of F ∪<·, and ≤ for the reflexive closure of
<. For x ∈ P∪T , we write [x] for the set of causes of x, defined as {t ∈ T | t ≤ x}.
A set X ⊆ T is causally closed if [t] ⊆ X for all t ∈ X .

Two transitions t, t′ are in symmetric conflict, denoted t # t′, iff •t ∩ •t′ �= ∅,
and in asymmetric conflict, written t ↗ t′, iff (i) t <· t′, or (ii) t∩ •t′ �= ∅, or (iii)
t �= t′ and t # t′. In case (ii) we also write t ↗↗ t′. For a set of events X ⊆ T , we
write ↗X to denote the relation ↗∩ (X ×X).

A c-net O = 〈B,E,G,D, m̂0〉 is called an occurrence net iff (i) O is safe and
for any b ∈ B, we have |•b| ≤ 1; (ii) < is a strict partial order for O; (iii) for all
e ∈ E, [e] is finite and ↗[e] acyclic; (iv) m̂0 = { b ∈ B | •b = ∅ }.

Let O be such an occurrence net. As per tradition, we call the elements of B
conditions, and those of E events. A configuration of O is a finite, causally

474 C. Rodŕıguez and S. Schwoon

closed set of events C such that ↗C is acyclic. Conf (O) denotes the set of all
such configurations. For a configuration C, let cut(C) := (m̂0 ∪ C•) \ •C.

A prefix of O is a net P = 〈B′, E′, G′, D′, m̂0〉 such that E′ ⊆ E is causally
closed, B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions of G,D to (B′ ∪ E′).

2.3 Unfoldings

Let N = 〈P, T, F, C,m0〉 be a bounded c-net. It is possible [2,22] to produce an
occurrence net UN = 〈B,E,G,D, m̂0〉, called the unfolding of N and equipped
with a mapping f : (B ∪ E) → (P ∪ T), that has the following properties:

– f maps conditions to places and events to transitions. We extend f to sets,
multisets, and sequences in the usual way; f applied to a marking of UN (a
set) will yield a marking of N (a multiset).

– UN is an acyclic version ofN , i.e. the firing sequences and reachable markings
of UN , modulo the mapping f , are exactly the same as in N .

In general, UN is infinite, but one can generate a finite prefix P of it that is
marking-complete, meaning that any marking m is reachable in N iff there exists
a marking m̂ reachable in P with f(m̂) = m. Fig. 1 (b) depicts a marking-
complete prefix of the c-net shown in Fig. 1 (a), where f is given in parentheses.

3 Using Unfoldings for Verification

In this section, we illustrate why some existing verification approaches for Petri
net unfoldings do not adapt well to c-net unfoldings. This justifies the choice of
marking-completeness in Section 2.3 and is related to the notion of cutoff.

For Petri nets (i.e., without read arcs), existing algorithms such as [9, 17]
produce a finite prefix P by truncating the unfolding at so-called cutoff events.
Essentially, for a cutoff event e there exists another event e′ in P such that
f(cut([e])) = f(cut([e′])). Intuitively, e does not contribute a new marking to
the unfolding, and therefore e and its successors can be omitted from P .

Certain deadlock-checking algorithms for Petri nets depend on a stricter no-
tion than marking-completeness, which we call cutoff-completeness, that also
demands to include such cutoffs in P . If P is cutoff-complete, then N contains
a deadlock iff P contains a cutoff-free configuration C such that cut(C) is dead-
locked in P . This reduction is directly employed in [14,18] and indirectly in [17].

Seeing as the algorithm in [14] performs very well, it would be tempting to
adapt this reduction to c-nets. However, we provide an example showing that this
reduction is problematic for c-nets. First, recall that the unfolding construction
for c-nets given in [1,2,22] lifts the notion of cutoff to event-history pairs. Here,
a configuration H is called history of an event e if e′(↗H)

∗e for all e′ ∈ H .
In this case 〈e,H〉 is called extended event, and in analogy to Petri nets, some
extended events will be marked as cutoffs when another extended event 〈e′, H ′〉
exists such that f(cut(H)) = f(cut(H ′)). An event may have multiple histories,
some of which are cutoffs while others are not.

Verification of Petri Nets with Read Arcs 475

The net shown in Fig. 1 (a) is free of deadlocks. An unfolding prefix P is
shown in Fig. 1 (b), the mapping f is given in parentheses. Event e1 has two
histories: H1 = {e1} and H2 = {e3, e1}. The unfolding algorithm will make
〈e1, H2〉 a cutoff but not 〈e1, H1〉; indeed H2 leads to the same marking {r, s}
as 〈e2, {e2}〉1. An event is shown in black if all its histories are cutoffs.

The prefix in Fig. 1 (b) is marking-complete and also cutoff-complete, when
the latter notion is lifted to enriched events. Under this assumption the above-
given reduction of the deadlock-checking problem is still valid.

Consider the marking m′ = {c3, c6}, which is deadlocked in P . The configu-
ration leading to m′ has a cutoff (namely, 〈e1, H2〉), so m′ cannot be interpreted
as representing a deadlock of N – indeed f(m′) = {r, s} enables transition E in
N . However, as this example demonstrates, checking whether a given configura-
tion is cutoff-free requires to reason about histories and not just about events.
This is undesirable because forbidding certain histories would result in a rather
more complex SAT formula. We therefore use another solution that is completely
event-based and requires only marking-completeness:

Remark 1. Let N be a bounded c-net and P a marking-complete prefix for N .
Then N contains a deadlock iff P has a reachable marking m′ such that f(m′)
is deadlocked. Moreover, m is reachable in N iff P has a reachable marking m′

such that f(m′) = m.

In the following, we assume that every event in a marking-complete prefix has
at least one non-cutoff history; the unfolding tool Cunf [20] can be instructed
to remove the others at no extra cost.

4 SAT-Encodings of C-Nets

The SAT problem is as follows: given a formula φ of propositional logic, find
whether there exists a satisfying assignment that makes φ true. SAT solving has
taken a quantum leap during the last decade, and many efficient solvers for this
problem exist. Here, we encode the deadlock-checking and reachability problem
for c-nets in SAT, based on Remark 1. For Petri nets, such an encoding was
given in [8]; we generalize it to c-nets and enrich it with optimizations. Notice
that most constraints that we give translate directly into CNF.

For the rest of this section, let N = 〈P, T, F, C,m0〉 be a finite safe c-net and
P = 〈B,E,G,D, m̂0〉 a finite marking-complete prefix of N . We first construct
a propositional formula φdead

P that is unsatisfiable iff N is deadlock-free. Sec-
tion 4.4 explains the modifications needed to implement reachability checking,
and Section 4.5 explains how the encoding can be generalized to bounded nets.

The formula φdead
P is defined over variables e for e ∈ E and p for p ∈ P as:

φdead
P := φcausal

P ∧ φsym
P ∧ φasym

P ∧ φmark
P ∧ φdis

P

1 It is not important to understand why the unfolding construction prefers to declare
〈e1,H2〉 a cutoff rather than 〈e2, {e2}〉, and our point is independent of this choice;
what matters is that some events may have cutoff and non-cutoff histories.

476 C. Rodŕıguez and S. Schwoon

The first three constraints enforce that any satisfying assignment represents
a configuration C, and φmark

P defines the marking m := f(cut(C)), which φdis
P

verifies to be deadlocked.
Recall that a configuration is a causally closed set of events free of loops in

the ↗ relation. Subformulae φcausal
P and φsym

P request C to be a causally closed
set of events that has no pair of events in symmetric conflict:

φcausal
P :=

∧
e∈E

e′∈•(•e∪e)
(e → e′) φsym

P :=
∧
c∈C AMO(c•),

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied(see
Section 5.1). φasym

P ensures that C is free of ↗-cycles; the details come in Sec-
tion 4.1. φmark

P characterizes supersets of the marking m reached by C:

φmark
P :=

∧
c∈B
p=f(c)
{e}=•c

((
e ∧
∧
e′∈c• ¬e′

)
→ p

)
Finally, φdis

P ensures that m is indeed deadlocked in N :

φdis
P :=

∧
t∈T
∨
p∈•t∪t ¬p

Notice that a variable p may be true even if p /∈ m. However, such an assignment
can only serve to hide a deadlock, so this encoding is safe.

4.1 Asymmetric Conflict Loops

We now explain φasym
P , which ensures that ↗C is acyclic (for convenience, we

equate a relation with a directed graph in the natural way). Symmetric conflicts
form cycles of length 2 in ↗ and are efficiently handled by the AMO constraints
of φsym

P . In a Petri net, these are the only cycles that can occur. However, in a
c-net there may also be cycles in the relation R := <· ∪ ↗↗. We show now that
they occur naturally in well-known examples:

Consider Fig. 2, which shows the beginning of an unfolding of Dekker’s mutual-
exclusion algorithm [19] (only some events of interest are shown). In the begin-
ning, both processes indicate their interest to enter the critical section by raising
their flag (events e1, f1). They then check whether the flag of the other process
is low (events e2, f2) and if so, proceed (e3) and possibly repeat (e4, e5). If both
processes want to enter the critical section (f ′2), some arbitration happens (not
displayed). Two conflict cycles in this example are e1 <· e2 ↗↗ f1 <· f2 ↗↗ e1 and
f1 <· f ′2 ↗↗ e3 <· e4 <· e5 ↗↗ f1.

Several encodings have been proposed in the literature for acyclicity con-
straints, including transitive closure and ranks (see, e.g., [4]). In the ranking
method, one introduces for each event e additional boolean variables that rep-
resent an integer up to r (the so-called rank of e), where r is a large enough
number. Then, for each pair (e, f) ∈ R, one introduces a clause (e∧ f) → [[e < f]],
where [[e < f]] is an additional variable that, if true, forces the rank of e to be
less than the rank of f . Naturally, this clause is only necessary if e and f are in
the same strongly connected component (SCC) of R.

Verification of Petri Nets with Read Arcs 477

Process 1

Process 2

flag1

turn

flag2

flag1 := 0
turn := 2

flag1 := 1flag2 = 0? flag2 = 0?flag1 := 1

flag2 := 1

= 1

e1 e4 e5e3

= 0 = 1 = 0

= 2

= 1

= 0

= 1

e2

f1

f2

f ′
2

flag1 = 0?

flag1 = 1?

Fig. 2. Partial unfolding of Dekker’s algorithm algorithm with asymmetric cycles

A lower bound for r is the length of the longest chain in ↗ that does not
contain a cycle; however, finding the latter is itself an NP-complete problem. A
simple upper bound for r is the size of the largest SCC of R. To further reduce
this upper bound, one can exploit the fact that C is causally closed and that
every cycle in R contains at least two edges stemming from ↗↗. Consider the
relation R′ := { (e, g) | ∃f, h : e ↗↗ f ≤ g ↗↗ h }. One can easily see that any
causally closed set of events contains a cycle in R iff it contains a cycle in R′, so
r can be bounded by the largest SCC of R′ instead.

Ontheother hand,R′mayactually containmorepairs thanR, andcomputingR′

may take quadratic time in |E|. So instead, we reduce the size ofR by a less drastic
method that can run in linear time: An event e is eliminated from R by fusing its
incoming and outgoing edges inR only if (i) e is not the source of a↗↗-edge and (ii)
fusing the edges and eliminating e will not increase the number of edges in R.

Fig. 2 demonstrates another important point. The figure contains two different
cycles, both of which contain f1. Thus, all events in Fig. 2 belong to the same
SCC in R. Indeed, we observe in our experiments that the SCCs of R tend
to be large, often composed of thousands of events, but consist of many short,
interlocking cycles. This suggests that an upper bound for r better than the size
of R, even after reduction, may still be feasible. We therefore suggest another
trick: first, check for deadlock while omitting φasym

P from φdead
P altogether. This

may result in false positives, i.e. a set of events leading to a deadlocked marking
that is not actually reachable because it contains a cycle in ↗. If the SAT solver
comes up with such a spurious deadlock, repeat with φasym

P properly included.
The experiments concerning these points are discussed in Section 5.1.

4.2 Reduction of Stubborn Events

In this section, we discuss an optimization that palliates a problem of SAT
checkers. Consider the occurrence net shown in Fig. 3. If event e1 fires, then
nothing can prevent e2, e3, e4, and e5 from firing. Thus, any configuration leading
to a deadlock must either contain all five events or none of them. However, e1 is
not guaranteed to fire due to the white event that consumes from its context.

478 C. Rodŕıguez and S. Schwoon

· · ·
· · ·

(p3)

e1 (p2)

(p1)
(q2)

(s)

e4

(t)e2

(q1)

(r2)

(r1)

e3

e5

Fig. 3. Stubborn events

In SAT solving, the value of a variable that is either known or has been
tentatively decided is propagated to simplify other clauses [6]. Thus, in the SAT
encoding for Fig. 3 (see [21] for more details), a SAT solver can immediately
decide that no deadlock configuration may contain e5 when the black event is a
cutoff. This propagation is handled very efficiently by modern solvers, and there
is no gain in emulating this behaviour while generating the SAT encoding.

However, unit propagation in our encoding is not able to detect that e3 and
e4 are logical implications of e1. Even when a solver tentatively sets e1 to true,
unit propagation only infers that e2 must also be true, but not e3 or e4. It takes
another decision, e.g. for e3 or e4, to derive a contradiction and, depending on
the solver, possibly multiple steps to decide that e1 must necessarily be false.

On the other hand, such information is easy to detect on the unfolding struc-
ture, and we shall modify the proposed SAT encoding in these cases. Let us
call stubborn any event e satisfying (•e ∪ e)• = {e}. Intuitively, once all events
preceding e have fired, then firing e is unavoidable to find a deadlock. In Fig. 3,
events e2, e3, e4, e5 are all stubborn.

Indeed, consider any deadlocked configuration C of P , and let e be any stub-
born event verifying •(•e∪e) ⊆ C. Then either e is in C or it is enabled at cut(C),
since C contains all events preceding e. But the latter is not possible because C
is a deadlock, so e must be in C, which proves that e ∈ C iff •(•e ∪ e) ⊆ C (the
other direction follows from the fact that C is causally closed).

This suggests that we could substitute every occurrence of e by a conjunction
of the variables associated to the predecessors of e. We denote by Es the set of
stubborn events, and define inductively the set of predecessors of any event e as
pred(e) := •(•e ∪ e) \ Es ∪

⋃
e′∈•(•e∪e)∩Es

pred(e′).

Proposition 1. If e is stubborn, then any deadlocked configuration C of P ver-
ifies that e ∈ C iff pred(e) ⊆ C.

Corollary 1. φdead
P ≡ φdead

P ∧
∧
e∈Es

(e ↔
∧
e′∈pred(e) e

′)

Corollary 1 can be exploited to modify φdead
P in two ways: for every stubborn

event e, (i) add a clause
∧
e′∈pred(e) e

′ → e, or (ii) substitute e by
∧
e′∈pred(e) e

′.

In our experiments, we chose method (ii), which eliminates the stubborn events
from the encoding altogether. The resulting formula, after an initial unit propa-
gation phase by the SAT solver, allows to immediately derive ¬e1. We note that
in certain cases, this can increase the formula by a quadratic factor, see [21].

Verification of Petri Nets with Read Arcs 479

We briefly explain the changes to φdead
P motivated by method (ii): φsym

P is
not affected because no stubborn event appears in any symmetric conflict, and
neither is φdis

P . In φcausal
P , however, clauses e → e′ will be replaced by e → e′′ for

every e′′ ∈ pred(e). In a clause
(
e∧
∧
e′∈c• ¬e′

)
→ p of φmark

P , we need to replace
e by a conjunction over pred(e). In principle, the same needs to be done for e′.
However, if |c•| ≥ 2, then no event in c• is stubborn, and nothing changes; but if
c• = {e′} is a singleton, and e′ is stubborn, then the clause is split into |pred(e′)|
different clauses. For φasym

P , in a clause of the form e ∧ f → [[e < f]], both e and
f are replaced by conjunctions, if applicable; thus, the formula will still require
ranks for e and f even if e or f are not present.

We remark that stubborn events are also treated specially in the stable-models
encoding of [11]. While stable models are similar to SAT, the treatment in [11] is
simpler; its analogue in propositional logic would not eliminate stubborn events
from the formula nor allow to directly conclude that e1 cannot be fired.

4.3 Additional Simplification

We briefly mention some possible simplifications of the formula. First, for a place
p, if p• ∪ p = ∅, then p does not appear in φdis

P and can be omitted from φmark
P .

Secondly, for two conditions c, d, if c• ⊆ d•, then AMO(c•) is implied by
AMO(d•) and can be omitted from φsym

P . Similarly, for two transition t, u where
•t ⊆ •u, disabledness of t implies disabledness of u, so u can be omitted from
φdis
P . We return to this point in Section 5.1.

4.4 Reachability and Coverability

The SAT encoding can be easily modified to check reachability or coverability
of a marking. For simplicity, the formulas given here are not directly in CNF.

For coverability, we want to check whether N has a reachable marking m
such that PM ⊆ m, where PM ⊆ P . This requires the following modifications:
φmark
P still has the same intention but the sense of the implication is reversed; if

a variable p is true we need to ensure that indeed some condition labelled by p
is marked in C. We introduce additional variables c for some conditions c:

φmark
P :=

∧
p∈PM

(
p →

∨
f(c)=p c

)
∧
∧
f(c)∈PM

(
c →

(∧
e∈•c e ∧

∧
e∈c• ¬e

))
Moreover, φdis

P specifies reachability of PM : φdis
P :=

∧
p∈PM

p
For reachability, we want to check whether a given marking m is reachable.

Then, the variables representing the places must contain the exact marking
reached by the event, which is achieved by replacing the one-sided implications of
φmark
P by equivalences. Moreover, φdis

P needs to be changed to
∧
p∈m p∧

∧
p/∈m ¬p.

4.5 Bounded Nets

We briefly sketch an extension to k-bounded nets. For deadlock checking, actu-
ally no modifications are needed because we require the preset and context of

480 C. Rodŕıguez and S. Schwoon

each transition to be a set. This is in the tradition of [1, 2, 22], where it helps
to ease the presentation. However, if presets and contexts could be general mul-
tisets, then, for p ∈ P , one could replace the variable p by variables pi, where
1 ≤ i ≤ k, with the meaning “p carries at least i tokens”. Then one would modify
φmark
P to make pi true if at least i conditions with label p are marked in C, and

φdis
P requires that for each transition t there exists some p ∈ •t ∪ t such that pi

is false, where i is the number of tokens in p required by t. The extension for
reachability is analogous, modulo the sense of the implication (cf. Section 4.4).

5 Experimental Evaluation

In this section, we evaluate the SAT-based reduction proposed in Section 4.
For this, we wrote a program that reads an unfolding prefix P generated by
Cunf [20] and outputs the associated formula φdead

P in DIMACS CNF format.
As a SAT solver, we used the well-known tool MiniSat [6].

In Section 5.1, we first report on the effect of certain encoding variants and
optimizations like those in Sections 4.1 to 4.3. In Section 5.2, we then compare
against other unfolding-based methods, and we evaluate the effect of using c-nets
rather than Petri nets. We concentrate on the aspect of deadlock checking; as
pointed out in Section 4.4, the encoding for reachability is very similar.

5.1 Optimizations

Section 4 proposed several optimizations of the encoding. We now empirically
evaluate their impact on the solving time. We employed as benchmarks the same
set of safe nets that has previously been used in other papers of the literature
on Petri net unfoldings, e.g. [11, 12, 22, 23]. For each Petri net N in the set, we
obtained a c-net N ′ by substituting pairs of arcs (p, t) and (t, p) in N by read
arcs; we thus have a set of Petri nets and an alternative set of c-nets.

Stubborn Event Elimination and Subset Reduction. Over the set of Petri
nets shown in Table 2, we found that removal of stubborn events reduces the
accumulated SAT solving time by 27%. When applied together with the subset
optimization from Section 4.3, this grows to 30%. For c-nets, we measured a 14%
reduction when stubborn events are removed from the encoding without acyclic-
ity constraints but only a 6% reduction if additionally the subset optimizations
are applied. Experiments over the encoding with acyclicity were similar.

This suggest that removal of stubborn events has a positive impact on per-
formance, while subset optimization has very limited, even negative impact. For
the following, we applied only the stubborn event optimization.

AMO Constraint. The constraint AMO(x1, . . . , xn) in φsym
P can be trivially

encoded by
∧

1≤i<j≤n(¬xi ∨ ¬xj). However, this pairwise encoding is quadratic,
and the SAT performance suffered for examples with large conflict sets.

Verification of Petri Nets with Read Arcs 481

A survey of better encodings can be found in [3]. Our tool uses a k-tree
encoding, that introduces O(n) additional variables and adds O(n) clauses, see
[21]. We observed an overall improvement when replacing the pairwise with the
k-tree encoding. The accumulated SAT solving time on our benchmarks under
values of k = 2, . . . , 8 was minimal for k = 4. Experiments over c-nets on the
encoding suggested k = 4 as a good candidate, as well. We therefore used 4-tree
encodings in φsym

P for the following experiments.

Acyclicity Checking. Section 4.1 explained that φasym
P encodes cycle-freeness

of configuration C w.r.t. the relation R = <·∪↗↗. We investigated three encodings
suggested in [4]: transitive closure, unary ranks, and binary ranks. The latter
clearly outperformed the others. In the binary rank encoding, every event is
associated with a rank, i.e. an integer up to some bound r, that is represented
by .log2 r/ boolean variables. Constraints of the form [[e < f]] ensure that the
rank of event e is less than the rank of event f if (e, f) ∈ R. If n is the number
of events in P , the resulting SAT encoding is of size O(n2 logn).

Moreover, Section 4.1 proposed a method to reduce the size of R. Table 1
shows the size of the direct asymmetric conflict relation before and after this
reduction for some c-nets unfoldings with at least one cycle in R. More precisely,
we show the size of the largest SCC (in most examples there is in fact only one
non-trivial SCC). In average, the method proposed eliminates 66% of the nodes
and 26% of the edges, seeming thus to be more effective at reducing the number
of nodes rather than the number of edges, wich in turn becomes a reduction in
the number of variables rather than the number of clauses of the encoding.

Table 1. Reduction of the asymmetric-conflict relation

Before reduction After reduction Ratio after/before
Net Nodes Edges Nodes Edges Nodes Edges

bds 1.sync 192 271 27 52 0.14 0.19
byzagr4 1b 3197 64501 2348 61088 0.73 0.95
q 1.sync 189 4095 126 4032 0.67 0.98
bds 1.fsa 66 89 9 16 0.14 0.18
dme11 8745 44968 4918 40301 0.56 0.90
rw 2w1r 1766 8877 915 7447 0.52 0.84

However, in some examples, the remaining SCCs are still rather large, on the
order of tens of thousands of events, and in these cases φasym

P negatively impacts
the running time. We therefore implemented a two-stage approach, in which
the first stage simply omits φasym

P from the formula. Only when this first stage
yields a false positive, a second stage with φasym

P is used to obtain a definitive
result. This approach was very successful: in over 100 different nets from various
sources that we tried, only 2 (small) nets yielded a false positive. The experiments
presented in the following use this two-stage approach.

482 C. Rodŕıguez and S. Schwoon

SAT-Solver Settings. MiniSat allows to change aspects of the SAT-solving
algorithm, such as decision variables, default polarity etc. We attempted to tweak
these settings in order to exploit knowledge about the problem domain, but
without obtaining significant improvements. More details are given in [21].

5.2 Comparisons

In [15], Khomenko and Koutny compared three versions of their deadlock check-
ing method, implemented in the tool clp, against the methods by McMillan [17],
Melzer and Römer [18], and Heljanko [11]. In their benchmarks, the first version
of their algorithm2 outperformed the other methods on almost all examples. We
experimentally confirmed this conclusion. Moreover, we learnt of an unpublished
SAT-based tool by Khomenko which is said to be slower than clp.3 We therefore
compare our technique with the first method of clp.4

We discuss two families of examples: a standard suite of benchmarks known
from the unfolding literature (see Section 5.1), and another family encoding
networks of logic gates. The first family does not specifically exploit the features
of c-nets; here the savings are not dramatic but still significant. In the second
family, c-nets lead to large time savings.

Table 2 presents the results on the aforementioned standard suite. We used
Mole [24] to produce finite complete prefixes of the Petri nets and Cunf [20]
to do the same for c-nets.5 The running times for Mole and Cunf are given in
the respective columns, the number of events and conditions of the two prefixes
is indicated in the columns |E| and |B|. For Petri nets, we also give the running
times of clp, and the running time of MiniSat in our encoding on the Petri net.
For c-nets we provide the running times of MiniSat with the settings discussed
in Section 5.1. Times are given in seconds and represent averages over 10 runs.

We do not provide the translation times to generate linear equation systems
(for clp) or SAT formulas (for MiniSat). Those times would not be very rep-
resentative since both translators are suboptimal; our own translator to SAT is
in a preliminary stage. Also, there is no reason to suspect that the translation
times for the linear equations of [15] and SAT, when optimized, would be very
different, and we expect such optimized times to be fractions of a second.

Compared to clp, SAT checking performs well over Petri nets, solving the
problems twice as fast on aggregate. Concerning the comparison of SAT check-
ing between Petri nets and c-nets, we obtain another advantage of 13% for
deadlock verification. More significantly, the time for generating c-net unfold-
ings is 30% less than for Petri nets. This advantage is not huge, but recall that
these benchmarks are already favourable examples for Petri net unfoldings and

2 Column std in Tables 1 and 2 in [15].
3 According to the author, V. Khomenko.
4 All experiments have been performed using Cunf v1.4, Mole v1.0.6, both compiled
with gcc 4.4.5, version 301 of clp, andMiniSat v2.2.0. Our machine has twelve 64bit
Intel Xeon CPUs, running at 2.67GHz, 50GB RAM and executes Linux 2.6.32-5.

5 The running times of Mole and Cunf are comparable on Petri nets, but Mole
produces prefixes in a format suitable for clp.

Verification of Petri Nets with Read Arcs 483

Table 2. Comparison of deadlock-checking methods; the Res(ult) is L(ive) or D(ead)

Petri net unfolding c-net unfolding

Mole clp SAT Cunf SAT

Net Res. Time |E| |B| Time Time Time |E| |B| Time

bds 1.sync L 0.58 12900 37306 0.04 0.01 0.14 1830 2771 <0.01
byzagr4 1b L 3.71 14724 42276 0.53 0.26 3.25 8044 17603 0.19
dme11 L 6.56 9185 31186 0.60 0.28 10.86 9185 16710 0.25
dpd 7.sync L 1.21 10354 29939 0.10 0.18 1.09 10354 21359 0.02

ftp 1.sync L 45.37 91730 275099 1.13 0.38 26.85 50928 96617 0.05
furnace 4 L 37.44 114477 264823 1.29 0.19 19.11 94413 147438 0.12
rw 12.sync L 3.95 98361 295152 0.08 0.02 3.96 98361 196796 0.02
rw 1w3r L 0.30 15432 28207 0.11 0.22 0.36 14521 24174 0.40
rw 2w1r L 0.22 9363 18575 0.04 0.34 0.32 9363 15304 0.58

elevator 4 D 2.58 16856 47743 0.24 0.03 1.51 16856 28593 0.06
key 4 D 1.68 69600 139206 0.07 0.08 2.07 4754 7862 <0.01
mmgt 4.fsa D 1.16 46902 92940 0.02 0.04 1.17 46902 92076 0.05
q 1.sync D 1.76 10716 30087 <0.01 0.02 1.54 10716 20567 0.01∑

106.52 4.25 2.05 72.23 1.75

were not specifically designed to exploit the advantages of c-nets. The two-stage
approach was essential for performance: while the acyclic constraints had a big
impact only on a few examples (notably byzagr4 1b,dme,rw*), that effect would
have more than nullified the advantage of faster unfolding times.

We now present a class of nets in which read arcs have natural advantages: the
encoding of asynchronous circuits of logic gates as Petri nets, one of the moti-
vations originally mentioned by McMillan [17]. In this encoding, the signals, i.e.
the inputs and outputs of each gate, are modelled with two places for indicating
whether the signal is high (1) or low (0). The outputs change as a function of read-
ing the inputs. Fig. 4 (a) shows an AND-gate and its encoding as a c-net fragment.

To illustrate the benefits that c-nets enjoy here, we discuss a simple experi-
ment. We consider a grid of n :=k×k AND-gates, shown in Fig. 4 (b) for k = 3.
The inputs for the AND-gates are at the left and top of the figure, and outputs
propagate to the right and towards the bottom. Inputs may switch freely between
high and low. We encoded such grids into c-nets; additionally, we replaced read
arcs with arrow loops to obtain equivalent Petri nets (so called plain encodings).
We then used Cunf to construct complete unfolding prefixes of the c-nets and
their plain encodings, and observed that signal changes may be propagated to
the bottom right in many different orders, which are distinguished by Petri-net
unfoldings but not by c-net unfoldings. Hence, unfoldings of the plain nets were
of exponential size in n, while the contextual ones were linear. Moreover, Cunf
built the latter ones in time O(n3), see Fig. 4 (c). The verification method for
c-nets herein presented allows to profit from the reduced unfolding time.

484 C. Rodŕıguez and S. Schwoon

c1a1

a0 c0 b0

a
b

c
(b) (c)

b1

(a)

10−2

10−1

100
101
102

10 15 20 25
k

T
im

e
(s
)

plain
contextual

Fig. 4. (a) Encoding of a logical AND-gate; (b) grid of AND-gates; (c) unfolding times

6 Conclusions

We presented verification algorithms based on c-net unfoldings. The twofold ad-
vantages over previous work are the overall performance of the SAT encoding,
and that c-nets allow to profit from faster unfolding procedures and/or faster
verification on the resulting unfolding prefixes. The latter result was not a fore-
gone conclusion due to the richer structure of c-net unfoldings, in particular the
presence of cycles and histories.

We studied optimizations of the encoding, concentrating on optimizations on
the net level, while leaving optimizations on the logical level to the SAT solver.

An interesting future direction of work would be to extend the verification
algorithms to a richer set of properties. E.g., LTL model-checking for Petri nets
has been investigated in [7], but the trace logics investigated by Diekert and
Gastin [5] and others seem like another natural choice.

Acknowledgements. The authors would like to thank Keijo Heljanko, Victor
Khomenko, Paolo Baldan, and the referees for helpful hints and discussions.

References

1. Baldan, P., Bruni, A., Corradini, A., König, B., Schwoon, S.: On the Computa-
tion of McMillan’s Prefix for Contextual Nets and Graph Grammars. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 91–106. Springer, Heidelberg (2010)

2. Baldan, P., Corradini, A., König, B., Schwoon, S.: McMillan’s Complete Prefix
for Contextual Nets. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.)
ToPNoC 1. LNCS, vol. 5100, pp. 199–220. Springer, Heidelberg (2008)

3. Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proc. Constraint
Modelling and Reformulation (2010)

4. Codish, M., Genaim, S., Stuckey, P.J.: A declarative encoding of telecommunica-
tions feature subscription in SAT. In: Proc. PPDP, pp. 255–266. ACM (2009)

5. Diekert, V., Gastin, P.: From local to global temporal logics over Mazurkiewicz
traces. Theoretical Computer Science 356(1-2), 126–135 (2006)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

Verification of Petri Nets with Read Arcs 485

7. Esparza, J., Heljanko, K.: Implementing LTL Model Checking with Net Unfoldings.
In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg
(2001)

8. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science. Springer (2008)

9. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20, 285–310 (2002)

10. Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem.
Fund. Inf. 47(3-4), 231–245 (2001)

11. Heljanko, K.: Using logic programs with stable model semantics to solve deadlock
and reachability problems for 1-safe Petri nets. Fund. Inf. 37(3), 247–268 (1999)

12. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. Ph.D.
thesis, School of Computing Science, Newcastle University (2003)

13. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes – a new
condensed representation of Petri net behaviour. Act. Inf. 43(5), 307–330 (2006)

14. Khomenko, V., Koutny, M.: LP Deadlock Checking Using Partial Order Depen-
dencies. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 410–425.
Springer, Heidelberg (2000)

15. Khomenko, V., Koutny, M.: Verification of bounded Petri nets using integer pro-
gramming. Formal Methods in System Design 30(2), 143–176 (2007)

16. Khomenko, V.: Punf, homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
17. McMillan, K.L.: Using Unfoldings to avoid the State Explosion Problem in the

Verification of Asynchronous Circuits. In: Probst, D.K., von Bochmann, G. (eds.)
CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

18. Melzer, S., Römer, S.: Deadlock Checking using Net Unfoldings. In: Grumberg, O.
(ed.) CAV 1997. LNCS, vol. 1254, pp. 352–363. Springer, Heidelberg (1997)

19. Raynal, M.: Algorithms for Mutual Exclusion. MIT Press (1986)
20. Rodŕıguez, C.: Cunf, http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
21. Rodŕıguez, C., Schwoon, S.: Verification of Petri Nets with Read Arcs. Tech. Rep.

LSV-12-12, LSV, ENS de Cachan (2012)
22. Rodŕıguez, C., Schwoon, S., Baldan, P.: Efficient Contextual Unfolding. In: Katoen,

J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 342–357. Springer,
Heidelberg (2011)

23. Schröter, C.: Halbordnungs- und Reduktionstechniken für die automatische Veri-
fikation von verteilten Systemen. Ph.D. thesis, Universität Stuttgart (2006)

24. Schwoon, S.: Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
25. Schwoon, S., Rodŕıguez, C.: Construction and SAT-Based Verification of Contex-

tual Unfoldings. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 34–42.
Springer, Heidelberg (2011)

homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

Efficient Checking of Link-Reversal-Based

Concurrent Systems

Matthias Függer1,� and Josef Widder2,��

1 TU Wien, Embedded Computing Systems Group
2 TU Wien, Formal Methods in Systems Engineering Group

Abstract. Link reversal is an algorithmic method with various applica-
tions. Originally proposed by Gafni and Bertsekas in 1981 for routing in
radio networks, it has been later applied also to solve concurrency related
problems as mutual exclusion, resource allocation, and leader election.
For resource allocation, conflicts can be represented by conflict graphs,
and link reversal algorithms work on these graphs to resolve conflicts.
In this paper we establish that executions of link reversal algorithms on
large graphs are similar (a notion which we make precise in the paper) to
executions on smaller graphs. This similarity then allows to verify linear
time temporal properties of large systems, by verifying a smaller one.

1 Introduction

Model checking has been applied successfully to finite state hardware and soft-
ware systems. Application of these techniques to concurrent systems that involve
a possibly unbounded number of processes is still a major research question. In
a seminal paper, Emerson and Namjoshi [12] showed that the problem is unde-
cidable even in quite simple settings. Despite this discouraging result, Emerson
and Namjoshi studied systems where verification is possible. In particular, they
considered systems consisting of an arbitrary number of concurrent processes,
where processes are organized in a logical ring and a token that circulates in the
ring is used to coordinate special actions. They showed that verifying certain cor-
rectness properties of such systems of any size can be reduced to verifying small
systems of that kind. The token circulation scheme ensures that certain actions
of processes are scheduled in a strict round-robin fashion. Later, Clarke et al. [9]
generalized the work of Emerson and Namjoshi by replacing the round-robin
schedule by a more relaxed fairness assumption in which in each infinite run,
each process receives the token infinitely often, while the frequency at which the
token visits processes may vary between the processes.

While the techniques developed in [12] and [9] allow efficient verification,
the results are limited to single token-based concurrent systems. The basic idea

� Supported by projects P21694 and P20529 of the Austrian Science Fund (FWF).
�� Supported in part by the Austrian National Research Network S11403-N23 (RiSE)

of the Austrian Science Fund (FWF), by the Vienna Science and Technology Fund
(WWTF) grant PROSEED, and by NSF grant 0964696.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 486–499, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Checking of Link-Reversal-Based Concurrent Systems 487

behind structuring concurrent applications using a token is that the current
holder of the token is privileged, and thus allowed to enter its critical section.
Thus, tokens are a means to resolve conflicts over shared resources. However,
the systems considered in [12] or [9] are based on the assumption that at each
time at most one process may be privileged, which implicitly means that in both
systems the (conservative) assumption is made that all processes are in conflict
with all other processes. This assumption is usually overly pessimistic. Moreover,
it drastically restricts the degree of concurrency in a system, as at each time at
most one process may be scheduled to execute critical code, which basically
boils down to serializing concurrent actions. Link reversal algorithms have been
used to get rid of these limitations [6,3], thus allowing to model systems with
multiple tokens.

Substantial amount of literature is devoted to link-reversal algorithms (cf. [18]
for an overview). Link reversal algorithms work on directed graphs, where to each
node a process is associated. A process that is a sink, that is, all its incident
links are incoming, reverses some of its incident links to be no longer a sink.
Algorithms differ in which links are reversed. In this paper we will first focus on
the full reversal (FR) algorithm in which always all incident links are reversed,
and will then briefly discuss possible generalizations to the algorithm LR by
using a recently introduced formalism [8].

The application of link-reversal algorithms ranges from routing and other
problems in wireless networks [16,15,5] to resource allocation in concurrent sys-
tems [6,3]. While in the routing problem, the communication graph is the under-
lying graph on which the algorithms work, in resource allocation, one considers
the conflict graph: Let G be a conflict graph, that is, a directed graph, whose
underlying non-directed graph is connected. If two processes have a conflict—
for instance, access a common shared resource— there is a link between the two
processes in G. If a link points from i to j, then process j is currently preferred
to i. If a node is a sink, it is preferred with respect to all nodes it has a conflict
with. As two neighbors cannot be sinks at the same time, a process associated to
a sink may thus safely enter the critical section. Upon leaving the critical section
it has to reverse the direction of some incident links.

This approach allows high degrees of concurrency in that processes that do
not have a conflict may be in their critical sections at the same time. (Obviously,
there may be multiple sinks in a directed graph.) Note that in the case where
all processes have conflicts with all processes, this leads to a complete conflict
graph in which there is (at most) one sink; link reversal thus generalizes the
(round-robin) token based approach.

Link reversal algorithms determine the order in which processes take steps,
that is, the schedule. These schedules induce executions of a transition system
or Kripke structure for which temporal logic formulas can be verified. We are
interested in linear time temporal logic properties that consider only some of the
processes in a system.

Contributions. After recalling the FR algorithm and giving basic definitions, we
provide preliminary analysis of FR executions in Section 2. Apart from providing

488 M. Függer and J. Widder

a result on how steps of processes change the conflict graph, we explain how sys-
tems can be composed to ensure liveness and fairness. In Section 3, we define the
model checking problem we are interested in, and will recall an important theo-
rem that relates model checking of properties in the temporal logic LTL \ X to
stutter equivalence of traces. We can therefore concentrate on stutter equivalence
of FR executions in the following. In Section 4, we characterize properties of con-
flict graphs which imply stutter equivalence of FR executions from these graphs.
This analysis eventually leads to our major result in Corollary 1, which provides
us with a tool to construct small conflict graphs that allow to verify properties
of larger ones. For instance, properties that consider only two processes can be
verified by considering just a chain graph. In Section 4 we give some examples.
After discussing possible generalizations to other link reversal algorithms in Sec-
tion 5, we close with conclusions that can be drawn from our results, for instance,
concerning cut-off sizes.

2 The Full Reversal Algorithm

As mentioned above, the underlying structure of full reversal (FR) is a directed
graph. The FR algorithm [13], consists of the following rule which can be applied
by any node i that is a sink:

FR: All the links incident on i are reversed.

Note that the FR rule neither changes the set of nodes of the graph nor its
undirected support. Let G0 = 〈V,E〉 be a conflict graph, i.e., a directed graph
whose underlying non-directed graph is connected, with the set of nodes V and
the set of links E. An FR execution from G0 is an infinite sequence G0, S1,
. . ., Gt−1, St, . . . of alternating directed graphs and sets of nodes satisfying that
for each t ≥ 1, (i) if there is a sink in Gt−1, then St is a nonempty subset of
the sinks in Gt−1, and St = ∅ otherwise, and (ii) Gt is obtained from Gt−1 by
requiring each node i in St to apply the FR rule. A sequence of subsets of V ,
S = S1, S2, . . . is called a schedule, and a schedule satisfying (i) and (ii) for
initial graph G0 is called an FR schedule from G0. If i is in St, we say i takes a
step at iteration t in schedule S. For a given schedule S and a node i, let Wi(t)
be the work of i by t, that is, the number of iterations t′ ≤ t in which i ∈ St′ .
Formally, Wi(t) = |{t′ : 1 ≤ t′ ≤ t ∧ i ∈ St′}|. Initially, Wi(0) = 0 for all nodes i.

2.1 Basic Properties of FR-Based Schedules

We start by introducing some notation. In the following, let G = 〈V,E〉 be an
acyclic conflict graph. A chain is a sequence i0, . . . , ik of nodes in G, such that
either (im, im+1) is in E or (im+1, im) is in E, for 0 ≤ m < k, where k is called
the length of a chain c, denoted by len(c). A circuit is a chain with i0 = ik and
length greater than 0. A chain is simple if its nodes are pairwise distinct, except
for the first and last node which may be equal. Let Cs(i, j) be the set of simple
chains of nonzero length that start at i and end at j. A path is a chain i0, . . . , ik

Efficient Checking of Link-Reversal-Based Concurrent Systems 489

such that (im, im+1) is in E, for 0 ≤ m < k. The quantity rG(c), is the number
of links in c that are directed “to the right.” More formally, if c = i0, . . . , ik
is a chain in the graph G, rG(c) = |{(im, im+1) ∈ E : 0 ≤ m < k}|. Clearly,
rG(c) = len(c) if and only if c is a path. As the FR algorithm only changes the
direction of the links, but not the undirected support of the graph, we observe
that for any FR schedule from a graph G0, c is a chain in Gt if and only if c is
a chain in Gt+1.

Let Σ(G0) be the set of schedules, and let ΣFR(G0) ⊆ Σ(G0) be the set of
FR schedules from initial graph G0. We obtain the following invariant of chains
within FR executions:

Proposition 1. Let G0, S1, . . . , Gt, St+1, Gt+1, . . . be an FR execution. For any
two nodes i and j in V , and any chain c in Cs(i, j):

(1) rGt+1(c) = rGt(c), if St+1 \ {i, j} = St+1,
(2) rGt+1(c) = rGt(c) + 1, if i ∈ St+1 and j �∈ St+1,
(3) rGt+1(c) = rGt(c)− 1, if i �∈ St+1 and j ∈ St+1, and
(4) rGt+1(c) = rGt(c), otherwise, that is, if {i, j} ⊆ St+1.

Proof. Let the chain c = i0, . . . , i�.
(1) Nodes that do not belong to c and take steps, or nodes that do not take

steps have no influence on r(c). As neither i nor j take a step at iteration t+ 1,
we only have to consider nodes k with two distinct incoming links relative to c.
These nodes reverse the directions of both links relative to c. As both links are
reversed, the numbers of links pointing to left and right in c, respectively, remain
unchanged, which proves (1).

(2) Consider the case where i = i0 takes a step at iteration t+ 1, but j does
not. As i0 takes a step, it is a sink in Gt and therefore (i0, i1) is not a link
of Gt. Therefore i1 is not a sink in Gt, and i1 �∈ St+1. Letting c′ be the subchain
i1, . . . , i� of c, we may therefore apply case (1) to c′ and obtain

rGt+1(c
′) = rGt(c

′). (i)

As i0 reverses all links in iteration t+ 1, (i0, i1) is a link Gt+1. As (i0, i1) is not
a link of Gt, letting c′′ = i0, i1 we obtain

rGt+1(c
′′) = rGt(c

′′) + 1. (ii)

As c is the concatenation of the chains c′′ and c′, we obtain from (i) and (ii)
that rGt+1(c) = rGt+1(c

′′) + rGt+1(c
′) = rGt(c

′′) + 1 + rGt(c
′) = rGt(c) + 1. The

proposition follows in this case, and (3) can be proven analogously.
Similar arguments can be used for (4): Since (1) can be applied to i1, . . . , i�−1,

the number of right links stays constant in this subchain. As i and j take steps,
the first link (i1, i0) and the last link (i�−1, i�) in Gt are reversed in Gt+1. These
two reversal cancel each other out, and (4) follows. ��
For a graph G we define RG(i, j) = min{rG(c) | c ∈ Cs(i, j)}. For the cases of
Proposition 1 we thus observe, that in cases (1) and (4) RGt+1(i, j) = RGt(i, j),
in case (2) RGt+1(i, j) = RGt(i, j)+1, and in case (3) RGt+1(i, j) = RGt(i, j)−1.
By repeated application of Proposition 1 we thus obtain:

490 M. Függer and J. Widder

Proposition 2. If G0, S1, . . . , Gt, St+1, Gt+1, . . . is an FR execution from G0,
then for any two nodes i and j in V , and any t ≥ 0:

RGt(i, j) = RG0(i, j) +Wi(t)−Wj(t).

Proposition 3. Let G0, S1, . . . , Gt, St+1, Gt+1, . . . be an FR execution from G0.
For any t > 0, if j ∈ St and i ∈ V , then

Wj(t− 1)−Wi(t− 1) < RG0(i, j).

Proof. As j ∈ St, node j is a sink in Gt−1. It follows that at least the last link
in each chain ending at j is directed towards j and therefore RGt−1(i, j) > 0.

From Proposition 2 follows that

RGt−1(i, j) = RG0(i, j) +Wi(t− 1)−Wj(t− 1). (i)

Now, assume by ways of contradiction that Wj(t − 1) −Wi(t − 1) ≥ RG0(i, j),
that is,

0 ≤ −RG0(i, j) +Wj(t− 1)−Wi(t− 1). (ii)

Adding (i) and (ii), we obtain that RGt−1(i, j) ≤ 0 which provides the required
contradiction. ��

2.2 Ensuring Liveness and Fairness

Emerson and Namjoshi [12], restricted the systems by requiring that processes
are organized in a directed ring. In the link reversal approach processes can be
organized in different ways. Two important properties of schedules that should
be met by possible organizations are liveness and fairness: An FR schedule S
from graph G0 is called live if there is no t′ ≥ 1 such that St = ∅ for all t ≥ t′.
It is further called fair if each node in V takes an infinite number of steps in S.
If the difference on the number of times processes are scheduled is bounded, we
say a system ensures strong fairness.

To see when FR ensures liveness, we first observe that any acyclic conflict
graph always contain at least one sink. Further, as in FR always all links incident
to a sink are reversed, it is easy to see that FR maintains acyclicity. (This is a
well known fact already used in [13]; a proof based on invariants is given in [8].)
Hence, FR ensures that starting from an initial acyclic graph, all following graphs
are acyclic, and thus contain at least one sink. For our purposes we obtain:

Proposition 4. All FR schedules from an acyclic conflict graph are live.

We next show that any FR schedule is not only fair but even provides stronger
fairness guarantees:

Proposition 5. Let G0 be an acyclic conflict graph. All FR schedules from G0

ensure strong-fairness: for any two nodes i and j, and any iteration t ≥ 1,

Wi(t)−Wj(t) ≤ RG0(j, i).

Efficient Checking of Link-Reversal-Based Concurrent Systems 491

Proof. Assume by means of contradiction that there is an FR execution from G0

and an iteration t ≥ 1 such that Wi(t) − Wj(t) > RG0(j, i). Application of
Proposition 2 yields, RGt(j, i) = RG0(j, i)− (Wi(t)−Wj(t)) < 0; a contradiction
to RGt(j, i) being by definition non-negative. The proposition follows. ��

Since RG0(j, i) is bounded by the diameter of the graph G0, one immediately
obtains that |Wi(t) − Wj(t)| is at most the diameter of G0 for all t ≥ 0. We
thus conclude that from a composability viewpoint, composition of FR instances
without violating liveness and (strong) fairness requires just checking whether
the resulting graph is acyclic and is therefore not significantly more complex
than the composition of rings treated by Emerson and Namjoshi [12].

3 Checking FR Scheduled Systems

We assume that each node i in V is equipped with a deterministic finite state
machine on i’s local state si, where si can attain values from state space σ(i).
The global state is defined to be a tuple of local states s = (si)i∈V . In the
following we denote by I = {ij : 1 ≤ j ≤ |I|} a nonempty subset of V . If s is a
global state, then we denote by s|I the projection of the global state s to I, that
is, s|I = (si)i∈I . We assume for simplicity that nodes change their local state,
according to their state machine, only when scheduled. Thus given an initial
global state s0 = (s0i)i∈V , a schedule S from Σ(G0) induces an execution from s0,
that is, an infinite sequence s0, s1, . . . of global states. From the initial global
states and Σ(G0) one can define a transition system. Let AP be a set of atomic
propositions, and λI be a function λI : σ(i1)×σ(i2)×· · ·×σ(i|I|) → 2AP . Then, λ
is defined to be a labeling function for global states such that λ(s) = λI(s|I).
Fixing AP and λ, the transition system then defines a Kripke structure, which we
denote by MG0|I . The Kripke structure then defines a set of sequences of atomic
propositions, called traces. The model checking problem is whether MG0|I is
a model for some temporal logic formula ϕ over the atomic propositions AP ,
denoted by MG0|I |= ϕ.

Note that in an FR execution where I∩St = ∅, λI(st−1|I) = λI(s
t|I) and thus

λ(st−1) = λ(st). This behavior is called stuttering. In the following we shall use
well established results regarding stutter equivalence to show how to efficiently
verify FR scheduled systems. We need some more preliminaries. Stutter equiv-
alence of two traces τ1 and τ2 is defined as follows: From a trace τ , the stutter
free trace τ̄ is obtained by removing all successive repetitions. Then two traces
are stutter equivalent if τ̄1 = τ̄2.

For each schedule S = S1, S2, . . . from Σ(G0) and each nonempty subset I
of V , we define S | I to be the infinite sequence S1 ∩ I, S2 ∩ I, . . . called the
projection of S to I. Further for an infinite sequence S of subsets of V , denote
by Co(S) the condensed sequence of S, that is obtained from S by removing all
empty sets. We observe that if for two schedules S and S′, Co(S | I) = Co(S′ | I)
then the traces defined by S and S′ are stutter equivalent.

In this paper we consider model checking against linear temporal logic formu-
las. More precisely, we consider the linear temporal logic without the “next time”

492 M. Függer and J. Widder

operator LTL \ X. For this temporal logic, there exists the following theorem,
whose proof is given, for instance, in [2, page 534].

Theorem 1. For any two infinite traces τ1 and τ2 over atomic propositions AP ,
and for any LTL\X formula ϕ over AP , if τ1 and τ2 are stutter equivalent, then
τ1 |= ϕ if and only if τ2 |= ϕ.

In the following we are therefore interested in stutter equivalence of schedules,
and consequently stutter equivalence between the traces of the Kripke structures.
In particular, we will show that the set of all condensed FR schedules from
some conflict graph is equal to the set of all condensed FR schedules from a
considerably simpler and smaller “reduced” graph.

4 Equivalence of FR Schedules

In this section we will develop our central result in Corollary 1, that can be
found at the end of this section. It considers two graphs G0 and G′0, where the
set of nodes U is contained in both graphs. We show that if certain properties
of the directions on links along chains connecting nodes in U are satisfied in
both, then MG0|U |= ϕ if and only if MG′

0|U |= ϕ. Then, we will show that the
corollary gives us a tool to construct a small graph satisfying the same temporal
logic formulas as a large graph.

We start by analyzing the relationship between schedules of FR executions,
and initial link directions. We say a conflict graph G0 is U -oriented, where U is
a nonempty subset of nodes in G0, if there exists a path from each node in G0

to a node in U .

Proposition 6. Let G be an acyclic conflict graph and U a nonempty subset of
nodes in G. If only nodes in U are sinks in G, then G is U -oriented.

Proof. Assume that only nodes in U are sinks. Choose an arbitrary node i0 in G.
In case i0 is in U , there exists a path from i0 to a node in U , namely the empty
path, and we are done. Otherwise, i0 is not a sink in G. Thus there exists a
node i1 such that (i0, i1) is a link in G. Again, either i1 in U in which case there
exists a path from i0 to a node in U , or i1 is not a sink. By repeated application
of the above arguments, we obtain a sequence of nodes i0, i1, . . . whose nodes
are pairwise distinct because G is acyclic. As V is finite, one eventually ends up
in a node in U . Since the finite sequence is a path in G and its last node is in U ,
the proposition follows. ��

Using Proposition 6, we shall next establish the relation between FR executions
from a graph G0, and the direction of links on chains connecting two nodes in
G0. Intuitively, node i may take a step before node j if and only if on each chain
connecting j and i, at least one link is directed towards i.

Proposition 7. Let G0 be an acyclic conflict graph. For any two disjoint sub-
sets I and J of V , where I is nonempty, the following statements are equivalent:

Efficient Checking of Link-Reversal-Based Concurrent Systems 493

(A) There exists an FR execution from G0 such that all nodes in I take their
first step at the same iteration t ≥ 1, and no node in J takes a step before
or at iteration t.

(B) For all nodes i ∈ I and j ∈ I ∪ J , RG0(j, i) > 0.

Proof. To show that Statement (A) implies (B), let G0, S1, G1, . . . be an FR
execution from G0, where all nodes in I take their first step at iteration t, and
no node in J takes a step before or at iteration t. Then, all nodes i in I are sinks
in Gt−1. Thus all chains ending at i have at least one link directed towards i
and for all i in I and j in I ∪ J , RGt−1(j, i) > 0. Proposition 2 yields

RG0(j, i) +Wj(t− 1)−Wi(t− 1) = RGt−1(j, i) > 0.

From Wi(t− 1) = Wj(t− 1) = 0, one finally obtains RG0(j, i) > 0.

To show that Statement (B) implies (A), let G0, S1, G1, . . . , St−1, Gt−1, with
t − 1 ≥ 0, be a (finite) prefix of an FR execution from G0, where for all t′,
1 ≤ t′ ≤ t − 1, no node in I ∪ J takes a step at iteration t′, and only nodes
in I ∪ J are sinks in Gt−1. Such a prefix must exist as otherwise in all FR
executions from G0, where nodes I∪J do not take steps, there exists a node u in
V \(I∪J) that takes an infinite number of steps, which contradicts strong-fairness
of Proposition 5. Proposition 6 further yields that Gt−1 is (I ∪ J)-oriented.

To show that Statement (A) follows, it is thus sufficient to show that all nodes
in I are sinks in Gt−1: Assume by means of contradiction that there is a node i
in I that is not a sink in Gt−1. Then there exists a neighbor u of i, such that, (i, u)
is a link in Gt−1. Since Gt−1 is (I ∪ J)-oriented, there must be a path from u to
some j′ in I∪J . Thus there is a path from i to j′. It follows that RGt−1(j

′, i) = 0.
Further, by Proposition 2, RG0(j

′, i) + Wj′ (t − 1) − Wi(t − 1) = RGt−1(j
′, i).

Because Wj′ (t− 1) = Wi(t− 1) = 0, it holds that RG0(j
′, i) = 0, a contradiction

to Statement (B). ��

For a nonempty set of nodes U ⊆ V , Proposition 7 allows to determine whether
there exist FR schedules S from initial graph G0 such that the condensed sched-
ule Co(S | U) starts with a set I ⊆ U . For example, in case U = {i, j}, there exists
a condensed schedule Co(S | U) that starts with {i, j} if and only if RG0(i, j) > 0
and RG0(j, i) > 0.

Repeated application of Propositions 2 and 7, finally allows us to determine
the set of all possible condensed schedules Co(S | U), where S is an FR schedule
from G0 and U ⊆ V . This set is called the set of U -condensed FR schedules
from G0.

Theorem 2. Let G0 be an acyclic conflict graph, U a nonempty subset of its
nodes, and S = S1, S2, . . . a schedule of nodes in U . The following statements
are equivalent:

(A) Schedule S is a U -condensed FR schedule from G0.
(B) For all t ≥ 1, (B.i) St is nonempty, and (B.ii) for each node i in St, and

each j in U , Wi(t− 1)−Wj(t− 1) < RG0(j, i).

494 M. Függer and J. Widder

j

i

Wi(t)

Wj(t)

0 1 2 3 4 5
0

1

2

3

4

RG0(i, j)

RG0(j, i)

Fig. 1. Complete conflict graph G0 and set of {i, j}-condensed FR schedules from G0

Proof. To show that Statement (A) implies (B), first observe that (B.i) imme-
diately follows from liveness and fairness of FR schedules from acyclic conflict
graphs. Further, (B.ii) follows from Proposition 3.

To show that Statement (B) implies (A), we prove by induction on t ≥ 1, that
for all t ≥ 1 there exists an FR schedule S′ from initial graph G0 such that
Co(S′ | U) has a prefix of length t equal to S1, S2, . . . , St. From this it follows
that Co(S′ | U) = S, and thus (A) holds.

Induction basis (t = 1). Let I = S1 and J = U . For all i ∈ I and j ∈ J follows
from our assumption that RG0(j, i) > Wi(0) − Wj(0). As Wi(0) = Wj(0) = 0,
it follows that RG0(j, i) > 0. Therefore, we may apply Proposition 7 with initial
graph G0, in order to obtain that there exists an FR schedule S′ from initial
graph G0 such that schedule Co(S′ | U) starts with I = S1.

Inductive step (t − 1 → t). Assume that there is an FR schedule S′ such that
Co(S′ | U) has a prefix of length t− 1 equal to S1, S2, . . . , St−1. Letting I = St
and J = U , we obtain from Proposition 2 that for all i in I and j in J ,

RGt−1(j, i) = RG0(j, i)− (Wi(t− 1)−Wj(t− 1)) > 0 . (1)

Application of Proposition 7 with Gt−1 as initial graph, and the sets I and J
as defined above, together with Equation (1) yields that there exists an FR
schedule S′ from initial graph G0 such that schedule Co(S′ | U) starts with
S1, S2, . . . , St. The theorem follows. ��

Figures 1 and 2 show examples of condensed schedules as characterized by The-
orem 2. Figure 1 depicts a complete conflict graph and Figure 2 a chain conflict
graph, respectively, together with a graphical representation of the set of all
{i, j}-condensed FR schedules from the respective graphs: Hereby a schedule
is represented by a path in the infinite lattice. For example the (only) path in
Figure 1 corresponds to the (only) {i, j}-condensed FR schedule {i}, {j}, {i}, . . .
from the complete conflict graph.

Efficient Checking of Link-Reversal-Based Concurrent Systems 495

i j

Wi(t)

Wj(t)

0 1 2 3 4 5
0

1

2

3

4

RG0(i, j)

RG0(j, i)

Fig. 2. Chain conflict graph G0 and set of {i, j}-condensed FR schedules from G0

From the understanding of FR schedules we obtained from Theorem 2, we
are now in the position to state the main theorem of this paper. It is an exact
characterization of all conflict graphs G0 for which the set of U -condensed FR
schedules from G0 is the same.

Theorem 3. Let G0 = 〈V,E〉 and G′0 = 〈V ′, E′〉 be acyclic conflict graphs and
let U ⊆ V ∩ V ′ be nonempty. If for all i and j in U , RG0(i, j) = RG′

0
(i, j),

then the set of U -condensed FR schedules from G0 is identical to the set of
U -condensed FR schedules from G′0.

Proof. According to Theorem 2, the set of U -condensed FR schedules from G0

is the set of schedules satisfying that for all t ≥ 1 (i) St is nonempty, and (ii) for
each node i in St ⊆ U , and each node j in U , Wi(t− 1)−Wj(t− 1) < RG0(j, i).
This condition depends on G0 only by the value of RG0(j, i), for any i and j in U .
As by our assumption, RG0(i, j) = RG′

0
(i, j), for all i and j in U , the theorem

follows. ��

Combination of Theorem 3 and Theorem 1 thus allows us to check properties
on executions induced by an FR schedule from the simple reduced graph of the
original graph G0:

Corollary 1. Let G0 = 〈V,E〉 and G′0 = 〈V ′, E′〉 be acyclic conflict graphs and
let U ⊆ V ∩ V ′ be nonempty. Further let ϕ be a LTL \ X formula over AP . If,
for all nodes i and j in U , RG0(i, j) = RG′

0
(i, j), then MG0|U |= ϕ if and only

if MG′
0|U |= ϕ.

Corollary 1 provides us with a way to construct from G0 simpler graphs G′0 that
allow to verify the same properties. We just have to ensure that RG0(i, j) =
RG′

0
(i, j). Interestingly there exists a very simple graph in the case U comprises

of two distinct nodes i and j of G0, only: We denote by Redij(G0) a reduced
graph of G0. It is a chain graph that starts with node i, ends with node j, and
has RG0(j, i) links pointing towards i and RG0(i, j) links pointing towards j in
it. Then, the set of {i, j}-condensed FR schedules from G0 is identical to the set
of {i, j}-condensed FR schedules from Redij(G0).

496 M. Függer and J. Widder

j

i

k

j

i

k

i j

i j

i

j
i j

Fig. 3. Conflict graphs (on the left) and their small reduced graphs (on the right)

One can easily generalize graph Redij(G0) to the case where U is an arbitrary
nonempty subset of nodes in G0: For each pair i, j of nodes in U , there is a chain
in RedU (G0) that starts with node i, ends with node j, and has RG0(j, i) links
pointing towards i and RG0(i, j) links pointing towards j in it. Any two such
chains have distinct nodes except possibly for the first or last node. Figure 3
shows some examples of how small reduced graphs can be constructed from
conflict graphs G0.

5 Generalizing FR

Recently, Charron-Bost et al. [8] introduced a new formalism called LR that
generalizes FR and another link reversal algorithm introduced by Gafni and
Bertsekas [13] called partial reversal (PR). In PR only those links are reversed
that have not been reversed since the last time a node was a sink.

The LR algorithm works on directed graphs whose links are labeled with �

or �. Each node i can apply the following (mutually exclusive) rules if it is a sink:

R1: If at least one link incident on i is labeled �, then all the links incident on
node i that are labeled with � are reversed, the other incident links are not
reversed, and the labels on all the incident links are flipped.

R2: If all the links incident on node i are labeled �, then all the links incident
on i are reversed, but none of their labels is changed.

Efficient Checking of Link-Reversal-Based Concurrent Systems 497

This approach generalizes FR and PR via different initial link labelings: if the
links are all initially labeled with �, links remain labeled with � and a sink can
execute R2 only. The generated executions are FR executions. Otherwise, if all
links are initially labeled with �, then certain nodes may apply R1. One can
show that the generated executions are PR executions. Non-uniform labelings
may lead to executions different from FR and PR.

Ensuring Liveness and Fairness. We have discussed above that composing two
graphs without violating liveness and fairness in the FR case requires just to
ensure acyclicity of the resulting initial graph. In the general LR case liveness
and fairness do not follow from the initial graph being acyclic. However, in [8] we
introduced a simple property (AC) on graphs that guarantees both liveness and
fairness of LR schedules from graphs where (AC) is satisfied. It was shown in [7]
that checking the (AC) condition for a graph can be reduced to checking the
acyclicity of a transformed graph and can thus be achieved efficiently. Moreover,
in [8] we discussed a specialization of (AC) that can be easily implemented: for
each node, all incoming labels are locally uniformly labeled (either by � or �).
Finding working initial labelings can thus be done efficiently.

For composition purposes, note that joining two graph components A and B
can be done by connecting nodes in A with nodes in B. If all links are directed
from A to B and labeled with �, (AC) is satisfied if (AC) is satisfied in A and B.

Hence, from a composability viewpoint the more general link reversal ap-
proach is not significantly more complex than FR.

Checking LR scheduled systems. We have recently shown [7] that any LR exe-
cution from a labeled conflict graph G0 is equivalent to an FR execution from
a (non labeled) transformed conflict graph GFR

0 : For each node i in G0, there
is either one node i′ or two nodes i′0 and i′1 in graph GFR

0 . Node i′ respectively
nodes i′0 and i′1 are called the corresponding nodes of i. Whether there are one
or two corresponding nodes of i depends on the labels and directions of links
incident on i only. In [7], we have shown that there is a bijection from the set of
LR schedules from G0 to the set of FR schedule from GFR

0 such that, node i takes
a step at iteration t in the LR execution if and only if one of the corresponding
nodes of i takes a step at iteration t in the FR execution.

Consequently, we can apply Corollary 1 to conflict graph GFR
0 , which easily

generalizes our approach to LR. Note, that since GFR
0 has at most twice the

nodes of G0, this approach is still efficient.

6 Discussions

We recalled the link reversal approach for scheduling concurrent systems, and pre-
sented new results regarding the verification of systems based on this approach.
Thework is closely related to parameterizedmodel checking [1,4,14,17,10,11]where
one tries to verify properties of systems of any size. In this context, Emerson and
Namjoshi [12] andClarke et al. [9] presented constant size cut-offs— that is, graphs

498 M. Függer and J. Widder

consisting of two to five nodes— for restricted classes of temporal logic formulas.
They proved for token-based systems that if some temporal logic formula can be
verified for the cut-off graphs, then they hold for systems of any size. One impor-
tant property of the restricted classes of temporal logic is that their satisfiability
has to be independent of the system size. This is why usually the “next time” op-
erator has to be forbidden.

For link-reversal-based systems, one consequence of our Corollary 1 is that
system size cannot be determined by our logic: For each graph G0, all nodes i
and j in U , one can easily create a graph G′0 containing more nodes (for in-
stance by appending a chain of arbitrary length to one node), that still satisfies
RG0(i, j) = RG′

0
(i, j). With this respect, the correctness of some systems of ar-

bitrary size follows from the correctness of systems that are scheduled according
to our reduced graphs.

With respect to cut-off sizes, assume each node i’s state machine can repre-
sent— for some constant C—a counter ci, for 0 ≤ ci < C. Upon each step of
node i the counter ci is increased by one. One can then define a constant D,
satisfying D < C, and a labeling function that maps the global states satisfying
ci− cj ≤ D to some atomic proposition p. Consider the problem of verifying the
property ϕ ≡ Gp, which means that p is always satisfied. Proposition 5 shows
that the difference of the work done by two nodes Wi(t) − Wj(t) is bounded
by the diameter, from which follows that any graph with diameter at most D
satisfies ϕ, while it is easy to construct a graph with a diameter greater than D
that violates ϕ. We conclude, that there cannot be a constant size cut-off for
link-reversal-based systems even if one wants to verify properties that depend on
two processes only. This is in sharp contrasts to the results on single token-based
systems mentioned above.

Acknowledgments. We are grateful to Igor Konnov for valuable discussions
and comments on earlier versions of the paper.

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)
3. Barbosa, V.C., Gafni, E.: Concurrency in heavily loaded neighborhood-constrained

systems. ACM Trans. Program. Lang. Syst. 11(4), 562–584 (1989)
4. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81(1), 13–31 (1989)
5. Busch, C., Surapaneni, S., Tirthapura, S.: Analysis of link reversal routing algo-

rithms for mobile ad hoc networks. In: Proceedings of the 15th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pp. 210–219 (2003)

6. Mani Chandy, K., Misra, J.: The drinking philosopher’s problem. ACM Transac-
tions on Programming Languages and Systems 6(4), 632–646 (1984)

7. Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Partial is Full. In: Kosowski,
A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 113–124. Springer,
Heidelberg (2011)

Efficient Checking of Link-Reversal-Based Concurrent Systems 499

8. Charron-Bost, B., Gaillard, A., Welch, J.L., Widder, J.: Routing without ordering.
In: Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 145–153 (2009)

9. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by Network Decom-
position. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 276–291. Springer, Heidelberg (2004)

10. Allen, E., Emerson, V.K.: Reducing Model Checking of the Many to the Few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

11. Emerson, E.A., Kahlon, V.: Parameterized Model Checking of Ring-Based Mes-
sage Passing Systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

12. Allen Emerson, E., Namjoshi, K.S.: Reasoning about rings. In: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pp. 85–94 (1995)

13. Gafni, E., Bertsekas, D.P.: Distributed algorithms for generating loop-free routes
in networks with frequently changing topology. IEEE Transactions on Communi-
cations 29(1), 11–18 (1981)

14. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992)

15. Malpani, N., Welch, J.L., Vaidya, N.: Leader election algorithms for mobile ad hoc
networks. In: Proceedings of the 4th International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communication (2000)

16. Park, V.D., Scott Corson, M.: A highly adaptive distributed routing algorithm
for mobile wireless networks. In: 16th Conference on Computer Communications
(Infocom), pp. 1405–1413 (April 1997)

17. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-Counter Abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

18. Welch, J.L., Walter, J.E.: Link Reversal Algorithms. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers (2011)

Efficient Coverability Analysis
by Proof Minimization�

Alexander Kaiser1, Daniel Kroening1, and Thomas Wahl2

1 University of Oxford, United Kingdom
2 Northeastern University, Boston, United States

Abstract. We consider multi-threaded programs with an unbounded number of
threads executing a finite-state, non-recursive procedure. Safety properties of
such programs can be checked via reduction to the coverability problem for well-
structured transition systems (WSTS). In this paper, we present a novel, sound
and complete yet empirically much improved solution to this problem. The key
idea to achieve a compact search structure is to track uncoverability only for min-
imal uncoverable elements, even if these elements are not part of the original cov-
erability query. To this end, our algorithm examines elements in the downward
closure of elements backward-reachable from the initial queries. A downside is
that the algorithm may unnecessarily explore elements that turn out coverable
and thus fail to contribute to the proof minimization. We counter this effect using
a forward search engine that simultaneously generates (a subset of all) coverable
elements, e.g., a generalized Karp-Miller procedure. We demonstrate in extensive
experiments on C programs that our approach targeting minimal uncoverability
proofs outperforms existing techniques by orders of magnitude.

1 Introduction

In anticipation of the prominent role concurrency is predicted to play in future software,
popular systems languages like C and Java readily embrace support for multiple threads
of execution. Communication among threads is naturally enabled via shared variables,
mutexes, but also via non-blocking sleep/wake-up mechanisms. The correct use of these
communication mechanisms is largely up to the user. The inevitable frustration caused
by attempts to find and reproduce concurrency bugs through conventional program test-
ing strongly encourages the use of automated formal techniques.

In this paper, we consider finite-state, non-recursive procedures executed by an un-
specified number of threads. This scenario is highly relevant in practice. For example,
the number of processes concurrently requesting I/O services in an operating system
environment cannot be determined a priori. For settings like this, we are interested in
detecting, or proving the absence of, assertion failures, mutual-exclusion violations, etc.

Despite the arbitrary number of threads, problems of this kind have long been known
to be decidable [2], for instance by reduction to the coverability problem for the rich
class of well-structured transition systems (WSTS) [23,16]. “Coverability” of an erro-
neous configuration of threads (e.g., violating mutual exclusion) is tantamount to the
existence of a reachable program state exhibiting such an error.

� This research is supported by the EPSRC project EP/G026254/1 and ERC project 280053.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 500–515, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Coverability Analysis by Proof Minimization 501

While decidable, checking coverability for WSTS incurs a high computational cost.
For example, for the subclass of vector addition systems the problem was shown to be
EXPSPACE-complete [6]. Extensions such as transfer transitions, which allow several
threads to change their local state simultaneously and are essential to model broad-
cast primitives and predicate abstractions of broadcast-free programs [10,9], render the
problem Ackermann-hard [33]. The significance of the coverability problem both as a
theoretical challenge, as well as in practical concurrent program verification, has led
to a flurry of related activity in recent years [29,2,21,20,3,25]. The most general solu-
tion to the coverability problem was presented in a paper by Abdulla et al. [2], which
backward-explores states starting from the target state.

In this paper, we introduce a new, sound and complete solution to the coverabil-
ity problem in WSTS. In contrast to existing techniques, our method relies on se-
quences of many inexpensive uncoverability proofs that build upon one another. We
compute such proofs by searching the downward-closure of states encountered dur-
ing backward exploration from the target state for smallest uncoverable members. Ele-
ments encountered during that search that are not currently known to be coverable give
rise to “uncoverability candidates”. If a candidate proves uncoverable, so are all ele-
ments in its upward closure, which in the end contributes to the decision for the target
state. Otherwise, the coverable candidate is retained to prevent it from being expanded
again.

The downside of such a “speculative exploration” is that coverable exploration can-
didates mean wasted effort. This effort can, however, be largely reduced using a simulta-
neously running forward search engine that labels states as coverable and thus prevents
them from being explored in the (futile) hope of finding an uncoverability proof. The key
is that such a forward engine acts only as a “catalyst”: it affects the speed of the overall
algorithm, not its result. Thus, we can use incomplete procedures such as generalizations
of the (forward-directed) Karp-Miller algorithm [26,11,14].

To summarize, this work makes the following contributions:

– We present a novel approach to coverability checking in WSTS that combines for-
ward propagation of underapproximations with backward propagation of overap-
proximations.

– We provide an implementation (publicly available; see Section 5) that accepts Petri
nets with transfer arcs, and an extension to verifying C programs with unbounded
thread counts in a predicate abstraction-based CEGAR loop [4,7]. Our algorithm
outperforms the best known coverability approach by orders of magnitude, enabling
the analysis of programs which are out of scope of the previous technology. The
experiments also reveal that our approach is able to guide the search far more ef-
fectively than existing structural invariant heuristics [13,8].

These improvements are possible thanks to the compactness of the uncoverability proofs
generated during exploration. On our C benchmarks, we observe reductions of up to
95% in the proof size.

502 A. Kaiser, D. Kroening, and T. Wahl

2 System Model and Problem Definition

Our algorithms operate on well-structured transition systems (WSTS) [16]. A WSTS
is a transition system equipped with a well-quasi-ordering � on its states that satisfies
the following monotonicity property: for all states u, u′, r, if u′ is a successor of u and
r � u, then there exists a successor r′ of r such that r′ � u′. In other words, � is
a simulation relation for the transition system. A state q is coverable if there exists a
reachable state v such that v � q ; the definition of “reachable (with respect to a set of
initial states)” is standard.

Let now (M,�) be a WSTS. We denote by Cover the coverability set, consisting of
all states covered by some reachable state. The coverability problem is: given a state
q ∈ V , determine whether q is coverable.

Thread Transition Systems. We give an example of a class of WSTS called thread
transition system (TTS) that are motivated by the task of verifying multi-threaded asyn-
chronous software. A TTS is a machine model that gives rise to transition systems equal
in expressiveness to Petri nets [25,28]. We use TTS in examples throughout this paper.

Let S and L be finite sets of shared and local states, respectively. The elements of
T = S×L are called thread states. Formally, a thread transition system (TTS) is a pair
(T,Δ), where Δ ⊆ T × T models thread transitions. Let V = ∪∞n=0(S × Ln). The
elements of V are called states; we write them in the form (s | l1, . . . , ln). A TTS gives
rise to a transition system M = (V,�) with

(s | l1, . . . , ln) � (s′ | l′1, . . . , l′n)

exactly if, for some i ∈ {1, . . . , n}, (s, li, s′, l′i) ∈ Δ and for all j �= i, lj = l′j . That is,
transitions may affect the shared state, and the local state of exactly one thread in local
state l.

Given sets Is ⊆ S and Il ⊆ L of initial shared and local states, respectively, we
define the set of initial states to be I = Is × (∪∞n=0 I

n
l). An execution of transition

system M is a finite or infinite sequence of states in V whose adjacent states are related
by �; the first state must be initial. A state is reachable if it appears in some execution.

To show that M is a WSTS, let the covers relation � over V be defined as follows:

(s | l1, . . . , ln) � (s′ | l′1, . . . , l′n)

whenever s = s′ and 〈l1, . . . , ln〉 ⊇ 〈l′1, . . . , l′n′〉, where 〈x〉 denotes the multiset with
the elements from x. Let further v < v′ whenever v � v′ and v �= v′. If 0 ∈ S
and 0, 1, 2 ∈ L, then for example (0 | 0, 2, 0, 1) � (0 | 2, 0), but (0 | 0, 2, 0, 1) ��
(0 | 0, 2, 0, 0). Relation � is neither symmetric nor anti-symmetric: states that cover
each other are identical up to permutations of the threads and thus form a classical
thread symmetry equivalence class. Relation � is thus a quasi-order, and in fact a well-
quasi-order (wqo) on V : any infinite sequence v1, v2, . . . of elements from V contains
an increasing pair vi � vj with i < j. It is easy to see that (M,�) fulfills the definition
of a WSTS.

Efficient Coverability Analysis by Proof Minimization 503

q = (3 |) (2 | 2) (0 | 2, 2)

(1 | 1, 1, 1) (1 | 1, 1, 2) (1 | 1, 2, 2) (1 | 2, 2, 2)

(0 | 0, 1, 1) (0 | 0, 1, 2)

t1 t2

t3

t4t4t4

t5 t5

q = (3 |) (2 |) (0 | 2)

(1 | 1, 1) (1 | 1, 2) (1 | 2, 2)

(0 | 1)

t1 t2

t3

t4t4

t5

Fig. 1. Standard and minimal uncoverability proof for target q. Arrows → visualize covering
predecessor relations, subscripted by the inducing thread transition; note that p → w implies
p ∈ CPre(w). Arrows p � w indicate that there exists some v ∈ CPre(w) such that v ' p.

3 Compact Backward Reachable Sets

We introduce some basic definitions and sketch the idea underlying our approach. A set
P ⊆ V of states is upward-closed if, for any v ∈ P and any v′, v′ � v implies v′ ∈ P .
We write ↑P for the upward closure of P , i.e., the least upward-closed set that contains
P , and minP for the set of minimal elements of P , i.e., the least subset M of P such
that ↑P = ↑M . Every upward-closed set is representable by its minimal elements, of
which only a finite number exists due to the wqo properties of �. The term and symbol
downward-closed and ↓P are defined analogously.

Let the covering predecessors of a state v ∈ V , denoted by CPre(v), be all the
minimal states that have a successor covering v:

CPre(v) = min{p ∈ V | ∃v′ ∈ V : p � v′ ∧ v′ � v} .

Note that for TTS a state (s | . . .) ∈ CPre(v) involves an additional thread if no thread
in v is responsible for the transition to shared state s (we will see an example later on).

Algorithm 1. Bc(q ∈ V)

1: W := {q} ; U := {q}
2: while ∃w ∈W : w ∈ min(U) do
3: W := W \ {w}
4: for all p ∈ CPre(w) : p /∈ ↑U do
5: if p ∈ I then
6: return “q ∈ Cover”
7: W := W ∪{p} ; U := U ∪{p}
8: return “q /∈ Cover”

Backward Reachability. Algorithm 1
shows a refined version of the classical
backward search for WSTS [2,1]. Input is
a target state q ∈ V . The algorithm main-
tains a set U ⊆ V with vertices that are
labeled and identified with encountered
states, and a work set W ⊆ U of yet un-
processed vertices.

The algorithm performs an iterative
search over covering predecessors start-
ing from q. It terminates either by finding an execution leading to a state that covers q,
or when no minimal and unprocessed vertex remains (this eventually happens since �
is a wqo), thus proving the uncoverability of the target state.

504 A. Kaiser, D. Kroening, and T. Wahl

Minimal Uncoverability Proofs. Let us assume for the rest of this section that the
target q is uncoverable. In this case Algorithm 1 computes a representation (in terms of
minimal states in U) of all states that have an emanating execution leading to a state
that covers q. This set, which we denote by Brs, is upward-closed due to monotonicity.

Instead of computing this set precisely we can, however, also prove the target state
uncoverable by any overapproximation Brs� of this set that still enjoys disjointness
from the initial states. The crux is, given that upward-closed sets are represented by
their minimal elements, overapproximating these sets by adding smaller (“�”) elements
leads to fewer and smaller minimal elements, hence to a more succinct representation.
The following lemma reveals how to exploit this property and settle the uncoverability
more efficiently.

Lemma 1. Let v and v′ be two states such that v′ � v. Then for all m ∈ CPre(v) there
exists m′ ∈ CPre(v′) such that m′ � m.

The proof of Lemma 1 is straightforward. Applied to Algorithm 1 this property gener-
alizes to paths of arbitrary length through the search: the smaller the covering predeces-
sors we examine in Line 4, the shorter the paths we need to explore.

Definition 2. An uncoverability proof for an element q is an upward-closed set of states
Brs� such that q ∈ Brs�, Brs� ⊇ CPre(Brs�), and Brs� ∩ I = ∅. An uncoverability proof
Brs� for q is minimal if minBrs� ⊆ min(V \ Cover), and every upward-closed subset
X ⊂ Brs� is not an uncoverability proof for q.

Minimal uncoverability proofs thus consist solely of smallest uncoverable states and
cannot be reduced by removing the upward-closure of some of its minimal states. Note
that multiple minimal uncoverability proofs may exist.

Bearing Lemma 1 in mind, we observe that minimal uncoverability proofs are an
interesting means for proving the uncoverability of target q, as they minimize the max-
imum length of paths Algorithm 1 needs to traverse.

Example. To illustrate this idea, let us consider the TTS with shared and local states
0, . . . , 3 and thread transitions t1 = (2, 2, 3, 0), t2 = (0, 2, 2, 0), t3 = (1, 2, 0, 0), t4 =
(1, 1, 1, 2), and t5 = (0, 0, 1, 1); the initial shared and local state sets are Is = Il = {0}.
Assume we wish to check whether shared state 3 can be reached, i.e., the target is (3 |).
Figure 1 (left) depicts the minimal states of the corresponding set Brs computed by
Algorithm 1. If we search, however, the downward-closure of encountered states for
smallest uncoverable members, we obtain the minimal uncoverability proof shown on
the right: the covering predecessors (2 | 2) and (0 | 0, 1, 2) give rise to candidate (2 |)
and (0 | 1), respectively. Comparing both uncoverability proofs, we observe reductions
in various dimensions: the number of minimal states drops from 9 to 7, the longest
traversed path from 7 to 6, and the maximum thread count from 3 to 2. �

In Section 5 we present experimental evidence that show the potential for compressing
the proof size along these dimensions in practice: for our concurrent C program bench-
marks we observed reductions by 95%, 67%, and 50%, respectively. This potential
is the key for the efficiency of our approach.

Efficient Coverability Analysis by Proof Minimization 505

4 Minimal Uncoverability Proof Algorithm

In this section, we develop our approach to compute minimal uncoverability proofs. An
obstacle is the determination of “helpful” candidates. We begin by illustrating it on the
TTS from the previous example; we omit non-minimal states for sake of brevity.

Example. Again, we start from target (3 |). However, before exploring covering pre-
decessors, we check whether a helpful candidate for a smaller state exists. Since this
is not the case (no smaller state exists), we proceed as usual and obtain predecessor
(2 | 2) which gives rise to candidate (2 |). If we find a path showing (2 |) coverable,
we will withdraw the candidate and proceed with the former state as usual. From (2 |)
we encounter predecessor (0 | 2); although (0 | 2) strictly covers (0 |), we do not cre-
ate a corresponding candidate as it is initial. However, for its predecessor (1 | 2, 2) in
turn we do so, and create candidate (1 |). Further exploring this state we obtain path
(0 | 0) → (1 |), proving the candidate’s coverability. We withdraw the candidate and
mark the downward-closure of all states along the execution as coverable, so that these
elements are not expanded again. With path (0 | 0) → (1 | 1) → (1 | 2) the next can-
didate proof attempt also fails. From the original predecessor (1 | 2, 2) we arrive at
(1 | 1, 2), of which we can rule out the existence of smaller uncoverable states from the
collected coverability results; the same holds for the next predecessor (1 | 1, 1). We fi-
nally arrive at predecessor (0 | 0, 1) and create the candidate (0 | 1). Since no new (w.r.t.
↑) predecessor exists, we terminate with the tree shown in Figure 1 on the right. �

4.1 Backward-Constructed Minimal Proofs

In addition to the data structures used by Algorithm 1, namely a set U ⊆ V with
vertices that are labeled and identified with encountered states, and a work set W ⊆ U
of unprocessed vertices, our algorithm maintains

i) a set E storing (directed) edges between vertices, E ⊆ U × U ;
ii) a mapping ζ associating each vertex with a unique vertex, ζ : U → U ;

iii) a downward-closed set D storing collected coverability results, D ⊆ V .

As already indicated in Figure 1, we write u → r for (u, r) ∈ E, and →∗ for the
reflexive transitive closure of →. We call a vertex u ∈ U candidate vertex if ζ(u) = u,
and predecessor vertex otherwise. A path of (U,E) is a finite sequence of vertices from
U whose adjacent vertices are related by →; the last state must be a candidate vertex.
The mapping ζ (extended to sets X by ζ(X) = {ζ(x)|x ∈ X}) clusters the vertices
into | ζ(U)| partitions, one per candidate vertex (vertices that are associated with that
candidate vertex). The set D stores states that were shown to be coverable.

The algorithm takes a target q as input and ensures at all times that restricting the par-
titioned graph (U,E, ζ) to any equivalence class of vertices with the same associated
candidate vertex, say u, forms a tree with u as root, and all other vertices being prede-
cessor vertices. Each tree represents an attempt to prove the corresponding candidate
(as done by Algorithm 1 for input u). Edges and the mapping ζ enable the withdrawal
of unhelpful candidates in a way that preserves parts of their partition that are shared
with remaining candidates.

506 A. Kaiser, D. Kroening, and T. Wahl

s

s′

r

r′

t

t′

s

s′ r′

t

t′

Fig. 2. Effect of routine Backtrack in the presence of candidate vertices s, r and t, each with a
single primed predecessor vertex in their partition; the partition of candidate vertex r we wish to
remove is highlighted, and the single conflicting edge is marked with “◦” (left). After the call, the
partition of r is removed and its former predecessor vertex r′ is associated with s (right).

The algorithm consists of three routines: Enlarge creates a new candidate vertex,
Backtrack removes partitions of candidates, and Mcov is the main routine.

Enlargement Routine. The Enlarge routine takes a candidate u we wish to add as
input. If u is a new vertex (u /∈ U), it is inserted in the work and vertex set. In all cases,
the graph is repartitioned by adjusting ζ and associating every vertex in the set

Λ(u) = {r ∈ U |u = r ∨ (r →∗ u ∧ ζ(r) = ζ(u))}

with u. This repartitioning (observe u ∈ Λ(u)) ensures that r ∈ Λ(u) now entails
ζ(r) = u. The graph thus contains the new candidate vertex u, with a partition in the
shape of a tree.

Algorithm 2. Backtrack(P ⊆ ζ(U))

1: while ∃(r, s) ∈ E : (r, s) is P -confl. do
2: for all t ∈ Λ(r) do
3: ζ(t) := ζ(s)
4: for all r ∈ U : ζ(r) ∈ P do
5: W := W \ {r} ; U := U \ {r}
6: for all (t, r) ∈ E do
7: E := E \ {(t, r)}

Backtracking Routine. The purpose of
the Backtrack routine, shown in Algo-
rithm 2, is to remove unhelpful candidate
vertices P ⊆ ζ(U) and their partitions.
An obstacle is that paths u →∗ r /∈ P
to remaining candidate vertices may have
segments in partitions that will be re-
moved (paths can traverse multiple par-
titions). To ensure soundness, we need to
preserve them.

Definition 3. Consider a set P of candidate vertices. An edge (r, s) ∈ E is called P -
conflicting if ζ(r) ∈ P and ζ(s) /∈ P .

Hence, P -conflicting edges induce segments of the above kind. To preserve them, we
exhaustively resolve conflicts in a first step (Lines 1–3): for a conflicting edge, say
r → s, we do this by reassociating vertices in Λ(r) to ζ(s).

Once all conflicts are resolved and thus r → s and ζ(r) ∈ P entails ζ(s) ∈ P ,
remaining vertices and edges of partitions in P are removed in Lines 4–7. Figure 2
sketches both steps.

Main Routine. We introduce some terminology:

Efficient Coverability Analysis by Proof Minimization 507

Algorithm 3. Minimal Uncoverability Proof Algorithm: Mcov(q ∈ V)

1: W := {q} ; U := {q} ; D := I ; E := ∅ ; ζ : q �→ q
2: select n ∈ min C(q) ; Enlarge(n) // create candidate vertex
3: while ∃w ∈W : w ∈ min(U) do
4: W := W \ {w}
5: for all p ∈ CPre(w): p is ζ(w)-minimal do
6: if p /∈ D then
7: E := E ∪{(p,w)}
8: if p �∈ U then
9: W := W ∪{p} ; U := U ∪{p} ; ζ(p) := w // add covering predecessor

10: select n ∈ min C(p) ; Enlarge(n) // create candidate vertex
11: else if q /∈ 	 p then
12: D := D ∪ 	 p // mark coverable states
13: Backtrack(ζ(p)) // call backtrack routine
14: while ∃u ∈ min(U)∩↑P do
15: select n ∈ min C(u) ; Enlarge(n)
16: break // skip forward to next iteration of while
17: else
18: return “q ∈ Cover”
19: return “q /∈ Cover”

Definition 4. Let v ∈ V , and u ∈ ζ(U). State v is u-minimal if v �� u and for all
s, s′ ∈ U such that s → s′ and ζ(s′) = u, we have v �� s.

That is, state v is u-minimal if it covers neither the candidate vertex u nor any prede-
cessor vertex in u’s partition (observe that a predecessor vertex may yet belong to a
partition other than ζ(u)).

Definition 5. Let P ⊆ V . P is lower successor-closed if, for any p ∈ P and any v,
(p → v ∨ p � v) entails v ∈ P .

That is, a lower successor-closed set is both “successor-closed” (where successors are
formed according to →) and downward-closed. We write 	 v for the least lower succes-
sor-closed set containing v. This set is obtained by closing {v} under → successors and
downward until fixpoint. The point of this definition is that, if v is coverable, so is every
vertex in 	 v: coverability itself is closed under → successors and downward.

Algorithm 3 shows the main routine, Mcov, of our approach. The algorithm works
as follows. Initially W and U contain one candidate vertex (target q), D is the set of
initial states, the set E of edges is empty, and ζ associates q to itself (Line 1). If target
q gives rise to a candidate we create a minimal candidate vertex (Line 2). The set of
potential candidates C(p) ⊆ V is given by

C(p) = {v ∈ V |v ≺ p and v /∈ D}.

The set contains all the states that are strictly covered by p but not yet marked cov-
erable. If p = (0 | 0, 0, 1), and D = {(0 |), (0 | 0), (0 | 1)}, then for example C(p) =
{(0 | 0, 1), (0 | 0, 0)}. We tacitly assume that Line 2 has no side-effect if C(p) = ∅.

508 A. Kaiser, D. Kroening, and T. Wahl

The algorithm now picks and removes a minimal and unprocessed vertex w from the
work set, or returns “q �∈ Cover” (Line 19) if no such vertex remains. In the former
case, the for loop in Line 5 steps through all covering predecessors p of w that are
ζ(w)-minimal and processes them as follows:

Lines 6–10 If p is not currently known to be coverable, then the graph is expanded. If
p is a new vertex (p �∈ U , Line 8), then we ensure that p will be processed when it
turns minimal among the vertices by adding it as predecessor vertex to w’s partition.
Finally, we call the Enlarge routine to create new minimal candidate vertices.

Lines 11–16 If p is found to be coverable but not q, we add 	 p (which is coverable
as well) to D and invoke the Backtrack routine to remove partitions of coverable
candidate vertices. Since this may remove candidate vertices of remaining prede-
cessor vertices, we have to ensure that their downward-closure is further searched
for minimal, yet helpful candidates. We therefore create new minimal candidate
vertices (Lines 14–15). Again, we tacitly assume that Line 15 has no side-effect
if C(p) = ∅. Then, the break instruction skips forward to the next iteration of
the while loop. As a consequence of backtracking, unprocessed vertices that were
previously not minimal may now be.

Lines 17–18 Otherwise we return “q ∈ Cover”, since the coverability of target q has
been settled (in the affirmative).

Example. We continue with the example from the beginning of this section. In this case
routine Enlarge is called four times: predecessor vertices (2 | 2), (1 | 2, 2), and (0 | 0, 1)
give rise to candidates (2 |), (1 |) (and after its removal to (1 | 2)), and (0 | 1), respec-
tively. Routine Backtrack is called once after candidate vertices (1 | 2) and (1 | 2, 2)
turn out unhelpful. The mapping ζ shown in Figure 1 on the right has three partitions,
one for each of the candidate vertices (3 |), (2 |), and (0 | 1). The collected coverabil-
ity results are D = ↓{(0 | 0), (1 | 1), (1 | 2)}, and the mapping ζ is: ζ(u) = (2 |) if
u ∈ {(0 | 2), (1 | 2, 2), (1 | 1, 2), (1 | 1, 1)}, and ζ(u) = u if u ∈ {(3 |), (2 |), (0 | 1)}. �

Due to the finiteness of downward closures (we create a finite number of candidate
vertices) the algorithm eventually terminates. Completeness follows from that of Algo-
rithm 1, and the fact that we only remove conflicting edges during backtracking. When
Mcov terminates for an uncoverable target q, the remaining minimal nodes represent an
uncoverability proof for q: Brs� = ↑U (cmp. Definition 2).

In its current form Algorithm 3 computes uncoverability proofs with the property
minBrs� ⊆ min(V \Cover), but not necessarily minimal ones. This is attributed to two
factors. First, if a covering predecessor gives rise to a candidate and we later remove
this predecessor, then a created uncoverability candidate may turn irrelevant for the
coverability of target q. Second, when we add a candidate vertex that is incomparable
to existing candidate vertices, this may still turn some of the latter irrelevant as well. In
order to obtain truly minimal uncoverability proofs, we remove candidate vertices that
are no longer needed during calls to Backtrack, and after every call to Enlarge.

Efficient Coverability Analysis by Proof Minimization 509

4.2 Balancing the Search via Supplementary Coverability Results

If candidates are chosen unwisely, the search may incur extra work to identify and
eliminate the coverable elements. To reduce this overhead, we have to prevent unhelpful
candidates from being created. In its current form, Algorithm 3 does so by incorporating
collected coverability results when it creates a new candidate. These coverability results
may also, however, come from any external source, which we call a coverability oracle.
A coverability oracle a) needs to report states that are provably coverable and should
thus reasonably search in a forward direction; b) is not required to find all coverable
states: creating some unhelpful candidates does not harm the search. This flexibility
allows us to use any underapproximating forward-directed search: a standard or random
reachability analysis works just as well as generalizations of the Karp-Miller procedure
to broadcast synchronization [11], which are known not to guarantee termination for
WSTS.

We finally remark: since detecting coverable elements is one of the main goals of
Algorithm 3, the coverability results reported by the coverability oracle directly ben-
efit the algorithm itself. The coverability oracle and Algorithm 3 run in parallel and
synchronize via the set D: the coverability oracle populates this set while maintaining
D ⊆ Cover. Receiving such updates, Algorithm 3 terminates if q ∈ D, or otherwise
invokes the Backtrack routine on now known-to-be-coverable candidate vertices in reg-
ular intervals to restore the invariant D∩U = ∅.

5 Experimental Evaluation

In this section, we evaluate our algorithms on 21 concurrent C programs. The programs
feature a diverse set of communication primitives, such as shared variables, mutexes,
condition variables and broadcasts. For each benchmark, we consider verification of a
safety property, specified via an assertion. The C programs, ranging from 40 to 1000
lines of code, are:

1–4 broadcast-based code from FreeBSD, NetBSD and Solaris that is related to RDMA
ZFS file system support and interface/system monitoring;

5–9 programs using several basic language features and the pthread library;
10–12 programs using multiple locks to control access to a shared resource;
13,14 blocking and non-blocking pseudo-random number generators [31,10];
15 a program used in [17] to illustrate thread-modular model checking [24];
16,17 lock-based and lock-free stack described in [31], supporting concurrent pushes

and pops (adapted from an IBM implementation) [10];
18,19 a Linux driver skeleton and a Mozilla vulnerability fix [27,24];
20,21 algorithms to establish mutual exclusion [24].

We implemented our Mcov routine (Algorithm 3) for TTSs and transfer Petri nets in
our tool BREACH, equipped with a generalization of the Karp-Miller procedure (GKM)
as coverability oracle; our tool (we used v1.0) and all benchmarks are available online
at www.cprover.org/bfc. The oracle reports coverability results to a data pool our Mcov
routine taps into at regular intervals; both run in parallel. In order to measure the impact

510 A. Kaiser, D. Kroening, and T. Wahl

Table 1. Comparison of classical coverability approaches to our MCOV algorithm; buggy bench-
marks in bold, run times in seconds, or TO (MO) in case the time (memory) limit is hit

Classical approaches Our new approach
C Programs Final TTS GKM BC MCOV MCOV/GKM

id/Name |T | |Δ| Time Iter. Time Iter. Time Iter. Time

1/BSD-ABDD 82 288 MO 23476 19.1 328 0.1 184 0.0
2/BSD-RDMA-ADDR 101 304 1.6 12479 7.6 295 0.1 146 0.0
3/NETBSD-SYSMON-PWR 291 704 MO – TO 124 0.1 126 0.0
4/SOLARIS-SPACE-MAP 539 992 MO 10348 5.8 3412 2.2 2834 1.0
5/BS-LOOP 11616 20485 0.1 1483 1.5 1049 1.1 – 0.1
6/COND 280 1045 0.0 809 0.2 4660 88.4 – 0.0
7/FUNCTION-POINTER 9216 746770 MO – TO – TO 23139 592.0
8/S-LOOP 516 2813 0.0 3567 1.5 1567 1.4 – 0.5
9/PTHREAD 17920 135300 MO – TO 70841 1521.0 51265 189.7
10/DOUBLE-LOCK1 34880 233025 MO – TO – MO 90488 1146.5
11/DOUBLE-LOCK2 17216 114752 MO – TO – MO 46012 285.9
12/DOUBLE-LOCK3 3264 19250 MO – TO 24161 75.8 9514 14.5
13/PRNG (NON-BL.) 142 954 MO 191 0.0 4791 6.9 64 0.0
14/PRNG 788 5650 MO – TO – TO 9168 33.9
15/SPIN2003 188 984 0.0 6436 1.7 699 0.2 – 0.1
16/STACK (NON-BL.) 352 2550 MO 34046 133.7 18603 128.6 8249 12.5
17/STACK 648 3626 MO 35500 38.7 7616 20.2 2723 2.3
18/BOOP 7488 25929 0.0 1446 7.8 10776 361.1 – 0.1
19/MOZILLA-VUL.-FIXED 1648 8050 0.0 77053 84.2 3723 4.3 – 1.7
20/PETERSON 2048 8988 0.0 22951 15.5 2373 2.3 – 1.2
21/SZYMANSKI 8448 35896 0.1 – TO 9597 35.8 – 11.0

of our new approach, the oracle can be deactivated, turning BREACH into the refined
version of the classical backward search (Algorithm 1). Due to efficiency limitations
of the underlying data structures, we do not add candidate vertices that involve two
threads or more (which we found to be a good trade-off between efficiency and proof
minimization). To apply BREACH to the C programs, we extended the abstract language
interface of the C software model checker SATABS to TTS. SATABS implements the
CEGAR loop based on a symmetry-aware predicate-abstraction technique [10], and
handles function calls by inlining. All experiments are performed on a 3GHz Intel Xeon
machine with 20 GB memory, running 64-bit Linux, with a timeout of 30 minutes.

Evaluation. Table 1 presents results for various configurations of our implementation.
Columns on the left show the benchmark id and name, and the total number of thread
states and transitions emerged in the last, and always most expensive, CEGAR iteration.
Remaining columns show details for:

GKM: Our coverability oracle (stand-alone);
BC: Refined version of the classical backward algorithm (Algorithm 1);
MCOV: Our MCOV algorithm (Algorithm 3);
MCOV/GKM: The MCOV algorithm equipped with the coverability oracle GKM.

For each approach we show the total model checking run time, and in addition for
backward-directed algorithms the number of iterations.

The results demonstrate that our new approach outperforms the classical algorithms:
MCOV/GKM solves all 21 programs, and MCOV 17 instances, compared to 13 and 9
for the classical backward algorithm and the coverability oracle, respectively. Compar-
ing the results for BC and MCOV clearly shows that the uncoverability proofs the latter

Efficient Coverability Analysis by Proof Minimization 511

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0.1s

1s

10s

100s

1000s
Ti

m
e

to
so

lv
e
k

pr
og

ra
m

s
(l

og
sc

al
e)

MCOV/GKM

MCOV

PETR-BC

BC

EEC-AR *
CSC-KM *
TINA-KM *
IST-BC

TSI-AR *

Fig. 3. Cactus plot on the 21 multi-threaded C programs comparing our MCOV and MCOV/GKM

approaches to various existing ones; due to broadcasts, the limit for tools marked with * is k = 17

generates are much smaller. This is reflected by a strict decrease of the iteration count
in 17 cases. In the majority of cases, this improvement manifests in the running time:
MCOV outperforms BC on 13 programs (often significantly), compared to 4 the other
way around. Furthermore, the results for MCOV/GKM show that the coverability ora-
cle can substantially reduce the cost of unhelpful candidates, showing their synergies
(observe that running GKM and BC stand-alone in parallel is not helpful). As a result,
the positive effect is amplified: compared to BC, the iteration count strictly decreases
on all programs.

To measure the difference between standard and minimal uncoverability proofs, we
removed the bound on candidate vertices (in return for longer runtimes). In this setup,
we observed the following reductions (averaged): the the longest traversed path drops
from 28 to 14 (-50%), the threads included in the proof from 6 to 2 (-67%), and the
proof size in terms of minimal states from 22518 to 1222 (-95%). While the classical
backward-approach includes up to eight threads in a proof, our approach always gener-
ates minimal uncoverability proofs which involve no more than two threads. With the
bound on candidate vertices mentioned above and used for Table 1, the reductions are
only marginally smaller (e.g., the previous thread number increases by one).

Comparison. There exist a number of other approaches to the coverability problem.
We compare to the following tools (all available online):

IST-BC: Classical backward search using interval sharing-trees (v1.0.3) [18];
PETR-BC: Refined backward search with structural invariants (v0.1) [29,30];
TINA-KM: Karp-Miller procedure (v3.0.0) [5];
CSC-KM: Refined Karp-Miller procedure using interval sharing-trees (v0.1) [22];
EEC-AR: Pure forward algorithm with enumerative refinement (v1.0.3) [21];
TSI-AR: Variant of [21] using backward underapprox. for refinement (v1.0.3) [19].

Only IST-BC and PETR-BC support broadcast primitives. In order to allow for a mean-
ingful comparison, we translated abstract TTS templates generated by SATABS into
(transfer) Petri nets and replaced the model checker back-end.

512 A. Kaiser, D. Kroening, and T. Wahl

Figure 3 depicts total model checking run times (scaled logarithmically) for all meth-
ods as “cactus plot”: the horizontal axis represents the number of programs the respec-
tive method could successfully handle, and the vertical axis the time needed to solve
this number if they were ran in parallel. The results demonstrate significant improve-
ments over all previous methods: only MCOV/GKM is able to solve all 21 programs,
followed by MCOV stand-alone (17), PETR-BC (15), BC (13), EEC-AR (11), TINA-
KM and CSC-KM (9), IST-BC (7), and TSI-AR (1).

The improvement over the best previous approach (PETR-BC) shows that our new
approach is able to guide the search more effectively than structural invariant heuristics,
which are know to often yield invariants that are irrelevant to the safety property or too
imprecise [15]. The inferior performance of our underlying classical backward algo-
rithm (BC) to PETR-BC indicates that the observed improvements are not just owed to
clever implementation, but rather the result of our novel approach.

6 Related Work

Algorithmic solutions to coverability analysis were first proposed for vector addition
systems in a landmark paper by Karp and Miller [26]. The solution constructs a pseudo-
reachability tree by forward exploration and replaces newly discovered states that are
strictly greater than predecessors by their limit. It has a non-primitive recursive worst-
case complexity [32]. The purpose there was mainly to show decidability of the cover-
ability problem for VASes and the equivalent Petri nets. The technique is implemented
in the tool TINA-KM [5]. It cannot be extended to broadcast primitives [12]. An im-
provements of this procedure that computes minimal coverability sets is [22].

To afford more flexibility in modeling parametrized programs, various algorithms
were later proposed for WSTS, originally in a pure backward fashion [2], which was im-
plemented in the tools IST-BC and PETR-BC [29], later as forward exploration [14,34].
The paradigm presented in [21] (and implemented in the tool EEC-AR) is also a pure
forward algorithm; it constructs abstractions of increasing precision. In contrast to the
paradigm of EEC-AR, the implementation itself does not support broadcasts. Other ap-
proaches are the backward and forward unfolding algorithms from [3] and [25].

Solutions combining forward and backward exploration are rare; we are only aware
of the methods described in [15] and [19]. The authors of [15] propose to use a CSC-
KM-like approach to compute overapproximations of the coverability set, which are
then used in a subsequent backward exploration to prune the search space. Our experi-
mental results demonstrate, however, that this approach cannot cope with programs of
the sizes we consider. In [19], the authors combine overapproximations computed in
a forward fashion, which are refined by using backward underapproximations; the ap-
proach is implemented in the tool TSI-AR. On an abstract level, our algorithm can be
seen as the dual of this approach. To the best of our knowledge, our approach is the first
to combine forward propagation of underapproximations with backward propagation
of overapproximations to the coverability problem in WSTS.

Efficient Coverability Analysis by Proof Minimization 513

7 Conclusion

We introduced a new approach to the coverability problem in WSTS. The novelty of
our algorithm is the way it proves uncoverable instances via a sequence of many inex-
pensive uncoverability proofs. Our algorithm can be used to check assertion failures,
mutual exclusion violations and many other properties for parametrized programs com-
municating via mutexes, shared variables or common concurrency primitives such as
broadcasts.

We demonstrated in extensive experiments on large benchmarks, generated by the
software model checker SATABS from C programs, that our algorithm outperforms the
best known coverability approach by orders of magnitude, enabling the verification of
programs which are out of scope of the previous technology. The experiments also
reveal that our approach is able to guide the search far more effectively than existing
structural invariant heuristics [13,8]. We conclude from our experiments that programs
tend to feature minimal uncoverability proofs with fewer and smaller minimal elements
compared to those targeted by existing methods.

The ideas we have presented, supported by the simplicity of their implementation,
are naturally applicable to coverability methods in general. We believe, for example,
that while our method outperforms techniques based on structural net invariants, even
more practical benefit is achievable by combining these strategies.

Acknowledgments. We wish to thank Michael Tautschnig for assistance with SAT-
ABS, and Pierre Ganty, Leopold Haller, Philipp Rümmer and Emelie Vollmer for their
insightful comments on earlier drafts of this work.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bulletin of Symbolic
Logic 16(4) (2010)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Yih-Kuen, T.: General decidability theorems of
infinite-state systems. In: Logic in Computer Science, LICS (1996)

3. Abdulla, P.A., Iyer, S.P., Nylén, A.: SAT-solving the coverability problem for Petri nets.
Formal Methods in System Design, FMSD (2004)

4. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static analysis. In:
Principles of Programming Languages, POPL (2002)

5. Berthomieu, B., Vernadat, F.: The Tina tool, release 2.9.6, LAAS/CNRS (November 2009),
http://homepages.laas.fr/bernard/tina/

6. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for Petri nets
and commutative semigroups: Preliminary report. In: STOC, pp. 50–54 (1976)

7. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate Abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 570–574. Springer, Heidelberg (2005)

8. Delzanno, G., Raskin, J.-F., Van Begin, L.: Attacking Symbolic State Explosion. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310. Springer,
Heidelberg (2001)

http://homepages.laas.fr/bernard/tina/

514 A. Kaiser, D. Kroening, and T. Wahl

9. Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the Automated Verification of Multi-
threaded Java Programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 173–187. Springer, Heidelberg (2002)

10. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-Aware Predicate Abstraction
for Shared-Variable Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)

11. Emerson, A., Namjoshi, K.K.: On model checking for non-deterministic infinite-state sys-
tems. In: Logic in Computer Science (LICS), pp. 70–80 (1998)

12. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: Logic in
Computer Science, LICS (1999)

13. Esparza, J., Melzer, S.: Verification of safety properties using integer programming: Beyond
the state equation. Formal Methods in System Design, FMSD (2000)

14. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete WSTS. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)

15. Finkel, A., Raskin, J.-F., Samuelides, M., Begin, L.V.: Monotonic extensions of Petri nets:
Forward and backward search revisited. ENTCS (2002)

16. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science, TCS (2001)

17. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K.
(eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

18. Ganty, P., Meuter, C., Delzanno, G., Kalyon, G., Raskin, J.-F., Van Begin, L.: Symbolic data
structure for sets of k-uples. Technical report, Université Libre de Bruxelles (2007)

19. Ganty, P., Raskin, J.-F., Van Begin, L.: A Complete Abstract Interpretation Framework for
Coverability Properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2005)

20. Ganty, P., Raskin, J.-F., Van Begin, L.: From Many Places to Few: Automatic Abstraction
Refinement for Petri Nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546,
pp. 124–143. Springer, Heidelberg (2007)

21. Geeraerts, G., Raskin, J.-F., Begin, L.V.: Expand, enlarge and check: New algorithms for the
coverability problem of WSTS. JCSS (2006)

22. Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the Efficient Computation of the Minimal
Coverability Set for Petri Nets. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y.
(eds.) ATVA 2007. LNCS, vol. 4762, pp. 98–113. Springer, Heidelberg (2007)

23. German, S., Sistla, P.: Reasoning about systems with many processes. Journal of the ACM,
JACM (1992)

24. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier for Multi-
threaded Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 412–417. Springer, Heidelberg (2011)

25. Kaiser, A., Kroening, D., Wahl, T.: Dynamic Cutoff Detection in Parameterized Concur-
rent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 645–659. Springer, Heidelberg (2010)

26. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195
(1969)

27. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics. In: Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS (2008)

28. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-Modular Verification Is Cartesian Ab-
stract Interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

Efficient Coverability Analysis by Proof Minimization 515

29. Meyer, R., Strazny, T.: Petruchio: From Dynamic Networks to Nets. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer, Heidelberg (2010)

30. Meyer, R., Strazny, T.: An algorithmic framework for coverability in well-structured systems.
In: Application of Concurrency to System Design, ACSD (2012)

31. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concurrency in
Practice. Addison-Wesley Professional (2005)

32. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theoreti-
cal Computer Science, TCS (1978)

33. Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset
Petri Nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628.
Springer, Heidelberg (2010)

34. Zufferey, D., Wies, T., Henzinger, T.A.: Ideal Abstractions for Well-Structured Transi-
tion Systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 445–460. Springer, Heidelberg (2012)

A Framework for Formally Verifying Software

Transactional Memory Algorithms

Mohsen Lesani1, Victor Luchangco2, and Mark Moir2

1 University of California, Los Angeles, USA
lesani@ucla.edu

2 Oracle Labs, Burlington, MA, USA
{victor.luchangco,mark.moir}@oracle.com

Abstract. We present a framework for verifying transactional memory
(TM) algorithms. Specifications and algorithms are specified using I/O
automata, enabling hierarchical proofs that the algorithms implement
the specifications. We have used this framework to develop what we
believe is the first fully formal machine-checked verification of a practical
TM algorithm: the NOrec algorithm of Dalessandro, Spear and Scott.

Our framework is available for others to use and extend. New proofs
can leverage existing ones, eliminating significant work and complexity.

1 Introduction

As multicore computing becomes ubiquitous, it is increasingly important to sup-
port effective concurrent programming for a wide range of programmers.Transac-
tional memory (TM) [9] allows programmers to specify a sequence of operations
on shared objects that should be executed as a transaction that appears to be ap-
plied without interference from concurrent transactions, and without concurrent
transactions observing partial results of the sequence. Programmers do not spec-
ify how these guarantees are made; this is a responsibility of the system. TM aims
to deliver to shared memory programmers the benefits that transactions provide
to database programmers.

We present a framework for specifying the guarantees that a TM system must
provide (i.e., the TM specification), modeling TM implementations, and verify-
ing that the implementations provide the specified guarantees. Our framework
is based on I/O automata and simulation proof techniques [11,12], which sup-
port hierarchical proofs by modeling both specifications and implementations as
automata and proving simulation relations between these automata. The hierar-
chical proof approach allows a proof for one TM algorithm to leverage parts of
the hierarchy constructed for other TM algorithms, thus significantly improving
productivity. The framework is formalized in the PVS language [14,16].

Using this framework, we have achieved the first fully formal machine-checked
verification of a practical TM algorithm, the NOrec algorithm [3]. As described in
[10], we have also recently used the framework to clarify relationships between the
TMS1, TMS2, and opacity correctness conditions (see Section 2.1). The primary

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 516–530, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Framework for Formally Verifying Software TM Algorithms 517

goal of this paper is to give readers a concrete understanding of the nature of our
framework and proofs, and to make the framework more approachable. Readers
interested in more detail can contact us to obtain the framework and explore
our proofs interactively using PVS.

Section 2 presents background on TM correctness conditions and algorithms,
particularly the NOrec algorithm we have verified. Section 3 contains background
on I/O automata and simulation proof techniques. Section 4 describes our frame-
work, and Section 5 shares lessons we have learned that have made it signifi-
cantly easier to construct and reuse proofs. We briefly summarize related work in
Section 6, and conclude in Section 7.

2 Transactional Memory

A transactional memory system supports one or more shared objects, typically
a memory object consisting of a set of locations, each of which supports read
and write operations. A sequence of operations on such objects can be executed
as a transaction. To guarantee that transactions appear not to interleave with
each other, a transaction may sometimes abort so that it appears not to execute
at all. Transactions that successfully complete are said to commit.

2.1 Specifications

Verifying a TM implementation requires a precise specification of what it means
for it to be correct. No single TM correctness condition is universally accepted,
and indeed, different conditions are appropriate for different contexts. We have
recently studied this problem for TM algorithms intended to support transac-
tional language features in languages such as C and C++ [5]. To avoid fatal
errors such as divide-by-zero in this context, transactions—even those that ulti-
mately abort—must observe behavior that is consistent with some execution in
which all transactions that commit do so instantaneously [5,8]. Traditional cor-
rectness conditions for transactions in database systems—such as serializability
[15]—do not ensure this.

In [5], we defined a general condition TMS1 and a more restrictive condition
TMS2. TMS1 aims to allow all implementations that provide reasonable behavior
for the intended context, and as a result is somewhat abstract. TMS2 is more
restrictive, but is closer to the intuition behind many practical TM algorithms.
Briefly, TMS2 requires a writing transaction to append a new state to a sequence
of memory states during its commit operation, while a read-only transaction is
allowed to read from any state that was the last state in that sequence at some
point during the execution of the transaction. We proved in [5] that TMS2
implements TMS1, and we have recently proved the same result again using
our framework, specifically by proving that TMS2 implements opacity [8], and
opacity implements TMS1, thereby clarifying the relationships between these
conditions and confirming our conjecture [5]. This result implies that, in order
to prove that an algorithm satisfies the TMS1 condition, it suffices to prove that
it satisfies TMS2. This is the approach we have taken for our NOrec proof.

518 M. Lesani, V. Luchangco, and M. Moir

2.2 The NOrec Algorithm

NOrec [3] significantly reduces low-contention overhead as compared to previous
TM algorithms such as TL2 [4] by eliminating ownership records, which hold TM
metadata that is used when an associated location is accessed. NOrec achieves
this by using a sequence lock (seqlock) that is acquired by every transaction
that successfully writes any shared location. The seqlock is implemented by a
counter that is incremented upon acquisition and release: the lock is free when
the counter’s value is even; it is held by the transaction that most recently
incremented it when the value is odd. Although this lock limits scalability, it is
held only while a transaction is committing, and NOrec’s low overhead makes it
attractive in low-to-moderate contention workloads.

Briefly, NOrec works as follows: When a transaction begins, it checks that
the seqlock is free, and records a “snapshot” of the lock value. (Whenever a
transaction discovers the seqlock is held by some other transaction, it waits until
the lock is released before continuing.) To write a shared location, a transaction
records the location and the value to be written to it in a private write set. These
changes are written to the shared locations only when the transaction commits.

A transaction records values it reads in its private read set. After reading
a location l, a transaction checks that the lock value has not changed since
the transaction’s most recent snapshot. If the lock value has changed, then the
transaction revalidates its read set by updating its snapshot of the lock and
checking that every object in its read set has the previously recorded value
(aborting if not), before reading location l again and checking that the lock value
has not changed again. This process is repeated until the transaction aborts or
the read set validation and subsequent rereading of l is successful; in the latter
case, the value read from l is stored in the transaction’s read set and returned
to the transaction.

To commit, a transaction attempts to acquire the lock while ensuring that
its value has not changed since the transaction’s most recent snapshot. (If it
has, the transaction revalidates its reads and refreshes its snapshot as described
above before attempting again to acquire the lock.) After acquiring the lock,
the transaction performs the writes recorded in its writeset and then releases
the lock by incrementing its value once more. Because no transaction reads any
location while the lock is held, the writes performed by a transaction while it is
committing appear atomic to all other transactions.

3 Theory Background

In Sections 3.1 and 3.2, we briefly summarize the standard I/O automata theory
and simulation proof techniques upon which our framework is built. We have
not only formalized this theoretical foundation in PVS, but also verified within
the framework the theorems from the literature that we have used.

A Framework for Formally Verifying Software TM Algorithms 519

3.1 Automata

We use simplified1 input/output automata (IOAs) [11] to express TM correct-
ness conditions and to model TM algorithms. An automaton A is a labeled
transition system that consists of: a set states(A) of states, with a nonempty
subset start(A) ⊆ states(A) of start states; a nonempty set acts(A) of ac-
tions, partitioned into external and internal actions; and a transition relation
trans(A) ⊆ states(A) × acts(A) × states(A).We describe the states using a col-
lection of variables, and the transition relation using a precondition (a predicate
on states) and an effect (a set of assignments to variables) for each action.

An execution fragment of A is a sequence s0a1s1 . . . of alternating states and
actions of A such that (sk−1, ak, sk) ∈ trans(A) for all k > 0; a finite sequence
must end with a state. An execution is an execution fragment with s0 ∈ start(A).
A state is reachable if it appears in some execution. An invariant is a predicate
that is true for all reachable states; it is typically proved by induction on the
length of an execution.

The subsequence of external actions in an execution fragment is called its
trace, and represents its externally visible behavior. The traces of an automaton
A are the traces of its executions; we denote the set of such traces by traces(A).
These traces therefore represent the behavior that the automaton can exhibit.

We can interpret an automaton as a specification and as an implementation.
For an “abstract” automaton A, interpreted as a specification, and a “concrete”
automaton C, interpreted as an implementation, C implements A iff traces(C) ⊆
traces(A): every behavior of the implementation is allowed by the specification.

This dual interpretation of automata enables hierarchical proofs : If automaton
C implements another automaton B, and B implements automaton A, then C
also implements A. When proving that one automaton implements another, it
is often helpful to introduce “intermediate” automata to break the proof into
more manageable pieces. These intermediate automata may represent classes of
implementations that share common approaches and ideas, allowing proofs of
implementations in the class to reuse properties already proved for the class, as
discussed further in Section 4.2.

3.2 Simulation Proofs

One way to prove that C implements A is to use a simulation relation [12],
which establishes a correspondence (not necessarily 1-1) between states(C) and
states(A) such that for each step in any execution of C, there is a finite execution
fragment of A with the same trace whose first and last states correspond to the
pre- and post-states of the step, and execution fragments for successive steps
can be “pasted together” into a single execution of A.

A forward simulation from C to A, for example, requires that every start
state of C correspond to some start state of A, and that, for every step of an

1 Our automata are simplified because we have not yet needed to explicitly compose
automata and we have concentrated only on safety properties. We anticipate adding
support for composition soon as it is needed for our ongoing work.

520 M. Lesani, V. Luchangco, and M. Moir

execution of C and every state of A corresponding to the prestate, there is a
corresponding execution fragment of A that starts from that state and has the
same external action, if any, as the step of C. Thus, given a forward simulation
from C to A, and an execution of C, we can construct an execution of A with
the same trace by starting from a corresponding start state and extending the
execution with a corresponding execution fragment for each successive step of
C. This implies that every trace of C is a trace of A.

Lemma 1. If there is a forward simulation from C to A then C implements A.

A forward simulation that is a function on the states of C is a refinement.
Sometimes, a forward simulation cannot prove that C implements A because

knowledge of the future is needed in order to choose an appropriate execution
fragment for a step of an execution of C. In such cases, backward simulations
can be used. The conditions for a backward simulation are similar to those for
forward simulations, but they allow an abstract execution to be constructed by
working backwards from the last state of a (finite) execution of C, thus allowing
use of knowledge of the future.

4 A Framework for Verifying TM Implementations

Our framework uses the PVS system [14,16], which supports a specification lan-
guage based on typed higher-order logic, and tools for working in this language,
including an interactive theorem prover that provides inference rules and de-
cision procedures that are used in proofs. User guidance for a theorem can be
saved and rerun for repeatable verification and can also be edited and applied
to other theorems. Users can combine inference rules into high-level “strategies”
that simplify proofs and promote reuse.

The foundation of our framework is a set of PVS theories that describe au-
tomata and simulations, as well as definitions and lemmas that facilitate reason-
ing about them. These foundational concepts are not TM-specific.

Our framework further comprises specific automata specifying TM correctness
conditions (such as TMS2) and implementations (such as NOrec). We use several
automata modeling specifications and implementations in varying levels of detail
to construct hierarchical proofs that, for example, a detailed model of the NOrec
algorithm correctly implements the TMS2 condition. All our proofs have been
checked by the PVS prover. This section overviews our framework.

4.1 Foundations: Automata and Simulations

It is convenient, when defining an automaton in PVS, to have a single type
that encompasses all its actions. In standard I/O automata theory, a simulation
between two automata requires them to have the same external actions. This
implies that all the actions of all automata in a proof hierarchy must be of the
same type. Changes to this type—to add internal actions for a new automaton,
for example—affect all automata in that proof hierarchy, triggering obligations

A Framework for Formally Verifying Software TM Algorithms 521

to reverify every lemma and invariant, even those unrelated to the changes. This
was a problem in some of our previous proofs, and is unacceptable in the context
of developing a framework that includes many automata.

We address this problem by splitting an automaton into a basic automaton,
which specifies its states, actions and transitions (Automaton theory in Figure 1),
and a view, which maps its external actions to external events (View theory in
Figure 2). Only the events need to be shared among automata.

To define a basic automaton, we define a type for states (usually a record type
with components for modeling shared variables, private variables, control states,
etc.), a type for actions, a predicate over the states to identify initial states, and
a predicate that specifies the legal steps of the automaton. We then import the
Automaton theory, shown in Figure 1, instantiating it with these elements.

The Automaton theory defines key properties of a basic automaton, such as
its finite execution fragments, and what it means for a state to be reachable and
for a state predicate to be an invariant of the automaton. We also prove several
lemmas (not shown) that help us manipulate executions and prove invariants.
For example, we use the following lemma to prove invariants by induction:

invariantInduction: LEMMA

FORALL (p: pred[State]):

(FORALL s: start(s) IMPLIES p(s))

AND

(FORALL s0, a, s1:

reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1)

IMPLIES p(s1))

IMPLIES invariant(p)

(Although reachable(s1) is redundant—it is implied by reachable(s0) and
trans(s0,a,s1)—we include it for convenience, as it allows us to apply already-
established invariants to the poststate s1 without proving each time that the
poststate is reachable.)

The View theory (Figure 2) is parameterized by types for events and actions,
a predicate identifying external actions, and a map from those actions to events,
which we call a view. This theory defines the trace of a sequence of actions to
be the subsequence of those actions that are external, mapped to events by the
specified view. The AutomatonWithView theory (Figure 2) puts together a basic
automaton and a view to define an automaton and its set of traces.

Views allow us to use different types for the actions of different automata,
while retaining the ability to express that an external action of one automaton
is “equal to” an external action of another, by mapping each to the same event.
When views are 1-1 mappings, as they are in all our work to date, there is a
straightforward isomorphism between automata in the standard theory and our
“automata with views”.

Views also add flexibility in modeling algorithms and specifications because
multiple external actions of an automaton can be mapped to the same event.
For example, when the actions of an automaton are deterministic (i.e., the post-
state of a transition is uniquely determined by the prestate and the action), we

522 M. Lesani, V. Luchangco, and M. Moir

Automaton[State, Action: TYPE+,

start: nonempty_pred[State],

trans: pred[[State,Action,State]]]: THEORY

BEGIN

Step: TYPE = [State, Action, State]

IMPORTING finseq_props[State]

FiniteStepSeq: TYPE = [# actions: finseq[Action],

states: { ss: nonempty_finseq[State] |

ss‘length = actions‘length + 1 }

#]

stepseq: VAR FiniteStepSeq

length(stepseq): nat = stepseq‘actions‘length

first(stepseq): State = first(stepseq‘states)

last(stepseq): State = last(stepseq‘states)

steps(stepseq): finseq[Step] =

(# length := stepseq‘actions‘length,

seq := LAMBDA (n: below[stepseq‘actions‘length]):

(stepseq‘states(n), stepseq‘actions(n), stepseq‘states(n+1))

#)

finiteExecFrag(stepseq): bool =

FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n))

finiteExecution(stepseq): bool =

finiteExecFrag(stepseq) AND start(first(stepseq))

reachable(s: State): INDUCTIVE bool =

start(s) OR (EXISTS (s0: State, a: Action): reachable(s0) AND trans(s0,a,s))

invariant(p: pred[State]): bool = FORALL (s: State): reachable(s) IMPLIES p(s)

END Automaton

Fig. 1. Definitions in Automaton.pvs

can specify the effect of actions with a function, which has various advantages,
especially for automated theorem provers. For internal actions that are non-
deterministic, we can create a variant of the automaton in which such actions
have additional parameters, so that each parameterized action is deterministic.
However, we cannot add parameters to a nondeterministic external action in
standard I/O automata theory because doing so would change the externally
visible behavior. Using automata with views, we can map each parameterized
action to the same event as the original action.

The Simulations theory (not shown) takes as parameters the components
for two automata, the events type that they share, and views mapping their

A Framework for Formally Verifying Software TM Algorithms 523

View[Event, Action: TYPE+,

external: pred[Action],

view: [(external) -> Event]]: THEORY

BEGIN

IMPORTING filter_props[Action]

trace(acts: finseq[Action]): finseq[Event] =

map[(external),Event](view)(filter(external)(acts))

END View

AutomatonWithView[Event, State, Action: TYPE+,

start: nonempty_pred[State],

trans: pred[[State,Action,State]],

external: pred[Action],

view: [(external) -> Event]]: THEORY

BEGIN

IMPORTING Automaton[State, Action, start, trans]

IMPORTING View[Event, Action, external, view]

trace(stepseq: FiniteStepSeq): finseq[Event] = trace(stepseq‘actions)

finiteTrace(eventseq: finseq[Event]): bool =

EXISTS (fexec: (finiteExecution)): trace(fexec) = eventseq

END AutomatonWithView

Fig. 2. View and AutomatonWithView theories

respective external actions to events. It defines forward simulations and refine-
ments, and also proves some lemmas (not shown). For example, the equivalent of
Lemma 1 in our context states that the existence of a forward simulation implies
finite trace inclusion between the two automata (R is universally quantified, and
CA and AA are aliases for the two automata that are created by instantiating the
AutomatonWithView theory with their components):

forwardSimulationImpliesFiniteTraceInclusion: LEMMA

forwardSimulation(R) IMPLIES subset?(finiteTraces(CA), finiteTraces(AA))

Thus, one can prove that one automaton implements another by instantiating
the Simulations theory with these automata, specifying a relation between their
states, and proving that the relation satisfies the definition of a forward simu-
lation. Similar definitions and lemmas are included for refinements. In addition
to standard refinements, we define “simple refinements”, in which each step of
the concrete automaton corresponds to at most one abstract action. When it

524 M. Lesani, V. Luchangco, and M. Moir

holds, this condition is more convenient to use as it avoids the need to specify
and manipulate execution fragments.

In separate PVS theories (not shown), we also define backward simulations
and history mappings [12], and prove similar lemmas about them. A history
mapping between two automata is equivalent to a forward simulation from the
first to the second and a refinement from the second to the first, showing that
the automata are equivalent. We provide a rule for proving history mappings
that requires less work than proving the two properties separately.

Our framework further comprises a set of PVS strategies, which help us to
automate and hide parts of proofs. For example, by structuring our automata
consistently, we can write strategies that automatically perform the mundane
“unpacking” of definitions, thus making it easier to both construct and read
proofs. We do not discuss our strategies further in this paper, but they is docu-
mented in the release notes of our framework.

4.2 TM-Specific Automata Included in the Framework

We define a number of TM-specific automata using the foundations described
above. These automata, and the relationships we have proved between them,
are depicted in Figure 3. The TMS2 automaton produces exactly the set of traces
allowed by the TMS2 condition presented in [5].

To prove that NOrec implements TMS2, we construct a hierarchical proof
using several intermediate automata, each modeling a successively more detailed
version of NOrec. In the simplest version, NOrecAtomicCommitValidate, the
reading of shared objects (including checking that the global sequence lock is
not held), validating a transaction, and committing a transaction (including
writing all the changes in its write set) are each done in a single atomic step. No
lock is needed in this version, because the lock is held only while a transaction
is committing, which occurs in a single step in this automaton.

In NOrecDerived, validation and committing are no longer atomic, but read-
ing a shared object and checking the global sequence number still is. NOrec
models an abstract version of the NOrec algorithm, in which each step accesses
at most one shared variable. Together, the proofs between these automata (Fig-
ure 3) verify an abstract version of NOrec that is consistent with synchronization
support in real systems. However, we go one step further.

The NOrecPaperPseudocode automaton is a straightforward encoding of the
pseudocode in [3], explicitly modeling details such as the control flow presented
in [3]. For example, we explicitly use program counter values like begin2, corre-
sponding to line 2 of the Begin procedure (Listing 3 in [3]), and validate6start
and validate6iter, corresponding respectively to line 6 just before initializing the
loop and just before executing the body of the loop beginning on line 6 of the
Validate procedure (Listing 2 in [3]).

If the code for the NOrec algorithm were refactored without fundamentally
changing it, we could verify the new version simply by repeating this last step
for a different automaton encoding the new pseudocode, thus effectively reusing
all of the more substantial proofs above the NOrec automaton in the hierarchy.

A Framework for Formally Verifying Software TM Algorithms 525

 Refinement

 Forward Simulation

 Backward Simulation

 History Mapping

TMS2

TxnOrdTMS2

TxnOrdTMS2WithFailure

ReservationTMS2

NOrecAtomicCommitValidate

NOrecDerived

NOrec

NOrecPaperPseudocode

Fig. 3. Relationships between TM-specific automata in our framework. Direction of
history map arrows indicates the forward simulation.

Some TM algorithms cannot be proved to implement TMS2 by a forward
simulation. For example, in TL2 [4], a transaction “validates” the reads it has
performed using a technique that ensures that its reads were consistent at the
beginning of the validation process, but only determines that the validation was
successful later. Thus, the transaction must take effect before it is known to have
committed successfully. Exploiting such “knowledge of the future” in a simula-
tion proof requires a backward simulation. Verifying a backward simulation can
be challenging because it requires reasoning about extending an execution back-
wards from a poststate to a prestate.

To facilitate verification of such algorithms, we provide an alternate formula-
tion of the TMS2 correctness condition as an automaton ReservationTMS2, in
which a writing transaction “reserves” a place in the order of (writing) transac-
tions before it knows whether its commit will succeed. This way, algorithms such
as TL2 can be verified via a forward simulation to ReservationTMS2, reserving
a transaction’s place at the beginning of validation.

To prove that ReservationTMS2 captures the TMS2 correctness condition,
we show that it both implements and is implemented by TMS2. To do this, we
introduce intermediate automata TxnOrdTMS2 and TxnOrdTMS2WithFailures.
TxnOrdTMS2 is just like TMS2 except that it records the initial state of the
memory and a sequence of committed writer transactions (in the order that
they commit) instead of the sequence of memory states that those transactions
write. TxnOrdTMS2WithFailures is similar except that the sequence of trans-
actions may include transactions that abort rather than commit. It is easy to
verify that there are refinement mappings from TxnOrdTMS2WithFailures to
TxnOrdTMS2, and from TxnOrdTMS2 to ReservationTMS2, and a history map-
ping from TMS2 to TxnOrdTMS2. A backward simulation is necessary only to
show that ReservationTMS2 implements TxnOrdTMS2WithFailures.

526 M. Lesani, V. Luchangco, and M. Moir

5 Our Experience

We have been verifying concurrent algorithms using PVS over several years,
successively improving our framework, making it easier to construct, understand,
and reuse proofs. There is undoubtedly still room for improvement. However, we
have finally reached a point at which the machine-checked proofs we construct
using our framework are often not significantly harder than rigorous hand proofs.
In this section, we explain some details that have helped us to get to this point by
improving both our productivity and the clarity of our proofs considerably. We
also discuss ongoing issues with constructing formal, machine-checked proofs.

5.1 Reasons Why Proofs Are Easier Than Before

We are able to construct proofs more quickly and easily than before in part
due to our increased facility with using PVS, particularly with its dependent
type system and its inductive inference rules, in part due to improvements in
our libraries defining the basic theory on automata and simulations, and in part
due to our development of the libraries on basic data structures, particularly
finite sequences. Although the concepts embodied in the Automaton, View and
AutomatonWithView theories are essentially the same as those in the correspond-
ing Automata theory of our earlier verification work, several factors have made
our recent verifications significantly simpler.

First, changes in the way we represent sequences significantly simplified our
proofs. In previous work, envisaging a framework that would evolve to also sup-
port progress proofs, we defined a type that could represent both finite and infi-
nite sequences by using partial functions subject to a dependent typing condition
to preclude “gaps” in the sequence. (PVS provides finite and infinite sequences,
but not both in the same type.) While not conceptually difficult, the way PVS
represents partial functions requires frequent conversions to distinguish values
in the range of the function from “undefined”; this was a tedious and error-prone
distraction in our previous work. It made proof sequents difficult to read, and
generated many proof obligations due to type-checking conditions. It became
clear that this was not worthwhile.

Thus far we have only done safety proofs for which finite sequences are suf-
ficient. Therefore, our current framework uses only finite sequences, which has
greatly simplified our proofs, both for writing and for reading, as well as allowing
us to use the built-in definitions and lemmas in PVS. (Nonetheless, we did need
to define some functionality on finite sequences, such as truncation, mapping a
function over a sequence’s elements, etc., as well as many lemmas to help us
reason about sequences.) When we need sequences that can be either finite or
infinite in future work, we plan to define a type whose elements can be either a
finite sequence or an infinite sequence, using the built-in PVS theories for each,
and to prove metatheorems to avoid duplication of proofs where possible.

Using the ‘o’ infix operator (defined in the PVS prelude of built-in theories)
has also improved the readability of proof sequents.

A Framework for Formally Verifying Software TM Algorithms 527

Finally, PVS auto-rewrite rules can be included in a theory definition, so
that they are automatically applied when the theory is imported, or they can
be explicitly enabled in a proof script when needed. The latter option imposes
more work on the user, but avoids spending time on applying the rules when
they are not needed, and also prevents confusion that can arise when they are
applied unexpectedly. We have chosen the latter option.

5.2 Using Our Framework to Verify the NOrec Algorithm

Unlike our previous verification efforts, we did not first write out a careful hand
proof for NOrec and then attempt to translate it into PVS. Rather, we informally
reasoned at a high level about why NOrec is correct, and tried to construct the
formal proof guided by this informal reasoning and our past experience with
simulation proofs. In particular, as described in the previous section, we defined
an “intermediate” automaton that collapsed several steps of the NOrec algorithm
into single atomic steps, and then successively refined that automaton until it
had the granularity of the actual NOrec algorithm.

We were pleased to find that this approach worked quite well, and that using
PVS to verify NOrec was not significantly more difficult than we estimate a
similarly careful hand proof would have been. Indeed, in some respects, it was
easier because when we discovered and corrected a mistake in a definition or
lemma, we could rerun our earlier proofs and examine only those, if any, that
no longer succeeded. Correcting those proofs was typically straightforward.

One exception was that, after proving that NOrecAtomicCommitValidate im-
plements TMS2, we defined a variant that refines the validation operation but
still treats commit as a single atomic operation, and proved that it imple-
ments NOrecAtomicCommitValidate. However, when we attempted to refine
this automaton further so that the commit operation was no longer atomic,
we found that it was difficult to prove that this automaton implemented the
version with the atomic commit, and that it was easier to prove that it imple-
mented NOrecAtomicCommitValidate directly. This problem was with our proof
approach, and would have occurred in a hand proof as well.

Another exception was in the proof that NOrecPaperPseudocode implements
NOrec (the abstract NOrec algorithm, in which some “local” actions happen
atomically together with an action that accesses shared state), which was much
more difficult than we expected: it required great care to correctly express the
state correspondence (i.e., the forward simulation). Again, this problem would
exist for a hand proof as well, but hand proofs are rarely done to that level of
detail, and indeed, we had not initially intended to do so in our verification.

While working on our proofs, we discovered several small mistakes we had
made in specifying the automata involved. Because we had done all the proofs
with PVS, we could simply rerun them after fixing the mistakes, thereby iden-
tifying within minutes which proofs had been broken by the fixes. Of course we
had to construct proofs to address the cases missed due to the fixed mistakes,
but otherwise proofs were typically broken in straightforward and predictable
ways, and could be quickly and easily repaired.

528 M. Lesani, V. Luchangco, and M. Moir

5.3 Formal Proofs Are Still Harder Than Typical Hand Proofs

Machine-checked PVS proofs are still harder to write than hand proofs. First,
there is the difficulty of specifying automata and related properties in the PVS
language. In a hand proof, we use whatever notation and mathematical defi-
nitions are most convenient. However, a formal language is more limited. For
example, the Automaton theory (Figure 1) defines an execution fragment using
a sequence of actions and a sequence of states that is exactly one longer than the
sequence of actions, rather than as an alternating sequence of states and actions,
which is more natural but would require a common supertype for actions and
states that would pollute our proofs with many inconvenient conversions.

Second, in PVS, we need to prove that our definitions are type-correct, even for
cases that are never used. For example, the effect function we use to determine
the poststate of a transition must be well defined even when the precondition does
not hold, even though its value in that case is unimportant. To address this, we
define the poststate to be an arbitrary state in case the precondition does not hold,
requiring extra steps in every proof that deals with the effect function. This issue
is mitigated by the use of automated strategies. This kind of problem seems to be
inherent in formal machine-checked proofs. Although annoying, such issues are
usually manageable once one becomes familiar with PVS.

Third, “obvious” facts that would usually be used implicitly in a hand proof
must be proved and cited. Associativity of concatenation is an example. De-
veloping and verifying richer theories that assert these obvious facts and using
auto-rewrite rules to avoid the need to cite them explicitly helps.

Fourth, we prove results about automata and simulations only when we need
them. This disrupts our work when it happens, but will happen less as our frame-
work matures. For example, in proving that NOrecPaperPseudocode implements
NOrec, we needed an invariant of NOrec that would be somewhat involved to
prove. However, we had already proved (an abstract version of) this invariant for
NOrecAtomicCommitValidate, and refinements from NOrec to NOrecDerived,
and from NOrecDerived to NOrecAtomicCommitValidate.

Rather than proving the invariant directly, we proved two new “metatheo-
rems” for this purpose: one shows that the composition of two refinements is a
refinement, and the other allows us to derive an invariant of one automaton from
an invariant of another automaton and a refinement from the first automaton
to the second. This approach has several advantages: (1) There is no need to
replicate the proof. (2) The proof in the abstract automaton is simpler than
the direct proof in NOrec would have been because the abstract automaton is
simpler than NOrec. (3) We can use these metatheorems in future proofs.

6 Related Work

Cohen et al. [1] verified small instances of some simple TM algorithms directly
using a model checker. This approach cannot verify larger instances, especially
for more complex algorithms, and is limited to finite instances regardless. Others
have attempted to overcome these limitations using more complex techniques.

A Framework for Formally Verifying Software TM Algorithms 529

Guerraoui et al. [7] showed that TM algorithms satisfying certain structural
properties can be verifed by model checking small instances of them. To our
knowledge, these structural properties have not been formally verified for any
TM algorithm, so this work does not yield fully machine checked proofs. Emmi
et al. [6] used techniques to automatically generate and check parameterized
invariants. However, limitations of their approach forced them to use abstract
models that assume away complex concurrency-related aspects of the practical
TM algorithms considered. Overall, while model checking approaches can be
valuable for testing hypotheses and finding bugs, we do not believe that they
will be sufficient to fully verify practical TM algorithms any time soon.

Cohen et al. [2] used PVS to verify another simple TM algorithm. Like us,
they used PVS to model algorithms and specifications, and used the PVS theo-
rem prover to verify that a TM algorithm satisfies the specification. While this
work is similar in spirit to ours, there are two notable differences. First, we have
used correctness conditions that ensure aborted transactions cannot observe in-
consistent behavior, which is critical in some contexts (see Section 2). Other
than [7], all other work mentioned above use specifications that do not constrain
the behavior of aborted transactions. Second, in contrast to the other work men-
tioned above, we have have modeled a practical TM algorithm in faithful detail,
and have proved it correct in a hierarchical manner that can be leveraged to
significantly reduce the effort required to verify other TM algorithms.

Finally, other frameworks exist for specifying and verifying relationships be-
tween I/O automata in PVS, analogous to the non-TM-specific foundations of
our framework. To our knowledge, the most mature of these is TAME [13]. How-
ever TAME is not generally available, so we developed our own framework so
that we could make it available for others to use and extend.

7 Concluding Remarks

We have built a framework for formally verifying transactional memory (TM)
algorithms using the PVS theorem prover. To demonstrate its utility, we have
used it to complete what we believe is the first fully formal, machine-checked cor-
rectness proof of a practical TM algorithm (NOrec). Our framework is available
so that others may use and extend it, for example to verify other TM algorithms.

We continue to improve our framework, and we plan to extend it with proofs
of additional TM algorithms. We are particularly interested in verifying an
algorithm—such as TL2 [4]—that requires a backward simulation to prove that
it implements TMS2. As discussed in Section 4.2, we expect to be able to prove
that TL2 implements TMS2 by proving that it implements ReservationTMS2,
thus avoiding the need for a backward simulation.

Acknowledgments. We thank Sam Owre for PVS assistance, Andy Lewis
for machines, and Simon Doherty for contributions to earlier versions of our
framework.

530 M. Lesani, V. Luchangco, and M. Moir

References

1. Cohen, A., O’Leary, J., Pnueli, A., Tuttle, M., Zuck, L.: Verifying correctness
of transactional memories. In: FMCAD 2007: Proceedings of Formal Methods in
Computer Aided Design, pp. 37–44 (2007)

2. Cohen, A., Pnueli, A., Zuck, L.D.: Mechanical Verification of Transactional Memo-
ries with Non-transactional Memory Accesses. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 121–134. Springer, Heidelberg (2008)

3. Dalessandro, L., Spear, M., Scott, M.: NOrec: Streamlining STM by abolishing
ownership records. In: PPoPP 2010: Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (January 2010)

4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: International Sym-
posium on Distributed Computing, pp. 194–208 (2006)

5. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specify-
ing and verifying transactional memory. Formal Aspects of Computing (2012),
http://labs.oracle.com/projects/scalable/pubs/Doherty-FAC-2012.pdf

6. Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2010, pp. 134–145. ACM,
New York (2010)

7. Guerraoui, R., Henzinger, T., Jobstmann, B., Singh, V.: Model checking transac-
tional memories. In: PLDI 2008: Proceedings of the 2008 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 372–382 (2008)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 175–184 (2008)

9. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture (1993)

10. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place (May 2012),
http://labs.oracle.com/projects/scalable/pubs/OpacityInPlace.pdf

11. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, pp. 137–151 (August 1987)

12. Lynch, N., Vaandrager, F.: Forward and backward simulations, I: Untimed systems.
Information and Computation 121(2), 214–233 (1995)

13. Mitra, S., Archer, M.: PVS strategies for proving abstraction properties of au-
tomata. Electron. Notes Theor. Comput. Sci. 125(2), 45–65 (2005)

14. Owre, S., Shankar, N., Rushby, J.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

15. Papadimitriou, C.: The serializability of concurrent database updates. J. ACM 26,
631–653 (1979)

16. The PVS Specification and Verification System, http://pvs.csl.sri.com/

http://labs.oracle.com/projects/scalable/pubs/Doherty-FAC-2012.pdf
http://labs.oracle.com/projects/scalable/pubs/OpacityInPlace.pdf
http://pvs.csl.sri.com/

Propositional Dynamic Logic with Converse

and Repeat for Message-Passing Systems

Roy Mennicke

Institut für Theoretische Informatik, Technische Universität Ilmenau, Germany

Abstract. The model checking problem for propositional dynamic logic
(PDL) over message sequence charts (MSCs) and communicating finite
state machines (CFMs) asks, given a channel bound B, a PDL formula ϕ
and a CFM C, whether every existentially B-bounded MSC M accepted
by C satisfies ϕ. Recently, it was shown that this problem is PSPACE-
complete. In the present work, we consider CRPDL over MSCs which
is PDL equipped with the operators converse and repeat. The former
enables one to walk back and forth within an MSC using a single path
expression whereas the latter allows to express that a path expression
can be repeated infinitely often. To solve the model checking problem for
this logic, we define global message sequence chart automata (gMSCAs)
which are multi-way alternating parity automata walking on MSCs. By
exploiting a new concept called concatenation states, we are able to in-
ductively construct, for every CRPDL formula ϕ, a finite set of gMSCAs
G such that the set of models of ϕ equals the union of the languages
of the gMSCAs from G. As a result, we obtain that the model checking
problem for CRPDL and CFMs is still in PSPACE.

1 Introduction

Automatic verification is the process of translating a computer system to a math-
ematical model, formulating a requirements specification in a formal language,
and automatically checking the obtained model against this specification. In the
past, finite automata, Kripke structures, and Büchi automata turned out to be
suitable formalisms to model the behavior of complex non-parallel systems. Two
of the most common specification languages are the temporal logics LTL and
CTL. After deciding on a modeling and a specification formalism, automatic
verification melts down to the model checking problem: Given a model A with
behavior L(A) and a specification ϕ representing the expected behavior L(ϕ),
does L(A) ⊆ L(ϕ) hold?

Distributed systems exchanging messages can be modeled by communicat-
ing finite-state machines (CFMs). A CFM consists of a finite number of finite
automata communicating using order-preserving channels. Each run of such a
machine can be understood as a message sequence chart (MSC). The latter is
an established ITU standard and comes with a formal definition as well as a
convenient graphical notation. In a simplified model, an MSC can be consid-
ered as a labeled partial order consisting of send and receive events which are

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 531–546, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

532 R. Mennicke

assigned to unique processes. Each such process has a minimal element and its
events are linearly ordered. For each send event there exists a matching receive
event and vice versa. Unfortunately, the model checking problem for CFMs is
undecidable even for very simple temporal logics – this is a direct consequence
of the undecidability of the emptiness problem for CFMs. One solution to this
problem is to establish a bound B on the number of messages pending on a
channel. The bounded model checking problem of CFMs then reads like that:
given a channel bound B, a specification ϕ and a CFM C, does every existen-
tially B-bounded MSC M accepted by C satisfy ϕ? An existentially B-bounded
MSC is an MSC which admits an execution with B-bounded channels. Using this
approach several results for different temporal logics were obtained in [12,7,6,1].

In [1], a bidirectional propositional dynamic logic (PDL) was proposed for
the automatic verification of distributed systems modeled by CFMs. This logic
was originally introduced by Fischer and Ladner [3] for Kripke structures and
allows to express fundamental properties in an easy and intuitive manner. PDL
for MSCs is closed under negation, it is a proper fragment of the existential
monadic second-order logic (EMSO), and the logic TLC− considered by Peled
[14] is a fragment of it. PDL distinguishes between local and global formulas. The
former ones are evaluated at a specific event of an MSC whereas the latter are
Boolean combinations of local formulas quantifying existentially over all events
of an MSC. Consider for example the local formula α = p!q ∧ ¬ 〈proc∗〉 p?q. An
event satisfies α if it is a send event of a message from process p to q which is
not followed by a reply message from q to p. The global formula Eα expresses
that there exists such an event v.

By a rather involved translation of PDL formulas into CFMs, Bollig, Kuske,
and Meinecke demonstrated in [1] that the bounded model checking problem for
CFMs and PDL can be decided in polynomial space. However, by means of this
approach, Bollig et al. were not able to support the popular converse operator.
The latter, introduced in [15], is an extension of PDL which allows to walk back
and forth within an MSC using a single path expression of PDL. For example
one can specify a path expression (proc−1;msg)∗ describing “zigzag-like” paths
going back on a process and traversing a send event in an alternating manner. It
is an open question whether PDL formulas enriched with the converse operator
can be translated into CFMs. Bollig et al. only managed to provide an operator
which enables path expressions to either walk backward or forward.

In the present work, we consider CRPDL over MSCs which is PDL equipped
with the operators converse (−1) and repeat (ω) [16]. The latter allows to
express that a path expression can be repeated infinitely often. For example,
an event v on process p satisfies 〈proc〉ω if there are infinitely many events on
p succeeding v. We are able to demonstrate that the bounded model checking
problem of CFMs and CRPDL is in PSPACE and therefore generalize the model
checking result from [1]. In order to obtain this result, we define multi-way alter-
nating parity automata over MSCs which we call MSCAs. MSCAs are started
at specific events of an MSC and accept sets of pointed MSCs which are pairs
of an MSC M and an event v of M . Using a game theoretic approach, it can be

Propositional Dynamic Logic with Converse and Repeat 533

shown that MSCAs are closed under complementation. We effectively demon-
strate that every local formula α of CRPDL can be translated into an MSCA
linear in the size of α. We also define global MSCAs (gMSCAs) consisting of an
MSCA Mp for every process p. If there exists an accepting run of every MSCA
Mp on the process p beginning in the minimal event of p, then the gMSCA ac-
cepts the whole MSC. For every global formula ϕ, we can construct a finite set
of gMSCAs G such that the set of models of ϕ equals the union of the languages
of the gMSCAs from G.

In the literature, one can basically find two types of approaches to turn a tem-
poral formula into a Büchi automaton. On the one hand, Vardi and others [17,5]
transformed LTL formulas into alternating automata in one single step and,
afterwards, these alternating automata were translated into Büchi automata.
On the other hand, there were performed inductive constructions which lead to
a Büchi automaton without the need for an intermediate step [10,4,1]. In the
present work, we combine these two approaches, i.e., for a given CRPDL formula,
we inductively construct an alternating automaton which is later translated into
a Büchi automaton. In this process, we utilize a new concept called concatena-
tion states. These special states allow the concatenation of MSCAs. For example,
if M is the MSCA obtained for the formula 〈proc〉 tt, then we can concatenate
two copies of M to obtain an automaton for the formula 〈proc; proc〉 tt.

We proceed as follows. In Sect. 2, we define MSCs, CRPDL, and (global)
MSCAs, give introductory examples, and prove several closure properties of
(global) MSCAs. In Sect. 3, we construct, for every local CRPDL formula α,
an MSCA which precisely accepts the models of α. In Sect. 4, we effectively
show that, for every global CRPDL formula ϕ, the set of models of ϕ is a union
of gMSCAs languages. In Sect. 5, we prove that the bounded model checking
problem for CRPDL and CFMs is PSPACE-complete.

2 Preliminaries

We fix a finite set P = {1, 2, . . . , |P|} of processes. Let Ch = {(p, q) ∈ P2 | p �= q}
denote the set of communication channels. For all p ∈ P , we define a local
alphabet Σp = {p!q, p?q | q ∈ P \ {p}} which we use in the following way. An
event labeled by p!q marks the send event of a message from process p to process
q whereas p?q is the label of a receive event of a message sent from q to p. We
set Σ =

⋃
p∈P Σp. Since P is finite, the local alphabets Σp and Σ are also finite.

For every natural number n ≥ 1, we set [n] = {1, 2, . . . , n}.

2.1 Message Sequence Charts

Let D be a finite set of labels. A (Σ,D)-labeled partial order is a quadruple
(V,≤, λ, η) where (V,≤) is a partially ordered set, λ : V → Σ is a total mapping,
and η : V ×V ��� D∪{id} is a partial mapping with η(v, v) = id for all v ∈ V . For
v ∈ V with λ(v) ∈ {p!q, p?q}, let P (v) = p denote the process that v is located
at. Furthermore, we set Vp = P−1(p). The elements of V are called events.

534 R. Mennicke

We fix the set D = {proc, proc−1,msg,msg−1} of labels which we will use for
our definition of message sequence charts. The idea is the following: A message
sequence chart is a special (Σ,D)-labeled partial order (V,≤, λ, η). If we have
η(v, v′) = proc for v, v′ ∈ V , then v′ is the director successor event of v on
process P (v). Provided that η(v, v′) = proc−1, v′ is the direct predecessor event
of v on process P (v). In contrast, if η(v, v′) = msg, then v′ is the receive event
corresponding to the send event v. The label msg−1 is to be understood similarly.

More precisely, a message sequence chart (MSC) is a (Σ,D)-labeled partial
order M = (V,≤, λ, η) where

– ≤ is the reflexive, transitive closure of {(v, v′) ∈ V 2 | η(v, v′) ∈ {proc,msg}},
– {v′ ∈ V | v′ ≤ v} is finite for any v ∈ V ,

– Vp is non-empty and linearly ordered by ≤ for any p ∈ P ,

– |λ−1(p!q)| = |λ−1(q?p)| for any (p, q) ∈ Ch, and

– for all v, v′ ∈ V ,

η(v, v′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

proc if P (v) = P (v′), v < v′ and, for any t ∈ V with

P (v) = P (t) and v ≤ t < v′, we have v = t

proc−1 if η(v′, v) = proc

msg if there exists (p, q) ∈ Ch with λ(v) = p!q, λ(v′) = q?p,

|{t | λ(t) = p!q, t ≤ v}| = |{t | λ(t) = q?p, t ≤ v′}|
msg−1 if η(v′, v) = msg

id if v = v′

undef. otherwise

If v ∈ V , then (M, v) is a pointed MSC. Note that we decided to use the map-
ping η and the labels proc,msg, . . . instead of binary relations over V × V for
technical reasons.

A message sequence chart can be depicted by drawing the processes from P
as top-down time axes. Events can then be visualized by dots on these vertical
lines and messages between events can be illustrated by arrows pointing from
the send events to the receive events.

Example 1. Figure 1 shows a finite MSC over the set of processes P = {1, 2, 3}.

2.2 Propositional Dynamic Logic with Converse and Repeat

We extend PDL for MSCs, which was proposed in [1], by the popular converse
and repeat operators. The former operator, introduced in [15], allows to walk
back and forth within an MSC using a single path expression of PDL, i.e., we
can have a mixed use of proc, proc−1, msg, and msg−1. The repeat operator [16],
which we denote by ω, allows to express that a path expression can be repeated
infinitely often.

Propositional Dynamic Logic with Converse and Repeat 535

Client (1) Server (2) Interface (3)

Fig. 1. An example MSC

Path expressions π and local formulas α of CRPDL are defined by the follow-
ing grammar, where σ ranges over the alphabet Σ:

π ::= proc | proc−1 | msg | msg−1 | {α} | π;π | π + π | π∗ and

α ::= σ | ¬α | 〈π〉α | 〈π〉ω

Local formulas are evaluated at individual events of an MSC. If M = (V,≤, λ, η),
v ∈ V , and D ∈ D, then the semantics of local formulas are

M, v |= σ ⇐⇒ λ(v) = σ for σ ∈ Σ

M, v |= ¬α ⇐⇒ M, v �|= α

M, v |= 〈D〉α ⇐⇒ there exists v′ with η(v, v′) = D and M, v′ |= α

M, v |= 〈{α}〉β ⇐⇒ M, v |= α and M, v |= β

M, v |= 〈π1 + π2〉α ⇐⇒ M, v |= 〈π1〉α or M, v |= 〈π2〉α
M, v |= 〈π1;π2〉α ⇐⇒ M, v |= 〈π1〉 〈π2〉α

M, v |= 〈π∗〉α ⇐⇒ there exists an n ≥ 0 with M, v |= (〈π〉)nα
M, v |= 〈π〉ω ⇐⇒ there exist infinitely many events v0, v1, . . . such that

v0 = v and vi+1 ∈ R(vi, π) for all i ≥ 0

where, for all events v and path expressions π, R(v, π) denotes the set of events
which can be reached from v using a path described by π. Formally, we define
R(v, π) inductively as follows, where D ∈ D:

R(v,D) =

{
{v′} if η(v, v′) = D

∅ otherwise

R(v, {α}) =
{
{v} if M, v |= α

∅ otherwise

R(v, π1;π2) =
⋃
v′∈R(v,π1)

R(v′, π2)

R(v, π1 + π2) = R(v, π1) ∪R(v, π2)

R(v, π∗) = {v} ∪
⋃
n≥1 R(v, πn)

Formulas of the form 〈π〉α are called path formulas. We set tt = σ∨¬σ for some
σ ∈ Σ. Furthermore, we use α1 ∧ α2 as an abbreviation for 〈{α1}〉α2 and write

536 R. Mennicke

α1 ∨ α2 for the formula ¬(¬α1 ∧ ¬α2). By L(α) we denote the set of pointed
MSCs which satisfy α. Note that, for example, the existential until construct
αEUβ [9] can be expressed by 〈({α}; (proc+msg))∗〉β.

Remark 2. It can be easily seen that M, v |= 〈π〉α iff M, v |= 〈π; {α}〉 tt. Because
of this fact, every time we are dealing with path formulas in the future, we will
assume that α = tt.

Global formulas ϕ are positive Boolean combinations of properties of the form
“there exists an event satisfying a local formula α” or “all events satisfy a local
formula α”. Their syntax is given by the grammar

ϕ ::= Eα | Aα | ϕ ∨ ϕ | ϕ ∧ ϕ

where α ranges over the set of local formulas. Their semantics is as follows:

M |= Eα ⇐⇒ there exists v ∈ V with M, v |= α

M |= Aα ⇐⇒ M, v |= α for all v ∈ V

M |= ϕ1 ∨ ϕ2 ⇐⇒ M |= ϕ1 or M |= ϕ2

M |= ϕ1 ∧ ϕ2 ⇐⇒ M |= ϕ1 and M |= ϕ2

Note that even though there are no negation operators allowed in global formu-
las, the expressible properties are still closed under negation. This is because
conjunction and disjunction operators as well as existential and universal quan-
tification are available. By L(ϕ), we denote the set of MSCs M with M |= ϕ.
We define the size s(α) of a local formula α to be the length of the string α. Let
s(ϕ) for a global formula ϕ be defined analogously.

Example 3 ([1]). For all p ∈ P , we define αp =
∨
q∈P,q �=p(p!q ∨ p?q). We have

M, v |= αp iff P (v) = p for every pointed MSC (M, v). From every event v which
satisfies the local formula βp = 〈proc∗;msg; proc∗;msg〉αp, process p can be
reached with exactly two messages. If M is the MSC from Fig. 1, then M, v |= β3

iff v is an event from process 2. The global formula ϕp = Aβp states that this
holds for every event of an MSC.

Example 4. Let αp be the formula from Example 3. If M = (V,≤, λ, η) is an
MSC, then M |= E

∧
p∈P(

〈
(proc+msg + proc−1 +msg−1)∗

〉
αp) iff the graph

(V, proc ∪msg ∪ proc−1 ∪msg−1) is connected.
Now let πp = ((proc + msg)∗; {αp}) for every p ∈ P . Imagine that M is an

MSC which models the circulation of a single token granting access to a shared
resource. Then M |= E

〈
π1;π2; . . . ;π|P|

〉ω
iff no process ever gets excluded from

using the shared resource.

2.3 Message Sequence Chart Automata (MSCAs)

In this section, we give the definition of (global) MSCAs which basically are
multi-way alternating parity automata walking forth and back on the process

Propositional Dynamic Logic with Converse and Repeat 537

and message edges of MSCs. First of all, we define labeled trees which will serve
as a basis for our definition of the runs of an MSCA.

A tree is a directed, cycle-free graph (C,E) with the set of nodes C and the
set of edges E such that there exists exactly one node with no incoming edges
(which is called root) and all other nodes have exactly one incoming edge. Let S
be an arbitrary set, M = (V,≤, λ, η) be an MSC, and v ∈ V . An S-labeled tree
over (M, v) is a five-tuple ρ = (C,E, r, μ, ν) where

– (C,E) is a tree with root r,
– μ : C → S is a labeling function,
– ν : C → V is a positioning function with ν(r) = v,
– μ(y1) �= μ(y2) or ν(y1) �= ν(y2) for all (x, y1), (x, y2) ∈ E with y1 �= y2, and
– η(ν(x), ν(y)) is defined for all (x, y) ∈ E.

The elements of C are called configurations. If x is a configuration from C, then
we denote by Eρ(x) = {y ∈ C | (x, y) ∈ E} the set of the direct successor
configurations of x in ρ. A path in ρ of length n ∈ N ∪ {ω} is a sequence
x1x2x3 . . . ∈ Cn such that xi+1 ∈ Eρ(xi) for all 1 ≤ i < n. It is a branch of ρ if
x1 = r and Eρ(xn) = ∅ (provided that n ∈ N). For convenience, we identify μ
with its natural extension, i.e., μ(x1x2x3 . . .) = μ(x1)μ(x2)μ(x3) . . . ∈ S∗ ∪ Sω.
We define trρ : C → S × Σ × 2(D∪{id})×S to be the function which maps every
x ∈ C to the triple (μ(x), λ(ν(x)), A) where A = {(η(x, x′), μ(x′)) | x′ ∈ Eρ(x)}.

A message sequence chart automaton (MSCA) is a quadruple M = (S,Δ, ι, c)
where

– S is a finite set of states,
– Δ ⊆ S ×Σ × (2(D∪{id})×S \ ∅) is a transition relation,
– ι ∈ S is an initial state, and
– c : S → {0, 1, . . . ,m− 1} is a ranking function with m ∈ N.

The size s(M) of M is |S|. An element τ = (s, σ, {(D1, s1), . . . , (Dn, sn)}) of Δ
is called a transition. It can be interpreted in the following way: Let us assume
that M is in state s ∈ S at an event v ∈ V . If it performs the transition τ , then
it changes from the state s into the states s1, s2, . . . , sn, i.e., the run splits. For
every i ∈ [n] with Di = proc−1 (Di = proc), the automaton moves to the event
of the current process preceding (succeeding) the event v and changes into state
si. In contrast, if we have Di = msg (Di = msg−1), the automaton moves from
the send (receive) event v to the matching receive (send) event and changes into
state si. For every i ∈ [n] with (Di, si) ∈ {id}×S, the automaton goes into state
si without moving away from v.

By mov(τ) we denote the set {(D1, s1), . . . , (Dn, sn)} of movements of τ . We
sometimes write (s, σ,D, s′) as an abbreviation for a transition (s, σ, {(D, s′)})
which does not use the alternation mechanism. For convenience, we define

Δs,σ = {τ ∈ Δ | τ = (s, σ,mov(τ))} .

Let M = (V,≤, λ, η) be an MSC. The MSCA M is stuck at an event v ∈ V
in the state s ∈ S if for every transition τ ∈ Δs,λ(v) there exists a movement

538 R. Mennicke

(D, s′) ∈ mov(τ) such that there exists no event v′ ∈ V with η(v, v′) = D. If ρ is
an S-labeled tree over the pointed MSC (M, v), then ρ is a run of M on (M, v)
if μ(r) = ι and, for all x ∈ C, the run condition is fulfilled, i.e.,

– if Eρ(x) �= ∅, then there exists a transition τ ∈ Δ with τ = trρ(x), and
– if Eρ(x) = ∅, then M is stuck at the event ν(x) in state μ(x).

Let (si)i≥1 ∈ S∗∪Sω be a sequence of states. By inf((si)i≥1), we denote the set of
states occurring infinitely often in (si)i≥1. If (si)i≥1 is finite, then it is accepting
if it ends in a state s whose rank c(s) is even. If it is infinite, it is accepting
if the minimum of the ranks of all states occurring infinitely often is even, i.e.,
min{c(s) | s ∈ inf((si)i≥1)} is even. If ρ is a run of M, and β is a branch of ρ,
then β is accepting if its label μ(β) is accepting. A run ρ of M is accepting if
every branch of ρ is accepting. By L(M), we denote the set of pointed MSCs
(M, v) for which there exists an accepting run of M. Furthermore, Lp(M) is the
set of MSCs M with (M, v) ∈ L(M) where v is the minimal element from Vp
with respect to ≤.

Example 5. Let p ∈ P . Consider the MSCA Mp = ({s1, s2, s3}, Δ, s1, c) where
c(s1) = c(s2) = 1, c(s3) = 0, and Δ is the smallest set such that, for all σ ∈ Σ
and q ∈ P \ {p}, we have:

(s1, σ, proc, s1), (s1, σ,msg, s2), (s2, σ, proc, s2), (s2, q!p, id, s3) ∈ Δ

For every pointed MSC (M, v), we have (M, v) ∈ L(Mp) iff M, v |= βp where βp
is the formula from Example 3.

Now, consider the new MSCA M′
p = ({s1, s2, s3, s4, s5}, Δ ∪Δ′, s4, c

′) where
c′(s1) = c′(s2) = 1, c′(s3) = 0, c′(s4) = 1, c′(s5) = 0, and Δ′ contains only
the transitions (s4, σ, {(id, s5), (id, s1)}) and (s5, σ, proc, s4) for all σ ∈ Σ. Then
(M, v) is accepted by M′

p iff M, v′ |= αp for all v′ ≥ v with P (v′) = P (v).

A global MSCA (gMSCA) is a tuple G = (M1, . . . ,M|P|), where, for all p ∈ P ,
Mp is an MSCA. The language of G is defined by L(G) =

⋂
p∈P Lp(Mp) and

its size s(G) is
∑
p∈P s(Mp). If G is a set of global MSCAs, then we define

L(G) =
⋃
G∈G L(G).

Example 6. Let p ∈ P and G = (M′
p,M′

p, . . . ,M′
p) be a gMSCA where M′

p is
the MSCA from Example 5. We have M ∈ L(G) if and only if M |= ϕp where
ϕp is the global formula from Example 3.

2.4 Closure Properties of (Global) MSCAs

In this section, we prove several closure properties of (global) MSCAs which
are need for our constructions of automata from CRPDL formulas. First of all,
we effectively show that MSCAs are closed under union and intersection. Let
Mi = (Si, Δi, ιi, ci) be an MSCA for every i ∈ [2], S = S1 � S2 � {ι} and
c : S → N such that c(ι) = 1 and c(s) = ci(s) for all s ∈ Si and i ∈ [2]. By

Propositional Dynamic Logic with Converse and Repeat 539

M1 ⊕M2 we denote the MSCA M⊕ = (S,Δ⊕, ι, c) whereas M1 ⊗M2 denotes
the MSCA M⊗ = (S,Δ⊗, ι, c) where

Δ⊕ = Δ1 ∪Δ2 ∪ {(ι, σ, id, ι′) | ι′ ∈ {ι1, ι2}, σ ∈ Σ}
Δ⊗ = Δ1 ∪Δ2 ∪ {(ι, σ, {(id, ι1), (id, ι2)}) | σ ∈ Σ}

Informally speaking, M⊕ non-deterministically decides to either run a copy of
M1 or M2. In contrast, M⊗ runs copies of M1 and M2 in parallel. It can be
easily shown that the following holds:

Lemma 7. L(M⊕) = L(M1) ∪ L(M2) and L(M⊗) = L(M1) ∩ L(M2).

Now, we effectively demonstrate that the complement of an MSCA language is
again an MSCA language. Let M = (S,Δ, ι, c) be an MSCA. Its dual MSCA
M# is the MSCA (S,Δ#, ι, c#) where

– c#(s) = c(s) + 1 for all s ∈ S and,
– for all τ# = (s, σ,mov(τ∗)) ∈ S ×Σ × (2(D∪{id})×S \ ∅), we have τ# ∈ Δ# if

and only if mov(τ) ∩mov(τ#) �= ∅ for all transitions τ ∈ Δs,σ.

If (M, v) is a pointed MSC, ρ is a run of M on (M, v), and ρ# is a run of M# on
(M, v), then one can observe that ρ contains a branch x1x2x3 . . . and ρ# contains
a branch x′1x

′
2x
′
3 . . . such that μ(x1x2x3 . . .) = μ(x′1x

′
2x
′
3 . . .), i.e. they are labeled

by the same sequence of states. Because of our definition of c#, a state s ∈ S has
an even rank in M iff it has an odd rank in M#. As a consequence, x1x2x3 . . .
is accepting in M iff x′1x

′
2x
′
3 . . . is not accepting in M#.

In [11], a proof was presented showing that parity games enjoy memoryless
determinacy, i.e., that at any game position one of the two players has a mem-
oryless winning strategy. Using this result, the ideas presented in [13], and the
above observation, the following theorem can be proved:

Theorem 8. If M is an MSCA and (M, v) is a pointed MSC, then

(M, v) ∈ L(M) ⇐⇒ (M, v) /∈ L(M#) .

Finally, we effectively show that global MSCAs are closed under intersection.
If G = (M1, . . . ,M|P|) and G′ = (M′

1, . . . ,M′
|P|) are two gMSCAs, then we

denote by G ⊗ G′ the gMSCA (M1 ⊗M′
1,M2 ⊗M′

2, . . . ,M|P| ⊗M′
|P|).

Lemma 9. L(G ⊗ G′) = L(G) ∩ L(G′)

3 Translation of Local CRPDL Formulas

In this section, we effectively show that, for every local CRPDL formula α, the
set of models of α is the language of an MSCA whose size is linear in α. In fact,
we inductively define a computable function M mapping from the set of all
local formulas to the set of all MSCAs such that, for all local formulas α, we
have L(α) = L(Mα). If α is a local formula, then we distinguish the following
cases:

540 R. Mennicke

– Case α = σ: We define Mσ = ({ι, s}, Δ, ι, c) where (ι, σ, id, s) is the only
transition from Δ, c(ι) = 1, and c(s) = 0.

– Case α = ¬β: We define M¬β to be the dual automaton of Mβ .

– Case α = 〈D〉 tt with D ∈ D ∪ {id}: We define M〈D〉tt = ({ι, s〈D〉tt}, Δ, ι, c)
where c(ι) = 1, c(s〈D〉tt) = 0, and Δ = {(ι, σ,D, s〈D〉tt) | σ ∈ Σ}.
Note that the state s〈D〉tt is a so called concatenation state. We will use this
type of states to “concatenate” MSCAs in order to obtain MSCAs which
correspond to more complex formulas. For example, we can concatenate two
copies of M〈proc〉tt to obtain a new automaton for the formula 〈proc; proc〉 tt.
Let (M, v) be a pointed MSC. If we start a copy of M〈proc〉tt on an event
v, then it will reach the event v′ with η(v, v′) = proc in state s〈D〉tt iff
(M, v) |= 〈proc〉 tt. Since s〈D〉tt is our concatenation state, we start a second
copy of M〈proc〉tt. The latter will reach the event v′′ with η(v′, v′′) = proc iff
M, v |= 〈proc; proc〉 tt.

– Case α = 〈π1;π2〉 tt: If M〈πi〉tt = (Si, Δi, ιi, ci) for i ∈ [2], then we define

M〈π1;π2〉tt = (S,Δ1 ∪Δ2 ∪Δ3, ι1, c)

where S = S1 � S2, c(s) = (c1 ∪ c2)(s) if s ∈ S \ {s〈π1〉tt}, c(s〈π1〉tt) = 1, and
Δ3 = {(s〈π1〉tt, σ, id, ι2) | σ ∈ Σ} . Furthermore, we set s〈π1;π2〉tt = s〈π2〉tt.

The automaton M〈π1;π2〉tt is the concatenation of the MSCAs M〈π1〉tt and
M〈π2〉tt. Intuitively, M〈π1;π2〉tt starts a copy of M〈π1〉tt and, when this copy
changes into its concatenation state, the automaton M〈π1;π2〉tt starts a copy
of the MSCA M〈π2〉tt.

– Case α = 〈{β}〉 tt: We define M〈{β}〉tt = Mβ ⊗M〈id〉tt and s〈{β}〉tt = s〈id〉tt.

Intuitively, the MSCA M〈{β}〉tt starts Mβ to test whether M, v |= β holds
and, at the same time, changes into its concatenation state.

– Case α = 〈π1 + π2〉 tt: If M〈π1〉tt ⊕M〈π2〉tt = (S,Δ′, ι, c′), then we define

M〈π1+π2〉tt = (S � {s〈π1+π2〉tt}, Δ ∪Δ′, ι, c)

where c and c′ coincide on S\{s〈π1〉tt, s〈π2〉tt}, c(s) = 1 if s ∈ {s〈π1〉tt, s〈π2〉tt},
c(s〈π1+π2〉tt) = 0, and Δ = {(s〈πi〉tt, σ, id, s〈π1+π2〉tt) | σ ∈ Σ, i ∈ [2]}.

– Case α = 〈π∗〉 tt: If M〈π〉tt = (S′, Δ′, ι′, c′), then we set M〈π∗〉tt = (S,Δ, ι, c)
where S = S′ � {ι, s〈π∗〉tt}, c and c′ coincide on S′ \ {s〈π〉tt}, c′(s) = 1 if
s ∈ {ι, s〈π〉tt}, c′(s〈π∗〉tt) = 0, Δ = Δ′ ∪Δ1 ∪Δ2,

Δ1 = {(s〈π〉tt, σ, id, ι) | σ ∈ Σ} ,
Δ2 = {(ι, σ, id, ι′), (ι, σ, id, s〈π∗〉tt) | σ ∈ Σ} ,

Intuitively, the MSCAM〈π∗〉tt executes a copy of the automatonM〈π〉tt and,
every time this copy changes into its concatenation state s〈π〉tt, the MSCA
M〈π∗〉tt nondeterministically decides whether it restarts this copy again or
changes into its concatenation state.

Propositional Dynamic Logic with Converse and Repeat 541

– Case α = 〈π〉ω: If M〈π〉tt = (S,Δ′, ι, c), then we set M〈π〉ω = (S,Δ∪Δ′, ι, c)
where Δ = {(s〈π〉tt, σ, id, ι) | σ ∈ Σ}.

Theorem 10. If α is a local formula, then M, v |= α iff (M, v) ∈ L(Mα) for
all pointed MSCs (M, v). The size of Mα is linear in the size of α.

4 Translation of Global CRPDL Formulas

In this section, we effectively demonstrate that, for every global CRPDL for-
mula ϕ, the set of models of ϕ is a union of gMSCA languages. More precisely,
we inductively define a computable function G mapping from the set of all
global formulas to the power set of all gMSCAs such that, for all global formulas
ϕ, we have L(ϕ) = L(Gϕ). If ϕ is a global formula, we distinguish the following
cases:

– Case ϕ = Eα: If Mα = (S,Δ′, ι′, c′), then we set M = (S � {ι}, Δ′ ∪Δ, ι, c)
where c(s) = c′(s) for all s ∈ S, c(ι) = 1, and

Δ = {(ι, σ, proc, ι), (ι, σ, id, ι′) | σ ∈ Σ} .

Intuitively, the automaton M moves forward on a process finitely many
times. At some event v ∈ V , it nondeterministically decides to start the
automaton Mα to check if (M, v) |= α holds.

Now, for every p ∈ P , we define Gp = (M1, . . . ,M|P|) where Mp = M and
Mq = Mtt for all q ∈ P \ {p}. Note that Mtt accepts the language of all
MSCs. Finally, we let GEα = {Gp | p ∈ P}.

– Case ϕ = Aα: If Mα = (S,Δ′, ι′, c′), we set M = (S � {ι1, ι2}, Δ′ ∪Δ, ι1, c)
where c(s) = c′(s) for all s ∈ S, c(ι1) = 1, c(ι2) = 0, and

Δ = {(ι1, σ, {(id, ι2), (id, ι′)}) | σ ∈ Σ} ∪ {(ι2, σ, proc, ι1) | σ ∈ Σ} .

Informally speaking, the automaton M moves forward on a certain process
and checks, for every event v ∈ V of this process, if (M, v) |= α holds.

We define GAα = {(M1, . . . ,M|P|)} where Mp = M for all p ∈ P .

– Case ϕ = ϕ1 ∧ ϕ2: We let Gϕ1∧ϕ2 = {G1 ⊗ G2 | G1 ∈ Gϕ1 ,G2 ∈ Gϕ2}.
– Case ϕ = ϕ1 ∨ ϕ2: We define Gϕ1∨ϕ2 = Gϕ1 ∪Gϕ2 .

Theorem 11. If ϕ is a global CRPDL formula, then M ∈ L(Gϕ) iff M |= ϕ
for every MSC M . The size of every gMSCA from Gϕ is linear in the size of ϕ.

5 Model Checking

A CFM, which is well suited to model the behaviour of a distributed system, con-
sists of a finite number of finite automata communicating using order-preserving
channels. To be more precise, we recapitulate the definition of CFMs from [1]. A
communicating finite-state machine (CFM) is a structure C = (H, (Tp)p∈P , F)
where

542 R. Mennicke

– H is a finite set of message contents,

– for every p ∈ P , Tp = (Sp,→p, ιp) is a finite labeled transition system over
the alphabet Σp×H (i.e., →p ⊆ Sp×Σp×H×Sp) with initial state ιp ∈ Sp,

– F ⊆
∏
p∈P Sp is a set of global final states.

Let C be a CFM and M = (V,≤, λ, η) be an MSC. A run of C on M is a pair
(ζ, χ) of mappings ζ : V →

⋃
p∈P Sp and χ : V → H such that, for all v, v′ ∈ V ,

– χ(v) = χ(v′) if η(v, v′) = msg,
– (ζ(v′), λ(v), χ(v), ζ(v)) ∈ →P (v) if η(v

′, v) = proc, and
(ιp, λ(v), χ(v), ζ(v)) ∈ →P (v) otherwise.

Let cofinζ(p) = {s ∈ Sp | ∀v ∈ Vp∃v′ ∈ Vp : v ≤ v′ ∧ ζ(v′) = s}. The run (ζ, χ) is
accepting if there is some (sp)p∈P ∈ F such that sp ∈ cofinζ(p) for all p ∈ P . The
language of C is the setL(C) of all MSCsM for which there exists an accepting run.

We strive for an algorithm that decides, given a global CRPDL formula ϕ
and a CFM C, whether L(C) ⊆ L(ϕ) holds. Unfortunately, this problem is un-
decidable – this is a direct consequence of the undecidability of the emptiness
problem for CFMs. However, if one only considers existentially B-bounded MSCs
[14,12,7,6] from L(C), then the problem becomes decidable. Intuitively, an MSC
M is existentially B-bounded if its events can be scheduled in such a way that at
every moment no communication channel contains more than B pending mes-
sages. The rest of this section prepares the proof of our main theorem which is
stated below. The proof itself can be found on page 544.

Theorem 12. The following problem is PSPACE-complete:
Input: B ∈ N (given in unary), CFM C, and a global CRPDL formula ϕ.
Question: Is there an existentially B-bounded MSC M ∈ L(C) with M |= ϕ?

5.1 Definitions

A word is a (Σ, {next, prev})-labeled partial order W = (V,≤, λ, η) such that ≤
is a linear order, {v′ ∈ V | v′ ≤ v} is finite for any v ∈ V , and

η(v, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
next if v < u and, for any t ∈ V , v < t ≤ u implies t = u

prev if η(u, v) = next

id if v = u

undef. otherwise

Note that we define words to be labeled linear orders as this allows us a uniform
definition of automata over MSCs and words, respectively. If M = (V,≤, λ, η)
is an MSC, then a linearization of M is a word W = (V,�, λ, η′) where � ⊇ ≤
and η′ is the mapping naturally arising from the linear ordering �. The word W
is B-bounded if we have

0 ≤ |{v′ | v′ ≤ v, λ(v′) = p!q}| − |{v′ | v′ ≤ v, λ(v′) = q?p}| ≤ B ,

Propositional Dynamic Logic with Converse and Repeat 543

for every v ∈ V and (p, q) ∈ Ch. An MSC M is existentially B-bounded if there
exists a B-bounded linearization of M , i.e., if it allows for an execution with
B-bounded channels.

A two-way alternating word automaton (2AWA) W = (S,Δ, ι, c) is an au-
tomaton running on words which is defined analogously to MSCAs. By L(W),
we denote the set of words W = (V,≤, λ, η) for which there exists an accepting
run of W on (W, v) where v is the minimal element from V with respect to ≤. If
W1 and W2 are 2AWAs, then the automata W1 ⊕W2 and W1 ⊗W2 are defined
analogously to the ones from Sect. 2.4.

Now, let us fix a bound B ∈ N and the alphabet Γ = Σ × {0, 1, . . . , B − 1}.
If W = (V,≤, λ, η) is a B-bounded word over Σ, then we associate with W the
unique B-bounded word WΓ = (V,≤, λ′, η) over Γ where, for every v ∈ V , we
have λ′(v) = (λ(v), i) and i = |{v′ ∈ V | v′ � v, λ(v) = λ(v′)}| mod B, i.e., the
second component counts events labeled by the same action modulo B. In WΓ ,
we are able to quickly locate matching send and receive events. For example, if
v is a send event of WΓ labeled by (p!q, i), we just need to move to the smallest
event v′ ∈ V (with respect to ≤) with v ≤ v′ and λ(v′) = (q?p, i).

5.2 Translation of Global MSCAs to 2AWAs

We can construct, from a global MSCA G, a 2AWA WG that accepts exactly the
set of words WΓ where W is a B-bounded linearization of an MSC from L(G).
For the sake of clarity, we do not elaborate on the details of the construction of
WG but rather present the underlying ideas. At the beginning, each run of WG
splits into |P| configurations which are the starting points of the simulations of
the MSCAs of which the gMSCA G is consisting.

Let M = (V,≤, λ, η) be an MSC and W = (V,�, λ, η′) be a B-bounded
linearization of M . If v, v′ ∈ V with η(v, v′) = proc, then an MSCA is capable of
directly moving to v′. In general, this cannot be accomplished by a 2AWA since
there may exist events v′′ ∈ V with v ≺ v′′ ≺ v′. Hence, we need to address
this issue in our construction of WG . The idea is to introduce transitions which
allow the 2AWA to move forward on WΓ and skip non-relevant events until it
reaches the event v′. Note that we have to analogously deal with proc−1, msg,
and msg−1 transitions of MSCAs.

In the 2AWA WG , we use a state of the form (s, p, next) to remember that we
are searching for the next event on process p in the next-direction. In contrast, a
state of the form (s, p!q, i, prev) means that we are looking for the nearest send
event p!q indexed by i in the prev-direction. The first component is always used
to remember the state from which we need to continue the simulation of the
MSCA after finding the correct event.

Assuming that we reached the event v we were looking for, we simulate
a transition τ of the MSCA in the following manner: If (proc, s) ∈ mov(τ),
then we change into the state (s, p, next) and move along the next-direction. If
(proc−1, s) ∈ mov(τ), then we act analogously in the prev-direction. If we have
(msg, s) ∈ mov(τ) and λ(v) = (p!q, i), then we change into (s, q?p, i, next) and

544 R. Mennicke

move along the next-direction. If (msg−1, s) ∈ mov(τ), then we proceed similarly
in the prev-direction.

Theorem 13. Let G be a gMSCA, M be an MSC, and W some B-bounded
linearization of M . We have M ∈ L(G) iff WΓ ∈ L(WG). The size of WG is
polynomial in B and the size of G.

Proof (Sketch). If ρ is a successful run of WG , then ρ can be pruned and de-
composed in such a way that we obtain accepting runs of the MSCAs of which
G is consisting. Basically, we only have to remove those configurations from ρ
in which WG is searching for the events at which it needs to simulate MSCAs
of G. The converse can be shown analogously. This time one needs to pad and
combine the accepting runs of the MSCAs of G in order to obtain a successful
run of WG .

We are now able to prove our main theorem:

Proof (of Theorem 12). The global formula ϕ is a positive Boolean combination
of global formulas ϕ1, . . . , ϕn where, for every i ∈ [n], ϕi is of the form Aαi
or Eαi for some local formula αi. For every i ∈ [n], we can, by Theorem 11,
construct a finite set of gMSCAs Gi such that L(ϕi) = L(Gi) and Gi is linear
in the size of ϕi. By Theorem 13, we can construct, for every i ∈ [n], a 2AWA
Wi such that, for all MSCs M and B-bounded linearizations W of M , we have
M ∈ L(Gi) iff WΓ ∈ L(Wi). The automaton Wi is polynomial in B and the
size of Gi. By combining the automata W1, . . . ,Wn using the operators ⊕ and
⊗ according to the construction of ϕ, we can build a 2AWA Wϕ such that, for
all MSCs M and B-bounded linearizations W of M , we have WΓ ∈ L(Wϕ) iff
M ∈ L(ϕ). The 2AWA Wϕ is again polynomial in B and the size of ϕ. Using
the alternation elimination scheme from [2], we can transform Wϕ into a Büchi
automaton Aϕ exponential in the number of states and the maximal rank of
Wϕ. Without loss of generality, we can assume that the rank of the 2AWA Wϕ

is linear in its number of states. Hence, the number of states of Aϕ is exponential
in B and ϕ.

In [1], it was shown that one can construct a Büchi automaton AC from C
which recognizes exactly the set of allB-bounded linearizations of the MSCs from
L(C). It consists of O(n) states where n is the maximal number of local states
a finite automaton of C has. Therefore, one can construct a Büchi automaton
recognizing the intersection of L(AC) and L(Aϕ) whose number of states is
exponential in the size of the input. Hence, the model checking problem can
be decided in polynomial space. The hardness result follows from the PSPACE-
hardness of LTL model checking. ��

Remark 14. The model checking problem for CRPDL and high-level message
sequence charts (HMSCs) asks, given an HMSC H and a global CRPDL for-
mula ϕ, is there an MSC M ∈ L(H) with M |= ϕ. Using techniques from [1]
and the ideas from the proof of Theorem 12, it can be shown that this problem
is also PSPACE-complete.

Propositional Dynamic Logic with Converse and Repeat 545

6 Open Questions

It needs to be investigated whether PDL is a proper fragment of CRPDL and if
CRPDL and global MSCAs are expressively equivalent. Furthermore, we would
like to know about the expressive power of CRPDL and gMSCAs in comparison
with EMSO. Another open question is whether the bounded model checking
problem of CFMs and CRPDL enriched with the intersection operator [8,1] is
still in PSPACE.

Acknowledgements. The author likes to express his sincere thanks to his doc-
toral adviser Dietrich Kuske for his guidance and valuable advice. Furthermore,
he is grateful to Benedikt Bollig for comments leading to a considerable technical
simplification. The author also thanks the anonymous referees for their detailed
reviews and helpful remarks.

References

1. Bollig, B., Kuske, D., Meinecke, I.: Propositional Dynamic Logic for Message-
Passing Systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855,
pp. 303–315. Springer, Heidelberg (2007)

2. Dax, C., Klaedtke, F.: Alternation Elimination by Complementation (Extended
Abstract). In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 214–229. Springer, Heidelberg (2008)

3. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

4. Gastin, P., Kuske, D.: Satisfiability and Model Checking for MSO-Definable Tem-
poral Logics Are in PSPACE. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003.
LNCS, vol. 2761, pp. 222–236. Springer, Heidelberg (2003)

5. Gastin, P., Oddoux, D.: LTL with Past and Two-Way Very-Weak Alternating Au-
tomata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448.
Springer, Heidelberg (2003)

6. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

7. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs:
Model-Checking and Realizability. In: Widmayer, P., Triguero, F., Morales, R.,
Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380,
pp. 657–668. Springer, Heidelberg (2002)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
9. Katz, S., Peled, D.: Interleaving set temporal logic. Theor. Comput. Sci. 75(3),

263–287 (1990)
10. Kesten, Y., Pnueli, A., Raviv, L.-o.: Algorithmic Verification of Linear Temporal

Logic Specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

11. Küsters, R.: Memoryless Determinacy of Parity Games. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500,
pp. 95–106. Springer, Heidelberg (2002)

546 R. Mennicke

12. Madhusudan, P., Meenakshi, B.: Beyond Message Sequence Graphs. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267.
Springer, Heidelberg (2001)

13. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput.
Sci. 54, 267–276 (1987)

14. Peled, D.: Specification and verification of message sequence charts. In: FORTE.
FIP Conference Proceedings, vol. 183, pp. 139–154. Kluwer (2000)

15. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: FOCS, pp. 109–121.
IEEE (1976)

16. Streett, R.S.: Propositional dynamic logic of looping and converse. In: STOC,
pp. 375–383. ACM (1981)

17. Vardi, M.Y.: Alternating Automata and Program Verification. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg
(1995)

MSO Decidability of Multi-Pushdown Systems

via Split-Width�

Aiswarya Cyriac1, Paul Gastin1, and K. Narayan Kumar2

1 LSV, ENS Cachan, CNRS & INRIA, France
{cyriac,gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. Multi-threaded programs with recursion are naturally mod-
eled as multi-pushdown systems. The behaviors are represented as mul-
tiply nested words (MNWs), which are words enriched with additional
binary relations for each stack matching a push operation with the cor-
responding pop operation. Any MNW can be decomposed by two basic
and natural operations: shuffle of two sequences of factors and merge of
consecutive factors of a sequence. We say that the split-width of a MNW
is k if it admits a decomposition where the number of factors in each
sequence is at most k. The MSO theory of MNWs with split-width k is
decidable. We introduce two very general classes of MNWs that strictly
generalize known decidable classes and prove their MSO decidability via
their split-width and obtain comparable or better bounds of tree-width
of known classes.

1 Introduction

Multi-pushdown systems (MPDS) — finite state systems with several stacks —
are natural abstractions of concurrent programs. Verification of multi-pushdown
systems is undecidable in general. However concurrency is indispensable for many
critical systems. Hence, several behavioral restrictions have been proposed and
employed for their under-approximate verification [10, 13, 16, 17, 19].

The first behavioral restriction shown to have a decidable reachability problem
was bounded context switching [19] in which the control can switch from one
stack to another only a fixed number of times [13, 16, 17]. This was followed by
ordered MPDS where the stacks have a priority ordering between them [2, 3],
and a stack could pop only when all higher priority stacks are empty. Another
restriction is allowing only a fixed number of phases [12], where in one phase only
one stack was allowed to return. Later bounded scope MPDS [14], where there
are at most k context switches between any push and the corresponding pop,
were also shown to have a decidable emptiness. In [18], Madhusudan and Parlato
give a unified proof of decidability of emptiness of all but the last, by showing
that these restrictions impose bounds on the tree-width of the underlying runs.

� Supported by LIA InForMel, and DIGITEO LoCoReP.

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 547–561, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

548 A. Cyriac, P. Gastin, and K.N. Kumar

As more general classes are desirable in the under-approximate verification,
we propose a bigger and natural class of MPDS which is a generalization of
ordered and scope bounded MPDS. We freely allow pops of both kinds in this
restriction. This can be thought of as the fair runs which comply to the following
scheduling policy. There is no restriction on pushes. But the corresponding pop
a) has to be within fixed number of context switches from then (analogous to
time-out) or b) if a) fails, then all such events will be ordered on a priority
basis (assuming a total order on the priorities of different stacks). This class
is called scope bounded or ordered return (SBO) in the paper. Thus under-
approximate verification wrt. SBO is a kind of fair model checking, in which
at least those runs which comply to the fair scheduling policy can be verified
against some specification. A similar generalization can be thought of when the
ordering policy is replaced by a bounded phase restriction. These two general
classes are shown to be decidable. Note that, however, a joint generalization of
ordered and phase bounded yields undecidablity.

The decidability proofs for the above classes are done by showing that these
classes have bounded split-width. The behaviors of a multi-pushdown system as a
graph are called multiply-nested words (MNWs). These are words enriched with
additional binary relations matching a push on a stack with the corresponding
pop. Split-width is a measure on MNWs which is comparable to tree-width (or
clique-width) [7,11]. This, particularly since the latter was used in [18], calls for
a comparison of split-width to tree-width.

Split-width has a simpler definition. It is defined in terms of two basic and
natural operations — shuffle of two sequences of factors and merge of consecutive
factors in a sequence. Thus split-width is easier to handle as these are well-tuned
for MNWs, where as tree-width is defined for general graphs. This gives easier
and simpler proofs.

Bound on split-width can be translated (up to a constant factor) to bound on
tree-width (or clique-width). MNWs with split-width at most k have tree-width
at most 2k− 1 and clique-width at most 2k+1. For the other direction, MNWs
with clique-width at most k have split-width at most 2k. Thus we do not yet
know whether we have an “equivalence” between split-width and tree-width (or
clique-width).

Even though the class of bounded split-width MNWs is not known to be
MSO definable, they enjoy a decidable MSO theory. Furthermore, split-width is
general enough to capture all classes of MNWs with a decidable MSO theory,
thanks to the translation from clique-width to split-width.

Thus split-width should be seen as a complementary approach which gives
more insight into the structure of the MNWs which have bounded tree-width
(or clique-width). The advantages of split-width are reflected in the fact that
it helped in improving bounds for tree-width of known classes, and lifting up
proofs from different classes to get proofs for joint generalizations.

To summarize, the contributions of this paper are manyfold. On one hand it in-
troduces more general classes ofMNWs for more accurate under-approximate ver-
ification ofMPDS. It introduces the notion of split-width, a measure of complexity

MSO Decidability of Multi-Pushdown Systems via Split-Width 549

of MNWs, which is easier than, yet as general as tree-width or clique-width. It sig-
nificantly improves the known bounds on tree-width for ordered MPDS and scope
bounded MPDS.

The paper is organized as follows. Section 2 recalls some preliminary notions.
Section 3 gives the definition of split-width and compares it to tree-width and
clique-width. It also shows the MSO decidability of bounded split-width. In
Section 4 various decidable classes of MNWs are formally defined, and proof of
their decidability is given by showing a bound on split-width of these classes.
Some proofs are omitted due to lack of space. These can be found in [9].

2 Preliminaries

� denotes the set of natural numbers. For n ∈ �, by [n] we denote the set
{1, . . . , n}. Let S be a set. For a binary relation R ⊆ S × S, we define support
of R, denoted supp(R), to be {x ∈ S | there is some y ∈ S such that (x, y) ∈
R or (y, x) ∈ R}.

Multi-Pushdown Systems (MPDS). are finite state systems with a finite
number of stacks. A transition may push onto a stack (push transitions), pop
from a stack (pop transitions) or leave the stacks untouched. However, in one
transition a MPDS can touch at most one stack. Moreover the push transitions
and pop transitions are disjoint. Let Σ be the finite alphabet and s ∈ � be the
number of stacks. We fix the finite alphabet Σ and the set of stacks [s] for the
rest of this paper. The behaviors of a multi-pushdown system are represented as
multiply-nested words (MNWs).

Multiply-Nested Words (MNWs). A multiply-nested word (MNW) w over
Σ is a structure w = (dom(w), λ,�,�1, . . . ,�s) where

– dom(w) is the set of positions
– λ : dom(w) (→ Σ is the node labeling function
– � is the successor relation of a total order on dom(w). We denote this total

order by <. That is, <= �+.
– For each i ∈ [s], �i ⊆< is a binary relation such that

1. For i �= j, supp(�i) ∩ supp(�j) = ∅
2. For all i ∈ [s], x �i y =⇒ (∀z (x �i z =⇒ z = y) ∧ (z �i y → z = x))
3. For all i ∈ [s], there do not exist x < x′ < y < y′ such that x �i y and

x′ �i y′

We may think of this structure as a graph whose vertices are labelled by the
function λ and edges are labelled using the symbols Γ = {�,�1,�2, . . . ,�s)}.
We refer to the edges labelled by � as linear edges and those labelled by �i as
nesting edges. If s = 1, a MNW is simply called a nested word in the literature [1].

MSO over MNWs. We assume that we have an infinite supply of first-order
variables x, y, . . . and second-order variables X,Y, First order variables vary

550 A. Cyriac, P. Gastin, and K.N. Kumar

over positions of an MNW while second order variables vary over subsets of
positions. The syntax of the monadic second order logic over MNWs is as follows:

ϕ ::= a(x) | x ∈ X | x �i y | x < y | x = y | ϕ1∨ϕ2 | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ and i ∈ [s]. We assume familiarity with logic and hence omit the
obvious semantics associated with this logic.

Remark 1. The language of a Multi-pushdown system as a set of MNWs can be
described in MSO.

3 Split-Width of MNWs

Given a MNW w = (dom(w), λ,�,�1, . . . ,�s), an m-split of w is a structure
w = (dom(w), λ,→, ���,�1, . . . ,�s) where → ∩ ��� = ∅, → ∪ ��� = � and
|���| = m− 1. The intuition is that the ���-edges are missing and these missing
edges divide the linear order into m linear components (though there may be
nesting edges connecting these different components).

A split multiply nested word (SMNW) is an m-split w of some MNW w for
some m. We say that w is an m-SMNW. The entire multiply nested word is al-
ways a 1-SMNW. Notice that SMNWs continue to have the well nesting property
for each �i w.r.t. the linear order generated by → ∪ ���.

Let u = (dom(u), λu,→u, ���u,�1
u, . . . ,�su) be an m-SMNW and let v =

(dom(v), λv,→v, ���v,�1
v, . . . ,�sv) be an n-SMNW. The shuffle of u and v, de-

noted u� v is a set of (m+n)-SMNWs. A (m+n)-SMNW w = (dom(w), λw ,→w

, ���w,�1
w, . . . ,�sw) ∈ u� v if and only if:

– dom(w) = dom(u) � dom(v)
– λw = λu � λv
– →w = (→u ∪ →v)
– �iw = �iu ∪�iv

Note that, by explicitly stating that w is an (m + n)-SMNW, we have ensured
that the nesting edges in w are well nested w.r.t. the linear order generated by
���w ∪ →w. Note also that, ���w �⊇ ���u ∪ ���v. In fact, by alternately choosing
components from u and v, we can have ���w ∩ (���u ∪ ���v) = ∅.

Let u = (dom(u), λu,→u, ���u,�1
u, . . . ,�su) be an m-SMNW. The merge of

u, denoted merge(u), is a set of n-SMNWs for 1 ≤ n < m, obtained by replacing
some ��� by → in u.

Let k ≥ 2. We define the class k-BS (for k-bounded splits) to be the smallest
set of SMNWs closed under the following operations

– a ∈ k-BS. That is, a single node labelled a is in k-BS.

– a b
i ∈ k-BS. That is, two nodes labelled a and b, connected by a �i-edge

is in k-BS.

MSO Decidability of Multi-Pushdown Systems via Split-Width 551

– if u is an m-SMNW in k-BS, v is an n-SMNW in k-BS and if m + n ≤ k,
then u� v ⊆ k-BS.

– if u is in k-BS, then merge(u) ⊆ k-BS

For any SMNW w, if w ∈ k-BS we say that the split-width of w is at most k.

3.1 Split-Width, Tree-Width and Clique-Width of MNWs

Split-width compares well to the usual measures of graph complexity: tree-width
and clique-width [5, 11, 20]. This relation is stated in the following theorem:

Theorem 2. 1. The tree-width of a MNW of split-width k is at most 2k − 1.
2. The clique-width of a MNW with split-width k is at most 2k + 1.
3. The split-width of a MNW with clique-width k is at most 2k.

It is known that any class of graphs with tree-width bounded by k has clique-
width bounded by 2k−1 − 1 [8]. However, Item 2 gives a better bound on clique-
width. We give only the proof of Item 1 in this paper. The proof of the other
two items can be found in [9].

We use the algebraic characterization of tree-width as in [4]. For this we
define a syntax for generating graphs.1 Let C be a finite set of colors. Then
C-expressions are given by:

e ::= x | x E y | e1 ‖ e2 | rnmx↔y(e) | fgx(e)

where x, y ∈ C and E is an edge relation. In particular for nested words x → y,
x �i y are C-expressions. Each expression defines an edge labelled graph (up to
isomorphism) as described below:

– The expression x denotes the graph with a single vertex colored x.
– The expression x E y denotes the graph with two vertices colored x and y

and these vertices are connected by an edge E.
– The expression e1 ‖ e2 (parallel composition) denotes the disjoint union of

the graphs defined by the expressions e1 and e2, where the nodes with the
same labels are fused.

– The expression rnmx↔y(e) (renaming) denotes the graph obtained by recol-
oring the vertices colored x and y in the graph denoted by e with y and x.

– The expression fgx(e) (forget color) denotes the graph obtained by removing
the color of the vertices colored x in the graph denoted by e.

Notice that there can be at most one vertex colored x for each color x, since
the parallel composition fuses nodes with the same color. Also once the color of
a vertex is forgotten, that vertex cannot be colored later. Notice that we have
ignored the node labels in this definition, as these are not the most interesting.
However, one could easily include them.

The tree-width of a graph is at most |C|−1 if there is a C-expression denoting
it [4]. Using this we will now prove Item 1 of Theorem 2.

1 This is FHR
C in [4].

552 A. Cyriac, P. Gastin, and K.N. Kumar

Proof (of Item 1 of Theorem 2). There are at most k components in any SMNW
of split-width at most k. We use 2k colors of the form bi, ei for 1 ≤ i ≤ k. That
is we fix C = {b1, e1, . . . , bk, ek}. We maintain the invariant INV1:Color the first
node and the last node of factor i by bi and ei respectively. If a factor has only
one node, its color is bi. We show how to obtain a SMNW of split-width at
most k using C-expressions inductively. The base cases are the basic splits: The
expression for an internal node is b1, and that for a nesting edge on stack i is
b1 �i b2.

For w ∈ u� v: We identify the index in w of each factor in u and v. Then we do
a sequence of renamings in u and v such that each node gets its intended label in
w. This is followed by a simple parallel composition. Note that this parallel com-
position does not result in the fusion of any nodes, as the colors are disjoint. For
example, consider w = (n1, n2n3, n4, n5) and u = (n1, n5) and v = (n2n3, n4).
Since u and v satisfies the invariant INV1, n1 and n2 are colored b1; n5 and n4

are colored b2; and n3 is colored e1. Let eu, ev denote the expressions for u and v
respectively. Then ew = (rnmb2↔b4(eu)) ‖ (rnmb1↔b2(rnme1↔e2(rnmb2↔b3(ev)))).

For w ∈ merge(u): If w contains a linear edge from factor i in u to factor i+1
in u, we do a parallel composition with (ei → bi+1) (If the factor i is singleton, we
do a parallel composition with (bi → bi+1)). The graph (ei → bi+1) is represented
by rnmb1↔ei(rnmb2↔bi+1(b1 → b2)). We do this for each linear edge added in w.
Finally, in order to maintain the invariant INV1, we do a sequence of forgets and
renamings. ��

A theorem by Courcelle [6] says that if MSO is decidable for a class C of graphs
with bounded degree, then C has bounded clique-width. This theorem, along
with Item 3, says that any class of MNWs with decidable MSO theory indeed
has bounded split-width.

Corollary 3. Let C be a class of MNWs. If C has a decidable MSO theory, then
C has bounded split-width.

3.2 MSO is Decidable over Bounded Split-Width MNWs

An MSO definable class with bounded tree-width (or clique-width) has a decid-
able MSO theory. However, we do not know whether the class of k-BS MNWs
is MSO-definable. Thus Theorem 2 does not imply MSO decidability for k-BS
MNWs. Nevertheless, we have the following theorem:

Theorem 4. Let k ∈ �. The class of MNWs with split-width at most k has a
decidable MSO theory.

The proof is via a tree interpretation along the lines of the proof of MSO decid-
ability over bounded clique-width graphs [7,11]. Let w be a SMNW in k-BS. By
definition, the proof of the membership of w in k-BS is a tree whose nodes are
labelled by elements of k-BS and whose degree is bounded by 2 such that

1. the root is labelled by w.
2. leaves are labelled by atomic SMNWs.

MSO Decidability of Multi-Pushdown Systems via Split-Width 553

3. if an internal node labelled u has only one child labelled v then u ∈ merge(v).
4. if an internal node labelled u has two children labelled x and y then u ∈

x� y.

We abstract such a proof as a finitely labelled tree, called a proof tree. We can
show that the set of valid proof-trees (of membership of SMNWs in k-BS) is
accepted by a tree automaton of size exponential in k and s. Then we give a
translation from any MSO formula Φ over MNWs to an “equivalent” formula
Φ′ over proof-trees. The detailed proof is given in [9] where this technique is
extended to also show

Theorem 5. Given a MPDS M and an integer k, we can construct a tree
automaton A over the proof trees for k-BS, such that A accepts all the valid
proof trees of MNWs in k-BS which have an accepting run in M. The size of A
is exponential in k and the number of stacks s, but is polynomial (with exponent
O(k)) in the number of states of M.

The above theorem allows us to derive several corollaries.Emptiness checking of a
multi-pushdown system restricted to bounded split-width behaviors is ExpTime.
In fact, this allows MSO-model checking of a MPDS restricted to k-BS. Given a
multi-pushdown system M, an integer k and an MSO formula ϕ over MNWs,
it decidable to check whether all MNWs of split-width at most k generated by
M satisfy ϕ in time non-elementary in |ϕ|, exponential in k and the number of
stack s, and polynomial in the number of states of M. Inclusion checking of two
MPDS wrt. k-BS is 2ExpTime. As the set of all valid proof trees is recognizable,
universality checking of a MPDS wrt. k-BS is also 2ExpTime.

4 Classes of MNWs

Let w be a MNW. A factor u of w is defined to be a sequence of consecutive
positions of w. We say that a position x ∈ dom(u) is an i-pending call in u if
there exists y ∈ dom(w) \ dom(u) such that x �i y. Similarly, x is an i-pending
return in u if there exists y ∈ dom(w) \ dom(u) such that y �i x. We say that u
is complete for i if there are no i-pending calls or i-pending returns in u. This
notion is lifted naturally to sequences of factors as well. A context is a set of
consecutive positions which involves at most one stack.

We recall the definitions of three classes of MNWs for which MSO theory
is known to be decidable and follow it with definitions of two new classes we
propose.

Bounded Scope MNWs. [14] We fix a parameter m ∈ �. We say that a
MNW is m-scope bounded if for all nesting edges, there are no more than m
different contexts between its source and target.

Bounded Phase MNWs. [12] A phase is a factor of a MNW in which at
most one stack is allowed to return. We fix a parameter p ∈ �. We say that a
MNW is p-phase bounded if it can be partitioned into p phases.

554 A. Cyriac, P. Gastin, and K.N. Kumar

Ordered MNWs. [2,3] Let [s] be the set of stacks with the natural ordering
on them. We say that a MNW is ordered if for all stacks i ∈ [s], there are no
pending calls of any stack j > i at the target of a �i edge. In other words, if
there are many pending calls at any instant, the pending calls of the highest
stack will return first, then the second highest and so on. This means that, when
stack i is returning, all stacks higher than i are empty.

Scope Bounded or Ordered Returns MNWs (SBO). Let [s] be the set of
stacks with the natural ordering on them. We fix a parameter m ∈ �. Given a
MNW and the parameter m, we classify the nesting edges into long and short.
A nesting edge is long if there are more than m different contexts between its
source and target. It is short otherwise. We say that a MNW is SBO MNW if for
all stacks i ∈ [s], there are no pending long nesting edges of any stack j > i at
the target of a long nesting edge of i. In other words, if there are many pending
long nesting edges at any instant, the pending long nesting edges of the highest
stack will return first, then the second highest and so on. That is to say that,
with respect to the long nesting edges, a SBO MNW behaves exactly like an
ordered MNW.

Scope or Phase Bounded Returns MNWs (SPB). Given a MNW and the
parameters m and p, as in the case of SBO we classify the nesting edges into
long and short (wrt. the parameter m). We say that a MNW is (m, p)-SPB if it
can be partitioned into p phases wrt. the long returns.

Proposition 6. The classes Bounded Scope, Bounded Phase, Ordered, SBO,
SPB are MSO definable.

Proof. All the returns of a MNW have to satisfy certain conditions to belong to
a class. These conditions are easily MSO-definable. ��

All the above classes have bounded split-width.

Theorem 7. 1. m-Bounded scope MNWs have split-width at most m+ 2.
2. p-Bounded phase MNWs have split-width at most 2p.
3. Ordered MNWs have split-width at most 2s.
4. m-SBO have split-width at most 2s(2m+ 1).
5. (m, p)-SPB have split-width at most 2p(2m+ 1)).

The proof is given in Section 4.1 below.
Theorem 4 along with Proposition 6 and Theorem 7 gives us the MSO decid-

ability of the classes defined in Section 4:

Corollary 8. The classes Bounded Scope, Bounded Phase, Ordered, SBO, SPB
have a decidable MSO theory.

Theorem 2 along with Theorem 7 gives us new bounds of tree-width of the
different classes of MNWs. We improve the s2s−1 bound on tree-width of ordered
MNWs obtained in [18] to 2s+1. We also improve the 2ms bound on tree-width
for bounded scope MNWs obtained in [15] to 2(m+ 2).

MSO Decidability of Multi-Pushdown Systems via Split-Width 555

Corollary 9. 1. m-Bounded scope MNWs have tree-width at most 2(m+ 2).
2. p-Bounded phase MNWs have tree-width at most 2p+1.
3. Ordered MNWs have tree-width at most 2s+1.
4. m-SBO have tree-width at most 2s+1(2m+ 1).
5. (m, p)-SPB have tree-width at most 2p+1(2m+ 1).

4.1 Bounded Split-Width

Proof of Bounded Split-Width of Bounded Scope MNWs. Our idea
is to split the first m − 1 contexts of a bounded scope MNW into different
components.

We write wi to denote the ith component of a SMNW w. Given an m-scope
bounded MNW w, we repeatedly decompose it using the shuffle and merge opera-
tions till we are left with atomic SMNWs, ensuring that we stay within (m+2)-BS
in this process. We maintain the invariant INV2: All but the last component of
the SMNWs are single contexts. To begin, observe that any m-scope bounded
MNW w is the merge of a SMNW w with at most m components, where the first
m − 1 components are the first m − 1 contexts of w. We continue by applying
the following rules:

1. If some component wi is a complete MNW, let v = wi and u be w without
wi. Clearly w ∈ u� v.

2. If some component wi has a non trivial prefix or suffix which is a complete
MNW, we split wi into uivi (both nonempty) such that one of them, say
vi is a complete MNW. Let v be vi and u be w without vi. Clearly w ∈
merge(u� v).

3. If there is a �i-edge e whose source, labelled a, is the first node or last node
of wk and whose target, labelled b, is the first node or last node of w�, then

w ∈ merge(u�) where u is w without the edge e and its source and target
nodes.

4. If the last component is wj with j < m and has more than one context, then
we split the first context of the last component into a separate component.
Repeated application of this rule yields as many components (but at most
m) as possible.

Observe that if the invariant holds for w then the same holds for the two SMNWs
obtained by the application of any of these four rules, thus the invariant INV2
is maintained. Observe that the rules preserve another invariant INV3: If there
is a position x in ith component and a position y in jth component, then there
are at least |i − j| + 1 different contexts between x and y in the original MNW
we started with.

We will now argue that the above operations decompose the SMNW to base
cases. Suppose, for the sake of contradiction, that a non-atomic SMNW u is
obtained by the above operations from w and none of the above operations are
applicable.

If for any stack there is a pending return in the first m − 1 components,
consider the first pending return which is in wj . Let the corresponding call be in

556 A. Cyriac, P. Gastin, and K.N. Kumar

w2

w3 w7 w15

w6 w14 w10

w11

3
2

1

2
1 1

1

w1

w4 w8 w16

w5 w13 w9

w12

3
2

1

2
1 1

1

4

Fig. 1. A binomial tree of rank 5

wi (i < j). Since we are not in case 2, the component wi, which is single context,
ends with this pending call and similarly wj begins with this pending return,
making case 3 applicable. Thus we may assume that in w there are no pending
returns in any of the first m − 1 components, and there are m components if
the last component has at least two contexts. Since the first m− 1 components
cannot be complete MNWs (case 1 is not applicable) they must involve pending
calls. Since they do not have complete MNWs as prefixes or suffices and are
single context, each of them must begin and end with pending calls with the
corresponding returns in wm.

Claim: The first node of wm necessarily has to be a pending return of the stack
of w1. The claim holds since a) the first context of wm belong to the same stack
as that of w1 and also contains the pending returns called in w1 (Otherwise
there are more than m contexts switches between the first pending call and its
corresponding return, thanks to invariant INV3). b) wm cannot have a complete
MNW as a prefix, as case 4 was not applicable. This makes case 3 applicable,
contradicting the assumption that none of the above cases are applicable.

Notice that, just before any merge, the SMNW contains at most m + 2
components. ��

Proof of Bounded Split-Width of Ordered MNWs. We show that any
ordered MNW admits a decomposition in which the SMNWs have at most 2s

components. For that, we restrict the number of components of each SMNW to
2s−1 before any shuffle operation. A shuffle is followed by a few merge operations
so that the bound of 2s−1 is maintained before the next shuffle.

The (2s−1)-SMNWs we obtain in the decomposition have some nice properties
which let us embed them in a binomial tree of size 2s−1. Each node in the
binomial tree is a single component of the SMNW. The structure of the binomial
tree is given in Figure 1 and is defined below.

A binomial tree is an edge labelled tree where each node has a rank. A node
of rank i will have i− 1 outgoing edges labelled with i− 1, . . . , 1, and the j-child
(child along the edge labeled j) will be a node of rank j. The rank of a binomial
tree is the rank of its root. A binomial tree with rank k has height k− 1 and has
2k−1 nodes. We identify a node by the path to that node from the root. In the

MSO Decidability of Multi-Pushdown Systems via Split-Width 557

figure, root is identified by ε, the leftmost node by 4321 and the rightmost node
by 1. The i-child of node x is xi. Note that the rank as well as the labels along
any path from the root to a leaf are decreasing.

We say that a SMNW w has a k-binomial embedding if every component
wi of the SMNW can be assigned a node node(i) of a binomial tree of rank k
such that no two components are assigned to the same node. We will shortly
show that a SMNW w obtained from the decomposition of an ordered MNW
has an s-binomial embedding, satisfying the following properties. We denote the
s-binomial embedding of w by W . If node(i) = x under W , then we denote wi
by Wx in the following.

P1 There is a �i edge from a component wk to another component wl only if
node(l) is the i-child of node(k).

P2 Let x be a node of rank i. All the returns in Wx are on a stack which is at
least i.

If s = 4, and w has 16 nonempty components, a binomial embedding satisfying
the above properties may assign nodes of the binomial tree to components as
shown in Figure 1. One can verify that it is in fact the only possible binomial
embedding satisfying the stack policy and the ordering policy.

Any ordered MNW w is a 1-SMNW. The binomial tree embedding embeds
this only component at its leftmost child (node with id (s−1)(s−2) · · · 1). That
is, w = w = W(s−1)(s−2)···1. Clearly it satisfies the properties P1 and P2.

We show the decomposition by induction. Let w be a SMNWwith a s-binomial
embedding satisfying the properties P1 and P2. We do the following case split-
tings in a greedy manner (we will go to a case only if it is not possible to match
any of the previous cases).

1. If there is a nesting edge �i whose source, labeled a, is the first or the last
position of wk and whose target, labeled b, is the first or the last position of wl,

then w ∈ merge(u�) where u is w without the nesting edge and its source and
target nodes. Clearly u has a s-binomial embedding inherited from that of w,
satisfying properties P1 and P2.
2. If some wi is of the form uivi where vi is complete (there are no pending
calls or returns in vi) and ui and vi are nonempty, then w ∈ merge(u� v) where
u is w minus vi and v is vi. Also, u has a binomial embedding U inherited from
w and v has a binomial embedding V which embeds its only component at its
leftmost child. We have a symmetric dual case when ui is complete. Note that
u and U as well as v and V satisfies the properties P1 and P2.
3. If W has two nonempty nodes x and y both containing no pending returns:
Wlog. let y be of smaller rank if the ranks are different. Due to property P1, we can
conclude that the subtree rooted at y is disconnected from the rest. v is obtained
by projecting w to those components whose embedding is in the subtree rooted
at y and u is w without v. Let U be a binomial embedding identical to W on the
subtree rooted at y and empty elsewhere, and V be identical to W everywhere,
except on the subtree rooted at y where it is empty. Clearly w ∈ u� v. Moreover,
u and U as well as v and V satisfies the properties P1 and P2.

558 A. Cyriac, P. Gastin, and K.N. Kumar

4. This splitting in this case is depicted in Figure 2. Let x be a non-empty node
such that Wx is of the form UxVx where Ux and Vx are non-empty, and Vx does
not have any pending return. We will split its children Wxi as Wxi = VxiUxi
such that all pending returns of Uxi are called in Ux and those of Vxi are called
in Vx and there are no nesting edges between Uxi and Vxi. For this we can take
Uxi to be the shortest suffix containing all the pending returns from Ux. Note
that Ux is a prefix and Uxi is a suffix. This is because among all the nesting
edges between Wx and Wxi (all of them belong to stack i, thanks to property
P1), the first pending call will be returned last and the last pending call will be
returned first. All the pending returns of Uxi should be called in Ux or Vxi. Since
Uxi starts with a pending return of stack i whose call is in Ux , there are no
pending returns of stack i in Uxi which is called in Vxi. Since the ordering policy
on stacks is followed, there cannot be any pending returns of stack j > i in Uxi
which is called in Vxi. Due to property P2, there cannot be any returns of stacks
j < i in Uxi. Thus we can split its children Wxi as Wxi = VxiUxi. SImilarly, we
split recursively all nodes in the subtree of x. For all y, Wxy ∈ merge(Uxy�Vxy)
(In fact Wxy = UxyVxy if |y| is even, Wxy = VxyUxy otherwise. For the nodes y
which are not split by the above procedure, let Uy = Wy and Vy = ε. Clearly
w ∈ merge(u� v) where u, v are such that U and V are the binomial embeddings
of u and v. Once again, u and U as well as v and V satisfies the properties P1
and P2.

In fact if root of W (node ε) is non empty, then one of the above cases apply.
We argue why. Let w1 = Wε �= ε. If w1 starts with an internal action, then it is
a base case or case 2 or case 3 applies. If w1 starts with a call to stack j < s,
thanks to property P2, it is either a base case or case 1 or case 2 or case 3 is
applicable. If it is a call to stack s, either case 1 or case 2 or case 4 is applicable.
5. From the above remark, the only remaining case is when root is empty. Let
xi be the nonempty node of W with the highest rank (which is i). If Wxi does
not contain any returns of stack i then we shift node xi to x followed by a shift
of nodes xiy to xy. It can be verified that shifting of the nodes gives a binomial
embedding satisfying the properties P1 and P2 . Hence we can safely assume
that W is a binomial embedding and xi is the nonempty node of W with highest
rank and that it contains a return of stack i. Consider the first return of stack
i. We split Wxi into W ′

xW
′
xi such that W ′

xi is the shortest suffix containing all
the returns of stack i. This will result in the splitting of the children of Wxi

which are attached to W ′
x or W ′

xi similar to that in case 4. One can verify that
w′ ∈ merge(w′). Once again w and its binomial embedding W ′ satisfies the
properties P1 and P2. The splitting in this case is illustrated in Figure 3.

Notice that in each of the above cases, the length of the SMNW decreases, or
the number of components increases (it is bounded by 2s−1). Thus by induction,
the proof follows. ��

Proof of Bounded Split-Width of Bounded Phase. The proof for this
case is very similar to that of Ordered MNWs. We will only mention the main
differences from that of ordered. For the sake of easiness, we will identify the

MSO Decidability of Multi-Pushdown Systems via Split-Width 559

3
2

1

2
1

1

1

3

2

1

2
1 1

1

×

3
2

1

2
1

1

1

3
2

1

2
1

1

1

Fig. 2. Splitting of a binomial tree in case 4. Note the left/right alternation of gray
(denotes U) and white (denotes V) parts along levels. This is needed since the stacks
impose LIFO policy.

phases in the decreasing order. That is, the first phase is called phasep, second
phase is called phasep−1 and so on and the last phase is called phase1.

As in the case of ordered MNWs, our SMNWs w will have a p-binomial
embedding W satisfying the properties P1’ and P2’:

P1’ There is a �edge from a component wk to a component wl only if node(l)
is the i-child of node(k) and the return is in phasei.

P2’ If rank of x is i, then all the returns in Wx are in phasej where j ≥ i.

For the inductive decomposition, all the cases remain the same except for case
5. Let Wxi be the nonempty node of W with highest rank and assume that it
contains at least one return from phasei. We split Wxi into W ′

xW
′
xi such that

W ′
xi is the shortest suffix containing all the returns of phasei. The figures for

ordered MNWs explains the splits for bounded phase as well, except that the
edge labels of the binomial tree indicates the phase number of its children rather
than the stack to which it belong. The bound follows. ��

Proof of Bounded Split-Width of SBO and SPB. The proof for this case is
a joint generalization of the proof of bounded scope MNWs and that of ordered
(resp. bounded phase) MNWs. We first split according to the long nesting edges
and obtain a binomial embedding. In order to handle the short edges, we separate
the outermost m contexts of this component so that a decomposition similar to
that for bounded scope goes through. Thus we have a binomial tree embedding
where instead of having a single component in a node of the binomial tree, we
have 2m+ 1 components. The details can be found in [9].

5 Discussion and Perspectives

We have introduced and studied a new metric on MNWs called split-width and
its relationship with clique-width and tree-width. Using split-width as a tool,

560 A. Cyriac, P. Gastin, and K.N. Kumar

4

3

2

1

2
1 1

1

3
2

1

2
1

1

1

3
2

1

2
1

1

1

4

Fig. 3. Splitting of a binomial tree in case 5

decidability of MSO for several existing as well as new classes of MPDS have
been shown. We can even extend the decidable classes further.

An i-pending-call-context of a MNW w is a factor u of w in which there are
no j-pending calls for j �= i. A pending-call-context is an i-pending-call-context
for some i.

The proof of bounded scope goes through to show that the same split-width
bound of m+ 2 holds for a generalization of bounded scope. The generalization
allows at most m pending-call-contexts at every return. The classes SBO and
SPB could be generalized further to replace bounded scope constraint on short
returns by the generalization. These generalizations are MSO definable and the
split-width remains unchanged.

A next step is to bridge the gap in the translations between split-width and
tree-width (or clique-width). Is it possible to obtain a linear translation from tree-
width to split-width? Is it possible to close the gap in the back and forth trans-
lations between split-width and tree-width (or clique-width)? In other words, is
split-width another characterization of tree-width (or clique-width) of MNWs?

Another interesting question is whether MPDS with k bounded split-width
restriction are closed under complementation. That is, given a MPDS M and k,
is there another MPDS M′ such that for all k-bounded split-width MNWS w,
w is accepted by M if and only if w is not accepted by M′?

It is interesting to know whether one could employ temporal logics instead
of MSO for model checking MPDS wrt. k-split-width-bounded runs, and get a
reasonable complexity.

Another important direction is to find notions similar to split-width for other
domains like message sequence charts, data words etc.

MSO Decidability of Multi-Pushdown Systems via Split-Width 561

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
2. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of Multi-pushdown Automata Is

2ETIME-Complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

3. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

4. Courcelle, B.: Graph grammars, monadic second-order logic and the theory of
graph minors. In: Graph Structure Theory. Contemporary Mathematics, vol. 147,
pp. 565–590. American Mathematical Society (1993)

5. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Gram-
mars, pp. 313–400. World Scientific (1997)

6. Courcelle, B.: The monadic second-order logic of graphs xv: On a conjecture by D.
Seese. Journal of Applied Logic 8, 1–40 (2006)

7. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

9. Cyriac, A., Gastin, P., Narayan Kumar, K.: MSO decidability of multi-pushdown
systems via split-width. Research Report LSV-12-11, Laboratoire Spécification et
Vérification, ENS Cachan, France (June 2012)

10. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability Analysis of Commu-
nicating Pushdown Systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014,
pp. 267–281. Springer, Heidelberg (2010)

11. Kreutzer, S.: Algorithmic meta-theorems. CoRR, abs/0902.3616 (2009)
12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive

languages. In: LICS 2007, pp. 161–170. IEEE Computer Society (2007)
13. La Torre, S., Madhusudan, P., Parlato, G.: Context-Bounded Analysis of Con-

current Queue Systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

14. La Torre, S., Napoli, M.: Reachability of Multistack Pushdown Systems with Scope-
Bounded Matching Relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

15. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. Technical report, University of Southamp-
ton (February 2012)

16. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

17. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural Analysis of Concurrent Pro-
grams Under a Context Bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

18. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) POPL 2011, pp. 283–294. ACM (2011)

19. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Seese, D.: The structure of models of decidable monadic theories of graphs. Ann.
Pure Appl. Logic 53(2), 169–195 (1991)

Decidability Problems for Actor Systems

Frank S. de Boer1, Mahdi M. Jaghoori1, Cosimo Laneve2,
and Gianluigi Zavattaro2

1 CWI, Amsterdam, The Netherlands
2 University of Bologna, INRIA Focus Research Team, Bologna, Italy

{f.s.de.boer,jaghoori}@cwi.nl, {laneve,zavattar}@cs.unibo.it

Abstract. We introduce a nominal actor-based language and study its
expressive power. We have identified the presence/absence of fields as
a relevant feature: the dynamic creation of names in combination with
fields gives rise to Turing completeness. On the other hand, restricting
to stateless actors gives rise to systems for which properties such as
termination are decidable. Such decidability result holds in actors with
states when the number of actors is finite and the state is read-only.

1 Introduction

Since their introduction in [13], actor languages have evolved as a powerful com-
putational model for defining distributed and concurrent systems [2,3]. Lan-
guages based on actors have been also designed for modelling embedded systems
[16,17], wireless sensor networks [7], multi-core programming [15], and web ser-
vices [5,6]. The underlying concurrent model of actor languages also forms the
basis of the programming languages Erlang [4] and Scala [12] that have recently
gained in popularity, in part due to their support for scalable concurrency.

In actor languages [2,13], actors use a queue for storing the invocations to their
methods in a FIFO manner. The queued invocations are processed sequentially
by executing the corresponding method bodies. The encapsulated memory of an
actor is represented by a finite number of fields that can be read and set by its
methods and as such exist throughout its life time.

In this paper we introduce a nominal actor-based language and study its
expressive power. This language, besides dynamic creation of actors, also sup-
ports the dynamic creation of variable names that can be stored in fields and
communicated in method calls. As such our nominal actor-based language gives
rise to unboundedness in (1) internal queues of the actors, (2) dynamic actor
creation/activation and (3) dynamic creation of variable names.

Statelessness has recently been adopted as a basic principle of service oriented
computing, in particular by RESTful services. Such services are designed to be
stateless, and contextual information should be added to messages, so a service
can customize replies simply by looking at the received request messages. In ser-
vice oriented computing read-only fields (which are initialized upon activation)
are used to provide configuration/deployment information that distinguishes the
distinct instances of the same service. We have identified the presence/absence

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 562–577, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Decidability Problems for Actor Systems 563

of fields as a relevant feature of our language: (1) and (3) in combination with
fields gives rise to a Turing complete calculus. On the other hand, restricting to
stateless actors gives rise to systems for which properties such as termination are
decidable. In order to preserve this decidability result to actors with states we
have to restrict the number of actors to be finite and the state to be read-only.

More specifically, we model systems consisting of finitely many actors with
read-only fields as a well-structured transition system [10] – henceforth the de-
cidability of termination. Further, we show that a termination and process reach-
ability preserving abstraction of systems of unboundedly many stateless actors
(i.e., actors without fields) is also an instance of well-structured transition sys-
tem. It turns out that, in the context of unbounded actor creation, this restric-
tion to stateless actors is necessary by a reduction to the halting problem for 2
Counter Machines.

To the best of our knowledge, the technique we use to establish the decid-
ability results for the above languages is original since (i) these systems respec-
tively admit the creation of unboundedly many variables and of unboundedly
many variables and actor names; (ii) actors in general are sensitive to the iden-
tity of names because of the presence of a name-match operator. In particular,
in the case of finitely many actors with read-only fields, we define an equiva-
lence on process instances in terms of renamings of the variables that generate
the same partition. This equivalence allows us to compute an upper bound to
the instances of method bodies, which is the basic argument for the model be-
ing a well-structured transition system. In case of systems with unboundedly
many stateless actors, the reasonable extensions of this equivalence on process
instances have been unsuccessful because of the required abstraction of the iden-
tity of actor names. Therefore we decided to apply our arguments to an abstract
operational model where messages may be enqueued in every actor of the same
class. The above equivalence can be successfully used in this model, thus yielding
again the upper bounds for the number of method body instances. Further, the
abstract model still provides enough information to derive decidable properties
of the language.

Related Works. There exist a vast body of related work on decidability of infinite-
state systems (see [1]) that however does not address the specific characteris-
tics of the pure asynchronous mechanism of queued and dequeued method calls
in actor-based languages. It is interesting to observe that the most expressive
known fragment of the pi-calculus for which interesting verification problems
are still decidable is the depth-bounded fragment [18]. In [20] the theory of well-
structured transition systems is applied to prove the decidability of coverability
problems for bounded depth pi-calculus. Our nominal actor language also fea-
tures the creation and communication of new names. In our decidable fragments
however, differently from the depth-bounded pi-calculus fragment, we do not
restrict the creation and communication of names. For instance, in the queue of
an actor we might have unboundedly many messages (representing process con-
tinuations) where each message shares one name with the previous message in
the queue. Recent work on actor-based language focusses on deadlock analysis:

564 F.S. de Boer et al.

In [11], a technique for the deadlock analysis has been introduced for a version
of Featherweight Java which features asynchronous method invocations and a
synchronization mechanism based on futures variables. The approach followed
in [9] for detecting deadlock in an actor-like subset of Creol [14] is based on
suitable over-approximations.

Disclaimer. Due to space limitations, proofs have been removed; they are in [8].

2 The Language Actor

Four disjoint infinite sets of names are used: actor classes, ranged over C, D, · · · ,
method names, ranged over m, m′, n, n′, · · · , field names, ranged over f, g, · · · ,
and variables, ranged over x, y, z, · · · . For notational convenience, we use x̃
when we refer to a list of variables x1, . . . , xn (and similarly for other kinds of
terms).

The syntax of the language Actor uses expressions E and processes P defined
by the rules

E ::= f | x | new C(Ẽ)

P ::= 0 | (f ←� E).P | let x = E in P | x!m(Ẽ).P |
[E = E]P;P | P + P

An expression E either denotes a value stored in a field f, or a variable x, or a
new actor of class C with fields initialized to the values of Ẽ. A process may be
either the terminated one 0, or a field update (f ←� E).P , or the assignment

let x = E in P of a value to a variable, or an invocation x!m(Ẽ).P of a

method m of the actor x with arguments Ẽ, or a check [E = E′]P;P ′ of the
identity of expressions with positive and negative continuations, or, finally a
nondeterministic process P + P ′. We never write the tailing 0 in processes; for
example (f ←� x).0 will be always shortened into (f ←� x). We will also shorten
[E = E′]P;0 into [E = E′]P .

The operation let x = E in P is a binder of the occurrences of the variable
x in the process P that are not already bound by a nested let operation of x;
the occurrences of x in E are free. Let free(P) be the set of variables of P that
are not bound. As usual, the substitution operation P [y/x] returns the process
P where the free occurrences of x are replaced by y.

A program is a main process P and a finite set of actor class definitions
C.m(x̃) = PC,m, where PC,m may contain the special variable this (which can
be seen as an implicit formal parameter of each method). In the following we
restrict to programs that are

1. unambiguous, namely, every pair C, m has at most one definition;
2. correct, namely, let fields(·) be a map that associates a tuple of field names

to every actor class. Then, (i) in every expression new C(Ẽ), the length of the

tuples Ẽ and fields(C) are the same; (ii) in every definition C.m(x̃) = PC,m,
the field names occurring in PC,m are in the tuple fields(C).

Decidability Problems for Actor Systems 565

In this paper, we abstract from types and type-correctness because we are only
interested in expressive power issues. However, it is straightforward to equip the
above language with a type discipline.

The operational semantics. The operational semantics of the language Actor will
use an infinite set of actor names, ranged over A, B, · · · . This set is partitioned
by the actor classes in such a way that every partition retains infinitely many
actor names. We write A ∈ C to say that A belongs to the partition of C. In the
following, the (run-time) expressions will also include actor names and, with an
abuse of notation, this estended set of expressions will be ranged over by E. The
set of terms that are variables or actor names, called values, will be addressed
by U , V , · · · .

The semantics is defined in terms of a transition relation S −→ S′, where S,
S′, called configurations, are sets of terms A � (P, ϕ, q) with A being an actor
name, ϕ, the state of A, being a map from fields(C) to values, where A ∈ C,

and q being a queue of terms m(Ũ). The empty queue will be denoted with ε.
Configurations contain at most one A � (P, ϕ, q) for each actor name A.

The operational semantics of Actor is defined in Table 1, where the evaluation

function E
ϕ� U ; S is used. This function takes an expression E and a store ϕ

and returns a value U and a possibly empty configuration S of terms A�(0, ϕ, ε).
These terms represent actors created during the evaluation – the names A are
fresh – and ϕ records the initial values of the fields of A. The auxiliary function
fresh(·) used in the evaluation function takes a class actor and returns an actor
name of that class that is fresh. The same auxiliary function is used in rule
(inst) on a tuple of variables. In this case it returns a tuple of the same length of
variables that are fresh. For notational convenience, we always omit the standard
curly brackets in the set notation and we use “, ” both to separate elements inside
sequences and for set union (the actual meaning is made clear by the context).

Given a program, with main process P , the initial configuration is ℵ �
(P,∅, ε), where ℵ is a name of the root, an actor of a class without fields and
methods. We assume that the class of ℵ does not belong to the classes of the
program. Note that the root actor is guaranteed to terminate because its queue
remains empty (no method invocation may be enqueued) and the main process
(as any other one) terminates.

We finally remark that transition systems of the language Actor are not
finitely branching because of the choice of actor names (in the evaluation of
new C) and the choice of fresh variables (in the instantiation of the bodies of
methods). For example, if C.m() = [x = x]P then A � (0,∅,m()) −→ A � ([z =
z]P,∅,m()) for every z. Additionally, every configuration A � ([z = z]P,∅,m())
transits to A�(P,∅,m()). Said otherwise, the sets Succ(S) = {S′ ∈ S | S −→ S′},
called the successor configurations of S, and Pred(S) = {S′ ∈ S | S′ −→ S}, called
the predecessor configurations of S, are not finite, in general.

Relevant sublanguages. We will consider the following fragments of Actor whose
relevance has been already discussed in the Introduction:

566 F.S. de Boer et al.

Table 1. The operational semantics of the language Actor

The evaluation relation E
ϕ� U ; S:

U
ϕ� U ; ∅ f

ϕ� ϕ(f) ; ∅
Ẽ

ϕ� Ũ ; S f̃ = fields(C) A = fresh(C)

new C(Ẽ)
ϕ� A ; A � (0, [f̃ �→ Ũ], ε), S

Ei
ϕ� Ui ; Si, for i ∈ 1..n

E1, · · · , En
ϕ� U1, · · · , Un ; S1, · · · , Sn

The transition relation S −→ S′:

(upd)

E
ϕ� U ; S

A � ((f← � E).P,ϕ, q)
−→ A � (P,ϕ[f← � U], q), S

(let)

E
ϕ� U ; S

A � (let x = E in P, ϕ, q)

−→ A � (P [U/x], ϕ, q), S

(invk-s)

Ẽ
ϕ� Ũ ; S

A � (A!m(Ẽ).P,ϕ, q) −→ A � (P,ϕ, q ·m(Ũ)),S

(invk)

Ẽ
ϕ� Ũ ; S

A � (A′!m(Ẽ).P,ϕ, q), A′ � (P ′, ϕ′, q′)
−→ A � (P,ϕ, q), A′ � (P ′, ϕ′, q′ ·m(Ũ)), S

(inst)

A ∈ C C.m(x̃) = P ỹ = free(P) \ x̃ ỹ′ = fresh(ỹ)

A � (0, ϕ,m(Ũ) · q) −→ A � (P [A/this][ỹ
′/ỹ][Ũ/x̃], ϕ, q)

(match)

E,E′ ϕ� U,U ; S

A � ([E = E′]P;Q,ϕ, q)
−→ A � (P,ϕ, q), S

(mmatch)

E,E′ ϕ� U, V ; S U �= V

A � ([E = E′]P;Q,ϕ, q)
−→ A � (Q,ϕ, q), S

(plus-l)

A � (P, q), S −→ S′

A � (P +Q, q), S −→ S′

(plus-r)

A � (P, q), S −→ S′

A � (Q+ P, q), S −→ S′

(context)

S −→ S′

S, S′′ −→ S′, S′′

Decidability Problems for Actor Systems 567

– Actorba is the sublanguage where the new expression only occurs in the main
process (the number of actor names that it is possible to create is bounded).

– Actorro is the sublanguage without the field update operation (f ←� E)
(fields are read-only as they cannot be modified after the initialization).

– Actorroba is the intersection of Actorba and Actorro.
– Actorsl is the sublanguage with classes without fields (objects are stateless).

3 Undecidability Results for Actorba and Actorro

In this section we establish the main undecidability results for the actor language
in Section 2. In particular, we will prove the undecidability of termination and
process reachability.

Definition 1. An actor program terminates if it has no infinite computation;
it reaches a process P if it has a computation traversing a configuration having
a term A � (P ′, ϕ, q) with P ′ being equal to P up-to renaming of variables and
actor names.

Actually, in order to convey a stronger result, we consider two sublanguages: (i)
where methods never use the new expression – actors may be only created by
the main process –, therefore the actor names are bounded, and (ii) where fields
cannot be updated – the fields are read-only after the initialization.

We will use a reduction technique of the halting and reachability problems
in 2 Counter Machines (2CMs) [19] – a well-known Turing-complete model –
to that of our actor model. A 2CM is a machine with two registers R1 and R2

holding arbitrary large natural numbers and a program P consisting of a finite
sequence of numbered instructions of the following type:

– j : Inc(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1

and goes to the instruction j + 1, otherwise jumps to the instruction l;
– j : Halt: stops the computation and returns the value in the register R1.

A state of the machine is given by a tuple (i, v1, v2) where i indicates the next
instruction to execute (the program counter) and v1 and v2 are the contents of
the two registers. The user has to provide the initial state of the machine. In the
sequel, we consider 2CMs in which registers are initially set to zero.

3.1 The Language Actorba

We encode the value n stored in a register as n messages (of the same type) that
are enqueued in an actor – see Figure 1. Namely, let R1 and R2 be two actors of
class R and let the number of messages item in R1 and R2 be their value. The
instruction Inc is implemented by inserting one item message in the queue of the
corresponding register. In our formalism, this is done by invoking the method
item whose execution has two possible outcomes: (i) the invocation is enqueued

568 F.S. de Boer et al.

R // R has fields dec, ctr, loop and stop

R.item(tt , ff) = [stop = ff]
(
[dec = ff]this!item(tt , ff);(dec← � ff)

)
R.inc(pc, tt , ff) = [stop = ff](loop← � ff).

this!item(tt , ff).ctr!run(pc, tt , ff)

R.decjump(pc, pc′, tt , ff) = [stop = ff](loop← � ff).
(dec← � tt).this!checkzero(pc, pc′, tt , ff)

R.checkzero(pc, pc′, tt , ff) = [stop = ff](loop← � ff).(
[dec= tt]ctr!run(pc′, tt , ff);ctr!run(pc, tt , ff)

)
R.init(tt , ff ,Ctrl)= (dec← � ff).(ctr← � Ctrl).(loop← � ff).(stop← � ff).

this!bottom(tt , ff)

R.bottom(tt , ff)= [loop = ff](loop← � tt).this!bottom(tt , ff); (stop← � tt)

Ctrl // Ctrl has fields stm1, · · ·, stmn and r1 and r2

Ctrl.run(pc, tt , ff) = [pc = stm1][[Instruction 1]]1,tt,ff
· · ·

[pc = stmn][[Instruction n]]n,tt,ff

Ctrl.init() = r1!init(tt , ff , this).r2!init(tt , ff , this).
this!run(stm1, tt , ff)

where [[Instruction i]]i,tt,ff is equal to

– rj!inc(stmi+1, tt , ff) if Instruction i = Inc(Rj);
– rj!decjump(stmi+1, stmk, tt , ff) if Instruction i = DecJump(Rj , k);
– 0 if Instruction i = Halt.

The main process is
let x = new Ctrl(x1, · · · , xn, new R(, , ,), new R(, , ,)) in x!init().

Fig. 1. Encoding a 2CM in Actorba (“ ” denotes an irrelevant initialization parameter)

again; (ii) the invocation is discarded because we are in the presence of a residual
of a DecJump operation, as described next.

In case (i), to avoid an infinite sequence of item dequeues and enqueues, the
queue of the registers is initialized with a bottom message. The execution of
bottom updates the field loop to tt (it is initialized to ff). This field is reset to
ff when either inc, or decjump, or checkzero is executed. If the bottom method
is executed with loop set to tt , the register becomes inactive by setting another
field stop. This value of stop possibly makes the overall computation block as
soon as an instruction concerning that register is performed.

In case (ii), registers have a field dec that is set to tt by a decjump method
execution. This field means that the actual decrement of the register is delayed
to the next execution of checkzero. Since in (ii) item in not enqueued, then the

Decidability Problems for Actor Systems 569

register is actually decremented and the field dec is set to ff . When checkzero will
be executed, since dec = ff then the next instruction of the 2CM is simulated.
On the contrary, when checkzero is executed with dec = tt then the decrement
has not been performed (the register is 0) and the simulation jumps.

Booleans are implemented by two variables – see the method Ctrl.init –
that are distributed during the invocations. With a similar machinery, in the
actor class Ctrl, the labels of the instructions are represented by the variables
x1, · · · , xn, which are stored in the fields stm1, . . . , stmn of Ctrl .

Theorem 1. Termination and process reachability are undecidable in Actorba.

The undecidability of termination in Actorba follows by the property that a
2CM diverges if and only if the corresponding actor program has an infinite
computation. As regards process reachability, we need a smooth refinement of
the encoding in Figure 1 where the Halt instruction is simulated by a specific
process P ′ (see Definition 1).

3.2 The Language Actorro

We show that Actorro is Turing-complete by delivering another encoding of a
2CM – see Figure 2. In this encoding the two registers are represented by two
disjoint stacks of actors linked by the next field. The top elements of the two
stacks are passed as parameters r1 and r2 of the run method of the controller.
As before, this actor encodes the control of the 2CM.

The instruction Inc is implemented by pushing an element on top of the cor-
responding stack. This element is an actor of class R storing in its field the old
pointer of the stack. The new pointer, i.e. the new actor name, is passed to the
next invocation of the run method.

The instruction DecJump is implemented by popping the corresponding stack.
In particular, the method run of the controller is invoked with the field next

of the register being decreased. This pop operation is performed provided the
register that is argument of run is different from nil . Otherwise a jump is per-
formed. Note that the other top of the stack rj (i �= j) and the next instruction
to be executed are simply passed around and therefore they do not need to be
stored in updatable fields.

Theorem 2. Termination and process reachability are undecidable in Actorro.

4 Decidability Results for Actorro
ba

We demonstrate that programs in Actorroba are well-structured transition sys-
tems [1,10]. This will allow us to decide a number of properties, such as termi-
nation. We begin with some background on well-structured transition systems.

A reflective and transitive relation is called quasi-ordering. Awell-quasi-ordering
is a quasi-ordering (X,≤) such that, for every infinite sequencex1, x2, x3, · · · , there
exist i < j with xi ≤ xj .

570 F.S. de Boer et al.

R // R has a field next

R.dec1 (ctrl , r, stm) = ctrl!run(next, r, stm)

R.dec2 (ctrl , r, stm) = ctrl!run(r,next, stm)

Ctrl // Ctrl has fields stm1, · · ·, stmn and nil

Ctrl.run(r1, r2, pc) = [pc = stm1][[Instruction 1]];
· · ·
[pc = stmn][[Instruction n]]

where [[Instruction i]] is equal to

– this!run(new R(r1), r2, stmi+1) if Instruction i = Inc(R1);
– this!run(r1, new R(r2), stmi+1) if Instruction i = Inc(R2);
– [r1 = nil]this!run(r1, r2, stmk);r1!dec1 (this, r2, stmi+1)

if Instruction i = DecJump(R1, k);
– [r2 = nil]this!run(r1, r2, stmk);r2!dec2 (this, r1, stmi+1)

if Instruction i = DecJump(R2, k);
– 0 if Instruction i = Halt.

The program is invoked with let x = new Ctrl(x1, · · · , xn,nil) in x!run(nil ,nil , x1).

Fig. 2. Encoding a 2CM in Actorro

Definition 2. A well-structured transition system is a transition system (S,−→
,�) where � is a quasi-ordering relation on states such that

1. � is a well-quasi-ordering
2. � is upward compatible with −→, i.e., for every S1 � S′1 such that S1 −→ S2,

there exists S′1 −→∗ S′2 such that S2 � S′2.

In the following we assume given an actor program with its main process and

its set of actor class definitions. The first relation we convey is
•
= that relates

renamings of variables that are not free in the main process into either actor
names or variables that are not free in the main process. Let

ρ
•
= ρ′

def
= for every x, y : (i) ρ(x) = ρ(y) if and only if ρ′(x) = ρ′(y)

(ii) ρ(x) = ρ′(x) if ρ(x) or ρ′(x) is an actor name

Namely, two renamings are in the relation
•
= if they identify the same variables,

regardless the value they associate when such a value is a variable. For example,
[x (→ y, y (→ z]

•
= [x (→ x, y (→ z] and [x (→ y, y (→ y, z (→ A]

•
= [x (→ x′, y (→

x′, z (→ A]. However [x (→ y, y (→ z] � •= [x (→ x, y (→ x] and [x (→ A] � •= [x (→
B]. In general, if ρ and ρ′ are injective renamings that always return variables

then ρ
•
= ρ′. The requirements of

•
= are stronger for actor names: in this case

the two renamings should be identical. We also notice that renamings never

Decidability Problems for Actor Systems 571

apply to free variables of the main process and never return free variables of
the main processes. This because these variables are possibly stored in fields
of actors and their renamings might change the behaviours of actors in a way
that breaks the upward compatibility of the following relation � and −→ (c.f.
proof of Theorem 3, part (2)). We finally notice that the above renamings do
not change the main process (because they do not apply to its free variables).

We denote by Pρ the result of the application of ρ to P .
Next, let 9 be the least relation on terms m(U1, · · · , Un) and on processes

such that

ρ
•
= ρ′

m(ρ(x1), · · · , ρ(xk)) (m(ρ′(x1), · · · , ρ′(xk))

ρ
•
= ρ′

Pρ (Pρ′

For example, it is easy to verify that m(x, y) 9 m(x′, y′) and that [x =
A]y!m(x,A, y) 9 [z = A]y′!m(z, A, y′).On the contrary [x = A]B!m(x,A,B) �9
[z = A]y′!m(z, A, y′). The rationale behind 9 is that we are identifying processes
that “behave in similar ways”, namely they enqueue “similar invocations” in the
same actor queue. Method invocationsm(U1, · · · , Un) of a given actor are identi-
fied if the processes they trigger “behave in similar ways”.

Lemma 1. Let T be either a process or a method invocation m(U1, · · · , Un) of
a program in Actorba (and therefore in Actorroba). Let T = {Tρ1, T ρ2, T ρ3, · · · }
be such that i �= j implies Tρi �9 Tρj. Then T is finite.

In order to define a well-quasi ordering on states, we consider the following
embedding relation ≤ on queues (except the part about 9, it is almost stan-
dard [10]):

there exist i1 < i2 < · · · < ik ≤ h such that , for j ∈ 1..k, mj(Ũj) (nij (Ṽij)

m1(Ũ1) . . .mk(Ũk) ≤ n1(Ṽ1) . . . nh(Ṽh)

Then we define the following relation on states:

Pi (P ′
i and qi ≤ q′i for i ∈ 1..�

A1 � (P1, ϕ1, q1), · · · , A� � (P�, ϕ�, q�)) A1 � (P
′
1, ϕ1, q

′
1), · · · , A� � (P

′
� , ϕ�, q

′
�)

It is worth to notice that the relation � constraints corresponding elements
A � (P, ϕ, q) and A � (P ′, ϕ, q′) to have the same states. In fact these states are
defined by the main process using either its free variables or the actor names
that it has created.

Theorem 3. Let (S,−→) be a transition system of a program of Actorroba. Then
(S,−→,�) is a well-structured transition system.

We notice that the well-structured transition system (S,−→,�) has transitive
and stuttering compatibility (see [10], pp 9, 10). Additionally, (S,−→,�) has
decidable algorithms for computing � and for computing the next states. Then
decidability of termination follows directly from Theorems 4.6 in [10].

572 F.S. de Boer et al.

Theorem 4. In Actorroba termination is decidable.

As discussed in Section 2, the transition systems of the actor language are not
finite branching. This is also the case for programs in Actorroba (due to the pres-
ence of fresh variables in method body instantiations). However, in this case,
the sets Succ(S) and Pred(S) are finite if we reason up-to the well-quasi ordering
relation �.

Lemma 2. Let (S,−→,�) be a well-structured transition system of a program
in Actorroba, and let S ∈ S. Then there is a finite set X ⊆ Pred(S) such that, for
every S′ ∈ Pred(S), there is T ∈ X with T � S′. X can be effectively computed.

Lemma 2 and Theorem 4.8 in [10] allow us to decide the so-called control-state
reachability problem: given two states S and T of a well-structured transition
system with well-quasi ordering �, decide whether there is T′ � T such that
S −→∗ T′.

Theorem 5. In Actorroba process reachability is decidable.

In addition to the above decidability results, the process reachability problem
– see Definition 1 – is decidable in the sublanguage of the present section. In
fact, in order to verify whether a configuration A � (P ′, ϕ, q), S is reachable with
P ′ equal to P up-to renaming of variables and actor names, we proceed as
follows. First, consider a configuration T reachable after the complete execution
of the main process. Therefore, in T, every possible actor has been created (with
the corresponding initialization performed). Let T = A1 � (P1, ϕ1, q1), · · · , A� �
(P�, ϕ�, q�). If this part of the computation already traverses a configuration with
a term A�(P ′, ϕ, q), then the reply is positive. Otherwise, we check control-state
reachability from T to at least one of the states in the following finite set:

S = { A1 � (Q1, ϕ1, ε), · · · , A� � (Q�, ϕ�, ε) |
for every 1 ≤ i ≤ 	, Qi is a suffix of a method definition and
there exists 1 ≤ j ≤ 	 such that Qj is equal to P up-to renaming }

We conclude this section by observing that we have already proved the undecid-
ability of termination in programs with finitely many actors and field updates.
If we remove the constraint of finite actor names then the relation � is not a
well-quasi ordering anymore. Consider for instance, the configuration Sn defined
as follows:

Sn
def
= A1 � (0,∅, ε) , · · · , An � (0,∅, ε)

The infinite sequence S1, S2, S3, · · · is such that, for every i < j, Si �� Sj . This
trivial counterexample seems to suggest the following patch of �:

S �′ T def
= there exists S′ ⊆ T such that S � S′

However, the infinite sequence S2, S3, S4, · · · where Sn is defined as

Sn
def
= A0 � (0,∅,m(An−1, A1)) , A1 � (0,∅,m(An, A2)) ,⋃

i∈2..n−1 Ai � (0,∅,m(Ai−2, Ai+1)) , An � (0,∅,m(An−2, A0))

is such that, for every i < j, Si ��′ Sj .

Decidability Problems for Actor Systems 573

5 Decidability Results for Actorsl

We prove that in Actorsl termination and process reachability are decidable,
too. As discussed at the end of Section 4, we have not succeeded in demonstrat-
ing these decidability results by patching the definition of � in Section 4. The
reason is that Actorsl programs may produce unboundedly many actor names.
Therefore, in order to compute an upper bound to the instances of method bod-
ies, which is the basic argument for the model of Section 4 to be a well-structured
transition system, we need to abstract from the identity of these names – as we
have done with variables. However, in case of actor names, the abstractions we
have devised all break the delivering of messages. Therefore we decided to apply
our arguments to an abstraction of the operational model where the delivery of
messages is inexact: it may be enqueued in every actor of the same class. Yet,
this abstract model allows us to derive interesting decidability properties for the
original language.

Since we need a model with inexact message deliveries, we change the oper-
ational semantics in Table 1 in order to decouple the evaluation of the body of
a method from the actor name of that method. Let S −→α S′ be the abstract
transition relation defined as S −→ S′ in Table 1 except the two rules (invk)
and (invk-a) for method invocation and the rule (inst) for the instantiation of
method bodies, which are replaced by the following ones:

(ink-sa)

Ẽ
ϕ� Ũ ; S A,A′ ∈ C

A � (A′!m(Ẽ).P, ϕ, q) −→α A � (P,ϕ, q ·m(Ũ , A′)), S
(invk-a)

Ẽ
ϕ� Ũ ; S A′, A′′ ∈ C

A � (A′!m(Ẽ).P,ϕ, q), A′′ � (P ′, ϕ′, q′) −→α A � (P,ϕ, q), A′′ � (P ′, ϕ′, q′ ·m(Ũ , A′)), S
(inst-a)

A′ ∈ C C.m(x̃) = P ỹ = free(P) \ x̃ ỹ′ = fresh(ỹ)

A � (0, ϕ,m(Ũ , A′) · q) −→α A � (P [A
′
/this][ỹ

′
/ỹ][Ũ/x̃], ϕ, q)

In the abstract transition relation, an item m(Ũ) is added in a queue of an actor
name nondeterministically selected among those names belonging to the same
class of the target actor. The itemm(Ũ) is enqueued with an additional argument
– the actor name of the target actor. This additional argument is used when a
method body is instantiated. In fact it replaces the variable this , thus making
the execution of a body invariant regardless the actor that actually performs it.

The next proposition formalizes the correspondence between −→ and −→α

(for stateless programs). We first introduce few notations:

– Let α() be a map from “concrete” to “abstract” configurations: given a
configuration S, we denote with α(S) the configuration obtained from S by
replacing each of its actor A�(P,∅, q) with A�(P,∅, q′) where q′ is obtained
from q by adding to each of its method invocations the parameter A.

– We use M, M′ to denote multisets of terms m(Ũ). We extend 9 to such
multisets: M 9 M′ iff there exists a bijection ρ from M to M′ such that
m(Ũ) 9 ρ(m(Ũ)).

574 F.S. de Boer et al.

– Let S
M−−→ S′ be the least relation such that

S
∅−→ S

S
M−−→ S′ (S′ −→ S′′ proved without (invk) or (invk-s))

S
M−−→ S′′

S
M−−→ A � (P,∅, q), S′ A � (P,∅, q), S′ −→ A � (P ′,∅, q ·m(Ũ)), S′′

S
M�{m(Ũ,A)}−−−−−−−−−→ A � (P ′,∅, q ·m(Ũ)), S′′

Namely, this transition S
M−−→ S′ collects in M all the method invocations

that have been performed during the computation S −→ S′. These method
invocations are extended with the target actor name as last parameter.

– Let S
M−−→α S′ be the least relation such that

S
∅−→α S

S
M−−→α S′ (S′ −→α S′′ proved without (invk-a) or (invk-sa))

S
M−−→α S′′

S
M−−→α A � (P,∅, q), S′ A � (P,∅, q), S′ −→α A � (P ′,∅, q ·m(Ũ)), S′′

S
M�{m(Ũ)}−−−−−−−→α A � (P ′,∅, q ·m(Ũ)),S′′

Note that in this case the additional argument A is not explicitly added as
it is already introduced as argument by the transition system −→α.

Proposition 1. Let S be a state of a transition system of a program in Actorsl.

– S terminates in the concrete transition system if and only if α(S) terminates
in the abstract transition system;

– given a process P , there exist A′, q′, and S′ such that S −→∗ A′ �(P,∅, q′), S′

if and only if there exist A′′, q′′, and S′′ such that α(S) −→∗
α A′′�(P,∅, q′′), S′′.

We now move to the definition of �α, a variant of the ordering � defined in
the previous section, such that (S,−→α,�α) turns out to be a well-structured
transition system (for configurations of stateless programs). To this aim, we
redefine the notions of Section 4. Let

–
•
=α be the least relation such that

ρ
•
=α ρ′

def
= for every x, y :

(i) ρ(x) = ρ(y) if and only if ρ′(x) = ρ′(y)
(ii) ρ(x) ∈ C if and only if ρ′(x) ∈ C

Differently from the definition of
•
=,

•
=α does not care of the identity of actor

names. Moreover,
•
=α identifies two renamings that “have matching types”,

letting the type of variable being distinct from those of class actors.
– 9α be the relation defined as 9 in Section 4, with

•
=α instead of

•
=.

– ≤α be the relation defined as ≤ in Section 4, with 9α instead of 9.
– �α be the ordering:

Decidability Problems for Actor Systems 575

Ai, A
′
ji ∈ Ci Pi 9α P ′ji and qi ≤ q′ji for i ∈ 1..	, 1 ≤ j1 < j2 < · · · < j� ≤ κ

A1 � (P1,∅, q1), · · · , A� � (P�,∅, q�) ≤α A′1 � (P
′
1,∅, q′1), · · · , A′κ � (P ′κ,∅, q′κ)

Next, we observe that Lemma 1 can be adapted to the case of unbounded actors
by using 9α instead of 9. Let T be either a process or a method invocation
m(U1, · · · , Un) of a stateless program and let T = {Tρ1, T ρ2, T ρ3, · · · } be such
that i �= j implies Tρi �9α Tρj. By proceeding as in the proof of Lemma 1, we
prove that T is finite.

Theorem 6. Let (S,−→α) be the abstract transition system of a program in
Actorsl. Then (S,−→α,�α) is a well-structured transition system.

In the light of Theorem 6, it is possible to decide the termination for the abstract
transition system of a stateless program. As termination is preserved by the
abstract semantics (see Proposition 1) we can conclude that termination is also
decidable for the concrete transition system of a stateless program.

We complete this section by demonstrating the decidability of control-state
reachability for the well-structured transition system (S,−→α,�α) of a stateless
program (see the definition after Lemma 2). The proof is similar to the one of
Theorem 5, with the difference that it is needed a more sophisticated algorithm
for computing the predecessors of a configuration.

Lemma 3. Let (S,−→α,�α) be a well-structured transition system of a program
in Actorsl, and let S ∈ S. Then there is a finite set X such that, for every S′ �α S

and S′′ ∈ Pred(S′), there is T ∈ X with T �α S′′. X can be effectively computed.

It turns out that control-state reachability is decidable for the abstract transition
system of Actorsl. This entails the decidability of process reachability. In fact,
given a process P , the reachability of a configuration A � (P ′, ϕ, q), S with P ′

equal to P up-to renaming of variables and actor names can be solved in the
abstract transition system simply by checking the control-state reachability of
at least one of the following states. Let C1, . . . , Cn be the actor classes of the
considered actor system and let A1, · · · , An be such that Ai ∈ Ci. We consider
the following finite set of states:

S = { Ai � (Qi,∅, ε) | 1 ≤ i ≤ n, Qi is a suffix of a method definition
in the class Ci and it is equal to P up-to renaming }

From the decidability of the process reachability problem for the abstract tran-
sition system we can conclude its decidability for the concrete semantics. By
Proposition 1, this problem is preserved by the abstract semantics. Note that
control-state reachability is not preserved by the abstract semantics. In fact, the
abstract transition system is guaranteed to execute the same method invoca-
tions, but this can be done in a different order and also by different actors.

576 F.S. de Boer et al.

6 Conclusions

To the best of our knowledge this paper contains a first systematic study on the
computational power of Actor-based languages. We have focussed on the pure
asynchronous queueing and dequeuing of method calls between actors in the
context of a nominal calculus which features the dynamic creation of variable
names that can be passed around.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE (1996)

2. Agha, G.: The Structure and Semantics of Actor Languages. In: de Bakker, J.W.,
de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 1–59.
Springer, Heidelberg (1990)

3. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation.
Journal of Functional Programming 7, 1–72 (1997)

4. Armstrong, J.: Erlang. Communications of ACM 53(9), 68–75 (2010)
5. Chang, P.-H., Agha, G.: Supporting reconfigurable object distribution for cus-

tomized web applications. In: SAC, pp. 1286–1292 (2007)
6. Chang, P.-H., Agha, G.: Towards Context-Aware Web Applications. In: Indul-

ska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 239–252. Springer,
Heidelberg (2007)

7. Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation
environment for tinyos-based wireless sensor networks. In: SenSys, pp. 302–302
(2005)

8. de Boer, F., Jaghoori, M., Laneve, C., Zavattaro, G.: Decidability Problems for
Actor Systems. Technical report (2012), cs.unibo.it/˜laneve

9. de Boer, F.S., Grabe, I., Steffen, M.: Termination detection for active objects.
Journal of Logic and Algebraic Programming (2012)

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256, 63–92 (2001)

11. Giachino, E., Laneve, C.: Analysis of Deadlocks in Object Groups. In: Bruni, R.,
Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 168–182. Springer,
Heidelberg (2011)

12. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

13. Hewitt, C.: Procedural embedding of knowledge in planner. In: Proc. the 2nd In-
ternational Joint Conference on Artificial Intelligence, pp. 167–184 (1971)

14. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and System Modeling 6(1), 39–58 (2007)

15. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a
comparative analysis. In: PPPJ, pp. 11–20. ACM (2009)

16. Lee, E.A., Liu, X., Neuendorffer, S.: Classes and inheritance in actor-oriented de-
sign. ACM Transactions in Embedded Computing Systems 8(4) (2009)

cs.unibo.it/~laneve

Decidability Problems for Actor Systems 577

17. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers 12(3),
231–260 (2003)

18. Meyer, R.: OnBoundedness inDepth in the pi-Calculus. In:Ausiello, G., Karhumäki,
J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer,
Boston (2008)

19. Minsky, M.: Computation: finite and infinite machines. Prentice Hall (1967)
20. Wies, T., Zufferey, D., Henzinger, T.A.: Forward Analysis of Depth-Bounded Pro-

cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

Erratum: Decidability Problems for Actor Systems

Frank S. de Boer1, Mahdi M. Jaghoori1, Cosimo Laneve2,
and Gianluigi Zavattaro2

1 CWI, Amsterdam, The Netherlands
2 University of Bologna, INRIA Focus Research Team, Bologna, Italy

{f.s.de.boer,jaghoori}@cwi.nl, {laneve,zavattar}@cs.unibo.it

M. Koutny and I. Ulidowski (Eds.): CONCUR 2012, LNCS 7454, pp. 562–577, 2012.
© Springer-Verlag Berlin Heidelberg 2012

DOI 10.1007/ 978-3-642-32940-1_40

In the original version, the name of the second author is incorrect. Instead of

"Mahdi M. Jaghoori" it should be read as "Mohammad Mahdi Jaghoori".

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-32940-1_39

Author Index

Aarts, Fides 240
Avni, Guy 84

Baeten, Jos C.M. 1
Balaguer, Sandie 100
Bérard, Béatrice 39
Bortolussi, Luca 333
Brenguier, Romain 147

Chatain, Thomas 100
Chatterjee, Krishnendu 115
Chen, Taolue 348
Chen, Tzu-Chun 209
Cyriac, Aiswarya 547
Czerwiński, Wojciech 53

Da Costa, Arnaud 177
de Boer, Frank S. 562, E1
Demangeon, Romain 272

Filiot, Emmanuel 132
Fokkink, Wan 395
Forejt, Vojtěch 348
Fossati, Luca 287
Függer, Matthias 486

Gastin, Paul 547
Gebler, Daniel 395
Gentilini, Raffaella 132
Göller, Stefan 147
Gotsman, Alexey 256

Haddad, Serge 39
Heidarian, Faranak 240
Hillston, Jane 333
Hirschkoff, Daniel 302
Hofman, Piotr 53
Honda, Kohei 209, 272, 287
Hüchting, Reiner 440

Jaghoori, Mahdi M. 562, E1
Janicki, Ryszard 425

Kaiser, Alexander 500
Katoen, Joost-Pieter 364
Kerstan, Henning 410

Khomenko, Victor 440
Knight, Sophia 317
König, Barbara 410
Kroening, Daniel 500
Kumar, K. Narayan 547
Kupferman, Orna 84
Kwiatkowska, Marta 348

Laneve, Cosimo 562, E1
Lange, Julien 225
Laroussinie, François 177
Lasota, S�lawomir 53
Lesani, Mohsen 516
Luchangco, Victor 516
Luttik, Bas 1

Madiot, Jean-Marie 302
Markey, Nicolas 177
Mennicke, Roy 531
Meyer, Roland 440
Mikulski, �Lukasz 456
Mogavero, Fabio 193
Moir, Mark 516
Murano, Aniello 193

Palamidessi, Catuscia 317
Panangaden, Prakash 317
Perelli, Giuseppe 193
Plotkin, Gordon D. 21

Randell, Brian 23
Randour, Mickael 115
Raskin, Jean-François 115, 132
Rodŕıguez, César 471

Sangiorgi, Davide 302
Sankur, Ocan 147
Sassolas, Mathieu 39
Schwoon, Stefan 471
Sewell, Peter 37
Simaitis, Aistis 348
Stoelinga, Mariëlle I.A. 364
Sznajder, Nathalie 39

Timmer, Mark 364
Tribastone, Mirco 380

580 Author Index

Trivedi, Ashutosh 348
Tschaikowski, Max 380
Tuosto, Emilio 225

Ummels, Michael 348

Vaandrager, Frits 240
Valencia, Frank D. 317
Valmari, Antti 162
van de Pol, Jaco 364
van Tilburg, Paul 1
Vardi, Moshe Y. 193

Wahl, Thomas 500
Widder, Josef 486

Yang, Hongseok 256
Yin, Xiang 425
Ying, Mingsheng 69
Yoshida, Nobuko 287
Yu, Nengkun 69

Zavattaro, Gianluigi 562,E1
Zubkova, Nadezhda 425

	Title Page
	Preface
	Organisation
	Table of Contents
	Invited Talks
	Turing Meets Milner
	Introduction
	Process Theory
	Regular Processes
	Pushdown and Context-Free Processes
	Computable Processes
	Conclusion
	References

	Concurrency and the Algebraic Theory of Effects (Abstract)
	References

	A Turing Enigma
	Introduction
	Secret Wartime Computers
	The Stored Program Concept
	Ultra Revelations
	The Outing of Colossus
	The Aftermath
	Concluding Remarks
	References

	False Concurrency and Strange-but-True Machines (Abstract)
	References

	Reachability Analysis
	Concurrent Games on VASS with Inhibition
	Introduction
	Games on VASS with Inhibition Conditions
	Reachability Games
	Safety Games
	Conclusion
	References

	Reachability Problem for Weak Multi-Pushdown Automata
	Introduction
	Multi-pushdown Automata
	Reachability
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 4

	References

	Reachability and Termination Analysis of Concurrent Quantum Programs
	Introduction
	Preliminaries and Notations
	Hilbert Spaces
	Super-Operators
	Matrix Representation of Super-Operator
	Quantum Measurements

	A Model of Concurrent Quantum Programs
	Fairness
	Running Example

	Reachability
	Termination
	Conclusion
	References

	Qualitative and Timed Systems
	Making Weighted Containment Feasible: A Heuristic Based on Simulation and Abstraction
	Introduction
	Weighted Automata and Their Abstraction
	Weighted Simulation
	Defining the Weighted Simulation Relation
	Solving the Simulation Game

	An Abstraction-Refinement-Based Algorithm for Deciding Simulation
	Directions for Future Research
	References

	Avoiding Shared Clocks in Networks of Timed Automata
	Introduction
	Preliminaries
	Timed Transition Systems
	Networks of Timed Automata

	Need for Shared Clocks
	Problem Setting
	Transmitting Information during Synchronizations
	Towards a Formalization of the Problem

	Contextual Timed Transition Systems
	Need for Shared Clocks Revisited

	Constructing a NTA without Shared Clocks
	Construction
	Complexity
	Dealing with Urgent Synchronizations

	Conclusion
	References

	Strategy Synthesis for Multi-Dimensional Quantitative Objectives
	Introduction
	Preliminaries
	Optimal Memory Bounds
	Symbolic Synthesis Algorithm
	Trading Finite Memory for Randomness
	Conclusion
	References

	Quantitative Languages Defined by Functional Automata
	Introduction
	Quantitative Languages and Functionality
	Functionality Problem
	Functionality of Weighted Automata over a Group
	Functionality of Ratio-automata

	Verification Problems
	Realizability Problem
	Determinizability Problem
	References

	Behavioural Equivalences
	A Comparison of Succinctly Represented Finite-State Systems
	Introduction
	Definitions
	Succinctness
	Hierarchical Systems vs. Products of Flat Systems
	Timed Automata vs. Product of Flat Systems
	Timed Automata vs. Hierarchical Systems

	Complexity of Preorder Checking
	Hardness of Simulation
	Simulation and Bisimulation with a Flat System
	Language Inclusion and Universality

	Conclusion
	References

	All Linear-Time Congruences for Familiar Operators Part 2: Infinite LTSs
	Introduction
	Basic Definitions
	When Deadlock Livelock
	When Deadlock .5-.5.5-.5.5-.5.5-.5 Bothlock Livelock
	When Deadlock The Other Two
	Conclusions
	References

	Temporal Logics
	Quantified CTL: Expressiveness and Model Checking (Extended Abstract)
	Introduction
	Preliminaries
	Kripke Structures and Trees
	ATL and Quantified Extensions
	Structure- and Tree Semantics
	Fragments of QCTL *.

	Expressiveness
	Prenex Normal Form
	QCTL and Monadic Second-Order Logic
	QCTL and QCTL *

	QCTL Model Checking
	Model Checking for the Structure Semantics
	Model Checking for the Tree Semantics

	Using QCTL for Specifying Multi-Agent Systems
	Basic Definitions
	From ATL-sc to QCTL * and QCTL Model Checking

	Conclusions and Future Works
	References

	What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic
	Introduction
	Preliminaries
	One-Goal Strategy Logic
	Strategy Quantifications
	Model Properties
	Satisfiability Procedure
	References

	Session Types
	Specifying Stateful Asynchronous Properties for Distributed Programs
	Introduction
	Motivating Examples
	Using State(s) in Protocol Specifications
	Synchrony and Asynchrony in Specification
	Capturing Causality Using Sets

	Asynchronous Specifications
	Syntax of Protocols and Specifications
	Semantics of Specifications
	Processes and Satisfaction

	Theory of Asynchronous Specifications
	Asynchronously Verifiable Specifications
	Asynchrony in Specifications through Commutativity

	Related Work and Further Topics
	References

	Synthesising Choreographies from Local Session Types
	Introduction
	Local Types
	Global Types
	Channel Usage and Linearity
	Well-Formed Global Types

	Synthesising Global Types
	Validation Rules
	Splitting Systems
	Properties of Synthesised Global Type

	Concluding Remarks
	References

	Abstraction
	A Theory of History Dependent Abstractionsfor Learning Interface Automata
	Introduction
	Preliminaries
	Interface Automata
	The ioco Relation
	XY-Simulations
	Relating Alternating Simulations and ioco

	Basic Framework for Inference of Automata
	Mappers
	Inference Using Abstraction
	Conclusions and Future Work
	References

	Linearizability with Ownership Transfer
	Introduction
	Footprints of States
	Linearizability with Ownership Transfer
	Rearrangement Lemma
	Programming Language
	Client-Local and Library-Local Semantics
	Abstraction Theorem
	Frame Rule for Linearizability
	Related Work
	References

	Mobility and Space in Process Algebras
	Nested Protocols in Session Types
	Introduction
	Nested Protocols
	Session-Calculus
	Properties
	Returning a Result
	Conclusion and Future Works
	References

	Intensional and Extensional Characterisation of Global Progress in the π-Calculus
	Introduction
	The -Calculus with Linear Types
	Processes, Reduction and Types
	Labelled Transition and Bisimilarity

	An Observational Theory of Global Progress
	Fair and Failing Sequences
	Intensional Global Progress Properties
	Extensional Global Progress and Classification Results
	Fair Preorder and Preservation

	Application: Semantic Separation of Queues
	Related Work and Further Topics
	References

	Duality and i/o-Types in the π-Calculus
	Introduction
	, a Symmetric π-Calculus
	Syntax and Operational Semantics
	Types and Behavioural Equivalence
	Duality
	Embeddings between π and

	Application: Relating Encodings of the -Calculus
	Extending
	Reasoning about Links, a transformation from oae to iar
	An Analysis of van Bakel and Vigliotti's Encoding

	Concluding Remarks
	References

	Spatial and Epistemic Modalities in Constraint-Based Process Calculi
	Space and Knowledge in Constraint Systems
	Space and Knowledge in Processes
	Observable Behaviour of Space and Knowledge
	Compact Approximation of Space and Knowledge
	References

	Stochastic Systems
	Fluid Model Checking
	Introduction
	Preliminaries
	Reachability
	CSL Model Checking
	Conclusions
	References

	Playing Stochastic Games Precisely
	Introduction
	Preliminaries
	Stochastic Games with Precise Objectives
	Determinacy
	Memory Requirements

	Controller Synthesis Problem
	Conditions for the Existence of Winning Strategies
	Compact Strategies for Objective Functions
	Complexity
	Non-stopping Games

	Counter-Strategy Problem
	Conclusion and Future Work
	References

	Efficient Modelling and Generation of Markov Automata
	Introduction
	Preliminaries
	Markov Automata Process Algebra
	Static and Operational Semantics
	Markovian Linear Probabilistic Process Equations

	Encoding in prCRL
	Encoding and Decoding

	Reductions
	Novel Reduction Techniques
	Generalisation of Existing Techniques

	Case Study and Implementation
	Conclusions and Future Work
	References

	Exact Fluid Lumpability for Markovian Process Algebra
	Introduction
	Preliminaries
	PEPA
	Semi-isomorphism
	Fluid Process Algebra

	Exact Fluid Lumpability
	Motivating Example
	Definitions

	Construction of Exactly Fluid Lumpable Partitions
	Label Equivalence and Projected Label Equivalence
	Relationship with Stochastic Behavioural Equivalences

	Conclusion
	References

	Probabilistic Systems
	Compositionality of ProbabilisticHennessy-Milner Logic through Structural Operational Semantics
	Introduction
	Preliminaries
	Decomposition of Modal Formulae
	Ruloids and Ruloid Partitioning
	Decomposition of HML Formulae

	Example: Decomposition of the Probabilistic Sum
	Future Work
	References

	Coalgebraic Trace Semantics for Probabilistic Transition Systems Based on Measure Theory
	Introduction
	Background Material and Preliminaries
	Notation
	A Brief Introduction to Measure Theory ash,elstrodt
	The Category of Measurable Spaces and Functions
	Kleisli Categories and Liftings of Endofunctors
	Coalgebraic Trace Semantics
	The Lebesgue Integral
	The Probability and the Sub-probability Monad

	Main Results
	Conclusion, Related and Future Work
	References

	Petri Nets and Non-sequential Semantics
	Modeling Interval Order Structures with Partially Commutative Monoids
	Introduction
	Partial Orders and Mazurkiewicz Traces
	Interval Order Structures and Their Partial Order Representations
	Intuition and Motivation of the Model
	Interval Traces
	Interval Order Structures and Interval Traces
	Final Comment
	References

	A Polynomial Translation of π-Calculus (FCP) to Safe Petri Nets
	Introduction
	Related Work

	Basic Notions
	From Finite Control Processes to Safe Petri Nets
	Construction of NSubst
	Construction of N(SInit)
	Operations on Nets
	Size of the Translation

	Correctness of the Translation
	Optimisation of the Translation
	Extensions
	Experimental Results
	Conclusions
	References

	Algebraic Structure of Combined Traces
	Preliminaries
	Elementary Net Systems with Inhibitor Arcs
	Traces
	Comtraces
	Relations between Actions

	Lexicographical Canonical Form
	Indivisible Steps and Sequences

	Projection Representation of Comtraces
	Reconstructing Step Sequence from Projection Function

	Special Subclasses of Comtraces
	Traces as a Subclass of Comtraces
	Weakly Simultaneous Comtraces

	Summary and Future Work
	References

	Verification of Petri Nets with Read Arcs
	Introduction
	Basic Notions
	Contextual Nets
	Occurrence Nets
	Unfoldings

	Using Unfoldings for Verification
	SAT-Encodings of C-Nets
	Asymmetric Conflict Loops
	Reduction of Stubborn Events
	Additional Simplification
	Reachability and Coverability
	Bounded Nets

	Experimental Evaluation
	Optimizations
	Comparisons

	Conclusions
	References

	Verification
	Efficient Checking of Link-Reversal-Based Concurrent Systems
	Introduction
	The Full Reversal Algorithm
	Basic Properties of FR-Based Schedules
	Ensuring Liveness and Fairness

	Checking FR Scheduled Systems
	Equivalence of FR Schedules
	Generalizing FR
	Discussions
	References

	Efficient Coverability Analysis by Proof Minimization
	Introduction
	System Model and Problem Definition
	Compact Backward Reachable Sets
	Minimal Uncoverability Proof Algorithm
	Backward-Constructed Minimal Proofs
	Balancing the Search via Supplementary Coverability Results

	Experimental Evaluation
	Related Work
	Conclusion
	References

	A Framework for Formally Verifying Software Transactional Memory Algorithms
	Introduction
	Transactional Memory
	Specifications
	The NOrec Algorithm

	Theory Background
	Automata
	Simulation Proofs

	A Framework for Verifying TM Implementations
	Foundations: Automata and Simulations
	TM-Specific Automata Included in the Framework

	Our Experience
	Reasons Why Proofs Are Easier Than Before
	Using Our Framework to Verify the NOrec Algorithm
	Formal Proofs Are Still Harder Than Typical Hand Proofs

	Related Work
	Concluding Remarks
	References

	Propositional Dynamic Logic with Converse and Repeat for Message-Passing Systems
	Introduction
	Preliminaries
	Message Sequence Charts
	Propositional Dynamic Logic with Converse and Repeat
	Message Sequence Chart Automata (MSCAs)
	Closure Properties of (Global) MSCAs

	Translation of Local CRPDL Formulas
	Translation of Global CRPDL Formulas
	Model Checking
	Definitions
	Translation of Global MSCAs to 2AWAs

	Open Questions
	References

	Decidability
	MSO Decidability of Multi-Pushdown Systems via Split-Width
	Introduction
	Preliminaries
	Split-Width of MNWs
	Split-Width, Tree-Width and Clique-Width of MNWs
	MSO is Decidable over Bounded Split-Width MNWs

	Classes of MNWs
	 Bounded Split-Width

	Discussion and Perspectives
	References

	Decidability Problems for Actor Systems
	Introduction
	The Language Actor
	Undecidability Results for Actorba and Actorro
	The Language Actorba
	The Language Actorro

	Decidability Results for Actorroba
	Decidability Results for Actorsl
	Conclusions
	References

	Erratum
	Decidability Problems for Actor Systems

	Author Index

