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Preface

This LNCS volume contains the proceedings of the 12th International Conference
on Parallel Problem Solving from Nature (PPSN 2012). This biennial event con-
stitutes one of the most important and highly regarded international conferences
in evolutionary computation and bio-inspired metaheuristics. Continuing with a
tradition that started in Dortmund, in 1990, PPSN 2012 was held during Septem-
ber 1–5, 2012 in Taormina, Sicily, Italy.

PPSN 2012 received 226 submissions from 44 countries. After an extensive
peer-review process involving more than 230 reviewers, the Program Committee
Chairs went through all the reports and ranked the papers according to the
reviewers’ comments. Each paper was evaluated by at least four reviewers. The
top 105 manuscripts were finally selected for inclusion in this LNCS volume
and for presentation at the conference. This represents an acceptance rate of
46%, which guarantees that PPSN will continue to be one of the most respected
conferences for researchers working in natural computing around the world.

PPSN 2012 featured four distinguished keynote speakers: Angelo Cangelosi
(University of Plymouth, UK), Natalio Krasnogor (University of Nottingham,
UK), Panos M. Pardalos (University of Florida, USA), and Leslie G. Valiant
(Harvard University, USA).

The meeting began with six workshops: “Evolving Predictive Systems” (Bog-
dan Gabrys and Athanasios Tsakonas), “Joint Workshop on Automated Selec-
tion and Tuning of Algorithms” Part A: Continuous Search Spaces—Focus on
Algorithm Selection (Heike Trautmann, Mike Preuss, Olaf Mersmann, and Bernd
Bischl), Part B: Discrete Search Spaces – Focus on Parameter Selection (Andrew
Parkes and Ender Özcan), “Theoretical Aspects of Evolutionary Multiobjective
Optimization: Interactive Problem Solving Sessions and New Results” (Dimo
Brockhoff and Günter Rudolph), “Modeling Biological Systems” (Julia Handl,
Joshua Knowles, and Yaochu Jin), and “Parallel Techniques in Search, Opti-
mization, and Learning” (Enrique Alba and Francisco Luna). The workshops
offered and ideal opportunity for the conference members to explore specific
topics in evolutionary computation, bio-inspired computing, and metaheuristics
in an informal and friendly setting.

PPSN 2012 also included eight tutorials: “Introduction to Bioinformatics”
(Jaume Bacardit, University of Nottingham, UK), “Evolutionary Multi-Objective
Optimization” (Jürgen Branke, University of Warwick, UK), “Implementing Ar-
tificial Evolution on GPGPU-Based Computing Eco-Systems with the EASEA-
CLOUD Massively Parallel Platform” (Pierre Collet, Strasbourg University,
France), “Programming by Optimization—A New Paradigm for Developing High-
Performance Software” (Holger H. Hoos, University of British Columbia, Canada),
“Computational Intelligence and Games” (Pier Luca Lanzi, Polytechnic of Milan,
Italy), “Ant Colony Optimization” (Vittorio Maniezzo, University of Bologna,
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Italy), “Complex Systems Science in Its Thirties” (Roberto Serra, University of
Modena and Reggio Emilia, Italy), and “Expressive Genetic Programming” (Lee
Spector, Hampshire College, USA).

We wish to express our gratitude to the authors who submitted their papers
to PPSN 2012 and to the Program Committee members and external reviewers
who provided thorough evaluations of all these submissions. We also express
our profound thanks to Marisa Lappano Anile, Claudio Angione, Jole Costanza,
Giovanni Carapezza, Giovanni Murabito, and all the members of the Organizing
Committee for their substantial efforts in preparing for and running the meeting.
Thanks to all the keynote and tutorial speakers for their participation, which
greatly enhanced the quality of this conference. Finally, we also express our
gratitude to all the organizations that provided financial support for this event.

September 2012 Carlos Coello Coello
Vincenzo Cutello
Kalyanmoy Deb

Stephanie Forrest
Giuseppe Nicosia

Mario Pavone
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PPSN 2012 was organized and hosted by the Optimization and BioComputing
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on Convex Quadratic Problems

Tobias Glasmachers

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
tobias.glasmachers@ini.rub.de

Abstract. The information geometric optimization (IGO) flow has been
introduced recently by Arnold et al. This distinguished mathematical
flow on the parameter manifold of a family of search distributions con-
stitutes a novel approach to the analysis of several randomized search
heuristics, including modern evolution strategies. Besides its appealing
theoretical properties, it offers the unique opportunity to approach the
convergence analysis of evolution strategies in two independent steps.
The first step is the analysis of the flow itself, or more precisely, the con-
vergence of its trajectories to Dirac peaks over the optimum. In a second
step it remains to study the deviation of actual algorithm trajectories
from the continuous flow. The present study approaches the first prob-
lem. The IGO flow of isotropic Gaussian search distributions is analyzed
on convex, quadratic fitness functions. Convergence of all trajectories to
the Dirac peak over the optimum is established.

1 Introduction

Our theoretical understanding of evolution strategies (ESs) lags behind their
practical successes. ESs are powerful optimization techniques that can work un-
der adverse conditions, like non-smooth, discontinuous, or even noisy fitness
functions. However, useful convergence guarantees exist only for the simplest
algorithms on restricted problem classes [5,2]. Narrowing this gap between prac-
tically relevant problems and theoretical guarantees is a long-standing goal of
evolutionary algorithms research.

In this context we view the recently introduced information geometric opti-
mization (IGO) flow [1] as a promising tool towards a unified analysis of ran-
domized search algorithms. Various invariance properties make this flow on the
parameter manifold of a family of search distributions a canonical means for
optimization. It can be interpreted as a continuous time version of various it-
erative, randomized search techniques. In particular, it resembles the behavior
of existing evolution strategies [4,3] in the limit of large populations and small
search strategy updates.

This hints at a two-step analysis: Convergence of the flow trajectories on
an as large as possible class of problems should be separated from bounding

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T. Glasmachers

the deviation of discrete trajectories of actual algorithms from the continuous
trajectories of the flow. With the present work we progress towards the first
goal. We provide a complete convergence analysis of the IGO flow of isotropic
Gaussian distributions on convex, quadratic fitness functions to the Dirac peak
over the optimum. This problem class is of prime interest, since it approximates
local optima of twice differentiable fitness functions. The result is non-trivial,
since there exist counter examples where the flow converges prematurely.

2 The Information Geometric Optimization Flow

The IGO flow is defined in the context of randomized search for the minimum
of a fitness function f : X → R in the black box model. Iterative, randomized
search algorithms like evolutionary algorithms can be interpreted as defining
a sequence of search distributions. The IGO flow resembles this process with
a continuous time flow on the parameter manifold Θ of a family Pθ of search
distributions (with densities pθ). In the limit of large populations and small
learning rates popular ESs such as CMA-ES [4] and NES [6,3] closely follow this
flow [1]. The IGO framework lifts optimization from the search space X to the
parameter manifold Θ. For example, for isotropic Gaussians the parameter space
Θ = Rd × R+ is composed of the mean vector and the standard deviation.

In a first step the fitness function is normalized w.r.t. the current search
distribution, which also makes it invariant under monotonic transformations.
We need the following notation. Let B(x0, r) = {x ∈ Rd | ‖x− x0‖ < r} denote
the open ball of radius r around x0. Let u

f(y) = {x ∈ Rd | f(x) < y} denote the
sub-level sets of the fitness function, and let qfθ (y) = Pθ(u

f (y)) denote the (lower)
quantile function, measuring the probability to sample a solution x with fitness
f(x) better than y under the search distribution encoded by θ. This function is

assumed to be continuous.1 Combining these definitions we write uf
θ (q) = uf(y)

if q = qfθ (y). The composition qfθ ◦ f assigns to each point the probability to
sample a better point under Pθ. Importantly, this is a monotone, rank preserving
transformation of the fitness function, which is itself (by construction) invariant
under rank-preserving transformations of the fitness values.

In a second step a non-increasing weight function w : [0, 1]→ R is introduced
that puts user-defined emphasis on different quantiles. A simple choice is the
indicator w = 1[0,q] for some quantile q. The function W f

θ = w ◦ qfθ ◦ f is a
monotonically decreasing transformation of f . Thus, for fixed θ, maximization
of W f

θ is equivalent to minimization of f . This is an objective function on the
search space X , which can be transferred to the parameter manifold Θ in the
form J(θ, θ′) = Eθ′ [W f

θ (x)]. For fixed θ this is an objective function in θ′.
The parameter manifold Θ is naturally equipped with the Fisher metric. Max-

imization in the resulting statistical manifold can be achieved locally by gradient

1 Otherwise the subsequent technical analysis is unnecessarily complicated by the need
to distinguish upper and lower quantiles, see e.g. [1], equation (3). The assumption
is always fulfilled for the distributions and fitness functions considered in this paper.
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ascent. The gradient in the inner geometry of distributions pulled back to the
parameter manifold Θ is the natural gradient, denoted by the symbol ∇̃. Steep-
est ascent is thus realized by following the vector field V (θ) = ∇̃θ′ |

θ′=θ
J(θ, θ′).

The formula

V (θ) =

∫
W f

θ (x) ∇̃θ′ log
(
pθ′(x)

)
dPθ(x) (1)

(equation (10) in [1]) connects the vector field V to the natural gradient of the
logarithmic density in equation (2). It also ensures the continuity of V , provided
that pθ is non-zero and continuous.

The IGO flow is the solution of the differential equation φ̇t(θ) = V (φt(θ)).
Here φt(θ) denotes a trajectory with initial condition φ0(θ) = θ. The upper index
t denotes time. This flow is invariant under coordinate changes of θ and under
rank-preserving (strictly monotone) transformations of fitness values [1].

The IGO vector field is defined by means of a natural gradient operator.
However, its definition is not of the form V (θ) = ∇̃θJ

′(θ) for some potential
function J ′. The existence of such a potential function would greatly simplify
the analysis of the IGO flow, but there are counter-examples where it does not
exist. It remains unclear whether such a function exists for the case of isotropic
Gaussians and convex, quadratic fitness function.

In this context it is worth mentioning that the family of NES algorithms [6,3]
is commonly derived for the potential function J ′(θ) = Eθ [f(x)] of expected
fitness. It has been argued in [1] that practical NES algorithms follow the IGO
flow instead. This is because NES algorithms are rendered invariant under rank-
preserving transformations of the fitness function by a technique called fitness
shaping. Expected fitness has the desirable property to be a potential function of
the corresponding flow. However, its drawbacks are that depending on the fitness
function (over which there is no control in a black box setting) the expectation
may not always exist, the resulting flow is not invariant under monotone fitness
transformations, and existing algorithms do not approximate the corresponding
flow. Consequently we focus on the IGO flow in this study, albeit expected fitness
has its merits, e.g., on finite search spaces (where the expectation always exists).

Isotropic Gaussian search distributions on X = Rd with densities

pμ,σ(x) =
1

(
√
2π · σ)d · exp

(
−‖x− μ‖2

2σ2

)
are characterized by a mean vector μ ∈ Rd and a variance σ2 ∈ R+. In this paper
we use the parameterization θ = (μ, σ) ∈ Rd ×R+ = Θ. For isotropic Gaussians
the flow is invariant under translation, scaling, and rotation of the search space
(provided that the initial conditions are transformed accordingly).

The natural gradient of the logarithmic density (see equation (1)) can be
computed as

G(θ, x) = ∇̃θ log
(
pθ(x)

)
=

⎛⎝ x− μ

σ
4d

[(
‖x−μ‖

σ

)2
− d

]⎞⎠ . (2)
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Analogously, the vector field is decomposed into components V = (Vμ, Vσ) de-
scribing the evolution of the mean and the standard deviation under the flow.

The IGO flow of Gaussian distributions is of particular interest for its con-
nection to evolution strategies [1,4,3].

3 Analysis of the IGO Flow

We start with the core technical lemma. This auxiliary result decomposes the
IGO vector field into additive components, with each component corresponding
to a tractable, geometric problem.

Lemma 1. The IGO flow vector field V (θ) can be written in the form

V (θ) =

∫
[0,1]

⎡⎢⎣ ∫
uf
θ (q)

G(θ, x) dPθ(x)

⎤⎥⎦ dg(q)

=

∫
[0,1]×[0,∞)

⎡⎢⎣ ∫
uf
θ (q)∩B(μ,r)

G(θ, x) dx

⎤⎥⎦ dhθ(q, r)

w.r.t. non-negative measures g(q) and hθ(q, r).

Proof. We rewrite W f
θ (x) =

∫ 1
0
1uf

θ (q)
(x) dg(q) as an integral of constant func-

tions on sub-level sets of f (which are super-level sets of W f
θ ). Analogously, we

rewrite Pμ,σ =
∫∞
0 UB(μ,r) dβσ(r) as a superposition of uniform distributions

UB(μ,r) over balls around the center μ. By construction the measures g and βσ

are non-negative. Plugging both decompositions into equation (1) and choosing
hθ as the product of g and βσ completes the proof. �

The above lemma allows us to analyze the IGO flow based on the natural gradient
of the logarithmic density given by equation (2), restricted to the intersection of a

ball with a sub-level set. For convex functions the integration area uf
θ (q)∩B(μ, r)

is convex (possibly empty). This lemma will be applied multiple times in the
following.

3.1 Linear Objective Functions

The goal of minimization of a linear fitness function f(x) = vTx is to move the
center of the distribution into the direction −v as quickly as possible, and to
drive the step size σ to infinity. The invariance properties of the IGO flow allow
us to assume v = (1, 0, . . . , 0) ∈ Rd, μ = 0, and σ = 1.

Using Lemma 1 we write Vμ(0, 1) as an integral over terms of the form∫
uf
θ (q)∩B(0,r)

x dx. The half-space uf
θ (q) is given by the inequality x1 < y, with

y = 0 for the median (q = 1/2). The inner product of the above term with
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v yields the same expression with integrand x1 (first component of x) instead
of x. There are three cases: The integral is zero if the ball is fully contained
in or disjoint to the half-space. Otherwise it is negative. It follows Vμ(0, 1) =
(−c, 0, . . . , 0) ∈ Rd for some c > 0, and for symmetry and invariance reasons it
holds Vμ(μ, σ) = −σ · c · v. Thus, the flow moves the center μ in direction −v.
However, it may converge prematurely if σ decays too quickly.

Lemma 1 allows us to write the component Vσ(0, 1) as an integral over terms
of the form

∫
uf
θ (q)

(‖x‖2 − d) dP(0,1)(x). The expectation of the integrand over

the whole space vanishes, and so it does (for symmetry reasons) restricted to
the half-space x1 < 0 (q = 1/2). However, for x1 < y with y < 0 (q < 1/2) the
integral is positive, since compared to the half-space x1 < 0 probability mass is
missing particularly for shorter-than-average vectors x. It follows with an analog
argument that the integral is negative for y > 0 (q > 1/2). Thus, depending on
the choice of the weight function w, it is possible that Vσ(0, 1) is negative. In this
case the step size σ decays exponentially, resulting in (premature) convergence
of the IGO flow trajectories to Dirac delta peaks. For example, for the so-called
“selection quantile” weight function w(t) = 1[0,q](t) trajectories convergence
prematurely for q > 1/2, and σ grows exponentially for q < 1/2. The ability
to handle a (close to) linear objective function is a must for any reasonable
optimization scheme. Care should be taken to impose sufficient selection pressure
by the choice of the weight function. This assumption is formalized as follows:

Assumption. Let L be defined as Vσ(0, 1) for a linear objective function f(x) =
vTx with slope ‖v‖ 	= 0. Using translation and scale invariance this is equivalent
to Vσ(μ, σ) = σ ·L. We assume in the following that w is chosen such that L > 0.

3.2 Convex Quadratic Objective Functions

The core contribution of the present work is the analysis of the IGO flow on
objective functions of the form f(x) = xTQx, where Q ∈ Rd×d is symmetric and
positive definite. This situation is analyzed in the following lemmas.

Lemma 2. V is scale invariant: it holds V (λ · θ) = λ · V (θ) for all λ > 0.

Proof. The lemma follows directly from equations (1) and (2) and the scale
invariance of the level sets of f(x) = xTQx. �

As a consequence, the vector field V is fully described by its values on a section
of co-dimension one through the equivalence classes [θ] = R+ · θ in Θ. The set
S =

{
θ ∈ Θ

∣∣ ‖θ‖ = 1
}

is such a section, with ‖ · ‖ denoting the Euclidean
two-norm on Θ ⊂ Rd+1.

Lemma 3. For μ 	= 0 the inner product 〈Vμ(μ, σ), μ〉 is negative.

Note that the above inner product is the time derivative of 1
2‖μ‖2 under the flow

(since by definition Vμ is the time derivative of μ). Thus, the center component μ
moves towards the optimum, although not necessarily straight.
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cog

x∗ μ

Z+cZ−c

u

B

Fig. 1. The figure depicts the sets B (circular outline), u (elliptic outline), the optimum
x∗ in the origin, the mean vector μ (arrow), the hyperplane H0 (vertical line), the
parameterized line cog(c) of centers of gravity of Yc = Hc ∩ u (dashed line), as well as
a number of sets Zc (vertical, dotted lines). Refer to the proof of Lemma 3 for further
details.

Proof. This proof amounts to a non-trivial application of Lemma 1. The proof
is based on an involved construction, see Figure 1.

Fix q ∈ [0, 1] and r > 0, and the corresponding sets u = uf
θ (q) and B =

B(μ, r). We define the hyperplanes Hc = {x ∈ Rd | 〈x, μ〉 = ‖μ‖2+c} orthogonal
to μ, as well as their subsets Yc = Hc ∩ u and Zc = Yc ∩ B. Let M denote the
(d-1)-dimensional Lebesgue measure on the hyperplanes Hc. Then the center of
gravity of Yc is defined as cog(c) = 1/M(Yc) ·

∫
Yc

x dx. For a convex, quadratic
objective function the set u is the interior of an ellipsoid, and analogously, each
set Yc is the interior on an ellipsoid in d− 1 dimensions. The centers of gravity
cog(c) as a function of c form a parameterized line.

Recall that the μ-component of the natural gradient of the logarithmic density
is x − μ. The relevant expression for the application of Lemma 1 is the inner
product of x− μ with μ. The sets Zc form sections of u∩B such that 〈x− μ, μ〉
takes the constant value c. Now fix a positive constant c > 0 and consider the
pair of sections Z+c and Z−c, as well as the translation ψc : H+c → H−c along
the line cog(c).

By construction it holds ψc(Yc+) ⊂ Y−c, and again by construction it holds
ψc(Z+c) ⊂ Z−c (see Figure 1), and since the translation ψc is measure preserving
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it follows M(Z+c) ≤M(Z−c). In those cases where Zc is bounded by the ellip-
soid and not only by the ball (these cases exist if u∩B 	= ∅ and u∩B 	= B) the
inequality is strict, because the ellipsoid Y+c is strictly smaller than for Y−c (see
also Figure 1).

The inner term of Lemma 1 projected onto the direction μ becomes〈∫
u∩B

(x − μ) dx, μ

〉
=

∫ ∞

−∞
c ·M(Zc) dc

=

∫ ∞

0

c · (M(Z+c)−M(Z−c)
)
dc < 0 .

Finally, the application of Lemma 1 yields 〈Vμ(μ, σ), μ〉 < 0. �

The next three lemmas analyze the evolution of the step size. Their proofs rely on
the following types of topological arguments: Continuous functions map compact
sets in the preimage onto compact sets in the image, and preimages of open
sets are open. This implies two handy properties: First, a continuous function
attains infimum and supremum on a compact set, which means that minimum
and maximum exist. Second, if a continuous function is positive in one point,
then it is positive in a (small) open neighborhood of this point.

We define the set M = (Rd × R+
0 ) \ {(0, 0)} and the continuous2 function

n : M → [0,∞], n(μ, σ) = ‖μ‖/σ, measuring normalized distance of the search
distribution to the optimum. Because of n(θ) = n(λ · θ) for all θ ∈ M and
λ > 0 the function is uniquely described by its values on the compact half-
sphere S =

{
θ ∈ M

∣∣ ‖θ‖ = 1
}
, which is the topological closure of the open

half-sphere S ⊂ Θ.

Lemma 4. It holds V (0, σ) = (0,−c · σ) for some c > 0.

Proof. We apply Lemma 1 to compute Vμ(0, σ). The sub-level set uf
θ (q) as well

as the ball B(μ, r) = B(0, r) are symmetric around the origin, and so is their
intersection. The inner term in the integration is x, such that the integral over
uf
θ (q) ∩B(0, r) vanishes.
The form Vσ(0, σ) = −c · σ follows from Lemma 2. It remains to show that

Vσ is negative. We apply Lemma 1 again and consider the inner term∫
uf
θ (q)

σ

4d

[(‖x‖
σ

)2

− d

]
dPθ(x) .

The integration, when spanning the whole search space, amounts to zero. How-
ever, the set uf

θ (q) is convex and symmetric around the origin and thus puts
more probability mass on smaller-than-average vectors. As a result the above
expression is negative, and we obtain Vσ(0, σ) < 0 from Lemma 1. �

Lemma 5. There exists c1 <∞ such that n(μ, σ) > c1 implies Vσ(μ, σ) > 0.

2 The set [0,∞] is equipped with the standard one-point-compactification topology.
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Proof. The objective function f(x) = xTQx is differentiable and can thus, lo-
cally, be approximated arbitrarily well by its first order Taylor expansion. Thus,
for fixed μ 	= 0 the fitness approaches an affine linear function with non-zero slope
in the limit σ → 0. The limit limσ→0 Vσ(μ, σ)/σ = L > 0 exists for all μ 	= 0, and
Vσ/σ is continuous. This allows us to extend the domain of Vσ/σ as a continuous
function from Θ to M , or analogously from S to S. Let Sμ =

{
μ ∈ Rd

∣∣ ‖μ‖ = 1
}

denote the unit sphere in Rd. We use n = n|
S
as a shorthand notation for the

function n restricted to S. Then the pre-image of infinity under n takes the form
n−1(∞) = Sμ × {0} ⊂ M , and the function Vσ/σ has the constant value L on
this set.

The continuity of Vσ/σ implies that there exists an open neighborhood N ⊂ S
of Sμ × {0} with Vσ(μ, σ)/σ > 0 for all (μ, σ) ∈ N . The set S \ N is compact,
and therefore also its image n(S \N). By construction this set does not contain
infinity. Thus, the choice c1 = max

(
n(S \N)

)
concludes the proof. �

Lemma 6. There exists c2 > 0 such that n(μ, σ) < c2 implies Vσ(μ, σ) < 0.

Proof. The proof is analogous to the previous one. Consider the point (μ, σ) =
(0, 1) ∈ S. Lemma 4 implies Vσ(0, 1) < 0, and it holds n−1({0}) = {(0, 1)}. From
the continuity of Vσ we conclude the existence of an open neighborhood N ′ ⊂ S
of (0, 1) with Vσ(μ, σ) < 0 for all (μ, σ) ∈ N ′. The set n(S \N ′) ⊂ [0,∞] is closed
and does not contain zero, which allows for the choice c2 = min

(
n(S \N ′)

)
. �

Theorem 1. For all θ0 ∈ Θ the IGO flow trajectory φt(θ0) converges to a Dirac
peak over the optimum: It holds limt→∞ φt(θ0) = (0, 0).

Proof. For b > 0 we define the open neighborhood B ⊂ Θ = Rd × R+
0 of

θ∗ = (0, 0) ∈ Θ as B = {(μ, σ) ∈ Θ |σ < b, ‖μ‖ < c2 · b}. Since b is arbitrary,
showing that the trajectory φt(θ0) enters B in finite time and stays there will
prove the statement. Based on lemmas 5 and 6 we split the parameter space into
three dynamic regimes

R1 = {θ1 ∈ Θ | c1 ≤ n(θ1)}
R2 = {θ2 ∈ Θ | c2 ≤ n(θ2) ≤ c1}
R3 = {θ3 ∈ Θ |n(θ3) ≤ c2}

of qualitatively different behavior. The constraints imposed by the various lem-
mas on the vector field are illustrated in Figure 2. In particular, Lemma 3 implies
that the flow can only shrink μ, which corresponds to the vector field pointing
to the “left” in Figure 2. In addition, the vertical component is by Lemma 5
restricted to point “upwards” (Vσ > 0) in R1, and according to Lemma 6 “down-
wards” (Vσ < 0) in R3.

For initial conditions θ1 ∈ R1, θ2 ∈ R2, or θ3 ∈ R3 we define compact sets C1,
C2, and C3 in which the trajectory φt(θi) is restricted to stay for t > 0 according
to the above conditions until it enters the set B. Figure 2 (right) illustrates these
sets, which will be considered w.l.o.g. as closed (otherwise consider the closure).
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‖μ‖

σ

n

0

∞

c1

c2

R1

R2

R3

θ1

θ2

θ3

θ1

θ2

θ3

C1

C2

C3

Fig. 2. Left: Illustration of the different dynamic regimes R1, R2, and R3. The quarter-
circles and the half-circle attached to the prototypical points θi ∈ Ri, i ∈ {1, 2, 3},
illustrate how the vector field V (θ) is constrained by the various lemmas. Right: Il-
lustration of the compact regions Ci (gray areas), in downscaled versions of the same
figure. The second and third of the small figures also depict the open neighborhood B
of (μ, σ) = (0, 0) (dark gray area).

They are compact, since they are also bounded away from infinity and from the
boundary of Θ. These sets are split into

C′
i =

{
(μ, σ) ∈ Ci

∣∣∣∣ ‖μ‖ ≥ c2 · b
2

}
and C′′

i =

{
(μ, σ) ∈ Ci

∣∣∣∣ ‖μ‖ ≤ c2 · b
2

}
.

Lemma 3 together with the condition μ ≥ c2 · b/2 implies that restricted to the
sets C′

i it holds 〈Vμ, μ〉 < 0. Each of these sets is compact, and thus the maximum
of this function exists, which is a negative value. This value provides a non-zero
lower bound on the velocity of the movement of the trajectory towards smaller
‖μ‖ (“to the left” in Figure 2). Thus, the flow leaves the set C′

i in finite time.
Assume the flow did not reach B, then it must enter the corresponding set C′′

i .
By construction, these compact sets are fully contained in regime R3. There the
function Vσ is negative, and with the same argument the maximum exists and
is negative, which provides a lower bound on the velocity of the flow moving
towards smaller σ (“downwards”). Thus, the flow enters B in finite time. The
shape of B is constructed so that the flow stays inside (see Lemmas 3 and 6). �
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As a comment and without proof we want to add that the same compactness
arguments give rise to the existence of a linear convergence rate.

4 Discussion

It has been proven that all trajectories of the IGO flow on isotropic Gaussian
distributions converge to the Dirac peak over the optimum. Due to invariance
properties this result holds for all convex quadratic functions and rank-preserving
transformations thereof, given that the quantile weights are chosen so that the
flow does not get stuck on a linear slope. The importance of this result is that
it describes the dynamics of the flow in the proximity of local optima of twice
differentiable fitness functions.

This is a promising result, although we view it rather as a first step. The author
has good faith that most of the statements brought forward in the various lemmas
can be generalized. This is because the proof techniques are kept as general as
possible. In particular, geometric and topological arguments have been preferred
over an algebraic treatment of the (linear or quadratic) objective function. Thus,
large parts of the analysis should be generalizable, which holds in particular for
the proof of the theorem.

This leaves us with a considerable body of future work. The analysis can be
extended into different directions. First, the class of search distributions can be
broadened. Gaussian distributions with fully adaptive covariance matrix are of
primary interest, since the corresponding flow is resembled by state-of-the-art
evolution strategies [1,4,3]. Second, the class of fitness functions can be extended.
An ambitious goal is to cover the full class of all smooth, uni-modal problems.
Third, the present understanding of how closely actual evolutionary algorithms
follow the IGO flow is limited. The idea of transferring results from the IGO flow
to evolution strategies drives the present ongoing investigation and is therefore
a primary research goal.

References

1. Arnold, L., Auger, A., Hansen, N., Ollivier, Y.: Information-Geometric Optimiza-
tion Algorithms: A Unifying Picture via Invariance Principles. Technical Report
arXiv:1106.3708v1, arxiv.org (2011)

2. Auger, A.: Convergence results for the (1, λ)-SA-ES using the theory of ϕ-
irreducible Markov chains. Theoretical Computer Science 334(1-3), 35–69 (2005)

3. Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., Schmidhuber, J.: Exponential
Natural Evolution Strategies. In: Genetic and Evolutionary Computation Confer-
ence, GECCO (2010)

4. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation 9(2), 159–195 (2001)
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Abstract. We propose and analyse two island models that provably
find good approximations for the SetCover problem. A homogeneous is-
land model running parallel instances of the SEMO algorithm—following
Friedrich et al. (Evolutionary Computation 18(4), 2010, 617-633)—leads
to significant speedups over a single SEMO instance, but at the expense
of large communication costs. A heterogeneous island model, where each
island optimises a different single-objective fitness function, provides sim-
ilar speedups at reduced communication costs. We compare different
topologies for the homogeneous model and different migration policies
for the heterogeneous one.

Keywords: Parallel evolutionary algorithms, set cover, island model,
theory, runtime analysis.

1 Introduction

Due to the current development in computer architecture and the steeply ris-
ing number of processors in modern devices, parallelisation is becoming a more
and more important issue. Evolutionary algorithms (EAs) can be parallelised by
using island models, also called coarse-grained EAs or multi-deme models [1,2].
Several subpopulations are evolved on different processors. Subpopulations coor-
dinate their search by a process called migration, where selected individuals, or
copies thereof, are sent to other islands. Migration often happens periodically or
probabilistically and islands are typically connected by spatial structures such as
rings or torus graphs [3]. Compared to panmictic populations, this decreases the
spread of information. A slower spread of information can increase the diversity
in the whole system, and by choosing the right topology and the frequency or
probability of migration, the communication effort can be tuned.

Despite being applied and researched intensively, the theoretical foundation
of parallel EAs is still in its infancy. Even the effect of the most fundamental pa-
rameters on performance is not well understood [1] and more research is needed
to understand the search dynamics in island models [4]. Present theoretical stud-
ies include takeover times and growth curves (see, e. g., [5] or [1, Chapter 4]).
Recently the expected running time of parallel EAs has been studied, leading
to a constructed example where island models excel over panmictic popula-
tions [6,7] and examples where the diversity in island models makes crossover
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a powerful operator [8,9]. Also the speedup in island models has been studied
rigorously: how the number of generations can be decreased by running multiple
islands instead of one. Studies include pseudo-Boolean optimisation [10,11] and
polynomial-time solvable problems from combinatorial optimisation [12].

These works form a solid foundation towards a theory of parallel metaheuris-
tics, but they leave open many important questions. None of these works ad-
dresses how island models behave on general instances of NP-hard problems, or
how they deal with multiobjective fitness functions. Furthermore, studies have
been limited to homogeneous island models, where all islands run the same al-
gorithm. In many settings heterogeneous models make more sense—islands can
use different parameters, different operators, and even different fitness functions.
This closely relates to the emerging area of hyper-heuristics [13].

In this work we propose and analyse homogeneous and heterogeneous island
models for the SetCover problem. Given a set S with m elements and a col-
lection of n subsets of S with associated costs, the SetCover problem asks for
a selection of subsets of S that cover the whole set and have minimum cost.
This classic NP-hard problem is one of the most fundamental problems in com-
puter science. Friedrich et al. [14] studied a SEMO algorithm on a biobjective
formulation of the problem and showed that SEMO efficiently computes an Hm-
approximation, where Hm =

∑m
i=1

1
i is the m-th Harmonic number.

We study a parallel version of this algorithm where each island runs an in-
stance of SEMO. Each island use the same bi-objective fitness functions to be
minimised: one criterion counting the number of uncovered elements and the
other representing the cost of the selection. Each island stores a population of
non-dominated solutions. At the end of each generation migration occurs trans-
mitting a copy of the whole population to all neighbouring islands.

We show that this leads to significant speedups, depending on the topology
and the migration probability, for probabilistic migration policies. However, this
homogeneous island model has large communication costs as whole populations
are exchanged between islands. To this end, we propose a heterogeneous island
model that has a lower communication cost and islands run simpler algorithms.

The heterogeneous island model consists of m + 1 islands using different
single-objective fitness functions. Each island stores one individual and runs
a (1+1) EA (or RLS that just differs in using local instead of global mutation).
The fitness functions are such that on island i only selections covering i elements
are feasible. Therefore, each island i keeps the best individual covering i elements
of S. The island model can be implemented on fewer than m+ 1 processors by
running multiple islands on each processor. We show that the collection of is-
lands is able to guarantee the same performance and approximation quality as
in the homogeneous model, but with lower communication costs and simpler op-
erations. We also study different migration policies for the heterogeneous model
and show how the migration policy affects running time and communication
costs.

Due to space restrictions, many proofs are omitted or reduced to proof
sketches.
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2 Preliminaries

Let S = {s1, · · · , sm} be a set containing m elements and C = {C1, · · · , Cn} be
a collection of non-empty sets such that Ci ⊂ S for 1 ≤ i ≤ n and

⋃n
i=1 Ci = S.

Each set Ci has a cost ci > 0. We call X = x1 · · ·xn a selection of C and we say
that Ci is in the selection X iff xi = 1. The optimal solution to the SetCover
problem is an X such that

⋃
i:xi=1 Ci = S and

∑
i:xi=1 ci is minimum.

We define the following measures:

– c(X) = |⋃i:xi=1 Ci| is the number of covered elements of the selection.
– |X |1 =

∑n
i=1 xi is the number of selected sets of a selection.

– cost(X) =
∑

i:xi=1 ci is the cost of a selection.
– cmax = maxi ci is the maximum cost of a set.

– ce(Ci, X) =

∣∣∣Ci�
⋃

j:xj=1 Cj

∣∣∣
1

ci
is the cost-effectiveness of a set w. r. t. X .

The homogeneous island model consists of an archipelago of μ islands each
one running the SEMO algorithm, minimising the fitness function f(X) =
(m − c(X), cost(X)). SEMO always maintains a set of non-dominated search
points. New solutions are created by selecting uniformly a search point from
the current population and mutating it. The offspring is added to the current
population and then all dominated search points are removed. SEMO uses local
mutations: one bit is chosen uniformly at random and then flipped. A variant
called global SEMO uses standard bit mutations instead (called global muta-
tions), flipping each bit independently with probability 1/n. In the homogeneous
island model based on SEMO or global SEMO (see Algorithm 1), each island
maintains such a population. For migration, a copy of this whole set is transmit-
ted to all neighbouring islands. The union of this set with the target island’s set
is considered and then all dominated solutions are removed. This way, the best
solutions among source and target islands are maintained and combined.

Algorithm 1. Homogeneous island model based on (global) SEMO

1: Initialise P (0) = {P (0)
1 , . . . , P

(0)
μ }, where P

(0)
i = {0n} for 1 ≤ i ≤ μ. Let t := 0.

2: repeat forever
3: for each island i do in parallel
4: Simulate one generation of (global) SEMO, updating P

(t)
i .

5: Send a copy of the population P
(t)
i to all neighbouring islands.

6: Unify P
(t)
i with all populations received from other islands.

7: Remove all dominated search points from P
(t)
i .

8: Let t := t+ 1.

The heterogeneous island model consists of a fully connected archipelago of
m+ 1 islands indexed 0, . . . ,m. Each island stores just one individual and runs
an (1+1) EA (or RLS) using a single-objective function that is different on each
island. For island i we define the fitness function (to maximise) as:

fi(X) =

{
ncmax − cost(X) if c(X) = i
−|c(X)− i| if c(X) 	= i
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The idea is that island i stores an individual that represents the so far best
selection covering i elements (referred to as feasible). If the solution does not
cover i elements, the fitness is negative and hints are given towards covering i
elements1. Each island is thus assigned a different part of the search space to
optimise. This is similar to what happens in dynamic programming [15].

The heterogeneous island model is shown in Algorithm 2. Note that the het-
erogeneous island model can be easily implemented on μ ≤ m processors by
running up to �m+1

μ � islands on each processor.
Both island models are initialised with empty selections. This is a sensible

strategy for SetCover and theoretical results [14] as well as preliminary exper-
iments have shown that this only speeds up computation.

Algorithm 2. Heterogeneous island model based on (1+1) EA (or RLS)

1: Initialise the island individuals X
(0)
0 , . . . , X

(0)
m to 0n. Let t := 0.

2: repeat forever
3: for each island i do in parallel
4: Produce a global (or local) mutation X̃

(t)
i of the individual X

(t)
i .

5: Send a copy of X̃
(t)
i to each other island.

6: Choose X
(t+1)
i with maximal fi-value among X

(t)
i , X̃

(t)
i and all immigrants.

7: Let t := t+ 1.

The homogeneous and heterogeneous island models differ fundamentally in
their search behaviour. Following Skolicki [16], we distinguish intra-island evo-
lution (the evolution within each island) and inter-island evolution (evolution
among and between islands). The homogeneous model uses intra-island evolu-
tion to generate improvements by mutation, and migration helps to propagate
these improvements to other islands. The heterogeneous island model strongly
relies on inter-island evolution; in fact, beneficial mutations as in the homoge-
neous model yield solutions that are only feasible on other islands. The two
island models also differ in the population size. In the heterogeneous model the
population of each island consists of just one individual, while in the homoge-
neous model the population size of each island is upper bounded by m. This
generally means that the time and space required to compute a generation in
the homogeneous model is larger than in the heterogeneous one.

We define the parallel running time as the number of generations of an
island model until it has found a satisfactory solution, in our case an Hm-
approximation. We also refer to the sequential running time as the product
between the parallel running time and the number of islands. This represents
the computational effort to simulate the model on a single processor. The speedup
of an island model with μ islands is defined as the rate between the expected
parallel running time of the island model and the expected running time of the
same EA using only a single island. This kind of speedup is called weak orthodox
speedup in Alba’s taxonomy [17]. If the speedup is of order Θ(μ), we speak of

1 Our analysis holds for any negative function for the second case of fi.
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a linear speedup. Furthermore, we also consider the effort for performing migra-
tion. We define the communication effort as the total number of individuals sent
between islands, throughout a run of an island model. The (expected) communi-
cation effort is given by the (expected) parallel time, multiplied by the number
of islands and the (expected) number of emigrants sent by one island.

In order to achieve a good balance between the communication effort and the
parallel running time, we consider the following migration policies. The first two
policies make sense for both island models. The last two policies are tailored
towards the heterogeneous model.

complete migration: each island sends migrants to all other islands.
uniform probabilistic: each island sends migrants to every other island inde-

pendently with a migration probability p.
non-uniform probabilistic: each island i sends migrants to every other island

(i+ k) mod (m+ 1) independently with probability 1/k.
smart migration: Each island i sends migrants to island c(X̃i), where X̃i is

the offspring generated on island i.

3 Analysis of the Homogeneous Island Model

We first consider the homogeneous model with uniform probabilistic migration
as this includes complete migration. In their analysis of SEMO, Friedrich et
al. [14] consider the time until SEMO finds an empty selection, and how long it
takes to get a Hm-approximate solution from there. Their results are as follows.

Theorem 1 (Friedrich et al. [14]). For any initialisation and every Set-
Cover instance, SEMO and global SEMO find an Hm-approximate solution in
O(m2n+mn log(ncmax)) expected generations. When starting with a population
containing only an empty selection, the time bound is O(m2n) generations.

The following lemma is at the heart of their–and our–analysis. It goes back to
Chvatal’s analysis of the greedy algorithm [18]. Starting with an empty set, the
greedy algorithm subsequently adds the most cost-effective set to the current
solution. When k elements are covered, for some 0 ≤ k ≤ m, the cost of this
partial solution is at most cost(X) ≤ (Hm −Hm−k)OPT, where OPT denotes
the cost of an optimal solution. For k = m this gives an Hm-approximation.

Lemma 1. Let OPT be the cost of an optimal set cover and X be such that
c(X) = k (with k < m) and cost(X) ≤ (Hm−Hm−k)OPT. Adding the most cost-
effective set to X creates X ′ with c(X ′) = k′ and cost(X ′) ≤ (Hm−Hm−k′)OPT.

Proof. The selection X leaves m − k elements of S uncovered. These elements
can be covered at cost OPT since the optimal cover covers the whole set. Then
there is a set with cost-effectiveness at least m−k

OPT . Let i be the number of newly
covered elements by adding this set, then after adding the set we get a solution
covering k′ = k + i elements at cost no more than(

Hm −Hm−k +
i

m− k

)
·OPT ≤ (Hm −Hm−k′) ·OPT .
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This behaviour can be mimicked by SEMO [14] and the homogeneous is-
land model. Friedrich et al. [14] define the potential of the population of the
archipelago as the largest k such that there is an individual in the population
that covers k elements and costs at most (Hm−Hm−k) ·OPT. The potential can
never decrease as SEMO always keeps some solution with k covered elements in
the population. Starting with empty selections, the initial potential is at least 0.

The probability of increasing the potential is at least 1/((m + 1)en) for the
following reasons. It is sufficient to select the solution defining the potential
and to add a set with maximum cost-effectiveness (Lemma 1). The population
contains at most m + 1 individuals, so the probability of selecting the right
parent is at least 1/(m + 1). The probability of a specific 1-bit mutation is at
least 1/n · (1− 1/n)n−1 ≥ 1/(en) for both local and global SEMO.

This analysis can be transferred to our homogeneous island model using the
general method by Lässig and Sudholt [10] based on fitness levels. Assume the
search space can be partitioned into fitness-level sets ordered w. r. t. fitness such
that an EA never decreases its current level. If we have lower bounds on the
probability that the EA will leave a current level towards a better fitness-level
set, we get an upper bound on the expected hitting time of the final level. For
island models we get upper bounds on the expected parallel running time that
depend on the topology at hand and the probability that migration successfully
transmits information about the current best fitness level. A rapid spread of
information enables more islands to search on the current best fitness level,
which gives better performance guarantees than a slow spread of information.

In [10] upper bounds are stated for common topologies: ring graphs, torus or
grid graphs, and the complete topology. In our case instead of using fitness levels,
we argue with the potential of islands. As seen above, the potential can never
decrease. We have m+ 1 potential values, and the probability of increasing the
potential on any island is at least 1/((m+ 1)en). Plugging this into the results
from [10,19], we get the following bounds on the expected parallel time. The
expected communication effort is by a factor of pd(m + 1)μ larger than the
expected parallel time, where d is the degree of any node in the topology.

Theorem 2. For the homogeneous island model based on (global) SEMO on
μ islands and migration probability p > 0 the expected parallel time until an
Hm-approximation for SetCover is found is bounded by

– O
(

n1/2m3/2

p1/2 + nm2

μ

)
for any ring topology,

– O
(

n1/3m4/3

p2/3 + nm2

μ

)
for any undirected

√
μ×√μ grid or torus graph

– O
(

m
p + nm2

μ

)
for the complete topology Kμ.

The expected communication effort is O
(
p1/2μn1/2m5/2 + pnm3

)
for rings,

O
(
p1/3μn1/3m7/3 + pnm3

)
for grids and O

(
μ2m2 + pμnm3

)
for Kμ.

The upper bounds are asymptotically minimised for choosing the number of is-
lands as μ =

√
pnm, μ = (pnm)2/3, and μ = pnm, respectively. With these

choices we get expected parallel times of O(n1/2m3/2/p1/2), O(n1/3m4/3/p2/3),
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and O(m/p), respectively (see Table 1 in Section 5). The expected communi-
cation effort is O(pnm3), O(pnm3), and O(p2n2m4), respectively. Multiplying
all parallel times by μ, we see that the expected sequential time is bounded by
O(nm2) in all three cases. This asymptotically matches the upper bound from
Theorem 1 for initialisation with empty selections. This means that, apart from
constant factors hidden in the asymptotic notation, in these cases parallelization
does not increase the (upper bounds on the) total running time, but the (upper
bounds on the) parallel time can decrease significantly. In fact, all numbers of
islands up to the values mentioned above yield linear speedups—for cases where
the O(nm2)-bound for a single (global) SEMO is asymptotically tight.

As remarked in [11], the bound for the complete topology with p = 1 also
applies to an offspring population-version of SEMO where λ offspring are created
and added to the population, before removing dominated solutions.

4 Analysis of the Heterogeneous Island Model

For the heterogeneous model based on (1+1) EA or RLS we first present an
analysis for the complete migration policy.

Theorem 3. The heterogeneous island model with complete migration finds
an Hm-approximate solution for SetCover in an expected parallel time of
O(n ·min(m,n)). The expected communication effort is O(nm2 ·min(m,n)).

Proof. As in Theorem 2 we calculate the expected time to produce a solution
that is at least as good as the greedy solution, starting from 0n and always adding
the most cost-effective set. We define again the potential of the population of the
archipelago as the largest k such that there is an individual in the population
that covers k elements and costs at most (Hm − Hm−k) · OPT. At the end of
each generation (after migration and selection) the potential can’t decrease. In
fact the individual Xk on island k can only be replaced by an individual with
the same number of covered elements but a lower cost (and that would not affect
the potential). Instead the potential can be increased to k′ mutating Xk such
that the most cost-effective set is added. That would produce an individual X̃k

such that c(X̃k) = k′ > k and cost(X̃k) ≤ (Hk −Hm−k′) ·OPT (Lemma 1).
After migration and selection this individual will replace the individual on the

island k′ (which had higher cost and therefore lower fitness). This specific 1-bit
mutation happens with probability at least 1/n · (1− 1/n)n−1 ≥ 1/(en) for both
local and global mutation. At most n sets can be included in a selection but,
if n > m, at most m of them will be selected since each most cost-effective set
covers at least one new element (otherwise its cost-effectiveness would be 0). So
after O(n ·min(m,n)) expected generations k = m and then on island m we get
an Hm −Hm−m = Hm-approximate solution.

Comparing this time with [14] and assuming n = O(m), we get that our parallel
time is by a factor of Θ(m) lower, while we get the same upper bound for the
sequential running time.
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For uniform probabilistic migration with migration probability p < 1, the
island model only increases the potential if migration happens on the edge that
links the two islands involved (k and k′). The probability estimate for this event
decreases by a factor of p, and the waiting time thus increases by 1/p.

Theorem 4. The heterogeneous island model with uniform probabilistic migra-
tion and migration probability p finds an Hm-approximate solution for Set-
Cover in an expected parallel time of O(n ·min(m,n)/p). The expected commu-
nication effort is O(nm2 ·min(m,n)).

We see that our estimate of the communication effort has not improved. This
is not surprising as we only rely on inter-island evolution for making progress.
A uniform migration probability delays the inter-island evolution and the re-
duced communication effort in a single generation is nullified by a larger parallel
running time.

With non-uniform probabilistic migration, the chance of making the right
migration is generally higher than for uniform migration probabilities. Typically
only few new elements are covered, when adding a most cost-effective set. A large
number of new elements implies that we make large progress. This balances
out a small migration probability: if adding the most cost-effective set covers
j new elements, the probability of making this move is at least 1/j · 1/(en). In
expectation, the potential increases by at least j ·1/j ·1/(en) = 1/(en), regardless
of j. A straightforward drift analysis gives the following.

Theorem 5. The heterogeneous island model with non-uniform probabilistic mi-
gration finds an Hm-approximate solution for SetCover in an expected parallel
time of enm. The expected communication effort is at most enm2Hm.

Smart migration sends emigrants only to the unique island where they are con-
sidered feasible. The proof of Theorem 3 only relies on such migrations. Hence
the upper bound also holds for smart migration.

Theorem 6. The heterogeneous island model with smart migration finds an
Hm-approximate solution for SetCover in an expected parallel time of
O(n ·min(m,n)). The expected communication effort is O(nm ·min(m,n)).

In our setting, smart migration outperforms all other migration policies as it
leads to the best upper bound for the communication effort.

5 Discussion and Conclusions

We have proposed and analysed two parallel EAs for the SetCover problem
that provably find good approximations. Table 1 gives an overview of our results,
regarding parallel and sequential expected running times as well as the communi-
cation effort. In order to fairly compare heterogeneous and homogeneous models
we consider them running on μ processors. For the heterogeneous model this
means (for μ ≤ m) running up to �m+1

μ � islands on the same processor and thus

increasing the parallel running time by a factor of Θ(mμ ).
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Table 1. Upper bounds on expected parallel times (general bounds and bounds for
best μ), expected sequential times and expected communication effort for homogeneous
island models with various migration topologies and for heterogeneous island models
with various migration policies, until an Hm-approximation is found for any SetCover
instance with m elements and n sets. p denotes the migration probability. We simplified
min(n,m) ≤ m and we constrained μ to yield linear speedups.

Algorithm parallel time bounds seq. time comm. effort
general b. � best bound

Non-parallel SEMO O(nm2) � O(nm2) O(nm2) 0

Homogeneous island model based on (global) SEMO and topology. . .

– ring (μ ≤ √
pnm) O

(
nm2

μ

)
� O

(
n1/2m3/2

p1/2

)
O(nm2) O(pnm3)

– grid (μ ≤ (pnm)2/3) O
(

nm2

μ

)
� O

(
n1/3m4/3

p2/3

)
O(nm2) O(pnm3)

– complete (μ ≤ pnm) O
(

nm2

μ

)
� O

(
m
p

)
O(nm2) O(p2n2m4)

Heterogeneous island model with μ ≤ m based on (1+1) EA (or RLS) and policy. . .

– complete O
(

nm2

μ

)
� O(nm) O(nm2) O(nm3)

– uniform prob. O
(

nm2

μp

)
� O

(
nm
p

)
O
(

nm2

p

)
O(nm3)

– non-uniform prob. O
(

nm2

μ

)
� O(nm) O(nm2) O(nm2 logm)

– smart migration O
(

nm2

μ

)
� O(nm) O(nm2) O(nm2)

For the homogeneous model based on (global) SEMO, the topology determines
how many islands still give a linear speedup. For dense topologies more islands
can be used. The migration probability gives a smooth trade-off between this
maximum number of islands and the communication effort. For large migration
probabilities the heterogeneous island model based on the (1+1) EA (or RLS)
has lower communication costs, when comparing complete topologies or using the
right migration policies. It is also easier to implement as unlike for the SEMO-
based model it is not necessary for each island to handle large populations and to
remove many dominated solutions. Thus the heterogeneous model is also faster
when considering the time and space required to compute a generation.

The discussion on migration policies has revealed how adding more knowledge
about the problem can decrease the communication effort. The complete migra-
tion and uniform migration policies do not require any knowledge about the
problem at hand, while non-uniform migration only needs a sensible ordering of
islands to work. This ordering should be consistent with the similarity between
different islands. We believe that this approach can be fruitful for other heteroge-
neous island models. Smart migration requires knowledge about the problem at
hand since it needs to inspect the genotype to determine the island to send it to.
But it leads to the best performance guarantees among all considered policies.

Experiments (not included here) show that on random SetCover instances
both island models quickly find better solutions than the greedy algorithm. An
experimental study is left for future work. Future work should also investigate
whether the approach used in the heterogeneous island model (i. e. assigning a
portion of the search space to each island) can solve a broader class of problems.



20 A. Mambrini, D. Sudholt, and X. Yao

Acknowledgments. This research was partially supported by EPSRC grants
EP/D052785/1 and EP/I010297/1.

References

1. Luque, G., Alba, E.: Parallel Genetic Algorithms–Theory and Real World Appli-
cations. Springer (2011)

2. Nedjah, N., de Macedo Mourelle, L., Alba, E.: Parallel Evolutionary Computations.
Springer (2006)

3. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer (2005)

4. Skolicki, Z., De Jong, K.: The influence of migration sizes and intervals on island
models. In: Proc. of GECCO 2005, pp. 1295–1302. ACM (2005)

5. Rudolph, G.: Takeover time in parallel populations with migration. In: Filipic, B.,
Silc, J. (eds.) Proc. of BIOMA 2006, pp. 63–72 (2006)
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Abstract. Traditional Genetic Programming (GP) searches the space
of functions/programs by using search operators that manipulate their
syntactic representation, regardless of their actual semantics/behaviour.
Recently, semantically aware search operators have been shown to out-
perform purely syntactic operators. In this work, using a formal geomet-
ric view on search operators and representations, we bring the semantic
approach to its extreme consequences and introduce a novel form of GP
– Geometric Semantic GP (GSGP) – that searches directly the space of
the underlying semantics of the programs. This perspective provides new
insights on the relation between program syntax and semantics, search
operators and fitness landscape, and allows for principled formal design
of semantic search operators for different classes of problems. We de-
rive specific forms of GSGP for a number of classic GP domains and
experimentally demonstrate their superiority to conventional operators.

1 Introduction

Traditional genetic programming ignores the meaning of programs, as the search
operators it employs act on their syntactic representations, regardless of their se-
mantics. E.g., subtree swap crossover is used to recombine functions represented
as parse trees, regardless of trees representing boolean expressions, mathematical
functions, or computer programs. Whereas this guarantees producing syntacti-
cally well-formed expressions, why should such a blind syntactic search work
well for different problems and across domains? In the end, it is the meaning of
programs that determines how successful search is at solving the problem.

The semantics of a program can be formally defined in a number of ways.
It can be a canonical representation, so that any two programs with the same
semantics/behaviour have the same canonical representation (e.g., Binary De-
cision Diagrams (BDD) for boolean expressions). It can be a description of the
behaviour of the program using a logical formalism. This is used in formal meth-
ods to reason formally about programs. From a strict search viewpoint, it may
be argued that the semantics of a program is just its fitness. Finally, it can also
be defined as the mathematical function computed by a program, i.e., the set of
input-output pairs making up the computed function.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 21–31, 2012.
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In the literature, there are a number of works using the semantics of programs
to improve GP. As many individuals encode the same function, some researchers
use canonical representations of functions to enforce semantic diversity through-
out evolution, by creating semantically unique individuals in the initial popula-
tion [2,4], and by discarding offspring of crossover andmutationwhen semantically
coinciding with their parents [3,1]. Uy et al. [11] propose a measure of semantic
distance between individuals based on how their outputs differ for the same set
of inputs sampled at random. This distance is then used to bias semantically the
search operators: mutation rejects offspring that are not sufficiently semantically
similar to the parent; crossover chooses only semantically similar subtrees to swap
between parents. Also Krawiec et al. [5,6] have used a notion of semantic distance
to propose a crossover operator for GP trees that is approximately a geometric
crossover [10,8] in the semantic space (see Section 2). Interestingly, the fitness
landscape induced by this operator has perfect fitness-distance correlation. The
operator was implemented approximately by using a traditional crossover, gen-
erating a large number of offspring, and accepting only those offspring that were
“semantically intermediate” with respect to the parents.

Whereas, overall the semantically awaremethods above produced superior per-
formance to traditional methods, they are indirect : search operators are imple-
mented via acting on the syntax of the parents to produce offspring, which are
accepted only if some semantic criterion is satisfied. This has two drawbacks: (i)
these implementations are very wasteful as heavily based on trial-and-error; (ii)
they do not provide insights on how syntactic and semantic searches relate to each
other.Would it then be possible to search directly the semantic space of programs?
More precisely, would it be possible to build search operators that, acting on the
syntax of the parent programs, produce offspring that are guaranteed to respect
some semantic criterion/specification by construction? Krawiec et al. [5,6] stated
that due to the complexity of the genotype-phenotype mapping in GP, a direct
implementation of exact semantic operators is probably impossible.

The present paper brings the following contributions: (i) it formalises the
notions of semantic distance, semantic geometric operators and semantic fitness
landscapes; (ii) it proves that the fitness landscapes seen by geometric semantic
operators are always cone landscapes, which are easy to search; (iii) it shows that,
contrary to widespread belief, the genotype-phenotype map of commonly consid-
eredGPdomains is, in an important sense, very easy, not complex; (iv) it introduces
a general method to derive exact semantic geometric crossovers and mutations for
different problem domains that search directly the semantic space; (v) it derives
semantic operators for the Boolean domain, arithmetic domain, and program do-
main; (vi) it reports experimental results for a standard test-bed of GP problems.

2 Abstract Geometric Semantic Search

In this section, we report non-operational definitions of geometric semantic op-
erators and their properties. They are characterised algorithmically in Section 3.

A search operator CX : S×S → S is a geometric crossover w. r. t. the metric
d if for any choice of parents p1 and p2, any of their offspring o = CX(p1, p2)
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is in the metric segment between parents. A search operator M : S → S is a
geometric ε-mutation w. r. t. the metric d if for any choice of the parent p, any
of its offspring o = M(p) is in the metric ball of radius ε centered in the parent.
Given a fitness function f : S → R, the geometric search operators induce or see
the fitness landscape (f, S, d). Many well-known recombination operators across
representations are geometric crossovers [8], e. g., all mask-based crossovers on
binary strings are geometric crossovers w. r. t. Hamming distance. Point mutation
on binary strings is geometric 1-mutation w. r. t. Hamming distance. Geometric
operators can also be derived for new spaces and representations by using in
their definitions a distance based on a target representation (e.g., edit distance).
If the distance is not directly linked to a representation, the geometric operators
are well-defined but an algorithmic description for them can be hard to derive.

Genetic programming is essentially a supervised learning method: given a
fixed set of input-output pairs T = {(x1, y1), ..., (xN , yN )} (i.e., training set or
fitness cases), a function h : X → Y belonging to a certain fixed class H –
specified by the chosen terminal and function sets – is sought (evolved) that
interpolates the known input-output pairs, i.e., ∀(xi, yi) ∈ T : h(xi) = yi. The
fitness function FT : H → R measures the error of a function h on the training
set T . Compared to other learning methods, two distinctive features of GP are
that (i) it can be applied to learn virtually any type of functions, and (ii) it is
a black-box method, as it does not need explicit knowledge of the training set,
but only of the errors on the training set.

Let I = (x1, ..., xN ) and O = (y1, ..., yN ) be the input and the output vec-
tors, respectively, associated with the training set T . Let O(h) be the vector
of the outputs of a function h when queried with the inputs I, i.e., O(h) =
(h(x1), ..., h(xN )). The function O : H → Y N can be interpreted as genotype-
phenotype mapping as it maps a representation of a function h (i.e., genotype)
to the actual outcome of the application of function h on the input vector I (i.e.,
phenotype) represented by its output vector.

Traditional measures of error of a function h on the training set T can be
interpreted as distance between the target output vector O and the output vector
O(h) measured using some suitable metric D, i.e., FT (h) = D(O,O(h)) (to
minimise). For example, when the space H of functions considered is the class of
Boolean functions, the input and output spaces are X = {0, 1}n and Y = {0, 1},
and the output vector is a binary vector of size N (i.e., Y N ). A suitable metric
D to measure the error as a distance between binary vectors is the Hamming
distance. For functions returning real values (e.g., in regression applications),
the output vectors are real vectors. In this case, suitable metrics to measure
the error are Euclidean and Manhattan distances, each of which gives rise to a
different type of fitness function.

We define semantic distance SD between two functions h1, h2 ∈ H as the dis-
tance between their corresponding output vectors w. r .t. the input vector of all
possible inputs (i.e., I = (xi) for all xi ∈ X) measured with the metric D used in
the definition of the fitness function FT , i.e., SD(h1, h2) = D(O(h1), O(h2)). The
semantic distance SD is a genotypic distance induced from a phenotypic metric



24 A. Moraglio, K. Krawiec, and C.G. Johnson

D, via the genotype-phenotype mapping O. As O is generally non-injective (i.e.,
different genotypes may have the same phenotype), SD is only a pseudometric
(i.e., distinct functions can have distance zero). This naturally induces an equiv-
alence relation on genotypes: genotypes belong to the same semantic class h iff
their semantic distance is zero. Then, SD can be interpreted as a metric on the
set of semantic classes of genotypes H.

We define semantic geometric operators as geometric crossover and mutation
specified on the space of (classes of) functions endowed with the distance SD.
E.g., semantic geometric crossover on boolean functions returns offspring boolean
functions such that the output vectors of the offspring are in the Hamming
segment between the output vectors of the parents (w. r .t. all xi ∈ X). The
effect of SD being defined on the space of classes of functions H, rather than
on the space of functions H , is that the geometric crossover is only a function
of the semantic classes of the parents h1, h2 rather than directly of the parents
h1, h2 (i.e, their specific representations), and the returned offspring can be
any function h3 belonging to the offspring class h3 (i.e., any function with the
prescribed output vector/semantics).

The semantic fitness landscape seen by an evolutionary algorithm with seman-
tic geometric operators has a nice shape by construction: from the definition of
semantic distance, the fitness of a solution is its distance in the search space
to the optimum (cone landscape).1 This observation is remarkably general, as it
holds for any domain of application of GP (e.g., Boolean, Arithmetic, Program),
any specific problem within a domain (e.g., Parity and Multiplexer problems
in the Boolean domain) and for any choice of metric for the error function.
Furthermore, there is some formal evidence [9] that EAs with geometric oper-
ators can optimise cone landscapes efficiently very generally for virtually any
metric.

GP search with geometric operators w. r .t. the semantic distance SD on the
space of function classes H is formally equivalent to EA search with geometric
operators w. r .t. the distance D on the space of output vectors. This is because:
(i) semantic classes of functions are in bijective correspondence with output
vectors, as “functions with the same output vector” is the defining property of
a semantic class of function; (ii) semantic geometric operators on functions are
isomorphic to geometric operators on output vectors, as SD is induced from
D via the genotype-phenotype mapping (see diagram (1)).2 E.g., for Boolean
functions, semantic GP search is equivalent to GA search on binary strings on
OneMax of dimension N .

1 The landscape includes also a form of neutrality. As the training set covers a fraction
of all possible input-output pairs of a function, only that part of the output vector
of a function affects its fitness, the remaining large part is “inactive”. This does not
affect crossover, but it may make mutation ineffective.

2 Despite this formal equivalence, actually encoding a function in a EA using its output
vector instead of, say, a parse tree, is futile: in the end we want to find a function
represented in an intensive form that can represent concisely “interesting” functions
and that allows for meaningful generalisation of the training set.
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3 Construction of Geometric Semantic Operators

The commutative diagram below illustrates the relationship between the seman-
tic geometric crossover GXSD on genotypes (e.g., trees) on the top, and the
geometric crossover (GXD) operating on the phenotypes (i.e., output vectors)
induced by the genotype-phenotype mapping O, at the bottom. It holds that for
any T 1, T 2 and T 3 = GXSD(T 1, T 2) then O(T 3) = GXD(O(T 1), O(T 2)).

T 1 × T 2
GXSD−−−−−−−−−−→ T 3⏐⏐#O ⏐⏐#O ⏐⏐#O

O1 × O2
GXD−−−−−−−−−−→ O3

(1)

The problem of finding an algorithmic characterization of semantic geometric
crossover can be stated as follows: given a family of functionsH , find a recombina-
tion operatorGXSD (unknown) acting on elements ofH that induces via the geno-
type phenotypemappingO a geometric crossoverGXD (known) on output vectors.
E.g., for the case of boolean functions with fitness measure based on Hamming dis-
tance, output vectors are binary strings and GXD is a mask-based crossover. We
want to derive a recombination operator acting on Boolean functions that corre-
sponds to a mask-based crossover on their output vectors. Note that there is a dif-
ferent type of semantic geometric crossover for each choice of spaceH and distance
D. Consequently, there are different semantic crossovers for different GP domains.
We will give a recipe to derive specific semantic crossovers for new domains.

Definition 1. Given two parent functions T 1, T 2 : {0, 1}n → {0, 1}, the recom-
bination SGXB returns the offspring boolean function T 3 = (T 1∧TR)∨(TR∧T 2)
where TR is a randomly generated boolean function (see Fig. 1).

Theorem 1. SGXB is a semantic geometric crossover for the space of boolean
functions with fitness function based on Hamming distance, for any training set
and any boolean problem.

Proof. The offspring function is T 3 = (T 1∧ TR)∨ (TR ∧ T 2). Expanding it for
any input i: T 3(i) = (T 1(i) ∧ TR(i)) ∨ (TR(i) ∧ T 2(i)). So, for any entry i of
the output vectors: O(T 3)(i) = (O(T 1)(i)∧O(TR)(i))∨ (O(TR)(i)∧O(T 2)(i)).
In the last expression, the Boolean expression at each position i is a multiplexer
function which, depending on the bit-value of O(TR)(i) (piloting bit), assigns
either O(T 1)(i) or O(T 2)(i) to O(T 3)(i). Then, the output vector O(TR) acts as
a crossover mask on the parent output vectors O(T 1) and O(T 2) to produce the
offspring output vector O(T 3). This is a geometric crossover on output vectors
w. r. t. the Hamming distance.

Let us now consider the Real Functions domain (e.g., for symbolic regression).

Definition 2. Given two parent functions T 1, T 2 : Rn → R, the recombinations
SGXE and SGXM return the real function T 3 = (T 1 · TR) + ((1 − TR) · T 2)
where TR is a random real constant in [0, 1] (SGXE), or a random real function
with codomain [0, 1] (SGMX).
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Fig. 1. Left: Semantic Crossover scheme for Boolean Functions; Centre: Example of
parents (T1 and T2) and random mask (TR); Right: Offspring (T3) obtained by sub-
stituting T1, T2 and TR in the crossover scheme and simplifying

Theorem 2. SGXE and SGXM are semantic geometric crossovers for the space
of real functions with fitness function based on Euclidean and Manhattan dis-
tances, respectively, for any training set and any real problem.

Proof. By expanding the offspring function on the inputs and considering ev-
ery entry i of the output vectors: O(T 3)(i) = (O(T 1)(i) · O(TR)(i)) + ((1 −
O(TR)(i)) · O(T 2)(i)). As O(TR)(i) ∈ [0, 1], at each position the value of
O(T 3)(i) is a convex combination of the values of O(T 1)(i) and O(T 2)(i). So,
the vector O(T 3) is within the hyper-box delimited by O(T 1) and O(T 2), i.e., it
is in their Manhattan segment. Expressing the above relation in functional form:
O(T 3) = (O(T 1) · O(TR)) + ((1 −O(TR)) · O(T 2)). When additionally O(TR)
is constant in i, we see that O(T 3) is a convex combination of the vectors O(T 1)
and O(T 2), i.e., it is in their Euclidean segment.

Let us now consider the Computer Program domain intended as functions with
symbols as inputs (IS) and outputs (OS). The following can be easily extended
to other types of inputs and outputs.

Definition 3. Given two parent programs T1, T2 : ISn → OS, the recombi-
nation SGXP returns the offspring program T3 = IF CONDR THEN T1 ELSE T2

where CONDR is a random program whose output is interpreted as a logical value.

Theorem 3. SGXP is a semantic geometric crossover for the space of programs
with fitness function based on Hamming distance, for any training set and any
problem.

Proof. By expanding the offspring program on the inputs and considering ev-
ery entry i of the output vectors: O(T3)(i) = IF O(CONDR)(i) THEN O(T1)(i)

ELSE O(T2)(i). This means that for each input, the output value of T3 is that
of T1 or T2 depending of the value of CONDR, which is then acting as a crossover
mask on T1 and T2. This is a geometric crossover on the output vectors w. r. t.
the Hamming distance (for symbolic vectors).

Definition 4. Semantic Mutations. Boolean: Given a parent function T :
{0, 1}n → {0, 1}, the mutation SGMB returns the offspring boolean function
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TM = T ∨M with probability 0.5 and TM = T ∧M with probability 0.5 where M
is a random minterm of all input variables. Arithmetic: Given a parent function
T : Rn → R, the mutation SGMR with mutation stepms returns the real function
TM = T +ms · (TR1− TR2) where TR1 and TR2 are random real functions.
Programs: Given a parent program T, the mutation SGMP returns the offspring
program TM = IF CONDR THEN OUTR ELSE T where CONDR is a condition which
is true only for a single random setting of all input parameters, and OUTR is a
random output symbol. The offspring can be expressed as nested IF-THEN-ELSE

statements with simple conditions of a single input parameter each.

Theorem 4. SGMB and SGMP are semantic 1-geometric mutations for boolean
functions and of programs, respectively, with fitness function based on Hamming
distance. SGMR is a semantic ε-geometric mutation for real functions with fit-
ness function based on Euclidean and Manhattan distances. The mean of its
probability distribution is the parent, and ε is proportional to the step ms.

General Construction Method: It can be obtained by reversing the common
argument in the proofs above: (i) take the geometric crossover on output vectors
associated with the distance used in the fitness function; (ii) consider the action
of the recombination operator on a single entry of the output vectors; (iii) use
the domain-specific language of the particular class of functions considered to
describe the recombination action on a single entry; (iv) that description is
the scheme to produce the offspring. Note that the offspring is not only the
effect of crossover, it is also the description of how to crossover its parents.
The target domain-specific language must be expressive enough to describe the
recombination. This seems to be the case for most GP problems.

Simplification: As the syntax of the offspring of semantic crossover contains
both parents, the size of individuals grows exponentially with the number of gen-
erations. To keep their size manageable, we need to simplify offspring sufficiently
and efficiently (not optimally, as that is NP-Hard on many domains) without
changing the computed function. The search of semantic crossover is completely
unaffected by syntactic simplification, which can be done at any moment and to
any extent. For boolean functions, there are quick function-preserving simplifiers
(e.g., Espresso). Computer algebra systems (e.g., Maple) can be used to simplify
symbolically mathematical functions, like polynomials, and more complicated
expressions including sin, cos, exp, etc. if used in disciplined ways (e.g., nested
sin not allowed). Formal methods (e.g., static analysis) can be used to simplify
computer programs (but loops/recursion may be a challenge).

Does Syntax Matter? In theory, it does not matter! The offspring is a func-
tion obtained from a functional combination of parent functions. The offspring
is defined purely functionally and does not depend on how functions are ac-
tually represented (e.g., trees, graphs, sequences) and what language is used
(e.g., Java, Lisp, Prolog), as long as the semantic operators can be described
in that language. In practice, syntax does matter! As genotype structure and
language influence the way random genotypes are generated, as different repre-
sentations suggest different “natural” ways of generating them. This affects the
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offspring distribution of semantic operators, the semantic diversity in the initial
population, and the dependencies in the crossover mask. Furthermore, some rep-
resentations may be easier to simplify, and may have preferable inductive bias
(i.e., generalise better on unseen inputs).

4 Computational Experiments

We compare GP, semantic GP (SGP), and semantic stochastic hill climber
(SSHC), which employs semantic mutation to explore the neighbourhood. In
all experiments GP and SGP use a generational scheme with tournament selec-
tion (size 5), crossover and mutation, which are always engaged. We give the
algorithms the same number of evaluations, set as the number needed by SSHC
to typically find the optimum (as SSHC is the quickest). We also compare al-
gorithms on CPU time: GPt is GP running for the same time as the greater of
average execution times of SGP and SSC. Below are the main settings of the
experimental setups considered. Other parameters are set to ECJ’s defaults [7].

Boolean Functions. (Table 1): Test-bed : standard GP benchmark. Fitness
function: Hamming distance to the output vector of the target function queried
on all inputs. GP : standard GP with instruction set: ‘And’, ‘Or’, ‘Not’. SGP and
SSHC : individuals are Boolean expressions in disjunctive normal form; SGMB
and SGXB with a mask TR being a random minterm of a random subset of
input variables; simplification of offspring by Espresso. Comparison: budget of
2n · 2n evaluations, where n is the number of input variables; as to population
size, GP and SGP have max{√2n, 10}, and GPt has max{√2n, 50} (and from
20 to 200 times more evaluations).

Polynomial Regression. (Table 2): Test-bed : univariate polynomials of degrees
from 3 to 10, with real-valued coefficients uniformly drawn from [−1, 1]. Fitness
function: Euclidean distance to the output vector of the target function queried
on 20 inputs in [−1, 1]. GP : Standard GP with instruction set: ‘+’, ‘-’, ‘*’, ‘x’,
constant. SGP and SSHC : individuals are polynomials of degree 10, initialised
with coefficients drawn uniformly from [−1, 1]; SGXE and SGMR with stepms =
0.001; implicit simplification (i.e, weighted sums of polynomials). Comparison:
budget of 100,000 evaluations, with population size 1,000 for GP, and 20 for SGP.

Classifiers. (Table 3): Test-bed : IS = {1, ..., nc}, OS = {1, ..., ncl}, target func-
tions f : ISnv → OS are f(x1, x2, ..., xnv ) = ((x1 + x2) mod ncl) + 1, for all
combinations of nv = 3, 4, nc = 3, 4 and ncl = 2, 4, 8. Fitness function: Ham-
ming distance to the output vector of the target function queried on all inputs.
All algorithms use classifiers of the form: <CF> := IF <COND> THEN <CF> ELSE

<CF> || <OS>; <COND> := <xi> = <IS>, and Ramped-half-and-half initialisa-
tion. SGP and SSHC use SGXP and SGMP, and simplification of classifiers
done by an Espresso-like simplifier. Comparison: budget of 2nclnvn

nv
c evalua-

tions; as to population size, GP and SGP have max{√nnv
c , 10}, and GPt has

max{√nnv
c , 50} (and from 10 to 130 times more evaluations).
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Table 1. Problems: standard boolean benchmark suite. Hits %: percentage of training
examples correctly predicted by best solution; average (avg) and standard deviation
(sd) of 30 runs. Length: logarithm base 10 of the length of the largest solution encoun-
tered in the search.

Problem Hits % Length
GP GPt SSHC SGP

avg sd avg sd avg sd avg sd GP GPt SSHC SGP
Comparator6 80.2 3.8 90.9 3.5 99.8 0.5 99.5 0.7 1.0 2.0 2.9 2.8
Comparator8 80.3 2.8 94.9 2.4 100.0 0.0 99.9 0.2 1.0 2.3 2.9 3.0
Comparator10 82.3 4.3 95.3 0.9 100.0 0.0 100.0 0.1 1.6 2.4 2.7 3.0
Multiplexer6 70.8 3.3 94.7 5.8 99.8 0.5 99.5 0.8 1.1 2.2 2.7 2.9
Multiplexer11 76.4 7.9 88.8 3.4 100.0 0.0 99.9 0.1 2.2 2.4 2.9 2.6
Parity5 52.9 2.4 56.3 4.9 99.7 0.9 98.1 2.1 1.4 1.7 2.9 2.9
Parity6 50.5 0.7 55.4 5.1 99.7 0.6 98.8 1.7 1.0 1.9 3.0 3.0
Parity7 50.1 0.2 51.7 2.8 99.9 0.2 99.5 0.6 1.0 1.7 3.0 3.1
Parity8 50.1 0.2 50.6 0.9 100.0 0.0 99.7 0.3 1.0 1.6 3.4 3.4
Parity9 50.0 0.0 50.2 0.1 100.0 0.0 99.5 0.3 1.0 1.3 3.8 3.8
Parity10 50.0 0.0 50.0 0.0 100.0 0.0 99.4 0.2 0.9 1.2 4.1 4.1
Random5 82.2 6.6 90.9 6.0 99.5 1.2 98.8 2.1 0.9 1.6 2.7 2.8
Random6 83.6 6.6 93.0 4.1 99.9 0.4 99.2 1.3 1.2 1.9 2.9 2.8
Random7 85.1 5.3 92.9 3.8 99.9 0.2 99.8 0.4 1.1 2.0 2.8 2.9
Random8 89.6 5.3 93.7 2.4 100.0 0.1 99.9 0.2 1.4 2.0 3.0 2.9
Random9 93.1 3.7 95.4 2.3 100.0 0.1 100.0 0.1 1.5 1.8 2.9 2.9
Random10 95.3 2.3 96.2 2.0 100.0 0.0 100.0 0.0 1.5 1.8 2.8 3.0
Random11 96.6 1.6 97.3 1.5 100.0 0.0 100.0 0.0 1.6 1.7 2.7 3.1
True5 100.0 0.0 100.0 0.0 99.9 0.6 100.0 0.0 1.1 1.3 2.0 2.4
True6 100.0 0.0 100.0 0.0 99.8 0.6 100.0 0.0 1.2 1.2 2.6 2.5
True7 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 1.2 1.2 2.9 2.6
True8 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.1 1.2 1.4 3.3 2.9

Table 2. Problems: Random Polynomials of degrees 3 to 10. Hits %: percentage of
training examples correctly predicted by best solution with tolerance 0.01; avg and sd
of 30 runs.

Problem Hits %
GP SSHC SGP

avg sd avg sd avg sd
Polynomial3 79.9 23.1 100.0 0.0 99.5 1.5
Polynomial4 60.5 27.6 99.9 0.9 99.9 0.9
Polynomial5 40.7 21.6 100.0 0.0 99.5 2.0
Polynomial6 37.5 23.4 100.0 0.0 98.9 3.1
Polynomial7 30.7 18.5 100.0 0.0 99.9 0.9
Polynomial8 34.7 16.0 99.5 2.0 99.7 1.3
Polynomial9 20.7 13.2 100.0 0.0 98.5 4.9
Polynomial10 25.7 16.7 99.4 1.7 99.9 0.9

Analysis: Performance: for all domains and problems, SSHC and SGP find
consistently near-optimal solutions, beating by far GP with the same budget
of evaluations, and also GPt with the same CPU time. Size: SSHC and SGP
produce individuals larger than GP. This is due to a limited amount of simpli-
fication applied that finds shorter but usually not the shortest expressions, and,
for some problems, to the optimal solution having a long encoding in the chosen
representation. Importantly, experiments show that the simplification counter-
acts effectively the exponential growth of individuals inherent in the semantic
operators, within affordable computational cost. Bias : semantic operators see
any problem as a cone landscape, hence potentially easy. However they may
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Table 3. Problems: see text. Hits % and Length same as in Table 1.

Problem Hits % Length
GP GPt SSHC SGP

nv nc ncl avg sd avg sd avg sd avg sd GP GPt SSHC SGP
3 3 2 80.00 8.41 97.30 4.78 99.74 0.93 99.89 0.67 1.6 1.9 2.3 2.3
3 3 4 49.15 9.96 78.89 8.93 99.89 0.67 99.00 1.63 1.6 2.1 2.3 2.3
3 3 8 37.04 5.07 59.52 14.26 99.74 0.93 96.04 2.85 1.2 1.9 2.3 2.3
3 4 2 67.92 7.05 93.80 5.41 99.95 0.28 99.58 0.80 1.8 2.3 2.7 2.7
3 4 4 39.11 7.02 68.48 8.66 99.84 0.47 98.08 1.64 1.7 2.3 2.7 2.7
3 4 8 28.02 3.73 46.98 14.48 99.73 0.58 94.22 1.72 1.1 2.0 2.7 2.7
4 3 2 88.31 6.98 98.89 2.89 99.96 0.22 100.00 0.00 1.6 1.9 2.9 2.9
4 3 4 48.85 6.54 88.15 10.10 100.00 0.00 99.54 0.68 1.4 2.2 2.9 2.9
4 3 8 36.54 9.01 60.37 17.14 100.00 0.00 96.63 1.23 1.0 1.9 2.9 2.9
4 4 2 82.75 8.21 99.79 1.12 100.00 0.00 99.86 0.23 2.2 2.3 3.3 3.3
4 4 4 44.13 8.75 77.55 6.30 100.00 0.00 99.68 0.29 2.0 2.4 3.3 3.3
4 4 8 30.63 5.33 50.21 15.08 99.96 0.12 98.84 0.58 1.4 2.1 3.3 3.3

have heavy biases in the offspring distributions that hinder performance. Exper-
iments show that these biases do not prevent achieving very good performance.

5 Conclusions and Future Work

We presented a newGP framework rooted in a geometric theory of representations
to searchdirectly the semantic space of functions/programs.Remarkably, the land-
scape seen by the semantic operators is always a cone by construction, hence gen-
erally easy to search. Seen from a geometric viewpoint, the genotype-phenotype
mapping of GP becomes very easy. This allowed us to derive explicit algorithmic
characterization of semantic operators for different domains following a simple
recipe. Semantic operators require simplification, which on the domains consid-
ered was not a problem. In the experiments, the semantic approach systematically
outperformed standard GP. There is plenty of future work and open challenges:
(i) construct semantic operators for more complex domains, to explore potentials
and limits of the framework; (ii) use formal methods to simplify non-trivial pro-
grams with loops/recursion, and use CAS to simplify non-polynomial functions,
and, more generally, devise quick heuristic simplifiers for complex domains; (iii)
investigate the practical advantages of different types of syntax/languages: e.g.,
programswritten in minimalistic languages with strong theory, like lambda calcu-
lus, may be much easier to simplify; also, certain syntax may allow to implement
easily semantic operators with probabilistic biases that make them more effective
in practice; (iv) derive analytical runtime: as semantic GP search is equivalent to
standardGAs/ES on cone landscapes, it should be easy to transfer analytical run-
time results to semantic GP, and determine the optimal parameter settings.
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Abstract. Negative selection algorithms (NSAs) are immune-inspired
anomaly detection schemes that are trained on normal data only: A set
of consistent detectors – i.e., detectors that do not match any element
of the training data – is generated by rejection sampling. Then, input
elements that are matched by the generated detectors are classified as
anomalous. NSAs generally suffer from exponential runtime. Here, we in-
vestigate the possibility to accelerate NSAs by sampling directly from the
set of consistent detectors. We identify conditions under which this ap-
proach yields fully polynomial time randomized approximation schemes
of NSAs with exponentially large detector sets. Furthermore, we prove
that there exist detector types for which the approach is feasible even
though the only other known method for implementing NSAs in polyno-
mial time fails. These results provide a firm theoretical starting point for
implementing efficient NSAs based on modern probabilistic techniques
like Markov Chain Monte Carlo approaches.

1 Introduction

The adaptive immune system is, alongside the central nervous system, one of the
two important cognitive systems in vertebrates. Within this system, the T cells
are responsible for performing many important cognitive tasks, like detecting
viral infections in cells. Because T cells can perform actions with potentially
hazardous consequences for their host organism – e.g., they can kill cells that
express “anomalous” surface molecules – it is important to ensure that T cells
do not incorrectly classify normal metabolic activity as anomalous. At the same
time, it is crucial that an organism’s T cell repertoire provides protection against
the huge set of pathogens it may potentially encounter. Negative selection is an
immunological process that helps achieve these two goals: Newborn T cells with
randomly generated receptors are exposed to normal molecular structures from
the host organism (self), and those that react to any self structure are killed.
Only cells that survive negative selection become part of the T cell repertoire.
Motivated by a need for better computer security systems, Forrest et al. [1]
conceived a generic classification scheme, which they called the negative selection
algorithm (NSA), that mimics this simple yet effective biological paradigm.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 32–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The NSA scheme can be applied to very diverse types of data. We will assume
that the data to be classified originates from a universe U , which is usually
parameterized by some index L that characterizes the length of an input element
(e.g., for an alphabet Σ, we might use U = ΣL). Moreover, we assume that a
basis set of patterns (detectors) P is given, such that each π ∈ P matches a subset
of U . The patterns in P represent T cells, while the elements of U represent the
molecular structures examined by T cells. For instance, a frequently used class
of patterns, motivated by a model of how real T cells “see” antigen [2], are the
so-called “r-contiguous detectors”. Here, U = P = ΣL, and a pattern is said to
match a universe element if both are identical in at least r contiguous positions.
E.g., for r = 2 and U = {0, 1}3, the patterns 011 and 110 match the string 010
but the pattern 111 does not. As another example, we could use U = {0, 1}L
and P = {0, 1, ∗}L to encode binary patterns with don’t-care-symbols (e.g. 0∗∗∗
would match all strings of length 4 starting with 0).

NegativeSelection(S,M, n).
Input: Sample S ⊆ U , set M ⊆ U , integer n.
Output: For each m ∈ M , either (m,+1) or (m,−1).
1 D ← ∅
2 while |D| < n do // training step
3 pick π ∈ P uniformly at random
4 if π does not match any s ∈ S then
5 D ← D ∪ {π}
6 for each m ∈ M do // classification step
7 if any π ∈ D matches m then
8 output (m,+1)
9 else
10 output (m,−1)

Fig. 1. Pseudocode of the negative selection algorithm (NSA) considered in this paper.
In the literature on NSAs (e.g., [3,4]), S is frequently called a self set, M a monitor
set, and D is called the detector set. For the sake of conciseness, we treat the set D as
a multi-set, i.e., D can contain the same detector more than once.

Fig. 1 shows the pseudocode for a typical NSA scheme. A set of detectors
D with size n is generated by rejection sampling, i.e., detectors are sampled at
uniform and added to D if they match no element of the input sample S. Subse-
quently, in the classification step, the elements of M are classified as anomalous
(+1) if matched by any detector in D and as normal (−1), otherwise.

2 Related Work and Our Contribution

Layman implementations of the NSA typically suffer from exponential runtime
[5,4]. Two issues can arise: First, the rejection sampling step may be rate-limiting
if the input set S is “large” such that most detectors match some s ∈ S, and have
to be rejected. Second, prohibitively many detectors might be needed to achieve
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acceptable detection rates in the classification step. The main contribution of
this work is that we establish a novel possibility of implementing NSA algo-
rithms efficiently: We investigate under which conditions it is possible to replace
the rejection sampling in the training step by a more efficient procedure that
requires only polynomial time to find a single detector. Moreover, we show that
a similar sampling approach can be employed to determine the NSA outcome
approximately even when n is very large.

Our research on the efficiency of NSAs has two main motivations. First, a
widely held view in the field of artificial immune systems (AIS) used to be that
NSAs cannot be efficiently implemented. E.g., for r-contiguous detectors, it was
hypothesized that even deciding the existence of a single detector that fails to
match all s ∈ S is already NP-complete [3]. This idea led some researchers to
conclusions like “negative selection [algorithms] ... can never scale” [6], or that
“future work in this direction is not meaningful” [5]. It stands to reason that
one wishes to verify whether unproved claims that motivate such bold state-
ments really hold true. For some special cases, we have previously shown that
polynomial-time NSAs can be obtained using the “detector compression” tech-
nique [7,8], thus disproving the NP-completeness hypothesis for r-contiguous
detectors [3]. However, we subsequently proved that the detector compression
technique is not applicable to many interesting types of detectors [9], which
raised the question whether other methods might exist to obtain efficient NSAs.
The technique that we put forward in this paper is able to address at least some
cases where detector compression is infeasible.

Independently of the debate in the AIS community, NSAs find their main
application in the field of theoretical immunology, where they are used as com-
ponents of simulations of the real immune system (e.g. [10,11,12]). Recently, a
NSA-based model was used to show that genetically determined differences in
negative selection can partly explain why certain individuals are able to control
HIV infections [13]. In these computational biology applications, the NSA can-
not be replaced by traditional machine learning methods because it is used as
a simulation of the real negative selection process rather than merely a generic
classification scheme.

Therefore, increasing the efficiency of NSAs benefits not only AIS but is also
important for computational immunology.

3 Our Approach

The basic idea behind our approach is very simple: Instead of generating the
detector set D in the training step by rejection sampling (lines 2-5 in Fig. 1),
we sample directly from the subset of those detectors in P that do not match
any s ∈ S. For instance, in many cases we might be able to construct a graph
that encodes the desired detectors, perform a “sufficiently long” random walk
on this graph, and output the last vertex we visit. Provided the random walk is
“rapidly mixing” (i.e., approaches the equilibrium distribution sufficiently fast),
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this approach, which is known as the Markov Chain Monte Carlo method [14],
can efficiently generate an approximately uniform sample from the set of S-
consistent detectors.

To proceed, we need some notation. We abbreviate the set {1, . . . , n} ⊆ N by
[1, n] and the set {−1, 1} by ±1. Moreover we write “u.a.r.” instead of “uniformly
at random”. Given a universe U , a detector type D = (P ,M) is a tuple of a set
P of patterns (or detectors) and a matching function M : P × U → ±1. Given
a detector π ∈ P and an element x ∈ U , if M(π, x) = 1 we say “π matches x”
and “π does not match x”, otherwise. A sample is a labeled set S ⊆ U × ±1.
A negative sample is a sample in which all labels are −1. A detector π ∈ P is
called S-consistent if for every (x,+1) ∈ S, we haveM(π, x) = +1, and for every
(x,−1) ∈ S, we haveM(π, x) = −1. A detector set D ⊆ P is called S-consistent
if it only contains S-consistent detectors. The set of all S-consistent detectors is
written as D[S]. The consistency problem is defined as follows: Given a sample
S, decide whether D[S] is empty. A consistency problem is called k+-restricted
if it is only defined for input samples that contain exactly k elements labeled
with +1.

Given a negative sample S and an element x ∈ U , the detector sampling
distance [9] ΔD(S, x) is defined by

ΔD(S, x) =

{ |D[S∪{(x,+1)}]|
|D[S]| D[S] 	= ∅

⊥ otherwise
, (1)

with ⊥ denoting the undefined value. We previously showed the following.

Theorem 1 (Simulating NSAs via the Sampling Distance [9]). If ΔD
can be computed in expected polynomial time1, then there exists a randomized
algorithm that is input-output-equivalent to NegativeSelection(S,M, n) and
runs in expected polynomial time.

Instead of simulating the NSA explicitly, we can also simply output ΔD(S,m)
for every input element m ∈M and use this fraction as an “anomaly score”. For
this application, we will be satisfied if we can compute only the numerator of
Equation 1, because the denominator is anyway equal for all m ∈ M . However,
counting solution sets of combinatorial problems is often infeasible – we provided
some according negative results previously [9]. Therefore, the method that we
put forward in this paper rests on a slightly weaker precondition.

Proposition 1. Suppose there exists an algorithm that, for every negative in-
put sample S ⊆ U × {−1}, outputs a detector π ∈ D[S] sampled u.a.r. in ex-
pected polynomial time. Then there exists an input-output-equivalent algorithm
for NegativeSelection(S,M, n) that runs in expected polynomial time in the
size of S and M as well as in n.

1 Throughout the paper, this means that the expected runtime must be polynomial
for all possible inputs.
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Hence, by sampling directly from D[S], we can overcome the efficiency problems
of rejection sampling. However, for achieving acceptable detection rates (in AIS)
or for simulating realistic immune systems (in computational immunology), n
often has to be very large. Therefore, we would like to avoid generating detectors
explicitly. This too can be achieved if we sample from both D[S] and D[S ∪
{(x,+1}], i.e., from the set of consistent detectors for both 0+-restricted and
1+restricted input samples.

Proposition 2. Suppose there exists an algorithm as defined in Proposition 1
and another algorithm that, for every input sample S ⊆ U × {−1} and every
element x ∈ U , samples a detector d ∈ D[S ∪ {(m,+1)}] u.a.r. Furthermore,
assume that the 0+- and 1+-restricted consistency problems for D are both “self-
reducible” [15]. Then there exists a fully polynomial time randomized approxima-
tion scheme (FPRAS) for computing the detector sampling distance ΔD(S,m).

Proof. For self-reducible problems, Jerrum et al. [15] showed that a polynomial
time u.a.r. sampler2 can be used to construct an algorithm that determines the
number of solutions within factor 1 + ε in polynomial time in both the input
size and 1/ε. Applying this theorem, we obtain FPRASs for computing both the
numerator and the denominator of Equation 1. Therefore, we can approximate
ΔD within factor 1 + ε′, where ε′ = 2ε+ ε2. ��
For lack of space, we cannot reproduce the precise definition of self-reducibility
here, and refer the reader instead to Jerrum et al [15]. Intuitively, self-reducibility
means that solutions to the whole problem can be constructed by extending so-
lutions of slightly smaller instances. Self-reducibility seems to be “the rule rather
than the exception” [15] for combinatorial problems. For instance, it is easy to
show that all detector types that have so far been used in string-based negative
selection (summarized in [9]) lead to self-reducible consistency problems.

Hence, via efficient detector sampling, we can approximate the results of detec-
tor compression techniques [8]. A natural question is therefore whether efficient
detector sampling can be possible when efficient detector compression (which
leads to detector counting algorithms) is not. In the upcoming section, we prove
that this can indeed be the case.

Theorem 2. There exists a detector type D for which (1) computing ΔD is #P-
hard, and (2) there exist expected polynomial time algorithms for sampling u.a.r.
from both D[S ∪ {(x,+1)}] and D[S], implying an FPRAS for ΔD.

The classical example for a combinatorial problem where counting the solutions
is #P-hard but sampling from the solution space is easy is DNF-satisfiability
[15]. However, consistency problems correspond to conjunctions of constraints.
Therefore, there appears to be no way to encode DNF-satisfiability in a 0+- and
1+-restricted consistency problem (without exponential blowup), which is the
main technical challenge that needs to be overcome to prove Theorem 2.

2 In fact, it is only required to sample approximately u.a.r. from D[S] and D[S ∪
{(x,+1)}]. However, in this paper we restrict ourselves to u.a.r. sampling.
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4 Proof of the Main Theorem

We first have to prove a technical lemma.

Lemma 1 (Embedding an Additional Object into a Uniform Sampler).
Let X be a finite set of unknown cardinality |X | > 1, and suppose that there exists
an algorithm A that generates an element of X u.a.r. in expected polynomial
time. Let x∗ /∈ X. Then there exists an algorithm A∗ that generates an element
of X ∪ {x∗} u.a.r. in expected polynomial time.

Proof. Let n denote the unknown cardinality of X . Our procedure A∗ works as
follows: (1) A∗ samples an element a ∈ X u.a.r. (2) A∗ repeatedly samples a
tuple (x, y) ∈ X2 u.a.r. until (x, y) 	= (a, a). (3) If x = a, then A∗ outputs x∗.
Otherwise, A∗ outputs a. Now the probability that A∗ outputs x∗ is

n− 1

n2 − 1
=

1

n+ 1
,

and thus the output probability distribution is uniform overX∪{x∗}. The lemma
now follows by noting that because |X | ≥ 2, step (2) above terminates after a
constant expected number of iterations. ��
Now we are prepared to prove Theorem 2.

Proof (Theorem 2). The basic idea is to define a detector type D whose consis-
tency problem amounts to finding graph colorings. We recall that a k-coloring
of a graph G = (V,E) is a mapping C : V → [1, k], and it is called valid if
C(v) 	= C(w) for all {v, w} ∈ E. Counting the k-colorings of a graph with max-
imal degree κ is #P-hard for all constants k, κ ≥ 3 [16]. Still, for k > κ(κ + 2)
there exists an algorithm that samples u.a.r. in expected polynomial time from
the valid k-colorings of a given graph. Below, we assume that κ ≤ 3 and k ≥ 16.
This includes the #P-hard case κ = 3, k = 16 as a special case, which will suffice
to establish our hardness result. Note that a graph of maximum degree 3 is al-
ways 16-colorable, such that the decision version of the graph coloring problem
is trivial for these constants. In the following, we denote the maximum degree
of a given graph G by κ(G).

To make the proof more palatable, we proceed in three steps. First we show
that there exists a detector type D for which determining |D[S]| is #P-hard,
even though we can sample u.a.r. from D[S] for 0+-restricted samples S. This
is not yet exactly what we need because |D[S]| is only the denominator of the
detector sampling distance ΔD (see Equation 1); infeasibility of computing the
denominator of a fraction does not imply infeasibility of computing the entire
fraction. In the second step, we deal with this technicality. In the third step,
we show the feasibility of sampling consistent detectors for both 0+- and 1+-
restricted samples u.a.r.

Step 1. Our universe U is the set of graphs with maximum degree ≤ 3 and one
labeled edge, which we call the root edge ρ:

U = {(V,E, ρ) : V = [1, L], E ⊆ {e ⊆ V : |e| = 2}, ρ ∈ E, κ(V,E) ≤ 3} .



38 J. Textor

sample s1 sample s2 sample s3
induced

graph G(S)
consistent
graph π

Fig. 2. Illustration of the proof of Theorem 2. The definition of M ensures that every
edge {u, v} sharing a node with a root edge in one sample must also occur in every
other sample whose root edge contains u or v, otherwise there exists no S-consistent
pattern. For example, if any of the non-root edges in sample s2 were missing, then
no pattern could be consistent with (s1,−1), (s2,−1) and (s3,−1). The induced graph
G(S) is the union of all root edges. The pattern set P is the set of all colored graphs,
and a graph π ∈ P is S-consistent if and only if it contains all edges from the samples
and its nodes are validly colored with respect to G(S). Edges not occurring in the
samples may only occur in π if they do not touch any root edge from S, like the dashed
edges in the rightmost graph.

Figure 2 shows three examples s1, s2, and s3 (with roots edges ρ in bold).
We are going to define a detector type gcol = (P ,M) whose pattern set

P and matching function M will be constructed in such a way that a negative
sample S ⊆ U × {−1} encodes an induced graph G(S). Counting S-consistent
patterns will be equivalent to counting the valid k-colorings of G(S). We define

P = {(V,E,C) : V = [1, L], E ⊆ {e ⊆ V : |e| = 2}, C : V → [1, k]} ,

which is simply the set of all arbitrarily k-colored graphs with L vertices (the
coloring need not be valid). The matching function is defined as follows:

Mgcol ((V,E,C), (V,E′, ρ)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 (1) E′ � E

or (2) E \ E′ contains a ρ-adjacent edge

or (3) C is no valid coloring for ρ

−1 otherwise

Now consider a negative sample S, and suppose there does not exist an S-
consistent pattern π = (V,E,C). This can occur if and only if there exist two
samples (V,E1, ρ1), (V,E2, ρ2) ∈ S and an edge e ∈ E1 such that e shares a node
with ρ1 but not with ρ2. In other words, an S-consistent pattern exists if and
only if it holds true that once an edge {u, v} appears in one sample graph where
either u or v belongs to the root edge, it appears in every sample graph where u
or v belongs to the root edge. Therefore, the existence of an S-consistent pattern
can be decided in polynomial time.

Consider a negative sample S = {((V,E1, ρ1),−1), . . . , ((V,En, ρn),−1))} for
which at least one consistent graph pattern π = (V,E,C) exists. We define the
induced graph G(S) as the union of all root edges in S, i.e., G(S) := (V,∪i{ρi}).



Efficient Negative Selection Algorithms 39

The definition of M directly ensures that (1) every S-consistent graph π ∈ P
contains G(S) as a subgraph, and (2) C is a valid coloring of G(S). Moreover,
it is not hard to show that G(S) has maximum degree ≤ 3 – if that weren’t
the case, then there would either be no S-consistent pattern or one sample with
maximum degree > 3. Edges that did not occur in S and do not share nodes
with G(S) may or may not be present in π (dashed edges in the consistent graph
π in Figure 2), and nodes that are not in G(S) (like the top left and bottom left
nodes in the consistent graph in Figure 2) are assigned an arbitrary color.

Let #χ(G(S)) be the number of valid k-colorings of G(S). Let ε denote the
number of edges not adjacent to nodes in G(S) (those which may or may not be
present in S-consistent graphs). Then, assuming |gcol[S]| > 0, we have

|gcol[S]| = #χ(G(S)) · 2ε .

Now suppose we had an algorithm for computing |gcol(S)|. Then we could
determine the number #χ(G) of valid k-colorings for an arbitrary graph G of
maximal degree κ = 3 as follows: Decompose G = (V,E) into sample graphs by
creating for each edge e = {u, v} ⊆ V a sample graph containing root edge e
and its adjacent edges in G. Create a sample S containing all these graphs with
negative labels. Then G(S) = G, and

#χ(G) =
|gcol[S]|

2ε

gives the number of valid k-colorings of G. Because ε can be computed in poly-
nomial time from S, computing |gcol[S]| must thus be #P-hard3 for k ≥ 3.

Conversely, given an arbitrary negative sample S over U , we can sample from
gcol[S] as follows. First check whether |gcol[S]| = 0 as discussed above. If
this is not the case, we compute the induced graph G(S) = (V,E), and sample a
valid coloring of G(S) u.a.r. using Huber’s algorithm [14]. Next, consider every
edge {u, v} ⊆ V that does not occur in S and does not share nodes with root
edges from S, and insert {u, v} into E with probability 1/2. The resulting graph
is sampled u.a.r. from gcol[S]. An example result of this process is depicted as
the rightmost graph in Figure 2.

Step 2. So far we proved that computing |gcol[S]| is #P-hard. To show that
computing Δgcol is also #P-hard, we insert a special pattern π̂ into P and a
special element x̂ into U such that π̂ matches only x̂ and vice versa. From now
on, let gcol denote this augmented pattern class. Suppose we had access to
an oracle that computes Δgcol(S, x̂). We could use this oracle to count the k-
colorings of a graph G = (V,E), V = [1, L], as follows: We create a negative
sample S with G(S) = G. Then

Δgcol(S, x̂) =
1

1 + #χ(G) 2ε
.

3 Strictly speaking, only functions to the natural numbers can be #P-hard. There-
fore, more formally correctly we should say that every #P-hard function could be
computed by a polytime algorithm with single-call access to an oracle for |gcol[S]|.
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Hence, we could compute #χ(G) from Δgcol(S, x̂) by rearranging the above,
which implies that computing Δgcol(S, x̂) is #P-hard.

Step 3. It remains to show that for all S ⊆ U × {−1} and for all m ∈ U , we can
generate elements of both gcol[S] and gcol[S ∪ {(m,+1)}] u.a.r. in expected
polynomial time. We start with the case where there is no positive sample. If
S contains x̂, then π̂ is not S-consistent, and we output a pattern sampled at
uniform from gcol[S]. Otherwise, π̂ is S-consistent, and we apply Lemma 1 to
sample a pattern at uniform from gcol[S] ∪ {π̂}. Now, consider the case where
there is one positive sample (m,+1). If m is a subgraph of the union of all sample
graphs and the root of m occurs as a root in S, then there is no S-consistent
pattern that matches m. Otherwise4, m contains at least one edge e not present
in S. We iteratively generate S-consistent patterns π u.a.r until we find one that
matchesm. Each π will matchm with probability ≥ 1/2, because the probability
that π contains e is 1/2. Therefore, after a constant expected number of trials
we find the desired π, which is u.a.r. from gcol[S ∪ {(m,+1)}].

5 Outlook

In this paper we presented a novel generic approach for implementing negative
selection algorithms (NSAs) efficiently and proved that there exist cases where
the new approach is feasible even though the detector compression technique
that we put forward previously [9] is not. An obviously desirable next step would
be to demonstrate the feasibility of this approach in practice. Sampling-based
approximation algorithms, in particular Markov Chain Monte Carlo (MCMC)
methods, have proved successful in many areas, e.g. Bayesian network analysis,
even in cases where rigorous proofs for convergence in polynomial time (which
can be notoriously difficult) are lacking. One appealing feature of MCMC ap-
proaches is their typical ease of implementation. This presents an advantage
over detector compression, which often relies on rather intricate data structures
[8]. To illustrate this, we conclude by defining an MCMC method for a natural
detector type, Boolean monomials, and leave proving or disproving its efficient
convergence as an open problem.

Open Problem. For U = {0, 1}L, P = {0, 1, ∗}L, let π match x if π and x are
identical at all positions i where πi 	= ∗ (π can be interpreted as a Boolean
monomial). Given S ⊆ UL × {−1} and m ∈ UL, generate an S ∪ {(m,+1)}-
consistent pattern π as follows. Initialize π = m. Then, in each step, do nothing
with probability 1/2 and else, pick a position i ∈ [1, L] u.a.r. If πi = ∗, set πi =
mi. Otherwise, replace πi by ∗ and check whether the resulting pattern matches
any s ∈ S. If yes, undo the change, else continue. This algorithm describes
an ergodic Markov chain M whose stationary distribution is uniform over all
S ∪ {(m,+1)}-consistent patterns. Prove or disprove: M is rapidly mixing.

4 For lack of space, we omit the required, but technical special treatment of |V | < 5.
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Abstract. The Information-Geometric Optimization (IGO) has been introduced
as a unified framework for stochastic search algorithms. Given a parametrized
family of probability distributions on the search space, the IGO turns an arbi-
trary optimization problem on the search space into an optimization problem on
the parameter space of the probability distribution family and defines a natural
gradient ascent on this space. From the natural gradients defined over the entire
parameter space we obtain continuous time trajectories which are the solutions of
an ordinary differential equation (ODE). Via discretization, the IGO naturally de-
fines an iterated gradient ascent algorithm. Depending on the chosen distribution
family, the IGO recovers several known algorithms such as the pure rank-μ up-
date CMA-ES. Consequently, the continuous time IGO-trajectory can be viewed
as an idealization of the original algorithm.

In this paper we study the continuous time trajectories of the IGO given the
family of isotropic Gaussian distributions. These trajectories are a deterministic
continuous time model of the underlying evolution strategy in the limit for popu-
lation size to infinity and change rates to zero. On functions that are the composite
of a monotone and a convex-quadratic function, we prove the global convergence
of the solution of the ODE towards the global optimum. We extend this result
to composites of monotone and twice continuously differentiable functions and
prove local convergence towards local optima.

1 Introduction

Evolution Strategies (ESs) are stochastic search algorithms for numerical optimization.
In ESs, candidate solutions are sampled using a Gaussian distribution parametrized by a
mean vector and a covariance matrix. In state-of-the art ESs, those parameters are itera-
tively adapted using the ranking of the candidate solutions w.r.t. the objective function.
Consequently, ESs are invariant to applying a monotonic transformation to the objective
function. Adaptive ES algorithms are successfully applied in practice and there is ample
empirical evidence that they converge linearly towards a local optimum of the objective
function on a wide class of functions. However, their theoretical analysis even on simple
functions is difficult as the state of the algorithm is given by both the mean vector and
the covariance matrix that have a stochastic dynamic that needs to be simultaneously
controlled. Their linear convergence to local optima is so far only proven for functions
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that are composite of a monotonic transformation with a convex quadratic function—
hence function with a single optimum—for rather simple search algorithms compared
to the covariance matrix adaptation evolution strategy (CMA-ES) that is considered as
the state-of-the-art ES [1–4]. In this paper, instead of analyzing the exact stochastic
dynamic of the algorithms, we consider the deterministic time continuous model under-
lying adaptive ESs that follows from the Information-Geometric Optimization (IGO)
setting recently introduced [5].

The Information-Geometric Optimization is a unified framework for randomized
search algorithms. Given a family of probability distributions parametrized by θ ∈ Θ,
the original objective function, f , is transformed to a fitness function Jθ defined on Θ.
The IGO algorithm defined on Θ performs a natural gradient ascent aiming at max-
imizing Jθ . For the family of Gaussian distributions, the IGO algorithm recovers the
pure rank-μ update CMA-ES [6], for the family of Bernoulli distributions, PBIL [7]
is recovered. When the step-size for the gradient ascent algorithm (that corresponds to
a learning rate in CMA-ES and PBIL) goes to zero, we obtain an ordinary differential
equation (ODE) in θ. The set of solutions of this ODE, the IGO-flow, consists of contin-
uous time models of the recovered algorithms in the limit of the population size going
to infinity and the step-size (learning rate for ES or PBIL) to zero.

In this paper we analyze the convergence of the IGO-flow for isotropic ESs where the
family of distributions is Gaussian with covariance matrix equal to an overall variance
times the identity. The underlying algorithms are step-size adaptive ESs that resemble
ESs with derandomized adaptation [8] and encompass xNES [9] and the pure rank-μ
update CMA-ES with only one variance parameter [6]. Previous works have proposed
and analyzed continuous models of ESs that are solutions of ODEs [10, 11] using the
machinery of stochastic approximation [12, 16]. The ODE variable in these studies en-
codes solely the mean vector of the search distribution and the overall variance is taken
to be proportional to H(∇f) where H is a smooth function with H(0) = 0. Conse-
quently the model analyzed looses invariance to monotonic transformation of the ob-
jective function and scale-invariance, both being fundamental properties of virtually all
ESs. The technique relies on the Lyapunov function approach and assumes the stability
of critical points of the ODE [10, 11]. In this paper, our approach also relies on the sta-
bility of the critical points of the ODE that we analyze by means of Lyapunov functions.
However one difficulty stems from the fact that when convergence occurs, the variance
typically converges to zero which is at the boundary of the definition domain Θ. To
circumvent this difficulty we extend the standard Lyapunov method to be able to study
stability of boundary points.

Applying the extended Lyapunov’s method to the IGO-flow in the manifold of
isotropic Gaussian distributions, we derive a sufficient condition on the so-called weight
functionw—parameter of the algorithm and usually chosen by the algorithm designer—
so that the IGO-flow converges to the global minimum independently of the starting
point on objective functions that are composite of a monotonic function with a convex
quadratic function. We will call those functions monotonic convex-quadratic-composite
in the sequel. We then extend this result to functions that are the composition of a mono-
tonic transformation and a twice continuously differentiable function, called monotonic
C2-composite in the rest of the paper. We prove local convergence to a local optimum of
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the function in the sense that starting close enough from a local optimum, with a small
enough variance, the IGO-flow converges to this local optimum.

The rest of the paper is organized as follows. In Section 2 we introduce the IGO-flow
for the family of isotropic Gaussian distributions, which we call ES-IGO-flow. In Sec-
tion 3 we extend the standard Lyapunov’s method for proving stability. In Section 4 we
apply the extended method to the ES-IGO-flow and provide convergence results of the
ES-IGO-flow on monotonic convex-quadratic-composite functions and on monotonic
C2-composite functions.

Notation. For A ⊂ X , where X is a topological space, we let Ac denote the comple-
ment of A in X , Ao the interior of A, A the closure of A, ∂A = A \ Ao the boundary
of A. Let R and Rd be the sets of real numbers and d-dimensional real vectors, R�0

and R+ denote the sets of non-negative and positive real numbers, respectively. Let ‖x‖
represent the Euclidean norm of x ∈ Rd. The open and closed balls in Rd centered at θ
with radius r > 0 are denoted by B(θ, r) and B(θ, r).

Let μLeb denote the Lebesgue measure on either R or Rd. Let P1 and Pd be the
probability measures induced by the one-variate and d-variate standard normal distri-
butions, p1 and pd the probability density function induced by P1 and Pd w.r.t. μLeb.
Let pθ and Pθ represent the probability density function w.r.t. μLeb and the probability
measure induced by the Gaussian distributionN (m(θ), C(θ)) parameterized by θ ∈ Θ,
where the mean vector m(θ) is in Rd and the covariance matrix C(θ) is a positive defi-
nite symmetric matrix of dimension d. We sometimes abbreviate m(θ(t)) and C(θ(t))

to m(t) and C(t). Let vec : Rd×d → Rd2

denote the vectorization operator such that
vec : C �→ [C1,1, C1,2, . . . , C1,d, C2,1, . . . , Cd,d]

T, where Ci,j is the i, j-th element of
C. We use both notations: θ = [mT, vec(C)T]T and θ = (m,C).

2 The ES-IGO-Flow

The IGO framework for continuous optimization with the family of Gaussian dis-
tributions is as follows. The original objective is to minimize an objective function
f : Rd → R. This objective function is mapped into a function on Θ. Hereunder, we
suppose that f is μLeb-measurable. Let w : [0, 1] → R be a bounded, non-increasing
weight function. We define the weighted quantile function [5] as

W f
θ (x) = w

(
Pθ[y : f(y) � f(x)]

)
. (1)

The function W f
θ (x) is a preference weight for x according to the Pθ-quantile. The

fitness value of θ′ given θ is defined as the expectation of the preference W f
θ over Pθ′ ,

Jθ(θ
′) = Ex∼Pθ

[
W f

θ (x)
]
. Note that since W f

θ (x) depends on θ so does Jθ(θ
′). The

function Jθ is defined on a statistical manifold (Θ, I) equipped with the Fisher metric
I as a Riemannian metric. The Fisher metric is the natural metric. It is compatible with
relative entropy and with KL-divergence and is the only metric that does not depend
on the chosen parametrization. Using log-likelihood trick and exchanging the order of
differentiation and integration, the “vanilla” gradient of Jθ at θ′ = θ can be expressed
as ∇θ′Jθ(θ

′)|θ′=θ = Ex∼Pθ

[
W f

θ (x)∇θ ln(pθ(x))
]
. The natural gradient, that is, the
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gradient taken w.r.t. the Fisher metric, is given by the product of the inverse of the
Fisher information matrix Iθ at θ and the vanilla gradient, namely I−1

θ ∇θ′Jθ(θ
′)|θ′=θ .

The IGO ordinary differential equation is defined as

dθ

dt
= I−1

θ ∇θ′Jθ(θ
′)
∣∣
θ′=θ

. (2)

Since the right-hand side (RHS) of the above ODE is independent of t the IGO ODE is
autonomous. The IGO-flow is the set of solution trajectories of the above ODE (2).

When the parameter θ encodes the mean vector and the covariance matrix of the
gaussian distribution in the following way θ = [mT, vec(C)T]T, the product of the
inverse of the Fisher information matrix I−1

θ and the gradient of the log-likelihood
∇θ ln(pθ(x)) can be written in an explicit form [14] and (2) reduces to

dθ

dt
=

∫
W f

θ (x)

[
x−m

vec
(
(x−m)(x −m)T − C

)]Pθ(dx) . (3)

The pure rank-μ update CMA-ES [6] can be considered as an Euler scheme for solving
(3) with a Monte-Carlo approximation of the integral. Let x1, . . . , xn be samples inde-
pendently generated from Pθ . Then, the quantile Pθ[y : f(y) � f(xi)] in (1) is approx-
imated by the number of solutions better than xi divided by n, i.e.,

∣∣{xj , j = 1, . . . , n :

f(xj) � f(xi)}
∣∣/n =: Ri/n. Then W f

θ (xi) is approximated by w
(
(Ri − 1/2)/n

)
,

where w is the given weight function. The Euler scheme for approximating the solu-
tions of (3) where the integral is approximated by Monte-Carlo leads to

θt+1 = θt + η
n∑

i=1

w
(
(Ri − 1/2)/n

)
n

[
xi −mt

vec
(
(xi −mt)(xi −mt)T − Ct

)] , (4)

where η is the time discretization step-size. This equation is equivalent to the pure
rank-μ update CMA-ES when the learning rates ηm and ηC , for the update of mt and
Ct respectively, are set to the same value η, while they have different values in practice
(ηm = 1 and ηC � 1). The summation on the RHS in (4) converges to the RHS of (3)
with probability one as λ→∞ (Theorem 4 in [5]).

In the following, we study the simplified IGO-flow where the covariance matrix is
parameterized by only a single variance parameter v as C = vId. Under the parameter-
ization θ = [mT, v]T, (2) reduces to dθ

dt =
∫
W f

θ (x)
[ x−m
‖x−m‖2/d−v

]
Pθ(dx). Using the

change of variable z = (x−m)/
√
v, the above ODE reads

dθ

dt
= Fθ(θ) , Fθ(θ) =

∫
W f

θ (m+
√
vz)

[ √
vz

v(‖z‖2 /d− 1)

]
Pd(dz) (5)

and we rewrite it by part

dm
dt = Fm(θ) , Fm(θ) =

√
v
∫
W f

θ (m+
√
vz)zPd(dz) (6)

dv
dt = Fv(θ) , Fv(θ) = v

∫
W f

θ (m+
√
vz)(‖z‖2 /d− 1)Pd(dz) . (7)

The domain of this ODE is Θ = {θ = (m, v) ∈ Rd × R+}. We call (5) the ES-IGO
ordinary differential equation. The following proposition shows that for a Lipschitz
continuous weight function w, solutions of the ODE (5) exist for any initial condition
θ(0) ∈ Θ and are unique.
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Proposition 1 (Existence and Uniqueness). Suppose w is Lipschitz continuous. Then
the initial value problem: dθ

dt = Fθ(θ), θ(0) = θ0, has a unique solution on [0,∞) for
each θ0 ∈ Θ, i.e. there is only one solution θ : R�0 → Θ to the initial value problem.

Proof. We can obtain a lower bound a(t) > 0 and an upper bound b(t) < ∞ for v(t)
for each t � 0 under a bounded w. Similarly, we can have an upper bound c(t) < ∞
for ‖m(t)‖. Then we have that (m(t), v(t)) ∈ E(t) = {x ∈ Rd : ‖x‖ � c(t)} × {x ∈
R+ : a(t) � x � b(t)} and E(t) is compact for each t � 0. Meanwhile, Fθ is
locally Lipschitz continuous for a Lipschitz continuous w. Since E(t) is compact, the
restriction of Fθ into E(t) is Lipschitz continuous. Applying Theorem 3.2 in [15] that
is an extension of the theorem known as Picard-Lindelöf theorem or Cauchy-Lipschitz
theorem, we have the existence and uniqueness of the solution on each bounded interval
[0, t]. Since t is arbitrary, we have the proposition. ��
Now that we know that solutions of the ES-IGO ODE exist and are unique, we define
the ES-IGO-flow as the mapping ϕ : R�0×Θ→ Θ, which maps (t, θ0) to the solution
θ(t) of (5) with initial condition θ(0) = θ0. Note that we can extend the domain of Fθ

from Θ = Rd × R+ to Θ = Rd × R�0. It is easy to see from (5) that the value of
Fθ(θ) at θ = (m, 0) is 0 for any m ∈ Rd. However, we exclude the boundary ∂Θ from
the domain for reasons that will become clear in the next section. Because the initial
variance must be positive and the variance starting from positive region never reach the
boundary in finite time, solutions ϕ(t, ·) will stay in the domain Θ. However, as we will
see, they can converge asymptotically towards points of the boundary.

Since Jθ is adaptive, i.e. Jθ1(θ) 	= Jθ2(θ) for θ1 	= θ2 in general, it is not trivial
to determine whether the solutions to (2) converge to points where Fθ(θ) = 01. Even
knowing that they converge to zeros of Fθ(θ) is not helpful at all, because we have
Fθ(θ) = 0 for any θ with variance zero and we are actually interested in convergence
to the point (x∗, 0) where x∗ is a local optimum of f .

Remark 1. Because of the invariance property of the natural gradient, the mean vector
m(θ) and the variance v(θ) obey (6) and (7) under re-parameterization of the Gaussian
distributions. Therefore, the trajectories of m and v are also independent of the param-
eterization. For instance, we obtain the same trajectories v(θ) for any of the following
parameterizations: θd+1 = v, θd+1 =

√
v, and θd+1 = 1

2 ln v, although the trajectories
of the parameters θd+1 are of course different. Consequently, the same convergence
results for m(θ) and v(θ) (see Section 4) will hold under any parameterization. Pa-
rameterizations θ = (m, v) and θ = (m, 1

2 ln v) correspond to the pure rank-μ update
CMA-ES and the xNES with only one variance parameter. Thus, the continuous model
to be analyzed encompasses both algorithms.

Remark 2. Theory of stochastic approximation says that a stochastic algorithm θt+1 =
θt + ηht follows the solution trajectories of the ODE dθ

dt = E[ht | θt = θ] in the limit

1 If Jθ is not adaptive and defined to be the expectation of the objective function f(x) over Pθ ,
convergence to the zeros of the RHS of (2) is easily obtained. For example, see Theorem 12 and
its proof in [13], where the solution to the system of a similar ODE whose RHS is the vanilla
gradient of the expected objective function is derived and the convergence of the solution
trajectory to the critical point of the expected function is proven.
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for η to zero under several conditions. In our setting, θ encodes m and v and the noisy
observation ht =

∑λ
i=1 wRiI−1

θ ∇θ ln pθt(xi), where wi, i = 1, . . . , λ, are predefined
weights and Ri is the ranking of xi. If we define w(p) =

∑λ
i=1 wi

(
λ−1
i−1

)
pi−1(1−p)λ−i

in (1), then Fθ(θ) = E[ht | θt = θ] and the ODE agrees with (5). Therefore, (5) can
be viewed as the limit behavior of adaptive-ES algorithms not only in the case η → 0
and λ → ∞ but also in the case η → 0 and finite λ. Indeed, it is possible to bound
the difference between {θt, t � 0} and the solution θ(·) of the ODE (5) by extending
Lemma 1 in Chapter 9 of [16].The details are omitted due to the space limitation.2

3 Extension of Lyapunov Stability Theorem

When convergence occurs, the variance typically converges to zero. Hence the study
of the convergence of the solutions of the ODE will be carried out by analyzing the
stability of the points θ∗ = (x∗, 0). However, because points with variance zero are
excluded from the domain Θ, we need to extend classical definitions of stability to be
able to handle points located on the boundary of Θ.

Definition 1 (Stability). Consider the following system of differential equation

θ̇ = F (θ), θ(0) = θ0 ∈ D, (8)

where F : D �→ Rdθ is a continuous map and D ⊂ Rdθ is open. Then θ∗ ∈ D is called

– stable in the sense of Lyapunov3 if for any ε > 0 there is δ > 0 such that θ0 ∈
D ∩ B(θ∗, δ) =⇒ θ(t) ∈ D ∩ B(θ∗, ε) for all t � 0, where t �→ θ(t) is any
solution of (8);

– locally attractive if there is δ > 0 such that θ0 ∈ D∩B(θ∗, δ) =⇒ limt→∞‖θ(t)−
θ∗‖ = 0 for any solution t �→ θ(t) of (8);

– globally attractive if limt→∞ ‖θ(t)− θ∗‖ = 0 for any θ0 ∈ D and any solution
t �→ θ(t) of (8);

– locally asymptotically stable if it is stable and locally attractive;
– globally asymptotically stable if it is stable and globally attractive.

We can now understand why we need to exclude points with variance zero from the
domain Θ. Indeed, points with variance zero are points from where solutions of the
ODE will never move because Fθ(θ) = 0. Consequently, if we include points (x, 0)

2 When H(θ) is a (natural) gradient of a function, the stochastic algorithm is called a stochastic
gradient method. The theory of stochastic gradient method (e.g., [17]) relates the convergence
of the stochastic algorithm with the zeros of H(θ). However, it is not applicable to our algo-
rithm due to the reason mentioned above Remark 1.

3 Usually, stability is defined for stationary points. However, it is not the only case that a point
is stable in our definition. Let θ∗ ∈ D be a stable point. If θ∗ ∈ D or F can be prolonged
by continuity at θ∗ as limθ→θ∗ F (θ) = F (θ∗), then F (θ∗) = 0. That is, θ∗ is a stationary
point. However, limθ→θ∗ F (θ) does not always exist for a stable boundary point θ∗ ∈ ∂D.
For example, consider the ODE: dθ1/dt = −θ1/

√
θ21 + θ22 , dθ2/dt = −θ2. The domain is

R × R+. Then, |θ1| and θ2 are monotonically decreasing to zero. Hence, (0, 0) is globally
asymptotically stable. However, limθ→(0,0) F (θ) does not exist.
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in Θ, none of these points can be attractive as in a neighborhood we always find θ0 =
(x0, 0) such that a solution starting in θ0 stays there and cannot thus converge to any
other point.

A standard technique to prove stability is Lyapunov’s method that consists in finding
a scalar function V : Rdθ → R�0 that is positive except for a candidate stable point θ∗

with V (θ∗) = 0, and that is monotonically decreasing along any trajectory of the ODE.
Such a function is called Lyapunov function (and is analogous to a potential function in
dynamical systems). Lyapunov’s method does not require the analysis of the solutions
of the ODE. The standard Lyapunov’s stability theorem gives practical conditions to
verify that a function is indeed a Lyapunov function. However, because our candidate
stable points are located on ∂Θ, we need to extend this standard theorem.

Lemma 1 (Extended Lyapunov Stability Method). Consider the autonomous system
(8), where F : D → Rdθ is a map and D ⊂ Rdθ is the open domain of θ. Let θ∗ ∈ D
be a candidate stable point. Suppose that there is an R > 0 such that
(A1): F (θ) is continuous on D ∩B(θ∗, R);
(A2): there is a continuously differentiable V : Rdθ → R such that for some strictly
increasing continuous function α : R+ → R+ satisfying limp→∞ α(p) =∞,

V (θ∗) = 0, V (θ) � α(‖θ − θ∗‖) ∀θ ∈ D ∩B(θ∗, R) \ {θ∗} (9)

and ∇V (θ)TF (θ) < 0 ∀θ ∈ D ∩B(θ∗, R) \ {θ∗}; (10)

(A3): for any r1 and r2 such that 0 < r1 � r2 < R, if a solution θ(·) to (8) starting
from Dr1,r2 = {θ ∈ D : r1 � ‖θ − θ∗‖ � r2} stays in Dr1,r2 for t ∈ [0,∞), then
there is a T � 0 and a compact set E ⊂ Dr1,r2 such that θ(t) ∈ E for t ∈ [T,∞).

Then, θ∗ is locally asymptotically stable. If (A1) and (A2) hold with D replacing
D ∩B(θ∗, R) and (A3) holds with R =∞, then θ∗ is globally asymptotically stable.

Proof. We follow the proof of Theorem 4.1 in [15]. We have from assumptions (A1)
and (A2) that there is δ < R such that θ∗ is stable and V (θ(t)) → Ṽ � 0 for each
θ0 ∈ D ∩ B(θ∗, δ). Moreover, under (A1) and (A2) with D replacing D ∩ B(θ∗, R)
we have that V (θ(t)) → Ṽ � 0 for each θ0 ∈ D. Since limt→∞ V (θ(t)) → 0 implies
limt→∞ ‖θ − θ∗‖ = 0 by (9), it is enough to show Ṽ = 0. We show Ṽ = 0 by
contradiction argument. Assume that Ṽ > 0. Then, we have that for each θ0 ∈ D (or
∈ D ∩ B(θ∗, δ) for the case of local asymptotic stability) there are r1 and r2 such that
0 < r1 � r2 (� δ) and θ(t) lies in Dr1,r2 for t � 0. Note that Dr1,r2 is not necessarily
a compact set. This is different from Theorem 4.1 in [15]. By assumption (A3) we have
that there is a compact set E and T � 0 such that θ(t) ∈ E for t � T . Since V is
continuously differentiable and F is continuous,∇V (θ)TF (θ) is continuous. Then, the
function θ �→ V (θ)TF (θ) has its maximum−β on the compact E and−β < 0 by (10).
This leads to V (θ(t)) � V (θ(T )) − β(t − T ) ↓ −∞ as t → ∞. This contradicts the
hypothesis that V > 0. Hence, Ṽ = 0 for any θ0 ∈ D (or ∈ D ∩B(θ∗, δ)). ��

4 Convergence of the ES-IGO-Flow

In this section we study the convergence properties of the ES-IGO-flow ϕ : (t, θ0) �→
θ(t), where θ(·) represents the solution to the ES-IGO ODE (5) with initial value
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θ(0) = θ0, i.e., dϕ(t,θ0)
dt = Fθ(ϕ(t, θ0)) and ϕ(0, θ0) = θ0. By the definition of asymp-

totic stability, the global asymptotic stability of θ∗ ∈ Θ implies the global convergence,
that is, limt→∞ ϕ(t, θ0) = θ∗ for all θ0 ∈ Θ. Moreover, the local asymptotic stability of
θ∗ ∈ Θ implies the local convergence, that is, ∃δ > 0 such that limt→∞ ϕ(t, θ0) = θ∗

for all θ0 ∈ Θ ∩ B(θ∗, δ). We will prove convergence properties of the ES-IGO-flow
by applying Lemma 1. In order to prove our result we need to make the following as-
sumption on w:
(B1): w is non-increasing and Lipschitz continuous with w(0) > w(1);
(B2):

∫
w(P1[y : y � z])(z2/d− 1/d)P1(dz) = α > 0.

Assumption (B1) is not restrictive. Indeed, the non-increasing and non-constant prop-
erty of w(·) is a natural requirement and any weight setting in (4) can be expressed, for
any given population size n, as a discretization of some Lipschitz continuous weight
function. Assumption (B2) is satisfied if and only if the variance v diverges exponen-
tially on a linear function. In fact, Fv(θ) defined in (7) reduces to v

∫
w(P1[y : y �

z])(z2/d− 1/d)P1(dz) when f(x) = aTx for ∀a ∈ Rd \ {0} and we have that v̇ = αv
and the solution is v(t) = v0 exp(αt). Then, v(t) → ∞ as t → ∞. Assumption (B2)
holds, for example, if w is convex and not linear.

Let G be the set of strictly increasing functions g : R→ R that are μLeb-measurable
and C2 be the set of twice continuously differentiable functions h : Rd → R that are
μLeb-measurable. Under (B1) and (B2), we have the following main theorems.

Theorem 1. Suppose that the objective function f is a monotonic convex-quadratic-
composite function g ◦ h, where g ∈ G and h is a convex quadratic function x �→
(x − x∗)TA(x − x∗)/2 where A is positive definite and symmetric. Assume that (B1)
and (B2) hold. Then, θ∗ = (x∗, 0) ∈ Θ is the globally asymptotically stable point of
the ES-IGO. Hence, we have the global convergence of ϕ(t, θ0) to θ∗.

Proof. Since the ES-IGO does not explicitly utilize the function values but uses the
quantile Pθ[y : f(y) � f(x)] which is equivalent to Pθ[y : g−1 ◦ f(y) � g−1 ◦ f(x)],
without loss of generality we assume f = h.
According to Lemma 1, it is enough to show that (A1) and (A2) hold with D(= Θ)
replacing D ∩ B(θ∗, R) and (A3) holds with R = ∞. As is mentioned in the proof of
Proposition 1, Fθ is locally Lipschitz continuous for a Lipschitz continuous w. Thus,
(A1) is satisfied under (B1).

We can choose as a Lyapunov candidate function V (θ) =
∑d

i=1(mi−x∗i)2+d·v =

‖m− x∗‖2 + Tr(vId). All the conditions on V described in (A2) are obvious except
for the negativeness of ∇V (θ)TFθ(θ). To show the negativeness, rewrite Fθ(θ) as∫
W f

θ (m +
√
vz)Fθ(θ, z)Pd(dz). The idea is to show the (strictly) negative correla-

tion between W f
θ (m +

√
vz) and ∇V (θ)TFθ(θ, z) by using an extension of the result

in [18, Chapter 1] and apply the inequality
∫
W f

θ (m+
√
vz)∇V (θ)TFθ(θ, z)Pd(dz) <∫

W f
θ (m +

√
vz)Pd(dz)

∫ ∇V (θ)TFθ(θ, z)Pd(dz) = 0. We use the non-increasing
property of w with w(0) > w(1) in (B1) to show the negative correlation.

To prove (A3), we require (B2). Since a continuously differentiable function can be
approximated by a linear function at any non-critical point x̄, the natural gradient Fθ

is approximated by that on a linear function in a small neighborhood of (x̄, 0). We use
the property μLeb[x : f(x) = f̄ ] = 0 to approximate Fθ . As is mentioned above,
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(B2) implies Fv on a linear function is positive. By using the approximation and this
property, we can show that E = Dr1,r2∩{θ : v � v̄} satisfies (A3) for some v̄ > 0. ��
We have that for any initial condition θ(0) = (m0, v0), the search distribution Pθ

weakly converges to the Dirac measure δx∗ concentrated at the global minimum point
x∗. This result is generalized to monotonic C2-composite functions using a quadratic
Taylor approximation. However, global convergence becomes local convergence.

Theorem 2. Suppose that the objective function f is a monotonic C2-composite func-
tion g ◦ h, where g ∈ G and h ∈ C2 has the property that μLeb[x : h(x) = s] = 0
for any s ∈ R. Assume that (B1) and (B2) hold. Let x∗ be a critical point of h, i.e.
∇h(x∗) = 0, with a positive definite Hessian matrix A. Then, θ∗ = (x∗, 0) ∈ Θ is a lo-
cally asymptotically stable point of the ES-IGO. Hence, we have the local convergence
of ϕ(t, θ0) to θ∗. Moreover, if x̄ is not a critical point of h(·), for any θ0 ∈ Θ, ϕ(t, θ0)
will never converge to θ̄ = (x̄, 0).

Proof. As in the proof of Theorem 1, we assume f = h without loss of generality. The
proofs of (A1) and (A3) carry over from Theorem 1 because we only used the property
μLeb[x : f(x) = f̄ ] = 0. To show (A2), we use the Taylor approximation of the ob-
jective function f . Since f is approximated by a quadratic function in a neighborhood
of a critical point x∗, we approximate the natural gradient by the corresponding natu-
ral gradient on the quadratic function. Then, employing the same Lyapunov candidate
function as in the previous theorem we can show (A2). Because of the approximation,
we only have local asymptotic stability. The last statement of Theorem 2 is an immedi-
ate consequence of the approximation of the natural gradient and (B2). ��
We have that starting from a point close enough to a local minimum point x∗ with a
sufficiently small initial variance, the search distribution weakly converges to δx∗ . It is
not guaranteed for the parameter to converge somewhere when the initial mean is not
close enough to the local optimum or the initial variance is not small enough. Theorem 2
also states that the convergence (m(t), v(t)) → (x̄, 0) does not happen for x̄ such that
∇h(x̄) 	= 0. That is, the continuous time ES-IGO does not prematurely converge on a
slope of the landscape of f .

5 Conclusion

In this paper we have proven the local convergence of the continuous time model associ-
ated to step-size adaptive ESs towards local minima on monotonic C2-composite func-
tions. In the case of monotonic convex-quadratic-composite functions we have proven
the global convergence, i.e. convergence independently of the initial condition (pro-
vided the initial step-size is strictly positive) towards the unique minimum. Our analysis
relies on investigating the stability of critical points associated to the underlying ODE
that follows from the Information Geometric Optimization setting. We use a classical
method for the analysis of stability of critical points, based on Lyapunov functions. We
have however extended the method to be able to handle convergence towards solutions
at the boundary of the ODE definition domain. We believe that our approach is general
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enough to handle more difficult cases like the CMA-ES with a more general covariance
matrix. We want to emphasize that the model we have analyzed is the correct model
for step-size adaptive ESs as the ODE encodes both the mean vector and step-size and
preserves fundamental invariance properties of the algorithm.
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2. Jägersküpper, J.: Probabilistic runtime analysis of (1+, λ), ES using isotropic mutations. In:
Proceedings of the 2006 Genetic and Evolutionary Computation Conference, GECCO 2006,
pp. 461–468. ACM (2006)
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A Parameterized Runtime Analysis of Simple

Evolutionary Algorithms for Makespan
Scheduling

Andrew M. Sutton and Frank Neumann
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Abstract. We consider simple multi-start evolutionary algorithms ap-
plied to the classical NP-hard combinatorial optimization problem of
Makespan Scheduling on two machines. We study the dependence of
the runtime of this type of algorithm on three different key hardness pa-
rameters. By doing this, we provide further structural insights into the
behavior of evolutionary algorithms for this classical problem.

1 Introduction

Evolutionary algorithms and other types of bio-inspired computing techniques
have been extensively used for a wide range of combinatorial optimization
problems. Understanding the behavior of evolutionary algorithms on NP-hard
combinatorial optimization problems from a theoretical point of view is still a
challenging task. Results on the runtime of evolutionary algorithms for differ-
ent combinatorial optimization problems have been obtained during the last ten
years. We refer the interested reader to the textbook of Neumann and Witt [10]
for an overview on this area of research. One of the first runtime analyses of
evolutionary algorithms for NP-hard combinatorial optimization problems has
been carried out by Witt [14] by considering the Makespan Scheduling prob-
lem. Witt has studied the approximation and average-case behavior of simple
evolutionary algorithms for this problem. Gunia [7] later extended this work to
the case of multiple machines. Other recent works have studied the multiple ma-
chine case in terms of convergence to solutions corresponding to Nash equilibria
in multiplayer non-cooperative games [4,6].

We consider the analysis of evolutionary algorithms in the context of fixed-
parameter tractability by expressing their runtime as a function of both problem
size and an additional hardness parameter that attempts to isolate the exponen-
tial complexity of the instance. This approach, which is widely used in the classi-
cal analysis of algorithms and problem hardness [3], has recently been introduced
into the analysis of evolutionary algorithms. It facilitates the understanding of
which features in an instance of a given problem makes the problem hard to solve.
Parameterized runtime results have been obtained in the context of evolutionary
computation for the vertex cover problem [9], the computation of maximum leaf
spanning trees [8], the MAX-2-SAT problem [12], and the Euclidean TSP [13].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 52–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Our goal is to provide further insights into the optimization process of evo-
lutionary algorithms for the Makespan Scheduling problem by carrying out
parameterized runtime analyses. We show that multi-start variants of two sim-
ple evolutionary algorithms are fixed-parameter evolutionary algorithms for a
parameterization of Makespan Scheduling that takes into account the value
of the optimal schedule above its theoretical lower bound. We then study their
runtime in dependence of the critical path size of an optimal schedule. Finally, we
investigate a parameterization that considers the machine load discrepancy in an
optimal schedule. We show that, with a minor modification to the mutation pro-
cedure, the resulting multi-start variant of RLS is a Monte Carlo fixed-parameter
tractable algorithm for Makespan Scheduling. This indicates that instances
with large discrepancies will be easier to solve by randomized local search.

2 Preliminaries

We investigate the classical NP-hard Makespan Scheduling problem on two
identical machines. In this problem, we have a set of n jobs where each job j
requires a nonzero integral processing time pj on either machine. We define the
load of a machine to be the sum of processing times of the jobs that are assigned
to it. The makespan of a schedule is the maximum load over both machines. The
objective is to find an assignment that minimizes the makespan.

An arbitrary schedule can be represented as a binary length-n decision vector
where the j-th component specifies to which machine job j is assigned in a
schedule. For a given instance of Makespan Scheduling, the makespan of a
schedule corresponding to a binary decision vector x ∈ {0, 1}n is captured by
the pseudo-Boolean function

f : {0, 1}n → N := x �→ max

⎧⎨⎩
n∑

j=1

xjpj ,

n∑
j=1

(1− xj)pj

⎫⎬⎭ .

We will denote P =
∑n

j=1 pj . Thus P/2 ≤ f(x) ≤ P . Without loss of generality,
we will assume that the processing times are sorted in nonincreasing order, i.e.,
p1 ≥ · · · ≥ pn. We denote f∗ = minx∈{0,1}n f(x) as the value of the optimal
makespan for an instance.

We will carry out parameterized runtime analyses of evolutionary algorithms
for Makespan Scheduling. Let Σ be a finite alphabet. A parameterized prob-
lem over Σ is a pair (L, κ) where L ⊆ Σ∗ is a language over Σ and κ : Σ∗ → N

is a map called a parameterization of Σ. Letting n = |x| and k = κ(x), a pa-
rameterized problem (L, κ) is fixed-parameter tractable if there is an algorithm
that decides x ∈ L in time bounded by g(k) · poly(n) where g is an arbitrary
recursive function that depends only on k. We call such an algorithm an fpt-
algorithm. The class of parameterized problems (L, κ) that can be decided by
an fpt-algorithm is called FPT. A Monte Carlo fpt-algorithm for (L, κ) is a ran-
domized fpt-algorithm with runtime bounded by g(k) · poly(n) that will accept
an input x ∈ Σ∗ with probability at least 1/2 if x ∈ L, otherwise it accepts with
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probability zero. An XP-algorithm for a parameterized problem (L, κ) is an algo-
rithm that runs in worst-case time ng(k). We define a Monte Carlo XP-algorithm
analogously.

We consider two classical mutation-only evolutionary algorithms, the (1+1)
EA and RLS. In particular, we will analyze repeating runs of length �(n) =
O(poly(n)) and take the best solution found during any run. A run of length
�(n) for the (1+1) EA and RLS is explicitly defined in Algorithms 1 and 2,
respectively. In each case, we will investigate the probability that a single run
solves the parameterized problem. Observing that each run is an independent
Bernoulli trial, it will be straightforward to bound the failure probability after a
prescribed number of runs. We will make use of the following technical lemma.

Lemma 1. Let h be a positive function. The probability that an arbitrary (but
nonempty) set of k < n bits is never changed during a run of length �(n) = n·h(n)
is bounded by Ω

(
e−k·h(n)) for the (1+1) EA, and Ω

(
e−(k log k)·h(n)) for RLS.

Proof. For the (1+1) EA, the probability that none of the specified k bits are
mutated during a single iteration is (1− 1/n)k. After �(n) iterations, the proba-
bility is (1−1/n)kn·h(n) = Ω(e−k·h(n)). For RLS, the probability that none of the
specified k bits are changed in a single iteration is (1− k/n). Here, we must also
consider the rate k grows as a function of n. If k = o(n), the bound is obviously
the same for the (1+1) EA, otherwise, k = Θ(n). In the case that c1n ≤ k ≤ c2n
for some constants 0 < c1 ≤ c2 < 1, then we have (1−k/n)n ≥ (1−c2)k/c1 = e−kε

where ε is a positive constant. Finally, in the case that k ∼ n, since k is at most
n−1, it must hold that (1−k/n)n ≥ e−n logn and since in this case n = (1+o(1))k,
the asymptotic bound holds. ��

Algorithm 1. A single run of the (1+1) EA

input : A run length �(n)
output: A candidate decision vector x

1 Choose x uniformly at random from {0, 1}n;
2 for i ← 1 to �(n) do
3 x′ ← x;
4 Flip each bit of x′ independently with probability 1/n;
5 if f(x′) ≤ f(x) then x ← x′

6 end

3 Parameterized Analysis for Optimal Makespan Value

The standard parameterization of a combinatorial optimization problem is (as-
suming minimization), given an instance and a parameter k, is the value of the
optimal solution at most k? Fernau [5] has shown that the standard parame-
terization of Makespan Scheduling1 is fixed-parameter tractable. The proof
relies on the following straightforward kernelization technique. If k < P/2, the

1 Makespan Scheduling is referred to as Minimum Partition in Fernau’s work.
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Algorithm 2. A single run of RLS

input : A run length �(n)
output: A candidate decision vector x

1 Choose x uniformly at random from {0, 1}n;
2 for i ← 1 to �(n) do
3 x′ ← x;
4 Choose j uniformly at random from {1, . . . , n};
5 x′

j ← (1− x′
j);

6 if f(x′) ≤ f(x) then x ← x′

7 end

answer is always “no” since clearly f is bounded below by P/2. On the other
hand, if k ≥ P/2, it follows that 2k ≥ P ≥ n, the rightmost inequality coming
from the fact that the processing times are positive integers. Hence there are at
most 22k schedules which can be search exhaustively in time bounded by O(4k).

To provide stronger insights into the difficulty of Makespan Scheduling
as a function of the value of the optimal makespan, we will consider a more
detailed parameterization that captures the difference between the makespan of
an optimal schedule and the theoretical lower bound. In particular, we show that
if the optimal schedule has a makespan much larger than P/2+P/n, the problem
is easier to solve by the (1+1) EA and RLS using a multi-start approach. We
show that the multi-start variants of both the (1+1) EA and RLS are Monte
Carlo fpt-algorithms for Makespan Scheduling by showing they are capable
of simulating a polynomial-time approximation scheme (PTAS).

We will hereafter assume that p1 ≤ P/2, otherwise it is easy to show that RLS
always runs in expected polynomial time simply by collecting all the smaller
jobs onto the other machine. A move could result in an improving solution
if it shifts a job from the fuller machine to the emptier machine. We follow
Witt [14] and define the critical job size s(x) with respect to a decision vector
x as the processing time of the smallest job on the fuller machine. If f(x) >
(P + s(x))/2, then it is possible to construct an improving schedule by moving
at least one job from the fuller machine to the emptier machine. The optimal
solution parameterization is, given an instance of Makespan Scheduling and
an integer k, is f∗ ≤ P/2 + P/k?

Lemma 2 (due to Witt [14]). Let x be the current search point. Suppose the
critical job size is bounded above by s∗ for all following search points of value
greater than L + s∗/2 where L ≥ P/2. Then for any γ > 1 and 0 < δ < 1, both
the (1+1) EA and RLS can compute a decision vector with makespan at most
L+ s∗/2 + δP/2 in at most �en ln(γ/δ)� steps with probability at least 1− γ−1.

Lemma 3. Given some 1 ≤ k ≤ n, let x′ be a decision vector such that the
contribution of jobs 1, . . . , k is minimal. The probability that after a run of length
�en ln(2k)� the (1+1) EA or RLS has discovered a schedule with makespan at
most P/2 + P/k is bounded below by Ω(e−k�e ln(2k)) for the (1+1) EA, and
Ω(e−(k log k)�e ln(2k)) for RLS.
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Proof. As long as no move involves the first k bits, the critical job size s∗ is
bounded above by pk. Furthermore, since kpk ≤ p1 + · · · + pk ≤ P , it follows
that pk is at most P/k. By Lemma 2, by setting L to P/2, s∗ to P/k, γ = 2,
and δ to 1/k, the probability that we reach a solution x̂ where

f(x̂) ≤ L+ P/(2k) + (1/k)(P/2) = P/2 + P/k

in �en ln(2k)� steps is at least 1/2, as long as none of the first k jobs are moved.
Thus, if q denotes the probability that none of the first k bits are mutated

during a run of length �en ln(2k)�, then the solution is reached with probability
at least q/2. The proof is completed by appealing to Lemma 1 for the lower
bound on q and using the fact that �en ln(2k)� ≤ n�e ln(2k)�.

Theorem 1. The multi-start (1+1) EA (RLS) using runs of length �(n) =
�en ln(2k)� is a Monte Carlo fpt-algorithm for the optimal makespan parame-
terization of Makespan Scheduling.

Proof. Consider an arbitrary instance of Makespan Scheduling. If f∗ > P/2+
P/k the proof is complete since the output of the algorithm in this case is
irrelevant. Thus we suppose that f∗ ≤ P/2 + P/k.
The probability that a random initial solution to any run contains the first k
jobs properly fixed is at least 2−k+1. Given such a solution, let q(n) denote the
probability that, after a run of length �en ln(2k)�, the algorithm has found a
schedule x̂ where f(x̂) ≤ P/2+P/k. The probability that t consecutive runs are
all unsuccessful is at most (1 − q(n)/2k−1)t. Setting t = �2k−1q(n)−1� gives a
failure probability of at most 1/e. Since each run consists of O(n log k) evalua-
tions, the total runtime is O(tn log k). Due to Lemma 3, q(n) is bounded by a
function depending only on k for both the (1+1) EA and RLS. Thus by setting
g(k) = 2k−1q(n)−1, the total runtime is bounded by O(g(k) · n log k) and the
success probability is at least 1− 1/e > 1/2.

4 Parameterized Analysis for Critical Path Size

In general machine scheduling problems, the critical path of a schedule is a set of
consecutive jobs in which the first job starts at time zero, the completion time of
the last job is the makespan of the schedule, and the completion time of each job
is equal to the starting time of the next [11]. For the two-machine Makespan
Scheduling problem, we define the critical path of a schedule as the set of jobs
scheduled on the fuller machine. Formally, the critical path of a schedule x is
the set C(x) ⊆ [n] such that for all i, j,∈ C(x), xi = xj and

∑
i∈C(x) pi = f(x).

In the ambiguous case (when the machines balance) we define the critical path
as the smallest such set with ties in cardinality broken arbitrarily. We define the
critical path size of a schedule x as |C(x)|. The critical path size parameterization
of Makespan Scheduling is, given an integer k, is there a schedule with critical
path size at most k?
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Lemma 4. Consider an instance of Makespan Scheduling such that there
exists a schedule z with |C(z)| ≤ k. Suppose x′ corresponds to a schedule such
that for all i, j ∈ C(z), x′

i = x′
j . We call a run of the (1+1) EA (RLS) a suc-

cess if it discovers a schedule with critical path size at most k. Then starting
with x′ as the initial decision vector, for any constant c > 1, the success prob-
ability of a run of the (1+1) EA of length �cen (lnn+ ln p1 + 1)� is bounded
by Ω

(
(enp1)

−cek
)
. Moreover, the success probability of a run of RLS of length

�cn (lnn+ 1)� starting from x′ is bounded by Ω
(
(en)−ck log k

)
.

Proof. Without loss of generality, suppose that for all i, j ∈ C(z), x′
i = x′

j = 0.
If, for any � ∈ [n], x′

� = 0 =⇒ � ∈ C(z), then the proof is complete. Otherwise,
machine zero (i.e., the machine that corresponds to a zero bit in the decision
vector) obviously must have the highest load since it contains every job in C(z).
Let S(x) = {i : i /∈ C(z)∧xi = 0} be the set of jobs on machine zero that do not
belong to C(z).
During a run of either the (1+1) EA or RLS, as long as none of the jobs in C(z)
are not moved off machine zero, any move that reduces the number of jobs not
in C(z) on machine zero is accepted. Furthermore, as long as the jobs in C(z)
remain on machine zero, its load is at least the load of machine one. Thus, no
moves which increase the number of jobs on machine zero are accepted.

For the (1+1) EA, let d(x) =
∑

i∈S(x) pi. Suppose that no jobs from C(z) are
moved off machine zero during a run of the (1+1) EA. In this case, any mutation
involving an element of S(x) is accepted and decreases the makespan (and the d
value) by its processing time. Such a move occurs with probability at least 1/(en).
By the multiplicative drift theorem [2], the expected number of steps until the
d value has reached zero conditioned on the event that no bits corresponding to
C(z) are flipped is at most en (1 + ln d(x′)) ≤ en (lnn+ ln p1 + 1) since d(x′) ≤
np1. Consider a run of the (1+1) EA of length t = cen(lnn + ln p1 + 1). By
the Markov inequality, the success probability of such a run conditioned on the
event that no bit in C(z) is flipped is at least 1− 1/c = Ω(1). Hence the bound
on the success probability is Ω

(
(enp1)

−cek
)
by Lemma 1.

For RLS, we set the run length to �(n) = �cn(lnn+1)�. The probability that
RLS takes fewer than �(n) steps to move the remaining |S(x)| jobs conditioned
on the event that no jobs in C(z) are moved is at least 1− (ne)−c+1 = 1− o(1).
This result comes from the classical coupon collector analysis (see Theorem 1.23
in Chapter 1 of [1]). The bound on the success probability of such a run of RLS
then follows directly from Lemma 1. ��
Theorem 2. For any constant c > 1, a multi-start (1+1) EA procedure us-
ing a run length of �(n) = �cen(lnn + ln p1 + 1)� solves the critical path size
parameterization in at most O

(
2k(enp1)

cek · n(logn+ log p1)
)
evaluations with

probability at least 1/2. Moreover, a multi-start RLS procedure using a run length
of �(n) = �cn (lnn+ 1)� solves the critical path size parameterization in at most
O
(
2k(en)ck log k · n logn

)
evaluations with probability at least 1/2.



58 A.M. Sutton and F. Neumann

Proof. Consider an arbitrary instance of Makespan Scheduling. If there is
no schedule z such that |C(z)| ≤ k, the proof is complete. Otherwise, suppose
there exists such a schedule.
With probability at least 2 · 2−k, the initial schedule x′ of a run of the (1+1)
EA (RLS) has x′

i = x′
j for all i, j ∈ C(z). Let q(n) denote the probability that

a (1+1) EA run of length �cen(lnn + ln p1 + 1)� starting from x′ generates a
schedule with critical path size at most k. By Lemma 4, q(n) = Ω

(
(enp1)

−cek
)
.

The probability that t consecutive runs of the required size of the (1+1)
EA all fail to find such a schedule is at most (1 − q(n)/2k−1)t. Hence, after
2k−1q(n)−1 = O

(
2k(enp1)

cek
)
such runs of the (1+1) EA, the failure probability

is at most 1/e and the parameterization is solved with probability 1−1/e > 1/2.
Since each run of the (1+1) EA costs O(n(log n+ log p1)) evaluations, we have
the claimed runtime. The proof for RLS is analogous. ��

It immediately follows from Theorem 2 that the multi-start RLS is a Monte
Carlo XP-algorithm for the critical path size parameterization of Makespan
Scheduling. We must, however, be slightly more careful in the case of the
multi-start (1+1) EA since p1 can be exponential in n. In this case, it follows
that the multi-start (1+1) EA is a Monte Carlo XP-algorithm for inputs where
all processing times are polynomially bounded in n.

5 A Monte Carlo fpt-Algorithm for Discrepancy

Following the terminology of Witt [14] we define the absolute difference in load
across machines the discrepancy of a schedule, i.e., Δ(x) = 2f(x)−P . Denoting
as Δ∗ = 2f∗ − P the discrepancy of the optimal solution of an instance, we
consider the following parameterized problem (for notational convenience, we
set pn+1 = 0). Given an instance of Makespan Scheduling and an integer k,
is pk ≥ Δ∗ ≥ pk+1?

We will consider two evolutionary algorithms, called k-biased (1+1) EA and k-
biased-RLS which differ from the (1+1) EA and RLS by using a slightly modified
mutation operator. We then consider the efficiency of these variants for solving
the discrepancy parameterization. For the k-biased (1+1) EA, the mutation step
in line 4 of Algorithm 1 is replaced with the following lines of code.

for j ← 1 to k do flip x′
j with probability 1/(kn);

for j ← k + 1 to n do flip x′
j with probability 1/n;

For the k-biased-RLS, the mutation step in lines 4 and 5 of Algorithm 2 are
replaced with the following lines of code.

if r < 1/n then choose j uniformly at random from {1, . . . , k};
else choose j uniformly at random from {k + 1, . . . , n};
x′
j ← (1− x′

j);
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These biased mutation operators have a smaller probability of flipping the
bits on the first k positions compared to the ones presented in Section 2.

Lemma 5. Let h be a positive function. The probability that the k-biased (1+1)
EA (k-biased-RLS) does not change the first k bits during a run of length �(n) =
n · h(n) is bounded by Ω(e−h(n)).

Proof. For the k-biased (1+1) EA, the probability that none of k bits are selected
for mutation in a single step is (1 − 1/(kn))k. After �(n) steps the probability
that none of the first k bits have changed is at least (1 − 1/(kn))kn·h(n). For k-
biased-RLS, the probability that any of the first k bits are selected for mutation
is 1/n. After �(n) steps, the first k bits have not changed with probability at least
(1−1/n)n·h(n). In both cases, the asymptotic bound follows from (1−1/x)x·f(x) =
Ω(e−f(x)). ��
Lemma 6. Let k be such that pk+1 ≤ Δ∗ where pn+1 = 0. Let x′ be a decision
vector such that the contribution of jobs 1, . . . , k to the makespan is minimal. We
call a run of the k-biased (1+1) EA (k-biased-RLS) a success if it discovers an
optimal schedule. Then starting with x′ as the initial decision vector, the success
probability for a run of the k-biased (1+1) EA of length 2en(lnn + ln p1 + 1)
is bounded below by Ω

(
(np1)

−2e
)
. Moreover, the success probability for a run of

k-biased-RLS of length 2n(lnn+ 1) is bounded below by Ω
(
n−2
)
.

Proof. We assume Δ(x′) > Δ∗ ≥ 0 since otherwise x′ is already optimal. In
this case there is a machine with a higher load. Let S = {k + 1, k + 2, . . . , n}.
We first show that as long as x′ is not optimal and there are jobs from S on
the fuller machine, moving any such job to the emptier machine results in a
strictly improving move. Suppose not. Then there is a job j > k on the fuller
machine and Δ(x′) ≤ pj , otherwise moving pj results in an improvement. But
by definition, we have pj ≤ Δ∗ which contradicts the non-optimality of x′. It
follows that if the first k jobs already contribute minimally to the makespan, as
long as no mutation involves the first k bits, the optimal schedule can be found
by moving all jobs from S on to the emptier machine.

For the k-biased (1+1) EA, let d(x) = Δ(x) − Δ∗. The probability that a
mutation removes a job in S from the fuller machine is at least

(1− 1/(kn))
k
(1− 1/n)

n−k−|S| |S|−1 ≥ (1− 1/n)
n−|S| |S|−1 ≥ 1/(en).

The expected time until the d value has reduced to zero conditioned on the event
that no bits of index at most k are flipped follows from the multiplicative drift
theorem of Doerr et al. [2] and is at most t = en (1 + ln d(x′)). By the Markov
inequality, the probability that this occurs after 2t steps (again, conditioned on
the event that no bits with index at most k are flipped) is at least 1/2 = Ω(1).
The bound on the success probability of a run of length 2t follows from Lemma 5.

For k-biased-RLS, suppose there are i jobs from S on the fuller machine. The
probability that k-biased-RLS moves one of these jobs to the emptier machine
is at least

(1− 1/n) · i/(n− k) =
n− 1

n
· i

n− k
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for n > 1. The expectation until all jobs from S are moved off the fuller machine
conditioned on the event that no jobs in [n] \ S are moved is at most

n

n− 1
· (n− k)

n−k∑
i=1

1/i ≤ n(lnn+ 1)

since k ≥ 1. By the Markov inequality, the probability that this occurs in a run
of 2n(lnn + 1) steps is at least 1/2 = Ω(1). The final bound on the success
probability comes from Lemma 5. ��
We now prove that the k-biased (1+1) EA (on inputs with polynomially bounded
processing times) and k-biased-RLS (for general processing times) are Monte
Carlo fpt-algorithms for this parameterization. At this point, it might be tempt-
ing to assume that we require instance-specific knowledge in order to choose the
appropriate value for k. Instead, we are interested in the following question. For
a given and fixed k, is there a class of Makespan Scheduling instances for
which k-biased-RLS and the k-biased (1+1) EA are efficient? We now prove that
such a class must include instances where pk ≥ Δ∗ ≥ pk+1.

Theorem 3. A multi-start k-biased-RLS procedure that uses a run length of
�(n) = �2n(lnn+1)� is a Monte Carlo fpt-algorithm for the discrepancy param-
eterization of Makespan Scheduling. In particular, if the instance is a yes
instance (that is, pk ≥ Δ∗ ≥ pk+1), it solves the problem after O(2kn3 logn)
steps with probability 1− 1/e.
Similarly, the multi-start (1+1) EA is a Monte Carlo fpt-algorithm for the dis-
crepancy parameterization for inputs where the processing times are polynomially
bounded in n.

Proof. Consider an arbitrary instance of Makespan Scheduling. If it is not
the case that pk ≥ Δ∗ ≥ pk+1, the proof is complete since, in this case, the output
of the algorithm is arbitrary. Thus we can assume the bounds on Δ∗. A single
run of k-biased-RLS starts with the first k jobs contributing minimally to the
makespan with probability at least 2−k+1. Let q(n) denote the probability that
a k-biased-RLS run of length �2n(lnn+1)� is successful. The failure probability
for t consecutive runs is at most (1 − q(n)/2k−1)t. Setting t = �2k−1q(n)−1�
gives a failure probability of at most 1/e. By Lemma 6, q(n) = Ω(n−2). Thus,
the probability that the algorithm solves the discrepancy parameterization of
Makespan Scheduling in t = O(2kn2) runs of length O(n log n) evaluations
each is at least 1− 1/e > 1/2.
The proof for the multi-start k-biased (1+1) EA is identical, except we set
�(n) = �2en(lnn + ln p1 + 1)� and apply Lemma 6 to get q(n) = Ω

(
(np1)

−2e
)
.

Thus after O
(
2k(np1)

2en(logn+ log p1)
)
steps, the algorithm has solved the

discrepancy parameterization with probability at least 1− 1/e.

6 Conclusion

The parameterized analysis of evolutionary algorithms allows for a deeper un-
derstanding of which structural parameters of an instance of a combinatorial
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optimization problem makes it easy or hard to solve. With this paper, we have
contributed to the parameterized runtime analysis of evolutionary algorithms.
We studied the Makespan Scheduling problem previously analyzed by Witt
from a worst case and average case perspective. Our results provide further in-
sights into the behaviour of evolutionary algorithms for this classical problem.
We have shown that multi-start variants of the (1+1) EA and RLS are Monte
Carlo fpt-algorithms for a parameterization which considers the value of the op-
timal solution above its lower bound. We have performed a runtime analysis in
dependence of the critical path size of an optimal solution, and shown that a
multi-start variant of RLS is a Monte Carlo fpt-algorithm for a parameterization
that considers the discrepancy in load across machines.
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Abstract. Running time analysis of metaheuristic search algorithms has attracted
a lot of attention. When studying a metaheuristic algorithm over a problem class,
a natural question is what are the easiest and the hardest cases of the problem
class. The answer can be helpful for simplifying the analysis of an algorithm
over a problem class as well as understanding the strength and weakness of an
algorithm. This algorithm-dependent boundary case identification problem is in-
vestigated in this paper. We derive a general theorem for the identification, and
apply it to a case that the (1+1)-EA with mutation probability less than 0.5 is
used over the problem class of pseudo-Boolean functions with a unique global
optimum.

1 Introduction

Metaheuristic search algorithms such as simulated annealing (SA) [11], particle swarm
optimization (PSO) [10], evolutionary algorithms (EA) [2], etc., have been widely and
successfully applied to real-world optimization problems. An advantage of metaheuris-
tic algorithms is their problem independence, i.e., they can be applied to a very large
range of optimization problems. A natural theoretical question is, therefore, how well
the metaheuristic algorithms perform on classes of problems.

A commonly used quality measure of a metaheuristic algorithm is its expected run-
ning time, i.e., the expected number of steps that it takes to find an optimum. Several
approaches, e.g., drift analysis [7] and convergence-based approach [17], have been
developed for running time analysis of metaheuristic algorithms. The running time
of several metaheuristic algorithms has been studied on some simple pseudo-Boolean
problems, e.g., [4,7,5], and later, on some combinatorial optimization problems, e.g.,
[1,12]. In most of these studies, the analysis was over restricted problem classes where
the problem cases have similar structures. While, for large problem classes, a large
variety of structures of problem cases can obstruct the analysis.

One possible way to simplify the analysis over a problem class is to characterize the
class by its easiest and hardest cases, and then analyze on these boundary cases. By the
well-known no free lunch theorem [14], we know that no single problem is intrinsically
harder than another, until an algorithm is involved into the consideration. Therefore,
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this paper studies the algorithm-dependent boundary case identification problem. Given
a metaheuristic algorithm, the identification of the boundary cases of a problem class
can not only help to study the performance of the algorithm over the problem class,
but also provide concrete cases to reveal the strength and weakness of the metaheuristic
algorithm.

For this purpose, we derive a general theorem for algorithm-dependent boundary
case identification, which gives a sufficient condition for identifying the easiest and
hardest cases of a problem class for an algorithm. We then prove that in the pseudo-
Boolean function class with a unique global optimum, the OneMax and the Trap prob-
lem are the easiest and the hardest case for the (1+1)-EA with mutation probability less
than 0.5, respectively.

There are a few previous studies concerning problem classes. The running time of
EAs on linear pseudo-Boolean function class, which is a relatively small problem class,
was analyzed in [5,8,9,3]. Yu and Zhou [17] provided a general idea on why EAs can
fail over a complex problem class; Fournier and Teytaud [6] provided a general lower
bound for the performance of EAs over problem classes with VC-dimension measured
complexity. However, these studies did not concern the boundary problem cases. Re-
cently, Doerr et al. [3] used the lower bound of running time of the (1+1)-EA with
mutation probability 1

n on the OneMax problem as that on the pseudo-Boolean func-
tion class with a unique global optimum by proving that the OneMax problem is the
easiest case for the (1+1)-EA in this class, comparing to which this paper derives a
more general result for the easiest case as well as the hardest case. Note that, the easiest
case derived in this paper has also been proved by Witt [13], but we give a different and
more compact proof.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. Section 3 presents the main theorem, which is then used to identify the boundary
cases in the pseudo-Boolean function class for the (1+1)-EA in Section 4. Section 5
concludes.

2 Preliminaries

Most metaheuristic search algorithms generate solutions only based on their maintained
solutions, but not the historical ones, therefore, they can be modeled and analyzed as
Markov chains, e.g., [7,17]. In this paper, we only consider the algorithms that can
be modeled by Markov chains. A Markov chain {ξt}+∞

t=0 modeling the metaheuristic
algorithm is constructed by taking the algorithm’s state space X as the chain’s state
space, i.e. ξt ∈ X . Let X ∗ ⊂ X denote the set of all optimal states. The goal of the
algorithm is to reachX ∗ from an arbitrary initial state. Thus, the process of an algorithm
seeking X ∗ can be analyzed by studying the corresponding Markov chain.

A Markov chain {ξt}+∞
t=0 is a random process, where, for all t ≥ 0, ξt is defined in

the state space X and ξt+1 depends only on ξt. Let X ∗ ⊂ X be the target space. A
Markov chain {ξt}+∞

t=0 is said to be absorbing, if ∀t ≥ 0 : P (ξt+1 ∈ X ∗|ξt ∈ X ∗) = 1.
Given a Markov chain {ξt}+∞

t=0 , and ξt̃ = x for arbitrary t̃ ≥ 0, we define τt̃ as a
random variable such that τt̃ = min{t|ξt̃+t ∈ X ∗, t ≥ 0}. That is, τt̃ is the number of
steps needed to reach the target space for the first time from t̃. The mathematical ex-
pectation of τt̃, E[[τt̃|ξt̃ = x]] =

∑∞
i=0 iP (τt̃ = i), is called the conditional first hitting



64 C. Qian, Y. Yu, and Z.-H. Zhou

time (CFHT) of the Markov chain from t̃ and ξt̃ = x. If ξt̃ is drawn from a distribution
πt̃, the expectation of the CFHT over πt̃, E[[τt̃|ξt̃ ∼ πt̃]] =

∑
x∈X πt̃(x)E[[τt̃|ξt̃ = x]],

is called the distribution-conditional first hitting time (DCFHT) of the Markov chain
from t̃ and ξt̃ ∼ πt̃. If t̃ = 0, E[[τ0|ξ0 ∼ π0]] is also called the expected running time of
the corresponding algorithm.

Switch analysis is a recently proposed approach [16] that compares two Markov
chains for their first hitting time. By modeling EAs as Markov chains, it has been used
to derive running time bounds of EAs [16] and investigate if one EA runs faster than
another EA for a problem [15,16].

Theorem 1 (Switch Analysis [16]). Given two absorbing Markov chains {ξt}+∞
t=0 (ξt ∈

X ) and {ξ′t}+∞
t=0 (ξ

′
t ∈ Y), let X ∗ and Y∗ denote the optimal state space of ξt and ξ′t,

respectively, let τ and τ ′ denote the hitting events of ξt and ξ′t, respectively, let πt denote
the distribution of ξt. Let {ρt}+∞

t=0 be a series of numbers whose sum converges to ρ. If
there exists a mapping φ : X → Y , φ(x) ∈ Y∗ if and only if x ∈ X ∗; and it satisfies
that E[[τ0|ξ0 ∼ π0]] is finite, and for all t ≥ 0,∑

x∈X ,y∈Y πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]]

≤ (≥)
∑

y1,y2∈Y π′
t(y1)P (ξ′t+1 = y2|ξ′t = y1)E[[τ ′t+1|ξ′t+1 = y2]] + ρt,

(1)

where φ−1(y) = {x ∈ X|φ(x) = y} and π′
t(y) = πt(φ

−1(y)), it will hold that

E[[τ0|ξ0 ∼ π0]] ≤ (≥)E[[τ ′0|ξ′0 ∼ π′
0]] + ρ.

3 A Theorem for Boundary Problem Identification

We assume that the studied problem class is homogeneous, as in Definition 1, which
means that all the problem cases in the class have the same solution space and the
same optimal solutions when fixing the problem dimensionality. At the first glance, the
requirement of the same optimal solutions is a strong restriction. However, since most
metaheuristic algorithms do not rely on the meaning of the solution, in the analysis
we can commonly switch the optimal solutions. For example, the solution 10011 in a
binary space can be shifted as 11111 if we switch the meaning of 1 and 0 for the 2nd
and the 3rd bits.

Definition 1 (Homogeneous Problem Class). A problem class is homogeneous if, for
each problem dimensionality, all the problem cases have the same solution space and
the same optimal solutions.

To characterize the algorithm-dependent structure of the problem cases, we partition
the state space according to the CFHT of a given algorithm, as in Definition 2. We also
define a jumping probability in Definition 3.

Definition 2 (CFHT-Partition). For a Markov chain {ξt}+∞
t=0 with state space X , the

CFHT-Partition at time t is a partition of X into non-empty spaces {X t
0 ,X t

1 , . . . ,X t
m}

such that ∀x, y ∈ X t
i ,E[[τt+1|ξt+1 = x]] = E[[τt+1|ξt+1 = y]] andE[[τt+1|ξt+1 ∈ X t

m]]
> . . . > E[[τt+1|ξt+1 ∈ X t

1 ]] > E[[τt+1|ξt+1 ∈ X t
0 ]] = 0.
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Definition 3. For a Markov chain {ξt}+∞
t=0 with the state space X , P t

ξ (x,X ′) is the
probability of jumping from state x to state space X ′ ⊆ X in one step at time t.

We then derive Theorem 2, which is a general sufficient condition for identifying the
easiest and the hardest problem cases. Note that, the easiest (hardest) problem case of a
problem class for an algorithm means that the expected running time of the algorithm
on the problem case is the smallest (largest).

Theorem 2. Given a homogeneous problem class F and an algorithm A, with dimen-
sionality n, let {ξ′t}+∞

t=0 modelA running on a problem f∗ ∈ Fn, of which {X t
0 ,X t

1 , . . . ,
X t

m} is the CFHT-Partition at time t. If for all problem f ∈ Fn − {f∗}, for all t ≥ 0,
and for all x ∈ X −X t

0 , denoting {ξt}+∞
t=0 as the chain modelingA running on f , there

exists an integer k ∈ [0,m],

∀j ≤ k, P t
ξ (x,X t

j ) ≤ (≥)P t
ξ′ (x,X t

j ), ∀j > k, P t
ξ (x,X t

j ) ≥ (≤)P t
ξ′(x,X t

j ), (2)

then f∗ is the easiest (hardest) case in Fn for the algorithm A.

Proof. We use the switch analysis approach to show the easiest problem case identifi-
cation of this theorem by proving that the expected running time of the algorithmA on
the problem f∗ is at most as large as that on any other problem. The hardest case iden-
tification can be proved similarly. Note that both Markov chains {ξt}+∞

t=0 and {ξ′t}+∞
t=0

can be transformed to be absorbing by letting them always stay at the optimal state once
an optimal state has been found, and this transformation does not affect their running
time by the definition of CFHT/DCFHT.

The two chains {ξt}+∞
t=0 and {ξ′t}+∞

t=0 have the same state space X and the same opti-
mal state space X ∗, since the studied problem class is homogeneous. For the clearness
of the proof, we denote the state space and the optimal space of {ξ′t}+∞

t=0 by Y and
Y∗, respectively. Obviously, Y = X and Y∗ = X ∗. Then, we construct the mapping
φ : X → Y as that ∀x ∈ X : φ(x) = x. It is obvious that φ(x) ∈ Y∗ iff x ∈ X ∗.

Then, we investigate Eq. 1 in switch analysis. For an optimal state x ∈ X ∗ = X t
0 ,

since φ(x) = x and both Markov chains are absorbing, we have∑
y∈Y P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]] (3)

=
∑

y∈Y P (ξ′t+1 = y | ξ′t = φ(x))E[[τ ′t+1 | ξ′t+1 = y]] = 0.

For a non-optimal state x ∈ X t
i (i ≥ 1), since φ(x) = x, we have

∑
y∈Y

P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′
t+1|ξ′t+1 = y]] =

m∑
j=0

P t
ξ′ (x,X t

j )E[[τ
′
t+1|ξ′t+1 ∈ X t

j ]];

∑
y∈Y

P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′
t+1|ξ′t+1 = y]] =

m∑
j=0

P t
ξ (x,X t

j )E[[τ
′
t+1|ξ′t+1 ∈ X t

j ]].

By comparing the above two equalities, since the condition Eq. 2 holds, and further-
more, E[[τ ′t+1|ξ′t+1 ∈ X t

j ]] increases with j, we have
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∑
y∈Y P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]] (4)

≥
∑

y∈Y P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′t+1|ξ′t+1 = y]].

Then, by combining Eq. 3 with Eq. 4, we have for all t ≥ 0,∑
x∈X ,y∈Y πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]]

≥
∑

x∈X ,y∈Y πt(x)P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′t+1|ξ′t+1 = y]]

=
∑

y1,y2∈Y
π′
t(y1)P (ξ′t+1 = y2|ξ′t = y1)E[[τ ′t+1|ξ′t+1 = y2]]. (by π′

t(y) = πt(φ
−1(y)))

Thus, Eq. 1 holds with ρt = 0. By switch analysis, E[[τ0|ξ0 ∼ π0]] ≥ E[[τ ′0|ξ′0 ∼ π′
0]].

Since π0 = π′
0, we have E[[τ0|ξ0 ∼ π0]] ≥ E[[τ ′0|ξ′0 ∼ π0]]. The two sides of this in-

equality are the expected running time of A on a problem f ∈ Fn − {f∗} and that on
the problem f∗, respectively. This inequality holds for each f ∈ Fn − {f∗} and f∗.
Thus, f∗ is the easiest problem in Fn for the algorithmA. �

4 Pseudo-Boolean Function Class and (1+1)-EA

In this section, we use the proved theorem to identify the easiest and the hardest function
in the pseudo-Boolean function class with a unique global optimum for the (1+1)-EA
with mutation probability less than 0.5.

The pseudo-Boolean function class in Definition 4 is a large function class which
only requires the solution space to be {0, 1}n and the objective space to be R. The
pseudo-Boolean function class with a unique global optimum is a subset of the pseudo-
Boolean function class, where each function has a unique global optimum. Here, we
consider maximization problems since minimizing f is equivalent to maximizing −f .
The OneMax problem in Definition 5 is to maximize the number of 1 bits of a solution.
The Trap problem in Definition 6 is to maximize the number of 0 bits of a solution
except the global optimum 1n.

Definition 4 (Pseudo-Boolean Function Class). A function in the pseudo-Boolean
function class has the form: f : {0, 1}n → R.

Definition 5 (OneMax Problem). OneMax Problem of size n is to find an n bits binary
string x∗ such that x∗ = argmaxx∈{0,1}n{f(x)|f(x) =∑n

i=1 xi}.
Definition 6 (Trap Problem). Trap Problem of size n is to find an n bits binary string
x∗ such that x∗ = argmaxx∈{0,1}n{f(x)|f(x) =∑n

i=1(1− xi) + (n+ 1)
∏n

i=1 xi}.
The (1+1)-EA [4] in Algorithm 1 is a randomized heuristic algorithm for maximizing
pseudo-Boolean functions, which is often involved in theoretical analysis of EAs.

Algorithm 1 ((1+1)-EA). Given solution length n and objective function f , (1+1)-EA
consists of the following steps:
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1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x with probability p;
4. if f(x′) ≥ f(x)
5. x := x′;

where p ∈ (0, 1) is the mutation probability.

For a pseudo-Boolean function with a unique global optimum, we assume without loss
of generality that the optimal solution is 1n. This is because the (1+1)-EA treats the bits
0 and 1 symmetrically, and thus the 0 bits in an optimal solution can be interpreted as 1
bits without affecting the behavior of the (1+1)-EA. The optimization time of the (1+1)-
EA for maximizing a pseudo-Boolean function is computed as the number of iterations
until a global optimum has been found for the first time.

Theorem 3. In the pseudo-Boolean function class with a unique global optimum, the
OneMax and the Trap problem are the easiest and the hardest problem case for the
(1+1)-EA with 0 < p < 0.5, respectively.

Before proving Theorem 3, we first prove the order of the CFHT of the (1+1)-EA on the
OneMax problem in Lemma 1 as well as that on the Trap problem in Lemma 2. Since
the bits of the OneMax problem are independent and their weights are same, it is not
hard to see that the CFHT E[[τ ′t |ξ′t = x]] of the (1+1)-EA on the OneMax problem only
depends on the number of 1 bits of the solution x, i.e., ‖x‖. Thus, we denote E(j) as
the CFHT E[[τ ′t |ξ′t = x]] with ‖x‖ = n − j. Then, it is obvious that E(0) = 0, which
implies the optimal solution.

Lemma 1. For 0 < p < 0.5, it holds that E(0) < E(1) < E(2) < . . . < E(n).

Proof. We prove ∀ 0 ≤ j < n : E(j) < E(j + 1) inductively on j.
(a) Initialization is to prove E(0) < E(1). Since E(1) = 1 + p(1 − p)n−1E(0) +

(1− p(1− p)n−1)E(1), we have E(1) = 1/(p(1− p)n−1) > 0 = E(0).
(b) Inductive Hypothesis assumes that

∀ 0 ≤ j < K(K ≤ n− 1) : E(j) < E(j + 1).

Then, we consider j = K . Let x and x′ be a solution with K + 1 number of 0 bits and
that with K number of 0 bits, respectively. Then, we have E(K + 1) = E[[τ ′t |ξ′t = x]]
and E(K) = E[[τ ′t |ξ′t = x′]]. For a Boolean string of length n− 1 with K number of 0
bits, we denote Pi (0 ≤ i ≤ n− 1) as the probability that the number of 0 bits changes
to be i after bit-wise mutation on this string with mutation probability p.

For the solution x, we divide the mutation on x into two parts: mutation on one 0 bit
and mutation on the n− 1 remaining bits. The n− 1 remaining bits contain K number
of 0 bits since n − ‖x‖ = K + 1. Then, by considering the mutation and selection
behavior of the (1+1)-EA on the OneMax problem, we have

E(K + 1) = 1 + p · (
∑K+1

i=0
PiE(i) +

∑n−1

i=K+2
PiE(K + 1))

+ (1− p) · (
∑K

i=0
PiE(i+ 1) +

∑n−1

i=K+1
PiE(K + 1)),
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where the term p is the probability that the 0 bit in the first mutation part is flipped.
For the solution x′, we also divide the mutation on x′ into two parts: mutation on one

1 bit and mutation on the n − 1 remaining bits. The n− 1 remaining bits also contain
K number of 0 bits since n− ‖x′‖ = K . Then, we have

E(K) = 1 + p · (
∑K−1

i=0
PiE(i + 1) +

∑n−1

i=K
PiE(K))

+ (1 − p) · (
∑K

i=0
PiE(i) +

∑n−1

i=K+1
PiE(K)),

where the term p is the probability that the 1 bit in the first mutation part is flipped.
From the above two equalities, we have

E(K + 1)− E(K)

= p · (∑K−1

i=0
Pi(E(i)− E(i + 1)) +

∑n−1

i=K+1
Pi(E(K + 1)− E(K))

)
+ (1 − p) · (∑K

i=0
Pi(E(i + 1)− E(i)) +

∑n−1

i=K+1
Pi(E(K + 1)− E(K))

)
= (1− 2p) · (∑K−1

i=0
Pi(E(i + 1)− E(i))

)
+
(
(1 − p)PK +

∑n−1

i=K+1
Pi

) · (E(K + 1)− E(K)
)

>
(
(1− p)PK +

∑n−1

i=K+1
Pi

) · (E(K + 1)− E(K)
)
,

where the inequality is by 0 < p < 0.5 and inductive hypothesis.
Since (1− p)PK +

∑n−1
i=K+1 Pi < 1, we have E(K + 1) > E(K). �

For the Trap problem, it is not hard to see that the CFHT E[[τ ′t |ξ′t = x]] of the (1+1)-EA
on the Trap problem also only depends on the number of 1 bits of the solution x. Thus,
we denote E′(j) as the CFHT E[[τ ′t |ξ′t = x]] with ‖x‖ = n− j. Then, it is obvious that
E′(0) = 0, which implies the optimal solution.

Lemma 2. For 0 < p < 0.5, it holds that E′(0) < E′(1) < E′(2) < . . . < E′(n).

Proof. First, E′(0) < E′(1) trivially holds, since E′(0) = 0 and E′(1) > 0. Then, we
prove ∀ 0 < j < n : E′(j) < E′(j + 1) inductively on j.

(a) Initialization is to prove E′(n− 1) < E′(n). For E′(n), since only the offspring
0n or 1n will be accepted, we have E′(n) = 1 + pnE′(0) + (1 − pn)E′(n), then,
E′(n) = 1/pn. For E′(n − 1), since the accepted offsprings are 0n, the solutions with
n − 1 number of 0 bits and 1n, we have E′(n − 1) = 1 + pn−1(1 − p)E′(0) + p(1 −
p)n−1E′(n) + (1 − pn−1(1 − p) − p(1 − p)n−1)E′(n − 1), then, E′(n − 1) = (1 +
(1− p)n−1/pn−1)/(pn−1(1− p) + p(1− p)n−1). Thus, we have

E′(n)
E′(n− 1)

=
pn−1(1 − p) + p(1− p)n−1

pn + (1− p)n−1p
> 1,

where the inequality is by 0 < p < 0.5.
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(b) Inductive Hypothesis assumes that

∀ K < j ≤ n− 1(K ≥ 1) : E′(j) < E′(j + 1).

Then, we consider j = K . When comparing E′(K + 1) with E′(K), we use the same
analysis method as that in the proof of Lemma 1. By additionally considering the selec-
tion behavior of the (1+1)-EA on the Trap problem which is different from that on the
OneMax problem, we can get

E′(K + 1) = 1 + p · (P0E′(0) +
∑K

i=1
PiE′(K + 1) +

∑n−1

i=K+1
PiE′(i))

+ (1 − p) · (
∑K−1

i=0
PiE′(K + 1) +

∑n−1

i=K
PiE′(i+ 1)),

and

E′(K) = 1 + p · (
∑K−2

i=0
PiE′(K) +

∑n−1

i=K−1
PiE′(i + 1))

+ (1− p) · (P0E′(0) +
∑K−1

i=1
PiE′(K) +

∑n−1

i=K
PiE′(i)).

From the above two equalities, we have

E′(K + 1)− E′(K) = p · (P0(E′(0)− E′(K)) +
∑K−1

i=1
Pi(E′(K + 1)− E′(K))

+
∑n−1

i=K+1
Pi(E′(i)− E′(i + 1))

)
+ (1− p) · (P0(E′(K + 1)− E′(0))

+
∑K

i=1
Pi(E′(K + 1)− E′(K)) +

∑n−1

i=K+1
Pi(E′(i + 1)− E′(i))

)
= P0 ·

(
(1− p)E′(K + 1)− pE′(K)

)
+
(∑K−1

i=1
Pi + (1− p)PK

)
· (E′(K + 1)− E′(K)

)
+ (1− 2p) · (∑n−1

i=K+1
Pi(E′(i+ 1)− E′(i))

)
>
(∑K−1

i=1
Pi + (1− p)PK + pP0

) · (E′(K + 1)− E′(K)
)
,

where the inequality is by 0 < p < 0.5 and inductive hypothesis.
Since

∑K−1
i=1 Pi + (1 − p)PK + pP0 < 1, we have E′(K + 1) > E′(K). �

Proof of Theorem 3. The pseudo-Boolean function class with a unique global op-
timum is homogeneous, since for each dimensionality n, the solution space and the
optimal solution for any function are {0, 1}n and 1n, respectively. By the behavior of
the (1+1)-EA, it is easy to see that the (1+1)-EA can be modeled as a Markov chain.

Let the OneMax problem correspond to f∗ in Theorem 2. Then for the parameter m
and X t

i in Theorem 2, we have m = n and X t
i = {x|‖x‖ = n − i} (0 ≤ i ≤ n) by

Lemma 1. For any non-optimal solution x ∈ X t
k (k > 0), we denote P (j) (0 ≤ j ≤ n)

as the probability that the offspring generated by bit-wise mutation on x has j number
of 0 bits. For {ξ′t}+∞

t=0 , since only the offspring solution with no more 0 bits will be
accepted, we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ′(x,X t

j ) = P (j); P t
ξ′(x,X t

k) =
∑n

j=k
P (j);

∀ k + 1 ≤ j ≤ n : P t
ξ′(x,X t

j ) = 0.



70 C. Qian, Y. Yu, and Z.-H. Zhou

For {ξt}+∞
t=0 , since the offspring solution with less 0 bits may be rejected and that with

more 0 bits may be accepted, we have

P t
ξ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≤ P (j);

∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ 0.

Thus, if P t
ξ′(x,X t

k) ≥ P t
ξ (x,X t

k), we have

∀ 0 ≤ j ≤ k : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ), ∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j );

otherwise, we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ), ∀ k ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ).

Note that the above two formulas hold for all t ≥ 0, since the (1+1)-EA uses time-
invariant operators. Therefore, by Theorem 2, we get that the OneMax problem is the
easiest in the pseudo-Boolean function class with a unique global optimum for the
(1+1)-EA with p < 0.5.

Let the Trap problem correspond to f∗. By Lemma 2, we have m = n and X t
i =

{x|‖x‖ = n− i} (1 ≤ i ≤ n). For any non-optimal solution x ∈ X t
k (k > 0), we also

denote P (j) (0 ≤ j ≤ n) as the probability that the offspring generated by bit-wise
mutation on x has j number of 0 bits. For {ξ′t}+∞

t=0 , since only the optimal solution and
the offspring solutions with no less 0 bits will be accepted, we have

P t
ξ′ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ′(x,X t

j ) = 0;

P t
ξ′ (x,X t

k) =
∑k

j=1
P (j); ∀ k + 1 ≤ j ≤ n : P t

ξ′(x,X t
j ) = P (j).

For {ξt}+∞
t=0 , since the offspring solution with less 0 bits may be accepted and that with

more 0 bits may be rejected, we have

P t
ξ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≥ 0;

∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P (j).

Thus, if P t
ξ′(x,X t

k) ≥ P t
ξ (x,X t

k), we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ), ∀ k ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j );

otherwise, we have

∀ 0 ≤ j ≤ k : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ), ∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ).

By Theorem 2, we get that the Trap problem is the hardest in the pseudo-Boolean func-
tion class with a unique global optimum for the (1+1)-EA with p < 0.5. �
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5 Conclusion

In this paper, we derive a theorem to identify the easiest and the hardest problem cases of
a problem class for an algorithm. Using the theorem, we prove that the OneMax and the
Trap problem are the easiest and the hardest function in the pseudo-Boolean function
class with a unique global optimum for the (1+1)-EA with mutation probability less
than 0.5, respectively, which much extends the previous knowledge [3]. In the future,
we will apply this theorem for more problem classes and more algorithms.
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Abstract. The CSA-ES is an Evolution Strategy with Cumulative Step size Adap-
tation, where the step size is adapted measuring the length of a so-called cumu-
lative path. The cumulative path is a combination of the previous steps realized
by the algorithm, where the importance of each step decreases with time. This
article studies the CSA-ES on composites of strictly increasing functions with
affine linear functions through the investigation of its underlying Markov chains.
Rigorous results on the change and the variation of the step size are derived with
and without cumulation. The step-size diverges geometrically fast in most cases.
Furthermore, the influence of the cumulation parameter is studied.

Keywords: CSA, cumulative path, evolution path, evolution strategies, step-size
adaptation.

1 Introduction

Evolution strategies (ESs) are continuous stochastic optimization algorithms searching
for the minimum of a real valued function f : Rn → R. In the (1, λ)-ES, in each
iteration, λ new children are generated from a single parent point X ∈ Rn by adding a
random Gaussian vector to the parent,

X ∈ Rn �→X + σN (0,C) .

Here, σ ∈ R∗
+ is called step-size and C is a covariance matrix. The best of the λ

children, i.e. the one with the lowest f -value, becomes the parent of the next iteration.
To achieve reasonably fast convergence, step size and covariance matrix have to be
adapted throughout the iterations of the algorithm. In this paper, C is the identity and
we investigate the so-called Cumulative Step-size Adaptation (CSA), which is used to
adapt the step-size in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[12,10]. In CSA, a cumulative path is introduced, which is a combination of all steps the
algorithm has made, where the importance of a step decreases exponentially with time.
Arnold and Beyer studied the behavior of CSA on sphere, cigar and ridge functions
[1,2,3,7] and on dynamical optimization problems where the optimum moves randomly
[5] or linearly [6]. Arnold also studied the behaviour of a (1, λ)-ES on linear functions
with linear constraint [4].

In this paper, we study the behaviour of the (1, λ)-CSA-ES on composites of strictly
increasing functions with affine linear functions, e.g. f : x �→ exp(x2 − 2). Because
the CSA-ES is invariant under translation, under change of an orthonormal basis (ro-
tation and reflection), and under strictly increasing transformations of the f -value, we

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 72–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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investigate, w.l.o.g., f : x �→ x1. Linear functions model the situation when the current
parent is far (here infinitely far) from the optimum of a smooth function. To be far from
the optimum means that the distance to the optimum is large, relative to the step-size σ.
This situation is undesirable and threatens premature convergence. The situation should
be handled well, by increasing step widths, by any search algorithm (and is not handled
well by the (1, 2)-σSA-ES [9]). Solving linear functions is also very useful to prove
convergence independently of the initial state on more general function classes.

In Section 2 we introduce the (1, λ)-CSA-ES, and some of its characteristics on
linear functions. In Sections 3 and 4 we study ln(σt) without and with cumulation,
respectively. Section 5 presents an analysis of the variance of the logarithm of the step-
size and in Section 6 we summarize our results.

Notations. In this paper, we denote t the iteration or time index, n the search space
dimension,N (0, 1) a standard normal distribution, i.e. a normal distribution with mean
zero and standard deviation 1. The multivariate normal distribution with mean vector
zero and covariance matrix identity will be denotedN (0, In), the ith order statistic of λ
standard normal distributionsNi:λ, and Ψi:λ its distribution. If x = (x1, · · · , xn) ∈ Rn

is a vector, then [x]i will be its value on the ith dimension, that is [x]i = xi. A random
variable X distributed according to a law L will be denoted X ∼ L.

2 The (1, λ)-CSA-ES

We denote with Xt the parent at the tth iteration. From the parent point Xt, λ children
are generated:Y t,i = Xt+σtξt,i with i ∈ [[1, λ]], and ξt,i ∼ N (0, In), (ξt,i)i∈[[1,λ]]

i.i.d. Due to the (1, λ) selection scheme, from these children, the one minimizing the
function f is selected: Xt+1 = argmin{f(Y ),Y ∈ {Y t,1, ...,Y t,λ}}. This latter
equation implicitly defines the random variable ξ	t as

Xt+1 = Xt + σtξ
	
t . (1)

In order to adapt the step-size, the cumulative path is defined as

pt+1 = (1− c)pt +
√

c(2− c) ξ	t (2)

with 0 < c ≤ 1. The constant 1/c represents the life span of the information contained
in pt, as after 1/c generations pt is multiplied by a factor that approaches 1/e ≈ 0.37
for c→ 0 from below (indeed (1−c)1/c ≤ exp(−1)). The typical value for c is between
1/
√
n and 1/n. We will consider that p0 ∼ N (0, In) as it makes the algorithm easier

to analyze.
The normalization constant

√
c(2− c) in front of ξ	t in Eq. (2) is chosen so that

under random selection and if pt is distributed according to N (0, In) then also pt+1

follows N (0, In). Hence the length of the path can be compared to the expected length
of ‖N (0, In)‖ representing the expected length under random selection.

The step-size update rule increases the step-size if the length of the path is larger than
the length under random selection and decreases it if the length is shorter than under
random selection:
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σt+1 = σt exp

(
c

dσ

( ‖pt+1‖
E(‖N (0, In)‖) − 1

))
where the damping parameter dσ determines how much the step-size can change and
is set to dσ = 1. A simplification of the update considers the squared length of the
path [5]:

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2
n

− 1

))
. (3)

This rule is easier to analyse and we will use it throughout the paper.

Preliminary results on linear functions. Selection on the linear function, f(x) = [x]1,
is determined by [Xt]1 + σt [ξ

	
t ]1 ≤ [Xt]1 + σt

[
ξt,i
]
1

for all i which is equivalent to
[ξ	t ]1 ≤

[
ξt,i
]
1

for all i where by definition
[
ξt,i
]
1

is distributed according to N (0, 1).
Therefore the first coordinate of the selected step is distributed according to N1:λ and
all others coordinates are distributed according to N (0, 1), i.e. selection does not bias
the distribution along the coordinates 2, . . . , n. Overall we have the following result.

Lemma 1. On the linear function f(x) = x1, the selected steps (ξ	t )t∈N of the (1, λ)-
ES are i.i.d. and distributed according to the vector ξ := (N1:λ,N2, . . . ,Nn) where
Ni ∼ N (0, 1) for i ≥ 2.

Because the selected steps ξ	t are i.i.d. the path defined in Eq. 2 is an autonomous
Markov chain, that we will denote P = (pt)t∈N. Note that if the distribution of the
selected step depended on (Xt, σt) as it is generally the case on non-linear functions,
then the path alone would not be a Markov Chain, however (Xt, σt,pt) would be an
autonomous Markov Chain. In order to study whether the (1, λ)-CSA-ES diverges geo-
metrically, we investigate the log of the step-size change, whose formula can be imme-
diately deduced from Eq. 3:

ln

(
σt+1

σt

)
=

c

2dσ

(‖pt+1‖2
n

− 1

)
(4)

By summing up this equation from 0 to t− 1 we obtain

1

t
ln

(
σt

σ0

)
=

c

2dσ

(
1

t

t∑
k=1

‖pk‖2
n

− 1

)
. (5)

We are interested to know whether 1
t ln(σt/σ0) converges to a constant. In case this

constant is positive this will prove that the (1, λ)-CSA-ES diverges geometrically. We
recognize thanks to (5) that this quantity is equal to the sum of t terms divided by t that
suggests the use of the law of large numbers to prove convergence of (5). We will start
by investigating the case without cumulation c = 1 (Section 3) and then the case with
cumulation (Section 4).
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3 Divergence Rate of (1, λ)-CSA-ES without Cumulation

In this section we study the (1, λ)-CSA-ES without cumulation, i.e. c = 1. In this case,
the path always equals to the selected step, i.e. for all t, we have pt+1 = ξ	t . We have
proven in Lemma 1 that ξ	t are i.i.d. according to ξ. This allows us to use the standard
law of large numbers to find the limit of 1

t ln(σt/σ0) as well as compute the expected
log-step-size change.

Proposition 1. Let Δσ := 1
2dσn

(
E
(N 2

1:λ

)− 1
)
. On linear functions, the (1, λ)-CSA-

ES without cumulation satisfies (i) almost surely limt→∞ 1
t ln (σt/σ0) = Δσ, and (ii)

for all t ∈ N, E(ln(σt+1/σt)) = Δσ .

Proof. We have identified in Lemma 1 that the first coordinate of ξ	t is distributed
according to N1:λ and the other coordinates according to N (0, 1), hence E

(‖ξ	t ‖2)
= E
(
[ξ	t ]1

2
)
+
∑n

i=2 E
(
[ξ	t ]

2
i

)
= E
(N 2

1:λ

)
+ n− 1. Therefore E

(‖ξ	t ‖2) /n− 1 =

(E
(N 2

1:λ

) − 1)/n. By applying this to Eq. (4), we deduce that E(ln(σt+1/σt) =
1/(2dσn)(E(N 2

1:λ) − 1). Furthermore, as E(N 2
1:λ) ≤ E((λN (0, 1))2) = λ2 < ∞,

we have E(‖ξ	t ‖2) < ∞. The sequence (‖ξ	t ‖2)t∈N being i.i.d according to Lemma 1,
and being integrable as we just showed, we can apply the strong law of large numbers
on Eq. (5). We obtain

1

t
ln

(
σt

σ0

)
=

1

2dσ

(
1

t

t−1∑
k=0

‖ξ	k‖2
n

− 1

)
a.s.−→
t→∞

1

2dσ

(
E
(‖ξ	· ‖2)
n

− 1

)
=

1

2dσn

(
E
(N 2

1:λ

)− 1
)

��
The proposition reveals that the sign of

(
E
(N 2

1:λ

)− 1
)

determines whether the step-
size diverges to infinity. In the following, we show that E

(N 2
1:λ

)
increases in λ for

λ ≥ 2 and that the (1, λ)-ES diverges for λ ≥ 3. For λ = 1 and λ = 2, the step-size
follows a random walk on the log-scale.

Lemma 2. Let (Ni)i∈[[1,λ]] be independent random variables, distributed according to
N (0, 1), and Ni:λ the ith order statistic of (Ni)i∈[[1,λ]]. Then E

(N 2
1:1

)
= E
(N 2

1:2

)
=

1. In addition, for all λ ≥ 2, E
(N 2

1:λ+1

)
> E
(N 2

1:λ

)
.

Proof. (see [8] for the full proof) The idea of the proof is to use the symmetry of the
normal distribution to show that for two random variables U ∼ Ψ1:λ+1 and V ∼ Ψ1:λ,
for every event E1 where U2 < V 2, there exists another event E2 counterbalancing the
effect of E1, i.e

∫
E2

(u2 − v2)fU,V (u, v) du dv =
∫
E1

(v2 − u2)fU,V (u, v) du dv, with

fU,V the joint density of the couple (U, V ). We then have E
(N 2

1:λ+1

) ≥ E
(N 2

1:λ

)
. As

there is a non-negligible set of events E3, distinct of E1 and E2, where U2 > V 2, we
have E(N 2

1:λ+1) > E(N 2
1:λ).

For λ = 1, N1:1 ∼ N (0, 1) so E(N 2
1:1) = 1. For λ = 2 we have E(N 2

1:2 + N 2
2:2) =

2E(N (0, 1)2) = 2, and since the normal distribution is symmetric E(N 2
1:2) = E(N 2

2:2),
hence E(N 2

1:2) = 1. ��
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We can now link Proposition 1 and Lemma 2 into the following theorem:

Theorem 1. On linear functions, for λ ≥ 3, the step-size of the (1, λ)-CSA-ES without
cumulation (c = 1) diverges geometrically almost surely and in expectation at the rate
1/(2dσn)(E(N 2

1:λ)− 1), i.e.

1

t
ln

(
σt

σ0

)
a.s.−→
t→∞ E

(
ln

(
σt+1

σt

))
=

1

2dσn

(
E
(N 2

1:λ

)− 1
)

. (6)

For λ = 1 and λ = 2, without cumulation, the logarithm of the step-size does an
additive unbiased random walk i.e. lnσt+1 = lnσt + Wt where E[Wt] = 0. More
precisely Wt ∼ 1/(2dσ)(χ

2
n/n−1) for λ = 1, and Wt ∼ 1/(2dσ)((N 2

1:2+χ2
n−1)/n−

1) for λ = 2, where χ2
k stands for the chi-squared distribution with k degree of freedom.

Proof. For λ > 2, from Lemma 2 we know that E(N 2
1:λ) > E(N 2

1:2) = 1. Therefore
E(N 2

1:λ) − 1 > 0, hence Eq. (6) is strictly positive, and with Proposition 1 we get that
the step-size diverges geometrically almost surely at the rate 1/(2dσ)(E(N 2

1:λ)− 1).
With Eq. 4 we have ln(σt+1) = ln(σt) + Wt, with Wt = 1/(2dσ)(‖ξ	t ‖2/n − 1).
For λ = 1 and λ = 2, according to Lemma 2, E(Wt) = 0. Hence ln(σt) does an
additive unbiased random walk. Furthermore ‖ξ‖2 = N 2

1:λ +χ2
n−1, so for λ = 1, since

N1:1 = N (0, 1), ‖ξ‖2 = χ2
n. ��

In [8] we extend this result on the step-size to |[Xt]1|, which diverges geometrically
almost surely at the same rate.

4 Divergence Rate of (1, λ)-CSA-ES with Cumulation

We are now investigating the (1, λ)-CSA-ES with cumulation, i.e. 0 < c < 1. The path
P is then a Markov chain and contrary to the case where c = 1 we cannot apply a
LLN for independent variables to Eq. (5) in order to prove the almost sure geometric
divergence. However LLN for Markov chains exist as well, provided the Markov chain
satisfies some stability properties: in particular, if the Markov chain P is ϕ-irreducible,
that is, there exists a measure ϕ such that every Borel set A of Rn with ϕ(A) > 0 has
a positive probability to be reached in a finite number of steps by P starting from any
p0 ∈ Rn. In addition, the chain P needs to be (i) positive, that is the chain admits
an invariant probability measure π, i.e., for any borelian A, π(A) =

∫
Rn P (x,A)π(A)

with P (x,A) being the probability to transition in one time step from x into A, and (ii)
Harris recurrent which means for any borelian A such that ϕ(A) > 0, the chain P visits
A an infinite number of times with probability one. Under those conditions, P satisfies
a LLN, more precisely:

Lemma 3. [11, 17.0.1] Suppose that P is a positive Harris chain with invariant prob-
ability measure π, and let g be a π-integrable function such that
π(|g|) = ∫

Rn |g(x)|π(dx) <∞. Then 1/t
∑t

k=1 g(pk)
a.s−→

t→∞ π(g).

The path P satisfies the conditions of Lemma 3 and exhibits an invariant measure [8].
By a recurrence on Eq. (2) we see that the path follows the following equation
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pt = (1− c)tp0 +
√

c(2− c)

t−1∑
k=0

(1− c)k ξ	t−1−k︸ ︷︷ ︸
i.i.d.

. (7)

For i 	= 1, [ξ	t ]i ∼ N (0, 1) and, as also [p0]i ∼ N (0, 1), by recurrence [pt]i ∼
N (0, 1) for all t ∈ N. For i = 1 with cumulation (c < 1), the influence of [p0]1
vanishes with (1 − c)t. Furthermore, as from Lemma 1 the sequence ([ξ	t ]1])t∈N is
independent, we get by applying the Kolgomorov’s three series theorem that the series∑t−1

k=0(1 − c)k
[
ξ	t−1−k

]
1

converges almost surely. Therefore, the first component of

the path becomes distributed as the random variable [p∞]1 =
√

c(2− c)
∑∞

k=0(1 −
c)k[ξ	k]1 (by re-indexing the variable ξ	t−1−k in ξ	k, as the sequence (ξ	t )t∈N is i.i.d.).

We now obtain geometric divergence of the step-size and get an explicit estimate of
the expression of the divergence rate.

Theorem 2. The step-size of the (1, λ)-CSA-ES with λ ≥ 2 diverges geometrically fast
if c < 1 or λ ≥ 3. Almost surely and in expectation we have for 0 < c ≤ 1,

1

t
ln

(
σt

σ0

)
−→
t→∞

1

2dσn

(
2(1− c)E (N1:λ)

2
+ c
(
E
(N 2

1:λ

)− 1
))

︸ ︷︷ ︸
>0 for λ≥3 and for λ=2 and c<1

. (8)

Proof. For proving almost sure convergence of ln(σt/σ0)/t we need to use the LLN for
Markov chain. We refer to [8] for the proof that P satisfies the right assumptions. We
now focus on the convergence in expectation. From Eq. (4) we have E(ln(σt+1/σt)) =

c/(2dσ)(E(‖pt+1‖2)/n− 1), so E(‖pt+1‖2) = E(
∑n

i=1

[
pt+1

]2
i
) is the term we have

to analyse. From Eq. (7) and its conclusions we get that for j 	= 1 [pt]j ∼ N (0, 1), so

E(
∑n

j=1

[
pt+1

]2
j
) = E(

[
pt+1

]2
1
) + (n − 1). When t goes to infinity, the influence of

[p0]1 in this equation goes to 0 with (1 − c)t+1, so we can remove it when taking the
limit:

lim
t→∞E

([
pt+1

]2
1

)
= lim

t→∞E
((√

c(2− c)

t∑
i=0

(1 − c)i
[
ξ	t−i

]
1

)2)
(9)

We will now develop the sum with the square, such that we have either a product[
ξ	t−i

]
1

[
ξ	t−j

]
1

with i 	= j, or
[
ξ	t−j

]2
1
. This way, we can separate the variables by

using Lemma 1 with the independence of ξ	i over time. To do so, we use the develop-
ment formula (

∑n
i=1 an)

2 = 2
∑n

i=1

∑n
j=i+1 aiaj +

∑n
i=1 a

2
i . We take the limit of

E(
[
pt+1

]2
1
) and find that it is equal to

lim
t→∞ c(2−c)

⎛⎜⎜⎜⎝2
t∑

i=0

t∑
j=i+1

(1−c)i+j E
([

ξ	t−i

]
1

[
ξ	t−j

]
1

)
︸ ︷︷ ︸

=E[ξ�
t−i]1E[ξ

�
t−j]1=E[N1:λ]2

+

t∑
i=0

(1−c)2i E
([

ξ	t−i

]2
1

)
︸ ︷︷ ︸

=E[N 2
1:λ]

⎞⎟⎟⎟⎠
(10)
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Now the expected value does not depend on i or j, so what is left is to calculate∑t
i=0

∑t
j=i+1(1 − c)i+j and

∑t
i=0(1 − c)2i. We have

∑t
i=0

∑t
j=i+1(1 − c)i+j =∑t

i=0(1−c)2i+1 1−(1−c)t−i

1−(1−c) and when we separates this sum in two, the right hand side

goes to 0 for t → ∞. Therefore, the left hand side converges to limt→∞
∑t

i=0(1 −
c)2i+1/c, which is equal to limt→∞(1 − c)/c

∑t
i=0(1 − c)2i. And

∑t
i=0(1 − c)2i is

equal to (1 − (1 − c)2t+2)/(1 − (1 − c)2), which converges to 1/(c(2 − c)). So, by

inserting this in Eq. (10) we get that E
([

pt+1

]2
1

)
−→
t→∞ 2 1−c

c E (N1:λ)
2 + E

(N 2
1:λ

)
,

which gives us the right hand side of Eq. (8).
By summing E(ln(σi+1/σi)) for i = 0, . . . , t − 1 and dividing by t we have the

Cesaro mean 1/tE(ln(σt/σ0)) that converges to the same value that E(ln(σt+1/σt))
converges to when t goes to infinity. Therefore we have in expectation Eq. (8).

According to Lemma 2, for λ = 2, E(N 2
1:2) = 1, so the RHS of Eq. (8) is equal to

(1− c)/(dσn)E(N1:2)
2. The expected value ofN1:2 is strictly negative, so the previous

expression is strictly positive. Furthermore, according to Lemma 2, E(N 2
1:λ) increases

with λ, as does E(N1:2)
2. Therefore we have geometric divergence for λ ≥ 2. ��

From Eq. (1) we see that the behavior of the step-size and of (Xt)t∈N are directly re-
lated. Geometric divergence of the step-size, as shown in Theorem 2, means that also the
movements in search space and the improvements on affine linear functions f increase
geometrically fast. Therefore, as we showed in Theorem 2 geometric divergence for the
step-size when λ ≥ 2 and c < 1, or when λ ≥ 3, we expect geometric divergence on the
first dimension of (Xt)t∈N (the first dimension being the only dimension with selec-
tion pressure). Analyzing (Xt)t∈N with cumulation requires to study a double Markov
chain, which is left to possible future research.

5 Study of the Variations of ln (σt+1/σt)

The proof of Theorem 2 shows that the step size increase converges to the right hand
side of Eq. (8), for t → ∞. When the dimension increases this increment goes to
zero, which also suggests that it becomes more likely that σt+1 is smaller than σt. To
analyze this behavior, we study the variance of ln (σt+1/σt) as a function of c and the
dimension.

Theorem 3. The variance of ln (σt+1/σt) equals to

Var

(
ln

(
σt+1

σt

))
=

c2

4d2σn
2

(
E
([

pt+1

]4
1

)
− E
([

pt+1

]2
1

)2
+ 2(n− 1)

)
. (11)

Furthermore, E
([

pt+1

]2
1

)
−→
t→∞ E

(N 2
1:λ

)
+ 2−2c

c E (N1:λ)
2 and with a = 1− c

lim
t→∞E

([
pt+1

]4
1

)
=

(1 − a2)2

1− a4
(k4 + k31 + k22 + k211 + k1111) , (12)

where k4=E
(N 4

1:λ

)
, k31 = 4

a(1+a+2a2)
1−a3 E

(N 3
1:λ

)
E (N1:λ), k22 = 6 a2

1−a2E
(N 2

1:λ

)2
,

k211=12a3(1+2a+3a2)
(1−a2)(1−a3) E

(N 2
1:λ

)
E(N1:λ)

2 and k1111 = 24 a6

(1−a)(1−a2)(1−a3)E (N1:λ)
4.
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Proof.

Var

(
ln

(
σt+1

σt

))
= Var

(
c

2dσ

(‖pt+1‖2
n

− 1

))
=

c2

4d2σn
2

Var
(‖pt+1‖2

)︸ ︷︷ ︸
E(‖pt+1‖4)−E(‖pt+1‖2)2

(13)
The first part of Var(‖pt+1‖2), E(‖pt+1‖4), is equal to E((

∑n
i=1

[
pt+1

]2
i
)2). We de-

velop it along the dimensions such that we can use the independence of [pt+1]i with

[pt+1]j for i 	= j, to get E(2
∑n

i=1

∑n
j=i+1

[
pt+1

]2
i

[
pt+1

]2
j
+
∑n

i=1

[
pt+1

]4
i
). For i 	=

1
[
pt+1

]
i

is distributed according to a standard normal distribution, so E
([

pt+1

]2
i

)
=

1 and E
([

pt+1

]4
i

)
= 3.

E
(‖pt+1‖4

)
= 2

n∑
i=1

n∑
j=i+1

E
([

pt+1

]2
i

)
E
([

pt+1

]2
j

)
+

n∑
i=1

E
([

pt+1

]4
i

)

=

⎛⎝2 n∑
i=2

n∑
j=i+1

1

⎞⎠+ 2

n∑
j=2

E
([

pt+1

]2
1

)
+

(
n∑

i=2

3

)
+ E
([

pt+1

]4
1

)

=

(
2

n∑
i=2

(n− i)

)
+ 2(n− 1)E

([
pt+1

]2
1

)
+ 3(n− 1) + E

([
pt+1

]4
1

)
= E
([

pt+1

]4
1

)
+ 2(n− 1)E

([
pt+1

]2
1

)
+ (n− 1)(n+ 1)

The other part left is E(‖pt+1‖2)2, which we develop along the dimensions to get

E(
∑n

i=1

[
pt+1

]2
i
)2 = (E(

[
pt+1

]2
1
)+ (n− 1))2, which equals to E(

[
pt+1

]2
1
)2 +2(n−

1)E(
[
pt+1

]2
1
) + (n− 1)2. So by subtracting both parts we get

E(‖pt+1‖4)−E(‖pt+1‖2)2 = E(
[
pt+1

]4
1
)−E(

[
pt+1

]2
1
)2+2(n− 1), which we insert

into Eq. (13) to get Eq. (11).
The development of E(

[
pt+1

]2
1
) is the same than the one done in the proof of Theo-

rem 2. We refer to [8] for the development of E(
[
pt+1

]4
1
), since limits of space in the

paper prevents us to present it here. ��
Figure 1 shows the time evolution of ln(σt/σ0) for 5001 runs and c = 1 (left) and

c = 1/
√
n (right). By comparing Figure 1a and Figure 1b we observe smaller variations

of ln(σt/σ0) with the smaller value of c.
Figure 2 shows the relative standard deviation of ln (σt+1/σt) (i.e. the standard de-

viation divided by its expected value). Lowering c, as shown in the left, decreases the
relative standard deviation. To get a value below one, c must be smaller for larger di-
mension. In agreement with Theorem 3, In Figure 2, right, the relative standard de-
viation increases like

√
n with the dimension for constant c (three increasing curves).

A careful study [8] of the variance equation of Theorem 3 shows that for the choice
of c = 1/(1 + nα), if α > 1/3 the relative standard deviation converges to 0 with
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number of iterations

(a) Without cumulation (c = 1)
number of iterations

(b) With cumulation (c = 1/
√
20)

Fig. 1. ln(σt/σ0) against t. The different curves represent the quantiles of a set of 5.103 + 1
samples, more precisely the 10i-quantile and the 1 − 10−i-quantile for i from 1 to 4; and the
median. We have n = 20 and λ = 8.

Fig. 2. Standard deviation of ln (σt+1/σt) relatively to its expectation. Here λ = 8. The curves
were plotted using Eq. (11) and Eq. (12). On the left, curves for (right to left) n = 2, 20, 200
and 2000. On the right, different curves for (top to bottom) c = 1, 0.5, 0.2, 1/(1 + n1/4),
1/(1 + n1/3), 1/(1 + n1/2) and 1/(1 + n).

√
(n2α + n)/n3α. Taking α = 1/3 is a critical value where the relative standard devi-

ation converges to 1/(
√
2E(N1:λ)

2). On the other hand, lower values of α makes the
relative standard deviation diverge with n(1−3α)/2.

6 Summary

We investigate throughout this paper the (1, λ)-CSA-ES on affine linear functions com-
posed with strictly increasing transformations. We find, in Theorem 2, the limit distri-
bution for ln(σt/σ0)/t and rigorously prove the desired behaviour of σ with λ ≥ 3 for
any c, and with λ = 2 and cumulation (0 < c < 1): the step-size diverges geometrically
fast. In contrast, without cumulation (c = 1) and with λ = 2, a random walk on ln(σ)
occurs, like for the (1, 2)-σSA-ES [9] (and also for the same symmetry reason). We de-
rive an expression for the variance of the step-size increment. On linear functions when
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c = 1/nα, for α ≥ 0 (α = 0 meaning c constant) and for n → ∞ the standard de-
viation is about

√
(n2α + n)/n3α times larger than the step-size increment. From this

follows that keeping c < 1/n1/3 ensures that the standard deviation of ln(σt+1/σt)
becomes negligible compared to ln(σt+1/σt) when the dimensions goes to infinity.
That means, the signal to noise ratio goes to zero, giving the algorithm strong stability.
The result confirms that even the largest default cumulation parameter c = 1/

√
n is a

stable choice.
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Abstract. This paper analyses the behaviour of the (1, λ)-σSA-ES with
deterministic two-point rule when applied to a linear problem with a
single linear constraint. Equations that describe the single-step behaviour
of the strategy are derived and then used to predict the strategy’s multi-
step behaviour. The findings suggest that mutative self-adaptation will
result in convergence of the (1, λ)-ES to non-stationary points if the angle
between the gradient vector of the objective function and the normal
vector of the constraint plane is small. Comparisons with the behaviour of
evolution strategies that employ other step size adaptation mechanisms
are drawn.

1 Introduction

Step size adaptation mechanisms and constraint handling techniques are impor-
tant components of evolutionary algorithms (EAs) for constrained real valued
optimisation. Most step size adaptation mechanisms have been devised with un-
constrained optimisation in mind. Conversely, constraint handling techniques are
often designed without much thought to their impact on step size adaptation.
Schwefel [16] as early as the 1970s showed that a commonly employed step size
adaptation mechanism may result in convergence to non-stationary points in an
environment as simple as a linear problem with a single linear constraint.

An understanding of the interaction between step size adaptation mechanisms
and constraint handling techniques is crucial for the design of EAs for constrained
real valued optimisation. The Handbook of Evolutionary Computation [5, page
B2.4:11f] lists a small number of studies that consider the behaviour of evolution
strategies applied to simple constrained problems. Rechenberg [14] studies the
performance of the (1+1)-ES1 for the axis-aligned corridor model. Schwefel [16]
considers the performance of the (1, λ)-ES in the same environment. Beyer [6]
analyses the performance of the (1 + 1)-ES for a constrained, discus-like func-
tion. All of those have in common that the constraint planes are oriented such
that their normal vectors are perpendicular to the gradient vector of the ob-
jective function. In contrast, Schwefel’s work [16] suggests that convergence to

1 See [9] for an explanation of the (μ/ρ +, λ) terminology.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 82–91, 2012.
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non-stationary points may occur in situations where the angle between those vec-
tors, which we refer to as the constraint angle, is small. Studying the behaviour
of EAs applied to a linear problem with a linear constraint of general orientation
is fundamental as owing to Taylor’s theorem, any smooth problem will appear in-
creasingly linear as the step size of the strategy decreases. Arnold and Brauer [3]
derive analytical results for the (1 + 1)-ES with success probability based step
size adaptation and provide a quantitative confirmation of Schwefel’s findings.
More recent work [2, 1] analyses the behaviour of the (1, λ)-ES with cumula-
tive step size adaptation for the constrained linear problem and compares two
constraint handling techniques. It is found that convergence to non-stationary
points in the face of small constraint angles is not unique to success probability
based step size adaptation mechanisms.

The goal of this paper is to study the behaviour of the (1, λ)-σSA-ES, i.e.,
the (1, λ)-ES that employs mutative self-adaptation [16, 13] for step size control,
when applied to a linear problem with a single linear constraint of general orien-
tation. We assume that constraints are handled by resampling infeasible offspring
candidate solutions. The work complements prior research that analyses the be-
haviour of mutative self-adaptation in unconstrained settings, including that by
Hansen [10] who considers unconstrained linear problems, Beyer [7, 8] who con-
siders spherically symmetric functions, and Meyer-Nieberg and Beyer [12] and
Arnold and MacLeod [4] who consider ridge functions.

The remainder of this paper is organised as follows. Section 2 briefly describes
the problem and the evolution strategy considered. Section 3 derives equations
describing the single-step behaviour of the strategy. Section 4 considers multiple
time steps and employs the balance criterion proposed by Lunacek and Whit-
ley [11] in order to predict whether the strategy converges to a non-stationary
point of the objective function. Section 5 concludes with a brief discussion of
the findings and contrasts them with corresponding results for other step size
adaptation mechanisms.

2 Problem and Algorithm

As in [3, 2, 1], throughout this paper we consider the problem of maximising2 a
linear function f : Rn → R, n ≥ 2, with a single linear constraint. We assume
that the gradient vector of the objective function forms an acute angle with
the normal vector of the constraint plane. Without loss of generality, we choose
a Euclidean coordinate system with its origin located on the constraint plane,
and with its axes oriented such that the x1-axis coincides with the gradient
direction ∇f , and the x2-axis lies in the two-dimensional plane spanned by
the gradient vector and the normal vector of the constraint plane. The angle
between those two vectors is referred to as the constraint angle and denoted
by θ as illustrated in Fig. 1. Constraint angles of interest are in the open interval
(0, π/2). The unit normal vector of the constraint plane expressed in the chosen

2 Strictly speaking, the task is one of amelioration rather than maximisation, as a
finite maximum does not exist. We do not make that distinction here.
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fitness gradient

plane
constraint

x1

x2

θ

x

g(x)

n

Fig. 1. Linear objective function with a single linear constraint. The subspace spanned
by the x1- and x2-axes is shown. The shaded area is the feasible region. The parental
candidate solution x of the (1, λ)-ES is at a distance g(x) from the constraint plane.

coordinate system is n = 〈cos θ, sin θ, 0, . . . , 0〉. The signed distance of a point
x = 〈x1, x2, . . . , xn〉 ∈ Rn from the constraint plane is thus g(x) = −n · x =
−x1 cos θ − x2 sin θ, resulting in the optimisation problem

maximise f(x) = x1

subject to g(x) = −x1 cos θ − x2 sin θ ≥ 0 .

Notice that due to the choice of coordinate system, variables x3, x4, . . . , xn enter
neither the objective function nor the constraint inequality.

Assuming a feasible initial candidate solution x ∈ Rn and initial step size
parameter σ > 0, the (1, λ)-σSA-ES generates a sequence of further candidate
solutions by iterating the following three steps [16]:

1. Generate λ feasible offspring candidate solutions y(i) = x + σz(i), i =
1, . . . , λ, where the z(i) ∈ Rn are vectors with components drawn indepen-
dently from normal distributions with mean zero and offspring dependent
standard deviation ξi.

2. Evaluate f(x(i)) for i = 1 . . . , λ and let (1;λ) denote index of the offspring
candidate solution with the largest objective function value.

3. Replace the parental candidate solution and update the step size parameter
according to

x← y(1;λ)

σ ← σξ1;λ .

Vectors z(i) are referred to as mutation vectors, step size parameter σ is referred
to as the mutation strength, and the ξi are referred to as step size modifiers.
Notice that Step 1 may require generating more than λ offspring as infeasible
candidate solutions are rejected immediately. However, for the problem under
consideration on average no more than 2λ offspring need to be sampled per
iteration.

The expected length of mutation vector z(i) is proportional to step size modi-
fier ξi. The underlying proposition of mutative self-adaptation is that if offspring
candidate solutions are generated with differing expected lengths of their mu-
tation vectors, then selection of appropriate step sizes becomes a by-product of
evolution. Common choices for the distribution of the ξi include [15]:
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log-normal: ξi = exp(τN (0, 1)) where N (0, 1) denotes a standard normally dis-
tributed random variate sampled anew for each i

two-point: ξi = β > 1 with probability one half and ξi = 1/β otherwise

deterministic two-point: ξi = β > 1 if 1 ≤ i ≤ λ/2 and ξi = 1/β otherwise.

Constants τ (for log-normal) and β (for two-point and deterministic two-point)
need to be chosen large enough to result in meaningful differences between the
distributions of the offspring they control while being small enough not to ren-
der step size control excessively noisy. Rechenberg [15] recommends β = 1.3 for
the two-point rule. As shown in the context of spherically symmetric functions,
the log-normal and two-point operators can be made to behave very similarly if
the parameters τ and β are chosen appropriately [8]. For simplicity, in this paper
only the deterministic two-point operator is considered.

If the (1, λ)-ES is run on the constrained linear problem described above and
the mutation strength σ is held constant, then the distance of the parental candi-
date solution from the constraint plane will assume a time-invariant distribution.
Largermutation strengths will result in faster progress. If the mutation strength is
not fixed but instead allowed to vary under the control of some step size adaptation
mechanism, then step sizes will either increase or decrease indefinitely. Decreasing
step sizes result in convergence to a non-stationary point; increasing step sizes re-
sult in continually accelerating progress and are thus desirable.

3 Single-Step Behaviour

Let δ = g(x)/σ denote the normalised distance of the parental candidate so-
lution x from the constraint plane. As infeasible offspring are resampled, the
probability distribution of the z1- and z2-components of mutation vectors of
feasible offspring candidate solutions generated with step size modifier ξ is a
truncated normal distribution with joint density

p1,2(x, y | ξ) =
⎧⎨⎩

1

2πξ2Φ(δ/ξ)
e−

1
2 (x

2+y2)/ξ2 if δ ≥ x cos θ + y sin θ

0 otherwise
(1)

where Φ(x) is the cumulative distribution function of the standard normal dis-
tribution. The normalising term Φ(δ/ξ) equals the probability that a randomly
generated offspring candidate solution is feasible. The marginal density of the
z1-component is

p1(x | ξ) =
∫ ∞

−∞
p1,2(x, y | ξ) dy

=
1√

2πξΦ(δ/ξ)
e−

1
2 (x/ξ)

2

Φ

(
δ − x cos θ

ξ sin θ

)
. (2)

We write P1(x | ξ, δ) for the corresponding cumulative distribution function. The
density of the z2-component conditional on the value of the z1-component is

p2(y | z1 = x, ξ) =
p1,2(x, y | ξ)
p1(x | ξ) . (3)
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Integration of the probability density yields

P2(y | z1 = x, ξ) =

⎧⎨⎩
Φ(y/ξ)

Φ((δ − x cos θ)/(ξ sin θ))
if y <

δ − x cos θ

sin θ

1 otherwise

(4)

for the conditional cumulative distribution function of the z2-component.
An important quantity to consider is the probability P+ that the offspring

candidate solution that is selected to replace the parent is one generated with
step size modifier ξ = β (as opposed to ξ = 1/β). That probability is of course
also the probability that the step size of the strategy increases in the present
step. As selection is based purely on the z1-components of the mutation vectors,
the cumulative distribution function of the z1-component of the best of the λ/2
offspring candidate solutions generated with step size modifier ξ is

Qξ(x) = P
λ/2
1 (x | ξ) .

The corresponding probability density function is

qξ(x) =
d

dx
Qξ(x) =

λ

2
p1(x | ξ)Pλ/2−1

1 (x | ξ) .

Probability P+ is obtained by integrating the probability that the best offspring
candidate solution generated with step size modifier β is superior to the best
one generated with step size modifier 1/β and thus equals

P+ =

∫ ∞

−∞
qβ(x)Q1/β(x) dx . (5)

Figure 2 illustrates how this probability depends on the normalised parental
distance from the constraint plane and on the magnitude of the step size modifier.
The plots have been generated from Eq. (5) and are for β = 1.3 in the left hand
graph and for θ = π/8 in the right hand one. If the parental candidate solution
is far from the constraint plane, then the probability of generating an infeasible
candidate solution that needs to be resampled is small and P+ is independent
of the constraint angle and exceeds one half. With decreasing distance from the
constraint plane, P+ decreases. Depending on the values of λ and θ it may either
decrease below one half or remain above. Larger values of λ generally result in
larger values of P+. The curves in the right hand graph are monotonic and start
at a value of one half for β = 1, suggesting that the choice of the step size
modifier does not impact whether P+ exceeds one half or not.

4 Multi-Step Behaviour

The results derived up to this point depend on the normalised distance δ of the
parental candidate solution from the constraint plane. Assuming for now that
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Fig. 2. Probability P+ that a candidate solution generated with mutation strength
modifier ξ = β is selected as the next parental candidate solution plotted against the
normalised parental distance δ from the constraint plane and against the magnitude
of the step size modifier β

the mutation strength is fixed, if the strategy is iterated the normalised distance
from the constraint plane evolves according to

δ(t+1) = δ(t) − z
(1;λ)
1 cos θ − z

(1;λ)
2 sin θ (6)

where superscripts on δ denote time and those on z1 and z2 indicate the offspring
candidate solution selected to replace the parent. The cumulative distribution
function of δ(t+1) conditional on δ(t) = δ is obtained using Eq. (6) by integrating
the probability that δ(t+1) < y, yielding

P
(t+1)
δ (y | δ(t) = δ) = Prob

[
δ(t+1) < y

∣∣∣ δ(t) = δ
]

=

∫ ∞

−∞
qβ(x)Q1/β(x)

[
1− P2

(
δ − y − x cos θ

sin θ

∣∣∣∣ z1 = x, ξ = β

)]
dx

+

∫ ∞

−∞
q1/β(x)Qβ(x)

[
1− P2

(
δ − y − x cos θ

sin θ

∣∣∣∣ z1 = x, ξ = 1/β

)]
dx

where conditional probability P2(·|·) is given in Eq. (4). Computing the derivative

with respect to y yields conditional probability density p
(t+1)
δ (y | δ(t) = δ).

For fixed mutation strength σ, the distance δ of the parental candidate solution
from the constraint plane assumes a time-invariant limit distribution the density
of which satisfies the evolution equation

pδ(y) =

∫ ∞

0

pδ(x)pδ(y|x) dx (7)

where the conditional density is that derived above. An approximation to the sta-
tionary limit distribution can be derived using the approach pursued by Beyer [8]
in a different context: Expand the unknown distribution at time step t into a
Gram-Charlier series with unknown cumulants. Then determine cumulants at
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time step t+1 using Eq. (7). Considering cumulants up to the kth and imposing
equality constraints on the cumulants yields a system of k equations in the k
unknown cumulants. In the simplest case, only a single cumulant (the mean) is
considered, and the equality constraint is

E
[
δ(t+1)

∣∣∣ δ(t) = δ
]
= δ (8)

which can be solved for the approximate average distance δ of the parental
candidate solution from the constraint plane.

The expected distance from the constraint plane after a time step conditional
on that distance before the time step is

E
[
δ(t+1)

∣∣∣ δ(t) = δ
]
=

∫ ∞

0

yp
(t+1)
δ (y | δ(t) = δ) dy

=
1

sin θ

∫ ∞

−∞
qβ(x)Q1/β(x)

∫ ∞

0

yp2

(
δ − y − x cos θ

sin θ

∣∣∣∣ z1 = x, ξ = β

)
dy dx

+
1

sin θ

∫ ∞

−∞
q1/β(x)Qβ(x)

∫ ∞

0

yp2

(
δ − y − x cos θ

sin θ

∣∣∣∣ z1 = x, ξ = 1/β

)
dy dx

where the conditional density p2(·|·) is given in Eq. (3). Solving the inner integrals
yields expression

E
[
δ(t+1)

∣∣∣ δ(t) = δ
]
=

∫ ∞

−∞
γβ(x)qβ(x)Q1/β(x) dx

+

∫ ∞

−∞
γ1/β(x)q1/β(x)Qβ(x) dx (9)

with

γξ(x) = δ − x cos θ +
ξ sin θ√

2π

exp(−((δ − x cos θ)/(ξ sin θ))2/2)

Φ((δ − x cos θ)/(ξ sin θ))

for the expected distance from the constraint plane after a time step conditional
on that distance before the time step.

Figure 3 illustrates how the average normalised distance from the constraint
plane and the probability P+ that an offspring candidate solution generated with
the larger step size modifier replaces the parent depend on the constraint angle.
The curves have been obtained by using Eq. (9) in Eq. (8) for β = 1.3, solving
for δ, and using the result in Eq. (5). The dots mark measurements made in
runs of the (1, λ)-ES with fixed step size. The average distance at which the
constraint plane is tracked decreases with decreasing constraint angle and with
increasing λ. The probability that an offspring candidate solution generated with
step size modifier ξ = β is selected to replace the parental candidate solution
decreases with decreasing constraint angle and with decreasing λ. It exceeds
one half for large constraint angles, but is below one half for small ones. The
accuracy of the predictions made based on the simple stationarity requirement
that considers the mean of the distribution only appears visually good for small
constraint angles.
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Fig. 3. Average normalised distance δ of the parental candidate solution from the
constraint plane and probability P+ of a candidate solution generated with step size
modifier ξ = β being selected to replace the parent plotted against constraint angle θ

If the mutation strength is not fixed but instead under the control of mutative
self-adaptation, then, depending on the number of offspring λ generated per time
step and the constraint angle θ, the strategy will either systematically reduce its
step size and converge to a non-stationary point, or it will increase the step size
and diverge. Clearly, for the constrained linear problem, which does not have
a finite optimum, the latter is desirable. In order to establish whether conver-
gence or divergence occurs, we employ the simple balance criterion proposed by
Lunacek and Whitley [11] in the context of ridge functions. Specifically, we con-
sider the probability P+ that the mutation strength increases in the strategy’s
stationary state for fixed step size. If that probability exceeds one half, then
divergence will occur; if it is below one half, then the strategy will converge.

Figure 4 illustrates how the minimum number of offspring required to avoid
convergence to a non-stationary point depends on the constraint angle. The
solid lines in both plots have been obtained by using Eq. (8) with β = 1.3 to
determine the stationary δ, using Eq. (5) to obtain the corresponding P+, and
then determining the smallest λ such that P+ exceeds one half. The points in
the left hand graph mark measurements made in runs of the (1, λ)-σSA-ES.
For each combination of λ and θ values considered, 100 runs of the strategy
(initialised with the parental candidate solution on the constraint plane and
σ = 1) were conducted until the mutation strength reached a value of either
10−20 (which is taken to be indicative of convergence) or 1020 (which is taken
to be indicative of divergence). If at least 90 of the 100 runs yielded the same
result, the location was marked with × (indicating convergence) or + (indicating
divergence). The quality of the predictions made on the basis of the simple
stationarity and balance criteria is excellent.

The right hand graph in Fig. 4 contrasts results for the (1, λ)-σSA-ES with
corresponding results for the (1 + 1)-ES with 1/5th-success rule [3] and the
(1, λ)-ES with cumulative step size adaptation [2]. The latter curves correspond
to, from top to bottom, values of the cumulation parameter of c = 0.5, 0.05,
and 0.005. In contrast to the (1+1)-ES, the (1, λ)-σSA-ES is capable of avoiding
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Fig. 4. Number of offspring λ per time step required to avoid convergence plotted
against the constraint angle θ. The identical solid curve in both plots represents results
for the (1, λ)-σSA-ES. The dashed lines in the right hand graph represent results for
the (1, λ)-ES with cumulative step size adaptation and several values of the cumulation
parameter. The vertical line in the right hand graph marks the constraint angle below
which the (1 + 1)-ES converges to a non-stationary point.

convergence for any value of θ. However, the number of offspring per time step
that is needed becomes very large as constraint angles become increasingly acute.
(The plots suggest that the value of λ required is inversely proportional to θ.)
In comparison, the (1, λ)-ES with cumulative step size adaptation manages to
avoid convergence using significantly smaller values of λ.

5 Discussion and Future Work

To conclude, we have analysed the behaviour of the (1, λ)-σSA-ES for a linear
problem with a single linear constraint of general orientation. A simple station-
arity requirement has been used to approximate the average distance of the
strategy from the constraint plane if the step size is fixed. The balance con-
dition proposed by Lunacek and Whitley [11] has then been used to establish
whether the adaptive strategy will converge to a non-stationary point or diverge.
It has been found that divergence, which is the desirable behaviour, for increas-
ingly acute constraint angles requires increasingly larger numbers of offspring
generated per time step. Compared to the (1, λ)-ES with cumulative step size
adaptation, for a given value of the constraint angle, the number of offspring
required by the (1, λ)-σSA-ES is much higher.

There are multiple opportunities for further improving the understanding of
the interaction of step size adaptation mechanisms and constraint handling tech-
niques using the approach pursued here. Obvious extensions include consider-
ing the log-normal and two-point rules in place of the deterministic two-point
rule, but differences are likely to be quantitative rather than qualitative. Re-
garding the (μ/μ, λ)-σSA-ES, it may be expected that the bias toward larger
step sizes that results from the arithmetic averaging of mutation strengths has a
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beneficial impact on the performance of the strategy, but the magnitude of that
effect remains to be seen. Further future work includes the consideration of other
constraint handling approaches, such as the simple repair mechanism previously
considered for the (1, λ)-ES with cumulative step size adaptation [1], and of
further constrained test problems.
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tionärer Zustände in dynamischen Systemen. PhD thesis, Hochschule für Architek-
tur und Bauwesen, Weimar (1989)

[7] Beyer, H.-G.: Toward a theory of evolution strategies: Self-adaptation. Evolution-
ary Computation 3(3), 311–347 (1996)

[8] Beyer, H.-G.: The Theory of Evolution Strategies. Springer (2001)
[9] Beyer, H.-G., Schwefel, H.-P.: Evolution strategies — A comprehensive introduc-

tion. Natural Computing 1(1), 3–52 (2002)
[10] Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions.

Evolutionary Computation 14(3), 255–275 (2006)
[11] Lunacek, M., Whitley, L.D.: Searching for Balance: Understanding Self-

adaptation on Ridge Functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K.,
Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193,
pp. 82–91. Springer, Heidelberg (2006)

[12] Meyer-Nieberg, S., Beyer, H.-G.: Mutative Self-adaptation on the Sharp and
Parabolic Ridge. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F.
(eds.) FOGA 2007. LNCS, vol. 4436, pp. 70–96. Springer, Heidelberg (2007)

[13] Meyer-Nieberg, S., Beyer, H.-G.: Self-adaptation in Evolutionary Algorithms. In:
Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary
Algorithms. SCI, vol. 54, pp. 47–74. Springer, Heidelberg (2007)

[14] Rechenberg, I.: Evolutionsstrategie — Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann Verlag (1973)

[15] Rechenberg, I.: Evolutionsstrategie 94. Friedrich Frommann Verlag (1994)
[16] Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der

Evolutionsstrategie. Birkhäuser Verlag (1977)



An Empirical Evaluation of O(1) Steepest

Descent for NK-Landscapes

Darrell Whitley, Wenxiang Chen, and Adele Howe

Colorado State University, Fort Collins, CO, USA

Abstract. New methods make it possible to do approximate steepest
descent in O(1) time per move for k-bounded pseudo-Boolean functions
using stochastic local search. It is also possible to use the average fit-
ness over the Hamming distance 2 neighborhood as a surrogate fitness
function and still retain the O(1) time per move. These are average com-
plexity results. In light of these new results, we examine three factors
that can influence both the computational cost and the effectiveness of
stochastic local search: 1) Fitness function: f(x) or a surrogate; 2) Local
optimum escape method: hard random or soft restarts; 3) Descent strat-
egy: next or steepest. We empirically assess these factors in a study of
local search for solving NK-landscape problems.

Keywords: Stochastic Local Search, NK-Landscapes, Surrogate
Fitness.

1 Introduction

The objective function for a number of combinatorial optimization problems, in-
cluding MAX-kSAT [10] and NK-Landscapes [5], can be expressed as k-bounded
pseudo-Boolean functions [7]. New results show that a form of approximate
steepest descent can be implemented that requires on average O(1) per move
for k-bounded pseudo-Boolean functions [9].

Let X represent the set of candidate solutions, where each solution is a binary
string of length N . Let z ∈ X be the current solution. Let the function N(z)
generate the neighbors of solution z under the Hamming distance 1 “bit-flip”
neighborhood. Thus, x ∈ N(z) denotes that x ∈ X is a neighbor of z. Typi-
cally, steepest descent Stochastic Local Search (SLS) requires O(N) time. Using
Walsh analysis it is possible to achieve an O(1) average time complexity for each
approximate steepest descent move [9].

The Walsh analysis makes it possible to compute the average fitness of the
neighborhood reachable via each of the potential next moves. Viewing the search
space as a tree rooted at the current solution z where x is a child of z such that
x ∈ N(z), it is also possible to compute neighborhood average of solutions reach-
able in two moves from vertex z via vertex x (i.e., these are the grandchildren
of z that are also children of x).

Avg(N(x)) = 1/N

N∑
i=1

f(yi) where yi ∈ N(x) and x ∈ N(z) (1)

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 92–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Whitley and Chen [9] prove that approximate steepest descent using Avg(N(x))
as a surrogate function can execute in O(1) time.

In this paper we explore several decisions related to designing an effective local
search algorithm based on using Avg(N(x)). First, we explore whether there is
any advantage to using Avg(N(x)) as a surrogate fitness function over using
f(x). We hypothesize that more plateaus are found in NKq-landscapes, which
should favor the use of the Avg(N(x)) fitness function [1,8].

Second, a fundamental decision is what to do when a local optimum is encoun-
tered. One simple answer is to use a random restart. However, the proof of O(1)
complexity suggests that there is a significant advantage to using soft-restarts:
executing a small number of random moves to escape a local optimum, where
each move can be executed in O(1) time. The use of soft restarts transforms the
search into an Iterated Local Search algorithm [4]. Since a hard random restart
requires a complete O(N) reinitialization of the search, there is an advantage to
using random walks to escape local optima.

Finally, our new theoretical results now make it possible to perform both
steepest descent or next descent move selection in O(1) time. Given that there is
now no difference in cost, is there now an advantage to using steepest descent in
place of next descent?

Given the constant time O(1) move selection, we empirically evaluate the
impact of critical design decisions on performance for k-bounded pseudo-Boolean
NK-landscape and NKq-landscape problems. We control for runtime and assess
solution quality.

2 The Theoretical O(1) Result

This section briefly summarizes the theoretical results of Whitley and Chen [9].
Any discrete function f : {0, 1}N =⇒ R can be represented in the Walsh basis:

f(x) =

2n−1∑
i=0

wiψi(x)

where wi is a real-valued constant called a Walsh coefficient and ψi(x) = −1iT x

is a Walsh function that generates a sign. Alternatively, ψi(x) = −1bitcount(i∧x)

where bitcount(i∧ x) counts how many 1-bits are in the string produced by the
logical operation i ∧ x. The order of the ith Walsh function is bitcount(i).

Normally generating the Walsh coefficients requires that the entire search
space be enumerated. However, Rana et al. [6] show for the MAX-kSAT prob-
lem that if a function is composed of subfunctions, each of which is a function
over k Boolean variables, then the order of nonzero Walsh coefficients of the
corresponding subfunction fj is also bounded by 2k. This result holds for all
k-bounded pseudo-Boolean functions, including NK-Landscapes [2,3,7].

We will use a vector denoted by w′ to store the Walsh coefficients, which will
include the sign relative to solution x such that : w′

i(x) = wiψi(x).
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We assume the Walsh coefficients and their signs have been computed for
some initial solution x. We will use b to index all of the Walsh coefficients in
vector w′(x). Let p be a string with exactly one bit set to 1. Let p ⊂ b denote
that bit p has value 1 in string b (i.e., p∧ b = p). We can then compute the sum
of all of the components in w′ that are affected when local search flips bit p.

Sp(x) =
∑

∀b, p⊂b

w′
b(x)

Let yp ∈ N(x) be the neighbor of string x generated by flipping bit p. Then
f(yp) = f(x)− 2(Sp(x)) for all yp ∈ N(x). Assuming yi ∈ N(x) and yj ∈ N(x),
then f(x) can be viewed as a constant in the local neighborhood and

Si(x) > Sj(x) ⇐⇒ f(yi) < f(yj)

and thus selecting the maximal Si(x) yields the minimal neighbor of f(x) [9].
If bit p is flipped, we must update element Sq by flipping the sign of the Walsh

coefficients that are jointly indexed by p.

Sq(yp) = Sq(x) − 2
∑

∀b,(p∧q)⊂b

w′
b(x)

∀b, if (p ⊂ b) then w′
b(yp) = −w′

b(x) else w′
b(yp) = w′

b(x)

The vector S needs to be initialized after the first local search move. After that,
only select elements of the vector S must be updated after a bit flip.

Whitley and Chen show that on average the expected number of elements in
the vector S that must be updated is O(1). The proof assumes those variables
that appear more than T times across all subfunctions become Tabu after 1 flip,
where T is a constant. All other variables can be flipped. A variable that is Tabu
remains Tabu for N bit flips. The exact number of the updates is k(k− 1)+1 =
O(1) when T is equal to the expected number of times a variable would appear in
a randomly generated subfunction of an NK-landscape. However, empirical data
suggest that no Tabu mechanism is necessary: during local search the waiting
time between bit flips for variables that appear more than T times across all
subfunctions is ≥ N .

For constant time steepest descent, it also must be true that there cannot be
too many unexploited improving moves. For example, assume that search starts
from an extremum, and every move is an improving move. To do true steepest
descent, we must use a priority queue in the form of a heap to select the best
improving move, which results in O(lg N) time to select the best improving
move. However, in practice, there are typically few improving moves. We can
implement approximate steepest descent as follows: assume that a threshold M
is selected. We will store the location of improving moves in a buffer B. Let |B|
denote the number of elements stored in B. If |B| ≤ M , then we will scan B
and select the steepest descent improving move. If |B| > M , then we sample M
moves from B (a form of “tournament selection”) and select the best improving
move from sample M . This yields an approximation to the steepest descent
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improving move. In practice, we implemented true steepest descent because the
number of improving moves is typically small [9].

Avg(N(x)) (see equation 1) can also be computed in O(1) time on average.
Let ϕ′

p,j sum all Walsh coefficients of order j that reference bit p.

ϕ′
p,j(x) =

∑
∀b,bitcount(b)=j,p⊂b

w′
b(x)

We can now define the update for the vector S as follows, for yp ∈ N(x):

Si(x) =

k∑
j=1

ϕ′
i,j(x) and Si(yp) = Si(x) − 2

∑
∀b,(p∧i)⊂b

w′
b(x) (2)

We next define a new vector Z that computes a parallel result

Zi(x) =
k∑

j=1

jϕ′
i,j(x) and Zi(yp) = Zi(x)− 2

∑
∀b,(p∧i)⊂b

bitcount(b)(w′
b(x)) (3)

where bitcount(b) is a lookup table that stores the order of Walsh coefficient w′
b.

Whitley and Chen [9] prove that for any k-bounded pseudo-Boolean function,
when flipping bit p and moving from solution z to solutions x ∈ N(z):

Avg(N(x)) = Avg(N(z))− 2Sp(z) +
4

N
Zp(z) (4)

Note that the vector S and Z are updated using exactly the same Walsh coeffi-
cients. Thus the cost of updating vector Z is the same as the cost of updating
the vector S and the same O(1) average time complexity holds for computing
the approximate steepest descent move for Avg(N(x)).

3 Implementation Details

Algorithm 1, which we refer to as Walsh-LS, outlines the inputs which define 1)
the fitness function to use (eval), 2) the descent method to use (descMeth), and
3) the escape scheme to use when a local optimum is reached (escape). Algorithm
2 implements the Update of the S, Z and w vectors.

Descent decides on the bit to be flipped. Improving moves are stored in
the buffer. For the current experiments we implemented true steepest descent in
which the index of the best improving bit is returned as bestI, with ties being
broken randomly. For next descent, the first bit in buffer is returned.

Escape Method is triggered when the algorithm reaches a local optimum.
If escape is random walk then 10 bits are randomly flipped. Each bit flip requires
an update to the S vector; the cost on average is still O(1). If escape is random
restart then the S vector must be reinitialized at O(N) cost.
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Algorithm 1. Sol ← Walsh-LS(eval, descMeth, escape)

1 bsfSol ← curSol ← Init() ; // current and best-so-far solutions

2 s, z, buffer ← WalshAnalysis(f, curSol) ;
3 while Termination criterion not met do
4 improve, bestI ← Descent(buffer, descMeth) ;
5 if improve == True then
6 w, s, z, buffer ← Update(w, s, z, buffer, bestI, eval);

7 curSol ← Flip(curSol, bestI) ; // flips the bestIth bit of curSol

8 else // local optimum: perturbs current solution

9 bsfSol ← Select(curSol, bsfSol) ; // select sol with better fitness

10 curSol ← Escape Method(curSol, escape) ;
11 for i in DifferentBit(bsfSol, curSol) do // for each different bit

12 w, s, z, buffer ← Update(w, s, z, buffer, i, eval);

13 bsfSol ← Select(curSol, bsfSol) ;
14 return bsfSol

3.1 Experiment Design

Our experiments explore how the use of the surrogate fitness function inter-
acts with the Descent and Escape methods. Based on our understanding of the
surrogate fitness function, we posit two hypotheses.

1. The low complexity and the lookahead nature of the surrogate will support
superior performance on problems where plateaus frequently appear in the

Algorithm 2. w, s, z, buffer ← Update(w, s, z, buffer, p, eval)

1 s[p] ← -s[p];
2 for each q interacts with p do // update s vector

3 for each w[i] touching both p and q do
4 s[q] ← s[q] - 2 * w[i];

5 if eval is f(x) then
6 for each s[i] touching p do // update buffer
7 if s[i] is an improving move then buffer ← append(buffer, i);

8 else // eval is Avg(N(f))
9 z[p] ← -z[p];

10 for each q interacts with p do // update z vector

11 for each w[i] touching both p and q do
12 z[q] ← z[q] - 2 * Order(w[i]) * w[i];

13 for each z[i] touching p do // update buffer
14 if z[i] is an improving move then buffer ← append(buffer, i);

15 For each w[i] touching p do w[i] ← -w[i] \\ update Walsh coefficients
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fitness landscape, as is the case for NKq-landscapes. Because of the low
complexity of evaluating the possible moves, the effect may be independent of
descent method, but because different descents may lead to different portions
of the search space, it would not be surprising to find an interaction effect.

2. Performing an O(1) cost random walk upon reaching a local optimum should
provide an advantage over an O(N) cost hard random restart. This effect
should become more pronounced as the problem size increases.

We chose NKq-landscapes with q=2 to increase the occurrence of plateaus. We
limited the values of K to 2, 4 and 8 and N to 50, 100, 200 and 500 for two
reasons. First, using the fast Walsh update is only advantageous when N $
2k. Second, for K > 8 the random nature of the subfunctions used in NK-
landscapes makes such problems become increasingly random and disordered
as K increases. We randomly generated 24 problems, one for each combination
of problem type, K and N value. Each combination of factors was run for 30
trials on each problem. The computational platform was Fedora 16 using Xeon
Processor E5450 at 3.00GHz. All algorithms are implemented in Python 2.7.2.

To control for the amount of computation done in each configuration, we
counted the number of times that Update is executed and terminated a trial
when the number is 100×N . Normally the number of fitness evaluations would
be counted. However, Walsh-LS requires only partial fitness evaluation (line 6
and line 12 in Algorithm 1) and we count only the updates that need to be
recomputed. This gives a clear advantage to random walk over random restart
as an escape mechanism. A single random restart uses N updates because O(N)
of the elements stored in vector S must be updated. A random walk of length
10 does 10 updates to the S vector.

3.2 Solution Quality

Without a baseline, it can be difficult to know whether differences in performance
are meaningful. Observed quality may be near optimal (producing a floor effect)
or far away, suggesting considerable room for improvement. In addition, observed
differences may be small or mitigated by variance in results across trials. To
establish a “best” solution, we run SLS with steepest descent and random walk
for both fitness functions 50 times longer than in the normal experiments and
harvest the overall Best solution. Then we normalize solution quality to the

value ( f(x)−Best
Best ) for each problem instance.

Figure 1 shows the normalized quality of solutions. Some results are within
a fraction of the baseline solution while other are 6 times worse. The variance
in solution quality was approximately 10 times greater on NKq-landscapes com-
pared to NK-landscapes. For each combination of K and NK/NKq instances, we
ran two-way ANOVAs with problem size N and algorithm as the independent
variables and solution quality as the dependent. All main effects and interaction
effects were significant at p < .00001 level, which indicates distinctions between
algorithms’ performance that varies with problem size.
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Fig. 1. Normalized Solutions, averaged across trials, found by Walsh-LS across factors.
Upper graphs show NK-landscape problems; lower show NKq-landscape problems.

In Figure 1, dashed lines are for configurations that employed a random walk;
solid lines employed hard random restarts. As expected, hard random restarts
produced poorer results compared to the soft-restarts using a random walk to es-
cape local minima, and the effect appears independent of other design decisions.
Table 1 shows that Walsh-LS with random walk visits more local optima and
usually visits more distinct local optima than Local Search with random restart.
Even short random walks are not simply returning back where they started. The
ratio of distinct local optima to total local optima suggests that a walk length
of 20 might be better than a walk length of 10.

Tables 2 and 3 show means and standard deviations of fitness evaluations.
We ran Wilcoxon rank-sum tests for two values of N and two values of K using
only random walk for escape and comparing f to Avg in each case. For NK
landscapes, statistical tests indicate that in all cases but one the differences are
not significant (at the p=0.05 level) when using Avg(N(x)) vs. f(x). But for
N = 100 and K=8 we find p=0.007 for the steepest descent case.
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Table 1. The number of local optima visited by Walsh-LS with steepest descent for
problems with N = 100, K = 2 and q = 2. The “Total” rows indicate the number of
local optima encountered; “Distinct” rows show the number of those that are unique.
We used a Walk Length of 10 in all experiments, but present various Walk Lengths
here to show the impact on the number of optima visited.

Walsh-LS Walk Length
Problem Eval # of Locals random restarts 10 20 30 40 50

NK-Landscape
f(x)

Total 326 619 460 387 344 322
Distinct 326 219 422 385 343 322

Avg(N(x))
Total 324 622 465 383 345 322

Distinct 324 234 431 382 345 322

NKq-Landscape
f(x)

Total 431 697 553 484 431 427
Distinct 431 659 552 484 431 427

Avg(N(x))
Total 325 671 516 420 363 324

Distinct 324 347 481 414 356 323

Table 2. Means and standard deviations of fitness evaluations for NK problems, or-
ganized by configurations of fitness function and descent method (using only random
walk for escape), best values in bold.

K=4 K=8
Descent Eval N=100 N=500 N=100 N=500

steepest
f .231 ± .003 .223 ± .004 .231 ± .006 .238 ± .005

Avg .229 ± .004 .222 ± .004 .226 ± .006 .236 ± .005

next
f .236 ± .004 .219 ± .003 .238 ± .006 .224 ± .005

Avg .236 ± .003 .219 ± .003 .236 ± .006 .223 ± .003

Table 3. Means and standard deviations of fitness evaluations for NKq problems,
organized by configurations of fitness function and descent method (using only random
walk for escape), best values in bold.

Descent Eval
K=4 K=8

N=100 N=500 N=100 N=500

steepest
f .035 ± .007 .039 ± .006 .065 ± .010 .060 ± .005

Avg .026 ± .005 .039 ± .005 .046 ± .006 .059 ± .006

next
f .045 ± .008 .045 ± .004 .073 ± .010 .060 ± .005

Avg .029 ± .004 .039 ± .003 .055 ± .009 .046 ± .004

For NKq problems, the advantage of utilizing Avg(N(X)) is clearer. The
results using Avg(N(x)) are better than f(x) in most cases. In all but two cases,
p < 0.0001; for N = 500 when steepest descent is used the p values are p = 0.9
for K = 4 and p = 0.5 for K = 8.

3.3 Runtime Results

The number of “updates” (and thus the number of “moves”) was used to con-
trol termination. A random restart is implemented as a series of “moves” from
the current solution to the new randomly generated solution, which has O(N)
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complexity. Thus the total execution time used by hard random restarts and
the random walk soft restarts is basically the same. There was also virtually no
difference in the steepest descent and the next descent runtimes; next descent
was faster, but only by a small insignificant amount.

In our current implementation, computing Avg(N(x)) requires the use of both
the S and Z vectors; Thus the cost of computing Avg(N(x)) was approximately
twice the cost of computing f(x) for each move.

However, to be more efficient note that

Avg(N(xp)) = Avg(N(z))− 2Sp(z) +
4

N
Zp(z) by Eqn 4

= Avg(N(z))− 2(
k∑

j=1

ϕ′
z,j(x)) +

4

N

k∑
j=1

jϕ′
z,j(x) by Eqn 2,3

= Avg(N(z)) +
k∑

j=1

(4j − 2N)

N
ϕ′

z,j(x)

Construct a new vector w∗
i (x) =

(4j−2N)
N w′(x) = (4j−2N)

N w(x)ψi(x).
Let Z∗

p (z) =
4
NZp(z)− 2Sp(z) which yields: Avg(N(x)) = Avg(N(z))+Z∗

p (z)

Using the update rules for vectors S and Z when bit p is flipped:

Z∗
i (yp) =

4

N
Zi(yp)− 2Si(yp)

=
4

N
[Zi(x)− 2

∑
∀b,(p∧i)⊂b

j ∗ w′
b(x)] − 2[Si(x) − 2

∑
∀b,(p∧i)⊂b

w′
b(x)]

= Z∗
i (x) − 2

∑
∀b,(p∧i)⊂b

4j − 2N

N
w′

b(x)

= Z∗
i (x) − 2

∑
∀b,(p∧i)⊂b

w∗
b (x)

Thus, Avg(N(x)) can be computed in precisely the same number of updates
needed to compute f(x) and Z∗(x) can directly be used as a proxy forAvg(N(x)).
Furthermore f(x) can be efficiently computed on demand given Avg(N(x)) [7].

4 Conclusions

In light of new methods that allow steepest and next descent to be implemented
in O(1) time, we evaluated the impact of the fitness function, the descent method
and the method used to escape local optima on NK and NKq landscapes. Not
surprisingly, random walks perform much better than random restarts; using
random walks in place of random restarts transforms the algorithm into an
Iterated Local Search algorithm [4].
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Somewhat more surprising, we find little or no difference between steepest
and next descent methods. This could be due to the fact that NK-landscapes
have little inherent structure; the results might differ in other domains.

Finally, for NKq landscapes, using Avg(N(x)) as the evaluation function
instead of f(x) generally improved performance. This appears to be because
Avg(N(x)) results in fewer plateaus and fewer local optima compared to f(x).
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Abstract. In this paper, we carry out experimental investigations that
complement recent theoretical investigations on the runtime of simple
genetic programming algorithms [3, 7]. Crucial measures in these theo-
retical analyses are the maximum tree size that is attained during the
run of the algorithms as well as the population size when dealing with
multi-objective models. We study those measures in detail by experimen-
tal investigations and analyze the runtime of the different algorithms in
an experimental way.

Keywords: genetic programming, problem complexity, multiple-
objective optimization, experimental evaluation.

1 Introduction

In the last decade, Genetic Programming algorithms have found various applica-
tions [8] in a number of domains, however their behaviour is hard to understand
in a rigorous manner. Recently, the first computational complexity results have
been presented for simple genetic programming algorithms [3, 7]. The algorithms
that have been considered are a stochastic hill-climber called (1+1)-GP and a
population-based multi-objective programming algorithm called SMO-GP that
takes into account the given problem F and the complexity C of a solution.
These algorithms have been analyzed on problems with isolated program seman-
tics taken from [5] which can be seen as the analogue of linear pseudo-Boolean
functions [2] known from the computational complexity analysis of evolutionary
algorithms working with fixed length binary representations.

The theoretical results provided in [3, 7] bring up several questions that re-
main unanswered in these papers. In particular, for different combinations of
algorithms and problems no (or no exact) runtime bounds are given. In our
paper, we explore the different open cases and questions in an experimental
way. Similar to [1, 6], this should guide further rigorous analyses by exploring
the important measures within a computational complexity analysis of the algo-
rithms and give experimental estimates on the actual runtime of the algorithms
on the different problems. Our experimental investigations, will concentrate on

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 102–112, 2012.
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important measures such as the maximum tree size during the run of the single-
objective algorithms analyzed in [3] and the maximum population size of the
multi-objective algorithm analyzed in [7]. It can be observed from the analyses
carried out in these two papers, that both measures have a different implication
on the runtime of the analyzed genetic programming algorithms. Other experi-
mental results indicate that both measures do not grow large during the run of
the algorithms which would imply a fast optimization process. Furthermore, our
experimental results on the actual runtime of (1+1)-GP and SMO-GP indicate
an efficient optimization process.

The paper is structured as follows. In Section 2, we introduce the prob-
lems and algorithms and summarize the computational complexity results for
them. (1+1)-GP is experimentally investigated in Section 3 and the behavior of
SMO-GP is examined in Section 4. We finish with some concluding remarks.

2 Preliminaries

In our experimental investigations, we will treat the algorithms and problems an-
alyzed in [3, 7]. We consider tree-based genetic programming, where a possible
solution to a given problem is given by a syntax tree. The inner nodes of such a
tree are labelled by symbols from a function set F , and the leaves of the tree are
labelled by terminals from a set T . The problems that we examine are Weighted
ORDER (WORDER) and Weighted MAJORITY (WMAJORITY). For all, the
only function is the binary join operation (denoted by J), and the terminal set is
a set of 2n variables, where xi represents the complement of xi. Thus, F := {J}
and T := {x1, x1, x2, x2, . . . , xn, xn}. With each variable xi, we associate a weight
wi ∈ R, 1 ≤ i ≤ n. Thus, the variables can differ in their contribution to the fitness
of a tree. Without loss of generality, we assume that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0.

For a given syntax treeX , its computed value S is obtained by parsing the syn-
tax tree in-order according to the problem semantics. For WORDER, xi is con-
tained in S iff it is present in the tree and there is no xi that is visited in the in-order
parse before xi. ForWMAJORITY, xi is in S iff xi occurs in the tree at least once,
and at least as often as its complement xi (see Algorithms 1 and 2). The weight
wi of a variable xi contributes to the fitness iff xi is positive and contained in set
S. We get the problems ORDER and MAJORITY as special cases where wi = 1,
1 ≤ i ≤ n, holds.

Algorithm 1. WORDER(X)

input: a syntax tree X
init : an empty leaf list l, an empty

statement list S
1 Parse X in-order and insert each leaf

the rear of l as it is visited;
2 Generate S by parsing l front to rear

and adding a leaf to S only if its
complement is not yet in S;

3 WORDER (X) =
∑

xi∈S wi;

Algorithm 2. WMAJORITY(X)

input: a syntax tree X
init : an empty leaf list l, an empty

statement list S
1 Parse X in-order and insert each leaf

the the rear of l as is is visited;
2 For 1 ≤ i ≤ n: if

count(xi ∈ l) ≥ count(xi ∈ l) and
count(xi ∈ l) ≥ 1, then add xi to S;

3 WMAJORITY (X) =
∑

xi∈S wi;
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As GP mechanisms, we investigate the single-objective (1+1)-GP and the
Simple Multi-Objective Genetic Programming (SMO-GP) algorithm. For the
(1+1)-GP, we consider the problem of computing a solution X which maximizes
a given function F (X). In the case of the parsimony approach, we additionally
take into account the complexity C(X) of a solution (measured as the total
number of nodes in the tree). Here, we optimize the multi-criteria fitness function
MO-F(X) = (F (X), C(X)) with respect to the lexicographic order, that is,
MO-F(X) ≥ MO-F(Y ) holds iff F (X) > F (Y )∨(F (X) = F (Y )∧C(X) ≤ C(Y ).

For SMO-GP, we will treat the two objective F (X) and C(X) as equally im-
portant and use standard notations from the field of multi-objective
optimization. A solution Y weakly dominates a solution X (denoted by Y % X)
iff (F (Y ) ≥ F (X) ∧ C(Y ) ≤ C(X)). A solution Y dominates a solution X (de-
noted by Y & X) iff ((Y % X) ∧ (F (Y ) > F (X) ∨ C(Y ) < C(X)). A Pareto
optimal solution is a solution that is not dominated by any other solution in the
search space. All Pareto optimal solutions together form the Pareto optimal set,
and the set of corresponding objective vectors forms the Pareto front. The clas-
sical goal in multi-objective optimization is to compute for each objective vector
of the Pareto front a Pareto optimal solution. SMO-GP starts with a single so-
lution and keeps at any time during the optimization a set of non-dominated
solutions among the set of all solutions seen so far.

Note that this trade-off between solution complexity and solution quality has
successfully applied in industry tools such as Datamodeller [4].

(1+1)-GP and SMO-GP only use the mutation operator HVL-Prime to gen-
erate offspring. HVL-Prime allows for the production of trees of varying com-
plexity, and is based on the operations substitution, deletion, and insertion.
For an application of HVL-Prime, a parameter k has to be chosen. k deter-
mines the number of operations that HVL-Prime performs: (1) in the single-
operation case k = 1 holds, (2) in the multi-operation case k = 1 + Pois(1)
holds, where Pois(1) denotes the Poisson distribution with parameter 1. We re-
fer the reader to [3, 7] for a detailed description on HVL-Prime. Depending on
the number of operations used in the mutation operator, we get the algorithms
(1+1)-GP-single and SMO-GP-single and their corresponding multi-mutation
variants (1+1)-GP-multi and SMO-GP-multi.

The complete algorithms are outlined in Algorithms 3 and 4.

Algorithm 3. (1+1)-GP

1 Choose an initial solution X;

2 repeat

3 Set Y := X;
4 Apply mutation to Y ;
5 If selection favors Y over X then

set X := Y ;

Algorithm 4. SMO-GP

1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Randomly choose X ∈ P ;
5 Set Y := X;
6 Apply mutation to Y ;
7 If {Z ∈ P |Z  Y } = ∅ set

P := (P \ {Z ∈ P |Z � Y }) ∪ {Y };
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2.1 Theoretical Results

The computational complexity analysis of genetic programming analyzes the
expected number of fitness evaluations until an algorithm has produced an opti-
mal solution for the first time. This is called the expected optimization time. In
the case of multi-objective optimization the number of fitness evaluations until
the whole Pareto front has been computed is analyzed and referred to as the
expected optimization time. The bounds from [3, 7] are listed in Table 1. As
it can be seen, all results take into account tree sizes of some kind: either the
maximum tree size Tmax during the search plays a role in the bound, or the size
of the initial tree Tinit does. It is also unknown how tight the given bounds are.
The maximum tree size for (1+1)-GP and the population size for SMO-GP play
a relevant role in the theoretical analysis and will be further investigated in the
rest of the paper. Lastly, note that the upper bounds marked with � hold only
if the algorithm has been initialized in the particular, i.e. non-redundant, way
described in [7].

Table 1. Computational complexity results from [3, 7]

F(X)
(1+1)-GP, F(X) [3] (1+1)-GP, MO-F(X) [7] SMO-GP, MO-F(X) [7]

k=1 k=1+Pois(1) k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORD O(nTmax) O(nTmax) O(Tinit + n log n)

?

O(nTinit + n2 logn)

WORD ? ? O(Tinit + n log n) O(n3)	 ?

MAJ O(n2Tmax log n) ? O(Tinit + n log n) O(nTinit + n2 logn)

WMAJ ? ? O(Tinit + n log n) O(n3)	 ?

2.2 Experimental Setup

In the remainder of this paper, we will empirically confirm and verify the the-
oretical results from [3, 7]. We consider (1+1)-GP and SMO-GP, each in their
single and multi-operation variants, and investigate problems of sizes n =20, 40,
60, . . . , 200 (although, for space reasons, the results in tables are shown only
for n = 100). For the initialization, we consider the schemes init0 (empty tree)
and init2n (in which a 2n leaves tree is generated by applying 2n insertion mu-
tations at random positions). In total, our experiments span twelve problems:
WORDER and WMAJORITY in their F(X) and MO-F(X) variants. The weight
settings are set as follows: (1) wi = 1, 1 ≤ i ≤ n, for ORDER and MAJORITY,
(2) wi ∈ [0, 1] chosen uniformly at random, 1 ≤ i ≤ n, for WORDER-RAN and
WMAJORITY-RAN, and (3) wi = 2n−i, 1 ≤ i ≤ n, for WORDER-BIN and
WMAJORITY-BIN.

The following experiments were performed on AMD Opteron 250 CPUs
(2.4GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.6 and were given a
maximum runtime of 3 hours and a budget of 109 evaluations. Furthermore, each
experiment has been repeated 400 times, which results in a standard error of the
mean (the standard deviation of the sampling distribution) of 1/

√
400 = 5%.



106 T. Urli, M. Wagner, and F. Neumann

3 (1+1)-GP

3.1 Tree size

The theoretical bounds for (1+1)-GP on ORDER and MAJORITY presented
in [3] depend on the maximum tree size that is encountered during the run of
the algorithms. We investigate the maximum tree size experimentally in order
to see whether bloat occurs when applying the algorithms. For (1+1)-GP-single
using the parsimony approach, i. e. using the function MO-F(X), the difference
between the solution value S and the number of leaves not preceded by their
complements can not increase during the run of the algorithm [7].

First, we investigate the tree sizes typically observed during the optimization
for the different (1+1)-GP algorithms. Table 2 reports results for n = 100, but
similar results hold for the other input sizes. The maximum tree size observed
during the run of (1+1)-GP on MO-F(X) when using single-operation and empty
initialization is 2n−1 , which is the minimum possible size of an optimal solution.
This was expected, since the algorithm can only increase the tree by a single leaf
in every accepting step. These values increase by about 10-20% in the case of
init0, when multiple HVL-Prime applications are allowed per mutation step.
When the acceptance criteria is weakened by switching to the F(X) variant (i.e.
the current tree can be replaced by larger ones of identical fitness), then the tree
sizes are about 2.5 times larger in the single-operation case, and about 3 times
larger in the multi-operation case.

Similarly, when running (1+1)-GP onMO-F(X), if the population is initialized
with trees of 2n leaves, the largest trees encountered are of size 2 · (2n)− 1, i.e.
the tree size of the initial solution, in the single-operation case, and are just
minimally larger (about 1%) in the multi-operation case.

Table 2. Maximum tree sizes encountered until the individual Xmax with maximum
fitness is found. Shown are median m and median interquartile ranges iqr. Here k = 1
and k = 1 + Pois(1) refer respectively to the single and multi-operation variants.

k F(X) n

(1+1)-GP, F(X) (1+1)-GP, MO-F(X)

init0 init2n init0 init2n
m iqr m iqr m iqr m iqr

k
=
1

ORDER 100 519 94.5 593 100 199 0 399 2

WORDER-RAN 100 513 85 594 90 199 0 399 0.5

WORDER-BIN 100 513 94 591 88.5 199 0 399 0

MAJORITY 100 507 78.5 563 72 199 0 399 0

WMAJORITY-RAN 100 499 76.5 567 74.5 199 0 399 0

WMAJORITY-BIN 100 499 74.5 567 75 199 0 399 0

k
=
1
+
P
o
is
(1
) ORDER 100 670 138 742 143 223 12 399 6

WORDER-RAN 100 667 136.5 713 131 229 12 399 6

WORDER-BIN 100 665 150.5 735 132.5 231 12 399 4

MAJORITY 100 624 96 668 102 239 14 401 8

WMAJORITY-RAN 100 617 104 678 116.5 241 16 401 8

WMAJORITY-BIN 100 635 114.5 671 116.5 243 14 401 8
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Fig. 1. Number of evaluations required by (1+1)-GP until the individual Xmax with
maximum fitness is found, shown as box plots. The solid line is the median of the number
of evaluations divided by n log n, the dashed line is the same median divided by n2.
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For the non-parsimony variants, however, the largest trees are about 50%
larger when solving ORDER, and almost 100% when solving MAJORITY.

3.2 Runtime

Figure 1 shows the distributions of the required evaluations for the (1+1)-GP
variants as box plots. The line plots represent the medians divided by different
polynomials and suggest the asymptotic behavior of the algorithms: the solid
line is the median number of evaluations needed to produce the individual with
the optimal fitness value divided by n logn, and the dashed line is the same
number, but divided by n2.

For all combinations of algorithms and problems these plots indicate an ex-
pected optimization time of O(n log n), as the solid lines closely resemble con-
stant functions (see the y-values for n = 20 and n = 200), and the y-values of the
dashed lines are decreasing with increasing values of n. The constant factor ob-
tained by dividing the median number of evaluations by n logn is overall higher
in the single-operation variants of the algorithm, suggesting that applying multi
mutations can help getting earlier to the optimal solution.

One important observation is that the algorithms’ asymptotic behavior ap-
pears to be same, when initialized with the empty tree, and with trees with
2n leaves. For the setups where a theoretical bound in Table 1 is missing, the
experimental results give a strong indication about the expected optimization
time being O(n logn).

4 SMO-GP

4.1 Tree Size and Population Size

Table 3 shows the maximum tree sizes and maximum population sizes that were
observed up to the following two events. Firstly, until the individual Xmax with
maximum fitness is found, and secondly, until the population represents the
entire true Pareto front PPareto.

It can be seen that tree and population sizes observed by SMO-GP-single are
independent of the initialization. In all cases, no trees with more than the size
of the Pareto optimal solution X with F (X) = n (size 2n − 1) (when using
init0) and the initial tree size 2 · (2n) − 1 (when using init2n) ever belong to
the population. In the multi-operation cases, the maximum population sizes are
rarely higher, and the same holds for the maximum tree sizes.

4.2 Runtime

Just as in the previous section, we show now the distributions of the required
evaluations as box plots in Figure 2. As before, yellow box plots represent the
number of evaluations to get to Xmax, while red box plots represent now the
number of evaluations to get to PPareto. In this plot, the lines are the medians
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Table 3. Maximum tree sizes and maximum population sizes encountered for SMO-GP
on the MO-F(X) problem variants: (1) until the individualXmax with maximum fitness
is found, (2) until the population represents the entire true Pareto front PPareto. Shown
are median m and interquartile ranges iqr. init0 denotes the initialization with the
empty tree, and init2n the one with randomly constructed trees with 2n leaf nodes.

F(X) n

maximum tree size max. population size

to Xmax to PPareto to Xmax to PPareto

m iqr m iqr m iqr m iqr

S
M

O
-G

P
,
w
it
h

k
=
1

in
it

0

ORDER 100 199 0 199 0 101 0 101 0

WORDER-RAN 100 199 0 199 0 101 0 101 0

WORDER-BIN 100 199 0 199 0 101 0 101 0

MAJORITY 100 199 0 199 0 101 0 101 0

WMAJORITY-RAN 100 199 0 199 0 101 0 101 0

WMAJORITY-BIN 100 199 0 199 0 101 0 101 0

in
it

2
n

ORDER 100 399 0 399 0 101 0 101 0

WORDER-RAN 100 399 0 399 0 101 0 101 0

WORDER-BIN 100 399 0 399 0 101 0 101 0

MAJORITY 100 399 0 399 0 101 0 101 0

WMAJORITY-RAN 100 399 0 399 0 101 0 101 0

WMAJORITY-BIN 100 399 0 399 0 101 0 101 0

S
M

O
-G

P
,
w
it
h

k
=
1
+
P
o
is
(1

)

in
it

0

ORDER 100 207 6.5 207 6.5 101 0 101 0

WORDER-RAN 100 211 8 211 8 102 2 102 1

WORDER-BIN 100 211 6 211 6 102 1 102 2

MAJORITY 100 215 10.5 215 10.5 101 0 101 0

WMAJORITY-RAN 100 223 12 223 12 103 2 103 1

WMAJORITY-BIN 100 219 10 219 10 102 2 103 2

in
it

2
n

ORDER 100 399 4 399 4 101 0 101 0

WORDER-RAN 100 399 4 399 4 102 2 102 1

WORDER-BIN 100 399 4 399 4 102 1 102 2

MAJORITY 100 399 4 399 4 101 0 101 0

WMAJORITY-RAN 100 400 6 400 6 103 2 104 2

WMAJORITY-BIN 100 401 6 401 6 102 2 103 1

divided by different polynomials and suggest the asymptotic behavior of the
algorithms: the solid line is the median number of evaluations needed to get to
the Pareto front divided by n2 logn, and the dashed line is the same number,
but divided by n3. For all combinations of algorithms and the problems, these
plots indicate an expected optimization time of O(n2 log n) for ORDER and
MAJORITY, as the solid lines closely resemble constant functions, and the y-
values of the dashed lines are decreasing with increasing values of n. For the
weighted variants, however, the solid lines appear to be slowly rising, indicating
a runtime in Ω(n2 logn) ∩ O(n3), although the runtime is extremely close to
O(n2 logn).

Furthermore, it can be observed that there is a significant time difference, for
SMO-GP-multi, between finding the individual with the optimal fitness value
and finding the entire Pareto front. For SMO-GP-single, this time difference
is negligible, which is the reason why the corresponding orange box plots are
scarcely identifiable behind the red ones.



110 T. Urli, M. Wagner, and F. Neumann

Fig. 2. Shown as box plots is the number of evaluations required: (1) until the individ-
ual Xmax with maximum fitness is found (orange), (2) until the population represents
the entire true Pareto front PPareto (red). The solid line is the median of the latter
number of evaluations divided by n2 log n, the dashed line is it divided by n3.

5 Conclusions

In this paper, we carried out experimental investigations to complement recent
theoretical results on the runtime of two genetic programming algorithms [3, 7].
Crucial measures in these theoretical analyses are the maximum tree size that
is attained during the run of the algorithms, as well as the population size when
dealing with multi-objective models. Furthermore, virtually no theoretical results
for the multi-operation variants are known to date. It is also unknown how tight
the given bounds are. The analysis of our empirical investigations allowed us to
fill in the gaps in the theory with conjectures about the expected optimization
time (see Tables 4 and 5) of these algorithms.

Our experimental evaluation shows that the expected optimization time of
(1+1)-GP F(X) is very close to O(n logn). Our results, however, are based on
an initial tree size, i.e. Tinit, which is always linear in n, and thus the Tinit term
suggested by theoretical results is always dominated by the O(n log n) term.
Nevertheless, it is easy to show that by using arbirarily large initial tree sizes
it is possible to obtain expected optimization times in which the Tinit term is
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Table 4. Summary of our conjectures (†) and the existing upper bounds from Table 1

F(X)
(1+1)-GP, F(X) (1+1)-GP, MO-F(X)

k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORDER
O(nTmax) [3] O(nTmax) [3]

O(Tinit + n logn)[7] O(Tinit + n log n) †
O(Tinit + n logn) † O(Tinit + n log n) †

WORDER O(Tinit + n logn) † O(Tinit + n log n) † O(Tinit + n logn)[7] O(Tinit + n logn) †

MAJORITY
O(n2Tmax logn) [3]

O(Tinit + n log n) † O(Tinit + n log n)[7] O(Tinit + n log n) †
O(Tinit + n logn) †

WMAJORITY O(Tinit + n logn) † O(Tinit + n log n) † O(Tinit + n logn)[7] O(Tinit + n logn) †

Table 5. Summary of our conjectures (†) and the existing upper bounds from Table 1

F(X)
SMO-GP, MO-F(X)

k=1 k=1+Pois(1)

ORDER O(nTinit + n2 logn)[7] O(nTinit + n2 logn)[7]

WORDER
O(n3)	 [7]

O(nTinit + n2 logn) †
O(nTinit + n2 log n) †

MAJORITY O(nTinit + n2 logn)[7] O(nTinit + n2 logn)[7]

WMAJORITY
O(n3)	 [7]

O(nTinit + n2 logn) †
O(nTinit + n2 log n) †

relevant. For this reason we conjecture an expected optimization time ofO(Tinit+
n logn). Following the same reasoning for SMO-GP, we conjecture a runtime of
O
(
nTinit + n2 logn

)
by noting that the observed runtimes are very close to

O(n2 logn) and that the algorithm has to evolve a population of size O(n).
As a further development for this line of research, it would be interesting to

prove these conjectured bounds theoretically and to show how they are related
to maximum population size reached during an optimization run.
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Abstract. In this paper, we contribute to the understanding of the
behavior of bio-inspired algorithms when tracking the optimum of a dy-
namically changing fitness function over time. In particular, we are in-
terested in the difference between a simple evolutionary algorithm (EA)
and a simple ant colony optimization (ACO) system on deterministi-
cally changing fitness functions, which we call dynamic fitness patterns.
Of course, the algorithms have no prior knowledge about the patterns.

We construct a bit string optimization problem where we can show
that the ACO system is able to follow the optimum while the EA gets
lost.

1 Introduction

Bio-inspired algorithms are an important class of randomized search heuristics,
valued for their easy applicability also in challenging environments. In particu-
lar, environments with uncertainty are settings difficult for problem specific algo-
rithms, while bio-inspired algorithms can more easily deal with the uncertainty.

Jin and Branke [9] discusse different sources of uncertainty and surveys the
literature evolutionary algorithms in uncertain environments. Two important
sources are a noisy fitness function and a dynamic fitness function. In the case
of a noisy fitness function, the fitness of a search point follows a random distri-
bution, which is the same distribution at each evaluation of the fitness. In the
case of a dynamic fitness function, the fitness of a search point at any given time
is a deterministic value, but this value changes over time.

Bio-inspired algorithms seem to be very robust against noise and dynamic
changes which makes them very popular for these two optimization problem
classes. Two prominent types of bio-inspired algorithm are Evolutionary Algo-
rithms (EA) and Ant Colony Optimization (ACO) systems.

In this paper we are concerned with dynamic fitness functions; the goal for
an algorithm will be to track the optimum of a dynamically changing fitness
function over time. We consider the setting of pseudo-Boolean fitness functions,
where the search space is given as all bit strings of a fixed length n and the
fitness of any search point is a real value.

Some results about evolutionary algorithms tracking optima in pseudo-
Boolean optimization are given in [1,5,6,15,8]. Some of these papers analyze

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 113–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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settings where the optimum changes randomly; we are more interested in how
bio-inspired algorithms can track an optimum that changes deterministically
(but, of course, the algorithm has no prior knowledge of what changes will hap-
pen). We believe that an analysis in such settings on certain dynamic patterns
gives a better view on the strengths of bio-inspired algorithms than its perfor-
mance on an optimum which moves away in a random direction – those changes
are hard to control, due to their inherent randomness and the many choices for
the optimum to evade in our search space.

In this paper, we try to gain new insights in the differences between the
behavior of EA and ACO on these optimization problems; more specifically,
we analyze the (1+1)-EA and a version of the Max-Min-ant system (MMAS ,
introduced in [16]) given in Section 2. We compare the performance of these
algorithms on a dynamic optimization problem where we can show that MMAS
is able to follow the optimum while the (1+1)-EA gets lost (see Section 3.1).

The theoretical analysis of these algorithms is very challenging; therefore we
use simple dynamic optimization problems, derived from the OneMax problem;
this approach was also taken in some of the previous literature for the (1+1)-
EA. There are many analyses of MMAS on static variants of OneMax (see,
for example, [13,7,4,11,12,10,17]), but so far there is no theoretical work on the
performance of ACO algorithms on dynamic problems.

We introduce the notion of a dynamic fitness pattern. Instead of considering
random movements of the optimum, and analyzing an algorithms performance
at tracking this random behavior, we are interested in how the (1+1)-EA and
MMAS behave in settings with more structure.

We construct a “maze”, in which the (1+1)-EA cannot track the optimum
and will get lost with high probability. On the other hand, MMAS can track
the optimum, also with high probability. Key to the success of MMAS is the
use of intermediate pheromone values, which serve as a medium-term memory:
pheromones build up according to solutions that have been good recently, ex-
tracting trends in the fitness pattern. The (1+1)-EA misses these trends and,
instead, oscillates between different good solutions.

We use drift analysis as our key tool to analyze the behavior of the algorithms;
in particular, we use many drift theorems from the literature, including a drift
theorem with tail bounds from [2], which allows us to derive high probability
results.

In general, high probability results are sparse in the analysis of bio-inspired
algorithms; a notable recent exception is [17], where many tail bounds are given.

We proceed as follows. In Section 2 we introduce all necessary mathematical
definitions. In Section 3 we introduce and analyze a maze whereMMAS manages
to follow the optimum and (1+1)-EA loses track of it. We conclude in Section 4.

2 Mathematical Preliminaries

In this section we introduce all formal definitions that we will use in the analysis.
Our general problem setting is pseudo-Boolean function optimization. The

solution space is the set of all bit strings of length n (for fixed n). We let h(x, y)
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denote the Hamming distance between two bit strings x and y (the number of
bits where x and y disagree).

One of the simplest functions for static optimization problems is the OneMax
function. This function has proven to be very useful for theoretical analysis of
evolutionary algorithms. For any bit string x of length n we let

OneMax(x) = n− h(x, 1n).

The OneMax function is maximized by the all-ones bit string and, importantly,
the fitness of a bit string x is better the closer x is to the all-ones string, i.e., the
more 1s are in x.

Next we formally introduce the (1+1)-EA and MMAS .
The (1+1)-EA is depicted in Algorithm 1. It keeps a current-best solution x

and, in each iteration, mutates it by flipping each bit independently with some
mutation probability. This mutation probability is typically 1/n, where n is the
number of bits in the bit string.

If the mutant has a better current fitness than the current fitness of x (x is
reevaluated), then x is replaced with its mutant, otherwise x is kept and the
mutant discarded.

Algorithm 1. (1+1)-EA

1 initialize x;
2 repeat
3 x′ ← mutate(x);
4 if fitness(x′) ≥ fitness(x) then
5 x ← x′;

6 until forever ;

The second algorithm we analyze is an Ant Colony Optimization (ACO) sys-
tem. Here ants drop pheromones on the bits and these serve as a probability
distribution to construct new solutions. More specifically, we look at a Max-
Min-ant system (MMAS , [16]). MMAS uses maximum and minimum values
for the pheromone values (typically 1 − 1/n as maximal and 1/n as minimal
pheromone values).

MMAS also maintains a current-best solution, initialized to a random bit
string x. The pheromone value τi, for each bit i, is initialized to 1/2.

In each iteration, we construct a new solution x′ by drawing a new bit string
where each bit x′

i is 1 with probability τi. Then we compare the fitness of
this string to the reevaluated fitness of our current-best solution and replace
the current-best solution if the new solution is better. Then we update the
pheromone values using the current-best solution.

Note that, as long as no better solution is constructed, the pheromones are
updated with always the same current-best solution over and over again until
the pheromones hit the respective limits.
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Algorithm 2. MMAS

1 initialize x, τ ;
2 repeat
3 x′ ← constructSolution(τ);
4 if fitness(x′) ≥ fitness(x) then
5 x ← x′;

6 τ ← update(τ , x);

7 until forever ;

The update step works as follows. For each bit xi, we update the respective
pheromone value τi to a value τ ′i as follows.

τ ′i =
{
min
{
(1 − ρ)τi + ρ, 1− 1

n

}
, if xi = 1;

max
{
(1 − ρ)τi,

1
n

}
, if xi = 0.

When a pheromone value hits a threshold, we call it saturated.

3 The Maze

In this section we consider bit strings of any given length n; the mutation prob-
ability of the (1+1)-EA is set to 1/n, and the pheromone bounds of MMAS are
1/n and 1− 1/n, respectively.

3.1 Definition of the Maze

We give the following definition of a dynamic fitness pattern where MMAS can
track the optimum while (1+1)-EA gets lost. The idea behind the pattern is,
that we start with OneMax, but then let each bit oscillate one after another
with a 001-oscillation and then set it to zero. We set the fitness of the optimal
string to n+2, the fitness of the string, where only the oscillating bit is flipped,
to n + 1, and for the rest we use OneMax. Intuitively, when in an oscillation
phase there are strictly more 0s than 1s, MMAS will converge (in pheromone)
to 0, while the (1+1)-EA will oscillate with its current best solution between the
different optima. Note that any oscillation pattern that contains more 1s than 0
will not be trackable by MMAS (and neither by the (1+1)-EA).

We will see in Section 3.2 that MMAS is able to track down all the zeros,
because the pheromone values of the oscillating bit drop down to the lower
border; however, as we will see in Section 3.3, the (1+1)-EA loses the zero with
probability at least 1/4 each time we move the oscillating bit one step. Then
(1+1)-EA falls back to OneMax and is not able to find the optimum again,
since it the fitness function leads to the all-ones string.

Formally, we define the dynamic fitness pattern as follows. Let opt001(t) denote
a function that equals 1 at all times t which have a remainder of 2 when divided
by 3, and 0 otherwise.
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Definition 1 (Maze). Let ' denote bit string concatenation, k > 0 and let

f(i, t) = 0i ' opt001(t) ' 1n−i−1,

f ′(i, t) = 0i ' (1− opt001(t)) ' 1n−i−1

define two bit strings of length n, where i determines the position of the oscil-
lating bit and t the time point of the oscillation. These two bit strings will be
the optimal and second best solution. Let t0 = kn3 log(n). For any bit string of
length n and any t, we define

Mazek(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n+ 2, if x = f(( t−t0

t0
), t)

and t > t0;
n+ 1, if x = f ′(( t−t0

t0
), t)

and t > t0;
OneMax(x), otherwise.

We will choose a suitable constant k later. Note that we start the oscillation of
the first bit after an initial phase of t0 iterations, after which each oscillation
takes t0 iterations. The initial phase ensures that both MMAS and the (1+1)-
EA will have found the all-ones bit string as their current-best solution before
the oscillations start; the oscillation is, as we will see, long enough for MMAS
to track the optimum.

3.2 MMAS on Maze

In this section we will show that MMAS can track the optimum of the maze
with high probability. We start by showing that, during the oscillation phase of
a bit between two 1s and 0, MMAS will drift towards the 1-bit

Lemma 2. Suppose ρ ∈ Θ(1/n). For all c > 0, during a single bit 110-
oscillation, where in every iteration we construct a new solution with some
probability p converging to 1/e and update pheromones with the current-best
solution otherwise, the pheromone value is saturated as 1− 1/n in O(n3 log(n))
iterations with probability 1−O(n−c).

Proof. First we calculate the expected values for the pheromone value and
current-best solution after one oscillation. We use the potential function g(τ, x) =
τ + qρx, where q is a constant. We set this constant to q = 7

2 .
We begin with the x = 1 case, where we get

E[τ ′] = τρ(p− 3±O(ρ)) + ρ(3− p) + τ ± o(ρ),

E[x′] = τ(p±O(ρ)) + 1− p±O(ρ).
For the potential difference, we get

E[g(τ ′, x′)]− g(τ, x) = τρ(p− 3 + qp±O(ρ)) + ρ(3− p+ qp)± o(ρ).
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For q = 7
2 and p close enough to 1/e, this yields a drift in Ω((1 − τ)ρ).

For the x = 0 case, we get

E[τ ′] = τ3ρ(−p3 ±O(ρ)) + τ2ρ(p2 ±O(ρ)) + τρ(5p− 2p2 − 3±O(ρ)) + τ,

E[x′] = τ3(−p3 ±O(ρ)) + τ2(p2 − p3 ±O(ρ)) + τ(2p− 2p2 ±O(ρ)).
For the potential difference, we get

E[g(τ ′, x′)]− g(τ, x) = Ω(τρ(5p+ q2p− 2p2 − q2p2 − 3)).

For q = 7
2 and p close enough to 1/e, this yields a drift in Ω(τρ).

Thus we have an overall drift of Ω(min{τρ, (1− τ)ρ}). In particular, we have
a uniform additive drift of Ω(ρ/n). Using the drift theorem with tail bounds
from [2, Theorem 1], we obtain the result. Note that this wastes a lot, as the
drift theorem with tail bounds is intended for use with multiplicative drift, while
we use it on additive drift; also, the statement of the theorem requires a (1+1)-
EA, but the proof, published in [3, Theorem 5], shows that this requirement is
unnecessary. �

Note that, for the maze, will use Lemma 2 symmetrically for drifting down
with the pheromone. We will choose k large enough so that during the oscillation
of a bit, the pheromone value of the oscillating bit will at least once be 1/n.
Additionally, we have to make sure that the pheromone value stays low.

Lemma 3. Suppose ρ ∈ Θ(1/n). Let k ≥ 1 and let i be the position of the
oscillating bit of Mazek. If the pheromone value τi is saturated at the lower
threshold, for all c > 0, it will stay below (log(n))2/n for at least kn3 log(n)
iterations with probability 1−O(n−c).

Proof. This can be seen with a simple rescaling of the search space and an
application of the drift theorem concerned with negative drift from Oliveto and
Witt [14].

Note that the largest possible jump away from the lower threshold is 3ρ, since
in every update the pheromone value is changes by at most ρ and we update
3 times per oscillation. After rescaling of the search space by 1/ρ, we see that
probability to make jumps larger than 3 is 0, so that the theorem from [14] easily
applies. �
Another important ingredient for analyzing MMAS on the maze, we have to
show that MMAS does not get lost when the oscillation switches from bit i to
bit i + 1. This can only happen, if in the last iteration of oscillating i, the ith
bit of the current-best solution is 1. This happens with probability at most 1/n,
so we expect it to happen once in the run of the maze.

We show that, in this case, MMAS is able to regain track of the optimum
again with high probability. W.l.o.g. we show this behavior for the case that all
pheromones are saturated at the upper border, i.e. at 1− 1/n.
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Lemma 4. Suppose ρ ∈ Θ(1/n) and the fitness function is f(x) = n −
OneMax(x) (this implies that the all-zeros string is the optimum of f). Further-
more, assume the current-best solution is 1n−10 and the first (n−1) pheromones
are saturated at 1−1/n, while the last pheromone value is at 1−O((log(n))2/n).
Then we have, for all c > 0, MMAS samples 1n within O(log(n)) iterations with
probability 1−O(n−c).

Proof. Let c > 0, and let t = 3c log(n). We show that MMAS samples 1n within
t iterations with probability 1−O(n−c). Within these t iterations, MMAS will
change more and more bits in its current-best solution to 0. For this to happen,
MMAS needs to, in some iteration, sample one of the bits with pheromone
1− 1/n as 0. For all i < t, let Xi be the number of bits that MMAS samples as
0 in iteration i, and that where not sampled as 0 in an earlier iteration. Clearly,
for all i < t, E(Xi) ≤ 1. Let X =

∑t
i=1 Xi be the total number of different bits

sampled as 0 within the first t iterations.
Using a Chernoff bound we see that

P (X > 3t) ≤ n−c.

Let k = 3t = 9c log(n). The following probabilities are conditional on X ≤ 3t =
k.

For the case that we lower the pheromone value of a bit, we lower it by
at most ρ. Hence, within t iterations, at most k new bits have a pheromone
lower than 1 − 1/n, by at most tρ = o(1); the last bit, after t iterations, has
pheromone 1 − O((log(n))2/n + tρ). Thus, those k + 1 bits have a pheromone
of 1 − polylog(n)/n.1 All other bits still have maximal pheromone. Hence, the
probability to sample 1n in any particular of the t iteration is at least

(1− 1/n)n−k−1 · (1− polylog(n)/n)k+1.

Using Bernoulli’s inequality, we can lower bound this probability with

1

e
· (1− (2k)polylog(n)/n) =

1

e
· (1− polylog(n)/n).

Now we bound the probability that we do not sample 1n in any of the t iterations
from above with

(1 +
1

e
(−1 + polylog(n)/n))t.

We can upper bound this probability by

exp

(
t

e
(−1 + polylog(n)/n)

)
≤ O(n−c).

We now have two chances for MMAS to fail to sample 1n in the first t iterations:
either by lowering pheromone on more than k bits, or by failing to sample 1n

1 With polylog(n) we denote the set of all functions bounded above by c log(n)d, for
some c, d > 0.



120 T. Kötzing and H. Molter

conditional on not having decreased pheromones on more than k bits. Both
failure probabilities are below n−c; thus, MMAS samples 1n in t iterations with
probability 1−O(n−c). �
The following theorem is taken from [17, Corollary 5] and gives high probability
bounds for MMAS optimizing OneMax.

Theorem 5 ([17]). For all c > 0, MMAS optimizes OneMax in time
O(n log(n)/ρ) with probability 1−O(n−c).

We are now ready to give the central theorem of this paper.

Theorem 6. Suppose ρ ∈ Θ(1/n). For all c > 0 there is a k such that, for n
large enough, MMAS can follow the optimum2 of the dynamic fitness pattern
Mazek with probability 1−O(n−c).

Proof. Let c > 0. Let k′ be the largest implicit constant of the runtime bounds
of Lemma 2 and 4, as well as Theorem 5, for obtaining a failure probability of
O(n−c−1). Let k = 3k′.

Since we run OneMax for the first kn3 log(n) iterations, we know by Theorem 5
that MMAS finds the optimum and all pheromone values are saturated before
the oscillations starts with probability 1 − O(n−c−1). During the oscillation of
any bit, by (the symmetric version of) Lemma 2, we lower the pheromone of the
oscillating bit to 1/n with probability 1−O(n−c−1) after one third the oscillation
of the bit.

Using Lemma 3, the pheromone of an oscillating bit during its oscillation
will never be further away than log(n)2/n with probability 1−O(n−c−1). Thus,
when the next bit starts oscillating, by Lemma 4, MMAS needs at most one
third the oscillation to sample again a solution that has fitness n + 1 or n + 2
with probability 1 − O(n−c−1). MMAS can now recover all pheromones to the
proper borders within another third of the oscillation and after this, the process
repeats.

MMAS loses the optimum or does not saturate the pheromone value of the
oscillating bit by the end of the oscillation with probability n−c−1.

By induction and the union bound for the failure probabilities, MMAS follows
the optimum of Mazek with probability 1−O(n−c). �

3.3 (1+1)-EA on Maze

Now we take a look at the (1+1)-EA. Because of space limitations, we omit the
proofs of this section.

Consider the oscillation of bit i; we will show that the expected value of bit i
of the current-best solution of the (1+1)-EA is at least 1

4 .

2 The algorithm is said to “follow the optimum” if, at the end of all phases, the distance
of the current-best solution to the current optimum is constant.
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Lemma 7. Let k ≥ 1; consider the (1+1)-EA optimizing Mazek during the
oscillation of bit i, and suppose the current-best solution of the (1+1)-EA has a
0 on all positions before and at the oscillating bit, and a 1 on all others. For all
t, let Xt be the random variable denoting the value of bit i of the current-best
solution t iterations later. Then, for all t ≥ n log(n), E[Xt] ≥ 1/4.

Now we show that (1+1)-EA loses track of the optimum with high probability.

Theorem 8. For all c > 0 and k ≥ 1, the (1+1)-EA loses track of the optimum
of Mazek with probability 1−O(n−c).

4 Conclusions and Future Work

We have given an example of a dynamic fitness pattern where MMAS is able
to track the optimum with high probability, while the (1+1)-EA loses the opti-
mum with high probability. This shows that there are instances where MMAS
performs strictly better than the (1+1)-EA.

The intuition behind this difference is as follows. Consider a singe bit position,
where the optimizing algorithm is supposed to find out whether a 0 or a 1 is
better at that position. Suppose none of the other positions influence the fitness
of the bit string. For an oscillating optimum at that bit position, the (1+1)-EA,
in each iteration, will give a definite statement about what bit it thinks to be
better (whatever bit the best-so-far bit string has at that position), while the
MMAS uses intermediate pheromone values as a medium-term memory. This
enables MMAS to “average” over the phases of oscillation, smoothing out the
dynamic fitnesses of the search points, while the (1+1)-EA reacts strongly, too
strongly, in each iteration.

As one line of future work it would be interesting to see how evolutionary
algorithms with a large population size handle similar dynamic problems.

More importantly, though, future research goals should include finding re-
sults for more general classes of dynamic fitness patterns. In particular, dynamic
combinatorial optimization might offer interesting settings for the analysis of the
performance of bio-inspired algorithms.
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Abstract. Development and deployment of interactive evolutionary multiobjec-
tive optimization algorithms (EMOAs) have recently gained broad interest. In this
study, first steps towards a theory of interactive EMOAs are made by deriving
bounds on the expected number of function evaluations and queries to a decision
maker. We analyze randomized local search and the (1+1)-EA on the biobjective
problems LOTZ and COCZ under the scenario that the decision maker interacts
with these algorithms by providing a subjective preference whenever solutions are
incomparable. It is assumed that this decision is based on the decision maker’s
internal utility function. We show that the performance of the interactive EMOAs
may dramatically worsen if the utility function is non-linear instead of linear.

1 Introduction

Interactive algorithms for multi-criteria decision making are typically based on real-
world case studies and designed to work well in practice. However, to the best of our
knowledge, approaches combining interactive decision making with EMOAs have not
been analyzed mathematically in terms of their runtimes and the expected number of
questions asked (queries) to the decision maker (DM). For example, it is sometimes
claimed that only a small number of queries are performed in practice [5, p. 135], but
we are not aware of any rigorous analysis of how many queries are actually necessary to
obtain the most preferred solution or an approximation thereof. Specifically for interac-
tive EMOAs, which are randomized search heuristics where no guarantee can be given
on when good search points are found, a theoretical understanding of their expected op-
timization time will be extremely helpful when comparing approaches and predicting
their performance on future unknown problems.

This paper provides a first attempt to theoretically analyze the runtime and the num-
ber of queries to the DM of interactive EMOAs. To this end, we propose two simple
interactive randomized search heuristics and analyze them on the two standard binary
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test problems Leading Ones Trailing Zeros (LOTZ, [4]) and Counting Ones Counting
Zeros (COCZ, [3]). The algorithms are interactive versions of the well-known random-
ized local search (RLS) and the (1+1)-EA and neither do not know the DM’s preferences
nor do they assume anything about the DM. Whenever the Pareto-dominance relation
does not indicate a search direction between the current search point and the mutated
offspring because the two solutions are incomparable, the algorithms query the DM
about her opinion and accept the solution that was favored by the DM. For several sim-
ulated DMs, where a specific underlying utility function of the DM is assumed, tight
bounds on the expected runtimes and the expected number of queries to the DM for the
two interactive algorithms can be proven—using established proof techniques that have
been developed to bound the expected runtime of other randomized search heuristics.

Our proofs should be seen as a starting point for analyzing interactive approaches.
More involved algorithms and more complicated models of the DM will have to be
analyzed in the future. It is also a first step towards understanding the consequences
of adding increasingly more complicated utility functions and how algorithms should
be designed to deal with them. One major conclusion from our analyses is that the
performance of simple interactive EMOAs dramatically changes when the DM is acting
according to linear or non-linear utility functions.

Section 2 provides a mathematical prelude and some basic assumptions before the
two proposed interactive algorithms are presented in Sec. 3. The biobjective test prob-
lems are described in Sec. 4. The runtime analysis starts in Sec. 5 for the LOTZ problem,
which is followed in Sec. 6 by the runtime analysis of the iRLS on COCZ. Section 7
summarizes our findings and provides an outlook to future research.

2 Mathematical Prelude and Basic Assumptions

Let Bn = {0, 1}n be the finite discrete search space of binary strings of length n ∈ N.
We consider the simultaneous maximization of two objective functions f : Bn → N2

0

with f(x) = (f1(x), f2(x)) and define the weak dominance relation % on the search
space Bn via x % y iff f1(x) ≥ f1(y) and f2(x) ≥ f2(y) for x, y ∈ Bn and the
dominance relation & via x & y iff x % y and f(x) 	= f(y). The decision maker
is interpreted as a black box or oracle that is queried to decide which of two given
objective vectors (“f(x) or f(y)?”) is better.1

In its simplest form, we assume that the DM has an underlying value or utility func-
tion u(x) [2, p. 68 & 80f] according to which she is making her decision

DM(f(x), f(y)) = f(x) · I{u(f(x))>u(f(y))} + f(y) · I{u(f(x))≤u(f(y))}

where IA is the indicator function, giving 1 iff its argument A is true, and 0 otherwise.
The utility function u is thereby a function that maps an objective vector f(x) to

a real value, and an objective vector f(x) is said to be preferred by the DM over a

1 Limiting the queries to objective vectors simplifies the proofs presented in this paper. In prin-
ciple, the DM can also be queried about her preference among solutions x and y directly, but
the theoretical results will be different: it is expected that the number of queries to the DM will
increase since, for discrete problems, the total number of solution pairs is typically larger than
the number of objective vector pairs.
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Algorithm 1. (1+1)-iEA and iRLS

1: init: choose x0 uniformly at random; t = 0
2: repeat
3: y ← mutate(xt) { iRLS: 1 bit flip; (1+1)-iEA: independent bit flip }
4: if f(y) � f(xt) then
5: xt+1 ← y
6: else if f(xt)  f(y) then
7: xt+1 ← xt

8: else
9: u∗ ← DM(f(xt), f(y)) {only asks the DM once about xt and y}

10: if u∗ = f(xt) then
11: xt+1 ← xt

12: else
13: xt+1 ← y
14: t ← t+ 1
15: until DM terminates

vector f(y) iff u(f(x)) > u(f(y)). In case of a weighted sum, the utility function is
u(f(x)) = w1 · f1(x)+ (1−w1) · f2(x) and for a weighted Chebyshev utility function,
u is defined as u(f(x)) = maxi∈{1,2} {wi · |z∗i − fi(x)|} for every x ∈ Bn, with
w = (w1, 1−w1) ∈ R2 being the corresponding weight vector and z∗ = (z∗1 , z∗2) ∈ R2

a pre-defined utopian vector with z∗i ≥ maxx∈Bn fi(x) for i ∈ {1, 2}.
Both the weighted sum and the weighted Chebyshev utility function ensure that an

objective vector f(x) has a higher utility than another vector f(y) if x is dominating y.
Utility functions with this property are termed Pareto compliant.

3 The Interactive (1+1)-EA and (1+1)-RLS Algorithms

The simplest interactive evolutionary algorithm imaginable is based on the (1+1)-EA
[1] and it is shown in Algorithm 1. After drawing a parent uniformly at random from
Bn, the algorithm iterates the following steps until the DM decides to terminate it. First,
an offspring is generated by a mutation of the parent. If only a single bit chosen uni-
formly at random is flipped then we shall call the algorithm iRLS, whereas it is termed
(1+1)-iEA if each bit is flipped independently with probability 1/n. If the offspring
dominates or equals the parent, then it is accepted and serves as parent of the next it-
eration. If the offspring is dominated by the parent, then it is rejected and the parent
passes to the next iteration. If offspring and parent are incomparable then the DM de-
cides which of them is accepted. We assume that the DM can be modeled by a scalar
utility function so that the individual with larger utility is accepted. This utility func-
tion is assumed to be Pareto compliant such that the algorithms decide according to the
DM’s preferences in case of dominated or dominating offspring.

We further assume that the algorithm stores all objective vector pairs presented to the
DM so far, such that the DM is never asked to rank the same pair of objective vectors
more than once in order to keep the queries to the DM as low as possible.
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Fig. 1. Illustration of the objective space of the bi-objective LOTZ (left) and COCZ (right) prob-
lems for bitstrings of length n = 8. The neighborhood between objective vectors in terms of
the 1-bit mutation of the iRLS is indicated with black lines and the neighbors of two example
solutions for each problem are shown with arrows.

4 The LOTZ and COCZ Problems

In the following section, we will present the analyses of the runtime behavior of the
(1+1)-iEA and iRLS on two simple well-known test problems:

Definition 1. The bi-objective maximization problem with objective function f(x) =
(LO(x),TZ (x)) where

LO(x) =

n∑
i=1

i∏
j=1

xj and TZ (x) =

n∑
i=1

i∏
j=1

(1− xj)

for x ∈ Bn is termed the Leading Ones Trailing Zeros (LOTZ) problem.

Definition 2. The bi-objective maximization problem with objective function f(x) =
(CO(x),CZ (x)) where

CO(x) =

n∑
i=1

xi and CZ (x) =

�n/2�∑
i=1

xi +

n∑
i=�n/2�+1

(1 − xi)

for x ∈ Bn is termed the Counting Ones Counting Zeros (COCZ) problem.

Both problems have been the basis of the first runtime analyses of simple MOEAs
such as the SEMO and global SEMO algorithms. These problems have a linear Pareto
front with n + 1 (LOTZ) and �n/2� + 1 (COCZ) different Pareto-optimal objective
vectors. The total number of different objective vectors is Θ(n2) in both cases. Figure 1
illustrates their objective space and the neighborhood of objective vectors with respect
to 1-bit mutations.
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5 Runtime Analysis of iRLS and (1+1)-iEA on LOTZ

Let us now investigate the runtime and the number of DM queries for the iRLS and the
(1+1)-iEA until the most preferred solution of the LOTZ problem is found.

Theorem 1. When optimizing the LOTZ function, the iRLS needs in expectation Θ(n2)
function evaluations to find the solution that is most preferred by the DM if the utility
function of the DM is either a weighted sum or the weighted Chebyshev. To this end, an
expected number of O(n) queries to the DM are performed.

Proof. With the same arguments as for the SEMO algorithm [3], the iRLS will start the
optimization with high probability in the lower left corner of the objective space and
needs Θ(n) improvements to reach the Pareto front. Before reaching the Pareto front
for the first time, any solution produced by a 1-bit flip either dominates or is dominated
by the current solution, and, hence, the DM is never asked. An improvement towards
the Pareto front is possible by flipping the first 0-bit or the last 1-bit in the current
solution, which happens with a probability of 2/n in each iteration and corresponds to
a waiting time of O(n). Hence, the Pareto front is reached in O(n2) iterations. Since
all bits are chosen uniformly at random in the beginning and no incentive is given to
bias this uniform probability during the search, also the lower bound of Ω(n2) steps to
reach the Pareto front holds because in expectation there is less than one “free-rider”
bit per improvement, cf. the argumentation in [1].

Once the Pareto front is reached for the first time, all new solutions are either dom-
inated by the current one, and, hence, discarded immediately, or incomparable. In the
latter case, the DM is asked which solution is preferred. If the DM’s underlying utility
function is a weighted sum, then either all Pareto-optimal solutions are equally pre-
ferred (for equal weights) or one of the extremes (1n or 0n) is the most preferred, due
to the fact that all Pareto-optimal objective vectors of LOTZ lie on a line. In the case of
equal weights, the expected runtime is, therefore,Θ(1). Otherwise, the time to reach the
most preferred extreme depends on its distance from the first Pareto-optimal solution
found and the number of iterations to move from one to the other. The first Pareto-
optimal solution found has, with high probability, a number of leading ones (or trailing
zeros) within [1/4n, 3/4n] due to Chernoff bounds and the fact that the expected num-
ber of leading ones in the first Pareto-optimal point found is n/2 for symmetry reasons.
Hence, the algorithm needs Θ(n) successful steps to move to the most preferred ex-
treme. Moreover, the probability of each successful step is 1/n and its waiting time
Θ(n). Hence, the most preferred extreme is reached in Θ(n2) iterations.

Finally, the expected number of queries to the DM is Θ(n) in the case of unequal
weights (and zero in the case of equal weights), because there are only Θ(n) nondom-
inated objective vectors in the Pareto front and from each Pareto-optimal search point,
at most two others can be generated by 1-bit mutations.

If the underlying utility function is a weighted Chebyshev, any Pareto-optimal so-
lution can be the most preferred one, and, hence, depending on the location of this
solution, the number of iterations to reach it (resp. the number of DM queries) may be
closer to Θ(n2) (resp. Θ(n)) or closer to Θ(1). In any case, the above upper bounds on
the runtime (O(n2)) and number of DM queries (O(n)) hold. ��
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Overall, we proved the expected runtime of the iRLS to be Θ(n2): Θ(n2) to reach the
Pareto front and an additional O(n2) to find the most preferred Pareto-optimal point.
If a weighted sum is assumed as the DM’s utility function, the expected number of
queries to the DM is either Θ(1), if all Pareto-optimal points are equally preferred, or
Θ(n), otherwise. If the utility function of the DM turns out to be a weighted Chebyshev
function, the expected number of DM queries depends on the weights of the Chebyshev
function and can be only bounded by O(n) from above and Ω(1) from below as both
cases are possible (if one of the extremes or the point on the diagonal is preferred).

It turns out that the above proven bounds on the runtime and the number of DM
queries do not hold for arbitrary utility functions:

Observation 1. Already for quadratic utility functions which are Pareto compliant, it
can happen that the expected runtime of the iRLS is not finite anymore.

Proof. Assuming that the quadratic utility function u(f(x)) = −(n − f1(x) + 1) ·
(n − f2(x) + 2) has to be maximized, the most preferred solution is the rightmost
Pareto-optimal point, i.e., the objective vector with largest f1-value. When comparing
two incomparable solutions to the left of the objective space’s diagonal, the objective
vector with smaller f1- and larger f2-value will be preferred by the DM. Hence, iRLS
will converge towards the leftmost Pareto-optimal point, from which the most preferred
search point cannot be reached anymore because an n-bit flip would be necessary to
jump there. As the probability of reaching this left extreme of the Pareto-optimal front
is non-zero, the expected runtime is not finite anymore. ��

With a similar argumentation, it can be shown that the (1+1)-iEA can have an expo-
nential runtime if the above quadratic utility function has to be maximized. Hence, let
us consider the (1+1)-iEA with its independent bit flip mutation only for the case of a
weighted sum utility function. It turns out that, in this case, the expected runtime is the
same as for the iRLS.

Theorem 2. When optimizing the LOTZ function and if the utility function of the DM
is a weighted sum, the (1+1)-iEA needs Θ(n2) function evaluations, in expectation, to
find the most preferred solution.

Proof. For a weighted sum as utility function, we assume w.l.o.g. w1 ≥ 0.5 ≥ 1 − w1

and consider the following drift function g(x) when the current search point x of the
(1+1)-iEA is mapped to an objective vector (i, j):

g(x) = n− (w1 · i+ (1− w1) · j) .

The intuition behind g(x) is to consider the maximum number of consecutive f1-
improvements needed in the future course of the algorithm to reach the Pareto front,
i.e., the maximum distance to the Pareto front in f1 direction over all points that have
a weighted sum utility which is not smaller than the one for the current search point.
As w1 ≥ 0.5, it is clear that this largest distance is upper bounded by the distance in
f1-direction between the search point with objective vector ((w1 · i+ (1− w1) · j), 0)
and the Pareto front, which is exactly g(x).
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Now, let us consider the course of g(x). We have g(x) ≤ n and g(x) never increases
due to the selection of the (1+1)-iEA. Furthermore, if g(x) ≤ 1, then the current search
point is Pareto-optimal and only Pareto-optimal points will be accepted until the most
preferred solution is found. We now divide the analysis into two phases: the first phase
ends when the first Pareto-optimal point is found, while the second phase starts with
the first Pareto-optimal point found and ends when the most preferred solution is found.
The length of the first phase can be bounded from above by the time until g(x) becomes
smaller than 1 under the assumption that x stays non-Pareto-optimal as long as g(x) >
1.In this case, the probability to increase f1 by 1 while f2 stays constant by mutation
is at least 1/n · (1 − 1/n)n−1 ≥ 1/en with the Euler constant e ≈ 2.71 and therefore,
in expectation, at most en steps of the (1+1)-iEA are necessary for this event, by which
g(x) decreases by w1 ≥ 0.5. Hence, in expectation, 2en of those steps are sufficient
to decrease g(x) by 1 and overall at most 2en2 many steps are needed in expectation
to reach the Pareto front. By Chernoff bounds, the probability that in 4en2 steps, the
Pareto front is not reached is exponentially small and the runtime bound for the first
phase is proven to be O(n2).

Considering phase two, we distinguish two further cases. Either, the new solution
is also Pareto-optimal or we are back in the scenario of phase one, i.e., g(x) > 1 and
the new solution is non-Pareto-optimal. In the latter case, g(x) is further decreased but
we do not spend additional time because we accounted for it already in phase one.
In the first case, at most n − 1 improvements in the first objective function value are
necessary to reach the most preferred point where such an improvement happens with
a specific 1-bit flip (i.e. again with a probability of at least 1/en). The expected number
of steps needed for at most n−1 of those improvements is then smaller than en2 and, by
Chernoff bounds, the probability to need more than 2en2 steps is exponentially small
and the runtime for the second phase is also O(n2). ��
In the above case of the (1+1)-iEA optimizing the LOTZ problem, the number of DM
queries is trivially upper-bounded by O(n2) since the number of possible objective
vector pairs is bounded by O(n2). However, one can show a stronger result for which
we only sketch the proof here due to space limitations.

Theorem 3. When optimizing the LOTZ function and if the utility function of the DM
is a weighted sum, the (1+1)-iEA queries the DM in expectation O(n) times until the
most preferred solution is found.

Sketch of Proof: From the proof of Theorem 2, we know already that the algorithm
typically needs O(n) improvements to reach the most preferred solution for which we
need to wait O(n) function evaluations each. If we know the probabilities pi,j to reach
an incomparable search point from the current objective vector (i, j) with 1 ≤ i, j ≤ n
and i + j ≤ n and we can upper bound them by a constant p, we can upper bound the
expected number of incomparable solutions produced from (i, j) within a phase of cn
steps (c ∈ N a constant) in which an improvement is likely by the expectation of the
binomially distribution with parameters p and cn:

cn∑
k=1

k ·
(
cn

k

)
(pi,j)

k
(1− pi,j)

cn−k ≤
cn∑
k=1

k ·
(
cn

k

)
pk (1− p)

cn−k
= cnp . (1)
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Note that the Eq. 1 does not take into account the fact that for each objective vector pair
the DM is only asked once such that the expected number of incomparable solutions in
cn steps of the (1+1)-iEA is actually smaller. When looking at the exact probabilities2

pi,j , it turns out that they can be easily bounded from above by 4/n for large enough
n—independent of i and j such that Eq. 1 becomes 4c. That means that in each phase
of length cn with n large enough, only a constant number of incomparable solution is
generated in expectation, which results, with high probability, in O(n) incomparable
solution pairs for which the DM is queried until linearly many improvements have been
achieved. ��

6 Runtime Analysis of the iRLS on COCZ and Linear Functions

In addition to the LOTZ problem, we now analyze the iRLS on the COCZ problem and
point out how the result is related to the optimization of linear functions if the weighted
sum is assumed as underlying utility function of the DM.

Theorem 4. When optimizing the COCZ function, the iRLS needs, in expectation,
Θ(n log n) function evaluations and O(n) queries to the DM to find the solution that is
most preferred by the DM if the utility function of the DM is a weighted sum.

Proof. Similar to the proof of SEMO’s runtime [3], we partition the search space into
sets Fi (0 ≤ i ≤ (n/2)) such that all solutions with a number of i 1-bits in the first
half of their bitstrings are in set Fi. The most important observation for proving the
above theorem is that the 1-bit mutation of the iRLS allows only two scenarios. Either
(i) the mutation happens in the first half of the bitstring; in this case, both objectives
are perfectly correlated such that the mutated offspring y is dominating the previous
solution xt or it is dominated by it; in any case, the DM is not asked in this situation
and the current search point will never fall back to a set Fi with smaller index. Or (ii)
the mutation takes place in the second half of the bitstring; then, the mutated offspring
y is incomparable to xt due to the fact that both objectives are anti-correlated; both
solutions belong to the same set Fi and the DM is asked to compare them.

With these observations, it is easy to prove upper and lower bounds on the running
time of the iRLS on COCZ. With probability �n/2�−i

n , the iRLS leaves the set Fi (case
(i)), namely if one of the (n/2)− i zeros in the first half of the bitstring of xt is flipped.
This results in a runtime until the first Pareto-optimal point is found, of Θ(n log n), see
the argumentation for the (1+1)EA on the ONEMAX function, e.g., in [6].

With a similar argumentation, the most preferred Pareto-optimal solution is found
after (a possibly additional) O(n log n) steps as also in the second half of the bitstring,
the iRLS has to perform the optimization of ONEMAX (or ZEROMAX, depending on
the weight w1). Overall, the iRLS needs an expected number of Θ(n log n) function
evaluations until the most preferred search point is found.

2 For each non-Pareto-optimal solution with objective vector (i, j), for example, one can upper
bound the probabilities to reach every incomparable non-Pareto-optimal objective vector (i+
Δi, j−Δj) with 1 ≤ Δj ≤ j and 1 ≤ Δi ≤ n− i− j− 2−Δj by 1

n2

(
1− 1

n

)i+j+Δi−Δj

and sum those probabilities up for all possible values of (Δi,Δj).
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Regarding the number of DM queries, we argue that the algorithm performs two in-
dependent movements: (i) towards the front, where it is solely the number of ones in
the first half of the bitstring that determines how far the current search point is away
from the front and for which the DM is never queried, and (ii) the movement towards
the extremes of the (local) Pareto front(s) Fi, where it is only important how many ones
are present in the second half of the bitstring. Let us denote the objective vector of the
current search point by a tuple (i, j) where i indicates the number of 1-bits in the first
half and j the number of 1 bits in the second half of the bitstring of the current search
point. Assuming without loss of generality, that the weight w1 of the DM’s weighted
sum utility function is larger than 0.5, the rightmost Pareto-optimal point and thus the
all-one-string is the most preferred solution. All accepted objective vectors, and there-
fore all visited (i, j) positions will lie on a line connecting the objective vector of the
initial search point and this most preferred point whereas the current search point will
never decrease in its i and j coordinates due to the 1-bit mutation and the acceptance
step of the iRLS. Then, there are only O(n) different objective vectors on this line. On
the contrary, there are in expectation also Ω(n) many objective vectors on that line be-
cause, with high probability, the initial search point has about half its bits set to 0 and
the other half set to 1 and thus starts with a j-value of about n/4. With the additional
argument that for each of the Θ(n) objective vectors accepted throughout the search,
maximally two questions can be asked to the DM, the overall amount of expected DM
queries is proven to be O(n). ��
As we have seen, the iRLS asks the DM in expectation O(n) times on the COCZ prob-
lem. This upper bound is due to the fact that the algorithm keeps track about which
objective vector pairs have been presented to the DM in order to not ask her twice.
If this property of the algorithm is relaxed towards an approach without memory, the
number of DM calls increases to Θ(n log n) in expectation.

As both objective functions of the COCZ problem are linear, this result can also be
obtained from a more general analysis which even holds for the (1+1)-iEA.

Observation 2. If both objective functions are linear functions and the underlying util-
ity function of the DM is the weighted sum, the overall fitness function of the DM is also
linear; in case, we ask the DM all the time, this will be like having to solve a linear
function. It is well known that randomized local search and the (1+1)-EA, to which
the iRLS and (1+1)-iEA reduce if the DM is asked at every iteration have an expected
runtime on linear functions of Θ(n log n) [7].

7 Summary and Outlook

The theoretical analysis of interactive multiobjective evolutionary algorithms is a nec-
essary step towards better understanding interactive approaches in order to be able to
recommend certain algorithms over others in practical optimization. In this study, we
have provided the first of such analysis. The algorithms iRLS and (1+1)-iEA have been
proposed which are simple variants of the well-known algorithms RLS and (1+1)-EA
for single-objective optimization which ask the decision maker whenever the mutation
step produces an incomparable search point. Rigorous analyses of their expected opti-
mization time and the expected number of DM calls until the most preferred solution is
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found have been performed on the two well-known bi-objective binary problems LOTZ
and COCZ. It turns out that the expected runtime and the number of DM calls highly de-
pend on the assumed model of the DM, i.e., her underlying utility function. The LOTZ
problem is one example where the change from a linear to a quadratic preference model
changes the runtime of the iRLS from polynomial to infinite.

Though performed on basic test functions and simple algorithms which do not assume
anything about the DM’s preferences, our analyses open up a new research direction of
analyzing more involved interactive optimization algorithms on more realistic multi-
objective optimization problems. The proof techniques used in this study are standard
and highly related to the proof techniques previously used to analyze population-based
evolutionary multiobjective optimization algorithms. Hence, we expect that interactive
approaches can be also analyzed on more complicated problems and with more compli-
cated models of the decision maker. Furthermore, we hope that this study will initiate a
discussion about the consequences of assuming increasingly more realistic utility func-
tions and on how algorithms should be designed to deal with those.
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Parsimony Pressure versus Multi-objective

Optimization for Variable Length
Representations

Markus Wagner and Frank Neumann
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Abstract. We contribute to the theoretical understanding of variable
length evolutionary algorithms. Such algorithms are very flexible but
can encounter the bloat problem which means solutions grow during
the optimization run without providing additional benefit. We explore
two common mechanisms for dealing with this problem from a theo-
retical point of view and point out the differences of a parsimony and
a multi-objective approach in a rigorous way. As an example to point
out the differences, we consider different measures of sortedness for the
classical sorting problem which has already been studied in the compu-
tational complexity analysis of evolutionary algorithms with fixed length
representations.

1 Introduction

Evolutionary algorithms that work with a variable length representation often
encounter the bloat problem which means that individuals grow without provid-
ing additional benefit to the quality of the solutions. Even worse such a growth
of the individuals can block the optimization process such that problems that
are relatively easy to optimize can not be handled by variable length evolution-
ary algorithms. Due to this problem, different methods have been introduced
to deal with the bloat problem. Our goal is to study the behavior of variable
length evolutionary algorithms from a mathematical perspective. We will exam-
ine algorithms for distinguished classes of problems and point out the impact of
different approaches for dealing with the bloat problem in a rigorous way.

The most prominent example of a variable length evolutionary algorithm is
genetic programming [7] which often evolves tree structures for a given problem.
Recently, the first computational complexity results on these type of algorithm
have been obtained. They follow the line of research that has successfully followed
for evolutionary algorithms with fixed length representation (see the books [1,
11] for an overview). Variable length representations increase the search space
significantly and in the light of genetic programming it seems to be wishful to
better understand the behavior of algorithms using such representations from a
theoretical point of view.

The computational complexity analysis of variable length evolutionary algo-
rithms has started just recently. For example, Cathabard et al. [2] investigated
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non-uniform mutation rates for problems with unknown solution lengths. They
used a simple evolutionary algorithm to find a bitstring with an unknown number
of leading ones, and although the bitstring had some predetermined maximum
length, only an unknown number of initial bits was used by the fitness function.
Durrett et al. [3] investigated worst-case and average-case runtimes of a simple
tree-based genetic programming algorithm. The tackled problems were separa-
ble, with independent and additive fitness structures. Kötzing et al. [6] analysed
simple GP algorithms for the MAX problem.

One prominent way of dealing with the bloat problem is the parsimony ap-
proach. In the case, that two solutions have equal quality the solution of lower
complexity is preferred. Another way of coping with the bloat problem is to
use a multi-objective approach which uses in each iteration of a variable length
evolutionary algorithm a population which represents the different trade-offs
according to the original goal function and the complexity of a solution. The
solutions that represent the trade-offs are called Pareto optimal. Note that the
parsimony approach is a scalarization approach as it uses these Pareto optimality
and a lexicographic ordering. It is known that each global solution is also Pareto
optimal, but not all Pareto optimal solutions can necessarily be found through
scalarizations (e.g., see [13]). Both approaches of coping with the bloat problem
have recently been examined for the problems ORDER and MAJORITY in the
context of genetic programming [9, 14].

We further explore the use of parsimony pressure and multi-objective models.
In [9] it is shown that both approaches help for ORDER and MAJORITY,
but the differences between these two approaches are not examined. In this
paper, we point out that switching from the parsimony approach to the multi-
objective one can significantly reduce the runtime. In particular, we show that
the parsimony approach can have local optima which lead to an infinite runtime
whereas the multi-objective approach is able to compute the optimal solution
within a polynomial number of steps.

We show these results for a classical problem from the computational com-
plexity analysis of evolutionary algorithms with fixed-length representations,
namely the sorting problem (sorting). Scharnow, Tinnefeld, and Wegener [12]
considered sorting as an optimization problem and investigated different fitness
functions measuring the sortedness of a permutation of elements. Different fit-
ness functions lead to problems of different difficulties. Our goal is to explore how
variable-length evolutionary algorithms behave on these problems. We take it as
a prominent example to discuss the differences between a parsimony approach
and a multi-objective one. In particular, we show that the parsimony approach
can end up for a lot of the different sortedness measures in local optima when us-
ing a variable length representation whereas the multi-objective approach allows
to compute the whole Pareto front in expected polynomial time.

Our paper is organized as follows. In Section 2, we introduce the two models
and the different measures of sortedness. We examine the parsimony approach
in Section 3 and show that it leads to local optima in the search space. In Sec-
tion 4, we show that the multi-objective approach is able to compute the whole
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Mutate Y by applying k operations. For each operation, randomly choose to either
substitute, insert, or delete.

– If substitute, replace a randomly chosen element of Y with a new element u ∈ E
selected uniformly at random.

– If insert, choose an element v inY uniformly at randomand selectu ∈ E uniformly
at random. Randomly decide whether u is inserted before or after v in Y.

– If delete, randomly choose an element v of Y and delete it.

Fig. 1. Mutation operator

Pareto front of the underlying optimization problem in expected polynomial
time. Finally, we finish with some conclusions.

2 Preliminaries

Our goal is to study the difference between a parsimony and a multi-objective
approach for variable length evolutionary algorithms. Solutions contain (possibly
multiple) elements from a set E of elements. We will consider mutation-based
algorithms which produce new solutions by applying the mutation operator out-
lined in Figure 1. The mutation operator is parametrized by a parameter k which
determines the number of operations applied to the individual Y . For single op-
erations k = 1 holds. In the case of multiple operations, k is chosen according to
1 + Pois(1) where Pois(1) denotes the Poisson distribution with expectation 1.

We will consider a given problem F and the complexity of a solution C mea-
sured by the number of elements in the solution. C should be minimized and we
assume that F should be maximized. The notions can be easily adjusted to the
minimization of a problem F , which will later on be considered.

In the parsimony approach, we optimize the multi-criteria fitness function
MO-F(X) = (F (X), C(X)) with respect to the lexicographic order, that is,
MO-F(X) ≥ MO-F(Y ) holds iff

F (X) ≥ F (Y ) ∨ (F (X) = F (Y ) ∧ C(X) ≤ C(Y )) . (1)

In the multi-objective case, we treat the two criteria F and C as equally impor-
tant and consider the classical Pareto dominance relations:

1. A solution X weakly dominates a solution Y (denoted by X % Y ) iff
(F (X) ≥ F (Y ) ∧ C(X) ≤ C(Y )).

2. A solution X dominates a solution Y (denoted by X & Y ) iff ((X % Y ) ∧
(F (X) > F (Y ) ∨ C(X) < C(Y )).

3. Two solution X and Y are called incomparable iff neither X % Y nor Y % X
holds.

A Pareto optimal solution is a solution that is not dominated by any other
solution in the search space. All Pareto optimal solutions together form the
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Pareto optimal set, and the set of corresponding objective vectors forms the
Pareto front. The classical goal in multi-objective optimization is to compute for
each objective vector of the Pareto front a Pareto optimal solution. Alternatively,
if the Pareto front is too large, the goal then is to find a representative subset of
the front, where the definition of ‘representative’ depends on the choice of the
conductor.

2.1 Sortedness Measures

We will analyze our algorithms on different measures of sortedness for the clas-
sical sorting problem. It can be stated as follows. Given a totally ordered set
E = {1, . . . , n} of n elements, the task is to find a permutation πopt of the
elements of E such that

πopt(1) < πopt(2) < . . . < πopt(n)

holds, where< is the order on E. Without loss of generality, we assume πopt = id,
i. e. πopt(i) = i for all i, throughout this paper.

The set of all permutations π forms a search space that has already been in-
vestigated in [12] for the analysis of permutation-based evolutionary algorithms.
The authors of that paper investigate sorting as an optimization problem whose
goal is to maximize the sortedness of a given permutation. We will consider
the following fitness functions measuring the sortedness of a given permutation
introduced in [12]:

– HAM(π), measuring the number of elements at correct position, which is the
number of indices i such that π(i) = i,

– RUN(π), measuring the number of maximally sorted blocks, which is the
number of indices i such that π(i + 1) < π(i) plus one,

– EXC(π), measuring the minimal number of pairwise exchanges in π, in order
to sort the sequence.

Note that EXC(π) can be computed in linear time, based on the cycle structure
of permutations. If the sequence is sorted, it has n cycles. Otherwise, it is always
possible to increase the number of cycles by exchanging an element that is not
sitting at its correct position with the element that is currently sitting there. For
any given permutation π consisting of n− k cycles, EXC(π) = k.

We do not consider the functions INV (pairs in order) and LAS (longest
ascending sequence) given in [12] as they are easy to be optimized for all the
algorithms that we consider.

We will investigate the different measures for variable-length evolutionary al-
gorithms. Consequently, we might have to deal with incomplete permutations as
not all elements have to be contained in a given individual. Most measures can
also be used for incomplete permutation, but we have to make sure that complete
permutations always obtain a better fitness than incomplete ones. Furthermore,
the sortedness measure should guide the algorithm from incomplete permutations
to complete ones.
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Algorithm 1. Derivation of F (X)

1 Generate π by parsing X front to rear and adding an element to π only if it is
not yet in π;

2 Return F (π);

Algorithm 2. (1+1) GP-single for maximization

1 Choose an initial solution X;
2 repeat
3 Set Y := X;
4 Apply the mutation operator (given in Figure 1) with k = 1 to Y;
5 if f(Y ) ≥ f(X) then set X := Y ;

We will use the sortedness measures as above and use the following special
fitness assignments that enforce the previously stated properties.

– RUN(π) = n + 1 if |π| = 0, otherwise RUN(π) = b + m is the sum of the
number of maximally sorted blocks b, and the number of elements missing
m = n− |π|,

– If |π| ≤ n then EXC(π) = e+m+ 1, otherwise EXC(π) = e, where e is the
number of necessary exchanges e, and m = n− |π| the number of elements
missing.

Note that e can be computed for incomplete permutations as well, as only the
order < on E has to be respected. This means that, the permutations π1 = (1, 4)
and π2 = (1, 2, 3, 4) require no changes, but EXC(π1) 	= EXC(π2), as the number
of missing elements differs.

For example, for a tree X with π = (2, 3, 4, 5, 1, 6) and n = 7, the sortedness
results are HAM(X) = 1, RUN(X) = 2 + 1 = 3, and EXC(X) = 4 + 1 + 1 = 6.

We now define our multi-objective variants of sorting. When adding the com-
plexity of a data-structure as the second measure, we get the problems MO-
HAM, MO-RUN, and MO-EXC, respectively. Given a variable length solution
X and a problem F , we will refer by F (X) = F (π) to its fitness. Here π is
obtained from X (see Algorithm 1) by parsing X and adding an element x to π
if it is not yet contained in it.

3 Local Optima and the Parsimony Approach

In this section, we consider simple variable length evolutionary algorithms using
the parsimony approach. To stress the use of variable-length representations and
to make the connection to recent investigations on the computational complexity
of genetic programming [3, 9], we will view our algorithms as simple genetic
programming algorithms.

The single-objective variant called (1+1) GP-single starts with an initial so-
lution X , and produces in each iteration one single offspring Y by applying the
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mutation operator given in Figure 1 with k = 1. This means that it is a stochastic
hillclimber which explores its local neighborhood. In the case of maximization,
Y replaces X if f(Y ) ≥ f(X) holds. Minimization problems are tackled in the
analogous way.

In the following, we show that the parsimony approach leads to local optima
for various types of sortedness measure.

Let I1 = (n, 2, 3, . . . , n − 3, n − 2, n − 1, 1) be the initial solution. We point
out that this is a local optimum for (1+1) GP-single on MO-EXC leading to an
infinite optimization time.

Theorem 1. Let I1 be an initial solution. Then the optimization time of
(1+1) GP-single on MO-EXC is infinite.

Proof. The individual I1 has an EXC-value of 1 and a length of n. In order to
reduce the fitness down to 0, it would be necessary to move the n from the head
of the permutation to its end.

For this to happen, deletions and substitutions cannot be considered, as they
would produce incomplete permutations, and incomplete permutations have
EXC-values of at least 2.

Similarly, this situation cannot be solved using a single insertion: it is not
possible to introduce n at its correct position within the permutation, as the
existing n is preventing the new one from becoming expressed.

Therefore, it it not possible to improve the number of elements sitting at
their correct (relative) position via a single mutation. Thus, (1+1) GP-single
takes infinitely long, when initialized with I1. ��

We continue by investigating the sortedness measure RUN. Without loss of gen-
erality, let n be even and I2 =

(
n
2 + 1, n

2 + 2, . . . , n− 1, n, 1, 2, . . . , n
2 − 1, n

2

)
be

an initial solution. The following theorem shows that I2 is a local optimum for
(1+1) GP-single on MO-RUN.

Theorem 2. Let I2 be the initial solution. Then the optimization time of
(1+1) GP-single on MO-RUN is infinite.

Proof. The individual I2 has a RUN-value of 2, which cannot be improved via a
single insertion: n/2 elements have to change their positions in the inorder parsed
list that is used for the computation of the RUN-value. Furthermore, a single
deletion or substitution results in a worse sortedness value as one element is then
missing (as defined in Section 2.1). Therefore, the runtime of the single-operation
case of (1+1) GP is infinite, when initialised with this particular individual. ��

Finally, we consider the sortedness measure HAM and investigate the initial
solution I3 = (1, n− 2, 3, 4, 5, . . . , n− 3, 2, n− 1, n) . We show that this is a local
optimum for MO-HAM.

Theorem 3. Let I3 be the initial solution. Then the optimization time of
(1+1) GP-single on MO-HAM is infinite.
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Algorithm 3. SMO-GP

1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Choose X ∈ P uniformly at random;
5 Set Y := X;
6 Apply mutation to Y;
7 if {Z ∈ P | Z � Y } = ∅ then set P := (P \ {Z ∈ P | Z  Y }) ∪ {Y };

Proof. The individual I3 has the elements 2 and n − 2 at incorrect positions,
resulting in a HAM-value of n− 2. It is not possible to maintain the HAM-value
(or improve it) via deletions, as they decrease the number of elements at correct
positions. Substitutions can also not maintain the HAM-value. A substitution
of the n − 2 by a 2 would result in the elements to the right to shift away
from their correct position as in both cases the element at the third position
would no longer get expressed. This leaves only the option of using insertions,
in order to generate an individual that is accepted. The element n− 2 cannot be
introduced successfully at its correct position as its current occurrence is blocking
a later expression. If the 2 is introduced at its correct position, then the resulting
permutation is (1, 2, n− 2, 3, 4, 5, . . . , n− 3, n− 1, n) as the second 2 is no longer
gets expressed, and the corresponding HAM-value for this permutation is 4.

Thus, the runtime of the single-operation case of (1+1) GP is infinite, when
initialised with this particular individual. ��

4 Multi-objective Approach

We consider the Simple Evolutionary Multi-Objective Genetic Programming
(SMO-GP) algorithm introduced in [9] and motivated by the SEMO algorithm
for fixed length representations of Laumanns et al. [8]. Variants of SEMO have
been frequently used in the runtime analysis of evolutionary multi-objective
optimization for fixed length representations [4, 5, 10, 11]. SMO-GP (see Algo-
rithm 3) is a population-based approach that starts with a single solution and
keeps in each iteration a set of non-dominated solutions obtained during the
optimization run. In each iteration, it picks one solution uniformly at random
and produces one offspring Y by mutation. Y is introduced into the population
iff it is not weakly dominated by any other solution in P . If Y is added to the
population all individuals that are dominated by Y are discarded.

SMO-GP-single uses the mutation operator given in Figure 1 with k=1. We
also consider SMO-GP-multi which differs from SMO-GP-single by choosing k
according to 1 + Pois(1).

In this section, we analyze the performance of the SMO-GP variants on each
one of the fitness functions introduced in Section 2.1. In particular, we analyze
the expected number of iterations to compute the optimal solution. We call this
the expected optimization time of the algorithms.
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The following lemma bounds the expected time until the empty solution has
been included into the population, when considering an arbitrary optimization
problem:

Lemma 1 (Neumann [9]). Let Iinit be the size of the initial solution and k
be the number of different fitness values of a problem F . Then the expected time
until the population of SMO-GP-single and SMO-GP-multi applied to MO-F
contains the empty solution is O (kIinit).

Theorem 4. The expected optimization time of SMO-GP-single and SMO-GP-
multi is O(nIinit + n3 logn) on MO-EXC and MO-RUN and O(nIinit + n4) on
MO-HAM.

Note that for all three problems, only solutions of complexity i, 0 ≤ i ≤ n
can be Pareto optimal. For RUN, these are solutions X with C(X) = i and
RUN(X) = n+ 1− i, 0 ≤ i ≤ n.

Proof. In the following, we will first prove the theorem for MO-RUN. The proofs
for MO-EXC and MO-HAM follow the same structure.

RUN has n+1 different fitness values. Using Lemma 1, the empty solution is
produced after an expected number of O (kIinit) steps.

In the following steps, we will bound the time needed to discover the whole
Pareto front, once the empty solution is introduced into the population. Let us
assume that the population contains all Pareto optimal solutions with complexi-
ties j, 0 ≤ j ≤ i. Then, a population which includes all Pareto optimal solutions
with complexities j, 0 ≤ j ≤ i + 1, can be achieved by producing a solution Y
that is Pareto optimal and that has complexity i+1. Y can be obtained from a
Pareto optimal solution X with C(X) = i by inserting any of the n− i missing
elements into the correct position. This operation produces from a solution of
complexity i a solution of complexity i+ 1.

Based on this idea we can bound the expected optimization time once we
can bound the probability for such steps to happen. Choosing X for mutation
has probability at least 1/(n + 1) as the population size is upper bound by
n+ 1. Next, the mutation step carrying out just one operation happens with at
least 1/e, and the inserting operation of the mutation operator is chosen with
probability 1/3. As n − i out of the n elements are missing, any of those can
be inserted. However, the correct position for such a randomly chosen element
has to be chosen, in order to produce the Pareto optimal solution of complexity
i+1. This probability is at least 1/2 · 1/n, as the number of leaf nodes is bound
by n, and the probability to insert as the correct child of the newly introduced
inner node is at least 1/2. Thus, the total probability of such a generation is

1

n+ 1
· 1

3e
· 1

2n
· n− i

n
.

Now, we use the method of fitness-based partitions [15] according to the n + 1
different fitness values of i. Thus, as there are only n Pareto-optimal improve-
ments possible once the empty solution is introduced into the population, the
expected time until all Pareto optimal solutions have been generated is:
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n∑
i=0

(
1

n+ 1
· 1

3e
· 1

2n
· n− i

n

)−1

= 6en2(n+ 1) ·
n∑

i=0

1

n− i
= O(n3 logn).

Taking into account the expected time to produce the empty solution, the ex-
pected time until the whole Pareto front of MO-RUN has been computed is
O
(
nIinit + n3 logn

)
.

The proof for MO-EXC follows the same structure. First, note that if the
ordering within the permutation requires an exchange, then this individual is
dominated by individuals of same complexity that require fewer exchanges. Just
as with MO-EXC, let us assume that the population contains all Pareto optimal
solutions with complexities j, 0 ≤ j ≤ i. Then, a population which includes all
Pareto optimal solutions with complexities j, 0 ≤ j ≤ i + 1, can be achieved
by inserting any of the n − i missing elements into the correct position of the
Pareto optimal individual X with C(X) = i. The probability for such a step
to happen is at least 1

n+2 · 1
3e · 1

2n · n−i
n . Now, as n + 2 different EXC-values

are possible, and by summing up the waiting times as done for MO-RUN, the
expected optimization time is O(nIinit + n3 logn).

Similarly, we can prove an upper bound for MO-HAM. First, note that each
Pareto optimal solution with HAM-value i represents a perfectly sorted permuta-
tion of the i elements 1, . . . , i. Just as above, let us assume that the population
contains all Pareto optimal solutions with complexities j, 0 ≤ j ≤ i. Then,
a population which includes all Pareto optimal solutions with complexities j,
0 ≤ j ≤ i + 1, can be achieved by inserting the element i + 1 into its correct
position (i. e., as the rightmost leaf) in the Pareto optimal individual X with
HAM(X) = C(X) = i. The probability for such a step to happen is at least
1

n+1 · 1
3e · 1

2n · 1n = Ω
(

1
n3

)
and the corresponding waiting time is O(n3). There are

n+1 different HAM-values. This implies that the expected optimization time is
O(nIinit + n4). ��

5 Conclusions

Variable length representations are frequently used in evolutionary algorithms.
The most prominent example using such a representation is genetic program-
ming. With this paper, we have contributed to the theoretical understanding
when using such a representation. We discussed two methods for dealing with
bloat which frequently occurs when using such a representation. To point out
the differences between these two approaches, we examined different measures of
sortedness that have been analyzed for evolutionary algorithms with fixed length
representations. Our analysis for the parsimony approach shows that variable
length representations might have difficulties when dealing with simple mea-
sures of sortedness due to the presence of local optima. Our runtime analysis
for simple multi-objective algorithms shows that they compute the whole Pareto
front for the examined sortedness measures in expected polynomial time.
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Via P. Bucci 41C, 87036 Rende (CS), Italy

aamelio@deis.unical.it

Abstract. A graph-based approach for image segmentation that employs genetic
algorithms is proposed. An image is modeled as a weighted undirected graph,
where nodes correspond to pixels, and edges connect similar pixels. A fitness
function, that extends the normalized cut criterion, is employed, and a new con-
cept of nearest neighbor, that takes into account not only the spatial location of a
pixel, but also the affinity with the other pixels contained in the neighborhood, is
defined. Because of the locus-based representation of individuals, the method is
able to partition images without the need to set the number of segments before-
hand. As experimental results show, our approach is able to segment images in a
number of regions that well adhere to the human visual perception.

1 Introduction

Image segmentation is an important problem in pattern recognition that aims at parti-
tioning an image into uniform regions [4]. More formally, the problem can be stated as
follows: let R be an image constituted by a set of pixels. Segmenting the image R con-
sists in subdividing R into a finite number of non-overlapping and connected regions
R1...Rs such that

R =

S⋃
i=1

Ri, Ri ∩Rj = ∅, i 	= j

A homogeneity measure must be defined over pixels that takes into account character-
istics such as intensity, color, or texture. Pixels belonging to the same region are similar
on the base of the homogeneity measure adopted, while adjacent regions are signifi-
cantly dissimilar with respect to the same features.

1.1 Related work

The image segmentation problem has been intensively investigated with the use of
several computational techniques, and many different methods have been proposed. A
broad classification divides the existing methods in two main categories [20]: boundary
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detection-based approaches and region clustering-based approaches. The former ap-
proaches search for closed boundary contours by detecting pixels that sensibly change
in intensity. Boundaries of objects are obtained by linking such pixels in contours. The
main limitation of these approaches is that a threshold value must be set in order to pro-
duce a continuous contour [16,8]. Region cluster-based methods group similar closed
pixels into clusters. Many of these approaches use Fuzzy C-means [2] or the K-means
method, such as [1,13]. A drawback of these methods is that the number of clusters
must be predetermined, which implies that a user should know in advance the region
number of the image to segment. In order to overcome these limitations, methods based
on representing an image as a graph have been introduced. One of the earliest graph-
based methods dates back over 40 years and it is based on the minimum spanning tree
(MST) of a graph [21]. Zahn’s method gives a weight to edges on the base of differences
between pixel intensities, and breaks large edges by fixing a threshold. Improvements
on the policy of edge breaking were proposed by Urquhart in [18]. Wu and Leahy
[19] presented a method based on the minimization of the concept of cut, which is the
weight of edges connecting two regions. To avoid unnatural cuts of small groups of iso-
lated nodes, Shi and Malik [17] introduced a new measure of dissimilarity between two
groups named normalized cut. More recently, Felzenszwalb and Huttenlocher [5] de-
fined a measure of evidence of the boundary between two regions by considering both
the differences of intensity across the boundary and among neighboring pixels within a
region.

1.2 Evolutionary-Based Related Work

In the last years much effort has been done in the definition of effective evolutionary-
based approaches for solving complex problems of computer vision. In particular,
evolutionary techniques have been successfully applied to the image segmentation prob-
lem, that is of prior importance for facing more complex higher level problems such as
Object Recognition. A survey on the application of genetic algorithms for image en-
hancement and segmentation can be found in [15]. Many of the approaches use a rep-
resentation of the image based either on the cluster centers or on the label of the cluster
a pixel is assigned to. A color image segmentation algorithm based on evolutionary ap-
proach has been proposed by Halder and Pathak in [7]. Each individual is a sequence of
cluster centers and the cost function is the inverse of the sum of Euclidean distances of
each point from their respective cluster centers. In order to determine the most appropri-
ate number k of clusters, the algorithm is repeated for values of k equals to 2 until kmax.
The choice of the best k is done by computing a cluster validity index based on inter and
intra distances between clusters, while the value of kmax must be given as input to the
algorithm. Jiao in [9] proposed an evolutionary image texture classification algorithm
where the individuals are the cluster representatives, and the total distance between the
pixels and the corresponding centroids is optimized. The distance for a couple of pixels
is the value of the shortest path between them in the undirected weighted graph repre-
senting the image. In the same paper the author defines a Memetic Image Segmentation
approach, where a genetic algorithm is applied on a set of regions previously extracted
from a watershed segmentation in order to refine or merge the partitions into clusters.
In this case each gene of a chromosome is the cluster label of the corresponding pixel.
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The association of the regions with the clusters is evolved by optimizing the total dis-
tance between the pixels and the corresponding centroids. In the former approach the
number of clusters must be fixed a priori, while in the latter an approximate initial
number is obtained by using the watershed segmentation, and then a final local search
procedure merges regions to obtain the optimal number of clusters. Lai and Chang [10]
proposed a hierarchical structure of the chromosome, composed by control genes, rep-
resenting a partitioning in regions, and parametric genes, containing the representative
gray levels of each region. The goal is to optimize a fitness function that is the sum of
the distances between the gray level of each pixel and the representative gray level of its
region. The number of control genes, as stated by the authors, is a soft estimate of the
upper bound of the number of regions. Merzougui et al. [12] proposed an evolutionary
based image segmentation technique where the individuals are the components of the
cluster centers and the fitness is the mean distance between the pixels and the centroids.
In order to determine the optimal number of clusters, a criterion based on separability
and compactness of the clusters is first applied. Di Gesú and Bosco [6] introduced an
image segmentation algorithm where each chromosome represents the position and the
region label where the pixel is located. The fitness function is defined on the similarity
value and the spatial proximity between a pixel (chromosome) and the mean gray value
of its corresponding region.

Because of the representation adopted, one of the main problems of the described
approaches is the determination of the number of regions. Though different criteria are
used to fix this number beforehand, the genetic algorithm cannot change this number
while executing. The method we propose in the following dynamically computes the
number of regions that optimizes the fitness function.

1.3 Contributions

In this paper we present a new graph-based algorithm, named GeNCut (Genetic NCut),
to solve the image segmentation problem by using an evolutionary approach. In partic-
ular, we represent an image as a weighted undirected graph, then a genetic algorithm
optimizing a fitness function is executed in order to find an optimal partitioning of the
graph and, consequently, a good segmentation of the image. The fitness function is an
extension of the normalized cut concept of Shi and Malik [17] that allows for a si-
multaneous k-way partitioning of the image without the need of fixing the number k
of divisions beforehand, which is typical of many image segmentation approaches. In
fact, because of the locus-based representation of individuals adopted, k is automati-
cally determined by the optimal value of the objective function. Experiments on images
of different difficulty show that GeNCut outperforms the method of Shi and Malik by
partitioning natural and human scenes in meaningful objects.

The paper is organized as follow. In the next section the problem of image segmen-
tation is defined together with its formalization as a graph partitioning problem and a
description of the homogeneity measure adopted. Section 3 introduces the concept of
normalized cut and the fitness function used by GeNCut. Section 4 explains the genetic
representation and operators employed. Section 5 presents the experimental results.
Finally, section 6 summarizes the approach presented and outlines future work.
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2 Problem definition

An image R can be represented as a weighted undirected graph G = (V,E,w), where
V is the set of the nodes, E is the set of edges in the graph, and w : E →R is a func-
tion that assigns a value to graph edges. Each node corresponds to a pixel in the image,
and a graph edge (i, j) connects two pixels i and j, provided that these two pixels sat-
isfy some property suitably defined that takes into account both pixel characteristics
and spatial distance. The weight w(i, j) associated with a graph edge (i, j) represents
the likelihood that pixels i and j belong to the same image region and provides a sim-
ilarity value between i and j. The higher the value of w(i, j), the more likely the two
pixels are members of the same region. Let W be the adjacency weight matrix of the
graph G. Thus Wij contains the weight w(i, j) if the nodes i and j are connected, zero
otherwise. Depending on the method adopted to compute the weights, any two pixels
may or may not be connected. In our approach we employed the Intervening Contour
method described in [11,3]. In this framework, given a generic pixel, the magnitude of
the orientation energy at that pixel is considered. If the maximum image edge magni-
tude along a straight line connecting the two pixels i and j in the image plan is large,
then a deep change and, consequently, an intervening contour is present, indicating that
the two pixels don’t belong to the same segment. Hence, the weight w(i, j) between
these pixels will be low. On the other hand, if the image edge magnitude is sufficiently
weak, this usually happens in a region that is flat in brightness, the affinity between the
two pixels will be very high. More formally, the weight w(i, j) between the pixels i and
j is computed as:

w(i, j) =

{
e−maxx∈line(i,j)||Edge(x)||2/2a2

if ||X(i)−X(j)||2 < r, i 	= j

0 otherwise.

where a = (maxy∈I ||Edge(y)||)×σ, Edge(x) is the image edge strength at position x,
I is the image plan, line(i,j) is a straight line between i and j, X(i) is the spatial location
of the pixel i, r is a distance threshold and σ is the image edge variance. In order to
compute the weight between the pixels i and j, image edges across various scales are
considered.

3 Objective Function

In the last few years many different criteria have been defined to partition a graph rep-
resenting an image into non-overlapping connected components. Shi and Malik [17]
introduced the dissimilarity measure normalized cut to divide a graph into two sub-
graphs, that revealed successful for image segmentation. The concept of normalized cut
is an extension of the notion of cut proposed by Wu and Leahy [19] that avoids the bias
for partitioning in small sets of nodes. Given a partition of a graph G in two disjoint
sets of nodes A and B, the cut between A and B is defined as

cut(A,B) =
∑

i∈A,j∈B

w(i, j)
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In [17] the authors pointed out that the cut value diminishes when small sets of isolated
nodes are generated. Thus a disassociation measure, that takes into account the total
edge weight connecting two partitions, has been introduced. Let

assoc(A, V ) =
∑

i∈A,t∈V

w(i, t)

be the total connection from nodes in A to all the nodes in V , then the normalized cut
is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

Shi and Malik formalize the problem of minimizing the normalized cut as a generalized
eigenvalue problem and compute an optimal partition by using the eigenvector with the
second smallest eigenvalue. Two extensions of the approach to k-way partitioning are
also proposed. The former recursively partitions the groups obtained in the previous step
by checking the values of the eigenvectors, the latter exploits the top n eigenvectors and
the clustering algorithm K-means. A main limitation of this method is that the number
k of desired partitions must be fixed beforehand.

We now introduce an extension of the concept of normalized cut that is used as
criterion to partition a graph in a generic number k of regions. Note that, the value of k
in our approach must not be fixed in advance, but it is determined by the optimal value
of the objective function. Let G = (V,E,w) be the graph representing an image, W its
adjacency matrix, and P = {S1, . . . , Sk} a partition of G in k clusters.

For a generic cluster S ∈ P , let

cs =
∑

i∈S,j /∈S Wij ms =
∑

i∈S,j∈S Wij m =
∑

i∈V,j∈V Wij

be respectively the sum of weights of edges on the boundary of S, the sum of weights
of edges inside S, and the total graph weight sum. The weighted normalized cut WNCut
measures for each cluster S ∈ P the fraction of total edge weight connections to all the
nodes in the graph

WNCut =
k∑

s=1

cs
ms + cs

+
cs

(m−ms) + cs

Note that cs corresponds to cut(A,B) where B = V − A. Because of the affinity
measure w defined in the previous section, and the relationship between cut and assoc
formalized in [17], more uniform regions can be obtained with low cut values between
the subgraphs representing the regions and the rest of the graph. This implies that low
values of WNcut should be preferred.

4 Genetic Representation and Operators

The genetic algorithm uses the locus-based adjacency representation proposed in [14].
In this graph-based representation an individual of the population consists of N genes
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g1, . . . , gN and each gene can assume allele values j in the range {1, . . . , N}. Genes
and alleles represent nodes of the graphG = (V,E,w) modelling an image, and a value
j assigned to the ith gene is interpreted as a link between the pixels i and j. This means
that in the clustering solution found i and j will belong to the same region.

The initialization process assigns to each node i one of its neighbors j. This guar-
antees a division of the graph in connected groups of nodes. The kind of crossover
operator adopted is uniform crossover. Given two parents, a random binary vector is
created. Uniform crossover then selects the genes where the vector is a 0 from the first
parent, and the genes where the vector is a 1 from the second parent, and combines the
genes to form the child. The mutation operator, analogously to the initialization process,
randomly assigns to each node i one of its neighbors.

The genetic operators need to determine the neighbors of each node. In our approach
we introduced the concept of neighbors of a node by taking into account not only the
spatial closeness, but also the pixel affinity. More in details, given a generic node i in
the graph, let wh

max = {w1, . . . , wh | w1 ≥, . . . ,≥ wh} be the first h highest weights
of row i in the weight adjacency matrix W .

The h nearest neighbors of i, denoted as nnh
i , are then defined as nnh

i = {j |
w(i, j) ∈ wh

max}.
nnh

i is thus the set of those pixels that are no more than r pixels apart from i, and
that have maximum similarity with i. It is worth to note that, even if h is fixed to 1,
the number of nearest neighbors of i could be sufficiently large if many of its spatial
neighbors have the same maximum weight wh

max. This definition of nearest neighbors
guaranties to choose the most similar neighbors during the initialization process, and
to bias the effects of the mutation operator towards the most similar neighbors, thus it
contributes to improve the results of the method.

5 Experimental Results

In this section we present the results of GeNCut on five images with details of in-
creasing complexity, and compare the performances of our algorithm in partitioning
natural and human scenes in meaningful objects with the segmentations obtained by
the algorithm of Shi and Malik [17] (in the following referred as NCut) on the same
images. The GeNCut algorithm has been written in MATLAB 7.14 R2012a, using the
Genetic Algorithms and Direct Search Toolbox 2. In order to set parameter values, a
trial and error procedure has been employed and then the parameter values giving good
results for the benchmark images have been selected. Thus we set crossover rate to
0.9, mutation rate to 0.2, elite reproduction 10% of the population size, roulette selec-
tion function. The population size was 100, the number of generations 50. The value
h of nearest neighbors to consider has been fixed to either 1 or 2. As already pointed
out, this does not mean that the number of neighbors is 1 or 2, but that the first (and
second) most similar neighbors are taken into account for the initialization and muta-
tion operators. The fitness function, however, is computed on the overall weight ma-
trix. For all the data sets, the statistical significance of the results produced by GeNCut
has been checked by performing a t-test at the 5% significance level. The p-values re-
turned are very small, thus the significance level is very high since the probability that
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a segmentation computed by GeNCut could be obtained by chance is very low. The
version of the Ncut software that we used is written in MATLAB and it is available at
http://www.cis.upenn.edu/ jshi/software/. The weight matrix of each image is the same
for both methods, and, as already described in section 2, it is based on the Intervening
Contour framework by fixing r = 10, number of scales 3, number of orientations 4 and
σ = 0.1. Since NCut needs the number k of clusters, we executed the algorithm by us-
ing two different inputs. The first sets the number k of segments to the same number of
clusters found by GeNCut, the second one is a higher value. In the following, for each
image, we compare the segmentation results of GeNCut and NCut by depicting the
contours of the regions obtained by the two approaches. For a more clear visualization,
we show two images. The first image reports the boundary lines of the segmentation ob-
tained on the original color image, the second one delineates the same contours without
the image background.

Fig. 1 shows the execution of GeNCut and NCut on an image of a melanoma. In
particular, Fig. 1(a) is the original image, Fig. 1(b) and Fig. 1(c) display the segmenta-
tion obtained by GeNCut with and without the background image resp., while Fig. 1(d)
and Fig. 1(e) are the results of NCut when the number of segments is fixed to two, and
Fig. 6(a) when this number is 5. Fig. 1(b)(c) show that GeNCut is able to find the right
partitioning and correctly discriminates between the melanoma and the skin, although
we don’t set a priori the number of segments. Fig. 1(d)(e) and Fig. 6(a) point out that if
NCut receives the true number of segments, it is able to find the correct partitioning,
otherwise an over-segmentation is obtained. In general, however, given an input image,
it is hard to know a priori the true number of partitions.

The next experiment represents a more complex scenario, due to the presence of irreg-
ular shapes (clouds) around a spherical object (moon) ( Fig. 2(a)). Fig. 2(b)(c) illustrate

(a) (b) (c) (d) (e)

Fig. 1. (a) The original image representing a melanoma, (b) the segmentation result on the original
image of GeNCut with h=2, (d) NCut with k = 2 and (c-e) the corresponding contours

(a) (b) (c) (d) (e)

Fig. 2. (a) The original moon image, (b) the segmentation results on the original image using
GeNCut with h=1, (d) NCut with k = 16 and (c-e) the corresponding contours
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the results obtained by using the GeNCut approach, while Fig. 2(d)(e) and Fig. 6(b) the
NCut method when the number of segments is set to 16 and 22, respectively. Although
the halo makes difficult to segment the moon, by using our algorithm we are able to
perform a segmentation that is more flexible in capturing the real shape of the clouds.
NCut, instead, realizes a more flat partitioning with an equal number of segments that
is not able to distinguish and capture some inner parts of the original image. Fig. 3(a)
and Fig. 4(a) show two different kinds of landscapes: a natural picture and a snatch from
an X-SAR image of the Vesuvius volcano (Italy), acquired by the Spaceborne Imaging
Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard the Space Shuttle
Endeavour in 1994. For both the images, our algorithm is able to discover the meaningful
objects, Fig. 3(b)(c) and Fig. 4(b)(c), respectively, while a poor segmentation of the major
components like in Fig. 3(d)(e) and Fig. 6(c) is obtained, despite the setting of the same
number of segments, naturally extracted from our technique. The satellite image in Fig.
4(a) is a scene where it is quite difficult to differentiate the meaningful objects due to the
details of the terrain. However, as it can be observed in Fig. 4(b)(c), GeNCut is able to
separate the volcano area from the landscape and to distinguish the building barely visible
at the bottom right corner and the area of the deep sea. All these significative features
are not visible in the segmentation results of the NCut approach, Fig. 4(d)(e), even if
we increase the number of partitions, Fig. 6(d). Finally, we used GeNCut to segment a
human face image (Fig. 5(a)). In this case the two approaches are comparable. Although
more details are discovered from NCut in correspondence of the eyes, it over-segments
the face (Fig. 5(d)(e) and Fig. 6(e)). On the other hand, GeNCut obtains a uniform and
natural segmentation of the face (Fig. 5(b)(c)) that is able to capture also the shape of the
nose, although it appears linked to the eyes, probably due to the similar gray intensities
along the contours of the nose and the contours of the eyes.

(a) (b) (c) (d) (e)

Fig. 3. (a) The original image, (b) the segmentation results on the original image using GeNCut
with h=1, (d) NCut with k = 12 and (c-e) the corresponding contours

(a) (b) (c) (d) (e)

Fig. 4. (a) An X-SAR image of the Vesuvius volcano, (b) the segmentation results on the original
image using GeNCut with h=1, (d) NCut with k = 8, and (c-e) the corresponding contours
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(a) (b) (c) (d) (e)

Fig. 5. (a) The original face image, (b) the segmentation results on the original image using GeN-
Cut with h=2, (d) NCut with k = 12 and (c-e) the corresponding contours

(a) (b) (c) (d) (e)

Fig. 6. The segmentation results representing the contours using NCut with (a) k = 5, (b)
k = 22, (c) k = 20, (d) k = 12, (e) k = 20

6 Conclusions

The paper presented a graph-based approach to image segmentation that employs ge-
netic algorithms. A fitness function, that extends the normalized cut criterion introduced
in [17], is proposed, and a new concept of nearest neighbor, that takes into account not
only the spatial location of a pixel, but also the affinity with the other pixels contained
in the neighborhood, is defined. The locus-based representation of individuals, together
with the fitness function adopted, revealed particularly apt to deal with images mod-
eled as graphs. In fact, as experimental results showed, our approach is able to segment
images in a number of regions that well adhere to the human visual perception. Future
work will extend the segmentation process to partition more complex texture images
including medical X-ray and ultrasound images, by combining the contour information
considered in our approach with textural features of the regions.
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Abstract. This paper presents a system for detecting and classifying
road signs from video sequences in real time. A model-based approach
is used in which a prototype of the sign to be detected is transformed
and matched to the image using evolutionary techniques. Then, the sign
detected in the previous phase is classified by a neural network. Our
system makes extensive use of the parallel computing capabilities offered
by modern graphics cards and the CUDA architecture for both detection
and classification. We compare detection results achieved by GPU-based
parallel versions of Differential Evolution and Particle Swarm Optimiza-
tion, and classification results obtained by Learning Vector Quantiza-
tion and Multi-layer Perceptron. The method was tested over two real
sequences taken from a camera mounted on-board a car and was able
to correctly detect and classify around 70% of the signs at 17.5 fps, a
similar result in shorter time, compared to the best results obtained on
the same sequences so far.

Keywords: Road Sign Classification, Differential Evolution, Particle
Swarm Optimization, Learning Vector Quantization, Neural Networks,
GPGPU.

1 Introduction

Automatic road sign detection and classification is a task that can help drivers and
increase road safety. For this reason, this problem has been frequently tackled [2],
up to systems mounted on recent car models, with limited functionalities.

Solutions to this problem usually include two different stages: the presence of
a sign is first detected in the image, then it is classified to precisely recognize
its meaning and possibly activate some driving system control. In the detec-
tion phase, the features used most frequently to recognize a sign are shape and
color. Detection based on RGB color is usually fast but performance degrades
when dealing with illumination changes [17] or other artifacts related to image
acquisition. These problems can be reduced by performing conversion to other
color-spaces like HSV/HSI [13]. Shape-based detection is generally more robust
against these problems, besides allowing one to work with gray-scale images.
However, it has to struggle against occlusions, different viewing angles or the
presence of other artificial objects like commercial signs or buildings. For these
reasons, a combination of color and shape information is usually preferred [5,15].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 153–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The term “road sign classification” is not used consistently in the literature:
in fact, some authors reduce the classification problem to what, in this paper, we
call detection [15], i.e. distinguishing between a sign and a different object in the
scene. In other papers [16], the classification problem takes into account only
the classification between different categories of signs (e.g. prohibitory versus
warning signs). The classification task considered here is concerned with the
distinction of signs within the same category (prohibitory, warning, mandatory),
as the category is implicitly determined in the detection phase.

The techniques most frequently used for classification are artificial neural
networks [10,13] and support vector machines [9].

In the detection phase of our method a model representing a category of signs
is rigidly transformed and then reprojected onto the image using an Inverse
Perspective transform: this model-based approach shows good results against
several problems that can affect the images, like partial occlusions or color un-
balancing. After doing so, a fitness function is calculated to assess the degree of
matching between the reprojected model and the image, turning detection into
an optimization problem, in which a sign is considered to have been detected
when the similarity is above a pre-defined value. To perform such an optimiza-
tion we considered and compared Differential Evolution (DE) [18] and Particle
Swarm Optimization (PSO) [7]. For the classification stage, we used Multi-layer
Perceptrons (MLP) [4] and learning vector quantization (LVQ) [8] neural net-
works. In both phases we relied on GPUs to increase processing speed and to
reach real-time performance, implementing our methods in CUDA-C [14], a C
language extension for developing parallel routines (kernels) that run on GPU.

2 Sign Recognition System

A first implementation of the system, limited to the detection stage of three cate-
gories of signs (priority, prohibitory andwarning), hasbeenfirstpresentedbyMussi
et al in [11]. The work described in this paper completed the system, adding the
detection of mandatory signs and the classification stage. In addition, a DE-based
detection stage has been developed and compared to the one based on PSO.

2.1 Sign Detection

The sign detection stage is based on a generally-applicable object detection al-
gorithm that includes the following steps:

1. Consider some sets of key points, of known coordinates with respect to a
reference position, and representative of the shape and colors of specific
regions of the object to detect.

2. Translate and rotate the sets to a hypothesized position visible by the camera
and project them onto the image.

3. Verify that the color histograms of the sets match those of their projection
on the image to assess the presence of the object being sought.



Real-Time GPU Based Road Sign Detection and Classification 155

Fig. 1. The model used to recognize priority, warning and prohibitory signs. Each
model consists of three sets of points. The first (S1) lies just outside the sign; the
second (S2) on the red band, while the third (S3) inside the sign.

In [11], PSO generates location estimates for a sign as each particle in the
swarm encodes the candidate sign pose as four values: its offsets along the x,
y and z axes, and its rotation around the vertical axis (yaw) in the camera
reference frame. Rotation around the camera optic axis (roll) and the horizontal
axis (pitch) have been ignored after some preliminary tests showed that they
have little relevance. The image region located by the model is then rectified
via an inverse perspective transform in order to obtain a frontal view. Then, the
three sets of points (see Figure 1) are evaluated according to the fitness function
described below; a sign is considered to have been detected when the fitness
value is below a fixed threshold.

For every set of points, three color histograms in the HSV color space are
computed. Then, the Bhattacharyya coefficient [6] B(x, y), which estimates the
overlap between two statistical samples, is used to compare the histograms. The
fitness function can be expressed as follows:

f =
k0(1−B(h1, h2)) + k1(1−B(h2, h3)) + k2B(h1, hr)

k0 + k1 + k2

where hi is the histogram of set Si, and hr is a reference histogram centered on
red; k0, k1 and k2 ∈ *+ are used to weigh the elements of the equation. This
means that a sign is detected when:

– the histogram of the set outside the sign is different from the histogram of
the set located on the red band;

– the histogram of the points in the red band is as different as possible from
the one computed on the inner area of the sign;

– the histogram of the points in the red band is similar to the reference his-
togram we defined for the red hue (a Gaussian centered on pure red).

This operation is repeated twice for every frame to permit recognition of more
than one sign of the same category. This method has shown good robustness
against illumination changes.

Mandatory signs (see figure 2) are detected similarly to the other three cat-
egories, although some changes have been introduced to improve performance.
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Fig. 2. An example of a mandatory sign, along with the corresponding model

We still consider three similarly arranged sets of points: the only difference in
their location is that set S3 is located closer to the center of the sign, in order
to get more information about the white foreground, which usually includes the
main information useful for sign recognition. The fitness function has also been
changed to:

f =
k̄0(1−B(h1, h2)) + k̄1(B(h3, h

′
r)) + k̄2B(h2, h

′′
r ) + k̄3(1−B(h2, hr))

k̄0 + k̄1 + k̄2 + k̄3

where h′
r is a reference histogram with peaks corresponding to blue and white, h′′

r

a reference histogram centered on blue, and k̄i, i = 1, . . . , 4 are positive weights.

2.2 Sign Classification

Before performing classification, the rectified image of the detected sign is pre-
processed to reduce the complexity of this step. The following pre-processing
steps are performed:

– the image is re-sampled to 50×50 pixels, converted to gray scale, and the
pixels outside the sign are removed;

– for mandatory signs, in which the foreground is brighter than the back-
ground, gray-scale values are inverted, in order for the inputs to the final
classifier to have similar contrast features;

– the histogram is calculated, average-filtered to remove isolated peaks and
stretched between the mean intensities of the sign background and fore-
ground.

In our test set we considered 27 different classes for prohibitory, 30 classes for warn-
ing, and 27 for mandatory signs. The training sets contained 9 instances of each
sign, obtained by applying the pre-processingphase over synthetic noiseless images
of the sign and adding some noise in terms of position and rotation. Since there
is only one possible instance of priority signs, we implemented a binary classifier
and created a test set which includes priority signs along with signs of different
categories and other elements that are not signs (cars, trees, guard rails . . . ).
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3 Implementation Details

Both the detection and classification phases have been implemented on a Graph-
ical Processing Unit (GPU) within the CUDA (Compute Unified Distributed
Architecture) environment available from nVIDIA. CUDA requires that a prob-
lem be divided into groups of cooperating threads (each group is called a thread
block), organized in one-, two- or three-dimensional grids. The threads within a
block are also organized in similar grids. The performance of CUDA code largely
depends on the grid configurations and memory access schemes. As in CPUs, also
in GPUs, memory is arranged in a hierarchy, in which each thread has its own
private local memory, thread blocks use shared memory that is visible only to the
threads of the block, while all threads have access to global device, texture, and
constant memory spaces [14]. To maximize efficiency, algorithms developed in
CUDA-C should rely mainly on fast local and shared memory, avoiding frequent
accesses to global memory locations.

The details about the parallel design and implementation of the methods used
for detection and classification are discussed in the following subsections.

3.1 Parallel Particle Swarm Optimization

Our parallel version of PSO [11] is divided into three kernels: position update,
fitness evaluation, and bests update. Two-dimensional thread-block grids repre-
sent different swarms (one for each type of sign) along one dimension while, along
the other, every block represents a particle. Position update and fitness evalu-
ation are performed by the threads of a block working on particle data loaded
in shared memory for faster performance. Kernels follow a common procedure
that: i) loads particle data into shared memory from global device memory, ii)
processes the data in local and shared memory, iii) stores the results back to
global memory, at the end of its execution, to make them visible to other ker-
nels. We use four swarms (one for each sign category), each consisting of 64
particles arranged in a ring topology, that run for 250 generations. As for PSO
parameters, we set C1 and C2 to 1.19, and the inertia factor w to 0.72.

3.2 Parallel Differential Evolution

Differential Evolution (DE) [18] is a powerful stochastic real-parameter opti-
mization algorithm [1]. New solutions are generated by performing a crossover
operation between one element of the current population (parent) and a donor,
which is created by the combination of some randomly chosen solutions from the
population. This new element, called trial, is then evaluated and can replace the
parent if it has a better fitness than the parent’s. The parallel implementation of
DE [12] resembles parallel PSO, except that, instead of the position update ker-
nel, DE uses a kernel to generate trial vectors for every element in the solution
group, and another kernel to evaluate the fitness of the trial solutions to possibly
replace the parent with them. There are several flavors of DE, depending on the
method for choosing the individuals that are combined to form donor solutions,
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and the type of crossover used to generate the trial solutions. In our experiments,
we adopt random mutation and binomial crossover. The same PSO swarm con-
figuration was used for the DE population, also run for 250 generations, with
DE parameters: F set to 0.5 and Cr to 0.9.

3.3 Parallel Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) is the most commonly used artificial neural
network [4], in which only feedforward connections between neurons are allowed
and a supervised training algorithm (backpropagation) is used.

The number of operations needed to perform the classification using MLP is
very high. For instance, the MLP we use for the classification of warning signs
has four fully-connected layers whose sizes are respectively 2500, 180, 90, 30.
This means that, for the first layer, the total number of products that has to be
computed is 2500×180, as each of the 2500 inputs is multiplied by the weight of
the connections between it and all neurons of the next layer, and must then be
summed. These operations amount to a product between a 2500-elements vector
and a 180×2500 matrix. In our parallel implementation the computation of each
layer of the network is a CUDA kernel. The operations performed by each kernel
are:

1. loading layer inputs in shared memory;
2. computing, partly in parallel and partly sequentially, the products (as sug-

gested by [3]);
3. summing the products by means of a parallel reduction;
4. computing the activation function over the sum of the products.

3.4 Parallel Learning Vector Quantization

Learning Vector Quantization (LVQ) is a supervised classification algorithm de-
veloped by Kohonen [8]. The basic idea is to find a small set (called codebook)
of prototypes (called codebook vectors) representative of all possible inputs. New
data are then classified according to the most similar codebook vector. The
training phase is performed by iterating over the examples in a training set:
if an example is correctly classified, the codebook vector closest to the data
sample is attracted towards it, otherwise the codebook vector is moved in the
opposite direction. The CUDA implementation of LVQ is straightforward: a ker-
nel computes the distance between the input vector and the codebook vectors
that compose the network. Then, a parallel reduction is performed to compute
the classification result, that is the label corresponding to the most similar code-
book vector. Table 1 shows the topologies and sizes of the networks that have
obtained the best results during our experiments.

4 Experimental Results

In this section we will describe the data and the experiments performed to eval-
uate our system, for both detection and classification.
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Table 1. MLP and LVQ structures for the four categories of signs

Category MLP Topology LVQ size

Prohibitory 2500×180×90×27 176

Warning 2500×180×90×30 246

Mandatory 2500×100×50×27 128

Priority 2500×120×16×2 128

4.1 Detection

The benchmark used to evaluate the results in a real environment is composed of
two sequences [10]. The first one, which includes 10000 frames at a resolution of
750×480 pixels, was acquired at 7.5 fps in Parma on a sunny day. The sequence
contains images featuring all possible light orientations. The second sequence is
about 5000 frames long and was acquired at 7.5 fps in Turin on a cloudy day.
Images in this sequence feature more constant lighting but lower contrast.

We compared the results of DE and PSO in terms of correct/incorrect detec-
tions of the signs. DE was able to detect more signs (scoring more true and false
positives); this suggests that DE has a greater exploitation ability, and is able to
refine solutions better than PSO. However, if fitness values are compared, PSO
has a better average, with a lower standard deviation, showing a more consistent
behavior. Table 2 reports the best and worst detection results obtained over 10
runs on each sequence.

4.2 Classification

The evaluation of the classification system was firstly performed over a test set
that comprises synthetic, good quality and noisy or deformed images of signs, as
described in [10], then on the two real sequences. The first rows of table 3 show
the percentage of correct classification for the four categories on the test set.
The same table (second and third row) shows the results of the classification of
all signs detected in the experiments reported in table 2. We take all detections
into account: this means that the same sign can be detected and classified in
more than one frame.

Table 2. Results of the detection phase (min-max) for the four categories of signs
(detections): worst and best result in 10 independent runs

Parma Sequence Turin Sequence
Total False Positives Detections Total False Positives Detections

Warning
DE 51 0-1 27-31 53 0-2 39-43
PSO 51 0-0 27-30 53 0-1 35-40

Prohibitory
DE 44 2-6 26-30 47 2-4 39-42
PSO 44 0-1 22-27 47 0-1 39-40

Priority
DE 30 5-11 18-22 15 2-4 13-15
PSO 30 0-2 15-18 15 0-1 7-12

Mandatory
DE 62 2-4 40-41 39 0-1 27-29
PSO 62 0-1 35-39 39 0-1 24-27



160 R. Ugolotti, Y.S.G. Nashed, and S. Cagnoni

Table 3. Percentage of correct sign classifications in the test set and in the two se-
quences for the four categories of signs

Set Warning Prohibitory Priority Mandatory Total

Test Set
LVQ 74.3 78.7 98.7 89.3 81.6
MLP 71.5 80.5 99.4 94.3 83.1

Parma Sequence
LVQ 91.2 81.9 97.0 99.4 92.4
MLP 69.0 69.2 95.4 99.4 83.2

Turin Sequence
LVQ 75.3 94.8 100 100 92.5
MLP 77.1 77.8 98.9 99.6 88.4

The table shows that the two methods have similar performance (with slightly
better performances for the MLP) on the test set, but LVQ achieves better results
over the real sequences. This probably happens because the test set contains
several deformed or noisy images, while the images produced by the detection are
usually good in terms of quality and positioning. The conclusion can be that LVQ
is able to yield better results when operating on good quality images, while MLPs
have better generalization ability. Finally, in table 4, we present the results of
the entire system using DE and LVQ. Since, in the actual implementation, there
is no way to track signs during the flow of the sequence (and, consequently, each
sign can be detected multiple times), we consider a sign to have been correctly
classified by evaluating off-line if at least half of its classifications are correct.
Figure 3 shows some examples of correct classifications, correct detections with
wrong classification and wrong detections.

4.3 Computational Efficiency

Experiments were run on a PC equipped with a 64-bit Intel R© Core(TM) i7
CPU running at 2.67 GHz, combined with a Quadro FX5800 graphics card by
nVIDIA, having 4Gb of video RAM and 240 processing cores. All the operations
performed on each frame (two repetitions of detection plus classification for each
sign category) require an average time of 57 ms, which corresponds to a frame
rate of 17.5 fps. A sequential version of the same algorithm could reach only a
frame rate of 4-5 fps [11], a processing speed which is not acceptable for this
kind of application.

Table 4. Final results of the system using DE and LVQ

Parma Sequence Turin Sequence
Total Correct Total Correct

Warning 51 25-28 53 37-43

Prohibitory 44 24-27 47 38-41

Priority 30 17-20 15 11-15

Mandatory 62 38-41 39 26-29
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Fig. 3. Some results of the system. The first three columns show signs that have been
correctly detected and classified, the fourth shows misclassified signs, while the last one
shows wrong detections. Our method is robust against differences in light conditions
and partial occlusions.

5 Conclusions

We presented a system for detecting and classifying road signs. Detection is
performed using a method in which a model of the sign to detect is translated and
projected onto the image. Candidate solutions are created by means of swarm
intelligence techniques. Differential Evolution and Particle Swarm Optimization
have been compared in this phase, showing that PSO has better average results
than DE, while DE exhibits a better exploitation ability, which produces a larger
number of detections. Classification have been performed using Learning Vector
Quantization and Multi-layer Perceptrons. The results showed that LVQ has
better performance when working on good quality images, while MLPs have
greater generalization ability. The system has been implemented on GPU using
CUDA and is able to correctly detect and classify around 70% of the signs at
17.5 fps, a similar result in shorter time, compared to the best results obtained
on the same sequences so far [10].
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Abstract. The aim of this work is to accelerate the task of evolution-
ary image filter design using coevolution of candidate filters and training
vectors subsets. Two coevolutionary methods are implemented and com-
pared for this task in the framework of Cartesian Genetic Programming
(CGP). Experimental results show that only 15–20% of original training
vectors are needed to find an image filter which provides the same qual-
ity of filtering as the best filter evolved using the standard CGP which
utilizes the whole training set. Moreover, the median time of evolution
was reduced 2.99 times in comparison with the standard CGP.

1 Introduction

Evolutionary design based on genetic programming is a very computationally-
intensive design method. For example, for 36 tasks solved using Koza’s genetic
programming, the average population size was 3,350,000 individuals, 128.7 gen-
erations were produced in average and the average time to reaching a solution
was 81.9 hours [3]. It also holds for the evolutionary design of image filters which
has been performed by Cartesian Genetic Programming (CGP). The most time
consuming procedure is the fitness calculation where tens of thousands of pixels
in training set (the so-called target objective vectors, TOVs) have to be evalu-
ated in order to obtain a single fitness value. A single run is typically finished
after 200 thousands candidate filter evaluations. However, for the cost of run-
time, very efficient image filters were evolved, often beating conventional designs
in terms of the filtering quality as well as the area required on a chip [9]. In order
to reduce the time of evolution, various CGP accelerators have been introduced
including GPU-based and FPGA-based machines [12, 11, 1].

In this paper, we propose to employ a coevolutionary algorithm running on an
ordinary processor to accelerate the image filter evolution. Various coevolution-
ary methods have been introduced that can evolve suitable subsets of TOVs for
evaluation of candidate solutions. The aim of this type of coevolution is to allow
both candidate programs and TOVs subsets to improve each other automati-
cally until a satisfactory problem solution is found. Coevolutionary algorithms
with interactions between two independently evolving populations, in the “hosts”
and “parasites” type relationships, were studied in many application domains
[2, 7, 6, 4].
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In our previous work, inspired by coevolution of fitness predictors (CFP) [8],
we applied coevolution of TOVs in CGP in order to accelerate the task of sym-
bolic regression [10]. In this paper, we will show that the subsets of TOVs can
be (substantially) smaller than original training sets in the task of image filter
evolution. Consequently, the overall time of filter evolution can be significantly
reduced. This paper also proposes and evaluates two strategies for top-ranked
TOVs subset selection. The proposed coevolutionary algorithms will be com-
pared with the standard CGP in the task of evolutionary design of image filters
suppressing a salt-and-pepper noise.

2 CGP for Image Filter Design

The state of the art of CGP has recently been summarized in a monograph [5]
which also surveys the evolutionary image filter design using CGP [9]. In CGP,
candidate programs are represented in the form of directed acyclic graph, which
is modeled as a matrix of nc × nr programmable elements (nodes). The number
of primary inputs, ni, and outputs, no, of the program is defined for a particular
task. Each node input can be connected either to the output of a node placed
in previous l columns or to one of the program inputs. Feedback is not allowed.
Each node is programmed to perform one of na-input functions defined in the
set Γ . Each node is encoded using na + 1 integers where values 1 . . . na are the
indexes of the input connections and the last value is the function code. Every
individual is encoded using nc · nr · (na + 1) + no integers.

As the considered filters operate over a filtering window consisting of 3 × 3
pixels, each candidate filter can utilize up to nine 8-bit inputs, i.e. ni = 9. The
filters produce a single pixel, i.e. no = 1. Table 1 gives a set of functions working
over two pixels i1 and i2 that are typically used for image filter evolution. Figure 1
shows an example of a candidate filter and its encoding in CGP.

In this task, the search is usually performed using a simple (1+λ) evolutionary
algorithm, where λ = 7. Every new population consists of the best individual of
the previous population and its λ offspring created using a mutation operator
which modifies up to h integers of the chromosome. The initial population is
generated randomly. The algorithm is terminated when the maximum number

Table 1. List of node functions

Code Function Description Code Function Description

0 255 constant 8 i1 � 1 right shift by 1
1 i1 identity 9 i1 � 2 right shift by 2
2 255− i1 inversion A swap (i1, i2) swap nibbles
3 i1 ∨ i2 bitwise OR B i1 + i2 + (addition)

4 i1 ∨ i2 bitwise i1 OR i2 C i1 +
S i2 + with saturation

5 i1 ∧ i2 bitwise AND D (i1 + i2) � 1 average
6 i1 ∧ i2 bitwise NAND E max (i1, i2) maximum
7 i1 ⊕ i2 bitwise XOR F min (i1, i2) minimum
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Fig. 1. A candidate filter in CGP, where l = 1, nc = 8, nr = 4, ni = 9, no = 1,
na = 2, Γ is according to Table 1 and the chromosome is: 6, 7, 14; 2, 6, 10; 8, 3, 14;

1, 6, 14; 10, 12, 15; 12, 8, 0; 0, 12, 7; 11, 12, 15; 13, 15, 4; 14, 16, 11; 5, 7, 14; 16, 5, 10; 18, 19, 15; 17, 17, 5;

19, 19, 10; 19, 18, 7; 21, 23, 6; 21, 23, 14; 22, 23, 10; 4, 23, 6; 25, 28, 0; 28, 26, 11; 1, 25, 11; 27, 25, 15;

31, 30, 9; 4, 29, 11; 6, 30, 8; 30, 32, 6; 33, 33, 2; 34, 36, 15; 33, 35, 11; 33, 34, 1; 38.

of generations is exhausted, typically after 30,000 generations [9]. In the fitness
function, the goal is to minimize the mean absolute error between uncorrupted
version of the training image and the result of filtering of a candidate filter. This
can be expressed in terms of the mean difference per pixel (MDPP) as

MDPP =
1

MN

M∑
i=1

N∑
j=1

|v (i, j)− w (i, j)| . (1)

where M ×N is the image size, v(i, j) is a pixel value in the filtered image and
w(i, j) is a pixel value in the uncorrupted image.

3 Coevolution of TOVs in CGP

In the proposed coevolutionary algorithm, there are two concurrently working
populations: (1) candidate programs (filters) evolving using CGP and (2) TOVs
subsets evolving using a genetic algorithm. Figure 2 shows that both populations
evolve simultaneously, interacting through the fitness function (using top-ranked
individuals).

3.1 Population of Candidate Filters

Evolution of candidate filters is based on principles of CGP as introduced in
Section 2. The fitness function for CGP is defined in terms of MDPP. There
are, in fact, two fitness functions for a candidate filter. While the exact fitness
function MDPPexact utilizes the complete training set (i.e. all training vectors
from the training images), the partial fitness function MDPPpartial uses only a
selected subset. Formally,
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Fig. 2. Populations in coevolution of TOVs in CGP

MDPPexact =
1

MN

M∑
i=1

N∑
j=1

|v (i, j)− w (i, j)| (2)

MDPPpartial =
1

K

K∑
l=1

|v (l)− w (l)| (3)

where M × N is the total number of TOVs in the training set and K is the
number of TOVs in a training subset and l is index in the list of pointers to
pixel at possition (i, j).

The set of fitness trainers contains several candidate filters and is used to eval-
uate the fitness of TOVs subsets. If the top-ranked candidate filter has a different
fitness value than the top-ranked candidate filter in the previous generation, the
top-ranked candidate filter replaces the oldest trainer in a circular list of trainers.

3.2 Population of TOVs Subsets

The most useful subset of TOVs is sought using a simple genetic algorithm (GA)
which operates with a population of TOVs subsets. Every TOVs subset is en-
coded as a constant-size array of pointers to elements (i, j) in the training set.
In addition to one-point crossover and mutation, a randomly generated TOVs
subset replacing the worst-scored TOVs subset in each generation has been in-
troduced as a new genetic operator of GA.

We will compare two approaches to fitness calculation. In the first one, the
fitness value of a TOVs subset (i.e. the fitness predictor) is calculated using the
mean absolute error of the exact fitness and partial fitness of fitness trainers s.
This fitness value, which is based on the CFP approach [8], can be expressed as

fCFP =
1

T

T∑
t=1

|MDPPpartial (s(t))−MDPPexact (s(t))| , (4)
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where T is the number of trainers in the trainers set. The goal of TOVs subsets
evolution is to minimize this fCFP value, i.e. to ensure that the TOVs subset can
determine (predict) the solutions’ fitness values as exactly as possible.

Another approach exploits the competitive coevolution (CC) scheme [2]. The
population of candidate filters can be viewed as “hosts” and the population of
test cases as “parasites”. The fitness of each candidate filter is measured by its
ability to correctly solve training cases (therefore, the eq. 3 is applicable) while
the fitness of the training cases is higher for those that cannot be solved well by
currently evolved filters. Then the fitness value of a TOVs subset derived from
Eq. 3 is defined as

fCC =
1

T

T∑
t=1

1

K

K∑
l=1

|v (l)− w (l)| (5)

and the goal of evolution is to maximize the fCC value. This type of fitness
function should ensure that the TOVs subset includes TOVs that cannot be
solved exactly by currently evolved filters.

3.3 Implementation

There are two threads in the coevolution implementation. One thread is respon-
sible for candidate filters evolution using CGP, the other one for TOVs subsets
evolution. This two thread model is described in Figure 3.

In the first step, the candidate filters, the trainers and the TOVs subsets
are randomly initialized. Then the CGP thread waits for the first evolved TOVs
subset to load it from shared memory, which is done at the beginning of every it-
eration of the CGP main loop. This loop continues with evaluating fitness values
(MDPPpartial) of each candidate filter in a current population and selecting the
top-ranked candidate filter. Next, there is a possibility of storing a new trainer
in trainers circular list. After deciding whether to store the new trainer or not,
a new generation is created and the evolution loop continues with the next iter-
ation. The evolution loop terminates when the predefined count of generations
is reached.

The TOVs subsets evolution loop begins with loading the trainers from shared
memory. Depending on the selected method the exact fitness is or is not evalu-
ated. In CFP, the exact fitness MDPPexact is calculated for each trainer. Then
the TOVs subset fitness is evaluated using fCFP (Eq. 4). In CC, the exact fitness
values of trainers are not evaluated, and the TOVs subset fitness is calculated
using fCC (Eq. 5). As the top-ranked TOVs subset is then taken the subset
with the maximal fCC value, which means that this TOVs subset filtered using
trainers has the worst (maximal) mean quality measured by MDPPpredicted over
trainers. This can help the candidate filters to improve filtering those training
cases, which cannot be solved yet.
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BEGIN Filters Thread
Randomize trainers-circular-list
Randomize filters population
FOR 1 TO generation-total-count DO BEGIN

Load top-ranked-TOVs-subset from shared memory
Evaluate partial fitnesses for filters using top-ranked-TOVs-subset
Select top-ranked-filter
IF actual-parent-fitness <> previous-parent-fitness THEN BEGIN

Store parent to trainers-circular-list to shared memory
END
Create new generation of filters using top-ranked-filter

END
Set terminating-flag
Evaluate exact fitness of last-top-ranked-filter
RETURN last-top-ranked-filter

END

BEGIN TOVs Thread
Randomize TOVs population
REPEAT forever

Load trainers-circular-list from shared memory
[OPTIONALLY] Evaluate exact fitnesses of trainers // depending on selected method
Evaluate fitnesses for TOVs-subsets using trainers
Select top-ranked-TOVs-subset
Store top-ranked-TOVs-subset to shared memory
Create new generation of TOVs-subsets using 2-tournament selection

and single point crossover
IF terminating-flag THEN BEGIN

EXIT thread
END

END
END

Fig. 3. Pseudocode for coevolution of the population of filters and the TOVs subsets
population

After trainers processing, the fitness values of TOVs subsets are evaluated
and the top-ranked TOVs subset is selected and stored to shared memory. The
worst-ranked TOVs subset is replaced by a new randomly generated one, which
is involved in TOVs subset reproduction to ensure TOVs subsets population
diversity. A new generation is then created and the evolution loop continues
with the next iteration, while the terminating flag is not set up.

4 Results

This section presents benchmark problems, experimental setup and experimental
evaluation of the proposed coevolutionary approach and its comparison with the
standard CGP.

4.1 Benchmark Problems

In order to evaluate the proposed approach, salt and pepper noise filters will be
designed using CGP. This type of noise is characterized by noisy pixels with the
value of either 0 or 255 (for the 8-bit gray-scaled images) typically caused by
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errors in data transmission, faulty memory locations in hardware or malfunc-
tioning pixels in camera sensors. Conventionally designed filters for this type of
noise are based on the median function. Two noise intensities have been applied,
i.e. the Lena training image with resolution 256× 256 pixels was corrupted by
5% and 10% salt-and-pepper type of noise. Evolved filters are tested using five
different images containing the same type of noise.

4.2 Experimental Setup

CGP is used according to literature [5], i.e. nc = 8, nr = 4, l = 1, ni = 9, no = 1,
λ = 7, every node has two inputs, the number of mutations per new individual is
h = 5 and Γ contains the functions from Table 1. The trainers set is represented
as a circular list with eigth elements.

TOVs subsets are evolved using a simple GA, where 2-tournament selection,
single point crossover (with the probability 100%, but the top-ranked individ-
ual is always involved in next generation) and mutation up to 2% of chromo-
some are used. For the GA, various chromosome lengths are tested, particularly,
2.5%, 5%, 10%, 15%, 20% and 25% of total size of TOVs in the training
set (which contains 64,516 TOVs because boundary pixels are not considered
in the 256 × 256 training images). For each TOVs subset size, 25 independent
runs were performed and the evolution/coevolution was terminated after 30,000
generations of CGP.

4.3 Comparison of Coevolving CGP with Standard CGP

The proposed coevolutionary algorithms were compared with the standard CGP
in terms of filtering quality of evolved filters and the execution time.

The quality of filtering is expressed as a peak signal-to-noise ratio (PSNR)
which is a measure typically used in the image processing community. It can be
seen in Figure 4 that the proposed coevolutionary algorithm is capable of evolv-
ing image filters of satisfactory quality even if only 15% of TOVs are utilized.

Table 2 gives PSNR for five test images filtered by the best filters evolved
using standard CGP, coevolutionary CGP (CC, the TOVs subset size is 20%)
and conventional median filter. The PNSR results of coevolutionary CGP are
comparable or better with respect to the standard CGP for both noise intensities.
The PSNR results for the median filter are not as good, however, we expected
this on the basis of our previous work [9]. The best filter for the 5% noise evolved
using CGP with coevolution is shown in Figure 1.

Figure 5 shows one of test images corrupted with the 5% salt-and-pepper
noise and then filtered using the median filter, the best filter evolved using the
standard CGP and the best filter evolved using CGP with coevolution. The
median filter provides smudged images in comparison to evolved filters.



170 M. Sikulova and L. Sekanina

 20

 25

 30

 35

 40

100 25 20 15 10 5 2.5

P
S

N
R

TOVs subset size [%]

CC: Quartiles

(a) CC PSNR

 20

 25

 30

 35

 40

100 25 20 15 10 5 2.5

P
S

N
R

TOVs subset size [%]

CFP: Quartiles

(b) CFP PSNR

Fig. 4. PSNR statistics calculated from 25 independent runs of CC and CFP for the
Lena image (5% noise). The 100% result is for the standard CGP.

It can be seen in Figure 6 that for the 15% TOVs subset size, the evolutionary
design is accelerated 2.99-times in comparison to the standard CGP. Note that
the execution time is given as the sum of execution times of both threads. The
speedup was measured on the 2× 8-thread Intel R© Xeon R© E5640 machine.

Figures 6 and 4 show that the CC and CFP fitness interacting strategies
are similar in terms of filtering quality of evolved filters and execution time.
However, profiles of evolved TOVs subsets differ. The CFP fitness interacting
strategy leads to TOVs subsets that have a similar ratio of corrupted pixels as
the total TOVs set, while the CC fitness interacting strategy leads to a little
higher ratio of corrupted pixels in TOVs subsets (Table 3).

Table 2. PSNR for test images filtered by the best filters evolved using standard CGP,
coevolutionary CGP (CC, the TOVs subset size is 20%) and conventional median filter.

Test image
5% noise 10% noise

std CGP coevolution median 3 × 3 std CGP coevolution median 3 × 3

Airplane 38.008 37.747 29.303 32.370 34.053 28.557
Bird 46.113 44.706 38.242 35.735 40.054 36.990
Bridge 35.117 33.707 26.040 30.051 30.246 25.662
Camera 35.299 36.075 26.823 30.590 32.800 26.245
Goldhill 37.799 37.906 27.927 32.284 34.012 27.524
Lena 38.233 38.357 30.381 33.332 35.301 29.739

Table 3. Comparison of a mean ratio of corrupted pixels in the top-ranked TOVs
subsets in the CFP and CC strategy (5% noise).

Subset size 25% 20% 15% 10% 5% 2.5%

CFP 4.973% 5.009% 4.971% 4.960% 4.961% 5.087%
CC 5.328% 5.391% 5.456% 5.658% 5.519% 6.114%
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(a) Noise 5% (b) Median filter

(c) Std CGP filter (d) Coe CGP filter

Fig. 5. Comparison of images filtered by median filter (b), the best filter evolved using
the standard CGP (c), and CGP with coevolution (d)
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Fig. 6. Execution time statistics calculated from 25 independent runs for CC and CFP.
The 100% result is for the standard CGP running in one thread. Other values are for
coevolution using two threads (the execution time is the sum of both threads).

5 Conclusions

In this paper, we proposed two coevolutionary methods to CGP in order to ac-
celerate the evolutionary design of image filters. No significant differences were
observed between the cooperative coevolution and coevolution of fitness predic-
tors. It was shown that only 15–20% of original test vectors are needed to find
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an image filter which provides the same quality of filtering as the best filter
evolved using the standard CGP which utilizes the whole training set. The me-
dian time of evolution was reduced 2.99 times in comparison with the standard
CGP. Future work will be devoted to further parallelization of the whole concept.
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Abstract. An automated technique has recently been proposed to trans-
fer learning in the hierarchical Bayesian optimization algorithm (hBOA)
based on distance-based statistics. The technique enables practitioners to
improve hBOA efficiency by collecting statistics from probabilistic mod-
els obtained in previous hBOA runs and using the obtained statistics
to bias future hBOA runs on similar problems. The purpose of this pa-
per is threefold: (1) test the technique on several classes of NP-complete
problems, including MAXSAT, spin glasses and minimum vertex cover;
(2) demonstrate that the technique is effective even when previous runs
were done on problems of different size; (3) provide empirical evidence
that combining transfer learning with other efficiency enhancement tech-
niques can often yield nearly multiplicative speedups.

Keywords: Transfer learning, inductive transfer, learning from experi-
ence, estimation of distribution algorithms, hierarchical Bayesian opti-
mization algorithm, decomposable problems, efficiency enhancement.

1 Introduction

Estimation of distribution algorithms (EDAs) [1,2,3] guide the search for the
optimum by building and sampling probabilistic models of candidate solutions.
The use of probabilistic models in EDAs provides a basis for incorporating prior
knowledge about the problem and learning from previous runs in order to solve
new problem instances of similar type with increased speed, accuracy and reli-
ability [4,5]. However, much prior work in this area was based on hand-crafted
constraints on probabilistic models [6,7,8,9] which may be difficult to design or
even detrimental to EDA efficiency and scalability [10]. Recently, Pelikan and
Hauschild [11] proposed an automated technique capable of learning from pre-
vious runs of the hierarchical Bayesian optimization algorithm (hBOA) in order
to improve efficiency of future hBOA runs on problems of similar type. The
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basic idea of the approach was to (1) design a distance metric on problem vari-
ables that correlates with the expected strength of dependencies between the
variables, (2) collect statistics on hBOA models with respect to the values of
the distance metric, and (3) use the collected statistics to bias model building
in hBOA when solving future problem instances of similar type. While the dis-
tance metric is strongly related to the problem being solved, the aforementioned
study [11] described a rather general metric that can be applied to practically
any problem with the objective function represented by an additively decompos-
able function. However, the prior study [11] evaluated the proposed technique
on only two classes of problems and it did not demonstrate several key features
of this technique.

The purpose of this paper is threefold: (1) Demonstrate the technique from
ref. [11] on other classes of challenging optimization problems, (2) demonstrate
the ability of this technique to learn from problem instances of one size in order
to introduce bias for instances of another size, and (3) demonstrate the po-
tential benefits of combining this technique with other efficiency enhancement
techniques, such as sporadic model building [12]. As test problems the paper con-
siders several classes of NP-complete additively decomposable problems, includ-
ing MAXSAT, three-dimensional Ising spin glass, and minimum vertex cover.
The new results together with the results published in prior work [11] provide
strong evidence of the broad applicability and great potential of this technique
for learning from experience (transfer learning) in EDAs.

The paper is organized as follows. Section 2 outlines hBOA. Section 3 discusses
efficiency enhancement of estimation of distribution algorithms using inductive
transfer with main focus on hBOA and the distance-based bias [11]. Section 4
presents and discusses experimental results. Section 5 summarizes and concludes
the paper.

2 Hierarchical BOA

The hierarchical Bayesian optimization algorithm (hBOA) [4,13] works with a
population of candidate solutions represented by fixed-length strings over a fi-
nite alphabet. In this paper, candidate solutions are represented by n-bit binary
strings. The initial population of binary strings is generated at random according
to the uniform distribution over candidate solutions. Each iteration starts by se-
lecting promising solutions from the current population; here binary tournament
selection without replacement is used. Next, hBOA (1) learns a Bayesian net-
work with local structures [14] for the selected solutions and (2) generates new
candidate solutions by sampling the distribution encoded by the built network.
To maintain useful diversity in the population, the new candidate solutions are
incorporated into the original population using restricted tournament selection
(RTS) [15]. The run is terminated when termination criteria are met. In this
paper, each run is terminated either when the global optimum is found or when
a maximum number of iterations is reached.

hBOA represents probabilistic models of candidate solutions by Bayesian
networks with local structures [14,16]. A Bayesian network is defined by two
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components: (1) an acyclic directed graph over problem variables specifying
direct dependencies between variables and (2) conditional probabilities speci-
fying the probability distribution of each variable given the values of the vari-
able’s parents. A Bayesian network encodes a joint probability distribution as
p(X1, . . . , Xn) =

∏n
i=1 p(Xi|Πi) where Xi is the ith variable (string position)

and Πi are the parents of Xi in the underlying graph.
To represent conditional probabilities of each variable given the variable’s

parents, hBOA uses decision trees [13,14]. Each internal node of a decision tree
specifies a variable, and the subtrees of the node correspond to the different
values of the variable. Each leaf of the decision tree for a particular variable
defines the probability distribution of the variable given a condition specified by
the constraints given by the path from the root of the tree to this leaf (constraints
are given by the assignments of the variables along this path).

To build probabilistic models, hBOA typically uses a greedy algorithm that ini-
tializes the decision tree for each problem variable Xi to a single-node tree that
encodes the unconditional probability distribution of Xi. In each iteration, the
model building algorithm tests how much a model would improve after splitting
each leaf of each decision tree on each variable that is not already located on the
path to the leaf. The algorithm executes the split that provides the most improve-
ment, and the process is repeated until no more improvement is possible. Models
are evaluated using the Bayesian-Dirichlet (BDe) metric with penalty for model
complexity, which estimates the goodness of a Bayesian network structure given
data D and background knowledge ξ as p(B|D, ξ) = cp(B|ξ)p(D|B, ξ), where c
is a normalization constant [14,17]. The Bayesian-Dirichlet metric estimates the
term p(D|B, ξ) by combining the observed and prior statistics for relevant combi-
nations of variables [14]. To favor simpler networks to the more complex ones, the
prior probability p(B|ξ) is often set to decrease exponentially fast with respect to
the description length of the network’s parameters [4,16].

3 Learning from Experience Using Distance-Based Bias

In hBOA and other EDAs based on complex probabilistic models, building an
accurate probabilistic model is crucial to the success [2,3,10,18]. However, build-
ing complex probabilistic models can be time consuming and it may require
rather large populations of solutions [2,3]. That is why much effort has been
put into enhancing efficiency of model building in EDAs and improving qual-
ity of EDA models even with smaller populations [5,7,8,19,20]. Learning from
experience [4,5,11,19,20] represents one approach to addressing this issue.

The basic idea of learning from experience is to gather information about the
problem by examining previous runs of the optimization algorithm and to use the
obtained information to bias the search on new problem instances. The use of bias
based on the results of other learning tasks is also commonplace in machine learn-
ing where it is referred to as inductive transfer or transfer learning [21,22]. Since
learningmodel structure is often themost computationally expensive task inmodel
building, learning fromexperience often focuses on identifying regularities inmodel
structure and using these regularities to bias structural learning in future runs.
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Analyzing probabilistic models built by hBOA and other EDAs is straightfor-
ward. The more challenging facet of implementing learning from experience in
practice is that one must make sure that the collected statistics are meaningful
with respect to the problem being solved. The key to make the learning from
experience work is to ensure that the pairs of variables are classified into a set
of categories so that the pairs in each category have a lot in common and can be
expected to be either correlated or independent simultaneously [11]. This sec-
tion describes one approach to doing that [11], in which pairs of variables are
classified into categories based on a predefined distance metric on variables.

3.1 Distance Metric for Additively Decomposable Functions

For many optimization problems, the objective function (fitness function) can be
expressed as or approximated by an additively decomposable function (ADF):

f(X1, . . . , Xn) =

m∑
i=1

fi(Si), (1)

where (X1, . . . , Xn) are problem’s decision variables (string positions), fi is the
ith subfunction, and Si ⊂ {X1, X2, . . . , Xn} is the subset of variables contribut-
ing to fi. Typically, the sets {Si} are not disjoint. While there may often exist
multiple ways of decomposing the problem using additive decomposition, one
would typically prefer decompositions that minimize the sizes of subsets {Si}.
Note that the difficulty of ADFs is not fully determined by the order of subprob-
lems, but also by the definition of the subproblems and their interaction; even
with subproblems of order only 2 or 3, the problem can be NP-complete.

The definition of a distance between two variables of an ADF used in this
paper as well as ref. [11] follows the work of Hauschild et al. [5,10,19]. Given an
ADF, we define the distance between two variables using a graph G of n nodes,
one node per variable. For any two variables Xi and Xj in the same subset
Sk, we create an edge in G between the nodes Xi and Xj . Denoting by li,j the
number of edges along the shortest path between Xi and Xj in G (in terms of
the number of edges), we define the distance between two variables as

D(Xi, Xj) =

{
li,j if a path between Xi and Xj exists,
n otherwise.

The above distance measure makes variables in the same subproblem close to
each other, whereas for the remaining variables, the distances correspond to the
length of the chain of subproblems that relate the two variables. The distance
is maximal for variables that are completely independent (the value of the first
variable does not influence the contribution of the second variable in any way).

Since interactions between problem variables are encoded mainly in the sub-
problems of the additive problem decomposition, the above distance metric
should typically correspond closely to the likelihood of dependencies between
problem variables in probabilistic models discovered by EDAs. Specifically, the
variables located closer with respect to the metric should more likely interact
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with each other. This observation has been confirmed with numerous experi-
mental studies across a number of important problem domains from spin glasses
distributed on a finite-dimensional lattice [10,11] to NK landscapes [11].

3.2 Distance-Based Bias Based on Previous Runs of hBOA

This section describes the approach to learning from experience developed by Pe-
likan and Hauschild [11] inspired mainly by the work of Hauschild et al. [5,19,20].
Let us assume a set M of hBOA models from prior hBOA runs on similar prob-
lems; in the experiments we use all models obtained from prior runs as the
starting point. Before applying the bias based on prior runs, the models in M
are first processed to generate data that will serve as the basis for introducing
the bias. The processing starts by analyzing the models in M to determine the
number s(m, d, j) of splits on any variable Xi such that D(Xi, Xj) = d in a de-
cision tree Tj for variable Xj in a model m ∈M . Then, the values s(m, d, j) are
used to compute the probability Pk(d, j) of a kth split on a variable at distance
d from Xj in a dependency tree Tj given that k − 1 such splits were already
performed in Tj:

Pk(d, j) =
|{m ∈M : s(m, d, j) ≥ k}|

|{m ∈M : s(m, d, j) ≥ k − 1}| · (2)

Recall that the BDe metric for evaluating the quality of probabilistic models
in hBOA contains two parts: (1) the prior probability p(B|ξ) of the network
structure B, and (2) the posterior probability p(D|B, ξ) of the data (population
of selected solutions) given B. Pelikan and Hauschild [11] proposed to use the
prior probability distribution p(B|ξ) to introduce a bias based on distance-based
statistics from previous hBOA runs represented by Pk(d, j) by setting

p(B|ξ) = c

n∏
d=1

n∏
j=1

ns(d,j)∏
k=1

P κ
k (d, j), (3)

where ns(d, j) denotes the number of splits on any variable Xi in Tj such that
D(Xi, Xj) = d, κ > 0 is used to tune the strength of bias (the strength of
bias increases with κ), and c is a normalization constant. Since log-likelihood
is typically used to evaluate model quality, when evaluating the contribution of
any particular split, the change of the prior probability of the network structure
can still be done in constant time.

4 Experiments

4.1 Test Problems and Experimental Setup

The experiments were done for three problem classes known to be difficult
for most genetic and evolutionary algorithms: (1) Three-dimensional Ising spin
glasses were considered with ±J couplings and periodic boundary conditions
[23,24]; two problem sizes were used, n = 6 × 6 × 6 = 216 spins and
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n = 7 × 7 × 7 = 343 spins with 1,000 unique problem instances for each n.
(2) Minimum vertex cover was considered for random graphs with a fixed ratio
c of the number of edges and number of nodes [25,26]; two ratios (c = 2 and
c = 4) and two problem sizes (n = 150 and n = 200) were used with 1,000 unique
problem instances for each combination of c and n. (3) MAXSAT was considered
for mapped instances of graph coloring with graphs created by combining reg-
ular ring lattices (with probability 1− p) and random graphs (with probability
p) [27,28]; 100 unique problem instances of n = 500 bits (propositions) were
used for each considered value of p, from p = 2−8 (graphs nearly identical to
a regular ring lattice) to p = 2−1 (graphs with half of the edges random). For
more information about the test problems, we refer the reader to refs. [23,25,27].

The maximum number of iterations for each problem instance was set to the
number of bits in the problem; according to preliminary experiments, this upper
bound was sufficient. Each run was terminated either when the global optimum
was found or when the maximum number of iterations was reached. For each
problem instance, we used bisection [4,29] to ensure that the population size was
within 5% of the minimum population size to find the optimum in 10 out of 10
independent runs. Bit-flip hill climbing (HC) [4] was incorporated into hBOA
to improve its performance on all test problems except for the minimum vertex
cover; HC was used to improve every solution in the population. For minimum
vertex cover, a repair operator based on ref. [25] was incorporated instead. The
strength of the distance-based bias was tweaked using κ ∈ {1, 3, 5, 7, 9}; the
greater the value of κ, the stronger the bias.

To ensure that the same problem instances were not used for defining the bias
as well as for testing it, 10-fold crossvalidation was used when evaluating the
effects of distance-based bias derived from problem instances of the same size.
For each set of problems (by a set of problems we mean a set of random problem
instances generated with one specific set of parameters), problem instances were
randomly split into 10 equally sized subsets. In each round of crossvalidation, 1
subset of instances was left out and hBOA was run on the remaining 9 subsets
of instances. The runs on the 9 subsets produced models that were analyzed in
order to obtain the probabilities Pk(d, j) for all d, j, and k. The bias based on
the obtained values of Pk(d, j) was then used in hBOA runs on the remaining
subset of instances. The same procedure was repeated for each subset; overall,
10 rounds of crossvalidation were performed for each set of instances. When
evaluating the effects of distance-based bias derived from problem instances of
smaller size, we did not use crossvalidation because in this case all runs had to be
done on different problem instances (of different size). Most importantly, in every
experiment, models used to generate statistics for hBOA bias were obtained
from hBOA runs on different problem instances. While the experiments were
performed across a variety of computer architectures and configurations, the
base case with no bias and the case with bias were always both run on the same
computational node; the results of the two runs could therefore be compared
against each other with respect to the actual CPU (execution) time.
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To evaluate hBOA performance, we focus on the multiplicative speedup with
respect to the execution time per run; the speedup is defined as a multiplicative
factor by which the execution time improves with the distance-based bias com-
pared to the base case. For example, an execution-time speedup of 2 indicates
that the bias allowed hBOA to find the optimum using only half the execution
time compared to the base case without the bias. We also report the percentage
of runs for which the execution time was strictly improved (shown in parentheses
after the corresponding average multiplicative speedup).

In addition to the speedups achieved for various values of κ, we examine the
ability of the distance-based bias based on prior runs to apply across a range of
problem sizes; this is done by using previous runs on instances of one size to bias
runs on instances of another size. Since for MAXSAT, we only used instances of
one size, this facet was only examined for the other two problem classes.

Finally, we examine the combination of the distance-based bias based on prior
runs and the sporadic model building [12]. Specifically, we apply sporadic model
building on its own using the model-building delay of

√
n/2 as suggested by

ref. [12], and then we carry out a similar experiment using both the distance-
based bias as well as the sporadic model building, recording the speedups with
respect to the base case. Ideally, we would expect the speedups from the two
sources to multiply. Due to the time requirements of solving MAXSAT, the
combined effects were studied only for the remaining two problem classes.

4.2 Results

The results presented in tables 1, 2 and 3 confirm the observation from ref. [11]
that the stronger the bias the greater the benefits, at least for the examined range
of κ ∈ {1, 3, 5, 7, 9} and most problem settings; that is why in the remainder of
this discussion we focus on κ = 9. In all cases, the distance-based bias yielded
substantial speedups of about 1.2 to 3.1. Best speedups were obtained for the
minimum vertex cover. In all cases, performance on at least about 70% prob-
lem instances was strictly improved in terms of execution time; in most cases,

Table 1. Results for 3D spin glass

(a) Results for 10-fold
crossvalidation with priors
from other instances of the
same size.

κ
CPU speedup

n = 216 n = 343

1 0.40 ( 0%) 0.43 ( 0%)
3 1.00 (43%) 1.08 (60%)
5 1.23 (71%) 1.32 (85%)
7 1.24 (70%) 1.34 (81%)
9 1.21 (66%) 1.20 (67%)

(b) Results for n = 343
with priors based on
models obtained on
problem instances of
smaller size, n = 216.

κ CPU speedup

1 0.43 ( 1%)
3 1.05 (61%)
5 1.33 (85%)
7 1.34 (82%)
9 1.26 (75%)

(c) Results for a combination
of distance-based bias (DBB)
and sporadic model building
(SMB) for n = 343. 10-fold
crossvalidation was used.

κ
CPU speedup

DBB+SMB SMB

1 1.85 (99%) 3.20 (99%)
3 3.29 (99%) 3.20 (99%)
5 4.04 (99%) 3.20 (99%)
7 4.23 (99%) 3.20 (99%)
9 4.03 (99%) 3.20 (99%)
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Table 2. Results for minimum vertex cover

(a) Results for 10-fold cross-
validation with priors from
other instances of the same
size.

c = 2

κ
CPU speedup

n = 150 n = 200

1 0.57 ( 2%) 0.45 ( 0%)
3 1.95 (91%) 1.63 (87%)
5 2.78 (96%) 2.69 (94%)
7 3.04 (95%) 2.98 (94%)
9 3.10 (93%) 2.95 (92%)

(b) Results for n = 200
with priors based on
models obtained on
problem instances of
smaller size, n = 150.

c = 2

κ CPU speedup

1 0.53 ( 2%)
3 1.95 (91%)
5 2.79 (95%)
7 2.99 (94%)
9 3.02 (91%)

(c) Results for a com-
bination of distance-based
bias (DBB) and sporadic
model building (SMB) for
n = 200. 10-fold crossvali-
dation was used.

c = 2

κ
CPU speedup

DBB+SMB SMB

1 3.12 ( 99%) 4.89
3 6.89 (100%) 4.89
5 10.25 (100%) 4.89
7 11.38 (100%) 4.89
9 11.29 ( 99%) 4.89

c = 4

κ
CPU speedup

n = 150 n = 200

1 0.28 ( 0%) 0.17 ( 0%)
3 0.97 (39%) 0.53 ( 4%)
5 1.56 (82%) 1.16 (62%)
7 1.97 (88%) 1.65 (81%)
9 2.27 (89%) 1.91 (85%)

c = 4

κ CPU speedup

1 0.23 ( 0%)
3 0.86 (27%)
5 1.50 (79%)
7 1.89 (85%)
9 2.12 (84%)

c = 4

κ
CPU speedup

DBB+SMB SMB

1 1.88 ( 82%) 4.54
3 3.24 ( 96%) 4.54
5 5.00 ( 99%) 4.54
7 6.15 ( 99%) 4.54
9 6.60 ( 99%) 4.54

Table 3. Results for MAXSAT

κ
CPU speedup

p = 2−1 p = 2−2 p = 2−4 p = 2−8

1 0.13 ( 0%) 0.22 ( 0%) 0.22 ( 0%) 0.38 ( 0%)
3 0.41 ( 0%) 0.53 ( 0%) 0.48 ( 0%) 1.01 ( 49%)
5 0.81 (25%) 0.82 (18%) 0.74 ( 4%) 1.63 (100%)
7 1.38 (69%) 1.09 (55%) 1.03 (54%) 1.84 (100%)
9 2.31 (94%) 1.38 (81%) 1.28 (89%) 1.90 (100%)

the improvements were observed in a much greater majority of instances. The
speedups were substantial even when the bias was based on prior runs on problem
instances of different, smaller size; in fact, the speedups obtained with such a bias
were nearly identical to the speedups with the bias based on the instances of the
same size. The results thus provide clear empirical evidence that the distance-
based bias is applicable even when the problem instances vary in size, which was
argued [11] to be one of the main advantages of the distance-based bias over
prior work in the area but was not demonstrated. Finally, the results show the
nearly multiplicative effect of the distance-based bias and sporadic model build-
ing, providing further support for the importance of the distance-based bias; the
combined speedups ranged from about 4 to more than 11.
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5 Summary and Conclusions

This paper extended the prior work on efficiency enhancement of the hierarchi-
cal Bayesian optimization algorithm (hBOA) using a distance-based bias derived
from prior hBOA runs [11]. The paper demonstrated that (1) the distance-based
bias yields substantial speedups on several previously untested classes of chal-
lenging, NP-complete problems, (2) the approach is applicable even when prior
runs were executed on problem instances of different size, and (3) the approach
can yield nearly multiplicative speedups when combined with other efficiency en-
hancement techniques. In summary, the results presented in this paper together
with the prior work [11] provide clear evidence that learning from experience
using a distance-based bias has a great potential to improve efficiency of hBOA
in particular and estimation of distribution algorithms (EDAs) in general. It is
of note that thus far we have not found a single problem class for which the
distance-based bias based on prior runs would fail to yield speedups.

In future work, the approach should be adapted to other model-directed opti-
mization techniques, including other EDAs and genetic algorithms with linkage
learning. The approach should also be modified to introduce bias on problems
that cannot be formulated using an additive decomposition in a straightforward
manner or such a decomposition is not practical. It would also be interesting to
investigate the effects of a bias based on problem instances that are not as simi-
lar, for example, by learning a bias on NK landscapes and applying the learned
bias to MAXSAT or 3D spin glass. Finally, it is important to study the limita-
tions of the proposed approach, and create theoretical models to automatically
tune the strength of the bias and predict expected speedups.
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Abstract. Learning complex game functions is still a difficult task. We
apply temporal difference learning (TDL), a well-known variant of the
reinforcement learning approach, in combination with n-tuple networks
to the game Connect-4. Our agent is trained just by self-play. It is able,
for the first time, to consistently beat the optimal-playing Minimax agent
(in game situations where a win is possible). The n-tuple network induces
a mighty feature space: It is not necessary to design certain features, but
the agent learns to select the right ones. We believe that the n-tuple
network is an important ingredient for the overall success and identify
several aspects that are relevant for achieving high-quality results. The
architecture is sufficiently general to be applied to similar reinforcement
learning tasks as well.

Keywords: Machine learning, reinforcement learning, TDL, self-play,
n-tuple systems, feature generation, board games.

1 Introduction

1.1 Learning

Our understanding of learning processes is still limited, especially in complex
decision-making situations, where the payoff for a particular action occurs only
later, probably a long time after the action is executed. The fact that the payoff
occurs only after a number of subsequent actions leads to the well known credit
assignment problem: decide which action should get which credit for a certain
payoff. The most advanced methods in machine learning to address this prob-
lem are reinforcement learning (RL), e. g., the well-known temporal difference
learning (TDL), and evolutionary algorithms, namely evolution strategies (ES)
and co-evolution.

TDL was applied as early as 1957 by Samuel [9] to checkers and gained more
popularity through Sutton’s work in 1984 and 1988 [13,14]. It became very fa-
mous in 1994 with Tesauro’s TD-Gammon [15], which learned to play backgam-
mon at expert level.
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Learning to play board games has a long tradition in AI. This is due to
most board games having simple rules, nevertheless, they encode surprisingly
complex decision-making situations including the above mentioned credit as-
signment problem. The search for an optimal playing agent constitutes an in-
teresting branch of optimization problems: In normal optimization problems, an
objective function is known, i. e. a function to assess the quality of a solution.
Contrariwise, no such objective function exists for many board games, or it is
computationally too expensive to calculate. For example, most board positions
in chess are too complex to be analyzed in full depth. Moreover, the strength
of an agent is the quality of its move in all relevant board positions. Instead of
this inaccessible objective function, we often use certain interactions as primary
driver of the search, which serve as a surrogate for the objective function [7].
On a simple level, interaction can take place between a solution and itself: A
well-known example is self-play, a technique used for game strategy learning,
where an agent plays many games against itself. In population-based methods
like co-evolutionary algorithms, interaction involves two or more different solu-
tions from one or from several populations.

In particular, we are interested in such learning problems, where a ’true’
objective function is not accessible for learning. Many problems in practice are
like this: We need to ’play well’ in a certain environment, but the objective
function is either not known or it may not be invoked often enough for all
the learning trials needed. Given the right learning architecture, how much can
we learn from self-play? Nature itself provides us with incredibly convincing
examples, for instance, children, who learn in complex situations from only few
interactions with the environment. It is an open question, how much internal self-
play contributes to such learning successes. Our goal is to mimic at least some
of these awesome learning successes observed in nature with machine learning
architectures.

1.2 Related Work

In our previous work concerned with the learning of game functions, we compared
CMA-ES and TDL [6] and investigated the role of features and feature generation
on learning and self-organization [5].

In this paper we consider the game Connect-4 as a specific example, which is
solved on the AI-level (see Sec. 2.1). Only rather few attempts to learn Connect-
4 (whether by self-play or by learning from teachers) are found in the literature:
Schneider et al. [10] tried to learn Connect-4 with a neural network, using an
archive of saved games as teaching information. Sommerlund [11] applied TDL
to Connect-4 but obtained rather discouraging results. Stenmark [12] compared
TDL against a knowledge-based approach from Automatic Programming and
found TDL to be slightly better. Curran et al. [3] used a cultural learning ap-
proach for evolving populations of neural networks in self-play to play Connect-4.
All the above works gave no clear answer on the playing strength of the agents,
since they did not compare their agents with a perfect-playing Minimax agent.
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Some preliminary work in our institution on learning Connect-4 with neural nets
or TDL also did not lead to convincing success. Only small subsets of Connect-4
could be learned to some extent.

Then Lucas showed with the n-tuple-approach [8] that the game of Othello,
having a somewhat greater complexity than Connect-4, could be learned by
TDL within a few thousand training games. The n-tuple-approach is basically a
clever approach to introduce a rich variety of features into board games. Krawiec
et al. [7] applied the n-tuple-approach in (Co-) Evolutionary TDL and outper-
formed TDL in the Othello League. This stirred new interest in our Connect-4
project and gave rise to the following research questions:
Q1 Is the n-tuple approach also applicable to Connect-4, i. e. can we, for the

first time, get good results from self-play using n-tuples?
Q2 Can we do so with relatively few training games when using enough n-tuples?
Q3 Which ingredients are crucial for the success of learning?

Fig. 1. Connect-4 board with an example 4-tuple ’3-2-1-1’ (see Sec. 2.2)

2 Methods

2.1 Connect-4

The game of Connect-4 is a two-player game played on a board with 7 vertical
slots containing 6 positions each (Fig. 1). Player Yellow (1st) and player Red
(2nd) place one piece per turn in one of the available slots and each piece falls
down under the force of gravity into the lowest free position of the slot. Each
player attempts to create horizontal, vertical or diagonal piece-lines of length
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four. Fig. 1 shows an example position where Yellow would win if Red does not
block this by placing a red piece into the right slot.

Connect-4 has a medium state space complexity of 4.5·1012 board positions [4].
It can be solved by a combination of game tree search and clever heuristics with
a few days of computing time. Connect-4 was solved in 1988 independently by
Allen and by Allis [1]: Yellow (the 1st player) wins, if she places her piece in the
middle slot.

We developed a Minimax agent combined with a pre-calculated 8-ply or 12-
ply-opening database [16] and it finds the perfect next move (or moves, if several
moves are equally well) for each board position within fractions of a second. This
agent will be used in our experiments only as referee or as evaluating agent. It
is by no means used for any training purpose.

2.2 N-tuples and LUTs

N-tuples in General. N-tuple systems have first been introduced in 1959
by Bledsoe and Browning [2] for character recognition. Their main advantages
include conceptual simplicity and capability of realizing non-linear mappings
to spaces of higher dimensionality [7]. Recently, Lucas proposed employing the
n-tuple architecture also for game-playing purposes [8]. The n-tuple approach
works in a way similar to the kernel trick used in support vector machines (SVM):
The low dimensional board is projected into a high dimensional sample space
by the n-tuple indexing process [8].

N-tuples in Connect-4. Each n-tuple Ti is a sequence [ai0, . . . , ain−1] of n
different board locations where each aij codes a specific cell of the board. For
example, the four white digits in Fig. 1 mark the board locations of a 4-tuple.
Each location possesses one of P possible states z[aij ] ∈ {0, . . . , P−1} (the value
of the digits in our example). An n-tuple of length n thus has Pn possible states
k ∈ {0, . . . , Pn−1}. The number represented by the state of Ti can be used as an
index into an associated look-up table LUTi, which contains parameters wi,t[k]
equivalent to weights in standard neural networks. For a given board position z,
the output of the n-tuple network can be calculated as:

f(wt, zt) =
m∑
i=0

wi,t [k] with k =
n−1∑
j=0

zt[aij ]P
j . (1)

Here, zt[aij ] is the state of board location aij at time t. Likewise, wi,t[k] is the
weight for state k of n-tuple Ti, i = 1, . . . ,m. It is also a function of time t since
it will be modified by the TD learning rule, see Sec. 2.3. The vector wt combines
all weights from all LUTs at time t.

Position Encoding. We consider two alternative approaches for Connect-4:

P=3: Each board location has one of the 3 z-values: 0=empty, 1=Yellow,
2=Red.

P=4: Each board location has one of the 4 z-values: 0=empty and not reach-
able, 1=Yellow, 2=Red, 3=empty and reachable.
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By reachable we mean an empty cell that can be occupied in the next move. The
reason behind the (P=4)-encoding is that it makes a difference whether e. g.
three yellow pieces in a row have a reachable empty cell adjacent to them (a
direct threat for Red) or a non-reachable cell (only indirect threat).

Fig. 1 shows an example board position with a 4-tuple in the numbered cells.
The state of the 4-tuple is k = 3 · 40 + 2 · 41 + 1 · 42 + 1 · 43 = 91.

Symmetry. Board games often have several symmetries in the board posi-
tion. In case of Connect-4, there is only one symmetry, the mirror reflection of
the board along the middle column. If k denotes an n-tuple state for a certain
board position, we denote with M(k) its state in the mirror-reflected board. As
proposed by Lucas [8] we can augment the n-tuple network output of Eq. (1) to

f(wt, zt) =

m∑
i=0

(wi,t[k] + wi,t[M(k)]). (2)

N-tuple Creation. There are different methods how n-tuples can be created:
The purely random sampling of board cells is possible but not very sensible for
game feature search. It is more advisable to select adjacent locations because the
goal of the game is to place 4 adjecent pieces. Therefore, we propose a random
walk very similar to the snake method introduced by Lucas [8]: To create an
n-tuple of length K, we start at a random cell, which is the first cell of the
n-tuple. Afterwards, we visit one of its 8 neighbors and add it to the n-tuple (if
not already in there). We continue to one of its neighbors, and so on, until we
have K cells in the n-tuple. The only difference to Lucas’ snake method is our
n-tuple all having a fixed length of K, while snakes can have lengths 2, . . . ,K.

2.3 TDL

The goal of the agent is to predict the ideal value function, which usually is
1.0 if the board position is a win for Yellow, and -1.0 if it is a win for Red.
The TD algorithm aims at learning the value function. It does so by setting up
an (initially inexperienced) agent, who plays a sequence of games against itself.
It learns from the environment, which gives a reward r ∈ {−1.0, 0.0, 1.0} for
{ Yellow-win, Draw, Red-win } at the end of each game . The main ingredient
is the temporal difference (TD) error signal [14]

δt = V (wt, zt+1)− V (wt, zt). (3)

Here, V (wt, zt) = σ (f(wt, zt)) is the agent’s current approximation of the value
function on the basis of Eq. (2) and a nonlinear sigmoid function σ (we choose
σ = tanh). If the state observed at time t + 1 is terminal, the exact value r of
the game is used in Eq. (3) instead of the prediction V (wt, zt+1). The weights
are trained with the usual δ-rule

wt+1 = wt + αδt∇wV (wt, zt), (4)

which aims at making the preceding prediction match the current prediction
more closely. More details on TDL in games can be found in our previous work [5].
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Table 1. Computation time, number of weights and (for a specific n-tuple set) non-
zero weights. The count of non-zero weights varies a bit with different n-tuple sets, but
always has the same order of magnitude.

position time (10× weights non-zero
encoding 107 games) weights

P=3 6h 45min 918.540 304.444

P=4 7h 50min 9.175.040 646.693

2.4 Agent Evaluation

A fair agent evaluation for board games is not trivial. There is no closed-form
objective function for ’agent playing strength’ since the evaluation of all board
positions is infeasible and it is not clear, which relevance has to be assigned to
each position. The most common approach is to assess an agent’s strength by
observing its interactions with other agents, either in a tournament or against
a referee agent. We choose the Minimax agent to be the ultimate referee. Note
that all the approaches to Connect-4 found in the literature (cf. Sec. 1) fail to
provide a common reference point for the strength of the agents generated.

Our approach to agent evaluation in Connect-4 is as follows: When TDL
training is finished, TDL (Yellow) and Minimax (Red) play a tournament of 50
games. (Since Minimax will always win playing Yellow, we consider only games
with Minimax playing Red.) The ideal TDL agent is expected to win every
game. If both agents act fully deterministically, each game would be identical.
We introduce a source of randomness without sacrificing any agent’s strength
as follows: If Minimax has several optimal moves at its disposal, it chooses one
of them randomly. The TDL agent gets a score of 1 for a win, 0.5 for a draw
and 0 for a loss. The overall success rate STDL ∈ [0.0, 1.0] is the mean of the 50
individual scores. A perfect TDL agent receives a success rate of 1.0.

3 Experimental Setup

We established a software framework in Java for conducting learning experiments
(see Fig. 1) on the basis of the elements described above: TDL agent with n-
tuples, Connect-4, Minimax, agent evaluation and visual inspection capabilities.
Each n-tuple is allowed to have one or two LUTs (see Sec. 4).1

During training and play, the TDL agent does not use any game-tree search
(0-ply look-ahead), instead it just inspects the board positions of its legal moves
and chooses the best one. Initially, we tested different n-tuple architectures and
decided to conduct all our experiments with 70 n-tuples of length 8 afterwards. If
not stated otherwise, the learning rate α followed an exponential decay scheme
with αinit = 0.01 and αfinal = 0.001. Each TDL agent was initialized with
weights = 0 and trained during 10 million games of self-play and evaluated

1 The code is available from the authors on request.
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(b) 2 LUTS, one for each player

Fig. 2. Success rate STDL of the n-tuple-based TDL agent playing Connect-4

every 100,000 games. Table 1 shows the computation time needed on a Q9550
quad-core PC (2.83 GHz on each of the 4 cores) for 10 TDL training experiments.

If we have 70 n-tuples of length 8 with 2 LUTs each, the number of LUT-
entries in (P=4)-encoding is 2 · 70 · 48 = 9.175 · 106. Note that not every state
corresponding to a LUT-entry is a realizable state during Connect-4 games: If a
column’s lower cell is 0 or 3, all cells above must be 0. Combinations like (0,1),
(0,1,1,2), . . . (from bottom to top) are not possible. Thus we expect a large
number of weights to stay at zero since they are never updated during training.
Tab. 1 confirms this for an example n-tuple set: After training, the number of
non-zero weights is only a fraction of the total number of weights.2

A final important ingredient is the exploration rate ε: Connect-4 is a deter-
ministic game and deterministic players would always conduct the same game
during self-play. Although a TDL agent might slowly change during learning and
thus behaves not fully deterministically, it is nearly deterministic and learning
would become ineffective. Therefore, a source of randomness is introduced to
aid the exploration of the game tree: With probability ε the TDL agent chooses
its next move randomly. After such a random move, no weight update (Eq. (4))
is performed. The parameter ε follows a sigmoidal decay scheme, usually with
εinit = 0.95 and εfinal = 0.1.

4 Results

First results, cf. Fig. 2(a), were rather discouraging: The TDL agent rarely won
against Minimax, even utilizing different n-tuple creation schemes (random walk,
random snake, random sample) and both types of position encoding, i.e. P=3

2 The number of non-zero weights usually amounts to 98-100% of the realizable states.
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(b) Improved learning rate decay scheme

Fig. 3. Further results with TDL agent playing Connect-4

and P=4. The results show the mean from 10 experiments and even the best
experiment has only a mediocre success rate STDL < 58%.

Two LUTs. The major breakthrough was achieved when we changed the
n-tuple architecture from 1 LUT per n-tuple to 2 LUTs, one for each player. In
contrast to Othello, a certain position in a subpart of the board can have a rather
different value whether it is Yellow’s turn or Red’s turn. Therefore, it is advisable
to learn both concepts separately. As the light blue curve in Fig. 2(b) shows,
we, for the first time, receive an 80% success rate. The results are comparatively
stable: If we repeat the experiment ten times with the same n-tuple set but
different random moves, we get very similar results, cf. Fig. 2(b). The error bars
represent the standard deviation from the ten experiments.

(P=4)-Encoding. The darker green curve in Fig. 2(b) shows the beneficial
effects of (P=4)-encoding (cf. Sec. 2.2): Compared to the (P=3)-encoding we
reach a strong-playing agent much faster (the 80% success rate line is crossed
after 4 million games instead of 5 million games), the mean success rate between
6 and 10 million training games is 6% higher (90% instead of 84%), and the vari-
ance is lower. We refer to the darker green curve as ”standard” in the following
experiments.

Different N-tuple Sets. The n-tuple creation process is completely by
chance, no game specific considerations are taken into account.We tested whether
different randomly selected sets would produce a large variance. The results with
10 different sets are shown in Fig. 3(a): The light blue curve is considerably lower
(10% in the range beyond 6 · 106 games) and has a larger variance.

When analyzing this result, we found that half of the variance can be at-
tributed to one ’bad’ n-tuple set, which completely failed on the task (success
rate < 0.1). All others sets were very similar to the standard n-tuple set (approx.
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4.5% lower in the range beyond 6 ·106 games). The results are consistent: A ’bad’
n-tuple set will always be bad when repeating the training with other random
moves, a ’good’ set will always be good.

Learning Rate Tuning. We observed that an α-decay scheme with αfinal ≥
0.004 does not learn anything. A possible reason is that, due to conflicting signals,
individual weights oscillate up and down without the ability to average over
different situations. This is often the case in TDL game learning. The sharp onset
in success rate in Fig. 2(b) and Fig. 3(a) is with 4 million training games exactly
at the point in training where α drops below 0.004. It seems natural to change the
α-decay scheme from [αinit, αfinal] = [0.01, 0.001] (standard) to [αinit, αfinal] =
[0.004, 0.002]. Having implemented this, we observe a much faster training (the
80% success rate line is crossed after 2 instead of 4 million games) and a slight
increase in final performance (92% instead of 90%), cf. Fig. 3(b).

We also tested variations in parameter ε (exploration decay scheme), but this
does not seem to change the results very much. However, a thorough tuning was
not performed yet.

5 Conclusion

We summarize by answering our research questions as stated in Sec. 1.2:

Q1. The n-tuple approach has proven to be very successful for the game of
Connect-4. For the first time, we generated a strong-playing agent trained
just by self-play, i. e. it had no access to teaching information other than the
mere rules of the game. The shapes of the n-tuples were not designed by the
programmer, instead the system selected them by random walk.

Q2. Lucas found that 1250 training games were enough to produce a strong-
playing TDL agent applying the n-tuple approach to Othello [8]. We cannot
confirm this for Connect-4. So far we need 2–4 million training games to pro-
duce strong-playing Connect-4 agents. One possible reason, among others,
is that Othello has an 8-fold symmetry, while it is only a 2-fold symmetry in
Connect-4. Thus, it takes longer to visit all branches of the game tree. It is
an open question, whether more or better n-tuples will shorten the training
time.

Q3. Among the ingredients crucial for the success of learning there is first of
all the architecture {n-tuple + TDL} itself: The game Connect-4, despite
the fact that it is heuristically solved, seems somewhat hard to code for
learning architectures. To the knowledge of the authors, there is no other
result in literature, where a learning agent, just trained from self-play, was
able to consistently win Connect-4 when playing as starting player against
Minimax. Given this architecture, some other ingredients are essential to get
the n-tuple approach to work in Connect-4:

– Two LUTs per n-tuple, one for each player. Using only one LUT, con-
flicting signals hinder the TDL architecture to learn.
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– It is essential to select the right decay scheme for the learning rate α:
With too large α values, the agent fails to learn anything, while a too
small α slows down the learning process.

Future work. Given the large impact seen in the n-tuple creation process,
it is natural to ask whether learning is depending on the characteristics of the
n-tuple sets (number, size, and shape of n-tuples). An interesting area of future
work is the question whether it is possible to evolve n-tuple sets by keeping
successful n-tuples in a population and removing bad or redundant ones.

We presented the n-tuple approach to Connect-4 in conjunction with TD
learning. It might as well be interesting to compare it with other learning strate-
gies such as co-evolutionary learning (CEL) [7].

We conclude by emphasizing the impressiveness that such a simple and gen-
eral architecture is able to learn near-perfect decision-making in a complex sur-
rounding completely from self-play without a teacher. Here, ’simple’ means that
no domain-specific knowledge about the tactics of the game is coded, neither
explicitly nor implicitly. It is our impression that the mighty feature space,
implicitly induced by the large LUTs of the n-tuple approach, plays a large
role here.
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Abstract. Computational Intelligence (CI) provides good and robust
working solutions for global optimization. CI is especially suited for solv-
ing difficult tasks in parameter optimization when the fitness function is
noisy. Such situations and fitness landscapes frequently arise in real-world
applications like Data Mining (DM). Unfortunately, parameter tuning in
DM is computationally expensive and CI-based methods often require
lots of function evaluations until they finally converge in good solutions.
Earlier studies have shown that surrogate models can lead to a decrease
of real function evaluations. However, each function evaluation remains
time-consuming. In this paper we investigate if and how the fitness land-
scape of the parameter space changes, when only fewer observations are
used for the model trainings during tuning. A representative study on
seven DM tasks shows that the results are nevertheless competitive. On
all these tasks, a fraction of 10-15% of the training data is sufficient.
With this the computation time can be reduced by a factor of 6-10.

Keywords: Machine learning, parameter tuning, sampling, SVM,
sequential parameter optimization.

1 Introduction

Data Mining (DM) is an interesting field for applying Computational Intelligence
(CI) techniques. Although CI methods can generate good and robust solutions
for global optimization problems, it is known that they sometimes require a large
number of function evaluations. Unfortunately, data mining tasks are usually
very expensive to evaluate and quick solutions are requested by the users. In
this paper we investigate how computation time can be saved in order to make
CI methods more applicative for DM tasks.

We claim the following hypotheses:

H1. Tuning results are more subject to noise when smaller fractions X of the
training data are used.
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H2. Tuning with smaller fractions X will usually lead to increased prediction
errors, but the optimal design points found by a robust optimizer will nev-
ertheless be competitive (as long as X is not too small).

If we rewrite H1 a little, we can come to the conclusion that the variance should
be higher when the training set size is smaller. If H1 holds, we should be able
to measure this effect directly by an increased variance of the model error. If we
can confirm H2, considerable computation speedups in tuning DM models are
possible.

Previous work in analyzing the effects of the chosen sample size has been
mainly done in fields like statistics and machine learning. A good overview about
different strategies to sample data can be found in Cochran [3]. A description of
resampling methods for optimization in data mining has been given by Bischl
et al. [2]. Raudis and Jain [14] and Jain and Zongker [7] discuss the influence
of sample sizes on the results of feature selection, which is in a certain way
related to the parameter optimization task in this article. In statistics, sample
sizes are frequently discussed in terms of statistical studies like significance tests
[11]. In machine learning, sampling strategies like the bootstrap [5] have been
well analyzed and are often applied in practice. However, to our knowledge no
study exists where the size of the underlying training data is diminished during
parameter tuning.

2 Methods

2.1 Learning Algorithms

As a learning algorithm we experimented with the Support Vector Machine
(SVM) [16], since SVM is known to be very sensitive to its parameter settings.
We used the libsvm implementation in R from the e1071 package1. However, all
experiments can be also performed with any other (supervised) machine learning
algorithm. Here, we restricted ourselves to SVM, since it appeared to be best
suited for our experiments.

SVM needs several hyperparameters to be set to work properly. First of all
it requires a kernel function to allow for non-linear class boundaries. The choice
of the kernel function is a crucial decision in machine learning and must be
considered carefully. However, some kernel functions are good-working for several
problems. For instance, the radial basis function (RBF) kernel belongs to the
most popular kernel functions and defines the similarity of inputs x and z by

k(x, z) = exp(−γ(||x− z||)) (1)

For our needs the RBF kernel function is well-suited, since it comes along with
the hyperparameter γ which has to be set anew for each data. Small values of
γ indicate large influences of given data points, whereas large γ values mean

1 Software available from
http://cran.r-project.org/web/packages/e1071/index.html

http://cran.r-project.org/web/packages/e1071/index.html
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that the influence of the data points is more restricted. Besides the γ kernel
parameter SVM regularizes points which do not lie in the hyperplane fitted by
the algorithm. Therefore it uses a so-called regularization parameter C (for cost),
which is important for finding a good balance of the underlying optimization
problem of the SVM and correct classification of training examples. For more
details on SVM we refer the interested reader to the literature [15].

2.2 Tuning Algorithms

Parameter tuning tasks in machine learning can be modelled as noisy single-
objective optimization problems. Any parameter setting of the learning parame-
ters is called a design. For each design we can measure the quality by training a
model (running the learning algorithm using some training data) and applying
the trained model to new test data. Note that although the underlying learning
algorithm may be deterministic, the tuning task can be nevertheless stochastic,
because the training and test samples of the data are drawn at random. Hence,
the robustness and generalization ability of the optimization algorithm is an
important criterion for the tuning task. Konen et al. [10] therefore compared
tuning algorithms like the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [6] with the Sequential Parameter Optimization Toolbox (SPOT) [1].
SPOT is a heuristic which employs surrogate models of the objective function.
The advantage of such strategies is that the number of real function evaluations
can be reduced, since parts of the optimization can be performed on the surro-
gate model. In a comparative study [10], SPOT performed best under strongly
limited budgets. It was noted that CMA-ES can give similar results, presum-
ing that enough function evaluations are allowed. Other statistical methods like
Latin hypercube sampling (LHD) [12] uniformly distribute design points over
the search space: their performance and accuracy usually diminishes for larger
search space dimensions.

2.3 Objective Function

We perform a tuning of all parameters which are relevant for our machine learn-
ing task. Any single-objective optimizer requires an objective function, in order
to evaluate the quality of the parameter designs. In our case we distinguish
between

(a) the model error on validation data during tuning, and

(b) the error obtained with the best parameters from tuning on independent test
data (data which has not been used throughout the whole tuning process)

During tuning the objective function value is the fraction of wrongly classified
pattern in the validation set. The unbiased estimator for the model’s error on
new data is th fraction of wrongly classified pattern in the test set.
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3 Experimental Setup

Parameter optimization in machine learning can be challenging: the training
time of SVM often grows quadratically with the number of training patterns
[13]. Since this might be one reason why parameter optimization is seldom done
in practice, we try to find new ways to make tuning of DM tasks less costly:
We vary the number of training patterns used during parameter tuning. In our
optimization task the most time consuming part is the evaluation of the objective
function, because in each evaluation a complete SVM training is performed (the
runtime of optimizers like SPOT can be also expensive, but are neglectable
in our case, since we only use fast surrogate models and small designs). We
investigate how much time can be saved by reducing the training data used for
parameter tuning and if parameters with small training fractions are competitive
with parameters tuned on the total training set.

3.1 Datasets

All experiments presented in this study were performed using datasets from the
UCI website,2 which can be regarded as the simpler datasets, the DMC 2007 data
from the data mining cup 2007, and a real-world dataset from water ressource
management (AppAcid). In Tab. 1 an overview about the datasets and their
sizes is given. We present the minimal training set size for each dataset, and
also the sizes of the test and validation sets. Each model is evaluated a) during
tuning on the validation data and b) after tuning on the independent test data.
The sizes for the test and validation sets are equal and stay constant all the time
at 20% of the total dataset size. In Tab. 1 these sizes are given as Validation and
Test Size.

Table 1. Datasets used for the training set size experiments

Dataset Records Min. Training
Size

Max. Training
Size

Validation
and Test Size

Number of
Parameters

Sonar 208 8 124 41 2
Glass 214 8 128 42 2
Liver 345 13 207 69 2
Ionosphere 351 14 210 70 2
Pima 768 30 460 153 2

AppAcid 4400 176 2640 880 12

DMC-2007 50000 2000 30000 10000 7

Every time a fixed set of 20% of the patterns was set aside prior to tuning
for testing purposes. From the remaining 80% of the data (subset Dtrain), we
use a fraction X from Xmin = 5% to Xmax = 75% for training and a fraction of

2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 2. Splitting of data. We use fractions from 4% to 60% of the data for model
training, 20% for validation during the tuning and the remaining 20% for independent
testing.

Training
←→ not used Validation Test

25% for validation (which is 20% of all data). See Tab. 2 for illustration. At the
end of tuning a best design point is returned. Using this best design point, we
ran a final ’full’ training with all data in Dtrain (80%) and evaluated the trained
model on the test set (20%). Since the training, validation and test sets were
drawn at random we repeated all of our experiments ten times.

While a first benchmark of tuning algorithms has been performed by Konen
et al. [10], it remained unclear, if the results also hold for smaller training set
sizes. Now we also compare SPOT as a tuning algorithm with LHD as a simple,
but robust sampling heuristic. LHD is based on the following procedure: We
chose random and roughly equally distributed design points from the region of
interest and evaluated the design 3 times. Again, the best point is taken for the
’full’ training as above.

3.2 SPOT Setup

SPOT can be controlled through various settings, which have to be adapted
slightly for each task. We briefly present our settings for the experimental study
here (Tab. 3). With 150 function evaluations for the UCI experiments we chose a
rather large number of evaluations compared to the other (real-world) datasets.
Our aim was to achieve a good and clear convergence to an optimum. Out
of this reason we considered to analyze simpler datasets first, since complex
datasets require much more time for such experiments. Nevertheless we also set
a number of 200 function evaluations for AppAcid, which proved to be a good
and sufficient number in one of our last studies [10]. It has to be noted that the
dimensionality of the parameter space for AppAcid is 12, while it is only 2 for
the UCI benchmarks.

As region of interest (ROI) for the UCI datasets we set quite large ranges
(as we have enough evaluations for these benchmarks). We vary the range of
γ between [0.0, 1.0] and the range of cost C between [0.0, 10.0]. For the other
applications (AppAcid, DMC2007) we relied on the same settings as in our
previous experiments, see [10] for more information.

Table 3. SPOT Configuration

Setting UCI AppAcid

function evaluations 150 200
initial design size 10 24
sequential design points 3 3
sequential design repeats {1, 3} 2
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3.3 Sampling Strategies

First of all, k subsets D1, ..., Dk ⊂ Dtrain of the complete training data Dtrain

lead to models M1, ..,Mk which are presumably not equal when the training
data subsets are not equal, although hyperparameters γ and C are identical (on
the same training data SVM is deterministic). Thus we have D1 	= D2 	= ... 	=
Dk → M1 	= M2 	= ... 	= Mk. Different strategies are possible for sampling the
training subsets during tuning:

(A) Choose a subset D1 ⊂ Dtrain once and use it for the whole parameter opti-
mization process. We call this option parameter tuning without resampling.

(B) In each call i of the objective function, choose a new subset Di ⊂ Dtrain

for training. If a design point is evaluated repeatedly, e. g. n times, we
choose different subsets D1, D2, ..., Dn, train models for them and use an
aggregation function (here: the mean) to return an objective function value.
We call this option parameter tuning with resampling.

4 Results

4.1 Tuning Results

Exemplarily we present boxplots of the SPOT hyperparameter tuning for the
Sonar and AppAcid datasets in Fig. 1.3 We distinguish between the error achieved
on the validation data when using only a smaller training set fraction X (Error
VALI Set) and the independent test set error when a complete re-training with
the optimal parameter setting is performed (Error TEST Set). All results in
Fig. 1 were optimized using SPOT with sampling strategy (B) and a total num-
ber of 3 repeated evaluations for each design point. The validation error in both
plots is clearly increasing if the training set size X is reduced from X = 75% to
X = 5%. However, the same does not necessarily hold for the test data. While
the mean errors and their variances are large for small training fractions, they
are roughly constant and small for all X ≥ 15%.

This is a promising result, as it may allow us to use only a subsample of the
complete data during tuning. As we can see in Tab. 4, good tuning results with
a very small number of training data (here X=10%) were observed as well for all
other datasets. If we take the best parameters from such a tuning process and
re-train once with the complete training data, we obtain results on independent
test data which are competitive with a much more time-consuming ’full’ tuning.

We observed on all considered datasets, that the prediction accuracies of sin-
gle models on different data are very noisy. Thus, the chosen sampling strategy
(see Sec. 3.3) has an impact on the final results. A comparison of the sampling
strategies (A) and (B) showed that we can achieve the most stable results using
strategy (B) and a number of repeated evaluations greater than 1 (from now on

3 A complete set of all boxplot results and accompanying material is available for the
interested reader from http://gociop.de/about/people/koch/ppsn2012/.

http://gociop.de/about/people/koch/ppsn2012/
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Fig. 1. Tuning results with SPOT for Sonar and AppAcid datasets using 3 repeats.
The x-axis shows the training set fraction X.

Table 4. Test-set error rates (mean and standard deviation of ten runs) for all datasets
investigated. We show results when using small and full training data during tuning, af-
ter re-training once with best parameters found. In case of DMC-2007 we show relative
gain instead of error rate.

Dataset X=10% X=75%
median (std.dev.) median (std.dev.)

Sonar 17.07 (14.3) 13.41 (5.5)
Glass 28.57 (7.7) 28.57 (7.6)
Liver 36.23 (4.3) 31.88 (6.5)
Ionosphere 5.71 (2.4) 5.71 (2.4)
Pima 23.20 (2.5) 23.20 (3.9)

AppAcid 17.99 (3.3) 19.38 (5.5)

DMC-2007 14.73 (2.0) 15.66 (1.0)

we always set the repeats to 3 in our study). We think that repeated evaluations
are an important factor to circumvent wrong decisions of the optimizer operating
in a noisy environment.

Regarding the comparison of SPOT and LHD we show in Fig. 2 that SPOT
usually yields in better parameter settings when trained with a fraction of the
data, especially for X ≤ 10%. Results degrade for very low training set sizes (1%
or 2%). They are however competitive for all X ≥ 10% (SPOT) and X ≥ 20%
(LHD): The tuning results are as good as with a tuning on the ’full’ training
data and the models generalize well on unseen data.
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Fig. 2. Comparison of SPOT and LHD algorithms on AppAcid

4.2 Landscape Analysis

Fig. 3 shows a comparison of the surrogate surfaces for a small (X=10%) and
large training set size on the Sonar dataset. We used a surrogate model based
on Gaussian Processes (GP) [8]. When only few training data were used (left
plots), the SPOT and LHD landscapes are both relatively flat, with shallow
minima near γ ≈ 0. These minima are however a good indicator for the minima
obtained when we perform the tuning with the complete training set size (right
plots). These plots both exhibit a clear and deep minimum near γ ≈ 0, relatively
independent of the cost term. The landscape for γ > 0 is however very different.
With SPOT, we obtain very spiky surrogate models (Fig. 3, upper right). This
especially occurs in regions where only few design points are sampled (these are
the regions presumably not containing the optimum). We think that when there
is a region with a high density of points but large noise in the objective function,
GP assumes a very small correlation length leading to spikes in the low-density
regions. Overall this leads to a less robust surrogate model. We will show in a
forthcoming contribution [9] that slightly different SPOT initial design settings
can lead to instable results.

LHD with its equal-density sampling in design space does not have this prob-
lem: The landscape (Fig. 3, lower right) exhibits a low curvature and is stable
in all experiments. Nevertheless the main issue of LHD sampling, which is the
bad scalability for higher dimensions, remains, and this is the reason why this
sampling method is less preferable for higher-dimensional search spaces.

We can conclude that if we use a robust surrogate model and a sufficient initial
design size of the tuning algorithm, we can obtain good parameter settings very
quickly.

4.3 Computation Time

The characteristics of the computation times for different training set sizes are
shown in Fig. 4 for the AppAcid dataset. Note that the curve which appears
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Fig. 3. Contour plots for Sonar. SPOT (top plots) and LHD (bottom plots), using 3
repeats, GP for the contour surface and small (X=10%, left) and large (X=75%, right)
training set sizes. White points are design points, the red point is the optimum found
by the optimization procedure.
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to be linear here can have a different look on other datasets. The roughly lin-
ear slope has its reason in the model building process for the AppAcid task.
This process includes several other operators beneath SVM training, e.g., pre-
processing (principal component analysis and feature selection). In other cases
the pure SVM training might grow quadratically with the number of training
samples, leading to even larger computation time savings.

5 Conclusion

We showed that tuning with a low training set size very often leads to good re-
sults: An astonishing small fraction of the training set (10-15%) was sufficient to
find with high probability a good DM model when performing one ’full’ training
with the best design point parameters. The resampling strategy (B) (see Sec. 3.3)
might be a crucial ingredient for this success with small training samples, but
further research is needed to justify this claim.4

This study investigated seven different data sets with sizes from 208 to 50000
records. Especially for the bigger datasets large speedups (factor 6 to 10) are
possible as Fig. 4 shows. Summarizing the results, we can conclude that both
hypotheses H1 and H2 hold for the datasets used in this study. In the future
we plan to search strategies for selecting the right sample sizes automatically.
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Abstract. The scalability of machine learning (ML) algorithms has be-
come increasingly important due to the ever increasing size of datasets
and increasing complexity of the models induced. Standard approaches
for dealing with this issue generally involve developing parallel and dis-
tributed versions of the ML algorithms and/or reducing the dataset sizes
via sampling techniques. In this paper we describe an alternative ap-
proach that combines features of spatially-structured evolutionary al-
gorithms (SSEAs) with the well-known machine learning techniques of
ensemble learning and boosting. The result is a powerful and robust
framework for parallelizing ML methods in a way that does not require
changes to the ML methods. We first describe the framework and illus-
trate its behavior on a simple synthetic problem, and then evaluate its
scalability and robustness using several different ML methods on a set
of benchmark problems from the UC Irvine ML database.

Keywords: Spatially-structured evolutionary algorithms, machine learn-
ing, ensemble learning, boosting.

1 Introduction

The most common applications of machine learning involve supervised learn-
ing in which a training set of labeled examples (or instances) is used to learn
a model that can be subsequently used to make predictions about previously
unseen examples. The scalability of such ML algorithms has become increas-
ingly important as datasets become larger and the complexity of the induced
models increases. Many current ML techniques scale poorly either because they
require the entire training set to be in memory simultaneously, or because the
running time of the model induction code grows non-linearly with the size of the
training data, or both [1]. Basic solutions like reducing the size of the training
datasets via sampling can be used but can introduce sampling errors. ML boost-
ing techniques are designed to deal with hard-to-classify examples, but do so
by making multiple passes over the training data [2]. More complex approaches
involve changing the basic structure of ML methods into parallel and distributed
versions.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 206–215, 2012.
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In this paper we describe an alternative approach that combines features
of spatially-structured evolutionary algorithms (SSEAs) with the well-known
machine learning techniques of ensemble learning and boosting. The result is
a powerful and robust framework for parallelizing ML methods in a way that
does not require changes to the underlying ML methods. We refer to this as our
PSBML framework, shorthand for Parallel Spatial Boosting Machine Learning.
We first describe our framework and illustrate its behavior on a simple synthetic
problem. We then evaluate its scalability and robustness using several different
standard ML methods on a selected subset of the benchmark problems in the
UC Irvine ML database.

2 Related Work

As noted above, our framework combines features from both the evolutionary
computing (EC) and ML communities. In this section we briefly summarize
them.

Spatially-structured evolutionary algorithms (SSEAs) which use topologically
distributed populations and local neighborhood selection have been well ana-
lyzed in the EC literature [3]. SSEAs have been shown to maintain a diverse set
of better individuals longer, resulting in improved performance in many appli-
cations [4]. However, the key feature that we want to take advantage of is its
“embarrassingly parallel” architecture in that at each topological grid point a
local algorithm is running that has only local interactions with its immediate
neighbors. In that sense our approach has much in common with cellular EAs
and cellular automata.

One of the interesting ML developments is that a collection (ensemble) of
simpler classifiers can often be more accurate than a single more complex clas-
sifier, and of course much easier to parallelize [5]. This maps nicely onto SSEAs
in the sense that an ensemble of classifiers can be distributed across the topo-
logical grid points in an SSEA. However, standard ensemble techniques require
each classifier to look at the entire (possibly sampled) set of training data. The
hypothesis we are exploring is that, by distributing the training data across the
grid points as well, the emergent capability of an ensemble of ML classifiers that
only have access to local subsets of training data will be comparable in classi-
fication performance to that of standard ML techniques and significantly more
scalable via parallelization.

A second interesting ML development is the awareness of the important dis-
tinction between easy and hard training examples. Intuitively, the hard exam-
ples are those close to classification decision boundaries. A classic example of
these are the “support vectors” on which support vector ML techniques are
based. Since the decision boundaries are not known a priori, in general, multiple
passes over the training data are required to identify these examples often via
“boosting” techniques that increase the frequency and/or weights of such train-
ing instances [2]. Beyond just improving classification accuracy, the identification
of these difficult training examples on the boundaries often leads to additional
problem insights used for finding interesting features for classification [6].
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Our PSBML framework incorporates this idea as well by introducing a local
neighborhood notion of hardness, using it as a measure of fitness, and boosting
the harder instances via fitness-proportional selection. The result is a parallel
ML technique in which both classification accuracy and the identification of hard
instances improves as the system evolves.

3 The PSBML Framework

Our PSBML framework for parallelizing machine learning methods has at its
core an SSEA [3] in which individuals and algorithms are distributed over a two-
dimensional torroidal grid with a common algorithm running locally on each
node in the grid and only local interactions with nearby grid points. In our case
the common algorithm is a replicator EA (i.e., no reproductive variation) that is
manipulating a population of training examples. Selection pressure in an SSEA
is determined by two design choices: the selection method used by the local EAs
running on each grid point, and the size and shape of the neighborhood structure.
In the experiments described in this paper, the local EA selection method used
was fitness-proportional selection (our boosting technique). We did, however,
experiment with different standard cellular neighborhood structures (Fig. 1) in
order to study the effects of varying the overall selection pressure.

Fig. 1. 2D-grid with various neighborhood structures (Source: LNCS 1141, p 237) [3]

Each node in the grid has a local EA running maintaining a population of
ML training examples that gets updated each generational cycle. The fitness of
each training example in the population is assessed via is a local ML technique
(e.g., a naive Bayesian classifier, a decision tree learner, etc.) in the following
manner. On each generational cycle, a node performs a standard ML train-test
procedure using the training examples on its node for training, and using the
training examples on neighboring nodes for testing. As is the case with standard
ML boosting methods, in addition to classifying the test examples, the learners
output a confidence value for each decision. The confidence values are used to
assign a fitness to each of the neighborhood test examples, allowing the local
replicator EA to subsequently select (boost) the more difficult examples. Since
each member of the overall set of training data is a member of the neighborhood
of multiple local ML methods, the result is an ensemble assessment of difficulty
similar to the classification margin concept used in boosting [2]; namely, the
smallest confidence from any node, for any class is taken as the fitness w of the
instance.
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w = min
i∈class

( min
n∈neighbor

cni)

Experimentally, we determined that a non-overlapping-generation model for the
local EAs was much less effective than an overlapping one, in which only a
fraction of the local population was replaced each generational cycle. We imple-
mented this feature through a replacement probability parameter pr, and found
that values around 0.20 were most effective (i.e., replacing about 20% each gen-
eration). See section 4.3 for more details.

The overall pseudo-code of PSBML is as follows:

– Initialization: distribute the training dataset uniformly over all the nodes in
the grid.

– For every EA generation:
• On each node:

∗ Use the local ML technique and the current local population of train-
ing examples to produce a candidate classifier.

∗ Test this classifier on all the population members in the neighboring
nodes, assigning confidence values to each population member.

∗ Create a selection pool consisting of all population members of the
node and its neighbor nodes.

∗ For each member in the current node population, replace it with
probability pr with an individual from the selection pool using fitness-
proportional selection.

4 Analysis of the PSBML Framework

As stated in the introduction, the hypothesis for this research is that the emer-
gence behavior of ML techniques embedded locally in this spatially distributed
framework will be comparable in classification performance to the correspond-
ing monolithic ML versions with the significant additional benefit of significant
improvements in scalability via parallelization. The two important emergent
properties are the effects of local boosting and local classifier training and test-
ing. We analyze both effects in this section.

Since local boosting is done by a replicator EA using fitness-proportional
selection from a pool that includes neighboring populations, the formal analysis
is identical to that of how the emergent selection pressure in SSEAs changes
as a function of the neighborhood topology [3,7] as illustrated in Figure 2. In
this case, increased selection pressure corresponds to increased boosting rates.
As with standard boosting techniques, one must find a growth rate in PSBML
that facilities the learning process by gradually propagating the more difficult
training examples throughout the grid via evolutionary boosting.

The second emergent property is the overall classification accuracy of PSBML.
Unless its local boosting and training elements result in an ensemble perfor-
mance comparable to monolithic ML techniques, there is no virtue in PSBML’s
scalability.
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Fig. 2. Growth curves for C13, L9, C9 and L5 neighborhoods

In the following sections we describe an initial set of experiments to assess
both of these emergent properties. We start with a series of tuning experiments
to obtain a rough estimate of the more important PSBML design parameters
that affect these emergent properties. Then, using this as the default PSBML
configuration, we evaluate its performance on a set of standard ML benchmark
problems and assess the robustness of the approach using a variety of standard
ML methods.

4.1 Experiment 1: A Simple Circle Classification Problem

As a first step in analyzing the behavior of PSBML, we designed a simple syn-
thetic ML problem to illustrate its behavior. The underlying binary classification
problem was a 2-dimensional space in which points inside a circle centered at the
origin were designated as negative examples and the rest as positive examples.
In this case, a simple ML learner is trying to infer the radius of the circle from
the training examples it is given by choosing a radius equal to the average dis-
tance from the origin of the largest negative example and the smallest positive
example. Classification confidence is then based on the distance of an instance
from the edge of the circle with the hypothesized radius.

Figure 3 illustrates the results involving a circle of radius 0.4. The underly-
ing spatial topology was a 5x5 torroidal grid in which 10,000 sample points are
equally distributed over the 25 grid nodes. In these experiments, the C9 neigh-
borhood structure was used. We ran the PSBML framework on this setup for
100 generations and collected two pieces of behavioral data: the average distance
of the instances from the origin, and the number of distinct instances over all
nodes. As hypothesized, the emergent global behavior of PSBML was to steadily
reduce the number of distinct training instances to a subset that was “on the
margin”, i.e. close to the decision boundary of 0.4 and comparable to single
margin-based classifiers like SVMs.
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(a) (b)

Fig. 3. (a) Mean values with 95% confidence intervals from 30 independent PSBML
runs. (b) The number of distinct training distances decreases with the generations.

4.2 Experiment 2: Neighborhood Effects

The next step was to study the effects that SSEA neighborhood structure has
on the performance of PSBML. We chose the UCI Chess (King-Rook vs. King-
Pawn) dataset for these experiments. It has 3196 instances, 36 attributes and 2
classes. We ran PSBML on this problem using various neighborhood structures
as shown in Fig. 4(a). We used a 5X5 grid with a naive Bayesian classifier as
the ML method with discretization for numeric features. The ensemble classifier
is evaluated by combining the reduced datasets from all the nodes, training a
single classifier with these and comparing the test set predictions for classification
accuracy or the error-rate. Although the average reduction in the training data
was quite similar for all the neighborhoods, their classic “over fitting curves”
were different. The stronger selection pressures of L9 and C13 produced the
more rapid initial decrease in test classification error rates, which subsequently
increased more rapidly as the training data became too sparse. The simplest L5
neighborhood reduced classification error rates too slowly. The best results were
obtained with C9.

4.3 Experiment 3: Impact of pr

In this set of experiments, we ran PSBML on the UCI Chess dataset with dif-
ferent pr values to observe the effect that different rates of replacement have on
the performance of PSBML. Figure 4(b)-(c) illustrates that increasing pr results
in faster convergence but a less accurate learner, with the best results obtained
when pr is about 0.2.
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(a)

(b) (c)

Fig. 4. Results are shown on the UCI chess dataset. The error rate is shown as a
function of the neighborhood structure in (a) and probability pr in (b). The number
of distinct training instances is shown as a function of pr in (c).

4.4 Experimental Analyses on Benchmark Datasets

Using the rough tuning parameters of the previous sections, we evaluated the
performance of PSBML on nine classification problems with medium-to-large
datasets from the UCI ML repository [8]. The datasets are shown in Table 1 in
terms of the number of training instances, number of testing instances, number
of features, and number of classes.

We employed a 5x5 grid with C9 neighborhood configuration and pr of 0.2.
To evaluate the robustness and meta learning capability, we tested PSBML with
3 standard ML methods: a naive Bayesian (NB) classifier, a decision tree (DT)
learner and a support vector machine (SVM), each employed with the standard
implementations available in Weka [9]. The classification accuracy obtained by
each ML method is compared to the classification accuracy obtained when em-
bedding that method within PSBML. Results are shown in Table 2. Rows labeled



A Spatial EA Framework for Parallelizing Machine Learning Methods 213

Table 1. UCI Benchmark datasets

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

#Train 3196 4600 10992 19020 32560 49749 271617 581012 4000000
#Test 319 460 1099 1902 16279 14951 59535 58102 311000
#Feat 36 57 256 10 14 300 8 54 42
#Class 2 2 10 2 2 2 2 7 24

“#Hard” show the reduced size of the data set resulting from the evolutionary
boosting in PSBML. All reported results are averages over 30 runs (ceiling values
reported for “#Hard”). The standard deviation for most runs was below 0.1 and
so is not shown. Fields labeled NA correspond to experiments that could not be
performed due to algorithmic constraints or very long training times required
by the base classifier. Comparisons between methods are done by performing 30
runs and using t-tests for statistical significance with 95% confidence intervals.
Runs that show improvements are highlighted in bold.

Table 2. Comparison of PSBML with NB, DT, and SVM on UCI Benchmark datasets

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

NB 88.32 79.52 84.41 78.21 83.19 96.7 78.11 79.15 98.89
PNB 93 94 90 83.1 89.01 98.1 90.01 85.1 99.65
#Hard 191 752 484 4544 5625 7234 9157 47234 45034

DT 99.65 97.17 79.51 85.49 85.83 NA 95.12 NA NA
PDT 99.64 96.1 80.12 86.1 85.61 NA 96.34 NA NA
#Hard 2678 2667 302 7699 9163 NA 45001 NA NA

SVM 96.24 90.76 87.97 79.33 85.26 NA 93.9 NA NA
PSVM 97.1 78 88.45 80.12 86.1 NA 84.1 NA NA
#Hard 2001 3078 1297 3715 23409 NA 47234 NA NA

Recent research has shown that parallelizing boosting algorithms results in
efficient learning [10,11]. So we also compared the performance of PSBML to the
ensemble-based meta-learners AdaBoost and ParallelBoost. Table 3 summarizes
the result using NB as the base classifier.

The column labeled PNB shows the classification accuracies obtained by PS-
BML running an NB classifier, the column labeled AB-NB shows the classifica-
tion accuracies obtained when employing AdaBoost with NB, and the column
labeled PB-NB shows the classification accuracies obtained when employing Par-
allelBoost with NB. Again we see that PSBML produces comparable or better
results.

Table 3. Comparison of PSBML with AdaBoost and ParallelBoost

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

AB-NB 92.83 93.89 86.9 83.22 85.13 97.45 92.43 78.72 99.14
PB-NB 92.9 93.8 77.21 83.9 85.7 97.9 93.21 82.1 99.18
PNB 93 94 90 83.1 89.01 98.1 90.01 85.1 99.65
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4.5 Scalability Experiments

The experiments of the previous section support the hypothesis that PSBML
achieves comparable classification in comparison with other single classifiers,
while providing a significant scalability potential via parallel local learning on
local subsets of training data. These experiments were run on single machines
using single computation threads. The next obvious step is a systematic study of
the scalability of PSBML on a variety of parallel and distributed computational
architectures. In general, although cellular models can map onto loosely-coupled
Beowulf-style clusters, a better fit is a multi-threaded shared memory architec-
ture with each local EA running on a separate thread.

A principled port of PSBML to our GPU server environment is in progress. To
date, our multi-threading experiments consist of measuring PSBML speedup on a
single machine with multiple cores and multi-threading support. As an example,
Fig. 5 shows the running time in milliseconds of PSBML as a function of the
number of threads employed, suggesting there is indeed significant potential for
speedup and hence scalability. These particular results were obtained running
under Linux OS on a 2GHz 2x4 core Intel machine.

Fig. 5. Training time when using 1, 2, 4, and 8 threads

5 Conclusion and Future Work

We have described a novel approach for parallelizing machine learning methods
that combines the features of spatially-structured evolutionary algorithms with
the well-known machine learning techniques of ensemble learning and boosting.
It does so in a way that does not require changes to the underlying machine
learning methods, maintains or improves classification accuracy, and can achieve
significant speedup in running times via a straightforward mapping to multi-
threaded shared-memory architectures.

Although our experiments to date have been on machines that have signifi-
cantly fewer parallel threads than the number of grid points of the underlying
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SSEA, we plan to continue our evaluation of PSBML in the context of a GPU
server environment in which this is not the case.

We are also exploring the use of PSBML as the first stage of multi-stage exper-
iments in which subsequent stages take advantage of the reduction of the dataset
to both a more manageable size and containing the most critical exemplars.
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Abstract. Search and score techniques have been widely applied to the
problem of learning Bayesian Networks (BNs) from data. Many imple-
mentations focus on finding an ordering of variables from which edges
can be inferred. Although varying across data, most search spaces for
such tasks exhibit many optima and plateaus. Such characteristics rep-
resent a trap for population-based algorithms as the diversity decreases
and the search converges prematurely. In this paper, we study the im-
pact of a distance mutation operator and propose a novel method using
a population of agents that mutate their solutions according to their re-
spective positions in the population. Experiments on a set of benchmark
BNs confirm that diversity is maintained throughout the search. The
proposed technique shows improvement on most of the datasets by ob-
taining BNs of similar of higher quality than those obtained by Genetic
Algorithm methods.

Keywords: Bayesian network, permutations, distance mutation, genetic
algorithm, island model, diversity maintainance.

1 Introduction

Bayesian Networks (BN) are probabilistic graphical models composed of a Di-
rected Acyclic Graph (DAG) and a parameter set. Combination of both allows
factorization of the joint probability distribution P of a set of variables Xi,
according to their respective parents Pa(Xi) in the DAG as expressed in (1).

P = P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|Pa(Xi)) (1)

Learning BN structure from data is a NP-hard problem and thus a challenging
task for the machine learning community. The number of possible DAGs that
can be drawn grows super-exponentially with the number of variables and is
quantified as O(n!2

n
2 ). Typically, two families of methods are considered for BN

structure learning, respectively based on conditional independence tests and on
search and score approaches. While conditional independent methods focus on
determining relationships that exist between variables using statistical tests, this
paper makes use of the search and score approach. Solutions are generated and
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scored against a fitness function and are improved until reaching a satisfactory
level. In recent years, nature-inspired meta-heuristics have proved successful in
efficiently learning structures from data on various problems whether using Ge-
netic Algorithms (GA) [1], Island Models (IM) [2], Ant Colony Optimization
(ACO) [3] or Particle Swarm Optimization [4]. Yet, most approaches suffer from
the multi-optimal and plateaued nature of the search space, which leads to con-
sequent loss of diversity within the set of solutions and early convergence [2]. In
this paper, a novel technique is presented that takes advantage of the permuta-
tion representation of the solutions. By considering a population of agents and
by assigning different roles to each according to their positions in the population,
diversity is maintained throughout the search.

The paper is structured as follows. In sections 2 and 3, we respectively provide
background information on BN structure learning and describe a novel approach
based on agents and mutation. The experimental approach is introduced in sec-
tion 4. We finally present and discuss the findings in section 5.

2 Background

2.1 Search and Score Bayesian Network Structure Learning

In recent years, K2GA [5] has been used as a reference for comparison with many
algorithms [1,3]. K2GA uses the greedy K2 [6] algorithm to score solutions within
a GA framework. Scoring solutions using K2 is not singular to K2GA and it has
been extended to other metaheuristics such as ACO [3] or IM GA [2]. In all
K2-based methods, solutions are represented as permutations denoting variable
orderings. Given an ordering, K2 only allows a variable to be parent of another
variable if the latter is at a further position. This constraint ensures that no
cycle is found in solutions produced by K2, hence, that all structures are DAGs.
In K2, each network is evaluated using the CH score given in (2), which is a
measure of the likelihood of a particular structure to represent the data [7]. qi
represents the number of possible different combinations the parents of the node
Xi can take and ri, the arrity of Xi, that is its number of possible states. From
a dataset D, the CH score of the BN structure Bs takes into consideration for
each of the n variables the number Nijk of instances where Xi is set to its k-th
state while its parents are in their j-th state. Nij is the sum of Nijk over the
different states of Xi. K2 starts by assuming that all nodes are independent.
Edges are added one at a time and kept if the score of the network is improved.

P (Bs, D) = P (Bs)
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (2)

2.2 Diversity Enhancements

In [2], IMK2GA, an IM version of K2GA, is compared to K2GA on five bench-
marks. In IMK2GA, several evolutions are run in parallel and paused in order to
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allow exchange of solutions. The study highlights difficulties for K2GA to avoid
early convergence. By migrating solutions between populations, IMK2GA is able
to increase the diversity in each population and prevent the search to stop. In
addition, the structures learned using IMK2GA were overall better than those
obtained by K2GA, illustrating how local optima can be brought together.

In [8], distance mutation (DM), an operator for variable orderings, is in-
troduced. Several Evolutionary Algorithms (EAs) are implemented and tested
against each other on benchmark data. Results suggest that DM can be used as
the only operator to produce new solutions within EAs and that crossover does
not help when used in conjunction of DM. A common way to perform mutation
in permutation representations is to swap two genes of an individual. However,
due to the ordered nature of the representation and on K2 behavior, the dis-
tance between two variables being swapped in an ordering has an influence on
how different the mutated solution is from its predecessor. Mutation is often seen
as a local change in GA. With regards to BN structure learning, this statement
is true when adjacent variables are mutated. However, the locality breaks down
as the distance between two swapped variables increases. Structural Hamming
Distance (SHD) can be measured to evaluate differences between two BN struc-
tures. In order to observe the effect of the distance parameter in the mutation
of orderings, 100 random solutions were generated and mutated once for each
distance, that is one gene is selected at random in the ordering and is swapped
with another at a position related to the mutation distance. Differences in fit-
ness and SHD to the true structure were recorded for the networks obtained after
running K2 on these orderings. These are plotted in Figure 1 for two selected
benchmarks and show that changes in the BN structures are more important
when the distance is increased. In [8], mutation distance varies along the search
in order to cope with the loss of diversity in the population and allow exploration
in early generations and exploitation in later ones.
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Fig. 1. Effect of mutation distance on mutated BNs
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3 Competing Mutating Agents Using Distance Mutation

3.1 Competing Mutating Agents

Since early convergence is an issue for many methods, a new algorithm has been
implemented that aims at performing both exploratory and exploitative tasks
throughout the search. A population of agents is considered in which each agent
aims at improving its assigned solution by means of DM. The use of adaptive
mutation is not a new concept in EAs as has been seen with mutation rate in
previous works including [9]. In this paper, DM distances differ between agents
and are set according to the agents’ positions in the population. Large distances
are allowed for agents in low positions while best agents, that is those with
the highest quality solutions, are constrained with smaller distances. Since each
agent only uses mutation to improve its solution and because each agent aims at
reaching the best positions in the population, we call this approach COMpeting
Mutating Agents (COMMA). Algorithm 1 presents the outline of COMMA used
for maximization optimization. For each position posj in the population pop
sorted in ascending order, a DM distance dj is set such that for two agents at
positions e and f , de ≤ df if e < f . Since it can be beneficial to allow degrading
solutions to be accepted, as seen in simulated annealing [10], a probability pj
is also set for each posj . Each agent ai is initially assigned a random solution
si. The population is then sorted by fitness. At each generation, each agent
mutates si using the distance disti ∈ [1, dr] defined according to its position r
in the population. If the mutated solution snew has a better fitness than si, ai
replaces si with snew. If snew has a poorer fitness than si, snew only replaces si
with probability pr.

Algorithm 1. COMMA

Initialize pop of σ agents with random solutions, distance vector d of size σ and
probability vector p of size σ
repeat

Sort pop by fitness in ascending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in pop
Generate new solution snew with fitness fitnew by mutating si with distance
disti selected with uniform probability from [1, dr]
if fitnew > fiti then

Assign si = snew

else
Assign si = snew with probability pr

end if
end for

until Stopping condition met
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3.2 Island Model Competing Mutating Agents

The use of IM showed improvements over its serial counterparts when learning
BN structures [2] by maintaining diversity. Hence, IM was also implemented for
COMMA and is referred to as IM-COMMA. The outline of IM-COMMA is pre-
sented in Algorithm 2 for n islands, m migrations and migration intervals of size
migInterval. The search is split into evolution stages stgl where migInterval
generations are performed. At each stgl, the COMMA process is performed and
paused to allow migration. Solutions from the ρ best agents from each island are
sent to the neighbouring island at migration and assigned to the ρ worse agents
in its population following a ring topology with a best-worse policy.

Algorithm 2. IM − COMMA

Initialize k populations of σ agents with random solutions, distance vector d of size
σ and probability vector p of size σ
for each evolution stage stgl, l ∈ [0, m− 1] do

for each island islk, k ∈ [0, n− 1] do
genk = 0
repeat

Sort popk by fitness in ascending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in popk
Generate new solution snew with fitness fitnew by mutating si with dis-
tance disti selected with uniform probability from [1, dr]
if fitnew > fiti then

Assign si = snew

else
Assign si = snew with probability pr

end if
end for
genk ++

until genk = migInterval
end for
if l �= m then

Select subpopulation migk of size ρ for migration
if i �= 0 then

Replace ρ worse orderings in popk by migi−1

else
Replace ρ worse orderings in popk by mign−1

end if
end if

end for

4 Experimental Approach

In order to evaluate the abilities of the different methods in learning BN struc-
tures we selected some known benchmark BNs from which we sampled datasets.
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These include asia [11], tank [12], credit [12], car [13] and boerlage [14]. Char-
acteristics of the benchmarks differ and are summarized in Table 1. K2GA and
IMK2GA, were set following [2]. IMK2GA was set with 4 islands and 3 mi-
grations of size ρ = 2. Population sizes in K2GA and IMK2GA were set with
similar values as described in Table 1. Migration intervals for IMK2GA were
set in a way that all migrations occur within a maximum number of 1000 in-
dividual fitness evaluations (FEs). Two versions of COMMA and IM-COMMA
were implemented in order to observe the effect of degradation. We set one of
the COMMA and one of the IM-COMMA with degradation probabilities equal
to zero while the two other versions were set with degradation probabilities of
[0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8], respectively stated from the best to
the worse position in the population of agents. For the time of the experiments,
we respectively call these methods COMMA, IM −COMMA, COMMAd and
IM − COMMAd where d stands for degradation. As the population size for
COMMA and COMMAd was set to 10, using 4 distinct DM distances and prob-
abilities helped observing how agents evolve. DM distances were set relative to
the number of nodes in each benchmark. IM −COMMA and IM −COMMAd

were both set with 4 islands, 3 migrations and 7 generations were chosen as
migration interval in order to reach 1000 FEs.

In order to assess the behavior and efficiency of the algorithms, measurements
are taken at each generation. Fitness of the best solution is measured, as it helps
understanding how the algorithms converge. Kendall Tau Distance (KTD) in the
population is also calculated in order to evaluate diversity. The KTD is obtained
by averaging the KTD between every pair of orderings in the population. The
approach is described in [2]. In addition, it has been shown that increase in
the fitness value does not always correlate with improvement in the actual BN
structure. Since the true structure of the BNs is known, it is possible to measure
the number of correct (C), reversed (R), added (A) and omitted (O) edges of
a solution. Based on C, R, A and O, several metrics can be used to describe
the distance of a solution to an optimal structure [15]. In the current paper,
algorithms are compared according to their respective SHD, representing the
number of changes needed to be performed to retrieve the true structure, that is
the sum of R, A and O. In addition, R is often regarded as an approximation of
low importance. For this reason, the number or relevant edges, that is C + R, is
also expressed. On the other hand, it is important not to omit edges, nor to add

Table 1. Dataset characteristics and algorithm settings

Dataset Nodes
/Edges

K2GA
pop

IMK2GA
migInterval

COMMA
pop

mutation
distances

Asia 8/8 100 150 10 1,1,2,2,3,3,3,4,4,4
Tank 14/20 50 250 10 1,1,3,3,5,5,5,7,7,7
Credit 12/12 50 300 10 1,1,2,2,4,4,4,6,6,6
Car 18/17 20 1200 10 1,1,3,3,6,6,6,9,9,9
Boerlage 23/36 20 800 10 1,1,3,3,7,7,7,11,11,11
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spurious edges to the structure. Consequently, erroneous edges are measured as
A + 0. Finally, a greyscale representation was used to map agents’ positions in
the population over time and illustrate the state of convergence of the method.

5 Results and Discussion

For brevity only a sample of all results is presented although similar patterns
are observable across benchmarks1. Table 2 summarizes the empirical results in
terms of C, SHD, relevant (Rel.) and erroneous edges (Err.) obtained after 1000
FEs. 30 runs were performed for each algorithm on each dataset and unpaired
t-tests carried out. Best values over all methods appear in bold while those not
statistically significant from the best (p-value>0.003 after Bonferroni correction)
are marked with a ∗ symbol. On small problems, K2GA exhibits results that are
either the best or not significantly different from it. BNs obtained by K2GA on
larger problems such as car and boerlage suffer from poorer quality in compar-
isons with other methods as illustrated by the corresponding C and SHD values.
The use of IM generally improves the BNs obtained by the GA as the dimension
of the data grows and confirms results foreseen in [2]. On the other hand, the
standard COMMA is always competitive with the GA-based methods in terms

Table 2. Characteristics of best BNs obtained by each algorithm after 1000 FEs

Asia Tank Credit Car Boerlage

K2GA

C 6.43 (0.56) 14.77 (1.75) 8.87∗(1.18) 10.83 (1.34) 17.43 (2.26)
SHD 1.60 (0.66) 10.93 (2.66) 4.70∗(1.64) 13.33 (2.88) 24.80 (3.03)
Rel. 8.00 (0.00) 19.67∗(0.54) 12.00 (0.0) 14.27∗(0.81) 28.07∗(0.63)
Err. 0.03∗(0.18) 6.03∗(1.52) 1.57 (0.56) 9.90∗(2.71) 14.17∗(2.44)

IMK2GA

C 6.57∗(0.56) 14.20∗(2.04) 9.23∗(0.50) 12.13∗(0.76) 19.60 (2.14)
SHD 1.47 (0.67) 11.30∗(2.76) 3.80∗(0.60) 11.57 (1.96) 20.90 (3.23)
Rel. 8.00 (0.00) 19.83∗(0.37) 12.00 (0.00) 14.23∗(0.76) 28.03∗(0.48)
Err. 0.03∗(0.18) 5.67 (1.07) 1.03 (0.18) 9.47∗(2.08) 12.47 (2.16)

COMMA

C 6.70∗(0.46) 13.43∗(1.87) 9.13∗(1.23) 12.47 (0.96) 18.70∗(2.08)
SHD 1.37 (0.66) 12.27∗(2.64) 4.27∗(1.71) 10.93 (2.14) 22.87∗(2.59)
Rel. 8.00 (0.00) 19.87 (0.34) 12.00 (0.00) 14.33 (0.54) 28.17 (0.64)
Err. 0.07∗(0.36) 5.83∗(1.13) 1.40 (0.55) 9.07 (1.67) 13.40∗(1.65)

IM − COMMA

C 6.90 (0.30) 14.17∗(2.03) 9.63(1.20) 11.63∗(1.17) 18.13∗(2.32)
SHD 1.10 (0.30) 11.83∗(2.78) 3.60 (1.74) 12.80 (2.41) 23.53 (3.33)
Rel. 8.00 (0.00) 19.70∗(0.46) 12.00 (0.00) 13.87∗(0.81) 28.07∗(0.63)
Err. 0.00 (0.00) 6.30∗(1.39) 1.23∗(0.62) 10.57∗(2.38) 13.60∗(2.24)

COMMAd

C 6.87∗(0.34) 14.53∗(2.06) 9.37∗(1.28) 11.40 (1.11) 17.10 (1.78)
SHD 1.13∗(0.34) 11.23∗(3.24) 4.10∗(1.81) 12.80 (2.18) 24.93 (2.39)
Rel. 8.00 (0.00) 19.83∗(0.37) 12.00 (0.00) 14.20∗(0.54) 27.83∗(0.90)
Err. 0.00 (0.00) 5.93∗(1.59) 1.47 (0.62) 10.00∗(1.73) 14.20∗(2.27)

IM − COMMAd

C 6.87∗(0.34) 14.43∗(2.46) 9.53∗(1.33) 11.63 (1.08) 17.87∗(2.31)
SHD 1.13∗(0.34) 11.20∗(3.69) 3.70∗(1.93) 11.93∗(2.62) 24.77 (2.92)
Rel. 8.00 (0.00) 19.70∗(0.46) 12.00 (0.00) 14.17∗(0.73) 28.03∗(0.80)
Err. 0.00 (0.00) 5.93∗(1.67) 1.23∗(0.67) 9.40∗(2.22) 14.60 (1.98)
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Fig. 2. Evolution of the best fitness and SHD on car, averaged over 30 runs

of BN quality. Figure 2 illustrates how best fitness and SHD vary over time on
car. The best fitness in IMK2GA appears to be better than those of other meth-
ods along the search, while K2GA converges very early. The variation between
COMMA and GA-based methods shows different patterns. For both SHD and
fitness, IMK2GA follows cycles of improvement and convergence interrupted by
migrations of solutions. COMMA approaches show a more gentle improvement
over time and the effect of migration is less obvious. Here it seems that migration
has a different effect on the algorithms. While migrating solutions helps bringing
together local optima within a GA, it does not affect as much COMMA because
convergence is never reached. A migration may just be considered as a successful
mutation from the ρ worst agents in the population.

To investigate how the different methods behave with respect to diversity
within their populations, KTD is plotted in Figure 3 for car. The effect of the
three migrations on IMK2GA is very clear, but a consequent loss of diversity is
still observed that leads to its convergence. Figure 3 also points out that diversity
is maintained with the different COMMA algorithms throughout the run. Here,
it can be argued that COMMA would perform better on longer runs because
it had not converged when experiments were stopped. Although it is difficult
to draw a clear picture of the impact of allowing degradation of solutions in
COMMA, it seems that in the chosen configuration, it does not bring obvious
improvements. Figure 4 illustrates how positions of agents vary along the search
on tank in COMMA and COMMAd respectively. Each column represents the
ordered population of agents in a typical run from the initial state on the left
hand side to its final state on the right hand side. Each agent is represented by
a shade of grey. For both COMMA and COMMAd, the constant exploration
and exploitation is clear as agents change positions many times. During the run
of COMMA, a total of 8 distinct agents have reached the two first positions in

1 Additional results and coloured figures are available at http://www.comp.rgu.ac.uk/
staff/orc/ppsn2012-results

http://www.comp.rgu.ac.uk/staff/orc/ppsn2012-results
http://www.comp.rgu.ac.uk/staff/orc/ppsn2012-results


224 O. Regnier-Coudert and J. McCall

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Individual FEs

K
en

da
ll 

T
au

 D
is

ta
nc

e
 

 

GA
IMGA
COMMA
IM−COMMA
COMMA

d
IM−COMMA

d

Fig. 3. Evolution of the KTD on car, averaged over 30 runs

Fig. 4. Evolution of agent positions along one typical run of COMMA (top) and
COMMAd (bottom) on tank

the population and the final best agent has moved and occupied every position
for at least one generation. High pixelation in the lower ranks of the position
representation of COMMAd highlights that new solutions are being explored
even when variation in top ranks becomes rare due to the high solution quality.

6 Conclusions

In this paper, a novel approach to learning BN structures was presented. The
algorithm focuses on avoiding early convergence, a limitation foreseen in other
methods such as K2GA by means of agents mutating their solutions to different
extents. Since the effect of such mutation largely depends on the distance that
is defined, each agent was assigned a mutation distance relative to its position
in the population. Results show that COMMA is generally competitive with
IMK2GA and is able to outperform it on some of the problems from the se-
lected test suite when considering the quality of BNs obtained at the end of the
runs. In addition, diversity remains high in COMMA all along the search while
GA-based methods converge fast, suggesting that better BNs could be produced
with more FEs. Future work will focus on assessing the effect of different muta-
tion operators on the performance of COMMA, but also to study how such an
approach performs on other permutation-based optimization problems. Finally
the idea of monitoring the changes in agents positions should be extended in
order to perform migrations in a dynamic manner within an IM.
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Abstract. Algorithm selection and configuration is a challenging problem in the
continuous optimization domain. An approach to tackle this problem is to de-
velop a model that links landscape analysis measures and algorithm parameters
to performance. This model can be then used to predict algorithm performance
when a new optimization problem is presented. In this paper, we investigate the
use of a machine learning framework to build such a model. We demonstrate
the effectiveness of our technique using CMA-ES as a representative algorithm
and a feed-forward backpropagation neural network as the learning strategy. Our
experimental results show that we can build sufficiently accurate predictions of
an algorithm’s expected performance. This information is used to rank the algo-
rithm parameter settings based on the current problem instance, hence increasing
the probability of selecting the best configuration for a new problem.

Keywords: Automatic analysis of algorithms, algorithm configuration, heuristic
methods, randomized algorithms, meta-learning models.

1 Introduction

One of the most interesting questions in search and optimization is: “Before we per-
form a run, can we estimate the likelihood that the algorithm a will be successful on
a given continuous optimization problem f ?” In most circumstances, it is very diffi-
cult to answer this question. It is a well-known fact that each search algorithm exploits
particular characteristics of the landscape [1]. As such, it is very optimistic to expect
that an algorithm would work reasonably well across a wide range of continuous opti-
mization problems unless some restrictions are in place [2]. However, it is possible to
use machine learning techniques to elucidate information related to the effects of algo-
rithm selection and/or parameter settings on similar problems; an approach known as
meta-learning.

Leyton-Brown and co-workers [3] describe an automated algorithm selection method
for boolean satisfiability problems. Their approach, based on methods proposed by Rice
[4], employs supervised learning to build a model that can predict algorithm runtime. By
comparing the estimated performance, it was possible to select the algorithm most likely

� This work has been partially funded through a 2012-2013 DAAD/Go8 Grant.
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to be suited to the task at hand. Related work was also reported in [1]. Smith-Miles
[5] describe a similar meta-learning framework that can be used to develop automated
algorithm selection and ranking models. More generally, Hoos [6] describes automated
techniques applicable for algorithm selection and configuration for NP-hard problems.

In this paper, we use the meta-learning framework outlined above to build a predic-
tion model of algorithm performance for continuous optimization problems. The model
inputs include information about f – such as the dimension, target value and landscape
features – and the parameter settings of a. The model output is the algorithm perfor-
mance measured by the number of required function evaluations to find a solution.
Information about a new problem fn can then be used by the model to estimate the
performance of a on fn. To illustrate the efficacy of this approach, we model instances
of the well-known Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) us-
ing a feed-forward backpropagation neural network (NN). The knowledge base used
for training the model is obtained by processing data from the Comparing Continuous
Optimization (COCO) set of benchmarks [7]. To validate the model, we use data from
the CEC2005 set of benchmarks [8].

The remainder of the paper is organized as follows. In Section 2, we discuss back-
ground material related to the meta-learning algorithm selection framework used in this
study. Section 3 describes the meta-learning model for continuous optimization prob-
lems in detail. Here, we describe the landscape features and the performance metric
used as inputs and outputs. Section 4 describes the experimental procedure based on al-
ternative CMA-ES parameter settings. Section 5 presents the results obtained from our
experiments. Finally, Section 6 discusses the results and states the conclusions. Avenues
for further work are also identified in this section.

2 Background

A continuous optimization problem is such that, given a cost function f that maps the
search set X ⊂ Rn to the objective set Y ⊂ R, we want to find one or more candidate
solutions xo ∈ X ,yo = f (xo), such that |yo− y�| , δ , where δ → 0 and x� ∈ Rn,y� =
f (x�) are the location of the global optimum and its value.

This type of problem is usually described through the search landscape metaphor [9].
A landscape L for a function f is defined as the tuple L= {X , f ,d}, where d denotes a
distance measure. The distance relates solutions among each other, hence it allows the
systematic search for xo inX . Ideally, we expect that our search produces an acceptable
solution after a bounded number of function evaluations. The opposite case is known as
premature convergence, when the search is unable to generate solutions outside a small
area under examination and the solution obtained is unacceptable.

As a direct consequence of the large number of existing optimization algorithms, it
is difficult to determine which algorithm is able to efficiently exploit the search land-
scape structure for a given problem [10]. Deciding which algorithm to use is referred
to as the “algorithm selection problem” by Rice [4]. In his seminal work, Rice defined
four different sets: The problem set, F , which contains functions that map X to Y; the
algorithm set, A, which contains algorithms capable of searching for xo in X ; the per-
formance set, P ⊂ R, which contains the feasible values of ρ ( f ,a), a measure for the
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cost of applying an algorithm a ∈ A in a problem f ; and the set of landscape features,
C ⊂ Rm, which is a set of attributes of the functions in F . These features are selected
in a way such that varying complexities are exposed, known structural properties are
captured, and any known advantages and limitations of the different algorithms can be
related to the features.

The algorithm selection problem investigated by Rice has been extended and eval-
uated in a variety of computational problem domains using a meta-learning frame-
work [1,3,5]. In this framework, algorithm selection is performed by exploring insights
gained from previous experiments. Here, a function g : C �→ P can be used to predict
the algorithm performance based on specific input features. If we know beforehand the
values of the features of a subset of functions from F and the values of ρ for an al-
gorithm in A; then, it is possible to use a learning strategy (such as linear regression)
to identify the function g. When a new problem is encountered, g (or the performance
model) can be used to predict the performance of the algorithm.

When working in the continuous optimization domain, careful attention must be
given to the design of model inputs and outputs. Inputs to the model g may include
the set of landscape features C, and parameters of the algorithm set,A. However, calcu-
lating the set of landscape features may well be a stumbling block, as this is a non-trivial
computation [11,12]. Previous work in the continuous optimization domain recognizes
the necessity to link landscape features and algorithm parameters to algorithm perfor-
mance [13–18]. Subsequently, an appropriate learning strategy must be employed to
generate model output ρ ( f ,a) based on a range of algorithm parameter values.

3 Prediction Model

Our model is an implementation of the meta-learning framework described above tai-
lored for continuous optimization problems. Here, we build a regression model. By
considering the landscape features and algorithm parameters as independent variables
and algorithm performance as the dependent variable, the model can be used to pre-
dict algorithm behavior for a given problem. A high-level overview of the model is
presented in Figure 1.

g(c,θ) ρ Performance measure

Hardness model

Landscape features

⎧⎪⎨⎪⎩
c1
...

cp

Algorithm parameters

⎧⎪⎨⎪⎩
θ1
...

θq

Inputs Outputs

Fig. 1. Structure of a meta-learning model for a continuous optimization algorithm
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3.1 Model Inputs

Landscape Features. Over the past few decades, when compared with the number of
novel algorithms, relatively limited attention has been given to the question of what at-
tributes a certain problem has, how to quantify them, and how the performance can be
related to such attributes [18]. This is because, among other reasons, it is not a single
attribute that defines the difficulty, but the interplay between different attributes [19].
Landscape analysis methods provide descriptive statistics related to algorithm perfor-
mance. However, designing suitable analysis methods for a given domain is not straight-
forward. In some cases, the effort in calculating exact values of these statistics is greater
than running a simple search algorithm [11,12]. Approximations can be efficiently cal-
culated, but the question remains if the loss of precision is too large to work with [20].
Besides, analyzing a whole landscape by using a single statistic is overly optimistic
[18, 21, 22]. These are limitations that must be acknowledged.

For this work, we selected the following features:

– Dispersion (DISP) [23] identifies features of the global structure. It is defined as the
pairwise distance between the q best points — usually q = 100 — from a sample
of size p, as shown in (1).

DISP =
1

q(q− 1)

q

∑
i=1

q

∑
j=1, j 	=i

d (xi,x j) (1)

– Fitness distance correlation (FDC) [24] identifies the relationship between the po-
sition and the cost value, and has demonstrated capability to identify deceptive-
ness in the landscape. To calculate FDC, assume that from a sample of size p,
x̂o = argmin f (xi) , i = 1, . . . , p and ŷo = f (x̂o). Then, FDC is calculated using (2),
where d = ‖x̂o− xi|, ȳ and d̄ are the averages of the cost and the distance, and σ̂y

and σ̂d are the standard deviation of the cost and the distance.

FDC =
1

p− 1

p

∑
i=1

(
yi− ȳ

σ̂y

)(
di− d̄

σ̂d

)
(2)

– Multiple correlation coefficient (R2) identifies the relationship between n variables
using a linear model approximation. Let R2 be calculated using (3), where rxy is
the vector of cross-correlations between the predictor variables on X and the cri-
terion variable on Y and Rxx is the matrix of inter-correlations between predictor
variables.

R2 = r-xyR−1
xx rxy (3)

– Variable significance [25] estimates the amount of information that a subset of pre-
dictor variables provides for the criterion variable. Let V = {1, . . . ,n} be a set of
variables indexes, v ∈ V the index of one of such variables, and V ⊂ V be any com-
bination of such indexes. The significance of V is calculated by (4), where Î (XV ;Y)
is the estimated mutual information and Ĥ (Y) the estimated entropy of Y . Let ζ (k)

and σ (k)
ε be the average significance of order k and its standard deviation respec-

tively, where k = |V |.
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ζ (V ) =
Î (XV ;Y)

Ĥ (Y) (4)

ζ (k) =
1(n
k

) ∑
V⊂V ,|V |=k

ζ (V ) (5)

σ (k)
ζ =

√
1(n
k

) ∑
V⊂V ,|V |=k

(
ζ (V )− ζ (k)

)2
(6)

– Entropic epistasis [25] evaluates the contribution that a single variable has to the
fitness given the state of other variables. For a variable subset V the entropic epista-

sis is calculated by (7). Let ε(k) and σ (k)
ε be the average entropic epistasis of order

k and its standard deviation.

ε (V ) =
Î (XV ;Y)−∑v∈V Î (Xv;Y)

Î (XV ;Y) (7)

ε(k) =
1(n
k

) ∑
V⊂V ,|V |=k

ε (V ) (8)

σ (k)
ε =

√
1(n
k

) ∑
V⊂V ,|V |=k

(
ε (V )− ε(k)

)2 (9)

Algorithm Parameters. The “algorithm selection” problem in many cases is equiva-
lent to the “algorithm configuration” problem as it is possible to consider two instances
of the same algorithm as two completely different ones if they differ only in one param-
eter [26]. An experimentally driven meta-learning approach has been suggested for the
latter problem [12]. Thus, we adopt this approach in our model.

We use CMA-ES as the base algorithm for our investigation, and the following pa-
rameters as inputs for the model.

– Target precision (etarget) is the error between the best solution and the target so-
lution. As many practical problems do not have a target solution, a value can be
developed if we consider an improvement by certain user defined percentage over
the best known solution before the experimental run.

– Size of the population (λ ).
– Depending on the algorithm, it might be possible to have rules that define how the

individuals are generated or evaluated. Mirrored (M ∈ {0,1}) indicates whether the
offspring are generated in pairs, where one is 180◦ from the other. Serialized (S ∈
{0,1}) indicates if the offspring is evaluated sequentially. Hence, if an improving
offspring is found the others are not evaluated.
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3.2 Model Output

The performance ρ of the model is set to be the expected running time t̂ of the algorithm.
Here, t̂ provides an estimation of the average number of function evaluations required
by the algorithm a to reach ytarget for the first time [7]. The expected running time is
calculated as follows:

t̂( f ,a,ytarget) =
#FEs

(
ybest ≥ ytarget

)
#succ

(10)

where #FEs
(
ybest ≥ ytarget

)
is the number of function evaluations over all trials where

the best function value, ybest, was not smaller than the target function value, and #succ
is the number of runs where target precision was achieved. When not all trials are suc-
cessful, t̂ depends strongly on the termination criteria of the algorithm.

3.3 Regression Model

In this study, we use an NN to build the model. It is important to note that the meta-
learning framework is flexible and any appropriate learning strategy could be used.
While other regression methods might provide different — even superior — accuracy,
as a proof of concept the NN will suffice.1

To train this model, inputs include landscape features (from a collections of problem
instances of various complexities) and algorithm parameter values (corresponding to
alternative instantiations of the CMA-ES algorithm) as described in Section 3.1. The
model output value is log10 (t̂). Since the target precision etarget can take different values
for the same problem, a pattern for each etarget is created where the other input values
are kept constant.

The accuracy of the resulting model depends on several factors: the diversity in the
knowledge base used to train the model, the relevance of the features and their preci-
sion, and the training method used in the model. For our purpose, the accuracy of the
model would be evaluated on the capability to provide a realistic ranking of the different
configurations of the algorithm. While an accurate estimation of the expected running
time would be desirable, at this exploratory stage it is unlikely to be obtained.

4 Experiments

A comprehensive set of simulation experiments were performed to evaluate the efficacy
of the proposed meta-learning prediction model of algorithm performance for continu-
ous optimization problems.

A multi-layered feed-forward neural network (2 hidden layers; 10 neurons in each
layer) was used for the regression model. The training method employed was the Leven-
berg-Marquardt back-propagation algorithm. The inputs and outputs of the model were
normalized in the [−1,1] range. MATLAB version 2009b was used for implementation.

1 We leave the evaluation of alternative learning strategies to future work.
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Eight configurations of the CMA-ES algorithm were used for this experiment: stan-
dard, mirrored, serialized and mirrored-serialized with a single parent and either two or
four offspring.

To train the model, we use the functions from the COCO noiseless set [7] in {2,3,5,
10,20} dimensions. The features are calculated using fifteen runs of 103 · n function
evaluations using uniform random sampling (p = 15 · 103 · n). While it seems that a
large amount of data must be collected before the model can be used, we presume that
it is possible to use data from an algorithm run to calculate the features, hence avoiding
the need for an additional data extraction experiment. However, this hypothesis is not
tested in this work. The performance metric is calculated over fifteen runs for each of
the eight CMA-ES configurations with a target value of 10−8 and a maximum number
of function evaluations equal to 104 ·n.

To evaluate the effectiveness of our model in predicting the performance of a given
algorithm on new problems, we use a subset of the problems from the CEC2005 bench-
marks [8]. We limit the evaluation of our model to the noiseless functions and those
functions whose optimum is inside the initialization region. The functions were evalu-
ated on {2,3,5,10,20} dimensions. The collection of metric values for the CEC2005
problems followed the same procedure as for COCO benchmark functions.

5 Results

We examine the predictions made by our model using the CEC benchmarks. The model
is fed with landscape features that represent a benchmark problem (c), algorithm pa-
rameters that define the configuration (θ), and a desired target precision (etarget). Then,
the predicted t̂ for each configuration is ranked from the lowest to the highest at a fixed
etarget. Figures 2(a) and 2(b) show the resulting rankings for the 5-dimensional versions
of the Sphere function and the Hybrid composition function 1, respectively. The top
plots represent the actual ranking while the bottom plots represent the predicted rank-
ing. The abscissa are the log10

(
etarget

)
organized from lowest precision on the left to the

highest precision on the right. The ordinates are the ranking of a given configuration,
where the lowest is the worst performing and the highest is the best performing. Each
line on the plot represents a configuration.

We quantify the similarity between rankings using the following procedure. For a
fixed etarget, let ra be the ranking based on the actual performance of each configuration
and rp be the ranking produced by sorting the predictions generated by the model.
Let δp =

∣∣ra− rp
∣∣ be the difference between the two rankings. When this measure is

calculated for CEC benchmark data, the average δp over all scenarios — for each target
precision, dimension and benchmark function — is 12.69.

A baseline is required to asses the impact of the differences in rankings. Let rr be
a random ranking — the positions in the ranking of each configuration are randomly
generated — which is kept fixed for all the scenarios. Let δr be the difference between
the random to the actual ranking. We produce 100 different random rankings, each with
its own value of δr. The average value of the δr is 21.01, which is 39.59% higher than the
average δp. This indicates that by using the predicted ranking we improve our chances to
select the best algorithms early on the experiment. Table 1 lists the difference between δr



A Meta-learning Prediction Model of Algorithm Performance 233

(a) (b)

Fig. 2. Actual and predicted rankings for the different CMA-ES configurations on the 5D Sphere
function (a) and on the 5D first hybrid composition function (b) of the CEC2005 benchmark

Table 1. Average difference between the random and predicted rankings. A negative value indi-
cates a scenario where the random ranking is more accurate than the predicted ranking.

f 2D 3D 5D 10D 20D

1 7.42 8.85 14.28 7.81 4.59
2 8.11 8.17 13.14 8.37 4.41
3 10.33 5.89 11.37 8.58 10.73
4 12.28 5.55 10.74 14.06 -0.16
5 8.36 9.42 12.65 8.40 8.45
6 6.68 11.23 6.94 3.78 3.09
7 4.31 11.49 16.18 8.63 20.14
8 9.88 11.19 15.10 12.64 7.20
9 9.43 5.59 16.68 8.60 12.62

10 7.94 8.53 10.97 11.61 4.58
11 5.39 3.35 10.41 6.63 -3.22

f 2D 3D 5D 10D 20D

12 4.17 6.19 9.54 6.03 6.76
13 15.26 8.72 -2.54 -10.74 21.48
14 5.07 7.88 13.90 6.48 2.94
15 12.96 9.09 6.23 10.40 10.55
16 4.42 3.67 4.21 2.52 1.12
17 3.21 6.30 8.10 4.90 4.88
18 11.64 18.11 18.34 10.19 12.08
19 2.41 -5.44 3.20 4.19 1.34
20 -2.73 10.02 14.90 1.06 1.36
21 11.37 15.79 5.27 2.79 -5.13
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and δp for each benchmark function when averaged over etarget. With some exceptions on
f4, f11, f13, f19, f20 and f21, in most cases the dissimilarity between δp is lower than δr.
When this is not the case, the differences can be due to the precision of the model, which
can be improved by changing the learning strategy or preprocessing the input data.

6 Conclusion

In this paper, we used a meta-learning framework to build a model that captures the
relationship between problem cost function structure, algorithm parameters and a given
performance metric. The model is used to predict algorithm performance measured in
terms of the number of function evaluation required.

A NN was used as the underlying learning strategy. The network inputs included
a number of landscape characteristics (calculated using well-known statistical estima-
tors) and selected parameter settings. The network was trained, and subsequently tested,
using a suite of benchmark continuous optimization problems with varying character-
istics. The simulation results clearly demonstrate that the model was able to predict the
relative ranking values for given algorithm-parameter combinations effectively.

Model performance was measured by comparing predicted and actual rankings of
algorithm parameter settings on new problem instances. This implies that the ranking
can be verified if all the configurations are tested. In a practical situation this is often not
the case, as the experiments will be censored when an acceptable solution is reached.
Examining the effects of censoring on the rankings is one avenue of future work.

All landscape analysis was performed off-line — an initial experiment was carried
out to calculate landscape statistics that form part of the input of our model. In future
work, we will transfer such calculations to an on-line mode. The benefits of such an
approach are highlighted by reviewing Figures 2(a) and 2(b). Note that the best config-
uration is not the same at all target values. An on-line prediction mechanism coupled
with the ability to switch between configurations offers the potential for significant im-
provement in optimization performance.
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Abstract. Classifier ensemble techniques are effectively used to com-
bine the responses provided by a set of classifiers. Classifier ensembles
improve the performance of single classifier systems, even if a large num-
ber of classifiers is often required. This implies large memory require-
ments and slow speeds of classification, making their use critical in some
applications. This problem can be reduced by selecting a fraction of the
classifiers from the original ensemble. In this work, it is presented an
ensemble-based framework that copes with large datasets, however se-
lecting a small number of classifiers composing the ensemble. The frame-
work is based on two modules: an ensemble-based Genetic Programming
(GP) system, which produces a high performing ensemble of decision
tree classifiers, and a Bayesian Network (BN) approach to perform clas-
sifier selection. The proposed system exploits the advantages provided by
both techniques and allows to strongly reduce the number of classifiers in
the ensemble. Experimental results compare the system with well-known
techniques both in the field of GP and BN and show the effectiveness of
the devised approach. In addition, a comparison with a pareto optimal
strategy of pruning has been performed.

1 Introduction

In the last two decades, classifier ensemble techniques have shown to be a vi-
able alternative to using a single classifier [10]. Such techniques try to effectively
combine the responses provided by a set of classifiers, that have been properly
trained in such a way that they are “diverse”, i.e. they make uncorrelated errors.
The responses are usually combined by means of a voting mechanism, which la-
bels an unknown sample by assigning it the class label which has the highest
occurrence among those provided by the whole set of classifiers. Ensemble tech-
niques have been also used for improving GP–based classification systems [2,6,9].
In [2] and [6], ensembles of decision trees are evolved, and the diversity among
the ensemble members is obtained using techniques like bagging and boosting.
Both such approaches are meta-algorithms that aggregate multiple classifiers,
or hypotheses, generated by the same learning algorithm trained on different
distributions of training data. As concerns the combining rules, bagging uses
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the majority vote, while boosting adopts the weighted majority vote, where the
weight associated to a classifier is computed on the basis of its overall accuracy
on the training data. In [6], a novel GP–based classification system, called Boost-
CGPC, based on the AdaBoost.M2 boosting algorithm [8], has been presented.
It is based on a model of the population, in which individuals interact according
to a cellular automata inspired model, whose goal is to enable a fine-grained
parallel implementation of GP. In this model, each individual has a spatial loca-
tion on a low-dimensional grid and interacts only with other individuals within
a small neighborhood. The experimental results presented in [6] showed that
boostCGPC represents an effective classification algorithm able to deal with
large data sets.

As mentioned above, classifier ensembles may improve the performance of
single classifier systems, but often a large number of classifiers is required. This
implies large memory requirements and slow speeds of classification, making
their use critical in some applications. This problem can be solved by selecting
a fraction of the classifiers from the original ensemble. Such reduction, often
denoted as “ensemble pruning” in the literature, can perform even better than
the whole ensemble if a subset of complementary classifiers is selected [12,1].
When the cardinality N of the whole ensemble is high, the problem of finding
the optimal sub-ensemble becomes computationally intractable because of the
resulting exponential growth of the search space. Several heuristic algorithms
have been proposed in the literature for finding near optimal solutions [12].

In a previous work [4] the above problem has been faced by reformulating the
classifier combination problem as a pattern recognition one, in which the pattern
is represented by the set of class labels provided by the classifiers when classify-
ing a sample. According to this approach, for each training sample, the combiner
estimates the conditional probability of each class, given the set of labels pro-
vided by the ensemble classifiers. In this way, it is possible to automatically
derive the combining rule through the estimation of the conditional probability
of each class. Moreover, it is also possible to identify redundant classifiers, i.e.
classifiers whose outputs do not influence the output of the combiner. In fact, if
the behavior of such classifiers is very similar to that of other classifiers in the
ensemble, then they may be discarded without affecting the overall performance
of the combiner. In such a way the main drawback of the combining methods
discussed above can be overcame. In [5] a Bayesian Network (BN) [11] has been
used to automatically infer the joint probability distributions between the out-
puts of the classifiers and the class label. The BN learning has been performed
by means of an evolutionary algorithm using a direct encoding scheme of the
BN structure.

In this paper we present a new classification system that exploits the advan-
tages of the two aforementioned approaches. The goal is to build a high perfor-
mance classification system that uses a small number of classifiers and is able
to deal with large data sets. For this purpose, we built a two–module system
that combines the BoostCGPC algorithm [6] with the BN based approach to
classifier combination [5]. The proposed system allows us to strongly reduce the
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number of classifiers in the ensemble. More specifically, such result is achieved
by following two different approaches: the boostCGPC evolves diverse classifiers
(decision trees) by means of a boosting technique; the BN module evaluates clas-
sifiers diversity by estimating the statistical dependencies of the responses they
provide. Such estimate is used to select, among the classifiers provided by the
BoostCGPC module, a small number of them. Moreover, the responses provided
by the selected classifiers are effectively combined by means of a rule learned by
the BN module.

The effectiveness of the proposed system, has been tested by performing sev-
eral experiments. The obtained results have been compared with those obtained
by the BoostCGPC approach [6] and with those achieved by using the K2 algo-
rithm [4]. Moreover, the effectiveness of the devised approach as pruning strategy
has been tested by comparing its results with those obtained by the Pareto op-
timal pruning strategy [10].

2 System Architecture

The proposed system consists of two main modules: the first one builds an ensem-
ble of decision tree classifiers (experts) by means of the BoostCGPC algorithm.
The second one uses a BN to implement the combining rule that produces the
final output of the whole system. More specifically, unknown samples are recog-
nized using a two–step procedure: (i) the feature values describing the unknown
sample are provided to each of the ensemble classifiers built by the BoostCGPC
module; (ii) the set of responses produced is given in input to the BN module.
Such module labels the sample with the most likely class, among those of the
problem at hand, given the responses collected by the first module1. Also the
learning phase requires two steps. In the first step, the BoostCGPC module is
trained using a data set containing labeled samples described by their feature
values. This learning is carried out, by means of a boosting–based technique
(described in Subsection 2.1). In the second step, the responses provided by the
set of decision trees built in the first step are used to learn the BN of the second
module (Subsection 2.2).

2.1 BoostCGPC Algorithm

The Boost Cellular Genetic Programming Classifier [6] algorithm builds GP en-
sembles using a hybrid variation of the classical distributed island model of GP.
GP ensembles offer several advantages over a monolithic GP, i.e. the possibility
of coping with very large data sets, more simple and understandable models,
robustness and obviously the advantages correlated with a distributed imple-
mentation.

1 Note that the second step does not require any further computation with respect
to the Majority Voting rule. In fact, it only needs to read tables storing class
probabilities.
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Each GP classifier forming the ensemble is built using a cellular GP algorithm
(cGP), enhanced with the boosting technique, which runs on each node. cGP
runs for T rounds; for every round it generates a classifier per node, exchanges it
with the other nodes, and updates the weights of the samples for the next round,
according to the boosting algorithm. The selection rule, the replacement rule and
the asynchronous migration strategy are specified in the cGP algorithm. Each
node generates the GP classifier by running for a fixed number of generations.
During the boosting rounds, each classifier maintains the local vector of the
weights that directly reflect the prediction accuracy. At each boosting round the
hypotheses generated by each classifier are exchanged among all the processors
in order to produce the ensemble of predictors. In this way each node maintains
the entire ensemble and it can use it to recalculate the new vector of weights.
After the execution of the fixed number of boosting rounds, the classifiers are
updated.

BoostCGPC adopts the AdaBoost.M2 version of the well-known boosting
algorithm introduced by Schapire and Freund for “boosting” the performance of
any weak learner, i.e. an algorithm that “generates classifiers which need only
be a little bit better than random guessing”.

In practice, the original boosting algorithm adaptively changes the distribu-
tion of the training set depending on how difficult each example is to classify.
Given the number T of trials (rounds) to execute, T weighted training sets
S1, S2, . . . , ST are sequentially generated and T classifiers C1, . . . , CT are built
to compute T weak hypotheses ht. Let w

t
i denote the weight of the example xi

at trial t. At the beginning w1
i = 1/n for each xi. At each round t = 1, . . . , T ,

a weak learner Ct, whose error εt is bounded to a value strictly less than 1/2,
is built and the weights of the next trial are obtained by multiplying the weight
of the correctly classified examples by βt = εt/(1 − εt) and renormalizing the
weights so that Σiw

t+1
i = 1. In this way, it focuses on examples that are hardest

to classify, as “easy” examples get a lower weight, while “hard” examples, that
tend to be misclassified, get higher weights. The boosted classifier gives the class
label y that maximizes the sum of the weights of the weak hypotheses predicting
that label, where the weight is defined as log(1/βt). The final classifier hf is
defined as follows:

hf = arg max

(
T∑
t

log(
1

βt
)ht(x, y)

)
(1)

Given the training set S = {(x1, y1), . . . , (xN , yN )} and the number P of proces-
sors to use to run the algorithm, we partition the population of classifiers in P
subpopulations, one for each processor and draw P sets of samples of size n < N ,
by uniformly sampling instances from S with replacement. Each subpopulation
is evolved for k generations and trained on its local sample by running cGP .

After k generations, the individual with the best fitness is selected for partic-
ipating to vote. In fact the P individuals of each subpopulation having the best
fitness are exchanged among the P subpopulations and constitute the ensemble
of predictors that will determine the weights of the examples for the next round.
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After the execution of the fixed number T of boosting rounds, the overall classi-
fiers composing the ensemble, collected during the different rounds, are used to
evaluate the accuracy of the classification algorithm.

2.2 The BN Module

As mentioned in the Introduction, the problem of combining the responses pro-
vided a set of classifiers can be handled by estimating the conditional probability
of each class given the set of labels provided by the classifiers. Such problem may
be effectively solved by using a Bayesian Network (BN). In particular, in [4], a
BN has been used for combining the responses of more classifiers in a multi
expert system.

A BN is a probabilistic graphical model that allows the representation of
a joint probability distribution of a set of random variables through a Direct
Acyclic Graph (DAG) [11]. The nodes of the graph correspond to variables,
while the arcs characterize the statistical dependencies among them. An arrow
from a node i to a node j has the meaning that j is conditionally dependent on
i, and we can refer to i as a parent of j. In a BN, the i–th node ei is associated
with a conditional probability function p(ei|paei), where paei indicates the set
of nodes which are parents of ei. Such function quantifies the effect that the
parents have on that node.
Once the statistical dependencies among variables have been estimated and en-
coded in the DAG structure, the joint probability of the represented variables
{e1, . . . , eL} can be described as:

p (e1, . . . , eL) =
∏
ei∈E

p(ei|paei) (2)

In the classifier ensemble framework, this property can be used to infer the true
class c of an unknown sample when the responses of the ensemble classifiers are
known, if we consider c as a variable in the joint probability of Eq. (2). In fact,

c

e5 

e4 

e3

e2

e1c

e5 

e4 

e3

e2

e1

Fig. 1. An example of a BN. The sets pae5 = {e1, e2}, pac = {e4, e5} and
pae3 = {c} respectively represents the parent sets of the nodes e5, c and
e3. The DAG structure induces the factorization of the joint probability
p(c, e1, e2, e3, e4, e5) = p(e3|c)p(c|e4, e5)p(e5|e1, e2)p(e1) p(e2)p(e4). In this case
Ec = {e3}, Ec = {e4, e5}.
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suppose the ensemble consists of L classifiers, then the true class c and the L
classifier responses can be modeled as a set of (L + 1) variables {c, e1, . . . , eL},
and the Eq. (2) allows the description of their joint probability as:

p (c, e1, . . . , eL) = p ( c | pac )
∏
ei∈E

p ( ei | paei ) (3)

The node c may be parent of one or more nodes of the DAG. Therefore, it
may be useful to divide the set of DAG nodes that are not parent of c in two
groups: the first one, denoted as Ec, contains the nodes having the node c among
their parents, and the second one, denoted as Ec, the remaining ones. With this
assumption, Eq. (3) can be rewritten as:

p(c, e1, . . . , eL) = p(c|pac)
∏

ei∈Ec

p(ei|paei)
∏

ei∈Ec

p(ei|paei) (4)

As will be shown in the following section, this property allows a BN to recognize
a given sample only considering the responses provided by classifiers represented
by the nodes that are directly linked to the class node. For instance, the BN
shown in Fig. 1 considers only the responses of the experts e3, e4 and e5, while
the experts e1 and e2 are not taken into account. Thus, this approach allows to
detect a reduced set of relevant experts, namely the ones connected to node c,
whose responses are actually used by the combiner to provide the final output,
while the set Ec of experts, which do not add information to the choice of ĉ, are
discarded.

Using a BN for combining the responses of a set of classifiers requires that
both the network structure, which determines the statistical dependencies among
variables, and the parameters of the probability distributions be learned from
a training set of examples. The structural learning is aimed at capturing the
relation between the variables, and hence the structure of the DAG. It can be
seen as an optimization problem which requires the definition of a search strat-
egy in the space of graph structures, and a scoring function for evaluating the
effectiveness of candidate solutions. A typical scoring functions is the posterior
probability of the structure given the training data [3]. Once the DAG structure
has been determined, the parameters of the conditional probability distributions
are computed from training data.

The exhaustive search of the BN structure which maximizes the scoring func-
tion is a NP-hard problem. For this reason, greedy algorithms are used to
search for suboptimal solutions by maximizing at each step a local scoring func-
tion which takes into account only the local topology of the DAG. To over-
come this problem, we use an alternative approach in which the structure of
the BN is learned by means of an Evolutionary algorithm. The algorithm is
based on a specifically devised data structure for encoding DAG, called multilist
(ML), which allows an effective and easy implementation of the genetic opera-
tors. Further details about ML data structure and the genetic operators can be
found in [5].
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3 Experimental Results

The proposed approach has been tested on five data sets: Census, Segment,
Adult, Phoneme and Covtype. The size and class distribution of these data sets
are described in Table 1. They present different characteristics in the number
and type (continuous and nominal) of attributes, two classes versus multiple
classes and number of samples. Each dataset has been divided, as usual, in a
training set (2/3 of the original data) and in a test set (1/3 of the original data).

All the experiments have been performed on a Linux cluster with 16 Ita-
nium2 1.4GHz nodes each having 2 GBytes of main memory and connected
by a Myrinet high performance network. The BoostGCPC module used stan-
dard GP parameters (prob. of crossover=0.8, prob. of mutation=0.1, maximum
depth=17, no parsimony factor) and a population of 100 individuals for node.
The original training set has been partitioned among 5 nodes and 10 rounds
of boosting, with 100 generations for round, have been performed in order to
produce 50 classifiers. It is worth to remember the algorithm produce a different
classifier for each round on each node.

All results were obtained by averaging over 30 runs. For each run of the
BoostCGPC module, a run of the BN module has been carried out. Each BN run
has been performed by using the responses, on the whole training set, provided
by the classifiers learned in the corresponding BoostCGPC run. The results on
the test set has been obtained by first submitting each sample to the learned
decision trees ensemble. Then the ensemble responses have been provided to the
learned BN. Finally, the BN output label has been compared with the true one
of that sample.

The results achieved by our approach (hereafter BN-Boost-CGPC) have been
compared with those obtained by the BoostCGPC approach, which uses the
wighted majority rule (Eq. 1) for combining the ensemble responses. Moreover,
in order to test the effectiveness of the evolutionary learning performed by the
second module of the proposed system, we also compared our results with those
obtained by a standard algorithm for learning Bayesian Networks, namely the K2
algorithm [4]. Such a algorithm uses a hill climbing technique to learn Bayesian
Networks from data. With the aim of performing a fair comparison, we adopted
for the K2 algorithm the same scoring function used by our system for evaluating
the quality of the network structure. For each dataset, these BNs have been
learned on the responses provided by the set of classifiers supplied by the first

Table 1. The data sets used in the experiments

datasets attr. samples classes

Adult 14 48842 2

Census 4 299285 2

Phoneme 5 5404 2

Segment 36 2310 6

Covtype 54 581012 7
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module of our system on the training set. The trained BNs have been tested on
the responses given by the just mentioned classifiers, obtained on the test set.

Comparison results are shown in Tab. 2. The second column shows the car-
dinality of the ensembles taken into account (10, 20 and 50 classifiers). The
ensembles made of 10 and 20 classifiers have been obtained by considering re-
spectively the first 10 and 20 classifiers generated by the BoostCGPC algorithm.
For each considered method, the table reports the training and test error. Col-
umn 5 contains the number of classifiers actually used by our approach, i.e.
only the classifiers that are directly connected to the class label node in the
DAG. Note that for the other methods such number has not been reported since
it coincides with the number of classifier making up the ensemble (10, 20 or
50). In order to statistically validate the comparison results, we performed the
two–tailed t–test(α = 0.05) over the 30 carried out runs. The values in bold in
the test error columns highlight, for each dataset, the results which, according to
the performed test, are significantly better with respect to the second best result
(such results are starred). The proposed approach, for all considered datasets,
achieves better performance than those obtained by the two methods used for
the comparison. It is worth to remark that such results are always achieved by
using only a small number of the available classifiers.

In order to test the effectiveness of the ensemble pruning performed by our
system, we compared its results with those obtained by the Pareto optimal prun-
ing strategy [10]. Such approach considers, for each couple of classifiers in the
original ensemble, two quality measures: the average train error and a pairwise
diversity measure. These couples of values, can be plotted in a two-dimensional

Table 2. Comparison results. Bold values represent the best statistically significant
results, while starred values represent the second best results. The Columns with the
headers tr and ts respectively contain the train and test errors.

Dataset ens.
BN-BoostCGPC BoostCGPC K2-BN
tr ts # sel. tr ts tr ts

Adult
10 15.03 15.05 3.05 17.24 17.38 17.16 17.34�

20 15.70 15.65 3.05 16.99 17.11� 17.55 17.83
50 13.19 13.53 3.90 14.43 14.33� 17.66 18.29

Census
10 4.72 4.85 3.50 5.27 5.27� 5.45 5.42
20 4.73 4.87 4.25 5.24 5.24� 5.00 5.40
50 4.09 4.20 3.65 4.97 5.08� 4.50 5.20

Covtype
10 33.83 34.05 3.15 35.97 35.83� 37.23 38.37
20 33.06 33.29 3.75 34.73 34.72� 36.55 37.00
50 30.80 31.00 3.50 32.52 32.51� 33.04 33.94

Phoneme
10 17.97 18.92 3.05 19.14 19.84 19.52 19.72�

20 17.10 17.82 3.86 17.92 18.37� 19.03 19.35
50 15.81 16.12 3.21 16.85 17.36� 18.73 19.33

Segment
10 12.08 12.48 2.25 17.33 18.28 13.52 14.43�

20 10.80 11.50 2.55 15.24 16.14 12.33 13.30�

50 11.08 11.46 2.85 14.15 14.90 11.69 12.87�
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Table 3. Comparison results for the selection strategies. Bold values represent the best
statistically significant results, while starred values represent the second best results.

Dataset ens.
BN-Boost Pareto optimal

error #sel.
geno pheno

error #sel. error #sel.

Adult
10 15,05 3,05 17,25 4,95 17, 24� 5,20
20 13,53 3,90 17,15 9,75 16, 99� 13,05
50 13,53 3,90 17,15 9,75 16, 99� 13,05

Cens
10 4,85 3,50 5, 42� 4,90 5,42 5,75
20 4,87 4,25 5, 40� 7,05 5,40 10,40
50 4,20 3,65 5, 38� 9,65 5,39 16,60

Covtype
10 34,05 3,15 36, 01� 5,10 36,01 6,55
20 33,29 3,75 35, 15� 7,65 35,38 9,65
50 32,00 3,50 34, 33� 9,35 34,71 14,70

Phoneme
10 18,92 3,05 20,29 5,50 20, 09� 5,85
20 17,82 3,86 20,04 6,70 19, 59� 9,10
50 16,12 3,21 19,79 8,90 19, 51� 10,75

Segment
10 12,48 2,25 30, 14� 5,90 30,74 5,40
20 11,50 2,55 29,11 7,85 28, 38� 10,10
50 11,46 2,85 28,52 9,20 27, 59� 14,45

space, where every pair of classifiers is represented by a dot. At this point we
can imagine that the most desirable pairs of classifiers are those represented by
the dots making up the Pareto front of the whole set of classifier pairs. Note
that the Pareto front contains all non-dominated points of the plot. A point i
is non-dominated if and only if there is no other point j, so that j is better
than i on both quality measures. As concerns the diversity measure, we taken
into account two different measures, better described in [7]: a genotypic mea-
sure that evaluates the structural diversity between the two trees representing
the couple of classifiers to be assessed; a phenotypic measure based on Kappa
statistics, which gives a score of how much homogeneity there is in the responses
provided by two classifiers. The comparison results are shown in Table 3. Also
in this case the results have been statistically validate by means of the two–
tailed t–test(α = 0.05) over the 30 carried out runs and the best statistically
significant results are marked in bold. From the table it can be seen that for all
the datasets, our method outperforms the Pareto optimal approach although it
selects a significant minor number of classifiers.

4 Conclusions

We presented a new framework for improving the performance of classifier en-
semble, by means of an effective pruning algorithm based on Bayesian networks.
The framework consists of two modules: an ensemble-based Genetic Program-
ming system, which produces a high performing ensemble of decision tree clas-
sifiers, and a Bayesian Network approach to perform classifier selection.
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The effectiveness of the proposed system has been tested by comparing the
accuracy of the framework with those obtained by the BoostCGPC approach
and with those achieved by using a Bayesian Network learned by using the K2
algorithm. In addition, in order to validate the effectiveness of the approach
as pruning strategy, it has been compared with the Pareto optimal pruning
strategy. For all the datasets, our method obtains better results than the other
methods both in terms of accuracy and of the number of classifiers selected,
confirming the goodness of its usage as a pruning strategy. Future works will
include the comparison with other state-of-the-art methods and the exploration
of the overhead in terms of execution time our method requires.
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Abstract. Learning a Bayesian network structure from data is a well-
motivated but computationally hard task, especially for problems ex-
hibiting synergic multivariate interactions. In this paper, a novel search
method for structure learning of a Bayesian networks from binary data is
proposed. The proposed method applies an entropy distillation operation
over bounded groups of variables. A bias from the expected increase in
randomness signals an underlaying statistical dependence between the in-
puts. The detected higher-order dependencies are used to connect linked
attributes in the Bayesian network in a single step.

1 Introduction

A Bayesian networks is a probabilistic graphical model that depicts a set of ran-
dom variables and their conditional independence via a directed acyclic graph. It
represents a factorization of a multivariate probability distribution that results
from an application of the product theorem of probability theory and a simplifi-
cation of the factors achieved by exploiting conditional independence statements
of the form P (A|B,X) = P (A|X), where A and B are attributes and X is a set
of attributes.

The represented joint distribution is given by:

P (A1, . . . , An) =

n∏
i=1

P (Ai|par(Ai)) (1)

where par(Ai) denotes the set of parents of attribute Ai in the directed acyclic
graph that is used to represents the factorization.

Bayesian networks provide excellent means to structure complex domains and
to draw inferences. They can be acquired from data or be constructed manually
by domain experts (a tedious and time-consuming task).

One of the most challenging task in dealing with Bayesian networks is learning
their structures, which is an NP-hard problem [1,2]. Most algorithms for the
task of automated network building from data, consist of two ingredients: a
search method that generates alternative structures and an evaluation measure
or scoring function to assess the quality of a given network by calculating the
goodness-of-fit of a structure to the data.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 246–255, 2012.
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Due to the computational cost implications [2], most of the algorithms that
learn Bayesian network structures from data use a heuristic local search to find a
good model, trading accuracy for tractability and efficiency. Exact Bayesian net-
work learning has a O(n2n) complexity, thus it is feasible up to 30 variables [3].

Heuristic methods, at each step apply some search operators like perturba-
tion or solution mixing, to some current network structure(s), exploring their
neighborhoods. After evaluating the new solutions, they promote changes that
result in the improvement of some discriminative metric.

Because these search methods alter only a few arcs at the time, they can hardly
find and express multivariate interactions that only manifest at a synergic level
like the parity function. Here, adding edges between less than k nodes, where
k is the size of the block containing the multivariate interaction, will not result
in any improvement, thus are hard to discover by methods closely following the
discriminative metric gradient.

In this paper we propose a linkage-detection method that is able to select all
relevant parents for an attribute in one step, by finding and expressing even rela-
tionships not manifesting at pairwise level. Our method exploits the property of
the exclusive or (XOR) operator to produce randomness from non-deterministic
sources. We search for groups of variables where entropy distillation does not oc-
cur, signaling a non-determinism in the source - statistical dependence between
the variables.

Albeit a costly search for the groups of variables must be performed, this
approach enables the correct detection of Bayesian network, unattainable by
simple heuristic search methods.

2 Detecting Higher-Order Dependencies

Binary problems of real interest may have many variables with complicated
multivariate interactions among them. The dependency of a binary variable Xe

on a (noisy) feature expressed by several other variables of the problem can be
formalized as follows:

if fb(Xv1, Xv2, . . . , Xvl) [and noise(X)]

then Xe = b

[else Xe = b]

where fb is an arbitrary deterministic boolean function of l binary variables,
which analyzes if the input variables satisfy a certain feature or not. b is the bit-
wise negation of b. As the relation must not be fully specified, the else branch
is optional. The optional boolean noise(X) function can be used to introduce
stochasticity to the relation, to model external influences or factors which are
not directly considered when evaluating the feature. This boolean function may
prevent the expression of the feature even if the conditions are present, thus
adding noise to the relation.
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For these kind of problems, pairwise dependencies might be very small or
lacking altogether. Therefore, finding the correct dependency structure is a very
hard task. Prospective methods must combine an extensive higher order model
search guided by a criteria that evaluates the quality of the model in rapport
with the evidence, like the Minimum Description Length (MDL) principle [4] or
Bayesian-Dirichlet metric [5].

The complexity of the model determination is a product of the complexity of
the search and candidate model evaluation.

For problems where statistical dependence can only be detected by considering
at least k variables, the search must enumerate at least all combinations of
variables taken k at the time.

An ordered tuple of binary random variables X = (X1, X2, . . . , Xn) is in-
dependent iff the joint distribution Pr(X1 = x1, X2 = x2, . . . , Xn = xn)
and the product of the independent ones

∏n
k=1 Pr(Xk = xk) is equal for all

x = (x1, x2, . . . , xn) ∈ {0, 1}n.
Relative entropy or Kullback-Leibler divergence [6] can be used to measure

the “distance” between these two distributions:

DKL(p||q) =
∑
x∈X

p(x) log2(
p(x)

q(x)
) (2)

Measuring the DKL between the observed joint distribution of some variables
and the product of independent joint distribution one can measure the informa-
tion gain by considering a group of variables linked. The complexity of calculat-
ing DKL is exponential in k with a base equal to the cardinality of the random
variables. Thus, for the binary case the complexity is O(2k).

While the burden of the combinatorial search can not be obviated, in the
following we consider ways in which the complexity of the model discriminatory
function can be heavily reduced from the exponential complexity.

3 Entropy Distillation Based Multivariate Dependency
Detection

Most practical sources of randomness, be it hardware or pseudo-random number
generators, exhibit a certain level of imperfection or bias. A perfectly random
bit has an entropy of one bit and bias of 0. To obtain a highly random bit, there
are algorithms that combine multiple, streams of imperfect random bits, each
with entropy less than one, to create a single bit with entropy one and bias 0.
This process is called entropy distillation or entropy extraction.

Exclusive OR (XOR, also denoted by ⊗) is commonly used to reduce the bias
from imperfectly random bits, provided that the random bits are statistically
independent.

The reduction in bias by repeatedly applying the XOR on non-deterministic
inputs can be computed using the Piling-Up Lemma [7].
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Lemma 3.1. Let Xi for i ∈ 1, n be statistically independent random binary
variables, where pi is the probability that Xi = 0 and εi = pi − 1/2 are the
biases. Then the probability that X1 ⊗X2 ⊗ . . .⊗Xn = 0 is

1

2
+ 2n−1

n∏
i=1

εi (3)

Note that as biases εi ∈ [0, 1] their product is a monotonically decreasing func-
tion. If any of the ε’s is zero, that is, one of the binary variables is unbiased, the
resulting probability function will be unbiased. Also, performing an XOR with
a constant variable having pi = 0 or pi = 1 i.e a maximum bias of εi = ±1/2
will not reduce the bias.

In our algorithm we will apply the XOR operation in a sequential manner,
performing in each step the operation between a variable Xi and the result
Y = X1⊗X2⊗ . . .⊗Xi−1 of the repeated XOR up to that variable i. Therefore,
we take a closer look on the expected result of XOR for two variables.

Lemma 3.2. If X and Y are independent random binary variables with expec-
tations E(X) = μ and E(Y ) = ν then

E(X ⊗ Y ) = μ+ ν − 2μν (4)

=
1

2
− 2(μ− 1

2
)(ν − 1

2
) (5)

Proof. Following from the logical table of the XOR, for two bits a and b, a⊗ b
equals 1 if a = 0 and b = 1 or if a = 1 and b = 0.

Thus, E(X ⊗ Y ) can be written as

E(X ⊗ Y ) = (1 − μ)ν + μ(1− ν)

= μ+ ν − 2μν

= μ+ ν − 2μ+
1

2
− 1

2

=
1

2
− 2

[
μν − μ

2
− ν

2
+

1

4

]
=

1

2
− 2(μ− 1

2
)(ν − 1

2
)

3.1 XOR Based Multivariate Dependency Detection

The Piling-Up Lemma is successfully used in linear cryptanalysis to construct
linear approximation to the action of non-linear block ciphers. In this application,
the Xi-s are approximations to the substitution-boxes of block ciphers for which
the biases are trivial to measure. The attack relies on performing a costly search
for finding combinations of input and output values that have very high biases
i.e probabilities very close of zero or one.

Similarly, we perform a search to find groups of variables for which the actual
probability mass of the result obtained by performing the XOR greatly differs
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from the value predicted by the Piling-Up Lemma. For these cases the high bias
must come from the fact that the assumption of non-determinism is not satisfied.
Thus, there is an underlaying (higher-order) statistical dependence between the
inputs.

The proposed metric has a great complexity advantage, as performing k con-
secutive XOR operations in linear. While the approach is efficient in detecting
multivariate dependences, we still have to perform an ample search to find the
higher-order groups of variables that are dependent. In the next section we ap-
ply this multivariate dependence detection technique to determine all relevant
parents for the Bayesian network building task.

4 Bayesian Network Building

In Bayesian network building, the goal is to decide the set par(Ai) for each
attribute, with the restriction, that adding the edges between and attribute and
its parents must not result in a cycle.

To detect all dependencies, up to a predefined bounded size k in one step,
for each attribute we compute the repeated ⊗ between the attribute and all
possible combinations of other variables up to the threshold k. For each com-
bination, we compute the difference between the percentage of zeros in the
result as predicted by the Pilling-Up lemma and the actual outcome percent-
age. For each attribute, we retain the combinations that yield the biggest
discrepancies.

In the network building phase, we process the attributes in a random order.
For each attribute Ai, we sequentially assign the potential parent set par∗j (Ai)

to be the jth combination of variables with the highest bias, as quantified with
the help of the Pilling-Up lemma in the previous step. In this way we process
a prefixed top Snr interacting subsets for each attribute. For every subset, we
process each potential parent p∗(Ai), p

∗(Ai) ∈ par∗j (Ai), and if adding an edge
between the attribute and its potential parent does not result in a cycle, p∗(Ai)
becomes a parent of Ai: parj(Ai) = parj(Ai) ∪ p∗(Ai). From all the obtained
and tested parent subsets for each attribute, we choose attribute and its parents
that maximizes a given discriminative scoring function, in our case the Bayesian
Dirichlet metric [8].

The search stops when we determined the parents of each attribute, or when
considering the extension of the network does not result in improvements. The
outline of this parent search procedure is outlined in Algorithm 1.

4.1 Test Suite

To assess the performance of the proposed search method, we built some artifi-
cially generated test samples that contain various types of multivariate interac-
tions. We consider 10 variables X1, . . . , X10, sampled 5000 times.
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Algorithm 1. Constructing a Bayesian network that is able to capture
higher-order interactions up to a prefixed order k

1 BN ← EmptyNetwork();
2 foreach attribute A, iterating by i do
3 foreach e possible combinations of variables that do not contain Ai, up to

size k, iterating by j do
4 Measure the entropy distillation bias between Ai and ej and retain the

Snr combinations with highest biases in M(i, :);

5 repeat
6 for i=randompermutation(1:n) do
7 if HasParents(i) then
8 continue;

9 for j=1:Snr do
10 par∗(Ai) ← M(i, j);
11 par(Ai) ← EliminateCycles(par∗(Ai));
12 BN∗ ← ExtendNetwork(BN,Ai, par(Ai));
13 if Score(BN∗) > Score(BN) then
14 BN ← BN∗;

15 until No improvement was found ;
16 return BN ;

The first data set contains two highly noisy features:

– A highly noisy conditioning, where whenever three out of the four first vari-
ables are one, X5 is also set to 1 with a probability of 0.5:

if (sum([X1, X2, X3, X4]) == 3) and (rand ≤ 0.5)

then X5 = 1

– A noisy feature based on a parity function conditioning where if variables
X6, X7, X9, X10 have an even number of ones, X8 is set to 0 with a 0.8
probability:

if (parity([X6, X7, X9, X10]) == true) and (rand ≤ 0.8)

then X8 = 0

In the second dataset we reduce the amount of explicit noise but introduce an
overlap between the two features, which are:

– We have the noisy conditioning, where whenever exactly half of a group of
six variables are 1, X5 is also set to 1 with a probability of 0.95:

if (sum([X1, X2, X3, X4, X9, X10]) == 3) and (rand ≤ 0.95)

then X5 = 1
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– Again a noisy feature based on a parity function conditioning:

if (parity([X6, X7, X9, X10]) == true) and (rand ≤ 0.9)

then X8 = 0

In the third dataset we introduce an interplay between the features, where the
realization of the first feature may inhibit the realization of the second one:

– We use again the first conditioning, from dataset one.
– A feature which may be short circuited by the realization of the first feature:

if X5 == 1, the feature regarding X8 is not expressed.

if (sum([X6, X7, X9, X10]) == 3) and (X5 == 0)

then X8 = 0

4.2 Results

For each test case, we generated 50 instances and tested the proposed method
against the classical Bayes network model building K2 algorithm [9], which ex-
tends a current model by performing one arc operation at the time. The allowed
in degree in the classic search and the k parameter in the proposed method
was set to 6, thus both methods could consider up to 6 parents. The number of
analyzed possible parent sets Snr was set to 5.

For each batch of 50 runs, we recorded the best network found, its score, the
worst and the average score. Because the data is stochastically generated and
incorporates noise, the exact quantity of this values is of a little importance. The
same network structure will score differently when evaluated on different noisy
samples. Nevertheless, these values may be used to make qualitative assessments,
in the cases where the worst result of one method surpasses the best network
score or the average score found by the other method.

More important aspect regards the methods ability to extract the same struc-
ture from different samples of noisy data. We measure this robustness by com-
paring the best and worst scoring network out of each batch of 50 runs. If the
adjacency matrix of the two networks is not similar (one can not be transformed
into the other one by using only row and column swapping), implies that the
search method may find different network topologies on different runs.

The numerical scores are presented in Table 1. The plot of the best networks
found for each of the three cases are presented in Figures 1, 2, 3.

In the first case, where there is a high amount of noise, the classical approach
can not detect the real structure, the network is filled with spurious connections
where often an attribute is accounted as the parent of all other attributes following
after. Observe for example in Figure 1, that Node 1 is attributed as parent for
all other nodes. On the other hand, even with such a high amount of noise, the
extended multi-parent search is able to detect the correct topology of the network.

For the second dataset it is expected that the classical approach is not able
to detect the parity, multivariate interaction as it would need to add at least six
arcs at once to reveal this interaction. Furthermore, as this feature overlaps with
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Table 1. The performance of the proposed and classical methods on the three test
suites. The multi-parent extended search worse results are better than the best scores
obtained by the classical search method in all cases.

Best Worst Average Std. Robust

Test suite 1
Classic -34128.06 -34269.11 -34204.73 32.89 No
Extended -33662.24 -33826.25431 -33748.88 37.67 Yes

Test suite 2
Classic -33876.23 -34040.17 -33950.13 36.63 Yes
Extended -33063.69 -33308.58 -33192.06 52.87 Yes

Test suite 3
Classic -34172.68 -34298.18 -34228.73 27.03 No
Extended -33915.10 -34065.95 -33982.97 29.87 Yes

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8 Node 9Node 10

(A)

Node 1 Node 2 Node 3 Node 4

Node 5

Node 6 Node 7

Node 8

Node 9 Node 10

(B)

Fig. 1. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the first test suite

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 (A)

Node 1 Node 2Node 3 Node 4

Node 5

Node 6 Node 7

Node 8

Node 9 Node 10

(B)

Fig. 2. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the second test suite
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Node 6

Node 7

Node 8

Node 9 Node 10
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Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7

Node 8

Node 9 Node 10
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Fig. 3. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the third test suite

the other feature which also spans across six variables, the method is unable to
account for useful relations and returns the empty network, without edges, in
all cases. Please note by looking at the best and worst score in Table 1 for test
suite 2, how the same empty network may score differently when presented with
different test data. The proposed method is again able to find the correct struc-
ture, as we allowed the feature space exploration up to six combined variables,
which is also the length of the highest multivariate relation.

On the third case, the classical method is able detect the interactions in-
fluencing attribute 5 and its relation to attribute 8, while failing to model the
synergic interaction of the other variables. Sometimes, as depicted in Figure 3 A,
it reports attribute 5 as linked to other variable different from attribute 8, but
this result is rarely achieved. By modeling all interactions up to size six in the
feature space, the multi-parent search is able to correctly decipher the interplay
between the two features.

For all cases, as shown above, the extended search found qualitatively better
networks; the worst scoring results of the proposed method were always better
than the best results returned by the classical method. As it does not contain
stochastic components, the proposed showed robustness, finding the same topol-
ogy on different runs.

5 Conclusions

Usual Bayesian network building starts by exploiting pairwise dependencies.
When no such relations are available a successful approach must do k-wise mul-
tivariate interaction search.
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In this paper a search algorithm for constructing Bayesian networks from
binary data was developed, where all dependencies of each attribute is detected
in one step. The proposed method has demonstrated a great ability to identify
simpler and synergic multivariate interactions even in the case of noisy feature
interplay, where considering one edge addition at the time is fruitless.

While it uses a small number of model evaluations and it is much more effec-
tive than doing greedy search using a k-wise stochastic edge search operator, the
extended multi-parent search is still very costly in terms of building and eval-
uating all combinations of variables, having an O(nk) complexity. Fortunately,
backtracking algorithms are very easy to parallelize as processing different paths
in the search tree is an embarrassingly parallel task, with no communication over-
head [10,11]. Parallel backtracking scales very well with the number of available
processors. Therefore, future effort will focus on parallelizing the higher-order
dependency detection search.
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Abstract. This paper proposes a novel approach of XCS called XCS
with Best Action Mapping (XCSB) to enhance the learning capabilities
of XCS. The feature of XCSB is to learn only best actions having the
highest predicted payoff with the high accuracy unlike XCS which learns
actions having the highest and lowest predicted payoff with the high
accuracy. To investigate the effectiveness of XCSB, we applied XCSB to
two benchmark problems: multiplexer problem as a single step problem
and maze problem as a multi step problem. The experimental results
show that (1) XCSB can solve quickly the problem which has a large
state space and (2) XCSB can achieve a high performance with a small
max population size.

1 Introduction

Learning Classifier Systems (LCSs)[6] are rule-based learning systems that com-
bine Reinforcement Learning[8] with Genetic Algorithm[5]. The aim of LCSs
is to acuire classifiers as condition-action rules that perform well in any given
environmental state by reinforcing and evolving them to match several environ-
mental states through a generalization process. Among LCSs, the XCS classifier
system[10] is a traditional LCS and can learn the accurate generalized classifiers
by employing an accuracy of the predicted payoff of classifiers. In the learn-
ing process of XCS, it learns all state-action pairs, which is called a complete
map[10]. The complete map contributes to stably perform the high generaliza-
tion capabilities of XCS but requires a huge number of the max population size.
This is because that XCS needs to generate a lot of variety of classifiers at the
first learning stage to find accurate classifiers. For this reason, the condition of
classifiers should consist of an enough number of specific bits in which XCS does
not trigger a cover-delete cycle[3]. Here, the cover-delete cycle occurs when the
classifiers do not cover all state-action pairs due to the condition has too much
specific bits, and reduces the learning capabilities. To learn with the small max
population size, XCS requires the strong generalization pressure to prevent the
cover-delete cycle. Because the condition has more generalized bits covers more

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 256–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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state by itself. However, in this case, the learning capabilities are reduced due
to that many overgeneralized classifiers are generated.

In this paper, we propose XCS with Best Action Mapping, which is called
XCSB. XCSB leans only a best action in each state to perform the high learning
capabilities even with the small max population size, this is called a best action
map[7]. Here, the best action has the highest predicted payoff in each state.
XCSB does not need the strong generalized pressure even with the small max
population size since it learns only classifiers has the best action. The features
of XCSB are that XCSB acquires the best action map with the accurate gen-
eralization in comparison with strength-based LCSs as ZCS[9], and that XCSB
can adapt not only the single step problems but also the multi-step problems
without a supervised learning in comparison with UCS[1]. To investigate the
learning capabilities of XCSB, we apply it to Multiplexer problem as a single
step problem and Maze problem as a multi step problem.

This paper organized as follows. The next section gives the description of XCS
in brief, and Section 3 describes XCSB. Section 4 shows the experiment results
of XCSB. Finally, conclusions are given in Section 5.

2 XCS in Brief

A classifier is represented by the condition-action rule. In general, a condition C
is coded by C ∈ {0, 1,#}L, where L is the length of condition, and the symbol
’#’ means the don’t care symbol which matches all conditions (i.e., 0 or 1). In
XCS, the classifier has the following main parameters: 1) the prediction p which
represents the average of the reward; 2) the prediction error ε which represents
the average of the absolute error of the prediction p; 3) the fitness F which
represents the accuracy of classifiers.

When XCS recognizes a state as input from the environment, XCS generates a
match set [M ] composed of classifiers and each of the conditions in [M ] matches
the current state from population [P ]. If a number of the type of actions in [M ]
are less than θnma, the covering mechanism takes place to generate the classifiers
that have the condition matched to the current state and the action with the
different type of actions in [M ]. In this process, the some parts of conditions
in the generated classifiers are replaced to ’#’ with the probability P#. When
two or more classifiers are included in [M ], XCS calculates the prediction array
P (aj) for each possible actions aj in [M ] by Eq.(1), where [M ] | aj represents
the classifiers which have the action aj in [M ].

P (aj) =

∑
clk∈[M ]|aj

pk × Fk∑
clk∈[M ]|aj

Fk
(1)

After calculating P (aj), the action selection mechanism in XCS selects the one
action from [M ] according to a proportion to P (aj). Next, XCS generates an
action set [A] composed of the classifiers which action is the selected action
from [M ], and executes the selected action in the environment. After that, XCS
sometimes gets the reward r. We count one step when this cycle is repeated.
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After one step is executed, the several parameters of classifiers in the previous
action set [A]−1 stored one step before is updated. Especially, the prediction pi
are updated by Eq.(2), r is the reward is obtained from the environment; γ is
the discount factor (0 ≤ γ ≤ 1 ) which determines the consideration degree of a
future reward; β is the learning rate (0 ≤ β ≤ 1 ) controls the speed of learning.

pi ← pi + β(r + γ maxP (a)− pi) (2)

In the case of XCSG, the gradient of the fitness is added to Eq.(2) as Eq.(3) [2]
to promptly adapt an environment in the multi-step problem.

pi ← pi + β(r + γ maxP (a)− pi)× Fi∑
clk∈[A] Fk

(3)

After updating the parameters, the absolute accuracy κi and relative accuracy
κ′
i of the each classifier in [A] are calculated depend on an error threshold ε0.

Finally, the fitness of classifier Fi is updated as: Fi ← Fi+β(κ′
i−Fi). Next, GA is

executed to evolve the previous action set [A]−1 when the average of the time step
since GA is lastly executed exceeds the threshold θGA. In detail, two classifiers
are selected as parents with the probability proportioned (called roulette wheel
selection) to their fitness of classifiers in [A]−1 and two classifiers are generated
as offspring. Here, XCSTS is added the tornament selection to XCS, and can
derive the high learning capabilities and is more robust than XCS[4]. Then, the
crossover and mutation are executed with the probabilities χ (cross over rate)
and μ (mutation rate). Finally, the two generated offsprings are added to the
population.

3 XCS with Best Action Mapping

In general, the learning and generalization capabilities of XCS are higher than
that of several strength-based LCS[7]. However, the learning capabilities of XCS
are reduced when XCS is not given the suitable generalization and specificity
pressures depend on the max population size since it acquires the complete map
which covers all state-action pairs(Fig.1-a). Because if it is given the stronger
specificity pressure than suitable one, XCS cannot enough estimate several pa-
rameters of classifiers since alternates the covering and the deletion continually,
this cycle is called cover-delete cycle[3]. In contrast, if XCS is given the stronger
generalization pressure than suitable one, XCS does not trigger the cover-delete
cycle but generates the overgeneralized classifiers whose are generalized more
than necessary. Especially, to derive the high learning capabilities and speed,
XCS needs to get the suitable specificity pressure, since XCS finds the accu-
rate classifier from more variety of classifiers in the first learning stage. For this
reason, XCS requires a large max population size to get the suitable specificity
pressure in which the cover-delete cycle do not trigger, or XCS has to set the
strong generalization pressure with the small max population size at the cost of
the learning capabilities.
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Reward: r=100 
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r=60

r=80

Reward: r=100 

Current state

?

?

?

a) complete map b) best action map

Fig. 1. Representations of complete map and best action map at the current state

To tackle these problems, we propose the XCS with Best Action Mapping, is
called XCSB. XCSB acquires the best action map[7] which has only best actions
lead to the highest prediction in each state(Fig.1-b). Due to this, XCSB can
derive the high learning capabilities since XCSB is possible to set the suitable
specificity pressure without occurring cover-delete cycle even with the small max
population size. XCSB is improved the mechanism of XCS and has the two
different mechanisms from XCS as the following; 1) Distinguishing and learning
the best action and classifiers whose have the best action; and 2) Tuning the
number of called covering depend on the learning states which mean the degree
of fixed best action in each states. The following sub-sections explain the these
mechanisms of XCSB.

3.1 Description of XCSB

Distinguishing and Learning the Best Action: To distinguishing the best
actions, it is possible to identify the actions which has the highest prediction
array value represents as maxP (a). However, when the best action is not fixed,
i.e., the prediction array for each actions do not enough converge, it is not
always true that the action has maxP (a) indicates the best action. To identify
correctly the best action, we identify it by comparing with maxP (a) at the
nest state. As shown Eqs.(1) and (2), the previous maxP (a) as maxP (a)−1

converges to γmaxP (a) at the next state, i.e., the maxP (a) converges to the
maxP (a)−1/γ, since each prediction of each classifier in [A]−1 also converges
to γmaxP (a). Here, each best action has to lead the next state which has the
maxP (a) is equal to maxP (a)−1/γ. For this reason, after the selected action
is executed, we can identify its action as the best action if maxP (a) is equal
or larger than ζ ×maxP (a)−1/γ, where the ζ represents the rate that permits
the error of convergence of maxP (a), and should be set to larger than γ. Note
that we identify it if the given reward is equal or larger than ζ×maxP (a) when
the terminal criteria are met. Since maxP (a) converges to reward value at that
time.

To leaning the best action, XCSB generates not only action set but also a
not action set [Ā] which is composed of classifiers in [M ] whose do not have
the selected action. When the executed action is identified as the best action,
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the parents in GA are selected from [A] and deleted classifiers are selected from
[Ā] to acquire only best action map. Here if [Ā] is empty they are selected from
population. On the other hand, when the executed action is not identified as the
best action, the parents are selected from [Ā] to find the best action and deleted
classifiers are selected from the population.

Tuning the Number of Called Covering: In XCS, the covering operator is
called if the number of different actions in [M ] is smaller than θnma. In general,
θnma in XCS is set to the number of actions in the environment. However, to
acquire the best action map in XCS calls the covering continually since it does
not cover all state-action pairs. For this reason, XCSB tunes the number of called
covering depend on the degree of the fixed best action, i.e., θnma is not fixed
value in XCSB. In detail, θnma is set to 1 (means only best action) to prevent
calling covering if the best action is fixed, while θnma is set to the number of
actions in the environment to find a best action if the best action is not fixed. To
estimate the degree of fixed best action, we add a new parameter to classifiers, is
called number of action represent as nma. Each nmai of classifiers cli is updated
by Eq.(4), where η controles the updated speed, and nma in env represents the
number of actions in environment, for instance in a binary classification problem
nma in env is 2. As shown Eq.(4), if the executed action is identified as best
action by above distinguishing mechanism, nmaj of each classifiers in [A]−1 is
converged to 1. Otherwise, it is converge to the number of actions in environment.
Note that nma of generated classifiers by covering is set to nma in env as an
initial value.

nmai ←
{
nmai + η(1− nmai) if maxP (a) ≥ ζ ×maxP (a)−1/γ

nmai + η(nma in env − nmai) otherwise.
(4)

Finally, θnma in XCSB is calculated from the average of nma of each classifier
which has the best action in the current state. In detail, in generating [M ], XCSB
calculates the prediction array to identify the best action before the covering is
called. Then, it calculates the average of nma of each classifier which has the
best action, and θnma is set to the average value which is rounded off the average
of nma. Note that θnma is set to the number of actions in environment if [M ]
is empty. After that, the covering is called when the number of different action
in [M ] is smaller than θnma. XCSB again calculates the prediction array if some
generated classifiers by covering is added to [M ].

Other Settings: In a single step problem, to acquire only the best action map
causes to select the best action incorrectly. Since the generated classifiers by GA,
which have a wrong condition-action pair, have the high prediction. For example,
there are only two type classifies in [M ], one is the correct classifiers which has
the best action, the high prediction as 1000 and the high fitness as 1.0, other one
is wrong classifiers which also has the high prediction as 1000 and low fitness as
0.1. Then, the both prediction array value is equal to 1000 independent of both
fitness values. Due to this, the best action is not always selected. For this reason,
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we employ the selection array S(a) for the selection probability to prevent the
incorrect selection, and is calculated by Eq.(5). Note that the denominator of
S(a) is different from the that of prediction array. In S(a), the selection prob-
abilities are calculated based on the summation of fitness in [M ]. For example,
above cases, the selection probability of the correct classifier is 909 and that of
wrong classifier is 90.9. The best action is correctly selected. We employ the S(a)
only for a single-step problem and use it for selecting action. Note that XCSB
calculates also the prediction array for the update several parameters and the
distinguishing the best action.

S(aj) =

∑
clk∈[M ]|aj

pk × Fk∑
clk∈[M ] Fk

(5)

4 Experiment

4.1 Single Step Problem

To investigate the effectiveness of XCSB on the single step problem, we apply
it to Multiplexer problem[10] as a benchmark problem in single step problem,
and compare the performance of XCSB with XCSTS[4]. Multiplexer problem
is either a learning problem or a test problem. In test problem, each system
randomly selects actions from each possible action, and takes place the parameter
updating (reinforce component) and the genetic algorithm. In test problem, each
system always selects the action which has the highest prediction array value,
and turns off the parameter updating and the genetic algorithm. We employ
the three evaluation criteria as follows: 1) performance represents the rate of
correct answers is executed during the test problems; 2) number of called covering
represents the number of called covering operators during learning problem; 3)
average of nma in action set represents the average of the nma of each classifiers
in [A] during test problems, i.e., the the average of nma of the classifiers has
best action in each step. Each evaluation criterion is computed as the moving
average during 5000 problems.

Multiplexer Problem: The multiplexer function is defined for binary strings
of length k + 2k. The output of the multiplexer function is determined by one
of the 2k value bits. The reference bits is determined by the k address bits. For
example, in the 6-multiplexer function(k = 2), f(110001) = 1, f(010111) = 1,
f(110110) = 0. The reward of correct action is 1000 and the incorrect action is
0. Here, we employ the 20 and 37 multiplexer problems (k = 4 and 5).

Results on the 20 and 37 Multiplexer Problem: In the 20 multiplexer
problem, the max population size N is set to different values as 1000 and 2000.
XCSTS parameter setting is the same in [3] as follows: ε0 = 10, μ = 0.04, P#

= 0.5, Pexplr =1.0, χ = 0.8, β = 0.2, α = 0.1, δ = 0.1, ν = 5, θGA = 25,
θdel = 20, θsub = 20, τ = 0.4, Tornament selection = 1, GAsubsumption =
1, ASsubsumption = 1. On the 37 multiplexer problem, N is set to 5000. The
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parameter setting is the same in [3] as follows: P# = 0.65, others is the same
in the 20 multiplexer problem. XCSB parameters is set as follows: ζ =0.99, η =
0.2, and other parameters is the same of each setting on XCSTS. Experimental
results on the 20 multiplexer problem are averaged over 20 experiments, and
they on the 37 multiplexer problem are averaged over 10 experiments.

Fig.2 shows the performance of XCSB and XCSTS on the 20 and 37 mul-
tiplexer problems. On the 20 multiplexer problem, XCSTS performs the high
learning capabilities with N = 2000 but is reduced the learning speed when
the small max population size N = 1000. While XCSB performs the higher
leaning speed than XCSTS even with the small max population size. On the
37 multiplexer problem, XCSTS reaches the high performance after about 650
000 problems while XCSB reaches the high performance after about 350 000
problems. XCSB solves quickly the 37 multiplexer problems which has the large
state space than 20 multiplexer problem. Fig.3 shows the number of called cov-
ering rate and the average of nma on the 37 multiplexer problem. XCSTS and
XCSB do not call the covering with the progress of the learning. Additionally,
the average of nma is converged to near 1, which means learns correctly the
best action map to prevent calling covering. For these results, XCSB can derive
the high learning capabilities even with the small max population size and with
the large state space. Since XCSB correctly identify the best action and tune
the calling covering to prevent the cover-delete cycle.
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Fig. 2. Performance and population size of XCSB and XCSTS with N = 2000 and
1000 on the 20 and 37 multiplexer problem

4.2 Multi Step Problem

To investigate the effectiveness of XCSB on the multi step problem, we apply
it to Maze problem[10] as a benchmark problem in the multi step problem,
and compare the performance of XCSB with XCSG[2]. Maze problem also is
either a learning problem or a test problem. In the multi step problem, during
the test problem, each system takes place the parameter updating but turns off
the genetic algorithm. We employ the same evaluation criteria of experiment
in the single step problem but performance represents the step to goal which is
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Fig. 4. Maze6

needed to reach goal position during the test problems. Each evaluation criterion
is computed as the moving average during 50 problems. All experimental result
are averaged over 20 experiments.

Maze Problem: This problem is composed of the empty cell as “ ”, the
obstacle cell as “T”, and the food cell as “F”. The agent can recognize the eight
surrounding neighbor cells, and moves cells to search the food(goal). At the
beginning, the agent is randomly placed at any empty cell in the maze. When
the agent reaches at the food cell, he acquires the reward 1000. To speed up the
experiments, the max step number is set as 1500, which makes the agent reset
and restart from the randomly selected cells when the steps exceed 1500[2]. Here,
we employ the maze6 as shown Fig. 4, the optimum step of maze 6 is 5.19.

Result on the Maze Problem: The max population size N is set to different
values as 1000 and 3000. The parameters setting of XCSG is the same in [2] as
follows: ε0 = 1, μ = 0.01, P# = 0.3, Pexplr =1.0, χ = 0.8, β = 0.2, α = 0.1, δ =
0.1, γ = 0.7, ν = 5, θGA = 100, θdel = 20, θsub = 20, Tornament selection =0,
GAsubsumption = 0, ASsubsumption = 0. The parameters setting of XCSB is
set as follows: ζ =0.99, η = 0.2, and other setting is the same of XCSG.
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Fig.5 shows the step to goal of XCSB and XCSG. XCSG reaches to the opti-
mum step with N =3000 while does not reach to it with N =1000. In contrast,
XCSB derives the learning speed as well as XCSG with N =3000 and keep to
perform the learning capabilities and speed even with the small max population
size. Fig.6 shows the number of called covering of XCSB and XCSG, and the
average of nma of XCSB with N = 1000 and 3000 on the maze6. XCSG pre-
vents the called covering with the progress of learning with N = 3000 but occurs
cover-delete cycles with N = 1000 since XCSG does not prevent calling covering
with N = 1000. In contrast, XCSB reduces calling covering than XCSG even
with N = 1000. Additionally, the number of nma is converged to near 1.5 with
N =3000. Here, there are 16 cells which has two best actions, 1 cells which has
three ones and 19 cells which has only one best action in all 36 empty cells of
maze6. Therefore the average of number of best action in each cells is equal to
1.5 (=(2 × 16 + 3 + 1 × 19)/36). From these results, in the multi step problem,
XCSB also can derive stably the high learning capabilities even with the small
max population size. Since XCSB can turn the number of called covering to
identify correctly the best action even in the problem which has two or more
best actions in each state.
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5 Conclusion

This paper proposed a novel approach of XCS as XCS with Best Action Map-
ping(XCSB) to perform stably the learning capabilities even with the small max
population size and even in the large state space problem. XCSB acquires only
best action map and tunes the number of called covering to prevent the cover-
delete cycle. To investigate the effectiveness of XCSB, we apply it to Multiplexer
problem and Maze problem. Experimental results show that XCSB can derive
the high performance not only with the small max population size but also in
the large state space problem.
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Abstract. Learning Classifier Systems (LCSs) are a unique brand of
multifaceted evolutionary algorithms well suited to complex or heteroge-
neous problem domains. One such domain involves data mining within
genetic association studies which investigate human disease. Previously
we have demonstrated the ability of Michigan-style LCSs to detect ge-
netic associations in the presence of two complicating phenomena: epis-
tasis and genetic heterogeneity. However, LCSs are computationally de-
manding and problem scaling is a common concern. The goal of this
paper was to apply and evaluate expert knowledge-guided covering and
mutation operators within an LCS algorithm. Expert knowledge, in the
form of Spatially Uniform ReliefF (SURF) scores, was incorporated to
guide learning towards regions of the problem domain most likely to be
of interest. This study demonstrates that expert knowledge can improve
learning efficiency in the context of a Michigan-style LCS.

Keywords: Expert Knowledge, Learning Classifier System, Genetics,
Epistasis, Heterogeneity, Evolutionary Algorithm, Mutation, Covering.

1 Introduction

Learning Classifier Systems (LCSs) [1] are a rule-based class of algorithms which
combine machine learning with evolutionary computing and other heuristics to
produce an adaptive system. We focus on Michigan-style LCSs (M-LCSs) which
uniquely make decisions using the entire rule population giving them the ability
to perform on-line learning, form niches, and adapt. They have been applied to
many problems including behavior modeling, function approximation, classifica-
tion, and data mining [1].

Scalability and learning speed have been synonymous targets for improvement
in the LCS literature [2,3,4,5,6] largely in the context of Pittsburgh-style LCSs
(P-LCSs) due to their inherent limitations in this area. However these consider-
ations are just as important for M-LCS algorithms, especially in the context of
large-scale, high dimensional problems.
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1.1 The Problem Domain: Human Genetics

One domain where these shortcomings clearly impact the utility of LCS is within
human genetics. Single nucleotide polymorphisms (SNPs) are single loci in the
DNA sequence where alternate nucleotides (i.e. alleles) are observed between
members of a species or between paired chromosomes in an individual. In a
typical genetic association study, researchers look for differences in SNP allele
frequencies between a group of individuals with the disease of interest, and a
matched group healthy controls.

Despite the rising quality and abundance of genetic data, epidemiologists con-
tinue to struggle with the connection of disease phenotypes to reliable genetic
and environmental markers. While strategies seeking single locus associations
(i.e. main effects) are often sufficient to address diseases which follow Mendelian
patterns of inheritance, their application to diseases characterized as complex
has yielded limited success [7,8]. Epistasis and heterogeneity have been recog-
nized as phenomena which complicate the epidemiological mapping of genotype
to phenotype [9]. In the present context, epistasis simply refers to attribute inter-
action. Heterogeneity, referring to either genetic heterogeneity (locus and allelic)
or environmental heterogeneity, occurs when individual (or sets of) attributes
are independently predictive of the same phenotype (i.e. class).

As proof of principle, M-LCSs were applied to the detection and modeling
of simulated epistatic and heterogeneous genetic disease associations [10]. These
evaluations identified the strengths and weaknesses of M-LCS on these types of
complex, noisy problems. To address the shortcoming of knowledge discovery
in M-LCSs we previously introduced an analysis pipeline with statistical and
visualization-guided strategies for rule population interpretation [11]. In order
to explicitly identify heterogeneity we introduced a strategy to link instances in
the dataset to respective heterogeneous subgroups using attribute tracking and
feedback [12]. To date, we have a functional LCS algorithm able to concurrently
detect patterns of association with epistasis and heterogeneity. In this work, we
turn our focus to improving the efficiency and scalability of this strategy.

The present study explores the adaptation of expert knowledge, previously
utilized in the context of other evolutionary algorithms, to improve algorithm
efficiency [13,14,15,16]. Here, we uniquely introduce expert knowledge to an M-
LCS algorithm and develop the strategies to utilize it. To achieve this goal we: (1)
derive expert knowledge from Spatially Uniform ReliefF (SURF) [17], (2) adopt
a logistic function to reliably transform any set of expert knowledge scores into
a set of attribute respective probabilities, (3) utilize these probabilities to intel-
ligently guide covering and mutation operators within M-LCS towards regions
of the problem domain most likely to be of interest.

2 Methods

In this section we describe (1) the M-LCS algorithm and run parameters used
in this investigation, (2) SURF, the selected source of our EK, (3) logistic trans-
formation of the EK values into probabilities, (4) the incorporation of EK into
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the covering and mutation mechanisms, and (5) our experimental evaluation of
the proposed mechanisms.

2.1 Learning Classifier System: UCS

M-LCSs, often varying widely from version to version, generally possess four
basic components; (1) a population of rules or classifiers, (2) a performance
component that assesses how well the population of rules collectively explain
the data, (3) a reinforcement component that distributes the rewards for correct
prediction to each of the rules in the population, and (4) a discovery compo-
nent that uses different operators to discover new rules and improve existing
ones. Learning progresses iteratively, relying on the performance and reinforce-
ment components to drive the discovery of better rules. For a complete LCS
introduction and review, see [1].

The sUpervised Classifier System (UCS) [18], is a M-LCS based largely on
the very successful XCS algorithm [19], replacing reinforcement learning with
supervised learning. UCS was designed specifically to address single-step problem
domains such as classification and data mining, displaying particular promise
when applied to attribute interaction and heterogeneity in [10].

For evaluation purposes we implement expert knowledge into a Python en-
coding of the UCS algorithm [10]. We utilize mostly default run parameters with
the exception of 200,000 learning iterations, a population size of 1600, tourna-
ment selection, uniform crossover, subsumption, attribute mutation probability
= 0.04, crossover probability = 0.8, and ν = 1. ν has been described as a “con-
stant set by the user that determines the strength [of] pressure toward accurate
classifiers” [20], and is typically set to 10 by default. A low ν was used to place
less emphasis on high accuracy in this type of noisy problem domain, where
100% accuracy is only indicative of over-fitting. While we run each algorithm for
a maximum of 200,000 iterations, we also stop and evaluate the systems after
10,000, 50,000, and 100,000 iterations. Also, as in [10], we employ a quaternary
rule representation, where for each SNP attribute, a rule specifies genotype as (0,
1, or 2), or instead generalizes with “#”, a character which implies that the rule
doesn’t care about the state of that particular attribute. The implementation
described above is available on request (ryanurbanowicz@gmail.com) and will
be posted on the LCS and GBML Central webpage.

2.2 Expert Knowledge from Spatially Uniform ReliefF (SURF)

Expert knowledge (EK) is an external source of information providing, in this
context, a measure of attribute quality. In this study, the external measure was
statistical, but it could just as easily be biological. The usefulness of EK is en-
tirely dependent on it’s quality. There are many statistical and computational
methods for determining the quality of attributes. We selected a method that
is capable of identifying attributes that predict class primarily through depen-
dencies or interactions with other attributes. To this end we selected Spatially
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Uniform ReliefF (SURF) [17] as the source of EK. SURF estimates the qual-
ity of attributes through a nearest neighbor algorithm that selects neighbors
(case or control instances) within an automatically determined distance thresh-
old. Weights, or quality estimates, for each attribute are estimated based on
whether the nearest neighbor (nearest hit) of a randomly selected instance from
the same class and the nearest neighbor from the other class (nearest miss) have
the same or different values. In addition to SURF, [17] also evaluated Tuned
ReliefF (TuRF) [21] which was designed for human genetics application. TuRF
systematically removes attributes that have low quality estimates so that the Re-
liefF values of the remaining attributes can be re-estimated. SURF and TuRF
could be combined in future work to derive EK scores, but in the present study
we exclusively utilize SURF to generate EK scores for every simulated training
dataset described in section 2.5. Note that the SURF run time was negligible
compared to that of UCS: requiring a matter of seconds to run.

2.3 Transformation of Expert Knowledge into Probabilities

This section describes our application of the logistic function in order to trans-
form raw EK scores into normalized probability values. We start with a set of
raw EK values K ⊂ R. We know neither the range nor distribution of the EK
values. The only requirement is that greater importance should translate to a
larger EK score. Let n = |K| and ki ∈ K|1 ≤ i ≤ n be the ith score.

We use the logistic function to transform the raw values into selection prob-
abilities. Namely,

�α,β(x) =
1

1 + e−(α+βx)

.
Before applying this function we must determine values for constants α and β.
First, the user specifies a range constant d. We have chosen d = 0.4 which yields
an output range of (0.5 − d = dl = 0.1, 0.5 + d = du = 0.9). This range ensures
that the attribute with the lowest EK score retains at least a 10% chance to be
specified, while the attribute with the highest EK score has no greater than a 90%
chance to be specified. Next, the user must specify c, which is the resulting sum of
probabilities in the transformed set. This is useful when one wants to guarantee
that a selection algorithm, given the set of probabilities, returns a certain number
of individuals on average. In this study we want selection to choose 50% of the
attributes during covering, therefore we set c = 10 since datasets each have 20
attributes. Lastly, the user must specify how many digits of precision (set to 5
here) we use when calculating α in step 5. EK transformation progresses in five
steps as follows:

Step 1: Compute range r = max(K)−min(K).
Step 2: Shift scores such that the lowest score is at minimum zero. Ifmin(K)<

0 then add abs(min(K)) to every EK score.
Step 3: Compute β such that the logistic function’s slope ’nicely’ occupies

the data range, i.e. �α,β(−r/2) = dl and �α,β(r/2) = du. Since α does not affect
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slope we set α = 0 while calculating β. We solve for β after some simple algebra
with the following:

β = 2 ln(
1 − dl
dl

)/r

Step 4: Compute an initial guess for α such that �α,β(min(K)) = dl. Since α
simply shifts the function left or right we only need to move the curve such that
the minimum EK score is transformed to dl. We solve for this initial α0 using
the following equation derived again with some simple algebra:

α0 = −β(min(K) + r/2)

Step 5: In order to find α such that the transformed probabilities sum to c
we iteratively search for an appropriate value of α using the Newton-Raphson
method. For our purposes β is a constant. We applied differential calculus to
obtain:

αj = αj−1 −

n∑
i=0

�α,β(ki)− c

n∑
i=0

�′α,β(ki)

We iterate this equation until αj = αj−1 with respect to the digits of precision.
At this point applying the logistic function to the input scores (K) using the
computed parameters, α and β, will produce a set of probabilities that sum to
the desired c.

2.4 Expert Knowledge Applied to Covering and Mutation

Once EK-based probabilities has been generated for all attributes, we incorpo-
rated these as weights to guide LCS learning. To achieve this, we apply these
probabilities to both covering and mutation operators within M-LCS. The cov-
ering operator is responsible for population initialization, as well as ensuring
that a matching rule exists for a given data instance within each learning iter-
ation. Previously, EK has been successfully applied to population initialization
in genetic programming [16]. In the context of LCS, EK probabilities drive the
specialization (state is important) or generalization (state is not important) of
attributes within rules. Having chosen a c of 10, rule generated via covering
will tend to have half of the 20 attributes specified, and half generalized. The
standard covering mechanism gives each attribute a 50% chance of being spe-
cialized. With the incorporation of EK, attributes with higher EK scores (likely
to be useful) will have a higher probability of being specified, and vice-versa.

The mutation mechanism is a discovery component of the M-LCS. When
activated, mutation traditionally randomly permutes an element of the rule such
that if it had been specified it becomes generalized and vise-versa. Previously,
EK has been successfully applied to mutation in genetic programming [15]. Here,
we apply EK probabilities to mutation, such that if an attribute is selected for
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‘possible’ mutation, the probability of mutation is equal to the EK probability
for that attribute. Specified attributes with high EK-scores will be less likely to
be generalized while generalized attribute with high EK-scores will more likely
to be flipped to specified. The opposite is true for attribute with low EK-scores.

In this study we evaluate the utilization of EK into UCS over four trials. The
trials include the following scenarios: (1) UCS algorithm without EK (UCS),
(2) UCS with EK applied to covering only (UCS-EK-Cov), (3) UCS with EK
applied to mutation only (UCS-EK-Mut), and (4) UCS with EK applied to both
covering and mutation (UCS-EK-Both).

2.5 Data Simulation and Analysis

We evaluate EK using simulated datasets which concurrently model heterogene-
ity and epistasis as they might appear in a SNP gene association study of com-
mon complex disease [10,22]. All data sets were generated using a pair of distinct,
two-locus epistatic interaction models, both utilized to generate instances (i.e.
case and control individuals) within a respective subset of each final data set.
Each two-locus epistatic model was simulated without Mendelian/main effects,
as a penetrance table as in [10]. Due to the computational demands of LCSs,
this study limited its evaluation to 3 heterogeneity/epistasis model combina-
tions. For simplicity the minor allele frequency of each predictive attribute was
set to 0.2, a reasonable assumption for a common complex disease SNP. The
three model combinations included a pair of models with a heritability of either
(0.1, 0.2, or 0.4). We considered model architectural “difficulties” of both “easy”
and “hard” [23]. Balanced datasets simulated from these models were generated
as having four different sample sizes (200, 400, 800, or 1600) and a heteroge-
neous mix ratio of either (50:50 or 75:25) (e.g. 75% of instances were generated
from one epistatic model, and 25% were generated from a different one). Twenty
replicates of each dataset were analyzed and 10-fold cross validation (CV) was
employed to measure average testing accuracy and account for over-fitting. To-
gether, a total of 48 data set configurations (3 Model Combos x 4 Sample Sizes
x 2 Ratios x 2 Difficulties), and a total of 960 data sets (20 random seeds each)
were simulated. With 10-fold CV, 9600 runs of each of the four UCS trials were
completed.

For each run we track the following statistics; training accuracy, testing ac-
curacy, generality, macro population size, the power to find both underlying
models, the power to find at least one underlying model, the power to correctly
rank attribute co-occurrence [11], and run time. Power is a reflection of our abil-
ity to reliably mine knowledge from the evolved rule population. Co-occurrence
power is a reflection of our ability to distinguish heterogeneous models. Each of
these values represent an average over the 10 CV runs.

Statistical comparisons were made using the Wilcoxon signed-rank tests due
to a lack of normality in the value distributions. All statistical evaluations were
completed using R. Comparisons were considered to be significant at p ≤ 0.05.
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3 Experimental Results and Discussion

This analysis of EK spans over a spectrum of complex datasets, with evaluations
taken at four different iteration intervals, and examines a variety of M-LCS
statistics in order to compare the performance of UCS, UCS-EK-Cov, UCS-EK-
Mut, and UCS-EK-Both. Table 1 summarizes averages and identifies significant
differences for all run statistics over all simulated datasets between our four
experimental investigations after either 10,000 or 200,000 iterations. Averages
after 10,000 iterations reveal the impact of EK very early on in the learning
process, while averages after 200,000 give a better sense of it’s impact after the
learning curve has started to level off.

Table 1. Comparing UCS with EK implementations after either 10,000 or 200,000
learning iterations each averaged over all simulated datasets. Arrows indicate a signif-
icant increase or decrease when compared to UCS.

10,000 Iterations

Statistics UCS UCS-EK-Cov p UCS-EK-Mut p UCS-EK-Both p

Train Accuracy 0.8268 0.8439 ↑ ** 0.7918 ↓ ** 0.8301 ↑ **
Test Accuracy 0.5909 0.6112 ↑ ** 0.6283 ↑ ** 0.6278 ↑ **

Both Power 0.15 0.2677 ↑ ** 0.2458 ↑ ** 0.2969 ↑ **
Single Power 0.5427 0.7281 ↑ ** 0.6885 ↑ ** 0.7302 ↑ **

Co-Occur. Power 0.1531 0.1625 - 0.1469 - 0.0396 ↓ **

Generality 0.7019 0.6543 ↓ ** 0.7351 ↑ ** 0.6580 ↓ **
Macro Population 1371.82 1400.71 ↑ ** 1244.44 ↓ ** 1276.68 ↓ **

Run Time (min) 1.61 1.79 ↑ ** 1.20 ↓ ** 1.43 ↓ **

200,000 Iterations

Statistics UCS UCS-EK-Cov p UCS-EK-Mut p UCS-EK-Both p

Train Accuracy 0.8544 0.8546 - 0.8468 ↓ ** 0.8467 ↓ **
Test Accuracy 0.6134 0.6141 - 0.6283 ↑ ** 0.6278 ↑ **

Both Power 0.3115 0.3083 - 0.3927 ↑ ** 0.3990 ↑ **
Single Power 0.7125 0.7156 - 0.7677 ↑ ** 0.7625 ↑ **

Co-Occur. Power 0.2438 0.25 - 0.2302 - 0.2260 ↓ *

Generality 0.7136 0.7138 ↑ * 0.7535 ↑ ** 0.7533 ↑ **
Macro Population 1317.09 1316.84 - 1173.03 ↓ ** 1172.21 ↓ **

Run Time (min) 37.48 35.85 ↓ ** 29.66 ↓ ** 29.06 ↓ **

− Not Sig.
* p < 0.05

** p << 0.001

Most notable after only 10,000 iterations, all three EK implementations show
significant improvement in testing accuracy, and the power to find one or both
underlying models supporting the hypothesis that EK can direct LCS towards
important regions of the problem space to improve learning efficiency. After
200,000 iterations the advantages of using UCS-EK-Cov become hidden, as most
observed statistics are comparable to those seen using UCS. This indicates that
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UCS-EK-Cov speeds up learning, but given enough time, UCS is able to achieve
similar performance. However, for UCS-EK-Mut, and UCS-EK-Both, we again
observe significant improvements in testing accuracy, both, and single power
even after 200,000 iterations. Additionally for these two implementations we ob-
serve increased rule generality, a smaller macro population size, and a decrease
run time, all considered to be indicators of improved learning efficiency in this
context. Figure 1A illustrates changing rule generality at different learning in-
tervals for each implementation, while Figure 1B illustrates the same for macro
population size. Increasing generality while maintaining or improving accuracy
indicates that UCS is doing a better job focusing on attributes that will be valu-
able for making predictions on subjects it has not yet seen. Decreasing macro
population size suggests that a smaller, more reliable, and applicable set of rules
have been found by UCS. The only statistic which was not improved via EK
incorporation was co-occurrence power. This is a logical finding given that EK
operates globally during the learning process. Since co-occurrence power reflects
the ability of the system to separate heterogeneous models, it makes sense that
a global EK mutation pressure (applied uniformly to all rules) may reduce the
systems overall ability to differentiate heterogeneity.

0.
60

0.
65

0.
70

0.
75

0.
80

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

Av
er

ag
e 

Ru
le

 G
en

er
al

ity

UCS UCS−EK−Cover UCS−EK−Mut UCS−EK−Both

*
* * *

*

*
* *

*
*

* *

*

*
* *

90
0

10
00

11
00

12
00

13
00

14
00

15
00

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

10
00

0

50
00

0

10
00

00

20
00

00

Av
er

ag
e 

M
ac

ro
 P

op
ul

at
io

n 
Si

ze

UCS UCS−EK−Cover UCS−EK−Mut UCS−EK−Both

*

* * *

*

*
* *

*

*
* *

*

*
* *

A B

Fig. 1. (A) Comparing average rule population generality and (B) comparing average
macro population size between UCS and UCS implementations utilizing EK. In both
plots, the values on the x-axis indicate the number of completed learning iterations.
Each box includes 960 observations. The star within each box plot indicates the average
of those values.

4 Conclusions

The primary conclusion of this work is that EK may be successfully applied to
an M-LCS algorithm to improve learning efficiency. We observe better algorithm
performance when using EK after as few as 10,000 iterations. We have developed
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and evaluated a strategy for implementing EK using SURF scores as a source of
EK, transforming any EK score source into usable probabilities, and incorporat-
ing these probabilities into covering and mutation mechanisms for the M-LCS.
Overall, our findings support the inclusion of EK in M-LCS as a strategy for im-
proving learning efficiency. However, in the context of potentially heterogeneous
problems it may be better to (1) limit the use of EK to covering alone and (2)
guide GA mechanisms such as mutation and crossover with local information as
explored in [12] rather than with global information (i.e. EK). In future work
we will extend this effort to consider the integration of EK and attribute feed-
back [12]. We will also extend these analysis to datasets with larger numbers of
attributes in order to more directly evaluate improvements in scalability. This
work supports the overall conclusion of related studies examining EK in the con-
text of evolutionary algorithms [14,15,16]: that EK can be effective at pointing
the algorithm towards attributes of greatest interest therefore facilitating the
algorithm’s ability to find “the genetic needle in the the genomic haystack”.
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Abstract. For an evolutionary algorithm (EA) to be efficiently scalable,
variation must be linkage friendly. For this reason many EAs have been
introduced that build and exploit linkage models, amongst which are
estimation-of-distribution algorithms (EDAs). Although various models
have been empirically evaluated, it remains of key importance to better
understand the conditions under which model building is successful. In
this paper, we consider the linkage tree genetic algorithm (LTGA). LTGA
is a recent powerful linkage-learning EA that builds a hierarchical linkage
model known as the linkage tree (LT). LTGA exploits this model using
an intensive mixing procedure aimed at optimally exchanging building
blocks. Empirical evaluation studies of LTGA have appeared in literature
using different entropy-based measures for building the LT, but with
comparable results. We study the differences in these measures to better
understand the requirements for detecting important linkage information
and point out why some measures are more successful than others.

1 Introduction

Having a tunable model that drives variation in an evolutionary algorithm (EA)
potentially allows efficiently tackling a large class of optimization problems.
Key to successfully solving a particular problem is the ability to configure this
model for that problem, i.e. such that combining solutions leads to (significant)
improvements. Key questions are whether such a proper configuration can be
learned efficiently and what type of model and learning algorithm are required.
In this paper we consider this question in the light of one of the latest and most
promising model-building EAs for discrete optimization problems: the linkage
tree genetic algorithm (LTGA) [1,5,10].

The type of EA that is perhaps best known for building and using models is
the estimation-of-distribution algorithm (EDA). Models in EDAs represent prob-
ability distributions over the space of solutions. In EDAs, linkage information,
i.e. which variables should be considered jointly when generating new solutions,
is processed via probabilistic dependency relations. Although probability theory
provides very powerful tools, estimating complete distributions might be more
than what is required. Instead therefore, LTGA learns linkage relations directly,
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although the statistical techniques used to do so have much in common with
building probabilistic models as is done in EDAs.

LTGA exhibits excellent performance on several benchmark problems [1,5,10].
Themeasures used to learn the linkagemodel in these studies are however different,
although all are entropy-based. In this paperwe take a closer look atwhy the results
using different measures are so similar in order to better understand the require-
ments for detecting important linkage information. To do so, we consider what it is
we require of a linkagemeasure from a viewpoint of EA dynamics rather than from
probability theory and notions of probabilistic independence as in EDAs.

2 The Linkage Tree Genetic Algorithm (LTGA)

Here we only briefly describe the most recent version of LTGA [1]. For more
details we refer the interested reader to the related literature [1,5,10].
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Fig. 1. Example of a LT for 10 variables

To model linkage, a linkage tree
(LT) is used in which variables can
be linked on one level but not linked
on another, lower, level. At the lowest
level, all variables are unlinked and
form singleton sets. An LT then can
be formed by merging pairs of sets un-
til all sets are merged. An example of
an LT is given in Figure 1.

In each generation of LTGA a set
of n solutions is selected from a popu-
lation of size n using tournament selection with a tournament size of 2. The LT is
learned from this set. New solutions are however generated from the population
directly. Instead of fully creating new solutions first and only then evaluating
fitness, LTGA uses a procedure called Genepool Optimal Mixing (GOM) [10].
For each solution in the population, exactly one offspring solution is generated.
To do so, the solution is first cloned. The LT is then traversed in reverse-merging
order, i.e. ending with all variables in separate groups, and skipping the top level.
For each group, a donor solution is chosen randomly from the population. The
values in the donor pertaining to the variables in the linkage group are then
copied. If the solution is thereby improved, it is kept, otherwise the changes are
reverted. The use of GOM increases selection pressure in a building-block-wise
manner instead of on an entire solution basis. It is mostly because of OM that
LTGA requires only very small population sizes compared to most EDAs.

To ensure efficient convergence to a single solution, in the latest version of
LTGA [1] GOM is extended with forced improvements (FI). In FI, if a solution
could not be improved by GOM, an additional GOM operation is performed on
that solution but now with the currently known best solution as the donor, this
time stopping as soon as an improvement is detected. FI introduces a special
directed convergence pressure, through linkage space, toward the best solution
found so far. Note that FI doesn’t continuously reduce population diversity, but
only if a solution couldn’t be improved anymore anyway.
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3 Measures to Build Linkage Trees

To build a LT, a similarity measure to be maximized or distance measure to be
minimized is required in order to decide which two groups of variables to merge
next. Building a LT is also known as hierarchical clustering [4].

3.1 Commonly Used Measures for Hierarchical Clustering

The most commonly adopted measures are based on mutual information (MI)
and variation of information (VI). Both measures themselves are based on en-
tropy. For a set X of random variables, the entropy H(X) is given by:

H(X) =
∑

x∈ΩX

−P (X = x)log(P (X = x)) (1)

where ΩX is the sample space of X , i.e. all 2k bit combinations for k binary
variables. For two sets of random variables X and Y , MI and VI are given by:

MI (X,Y ) = H(X) +H(Y )−H(X ∪ Y ) (2)

VI (X,Y ) = H(X ∪ Y )−MI (X,Y ) = 2H(X ∪ Y )−H(X)−H(Y ) (3)

MI is a similarity measure whereas VI is a distance measure. MI is closely related
to probabilistic model building in EDAs. Specifically, MI times the size of the
data set is identical to the negative log-likelihood difference of two distributions
that differ only in modelling X and Y independently or jointly. This difference
is part of extended-likelihood measures, which are commonly used, e.g. in the
well-known EDA ECGA [3].

The actual measures commonly encountered in hierarchical clustering litera-
ture are normalized versions of MI and VI. The reason for this is that the range
of both measures is dependent on the number of variables in X and Y . This
results in a bias to favoring large sets when deciding which two sets to merge [4].
Different normalizations are possible. We denote the normalized version used in
LTGA by NVI. We similarly normalize MI and denote that by MNI, giving:

MNI (X,Y ) = MI (X,Y )/H(X ∪ Y ) = (H(X) +H(Y ))/H(X ∪ Y )− 1 (4)

NVI (X,Y ) = VI (X,Y )/H(X ∪ Y ) = 2− (H(X) +H(Y ))/H(X ∪ Y ) (5)

Although the direct use of NVI results in well-balanced LTs in LTGA and excel-
lent optimization performance of LTGA [9], joint entropies need to be computed
for every candidate set. High up in the LT these sets contain many variables.
This poses a computational burden because Equation 1 requires summing over
all variable configurations (encountered in the population). For this reason, a
measure adaptation known as UPGMA (unweighted pair group method with
arithmetic mean) was used in recent versions of LTGA [1,5,10]. With UPGMA
all possible pairs of variables are considered. This is computationally beneficial
if the computational effort to compute a measure grows faster than quadratic
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in the number of variables, which is the case for VI (and MI). The UPGMA
adaptation of a measure M is given by:

MUPGMA(X,Y ) =
1

|X ||Y |
∑

Xi∈X

∑
Yj∈Y

M({Xi}, {Yj}) (6)

LTGA with an UPGMA adaptation of NVI performs at least as good as LTGA
with NVI, in terms of the required number of function evaluations [5]. However,
with UPGMA, every actual VI computation is performed for just 2 random
variables. Arguably therefore normalization is no longer required. For this reason
LTGA was also recently tested with UPGMA and MI, obtaining apparently
comparable results [10]. This raises the natural question of how these measures
really guide hierarchical clustering and thereby LTGA.

3.2 Measures from a Viewpoint of EA Dynamics

What we ideally desire from a EA is efficient mixing of building blocks, i.e. in-
stances of sets of variables that have an above-average contribution to a solutions’
quality. Selection gives these building blocks more copies, thereby reducing the
diversity of instances for the involved variables. The latter is exactly what is
measured by H (Equation 1). This therefore suggests that we could minimize
H(X,Y ) = H(X ∪ Y ) when deciding which sets of variables X and Y to merge.

However, reducing the dispersion of instances by itself isn’t sufficient because
this also happens simply because the EA converges. Thus, from a viewpoint of EA
dynamics H has an undesirable bias toward more converged variables. This can
also be seen in Figure 2. Combinations with the converged variable X1 lead to a
lower H than when variablesX0 andX2 are combined, merely because the entropy
of X1 itself is 0. Instead therefore, what is really of interest is the change in dis-
persion of instances when going from possible combinations of available instances
ofX and Y to actually available instances ofX∪Y . Such an effect is exactly what
MI (Equation 2) measures. Indeed, in Figure 2 we see that when considering what
variable to best join X0 with, X2 is best when using MI whereas using H directly
the converged and uninteresting variable X1 appears best.

Data X0 X1 X2

0 1 1 0

1 1 1 1

2 0 1 0

3 1 1 1

4 1 1 0

5 1 1 1

6 1 1 1

7 0 1 0

8 0 1 0

9 1 1 1

H X0 X1 X2

0.88 0.00 1.00

H X0 X1 X2

X0 0.88 0.88 1.48

X1 0.88 0.00 1.00

X2 1.48 1.00 1.00

MI X0 X1 X2

X0 0.88 0.00 0.40

X1 0.00 0.00 0.00

X2 0.40 0.00 1.00

VI X0 X1 X2

X0 0.00 0.88 1.09

X1 0.88 0.00 1.00

X2 1.09 1.00 0.00

NMI X0 X1 X2

X0 1.00 0.00 0.27

X1 0.00 1.00 0.00

X2 0.27 0.00 1.00

NVI X0 X1 X2

X0 0.00 1.00 0.73

X1 1.00 0.00 1.00

X2 0.73 1.00 0.00

Fig. 2. Example of all measures for a specific set of data and 3 random variables
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Since VI is a negation of MI, it appears equally useful. However, the negation
involves H(X,Y ), resulting in H(X,Y ) weighing twice as heavy in VI as it does
in MI (Equations 2 and 3). As a result, the bias in H toward more converged
variables rings through more in VI. Considering EA dynamics, VI is therefore
further away from the desirable properties of a linkage detection measure than
MI. Accordingly, using VI in Figure 2 results in a different preference relation
than using MI. Now X1 is best to combine with X0, just like when using H.

As mentioned earlier, normalization removes the bias of VI to large clusters.
The above however suggests VI additionally has a bias toward more converged
variables. However, recent literature suggests that, in combination with UP-
GMA, LTGA using NVI [5] performs equally good as LTGA using MI [10]. Nor-
malization thus appears to change more things. This can indeed already be seen
in the example in Figure 2 because, similar to MI, when using NVI we find that
the best variable to combine with X0 is X2. When we look closer, we can indeed
see that normalization brings VI very close to MI. Clearly, from Equations 4
and 5 we have NVI (X,Y ) = 1 −MNI (X,Y ). This also holds using UPGMA,
since NVI UPGMA(X,Y ) = (|X ||Y |)−1

∑
Xi∈X

∑
Yj∈Y 1 − MNI ({Xi}, {Yj}) =

(|X ||Y |)−1(|X ||Y | −∑Xi∈X

∑
Yj∈Y MNI ({Xi}, {Yj})) = 1 −MNI UPGMA(X,Y ).

Using MNI or NVI to build an LT is therefore an identical approach. Contrary
to the use of H and VI, the use of NVI is however quite similar to the use of
MI, as can be seen by equivalently comparing MNI and MI. Normalization of
MI shifts the importance of the absolute difference between joint entropy and
the individual entropies to their relative difference. For EA dynamics this means
that normalization brings the advantage that if variables are nearly converged,
the reduction in instance dispersion that we want to detect can still lead to large
“signals” for the learning algorithm to pick up. Compared to MNI, MI there-
fore has a larger preference for less converged variables. Note that this relative
bias only plays a role in cases where a desirable reduction in instance disper-
sion is already present. Thus, this bias in MI toward less converged variables is
likely not harmful like the bias in VI or in H toward more converged variables.
Furthermore, it is beforehand unclear whether MI or MNI is to be preferred in
LTGA. Preferring entropy reductions in less converged variables (i.e. MI) allows
to reduce noise in the overall optimization process faster. The opposite however
allows first considering variables whose diversity is running out the fastest.

For all combinations of measures we empirically determined how often they
disagree. For a fine-grained sampling of all possible probabilities for two sets of
two binary variables {X0, X1} and {X2, X3} we determined, for two different
measures M0 and M1, whether Mi({X0}, {X1}) & Mi({X2}, {X3}), i ∈ {0, 1}.
We also created correlation graphs for measure differences Mi({X2}, {X3}) −
Mi({X0}, {X1}). The results are shown in Figure 3. Because MI and MNI need
to be maximized and H, VI and NVI need to be minimized, we replaced MI
and MNI by -MI and -MNI. In the correlation graphs, two measures agree if
the observed differences are both positive or both negative (i.e. all-positive and
all-negative quadrants). Moreover, observations for H and VI were divided by 2
to ensure that all measures have a difference in the range [−1; 1].
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Fig. 3. Percentage of cases in which measures disagree about the preference ordering
of two sets of random variables (lower-left triangle) and gray-value coded maps of
the density of observed combinations of measure differences for two sets of random
variables, overlaid with density contours

Figure 3 shows a strong agreement of VI with H. Given the strong bias of H
toward more converged variables, VI is, like H, expected to lead to less efficient
behavior of LTGA. MI is decorrelated the most with H, followed by MNI. This
is in accordance with our earlier finding that MI is relatively more biased to
less converged variables. NVI and MNI are, as expected, in perfect agreement.
The difference between MI and MNI is small. When they do differ, the measures
themselves exhibit only small differences (i.e. decisions are a “close” call).

Ultimately, it is the optimization performance of the EA that is of impor-
tance. From the analysis above it is to be expected that the use of MI and MNI
(and, equivalently, NVI) in LTGA leads to better performance on non-randomly
structured problems than the use of H and VI. However, the difference between
MI and MNI, i.e. normalization, is subtle. Therefore, in the next Section we
empirically determine whether normalization does something desirable in terms
of EA dynamics by running LTGA on various optimization problems.
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4 Experiments

4.1 Optimization Problems

We consider three well-known benchmark problems from linkage-learning litera-
ture and one well-known NP-hard problem, all of which need to be maximized.
The first problem is onemax in which every variable is independent of the others:

fOnemax(x) =

l−1∑
i=0

xi

The second problem is the mutually-exclusive, additively decomposable sum of
the well-known order-k deceptive trap functions [2] with k = 5:

fTrap5(x) =

(l/k)−1∑
i=0

f sub

Trap-k

⎛⎝ki+k−1∑
j=ki

xj

⎞⎠ , with f sub

Trap-k
(u) =

{
1 if u = k
k−1−u

k otherwise

It is commonly known that the linkage groups pertaining to the subfunctions
need to be detected and processed in order for optimization to proceed efficiently.

The third problem is the nearest-neighbour overlapping, additively decom-
posable sum of a-priori randomly generated subfunctions of length k, which
constitutes a NK-landscape [6]. We use k = 5 and the maximum overlap of 4,
but without wraparound:

fNK-S1(x) =

l−k∑
i=0

f sub

NK

(
x(i,i+1,...,i+k−1)

)
where f sub

NK

(
x(i,i+1,...,i+k−1)

)
is an a-priori randomly chosen value in [0; 1].

The NP-hard problem we consider is weighted MAXCUT. It is defined given
a weighted undirected graph with a set of l vertices V = {v0, v1, . . . , vl−1}, a set
of edges E between the vertices, and a weight wij for each edge (vi, vj) ∈ E.
The goal is to split V into two sets such that the combined weight of edges that
are thereby cut, i.e. running between vertices in different sets, is maximized. By
introducing a binary variable xi for every vertex that indicates if vertex vi is
either in set 0 or set 1, the function to be optimized is therefore:

fweighted MAXCUT(x) =
∑

(vi,vj)∈E

{
wij if xi 	= xj

0 otherwise

We encode this problem straightforwardly using the xi directly. Benchmarks
problem instances of various types and sizes exist in literature, but because
we want to perform a controlled scalability analysis, we generated our own in-
stances. For problem sizes l ∈ {6, 12, 25, 50, 100} we generated fully connected
graphs with 1

2 l(l − 1) edges. To set the weights, we follow the approach by Ru-
binstein [8] to obtain interesting instances and choose them randomly following
a β distribution with parameters α = 100, β = 1 and scaled to the range of
[1; 5]. For each problem size, we generate 10 instances. The maximum problem
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size was chosen such that the exact optimizer BIQMAC [7] could provide op-
timal solutions within reasonable time. Because MAXCUT is NP-hard, we will
consider both obtaining the optimum as well as obtaining 95% of the optimum
where we accounted for the average random value ARV of an instance by setting
the actual target value for an instance to ARV +0.95(OPT −ARV ). The ARV
is determined empirically by averaging over many randomly sampled solutions.

4.2 Experimental Setup

We say that a problem is solved if at least 99 out of 100 independent runs
converged to either the global optimum or to a predefined sufficiently close ap-
proximation. Moreover, instead of stopping when the target is reached, we run
until convergence (all solutions are the same) because we feel this is more real-
istic in practice where the optimum is not known beforehand and outcomes are
typically collected upon termination.

For NK-S1, we have generated 100 instances per problem size randomly. The
100 independent runs are performed on 100 different, but always the same 100,
instances per problem size. For weighted MAXCUT however, every problem
instance is considered separately as is more typical of combinatorial optimization
literature. The reason for this is that specific instances may be easy or hard and
their properties may be interesting to study separately. Therefore, for weighted
MAXCUT 100 independent runs are performed per problem instance. Note that
this alters the interpretation of the range of outcomes where we aggregate per
problem size. For weighted MAXCUT these ranges will be much larger.

A key performance indicator is scalability, i.e. how do the required resources
(population size n and number of required evaluations) increase as the problem
gets larger. To study this, we determine, for various problem sizes, the minimally
required n to solve the problem. To do so, we perform a bisection search in which,
starting from n = 1, n is doubled until the problem is solved. Subsequently, a
binary search is performed in the range between the last two tested values for n.
Because this process is still subject to noise, rooted in the stochastic nature of
EAs, we perform 10 independent bisection searches for every problem size (and
in case of weighted MAXCUT, for every problem instance).

4.3 Results

In Figure 4, the minimally required population size and the associated number of
evaluations (upon convergence) are shown. The outcomes of the 10 independent
bisection searches are shown for each problem size (for each instance in case of
weighted MAXCUT). A least-squares polynomial fit of the form α · lβ is also
shown except for solving MAXCUT to optimality as it doesn’t fit the data well.
Instead, the lines we show connect the average values for each problem size.

All variants are virtually indistinguishable on onemax because the LT always
contains every variable in a singleton set. However, close examination shows
that the variant that uses H scales worst. These results are clearer on Trap 5
where only MI and NVI are virtually indistinguishable. Most clear are the re-
sults on NK-S1 where MI and NVI are again virtually indistinguishable but H
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Fig. 4. Scale-up of LTGA on all problems, using different measures to build the LT

and VI clearly guide LTGA less efficiently. Combined with our analysis in Sec-
tion 3, these results suggest that using LTGA on NK-S1 some variables converge
much faster than others. Once converged, VI and, even more so, H favor these
variables much stronger. Not only is this inefficient with respect to finding and
mixing building blocks amongst variables where diversity still remains, it also
creates strongly unbalanced trees with many large clusters, further reducing the
efficiency of optimal mixing. MI and NVI are not affected by this cascading ef-
fect of converging variables. Finally, it appears that for solving our randomly
generated weighted MAXCUT instances proper linkage learning is not as cru-
cial because just like on onemax, all variants scale quite similarly. Differences
do seem to increase with problem size, although far less severly. Proper linkage
learning may still be required when solving instances with specific structure, es-
pecially when targeting the global optimum. A more in-depth study on weighted
MAXCUT and the impact of linkage learning will be topic of future research.

As expected from Section 3, LTGA performs best when the measure used is
MI or NVI (or, equivalently, MNI). For these two alternatives, using a Mann-
Whitney U test at a significance level of 1%, results differ only for onemax with
l = 400 (in favor of NVI), trap 5 with l = 400 (in favor of NVI), never for NK-S1,
never for weighted MAXCUT 95% and only for one instance with l = 100 for
weighted MAXCUT 100% (in favor of MI). Arguably therefore, it is virtually
impossible to prefer one measure over another (based on the selected problems).

5 Conclusions

The linkage tree genetic algorithm (LTGA) was previously combined with dif-
ferent measures for building its linkage model (the linkage tree). In this paper
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we took a closer look at these measures, related them to the convergence of an
EA and we identified potential biases in the measures. The closest correspon-
dence to the notion of a building block was found for the mutual information
(MI) measure and a normalized (MNI) variant that is obtained by dividing by
joint entropy. MNI is equivalent to the normalized variation of information (NVI)
measure, even when using the less-computationally demanding pairwise measure
adaptation known as UPGMA. The difference between MI and MNI/NVI is that
the former has a slight preference for less converged variables. These measures
only disagree in less than 4%, and when they do differ, these differences are very
small. Consequently, LTGA was found to perform very similarly for these two
measures on a set of three benchmark problems from linkage learning literature
as well as on a combinatorial optimization problem: weighted MAXCUT. Only
very few statistically significant differences could be found in the performance
of LTGA using MI or NVI/MNI and even then the results were very close.
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Abstract. We define the linkage model evolvability and the evolvability-
based fitness distance correlation. These measures give an insight in the
search characteristics of linkage model building genetic algorithms. We
apply them on the linkage tree genetic algorithm for deceptive trap func-
tions and the nearest-neighbor NK-landscape problem. Comparisons are
made between linkage trees, based on mutual information, and random
trees which ignore similarity in the population. On a deceptive trap
function, the measures clearly show that by learning the linkage tree
the problem becomes easy for the LTGA. On the nearest-neighbor NK-
landscape the evolvability analysis shows that the LTGA does capture
enough of the structure of the problem to solve it reliably and efficiently
even though the linkage tree cannot represent the overlapping epistatic
information in the NK-problem. The linkage model evolvability measure
and the evolvability-based fitness distance correlation prove to be use-
ful tools to get an insight into the search properties of linkage model
building genetic algorithms.

1 Introduction

Linkage learning genetic algorithms aim to identify interacting or dependent
problem variables that contribute to highly fit solutions. The goal is to build a
linkage model of these interactions and use this model to generate, with high
probability, new highly fit solutions.

To better understand how this class of algorithms searches for optimal solutions
we introduce two measures: the linkage model evolvability and the evolvability-
based fitness distance correlation. These measures have their origin in the evolv-
abilitymeasure and fitness distance correlation coefficient for general evolutionary
algorithms. We exploit the particularities of linkage models to design more infor-
mative evolvability and correlation measures.

The paper is organized as follows. In the next section we describe the linkage
tree learning and the optimal mixing evolutionary algorithm. Section 3 intro-
duces the linkage model evolvability measure and the evolvability-based fitness
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distance correlation. In Section 4 we compute these measures for the LTGA on a
deceptive trap function and a nearest-neighbor NK-landscape problem. Finally,
Section 5 concludes the paper.

2 Linkage Tree Genetic Algorithm

We give a short review of the LTGA, for more details we refer the reader to [9].

The linkage tree (LT) is a hierarchical linkage model obtained by a bottom-up
agglomerative hierarchical clustering algorithm starting from the set of problem
variable singletons [2,8]. For a problem of length � the linkage tree has � leaf
nodes (the clusters having a single problem variable) and �−1 internal nodes. The
similarity measure is for instance the normalized mutual information between
two subsets of variables. An efficient method to compute the similarity measure is
the average linkage clustering or unweighted pair group method with arithmetic
mean (UPGMA) [6,9]. Given a population of size N the LT can be built in
O(N�2) time using the reciprocal nearest-neighbor chain algorithm.

The LT specifies a set of problem variable subsets which are a specific example
of the more general family of subsets (FOS). The class of linkage model building
GAs we consider here specify their linkage model by this FOS model. Mathemat-
ically, the FOS model is a subset of the power set of the problem variables. This
FOS model is used by the Gene Pool Optimal Mixing Evolutionary Algorithm
(GOMEA) to generate new solutions [9]. Each subset of problem variables is
used as a crossover mask. Each solution of the population is iteratively used as
parent solution. For each parent solution the entire FOS set is traversed: for each
problem variable subset in the FOS model a random solution is picked from the
population as donor. The donor’s values of the problem variables specified by the
subset - or crossover mask - are copied to the parent solution. This new solution
is evaluated and when it is an improvement of the parent, the offspring replaces
the parent. Next , the traversal of the FOS model continues with the new so-
lution. If there was no fitness improvement the FOS model is further traversed
using the parent solution. New solutions are thus only accepted when they have
a better fitness value than the parent solution. When the tree is completely tra-
versed, the current parent solution is copied to the next generation’s population.
This tree traversal process is done for each solution in the current generation.
The LT has 2�−2 subsets in the tree (the top node is ignored because it contains
all problem variables), so in one generation there are at most N(2�−2) offspring
generated and evaluated. This value is an upper boundary because before eval-
uating a new solution we always first check whether the generated solution is
really different from the parent solution.

The reason for calling this operation optimal mixing is due to its inception in
the original LTGA [8] where a two-parent crossover operator was used following
the LT with intermediate evaluations to check for improvements. Given only
two parents, traversing a FOS while performing crossover then ensures that all
building blocks as described in the FOS wind up in one of the two parents and
mixing therefore can be said to be optimal. However, it was recently shown that
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considering a randomly selected new donor parent for each element in the FOS
while performing crossover, which was called Gene-pool Optimal Mixing (GOM)
is overall a more efficient manner of mixing because this removes the covariance
in mixing that is inherent in using the same two parents for the entire crossover
operation [9].

The use of OM allows making use of the linkage information as provided by
all subsets in the FOS. OM further strongly increases the selection pressure in
a building-block-wise manner instead of on a entire solution basis, the latter of
which is a source of noise in deciding well between building blocks that increases
the population size. It is through OM that the LTGA is capable of working
with very small population sizes compared to most linkage learning EAs of the
Estimation of Distribution Algorithm (EDA) type.

3 Linkage Model Evolvability Analysis

When applying a genetic algorithm - and more generally, any metaheuristic
search algorithm - to a specific problem, we often would like to get a clear
picture of how the search dynamics proceeds. We would like to possess a few
measures that can give us a better understanding of what is going on during
the search. Ideally, these measurements would help us explain why a certain
algorithm succeeds in finding good solutions while others do not. In this paper
we will use four measurements: two existing and two that we define specifically
for linkage model building GAs where the model is a family of subsets (FOS).

Hamming Distance. The first and most obvious measure to trace the conver-
gence progress is the minimum and median hamming distance from the solutions
in the current population towards the global optimum.

Evolvability. The ultimate goal of search operators like crossover or mutation
is to create new solutions that have a better fitness than their parent(s). The
probability that this occurs has been called probability of success in the evo-
lution strategy literature, while Altenberg called this the evolvability [1]. For
an evolutionary algorithm to be successful it is important that the evolvability
remains positive when the search has reached the higher regions of the fitness
landscape, or when the parents have high fitness values. To compute this we
split up the higher fitness values in bins and count the frequency of generating
fitter offspring when the parent has a fitness value within the fitness bin’s range.
The parents are taken from actual runs, not from random samples. This is im-
portant as the key question here is whether the evolvability remains positive as
the search approaches the most fit solutions in the search space.

Linkage Model Evolvability. The evolvability as a function of the parental
fitness does not give any insight in the contribution of the different masks in
the linkage FOS model. To investigate their importance in the search process we
calculate the evolvability as a function of the size of the masks - or FOS sub-
sets - of successive linkage trees during an actual LTGA run. For the benchmark
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functions used in this paper, the successive application of five linkage trees is
sufficient to reliably find the global optimum, at least if the model learning is
done properly. In an actual LTGA run each mask of the tree is used N times (N
being the population size): for each solution in the population the linkage tree
is traversed and a random solution is picked as donor. Counting the evolvability
based on these offspring represents a limited sample of the actual evolvability
potential of the linkage tree for the current population. In order to get a less
noisy measurement we have calculated the evolvability by taking each solution
in the population as the donor solution, as opposed to a single random solution.
This way each mask is used N2 times and the number of improvements are
counted. We also compute the relative number of improvements as the percentage
of offspring more fit than their parent (excluding the donor) of all the offspring
generated by a mask of a given size using a particular linkage tree. It is important
to note that this calculation of the linkage masks’ evolvability has no influence
on the actual LTGA run. The offspring generated during this calculation are not
used in the actual LTGA run.

Evolvability-Based Fitness Distance Correlation. Although the evolvabil-
ity measures the potential of an evolutionary algorithm to keep finding new and
better solutions it does not consider whether the population is actually con-
verging towards the global optimal solution. An EA could well be capable of
generating many better offspring during the search process but that is not a
guarantee that it is actually getting any closer to the optimum. To measure
the progress towards the optimum Jones and Forrest [4] introduced the concept
of fitness distance correlation (FDC). As its name implies the FDC measures
the correlation between the fitness value and the hamming distance towards the
global optimal solution. A large negative correlation is seen as an indication
that the GA would be guided towards the optimum by following a path of ever
improving solutions. A large positive correlation is interpreted as a deceiving
problem: following a path of better solutions would lead away from the optimal
solution. The FDC is actually a search ignorant measure in the sense that it
does not include any information about the capability of the genetic operators
to generate improving solutions. FDC only looks at the representation and the
fitness values of the solutions, not at the actual dynamics of the GA run. There
is little to be gained from a high negative FDC measure if the genetic operators
are unable to generate the high fitness solutions in the first place. Altenberg [1]
discussed these limitations of a Hamming-distance based FDC and proposed two
crossover-distance based FDC measures (XFDC). The XFDC measures aim to
include the role of the genetic operators. The first XFDC defined the crossover
distance as the number of discontinuities between 0s and 1s in a solution’s bit-
string. This measure is clearly only suitable for the specific test function used in
that paper which is based directly on this number of discontinuities. A second
more general crossover-based distance measure is computed by running crossover
in reverse. Starting from the global optimum and its binary complement bit-
strings are given a crossover distance of 1 when they are generated by a single
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application of the crossover operator. A second set of strings is given a distance
of 2 by applying crossover to the previous set. Continuing this way a sequence of
populations is generated with increasing crossover distance. The XFDC measure
is now computed by calculating the correlation coefficient between the crossover
distance and the fitness value. It is clear that both XFDC measures are only
rough approximations of the actual GA dynamics. The main problem of getting
a more accurate measure is the vast amount of different crossover events that
are possible.

For the LTGA however, the number of possible crossover events is much
smaller. In fact, when computing the linkage model evolvability, we are already
looking at all possible outcomes for a specific linkage FOS model and a given
population. The only thing we need to add is the correlation with approaching
the optimal solution. Therefore we define the evolvability-based fitness distance
correlation (EFDC) as the correlation between the Hamming distance between
the offspring and the optimal solution and the amount of fitness gain whenever
an improvement occurred during the calculation of the linkage masks’ evolvabil-
ity. The EFDC is a much more informative measure of the search dynamics than
the FDC or XFDC measures.

In [3] the fitness distance correlation is computed for fixed neighborhoods that
match the structure of the fitness function. The EFDC however is computed
during the search and depends on the specific linkage tree built each generation,
thus capturing more of the dynamics of the search process.

4 Experimental Analysis

To test whether the evolvability measures do indeed provide any insight in the
search behavior of the LTGA we compare the linkage tree with a randomly
build tree on 2 benchmarks. First, we consider the deceptive trap function [2].
This function is interesting for our purposes here because a linkage learning
algorithm must be able to learn the structure of the problem in order to find the
optimal solution. A randomly constructed tree will be unable to do this, and the
interesting question is how this gets reflected in the evolvability measures. Our
second test function is the nearest-neighbor NK-landscape [7]. This function is
interesting because the overlap of the subfunctions cannot be represented by a
linkage tree, and yet the LTGA is capable of consistently finding the optimal
solution. The key question is whether the evolvability measures can help explain
why this is the case.

Evolvability measures should give insight in the particular behavior of an ac-
tual GA run. We therefore compute the values on one single run, and not average
them out over a whole set of runs. Of course, this run should be representative
and we compared the results on different runs. As it turned out, all runs had
basically the same behavior and similar evolvability values, so we only report
here the results of one single run for both the benchmark functions.
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4.1 Deceptive Trap Function

The deceptive trap function used here consists of 10 subfunctions of length 5
(stringlength � = 50), fitness value of the subfunctions is 5 for the optimum and
4 for the deceptive attractor. The population size is 100. The initial population
is generated by performing a single-pass bit-flip local search on a population of
random solutions.

Table 1 shows the Hamming distance between the optimal string and the best
and the median solution in the population for successive linkage trees. When
the linkage tree is learned using normalized mutual information, the population
quickly converges to the optimal solution. Both the minimum and median Ham-
ming distance are reduced by each new generation, and the optimal solution is
generated at the fifth generation. The table also shows the Hamming distance
when the linkage tree is built using random numbers as similarity measure in-
stead of normalized mutual information. Clearly, without linkage learning the
search algorithm does not make a lot of progress in finding the optimal solution.
Only looking at the Hamming distance however does not make it clear whether
the search is not making progress at all or it is simply going the right direction
but at a very small pace.

Table 1. Hamming distance towards the global optimum for the deceptive trap func-
tion

distance
Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

minimum 25 20 15 5 0 30 30 30 30 30
median 45 40 30 20 10 45 45 40 40 35

Table 2 shows the frequency of improvements as a function of parental fitness.
The fitness is divided in 10 bins, spanning the fitness range from the solution
with all deceptive attractors to the global optimum. Clearly, the search without
linkage learning is not able to make any substantial progress towards the optimal
solution. The probability of generating better offspring is nearly zero, and no
offspring with a fitness value of 45 or higher are created. When linkage learning
is done properly we see that better offspring are created in a consistent way, and
the evolvability remains positive with increasing parental fitness values.

The linkage model evolvability in Table 3 gives a more detailed picture of
the evolvability in the linkage tree. The table only shows the masks where a
fitness improvement takes place. For the linkage learning the masks’ sizes are all
multiples of five which reflects the building block length of the deceptive trap
function. The percentage of improvements is quite high for all the masks in the
table, indicating a very efficient search process.

For the random tree - this is, no linkage learning - there are very few fitness
improvements, and the vast majority of them are achieved with crossover masks
of length 48 and 49. For a stringlength of size 50 this basicallymeans that the donor
solution is better than the parent and the largemasks are simplymaking an almost
complete copy of the donor. Obviously, this does not lead to good novel solutions.
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Table 2. Evolvability: frequency of improvements as a function of parental fitness

Fitness Linkage tree Random tree
range Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

[40, 41[ 0.29 0.27 0.26 0.22 – 0.03 0 0 – –
[41, 42[ 0.10 0.16 0.20 0.23 – 0 0 0 0 0.01
[42, 43[ 0.01 0.05 0.15 0.21 0.17 0 0 0 0 0.01
[43, 44[ 0.03 0.02 0.05 0.18 0.24 0 0 0 0 0
[44, 45[ 0.01 0.02 0.03 0.12 0.19 – 0 0 0 0
[45, 46[ 0 0.01 0.02 0.04 0.15 – – – – –
[46, 47[ – 0 0.01 0.03 0.14 – – – – –
[47, 48[ – – 0 0.02 0.08 – – – – –
[48, 49[ – – – 0.01 0.02 – – – – –
[49, 50[ – – – 0 0.01 – – – – –

Table 3. Linkage model evolvability for the deceptive trap function

Linkage tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

5 10892 16808 21916 22648 16192 11% 17% 22% 23% 16%
10 7176 9474 8995 12726 7462 18% 24% 30% 32% 25%
15 5152 6032 10080 3661 5668 26% 30% 34% 37% 29%
20 2147 3318 3677 3846 – 22% 33% 37% 39% –
30 – – 3712 3931 3720 – – 37% 40% 38%
35 3285 3663 – – – 33% 37% – – –
40 – – – – 3975 – – – – 40%
45 – – – 4112 4002 – – – 41% 40%

Tot. 28652 39295 48380 50924 41019

Random tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

22 269 – – – – 1.3% – – –
29 – 62 – – – – 0.01% – –
39 – – 130 – 110 – – 0.01% – 0.01%
41 – – – 40 – – – – 0.00%
42 – – – 40 – – – – 0.00%
43 – – 130 – – – – 0.01% –
44 – – – – 310 – – – – 0.03%
48 – – – – 3351 – – – – 34%
49 2095 – – – – 21% – – –

Tot. 2364 62 260 80 3771

Finally, Table 4 shows the EFDC measure. In case of linkage learning there is
a perfect linear relationship between the amount of fitness improvement and the
reduction in Hamming distance towards the optimal solution. This makes sense
as the crossover masks exactly match the building blocks and fitness improve-
ments of 1, 2, 3, ... correspond to Hamming distance reductions of 5, 10, 15, ... .
When there is no linkage learning there is usually also no correlation coefficient
to compute since there are either zero or only one single pair of fitness improve-
ment and Hamming distance value. Only in the first random linkage tree large
masks can sometimes get a fitness improvement.
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Table 4. Evolvability-based Fitness Distance Correlation for the deceptive trap function

Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 – – – –

4.2 Nearest-Neighbor NK-Landscape

The nearest-neighbor NK-landscape used here has stringlength � = 50, the sub-
functions have length 5 bits, and the overlap is maximal - that is, 4 bits. The
population size is N = 200.

Table 5. Hamming distance towards the global optimum for the NK-landscape

distance
Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

minimum 7 3 0 0 0 7 7 7 7 7
median 20 18 15 12 6 21 20 19 19 18

Table 6. Evolvability: frequency of improvements as a function of parental fitness

Fitness Linkage tree Random tree
Bins Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 0.21 – – – – 0.06 – – – –
2 0.17 – – – – 0.08 – – – –
3 0.16 0.26 – – – 0.06 0.09 – – –
4 0.10 0.12 – – – 0.04 0.04 0.05 – –
5 0.07 0.11 0.10 – – 0.03 0.03 0.03 0.02 0.00
6 0.04 0.08 0.06 0.10 – 0.02 0.02 0.02 0.02 0.02
7 0.04 0.04 0.05 0.10 0.13 0.03 0.01 0.01 0.01 0.01
8 0.02 0.02 0.03 0.05 0.11 0.00 0.00 0.01 0.00 0.01
9 0.00 0.02 0.02 0.03 0.06 – – – – –
10 – 0.01 0.02 0.02 0.02 – – – – –

As for the deceptive trap function, we look at the impact of linkage learning
by comparing the results with a randomly constructed linkage tree. A linkage
tree has 2�− 2 nodes that are used as crossover masks.

Table 5 shows the Hamming distance for the linkage tree and the random tree
models. As shown in previous work the linkage tree has no trouble in finding the
optimal solution, while the random tree is getting nowhere.

Table 6 shows the evolvability as a function of the parental fitness. We have
divided the fitness range between the fitness value low and the global optimal
value in 10 bins of equal width. The fitness value low is the fitness of the least
fit solution of a population of 100 single-pass bit-flipped solutions. Whenever
an improving solution is generated the bin corresponding to the parent’s fitness
is updated. The evolvability values for the linkage tree model shows that the
successive linkage trees are capable of generating new and more fit solutions
with increasing parental fitness. On the contrary, the random trees are not able
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Table 7. Linkage model evolvability for the NK-landscape

Linkage tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 31205 13358 6169 3650 2765 1.5% 0.6% 0.3% 0.2% 0.1%
2 29523 12345 5638 4019 3943 3.9% 1.6% 0.8% 0.5% 0.5%
3 17308 5446 4273 3694 1354 4.8% 1.7% 1.2% 1% 0.5%
4 12409 5278 6732 6479 6953 7.8% 3.3% 4.2% 4% 2.9%
5 14053 12519 8730 6580 2044 7.1% 6.3% 5.5% 5.5% 2.6%

6–10 36673 34266 18561 12871 16274 16% 11% 7% 5% 5.7%
11–20 16686 25813 33354 24045 48664 14% 34% 16% 22% 20%
21-30 6530 14800 – 46270 – 16% 37% – 29% –
31–40 14412 15726 15621 – 12502 36% 40% 39% – 31%
41–50 – – – – – – – – – –

Tot. 178799 139551 99078 107608 94499

Random tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 41040 23516 14635 9587 7081 2.1% 1.2% 0.7% 0.5% 0.4%
2 16361 7792 6361 3330 2228 2.9% 1.4% 1.2% 0.5% 0.4%
3 7914 4648 4043 1333 1180 3.3% 1.7% 1.3% 0.4% 0.6%
4 4247 1246 3409 1355 1040 2.7% 1.6% 1.4% 0.9% 0.4%
5 2632 1859 – 1019 328 2.2% 1.6% – 0.9% 0.3%

6–10 5246 4276 2738 2167 309 1.3% 0.9% 0.8% 0.6% 0.1%
11–20 1233 1121 821 586 241 0.4% 0.3% 0.3% % 0.2%
21–30 98 279 448 287 567 0.2% 0.3% 0.4% 0.4% 0.3%
31–40 510 – – – 503 1.3% – – – 0.6%
41–50 12323 6350 10226 – 10733 31% 16% 13% – 6.7%

Tot. 91604 51087 42681 19664 24210

Table 8. Evolvability-based Fitness Distance Correlation for the NK-landscape

Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

-0.26 -0.44 -0.47 -0.58 -0.41 -0.27 -0.13 -0.21 0.07 -0.32

to generate improving solutions above a certain fitness level. Successive trees are
not able to generate new solutions that fall in the higher valued bins. The search
clearly stagnates in the lower valued fitness bins.

In Table 7 we see the evolvability contributions of different crossover masks.
The linkage tree model has a much higher evolvability than the random tree in
both absolute as relative measures. It is interesting to see that all mask sizes con-
tribute to the search, which shows that the linkage tree’s capability of representing
interacting problem variables at multiple levels is beneficial to the search.

Finally, Table 8 shows the evolvability-based fitness distance correlation. For
the five successive linkage trees the EFDC remains significantly negative, mean-
ing that fitness gains are correlated with reductions in Hamming distance to the
optimal solution. For the random linkage trees the EFDC are also negative but
have a lower value, except for the first generation trees. It appears that in the
first generation the solutions can be easily improved and the Hamming distance
towards the optimal solution is reduced. If we look again at Table 7 we see that
most of these improvements for the random tree are obtained with masks of length
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1 and 2, so the offspring are only 1 or 2 bits different from to their parents but do
have a higher fitness and are mostly closer in Hamming distance to the optimal
bitstring. It is also noteworthy that the EFDC for the fifth tree of the random
models has a rather high correlation (= −0.32). Looking again at Table 7 reveals
that almost half of the improvements are obtained by masks of size larger than
40: the high correlation can thus be explained by the copying effect of good donor
solutions by large masks. Although these improvements increase the EFDC value
they do not significantly contribute to finding new good solutions.

5 Conclusion

We have analyzed the evolvability of the linkage tree genetic algorithm. For this,
we have defined the linkage model evolvability and the evolvability-based fitness
distance correlation. We have seen how these measures give an insight in the per-
formance of the LTGA. We have also made a comparison with a randomly con-
structed tree and discussed the differences observed in the evolvability measures.
On a deceptive trap function, the measures clearly show that learning the linkage
tree makes this an easy problem for the LTGA. On the nearest-neighbor NK-
landscape the evolvability analysis shows that the LTGA does capture enough
of the structure of the problem to solve it reliably and efficiently even though
the linkage tree cannot represent the overlapping epistatic information in the
NK-problem. We believe that measures like the linkage model evolvability and
the evolvability-based fitness distance correlation are useful tools to describe and
understand the characteristics of linkage model building genetic algorithms.
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Abstract. This paper focuses on the restart strategy of CMA-ES on
multi-modal functions. A first alternative strategy proceeds by decreasing
the initial step-size of the mutation while doubling the population size at
each restart. A second strategy adaptively allocates the computational
budget among the restart settings in the BIPOP scheme. Both restart
strategies are validated on the BBOB benchmark; their generality is
also demonstrated on an independent real-world problem suite related
to spacecraft trajectory optimization.

1 Introduction

The long tradition of performance of the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) algorithm on real-world problems (with over 100 pub-
lished applications [6]) is due among others to its good behavior on multi-modal
functions. Two versions of CMA-ES with restarts have been proposed to handle
multi-modal functions: IPOP-CMA-ES [2] was ranked first on the continuous
optimization benchmark at CEC 2005 [4,3]; and BIPOP-CMA-ES [5] showed
the best results together with IPOP-CMA-ES on the black-box optimization
benchmark (BBOB) in 2009 and 2010.

This paper focuses on analyzing and improving the restart strategy of CMA-
ES, viewed as a noisy hyper-parameter optimization problem in a 2D space (pop-
ulation size, initial step-size). Two restart strategies are defined. The first one,
NIPOP-aCMA-ES (New IPOP-aCMA-ES), differs from IPOP-CMA-ES as it si-
multaneously increases the population size and decreases the step size. The sec-
ond one, NBIPOP-aCMA-ES, allocates computational power to different restart
settings depending on their current results. While these strategies have been
designed with the BBOB benchmarks in mind [8], their generality is shown on
a suite of real-world problems [16].

The paper is organized as follows. After describing the weighted active
(μ/μw, λ)-CMA-ES and its current restart strategies (section 2), the proposed
restart schemes are described in section 3. Section 4 reports on their experimen-
tal validation. The paper concludes with a discussion and some perspectives for
further research.
� Work partially funded by FUI of System@tic Paris-Region ICT cluster through con-
tract DGT 117 407 Complex Systems Design Lab (CSDL).
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2 The Weighted Active (μ/μw, λ)-CMA-ES

The CMA-ES algorithm is a stochastic optimizer, searching the continuous space
RD by sampling λ candidate solutions from a multivariate normal distribution
[10,9]. It exploits the best μ solutions out of the λ ones to adaptively estimate
the local covariance matrix of the objective function, in order to increase the
probability of successful samples in the next iteration. The information about
the remaining (worst λ−μ) solutions is used only implicitly during the selection
process.

In active (μ/μI , λ)-CMA-ES however, it has been shown that the worst so-
lutions can be exploited to reduce the variance of the mutation distribution in
unpromising directions [12], yielding a performance gain of a factor 2 for the
active (μ/μI , λ)-CMA-ES with no loss of performance on any of tested func-
tions. A recent extension of the (μ/μw, λ)-CMA-ES, weighted active CMA-ES
[11] (referred to as aCMA-ES for brevity) shows comparable improvements on
a set of noiseless and noisy functions from the BBOB benchmark suite [7]. In
counterpart, aCMA-ES no longer guarantees the covariance matrix to be posi-
tive definite, possibly resulting in algorithmic instability. The instability issues
can however be numerically controlled during the search; as a matter of fact they
are never observed on the BBOB benchmark suite.

At iteration t, (μ/μw, λ)-CMA-ES samples λ individuals according to

x
(t+1)
k ∼ N

(
m(t), σ(t)2C (t)

)
, k = 1 . . . λ, (1)

where N (m ,C ) denotes a normally distributed random vector with mean m
and covariance matrix C .

These λ individuals are evaluated and ranked, where index i : λ denotes the i-
th best individual after the objective function. The mean of the distribution is up-

dated and set to the weighted sum of the best μ individuals (m =
∑μ

i=1 wix
(t)
i:λ,

with wi > 0 for i = 1 . . . μ and
∑μ

i=1 wi = 1).
The active CMA-ES only differs from the original CMA-ES in the adaptation of

the covariance matrixC (t). Like for CMA-ES, the covariance matrix is computed

from the best μ solutions, C+
μ =

∑μ
i=1 wi

x i:λ−mt

σt × (x i:λ−mt)T

σt . The main nov-

elty is to exploit the worst solutions to compute C−
μ =
∑μ−1

i=0 wi+1yλ−i:λy
T
λ−i:λ,

where yλ−i:λ =

∥∥∥ Ct−1/2
(xλ−μ+1+i:λ−mt)

∥∥∥
‖ Ct−1/2(xλ−i:λ−mt)‖ × xλ−i:λ−mt

σt . The covariance matrix es-

timation of these worst solutions is used to decrease the variance of the mutation
distribution along these directions:

C t+1 = (1− c1 − cμ + c−α−
old)C

t+

+c1p
t+1
c pt+1

c
T
+ (cμ + c−(1− α−

old))C
+
μ − c−C−

μ ,
(2)

where pt+1
c is adapted along the evolution path and coefficients c1, cμ, c

− and
α−
old are defined such that c1+ cμ− c−α−

old ≤ 1. The interested reader is referred
to [10,11] for a more detailed description of these algorithms.



298 I. Loshchilov, M. Schoenauer, and M. Sebag

As mentioned, CMA-ES has been extended with restart strategies to accom-
modate multi-modal fitness landscapes, and to specifically handle objective func-
tions with many local optima. As observed by [9], the probability of reaching
the optimum (and the overall number of function evaluations needed to do so)
is very sensitive to the population size. The default population size λdefault has
been tuned for uni-modal functions; it is hardly large enough for multi-modal
functions. Accordingly, [2] proposed a “doubling trick” restart strategy to en-
force global search: the restart (μ/μw, λ)-CMA-ES with increasing population,
called IPOP-CMA-ES, is a multi-restart strategy where the population size of
the run is doubled in each restart until meeting a stopping criterion.

The BIPOP-CMA-ES instead considers two restart regimes. The first one,
which corresponds to IPOP-CMA-ES, doubles the population size λlarge =
2irestartλdefault in each restart irestart and uses a fixed initial step-size σ0

large =

σ0
default.

The second regime uses a small population size λsmall and initial step-size σ0
small,

which are randomly drawn in each restart as:

λsmall =

⌊
λdefault

(
1
2

λlarge

λdefault

)U [0,1]2
⌋
, σ0

small = σ0
default × 10−2U [0,1] (3)

where U [0, 1] stands for the uniform distribution in [0, 1]. Population size λsmall

thus varies ∈ [λdefault, λlarge/2]. BIPOP-CMA-ES launches the first run with
default population size and initial step-size. In each restart, it selects the restart
regime with less function evaluations. Clearly, the second regime consumes less
function evaluations than the doubling regime; it is therefore launched more
often.

3 Alternative Restart Strategies

3.1 Preliminary Analysis

The restart strategies of IPOP- and BIPOP-CMA-ES are viewed as a search in
the hyper-parameter space.

IPOP-CMA-ES only aims at adjusting population size λ. It is motivated by
the results observed on multi-modal problems [9], suggesting that the population
size must be sufficiently large to handle problems with global structure. In such
cases, a large population size is needed to uncover this global structure and to
lead the algorithm to discover the global optimum. IPOP-CMA-ES thus increases
the population size in each restart, irrespective of the results observed so far; at
each restart, it launches a new CMA-ES with population size λ = ρirestart

inc λdefault

(see ◦ on Fig. 1). Factor ρinc must be not too large to avoid “overjumping”
some possibly optimal population size λ∗; it must also be not too small in order
to reach λ∗ in a reasonable number of restarts. The use of the doubling trick
(ρinc = 2) guarantees that the loss in terms of function evaluations (compared
to the “oracle“ restart strategy which would directly set the population size to
the optimal value λ∗) is about a factor of 2.
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Fig. 1. Restart performances in the 2D hyper-parameter space (population size and
initial mutation step size in log. coordinates). For each objective function (20 dimen-
sional Rastrigin - top-left, Gallagher 21 peaks - top-right, Katsuuras - bottom-left and
Lunacek bi-Rastrigin bottom-right), the median best function value out of 15 runs is
indicated. Legends indicate that the optimum up to precision f(x) = 10−10 is found
always (+), sometimes (⊕) or never (◦). Black regions are better than white ones.

On the Rastrigin 20-D function, IPOP-CMA-ES performs well and always
finds the optimum after about 5 restarts (Fig. 1, top-left). The Rastrigin func-
tion displays indeed a global structure where the optimum is the minimizer of
this structure. For such functions, IPOP-CMA-ES certainly is the method of
choice. For some other functions such as the Gallagher function, there is no such
global structure; increasing the population size does not improve the results. On
Katsuuras and Lunacek bi-Rastrigin functions, the optimum can only be found
with small initial step-size (lesser than the default one); this explains why it can
be solved by BIPOP-CMA-ES, sampling the two-dimensional (λ, σ) space.

Actually, the optimization of a multi-modal function by CMA-ES with restarts
can be viewed as the optimization of the function h(θ), which returns the op-
timum found by CMA-ES defined by the hyper-parameters θ=(λ, σ). Function
h(θ), graphically depicted in Fig. 1 can be viewed as a black box, computationally
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Fig. 2. An illustration of λ and σ hyper-parameters distribution for 9 restarts of IPOP-
aCMA-ES (◦), BIPOP-aCMA-ES (◦ and · for 10 runs), NIPOP-aCMA-ES (�) and
NBIPOP-aCMA-ES (� and many � for λ/λdefault = 1, σ/σdefault ∈ [10−2, 100]). The
first run of all algorithms corresponds to the point with λ/λdefault = 1, σ/σdefault = 1.

expensive and stochastic function (reflecting the stochasticity of CMA-ES). Both
IPOP-CMA-ES and BIPOP-CMA-ES are based on implicit assumptions about
the h(θ): IPOP-CMA-ES achieves a deterministic uni-dimensional trajectory, and
BIPOP-CMA-ES randomly samples the 2-dimensional search space.

Function h(θ) also can be viewed as a multi-objective fitness, since in addition
to the solution found by CMA-ES, h(θ) could return the number of function
evaluations needed to find that solution. h(θ) could also return the computational
effort SP1 (i.e. the average number of function evaluations of all successful runs,
divided by proportion of successful runs). However, SP1 can only be known for
benchmark problems where the optimum is known; as the empirical optimum is
used in lieu of true optimum, SP1 can only be computed a posteriori.

3.2 Algorithm

Two new restart strategies for CMA-ES, respectively referred to as NIPOP-
aCMA-ES and NBIPOP-aCMA-ES, are presented in this paper.

If the restart strategy is restricted to the case of increasing of population size
(IPOP), we propose to use NIPOP-aCMA-ES, where we additionally decrease
the initial step-size by some factor ρσdec. The rationale behind this approach
is that the CMA-ES with relatively small initial step-size is able to explore
small basins of attraction (see Katsuuras and Lunacek bi-Rastrigin functions on
Fig. 1), while with initially large step-size and population size it will neglect
the local structure of the function, but converge to the minimizer of the global
structure. Moreover, initially, relatively small step-size will quickly increase if it
makes sense, and this will allow the algorithm to recover the same global search
properties than with initially large step-size (see Rastrigin function on Fig. 1).

NIPOP-CMA-ES thus explores the two-dimensional hyper-parameter space
in a deterministic way (see � symbols on Fig. 2). For ρσdec = 1.6 used in this
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study, NIPOP-CMA-ES thus reaches the lower bound (σ = 10−2σdefault) used
by BIPOP-CMA-ES after 9 restarts, expectedly reaching the same performance
as BIPOP-CMA-ES albeit it uses only a large population.

The second restart strategy, NBIPOP-aCMA-ES, addresses the case where the
probability to find the global optimum does not much vary in the (λ, σ) space.
Under this assumption, it makes sense to have many restarts for a fixed budget
(number of function evaluations). Specifically, NBIPOP-aCMA-ES implements
the competition of the NIPOP-aCMA-ES strategy (increasing λ and decreasing
initial σ0 in each restart) and a uniform sampling of the σ space, where λ is set to
λdefault and σ0 = σ0

default × 10−2U [0,1] The selection between the two (NIPOP-
aCMA-ES and the uniform sampling) depends on the allowed budget like in
NBIPOP-aCMA-ES. The difference is that NBIPOP-aCMA-ES adaptively sets
the budget allowed to each restart strategy, where the restart strategy leading
to the overall best solution found so far is allowed twice (ρbudget = 2) a budget
compared to the other strategy.

4 Experimental Validation

The experimental validation of NIPOP-aCMA-ES and NBIPOP-aCMA-ES in-
vestigates the performance of the approach comparatively to IPOP-aCMA-ES
and BIPOP-aCMA-ES on BBOB noiseless problems and one black-box real-
world problem related to spacecraft trajectory optimization. The default param-
eters of CMA-ES [11,5] are used. This section also presents the first experimental
study of BIPOP-aCMA-ES1, the active version of BIPOP-CMA-ES [5].

4.1 Benchmarking with BBOB Framework

The BBOB framework [7] is made of 24 noiseless and 30 noisy functions [8]. Only
the noiseless case has been considered here. Furthermore, only the 12 multi-
modal functions among these 24 noiseless functions are of interest for this study,
as CMA-ES can solve the 12 other functions without any restart.

With same experimental methodology as in [7], the results obtained on these
benchmark functions are presented in Fig. 4 and Table 1. The results are given
for dimension 40, because the differences are larger in higher dimensions. The
expected running time (ERT), used in the figures and table, depends on a
given target function value, ft = fopt+Δf . It is computed over all relevant trials
as the number of function evaluations required in order to reach ft, summed over
all 15 trials, and divided by the number of trials that actually reached ft [7].

NIPOP-aCMA-ES. On 6 out of 12 test functions (f15,f16,f17,f18,f23,f24)
NIPOP-aCMA-ES obtains the best known results for BBOB-2009 and BBOB-
2010 workshops. On f23 Katsuuras and f24 Lunacek bi-Rastrigin, NIPOP-aCMA-
ES has a speedup of a factor from 2 to 3, as could have been expected. It performs

1 For the sake of reproducibility, the source code for NIPOP-aCMA-ES and NBIPOP-
aCMA-ES is available at https://sites.google.com/site/ppsnbipop/

https://sites.google.com/site/ppsnbipop/
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unexpectedly well on f16 Weierstrass functions, 7 times faster than IPOP-aCMA-
ES and almost 3 times faster than BIPOP-aCMA-ES. Overall, according to Fig.
4, NIPOP-aCMA-ES performs as well as BIPOP-aCMA-ES, while restricted to
only one regime of increasing population size.

NBIPOP-aCMA-ES. Thanks to the first regime of increasing population size,
NBIPOP-aCMA-ES inherits some results of NIPOP-aCMA-ES. However, on
functions where the population size does not play any important role, it per-
forms significantly better than BIPOP-aCMA-ES. This is the case for f21 Gal-
lagher 101 peaks and f22 Gallagher 21 peaks functions, where NBIPOP-aCMA-
ES has a speedup of a factor of 6. It seems that the adaptive choice between two
regimes works efficiently on all functions except on f16 Weierstrass. In this last
case, NBIPOP-aCMA-ES mistakingly prefers small populations, with a loss fac-
tor 4 compared to NIPOP-aCMA-ES. According to Fig. 4, NBIPOP-aCMA-ES
performs better than BIPOP-aCMA-ES on weakly structured multi-modal func-
tions, showing overall best results for BBOB-2009 and BBOB-2010 workshops
in dimensions 20 (results not shown here) and 40.

Due to space limitations, the interested reader is referred to [13] for a detailed
presentation of the results.

4.2 Interplanetary Trajectory Optimization

The NIPOP-aCMA-ES and NBIPOP-aCMA-ES strategies, designed for the
BBOB benchmark functions, can possibly overfit this benchmark suite. In order
to test the generality of these strategies, a real-world black-box problem is con-
sidered, pertaining to a completely different domain: Advanced Concepts Team
of European Space Agency is making available several difficult spacecraft tra-
jectory optimization problems as black box functions to invite the operational
research community to compare different derivative-free solvers on these test
problems [16].

The following results consider the 18-dimensional bound-constrained black-
box function “TandEM-Atlas501”, that defines an interplanetary trajectory to
Saturn from the Earth with multiple fly-bys, launched by the rocket Atlas 501.
The final goal is to maximize the mass f(x), which can be delivered to Saturn
using one of 24 possible fly-by sequences with possible maneuvers around Venus,
Mars and Jupiter.

The first best results was found for a sequence Earth-Venus-Earth-Earth-
Saturn (fmax = 1533.45) in 2008 by B. Addis et al. [1]. The best results so far
(fmax = 1673.88) was found in 2011 by G. Stracquadanio et al. [15].

All versions of CMA-ES with restarts have been launched with a maximum
budget of 108 function evaluations. All variables are normalized in the range
[0, 1]. In the case of sampling outside of boundaries, the fitness is penalized and

becomes f(x) = f(xfeasible) − α ‖x− xfeasible‖2, where xfeasible is the closest
feasible point from point x and α is a penalty factor, which was arbitrarily set
to 1000.
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Fig. 3. Comparison of all CMA-ES restart strategies on the Tandem fitness function
(mass): median (left) and best (right) values out of 30 runs

As shown on Fig. 3, the new restart strategies NIPOP-aCMA-ES and
NBIPOP-aCMA-ES respectively improve on the former ones (IPOP-aCMA-ES
and BIPOP-aCMA-ES); further, NIPOP-aCMA-ES reaches same performances
as BIPOP-aCMA-ES.

The best solution found by NBIPOP-aCMA-ES2 improves on the best solution
found in 2008, while it is worse than the current best solution, which is blamed
on the lack of problem specific heuristics [1,15], on the possibly insufficient time
budget (108 fitness evaluations), and also on the lack of appropriate constraint
handling heuristics.

weakly structured multi-modal fcts all functions

NBIPOP-aCMA

best 2009

BIPOP-aCMA

NIPOP-aCMA

IPOP-aCMA

best 2009

NBIPOP-aCMA

BIPOP-aCMA

NIPOP-aCMA

IPOP-aCMA

Fig. 4. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all
functions and weakly structured multi-modal subgroup in 40-D. The “best 2009” line
corresponds to the best ERT observed during BBOB 2009 for each single target.

2 x =[0.83521, 0.45092, 0.50284, 0.65291, 0.61389, 0.75773, 0.43376, 1, 0.89512,
0.77264, 0.11229, 0.20774, 0.018255, 6.2057e-09, 4.0371e-08, 0.2028, 0.36272,
0.32442]; fitness(x) = mass(x) = 1546.5.
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Table 1. Overall results on multi-modal functions f3 − 4 and f15 − 24 in dimension
d = 40: Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 for precision Δf ranging in 10i,
i = 1 . . . − 7. The median number of conducted function evaluations is additionally
given in italics, if ERT(10−7) = ∞. #succ is the number of trials that reached the final
target fopt + 10−8. Best results are printed in bold. For a more detailed (statistical)
analysis of results on BBOB problems, please see [13]. Statistically significantly better
entries (Wilcoxon rank-sum test with p = 0.05) are indicated in bold. The interested
reader is referred to [13] for the statistical analysis and discussion of these results.

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f3 15526 15602 15612 15646 15651 1565615/15
BIPOP-a 2395 ∞ ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/8
NBIPOP- 8177 ∞ ∞ ∞ ∞ ∞ 4e7 0/15
NIPOP-a 4615 ∞ ∞ ∞ ∞ ∞ 4e7 0/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f4 15536 15601 15659 15703 15733 2.8e5 6/15
BIPOP-a ∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/8
NBIPOP- ∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15
NIPOP-a ∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f15 1.9e5 7.9e5 1.0e6 1.1e6 1.1e6 1.1e6 15/15
BIPOP-a 1.2 1.1 1.1 1.1 1.1 1.1 15/15
IPOP-aC 0.72 0.43 0.60 0.61 0.62 0.63 8/8
NBIPOP-1.0 0.71 0.75 0.76 0.77 0.77 15/15
NIPOP-a 0.92 0.61 0.55 0.56 0.57 0.58 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f16 5244 72122 3.2e5 1.4e6 2.0e6 2.0e6 15/15
BIPOP-a 1.3 0.96 0.80 0.54 0.50 0.51 15/15
IPOP-aC 0.91 1.1 1.0 0.51 1.4 1.4 8/8
NBIPOP-0.97 0.78 0.34 0.38 0.46 0.74 15/15
NIPOP-a 1.2 0.65 0.23 0.21 0.16 0.18 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f17 399 4220 14158 51958 1.3e5 2.7e5 14/15
BIPOP-a 1.1 0.64 1.6 1.1 1.4 0.87 15/15
IPOP-aC 1.0 0.52 1.3 1.3 0.97 0.83 8/8
NBIPOP-1.0 0.57 1.2 1.2 1.0 0.81 15/15
NIPOP-a 0.97 0.52 0.97 1.00 1.1 0.70 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f18 1442 16998 47068 1.9e5 6.7e5 9.5e5 15/15
BIPOP-a 0.94 0.51 1.0 0.98 0.88 0.67 15/15
IPOP-aC 0.96 0.68 1.0 0.66 0.45 0.48 8/8
NBIPOP-1.0 0.97 1.1 0.93 0.57 0.53 15/15
NIPOP-a 0.95 0.58 0.75 0.71 0.50 0.42 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f19 1 1 1.4e6 2.6e7 4.5e7 4.5e7 8/15
BIPOP-a 396 6.7e4 0.87 1.2 1.0 1.0 9/15
IPOP-aC 462 4.4e40.57 0.34 0.20 0.20 8/8
NBIPOP- 424 8.3e4 0.97 0.81 1.1 1.1 9/15
NIPOP-a 436 8.2e4 1.9 0.48 0.32 0.32 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f20 222 1.3e5 1.6e8 ∞ ∞ ∞ 0
BIPOP-a 4.0 9.0 0.34 . . . 0/15
IPOP-aC 3.9 8.1 0.18 . . . 0/8
NBIPOP-4.0 8.5 0.39 . . . 0/15
NIPOP-a 4.0 6.5 0.32 . . . 0/15

Δfopt 1e1 1e0 1e-
1

1e-
3

1e-
5

1e-
7

#succ

f21 1044 21144 1.0e5 1.0e5 1.0e5 1.0e5 26/30
BIPOP-a 7.5 60 37 37 37 37 15/15
IPOP-aC 7.1 421 ∞ ∞ ∞ ∞ 3e6 0/8
NBIPOP- 4.9 10 5.1 5.1 5.1 5.1 15/15
NIPOP-a 14 440 173 172 171 171 12/15

Δfopt 1e1 1e0 1e-
1

1e-
3

1e-
5

1e-
7

#succ

f22 3090 35442 6.5e5 6.5e5 6.5e5 6.5e5 8/30
BIPOP-a 12 343 201 200 200 199 4/15
IPOP-aC 144 93 ∞ ∞ ∞ ∞ 3e6 0/8
NBIPOP- 12 112 32 32 32 32 12/15
NIPOP-a 179 583 ∞ ∞ ∞ ∞ 4e7 0/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f23 7.1 11925 75453 1.3e6 3.2e6 3.4e6 15/15
BIPOP-a 8.4 7.8 1.3 1.9 1.00 0.99 15/15
IPOP-aC 9.2 ∞ ∞ ∞ ∞ ∞ 4e6 0/8
NBIPOP-8.6 10 1.6 1.3 0.58 0.59 15/15
NIPOP-a 5.9 61 11 0.72 0.36 0.38 15/15

Δfopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f24 5.8e6 9.8e7 3.0e8 3.0e8 3.0e8 3.0e8 1/15
BIPOP-a 3.6 1.4 ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 1e7 0/8
NBIPOP-2.1 0.19 0.97 0.97 0.97 0.97 2/15
NIPOP-a 1.2 0.15 0.44 0.44 0.44 0.44 4/15

5 Conclusion and Perspectives

This paper contribution regards two new restart strategies for CMA-ES. NIPOP-
aCMA-ES is a deterministic strategy simultaneously increasing the population
size and decreasing the initial step-size of the Gaussian mutation. NBIPOP-
aCMA-ES implements a competition between NIPOP-aCMA-ES and a random
sampling of the initial mutation step-size, adaptively adjusting the computa-
tional budget of each one depending on their current best results. Besides the
extensive validation of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB
benchmark, the generality of these strategies has been tested on a new problem,
related to interplanetary spacecraft trajectory planning.

The main limitation of the proposed restart strategies is to quasi implement
a deterministic trajectory in the θ space. Further work will consider h(θ) as yet
another expensive noisy black-box function, and the use of a CMA-ES in the
hyper-parameter space will be studied. The critical issue is naturally to keep
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the overall number of fitness evaluations beyond reasonable limits. A surrogate-
based approach will be investigated [14], learning and exploiting an estimate of
the (noisy and stochastic) h(θ) function.
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2 Université Libre de Bruxelles
Bruxelles, Belgium

leslie.perez.caceres@ulb.ac.be
3 CINVESTAV-IPN (Evolutionary Computation Group)

Departamento de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
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Abstract. Currently, there exist several offline calibration techniques
that can be used to fine-tune the parameters of a metaheuristic. Such
techniques require, however, to perform a considerable number of in-
dependent runs of the metaheuristic in order to obtain meaningful in-
formation. Here, we are interested on the use of this information for
assisting the algorithm designer to discard components of a metaheuris-
tic (e.g., an evolutionary operator) that do not contribute to improving
its performance (we call them “ineffective components”). In our study,
we experimentally analyze the information obtained from three offline
calibration techniques: F-Race, ParamILS and Revac. Our preliminary
results indicate that these three calibration techniques provide different
types of information, which makes it necessary to conduct a more in-
depth analysis of the data obtained, in order to detect the ineffective
components that are of our interest.

Keywords: fine-tuning methods, algorithm design process, ineffective
operators.

1 Introduction

We are currently involved in a project whose goal is to propose strategies to assist
the decision-making process of designers of metaheuristic algorithms. As design-
ers decide to add new components (e.g., a new evolutionary operator) to a cer-
tain metaheuristic, the fine-tuning process gets more complex. This is due to the
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highly nonlinear interactions that normally occur among the different parameters
of a metaheuristic. Here, we are precisely interested in devising strategies that can
help us to detect the components of a metaheuristic that are really crucial for its
performance, so that the fine-tuning process can get reduced to a minimum. It
is worth noting that other decisions related to the parameters of a metaheuris-
tic algorithm are made during the design process. These decisions are not only
concerned with finding the best possible parameter values, but also with deciding
which parameters must be empirically tuned, and which ones can take either a
fixed value or a value that can be varied or adapted online during the search pro-
cess [8,6,4,7]. Over the years, there have been several efforts to develop automated
fine-tuning methods (see for example [12,3,1,5]). Such methods require thousands
of runs (and therefore, large amounts of time) in order to obtain good quality pa-
rameter configurations for a metaheuristic. The information that is extracted from
this exhaustive process could be, however, very useful for improving the design of
the metaheuristic itself. Since that is one of the main goals of this work, we con-
duct here an in-depth analysis of the information obtained with three well-known
fine-tuning methods (ParamILS, F-Race and Revac), aiming to detect ineffective
components in the algorithms being fine-tuned. In order to evaluate the output
information obtained from the fine-tuning methods being analyzed, we adopted
Ant Solver1 [11], which is a well-known ant colony optimization algorithm that
has been a popular choice for solving constraint satisfaction problems. It is im-
portant to emphasize that our goal here is not to find the best possible solutions
to the problems being analyzed, but to detect ineffective components of the al-
gorithm being analyzed, based on the information obtained from its systematic
fine-tuning process. For this sake, we include a dummy operator in the code of the
Ant Solver. Evidently, such a dummy operator is meant to be ineffective, because
it doesn’t perform any meaningful task within the algorithm. Its only purpose is
to validate our methodology to detect ineffective components of a metaheuristic.
The remainder of this paper is organized as follows. The next section provides a
short description of the fine-tuning methods adopted for our analysis. Section 3
describes the Ant Solver algorithm adopted for our case study. Section 3.1 dis-
cusses the incorporation of a dummy operator into the Ant Solver algorithm. The
instances used for our analysis are briefly explained in Section 4. In Section 5, we
describe the experiments performed and the results obtained. Finally, Section 6
provides our main conclusions and some possible paths for future research.

2 Fine-Tuning Techniques

The fine-tuning techniques described next are strategies designed to automati-
cally search for the best configuration of parameter values for a stochastic based
method. Given a heuristic algorithm with k parameters, a fine-tuning technique
searches for the parameter configuration θ∗ = {p1, . . . , pk} that provides the best
performance of the algorithm. When talking about parameters, we refer to two
main sets of elements:
1 The authors thank Cristine Solnon for kindly providing us the source code of the Ant
Solver.
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– Categorical parameters: These are processes or functions that are re-
quired in an algorithm but that can be implemented in different ways. For
example, the selection mechanism of an evolutionary algorithm.

– Numerical parameters: These are parameters expressed with real num-
bers or integers. For example the population size for an evolutionary algo-
rithm.

The main difference between categorical and numerical parameters is that the
latter are searchable (i.e., it is possible to define a distance measure between
two different values of the parameter). In contrast, in categorical parameters it
is not possible to define the distance between two “values”.

2.1 F-Race

The F-Race method was proposed by Birattari et al. [2]. F-Race is a specific
racing method specially adapted to fine-tune stochastic search methods. It uses
Friedman two-ways analysis of variance by ranks to compare sets of candidate
parameter configurations. This is a non-parametric test based on ranking, thus
it does not require the formulation of a hypothesis on the distribution of the ob-
servations. Moreover, ranking based tests are very useful in fine-tuning problems
because they implement a block design, which considers the different problem
instances and the random seeds as sources of variation. The performance differ-
ence between configurations is analyzed using a hypothesis test. F-Race stops
either when there is only one parameter configuration remaining, or when some
predefined number of runs has been completed. The F-Race method defines three
parameters: the initial number of runs without elimination of calibrations, the
confidence level for the tests and the maximum budget. It also requires the range
levels for each parameter. The number of levels of all parameters determines the
size of the initial set of candidate parameter configurations.

2.2 Revac

The Relevance Estimation and Value Calibration (Revac) of evolutionary algo-
rithms method was proposed by Eiben & Nannen [9]. Revac can be seen as an
estimation of distribution algorithm [10]. It works with a set of parameter config-
urations as its population. For each parameter, it starts the search process with a
uniform distribution of values within a given range. As the process advances, Re-
vac performs transformation operations (crossover and mutation) with the aim of
reducing each parameter distribution to a range of values that provide the best
performance. Revac stops after performing 1000 runs of the fine-tuned algorithm.
This approach defines 4 parameters: population size, step size of the crossover op-
erator, step size of the mutation operator and the maximum number of iterations.

2.3 ParamILS

The Parameter Iterated Local Search (ParamILS) strategy was proposed in [5].
It works as an iterated local search algorithm which starts with a default pa-
rameter configuration and iteratively improves the configuration performance
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searching in the neighborhood of the configuration at hand. At each iteration, it
performs random perturbations to the configuration at hand, and then applies
the local search process and compares the outcome to the performance of the best
parameter configuration that has been found so far. There are two well known
versions of this approach: BasicILS and FocusedILS. These versions differ in
the comparison procedure of parameter configurations they use. The ParamILS
method defines four parameters: the amount of random solutions of the first
phase, the amount of random solutions of each iteration, a restart probability
and the maximum budget.

2.4 Comparison of Fine-Tuning Methods

All the techniques considered here need the definition of an interval of values for
each parameter to be fine-tuned. Furthermore, F-Race and ParamILS require
the definition of a set of countable values for each parameter (Si). The number
of configurations evaluated by F-Race grows exponentially on the size of each Si.
F-Race evaluates all of these configurations at least r times, whereas ParamILS
reduces the number of evaluated configurations by exploring the most promising
parameter configurations. Revac and ParamILS are stochastic search methods,
then they are sensitive to the random seed adopted for the search process. F-
Race is not a stochastic method but it defines a set of random seeds to execute
the algorithm to be fine-tuned and these seeds could have an impact on the
fine-tuning process. ParamILS provides as its output the best performing con-
figuration, while Revac determines, for each parameter, an interval of values, and
F-Race reports the set of the best performing configurations obtained. Revac is
not able to search for categorical parameters, because its transformation process
is performed on a continuous search space. However, both ParamILS and F-Race
are able to tackle both categorical and continuous spaces. Table 1 summarizes
the main features of tuning techniques.

Table 1. Features of the fine-tuning methods adopted

Method F-Race Revac ParamILS

Type Experimental Design Search Based Search Based

Initial input Set of values Interval/precision Set of values

Expected Set of best An interval of values
Best configuration

output configurations for each parameter

# parameters 3 4 4

Scope Categorical/Numerical Numerical Categorical/Numerical

Stop criterion
Max runs or one

Max iterations Max runs/time
configuration left

3 Ant Solver

For our experiments we used an Ant Colony Optimization (ACO) based ap-
proach called Ant Solver [11]. This algorithm was proposed to solve constraint
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satisfaction problems (CSP). Ant Solver searches for a solution that minimizes
the number of violated constraints. At each step of Ant Solver, each ant con-
structs a complete assignment for the CSP, and the pheromone trails are updated
at the end of each cycle as usually done in ACO algorithms. The pheromone is
laid on a binary graph whose vertices (Xi, v) represent the assignment of value
v to variable Xi and the edges between two vertices represent those simultane-
ous assignment of values. Ant solver includes pre- and post- processing features
that use a min-conflicts based local search procedure. The pre-processing phase
performs local search repeatedly to collect information that is used to initialize
pheromone trails and the post-processing phase performs local search after each
ant has constructed a complete assignment. In our experiments, the pre- and
post-processing procedures were disabled in order to analyze the behavior of the
ACO algorithm alone. Ant Solver has four parameters: α, β, ρ and nAnts. α
and β determine, respectively, the weight of the pheromone and the weight of
heuristics in the computation of transition probabilities, ρ represents the level of
pheromone evaporation and nAnts corresponds to the number of ants used. We
added an operator (which is described next) and, consequently, a new parameter
for testing the fine-tuning techniques previously indicated.

3.1 Dummy Operator

Since our hypothesis was that a fine-tuning technique can provide information
about ineffective components of an algorithm,wedecided to add a dummyoperator
to the Ant Solver in order to validate it. This dummy operator takes an assignment
and returns it without making any further changes. Its execution is controlled by a
parameter δ that indicates its execution probability. In a real scenario, the opera-
tors that do not help in the search process use resources and spend time. Therefore,
in order to simulate this behavior, the dummy operator is set to consume 1% of the
constraint checks allowed in the execution in order to represent these costs.

4 Instances

The CSP instances used in this paper correspond to 3-coloring problems. Such
instances were generated using a simple heuristic that generates instances that
have at least one solution. The construction heuristic works as follows: first, the
problem variables are separated in three disjoint sets, and then the variables are
iteratively connected exclusively with variables in different sets, forbidding the
intra set connections. This process continues until a given average connection
level is met and the problem instance is obtained. The instances generated for
these experiments have 400 and 500 variables and a connection average of 3.

5 Experiments

For our experiments we used a public domain implementation of ParamILS
available at: www.cs.ubc.ca/labs/beta/Projects/ParamILS. We also adopted
the authors’ implementation of F-Race and our own implementation of Re-
vac. The source code of F-Race, Revac and the Ant Solver are available at:

www.cs.ubc.ca/labs/beta/Projects/ParamILS
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www.inf.utfsm.cl/~emontero. For all our experiments we tuned the probabil-
ity of application of the dummy operator. Each tuning process was executed 5
times in order to obtain representative results. The rest of the parameter were
set as follows: nAnts = 15, α = 2.00, β = 10.00, and ρ = 0.01 according to
recommendations of author in [11].

The hardware platform adopted for the experiments was a PC with an Intel
Corei7-920, having 4GB of RAM, and using the Linux Mandriva 2010 operating
system. Two sets of experiments were conducted:

– An analysis of the information obtained by the three fine-tuners when solving
problems with 400 variables from the Test Suite 1.

– An analysis of the information obtained by the three fine-tuners when solving
problems with 500 variables from the Test Suite 2.

Table 2. Performance measure for instances from the Test Suite 1

p dummy 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fitness 0 0 11.3 18.9 21.8 25.6 26.6 27.7 32.4 32.7 32.7

conflict checks E+008 0.34 3.17 5.40 5.76 5.78 5.78 5.79 5.80 5.80 5.82 5.78

Fine-tuning methods use the number of violated constraints of the best solution
found as the evaluation criteria to assess the performance of the Ant Solver.

5.1 Ineffective Operator

The objective of this experiment is to assess if the fine-tuning techniques adopted
are able to provide information that allows us to infer that the algorithm de-
sign includes an ineffective operator. The expected result is that the probability
assigned to the operator is zero. As indicated before, we included a dummy op-
erator for this experiment. This operator receives a candidate solution and does
not perform any change to it.

5.2 Performance Analysis

Here, we present a set of experiments which aim to understand the noticeable
effect that can have an ineffective operator in the algorithm. For this purpose,
we measure the quality of the solutions found and the number of conflict checks
performed for different values of the dummy operator rate. Table 2 shows these
values for instances of 400 variables and Table 3 shows them for instances of
500 variables. We can observe in Table 2 that the average performance of Ant
Solver increases as the dummy rate decreases. It is important to note that the
performance for rates 0.0 and 0.1 is the same. This is because in both cases, Ant
Solver has a sufficient budget of evaluations to search until the best solution is
found. However, the number of conflict checks performed by the second case is
almost 10 times the number of checks performed by the first one. The higher the
values of the dummy probability, the larger becomes the number of resources

www.inf.utfsm.cl/~emontero
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consumed by the dummy operator and, consequently, the problem instances can
no longer be solved. As the value of the dummy operator gets larger, the worse is
the performance of the Ant Solver. In Table 3, we can observe the performance
of the Ant Solver when dealing with instances of 500 variables. In this case,
the algorithm clearly shows that using the dummy operator strongly increases
the number of constraints checks. The higher the dummy probability, the worse
becomes the performance of the Ant Solver.

Table 3. Performance measure for instances in Test Suite 2

p dummy 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fitness 0 2.5 31.9 46.1 49.5 50.6 52.2 55.2 58.8 61.4 62.6

conflict checks E+008 0.59 6.53 8.98 9.04 9.03 9.04 9.05 9.06 9.07 9.07 9.14

5.3 Test Suite 1

Here, we detail the results obtained using the Test Suite 1 composed by 10
instances of 400 variables as described in Section 4.

Analysis of Results for F-Race. The F-Race algorithm started the fine-
tuning process with a set of 11 parameter configurations S = {0.0, 0.1, ..., 1.0}.
After finishing the first phase of 5 runs without elimination of configurations, F-
Race discarded 9 configurations and kept only two of them S′ = {0.0, 0.1}. Then,
it ended with the set S′ containing both configurations. This means that both
parameter configurations are equivalent (i.e., the incorporation of the dummy
operator at very low rates (lower or equal than 0.1) does not affect the perfor-
mance of Ant Solver). F-Race required 550 Ant Solver runs in order to detect
the ineffective operator.

Analysis of Results for Revac. Revac started the fine-tuning process with an
initial interval of values in the range [0.0, 1.0]. The convergence process performed
by Revac to fine-tune the dummy parameter is shown in Figure 1(a). This plot
shows the median, the minimum and the maximum values of the ranges of values
for the parameter at each iteration. Here, we can see that at the first iteration,
the range of parameter values has already been reduced to [0.1, 0.4], but it is still
required to performmore iterations to refine this range of values. As shown in Fig-
ure 1(a), Revac required 35 iterations (around 1350 runs of Ant Solver) to converge
to the range of values that performs the best for the dummy probability [0.0, 0.1].

Analysis of Results for ParamILS. For ParamILS, we also considered 11
parameter configurations S = {0.0, 0.1, ..., 1.0} and the initial configuration was
set to 0.5. After 100 runs of Ant Solver, ParamILS was able to change the value
from 0.5 to 0.1. ParamILS ended with a value of 0.1, because the performance
of Ant Solver with a probability of 0.1 for the dummy operator is equivalent to
the performance obtained with a probability of 0.0.

Discussion. It is important to remark that the three fine-tuning methods
adopted here were able to minimize the effect of an ineffective operator included
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Fig. 1. Convergence of Revac for Test Suite 1 and 2

in the algorithm. ParamILS was clearly the most efficient, because both Revac
and F-Race require the execution of an initialization phase. In this particular set
of instances, we observed in Section 5.2 that the performance of Ant Solver is
equivalent when using a probability of either 0.0 or 0.1 for the dummy operator.
This is because the algorithm is able to solve the problem even with a dummy
probability of 0.1. Considering this specific problem, we suggest that when the
algorithm designer doubts about the effectiveness of a component, he can use
ParamILS giving zero as the first value for the parameter that controls such a
component. ParamILS will then be able to change this value to another one if it
can obtain a significantly better result. In our tests, we began by assigning 0.5
to this parameter value, and then, when ParamILS decreases this value and it
finds out that using 0.1 produces good results, it stops searching.

5.4 Test Suite 2

Here, we summarize the results obtained during the fine-tuning processes of
the instances from the Test Suite 2. This test suite is composed by 10 problem
instances of 3-coloring problem of 500 variables each.

Analysis of Results for F-Race. F-Race started the fine-tuning process with a
set of 11 parameter configurations S = {0.0, 0.1, ..., 1.0}. After finishing the first
phase of 5 runs without elimination of configurations, F-Race discarded 9 configu-
rations and kept only two of them S′ = {0.0, 0.1}. At the next race, these two con-
figurations were compared and the dummy value 0.0 showed a better performance
than the configuration 0.1. In this case, the process ended after 570Ant Solver runs.

Analysis of Results for Revac. Revac started the fine-tuning process with
an interval of values in the range [0.0, 1.0]. The convergence process of Revac for
fine-tuning the dummy parameter for the instances in Test Suite 2 is shown in
Figure 1(b). Here, we can see that at the first iteration the range of parameter
values has been reduced to the same range as that for Test Suite 1. The entire
convergence process is very similar to the process corresponding to the Test Suite
1. This is because both processes were performed considering the same random
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seed. There are, however, some small differences. For example, in this case, the
final range reduction took place at iteration 37. This means that Revac required
around 1370 runs of Ant Solver to converge to the range of values [0.0, 0.1].

Analysis of Results for ParamILS. In this case, we also considered 11 pos-
sible parameter configurations S = {0.0, 0.1, ..., 1.0} and the initial value for the
dummy rate was set to 0.5. The parameter changed to the value 0.1 after 100
Ant Solver runs, and it changed to 0.0 after 590 Ant Solver runs. The parameter
value did not change during the rest of the fine-tuning process.

Discussion. In this case, the three fine-tuningmethods were able to detect the in-
effective operator included in the algorithm. ParamILS and F-Race were both the
most efficient. The initialization phase of Revac was again detrimental in its com-
petitiveness, but not for F-Race. This set of instances constitutes a more typical
example of the scenarios that fine-tuningmethods could facewhen searching for in-
effective operators. In this case, the performance of the algorithmcanbe considered
as the only indicator of the quality of the search that the algorithm is performing.

5.5 Final Remarks

Considering the two fine-tuning scenarios analyzed here, it is important to notice
that the first one is more complex, since in that case the performance of the
algorithm is not enough to categorically determine the elimination of the dummy
operator. For the first scenario, a multistage procedure could be performed in
order to analyze different quality measures of the search process in order to
debug the design of the algorithm. Some good practices could also be considered
for the application of fine-tuning methods to identify ineffective operators. For
example, let’s consider as our initial solution a configuration that could discard
an operator (operator rate set to 0.0) in ParamILS. Only if such operator shows
to be useful for the algorithm, either isolated or combined with other operators,
ParamILS will incorporate it. For Revac and F-Race, their initial phases could
be oriented to better analyze configurations discarding the use of the operator
analyzed. Only when the fine-tuning method decided that these operators are
useful for the algorithm, their operator rates would be fine-tuned.

6 Conclusions and Future Work

In this paper we have proposed the use of the information obtained by fine-tuning
techniques for assisting the design process of metaheuristics. We have shown the
way in which this information can be used to identify ineffective components (an
operator, in this case).

Our experiments indicated that ParamILS was the best technique at iden-
tifying this situation in a more efficient way. Revac and F-race required more
resources because of their expensive initialization phases. In our experiments the
three fine-tuners were allowed to execute a fixed maximum of executions of the
Ant Solver. The three fine-tuners studied here can be stopped at any time be-
fore reaching the maximum number of evaluations. However, in our experiments
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we waited until completing all the executions, so that a fair comparison of the
tuning approaches could be done.

As part of our future work, we would like to study more recent fine-tuners
such as sequential parameter optimization and the irace methods. Moreover,
we aim to develop mechanisms that allow the collaboration of different fine-
tuning techniques as a way of assisting the design of heuristic algorithms. In
this case, however, the aim would be to detect effective components, instead of
ineffective ones. We would also like to study other interesting aspects related
to the algorithm design process, such as the identification of more than one
ineffective operator, and the identification of opposite behavior of operators in
the presence of noise and also considering continuous fitness landscapes.
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5. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: Proceedings of the Twenty-Second Conference on Artifical Intelli-
gence, pp. 1152–1157 (2007)

6. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for
evolutionary algorithms. Journal of Heuristics 16, 881–909 (2010)

7. Montero, E., Riff, M.C., Neveu, B.: C-strategy: A Dynamic Adaptive Strategy for
the CLONALG Algorithm. Transactions on Computational Sciences, Special Issue
8, 41–55 (2010)

8. Montero, E., Riff, M.C.: On-the-fly calibrating strategies for evolutionary algo-
rithms. Information Sciences 181(3), 552–566 (2011)

9. Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Joint International Conference for Artificial Intelligence
(IJCAI), pp. 975–980 (2007)

10. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A Survey of Optimization by Building and
Using Probabilistic Models. Computational Optimization and Applications 21(1),
5–20 (2002)

11. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation 6(4), 347–357 (2002)
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Abstract. Indirect encoding schemes for neural network phenotypes
can represent large networks compactly. In previous work, we presented a
new approach where networks are encoded indirectly as a set of Fourier-
type coefficients that decorrelate weight matrices such that they can
often be represented by a small number of genes, effectively reducing the
search space dimensionality, and speed up search. Up to now, the com-
plexity of networks using this encoding was fixed a priori, both in terms
of (1) the number of free parameters (topology) and (2) the number
of coefficients. In this paper, we introduce a method, called Compressed
Network Complexity Search (CNCS), for automatically determining net-
work complexity that favors parsimonious solutions. CNCS maintains
a probability distribution over complexity classes that it uses to select
which class to optimize. Class probabilities are adapted based on their ex-
pected fitness. Starting with a prior biased toward the simplest networks,
the distribution grows gradually until a solution is found. Experiments
on two benchmark control problems, including a challenging non-linear
version of the helicopter hovering task, demonstrate that the method
consistently finds simple solutions.

1 Introduction

Indirect or generative encoding schemes for neural network phenotypes [2–4,9,11]
offer the potential of allowing very large networks to be represented compactly.
In previous work [5,6], we presented a new encoding where network weight ma-
trices are represented indirectly as a set of Fourier-type coefficients that are
transformed into weight values via an inverse Fourier transform, so that evolu-
tionary search is conducted in the frequency-domain instead of weight space. If
adjacent weights in the matrices are correlated, then this regularity can be en-
coded using fewer coefficients than weights, effectively reducing the search space
dimensionality. For problems exhibiting a high-degree of redundancy, this “com-
pressed” approach can result in an order of magnitude fewer free parameters and
significant speedup [5].

Up to now the complexity of networks using this encoding was fixed a pri-
ori, both in terms of (1) the number of free parameters or topology and (2)
the number of coefficients (compression ratio). In this paper, we introduce a
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Fig. 1. Decoding the compressed networks. The figure shows the three step pro-
cess involved in transforming a genome of frequency-domain coefficients into a recurrent
neural network. First, the genome (left) is divided into k chromosomes, one for each
of the weight matrices specified by the network architecture, Ψ. Each chromosome is
mapped, by Algorithm 1, into a coefficient array of a dimensionality specified by Ω. In
this example, an RNN with two inputs and four neurons is encoded as 8 coefficients.
There are k = |Ω| = 3, chromosomes and Ω = {3, 3, 2}. The second step is to apply
the inverse DCT to each array to generate the weight values, which are mapped into
the weight matrices in the last step.

method inspired by universal search [7], called Compressed Network Complex-
ity Search (CNCS), that automatically determines network complexity, favoring
parsimonious solutions. CNCS maintains a probability distribution over com-
plexity classes, which it uses to select which class to optimize. The probability of
a given class is adapted based on the expected fitness of individuals sampled from
it. Starting with a prior biased toward the simplest networks, the distribution
adapts gradually until a solution is found.

The idea of enforcing parsimony in neuroevolution has been explored previ-
ously [15, 16], usually by adding a regularization term to the fitness function
that penalizes complexity. Our approach is more in line with NEAT [10] where
simple networks are favored by starting evolution with a population of directly
encoded networks that have minimal topologies.

The next section describes how networks are encoded in the frequency domain.
Section 3, introduces the complexity search method, CNCS. Section 4, presents
experiments applying CNCS to the octopus arm task with high-dimen-sional
actions to determine the number of coefficient genes used to represent networks;
and in section 5 it is used to search for both the number of neurons (topology)
and coefficients, for networks controlling a challenging version of the Helicopter
Hovering benchmark.

2 DCT Network Representation

Networks are encoded as a string or genome, g = {g1, . . . , gk}, consisting of k sub-
strings or chromosomes of real numbers representing Discrete Cosine Transform
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Algorithm 1: Coefficient mapping(g, d)

j ← 0
K ← sort(diag(d) − I)

for i = 0 to |d| − 1 +
∑|d|

n=1 dn do
l ← 0

si ← {e|∑|d|
k=1 eξj = i}

while |si| > 0 do
ind[j] ← argmin

e∈si

∥∥e−K[l++ mod |d|]∥∥
si ← si \ ind[j++]

for i = 0 to |ind| do
if i < |g| then

coeff array[ind[i]] ← ci
else

coeff array[ind[i]] ← 0

Fig. 2. Mapping the coefficients. The cuboidal array is filled with the coefficients
from chromosome g one simplex at a time, according to Algorithm 1, starting at the
origin and moving to the opposite corner one simplex at a time.

(DCT) coefficients. The number of chromosomes is determined by the choice
of network architecture, Ψ, and data structures used to decode the genome,
specified by Ω = {D1, . . . , Dk}, where Dm, m = 1..k, is the dimensionality
of the coefficient array for chromosome m. The total number of coefficients,
C =

∑k
m=1 |gm| , N (where N is the number of weights), is user-specified (for

a compression ratio of N/C), and the coefficients are distributed evenly over the
chromosomes. Which frequencies should be included in the encoding is unknown.
The approach taken here restricts the search space to band-limited neural net-
works where the power spectrum of the weight matrices goes to zero above a
specified limit frequency, cm� , and chromosomes contain all frequencies up to cm� ,
gm = (cm0 , . . . , cm� ).

Figure 1 illustrates the procedure used to decode the genomes. In this example,
a fully-recurrent neural network (on the right) is represented by k = 3 weight
matrices, one for the input layer weights, one for the recurrent weights, and one
for the bias weights. The weights in each matrix are generated from a different
chromosome which is mapped into its own Dm-dimensional array with the same
number of elements as its corresponding weight matrix; in the case shown, Ω
= {3, 3, 2}: 3D arrays for both the input and recurrent matrices, and a 2D array
for the bias weights.

In previous work [5], the coefficient matrices were 2D, where the simplexes
are just the secondary diagonals; starting in the top-left corner, each diagonal
is filled alternately starting from its corners. However, if the task exhibits in-
herent structure that cannot be captured by low frequencies in a 2D layout,
more compression can potentially be gained by organizing the coefficients in
higher-dimensional arrays.

Each chromosome is mapped to its coefficient array according to Algorithm 1
which takes a list of array dimension sizes, d = (d1, . . . , dDm) and the chromo-
some, gm, to create a total ordering on the array elements, eξ1,...,ξDm

. In the first
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Algorithm 2. CNCS(D,f ,s,n,σθ)

while ¬converged do
for k = 1 to s do

xk ∼ D //draw sample

(μxk
, σxk) ← SNES(f ,μxk

, σxk , λ(Ck), n)

φxk ← f(μxk
) //store fitness

foreach xi ∈ D do

g(xi) ←

⎧⎪⎨
⎪⎩

∑
∀xj∈D

φxj

1

hd
K
(
xi−xj

h

)
max(σxi)>σθ

0 otherwise

foreach xi ∈ D do

p(xi) ← g(xi)∑
∀xj∈D

g(xj)
//normalize

loop, the array is partitioned into (Dm−1)-simplexes, where each simplex, si,
contains only those elements e whose Cartesian coordinates, (ξ1, . . . , ξDm), sum
to integer i. The elements of simplex si are ordered in the while loop according
to their distance to the corner points, pi (i.e. those points having exactly one
non-zero coordinate; see example points for a 3D-array in figure 2), which form
the rows of matrix K = [p1, . . . , pm]T , sorted in descending order by their sole,
non-zero dimension size. In each loop iteration, the coordinates of the element
with the smallest Euclidean distance to the selected corner is appended to the
list ind, and removed from si. The loop terminates when si is empty.

After all of the simplexes have been traversed, the vector ind holds the ordered
element coordinates. In the final loop, the array is filled with the coefficients from
low to high frequency to the positions indicated by ind; the remaining positions
are filled with zeroes. Finally, a Dm−dimensional inverse DCT transform is
applied to the array to generate the weight values, which are mapped to their
position in the corresponding 2D weight matrix. Once the k chromosomes have
been transformed, the network is complete.

3 Compressed Network Complexity Search

The basic idea of CNCS is to discover networks with minimal complexity by
running multiple independent evolutionary processes in parallel, one for each
complexity class, allocating run-time to each according to an adaptive probabil-
ity mass function, D. Algorithm 2 describes CNCS in pseudocode. The algorithm
is initialized with a prior distribution over the complexity classes (C, Ψ), where
C is the number of coefficients used to encode the network, and Ψ is the num-
ber of neurons (equivalently, the topology). In order to bias the search toward
low-complexity solutions, D should be initialized with a prior that gives high
probability to small networks (low Ψ), represented by the fewest number of co-
efficients (low C).
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Fig. 3. Octopus arm task. (a) A flexible arm consisting of p compartments, each
with 3 muscles, must be controlled to touch a goal location with the arm tip from
3 different initial positions, −π/2, 0 and π/2. (b) The arm is controlled by a fully
recurrent network with 32 neurons, one for each action (muscle). This topology is
fixed, and only the number of coefficients used to represent its weights is determined
automatically by CNCS.

Each xι = (Cι, Ψι) pair in D has its own dedicated search algorithm used
to optimize that particular configuration. In the current implementation we use
Separable Natural Evolution Strategies (SNES; [13]), an efficient variant in the
NES [12] family of black-box optimization algorithms. In each generation, SNES
samples a population of λ individuals, computes a Monte Carlo estimate of the
fitness gradient, transforms it to the natural gradient and updates the search
distribution parameterized by a mean vector, μ, and diagonal covariance matrix,
σ (see [12] for a full description of NES). The SNES search distribution associated
with configuration xι has mean μxι

and covariance σxι .
Each iteration, CNCS draws s samples from D, and runs the SNES corre-

sponding to each sample for n generations, after which the search distribution
(μ,σ) and its expected fitness value φ are saved. The distribution D is then re-
estimated using a multivariate Parzen window estimator with radial-symmetric
Gaussian kernel K [8]. First, the values g(x) are computed by applying the ker-
nel weighted by the normalized fitnesses, φxj (the first forall loop), where h
is the kernel width, and d is the dimensionality of D, e.g. 2 when estimating C
and Ψ (the SNES distributions that have converged, max(σ) ≤ σθ, are assigned
a g value of 0). Then the g values are normalized into probabilities, and the
cycle repeats. The algorithm terminates when all search distributions (within
the bounds of D) have converged, or either the desired fitness or the maximum
number of iterations has been reached.

4 Octopus Arm Control

The octopus arm consists of p compartments floating in a 2D water environment
(see figure 3a). Each compartment has a constant volume and contains three
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Fig. 4. Network decoding schemes. (a) for the octopus arm networks the genome
is split into 3 chromosomes, Ω={4, 4, 2}. The coefficients in the chromosome used to
generate the input weight matrix are placed in a 4D array, and a 2D array for the bias
weights. (b) for the helicopter networks there are 5 chromosomes, Ω={2, 2, 1, 2, 1}: a
2D input and recurrent and output arrays, and 1D arrays for the input and output
bias weights.

controllable muscles (dorsal, transverse and ventral). The goal of the task to
reach a target position with the tip of the arm, starting from three different initial
positions, by contracting the appropriate muscles at each 1s step of simulated
time. While initial positions −π/2 and π/2 look symmetrical, they are actually
quite different due to gravity. The state of a compartment is described by the
x, y-coordinates of two of its corners plus their corresponding x and y velocities.
Together with the arm base rotation, the arm has 8p+2 state variables. Though
there are 3p + 2 muscles, the task is normally simplified by aggregating them
into 8 “meta”-actions that contract groups of muscles simultaneously (i.e. all
dorsal, all transverse, etc.). Here, instead we use the more difficult configuration
where the “raw” actions are controlled directly, so that each muscle must be
coordinated with the others to move the arm.

4.1 Setup

For the p = 10 compartment arm used in these experiments, a network with
32 neurons (one for each raw action) is sufficient to perform well on this task.
Therefore, CNCS is used only to search for the number of coefficients, so that
the distribution, D, is one-dimensional, with a uniform prior over C = 1..10,
a sample size of s = 1, and number of SNES generations per CNCS update,
n = 1. The kernel width was h = 7, and the convergence condition was set to
σθ = 0.01. Each SNES used a population size of 16. Five experiments were run,
for 4 thousand iterations each.
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(a) (b)

Fig. 5. Octopus arm results. The 3D plots show how (a) the distribution over the
number of coefficients, C, adapts over time in CNCS, and (b) configurations with
a better fitness are explored. The final distribution after 4,000 iterations is focused
between C = 15 and C = 50, and peaks at C = 18, for a compression ratio of 204:1;
3680 weights/18 coefficients and fitness reaching 0.88.

The octopus arm was controlled using the fully-recurrent network architecture
shown in figure 3b which is decoded using the following scheme, Ω= {4, 4, 2},
depicted in figure 4a: the genome is partitioned into k = 3 chromosomes, mapped
into three arrays: (1) a 4D 8×(p+1)×3×(p+1) array that contains input weights
for a 3×(p+1) grid of neurons, one for each raw action, (2) a 3×(p+1)×3×(p+1)
recurrent weight array, and (3) and a 3×(p+1) bias array. The dimension size of
3 in these arrays refers to the number of muscles per compartment.

The fitness was computed as the average of the following score over three trials:
max
[
1− t

T
d
D , 0
]
, where t is the number of time steps before the arm touches the

goal, T is the maximum number of time steps in a trial, d is the final distance of
the arm tip to the goal andD is the initial distance of the arm tip to the goal. Each
of the three trials starts with the arm in a different configuration (see figure 3a).
This fitness measure is different to the one used in [14], because minimizing the
integrated distance of the arm tip to the goal causes greedy behaviors. In the vis-
cous fluid environment of the octopus arm, a greedy strategy using the shortest
length trajectory does not lead to the fastest movement: the arm has to be com-
pressed first, and then stretched in the appropriate direction. Our fitness function
favors behaviors that reach the goal within a small number of time steps.

4.2 Results

Figure 5 shows how the distribution (a) over coefficients, C, and the fitness
of each configuration (b) adapts over the course of 4, 000 iterations of CNCS
(averaged over 20 runs). The distribution is initialized with a prior that favors
networks with low complexity, expressed solely with C (top-right corner of the
graphs). The expected fitness forms a ridge with a peak between C = 15 and
C = 18 with a moderate slope on the left, towards higher C. This focuses
the search between C = 15 and C = 50. The expected fitness for C < 15
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Fig. 6. Helicopter hovering task with gusting wind. (a) The helicopter must be
controlled to stay within 20m from its initial position at the origin (as shown). Unlike
the standard version of the task where wind blows at a constant velocity, the wind
here blows in gusts with much higher velocity, forcing the controller to react quickly to
sudden changes in wind. (b) The helicopter is controlled by a simple recurrent network
(SRN). Both the number of neurons and the number of coefficients are determined
automatically by CNCS.

drops significantly lowering the probability of sampling configurations in this
area. Reasonable fitness of 0.75 was reached at iteration 350 using less than 15
coefficients. A fitness of 0.88 that is close to optimum was reached at iteration
2560 using 18 coefficients. The weight matrices of such networks were compressed
down from 3680 weights (compression ratio of 204:1).

5 Helicopter Hovering with Gusting Wind

The standard Helicopter Hovering benchmark involves maintaining the position
of a simulated XCell Tempest [1] as close as possible to origin of a bounded
3D space (see figure 6a). The helicopter model consists of 12 state variables:
the coordinates and angular rotations in 3-space and their derivatives; and 4
control variables: longitudinal and latitudinal cyclic pitch and tail, and main
rotor collective pitch. The fitness is the sum of squares of all state variables over
the course of a flight lasting t time steps. If the helicopter moves more that 20m
away from the origin in any direction or its velocity exceeds 5 m/s, then it is
considered to have crashed, and the trial is terminated. The fitness is normalized
between 0 and 1 and the minimum over 5 trials is used.

The original 2008 RL competition version of this problem featured wind along
the x- and y-axes with a drag of up to 5m/s, which is initialized at random in
the beginning of each trial. With this setup, it turns out that a linear controller
can be easily trained to solve the task. Therefore, in order to make the task more
challenging, requiring non-linear control, the original wind model was modified
so that instead of constant wind, strong “gusts” buffet the helicopter at random.
Wind gusts occur in both x and y directions with probability 0.4 and a velocity
of 20m/s, which decays exponentially after striking the helicopter. The gusting
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Fig. 7. Complexity search distribution for helicopter hovering task. The fig-
ure shows how the distribution D (left) and fitness (right) evolve over time, averaged
across 20 runs. The algorithm first explores simple networks, with only a few neurons,
represented by a small number of DCT coefficients (around 500 steps), then gradually
spreads the distribution toward more complex configurations, identifying two clusters
with high fitness (networks with 3 neurons defined with 8 coefficients and 3-node net-
works defined with 12 coefficients).

wind makes the task significantly harder—a linear controller cannot cope with
the abrupt wind perturbations. Because higher velocities are required to control
the helicopter under these conditions, the limit on the velocity was removed.

5.1 Setup

The helicopters were controlled using simple recurrent networks (SRN/Elman;
figure 6b). The decoding scheme for the genomes, Ω= {2, 2, 1, 2, 1}, is depicted
in figure 4b. The original benchmark involves flights of t = 6000 time steps
(equivalent to 60s flight). For the task with gusting wind used here, this was
reduced to 100 both for efficiency, and because, due to the severity of the wind,
such a short trial is enough to evaluate relative controller competence.

CNCS was used to search for both the network topology, Ψ (number of neu-
rons), and number of coefficients, C. The complexity distribution, D, was ini-
tialized with a uniform prior over the range {1, 2} for both Ψ and C, i.e. p(C, Ψ)
= 0.25, C, Ψ = 1, 2, and a sample size s = 2. As in the octopus task, h = 7,
σθ = 0.01, n = 1, and each SNES used a population size of 16. A total of 20
experiments were run, for 20 thousand iterations each.

5.2 Results

Figure 7 shows how the distribution over (Ψ,C) configurations (top row) and
the fitness of each configuration (bottom row) adapts over the course of 20k
iterations of CNCS (averaged over 20 runs). The distribution is initialized with
a prior that concentrates on networks with the lowest complexity (upper-left
corner of the graphs). Gradually, as the distribution expands, it finds high fit-
ness individuals with 1 to 3 neurons, using ≈ 8 coefficients, at around iteration
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1000. These networks are simple both in terms of their topology (model complex-
ity) and in the regularity of their weight matrices (compression ratio of 8:1, 64
weights/8 coefficients). The distribution then focuses on this area, moving away
from configurations with fewer coefficients (C < 8) as they cannot express the
level of complexity required for nets with more that 3 neurons. At this point, the
distribution begins to follow a narrow, high-fitness corridor, adding coefficients
to networks with 2 and 3 neurons, until it reaches C = 12 (≈ 2000 iterations)
and starts to grow the size of networks. The shape of the distribution at 20k
iterations emerged consistently for all runs, with a maximum relative entropy
between the distributions of any two runs of only 0.038.

6 Discussion and Future Work

CNCS consistently found low-complexity solutions for the two tasks tested. The
octopus arm reaching task was successfully solved with networks having 3680
weights that were generated using just 18 DCT coefficients, and networks with 2
neurons (64 weights) represented by 8 DCT coefficients were found in the early
stage of the CNCS for the Helicopter Hovering task. Helicopter networks were
progressively improved by increasing the number of DCT coefficients beyond 12,
and broadening the search to more hidden neurons.

The experimental results show that updating the distribution on complex-
ity classes elegantly addresses the question of how to configure the evolution-
ary search. Running all configurations in parallel would be prohibitive, whereas
CNCS quickly adapts the search distribution towards promising configurations.

A potential drawback of CNCS lies in wide valleys of low fitness that span
across complexity space. One has to ensure, that the width of the smoothing
kernel used is wider than the potential valley. Otherwise, the distribution will
never reach across to sample networks of higher complexity. A possible solution
could be to use a variable kernel width for each complexity class based on e.g.
the number of samples evaluated from that class.

Future experiments will test the generalization of the evolved controllers to
verify whether complexity is correlated with robustness.We expect that the small
networks, although they have slightly worse fitness during the training (like those
small networks that can control the helicopter to hover), will generalize better.
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Abstract. Single Node Genetic Programming (SNGP) offers a new approach to 
GP in which every member of the population consists of just a single program 
node. Operands are formed from other members of the population, and evolu-
tion is driven by a hill-climbing approach using a single reversible operator. 
When the functions being used in the problem are free from side effects, it is 
possible to make use of a form of dynamic programming, which provides huge 
efficiency gains. In this research we turn our attention to the use of SNGP when 
the solution of problems relies on the presence of side effects. We demonstrate 
that SNGP can still be superior to conventional GP, and examine the role of 
evolutionary strategies in achieving this. 

1 Introduction 

Single Node Genetic Programming (SNGP) [1] is a newly-introduced form of GP in 
which each individual in the population consists of just a single program node drawn 
from the terminal or function set of the problem we are attempting to solve. The oper-
ands for a node are other members of the population. As such, it could be argued that 
the population forms one large graph; however, we do not treat it as such during evo-
lution. In addition to the attributes encoding connections with other members, each 
individual has data structures recording the outputs it produces when evaluated; more 
importantly, it has its own distinct fitness value. It therefore makes much more sense 
to view the population as a set of graphs, with each individual holding the root node 
of an expression or program to be evaluated. 

This approach is vastly different from other forms of GP, including those in which 
alternatives to conventional tree-based structures are employed. Most systems treat 
individuals as distinct, separate structures (although some hierarchical approaches 
have made use of limited forms of interconnectedness between members). Even when 
the values of internal graph nodes become important (such as in Oltean’s Multi-
Expression Programming [2,3]), the population is still constructed as a set of multi-
node graphs, each unconnected to the others. 

Structural considerations are not the only differences between SNGP and other 
forms of GP, however. In conventional GP and most other variants, the evolutionary 
operators are reproduction by cloning, recombination via subtree or segment 
crossover, and mutation. By contrast SNGP has only one evolutionary operator, and 
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its effects are reversible. SNGP uses a form of hill-climbing in which evolutionary 
changes which do not lead to improvements are undone. 

In the initial experiments we have performed, SNGP has demonstrated substantial 
improvements over conventional GP in terms of solution rates, execution times, and 
sizes of solutions obtained. One of the reasons its performance is so good is that it is 
able to exploit a form of dynamic programming in which the outputs obtained during 
the evaluation of each node are recorded as an attribute of that node. This means that 
any function requiring the values of its operand sub-graphs merely has to fetch those 
values directly from the vectors in which they are stored, without the necessity for 
further node evaluations. 

An approach such as this works well for problems in which the nodes are purely 
functional and do not have side effects, i.e. it is the outputs of the function that are of 
interest, and these outputs depend only on the inputs supplied. Examples of such problems 
in GP are symbolic regression and various Boolean problems such as even-parity. 

It is a different matter when problems rely on behavioural side effects. Such 
problems make use of nodes which modify state or have some form of interaction 
with an external world. This usually means that behaviour is reliant not just on current 
inputs but also on previous history. A good example of this type of problem in the 
context of GP is the Santa Fe artificial ant problem [4], in which the aim is to evolve a 
program that guides an agent along a trail of ‘food’ particles. In this problem, function 
outputs are of no relevance. Instead, the fitness of a program is ascertained via the 
side effects of those functions on a model of the ant’s world. Because of this, the type 
of dynamic programming previously used in SNGP cannot be employed. Note that 
this does not necessarily imply that SNGP is not capable of solving such problems, 
merely that its efficiency will be hampered in doing so, since full evaluation is 
required of the tree rooted at each individual. 

In this paper, then, we investigate the extent to which SNGP is a suitable system 
for the evolutionary solution of problems with side effects. As we shall see, this work 
entails re-examination of the evolutionary strategy used to drive SNGP. 

2 Related Work 

SNGP is, of course, not the first approach to deviate from Koza-style GP [4], in which 
programs are stored as tree structures and evolutionary operators work by swapping 
subtrees or replacing them with new, randomly-generated subtrees. In linear GP [5], for 
example, programs are simply sequences of individual instructions; and whereas tree-
based GP takes a functional view of programs, in which calculations are passed up a 
tree as it is evaluated, linear GP is more akin to conventional imperative programming, 
with intermediate and final results being stored in registers of memory variables. 

A tree is merely one form of a graph, and so it is perhaps not surprising that it is 
not the only such graph structure that has been tried for GP. One of the first systems 
to explore this was PADO (Parallel Algorithm Discovery and Orchestration) [6]. 
PADO makes use of stack memory and indexed memory, and a graph may contain 
action nodes and branch-decision nodes. The system was used to evolve parallel 
programs for classifying images. 
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Taking inspiration from the parallel processing performed in neural networks, Poli’s 
PDGP (Parallel Distributed GP) [7] uses a grid representation to hold graph-structured 
programs. Individuals are still subject to (suitably modified) crossover and mutation, but 
programs are more compact than tree-based equivalents, and offer opportunities for 
concurrent execution. A similar grid-based approach is employed in Cartesian Genetic 
Programming (CGP) [8], in which the number of rows and columns, and the amount of 
feed-forward, are all parameters to the system. Originally developed to evolve digital 
logic designs, the approach made use exclusively of mutation to generate new 
candidates which took part in a (1+λ) evolutionary strategy, but more recent research 
has explored the advantages of a new crossover operator [9]. In the GRAPE (GRAph 
structured Program Evolution) approach [10], graphs contain arbitrarily directed links, 
and both calculations and node sequencing are determined by a separate data set. 

Other researchers have taken conventional tree-based or linear GP and augmented them 
with additional structures. In linear-tree GP [11], each node of a tree consists of a linear 
program and a branching node which determines the next node in the tree to be executed. 
The idea was later extended to more general graph structures [12]. In the MIOST system 
[13], program trees may contain additional links both to provide more sophisticated 
interaction between nodes and also to allow multiple outputs from individuals.  

In Multi-Expression Programming (MEP) [2,3], each individual has a structure 
similar to that of single-row CGP, with each node of the graph having links to 
operands further back in the graph. The main difference is that execution results are 
computed not only for a program graph as a whole, but also for each of its sub-graphs. 
The overall fitness of the individual is defined to be the fitness of the best sub-
expression. Mutation and crossover are the primary evolutionary operators. As we 
shall see, an SNGP population can be viewed as being analogous to a single MEP 
individual, although the mechanics of evolution are very different.  

3 The SNGP Model 

An SNGP population  is a set of N members 

M = {m0, m1, …, mN-1}. 

Each member is a tuple of the form: 

mi = < ui, ri, Si, Pi, Oi > 

where:  

    ui ∈ {T ∪ F} is a single graph node taken from either the function set F or the 
terminal set T of the problem; 

    ri is the rating of fitness for the individual; 
    Si is a set of successors of this node; 
    Pi is a set of predecessors of the node; 
    Oi is a vector of outputs generated when this node is evaluated. 

During initialisation, the population is partitioned in such a way that: 

    ui ∈ T              if  i < TNUM 
    ui ∈ F              otherwise 
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where TNUM is the number of terminals in the terminal set. Moreover, for any ui, uj 
such that i, j < TNUM and i ≠ j, we have ui ≠ uj. 

In other words, the first TNUM members of the population are initialised to 
represent the members of the terminal set, with each terminal appearing exactly once. 
All other members contain nodes drawn from the function set. These are allocated at 
random, and so may be replicated in the population. 

For a population member which represents a function, the operands of that function 
are drawn from other members of the population. The successor set of the node is a list 
of the population members acting as operands, represented by their position in the 
population. We make the restriction that for each   s ∈ Si we have 0 ≤ s < i, i.e. the 
operands of a function must be ‘lower down’ in the population (towards position zero).  

Similarly, the predecessors of an individual are those population members for 
which the individual is used directly as an operand, i.e. they take us to the next higher 
expression level. This means that for each p ∈ Pi we have i < p < N. 

Note that for terminal nodes the successor sets are empty. Moreover, as these 
nodes cannot change during evolution (see later), their predecessor sets are not needed 
and are also left empty. 
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Fig. 1. SNGP graph structure and effects of the smut operator 

Fig. 1(a) shows how a population of just 8 members might be initialised, together 
with the corresponding graph. The first four positions in the population are occupied 
by terminals, the remainder by functions. For ease of explanation the functions shown 
here are all different, although in reality functions could be replicated, and certainly 
will be with larger population sizes. Note that the AND node and the OR node both 
have two predecessors, i.e. they appear as immediate operands of two other function 
nodes. This form of reuse is characteristic of SNGP programs, and therefore differs 
from conventional tree-based GP. 
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The graph shown here contains eight different expressions, one per node. The sim-
plest expressions are the single-node terminals: D0, D1, D2 and D3. The other ex-
pressions are those rooted at the remaining nodes: 

AND(D0, D1) 
OR(AND(D0, D1), D2) 
NAND(AND(D0, D1), OR(AND(D0, D1), D2)) 
NOR(OR(AND(D0, D1), D2), D3) 

It can be seen that, even with only eight nodes, a range of reasonably complex expres-
sions can be encoded. This complexity can rise dramatically when hundreds of nodes 
are used. 

If the type of problem is one in which functions and terminals do not have side 
effects, then we can employ a form of dynamic programming which substantially 
enhances the efficiency of SNGP. During initialisation, each terminal is evaluated 
across all test input cases, and the outputs generated are stored in Oi. These outputs 
are used to calculate the fitness values ri. As initialisation continues, and each 
randomly selected function is inserted into the population, outputs and fitnesses 
continue to be computed, but making use of the values already stored for the operands 
forming the successor set. In this way, the fitness calculation for an individual is 
highly efficient, involving the application of only one operator or function per test 
case. Of course, when side effects are present, as they are in the problems studied 
later in this paper, the use of such a mechanism is ruled out, and every node contained 
in a graph must be evaluated fully. 

In SNGP there is only one evolutionary operator, called smut (successor mutate). 
The way that smut works is that a member of the population is chosen at random, and 
then one of its operands (i.e. a member of its successor set) is modified to refer to a 
different member of the population (but still lower down in the position order). Figure 
1(b) shows how this operator is applied. Here, the first operand of the OR node is 
being changed from population member number 4 (the AND node) to member 
number 1 (the terminal D1). Hence, the successor set of node 5 must be changed to 
reflect this, and node 5 must therefore be deleted from the predecessor set of the AND 
node. In this example, the new operand is a terminal, and so nothing more needs to be 
done to the graph structure; when the new operand is a function, its predecessor set 
must also be updated to add in the new parent. 

A modification such as this means that the individual which has been changed 
must be re-evaluated to determine its new outputs and fitness rating. In our example, 
the expression OR(D1, D2) must be computed for all test cases. However, this will 
also have an effect on individuals higher up in the population. Exactly which 
individuals are affected is determined by the predecessor sets. In Figure 1(b), the 
predecessors of the OR node are the NAND node and the NOR node, and so these 
must be re-executed. In larger graphs, it may be necessary to continue this chain of 
execution by pursuing the predecessor references until all affected individuals have 
been re-assessed.  

The order in which evaluations proceed up the population can have a great impact 
on efficiency. In Figure 1(a), a change to the operands of the AND node might cause 
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the immediate predecessors NAND and OR to be evaluated next. Then, because the 
OR outputs have changed, the NAND node might be invoked once again. In general, 
there may be many unnecessary evaluations that take place before the population 
eventually settles to its final values. To circumvent this, we implement a mechanism 
in which the predecessor sets are followed to build an ordered ‘update list’ of all 
affected individuals. We then execute each member of the list in turn, from the lowest 
to the highest position in the population, thus ensuring that no function is invoked 
more than once. 

Evolution of an SNGP population is driven using a hill-climbing approach. 
Whenever the smut operator is applied, the fitnesses of the affected individuals are re-
assessed. If fitness has not improved, then the modifications made by smut are 
reversed. To make this more efficient, the old outputs (if outputs are being recorded) 
and fitness values of each member of the update list are recorded by smut, so that they 
can be put back in place if necessary by a single restore operation. 

This begs the question of how we determine whether fitness has improved. In the 
original version of SNGP, this was ascertained by considering fitnesses across the 
population as a whole. In this strategy, the aim is to drive down the aggregate fitness of 
the population (and therefore the average fitness). More formally, and assuming that 
lower fitness values are better, the aim is to minimize Σri. One of the things called into 
question during the research described here is whether that is always the best strategy. 

4 Experimentation 

For the purposes of evaluation in situations where the dynamic programming ap-
proach previously employed is not possible, we have chosen three problems which 
rely on side effects during program execution. 

The first of these problems is the Santa Fe artificial ant problem [4], which is com-
monly used in assessing the effectiveness of GP algorithms and is known to be difficult 
to solve [14]. The second test problem we have used is that of navigating a maze. Al-
though less well-known than the ant problem, it has been used as the subject for re-
search on introns in several studies [15-17]. In our third problem, the aim is to evolve 
programs which are capable of parsing arithmetic and logical expressions. The output of 
a successful parser is the postfix (Reverse Polish) form of each expression, but the need 
to manipulate a stack during execution means that functions must rely on side effects to 
achieve this aim. Full details of this problem can be found elsewhere [18]. 

The problem parameters as they apply to the use of standard GP in all these prob-
lems is given in Table 1. For SNGP there are really only two parameters. The first is 
the population size (number of nodes), which we have arbitrarily set to 50, although 
later we will discuss the effects of altering this. The second parameter is the ‘length’ 
of a run, which we will refer to as L. SNGP does not have generations as such; we can 
think instead in terms of the number of evolutionary operations performed. Since 
standard GP with a population size of 500 running over 50 generations creates 25,000 
individuals via crossover or reproduction, we will set the upper limit on the number of 
smut applications to 25,000. 
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Table 1. GP system parameters common to all experiments 

Population size 500 
Initialisation method Ramped half-and-half 
Evolutionary process Steady state 
Selection 5-candidate tournament 
No. generations 51 generational equivalents (initial+50) 
No. runs 100 
Prob. crossover 0.9 
Mutation None 
Prob. internal node used 

as crossover point 
0.9 

 
As mentioned in an earlier section, the criterion used in the original version of 

SNGP to decide whether to reverse the effects of an evolutionary operation is based 
on the average fitness of the population. If the average fitness (or, to be more precise, 
the aggregate fitness) worsens, the operation is undone. Henceforth, we will use the 
notation SNGP/A to refer to the approach when it makes use of an evolutionary strat-
egy based on Average fitness. An alternative strategy is to use best fitness, rather than 
average fitness, as our criterion: if the best fitness in the population worsens, reverse 
the operation. The term SNGP/B will be used to refer to SNGP when it makes use of 
a strategy based on Best fitness.  

Table 2. Comparisons of SNGP with standard GP on example problems 

Problem System Soln. 
rate 
(%) 

Effort 
(evals/soln)
(x 106) 

Time 
100 runs 
(secs) 

Av. 
soln size

Max. 
soln size 

Min.
soln 
size 

Ant GP 9 308 50 51 199 25 
SNGP/A 16 2014 298 14 24 7 
SNGP/B 56 260 131 12 21 7 

Maze GP 47 8 7 1987 5620 722 
SNGP/A 98 18 18 33 45 10 
SNGP/B 60 15 9 24 37 9 

Parse GP 32 415 101 399 1154 58 
SNGP/A 45 4406 1073 19 30 9 
SNGP/B 83 355 159 19 34 11 

 
Table 2 compares SNGP against standard GP for our problems. In relation to per-

formance, three measures are used: solution rate, computational effort, and execution 
time. The solution rate is simply the percentage of full solutions obtained over 100 
runs of the problem. For computational effort it would be possible to count fitness 
evaluations, but since the sizes of SNGP programs and the way in which they are 
executed differs enormously from standard GP, we chose a different measure that is 
more reflective of the effort involved. We count the total number of program node 
evaluations over all runs and divide this by the number of solutions obtained, thus 
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giving a notion of effort per solution. Finally, timings are given for execution of 100 
runs. These were taken on a PC with an Intel Core i7 quad-core processor running at 
2.8GHz. Both the SNGP and GP systems were written in C and compiled using Mi-
crosoft Visual Studio as single-threaded processes running under identical load condi-
tions. 

The first thing to note is that, at least in terms of solution rate, both forms of SNGP 
perform very much better than conventional GP. In comparing SNGP strategies, it 
would seem that, for two of our problems (artificial ant and parsing), strategy B is the 
one to opt for. Even though this strategy takes longer to execute 100 runs than stan-
dard GP, its much higher solution rate means that less effort is required per solution. 
Strategy A, on the other hand, requires an inordinate amount of effort to find its solu-
tions, entailing lengthy run times. For the maze navigation problem the situation is 
perhaps not as clear-cut. Strategy A has a much higher solution rate, and in fact is 
able to discover solutions on almost every run. However, it requires slightly more 
effort per solution to achieve this, and requires double the execution time for the runs. 
The choice of a winner here rests on whether one prefers lots of solutions, or fewer 
solutions in a faster time. 

An important point to make here is that the performance differences between 
SNGP and standard GP have been verified as statistically significant. This has been 
done by recording the fitness values of the best programs found in each run (whether 
forming a solution or not), and then performing a t-test on these data with p=0.05. 

Turning to solution sizes, there is no contest. SNGP clearly outperforms standard 
GP for all three problems, with little to choose from between the two evolutionary 
strategies. In the case of the maze and regression problems, the solutions found by 
SNGP are many times smaller than those found by standard GP. 

The compactness of the SNGP programs merits further discussion. Since any 
SNGP program is built only from the nodes contained in the population members, it 
cannot be larger than the population size. In the experiments described here, this 
means an upper bound of 50 nodes in any program. That said, the graph-like nature of 
these programs allows code re-use that is not present in conventional GP trees and 
which would otherwise require  many more nodes to implement. For example, one 
40-node SNGP solution to the maze problem would require 4953 nodes if written out 
as a tree-based GP expression. 

Key to the solution sizes obtained is the size of the population, which by definition 
in SNGP acts as a constraint. In the experiments above, the population size N was set 
arbitrarily at 50. However, this is not necessarily an optimum for each problem. In 
contrast to standard GP, one of the advantages of SNGP is that it can find solutions 
even when N is set very low. Usually this means that fewer solutions will be found, 
but they will be smaller programs, found in a shorter time. Hence, via the single pa-
rameter N, one can tune the system to select an appropriate balance of solution count, 
program size and execution time. Sometimes, however, this tuning can lead to surpris-
ing results. For example, setting N to just 20 for the ant problem using strategy B 
leads to seven times as many solutions as standard GP, and at a third of the computa-
tional cost per solution. 
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5 Conclusions 

Single Node Genetic Programming (SNGP) is a new approach to GP in which each 
individual in the population consists of just a single program node. Where a node 
requires operands, these are drawn from other members of the population. Evolution 
is driven by a hill-climbing mechanism that uses a single reversible operator.  

The research described in this paper began as a test of how well SNGP could cope 
with problems in which the functions and terminals used to build programs rely on 
side effects for their behaviour. In previous experiments, side effects were not present, 
and so it was possible to make use of a form of dynamic programming in which the 
outputs of subtrees could be cached for use as operands by higher-level functions, 
thereby leading to enormous efficiency gains. Without the opportunity to make use of 
this mechanism, it was known that efficiency would suffer, but it was hoped that 
SNGP would be at least competitive with conventional GP systems.  

In the event, our experimentation showed that SNGP can be superior in terms of 
solution-finding performance, computational effort, and solution size, with the caveat 
that is influenced heavily by the choice of evolutionary strategy. We investigated two 
strategies: one which promotes average fitness across the population, and the other 
concentrating on best fitness amongst individuals. In a sense, the first strategy could 
be described as altruistic, with the other being more selfish. In previous work, the 
altruistic strategy was generally found to lead to better results. In the work described 
in this paper, however, the selfish appears better, at least for two of the three 
problems. What we do not know is why this difference should exist. We hope to carry 
out further investigations to provide some insight, and in particular to assist us in 
deciding on a strategy to employ based purely on an a priori description of a problem. 

Other research lined up for the future includes an investigation into the dynamics 
of SNGP, to discover how it is able to find solutions so readily with such small 
populations. We also wish to explore ways to exploit the parallelism inherent in both 
the SNGP system and in the programs it evolves. And in the same way that we have 
explored alternative evolutionary strategies here, we want to evaluate the effects of 
using different operators, initialisation procedures and algorithms. 
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Abstract. This paper presents initial results of Generalized Compressed
Network Search (GCNS), a method for automatically identifying the
important frequencies for neural networks encoded as Fourier-type co-
efficients (i.e. “compressed” networks [7]). GCNS is a general search
procedure in this coefficient space – both the number of frequencies
and their value are automatically determined by employing the use of
variable-length chromosomes, inspired by messy genetic algorithms. The
method achieves better compression than our previous approach, and
promises improved generalization for evolved controllers. Results for a
high-dimensional Octopus arm control problem show that a high fitness
3680-weight network can be encoded using less than 10 coefficients using
the frequencies identified by GCNS.

1 Introduction

Indirect or generative encoding schemes for neural network phenotypes [1,5,6,9]
offer the potential of allowing very large networks to be represented compactly.
In previous work [7], we showed that encoding neural network weight matrices
indirectly as a set of Fourier-type coefficients can reduce the search space di-
mensionality and help to discover more ‘regular’ networks which are simpler in
the Kolmogorov sense (the program required to encode them is much shorter).
Such networks are expected to have better generalization capabilities [9].

However, up to now, this “compressed” network search has been restricted
to band-limited networks where the genome includes all frequencies up to a
specified limit frequency. This means that more genes must be searched than may
be necessary, because only a few, select frequencies may be needed to represent
a good network. In this work, we implement a more general approach which
automatically determines the subset of frequencies and their amplitudes using
a genetic algorithm with variable size chromosomes, where each gene specifies a
frequency number as well as amplitude value. Taking inspiration from the messy
genetic algorithms [2], cut and splice operators are used instead of crossover. By
resolving the overspecification and underspecification problems arising from this
less restrictive encoding, we are able to find genomes which represent high fitness
networks using very few frequencies. Initial results are very encouraging: we are
able to identify isolated frequencies which appear to contribute significantly to
fitness, and which are not easily identified otherwise.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 337–346, 2012.
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Fig. 1. DCT network representation. The left column shows three different types of
2D frequency-domain coefficient arrays. The coefficients are arranged along the second
diagonals, going from upper-left corner, to the bottom right corner. Each diagonal
is filled from the edges to the center starting on the side that corresponds to the
longer dimension. The right column shows the weight matrix resulting from applying
the inverse DCT transform; gray-scale levels denote the weight values (black = low,
white = high). In (a) all frequencies are present, so that all possible weight matrices
can be represented. (b) Shows a band-limited weight matrix where only the first four
coefficients from (a) are used, as in [7]. The weights in (b) are more spatially correlated
than those in (a). (c) Shows a weight matrix encoded by a subset of frequencies from
(a). GCNS searches this space of coefficient subsets (power set) of (a).

2 DCT Network Representation

The Discrete Cosine Transform (DCT) representation for neural networks, first
introduced in [8], encodes network weight matrices in the frequency domain by
using genomes of DCT coefficients. The motivation is that if weights that are
near each other in the matrix are correlated, then the representation of the
matrix in the frequency domain should require fewer parameters (coefficients1)
than the number of weights in the matrix, thereby reducing the dimensionality
of the search space.

In this paper, all of the networks are fully connected recurrent neural networks
(FRNNs) with i inputs, and single layer of n neurons where some of the neurons
are treated as output neurons. An FRNN consists of three weight matrices: an
n× i input matrix, I, an n×n recurrent matrix, R, and a bias vector t of length
n. These three matrices are combined into one n×(n+i+1)matrix, and encoded

1 In this paper, we will use the terms ‘frequency’ and ‘coefficient’ interchangeably. To
be precise, every frequency is associated with a coefficient which expresses its energy
content.
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�

Fig. 2. GCNS coefficient genome. Each gene consists of two entries, the index of
the DCT coefficient in the coefficient array, and the value of the coefficient. The same
index can appear more than once in the genome, and genomes have variable length, �.

indirectly using c ≤ N DCT coefficients, where N is the total number of weights
in the network.

Figure 1 illustrates the relationship between the coefficients and weights for a
hypothetical 4×6 weight matrix (e.g. a network with four neurons each with six
weights). The left side of the figure shows three weight matrix encodings that use
different coefficients. Generally speaking, coefficient ci is considered to be more
significant (associated with a lower frequency) than cj , if i < j. The right side of
the figure shows the weight matrices that are generated by applying the inverse
DCT transform to the coefficients. In the first case (a), all 24 coefficients are
used, so that any possible 4×6 weight matrix can be represented. The particular
weight matrix shown was generated from random coefficients in [−20, 20]. In (b),
each ci has the same value as in (a), but the full set has been truncated up to the
first four lowest frequencies, favoring smoother matrices. This is the approach
taken in [7] where a limit frequency c� (c4 in the example) is specified by the
user, and genomes of length � are evolved. In (c), the coefficient matrix again
has only four non-zero coefficients, but the coefficients are not restricted to a
band-limited spectrum; they can be at any frequency. The genomes evolved by
GCNS search this less constrained space.

3 Generalized Compressed Network Search

Generalized Compressed Network Search (GCNS) attempts to simultaneously
find the number of coefficients required to represent a high fitness network,
their indices (2D frequency), and their values. Variable size chromosomes are
used where each gene has two elements: the coefficient index and the value (see
figure 2). The coefficient index determines the position of the coefficient in the
coefficient matrix which is transformed into the network via the inverse DCT.

The overspecification problem (some genes can have multiple copies in the
genome) is handled as in messy genetic algorithms [2, 3]. If a coefficient index
appears multiple times in a genome, only its first value, reading from left to
right, gets expressed in the phenotype. This results in an intra-chromosomal
dominance operator. The problem of underspecification (some of the frequencies
do not appear in a particular genome) elegantly resolves itself due to the nature
of the encoding: if a particular coefficient number does not appear in the genome,
it is muted in the phenotype i.e. its value is taken to be zero.
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Fig. 3. Cut and Splice. This schematic shows the effect of application of the cut and
splice operators on a set of two parent genomes. In the case shown, only P1 gets cut
resulting in three chromosomes (strands S1, S2 and parent P2). Then splice is applied
with probability ps. If the first splice succeeds, then S1 gets spliced with P2, leaving
S2 as a separate genome. If first splice does not occur, another splice between S2 and
P2 can lead to the two children shown if it succeeds. If both splices do not succeed,
S1, S2 and P2 become the final children as shown. Similar possibilities exist for other
cases of the parents getting cut.

GCNS starts with an initial parent population of size popsize with genomes
of variable lengths containing frequency indices and values randomly chosen in a
given range. At each generation, the child population is formed from the parent
population by applying the ‘cut’ and ‘splice’ operators in groups of two to ran-
domly chosen members from the parent population (without replacement). The
process of applying cut and splice is a generalization of the crossover operation
to the variable length genome case, and can yield one to four children from two
parents. First, it is determined whether one, both or none of the two parents
will be cut. The probability of cut is given by pc ∗ (l − 1) where l is the length
of the genome and pc is a parameter. The location of the cut on a genome is
randomly chosen over its length. At this intermediate step, there are two to four
chromosomes present depending on the number of cuts that occur. The splice
operator then joins together pairs of chromosomes with probability ps, resulting
in either one (splice succeeds) or two (splice fails) children for each splice. Fig-
ure 3 shows the recombination of the parent genomes in an example scenario.
As shown, when only parent 1 is cut, three possible sets of children can result
after splicing. The other scenarios are handled similarly.

After cutting and splicing, mutation is applied to each coefficient index (with
probability pmi) and value (with probability pmv) by drawing new values from
Gaussian distributions centered at their current values and having fixed standard
deviations. The value of pmi is kept much lower than pmv so that new frequencies
are introduced only sporadically, allowing the algorithm to focus on refining the
selected coefficients. In all our runs, the standard deviations were taken to be 5
and 10 for the indices and values, respectively.
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Fig. 4. Octopus arm task. (a) A flexible arm consisting of p compartments, each
with 3 muscles, must be controlled to touch a goal location with the arm tip from the
−π/2 position. The other two standard, initial positions were not used (see text). (b)
The arm is controlled by a fully recurrent network with 32 neurons, one for each action
(muscle). This topology is fixed, and only the number of coefficients used to represent
its weights is determined automatically by GCNS.

After all the children have been evaluated, the best popsize members from the
combined parent and child populations are chosen as the parents for the next
generation. The algorithm terminates after the specified number of generations.

4 Octopus Arm Control

The octopus arm consists of n compartments floating in a 2D water environ-
ment [10]. Each compartment has a constant volume and contains three con-
trollable muscles (dorsal, transverse and ventral). The state of a compartment is
described by the x, y-coordinates of two of its corners plus their corresponding x
and y velocities. Together with the arm base rotation, the arm has 8n + 2 state
variables and 3n + 2 control variables. The goal of the task is to reach a goal
position with the tip of the arm, starting from different initial positions, by con-
tracting the appropriate muscles at each 1s step of simulated time. The standard
setup uses 3 initial positions (figure 4); here, only one initial position was used
for training (the arm starts hanging straight down), since it turns out the other
two (indicated in gray, figure 4) are very easy to solve, and successful networks
tend to generalize to them. The fitness function is given by (1− (t ∗ d)/(T ∗D))
where t is the number of time steps taken to reach the goal, d is final arm tip
distance to the goal, T maximum the number of time steps in a trial, and D is
the initial arm tip distance to the goal.

4.1 Setup

GCNS was run 30 times with popsize = 100, ngen = 150, pc = 0.2, ps = 0.8,
pmi = 0.1 and pmv = 0.8. The initial population contained genomes of random
length, �, ranging from 2 to 20 genes, with indices chosen at random from [1, 100],
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Fig. 5. Coefficient matrix. There is one coefficient matrix for all of the weights in
the network. The small boxes in the upper left-hand corner denote coefficients organized
in the usual way (as in [4, 7]) in the matrix, from this corner to the opposite corner, in
order of increasing frequency. In GCNS, genomes can instead contain frequencies from
anywhere in the (bounded) spectrum (denoted by gray boxes), without having to include
all lower frequencies. When the iDCT is applied to this matrix, a matrix of weights of the
same size is generated, and sliced into three sub-matrices (indicated by vertical lines):
one for the input weights, one for the recurrent weights, and a bias vector.
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Fig. 6. Evolution of population frequency content. Each plot is a histogram of
the coefficient indices (2D DCT frequencies) in the GCNS population of a typical run
at particular point during evolution. In the initial random population (Gen 0), each
frequency occurs about as often as any other. By generation 50 (Gen 50), about 20
frequencies have started to dominate the population.
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Fig. 7. Average frequency content in final populations. Each histogram shows
the indices present in the final population averaged over the 30 runs. In the upper,
unlesioned plot, the indices marked in black are those that cross the chosen threshold
of 30 (horizontal line). These frequencies are muted in the lesioned runs (lower plot),
where alternative solution indices emerge to compensate for those that are lesioned.

and values chosen at random from [−30, 30]. With this setup, no one genome
contains all of the 100 available frequencies, but with very high probability all
frequencies are present in the population.

4.2 Results

The mean best fitness over 30 runs was 0.95, while the average number of ex-
pressed genes (i.e. non-dominated) in the best genomes was 9.8, one-third the
number required in [7] to achieve similar fitness. It is important to point out
that our objective here is not to demonstrate raw performance, but to determine
whether a small basis (set of frequencies) can be discovered and parameterized
consistently.

Figure 6 shows how the frequency content in the population declines over
the course of evolution as the search converges to just a few frequencies for
the behavior of a typical run. Interestingly, we found that in addition to the
fundamental frequency (index 1, which we expected), almost all of the most
fit networks contained either index 84 or 97, with large values. The 2D cosine
functions represented by these indices seem to capture a basic regularity inherent
in the task, given the network architecture used.



344 R.K. Srivastava, J. Schmidhuber, and F. Gomez

Fi
tn

es
s

Generations

Unlesioned

 0.5

 0.6

 0.7

 0.8

 0.9

 0  20  40  60  80  100  120  140

 1

Lesioned

 0.4

Fig. 8. Performance on Octopus arm task. The plot shows the fitness of the best
network in each generation, averaged of 30 runs, with 95% confidence intervals. The up-
per curve is for the unlesioned case where all 100 coefficients are active in the evolving
genomes; the lower curve is for the lesioned case where the 13 most common frequency in-
dices found in the final populations of the unlesioned runs are “muted”. Removing these
frequencies from the set of available alleles slows down the search, forcing GCNS to find
alternative solutions consisting of frequencies that are more difficult to set properly.

Figure 9 shows the weight matrices of three difference networks with high
fitness and their GCNS genomes. All three have a very regular structure. The
third network (figure 9c) can be completely specified with just 10 numbers, for
a compression ratio of 3680/10 = 368.

4.3 Lesion Study

In order to determine whether the frequencies that were found consistently in
highly fit networks are somehow “special” in that it is easier to find good values
for them, the experiments were run again, but this time the frequencies occurring
most often in the final populations of the previous experiments (indices: 0, 1, 2,
3, 5, 15, 17, 28, 31, 51, 71, 83, 96) were not allowed to be expressed (figure 7,
top). Any time one of these frequencies occurred in a genome its value was muted
by setting it to zero.

Figure 8, compares the performance of GCNS using these lesioned genomes
versus the unlesioned genomes in the first experiments. Without access to the
lesioned frequencies, fitness improves more slowly reaching an average of 0.88.
To do this, the lesioned runs are forced to use alternative frequencies (indices:
9, 10, 12, 21, 23, 60, 79, 87, 92, 94, 100; indicated in black in the bottom plot of
figure 7) that take longer to set properly.
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Fig. 9. Low-complexity weight matrices. Each row shows the weight matrices of
a successful network (refer to figure 5 for a description of each sub-matrix). Colors
indicate weight values. The genome used to generate the network is shown below each
image.

5 Discussion and Future Work

The indirect encoding of neural networks using Fourier-type coefficients is promis-
ing since this scheme can reduce the dimensionality of the search space by orders
of magnitude and allow very compact representations of the networks. If a particu-
lar problem suggests that a high degree of redundancy is expected in the network,
this encoding can efficiently exploit this regularity. This has been demonstrated
previously by searching for a fixed set of frequencies [4,7]. The present work aims
to address some key issues of dealing with this encoding scheme.
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First, the previous study used a fixed set of contiguous frequencies to en-
code the networks. In one run, a set of coefficient values corresponding to these
frequencies was identified. However, it is uncertain what is the number of fre-
quencies sufficient to encode a high fitness network. Thus, several runs must be
repeated with increasing number of frequencies to ensure that sufficiently high
fitness networks can be found. Moreover, the sufficient set of frequencies for a
particular problem may not consist of contiguous frequencies and thus a higher
degree of compression is possible if this restriction of contiguity can be lifted.
GCNS addresses both these issues: it restricts neither the number nor separation
of the frequencies, and as expected, leads to higher compression.

Although there is no explicit importance given to simpler representations
(lesser number of unique frequencies) in GCNS, the cut and splice operators
coupled with the elitist nature of the algorithm ensure that genomes become
longer only if required. Thus, if a particular problem does not allow high com-
pression, GCNS will utilize more frequencies until the complexity required can
be expressed. Further research in this direction is underway.
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Abstract. Being able to exploit modularity in genetic programming
(GP) is an open issue and a promising vein of research. Previous work
has identified a variety of methods of finding and using modules, but
little is reported on how the modules are being used in order to yield the
observed performance gains. In this work, multiple methods for identi-
fying modules are applied to some common, dynamic benchmark prob-
lems. Results show there is little difference in the performance of the
approaches. However, trends in how modules are used and how “good”
individuals use these modules are seen. These trends indicate that discov-
ered modules can be used frequently and by good individuals. Further
examination of the modules uncovers that useful as well as unhelpful
modules are discovered and used frequently. The results suggest direc-
tions for future work in improving module manipulation via crossover
and mutation and module usage in the population.

1 Introduction

A recent survey by O’Neill et al. [13], cites modularity as an important open topic
in genetic programming (GP) [7]. Some of the earliest work in this area shows
how GP representations which enable and/or exploit some form of modularity
may outperform and scale better than standard GP on certain benchmark prob-
lems [8]. Since the early 1990s, numerous methods have been implemented with
varying levels of success. While these methods can be valuable and yield signif-
icant performance improvements over standard GP, little has been reported on
how the discovered modules are used and contribute to the population’s fitness.

Studies of modularity in dynamic environments (also an open issue [13]) are
also sparse. Dynamic environments provide a testbed that more resembles real-
world problems which are rarely static, like most problems GP researchers tackle.
Recent work by Kashtan et al. [6] and O’Neill et al. [11] shows dynamic environ-
ments which vary the fitness function over time can even speed up evolution.
While dynamic environments is a large topic in GP, no work has been published,
to the author’s knowledge, examining how incorporating modularity changes
GP’s performance in dynamic environments.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 347–356, 2012.
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The experiments carried out for this work use the popular grammar-based
form of GP, grammatical evolution (GE) [12]. To study how enabling and
exploiting different forms of modularity impact GE’s search in dynamic environ-
ments, methods for identifying and making modules available to the population
described by Swafford et al. [16] are used. For this work, modules are defined
as encapsulated sub-derivation trees taken from the full derivation trees of GE
individuals.

In the rest of this work, the effects of modules on GE’s search will be pre-
sented. First, Sect. 2 describes some of the relevant previous work in dynamic
environments and identifying and using modules. Next, Sect. 3 explains how
modules are identified and made available for use by the population. Section 4
outlines the various experimental setups used. Following the explanation of the
experimental design, Sect. 5 details the results of this study and discusses their
meaning. Finally, Sect. 6 draws together some conclusions and proposes ideas for
more future work.

2 Previous Work

To this day, there have been numerous approaches for identifying and using
modules. Some of the best known of these are Koza’s automatically defined
functions [8], Angeline and Pollack’s Genetic Library Builder [1], Rosca and Bal-
lard’s Adaptive Representation [14], and Walker and Miller’s Embedded Carte-
sian GP [17]. Each of these are valuable for defining how modules may be
identified and the benefits they give to the evolving population. However, lit-
tle is said about the modules are actually used by the population. Harper and
Blair [3] touch on this issue on their work with Dynamically Defined Functions
(DDFs). They give an example how individuals which do not use any DDFs are
quickly weeded out of the population and replaced with individuals using one or
two DDFs. While this is useful, a more in-depth examination of how modules
(in this case DDFs) are used could provide insight into how they could be better
exploited to maximize the performance gain they provide. Miller et al. [9] also
spend some time examining the frequency of use of certain sub-programs in their
study of evolutionary design of digital circuits.

Little work has gone into understanding how modularity enhances or inhibits
evolutionary search in dynamic environments. Some of the earliest approaches
to modularity are tested on a dynamic problem (the Pac-man game) [8,14] and
outperform standard GP on this problem. But no attention is given to how
the addition of modules actually encourage the discovery of better solutions.
More related work by Kashtan et al. [4,5,6] examine how evolution in dynamic
environments can lead to more modular solutions and speed up evolution under
certain conditions. They provide a useful analysis of their findings, but do not
incorporate any mechanism for identifying and promoting the use of modules.
For a more comprehensive survey of work in dynamic environments, see Dempsey
et al. [2].
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3 Module Identification Methods

Numerous methods for identifying modules and making them available to in-
dividuals during evolution have been developed by previous researchers. The
experiments presented here use the methods described by Swafford et al. [15,16].
For the proceeding methods for discovering modules, a module is defined as
encapsulated sub-derivation trees taken from the full derivation trees of GE
individuals. These approaches for finding modules are briefly summarized as
follows:

Mutation Identification (M-ID): An individual is taken from the popula-
tion and a node on its derivation tree is randomly picked. This is the candi-
date module. It is replaced 50 times with randomly created sub-derivation
trees of the same size. For each replacement, the entire individual is
re-evaluated and the updated fitness is recorded. For each random sub-
derivation tree inserted into the individual, the difference between the in-
dividual’s original fitness and updated fitness is saved. If the original fitness
is better than 75% of the updated fitness values, the candidate module is
saved and the mean of the fitness differences is used as the module’s fitness.

Insertion Identification (I-ID): First, 50 test individuals are generated us-
ing the same initialization method as the population. Next, the fitness of each
is calculated. A candidate module is randomly picked from an individual and
is inserted into each of the test individuals to replace a random sub-derivation
tree with the same depth. Then, the test individuals are re-evaluated. When
the candidate module is inserted into each of the test individuals, the dif-
ference between the original and updated fitness is saved. If the candidate
module improves the fitness of 75% of the test individuals, it is saved and
the mean of the fitness differences is used as the module’s fitness.

Frequency Identification (F-ID): This method counts the occurrence of ev-
ery sub-derivation tree in the population, except for single non-terminals.
The most common sub-derivation trees are used as modules and given fit-
ness values based on their frequency: # of occurrences

total # of sub-trees .

Random Identification (R-ID): A random sub-derivation tree is picked from
each individual in the population and a module is created out of it. Because
the module is not evaluated, the parent individual’s fitness is used as the
module’s fitness.

For the following experiments modules are only selected from the top 15% of
individuals. Once the modules have been identified a mechanism for making
them available to the population is needed. In GE, adding them to the grammar
used to create individuals in the population is a simple and effective method to
resolve this issue. As with the methods for identifying modules, the manner in
which modules are inserted into and removed from the grammar is also borrowed
from Swafford et al. [16]. This is summarized in Fig. 1. The number of modules
allowed in the grammar at one time has been limited to 20 based on results
reported by Swafford et al. [15]. If more than 20 modules have been identified,
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move

<acts>

<acts>

left <act> <acts>

<act>move

<act>

(a) A sample individual

<acts>

<act> <acts>

<act>move

move
(b) A sample
module

<acts> ::= <act> | <act> <acts>
<act> ::= move | left | right

(c) Original Grammar

<acts> ::= <act> | <act> <acts>
| <acts_mod_lib>

<act> ::= move | left | right
<acts_mod_lib> ::= <mod_0>
<mod_0> ::= move move

(d) Updated Grammar

Fig. 1. These figures show how the grammar is modified when a module is added to it

they are ranked based on their fitness values assigned upon their creation and
the best 20 of these are kept. If a module is removed from the grammar, and
individuals still use it, every occurrence of the module is expanded into the full
sub-tree used to create that module. This prevents the phenotypes of individuals
from changing when the grammar is modified.

4 Experimental Setup

This work examines the hypothesis that modules can be useful in dynamic en-
vironments as they may be able to find and encapsulate sub-solutions that are
useful across multiple fitness scenarios. In order to do this, an easy, medium, and
hard instance of each of the following common benchmark problems are used:
Symbolic Regression (x5−2x3+x, x6−2x4+x2, x7−2x5+x3), Even Parity (7,
8, 9), and Lawn Mower (8× 8, 12× 12, 14× 14). Parameters for specifying how
often and the manner in which the fitness function changes are borrowed from
Murphy et al. [10]. The number of generations between fitness function changes
are 5 and 20. Each of these period lengths was used with random and cyclic
changes. Modules identification also occurs every 5 and 20 generations, meaning
modules are identified at the beginning of each fitness period. However, this does
not allow time for evolution to adjust to the new fitness function before modules
are selected from the population. In response to this, staggered module identi-
fication steps are also used. Instead of searching for modules at the beginning
of each fitness period, the initial module identification starts 2 generations into
the first fitness period and then continues every 5. A similar staggered approach
starting at generation 10 and continuing every 20 generations is also employed.
More frequent and random changes in the fitness function mean GE has little
time to adjust to the new environment. Longer fitness periods allow GE more
time to adjust to the new target. This variety of fitness and module identification
steps allows for testing how well the discovered modules helps GE recover from
changes in the target functions.
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5 Results and Discussion

This section answers the question of how modules alter (or not) the behavior of
GE in dynamic environments. First, modules’ frequency, lifetimes, and the fitness
of individuals using them are examined. Hand picked modules are also shown
for the purpose of understanding what kinds of modules are being discovered
and used. Then, a short explanation of how the various methods for identifying
modules helps or hinders GE’s search capabilities in the dynamic environments.

5.1 Frequency and Lifetime of Modules in the Population

To begin the analysis of the various modular approaches, the frequency of mod-
ule usage in the population is shown in a heatmap in Fig. 2. This reveals trends
in how many individuals are using modules and how long modules are used.
This figure shows the results of a Symbolic Regression instance where the fit-
ness function target changes randomly every 20 generations and modules are
identified every 20 generations starting at generation 10. Modules are identified
using the M-ID approach. Out of the 1519 modules discovered across all 50 runs
of this variation, only 442 modules are present in the heatmap. These modules
appear in at least 50% of the population. Out of all the modules in Fig. 2 only a
small portion of the modules identified in early generations are heavily present
throughout multiple module identification and replacements. This suggests these
modules contain information that is useful in all of the fitness instances of this
particular problem. Through crossover, mutation, and selection operations, some
of these modules are able to move from being used by less then 10% of the
population to over 90%. Figure 2 also shows that the majority of modules are
identified, used frequently, and then are used rarely, if at all, after one or two
fitness periods. It also shows a scattered few modules are being used by a large
portion of the population for only 5–25 generations before their usage plummets.
This indicates that being used by a large percentage of the population does not
ensure longevity across many generations.

Only examining the frequency and longevity of use of modules does not paint
a full picture of how they are used. To further understand this, Fig. 3 shows the
average fitness of every individual each module appears in. The modules in Fig. 3
and Fig. 2 are the same. An interesting characteristic is the similarity between
Fig. 2 and Fig. 3. This similarity shows a strong correlation between modules
getting used frequently and modules being used by highly fit individuals. A
comparison of Figs. 2 and 3 also shows that better individuals are often the only
individuals that use modules for long periods of time before and after they are
used more widely in the population. Another notable trait of Fig. 3 is the darker
colored cells immediately after the fitness period changes. This signifies a drop
in the population’s fitness as they are adjusting to a new target.

However, Figs. 2 and 3 only show results for a single variation on one problem.
Changing the length of the fitness periods and frequency of identifying modules
yields no significant changes in the correlations noted above. Using the R-ID
and F-ID module identification methods also show similar correlations between
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Fig. 2. This figure show module usage across all runs on the Symbolic Regression prob-
lem using the M-ID approach, identifying modules every 20 generations starting from
generation 10 with the fitness function changing randomly every 20 generations. Each
row (the y axis) represents a module that is used by at least 50% of the population at
any point in a run and each column (the x axis) corresponds to a single generation.
The cells represent the percentage of the population that uses the module in each gen-
eration. The black vertical lines indicate generations when the fitness function changes.
Dark red colored cells indicate that modules are not being used by any individuals.
White colors denote that a module is used by a large percentage or all of the popula-
tion. The modules have been clustered together with modules that were used similarly
to make the graph easier to read. Generations 0–9 have been omitted because module
identification has not yet occurred in those generations.

the frequency of module usage and fitness of individuals using those modules.
The exception to this is the insertion (I-ID) method for finding modules. It finds
very few modules in general. Many runs using the I-ID method find very few
modules, and even fewer of these are used largely by the population. The small
number of modules found by I-ID is due to the fact that it requires modules to be
beneficial in multiple individuals, not only one. In many instances, no modules
are used by more than 50% of the population. This suggests that this approach
is inappropriate for the instances of the Symbolic Regression problem examined.

Analyzing the Even Parity problem in the same manner, Figs. 4(a) and 4(b)
show similar behavior to the Symbolic Regression problem. Modules that are
used more frequently tend to also be used in individuals with better fitness. But
there are also modules being used in good individuals and few other individuals
in the population. Another similarity is that the I-ID approach finds remarkably
fewer modules than M-ID, R-ID, and F-ID. In the case of the Lawn Mower
problem, Figs. 4(c) and 4(d) tell a different story. Any correlation between how
frequently the modules are used and the fitness of individuals using them appears
to be absent. Figure 4(c) shows modules being used by both large and small
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Fig. 3. This figure shows the average fitness of individuals that use a given module.
The module identification and fitness period parameters are used in this figure are the
same those in Fig. 2. Fitness values have all been normalized between 0 and 1. White
and pale yellow colored cells represent modules being used by individuals with good
fitness values. Orange cells mean modules get used in individuals with worse fitness.
Red cells indicate that modules are not used at all at that generation.

percentages of the population. But the same modules in Fig. 4 are constantly
used by the best individuals in the population, regardless of how frequently
they are used. The most likely reason for this is the nature of the Lawn Mower
problem itself. As modules are able to encapsulate multiple mowing instructions
into a single production, individuals using modules can more easily cover larger
areas of the lawn than individuals that must combine single terminal symbols to
cover the same area. Taking this under consideration, it is easy to understand
why modules are frequently being used by the best individuals.

Examining how modules are used in this way naturally leads to two questions:

1. What kinds of modules are being discovered?
2. Do the modules being discovered and used improve GE’s fitness?

To answer the first question, a small selection of modules from the Symbolic
Regression runs shown above can be examined. The following modules are de-
scribed in detail because their clear utility and their longevity of use. The first
two modules to be examined are *--xx+11/*1x/11 and *+11x, which simplify to
−2x and 2x respectively. These two modules can be discussed together as their
stories are similar and it is easy to see how they could potentially be used as
building blocks for the target solutions. Both of these modules were discovered
at generation 10. Neither of these modules are immediately adopted by large
amounts of individuals. For many generations, they fluctuate in usage percent-
age from at 0.008% to 70% of the population. By generation 28, both modules
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(a) Parity - Usage (b) Parity - Fitness

(c) Lawn Mower - Usage (d) Lawn Mower - Fitness

Fig. 4. This figure shows how frequently modules are used and the average fitness of
individuals modules are used in for the Even Parity and Lawn Mower problems. These
problem instances use the same parameters as Figs. 2 and 3

are being used by at least 90% of the population. They also experience lulls in
usage at different generations where they are used by as little as 5% or 10% of
individuals before becoming more prominent in the population again. A third
module, *xx, or x2, was also discovered and used in a similar manner. The dif-
ference in this particular module is that it never experiences the drop in usage
the others do. Once more than 90% of the population uses this module, never
again do less than 94% of individuals use it.

When examining the modules used by large portions of the population, an-
other notable trend was seen. Many popular modules simply reduced to 0. An-
other observation about the modules discovered is that some of the frequently
used ones have no apparent usefulness. A possibility for this is that they do not
damage or change the fitness of individuals. More investigation is needed to give
a definitive reason why these modules are used frequently. A possible cause of
this is that it is very difficult to find good modules and the module identification
methods sometimes find bad modules.

5.2 Modularity and Fitness

Different approaches to modularity lead to differences in GE’s performance.
These approaches are compared using the metrics presented by Murphy et al. [10]
are used (draw down, area under the curve, and fall off ). The methods for iden-
tifying modules from Sect. 3 are compared to standard GE and GE with ADFs.
The observed data shows that among the methods examined, there is no single
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best approach on any of the problems except the Lawn Mower, where GE with
ADFs is the best performing approach. As seen in Sect. 5.1, modules are being
identified and often used. This suggests that even though modules are being used
frequently, they are being used sub-optimally or are not good modules.

6 Conclusion and Future Work

This work examined the effects of incorporating four approaches to modular-
ity on three common benchmark problems in GP: Symbolic Regression, Lawn
Mower, and Even Parity. Each of these problems was studied as a dynamic
problem, where targets of increasing levels of difficulty were used. The results
observed show no large difference between any of the approaches in terms of in-
creasing performance over standard GE. However, the Symbolic Regression and
Even Parity instances did show interesting trends in how often modules were
used by the population and the fitness of individuals using those modules. The
data suggests that modules used by a large percentage of the population also
tend to be used by individuals with high fitness. Further examining a selection
of the modules being used frequently also shows how potentially helpful modules
are being found, used frequently, and used by highly fit individuals. On the other
hand, a number of useless modules are being used in the same way. These results
point towards a number of possibilities for future work.

One potentially extension from this work would be ensuring that modules are
being used in contexts where they can be the most useful. Two of the approaches
for identifying modules estimate how well sub-derivation trees perform in partic-
ular contexts. If those sub-derivation trees become modules and are used in other
contexts, they may be harmful instead of helpful. When estimating the worth
of sub-derivation trees, many are passed over as they are deemed unworthy of
becoming a module. These may even be harmful sub-derivation trees. Another
interesting vein of research could be considering these “bad” sub-derivation trees
as anti or taboo modules. It may be beneficial to guide search away from these
structures as they are not considered to contain helpful information.

Acknowledgments. This work is funded by the University College Dublin
School of Computer Science & Informatics and Science Foundation Ireland under
Grant No. 08/IN.1/I1868.

References

1. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Pro-
ceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pp.
236–241. Lawrence Erlbaum, Bloomington (1992)

2. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. Springer (2009)

3. Harper, R., Blair, A.: Dynamically defined functions in grammatical evolu-
tion. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
pp. 9188–9195. IEEE Press, Vancouver (2006)



356 J.M. Swafford et al.

4. Kashtan, N., Parter, M., Dekel, E., Mayo, A.E., Alon, U.: Extinctions in hetero-
geneous environments and the evolution of modularity. Evolution 63, 1964–1975
(2009)

5. Kashtan, N., Mayo, A.E., Kalisky, T., Alon, U.: An analytically solvable model for
rapid evolution of modular structure. PLoS Comput. Biol. 5(4), e1000355 (2009)

6. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
Proceedings of the National Academy of Sciences 104(34), 13711–13716 (2007)

7. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge (1994)

9. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital
circuitspart ii. Genetic Programming and Evolvable Machines 1, 259–288 (2000),
doi:10.1023/A:1010066330916

10. Murphy, E., O’Neill, M., Brabazon, A.: A comparison of ge and tage in dynamic
environments. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2011, pp. 1387–1394. ACM, New York (2011)

11. O’Neill, M., Nicolau, M., Brabazon, A.: Dynamic environments can speed up evo-
lution with genetic programming. In: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, GECCO 2011, pp. 191–192.
ACM, New York (2011)

12. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers (2003)

13. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010),
doi:10.1007/s10710-010-9113-2

14. Rosca, J.P., Ballard, D.H.: Discovery of subroutines in genetic programming, pp.
177–201. MIT Press, Cambridge (1996)

15. Swafford, J.M., Hemberg, E., O’Neill, M., Nicolau, M., Brabazon, A.: A non-
destructive grammar modification approach to modularity in grammatical evolu-
tion. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2011, pp. 1411–1418. ACM, Dublin (2011)

16. Swafford, J.M., Nicolau, M., Hemberg, E., O’Neill, M., Brabazon, A.: Comparing
methods for module identification in grammatical evolution. In: Proceedings of the
14th Annual Conference Companion on Genetic and Evolutionary Computation,
GECCO 2012. ACM, Philadelphia (2012)

17. Walker, J., Miller, J.: The automatic acquisition, evolution and reuse of modules
in cartesian genetic programming. IEEE Transactions on Evolutionary Computa-
tion 12(4), 397–417 (2008)



On the Anytime Behavior of IPOP-CMA-ES
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Abstract. Anytime algorithms aim to produce a high-quality solution
for any termination criterion. A recent proposal is to improve automati-
cally the anytime behavior of single-objective optimization algorithms by
incorporating the hypervolume, a well-known quality measure in multi-
objective optimization, into an automatic configuration tool. In this
paper, we show that the anytime behavior of IPOP-CMA-ES can be
significantly improved with respect to its default parameters by apply-
ing this method. We also show that tuning IPOP-CMA-ES with respect
to the final quality obtained after a large termination criterion leads to
better results at that particular termination criterion, but worsens the
performance of IPOP-CMA-ES when stopped earlier. The main conclu-
sion is that IPOP-CMA-ES should be tuned with respect to the anytime
behavior if the exact termination criterion is not known in advance.

Keywords: Anytime algorithms, automatic parameter tuning, contin-
uous optimization.

1 Introduction

In many practical situations, an optimization algorithm may be terminated at
any time, and, hence, it should return as high-quality solutions as possible for
a wide range of possible termination criteria. Algorithms that better satisfy this
property are said to have better anytime behavior [14].

When designing a new algorithm or tuning its parameters, the classical way to
assess its anytime behavior is either by comparing plots of the solution-quality
over time, called SQT curves [5], or by measuring performance at a different num-
ber of targets, for example, measuring solution quality after a given number of
function evaluations. The benefit of the graphical comparison of SQT plots is that
one gets the whole picture and it is less biased by the choice of the targets. How-
ever, a graphical comparison is intrinsically subjective. In contrast,measuring per-
formance at different targets is an objective comparison. However, one still needs
to aggregate the possibly conflicting results for each target in order to compare
multiple algorithms. In this paper, we apply a new alternative, which consists in
evaluating the anytime behavior as a bi-objective optimization problem. In partic-
ular, the hypervolume, a well-known quality measure in multi-objective optimiza-
tion, may be used to assign a single numerical value to the anytime behavior of an
algorithm’s run. This technique allows us to apply automatic configuration tools
for automatically improving the anytime behavior of optimization algorithms.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 357–366, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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CMA-ES [3] is a state-of-the-art algorithm for continuous optimization. Re-
cently, a variant of CMA-ES with incremental population has been proposed [1];
we refer to this variant as IPOP-CMA-ES. The authors of IPOP-CMA-ES show
that it outperforms the classical CMA-ES with restarts that keeps the population
size fixed for a wide range of functions and allocated number of function evalua-
tions. Therefore, one can say that IPOP-CMA-ES shows already a good anytime
behavior. In this paper, we show that the anytime behavior of IPOP-CMA-
ES can be further improved by combining automatic algorithm configuration
tools and the hypervolume measure. Moreover, we also report results on tuning
IPOP-CMA-ES for a specific termination criterion. The resulting configuration
of IPOP-CMA-ES obtains better final quality than the default configuration and
the configuration tuned for anytime behavior, but performs substantially worse
if interrupted earlier than the specific termination criterion. Therefore, our re-
sults indicate that if the specific termination criterion is not known in advance
or there is a high chance that IPOP-CMA-ES may be interrupted earlier, then
it is better to tune IPOP-CMA-ES according to anytime behavior rather than
using the default settings or tuning for a specific termination criterion.

2 Anytime Optimization

Anytime optimization algorithms may be terminated at any moment during
their run, and they return a solution that is closer to the optimal the more time
they were allowed to run [14]. In fact, most stochastic local search algorithms
match this definition. The ideal anytime optimization algorithm would return a
solution as close as possible to the optimal at any moment during its run. Hence,
algorithms closer to this ideal have better anytime behavior.

One of the goals of adapting parameter settings at run-time is to adapt the ex-
ploration and exploitation trade-off to the amount of computation time allowed.
Such algorithms converge very quickly to a good solution or local optimum,
and then, if more time is allowed, explore more thoroughly the search space
to find better solutions. Although algorithms that adapt their parameters, such
as IPOP-CMA-ES, purport to remove the need to tune the parameters that
are adapted, the adaptation methods introduce parameters that are subject to
fine-tuning. In fact, it has been shown that automatically tuning these param-
eters may considerably improve the final quality obtained by IPOP-CMA-ES
on diverse and difficult benchmarks [6, 7, 12]. One may argue, however, that
this fine-tuning probably makes the algorithm more dependent on the particular
termination criterion used in the tuning, in other words, it worsens its any-
time behavior. Hence, it would be desirable to fine-tune the parameters of such
algorithms in a way that is not specific to a particular termination criterion.

3 Automatically Improving Anytime Behavior

The anytime behavior of an algorithm may be modeled as a bi-objective opti-
mization problem in terms of Pareto-optimality. In this model, the output of a
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run of an algorithm is a set of points in the time × quality space representing
every instant that the algorithm found a solution closer to the optimal. This
set of points is by definition mutually nondominated, that is, there is no point
in the set that is better than another point in one criterion and not worse in
the other. According to this model, we can say that a run of algorithm A has a
better anytime behavior than a run of algorithm B, if the output of A is bet-
ter than the output of B in the Pareto sense, that is, if all points from B are
dominated by at least one point from A, and there is no point from A that is
dominated by a point from B. In practice, the SQT curves of high-performing
algorithms will often cross, and, hence, their outputs are often incomparable
in the strict Pareto sense. This is a usual case in multi-objective optimization,
and, frequently, unary quality measures are used to compare nondominated sets.
Among the quality measures available, the hypervolume is the only one always
able to detect whether one nondominated set is not worse than another [15].
When all objectives are minimized, the hypervolume of a nondominated set is
the area of the objective space that is bounded below by the set and above by a
reference point that should be the same for all sets under comparison. Thus, a
larger hypervolume corresponds to a better quality.

Using the above model, López-Ibáñez and Stützle [11] have proposed to in-
tegrate the hypervolume into an automatic configuration tool in order to auto-
matically improve the anytime behavior of optimization algorithms. We show
here that this technique is able to significantly improve the anytime behavior of
IPOP-CMA-ES with respect to its default settings.

4 Experimental Setup

In this paper, we try to automatically improve the anytime behavior of IPOP-
CMA-ES. IPOP-CMA-ES is (μ, λ)-evolution strategy that samples a new pop-
ulation of solutions at each iteration from a multi-variate normal distribution.
The parameters of this normal distribution are adapted during the run of the
algorithm in order to focus the sampling on the most promising region of the
search space. IPOP-CMA-ES obtained the best performance in the special ses-
sion on real parameter optimization of the 2005 IEEE Congress on Evolutionary
Computation (CEC’05), and, thus, it is a state-of-the-art algorithm for contin-
uous optimization. In our experiments, we use the C version of IPOP-CMA-ES
from Hansen’s webpage http://www.lri.fr/~hansen/cmaesintro.html. We
have modified the code to handle bound constraints by clamping the variable
values outside the bounds on the nearest bound value [7].

There are a number of internal parameters of IPOP-CMA-ES that are fixed in
the default implementation. These are the initial population size λ0, the number
of parent solutions selected from the population μ, and the initial step-size σ0

among others. The population size is multiplied by a factor (ipop) every time the
algorithm is restarted. Restarts are controlled by three additional parameters:
stopTolFunHist, which is a lower threshold on the range of the best objective
function values in recent generations; stopTolFun, which is a lower threshold that,

http://www.lri.fr/~hansen/cmaesintro.html
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Table 1. Parameters that have been considered for tuning. Given are the default
values of the parameters and the continuous range we considered for tuning. The last
two columns are the parameter settings obtained for the anytime tuning (tanytime)
and the tuning for the final solution quality (tfinal), respectively.

Parameter Internal parameter Default Range Tuned

(tuning) tanytime tfinal

a Init pop size: λ0 = 4 + �a ln(D)� 3 [1, 10] 3.676 9.600
b Parent size: μ = �λ/b� 2 [1, 5] 1.750 1.452
c Init step size: σ0 = c · (B − A) 0.5 (0, 1) 0.325 0.603
d IPOP factor: ipop = d 2 [1, 4] 1.840 3.292
e stopTolFun = 10e −12 [−20,−6] −9.653 −8.854

f stopTolFunHist = 10f −20 [−20,−6] −10.000 −9.683
g stopTolX = 10g −12 [−20,−6] −9.528 −12.550

in addition to the previous range, also includes all objective function values in
the last generation; and stopTolX, which is a lower threshold on the standard
deviation of the normal distribution.

For tuning IPOP-CMA-ES, we have exposed seven parameters that directly
control the internal parameters of IPOP-CMA-ES defined above. These seven
parameters are given in Table 1, together with the internal parameter of IPOP-
CMA-ES controlled by each of them, their default value and the range considered
here for tuning. As tuner we use irace [9], a publicly available implementation
of the automatic configuration method Iterated F-Race [2]. The budget of each
run of irace is set to 5 000 runs of IPOP-CMA-ES. The other inputs of irace
are the parameter ranges given in Table 1 and a set of training instances.

As benchmark instances, we consider the 19 functions from the SOCO bench-
mark set [4] and the 25 functions from the CEC’05 benchmark set [13]. In order
to avoid over-tuning, the training set of instances used for tuning is different from
the test sets used for analyzing the results of the tuning. Training instances are
a subset of the functions in the SOCO benchmark, with dimension D ∈ [5, 40].
The training functions are then sampled in a random order from all possible such
functions [8]. For analyzing the results, we use three test sets: 19 SOCO bench-
mark functions, but the 10-dimensional (SOCO-10D) and the 100-dimensional
(SOCO-100D) versions, and the CEC benchmark functions with dimension 50
(CEC-50D).

We follow the protocols suggested by the authors of the SOCO and CEC
benchmarks [4, 13], that is, the maximum number of function evaluations is
5 000·D for the SOCO functions and 10 000·D for the CEC functions. Each run of
IPOP-CMA-ES is repeated 25 times on each function with different random seed.
We report error values defined as f(x)− f(x∗), where x is a candidate solution
and x∗ is the optimal solution. Following the recommendation of the authors of
the CEC benchmark, we use 10−8 as the minimum error (zero threshold), and
lower values are clamped to this minimum.
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5 Experimental Results

We automatically configure the parameters of IPOP-CMA-ES according to any-
time behavior. For each run of IPOP-CMA-ES, every time a solution better than
the best of the current run is found, we record the number of function evalua-
tions (FEs) performed so far and the quality of the new best solution. In this
manner, each run produces a nondominated set of points of quality versus FEs.
We restrict the minimum number of FEs to D, that is, we start recording the
solution quality after D FEs, in order to avoid the bias of the initial random sam-
pling of IPOP-CMA-ES. All nondominated sets under comparison for the same
benchmark function are normalized to the interval [1, 2]. Then, we compute the
hypervolume of the normalized nondominated sets using (2.1, 2.1) as the refer-
ence point. We integrate this procedure into irace, and use the hypervolume to
evaluate each run of IPOP-CMA-ES. In this manner, we obtain a configuration
of IPOP-CMA-ES called henceforth tanytime (Table 1).

Next, we run both tanytime and the default configuration of IPOP-CMA-ES
(henceforth, default) on each benchmark function of the three test sets. Each
run is repeated 25 times with different random seed. We compute the mean hy-
pervolume of these runs using the same procedure described above. The results
reported in Table 2 show that the tuning works, that is, the tanytime configura-
tion obtains better (larger) hypervolume values than default in most functions,
even when testing on functions with different dimensionality or from a different
benchmark set. Nonetheless, it was not possible to improve the hypervolume on
all functions at the same time with a single parameter setting. We performed
a two-sided Wilcoxon matched-pairs signed-rank test at the 0.05 α-level, which
indicates that the differences in favor of tanytime are significant in each of the
three test sets. Therefore, we have found a configuration of IPOP-CMA-ES with
better anytime behavior according to the hypervolume.

We assess how much this improvement is visible when evaluating the anytime
behavior according to SQT curves, computed as mean error value versus FEs.
Figure 1 shows the mean SQT curves, where error values are averaged over 25
runs, on a few test functions of two configurations of IPOP-CMA-ES: default
and tanytime. Both axes are in logarithmic scale. Other plots are available as
supplementary material [10]. The first observation is that for those functions
where the SQT curve of tanytime is clearly better than the one corresponding
to default, the hypervolume of tanytime is always higher, which confirms the
numerical results. In the few cases where default has a higher hypervolume than
tanytime, the SQT curves look like the two plots in the right column of Fig. 1.

Next, we analyze the overall quality reached at a number of termination cri-
teria. We define termination criteria FE1, FE2, FE3, FE4, and FE5, which
correspond, respectively, to {1D, 10D, 100D, 1000D, 5000D}FEs for SOCO func-
tions and {2D, 20D, 200D, 2000D, 10000D} FEs for CEC functions. In order
to measure the overall quality, we need to summarize error values from different
benchmark functions, but the range and distribution of error values varies ex-
tremely from function to function. Depending on the scenario, one could assume
that the error values are comparable, and compute summary statistics directly
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Table 2. Hypervolume values on the SOCO benchmark functions of dimensions 10
(10D) and 100 (100D), and on the CEC’05 benchmark functions of dimensions 50
(50D). Each number is the mean hypervolume over 25 runs.

SOCO benchmark

10D 100D

Funs default tanytime default tanytime

fsoco1 1.198402 1.199056 1.185412 1.190244
fsoco2 1.187217 1.186541 1.195947 1.197192
fsoco3 1.209725 1.209742 1.209607 1.209758
fsoco4 1.194014 1.19501 1.171771 1.18795
fsoco5 1.208867 1.208925 1.204043 1.20496
fsoco6 1.129921 1.125299 1.115378 1.115365
fsoco7 1.209906 1.209913 1.209999 1.21
fsoco8 1.206128 1.206206 1.200541 1.200248
fsoco9 1.129397 1.129854 1.091057 1.113938
fsoco10 1.206764 1.207165 1.208304 1.208677
fsoco11 1.186655 1.201123 1.181395 1.195451
fsoco12 1.209611 1.209574 1.209227 1.209338
fsoco13 1.20989 1.209898 1.209687 1.209814
fsoco14 1.193432 1.193597 1.15417 1.166172
fsoco15 1.209983 1.209996 1.209998 1.21
fsoco16 1.209613 1.209635 1.209009 1.209123
fsoco17 1.209997 1.209987 1.209807 1.209899
fsoco18 1.208043 1.20837 1.207676 1.20822
fsoco19 1.208811 1.209075 1.209992 1.21

Num of best 4 15 2 17

CEC (50D)

Funs default tanytime

fcec1 1.190977 1.193059
fcec2 1.199888 1.199974
fcec3 1.208823 1.208888
fcec4 1.196578 1.202285
fcec5 1.198765 1.201426
fcec6 1.209755 1.209822
fcec7 1.207348 1.206793
fcec8 0.545673 0.577091
fcec9 1.193229 1.196095
fcec10 1.199903 1.201255
fcec11 1.180708 1.182876
fcec12 1.205898 1.207761
fcec13 1.209852 1.209925
fcec14 0.610495 0.713652
fcec15 1.153601 1.154691
fcec16 1.191556 1.190394
fcec17 1.132624 1.111859
fcec18 1.155031 1.15255
fcec19 1.147348 1.147457
fcec20 1.181023 1.182817
fcec21 1.078023 1.120791
fcec22 1.183588 1.185362
fcec23 1.050566 1.111973
fcec24 1.206570 1.206478
fcec25 1.208004 1.207968

Num of best 6 19

on the error values, or analyze how many runs achieve a particular error value.
Instead, we consider that the error values of different functions are not directly
comparable, and we use a non-parametric approach based on blocking, that is,
algorithm runs are ranked per function with respect to the error value, and we
compute the mean rank over all test functions in each benchmark set. Fig. 2
shows the mean rank, at each termination criterion, of the default configuration
and the tanytime configuration. The other configurations shown will be explained
later. The plots show that tanytime configuration ranks better than the default
configuration for almost all termination criteria in all benchmark sets.

Anytime Behavior vs. Final Quality. Now we consider the possibility that
the default parameters of IPOP-CMA-ES may not be the best for the benchmark
sets and the maximum number of function evaluations considered here. There-
fore, we tune the parameters of IPOP-CMA-ES according to the final quality
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Fig. 1. SQT curves for two configurations of IPOP-CMA-ES. Plots on the left (right)
show cases where tanytime obtains a better (worse) mean hypervolume than default.

obtained at the end of the run. In this way, we obtain a configuration that we
call tfinal. We run this configuration on the test benchmark sets, and report the
results in Fig. 2. The plots show that tfinal is able to obtain better final quality
than both tanytime and default, but at the cost of worse anytime behavior. We
carry out a Friedman test at each termination criterion to test for the signif-
icance of the differences between the best ranked configuration and the other
two configurations. Here, we only report the results of the Friedman tests over
all benchmark functions (Table 3); results per benchmark set are given as sup-
plementary material [10]. The Friedman tests confirm these observations, that
is, tfinal becomes much worse than tanytime and default if stopped earlier (ter-
mination criteria FE1, FE2, FE3) than the termination criterion that was used
for tuning (FE5). The other configurations shown in the plots (and in Table 3)
are explained in the next paragraph. The fact that there is a strong trade-off
between final quality and anytime behavior suggests that there are still oppor-
tunities for improving the balance between fast convergence and exploration in
IPOP-CMA-ES.

Hypervolume Applied to Logarithmic Transformations. The plots in
Fig. 1 use a logarithmic scale in both axes, as usually done when comparing
continuous optimizers. Yet, we compute the hypervolume on a linear scale, as
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Table 3. Configurations of IPOP-CMA-ES ordered according to the sum of ranks ob-
tained at each termination criterion FEi. The numbers in parenthesis are the difference
of ranks relative to the best configuration. ΔRα is the minimum significant difference
according to the Friedman test at significance level α = 0.05. Configurations that are
not significantly different from the best one are indicated in bold face.

All 63 functions (SOCO-10D, SOCO-100D, CEC-50D)

FEs ΔRα Configurations (ΔR)

FE1 27.34 tany-lx-y (0), tanytime (35.5), tany-lx-ly (38), default (116.5), tany-x-ly (158), tfinal (222)
FE2 20.39 tany-lx-y (0), tanytime (72.5), tany-lx-ly (78), default (98.5), tany-x-ly (214.5), tfinal (271.5)
FE3 38.32 tanytime (0), default (26), tany-lx-ly (32), tany-lx-y (37), tany-x-ly (57.5), tfinal (120.5)
FE4 32.28 tfinal (0), tany-x-ly (12), tanytime (67.5), tany-lx-ly (75.5), tany-lx-y (115.5), default (125.5)
FE5 30.51 tfinal (0), tany-x-ly (21), tanytime (38.5), tany-lx-ly (77.5), tany-lx-y (86), default (101)
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Fig. 2. Mean ranks obtained by configurations default, tanytime and tfinal at each
termination criterion (FE1 to FE5)

commonly done in multi-objective optimization. Nonetheless, we can also ap-
ply a logarithmic scale for FEs, error values or both, before computing the
hypervolume. Such transformations define a particular preference among oth-
erwise incomparable nondominated sets, and, hence, lead to different anytime
behaviors.



On the Anytime Behavior of IPOP-CMA-ES 365

Fig. 2 provides an overall comparison of these alternatives (individual SQT
plots are available as supplementary material [10]). Three additional configura-
tions of IPOP-CMA-ES were obtained by tuning as described above, but using
a modified hypervolume where either the number of FEs (tany-lx-y), the error
values (tany-x-ly), or both (tany-lx-ly) were converted to a logarithmic scale. The
plot shows that the configuration tany-lx-y (log. FE) performs better for short
termination criteria, whereas the tany-x-ly (log. error values) obtains better re-
sults when running for longer FEs. Interestingly, there is no much difference
between applying a logarithmic transformation to both objectives or to none of
them. Our conclusion is that logarithmic transformations of only one objective
(either quality or computational effort) introduce a strong bias, which should be
taken into account to not defeat the purpose of tuning for anytime behavior.

6 Conclusions

In this paper, we have investigated whether the anytime behavior of IPOP-CMA-
ES can be improved by automatically tuning its parameters. We have applied
a recently proposed technique that integrates the hypervolume quality measure
into an automatic configuration method (irace). Our results have shown that
the anytime behavior of the default parameters of IPOP-CMA-ES can be sub-
stantially improved. Moreover, we have also shown that simply tuning IPOP-
CMA-ES according to the quality achieved at a large termination criterion does
improve the results at that particular termination criterion; however, it compro-
mises the results for shorter termination criteria, becoming even worse than the
default configuration of IPOP-CMA-ES. Therefore, if the specific termination
criterion is not known in advance, it is better to tune IPOP-CMA-ES according
to anytime behavior than for a very large termination criterion.

Our results also suggest that, despite the adaptation of the population size
and the restart step in IPOP-CMA-ES, its results are not ideal in terms of
anytime behavior. Therefore, we plan to investigate in the future whether the
anytime behavior of IPOP-CMA-ES can be further improved by adapting other
parameters or making some parameters time-varying.
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366 M.López-Ibáñez, T. Liao, and T. Stützle
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2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race
Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T.,
Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M.
(eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

3. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

4. Herrera, F., Lozano, M., Molina, D.: Test suite for the special issue of Soft Com-
puting on scalability of evolutionary algorithms and other metaheuristics for large
scale continuous optimization problems (2010), http://sci2s.ugr.es/eamhco/
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Abstract. A new class of simple and scalable test functions for unconstrained
real-parameter optimization will be proposed. Even though these functions have
only one minimizer, they yet appear difficult to be optimized using standard state-
of-the-art EAs such as CMA-ES, PSO, and DE. The test functions share proper-
ties observed when evolving at the edge of feasibility of constraint problems:
while the step-sizes (or mutation strength) drops down exponentially fast, the EA
is still far way from the minimizer giving rise to premature convergence. The de-
sign principles for this new function class, called HappyCat, will be explained.
Furthermore, an idea for a new type of evolution strategy, the Ray-ES, will be
outlined that might be able to tackle such problems.

1 Introduction

The design of direct search methods for optimization problems in RN is still a vivid area
of research and publications. Reviewing various journals and conferences, one finds a
plethora of proposals for new or improved algorithms. The superiority of which is usu-
ally validated by empirical investigations. Such investigations compare the performance
of the new algorithm with a collection of other algorithms on a “well-crafted” set of ar-
tificial test functions. An alternative would be – of course – a performance comparison
based on real-world applications (RWAs) or on toy problems derived from such RWAs.
However, such kinds of comparisons are hard to find and/or difficult to perform (e.g.,
problem size scaling investigations are often excluded due to expensive goal function
evaluations). This may be the main reason why one resorts to artificial test beds. The
currently most-advanced endeavor in this direction is the COCO (COmparing Contin-
uous Optimizers) initiative (URL: http://coco.gforge.inria.fr/) and the
related Black-Box Optimization Benchmarking (BBOB) workshops at GECCO 2009,
2010, and 2012. This workshop series focuses on unconstrained optimization. However,
in practice one often encounters constraints (not only box constraints) that restrict the
feasible solutions in non-trivial manner. While there is also a series on benchmark com-
petitions in constrained evolutionary optimization (see e.g. the CEC 2010 workshop
[1]), it is interesting to notice that the most competitive strategies found at BBOB are
not in the winner portfolio of the CEC constrained benchmarking competition. There
might be different reasons for that observations and we do not want to speculate too

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 367–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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much as to why this is the case. However, from our own attempts using CMA-ES [2]
for a constrained optimization problem with linear inequality constraints, we have made
the observation that this strategy can exhibit premature convergence if the optimizer is
located in one of the vertices of the simplex. A similar behavior has been observed and
analyzed theoretically by Arnold [3]. The premature convergence behavior is due to a
failure of step-length control. When approaching the edge of feasibility the mutation
strength decreases exponentially fast such that the CMA-ES is not able to learn the
covariance matrix.

At first sight this premature convergence behavior might come as a big surprise given
the fact that CMA-ES performs so well on the BBOB test bed. However, the problem
lurks already in the BBOB test bed. It is this plain sharp ridge test function that carries
already parts of the problem. The fact that one does not observe premature convergence
for this function when using standard implementations of CMA-ES is simply due to
a tiny implementation detail: There is always a test built-in that checks for a minimal
step-size in the search space. One can find this kludge already in early CMA versions,
see e.g. [4, p. 180]. While the CMA designers explained this implementation detail as
a means to prevent numerical precision problem, we will provide a class of simple (un-
constrained) test functions where CMA-ES fails to locate the optimizer with sufficient
precision. This failure appears even though (or just because) these test functions share
local similarities with the sharp ridge.

The rest of the paper is organized as follows. First we will describe the construc-
tion of a simple scalable test function class, called HappyCat with tuneable “CMA-ES
hardness.” Then we will provide empirical performance evaluations including not only
CMA-ES, but also generic differential evolution (DE) and particle swarm optimization
(PSO) algorithms to show that the problem is not only restricted to CMA-ES. In a next
section we will outline a new ES, the so-called Ray-ES that can exhibit improved per-
formance on this test function. Finally, we will give an outlook providing additionally
a somewhat more complicated test function that should be subject for further research.

2 Bending the Ridge – HappyCat

The motivation for developing a new test function class was triggered by the behavior
of ES on the ridge function class. Ridge functions can be expressed in terms of

f(x) := x1 + d
(∑N

i=2 x
2
i

)α
. (1)

If α = 1/2 we get a V-shaped ridge, the sharp ridge. A first systematic investigation
of ES performance on ridge functions has been done in the PhD thesis of Oyman [5]
during the late 1990s. He was the first to interpret the evolutionary minimization on
ridge functions as a process of both approaching the ridge axis in an N−1-dimensional
sub-space and decreasing the linear x1 component in (1). If d is sufficiently large, f(x)
is dominated by an N − 1-dimensional sphere model and the linear x1 part is rather
a (noisy) perturbation. While for α > 1/2 the sphere model influence reduces when
approaching the ridge axis, the opposite holds for α < 1/2, and α = 1/2 is the limit
case. Evolution on the α = 1/2 case is a race between sphere model minimization
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and linear x1 decrease (minimization!). If the sphere model is dominating, the mutation
adaptation process decreases the mutation strength σ continuously (exponentially fast).
As a result one observes premature convergence. This also holds for CMA-ES. In that
case, the flow of covariance information obtained from the successful mutations into
the covariance matrix is continuously reduced. Learning the covariance matrix has a
complexity of O(N2) (measured in function evaluations), however, the shrinking of the
(N − 1)-dimensional sphere proceeds with O(N). As a result, CMA-ES must neces-
sarily fail for sufficiently large d. A way to circumvent this shrinking is by keeping the
mutation strength σ at a reasonable level. Thus, the CMA can learn the ridge direction.
And this approach (or similar ones) has been implemented in standard CMA-ES.

Learning the ridge direction solves the adaptation problem for CMA-ES on the sharp
ridge. After having adapted the covariance matrix, the ES has only to follow a straight
path. However, what happens if the path is not a straight line? To get an answer to this
question, we first have to construct a simple test function with such a property. In order
to keep things simple, a spherical path will be constructed. To this end, note that ‖x‖2−
N = 0 describes a sphere with radius

√
N . That is, the function (‖x‖2−N)2 measures

the deviation of an arbitrary x vector from the radius
√
N sphere. Thus, one obtains

a function with a degenerated zero minimum the optimizer x∗ of which are all points
on that sphere. Now we break the rotational symmetry by adding a simple unimodal
quadratic function fq(x). Demanding the minimizer of fq(x) at x∗ = (−1, . . . ,−1)T
and for sake of simplicity fq(x

∗) = 0, one obtains

fq(x) :=
1
N

(
1
2‖x‖2 +

∑N
i=1 xi

)
+ 1

2 . (2)

This can be easily checked by calculus. Putting things together, one obtains the Hap-
pyCat function the minimizer of which is x∗ = (−1, . . . ,−1)T and fHC(x

∗) = 0

fHC(x) := [(‖x‖2 −N)2]α + 1
N

(
1
2‖x‖2 +

∑N
i=1 xi

)
+ 1

2 . (3)

The case N = 2 is displayed in Fig. 1.
As one can see, the α-part in Eq. (3) produces an attracting groove for path-oriented

search strategies. If α = 1/2 the groove is V-shaped. For α < 1/2 the groove shape
resembles the geometry of a black hole. Actually, it turns out that getting closer to the
groove results in an increasing descent gradient towards the bottom of the groove. Its
absolute value goes to infinity. That is why, it is difficult to escape from this “black
groove”. Since the shape of the groove is tuneable by the α exponent, one can continu-
ously control the problem hardness.

In Fig. 2 the performance of DE, PSO, and CMA on HappyCat with N = 10 and
α = 1/8 is shown. All strategies were used in a form close to their default version. DE
is a Rand 3 type strategy [6], which is almost identical to the (common) DE/rand/1/bin
strategy. It uses a population size of NP = 20, crossover parameter CR = 0.5, and
mutation parameter F = 0.9. PSO is a local best variant with a swarm of 20 parti-
cles, parameter ϕ = 2.07 (see [7]), and 3 informants per particle. The information
links between the particles are randomly chosen at the start of each iteration and a par-
ticle will always inform itself. For CMA-ES the population parameters are λ = 10
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Fig. 1. HappyCat in two dimensions with α = 1/8 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function.

(offspring) and μ = 5 (parents). The remaining learning and cumulation parame-
ters are identical to the default ones used in CMA-ES version 3.55.beta obtained
from URL: http://www.lri.fr/˜hansen/cmaes_inmatlab.html. Addi-
tionally, the minimal coordinate axis deviation is set to ∀j : σ

√
Cjj ≥ 10−7 with Cjj

being an entry of the diagonal of the covariance matrix.
The left plot of Fig. 2 shows the dynamics of the function value w.r.t. the number of

function evaluations in a log-log format. In case of DE and PSO it represents the best
function value in the current population, while for CMA it is the function value of the
parent individual. The dynamics of the 3 strategies differ. CMA achieves fast progress
before stagnating. PSO initially is comparable to CMA but enters the stagnation phase
earlier. In contrast to CMA, the particles are able to find a region of improved fitness in
later iterations (without restarting). On the other hand, DE shows a step-like character-
istic where phases of stagnation are followed by small “improvement jumps”. Overall,
DE is slower compared with CMA and PSO. Inspecting the final state of the population
in DE and PSO reveals that they are not converged (for N = 10). For PSO, the mean
distance between the particles is slightly reduced compared to the initial mean dis-
tance and a similar observation is made for the particles’ velocities. This indicates that
there is “kinetic energy” left in the swarm, however, it is difficult to find improved solu-
tions. Considering the positions of the personal best solutions, one finds that PSO tracks
the groove very quickly. From that point on, progress can be made by either reducing
the distance to the groove bottom or by moving toward the optimizer. Since reducing
the distance to the groove bottom is much more rewarding, the personal best positions
will not converge toward a single point but rather be distributed along the groove bot-
tom. This in turn prevents a reduction in the velocities (except for the global best point)
and impairs the local search behavior. For DE the situation is somewhat different. In
small dimensions N ≤ 5 convergence in the experiments performed (NP = 20) is
observed. There the expected population variance [8] is less than 10−14, however, DE
converges to non-optimal points. For larger search space dimensionalities, the diversity
in the population remains large and similar to PSO, the points are distributed along the
groove. Since DE employs a greedy selection scheme, new population members are

http://www.lri.fr/~hansen/cmaes_inmatlab.html


HappyCat – A Simple Function Class 371

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

Function Evaluations

Fu
nc

tio
n 

V
al

ue

 

 

CMA

DE

PSO

Ray−ES

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

Function Value

E
R

T
/N

 

 

CMA

DE

PSO

Ray−ES

Fig. 2. Dynamic behavior of different strategies on the HappyCat function with N = 10 and
α = 1/8. In the left figure single run dynamics are shown, while in the right one the curves are
based on 30 samples for each strategy. The term ERT refers to expected running time, expressed
in number of function evaluations. The horizontal line in the right plot indicates the budget of
function evaluations for each sample. Note, the vertical axis is normalized by the search space
dimensionality N and the horizontal axis is reversed in direction. As for the fourth strategy, the
Ray-ES, see Section 3.

only accepted if the distance to the groove bottom and/or the distance to the optimizer
is reduced. However, the newly created individuals depend on the distances between
the population members, hence only slow progress is made.

In CMA, the mutation step generated by σN (0,C), with C as covariance matrix,
decreases quickly. Once the mutation step is too small, the progress of CMA stops. The
performance of CMA can be improved by using larger population sizes than the default
one. While being slower in the early iterations a larger population size comes closer
to the optimizer and has a better performance at some point. For DE and PSO no such
improvement with regard to the population size is observed.

Considering more than just a single run, yields the right-hand plot in Fig. 2. For all
experimental runs, the necessary individual(s) for each strategy are initialized by uni-
formly drawing a vector from the range [−2, 2]N . The budget is set to 105N function
evaluations and 30 samples are performed for each strategy. Restarts of the strategies
are allowed as long as the budget is not exhausted. In the plot the expected running
time (ERT) [9] is shown as function of the best-so-far function value of all evaluated
points. ERT represents the expected behavior in terms of solution quality and necessary
budget. The horizontal dashed line indicates the available function evaluation budget.
Points above this line indicate function values which were not achieved in all samples.
In such a case the success probability is less than 1 and its inverse becomes a factor in
the calculation of ERT. Therefore these data points are based on an extrapolation of
the available experimental data. To achieve these performances (to a certain extent) one
must increase the function evaluation budget and provide better restart criteria. Con-
sidering the trend of the ERT-curves, one observes for PSO and DE that each curves
could be approximated by a straight line. This indicates a power law relation between
function value and function evaluation budget. For CMA there exists a jump in the curve
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indicating (probably) the phase where the covariance matrix is adapted. Before and after
this jump a power law relation approximates the relation between function value and
number of function evaluation.

However, the best curve is the one for Ray-ES. This strategy can achieve an order of
magnitude better solution quality (see also the left-hand plot) and is competitive with
CMA and PSO in terms of function evaluations for f ≤ 10−1. In the next section we
will describe Ray-ES.

3 Ray-ES

In the following we propose a concept for treating the HappyCat function. Note, this is
a conceptual algorithm and not a fully developed strategy. Starting from a fixed point
in the domain the idea is to find the ray direction which contains the optimizer. To this
end, the strategy evolves ray directions and performs (simple) line searches along these
rays to evaluate their quality. The ray evolution itself is based on the blueprint of a
(μ/μl, λ)-σSA-ES [10], hence the name Ray-ES.

Algorithm 1. Ray - ES
1: repeat
2: for l ← 1 to λ do
3: σ̃l ← σeτN (0,1)

4: ỹl ← y + σ̃lN (0, I)

5: rl ← ỹl

‖ỹl‖
6: [x̃l f̃l] ← LineSearch (rl)
7: end for
8: y ← 〈ỹ〉 � new ray direction
9: σ ← 〈σ̃〉 � new mutation strength

10: until termination criterion satisfied

In Alg. 1 the pseudocode for the basic version of Ray-ES is shown. Due to the un-
derlying design principles, one must specify values for the population sizes λ and μ,
and the learning parameter τ . The parental mutation strength σ and the parental ray
y ∈ RN must be initialized. From line 2 to line 7 in Alg. 1 λ new rays are created
by mutation (line 4) and evaluated (line 6). The mutation operator follows the self-
adaptation scheme [10], i.e. each ray has its own mutation strength σ̃l which itself is
a mutant of the parental σ (line 3). Since one is only interested in the direction of the
ray, it is normalized (line 5) before being evaluated. The evaluation is performed by the
function LineSearch which is given in Alg. 2. It returns the best point found x̃l and its
corresponding function value f̃l which serves as measures for the ray quality. In lines
8 and 9 the variables for the parental mutation strength and parental ray are updated by
means of intermediate recombination where the μ best of the λ offspring are used. The
rule is

〈x〉 = 1

μ

∑μ
m=1 xm;λ, (4)
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where xm;λ is the mth best of the λ values. The ranking is done for all parameters
w.r.t. the function value. If no termination criterion is satisfied the evolutionary process
continues. Typical termination criteria are based on solution quality, budget of function
evaluations, and/or measures for the stagnation of the evolutionary process.

Algorithm 2. LineSearch
1: function LINESEARCH(r)
2: set L, k,o, ε
3: x0 ← o
4: Δr ← L

k

5: while Δr > ε do
6: for p ← 1 to 2k + 1 do
7: xp ← x0 +Δr(p− k − 1)r
8: fp ← F (xp)
9: end for

10: Δr ←
{
2Δr, if (x1;2k+1 = x1) ∨ (x1;2k+1 = x2k+1)

Δr/k, otherwise
11: x0 ← x1;2k+1

12: end while
13: return x1;2k+1, f1;2k+1

14: end function

The evaluation of a ray is a line search for the minimizer on the ray. The procedure
is stated in Alg. 2. It requires the ray direction r, an initial search length L ∈ R+, the
number of subdivisions k ∈ Z+, the ray origin o ∈ RN , and the minimal division length
ε ∈ R acting as precision measure. Except for the ray direction all these parameters are
held globally constant. In line 4, the length Δr of the k sections is initialized. The
line search (lines 5–12) is then performed as long as Δr is greater than ε. At first,
k equidistant points in positive and negative ray direction from the start point x0 are
created (line 7) and evaluated (line 8). The start point itself is also evaluated, resulting
in 2k+1 function evaluations. The best of these points, x1;2k+1, is set as new start point
(line 11). To find a better approximation of the minimizer, the length Δr is reduced by
factor k iff x1;2k+1 is not at the ends of the ray considered. However, if the current
minimum is at the ends of the ray, the section length is doubled (line 10). It can be
shown that the number of function evaluations for each line search can be estimated as
(provided that the strategy does not leave the initial search interval [−L,L])

FEsLS / 2k

ln k
ln

L

ε
. (5)

In the actual implementation of Ray-ES we also memorized the best-so-far solution and
evaluated the center of gravity of the points returned by LineSearch. In some situations
this recombinant achieved an improved solution quality. Throughout this text the fol-
lowing parameter setting is used for Ray-ES: λ = 10, μ = 3, τ = 1/

√
N, k = 3, L =

2,o = (0, . . . , 0)N , and ε = 10−8.
The single run dynamics and the expected performance for Ray-ES are shown in

Fig. 2. The single run curve is based on the best value returned by LineSearch and
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aforementioned recombinant. Ray-ES is initially slower than the other strategies con-
sidered and needs more function evaluations per iteration. This is due to the nearly
constant line search effort given by (5).1 However, at some point it is competitive with
the other strategies and later achieves a solution quality not realized by the other strate-
gies (for the parameters considered). The steep rise of the slope at the end is due to the
decrease in the success probability for the function values considered.
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Fig. 3. The left-hand plot shows the distribution of the best solutions found in 30 samples in
terms of distance to the optimizer (−1, . . . ,−1) and the deviation from the groove for N = 10.
The right-hand plot shows the scaling of the expected running time (ERT(f ≤ 10−1)) for the
strategies as function of the search space dimensionality N . The dashed lines represent linear
and quadratic scaling, the small markers indicate the best and worst observed number of function
evaluations.

In Fig. 3 additional performance plots are shown for all strategies. In the left-hand
plot the distribution of the best point found in each of the 30 samples (N = 10) is
shown. While PSO and CMA-ES are located at the groove bottom (horizontal axis in
Fig. 3 left)2, Ray-ES is able to achieve a much smaller distance to the optimizer (see
vertical axis, there is a factor of about 10−4) while still being considerably close to the
groove bottom. That is, the final solutions obtained by CMA, DE, and PSO are rather
poor when evaluated in the search space (i.e., w.r.t. distance to the optimizer).

In the right-hand plot of Fig. 3 the scaling of ERT w.r.t. the search space dimen-
sionality is presented. The curves represent the expected running time to find a point
with f ≤ 10−1 for the first time. Ray-ES shows a scaling behavior between linear and
quadratic, while the other strategies have a greater than quadratic scaling behavior.

In Fig. 4 the performance of Ray-ES (left) and CMA-ES (right) for various problem
hardnesses is shown. In case of Ray-ES, the curve with α = 0.1 is an outlier which is
due the choice of the minimal division length ε. Decreasing ε improves the performance.
For CMA-ES the performances are not in order with α, i.e. α = 0.1 is easier than
α = 0.2. Investigations into this behavior showed that it might be due to the frequency
of restarts triggered. For small α values much more restarts occurred than for larger

1 One may think of an adaptive line search to reduce FEsLS in the initial phase, however, this
is beyond the scope of this paper.

2 For visualization reasons 10−99 was added to the distance from the groove bottom.
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Fig. 4. Scaling of ERT with respect to the problem hardness α for N = 10 and the default
parameter settings
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Fig. 5. HGBat in two dimensions with α = 1/4 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function resembling the silhouette of Batman’s head.

values. Note, we did not use stagnation as a possible restart criterion. For DE and PSO
the performance improves with increasing values of α (decreasing problem hardness).

4 Conclusions and Outlook

In this paper, we have proposed a new scalable test function for EAs in real-coded search
spaces that allows for a continuous tuning of the problem hardness via α in Eq. (3). We
have shown empirically that standard state-of-the-art EAs such as CMA-ES, DE, and
PSO do fail on such topologies even in the case of small search space dimensionalities
if α is chosen below a certain critical value. We also provided a proof of concept for a
new class of evolution strategies, the Ray-ES, that might cope with this kind of function
topologies. However, the investigations concerning this new strategy type are still in the
beginning and the performance of the strategy depends on the choice of the ray origin.
Yet it is a new strategy that might be worth further investigations in the future.
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The main purpose of this paper is test function design. From this aspect, the de-
sign principle behind HappyCat can also be used to construct more complex functions.
“Complex” is meant here in the sense that the path defined by the groove can assume
more complex forms than the spherical one. As an example, HGBat shall be mentioned
here

fHGB(x) :=

[(
‖x‖4 − (

∑N
i=1 xi)

2
)2]α

+ 1
N

(
1
2‖x‖2 +

∑N
i=1 xi

)
+ 1

2 . (6)

Comparing with HappyCat (3), one sees that the quadratic symmetry-breaking part de-
fined in (2) remains the same. The only difference is due to the first term where the
expression in the bracket is a degree 8 polynomial instead of a degree 4 polynomial in
Eq. (3). The 2D shape of (6) is shown in Fig. 5.

Investigations concerning this function and even more complex forms remain to
be done in the future. Furthermore, it is our hope that this kind of test functions,
modeling certain aspects of search and (co-) variance adaptation in constrained opti-
mization problems, will be incorporated in the commonly used testbeds of black box
optimization [9].
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Abstract. A novel extension of an existing artificial Gene Regulatory
Network model is introduced, combining the dynamic adaptive nature of
this model with the generative power of grammars. The use of grammars
enables the model to produce more varied phenotypes, allowing its appli-
cation to a wider range of problems. The performance and generalisation
ability of the model on the inverted-pendulum problem, using a range of
different grammars, is compared against the existing model.

1 Introduction

Recently in the field of Evolutionary Computation there has been an increase of
interest in developmental biology and how it affects the evolutionary models cur-
rently in use. It is interesting to investigate whether these developmental systems
can be applied to improve existing evolutionary approaches, as developmental
processes play such an important role in nature.

To date, much of the work that has been done with developmental systems in
the field of Genetic Programming (GP) has been ontogenetic in nature. That is
to say, concerning with the growth or morphogenesis of individuals, by means of
interaction with the environment [12, 5, 4]. These developmental systems derive
the phenotype from the genotype, evaluating this phenotype, before undergoing
some morphogenesis defined within the phenotype itself. This process continues,
creating more complex phenotypes. The organism morphologies in nature on
which these systems are modeled on, however, are themselves the result of an
underlying regulatory process, known as gene regulatory networks (GRNs).

GRNs, which are at the core of developmental biology allow for “differential
gene expression from the same nuclear repertoire” [3]. This is partly achieved by
including feedback loops and being directly influenced by the environment. An
outline of a new genetic representation for GP using GRNs was given by Banzhaf
[1], exploring the dynamics of such a system. This new representation has since
been extended, providing methods for encoding the state of the environment into
the GRN, as well as extracting a signal from the GRN [10]. However, even in
its extended form, the phenotype produced is a series of signals between 0.0 and
1.0, making this representation difficult to apply to many different problems.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 377–386, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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This study is concerned with applying the generative power of grammars to
the model, and investigating the effects of this complexification of the mapping
process. Making use of grammars to generate phenotypes enables the model to
be applied to many different problems. Tree-Adjunct Grammatical Evolution
(TAGE) [9], a variant of the popular grammar-based form of GP, Grammatical
Evolution (GE), is extended to include the GRN model. TAGE is ideal due to
a unique property of the grammar type it employs, Tree-Adjoining Grammars
(TAGs) [6], which produce valid individuals at every stage of derivation.

The following section gives introductions to TAGE and the GRN model. Sec-
tion 3 presents the extension of the GRN model into the TAGE algorithm,
followed by a description of the pole-balancing problem in section 4. The ex-
periments performed and results obtained are presented with some discussion in
section 5. The study concludes in section 6, outlining some future work.

2 Background

2.1 Tree-Adjunct Grammatical Evolution

TAGE is a grammar-based form of GP, combining aspects of Darwinian natu-
ral selection, genetics and molecular biology with the representational power of
grammar formalisms [11, 9]. TAGE uses a representation consisting of a TAG
and a chromosome. A TAG is defined by a quintuple (T,N, S, I, A) where: T is
a finite set of terminal symbols; N is a finite set of non-terminal (NT) symbols:
T ∩ N = ∅; S is the start symbol: S ∈ N ; I is a finite set of finite trees called
initial trees; and A is a finite set of finite trees called auxiliary trees.

Initial trees represent the minimal non-recursive structures produced by the
grammar, i.e., they contain no repeated NT symbols. Inversely, auxiliary trees of
type X represent the minimal recursive structures, which allow recursion upon the
NT X. The union of initial trees and auxiliary trees forms the set of elementary
trees, E; where I ∩ A = ∅ and I ∪ A = E.

During derivation, the adjunction composition operation make use of codons
to join elementary trees together. When using TAGs, at each stage of derivation,
before and after each adjunction operation, valid phenotypes can be extracted.
Due to space constraints, a full description of TAGE has been omitted, but
can be found in [9]. In addition, the grammars used throughout this study are
presented in Fig. 4 as context-free grammars (CFG) in an effort to save space.
TAGE can transform between CFGs and equivalent TAGs.

2.2 Artificial Gene Regulatory Networks

The GRN model [1] used in this study, which has been extended to enable input
and output [10], consists of three components: a genome, genes, and proteins.
The model mimics the biological interaction of proteins with a cell’s genes. By
binding at regulatory sites, certain proteins can regulate the expression of genes,
and hence, the production of additional proteins. Proteins are assigned concen-
trations in the model, with a total concentration of 1.0 for each type of protein.
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The term concentration, with regards to this model, represents the proportion
of a particular protein to the rest of the proteins of the same type.

Gene. A gene consists of four sections, as shown in Fig. 1. The first two are two
32 bit regulatory sites, the enhancer and inhibitor sites. These two sites affect
a gene’s expression positively or negatively, respectively. A 32 bit promoter site,
which follows these regulatory sites, is of the form XYZ01010101 where XYZ is
an arbitrary 24 bit sequence and the final eight bits define the gene’s type or
signature. The specific eight bit signature of a promoter is used to identify genes
along the genome. Following the promoter is a 160 bit region, which encodes the
protein. These 160 bits are subdivided into five 32 bit sections. A majority vote
is performed at each bit position across the five sections to determine the 32 bits
making up the protein signature, as shown in Fig. 2.

Gene/Protein Types and Input/Output. Genes are split into two groups in
this model, Transcription Factors (TF-genes) and Products (P-genes). A gene’s
type is dependent upon its promoter’s signature, in this case XYZ00000000 is
used to identify TF-genes and XYZ11111111 to identify P-genes. TF-genes pro-
duce TF-proteins which can bind to regulatory sites and affect gene expression.
P-genes produce P-proteins which are are used solely to extract output from
the model, and as such, are prevented from binding and affecting regulation.
The sum of concentrations for each protein type must add to 1.0. Input into the
model is achieved by injecting specific concentrations of free TF-proteins into
the model. Input values are encoded into the proteins’ concentration levels. The
concentration of free proteins remains static unless new inputs are injected.

Regulation. How much each protein affects a gene’s expression by binding at
that gene’s regulatory sites (enhancer and inhibitor) is calculated by taking the
XOR of the protein’s signature with that of the regulatory site. The number of
bits set is the degree of match between the two, i.e., the number of complemen-
tary bits between them. The enhancing, ei, and inhibiting, hi, signals for the
expression of gene gi are calculated as follows:

ei, hi =
1

N

N∑
j=1

cje
β(uj−umax)) , (1)

where N is the total number of TF-proteins, cj is the concentration of protein j,
uj is the number of complementary bits between the regulatory site and protein
j, umax is the maximum number of complementary bits observed in the system,
and β is a positive scaling factor. A value of 1.0 was used for scaling factors β
and δ across all experiments.

The expression rate of gi (the production of pi) at time t+ 1 is given as:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a scaling factor. Once all produced TF-protein concentrations have
been updated, these concentrations are scaled such that when summed with the
free TF-protein concentrations they add to 1.0.
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Fig. 1. A gene on the genome split into its different sections

Evolved Genome:
...101101000101110100101101111101011011100000101110101000101011110111101010001001000100001011111111...

...101101000101110100101101111101011011100000101110101000101011110111101010001001000100001011111111...

...111010010110100001000010011100101010010100011110101010111101010111111101101010010010100010100...

...010101101010010111010001010110010001010101010010110100101010001010010101001000000011100111010...

Search for promoters and extract genes:

Decode each protein value bit by 
majority from gene information:
1110100101101000010000100111001
0101001010001111010101011110101
0111111101101010010010100010100
0101011010100101110100010101100
1000101010101001011010010101000
0101101010101001010000010111100

Set initial concentrations for 
each protein found: 
TF-protein and P-protein 
concentrations must independently
sum to 1.0.

TF0: 0.25  P0: 0.2
TF1: 0.25  P1: 0.2
TF2: 0.25  P2: 0.2
TF3: 0.25  P3: 0.2
           P4: 0.2

GRN is run and allowed to settle into a steady-state: Inputs are injected into the system:
Existing TF proteins are scaled.

GRN is run and P-proteins are sampled after a predefined number of iterations (2000):

TF0: 0.045 
TF1: 0.955
TF2: ~0.00
TF3: ~0.00

P0: 0.005
P1: 0.88
P2: ~0.0
P3: 0.002
P4: 0.113

I0: 0.0734
I1: 0.0929
I2: 0.0074
I3: 0.0505

P0: ~0.0
P1: 0.752
P2: ~0.0
P3: 0.121
P4: 0.128

TF0: 0.035 
TF1: 0.741
TF2: ~0.00
TF3: ~0.00

P0: 0.005
P1: 0.88
P2: ~0.0
P3: 0.002
P4: 0.113

enhancer inhibitor promoter

gene information

Initialisation

Execution

Fig. 2. An illustrative example of the GRN model. The genome is scanned for promoter
sites and genes are extracted. Each gene’s protein signature is calculated and each pro-
tein is given an initial concentration. The system is run for a number of iterations to
become stable. The environment state is then read, encoded as TF-protein concen-
trations and injected into the system, scaling the existing TF-protein concentrations.
The system is run for a number of iterations before extracting P-proteins to be used
for mapping. This process of encoding and injecting inputs, iterating and extracting
outputs can continue indefinitely.
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A similar formula is used for the expression rate of P-genes. P-protein concen-
trations are normalised separately from the TF-protein concentrations to sum
to 1.0.

dci
dt

= δ(ei − hi) , (3)

3 Combining Artificial GRNs and Grammars

In order to enable the use of GRNs within the TAGE algorithm, the TAGE
pipeline must be extended. The GRN model is embedded at the start of the
mapping process. This enables easy access to the evolved genome in order to
search for TF-genes and P-genes to construct the GRN, as well as providing
access to the traditional mapping process to remap the phenotype each time the
fitness function/environment changes. In order to allow for this, a feedback loop
is required from the fitness function to the mapper.

To evaluate an individual, its genome must first be mapped. The mapping call
initiates a search of the individual’s genome for genes and a GRN is constructed.
This GRN is allowed to run, without free TF-proteins (inputs), for 10000 iter-
ations in an effort to allow the network to settle into a steady state. This may
stop prematurely if a steady state within the GRN is detected earlier.

When the fitness function is called to evaluate the individual, the initial state
of the environment, encoded as concentrations of free TF-proteins, is passed
to the mapper and injected into the GRN, scaling the existing produced TF-
proteins as necessary. The GRN is then run for a predefined number of iterations
before the P-proteins and their concentrations are used to create a string of
integer codon values. These codons are then used by the traditional mapping
process to produce a valid phenotype. One of the major advantages of using
TAGs is that regardless of how many codon values are available to the mapper,
a valid phenotype can always be produced.

3.1 Using Product-Proteins as Mapping Inputs

There are many different methods of interpreting P-proteins and their concen-
tration levels to produce codon values for mapping. In this study, four such
methods are examined, two for use with a binary grammar and two for use with
grammars of any arity. The first two methods are chosen to simulate the ap-
proaches taken in [10] while still retaining the use of a direct mapping grammar.
These two methods make use of a single P-protein to produce a codon value,
whereas the remaining two methods use all available P-proteins to produce a
chromosome of codon values, enabling mapping with grammars of much higher
complexity.

Concentration Value. The P-protein’s concentration is examined. If it is found
to be greater than 0.5, a codon value of 1 is used. Otherwise, a codon value of
0 is used. Using Fig. 2 as an example, After the model has iterated, P0 has a
concentration of ∼ 0.0 producing a codon value of 0. This results in the tree at
index 0 from the grammar being chosen.
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Concentration Tendency. The change in concentration of a P-protein from
input injection until the final iteration. If the magnitude of this change is greater
than some threshold, a codon value of 0 or 1 is used depending on the sign of
that change, positive or negative respectively. Otherwise, the codon value chosen
previously will be reused. Taking Fig. 2 as an example, after the inputs have been
injected, P0 has concentration of 0.05, and a concentration of∼ 0.0 after iteration
2000. As |−0.05| is both greater than the threshold of 1−10 and is negative, a
codon value of 1 is used, choosing the initial tree from index 1 in the grammar.

Sort by Concentration. The set of P-proteins is sorted in descending order
by concentration level, as was suggested in [1]. The P-protein’s 32 bit signatures
are then used to represent integer codon values, with the most concentrated
P-protein being the left-most codon. In Fig. 2, the P-proteins when sorted by
concentration are P1, P4, P3, P0, P2, using their signatures as codons in this
order, an initial tree is chosen from the grammar (one codon) and two adjunction
operations are performed (two codons each).

Sort by Concentration Tendency. Similar to the Sort by Concentrated
method above, however the P-proteins are sorted by means of the signed mag-
nitude of the tendency of their concentration values. In this case, the P-proteins
are sorted in the order P3, P4, P2, P0, P1 as P3 has the largest increase of
0.119 and P1 with the smallest of −0.128. The protein signatures are used as
codon values in this order with the grammar to create a phenotype.

4 The Inverted Pendulum (Pole-Balancing) Problem

The problem examined throughout the course of this study is the pole-balancing
problem [2, 13], a classic dynamic control problem that has recently been exam-
ined in the study of applying GRNs to evolutionary computation [10, 8]. The
description below is based on the problem setup used by Nicolau et al. [10].

The problem consists of simulating a cart which can move along a finite two
dimensional track. A rigid pole is hinged to the centre of the cart. Forces may
be applied to the cart in either direction, causing the cart and the pole to accel-
erate either left or right. The aim of the problem is to prevent the angle created
between the pole and the vertical from becoming greater than some threshold,
and keeping the cart within the bounds of the track. The problem model consists
of four state variables:

x ∈ [−2.4,+2.4]m the cart position, relative to the centre of the track;
ẋ ∈ [−1.0, 1.0]m/s the velocity of the cart;
θ ∈ [−12, 12]◦ the angle of the pole with the vertical;
θ̇ ∈ [−1.5, 1.5]◦/s the angular velocity of the pole.

The (friction-less) physical simulation of the cart-pole model is governed by the
following non-linear differential equations:

θ̈t =
g sin θt − cos θt

[
Ft+mlθ̇2t sin θt

mc+m

]
l
[
4
3
− m cos2 θt

mc+m

] ẍt =
Ft +ml

[
θ̇2t sin θt − θ̈t cos θt

]
mc +m

, (4)
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where g = −9.8m/s2, acceleration due to gravity, mc = 1, 0kg, the mass of cart,
m = 0.1kg, the mass of pole, l = 0.5m, the half-pole length, Ft = α · 10N where
α ∈ [−1.0, 1.0], the force applied to the cart’s center of mass at time t.

These variables are encoded as free TF-proteins for the GRN model by assign-
ing a unique signature to each variable, with each variable’s value normalised in
the range [0.0, 0.1] taking up a max concentration of 0.4 in the GRN model. The
signatures of each variable are:

x: 00000000000000000000000000000000 θ: 11111111111111111111111111111111

ẋ: 11111111111111110000000000000000 θ̇: 00000000000000001111111111111111

These free TF-proteins are injected into the stabilised GRN and the existing
produced TF-proteins are normalised as required. The GRN is then iterated
2000 times, corresponding to 0.2s of simulated time for the cart-pole model.
After which, the P-proteins are mapped and the phenotype is evaluated resulting
in a scaling co-efficient, α, for the force. The value of α is clamped between −1.0
and 1.0 inclusive. The scaled force is applied to the equations of motion and
the state variables are updated, re-encoded, and fed back into the GRN. This
process continues until the maximum number of time steps is reached, or the
cart-pole model enters a failure state, i.e., −2.4 > x > 2.4 or −12◦ > θ > 12◦.
Fitness is calculated by:

F (x) =
120000

successful time steps
− 1 . (5)

5 Experiments

This study is concerned with the application of grammars to the artificial GRN
model. Several experiments are presented to help to examine this effect. The
grammars used throughout this study are listed in Fig. 4, with the general evo-
lutionary parameters of the system used in Tab. 1. For each run, the pole-cart
model is initialised with a random state at the start of each generation.

Table 1. GE parameters adopted for
each of the benchmark problems

Parameter Value

Generations 50
Population Size 250
Initialisation Random

Chromosome Size 128 (4096 bits)
Replacement Strategy Generational

Elitism 25 Individuals
Selection Operation Tournament
Tournament Size 3
Bit Mutation Prob 0.005
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Fig. 3. Mean best fitness plot
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<power> ::= 1.0 0.0 - | 1.0

(a) Direct mapping gram-
mar

<power> ::= <const> 0.0 <op>
<op> ::= + | -
<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

0.6 | 0.7 | 0.8 | 0.9 | 1.0
(b) Discrete digits grammar

<power> ::= <const> 0.0 <op>
<op> ::= + | -
<const> ::= 0.<digits>
<digits> ::= <digit><digits> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9
(c) Continuous digits grammar

<power> ::= <expr> <expr> <op>
<expr> ::= <expr> <expr> <op> | <const>
<op> ::= + | - | * | /
<const> ::= 0.<digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9
(d) Symbolic regression grammar

Fig. 4. The grammars used, in reverse polish notation. Note that (c) generates the
range (−0.9, 0.9) and the values of (d) are clamped to [−1.0, 1.0] as previously.

In order to determine whether the system used by this study is comparable
to the work done previously by Nicolau et al. [10], 50 independent runs of the
simple grammar using the first and second output methods (see Section 3.1)
are performed, using only a single codon value, and producing either -1 or +1.
Following this, assessing the effect of grammar complexity on the system, three
different grammars of increasing complexity are examined over 50 runs using the
remaining two P-protein mapping approaches.

5.1 Analysis of Results

The mean best fitness plots of the direct mapping grammar experiments are
presented in Fig. 3. From the plot, it appears that the P-protein concentration
tendency approach performs better, managing to find solutions in far fewer gener-
ations than using the protein’s concentration value. The concentration tendency
approach also manages to find more solutions overall than the value approach.

While these plots are similar in trend to those presented in [10], showing a
similarity in performance, Fig. 3 has a higher variance. This variance can be
accounted for by the choice of selection methods, generational vs steady-state
[10]. Similar plots are presented for the three other grammars in Fig. 5. From
these plots, it appears that using the concentration tendency approach is better
than using the protein concentration itself.

Generalisation Results. The generalisation test proposed by Whitley et al.
[13] is used in this study to examine robustness. After each run, the best individ-
ual is tested for 1000 time steps on 625 test cases. For each of the problem’s four
state variables, a set of five values is calculated, with these values normalised
to 0.05, 0.275, 0.725 and 0.95 of the each variable’s range. The test cases are
obtained from combining these values. However, only 457 cases are solvable [10].

Given how quickly solutions are found by the tendency approach, as seen in
Fig. 5, it is not surprising that this approach does not perform as well in terms
of generalisation. Tab. 2 shows that while finding fewer successful solutions,
the concentration value approach performs better in the generalisation tests.
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Fig. 5. Mean best fitness plots for the three more complex grammars

Table 2. Generalisation test results: 1000 time steps for 625 test cases

Approach Best Worst Median Mean Std. Dev. Suc. (50)

Best Product - Concentration 406 0 203 203.18 116.05 47
Best Single Output - Tendency 137 0 52 57.52 34.43 50
Discrete - Concentration 355 0 110 120.7 111.76 36
Discrete - Tendency 240 20 87 88.68 45.13 50
Continuous - Concentration 390 0 162 155.48 118.46 40
Continuous - Tendency 200 10 51 61.62 36.35 50
Sym. Reg. - Concentration 356 0 111 128.44 110.21 39
Sym. Reg. - Tendency 208 0 69 78.82 51.75 43

This could be due to the fact that perfect individuals which use this approach
appear much later in the run, with the population having being exposed to
more instances of the problem than those using the tendency approach. Allow
evolution to continue for the whole run rather than stopping once a solution to
any instance of the problem is found might help counteract this.

6 Conclusions

The objective of this study was to examine the effect of integrating grammars and
an artificial GRN model, the motivation for which is two fold. Firstly, advances
in developmental biology have increased our understanding of developmental
processes and how they affect the natural evolution; this knowledge is slowly
filtering into EC fields such as GP. Secondly, while artificial GRNs have been
applied to the field of GP previously [10], the phenotypes have been limited
to simple signals. By exploiting the generative power of grammars, these sys-
tems can be extended to have more varied phenotypic products, allowing their
application to a broader range of problem domains.

Addressing this, an artificial GRN model was adapted into the TAGE algo-
rithm. Different methods of extracting output from the GRN model for mapping
using a grammar were examined. The results obtained show that the inclusion of
a grammar is not detrimental to performance of the GRN in the simplest case, re-
producing results previously published in the literature [10], with more complex
grammars highlighting the system’s ability to produce and operate effectively
with a more complex genotype-phenotype mapping.
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Future work includes the further study of the model, in particular the time
complexity of the algorithm, i.e., the computational cost of initialising the GRN
and processing the output proteins for mapping. The method will also be com-
pared against other approaches to the pole balancing problem, such as [7], as well
as harder instances of the problem. In addition, the system will be applied to
to other dynamic control problems as the uniquely inherent dynamism provided
by the GRN could prove to be beneficial.
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Abstract. Some Genetic Programming (GP) systems have fewer struc-
tural constraints than expression tree GP, permitting a wider range of
operators. Using one such system, TAG3P, we compared the effects of
such new operators with more standard ones on individual fitness, size
and depth, comparing them on a number of symbolic regression and tree
structuring problems. The operator effects were diverse, as the origina-
tors had claimed. The results confirm the overall primacy of crossover,
but strongly suggest that new operators can usefully supplement, or even
replace, subtree mutation. They give a better understanding of the fea-
tures of each operator, and the contexts where it is likely to be useful.
They illuminate the diverse effects of different operators, and provide
justification for adaptive use of a range of operators.

Keywords: Evolutionary Operator, Tree Adjoining Grammar, Genetic
Programming, TAG3P, Fitness, Tree Size, Tree Depth

1 Introduction

Many diverse genetic operators are used in evolutionary computation. In clas-
sical Genetic Programming (GP) [11], and most other tree-based GP systems
(e.g. Context Free Grammar (CFG) GP [19]) there is less flexibility: constraints
on tree structures restrict the available operators, and most of those since de-
fined (e.g. [12,17]) are sub-operators of Koza’s. However a number of GP systems
do permit more varied operators: for example, linear GP representations such
as Grammatical Evolution (GE) and Gene Expression Programming (GEP),
which has led to claims that these more varied operators support better search,
with some level of supporting analysis [8,3]. Similarly, Tree Adjoining Grammar-
Guided GP (TAG3P) [6] permits greater structural flexibility than other tree
representations. The resulting range of operators were claimed in [6] to be both
diverse and beneficial, but beyond some tailoring of operators to specific prob-
lems, there has been little analysis. One is entitled to scepticism. Perhaps the
new operators merely overlap each other in functionality, without greatly chang-
ing the search. We aim to characterise the effects of these operators, determining
the extent of their problem specificity. This forms part of a wider stream of work,
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investigating the combination of a diverse range of operators with operator rate
self-adaptation. It focuses on TAG3P [10] as an example of a much wider range
of such algorithms.

There is already extensive research in Genetic Algorithms (GA) into how
genetic operators affect individuals and move them in the solution space [14].
Related research in GP has been more limited [5], and restricted to a fairly
narrow range of operators. Thus the (potentially) more diverse operators of
TAG3P form an interesting field of study in its own right. In GA, the issues
to consider are relatively limited – because the complexity of individuals does
not change, the main interest lies in how fitness distributions change under the
effect of operators. While this is also important in GP, there are other important
dimensions of change, notably the change in complexity [13], as measured for
example by individual size and/or depth. Our objective is to study these effects.

In section 2 we provide additional background on previous studies of operator
effects in GP, and also on genetic operators supported by TAG3P. Section 3
details the methods we used, including the experimental regime and parameters.
Section 4 presents the results of the experiments. In section 5 we discuss their
implications, concluding in section 6 with the assumptions and limitations of our
study, a summary of the general conclusions, and directions for further work.

2 Background

2.1 Genetic Operators and the Solution Space

Evolutionary algorithms operate on a search space, moving individuals toward
optima by applying genetic operators such as crossover and mutation. GA re-
searchers have analysed the effect of operators in the search space (e.g. [20,14]).
The flexible chromosome structure makes this more complex in GP; nevertheless
a schema theory has been derived (e.g. [18,16] and others [5] have presented a
new operator-based distance measure for GP, implicitly analysing the effects of
genetic operators on individuals in the search space.

2.2 Genetic Operators in Tree Adjoining Grammar Guided GP

Tree Adjoining Grammar-Guided GP (TAG3P) is a grammar-guided GP [6],
based on Tree Adjoining Grammars (TAG) [9]. It is based on the adjunction
operator, which models the way elements such as adjectives (’big’, ’black’) and
phrases (’preening its fur’) – β trees in TAG terminology – may be inserted into
basic sentences (’The cat sat on the mat’) – α trees – so as to generate new, more
complex sentences (’The big black cat sat on the mat preening its fur’). TAG3P’s
key property is flexibility: the representation is less constrained than other tree-
based GP systems.1 Thus it is possible to extend typical GP operators to TAG3P,

1 Specifically, it is always possible to delete any subtree from a TAG3P tree while re-
taining its feasibility, and it is always possible to adjoin to any unoccupied adjunction
site; this property is not shared by other GP tree representations.
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but also to define a range of further genetic operators, including some based more
directly on classical GA operators, and others modelling features of biological
genetic phenomena. In this respect, it resembles linear GP representations more
than it does other tree-based GP systems.

Typical TAG3P Genetic Operators include:

1. Size-Fair Crossover (X) is directly analogous to that in other tree-based
GP, permitting exchange of random subtrees with roots having matching
nonterminals, and (in size-fair form [12]) of the same size.

2. Subtree Mutation (M) selects a random point in the tree, deletes the subtree
below it, and replaces it with a subtree built with the initialisation algorithm.

3. Duplication and Truncation (D/T) randomly choose a node. In duplication,
the subtree below is copied to a matching location in the individual; in
truncation, it is removed. These operators have opposite size and depth
biases, so they are used paired: Duplication or truncation is randomly chosen
with 0.5 probability. They are useful for coarse adjustment.

4. (Point) Insertion and Deletion (I/D) randomly choose a node. Insertion se-
lects an open node (a location that has not been adjoined), randomly chooses
a matching β tree, and adjoins it. Deletion chooses a closed node and deletes
its child. As with the duplication and truncation operators, they are used
paired. They are useful for fine-tuning the size of an individual.

5. Relocation (R) disconnects a random subtree from the tree, and randomly
re-adjoins it at another open location with the same label. By design, it is a
deterministically size-fair operator.

6. Replication copies a parent to its child, preserving it for the next generation.

3 Methods

This work aims to characterise the effect on fitness, size or depth of the various
evolutionary operators. The change depends on the state of the system, hence
we wanted to see how that change itself varied over the course of an evolutionary
run. We did this by conducting typical GP runs. At each generation, in addition
to the normally-created children which were actually used in the evolutionary
run, we generated extra children simply to evaluate the effects of the different
operators, but not otherwise used in the run.

In each generation, we took 200 additional samples for each operator (in
addition to those used for evolution) – of the same order as the number of real
trials of each operator in a generation. We selected the parents for these trials
using the selection mechanism. Thus we were examining the children actually
reachable after selection.

3.1 Test Problems

We used a family of symbolic regression problems [11] and Lid problems [4,15,1].
In the symbolic regression problems, the target was a polynomial Fn = Σn

i=0x
i,
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n ∈ {3, 6, 9, 12, 15}.We evaluated candidates f on 20 random pointsX ⊂ [−1, 1];
f is a hit if, for some predefined ε, ∀x ∈ X : |Fn(x) − f(x)| < ε. The ob-
jective was, using {+,−,×,÷, sin, cos, exp, log}, to construct a hit, with fitness
(f) =

∑
x∈X |Fn(x) − f(x)|. Among Lid problems, we used the Majority and

Order problems. The target for Majority is a tree in which the number of nodes
Pi is larger than of nodes Ni for all i; the target for Order is a tree in which
there is a Pi before each Ni, in preorder traversal, for all i. All trees in these
problems are binary trees, using only one function {JOIN} and 2n terminals
{Pi, Ni : i = 1 . . . n} . The fitness function is {the number of i satisfying the
condition}. We used n ∈ {25, 30} for both problems.

3.2 Experimental Settings

Figure 1 shows the elementary trees defining the TAG grammar used by
TAG3P [7,6]; we ran 100 trials for each problem. Table 1 shows the detailed
parameter settings. Typical GP systems use high rates of crossover and lower
rates of other operators for best performance. But our aim was to examine the
behaviour of the system; a high crossover rate would imply low rates for other
operators. We used a compromise rate of 0.5 for crossover, other operators 0.1
in creating the ’normal’ children that were actually used in evolution.

Table 1. Experimental Settings (Left: Symbolic Regression; Right: Lid)

Target Function F3, F6, F9, F12, F15 M25,M30, O25, O30

Fitness Cases 20 Random Points from [−1, 1]

Fitness Function Sum of MAE of cases # of satisfied i

Success Predicate Error <0.01 on all fitness cases n fitness value

Function Set +,−,×,÷, sin, cos, exp, log JOIN

Terminal Set X P1, ...Pn, N1, ...Nn

Generations 50 Population Size 500 Tournament Size 3

Fig. 1. TAG ElementaryTrees for Experiments for Symbolic Regression

Table 2. Overall Problem Performance

Problem Success Hit Time Problem Success Hit Time Problem Success Hit Time

F3 100% 1.45 F12 7% 48.84 M30 12% 48.15

F6 57% 30.96 F15 6% 48.72 O25 97% 23.11

F9 23% 45.03 M25 28% 42.98 O30 80% 33.72
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Fig. 2. General Performance

4 Results

4.1 Overall Performance

Before analysing operator effects, we first present an overview of the system
performance. Figures 2 and Table 2 illustrate the performance (hit time is the
first generation that a hit occurs). Figures 2 shows both the median (over all
runs) of the best fitness (left axis), and the cumulative success rate (right axis).
System performance on all problems decreases as n increases: the problems be-
come tougher with n, but at a decreasing rate. The fitness curves are typical
for evolutionary processes – an initial steep fall to about generation 10, then
gradual convergence. The cumulative success curves are also typical, with little
success at first, an increasing rate in the middle region, and a final tailing off.
Based on this, to condense the immense amount of data generated, we divided
the generations into three stages: begin (1-10), middle (11-25), end (26-50).

4.2 Detailed Analyses

We conducted detailed analyses on all experiments, but can only show F9 andO30

due to space. F9 is intermediate in difficulty and typical of both extremes, while
O and M problems behaved similarly to each other. F9 and O30 are sufficient to
summarise the general trends, though we will mention some more detailed obser-
vations when appropriate. For brevity, we denote a plot for function Xm calcu-
lated from the fittest n% of children as Xn%

m , with n ∈ {10, 30, 50, 70, 90} and
X ∈ {F,M,O}. The figures show how the genetic operators change the proper-
ties of individuals in each learning stage. The horizontal bars indicate means over
100 runs, while the vertical lines show their standard deviations.

All plots show how each operator changes the specific property for individuals
(the difference between child and parent values – for fitness, negative values
indicate improvement). Replication is omitted because it deterministically has
no effect.

Fitness Analysis: The results in Fig. 3 overall reflect our understanding of
evolutionary behaviour: the operators have a larger range of effect in early
search (they are more exploratory), whereas later on, elite children resemble their
parents much more.
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Fig. 3. Fitness Change for Selected Parents
Top: 30% Elite; Bottom: 70% Elite; Left: F9; Right: O30

The most notable differential effect in Fig. 3 is the much larger range of effect
of the traditional M and X operators: the new TAG3P operators have a much
smaller overall range of effect, suggesting that they are much less exploratory. In
the early stages, X is on average much more beneficial than mutation – for F9,
most of the 30% elite children are an improvement on their parents, while much
fewer M children are; any benefit from M comes from rarer positive mutations.
While M is overall constructive for problem O30, it is still substantially less
so than X . However the effect of X rapidly diminishes, especially for O30; M
remains effective longer.

I/D are generally beneficial in early stages (the 30% elite see some worthwhile
improvement on their parents. I/D retains small but very slightly beneficial
effect until the end stages, befitting its proposed role as a fine-tuning operator.

D/T behave similarly to I/D on F9, though any beneficial effect disappears
by the end stages. Their effect on O30 is rather different, being slightly damaging
in the early stages of search, very slightly beneficial in the mid stages, and losing
all effect at the end.

R throughout has a relatively small effect, disappearing almost entirely by
the end stages (deterministically, it had no effect in the majority problem, since
it cannot change the fitness).

Size Analysis. While we saw different trends between 30% and 70% elite chil-
dren in the fitness plots, there was no such difference for size – size effects were
independent of child fitness; we display the results for the 50% elite. R and X
do not change size at all, so we omit them from discussion.
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Fig. 4. Size Change, Left: F 50%
9 ; Right: O50%

30

D/T generally causes a size change over the run (Fig. 4), with the scale
increasing gradually. However the effect is reversed between the problems: D/T
decreases size for F9 but increases it for O30 (similar, but less pronounced, effects
were seen with other operators). The difference may be because most individuals
were near the size bound in F9, so that many larger duplications would fail, while
most truncations would succeed, introducing a bias.

M began by slightly increasing the size of individuals, but the scale decreased
to zero for O30, and M eventually became reducing for F9. I/D (by design)
made only very small size changes throughout.

Fig. 5. Depth Change, Left: F 50%
9 ; Right: O50%

30

Depth Analysis. We omit analysis of X because, as with size, most operator
applications result in no change in depth, so there is little to see.

The general trends are similar to size (Fig. 5), but on a reduced scale (because
of the logarithmic relationship between depth and size). The shapes of the plots
are generally very similar. The only exception is with operator R, which shows
a slight bias toward depth reduction, increasing in scale over time.

5 Discussion

From the perspective of fitness change, crossover appears to be the most effective
operator at the start of a run. However, insertion/deletion may be preferable at
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the end because of its ability to fine-tune results. On the other hand, subtree
mutation is not particularly effective when we consider fitness change. It has very
low probability of improving individuals; but it does cause the biggest changes
in fitness. It appears from these results that other operators (not available in
most tree-based GP systems) may be more effective. Duplication/truncation
does theoretically similar work to insertion/deletion: it adds or deletes a sub-tree
in the individual. Because insertion/deletion uses just one elementary tree, but
duplication/truncation uses a sub-tree, duplication/truncation seems to work
similarly but with a larger step size. On the other hand, there are no obviously
strong points for relocation in terms of fitness: It may not have much effect on
learning, at least in these problems.

Size and depth effects appear to be largely independent of fitness.This may
have some implications for theories of the cause of GP bloat. There is little
difference between the operators in their effects on size and depth (except for
operators specifically designed not to affect them). At first, all operators that are
free to do so increase size and depth. At the end of a run, however, the reverse
occurs, and the operators decrease size and depth in the symbolic regression
problem. Our hypothesis at this point is, in interacting with the size bound, the
genetic operators and selection reach an equilibrium – selection increasing size
and depth, with the genetic operators decreasing them.

While mutation caused the greatest change in fitness, duplication/truncation
led to the biggest changes in both size and depth, while relocation was able to
change depth without affecting size. Thus when a problem requires structural
change, duplication/truncation and relocation may be useful, but they can be
correspondingly wasteful on problems such as Order.

6 Conclusions

6.1 Summary

We investigated the roles genetic operators play and what they are useful for.
We confirmed that crossover is an effective operator in the early stages of GP,
but it is not effective throughout a run. Subtree mutation, another well known
operator, causes large changes in fitness, even in the middle of a run, but the
changes are generally negative. Insertion/deletion may be a useful alternative,
leading to smoother fitness search – It is effective for fine-tuning, but at the risk
of getting stuck in local optima. Duplication/truncation and relocation may be
useful when structural change is needed, but can also have negative effects on
poorly-matched problems.

More generally, we may conclude that there is value in having a diverse range
of operators: they really do perform different tasks, either in different problems,
or at different times in the evolution of solutions for the same problem. Since we
will not, in general, have a priori knowledge of which operator is most suitable a
any specific time, this motivates and justifies research into operator adaptation
in evolutionary algorithms in general, and in GP in particular.
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6.2 Assumptions and Limitations

Our study was limited to TAG3P; conclusions are likely to extend to other more
flexible GP representations, but have limited relevance to standard expression
tree or CFG-based GP. While the problems considered are very different, yet
generally yielded similar results, they may extend to other problem domains,
but a wider sample would be desirable in future. Although we saw something of
the gross structural effect of operators (on size and depth), we did not investigate
their effect on tree shape in detail.

6.3 Future Directions

Our extensions will have two main directions. We will look more closely at the
shapes of solutions, to better understand operator effects, including working with
structure-only problems such as Daida’s Lid problem [2]. We also aim to extend
our analysis to a range of other GP test problems.
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Abstract. We investigate the properties of locally geometric semantic
crossover (LGX), a genetic programming search operator that is approxi-
mately semantically geometric on the level of homologous code fragments.
For a pair of corresponding loci in the parents, LGX finds a semantically
intermediate procedure from a library prepared prior to evolutionary run,
and creates an offspring by using such procedure as replacement code. LGX
proves superior when compared to standard subtree crossover and other
control methods in terms of search convergence, test-set performance, and
time required to find a high-quality solution. This paper focuses in partic-
ular the impact of homology and program semantic on LGX performance.

Keywords: genetic programming, semantic crossover, homology.

1 Introduction

In a broad sense, a program is a sequence of symbols (instructions), where each
symbol has a particular, given a priori, semantics. The semantics of an instruc-
tion determines its effect : how its output should be determined (computed)
from a given input. A human programmer familiar with programming language
knows that semantics and can use it to anticipate combined behavior of two
concatenated instructions or substituting one instruction with another. How-
ever, the algorithms considered in genetic programming (GP) have no access to
such information. From their perspective, a program is a purely symbolic struc-
ture, where opcodes associated with particular instructions have no particular
meaning.

On one hand, this is consistent with the evolutionary aspect of GP: in the end,
natural evolution does not ‘know’ the phenotypic expression of genes. On the
other hand, the knowledge of semantics is definitely one of factors that makes
human programming so effective. Therefore, equipping GP algorithms with some
semantic extensions can lead to substantial progress in automated programming,
and this opportunity attracted notable interest in recent GP research [4,8,11].

In [3] and [5] we proposed methods that make GP alert to certain semantic
aspects of programs. The locally geometric semantic crossover (LGX, [5]) finds
a semantic approximation of an intermediate (‘medial’) procedure for a pair of
procedures (subtrees) located in parent programs and uses it as a replacement
for the parent programs. In this follow-up study, we investigate the properties
of this method, in particular the impact of homology on its performance.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 397–406, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 The Method
The proposed approach exploits the compositional character of programs, by
which we mean that not only complete programs, but also parts of programs
and program conglomerates have valid interpretation in many programming lan-
guages. We also assume that the fitness function captures the divergence between
program output and some known desired output. This is consistent with GP stan-
dards, where individuals are usually tested on a set of fitness cases, and fitness is
some form of error built upon the outcome of these tests. Formally, a metric || · ||
calculating such error is given. The consequence of this assumption is a convex
surface of fitness landscape, spanned over the space of vectors holding program
outputs. Convexity allows designing recombination operators that are likely to
yield offspring of good quality [10,3]. This is easy to demonstrate for Euclidean
metric: given a point x corresponding to the desired output of a program and
a pair of points x1, x2 representing parent solutions, any point on the segment
between x1 and x2 cannot be further from x than max(||x1 − x||, ||x2 − x||).

The proposed method exploits this property locally, i.e., on level of program
fragments, rather than entire programs. It operates in two major phases. Prior to
evolutionary run, it creates a library of short programs, calculates their semantics
and builds upon them an index for fast access. Then, during an evolution, the
library is used by the crossover operator to modify the fragments of parents’
programs in a semantically-aware way.

Building the Library of Procedures. The input to the method is a set of in-
structions I, each of them being an operator of arbitrary arity. The first step con-
sists in creating from I a library L of short programs, called procedures in following
discussion. The library is purposed to provide semantically diverse code fragments
for the crossover operator. The choice of procedures in L can be done along dif-
ferent criteria, but here, for simplicity, L contains all trees of height at most h.

Next, the semantics s(p) of every procedure p ∈ L is calculated. Throughout
this paper, by semantics we mean a vector of d outcomes produced by a program
for all d inputs (fitness cases). Any two procedures p1, p2 that have the same
semantics (||s(p1), s(p2)|| = 0) do the same thing, which is redundant from the
viewpoint of the method. Therefore, we discard from L procedures that duplicate
the semantics of other procedures, leaving only the shortest ones.

Indexing the Library. The semantics s(p) of a procedure p is a point in a d-
dimensional space. Distances between such points reflect the semantic differences
between procedures. Semantically similar procedures are located close to each
other, while the very different ones occupy distant positions.

To efficiently search this space for procedures that are as close as possible to
an arbitrarily selected point, we employ spatial index, a data structure designed
for geographic databases. As in this study we limit our interest to symbolic
regression, the space of consideration is Euclidean and the semantic distance
|| · || becomes a norm, which allows us to employ the R-trees [1].

Locally Geometric Semantic Crossover. After the library is built and
equipped with an R-tree index, a GP run is launched. It proceeds as regular GP,
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except for employing a homologous crossover operator, termed locally geometric
crossover (LGX). Given two parent programs p1, p2, LGX first identifies the struc-
turally common region for them, which is defined as in one-point crossover by Poli
and Langdon [13], i.e., a set of node locations (loci) that occur in both parents.
The common region can be considered as an intersection of the parents, where the
opcodes are ignored – only the tree structure matters (taking the opcodes into
account would often render the common region almost empty). The subtree can
embrace at most all locations in both parents, but typically it is smaller.

Next, LGX selects a random location (locus) in the common subtree, intended
to serve as crossover point. This choice follows the same rules as in the canonic
Koza-style GP [2]: an internal node is selected with probability 0.9 and a leaf
with probability of only 0.1, to reduce bloat. Subsequently, LGX identifies the
subtrees p′1 and p′2 rooted in the selected location in p1 and p2, respectively. As
they are independent executable programs, their semantics s(p′1) and s(p′2), are
known (technically: cached during individuals’ evaluation), which allows us to
determine the midpoint between them in the semantic space:

sm =
s(p′1) + s(p′2)

2
(1)

This point represents the semantics of a hypothetical procedure p : sm = s(p),
which, when inserted into parents at the appointed location, would make the
resulting offspring programs semantically intermediate at the point of crossover
(cf. [3]). However, finding p in general requires solving an inverse problem p =
s−1(sm), which is a separate program induction problem in itself. Also, as sm is a
combination of semantics of two, potentially big trees, it may not be represented
by a program available within the assumed program space.

This is where the library comes at help. Instead of looking for a procedure
whose semantics is exactly sm, we find in L the procedure that is semantically
most similar to sm, i.e.:

p = arg min
p′∈L

||s(p′) − sm|| (2)

Finding p is facilitated using the R-tree index. The procedure p replaces then the
subtrees p′1 and p′2 in the parent solutions, which so become the two offspring.
This step concludes the crossover act.

Properties of the Approach. An important property of the proposed ap-
proach is completeness. As the library contains representatives of all semantic
equivalence classes obtainable from given set of procedures, LGX can produce
any tree. The semantic search space is not constrained.

The computational overhead compared to the standard GP approach is the
sum of the time required to prepare the library (generation of procedures, cal-
culation of semantics, elimination of semantic duplicates, and construction of an
R-tree) and the time of querying the R-tree in LGX. According to [12], the worst-
case complexity of the latter component is linear w.r.t. the number of objects
(here: library size |L|), but usually the query time is significantly lower. This
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cost depends also on the number of fitness cases and the number of procedures
to be stored in the library, which in our case is a function of h. For large h, it can
be substantial, thus, to keep the computational cost at bay, we use h ∈ {3, 4}.
Related Research. The past contributions that have something common with
the approach presented here can be grouped according to two features: the use
of a library and the semantically-aware modification of solutions. Concerning
the former, LGX can be likened to run transferable libraries [14], which are
repositories of program fragments intended to be used across multiple GP runs
applied to different problem instances. However, [14] does not involve semantics.
Concerning the latter, McPhee et al. were probably the first to study the impact
of crossover on program semantics and so-called semantic building blocks [8]. In
[9], Moraglio et al. considered properties of semantic spaces for different metrics
and provided guidelines for designing semantically geometric crossovers. The
semantically-aware crossover by Quang et al. [11] swaps a pair of subtrees in
parent solutions that have similar, yet not too similar, semantics.

In the context of these contributions, LGX remains unique in combining three
elements: the choice of program fragments w.r.t. their semantic properties, ho-
mologous character of crossover, and the use of a library of procedures.

3 The Experiment

The experiment is aimed at verification whether the semantic properties of LGX
influence the efficiency of GP search. The experimental framework is symbolic
regression, with instructions {+,−,×, /} and a terminal representing indepen-
dent variable x. Semantics is defined as a vector of values returned by a program
for 20 fitness cases distributed equidistantly in the interval [−1, 1].

We consider two libraries, for the maximum procedure height h ∈ {3, 4}. For
h = 3, there are 81 procedures, but only 38 of them are semantically distinct, so
|L| = 38. For h = 4, these figures amount to 21385 and 1697, respectively.

We examine LGX with two types of control setups. The first of them is stan-
dard Koza-style GP [2], which involves conventional tree-swapping crossover that
uses the same probability distribution as LGX for node selection (0.1 for leafs
and 0.9 for internal nodes). Like other considered operators, it never replaces the
root node. The latter, called RX (random crossover), is intended to verify if the
observed results are due to the geometric character of crossing over performed
by LGX. To certain extent, RX operates as LGX (Section 2), however its choice
of procedure from L is purely random. Thus, RX is similar to LGX in terms of
mode of operation, but it is completely blind to the structure of semantic space.

To sum up, there are 5 setups in total: canonical GP, RX and LGX for h ∈
{3, 4}, further referred as GP, RX3, RX4, LGX3 and LGX4.

We solve 6 univariate symbolic regression problems shown in Table 1: 3 poly-
nomials and 3 rational functions taken from [6]. For each configuration, 150 runs
are carried out, each starting from different initial population of size 1024 and
lasting for 250 generations. Fitness is minimized and defined as the absolute error
of the output produced byof an individual w.r.t. the desired output, summed for
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Table 1. Test problems

Problem Definition (formula) Problem Definition (formula)

Sextic x6 − 2x4 + x2 R1 (x + 1)3/(x2 − x + 1)

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x R2 (x5 − 3x3 + 1)/(x2 + 1)

Nonic x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x R3 (x6 + x5)/(x4 + x3 + x2 + x + 1)

Table 2. The absolute error with 0.95 confidence interval, committed by the best-of-
run individuals on training set (mean of 150 runs)

Sextic Septic Nonic R1 R2 R3
GP 0.002 ±0.001 0.159 ±0.040 0.122 ±0.041 0.441 ±0.102 0.231 ±0.040 0.184 ±0.026

RX3 0.002 ±0.001 0.130 ±0.039 0.128 ±0.040 0.175 ±0.039 0.130 ±0.028 0.164 ±0.027
LGX3 0.003 ±0.001 0.109 ±0.034 0.114 ±0.041 0.170 ±0.033 0.086 ±0.020 0.179 ±0.024

NHX3 0.001 ±0.001 0.138 ±0.047 0.085 ±0.039 0.292 ±0.073 0.145 ±0.033 0.141 ±0.030

RX4 0.005 ±0.002 0.102 ±0.024 0.130 ±0.035 0.140 ±0.035 0.101 ±0.019 0.076 ±0.014

LGX4 0.001 ±0.001 0.044 ±0.011 0.043 ±0.009 0.061 ±0.014 0.041 ±0.013 0.028 ±0.007
NHX4 0.002 ±0.001 0.084 ±0.022 0.063 ±0.014 0.102 ±0.022 0.060 ±0.014 0.045 ±0.010

GPtime 0.002 ±0.001 0.102 ±0.031 0.070 ±0.024 0.210 ±0.041 0.137 ±0.028 0.085 ±0.015

the 20 fitness cases. The selection method is tournament of size 7, crossover like-
lihood is 0.9 and reproduction likelihood is 0.1. There is no mutation involved.
Other parameters are set to defaults used in the ECJ package [7], which served
as experimental environment.

Search Progress. Figure 1 presents the fitness of best-of-generation individuals
averaged over 150 runs, along with 0.95-confidence intervals shown as shading.
LGX4 is an unquestionable winner in terms of speed of convergence, while LGX3

makes much slower progress. This may be explained by the fact that the library
it uses is almost two orders of magnitude smaller than that of LGX4 (38 vs.
1697 procedures). As a consequence, the semantic diversity of the procedures
inserted into offspring (the number of unique semantic) is here much lower,
which deteriorates the algorithm’s ability to perform effective exploration.

The fact that LGX outperforms RX is the main result of this study. It demon-
strates that introducing ‘medial’ tendency in crossover makes the search process
converge faster towards good solutions. It is particularly remarkable when we
recall that LGX never affects the root node. Therefore, the effects of geometric-
aware changes introduced into deeper tree nodes must propagate to its root, and,
on average, improve the fitness of offspring more than for the other methods.
This confirms the conclusion of our former study that dealt with a problem of
more discrete nature [3].

Last but not least, the confidence intervals for LGX are much narrower than
those for the other methods. The behavior of this method is thus much more
predictable, and, in convenient circumstances, it should be possible to estimate
the expected number of generations required to attain an assumed fitness level.

Importance of Homology. LGX adds two elements to standard subtree
crossover: homology and the semantically geometric choice of procedures. Its
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Fig. 1. Best-of-generation fitness graphs averaged over 150 evolutionary runs
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superiority of LGX to RX demonstrates that the latter is essential. However,
would LGX perform equally well if it was not homologous? To settle this is-
sue, we prepared an additional control setup that uses a non-homologous but
locally geometric crossover operator (NHX). NHX mimics LGX except for the
choice of loci to be affected, where it works as the standard tree-swap crossover,
i.e., selects them in both parents randomly and independently. Then it finds
the semantically most medial procedure in the library and inserts it into both
parents.

Table 2 compares the final (end-of-run) fitness of best-of run individuals
evolved by NHX with the other methods. For h = 3 (small library), the duel
between NHX and LGX is inconclusive, methods win or lose depending on the
problem. However, for h = 4 the conclusion is clear: LGX yields lower error rate
and not worse variance than NHX. Homology is then an essential component for
this operator that significantly contributes to its performance.

Impact on Tree Size. By being homologous, LGX can be expected to affect
also tree size. Figure 2 depicts the mean number of nodes per individual, calcu-
lated over all individuals in populations and averaged over 150 runs. The results
are very similar across all benchmark problems. The methods using large library
(h = 4) suffer from substantial bloat that is more severe than for the small li-
brary (h = 3). This can be easily explained. The mean tree depth of procedures
in the library is greater for h = 4 than for h = 3. On average then, every act of
crossover brings more genetic material to the population in the former case.

Another observation following from Fig. 2 is that RX suffers from bloat more
than LGX. This suggests that the semantically close-to-geometric procedures
inserted by LGX are on average shorter than the procedures selected from the
library at random by RX. Our explanation for this phenomenon pertains to the
relation between lengths of procedures and their location in the semantic space.
Typically, short procedures will have semantics of small magnitudes, as it is
unlikely to produce large values using arithmetic instructions that operate on
numbers form interval [−1, 1] (with obvious exception of the division operator).
Such semantics will crowd closely around the origin of semantic space. On the
contrary, longer procedures are capable of producing larger output values, which
correspond to semantics that are distant from the origin. Also, every long pro-
cedure that is semantically equivalent to a shorter procedure is discarded when
the library is being built (see Sec. 2). LGX, which looks for procedures that
are semantically medial with respect to parents’ subtrees (cf. sm in Eq. (2)), is
more likely to generate sm that is close to the origin of semantic space. As a
consequence, it selects shorter procedures more frequently.

Test-Set Performance. To assess the generalization capability of the con-
sidered methods, we employed a test set composed of 20 cases drawn randomly
from the interval [−1, 1], with uniform distribution. The best-of-run individ-
ual for each run is executed on these cases, and its generalization capability is
expressed in the same terms as for the training process – the absolute error.
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Fig. 2. Number of nodes (population mean) averaged over 150 evolutionary runs
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Table 3. The absolute error with 0.95 confidence interval, committed by the best-of-
run individuals on test set (mean of 150 runs)

Sextic Septic Nonic R1 R2 R3
GP 0.009 ±0.007 0.233 ±0.068 0.182 ±0.070 0.483 ±0.120 0.302 ±0.109 0.230 ±0.040

RX3 0.004 ±0.002 0.140 ±0.040 0.146 ±0.047 0.191 ±0.044 0.129 ±0.028 0.167 ±0.037
LGX3 0.005 ±0.002 0.122 ±0.038 0.117 ±0.045 0.226 ±0.069 0.086 ±0.020 0.163 ±0.020
RX4 0.029 ±0.031 23.443 ±42.628 0.262 ±0.102 8.025 ±14.853 0.196 ±0.055 0.316 ±0.149

LGX4 0.003 ±0.002 0.116 ±0.032 0.099 ±0.026 0.102 ±0.027 0.077 ±0.032 0.103 ±0.029

Table 3 presents the test-set errors of the best-of-run individuals averaged over
all runs. Comparison of these figures with fitness values achieved on the training
set (Table 2) leads to conclusion that all methods suffer from overfitting. In terms
of the ratio of test-set error to training-set error, GP is superior. However, in
absolute terms, LGX4 attains the lowest error on the test set for all problems
and has also the lowest variance. This is particularly interesting, because LGX4

yields substantially bigger trees than GP (Fig. 2).

Time Complexity. The benefits of LGX come at extra computational cost of
creating the library and searching for the semantically similar procedures. While
the former turns out to be low (1–2 seconds compared to 100–150 seconds of the
cost of entire run), the latter cannot be ignored. The roughly 250 × (1024/2)×
0.9 = 115, 200 R-tree queries per run make LGX substantially slower. In effect,
its overall runtime is on average 2.8 times longer than GP’s. This, together
with the curves in Fig. 1, urges us to ask the question: will LGX maintain its
superiority to GP with same time allocated to both methods?

To verify this possibility, we conducted an additional experiment, which con-
sisted in giving GP the same amount of time as corresponding LGX runs took.
By comparing the results of these runs, presented in the last row of Table 2
(GPtime) with the final fitness values of LGX, we conclude that GP, despite
having more time, cannot catch up LGX4, although it manages to reach the per-
formance level of LGX3 for some problems. Therefore, LGX can be considered
attractive not only from theoretical viewpoint, but also in practical perspective.

4 Conclusion

The main conclusion of this study is that search operators that are at the same
time homologous and semantically medial can improve the efficiency of GP search
and cause the evolved programs generalize better. The experimental analysis
suggests that both these properties are essential. It can be hypothesized, though
remains to be verified that, with time of evolution, LGX causes emergence of
a common semantic blueprint in the population, with the subprograms located at
particular loci specializing at solving certain subproblems of the original problem.
This hypothesis sounds very attractive, as it implies a capability for discovering
semantic modules in the structure of the problem, which in turn could provide
the possibility of problem decomposition.
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LGX has been presented and verified here in the context of symbolic regres-
sion, but it has wider applicability. Any domain for which semantics are com-
putable and a semantic metric is available, can be subject to this approach. In
particular, if the metric || · || is not a norm, there are alternative ways in which
a crossover can be made semantically medial [3].
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Abstract. In metaheuristic optimization, understanding the relation-
ship between problems and algorithms is important but non-trivial.
There has been a growing interest in the literature on techniques for
analysing problems, however previous work has mainly been developed
for discrete problems. In this paper, we develop a novel framework for
characterising continuous optimization problems based on the concept of
length scale. We argue that length scale is an important property for the
characterisation of continuous problems that is not captured by existing
techniques. Intuitively, length scale measures the ratio of changes in the
objective function value to steps between points in the search space. The
concept is simple, makes few assumptions and can be calculated or esti-
mated based only on the information available in black-box optimization
(objective function values and search points). Some fundamental prop-
erties of length scale and its distribution are described. Experimental
results show the potential use of length scale and directions to develop
the framework further are discussed.

Keywords: Continuous optimization, Problem properties, Problem
characterisation, Fitness landscape analysis.

1 Introduction

A continuous optimization problem with a simple symmetric boundary con-
straint is to find a solution vector x∗ such that:

f(x∗) ≤ f(x), ∀x ∈ S (1)

where S = [bl, bu]
n ⊆ IRn. Given a metaheuristic algorithm, a standard ques-

tion is how well will the algorithm perform at solving a given problem (in other
words, how well-suited is the algorithm to the problem)?. For some types of
problems, it is possible to answer these questions rigorously (e.g. if f is convex,
smooth and differentiable, then Newton-based algorithms converge rapidly to-
wards the optimum). However if little can be assumed (e.g. f is a ‘black-box’
problem), then the questions are much more difficult to answer. Metaheuris-
tics utilise multiple heuristics, complex models and randomness, while problems
may be high-dimensional, noisy, or have features such as many local optima or
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other complex structures. The relationship between problems and algorithms in
practice is the result of interactions between these factors.

Metaheuristics research has been dominated by the development of algo-
rithms, but a recent focus has been to better understand both the relationship
between algorithms and problems, and the nature of the problems themselves.
For example, fitness landscape analysis has produced a theoretical framework
and techniques for studying problems. However, this work has mainly been de-
veloped for discrete or combinatorial problems.

In this paper, we develop a framework for characterising continuous optimiza-
tion problems based on the concept of length scale. While previous techniques
from fitness landscape analysis can be applied, we argue that length scale is a
critical concept for continuous problems that is not captured by these techniques.
Sec. 2 reviews previous work on problem analysis with a focus on applicability
in the continuous case. In Secs. 3 and 4 we define and develop the notion of
problem length scale and its distribution. Illustrative experiments are provided
in Sec. 5, and discussion is given in Sec. 6.

2 Discrete and Continuous Fitness Landscape Analysis

The notion of f as an (n-dimensional) ‘fitness’ landscape defined over S has
been widely used as a model in evolutionary biology and computation. A fitness
landscape is defined using f and a graph, G representing S (i.e S is discrete).
Edges in G can be defined by a move operator and induce a neighbourhood in
S. Properties of the landscape can be defined in this framework, e.g. a (strict)
local optimum is a point x′ where all neighbours have a fitness worse than f(x′).
For a discrete S, it is possible to determine whether or not x′ is a local opti-
mum by exhaustive evaluation of its neighbours. For all but very small problem
sizes, enumeration of the landscape is impractical. Fitness landscape analysis
typically uses random, statistical or other sampling methods to obtain points
of interest (and/or their fitness values) from a landscape. Examples include the
distribution of f values (density of states), fitness distance correlation (FDC)
between the sample and a point (typically the global optimum), autocorrelation
and correlation length statistics of random walks in S. Information content aims
at quantifying landscape ruggedness based on transitions observed in f values
[15,14]. Previous research has also focussed on problem-specific techniques to
characterise properties of combinatorial problems such as the travelling sales-
man problem. Comprehensive reviews of fitness landscape and problem analysis
techniques can be found in [9,10,13].

If S is continuous, landscape features conceptually similar to the discrete case
can be defined mathematically (as suggested in [9]), but evaluating them in
practice is problematic. Each solution has an infinite number of neighbours in
theory, yet a finite but extremely large number in practice due to finite-precision
floating-point representation. Another significant difference between discrete and
continuous landscapes is tied to the distance between points in S (using some
metric). For a discrete landscape, the minimum possible distance will occur be-
tween a point and one of its neighbours, with a finite set of possible distance
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values between all points in G. For a continuous landscape, the minimum dis-
tance between points can be made arbitrarily small (in practice until the limit
of precision is reached) and the number of possible distance values is infinite.

The reason for these difficulties lies in the difference between continuous and
discrete problems. Consider a combinatorial problem with binary representation,
S = [0, 1]n. To solve the problem is to determine whether each variable xi in the
solution vector should take the value 0 or 1. A metric (e.g. Hamming distance)
can be defined, but there is no notion of the scale of xi. For a continuous problem
however, finding an appropriate scale for each xi is critical (e.g. does the objective
function vary in a significant way with changes in xi of order 103? 10−3? 10−30?).
Fitness landscape techniques originating from the assumption of a discrete S do
not capture such information because it is not relevant for the discrete case.

Despite these issues, there have been some adaptations of landscape analy-
sis to continuous problems. Gallagher calculated FDC for the training problem
in multi-layer perceptron neural networks [4]. For the learning tasks considered
(student-teacher model), the global optimum is known, however this would not
normally be the case for such a problem. Points were sampled from within a
specified range around the global optimum. Wang and Li calculate FDC in the
context of a continuous NK-landscape model and on some standard test func-
tions [16]. Müller and Sbalzarini [7] analyse the CEC 2005 benchmark function
set using FDC on points uniformly sampled from S. While these results show
interesting structure and differences between problems, the limitations of FDC
noted for discrete problems remain (e.g. [7] concludes that FDC alone is not
sufficient for problem design or measuring difficulty).

Dispersion is a recently-proposed problem metric [6] which measures the av-
erage distance between pairs of high quality solutions. Quality is determined by
sampling points and retaining a percentage with the best fitnesses (according
to a specified threshold). Dispersion is shown to be a useful metric in studying
the performance of CMA-ES on a number of functions. Dispersion makes only
limited use of the f values of points via the threshold used to produce the sam-
ple. Pairwise distances between solutions have also been analysed in samples of
apparent local minima for multi-layer perceptron training [4].

In summary, there are some important limitations of existing techniques for
the analysis of continuous problems, stemming from the adaptation of techniques
developed for discrete problems and/or a limited use of the available information
from sampling solution and their fitness values.

3 Length Scale in Optimization

We aim to develop a framework to study the topological/structural character-
istics of a problem landscape independent of any particular algorithm. Impor-
tantly, the framework should utilise all information available in the black-box
optimization setting, be estimated easily from data and be amenable to statistical
and information theoretic analysis.
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Definition 1. Let xi and xj be two distinct solutions in the search space (xi 	=
xj) with corresponding objective function values f(xi) and f(xj). The length
scale, r, is defined as:

r : [0,∞) =
|f(xi)− f(xj)|
‖xi − xj‖ (2)

The length scale intuitively measures how much the objective function value
changes with respect to a step between two points in the search space. In this
paper, we use Euclidean distance, however any appropriate metric can be used.
Length scale is defined simply as a magnitude over a finite interval in the search
space: directional information about a step from xi to/from xj is not considered.

Our definition of r is related to the difference quotient (also known as Newton’s
quotient and is a generalisation of finite difference techniques) from calculus and

numerical analysis. The difference quotient is defined as f(x+h)−f(x)
h , and can be

used to estimate the gradient at a point x, as h → 0 [8]. Implementations of
gradient-based algorithms utilise approximations of this form if the gradient
of f is not available. Finite difference methods are widely used in the solution
of differential equations, but are not directly related to this paper. Length scale
is also related to the Lipschitz constant, defined as a constant, L ≥ 0, where
|f(xi)− f(xj)| ≤ L‖xi − xj‖, ∀xi,xj [17]. However, r does not assume that f is
continuous and captures information about all rates of change of f over x.

In some cases, it is possible to derive a simple expression for the length scale
of a problem, as illustrated by the following examples.

Example 1. 1-D linear objective function

Given f = ax where (x, a ∈ IR), the length scale between xi and xj is:

r =
|f(xi)− f(xj)|
‖xi − xj‖

=
|axi − axj |
|xi − xj |

= |a|

For this function, r captures the intuition that any step in S will be accompanied
by a proportional change in f . The length scale of any finite set of samples from
the search space (e.g. the points visited by an optimization algorithm) is invariant
to the location(s) in S or the order in which the points were taken. The length
scale of a (n-D) neutral or flat landscape is also a special case of this.

For most continuous problems, r will not be a constant over S. In different
regions of the space, the length scale value will depend on the local topology of
the fitness landscape (varying slope, basins of attraction, ridges, saddle points,
etc.).
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Example 2. 1-D quadratic objective function

Given f = ax2 where (x, a ∈ IR), the length scale between xi and xj is:

r =
|f(xi)− f(xj)|
‖xi − xj‖

=
‖axi2 − axj2‖
‖xi − xj‖

=
|a|‖(xi − xj)(xi + xj)‖

‖xi − xj‖
= |a|‖xi + xj‖

Here, steps between points that are relatively close to the optimum result in
relatively small length scales compared to the same-sized steps further from the
optimum. This suggests that an algorithm needs to reduce the size of the steps
it makes to successfully approach the optimum of this function (e.g. gradient
descent). To illustrate the richness of length scale information we construct an
artificial 1-D function with a variety of different topological features.

Example 3. 1-D ‘mixed-structure’ function defined as follows and shown in
Fig. 1(a).

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if 1 ≤ x < 1.5
50(x− 1.75)2 − 4.15 if 1.5 ≤ x < 2
5.125x− 11.25 if 2 ≤ x < 3
50(x− 3.25)2 + 1 if 3 ≤ x < 3.5
0.75(x− 4.35)2 + 3.583 if 3.5 ≤ x < 5
3 log(|x − 5.6|) + 5.5 if 5 ≤ x < 5.5
3 log(|x − 5.4|) + 5.5 if 5.5 ≤ x < 6
0 otherwise

(3)

Since f is a 1-D problem (x ∈ [0, 6]) it is possible to enumerate length scales over
the entire search space to a certain level of numerical precision. Fig. 1(b) shows
the length scales calculated between pairs of points, xi, xj , at increments of 10−3

across S. We have coloured the values using a logarithmic scale to better visualise
magnitudes of change. The plot is symmetric across the diagonal, which follows
from the definition of r. The thin black line along the diagonal is approximately
a zero-length step (xi = xj). The two flat regions of the function produce black
squares where r = 0. The dark lines and curves in the plot show steps in the
space where f(xi) ≈ f(xj), e.g. moving from a point on one side of a basin or
funnel to a point on the other side of the minimum at the same height. Within
the plot, it can be seen that components of the function combine to produce
different patterns and gradients of r values.

Overall, it is clear that r reflects the structure of f : if f has complex structure
then this will also be captured in r. In addition, Fig. 1(b) gives an indication
of how much variety is contained in the search points and f values that an
algorithm encounters as it attempts to search a landscape effectively.
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Fig. 1. (a) 1-D ‘mixed-structure’ function. (b) Enumeration of length scales in the 1-D
‘mixed-structure’ function.

4 Length Scale Distribution

Length scale values produce information about problem structure. While it is
possible to enumerate r over a large set of values for a 1-D problem, this is clearly
infeasible for higher dimensions. One possibility is to summarise the values of r
that occur over a given landscape. A good summary of r may be usable to predict
the values of r we will see if further exploration of the landscape is conducted
(particularly if the sampling technique is the same).

Definition 2. Consider r as a continuous random variable. Then, let the length
scale distribution be defined as the probability density function p(r).

Consider again Example 1. Since r = |a|, p(r) is a Dirac delta function:

p(r) =

{
1 if r = |a|
0 otherwise

It follows that the n-D flat function also results in a Dirac delta function with a
spike at r = 0.

Now reconsider Example 2. Let Z be the sum of two independent, continu-
ous uniform random variables bounded by [bl, bu]. This produces a triangular
distribution [5]:

pZ(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z−2bl
(bu−bl)2

if 2bl ≤ z ≤ (bl + bu)

2bu−z
(bu−bl)2

if (bl + bu) < z ≤ 2bu

0 otherwise

The length scale distribution for Example 2 is the absolute value of pZ(z):

p(r) = |pZ(r)| = pZ(r) + pZ(−r), ∀r ≥ 0
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Therefore, p(r) of the 1-D quadratic function is a ‘folded’ triangular distribution.
While p(r) can be derived for some functions, in general it can be approxi-

mated using probability density estimation based on r values sampled from the
landscape (see Sec. 5). The length scale distribution is not unique for a problem
but will vary depending on the structure present in that problem.

We can utilise concepts from information theory to compare landscapes via
their length scale distributions. Shannon entropy is used as a measure of the
uncertainty of a random variable [2]. Entropy measures the expected amount of
information needed to describe the random variable. The entropy of p(r) is:

h(r) = −
∞∫
0

p(r)log2
(
p(r)
)
dr (4)

We conjecture that problems with structure of similar complexities should yield
a similar h(r), and hence, h(r) is potentially very useful for categorising prob-
lems. The Dirac delta function has the smallest entropy of all density functions,
meaning the n-D flat and 1-D linear functions minimize h(r). The uniform den-
sity function (in a bounded region) has the largest entropy of any other density
function bounded within the same region. To obtain a uniform p(r), there must
be length scales of uniformly varying size, e.g. random noise functions. There-
fore, random noise functions maximize h(r). This results in two extreme values
of h(r) that any given landscape is within.

5 Length Scales of the BBOB’10 Test Functions

In this section we examine length scales of the Black-Box Optimization Bench-
marking 2010 (BBOB’10) test functions [3]. We aim to investigate whether or
not there is a relationship between the ‘difficulty’ of functions (as measured by
the best performing algorithms in BBOB’10) and length scale. Problems with
largely varying length scales may contain a richer, more complex structure, and
may be more difficult to solve. The methodology used in these experiments is
general and can be easily applied to other black-box problems. Source code used
is available at http://www.itee.uq.edu.au/∼uqrmorg4/length-scale-bbob.html.

We use a random Levy walk to sample S and corresponding f values. Levy
walks generally yield good coverage of the search space at varying magnitudes
of step sizes [12]. The Levy distribution pertaining to step size is parameterised
by scale (γ) and location (δ) parameters, here both set to 0.001. This type of
walk has frequent small steps (with 0.001 being the minimum), and infrequent
large steps.

A Levy walk of 105 steps was conducted for each of the BBOB’10 functions.
Walks were bounded by [−5, 5]10, with proposed steps outside the boundary
rejected. Length scales were calculated for each pair of solutions, producing
50005000 values of r. Kernel density estimation was then used to estimate
p(r). The kernel bandwidth was calculated using the ‘solve-the-equation plug-in’
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Fig. 2. Examples of similar length scale distributions estimated on BBOB’10 functions

method [11]. The resulting length scale distributions were quite varied across the
problems, however there were a few notable similarities, shown in Fig. 2.

Fig. 2(a) shows p(r) for Sphere (F1) and Rastrigin (F3). We do not expect
these distributions to be identical, however since the global structure of F3 is
F1, we observe some similarity. In Fig. 2(b), we see almost identical length scale
distributions, resulting from sampling Rastrigin-like functions. The length scale
distributions for Rosenbrock (F8) and Rosenbrock Rotated (F9) can be seen
in Fig. 2(c). The larger peak in the F9 distribution indicates that there are
more low-valued length scales. Both functions are variations of Rosenbrock and
we observe similar changes in fitness, and hence similar ranges of length scales.
This observation is also true for the Schaffer F7 (F17) and Shaffer F7 Moderately
Ill-Conditioned (F18) distributions (Fig. 2(d)). It is clear that problems with
similar structure have similar length scale distributions, while problems with
vastly different structure have different length scale distributions.

To examine the relationship between r and problem difficulty, we use the
expected running time (ERT) for the best-performing algorithm in the BBOB’10
results [1] as a proxy for problem difficulty. We use the results within a precision
of 10−8 of the global optimum (e.g. the BFGS algorithm performs best on F1
with an ERT of 23, and so we use ‘23’ to indicate problem difficulty). Given
the kernel density estimate of each p(r), we can estimate h(r). Fig. 3 shows
h(r) vs ERT for the BBOB’10 functions. There is an interesting relationship
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Fig. 3. Length scale distribution entropy vs ERT for BBOB’10 problems. F1 to F5 are
◦, F6 to F9 are �, F10 to F14 are ×, F15 to F19 are + and F20 to F24 are �.

between h(r), ERT and the function type. Separable functions are denoted by
◦; low to moderately conditioned functions by �; high and uni-modal functions
by ×; multi-modal with adequate global structure by +; and multi-modal with
weak global structure by �. Fig. 3 clearly shows clustering of problems within
categories, e.g. F10-12, F6-7 and F15-19. In fact, for problems F6-12, ERT is
incapable of distinguishing the categories, while h(p(r)) can. This illustrates
that length scales capture valuable information about problem structure.

In Fig. 3, there is a great distinction between the uni-modal (◦, � and ×) and
multi-modal functions (+ and �). In general, multi-modal functions are more
difficult, and so we expect ERT to separate uni-modal functions from multi-
modal functions. This is observed, however we can additionally see that h(r) is
capable of characterising uni-modal and multi-modal functions.

6 Summary and Conclusions

We have proposed a framework for characterising continuous optimization prob-
lems using the notion of length scale and its distribution. The framework is based
on utilising all available information in black-box optimization and is readily cal-
culated using points from S and their f values. This paper has discussed some
properties of length scale, presented examples and experimental results using
the BBOB’10 competition results.

We believe that there is considerable scope for future work. It should be pos-
sible to explore the relationship between features such as landscape modality or
ruggedness and the shape of p(r). Entropy was used to summarise the distribu-
tion, but other ideas from statistics and information theory deserve investigation.
Our experimental results assume that the sampling methodology used produces
a representative sample of the search space. This requires quantification. It would
be interesting to analyse different real-world and benchmark continuous prob-
lems using length scale. The set of points that an algorithm evaluates during a
run could also be analysed to examine the length scales visited by the algorithm.
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Abstract. This paper presents a new mathematical approach to study
the behaviour of population-based methods. The calculation of the ta-
keover time and the dynamical growth curves is a common analytical
approach to measure the selection pressure of an EA and any algorithm
which manipulates a set of solutions. In this work, we propose a new
and more accurate model to calculate these values. This new model also
includes other very interesting features, such as the characterization of
the complete behaviour of the methods using a single value, the Rayleigh
distribution parameter. We also extend the study to consider the effect
of the mutation (or in general, any neighborhood exploration operator)
and we show several advanced uses of this models such as building self-
adaptive techniques or comparing algorithms.

Keywords: Growth Curves, Takeover Time, Rayleigh Distribution.

1 Introduction

Optimizing (or searching or learning) is a commonly practiced sport in designing
a new metaheuristic that beats others on a given problem or set of problems.
This kind of experimental research finishes by establishing the superiority of a
given technique over others. In this scenario, researchers should not be limited
to establishing that one metaheuristic is better than another in some way, but
also to investigate why, i.e., they must understand how the algorithms work.

These last studies usually are developed using mathematical tools (run-time
analysis, takeover time study or landscapes analysis). In this work, we focus on
the takeover time and the growth curves. This approach measures the converge
time (time in which all the population is only composed by the best individual)
under several assumptions (the best possible individual is in the initial popula-
tion and only selection operators are employed) This approach was successfully
used to analyze GA [1], and other types of population-based algorithms [2,3].

In this work, we propose a new model to calculate the growth curves and
takeover time. This new model is more accurate than existing ones, and it has
another important feature, it allows to characterize the behaviour of the method
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using a single value (the Rayleigh parameter). Later, we will also extend this
model to consider a more realistic case, in which we incorporate the mutation
to the method. We study how the new parameter can give us some information
of the effect of mutating solutions. Finally, we will show some advanced uses of
this mathematical model which can be useful for any researcher. In particular,
we show how we can build a new self-adaptive technique and how we can use
this model to classify and compare algorithms.

This paper is organized as follows. Section 2 is an introduction containing
some preliminary background about some basic concepts, previous models for
takeover time, and our proposed approach. In Section 3, we analyze the predicted
takeover times provided by the models. Section 4 studies how our model can
capture the effect of the mutation. Some advanced uses of the proposed model
are given in Section 5. In the last section we summarize the conclusions and give
some hints on the future work.

2 Growth Curves and Takeover Times

In this section, we first give a brief definition of growth curves and takeover
times (Subsection 2.1). Later, in Subsection 2.2 we describe some existing models
for the calculation of these vales and we finish this section analyzing our new
approach and its possible advantages.

2.1 Definitions

A common analytical approach to study the selection pressure of an EA is to
characterize its takeover time [1], i.e., the number of generations it takes for
the best individual in the initial population to fill the entire population under
selection only. The growth curves are another important issue to analyze the
dynamics of the population-based methods. These growth curves are functions
that associate the number of generations of the algorithm with the proportion
of the best individual in the whole population. In Fig. 1 we show an example of
these two concepts.

Now, we give a mathematical definition of these concepts. Let us start by
formally defining what the growth curve is, since it is the basis to define the
takeover time.

Definition. Given a population-based algorithm, under selection only, with an
initial population containing exactly one individual of the best fitness class; the
function Psel : N−→[0, 1] that maps the proportion of copies of the best individual
in the population to each generation step, is termed as the growth curve.

As result of applying selection only in an population-based method (without
variation operators), at every generation the number of copies of the best indi-
vidual potentially grows up. The number of generations it takes for the algorithm
to completely fill the population is what is called the takeover time, formally
defined as follows:
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Definition. Let Psel be the function defining the growth curve induced by a
selection method, the value tsel = min{t : Psel(t) = 1} is called the takeover
time associated to the given selection method.

Several models have been proposed to estimate the takeover time for most com-
mon selection methods. We can classify the selection techniques in two categories:
(a) methods which only depend on the order among the individuals in the pop-
ulation (order-based), and (b) techniques which take the fitness of each individuals
into account (fitness-based). In this work, we focus on tournament and
proportional selection, which are representative of these two cases, respectively.
In next subsection, we discuss some existing mathematical models to estimate the
takeover time for these two selection methods, and later, we present our proposal.

Fig. 1. Growth curve and takeover time for a population-based method using binary
tournament selection method

2.2 Existing Models

G&D model. We start analyzing the theoretical models proposed in the original
work of Goldberg and Deb [1]. They propose different models for each selection
method. In tournament selection, two or more individuals are chosen at random
for a fitness-based competition and the best of them is selected with a high
probability for breeding. Their model for calculating the takeover time is:

tG&D
tour =

1

ln s
[lnμ+ ln (lnμ)] (1)

where μ is the population size and s stands for the tournament size, i.e., the
number of individuals chosen for competition. You can notice that this func-
tion only depends of the population size and tournament size, which are both
parameters of the algorithm.

In proportionate selection individuals are chosen according to their fitness
values, so that the fittest members have a higher chance of being selected. The
takeover time in this case is defined to be:

tG&D
prop =

1

c
μ logμ (2)
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where c is a constant value, which is a function of some fitness-based feature of
the initial population.

Logistic model. Let us continue by discussing the work of Sarma and De Jong
[2]. In that work, they proposed a simple quantitative model for cellular EAs
(which can also be used in panmictic scenarios) based in the logistic family of
curve. In summary, the proposed equation for calculating growth curve is (3):

PLOG(t) =
1

1 + b · e−at
. (3)

where a and b are growth coefficients. This approach uses the same model for any
kind of selection method, since the effect of the selection technique is incorpo-
rated in the adjustable values a and b. To calculate the takeover time using this
model, we can make use of the definition of takeover time of the previous subsec-
tion, and iterate this models (starting with P (0) = 1/μ, being μ the population
size), searching the lowest t value, which makes P (t) ≈ 1.

Hypergraph model. Sprave [4] has proposed a unified description for any non-
panmictic population structured EA, that could even end in an accurate model
for panmictic populations (since they can be considered as fully connected struc-
tured populations). He modelled the population structure by means of hyper-
graphs. A hypergraph is an extension of a canonical graph. The basic idea of
a hypergraph is the generalization of edges from pairs of vertexes to arbitrary
subsets of vertices’s.

He developed a method to estimate growth curves and takeover times. This
method is based on the calculation of the diameter of the actual population
structure and on the probability distribution induced by the selection opera-
tor. In fact, Chakraborty et al. [5] calculated the success probabilities for the
most common selection operators (pselect), what represents an interesting com-
plement for putting hypergraphs to work in practice. A complete description of
the hypergraph model can be found in [4].

Topology model. Alba and Luque [3] proposed an accurate model for distributed
evolutionary algorithms but it could be used for panmictic populations con-
sidering this case as special one of a distributed method using an appropriate
migration policy. Their proposed model is the following:

P TOP (t) =

i=d(T )∑
i=1

1/N

1 + a · e−b·(t−per·(i−1))

+
N − d(T )/N

1 + a · e−b·(t−per·d(T ))
(4)

where d(T ) is the diameter of the topology, per is the migration frequency, N
is the number of islands, and a and b are growth coefficients . This expression
is a combination of the logistic model plus our previous model. In fact, in the
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panmictic case [1] (d(T ) = 0, per = 0, and N = 1), this equation is the same as
the logistic one, and therefore it will not be used in the rest of the paper.

Other models. Some other models were proposed in the literature [6,7,8,9]. These
models usually are very accurate ones, but they are linked to specialized algo-
rithms or specific parameter settings. Therefore, in the rest of the paper, we only
compare our proposed model against logistic, hypergraph, and Goldberg & Deb
models.

2.3 Our Proposed Model

In this paper, we propose a new model for calculating the takeover time (and
the growth curves) based on the cumulative function of Rayleigh distribution
[10]. The Rayleigh probability density function is:

f(x;σ) =
x

σ2
e−x2/2σ2

, x ≥ 0, (5)

for parameter σ > 0, and cumulative distribution function:

F (x) = 1− e−x2/2σ2

(6)

for x ∈ [0,∞).

Fig. 2. Cumulative distribution function of Rayleigh distribution

If we observe the cumulative function of this distribution (see Fig. 2), we can
notice that it is very similar to the growth curve shape presented in the previous
section (Fig. 1) and it is controlled by a single parameter σ. This was one of
the reason why we select this model. In additional, this distribution have been
deeply studied and some interesting properties have been defined. Maybe, one of
the most important properties (from our work point of view) is that it is possible
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calculate an accurate estimation of the parameter σ with some points (N) of the
Rayleigh distribution, using the next equation:

σ̂ ≈
√√√√ 1

2N

N∑
i=1

x2
i . (7)

Summarizing, the proposed model for the calculation of the growth curves is:

PRAY (t) = 1− e−t2/2σ2

(8)

And the expected advantages of this models are:

– Simplicity: A single model that can be used to describe the behaviour of any
population-based algorithm under any selection method (and maybe some
variations operator as we will showed in Section 4).

– A single control parameter: We can describe the complete behavior of the
method using a single real value.

– Ability to predict the control parameter: We do not execute the whole algo-
rithm to calculate the σ parameter, but this value can be estimated with a
relative low number of steps of the technique, maintaining a quite accurate
result.

3 Accuracy of Models for Takeover Times

In this section we study the precision of the different models to predict the real
values of the takeover time for binary tournament and proportional selections.
We divide this section into three parts: in the first one, we describe the methodol-
ogy followed to perform the experiments and the comparisons; later, we compare
the accuracy of the existing models and our new approach; finally, we study the
ability of our model to calculate the Rayleigh parameter (and therefore, the final
takeover time) using only a small number of generations instead of all ones.

3.1 Methodology

We have performed experiments with binary tournament and proportional se-
lection. In the experiments, we use a population of 4096 individuals (μ = 4096),
with (μ+ μ) strategy and the initial population is randomly generated with indi-
vidual fitness between 0 and μ−1 and then we introduce a single best individual
(fitness = μ). In hypergraphs we have used an expected level of accuracy of
ε = 2.5 · 10−4. For the actual curves we have performed 100 independent runs.

In order to compare the accuracy of the models we proceeded to calculate the
mean square error (9) between the actual values and the theoretically predicted
ones (where k is the number of points of the predicted curve).

MSE(model) =
1

k

√√√√ k∑
i=1

(modeli − experimentali)2 . (9)
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Using this metric, as we said in the previous section, we compare the accuracy
of our proposed model against some existing one. In concrete, the comparison
will be performed against the Goldberg, logistic, and hypergraph models.

3.2 Analysis of the Results

Now, we analyze the mean square error for the different models. Fig. 3 contains
the error of all the models analyzed in this work for binary tournament and a
proportional selection method.

Several conclusions can be obtained from this figure. First, we can notice that
the error of the models predicting the takeover time value for the proportional
selection is slightly larger than the mean error for tournament selection, but
in both cases, the behaviour of the models is quite similar. It is clear that the
hypergraph model is not able to capture the dynamics of a panmictic algorithms.
This is not a surprising result since this model was proposed for structured
populations, and although some configurations makes the behaviour of a non-
panmictic algorithm be closer to a panmictic one, there exist still some differences
as it is proved by the error that produces this model. The logistic model and the
model of Goldberg and Deb obtain quite similar and accurate results, but they
are significantly worse than the proposed one.

Fig. 3. Mean square error for binary tournament and proportionate selection methods

The first advantage that we expect of our model (the accuracy) is fulfilled,
and therefore, in the next subsection, we analyze the second one. The second
important expected advantage is the ability to estimate the σ parameter using
only the results of a few generations of the method instead of using the results
of the complete execution of the technique (as we do in this subsection).

3.3 Accuracy of the σ Estimation

In this section, we use the Equation 7 to estimate the σ parameter. To do it, we
calculate the approximation of σ using different amount of generations (measured
as a different percentage of the global execution). In Fig. 4, we show the error
of our method for the different estimation.
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Fig. 4. Mean square error when the σ value is estimated using a different amount of
points

As it was expected, the larger the number of generation used for the predic-
tion, the more accurate the results are. We can notice that using about 50-60%
of the global execution (depending of the selection method) allows to obtain a
very accurate prediction, and adding new data from more generations only gets
insignificant improvements. Then, for a good estimation of the σ parameters in
this case we only need to run half of the expected total execution. That per-
centage is quite high (we expected a lower number) but it is due to the takeover
time for the tested selection method is quite low (around 25-40 generations),
and even a small number of generation implies a high percentage. Anyway, we
have observed that this model allows to estimate the parameter controlling its
behaviour without the need of completing the execution.

4 Analyzing the Effect of the Mutation

In this section, we tackle a more realistic scenario in which the mutation oper-
ator is used. In this preliminary work, we use a simple mutation operator. In
concrete, we analyze the bit-flip operator with different intensity (considering
this parameter as the number of bits changed in the solution by the operator).
Since the calculation of the growth curves only considers increasing successions,
in the experiments, we will only take into account the applications of the muta-
tion operator in which the fitness of the resulting solution will be equal or better
than the original individual. As test problem for the experiments, we will use
the academic OneMax problem with a bitstring of 10000 elements.

In Fig. 5a we show the MSE of our model. We can observe that the error for
all the intensities are quite small and similar to the obtained in the previous
section (without mutation). Therefore, our model is able to capture successfully
the mutation effect without including additional terms in the equation.

Another interesting topic is analyzing how the σ parameter varies with the
different mutation intensity and if it is possible to find a relation between both
parameters. This relation is shown in Fig. 5b. In that figure, we can observe
that there is a clear (inverse) relation between the σ and the intensity of the
mutation. This result is quite expected since a higher value of mutation intensity
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Fig. 5. (a) Mean square error of our model for different mutation intensity and (b)
relation between σ parameter and mutation intensity for OneMax problem

represent a faster convergence of the method (more solutions can be the optimal
one in a small number of generations), and the σ value controls the slope of the
growth curve. This result is quite promising since the σ parameter can be used
to summarize the configuration (behaviour) of the method in a single value, but
a deeply study is needed.

5 Advanced Uses of the Proposed Model

In this section, we discuss briefly two possible advanced uses of the proposed
models

– Building self-adaptive methods : As it can analyzed in the previous section,
there exists a relation between the parameter of the method and the pa-
rameter, σ, which controls the model, and we can use that information to
change the setting of the algorithm to force a specific behaviour. However,
our model makes several assumptions that cannot be met in real scenarios
where the method is to be applied. Therefore, our first challenge consists in
adjusting the mathematical models to work for real cases but some initial
results about this topic can be found in [11].

– Comparing and classifying algorithms : Since the parameter used by our
model allows to summarize the behaviour of the complete algorithm in a
single real value, it can be used as a metric to compare algorithms (com-
bined with other existing ones as execution time, solution quality, . . . ) and
even to detect classes of equivalence among the different values of the con-
figuration parameters of optimization techniques.

6 Conclusions

In this paper we have performed an analysis of the growth curves and takeover
regime of population-based algorithms. We compared the well-known Goldberg
model, logistic model, a hypergraph model and a newly proposed model based
on the cumulative function of the Rayleigh distribution. In this work we have
shown how our models is able to capture the behaviour of the method, obtaining
the most accurate prediction of the takeover time.
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Also, we have describe how it is possible to calculate a good estimation of
the parameter which controls our model without the necessity of execute the
complete algorithm. We have extended this work to consider some easy variation
operators (mutation one), and we have observed that our model captures its
effect accurately, and it is possible to establish a clear relation between the
mutation intensity and the σ parameter. Finally, we have shown several practical
uses of this mathematical models: to build new algorithms and to compare (or
classify) population-based techniques.

As a future work we plan to check the results presented in this paper on
additional operator (even recombination ones) and problems. We can also want
to perform a comprehensive study about the meaning of σ parameter, and its
utilization in practical cases.
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Abstract. In this paper we address model selection in Estimation of
Distribution Algorithms (EDAs) based on variables trasformations. In-
stead of the classic approach based on the choice of a statistical model
able to represent the interactions among the variables in the problem,
we propose to learn a transformation of the variables before the estima-
tion of the parameters of a fixed model in the transformed space. The
choice of a proper transformation corresponds to the identification of
a model for the selected sample able to implicitly capture higher-order
correlations. We apply this paradigm to EDAs and present the novel
Function Composition Algorithms (FCAs), based on composition of
transformation functions, namely I-FCA and Chain-FCA, which make
use of fixed low-dimensional models in the transformed space, yet being
able to recover higher-order interactions.

Keywords: Function Composition Algorithm, Transformation of Vari-
ables, Minimization of Mutual Information, Chain Model.

1 Introduction

Estimation of Distribution Algorithms (EDAs) belong to the class of meta-
heuristics for optimization where the search is guided by a statistical model
able to capture the interactions among the variables in the problem. When the
model is not given a priori, model selection becomes crucial in order for the algo-
rithm to be able to detect global optimal solutions. Indeed if the model chosen is
not expressive enough, or if the wrong interactions are considered, model-based
search strategies are prone to converge to local optima, cf. [16,10,6].

As a consequence, much of the literature in the EDAs community is focused
on applying efficient algorithms for model selection, able to identify the correct
interactions of the function from a sample of observations. Among the others
we mention algorithms which reconstruct the topology of a Bayesian Network,
as in BOA [12], clustering algorithms for the variables that appear to be corre-
lated, eCGA [8], or model selection for Markov Random Fields (MRFs), as in
DEUM [13]. When no prior information about the problem is available, EDAs
need an efficient and scalable policy for model selection. In the general case
learning an accurate model is exponential in the number of variables thus it is a

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 428–437, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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common practice to reduce the search space for the models, for example by lim-
iting the interactions considered to the second order, when learning a MRF, by
constraining the number of incoming edges in a BN or employing variable clus-
tering techniques as in [14]. These restrictions can limit the performance of the
algorithms in presence of certain structures of interactions among the variables.

In this paper we propose an approach to the problem of model selection based
on the idea of applying a transformation of the variables and then employing a
fixed low dimensional statistical model in the new transformed space. Obviously
we moved much of the computational complexity from model selection to the
choice of a good transformation; on the other side it becomes easier to select
models able to capture higher-order interactions among the variables. Instead
of limiting the search up to a given order of interactions, due to the family of
transformations we introduce, we are able to identify non hierarchical models
that can be efficiently employed in an EDAs.

To the best knowledge of the authors, the approach of transforming the origi-
nal variables first appeared in [17], where the UMDA [11] is run over a set of new
variables obtained applying ICA on the selected sample. More recently, Tous-
saint proposed to employ compression algorithms to the sample of promising
solutions [15], Cho and Zhang cluster similar individuals in a group and explain
the high order interactions with latent variables [3], Grosset et al. introduce
physically meaningful auxiliary variables related to the application domain [7].

The paper is organized as follows. In Section 2 we review the MBS approach
to optimization. In Section 3 we present the idea of employing variable trans-
formations to perform model selection. In Section 4 we describe the Function
Composition Algorithms (FCAs) family. First we review and discuss more in de-
tail I-FCA, originally presented in [4], next we introduce a novel algorithm called
Chain-FCA, which makes use of a fixed chain model. In Section 5, we discuss
and compare the preliminary performance of the above-mentioned algorithms.
In Section 6, we conclude by presenting some future directions of research.

2 Model Based Search and Stochastic Relaxation

We are interested in the minimization of a real-valued function f defined over
a vector of binary variables. For mathematical convenience and without loss of
generality we consider values in {±1}, rather than classic 0/1 encoding. Let us
introduce the notation that will be used in the following. Let x = (x1, . . . , xn) ∈
Ω = {±1}n a vector of n binary variables, any f : Ω �→ R can be represented
uniquely as a square-free polynomial, i.e., the finite sum of monomials

f(x) =
∑
α∈F

cαx
α, cα ∈ Rn, (1)

where we employed the multi-index notation α = (α1, . . . , αn) ∈ F ⊂ {0, 1}n,
and xα =

∏n
i=1 x

αi

i . For instance, let n = 3 and f = x1x2 + x2x3, then F =
{(1, 1, 0), (0, 1, 1)}. The monomials {xα} with α ∈ {0, 1}n defines a basis for any
function, while those identified by F correspond to the interactions present in f .
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The paradigm of Model-Based Search (MBS) in stochastic optimization, con-
sists in finding the minimum of f by solving the optimization problem of the
stochastic relaxation of f , i.e., the minimization of the expected valued of f with
respect to a density in a statistical model M.

From now on, we consider models M that belong to the exponential family
of probability distributions of the form

p(x; θ) = exp

{
k∑

i=1

θiTi(x) − ψ(θ)

}
, θ ∈ Rk, (2)

where θ = (θ1, . . . , θk) is the vector of natural parameters, Ti(x) : Ω → R are
the sufficient statistics, and ψ(θ) is a normalizing factor. Such choice is not
restrictive, indeed many models used in MBS belong to this family, such as
log-linear models, the Gibbs distribution, and more in general MRFs.

Since the sum of the sufficient statistics is a function defined over Ω, with
no prior information about f , it is convenient to choose the basis {xα} itself
as the set of sufficient statistics. However, the basis has 2n − 1 monomials, so
is computationally intractable. For this reason, we consider lower-dimensional
models identified by a subset of the sufficient statistics identified by a small
subset of indices M ⊂ {0, 1}n, usually polynomial in n. Each monomial in M
identifies one of the possible correlations between groups of variables.

The choice of the model is central in MBS. From a theoretical point of view,
the best choice would be to chose M such that M � F , so that the stochastic
relaxation admits no local minima [16]. Models with smaller number of monomi-
als may admit local minima, so that algorithms are more prone to convergence
to local minima for f . On the other side, larger models imply more computa-
tional costs for parameter estimation. Dealing with the exponential family, one
possible approach for model-selection is to test all possible second-order inter-
actions, and then in case move to higher-order correlations, as in e.g. [13]. The
computational complexity of these techniques grows with the maximum order
of f in Equation (1), c.f. [6]. Dealing with BNs, hBOA [12] solves this issue by
introducing trees between variables, which allow to efficiently learn hierarchies
between variables and thus higher-order correlations. Instead of employing stan-
dard statistical techniques able to learn high-dimensional models directly, we
propose to employ variable transformations to perform implicit model selection.

3 Variable Transformations

In this section we describe an implicit approach to model selection in MBS, and
in particular in EDAs, where the problem of identifying a model is replaced by
a search for a transformation of the variables of f . By employing a fixed model
for the transformed variables, we are implicitly choosing a different model in the
original space, which depends on the transformation. We are interested in those
transformations such that a model in the transformed space corresponds to a
model in the original space which is able to capture the interactions of f .
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Let us introduce a new vector of variables y = (y1, . . . , yn) in Ω and a one-
to-one map h such that y = h(x). We can express f as the composition of a
function g(y) : Ω → R with h, i.e., f = g ◦ h, and g = f ◦ h−1. Since h defines a
permutation of the points in Ω, follows that min g = min f .

We can express h component-wise, i.e., h = (h1(x), . . . , hn(x). Since hi(x) :
Ω → {±1}, each hi admits an expansion as in Equation (1), i.e.,

hi =
∑
α∈Hi

ci,αx
α, 1 ≤ i ≤ n. (3)

Let q(y; ξ) ∈ N be a density for Y from the exponential family in (2), by ex-
panding all the products obtained by substituting yi with hi(x), we obtain a
polynomial in x whose monomials are identified by a set of indices M , i.e.,

exp

{∑
α∈N

ξαy
α − φ(ξ)

}
= exp

{∑
α∈N

ξα

n∏
i=1

(hi)
αi − φ(ξ)

}
=

exp

⎧⎨⎩∑
α∈N

ξα

n∏
i=1

( ∑
γ∈Hi

ci,γx
γ
)αi − φ(ξ)

⎫⎬⎭ = exp

⎧⎨⎩∑
β∈M

lβ(ξ)x
β − ψ(ξ)

⎫⎬⎭ .

(4)

By setting θβ = lβ(ξ) ∈ R, we expressed q(y, ξ) as the probability distribu-
tion p(x; θ) for the original variables, where lβ is a function which maps the
parameters of the two exponential families. Notice that since h is one-to-one the
dimension of the θ and the ξ parameter space are the same.

In other words, suppose we apply a transformation from x to y and consider
an exponential family N = {q(y; ξ), ξ ∈ Rk} over Y identified by the sufficient
statistics in N . By Equation (4), q(y; ξ) = p(x; θ), with y = h(x) and θ = l(ξ),
thus N maps into the exponential family M for X , identified by a different set
of sufficient statistics M . Such mapping is one-to-one, so that Ep[f ] = Eq[g], and
minq∈N Eq[g] = minp∈M Ep[f ], so that the minimization of stochastic relaxation
of f with respect to M is equivalent to those of g with respect to N . Consider
the following example. The function f = x1x2 + x2x3, x ∈ {±1}3 admits two
global minima x = (−1, 1,−1) and (1,−1, 1). Let us apply following one-to-one
map y = h(x) and its inverse h−1

h :

⎧⎨⎩
y1 = x1x2

y2 = x2x3

y3 = x3

h−1 :

⎧⎨⎩
x1 = y1y2y3
x2 = y2y3
x3 = y3

Let N be the exponential family defined over Y with {y1, y2, y3} as sufficient
statistics. By expanding q(y; ξ) ∈ N we have that

N 0 q(y, ξ) = exp {ξ1y1 + ξ2y2 + ξ3y3 − φ(ξ)} =
= exp {θ1x1x2 + θ2x2x3 + θ3x3 − ψ(θ)} = p(x, θ) ∈ M,

where θ = ξ and ψ(θ) = φ(ξ). The sufficient statistics of M include the interac-
tions on f , i.e., F ⊂M . Follows that the stochastic relaxation of f with respect
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to M does not admint local minima, for every p ∈ M the gradient of Ep[f ]
points into the direction of the global optimum of the relaxed problem, c.f., [10].
We can explicitly compute g(y) = f ◦ h−1. Since in the binary case x2

i = 1,
g = h−1

1 h−1
2 +h−1

2 h−1
3 = y1+ y2, which is linear in y. The minimization of f can

thus be performed considering the stochastic relaxation of g with respect to N .
This problem is simpler than the original one since we are minimizing the ex-
pected value of a linear function with respect to the independence model and the
stochastic relaxation does not admit local minima, c.f., [9]. This example shows
how the use of a properly chosen variable transformation can greatly affect the
complexity of an optimization problem from the point of view of model-based
search strategies.

4 Function Composition Algorithms

In this section we present the idea of learning a transformation of the vari-
ables before estimating the parameters of a fixed low-dimensional model in the
transformed space. Such approach to model selection is applied to the EDAs
paradigm, leading to a novel family of algorithm called Function Composition
Algorithms (FCAs). Preliminary work appeared in [4].

Recall the basic iteration of an EDA,

Pt selection−−−−−→ Pt
s

estimation−−−−−−→ p(x; θt) ∈ M sampling−−−−−→ Pt+1.

At each iteration t of an EDA, a subset Pt
s of the population Pt is selected

according to a given selection policy. Then, a statistical model M is learned
from the subsample, and the parameters of a distribution p(x; θt) are estimated.
Finally, a new population Pt+1 is generated by sampling. Some algorithms, such
as PBIL [1] or UMDA [11], make the assumption of independent variables, others
use low-dimensional models, such as the chain model, see MIMIC [5], while more
powerful EDAs, e.g., hBOA [12] or DEUM [13,2] perform model selection in a
larger class of models, able to capture higher-order correlations among variables.

In FCA, we implicitly learn a model by first choosing a variable transforma-
tion, and then using a fixed model for the new set of transformed variables. We
introduce the following variation of the iteration of an EDA. Estimation and
sampling are preceded and followed by two transformations. First a one-to-one
map y = h(x) is applied to each individual in the selected population obtaining
P̃t
s, then after sampling from the estimated distribution, the population P̃t+1 is

transformed back to the original space by means of h−1, i.e.,

Pt
s

h−→ P̃t
s

estimation−−−−−−→ q(y; ξt) ∈ N sampling−−−−−→ P̃t+1 h−1−−→ Pt+1.

From Equation (4), estimating a probability distribution q(y; ξ) ∈ N for the
transformed sample P̃t

s is equivalent to estimate a distribution p(x; θ) ∈ N for
Ps. In general N and M are different, since the latter depends on the map h
employed, so that the choice of h corresponds to choice of a model M.
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4.1 Independence-FCA

In the following we briefly review I-FCA, first introduced in [4]. I-FCA employs
the independence model for the transformed variables y, and if the map h is
properly chosen, the resulting low-dimensional model M can achieve a better
approximation of the sample Ps with respect to the independence model for x.

The non-linear maps used in I-FCA are defined as follows. Consider the maps
h indexed by j, k ∈ {1, . . . , n}, with j 	= k, such that each hi is defined as

h
(j,k)
i :

{
yi = xixk if i = j
yi = xi otherwise.

We have n(n − 1) different h(j,k) transformations. It is easy to see that they
are one-to-one and that h−1 = h, since x2

i = 1. Next we extend the class of
transformations we consider by allowing elements h to be the composition of a
finite number m of maps of the form h(j,k):

h = h(j1,k1) ◦ . . . ◦ h(jm,km) ◦ . . . ◦ h(jm,km). (5)

Since the inverse of each transformation in the sequence of compositions is the
element itself, it is easy to see that h−1 is the composition of all the h(jm,km) in
the reversed order. Moreover, if the sufficient statistics of N are monomials in
y, the sufficient statistics of the resulting model M for X are monomials in x.

In I-FCA we propose a strategy for the choice of map h based on the maxi-
mization of the likelihood of the transformed selected sample P̃s with respect to
the estimated distribution q(y, ξ̂) ∈ N , where N is the independence model for
Y . This is equivalent to minimize the Kullback-Leibler divergence between the
empirical distribution representing the selected population and its projection on
the independence model (i.e. KLD[P̃s‖q(y, ξ̂)] = −H [P̃s]−L[P̃s‖q(y, ξ̂)]), which
gives a measure of the loss of information which occurs when P̃s is approximated
with q(y, ξ). Note that since h is one-to-one H [P̃s] does not depend oh h.

In order to make the search for h feasible, we choose a greedy approach. We
initialize h to be the identity map y = x, then we iteratively examine all the
n(n − 1) maps h(j,k) and compose the h map obtained at the previous step
with the map h(j,k) which better improves the likelihood of (h ◦ h(j,k))(Ps) with
respect to the independence model. The iteration stops when no improvement in
the likelihood is achievable composing further maps of the form h(j,k) or when
the maximum number m of transformations in h has been reached.

The representation of h as a composition of maps of the form h(j,k) is highly
redundant, i.e., there exists more than one sequence of indices (jm, km) which
transforms the independence model N to the same exponential family M. As
a consequence, in order to reduce the complexity of the search strategy for h,
we discard maps that produce models already examined in earlier stages of the
search process. Each time a new map h(j,k) is considered, the sufficient statistics
yi are transformed and the corresponding monomials xβ = yi with β ∈ M
are computed. Next, maps for which the monomial xβ does not contain xi, i.e.,
βi = 1, or, for all i, the degree of xβ decrease when h(j,k) is applied, are discarded.
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The worst case time complexity of the greedy search strategy for h isO(n2mN),
where n is the number of variables in f and N is the population size. Note that it
is possible to take advantage of the following log-likelihood decomposition:

L[P̃s‖q(y, ξ̂)] = 1

N

∑
y∈P̃s

log
( n∏

i=1

qi(yi; ξ̂i)
)
=

1

N

n∑
i=1

Li︷ ︸︸ ︷∑
y∈P̃s

log qi(yi; ξ̂i),

since q belongs to the independence model. When a new map h(jm,km) is con-
sidered, since yi = xi, for i 	= j, we do not need to compute the terms Li and
the values already evaluated at the previous step m− 1 can be used.

4.2 Chain-FCA

The variable transformation paradigm is general, and different models can be
chosen for transformed variables. In the following we introduce Chain-FCA, a
novel algorithm in FCAs family, where we fix a model with interactions, rather
than the independence model, as in I-FCA. Consider the family of probability
distributions for which the joint probability function factorizes as

p(y, ξ) = p(y1)

n∏
j=2

p(yj|yj−1). (6)

This is a chain model whose structure is fixed and each variable except the first
depends only on the previous one. The parameter vector ξ has 2(n − 1) + 1
components, one for the marginal probability of y1, and two for each of the
conditional probabilities, and can be easily estimated by means of max-likelihood
estimation. The log-likelihood of a sample with respect to this model is given by

L[P̃s‖q(y, ξ̂)] =
n−1∑
j=1

I(Yj |Yj+1)−
n∑

j=1

H(Yj), (7)

where H(Yj) is the marginal entropy and I(Yj |Yk) is the mutual information.
Chain-FCA employs the chain model defined in (6) and a greedy search strat-

egy to choose the sequence of maps h(j,k) which maximizes the likelihood of the
transformed set of selected individuals P̃s. The order of the variables in the chain
is fundamental. For this reason the class of the maps h is enriched by allowing
the swap of couples of variables. This operation is equivalent to the composition
of three maps h(j,k). Consider for example two variables x1, x2 and the map

y = h
(1,2)
1 ◦ h(2,1)

2 ◦ h(1,2)
3 . It turns out that y1 = x2 and y2 = x1, in fact

{x1, x2} h(1,2)⇒ {
y1︷︸︸︷

x1x2,

y2︷︸︸︷
x2 } h(2,1)⇒ ⇒ {

y1︷︸︸︷
x1x2,

y2︷︸︸︷
x1 } h(1,2)⇒ {

y1︷︸︸︷
x2 ,

y2︷︸︸︷
x1 }

The map h implies the swap of the variables x1 and x2. Notice that this was
useless in I-FCA since the order of the variables is not relevant in the indepen-
dence model, and such maps are discarded a priori. On the other hand, in Chain-
FCA this allows to implicitly adapt the fixed structure of the interactions among
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Fig. 1. Scalability of I-FCA and Chain-FCA

the variables in the chain model to the ones appearing in the set of candidate
solutions. Notice that if the search for h is restricted to consider only variables
swaps the result is a model selection algorithm very similar to MIMIC [5].

By means of a fixed structure chain model and a greedy search strategy for
the choice of the transformation, Chain-FCA is able to implicitly learn a richer
model compared to I-FCA, characterized by 2(n− 1)+ 1 parameters. The worst

case time complexity of Chain-FCA is O(n2mN), since only n(n−1)
2 variables

swaps have to be examined, along with the n(n− 1) maps of the form h(j,k).

5 Experimental Results

In this section we present the results of a preliminary scalability evaluation
for I-FCA and for the novel Chain-FCA algorithm, over a set of well known
benchmarks functions: Alternated Bits, Trap3, Trap3 overlapping, and Trap5.
In Alternated Bits the variables interact in a chain structure and higher fitness
is given to the instances for which the variables take opposite values with respect
to their neighbors in the chain. Trap3 and Trap5 are deceptive functions and are
composed of independent blocks of 3 and 5 variables, respectively. Each block has
a global optimum and a deceptive local optimum. Trap3 overlapping is similar
with respect to Trap3 but the blocks fully overlap.

In our algorithms we perform truncation selection and we choose the best S
individuals. After a preliminary parameter tuning we fix S = 10n for I-FCA and
S = 5n for Chain-FCA for all the problems considered, independently from the
population size. Experiments show that in the case of I-FCA no improvement is
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achievable when m > n. This result is also supported by an empirical analysis on
the set of models M which can be obtained mapping the independence model
into the original space through h. In the case of Chain-FCA the class of the
models that can be obtained by means of h is wider, so we set m = 4n.

For each problem and for each dimension we determine the population size
which ensure at most one failure out of 24 run. Then we estimated the average
number of fitness evaluations performed when the global optimum for f first
appears in the population. The results are presented in Figure 1, along with
an asymptotic estimation obtained by means of a least square fit of the curve
anb. Notice that, with the only exception of Alternated Bits, these functions
are not solved by other EDAs based on a fixed or low-dimensional model such
as PBIL, UMDA, or MIMIC, and in general one has to move to more EDAs
which perform model selection on a large class of complex models, such as BOA
or DEUM. I-FCA solves Alternated Bits and Trap3 while Chain-FCA robustly
solves all the benchmark functions considered. This proves the viability of the
variable transformations approach. Both algorithms are part of the Evoptool
toolkit. Source code and the detailed experimental settings are public availabe1.

6 Conclusions and Future Works

Variables transformations can be employed as an alternative approach to model
selection in MBS. In this paper we presented theoretical foundations of such
approach, and proposed a novel algorithm in the FCA family, called Chain-
FCA, which chooses a variable transformation maximizing maximum likelihood
with respect to a fixed chain model. Both I-FCA and Chain-FCA choose the
variable transformation to apply by iteratively composing basic modular maps.
Besides the usual EDAs parameters, selection policy and population size, these
algorithms have one more parameter which is the length of the composition se-
quence in the variable transformation, even though we argue that this parameter
is problem independent and could be fixed a priori.

A preliminary experimental evaluation of the performances of Chain-FCA
compared to I-FCA showed that these algorithms are able to solve functions
characterized by higher-order interaction yet only employing fixed low dimen-
sional models. This shows the viability of the variable transformation approach.

Some directions of future works include testing on different and more complex
benchmark functions, experimenting more expressive classes of variables trans-
formations and different models for the transformed variables, such as Chow-Liu
trees. Performance enhancements could also come by the replacement of the
greedy search strategy for h with more advanced policies.
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Abstract. We consider the fundamental property of generalisation of
data-driven models evolved by means of Genetic Programming (GP).
The statistical treatment of decomposing the regression error into bias
and variance terms provides insight into the generalisation capability of
this modelling method. The error decomposition is used as a source of
inspiration to design a fitness function that relaxes the sensitivity of an
evolved model to a particular training dataset. Results on eight symbolic
regression problems show that new method is capable on inducing better-
generalising models than standard GP for most of the problems.

1 Introduction

Reliable learning in the field of Machine Learning (ML) revolves around the
property of generalisation, which is the ability of a learned model to correctly
explain data that are drawn from the same distribution as the training data, but
have not been presented during the training process. This is the very important
property that ML algorithms aim to optimise. The generalisation performance
of a model relates to its prediction capability on an independent test dataset.
Assessment of this performance guides the choice of a model, and provides a
measure of the quality of the ultimately chosen model. The loss of generalisation
is referred to as the problem of overfitting [4].

In the case of learning regression models, the task is to discover a target func-
tion f(X) that map a vector of real-valued inputs X to a real-valued target vari-

able Y . A prediction model f̂(X) is trained on a training dataset
D = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of size n, where model accuracy on an
individual training case is specified using a loss function for measuring the er-
rors between Y and f̂(X) denoted by L(Y, f̂(X)). Typical choice is the square

error (Y − f̂(X))
2
, and the error over the entire set D is taken as the average of

individual losses. The use of least squares, can lead to severe overfitting if com-
plex regression models are trained over limited-sized datasets [4]. In an example
of polynomial curve fitting [4](pages 4-11), model complexity is measured by the
order of the polynomial. It is shown that a polynomial of a low order and few
coefficients gives poor predictions on test data since the polynomial function has
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too little flexibility to be learning anything at all during training. On the other
hand, a polynomial with too many coefficients has poor generalisation since it
fits to closely to the noise on the training data. The issue of model complexity
is central to overfitting. There is a trade-off between achieving a good fit to the
training data, and obtaining a model which is not very complex, and thus does
not overfit. Significant insight into this trade-off can be obtained by introduc-
ing the statistical concept of bias/variance error decomposition, under which
the generalisation error of a model is decomposed into the sum of bias squared
plus the variance. The bias measures the accuracy of the estimated f̂(X), while

the variance measures the extend to which f̂(X) is sensitive to the particular
dataset D used during training.

Genetic Programming (GP) [9] tackles regression problems by means of search-
ing a model space for the most appropriate functional model-form along with
the optimal coefficients given a training set of input-output pairs. A plethora
methods for learning good-generalising models have been investigated in previ-
ous research; some are reported in the works of [1,2,3,10,11,12].

In this study, we draw inspiration from the bias/variance error decomposition
and devise a method to improve on the sensitivity of an evolved model to a
particular training dataset. The method is based on the bootstrap resampling
method to randomly draw datasets with replacement from the training data,
and calculate the variance of the error on all bootstrap samples. The variance
is then used along with the error on the original training dataset in a single-
objective fitness function that takes the form of their weighted sum that is to be
minimised. Given the two conflicting objectives of bias and variance, a Pareto-
based multi-objective fitness function would be a sensible line of attacking this
problem. At this preliminary study, we chose to aggregate the two objectives in
a scalar fitness function, and explicitly investigate the effect of different kinds of
trade-off for biasing the search towards good-generalising regression models.

The rest of the paper is organised as follows. Section 2 introduces the sta-
tistical concept of bias/variance decomposition of regression error. Section 3
presents a new method for relaxing the sensitivity of evolved models to a par-
ticular dataset used during training. Section 4 presents the symbolic regression
problems that will be used in this study, and details the experiment method.
Section 5 analyses the results, and finally Section 6 draws our conclusions.

2 Bias and Variance for Regression

This section presents the basic background on the statistical concept of
bias/variance regression error decomposition, and motivates the development of
the new method for tackling overfitting. The material is based on the textbook
of Bishop [4] (pages 147-152).

Consider we wish to model the underlying generator of a dataset, so that the
best possible predictions for the target vector t can be made when a trained
model is presented with a new value of the input vector x. For that, we are
estimating a model y(x) for a target function 〈t|x〉 using a training dataset D,
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where 〈t|x〉 denotes the conditional average of the target data, so that
〈t|x〉 =

∫
tp(t|x)dt. The most general descriptor of the generator of D is in

terms of the probability density p(x, t) = p(t|x)p(x) in the joint input-target
space. Our training algorithm minimises the sum-of-squares error function, thus
each individual error is calculated as {y(x)−〈t|x〉}2, and depends on the training
dataset D and on the particular datapoint x. Integrating this quantity over x
will give the usual sum-of-squares error measure.

Suppose we have a large ensemble of datasets of the same size, each drawn
independently from the distribution p(t, x) of D. We can eliminate the depen-
dency of a model on a particular training dataset by measuring the performance
of a model using the average of the ensemble of datasets, which we write as:

ED[{y(x)− 〈t|x〉}] (1)

where ED[·] denotes the expectation, or ensemble average, which represents the
error of model y(x) when trained over equal-sized samples of D. If the trained
model was a perfect predictor of the target function 〈t|x〉, then this error would
be zero. Nevertheless a non-zero error can occur for two distinct reasons. It may
be that the estimated model y(x) is different from the target function 〈t|x〉,
which is called the bias. Alternatively, it may be that the method is sensitive on
the particular sample training dataset, and as a result, at a given x its prediction
is either larger or smaller than the target t depending on the dataset used for
training. This is called the variance. We can decompose Equation 1 into bias and
variance using the notion of an average model ED[y(x)], which is the average of
all predictions at point x of various models trained on different samples of D:

{y(x)− 〈t|x〉}2 = {y(x)− ED[y(x)] + ED[y(x)] − 〈t|x〉}2
= {y(x)− ED[y(x)]}2

+2{y(x)− ED[y(x)]}{ED[y(x)]− 〈t|x〉}
+{ED[y(x)]− 〈t|x〉}2 (2)

By taking the expectation of both sides over the ensemble of datasets, we can
express the expected squared difference as:

ED[{y(x)− 〈t|x〉}2] =
{ED[{y(x)]− 〈t|x〉}2︸ ︷︷ ︸

(bias)2

+ED[{y(x)− ED[y(x)]}2]︸ ︷︷ ︸
variance

(3)

The first term, the bias, measures the extent to which the averagemodel ED[y(x)]
differs from the target function 〈t|x〉. The second term, the variance, measures the
extent to which a model trained on a specific dataset varies around the average
model, and hence measures the sensitivity of a particular model to the particular
choice of dataset. There is a trade-off between bias and variance, with very flexible
models having low bias and high variance, whereas relatively rigid models having
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highbias and lowvariance.Thenext section introduces a simplemeasure thatquan-
tifies the sensitivity of a model to a particular training dataset, and presents a new
fitness function to relax this sensitivity in pursue of better generalisation.

3 Minimising the Error Variance on Bootstrap Datasets

Suppose we have a model y(x) trained on a dataset D = {(x1, t1), . . . , (xN , tN )}
using an error function that takes the form of mean Canberra distance (C).

C(D) =
1

N

N∑
i=1

abs(y(xi)− ti)

abs(y(xi)) + abs(ti)
(4)

where abs returns the absolute value of its argument, y(xi), ti are the predicted and
target values respectively for input xi, andN is the size ofD. Canberra distance is
preferred toMeanSquaredError (MSE)because it implicitly normalises the output
within the [0.0, 1.0] interval, which is necessary for applying weights in the same
interval during the aggregation of the objectives into a scalar fitness function.

We employ the bootstrap resampling method [6] to randomly draw B datasets
with replacement from D, each sample the same size as D. For each of the
bootstrap datasets D∗b we calculate the error value C(D∗b), thus the mean

error over all dataset is given by C∗ =
∑B

b=1 C(D∗b)/B.
The variance of the error from the bootstrap sampling is then simply:

V ar(D∗) =
1

B − 1

B∑
b=1

(C(D∗b)− C∗)2 (5)

The error variance can be seen as a measure of the sensitivity of a model to
the training dataset D, with overfitted models achieving a large error variance
on the bootstrap datasets, whereas more general models obtaining a lower error
variance. In order to relax the dependence on a particular dataset, a new fitness
function to be minimised is defined as:

fitness = wbC(D) + wvV ar(D∗) (6)

which is the weighted sum of the mean error on the original dataset plus the
variance of error on the bootstrap datasets, and wb, wv are the coefficients for
error and variance respectively.

It is important to note that previous work investigated a bias/variance de-
composition in GP [8] from the point of view of ensemble learning methods like
Bagging. The output of an average model was calculated by averaging the out-
puts of an ensemble of models so that the expected generalisation error of the
ensemble reduced to the bias error alone. In addition, the work of [5] success-
fully employed a Pareto-based bi-objective fitness function that was based on the
MSE and the variance of the independent squared errors over a single training
dataset. Our fitness function differs substantially from the one used in [5] in that
we calculate the variance over a collection of bootstrap datasets.
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4 Experiment Design

We designed a set of experiments to assess the effectiveness of the new method
(BVGP) on the generalisation ability of evolved models. The method is con-
trasted against standard GP (SGP). We used three datasets: training, valida-
tion, and testing. The training dataset is used to fit the models. At the end of
every generation the best model on training data is stored in an elitist-list. At
the end of evolution, the validation set is used to estimate the prediction error of
every element of the elitist-list in order to perform model selection. The test set
is used for assessing the generalisation error of the final chosen model. The size
of training and validation sets is the same for a problem, and the three datasets
share no common elements. In the case of BVGP, the bootstrap resampling is
performed on the training dataset.

Table 2 presents eight symbolic regression problems that are tackled in this
work. Problems F2, F4, F5, F7 were chosen from [13] due to their pronounced
difficulty as test problems for GP. Problems F8, F9, F10, F11 were chosen from [7].
For these four problems we deliberately used small training datasets (20 points)
in order to render the GP systems more prone to overfitting.

Table 1 summarises the setup of the GP systems. For the fitness function of
BVGP in Equation 6, both C(D) and V ar(D∗) are normalised into the same [0.0,
1.0] interval. We considered an exhaustive set of combinations with a step of 0.1
for the wb and wv, in order to test the effect of different trade-offs. On the other
hand, SGP used Equation 4 as the fitness function. Note that the number of
program evaluations are exactly the same in both fitness function calculations.
This is because Equation 6 needs to calculate C(D) on the original training
dataset D, and afterwards the calculation of every bootstrap C(D∗b) can be
based on the individual losses that were cached during the program evaluation
with the training cases of D.

We performed 50 independent evolutionary runs for each GP system on each
problem. Statistical significance of the differences in performance is evaluated
using the Mann-Whitney U-test, considering a confidence of 95% and a pairwise
Bonferroni correction for the value of α.

Table 1. GP systems setup

GP systems under comparison BVGP, SGP
EA used in GP systems elitist, generational, expression-tree representation
Function set +, −, ∗, / (protected)
Terminal set Regressor variables, 5 random constants in [0.0, 1.0]
No. of generations 51
Population size 500
Tournament size 4
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 20
Subtree crossover 30% (90% inner nodes, 10% leaf-nodes)
Subtree mutation 40%
Point mutation 30%

Fitness function
BVGP: Equation 6 (no. of bootstrap datasets: 500)
SGP: Equation 4
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Table 2. Symbolic regression problems with the respective data sampling ranges for
training, validation and test datasets. Notation x=rand(a,b) means that the x variable
is sampled uniform randomly from the interval [a, b]. Notation x1 = (a1 : c1 : b1),
x2 = (a2 : c2 : b2) determines a uniform mesh with step length (c1, c2) on an interval
[a1, b1]× [a2, b2]. Both training and validation sets are of the same size for a problem.

Problem Training/Validation Test

F2 f(x) = e−xx3cos(x)sin(x)(cos(x)sin2x − 1) 100 points 221 points
x=rand(0.05, 10) x=(-0.5 : 0.05 : 10.5)

F4 f(x1, x2, x3) = 30
(x1−1)(x3−1)

x2
2(x1−10)

300 points 2,701 points

x1, x3=rand(0.05, 2) x1, x3=(-0.05 : 0.15 : 2.1)
x2=rand(1, 2) x2 = (0.95 : 0.1 : 2.05)

F5 f(x1, x2) = 6sin(x1)cos(x2) 50 points 961 points
x1, x2=rand(0.1, 5.9) x1, x3=(0.05 : 0.02 : 6.05)

F7 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
50 points 1,157 points

x1, x2=rand(0.05, 6.05) x1, x2=(-0.25 : 0.2 : 6.35)

F8 f(x1, x2) =
x1x2 + sin((x1 − 1)(x2 − 1)) 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F9 f(x1, x2) = x1
4 − x1

3 + x2
2/2 − x2 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F10 f(x1, x2) = 8
2+x1

2+x2
2 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F11 f(x1, x2) = x1
3/5 + x2

3/2 − x2 − x1 20 points 361,201 points
x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

5 Results

Table 4 summarises the performance statistics accrued from 50 independent runs
of each experiment setup. The median value is preferred over the mean as it is
more robust to outliers. The table reports the training Root Mean Squared Er-
ror (RMSE) obtained at the end of an evolutionary run, the test RMSE of mod-
els selected based on the validation set, the best-generalising model size in terms
of number of tree-nodes, and the generation number when model selection took
place. For the case of test RMSE theminimumvalue indicates the best-generalising
model out of 50 runs. Table 3 summarises the p-values obtained by comparing the
differences in the median test RMSE, median model size, median generation of
model selection of BVGP against SGP using the Mann-Whitney U-test.

Observing the training error obtained by the different GP systems, results
suggest that for all problems considered, both BVGP and SGP obtained a similar
fit during training. Interestingly, the different trade-offs created by the different
coefficient combinations did not seem to affect the training accuracy. When
comparing the generalisation performance of BVGP against SGP we observe
that in six out of eight problems BVGP outperformed SGP. The differences
in median test RMSE are statistically significant (Table 3). For the remaining
two problems the use of BVGP was deemed equivalent with that of SGP. It
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Table 3. The p-values obtained by comparing the differences in the median test RMSE,
median model size, median generation of model selection of BVGP against SGP using
the Mann-Whitney U-test. Bold face indicates confidence of at least 95%.

SGP
Test RMSE Model size Model selection generation

BVGP

F2 0.45 0.15 0.36
F4 0.49 0.24 0.18
F5 0 0.22 0.23
F7 0.04 0.20 0.47
F8 0.0004 0 0
F9 0.02 0.12 0.14
F10 0.0034 0.14 0.31
F11 0.001 0.13 0.08

is important to note that for the problems F8, F9, F10, and F11, where small
training sets were employed, all systems overfitted the training data. This is
evidenced by the large degradation in test error as opposed to the cases of F2,
F4, F5, and F7. However, the use of BVGP system appeared more resilient to
overfitting. When inspecting the trade-off between error and variance that is
required to enhance model generalisation, we observe no apparent trend to the
combination of wb and wv coefficients that yields the best generalisation. The
trade-off necessary to counteract overfitting appears to be problem dependent.
Finally, the minimum test RMSE that is accrued from 50 independent runs of
each system configuration suggests that for the majority of problems, BVGP
produced the best-generalising model as opposed to SGP.

Early research on the relationship between model size and generalisation has
advocated an intrinsic interaction between the two. The sixth column of Table 4
shows the median size of best-generalising models. For all the problems but F8,
we found no statistically significant differences in the sizes of the expression-trees
representing the evolved models (Table 3). This is in accordance to the latest
findings on the relationship between the expression-tree size and overfitting [5],
ascertaining that in light of bloat in variable-length GP representations, model
complexity is not directly associated with the number of tree-nodes.

Finally, the generation number when model selection is performed shows the
point within an evolutionary run in which overfitting is becoming apparent. Ta-
ble 4 shows that for the problems of F2, F4, F5, F7 that use intermediate to large
training sets ranging from 50 to 300 data points, there appears to be a relation-
ship between the size of the training set and the speed of generalisation loss.
Contrasting between the case of F4 that used a training set of 300 points against
the cases of F2, F5, and F7 that employed smaller training sets (sizes of 50 and
100), we noted that the smaller the training dataset, the quicker the model se-
lection needs to be performed in order to avoid overfitting. On the other hand,
for the cases of F8, F9, F10, and F11 that utilised the smallest training datasets
of size 20, this trend is not apparent; all GP systems were allowed to train for
longer than those for the problems of intermediate sized training datasets of 50
points. Summarising, for the problems studied, we noted that the cases of very
small and large training datasets allowed the models to train for longer before
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Table 4. Summary of results. Statistics based on 50 independent runs. Train RMSE
is the end-of-run training root mean squared error. Test RMSE is the generalisation
root mean squared error of models selected in each run. Model size is the size of the
best-generalising models in terms of number of tree-nodes. Model selection generation
is the generation number when model selection is performed. Highlighting indicates
that a statistically significant difference was found in the median generalisation RMSE
between BVGP and SGP (Table 3).

Problem wb wv Train RMSE Test RMSE Test RMSE Model size Model selection generation
(median) (median) (minimum) (median) (median)

F2

0.2 0.8 0.29 0.32 0.26 15.00 2.00
0.3 0.7 0.29 0.32 0.25 13.00 2.00
0.4 0.6 0.29 0.32 0.26 31.00 1.00
0.5 0.5 0.29 0.32 0.26 15.00 3.00
0.6 0.4 0.29 0.32 0.27 45.00 3.00
0.7 0.3 0.29 0.32 0.26 11.00 1.00
0.8 0.2 0.30 0.32 0.26 15.00 2.00
SGP 0.29 0.32 0.28 31.00 3.00

F4

0.2 0.8 0.22 0.25 0.05 83.00 39.00
0.3 0.7 0.22 0.26 0.04 81.00 40.00
0.4 0.6 0.21 0.25 0.08 85.00 38.00
0.5 0.5 0.22 0.26 0.09 87.00 40.00
0.6 0.4 0.20 0.26 0.06 81.00 42.00
0.7 0.3 0.23 0.27 0.14 99.00 39.00
0.8 0.2 0.22 0.27 0.11 57.00 40.00
SGP 0.19 0.22 0.09 81.00 37.00

F5

0.2 0.8 3.45 3.03 2.66 19.00 3.00
0.3 0.7 3.42 3.46 2.68 31.00 3.00
0.4 0.6 3.61 3.41 2.82 25.00 2.00
0.5 0.5 3.43 3.57 2.94 19.00 2.00
0.6 0.4 3.66 3.59 2.36 19.00 2.00
0.7 0.3 3.39 3.41 2.63 15.00 1.00
0.8 0.2 3.39 3.75 2.52 29.00 2.00
SGP 3.52 3.66 2.54 21.00 2.00

F7

0.2 0.8 1.57 2.00 1.43 15.00 3.00
0.3 0.7 1.55 2.41 1.77 17.00 4.00
0.4 0.6 1.56 2.00 1.58 19.00 3.00
0.5 0.5 1.56 1.97 1.69 15.00 2.00
0.6 0.4 1.56 2.09 1.53 15.00 3.00
0.7 0.3 1.58 1.98 1.44 21.00 4.00
0.8 0.2 1.58 1.97 1.58 19.00 4.00
SGP 1.58 2.65 1.73 15.00 3.00

F8

0.2 0.8 0.50 0.68 0.68 17.00 11.00
0.3 0.7 0.50 0.84 0.68 71.00 16.00
0.4 0.6 0.50 17.46 0.68 57.00 11.00
0.5 0.5 0.50 42.16 0.65 91.00 13.00
0.6 0.4 0.50 17.74 0.63 75.00 14.00
0.7 0.3 0.50 30.03 0.68 115.00 14.00
0.8 0.2 0.49 27.52 0.67 123.00 27.00
SGP 0.50 56.90 0.68 151.00 38.00

F9

0.2 0.8 0.29 13.28 4.66 67.00 15.00
0.3 0.7 0.30 12.76 3.03 103.00 14.00
0.4 0.6 0.29 10.96 2.66 111.00 24.00
0.5 0.5 0.31 11.02 1.75 97.00 18.00
0.6 0.4 0.29 48.54 1.55 135.00 24.00
0.7 0.3 0.29 10.52 2.64 79.00 24.00
0.8 0.2 0.31 27.90 2.96 99.00 32.00
SGP 0.28 13.57 2.40 119.00 31.00

F10

0.2 0.8 0.22 94.31 4.13 173.00 47.00
0.3 0.7 0.20 116.14 1.99 151.00 47.00
0.4 0.6 0.16 40.22 5.64 167.00 46.00
0.5 0.5 0.19 32.66 0.97 175.00 46.00
0.6 0.4 0.19 48.36 3.69 171.00 49.00
0.7 0.3 0.20 27.27 0.41 143.00 48.00
0.8 0.2 0.21 85.04 0.77 157.00 43.00
SGP 0.21 35.36 4.71 161.00 48.00

F11

0.2 0.8 0.61 12.07 1.37 135.00 33.00
0.3 0.7 0.62 23.50 1.44 127.00 40.00
0.4 0.6 0.61 5.54 1.69 117.00 20.00
0.5 0.5 0.63 5.25 1.26 115.00 23.00
0.6 0.4 0.62 12.81 1.18 117.00 29.00
0.7 0.3 0.62 18.54 1.44 93.00 26.00
0.8 0.2 0.63 41.35 2.39 127.00 17.00
SGP 0.62 16.36 2.32 107.00 34.00
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they overfitted, as opposed to the cases of intermediate-sized training datasets,
where overfitting was evident very quickly. Whether this is problem dependent
remains to be seen in future studies.

6 Conclusions

The decomposition of regression error in bias and variance terms suggests that
the generalisation error is due to the degree of difference between the average
model (over all datasets) and the target function, as well as the degree of sensi-
tivity of the particular model on the training dataset. We drew inspiration from
this error decomposition and devised a method to relax the inherent sensitivity
to the data used for training. In this method, boostrapping was employed to
create an ensemble of datasets, and the variance of the error on the ensemble
was used in combination with the error on the original dataset to form a new
fitness function. Results on a suite of symbolic regression problems are encour-
aging, showing that this method is able to induce better-generalising models for
most of the problems considered as opposed to standard GP.

The task of inducing a model from real-world data usually suffers from two
problems: the degree to which the underlying data-generating distribution is sta-
tistically under-represented, and the degree of noise in the data points. Tackling
noisy as well as unbalanced datasets is the immediate plan for future application
of our method to classes of ill-defined learning environments.
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Abstract. We evaluate the performance of several gradient-free
variable-metric continuous optimization schemes on a specific set of
quadratic functions. We revisit a randomized Hessian approximation
scheme (D. Leventhal and A. S. Lewis. Randomized Hessian estima-
tion and directional search, 2011), discuss its theoretical underpinnings,
and introduce a novel, numerically stable implementation of the scheme
(RH). For comparison we also consider closely related Covariance Ma-
trix Adaptation (CMA) schemes. A key goal of this study is to elucidate
the influence of the distribution of eigenvalues of quadratic functions on
the convergence properties of the different variable-metric schemes. For
this purpose we introduce a class of quadratic functions with parame-
terizable spectra. Our empirical study shows that (i) the performance of
RH methods is less dependent on the spectral distribution than CMA
schemes, (ii) that adaptive step size control is more efficient in the RH
method than line search, and (iii) that the concept of the evolution path
allows a paramount speed-up of CMA schemes on quadratic functions
but does not alleviate the overall dependence on the eigenvalue spec-
trum. The present results may trigger research into the design of novel
CMA update schemes with improved spectral invariance.

Keywords: gradient-free optimization, variable metric, Randomized
Hessian, Covariance Matrix Adaptation, quadratic functions

1 Introduction

Randomized gradient-free (or black-box) optimization schemes are nowadays a
ubiquitous tool for solving many practical problems in science and engineering
where gradient or higher order information about the objective are difficult to
compute or do not exist. Among the first proposed schemes that are still of
considerable (theoretical) importance are adaptive step size random search (aS-
SRS) [1] and the (almost identical) well-known (1+1)-Evolution Strategy (ES) [2]
in Evolutionary Computation (EC). To improve the poor performance of these
schemes on ill-conditioned problems several fully adaptive schemes known as
gradient-free variable-metric methods have been designed in the past 50 years.
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All variable-metric schemes are iterative algorithms that share the idea of
adapting a position vector and a quadratic form that defines a local metric be-
tween search points to best reflect the local structure of the underlying function.
In gradient-free optimization two distinct classes of variable-metric methods are
known: Randomized Hessian (RH) approximation schemes and Covariance Ma-
trix Adaptation (CMA) schemes.

Randomized Hessian schemes closely follow their deterministic counterparts
in nonlinear optimization. However, rather than using exact first- or second-
order information they rely on approximations of gradients or Hessians found by
finite differences or by estimators based on a finite collection of samples. Such ap-
proaches date back at least to 1970’s [3]. In an excellent paper Marti [4] proposed
several randomized Hessian update schemes taking the perspective of optimal
control. Recently, Leventhal and Lewis [5] introduced a genuine RH algorithm
with provable convergence guarantees which we further detail in Sec. 2.2.

Covariance Matrix Adaptation schemes follow the principle of sampling search
points from the multivariate normal distribution and adapting mean and co-
variance according to different design principles. The first scheme of this kind,
Gaussian Adaptation (GaA) [6], follows the principle of maximum entropy. A
very popular modern algorithm is the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [7,8]. One recent instantiation of this scheme comprises a de-
randomization of the sampling termed mirrored sampling [9] which we consider
in Sec. 2.3.

One key strength of variable-metric methods is their invariance property to
affine transformations. In addition (and more importantly in practice), they
achieve the same convergence rate on all functions from the same coset mod-
ulo affine transformations, once the affine transformation has been learned in
the course of optimization. How fast the different schemes learn affine transfor-
mations T is thus of fundamental importance. While theory suggests that the
number of samples needed should be at least quadratic in the dimension, it is not
yet fully understood how the efficiency of different variable-metric schemes de-
pends on the eigenvalue spectrum of TT T . In the EC community a small number
of specific quadratic models have been proposed to probe this dependency. Key
instances are the tablet, the discus, the two-axes, and the cigar function, as well
as ellipsoidal functions with exponentially increasing eigenvalues [7,8]. Rather
than using these specific functions we here propose a novel set of quadratic func-
tions that varies the shape of the spectral distribution (i) in an easy parameteric
manner and (ii) with certain common constraints that ease a simpler interpreta-
tion of performance results. We demonstrate the excellent discriminative power
of the set by numerical experiments with different variable-metric schemes.

The reminder of this paper is structured as follows. In Sec. 2 we outline a
standard randomized optimization framework and revisit several representative
RH and CMA schemes. In Sec. 3 we introduce the design of the quadratic func-
tion set. We also review the Rosenbrock function that serves as a test model
with smoothly changing Hessian. In Sec. 4 we summarize the key results of the
empirical study. We discuss these results and conclude the paper in Sec. 5.



450 S.U. Stich and C.L. Müller

2 Variable-Metric Gradient-Free Optimization Schemes

We here present all optimization methods considered in this study. We first de-
tail two non-adaptive randomized schemes, a specific (1+1)-ES and Random
Pursuit (RP) [10], that serve as base algorithms. We then show how to couple
these algorithms with Leventhal and Lewis’s RH scheme. We then detail one in-
stance of GaA [11,12] and (1,4)-CMA-ES with mirrored sampling and sequential
selection [9] with and without evolution path as representative CMA schemes.

genericSearch(x0, H0, N, [ε, μ, σ0, p])

1 for k = 1 to N do
2 if variable metric then
3 Hk ← updateHess(Hk−1,xk−1, ε)

4 else Hk ← Hk−1

5 uk ∼ N (0,H−1
k )

6 if line search then
7 xk ← lineSearch(xk−1,uk/‖uk‖, μ)
8 else (xk, σk) ← aSS(xk−1,uk, σk−1, p)

9 return xN

aSS(x,u, σ, p) (adaptive step size)

1 if f(x+ σu) ≤ f(x) then
2 x+ ← x+ σu; σ+ ← σ · exp(1/3)

else

3 x+ ← x; σ+ ← σ · exp
(
− p

3(1−p)

)
4 return (x+, σ+)

updateHess(H,x, ε)

1 u ∼ Sn−1

2 Δu ← f(x+εu)−2f(x)+f(x−εu)

ε2
− uTHu

3 if J := H +Δu · uuT psd then
4 H+ ← H +Δu · uuT

else
5 v ← smallestEVec(J)

6 Δv ← f(x+εv)−2f(x)+f(x−εv)

ε2
− vTJv

7 H+ ← (
H +Δv · vvT

)
+Δu · uuT

8 return H+

lineSearch(x,u, μ)

let x∗ := x+ argminλ f(x+ λu) · u
1 if relative accuracy then
2 find x+ ∈ [

(1− μ)x+ μx∗,x∗]
else

3 find x+ ∈ [
x∗ − μu,x∗ + μu

]
4 return x+

Fig. 1. Basic building blocks for variable-metric gradient-free optimization

2.1 Isotropic Gradient-Free Optimization Schemes

We consider two basic optimization schemes that iteratively generate a sequence
of approximate solutions to the optimization problem minx f(x) for f : R

n �→ R.
In each step a search direction is drawn u ∼ N (0,1n). The choice of the step
size λ ∈ R is the key difference between the two schemes.

In Random Pursuit (RP), first proposed in [13] and analyzed in [10], the step
size λ is determined by minimizing the objective function in direction u, i.e.
λ ≈ argminc f(x + cu). For quadratic functions f(x) := 1

2x
TAx with Hessian

A, the expected one-step progress can be estimated as:

E [f(x+) | x] ≤
(
1− κ(A−1)/n

)
f(x) , (1)

where x is the current iterate, x+ := x+λu the next iterate, and κ(A−1) denotes
the condition number of A−1. This statement can also be generalized to arbitrary
smooth convex functions [10]. Stich et al. [10] showed that both relative and ab-
solute errors in the line search do not hamper the convergence guarantees of RP.
We use the built-in MATLAB routine fminunc.m with optimset(’TolX’=1e-4)

as numerical gradient-free line search method with absolute tolerance μ.
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In the (1 + 1)-ES the step size is dynamically controlled such as to approx-
imately guarantee a certain probability p of finding an improving iterate. De-
pending on the underlying test function different optimality conditions can be
formulated for the probability p. Schumer and Steiglitz [1] suggest the setting
p = 0.27 which is considered throughout this work. We use immediate exponen-
tial step size control as explicitly formulated in the aSS sub-routine in Fig. 1.
Jägersküpper [14] showed that, for quadratic functions, the dependence of the
expected one-step progress of the (1+1)-ES on κ(A) is almost identical to the
one shown in Eq. (1).

2.2 Randomized Hessian Approximation Schemes

Assume that the random search direction u is not chosen from the standard
normal distribution, but rather u ∼ N (0, H−1) for a positive definite matrix H .
Then a standard analysis [5] shows that the factor of the one-step RP progress in
Eq. (1) changes to (1− κ(HA−1)/n) for quadratic functions. A refined analysis
by Stich et. al. [15] shows a dependence on Tr(AH−1). Hence, if a suitable matrix
H with AH−1 ≈ 1n can be found, the convergence of RP will be linear with the
optimal rate (1− 1/n). Leventhal and Lewis [5] proposed the following iterative
scheme to generate a sequence of Hessian estimates H that converge to A. In
each step, a new iterate H+ is generated as follows:

H+ = H + uT (A−H)u · uuT , (2)

where u ∼ Sn−1 is a uniform random unit vector and uTAu is calculated by:

uTAu = (f(x+ εu)− 2f(x) + f(x− εu)) /ε2 , (3)

for arbitrary ε > 0. Whilst equality only holds for quadratic functions, for gen-
eral twice differentiable functions the value can be approximated by choosing ε
sufficiently small. It can be shown [5, Thm. 1] that

E [‖H+ −A‖F ] ≤ (1− 2/(n(n+ 2))) ‖H −A‖F , (4)

holds, and the sequence (Hk)k≥1 of estimates Hk → A a.s for (k →∞).
Unfortunately, H+ generated by Eq. (2) is not necessarily positive definite.

We thus propose an additional correction step in our implementation of the
update. If H+ is not positive definite we perform a second deterministic update
in the direction of the eigenvector that corresponds to the smallest (and the
only negative) eigenvalue of H+. By standard results from matrix perturbation
theory, the resulting ”twice updated” matrix will be positive (semi-)definite. The
algorithm is also illustrated in Fig. 1. As we directly operate on the Cholesky
decomposition of H , the condition on line 3 can be efficiently checked. For all
quadratic functions we arbitrarily set ε = 1, for the Rosenbrock function (see
Section 3) we use ε = 1e-9.

Combining the Hessian update with the different step size update schemes
from the previous section, we arrive at two variable-metric gradient-free opti-
mization schemes. We will refer to them as RH RP (Randomized Hessian Ran-
dom Pursuit) and RH (1+1) (Randomized Hessian with aSSRS).
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2.3 Covariance Matrix Adaptation Schemes

CMA schemes are conceptually different from the presented RH scheme. New
search points are sampled from a multivariate normal distribution whose pa-
rameter are updated in each iteration based on the information present in the
evaluated samples. Many different adaptation schemes exist today. The covari-
ance matrix can be adapted using different rank-1 [6,7] or rank-k updates [8]. In
addition, the CMA-ES scheme is augmented by an auxiliary variable called evo-
lution path that takes into account the correlation of successive means taken over
a finite horizon. This is similar in spirit to Rao-Blackwellization techniques in
Marko Chain Monte Carlo methods [16] and Polyak’s heavy ball method in first-
order optimization [17]. We here select two specific instances of CMA schemes:
(i) one that is as close as possible to the described RH scheme and (ii) one that
is the fastest scheme for quadratic functions known today. The first scheme is a
variant of GaA [12] in the (1+1) setting. In every iteration a single sample xk ∼
N (mk, σ

2
kCk) is drawn. The aSS sub-routine is employed for step size adapta-

tion. If f(xk+1) ≤ f(xk) the meanmk+1 = xk+1 and the covariance matrix is up-
dated according to Ck = (1−α)Ck+α(xk+1−mk)(xk+1−mk)

T with α = log(n+
1)/(n+1)2 [12]. This constitutes the simplest covariance update without evolu-
tion path. The second scheme considered here is the (1,4)-CMA-ES with mirrored
sampling and sequential selection. Brockhoff and co-workers state that this
scheme “is unbiased and appears to be faster, more robust, and as local as the
(1+1)-CMA-ES” [9]. We also refer to [9] for a full description of this scheme and
all parameter settings used. For the (1,4)-CMA-ES scheme has been retrieved
from http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results.
We used the GaA code from http://www.mosaic.ethz.ch/Downloads/GaA.

3 Benchmark Functions

For the presented variable-metric methods there is either theoretical or a large
body of empirical evidence that, on quadratic functions, the sequence of esti-
mated Hessians (or inverse Hessians, respectively) will converge after sufficiently
many iterations. A reasonable assumption is that the difficulty of the approxima-
tion task is mainly determined by the distribution of the eigenvalues of the un-
derlying Hessian. Thus far, this influence has been extensively studied for CMA
schemes on specific quadratic model functions such as the tablet, the cigar, or
ellipsoidal functions with exponentially increasing eigenvalues (see, e.g., [7,8]).
The exact dependency of variable-metric schemes on the spectral distribution
remains, however, largely elusive because the spectral properties such as trace
and condition are not constant across experiments. For RH schemes, we are not
aware of any systematic empirical study. From the theory of RH schemes we
know, however, that the expected progress for a fixed Hessian estimate H de-
pends on κ(AH−1) as well as on Tr(AH−1) where A denotes the Hessian [5,15].
We thus propose a class of quadratic functions with different spectra under the
constraint of equal trace and condition number L. The functions are constructed
as follows: We choose the distribution of the Hessian eigenvalues according to
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Table 1. List of benchmark functions. All functions are quadratic except fRosen. For
fSigm(a) we use a = 15, 8, 5, 2.8 and for fFlat(a) we use a = 6, 3.2, 2, 1.25. The spectra of
all the quadratic functions are depicted in Fig. 2b.

fSigm(a)(x) =
∑n

i=1 normalizei

((
1 + ea−

2a(t−1)
n−1

)−1

+ 1
2

)
(xi − 1)2

fFlat(a)(x) =
∑n

i=1 normalizei

(
− log

((
10−a + (t−1)(1−2·10−a)

n−1

)−1

− 1

))
(xi − 1)2

fLin(x) =
∑n

i=1 normalizei
(

2t
n+1

− 1
)
(xi − 1)2

fNes(x) =
∑n

i=1 normalizei
(
sin

(
tπ

n+1
− π

2

))
(xi − 1)2

fRosen(x) =
∑n−1

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
normalizei(f(t)) =

L−1
2

f(i)
|f(1)| +

L+1
2

three specific parametric functions outlined below. We then normalize the spec-
tra such that the smallest eigenvalue equals 1, the largest equals L, and the trace
equals n(L+1)/2 where n denotes the dimension. The function set is summarized
in Tab. 1. For fLin the eigenvalues are linearly spaced. For fSigm the eigenvalues

lie on the sigmoidal curve (1 + e−t)
−1

resulting in many eigenvalues being close
to 1 or close to L with only a few intermediate eigenvalues. By distributing the
eigenvalues proportional to the inverse of the sigmoid function log(1/t − 1) we
find a family of suitable quadratic functions where most eigenvalues are concen-
trated around the mean L/2. The exact parameterizations are summarized in
Tab. 1. The shape of the spectra is depicted in Fig. 2b. For large a we note that
(i) fSigm(a) becomes similar to the two-axes function [8] (half of the eigenvalues
are 1, half of them are L) and (ii) fFlat(a) gets close to a cigar-like function (with
one small eigenvalue and all others on the order of L). Another important feature
of our parametric family is the fact that the sigmoidal function can closely ap-
proximate Nesterov’s worst case function fNes [18] which has been used to show
a lower complexity bound for first-order optimization (see again Fig. 2b for a
sketch). Note that the present trace constraint prohibits the design of quadratic
functions with exponentially distributed eigenvalues.

Finally, we also include the standard Rosenbrock function fRosen in the test
set. The function serves as a test model with smoothly changing Hessian in order
to study the valley-following abilities of the different variable-metric schemes.

4 Empirical Study

We now highlight the key results of our empirical study. All algorithms and func-
tions have been implemented in MATLAB and will be made publicly available at
the authors’ website. The (1,4)-CMA-ES with mirrored sampling and sequential
selection (referred to as CMA-ES in the following) has been run both with and
without evolution path (setting CMA.ccum=1 in the referred MATLAB code).
The latter variant is referred to as CMA-ESnp. For all performed experiments
the initial settings were x0 = 0, H0 = 1n (m0 = 0, C0 = 1n, respectively).
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Fig. 2. (a): Relation between method performance and spectral distribution in n = 50
for L = 1e6. We recorded #FES needed to reach accuracy 1e-9 on all parametrized
functions fSigm, fFlat and fLin; the median of 51 runs is indicated by a marker.
(b): Shape of the spectra of the quadratic benchmark functions. Thin blue lines show
fSigm(a) and fFlat(a) for intermediate a values.

The initial step size of the algorithms with adaptive step size control was (em-
pirically) set such that the target success probability p = 0.27 is met for x0.
As performance measure we count the number of function evaluations (#FES)
needed to reach a target function value below 1e-9.

We first demonstrate the general influence of the spectral distribution on the
performance of all introduced variable-metric schemes. Experimental set-up and
results are summarized in Fig. 2. For all CMA schemes (CMA-ES, CMA-ESnp,
and GaA) we see a strong monotone dependence of their performance on the
spectral shape. The sigmoidal-shaped eigenspectrum presents the hardest prob-
lem, the flat spectrum the easiest. Both CMA-ES and GaA show the strongest
run time dependence on the spectra with CMA-ES being the fastest algorithm
on all functions and CMA-ESnp the slowest one. The performance of both RH
schemes is much less dependent on the shape with RH (1+1) being almost invari-
ant to the spectral distribution. We observe that RH (1+1) achieves the same
performance on fSigm(15) (the leftmost datum in Fig. 2a) as CMA-ES.

To study the influence of the condition number L on the qualitative con-
vergence behavior of the different algorithms we present results on fNes as
representative example in Figs. 3 and 4a for fixed dimension n = 50. The
same qualitative behavior has been observed for the other quadratic functions.
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Fig. 3. Evolution of function value vs. #FES on fNes for L = 100 (a) and L = 1000 (b).
We recorded #FES needed to reach accuracy 1e-9. The median trajectory of 11 runs
is depicted; mean and one standard deviation are indicated by markers.
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(a) fNes, n = 50, L = 10000
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(b) fSigm(15), n = 50, L = 10000
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(c) fFlat(6), n = 50, L = 10000
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(d) fRosen, n = 50

Fig. 4. Evolution of function value vs. #FES for different functions. We recorded #FES
needed to reach accuracy 1e-9. The median trajectory of 11 runs is depicted; mean and
one standard deviation are indicated by markers.

We see that the non-adaptive schemes RP and (1+1)-ES are (as expected) not
even competitive for L = 100. We will thus concentrate on variable-metric
schemes in the further discussion. For L ≥ 1000 we observe that the conver-
gence behavior of all variable-metric methods can be divided into three phases,
(i) an initial short tune-in phase with rapid progress, (ii) a learning (or adap-
tation) phase with marginal progress in function value (of length quadratic in
n), and (iii) a convergence phase with strong function value decrease (of length
linear in n). Moreover, we see that the slope of the trajectory at the level of
the target accuracy is distinct for all schemes. This measured convergence rate
reflects the efficiency of the adaptation process of the different schemes at this
function value level. CMA-ES and RH (1+1) show the steepest descent, CMA-
ESnp and GaA the flattest one. For L = 10000 CMA-ESnp and the non-adaptive
methods do not reach the target accuracy within a FES budget of 60n2. These
observations are generally confirmed on other quadratic functions having dif-
ferent spectral shapes with a few notable exceptions. We here exemplify the
performance of the schemes on the two most extreme functions fSigm(15) and
fFlat(6) (with L = 10000 in n = 50) as well as on fRosen (as shown in Fig. 4). On
fFlat(6) (cf. Fig. 4c) the Hessian is well-approximated by all convergent schemes.
The convergence rate in phase (iii) is best for CMA-ES followed by RH (1+1)
and GaA. RH RP’ convergence takes longer because per line search 5-10 FES
are needed on average. CMA-ESnp is still in the adaptation phase within the
displayed FES budget. On fSigm(15) (cf. Fig. 4b) we observe that CMA-ES’ con-
vergence rate is slower than the one of RH (1+1) above accuracy 1e-7 eventually
converging at optimal rate below this level. This indicates that CMA-ES is still
in adaptation phase even at low function value level. Both CMA-ESnp and GaA
are still in the adaptation phase within the displayed FES budget. Inspection
of the convergence trajectories also reveals that the length of learning phase is
responsible for CMA-ES’ observed dependence on the spectral shape.
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(b) fSigm(15), L = 10000
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(c) fFlat(6), L = 10000
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(d) fRosen

Fig. 5. #FES to reach the target accuracy vs. dimension n in log-log scale. The median
of 11 runs is depicted by a marker for all converged runs within the considered #FES
budget. Thin lines indicate quadratic scaling (top) or linear scaling (bottom) .

The experiments on fRosen confirm that all variable-metric schemes (except
GaA) can efficiently learn a smoothly changing Hessian (without tune-in phase)
confirming and extending known results for RH schemes [5] and CMA schemes
[7]. We finally show the scaling behavior of the algorithms on selected functions
in Fig. 5. All algorithms show the expected quadratic scaling with dimension (for
n ≥ 20) with two notable exceptions. While GaA and CMA-ESnp on fSigm(15)

and GaA on fRosen exhibit scaling of higher order than quadratic, CMA-ES
shows super-linear convergence on fFlat(6). The latter result is in full agreement
with the empirical tests of CMA-ES on the cigar function [7,8].

5 Discussion and Conclusions

We have empirically tested the performance of several randomized gradient-free
variable-metric optimization schemes on a novel set of quadratic functions whose
spectral distribution ranges (for any fixed dimension n and condition number L)
from a near-flat distribution to a sigmoidal shape under constant trace con-
straint. Using this benchmark set we have been able to show a clear monotonic
dependence of the performance of CMA schemes on the shape of the spectrum.
From the data we also conclude that the concept of the evolution path allows
a paramount speed-up of CMA schemes but does not alleviate the dependence
on the eigenvalue spectrum. The presented Randomized Hessian (RH) approx-
imation schemes [5], on the other hand, have been shown to be less dependent
or almost invariant to the specific distribution of eigenvalues. Our empirical
results also indicate that coupling our novel, numerically stable implementa-
tion of the RH scheme with adaptive step size control is more efficient than a
scheme with approximate line search on all tested problems. We believe that
the present results may trigger research into the design of novel CMA update
schemes with improved spectral invariance. We also advocate the embedding



A Provable Variable-Metric Randomized Optimization 457

of the proposed function set (most prominently the sigmoidal ones) in modern
black-box optimization benchmark test suites. Investigating quadratic function
sets under constant determinant and condition constraints (thus allowing expo-
nentially distributed eigenvalues) will be subject of future research.
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Abstract. We introduce the Three-Layer Hierarchical Ring Network
Design Problem, which arises especially in the design of large telecom-
munication networks. The aim is to connect nodes that are assigned to
three different layers using rings of bounded length. We present tailored
Variable Neighborhood Search (VNS) and GRASP approaches to solve
large instances of this problem heuristically, and discuss computational
results indicating the VNS’ superiority.

1 Introduction

In this paper we present the Three-Layer Hierarchical Ring Network Design (3-
LHRND) problem, which belongs to the research field of network design and
has not been considered in the literature before. 3-LHRND finds applications in
the planning of larger hierarchical communication networks where survivability
in case of failures plays a major role. The nodes of the network are assigned
to different layers—in our case three. The aim is to connect these nodes within
each layer and, additionally, the layers among each other hierarchically using
rings of bounded length for the matter of survivability. As a possible application
one might imagine a telecommunication network, where different technologies
are interconnected, e.g., high-speed fiber for layer 1, low-speed fiber for layer 2
and copper for layer 3.

In the context of survivability fault tolerance is an important issue especially
in the case of wide area networks to guarantee high reliability. A common way
to achieve these demands is the use of so-called self healing rings (often referred
to as rings for short) that ensure connectivity of two nodes in case of the failure
of a third node due to the possible routing in two different directions. Rings are,
in fact, the simplest node-biconnected structures.

With the increasing size of networks a single ring connecting all nodes would,
however, not be efficient anymore. Due to the large diameter of such a network,
capacity requirements of single links as well as communication delays would soon
be too high. Furthermore, simultaneous failures in more than one node would in
general disconnect large parts of the network. This issues can be addressed by
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dividing the network into subnetworks of limited size, i.e., the network consists
of smaller rings that are hierarchically interconnected. Interconnection nodes are
often referred to as hub nodes. When the interconnection is realized by ring struc-
tures the network is called a hierarchical ring network. To ensure survivability
also in case of failures in hub nodes, the rings are interconnected via two different
nodes—a so-called dual homing approach. In our case we consider a hierarchy
spanning nodes on three different layers using dual homing, and consequently
we refer to this problem as the Three-Layer Hierarchical Ring Network Design
problem (3-LHRND). While much work already exists for related problems, 3-
LHRND has so far not been addressed. As we will argue in Section 3, 3-LHRND
is NP-hard and also difficult to solve in practice. In order to approximately
solve larger instances, we propose a Variable Neighborhood Search (VNS) and
a Greedy Randomized Adaptive Search Procedure (GRASP). Both exploit the
special structure of the problem in various ways.

The rest of the paper is organized as follows. In Section 2 we summarize
related work. Section 3 defines the 3-LHRND, and Section 4 presents our VNS
and GRASP. Computational results are discussed in Section 5. Finally, Section 6
concludes this contribution, also pointing out suggestions for future research.

2 Related Work

While network design is a fast growing field of research, 3-LHRND with its strict
definition and constraints has not been considered yet. Nevertheless, a lot of work
has been contributed to similar problems, which contain some (but never all) of
the aspects of 3-LHRND.

In the field of network design, the hierarchical/layered aspect has first been
explicitly considered in 1986, when Current et al. [5] introduced the Hierarchical
Network Design Problem (HNDP). In the HNDP the network consists of two
primary nodes that are connected to a path and secondary nodes that connect
to this path such that the whole network comprises to a tree. The authors present
an Integer Linear Programming (ILP) formulation. Additionally, they designed
a heuristic for the HNDP based on a K-shortest path algorithm, to find the best
path connecting the primary nodes, and a minimum spanning tree heuristic, to
connect the remaining nodes to the best path found.

Balakrishnan et al. introduced theMulti-Level Network Design (MLND) in [3],
which is a generalization of the well-known Steiner network problem [6]. By
definition nodes are assigned to L different levels in MLND. In the core of their
work, the authors focus on the L = 2 case and first present an ILP formulation,
which they later extend to a multi-commodity flow formulation.

In [12] Thomadsen and Stidsen give a detailed overview about the advantages
of rings in survivable networks and present a Branch-and-Price approach for the
Hierarchical Ring Network Problem with two levels using single homing, i.e.,
each ring connects to one node of the interconnection ring. The authors assume
that node-to-layer assignments are not prespecified but are to be found during
the design process.
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In the past the attention in hierarchical network design has been primarily
drawn to two level problems. However, in recent years the interest in more gen-
eral multi (> 2) level problems has increased. Trampont, Destré and Faye [13]
describe a three level problem, like our 3-LHRND but with tree structure, where
the authors study a variant of the multi-source Weber problem. In this case
terminals (layer 3) must be connected to a central equipment (layer 1) via con-
centrators (layer 2), which are not fixed at the beginning. The objective is to
find the best location for the concentrators, i.e., determine the layer 2, such that
the overall costs of the network are minimized. To solve this problem the authors
present two stabilized column generation approaches.

The Capacitated m-Ring-Star Problem was introduced by Baldacci et al. in [4].
There the nodes are partitioned into three subsets, one depot node, customer
nodes, and transit points (Steiner nodes). The network consists of m rings of
bounded length and edges connected to the ring. All rings must contain the
depot node and connect the customers directly or via a transit point (i.e., the
additional edges). The authors compare two mathematical programming formu-
lations, namely a two-indexed and a two-commodity flow formulation.

In [2] Aringhieri et al. apply different Metaheuristics to solve two ring network
problems. One is comparable to the previously mentioned [12], the other does
not use an interconnection ring but a set of paths to connect the level two rings.
The authors designed a construction heuristic and two neighborhood structures
embedded in a Tabu Search. Moreover, they consider Path Relinking, “eXploring
Tabu Search”, and Scatter Search approaches.

From another field of research originates the Two-Echelon Location-Routing
Problem [11], which is a combination of the Facility Location Problem (FLP)
and the Vehicle Routing Problem (VRP) but, nevertheless, shares similarities
with 3-LHRND. Here the node set is partitioned in platforms (layer 1), satellites
(layer 2) and customers (layer 3). In this case the locations for the platforms and
satellites to be opened must be determined (i.e., the FLP aspect). Additionally,
two different vehicle fleets transport goods either from the platforms to the
satellites or from the satellites to the costumers (i.e., the VRP aspect). The
main differences to 3-LHRND are that the platforms need not be connected
and not all platforms and satellites need to be opened but only the beneficial
(or sometimes mandatory) ones. The authors present a VNS with a total of 21
specific neighborhood structures.

3 Three-Layer Hierarchical Ring Network Design

This section introduces the 3-LHRND with all its details. We are given an undi-
rected, complete graph G = (V,E) with vertex set V , edge set E, and a cost
function that assigns costs cij ≥ 0 to each edge (i, j) ∈ E. Each vertex is assigned
to one of three layers, i.e., the vertex set is partitioned into three disjoint subsets
V1, V2 and V3 with V1 ∪ V2 ∪ V3 = V and Vi ∩ Vj = ∅, ∀i, j ∈ {1, 2, 3}, i 	= j.
A feasible solution to 3-LHRND is a subgraph GL = (V,EL) connecting all the
nodes V and satisfying the following constraints; see Figure 1 for an example.
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(a) (b)

Fig. 1. Schematic representations of (a) a feasible solution and (b) an infeasible solution
(the numbers in parentheses indicate the violated constraints)

1. The nodes in V1 are connected by a single independent ring containing no
other node.

2. The nodes from layers 2 and 3 are connected by two respective sets of paths,
containing no nodes from other layers. Each node appears in exactly one
path.

3. The end nodes of each path at layers 2 and 3 are further connected to two
different nodes (hubs) in the directly preceding layer; i.e., dual homing is
realized. We refer to the edges connecting paths to hubs as uplinks. Conse-
quently, there are no edges directly connecting a node from layer 1 to a node
from layer 3.

4. The two hub nodes a path is connected to must themselves be connected
by a simple path at their layer; i.e., the connection to a ring may not be
established via more than two layers.

5. The lengths of layer k ∈ {2, 3} paths in terms of the number of nodes is
bounded below and above by specified limits blk ≥ 2 and buk ≥ 2, respectively.

The objective is to find a feasible solution with minimum total costs c(EL) =∑
(i,j)∈EL

cij .

Considering these definitions, we observe that finding the layer 1 ring re-
sembles the classical Traveling Salesman Problem (TSP), which can be solved
independently. In contrast, optimal structures of layers 2 and 3 strongly depend
on each other. Only a suitable, concerted choice of layer 2 and layer 3 paths allow
for efficient uplinks and overall connectivity. Thus, the layers 2 and 3 cannot be
treated separately. The rings connecting layer 2 with layer 1 consist each of at
most (|V1|/2)+ bu2 + 1 nodes and edges, while the rings connecting layer 3 and
layer 2 have up to bu2 + bu3 nodes/edges.

3-LHRND obviously is NP-hard even when looking at each layer indepen-
dently: As mentioned, for layer 1 the subproblem directly corresponds to the
TSP. Concerning layers 2 and 3, the classical capacitated vehicle routing prob-
lem (CVRP) can be reduced to each by assuming all nodes of the preceding layer
are connected via a single ring and together represent the CVRP’s depot.
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4 A VNS and GRASP for 3-LHRND

As already mentioned, the problem to connect all layer 1 nodes to a single ring
resembles the TSP and can be solved independently. We apply the Concorde TSP
solver [1] and focus in the following only on the more interesting layers 2 and 3.

Due to the 3-LHRND’s complexity and relations to other network design
problems and CVRP variants, we decided to solve it approximately using VNS
and GRASP, as these techniques are known to work well in these domains, see,
e.g., [11]. At first we designed a simple construction heuristic, which we used to
create initial solutions for the VNS and then randomized for the GRASP. For
general introductions to VNS and GRASP, we refer to [8,10].

4.1 Construction Heuristic

Our construction heuristic is inspired by the simple nearest-neighbor heuristic
for the TSP. To create the layer 2 paths we start with an unvisited layer 2 node
i, search for the nearest hub node h ∈ V1 according to the edge costs cih, and add
the uplink eih to our solution. Then we determine in layer 2 the closest unvisited
node j to our current node i, add the edge eij to our solution, mark i as visited,
and make j our current node. We repeat this procedure until the given upper
bound for layer 2 paths bu2 is reached. Then we search for the nearest hub node
different from h back to layer 1 and add this uplink to our solution. Following
this approach we add layer 2 paths to our solution until all layer 2 nodes are
marked as visited. In case that the length of the last path would be less than
the lower bound for layer 2 paths bl2 we make the second to last path shorter to
satisfy all constraints.

To create the layer 3 paths we apply the same procedure, but now we further
have to ensure that the second uplink connects to the same layer 2 path as the
first uplink.

4.2 Variable Neighborhood Descent

Variable Neighborhood Descent (VND) [8] extends simple local search by system-
atically considering a set of different neighborhood structures in a deterministic
way until a solution is reached that is locally optimal w.r.t. all of them. Thus,
the improvement potential strongly relies on the neighborhood structures and
the order of their application.

Our VND, which is used within VNS as well as GRASP, searches eight neigh-
borhood structures that are induced by the following operators in the given order.

Two-Edge-Exchange (2EE): Based on the well known operator for the TSP
this operator investigates all feasible candidate solutions that differ in at
most two edges. In this case 2EE is applied to each layer 2 and layer 3 path
separately starting with the first uplink and ending with the second. The
number of neighbors and, consequently, the runtime for completely searching
this neighborhood is bounded by O((buk)

2 · �Vk/b
l
k�) for k ∈ {2, 3}.
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Three-Edge-Exchange (3EE): After the use of 2EE a reduced form of three-
edge-exchange is applied to all layer 2 and layer 3 paths. This reduced form,
as presented in [9], only deals with the cases that are not covered by 2EE, i.e.,
when indeed three edges are replaced by three new edges. This limitation and
the fact that the number of neighbors lies in O((buk)

3 · �Vk/b
l
k�), k ∈ {2, 3},

makes searching 3EE relatively fast in relation to the standard three-edge-
exchange for the TSP. Like 2EE this operator is applied to all edges of a
path including the uplinks, and only feasible solutions are considered.

Split-Rings (SR): This operator splits one path into two subpaths and relinks
the end of the first and the beginning of the second subpath back to the
preceding layer. Care must be taken as some layer 2 nodes along a split path
might serve as hub nodes for layer 3 paths. If the split is performed between
two hub nodes of an attached layer 3 path, this layer 3 path would not be
connected to the same layer 2 path anymore. Each layer 3 path affected in
this way is therefore relinked by determinig its cheapest feasible pair of hub
node connections. Additionally, the splitting point must be chosen so that
both subpaths exceed blk, k ∈ {2, 3}.

Two-Node-Exchange (TNE): As the name indicates this operator considers
all solutions in which two nodes from different paths on the same layer are
exchanged. If an exchange on layer 2 affects a hub node, then the attached
layer 3 paths must be relinked as described above. This is achieved be relink-
ing either within the old or within the new path of the exchanged hub node.

One-Node-Move (ONM): This operator moves a single node from one path
to another, i.e., the node is removed from its old path and inserted in
another path from the same layer when the corresponding path length
bounds blk and buk are satisfied. Again, if a layer 2 hub node is moved then
relinking is necessary for the attached layer 3 paths. All nodes as well as all
feasible insertion points are considered.

Append-Rings (AR): This operator represents the complement to SR. It
connects two paths on the same layer. The length of the new path must not
exceed the upper bound buk. For layer 2 the existing uplinks can be used but
relinking of layer 3 paths might be necessary, when two layer 3 paths are
merged, which are connected to different layer 2 paths.

Change-Uplinks (CU): The CU operator optimizes the uplinks for all layer 2
and layer 3 paths. For each path, the overall cheapest pair of hubs is
determined, taking care that the two hub nodes must be different and the
hub nodes of each layer 3 must appear in the same layer 2 path.

Merge-Rings (MR): This operator provides an additional opportunity to
merge short paths into a new one. While AR only considers their appen-
dance, MR tries to insert one path between any two nodes of another path
from the same layer, providing the path length limit is not exceeded.

We implemented the VND with its eight neighborhood structures with three dif-
ferent step functions, namely classical next and best improvement and, addition-
ally, we used a function that applies a move immediately, when an improvement
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was found (like next improvement) but then (in contrast to next improvement)
stick with this operator until no further improvement can be found within this
neighborhood.

4.3 Variable Neighborhood Search (VNS)

A general VNS, as used for this paper, is a stochastic algorithm that combines
VND as local search procedure with an outer search mechanism performing
random moves in typically larger neighborhoods in order to escape the local
optima of the VND. The outer random moves are also called shaking [8].

In preliminary tests we searched for the best combination of shaking neigh-
borhood structures. It appeared that only slight changes in the solution lead to
a better and smooth improvement during the VNS.

Larger moves perturbated the solution in a way so that the VND could not
steadily improve this solution. We finally ended up with the following four shak-
ing operators based on TNE and ONM: (1) exchange two random nodes between
layer 3 paths, (2) exchange two random nodes between layer 2 paths, (3) move
one random layer 3 node to another path, and (4) move one random layer 2
node to another path. In all cases, only moves respecting all the constraints are
performed.

Since, TNE and ONM are used later within the VND, the previous operators
(2EE, 3EE, SR) typically already found improvements for the affected paths so
that TNE orONMwill not simply undo the changes performedwithin the shaking.

4.4 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [10] marks another metaheuristic approach to avoid getting trapped in
local optima. A construction heuristic is randomized in order to create diverse
initial solutions, and each of which is successively optimized by local search. The
randomization of a construction heuristic is usually performed by turning from
a pure greedy selection of the next component by which a partial solution is ex-
tended towards using a Restricted Candidate List (RCL) of promising candidate
components and choosing from it at random.

For our purpose we randomized the construction heuristic from Section 4.1.
In each iteration, when a new edge is added to a path from the current node
i to the next node j, this randomized heuristic creates an RCL that contains
the r-nearest neighbors of i, with r being a strategy parameter. Node j is then
chosen randomly from the RCL, based on a uniform distribution. For r, i.e., the
length of the RCL, we set buk/2, k ∈ {2, 3}. However, we still choose for each
path the best uplinks deterministically. Due to the fact that the choice of the
uplinks is a local decision with respect to each path we know that in the end the
CU neighborhood structure will find the best uplinks for all paths. Therefore,
a randomized choice of the uplinks would not meaningfully increase our search
space but cause needless effort. After the randomized heuristic created an initial
solution, it is improved by the previously described VND. This procedure is
repeated until a given time-limit is reached.
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Table 1. The underlying TSPLIB instances of the test set with the number of generated
test cases, upper bounds, time limits and the average objective values for initial and
final solutions and corresponding standard deviations obtained from VNS and GRASP
(30 runs per test case).

VNS GRASP

TSPLIB # buk t[s] init dev final dev init dev final dev

ulysses22 1 5-7 150 166.82 0.00 128.28 1.70 166.82 0.00 129.56 0.00
att48 4 5-7 150 76560.30 4406.66 61721.55 1053.39 82084.04 4146.29 63527.21 2120.45
eil51 4 5-7 150 1043.27 36.85 756.75 21.60 1075.17 50.44 779.55 36.27
berlin52 4 5-7 150 19078.36 1233.71 13709.26 428.23 19800.12 939.20 14309.64 769.90
eil76 12 5-12 150 1227.28 59.19 933.07 40.52 1462.40 130.43 971.26 37.23
gr96 18 5-12 300 1220.23 76.19 964.20 43.04 1514.36 172.12 1045.29 43.34
kroA100 18 5-12 300 59707.86 5263.22 41742.56 1584.33 74798.61 6745.93 46171.74 2974.85
kroB100 18 5-12 300 59259.01 6148.42 41796.04 1644.53 73918.06 8229.28 46204.49 2656.25
bier127 12 8-15 300 263995.65 8274.02 209636.01 3386.62 385901.48 24744.77 228707.75 5359.88
ch150 18 8-15 300 15589.56 575.06 12286.63 440.28 24454.02 1784.15 13988.46 436.43
kroA200 18 8-15 300 73801.91 3111.26 55314.71 1371.25 113770.39 8222.59 65670.67 1904.39
kroB200 18 8-15 300 75040.20 3855.24 58406.59 1665.32 118601.24 9128.76 66267.41 2340.33
gr229 12 12-20 600 3858.00 166.33 3008.36 59.19 7559.52 619.88 3588.33 141.86
pr299 12 12-20 600 116878.18 4526.67 96944.53 1507.31 246754.55 19372.46 119237.01 4592.66
lin318 18 12-20 600 100782.81 3423.72 83170.33 1789.88 204233.35 15512.07 104900.96 4322.02
gr431 18 12-20 900 4544.14 163.13 3651.96 105.69 9230.29 829.13 4525.99 258.50
pr439 18 12-20 900 267944.92 11269.23 222507.49 10831.91 560935.73 46642.47 287415.51 17304.18

5 Experimental Results

For testing purposes we created a benchmark instance set based on TSPLIB1. We
used 17 TSPLIB instances and performed a k-means clustering to determine the
layer 1 and layer 2 nodes. By varying the number of nodes in the layers we derived
42 instances. All graphs are complete, with the exception that edges between
layer 1 and layer 3 were removed as they cannot appear in feasible solutions.

Moreover, we defined combinations of useful upper bounds for the path lengths
depending on the number of nodes in the graph, which resulted in 223 overall
test cases. As a lower bound we assumed a minimum length of two for all paths.

For each of the test cases we performed 30 runs executed on a single core of
an Intel Xeon (Nehalem) Quadcore CPU with 2.53 GHz and 3GB of RAM. As
stopping criterion we used the same CPU time limits for both VNS and GRASP
as indicated in Table 1. We always applied next improvement as step function,
which provided the best results according to preliminary tests. These tests also
indicated that creating initial solutions with more restricted path lengths of
up to buk − 2, k ∈ {2, 3}, only instead of buk yields slightly worse solutions but
with a significantly higher improvement potential. Consequently, we followed
this strategy in our VNS and GRASP. In the following section we describe our
results based on this test set.

5.1 Test Results

Results are summarized in Table 1. The columns have the following meaning:
TSPLIB indicates the underlying instances our derived test cases are based on

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 2. Relative number of total improvements achieved by the individual neighbor-
hood structures within VND

(the number at the end of the name denotes the number of nodes in the graph);#
denotes the numbers of different test cases for each TSPLIB instance; buk lists the
range of used upper bounds for layer 2 and 3; t describes the CPU-time limits
in seconds; for the VNS and GRASP sections init lists the average objective
values of the initial solutions together with their standard deviations labeled by
dev, while final denotes the average objective values of the final solutions found
in each run, again together with corresponding standard deviations dev.

Since, in GRASP initial solutions are generated by the randomized con-
struction heuristic, the significantly worse initial objective values and higher
standard deviations are natural. As can be seen easily, the successive VND
could improve these initial solutions dramatically, also leading to substantially
decreased standard deviation.

Concerning VNS, it can be easily seen that it clearly outperforms GRASP. In
fact, average final objective values from the VNS are always smaller than those
from GRASP. Student t-tests indicated the statistical significances of these dif-
ferences with error probabilities smaller than 1%. Since, there is no opportunity
for GRASP to escape local optima during local search, the GRASP approach
cannot easily break up the path structure of the initial solution as is done by the
shaking in VNS. On the other hand, it appears that the randomized construction
heuristic cannot easily provide promising path structures from the beginning.

In VND, all eight neighborhood structures contribute to the overall success,
although the impacts vary. Figure 2 shows for three exemplary cases, which
reflect the typical behavior well, how many times the application of each neigh-
borhood structure led to an improved solution in relation to all improvements
achieved. The test settings were for berlin52 |V1| = 4, |V2| = 10, bu2 = 5, bu3 = 7;
for bier127 |V1| = 10, |V2| = 40, bu2 = 12, bu3 = 15; for gr229 |V1| = 12, |V2| = 80,
bu2 = 17, bu3 = 20. One can further see here that the success of neighbor-
hood structures only loosely depends on the upper bounds for the path lengths.
The highest improvement was achieved by 2EE, which is also applied first, while
3EE had only a minor impact. TNE proves to be an important operator, followed
by ONM. MR was rarely successful.
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6 Conclusions and Future Work

We introduced the Three-Layer Hierarchical Ring Network Design Problem and
presented a VNS and GRASP for solving it heuristically. Both strategies use
a common construction strategy as well as a VND for local improvement. The
VND explores eight tailored neighborhood structures, which have been shown
to augment each other well. In our experiments, the VNS clearly outperformed
GRASP. In the future we will investigate alternatives for the construction heuris-
tic, e.g., based on the prominent savings heuristic from vehicle routing problems,
as well as study further potentially more powerful neighborhood structures for
VND/VNS. In particular, we expect further improvements by considering larger
neighborhood search concepts such as cyclic exchanges over more than two paths,
as well as hybrid techniques involving mixed integer linear programming for solv-
ing reasonably sized subproblems. An important practical necessity is to test the
approaches also on more realistic sparse graphs.
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Abstract. Evolution produces gene regulatory networks (GRNs) able
to control cells. With this inspiration we evolve artificial GRN (AGRN)
genomes for the reinforcement learning control of mechanical systems with
unknown dynamics, a problem domain similar in its sparse feedback to
that of controlling a biological cell. From the fractal GRN (FGRN), a suc-
cessful but complex GRN model, we obtain the Input-Merge-Regulate-
Output (IMRO) abstraction for GRN-based controllers, in which the
FGRN’s complex fractal operations are replaced by simpler ones. Compu-
tational experiments on reinforcement learning problems show significant
improvements from the use of this simplified approach.We also present the
first evolutionary solution to a hardened version of the acrobot problem,
which previous evolutionary methods have failed on.

Keywords: Gene regulatory network, IMRO, FGRN, genetic algorithm,
ALPS, control, reinforcement learning, pole balancing, acrobot.

1 Introduction

Gene regulatory networks (GRNs) act as controllers in situations as different
as single cell bacteria and multi-cell organisms, with orders of magnitude of
variation in size. GRNs are a product of evolution, optimised for controlling
their host cell in a myriad ways, depending on context (single-cell vs multi-cell
organism, during development, etc).

However it is generally desirable to avoid unnecessary complexity when de-
veloping systems inspired by nature and hence we will seek here to extract the
key dynamics of the FGRN model, currently the most successful AGRN model
for control, to improve its control capabilities. In parallel with nature we use
artificial evolution, in the form of a genetic algorithm (GA), to evolve AGRNs
for the control of mechanical systems.

This paper focuses on mechanical systems reinforcement learning problems,
in which the system’s dynamics are completely unknown and the reinforcement
feedback is limited. Unknown dynamics is important for real world applications
(for example coal furnace combustion control [5]), and in addition by minimising
domain knowledge we are ensuring the wide applicability of our method. This
work additionally represents the first solution of the double pole and acrobot
problems with an AGRN system.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 468–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Extracting Key GRN Dynamics for Control of Mechanical Systems 469

2 Related Work on Artificial GRNs

Surprisingly, given the role of natural GRNs in biological control, AGRN appli-
cations were initially focused only on development. But recently AGRN models
have known increased use for control: Nicolau et al[12], and Lopes and Costa[11],
have applied GRNs based on a binary genome to single pole balancing, while
Joachimczak and Wróbel[8] used a GRN based on a linear genome for evolving
simple foraging behaviours.

The FGRN system, introduced by Bentley[2], is a complex evolutionary model
of a GRN in which proteins are bitmaps generated from the Mandelbrot set frac-
tal. The FGRN was originally devised as a developmental system with applica-
tions such as pattern generation, or an algorithm producing increasingly precise
estimations of π[9], though it also had clear potential for control purposes. There
have been a number of previous FGRN control applications, evolving behaviours
such as wall-following[1], grid-world box-pushing[17], and robotic locomotion[16].
In particular Krohn and Gorse[10] have applied the FGRN system to multiple
versions of the single pole balancing problem, a starting point for the more am-
bitious work to be presented here.

3 Problem Domain: Reinforcement Learning

Reinforcement learning consists of discovering what actions to take for any given
environmental state in order to maximise a scalar reward[15]. In this paper the
focus will be on problems in which the full state of the environment is given, but
in which, as discussed above, the environmental dynamics are unknown. Figure 1
displays the problems considered in this work.

(a) Polebalancing (b) Double pole balancing (c) Acrobot

Fig. 1. Reinforcement learning problems considered in this work



470 J. Krohn and D. Gorse

3.1 Pole Balancing

Pole balancing is a well-known, well-studied control problem that has been used
as a benchmark for the design and test of many controllers[6]. Consequently,
standard equations of motion and constants have arisen; these will be used in
the current work and are described in ref [6].

The single pole version, shown in Figure 1a, is usually (and here) defined to be
the problem of keeping the angular position θ of the 1.0m tall hinged pole within
12◦ of vertical, and the distance x of the cart on which it is mounted within 2.4m
of the centre of the track, using only ‘bang-bang’ control (a force F of ±10N
being applied to the cart at each time step). The system state information given
to the controller consists of x, ẋ, θ, θ̇.

The double pole version, shown in Figure 1b, consists of simultaneously bal-
ancing two poles of different size, with different starting angles, on the cart.
The poles are respectively 1.0m and 0.1m tall, and the acceptable range for pole
angles θ1 and θ2 is here within 36◦ of vertical. In this case the system state is
composed of x, ẋ, θ1, θ̇1, θ2, θ̇2. Most other studies involving double pole bal-
ancing use as integration method two-step fourth order Runge-Kutta, and for
consistency this will be used throughout the current work.

Gomez et al. have produced an extensive comparison of the performance of
machine learning methods on the single and double pole balancing problems
with or without velocities included in the inputs[6]. Controllers developed using
the pole balancing problem have also been used in a variety of real-world control
applications[5].

3.2 Acrobot

The acrobot, shown in Figure 1c, is a two-link underactuated robot[13]; it is
roughly analogous to a gymnast hanging from a bar and only able to act by
bending at the hips. The acrobot has been extensively studied both as a control
and machine learning problem.

Unlike the pole balancing problem the acrobot problem definition varies sig-
nificantly from one study to the next. However acrobot goals can be put into
two broad categories: swing-up and handstand. Swing-up consists of generating
actions such that the acrobot’s tip (the gymnast’s feet) reaches a one link height
above the bar in the shortest possible amount of simulated time. Handstand is
the harder task of swinging up the acrobot and then keeping both links vertically
balanced; all solutions to the acrobot handstand problem have so far included
pre-existing knowledge of the problem, e.g. the equations of motion, the desired
energy level of the goal position, or the coordinates of the target position[3]. Solu-
tions to the swing-up problem have frequently also involved pre-existing domain
knowledge, though Sutton[14] successfully applied a combination of SARSA with
coarse input coding to the 5Hz swing up problem, with bang-zero-bang.

More recently, and most significantly for the current work, da Motta Salles
Barreto and Anderson[4] have introduced a harder version of the acrobot swing-
up problem by multiplying by four the frequency of control actions (using a 20Hz



Extracting Key GRN Dynamics for Control of Mechanical Systems 471

rather than 5Hz control frequency), reporting successful results with a SARSA-
based method and a policy iteration algorithm but being unable to obtain any
viable solution using several evolutionary methods. In contrast this paper will
show that by extracting key operational features from the FGRN model, and by
using for inputs the continuous state representation sin θ1, cos θ1, sin θ2, cos θ2,
θ̇1, and θ̇2, it is indeed possible to address this more challenging version of the
problem using an evolutionary method.

4 System Description

4.1 Input-Merge-Regulate-Output (IMRO) System

The IMRO system is an abstraction of the GRN model that underpins the
FGRN. An IMRO genome is a set of genes with one of three possible types (input,
regulatory, or output). An IMRO controller is the combination of a genome and
a merging module which, similarly to a biological cell, provides the environment
for the ‘execution’ of the genome. The merging module takes in proteins and
merges them into a cell state that changes with the addition of new proteins.
The cell state is an array of real values of length N .

An input gene takes in a scalar input and produces a protein output; it is
equivalent to a combination of the FGRN’s environmental and receptor genes.
Both regulatory and output genes take in the cell state, outputting proteins in
the case of the former, and a scalar in the case of the latter. The outputs of the
genes are functions only of their latest input, whereas the merging module stores
past proteins until they have decayed by the mechanism to be described below.

One control iteration of the IMRO controller (in which the controller receives
input and gives output) consists of the following steps: (i) the existing proteins
are decayed; (ii) for each scalar input a corresponding input protein is generated
and added to the existing proteins in the merging module; (iii) these proteins
are combined into a new cell state by the merging module; (iv) the cell state
determines the activation of the regulatory genes, which output proteins to the
merging module, and also the activation of the output genes, which produce the
controller’s scalar outputs.

Fig. 2. The IMRO system. Left, the data flow of a controller. Right, the internal details
of the a) Input, b) Regulatory, and c) Output genes. Key: P = protein, S = cell state,
R = real scalar
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Proteins and Cell State. A protein is composed of an array of integers L of
length N , a lifespan τ and a real value v. L is an array of levels, determining how
prominently the protein will feature in the cell state; τ is the protein’s time to
live; and v determines how the protein will influence, through the cell state, the
activation of regulatory and output genes. Proteins are decayed by decreasing τ
by one; when τ = 0 the protein is deleted.

The cell state array is generated by taking, for each i in N , the value v of the
protein with the highest level Li for that index (or the average of the v values, if
several proteins have the same maximum Li); if for the index i there is no existing
protein value Li superior to a fixed threshold set to 0, the corresponding value
in the cell state is set to 0. This allows the evolution of proteins which only
influence part of the cell state.

4.2 Gene Components

As detailed in Figure 2, the genes are composed of combinations of four compo-
nents: promoter, activation, protein-output, and scalar-output. All component
parameters are subject to evolution.

Gene Promoter. The role of a natural gene’s promoter section is to regulate
the activation of the gene based on the presence/absence of certain proteins or
combinations of proteins. The IMRO gene promoter accomplishes this regulatory
role by masking away part of the merged protein cell state, and then producing
a matching score that is used further on to determine the activation of the gene.

In detail, the IMRO promoter consists of a pair of evolvable arrays of the same
size N as the cell state: a boolean vector M acting as a mask, and a real vector
W providing weights for the corresponding values in the cell state. Formally, the
matching score mi,t of the promoter of gene i at time step t of a given simulation

(e.g. a pole balancing run) is mi,t =
∑N

j=1 Mi,jWi,jSj,t, where Mi,j ∈ {0, 1} is
the jth element of the promoter mask vector of gene i; Wi,j ∈ R is the jth
element of the promoter weight vector of gene i; and Sj,t ∈ R is the jth element
of the cell state at time t.

Gene Activation. The gene activation function of IMRO regulatory and out-
put genes is similar to the FGRN’s activation function, but removes the need
for arbitrary constants. The activation function of gene i is defined by its scale
αi and its threshold θi ∈ [−1, 1]. For gene i at time t, the activation ai,t ∈ [0, 1]
is given by

ai,t =

{
max(vi,t,θi)−θi

1−θi
if θi > 0

min(vi,t,|θi|)
|θi| if θi < 0

,where vi,t =
tanh(αimi,t) + 1

2
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This allows for a large variety in the direction and scale of the activation function,
while preserving the general shape of its natural equivalent : a 0 or 1 plateau,
followed or preceded by a smooth curve to/from the other end of the [0, 1] range.
This function also preserves both the digital aspect of natural gene activation (a
gene can be activated or not), and the analog aspect (once activated, a variable
amount of protein can be produced, depending on the activation level).

Protein Output. When in a regulatory gene, the protein output component
generates a protein on activation (when the activation value is non null). The
component defines the protein’s L level array, as well as its initial time-to-live τ .
The protein’s value v is determined from the combination of a scaling factor β
and the activation value. For gene i at time t, the protein value is vi,t = βiai,t, and
similarly when in an input gene, except an external scalar input then replaces the
activation value. In randomly initialised genomes, the protein output components
of input genes are initialised with a τ of one, and only have one positive value
amongst the levels, to avoid a flooding of the cell state.

Scalar Output. The scalar output component determines the return value of
an output gene. If a boolean value is desired, the output of gene i at time t is
oi,t = 0 iff ai,t = 0, otherwise 1. If a real value is desired, the component has a
scale parameter β, and a threshold parameter T ; the output of gene i at time t
is then oi,t = max(ai,t, 0) iif T ≥ 0, and |T | −min(ai,t, |T |) otherwise.

5 Experiments

In this section we first give some relevant parameter settings and experimental
details, before presenting some preliminary experiments along with their results,
and finally detailing the results of the pole balancing and acrobot experiments.

5.1 Parameter Settings and Experimental Details

A maximum of 10,000 genomes are evaluated per run for the preliminary exper-
iments and the pole balancing. For the acrobot, following ref [4], a maximum of
3,000 genomes is evaluated per run. All experiments are run 50 times.1

Genetic Algorithm. IMRO and FGRN genomes are evolved using the ALPS
genetic algorithm[7] with a layer size of 25 and an age gap of 10. Tournament
selection is used in each layer, with a tournament size of 4 and with elitism set to
3. Parents are selected from the top 40% of each layer, except in one percent of
cases, where a parent is selected randomly. The gene component mutation rate
is 0.1, and uniform crossover is always applied. ALPS was found to increase the
reliability with which successful FGRN controllers were found[10].

1 The source code for all the experiments and systems described in this paper is
available at http://github.com/susano/ppsn2012

http://github.com/susano/ppsn2012
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FGRN. The FGRN genomes evolved are composed of four regulatory genes,
one receptor gene, one behavioural (output) gene, and as many environmental
genes as there are inputs. The zero centered input-mapping[10] is used.

IMRO. The IMRO genomes evolved are composed of two regulatory genes,
one output gene, and as many input genes as required by the problem. The
size of the cell state N is set to eight. The allocation of more regulatory genes
to FGRN genomes than to IMRO genomes followed preliminary experiments in
which FGRN performances were poorer with fewer than four regulatory genes.

5.2 Preliminary Experiments

The initial test[2] of the FGRN model’s developmental capabilities was to at-
tempt to evolve genomes able to produce specific activation patterns (see Fig-
ure 3), no input was given. The fitness of a genome was the number of matches
between its activation output and the pattern. The ability to generate a variety
of activation patterns, independently of any input, can allow the exploration of
otherwise closed regions of the space of possible controllers, and we therefore
applied both FGRN and IMRO genomes to this task.

+ + + + +
+ + +++ ++++ ++++

Pattern 1 Pattern 2 Pattern 3

Fig. 3. Test activation patterns from ref [2]. Patterns 1 and 2 require two separate
output genes per genome

Table 1. The percentage of successfully generated patterns, and the mean number of
evaluations required to success (standard deviation in parenthesis).

FGRN IMRO

Pattern 1 100% 810(894) 100% 275(244)
Pattern 2 100% 619(562) 100% 398(364)
Pattern 3 34% 6095(2797) 100% 1794(1758)

The results are impressive: IMRO genomes can be evolved significantly faster
(p < 0.001) to produce the desired pattern than FGRN genomes, and in the case
of pattern 3, much more reliably. (It should be noted that the FGRN results
on pattern 3, despite being significantly worse than the IMRO results, are an
improvement on Bentley’s initial results for this pattern [2], where an additional
guidance component needed to be added to the fitness to successfully evolve this
pattern. We attribute this to the use here of the ALPS genetic algorithm, and
to an improvement in the FGRN settings we use[10])
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5.3 Pole Balancing and Acrobot Experiments

The setup of the pole balancing and acrobot problems is detailed in Section 3.
The controllers are run on the pole balancing problems for 100,000 simulated
timesteps (≈ 30 minutes). For the acrobot, each controller is run for a maximum
of 4,000 timesteps; this was necessary instead of the 1,000 timesteps to allow the
genetic algorithm to find initial solutions from which to start improving. The
fitness for pole balancing is the number of timesteps before a pole falls down.
For the acrobot it is the number of timesteps until swing-up, inversed.

Pole balancing. The results are detailed in Table 2. Both FGRN and IMRO
genomes were able to evolve successful controllers at every run for the single pole
balancing problem, but only IMRO genomes were able to evolve the ability to
solve the double-pole balancing problem, the most successful FGRN controller
only balancing the poles for 172 timesteps (≈ 3 seconds) out of 100,000.

Table 2. Number of failures/evaluations before a successful controller is found. Key:
SD = Standard Deviation

FGRN IMRO
Mean(SD) Best Worst Mean(SD) Best Worst

Single Pole 729(787) 50 5129 480(356) 33 1985
Double Pole - - - 2200(1486) 487 8155

Acrobot. Table 3 details the results of the IMRO and FGRN systems on
the acrobot, as well as those of the SARSA-RGD system, an online learning
method, and of LSPI, a policy iteration method, on the same problem. The
IMRO system performed significantly better than both the FGRN system and
LSPI (p < 0.001), finding on average significantly shorter trajectories. But it per-
formed worse than SARSA-RGD, though SARSA-RGD was less reliable, failing
in some of the runs to find any swing-up trajectory. Figure 4 shows the trajectory
of an acrobot controlled by the IMRO system.

Table 3. Length of the shortest trajectory found to acrobot swing-up, sorted by short-
est average trajectory. The results for SARSA-RGD and LSPI are taken from ref [4].

Mean(SD) Best Worst

SARSA-RGD 276.56(106.62) 238 -
IMRO 307.68(40.42) 266 500
LSPI 335.90(12.11) 315 343
FGRN 357.26(69.92) 257 588
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Fig. 4. An example acrobot swing-up trajectory produced by the IMRO system. Top,
the position of the acrobot at each time step. Bottom, the force applied at each
timestep. Long periods of the same activation, and limited use of the null force ac-
tion, are typical of efficient swing-up solutions.

6 Discussion

This paper has introduced IMRO, a simplified abstraction of the GRN model
underpinning the successful but complex FGRN system. These simplifications,
already desirable in themselves, resulted in greatly improved performance on
control tasks of a widely different nature: while the pole balancing is a stabil-
isation problem, the acrobot is the exact opposite, requiring the controller to
destabilise the system until it reaches a remote region of the state-space.

The performance of the FGRN system in the same experiments, and partic-
ularly the combined failure on the double pole balancing problem and in the
generation of pattern 3, and its limited success on the acrobot, lead us to believe
the FGRN system to be more suitable for control problems not requiring very
precise control sequences, but having a large variety of possible complex control
strategies. This might find its root in the original developmental nature of the
FGRN system, where the complexity of the system might be more useful.

Future work with the IMRO system will focus initially on finding harder
control problems to which it can be applied. If it proves necessary to make
changes to the system this will be facilitated by its modularity and the clearly
defined interfaces between its components. However we do not seek complexity
for its own sake, but to abstract from biology only those elements that prove
useful in problem solving, which may indirectly also throw light on why nature’s
solutions to problems are frequently so effective.
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Abstract. Bulk material blending systems still mostly implement static and non-
reactive material blending methods like the well-known Chevron stacking. The
optimization potential in the existing systems which can be made available us-
ing quality analyzing methods as online X-ray fluorescence measurement is in-
spected in detail in this paper using a multi-objective optimization approach based
on steady state evolutionary algorithms. We propose various Baldwinian and
Lamarckian repair algorithms, test them on real world problem data and deliver
optimized solutions which outperform the standard techniques.

Keywords: Bulk Material Blending, Multi-objective Evolutionary Algorithms,
Chevron Stacking.

1 Introduction

Naturally occurring materials like minerals, coals, and ores are inherently inhomoge-
neous products. However, efficient processing of those products requires that the quality
of the product does not vary beyond a limited range. While a constant quality cannot
be assured during mining or refining the uniform quality can be achieved by measuring
the quality and blending the material.

Fig. 1. A railed coal stacker building a heap

A whole range of bulk material blending
systems are developed to buffer bulk mate-
rial from a source, blend it and finally deliver
a product with homogenized quality parame-
ters. As quantity of bulk material is usually
measured in ten thousands of tons, the im-
plemented systems are using huge machines
to process the material in so-called blend-
ing beds. Blending beds are areas of typical
length up to 1000m and width up to 50m
which can be used by the stacking and re-
claiming machines to build and ablate stock-
piles and can be organized in multiple ways
[1]. In this paper, the focus lies on longitudi-
nal blending beds that use a railed stacker (shown in Figure 1) and a railed bridge re-
claimer. Figure 2 illustrates a blending bed with all elements as it is used for the model
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Fig. 2. Top view sketch of a blending bed with one heap being stacked and another heap being
reclaimed

in this paper using simplified parameter and environment descriptions to concentrate on
the main goal, i.e., to deliver a homogeneous product.

The homogenization in blending beds is usually done by stacking layers of material
onto each other and reclaiming the material vertically or diagonal to the layers to get
mixed material from the cross sections through the layers. As the amount of layers is
set to a fixed value at the beginning of building a stockpile, in the most cases the vari-
ation of the material parameters (for the remaining part of the paper referred with the
abstract description quality) is not homogenized in an optimal way. Most established
blending systems do not really use the optimization potential what in turn results in
inefficient downstream processing. As these blending systems can not be modified in
general without putting in much effort and money, this paper is aiming to analyze the
optimization potential with minimal intrusion to a given system by using the possibili-
ties which inhere in such a system: spreading the material in a dynamic way according
to a quality analyzing online X-ray fluorescence measurement [2].

To analyze the maximum efficiency of a blending system we require to know the
full quality of the material input (hereinafter referenced as quality input curve) from
the beginning of the optimization. In this paper we present an optimization environ-
ment which is based on this information and calculates an optimized material spread by
modifying the traverse path for the stacker. The approach is also portable to blending
systems with other parameter and design choices.

Many authors have analyzed and improved the blending efficiency in the field of
bulk material blending. Kumral [3] describes a method to optimize a mineral blending
system design before its construction to get the best performance. Using genetic algo-
rithms and a multiple regression model they determine the best blending bed parameters
simulating the stockpile with a simplified cell model. Pavloudakis and Agioutanis use a
more complex stockpile simulation approach consisting of multiple layers lying on top
of each other [4]. They assume a constant material flow and calculate the expected qual-
ity at the material output. Bond et. al. [1] describe methods to improve the efficiency of
blending beds by dynamically modifying the volume of a stockpile and modifying the
stacking speed while measuring the input quality with an online analyzer. They suggest
a solution with an appropriate software to control the stacker speed dynamically during
the stacking to place material with recognized quality at specific locations in the blend-
ing bed. The optimization based approach has, to the best of our knowledge, never been
applied in such a system and this is the topic dealt in this paper.

This paper is divided into five sections of which this is the first. The next section
describes the problem and a simulation model that is developed. Section 3 presents
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individual representations and repair methodologies that are used in a steady-state multi-
objective evolutionary algorithm. The optimization results are discussed in Section 4
and conclusions are presented in Section 5.

2 Problem Modeling

The described real world system consists of multiple elements which need to be mapped
into a system model first. The model consists of:

– blending bed parameters b (fixed parameters such as the stockpile dimensions,
maximum stacker moving speed, reclaimer angle, etc.),

– quality input q (the quality curve for each run plotted against the total amount of
material),

– traverse path p (the path along which the stacker is driving during the stockpile
creation process), and

– environment parameters e (material and weather conditions).

Given that the stacking system is unchangeable and that the quality input is fixed
for each run, the optimization focuses on modifying the stacker driving path along
the blending bed. For simplicity, the environment parameters are not considered here.
Hence, values of b and q define an instance of the optimization problem. In order to ap-
ply optimization with varying input data, the system was mapped into a detailed system
model. The system uses a physics simulation to calculate the behavior of particles of
various size being dropped onto a stockpile. Each of these particles is assigned a quality
according to the current average quality being measured (or to an earlier recorded qual-
ity curve). The simulation system calculates the full stockpile as it is created in the real
world including the effects of particles slipping from the steep sides of the stockpile.
After building the stockpile the reclaiming is simulated by calculating the cross sec-
tion quality average in the angle the reclaimer would ablate the material. One function
evaluation (heap length 300m, heap width 40m) using the detailed simulator, with one
million particles takes about 20 hours on an Intel Core 2 Duo, 2.50 GHz.

As the time for stacking one stockpile usually varies between 24 and 48 hours, this
near real time calculation is not useful for optimization where the quality output has
to be calculated for various input paths. For the fast evaluation of a calculated solution
another simplified simulation system is developed which is able to do a rough output
quality calculation within 20-50 milliseconds on the same machine. The physics sim-
ulation is now replaced by a three-dimensional grid where each particle is dropped
in a specific place and then it falls down until it reaches a resting particle. From this
place, it falls into the direction of biggest height difference. A particle can fall in one
of the eight directions (top-left, top-center, top-right, left-middle, right-middle, bottom-
left, bottom-center, bottom-right) or, it can stay in its place if there is no direction with
lower height to fall to. The amount of particles here was reduced to 3 particles per cubic
meter to minimize the necessary amount of calculations. The results of this (simplified)
simulator show a satisfying correlation with the results from the detailed simulation
(see Figures 3 and 4, the Pearson’s correlation ranges from 0.85 for low variance solu-
tions and up to 0.99 for high variance solutions). Hence, this simulator can be used for
a rough calculation of the optimized traverse path quality output in a short time.
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Fig. 3. Scatter plot showing high variance
output quality correlation for detailed sim-
ulator against simplified simulator
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Fig. 4. Scatter plot showing low variance
output quality correlation for detailed sim-
ulator against simplified simulator

Input Data. Input data was collected using an online X-ray fluorescence system de-
livering the material parameters of main interest in real time. This system was installed
in a coal processing plant in South Africa. To gather more data for the simulation with
other variation characteristics the recorded data was analyzed and replicated. The repli-
cated data values are set in the same quality range but show a different variation timing
to test the stability of the optimization system in situations with long constant quality
or fast quality variation. For this, four different input quality curves with different char-
acteristics will be used of which curve 1 is the original data from the coal processing
plant. The problem corresponding to the first quality curve is termed as P1, and so on.

Objectives and Constraints. As described earlier, the traverse path p of the stacker
has to be optimized for ideal material blending. The first objective here is the weighted
variance of the quality at the reclaimer which is defined as

F1(p) :=

ñ(p) ·
n∑

i=1

(
wi(p) · (qout

i (p)− qout)2
)

ñ(p) ·
n∑

i=1

wi(p)−
n∑

i=1

wi(p)

, (1)

where n is the number of cross sections, wi(p), qout
i (p) are the amount of material and

average quality in cross section i, qout is the average output quality (depending on the
quality input q), and ñ(p) is the number of non-empty cross-sections. When the traverse
path is changed it has a direct influence on the shape of the stockpile. This leads to the
other primary objective to create a stockpile with a ridge of nearly constant height. The
objective will be represented with the relative height difference defined as

F2(p) :=
hmax(p)− hmin(p)

h(p)
, (2)

where hmax(p), hmin(p) and h(p) denote the maximum, minimum, and the average
stockpile heights respectively. Other objectives like having the least speed changes or
driving only as fast as necessary to meet a defined threshold will not be regarded in
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this paper but can be easily included in the method if required. The constraints in this
optimization problem are:

– the stacker must traverse within the region [0, pmax] and
– the given speed range [−vmax, vmax] may not be violated,

where pmax and vmax are the maximal length of the blending bed and the maximum
speed of the stacker, respectively (the stacker moves along the rails in two directions).

3 Algorithms

The bi-objective problem described in the last section cannot be written in a closed
mathematical form, prohibiting the use of exact algorithms (like [5]). Due to this, we
used a steady-state version of NSGA-II (ssNSGAII) [6, 7]. For all the four problems,
we use a population of size 100 and set the maximum number of function evaluations as
25,000 (250 generations). We use a standard real parameter SBX and polynomial muta-
tion operator with ηc = 15 and ηm = 20, respectively [6]. The individual representation
and the repairing methods are explained next.

3.1 Representation of Individuals

In order to map the complex traverse path of a stacker to an individual of the evo-
lutionary algorithm (and vice versa) specific representations are defined. For this, the
continuous traverse path is discretized and two representations are proposed.

Array of Speeds. This path representation uses an array of l floating point values vi
which describes the stacker driving speed in a specific time slot. To have a universal
representation for the algorithm the value range is set to [−1, 1]. A value of 0 represents
no movement and an absolute value of 1 represents movement with maximum speed.
The direction of the movement is encoded in the signum of the value. Hence, an indi-
vidual representation is (v1, . . . , vl) where vi ∈ [−1, 1] for all i. The length of a time
slot tslot is defined by the amount of time which is needed for all material to be stacked

ttotal divided by the length of the array l, i.e., tslot =
ttotal
l

.

Example 1. Individual (0.5,−1.0, 0.5) represents a stacker movement to the right with
half of the maximum speed, then full speed movement to the left and again half speed
movement to the right. Each time slot is one third of the full stacking time. ��

Array of Positions. This path representation also utilizes an array of l floating point
values pi corresponding to positions in the valid traverse path of the stacker. The value
range [0, 1] corresponds to the full traverse range. Hence, an individual representation is
(p1, . . . , pl) where pi ∈ [0, 1] for all i. The time for moving between two positions tslot

is calculated similar to the time at the array of speeds but as we have a specific starting

point for each individual the value of tslot slightly increases. In this case, tslot =
ttotal
l − 1

.

Example 2. Individual (0.5, 1.0, 0.0) represents a stacker movement from the center of
the valid traverse path to the right end and then to the left end with each time slot being
half of the maximum time. ��
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3.2 Repair Mechanisms

The array of speeds representation was chosen in the first place to have a simple repre-
sentation where every created individual can be mapped to a valid traverse path using a
repair method. The array of positions representation was chosen with regard to be able
to repair the individuals within the optimization and not only for representation. In the
following paragraphs the used repair methods for the representations will be described
in detail.

Array of Speeds. Calculating the traverse path for the array of speeds representation
obviously results in most individuals being invalid because the calculated path exceeds
the limits. Therefore, a simple repair mechanism was defined using a mirroring tech-
nique. As the integration of the speed over time results in the absolute position pabs the
position can be folded into the valid range to pmirrored using equation (3):

pmirrored =

{
pabs − (pabs) , if (pabs) mod 2 = 0,

1.0− (pabs − (pabs)), if (pabs) mod 2 = 1.
(3)

This way all positions exceeding the range [0, 1] will be mirrored at the limits into the
valid range. The repaired representation can not be mapped back to an individual be-
cause there are additional changes in the direction between two regular speed changes.
Mapping back the mirroring would mean to change the amount of variables and the
fixed time between two speed changes to be set.

Example 3. Let vmax =
2·width of stockpile

ttotal
and the individual be (1.0, 0.5)which cor-

responds to the maximum speed being as much as necessary to traverse the full stockpile
width twice. Furthermore we assume the start position as absolutely left. Going with the
first speed 1.0 will result in the stacker being at the right end of the stockpile as tslot =
0.5·ttotal. In the second part the absolute position still increases with half of the maximum
speed until the absolute position value of 1.5 is reached. With (1.5) mod 2 = 1 the mir-
rored position results in pmirrored = 1.0− (1.5− (1.5)) = 1.0− (1.5− 1.0) = 0.5. ��

Array of Positions. Due to the definition of this representation it is not possible to
exceed the path limits (cf. for the array of speeds where it was not possible to exceed

the speed limit) but it is possible that the speed vi =
pi+1 − pi

tslot
between two con-

secutive positions pi and pi+1 exceeds the maximum allowable speed vmax. For this
case two repair mechanism will be used which utilize the maximum position difference
dmax = tslot · vmax:

– Direct Correction iterates through the array once and limits each following position
to the maximum difference to its predecessor:

pi+1 =

⎧⎪⎨⎪⎩
pi − dmax, if pi − pi+1 > dmax,

pi + dmax, if pi+1 − pi > dmax,

pi+1, otherwise,

with i = 1, . . . , n− 1. (4)
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– Iterative Balancing also iterates though the array but does not only change the
successor pi+1 to each position pi but also the current position half of the distance
dcorr which has to be corrected:

(pi, pi+1) =

⎧⎪⎨⎪⎩
(pi − dh, pi+1 + dh), if pi − pi+1 > dmax,

(pi + dh, pi+1 − dh), if pi+1 − pi > dmax,

(pi, pi+1), otherwise,

with i = 1, . . . , n− 1 dcorr = |pi − pi+1| − dmax dh = dcorr
2 .

(5)

This iteration has to be done as long as one of the first cases is entered walking
through the array. As clearly visible in Example 4, a flickering with inverse expo-
nential decay can occur which ends after a specific threshold is met. In our imple-
mentation the floating point accuracy makes this threshold.

Example 4. Let dmax = 0.4 and the individual be (0.0, 0.4, 1.0). This means that the
distance between two positions may not exceed 0.4 and the individual consists of two
movements between three positions p1 = 0.0, p2 = 0.4 and p3 = 1.0. As we perform
the iterative balancing we compare p1 and p2 and get a distance not bigger than dmax.
In the next step p2 and p3 are evaluated resulting in a distance p3−p2 = 0.6 > dmax. To
repair the individual the correction distance dcorr = |0.6| − dmax = 0.2 is calculated
and both positions are corrected half of the distance to the individual (0.0, 0.5, 0.9).
One can easily see that a new conflict between p1 and p2 arises in this individual which
is the reason for this solution to be iterative.

Begin (0.0, 0.4, 1.0)
Iteration 1 (0.0, 0.4, 1.0), i = 1, |p1 − p2| ≤ dmax

(0.0, 0.5, 0.9), i = 2, dcorr = 0.2
Iteration 2 (0.05, 0.45, 0.9), i = 1, dcorr = 0.1
...

��
3.3 Implementation

The application of the repair methods described above can be done in multiple ways.
In the Lamarckian method, the repaired path is not only used for the representation but
also written back to the population individual for further evolution. In the Baldwinian
method, the repaired path is only used for the evaluation and is not written back to
the population individual. For the array of speeds only the Baldwinian way can be
utilized (in the following referenced as Bals) as the repaired representation can not be
written back to the population individual. For the array of positions both methods will
be presented and evaluated in the results section referenced as Lam1 and Bal1 using
the Lamarckian respectively the Baldwinian way together with the first repair method
and Lam2, Bal2 for the second repair method. The source code of all the algorithms is
based on the jMetal framework1 and is made publicly available2 (the data files used in
this paper are also available on request).

1 http://jmetal.sourceforge.net/
2 http://www.aifb.kit.edu/web/BlendingSystems

http://jmetal.sourceforge.net/
http://www.aifb.kit.edu/web/BlendingSystems
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4 Simulation Results

We test the algorithm by limiting the number of variables l = 30 (speed / position
changes). Moreover, the maximum speed is set to the speed needed to place 20 layers
of material with the Chevron stacking method. The starting position for the results of
the array of speeds is fixed at position 0 (at the left side of the stockpile). The input data
is described in Section 2 and we test the algorithms on four problems corresponding to
four quality curves. (Other quality curves were tested and we got similar results.) As
the quality varies over the time and can be classified once as high and once as low the
obvious intuitive solution of the optimization is to spread the particles with high quality
equally over the full stockpile width and do the same for the low quality particles. The
result is a constant average cross section quality for the whole stockpile. This is a very
simplified description of a non-trivial problem because the particles do not arrive sorted
by quality so one could easily do the spreading but the quality varies quickly over the
full range and the stacker can only be moved with a defined maximum speed.

Figure 5 illustrates two solutions of the optimization problem for a given quality
curve. The quality curve which is the high frequency varying curve in the background
can be clearly divided into two quality classes of high quality and low quality. One can
easily see the spread of the high quality material first being mainly divided to the left
side of the stockpile (at y = 0) and at the second bigger batch of high quality mate-
rial mainly on the right side of the stockpile (at y = 1). Hence, the optimal solutions
corroborate the intuitive rule mentioned in the last paragraph. This result is found by
the evolutionary algorithm and is visible in almost all the optimal solutions. Figure 6
shows the sample run of the position based Baldwinian and Lamarckian techniques in
ssNSGA-II algorithm for problem P1. We see that both the methods are able to find
many well-spread solutions. Figure 6 also shows a knee region in the efficient front.
The knowledge of knees is valuable to a designer [6, 8]. In order to statistically evaluate
our results, we run each algorithm 45 times. Various attainment surface plots [9] are
shown in Figure 7. From these we see that there might be a weakly efficient front corre-
sponding to the minimizers of F1 and F2 (hence multiple solutions if we only minimize
one objective using a single-objective algorithm).

For this real world problem, we do not know the exact location of the efficient front
and hence, we use a hypervolume indicator [6] to compare the methods. Table 1 shows
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Table 1. Hypervolume values for the four problems, corresponding to the reference point (1, 1)	.
The hypervolume values for the Chevron method are an overestimate as we assume that the
relative height difference is optimal (i.e., equal to 0). The values in dark and light grey correspond
to the best and the second best algorithm (based on median values), respectively.

HV Bals Bal1 Bal2 Lam1 Lam2

HVChevron, P1=0.85644
bestP1 0.76844 0.84460 0.82855 0.81837 0.79758

worstP1 0.60061 0.63456 0.67023 0.60957 0.59453
medianP1 0.66810 0.77881 0.76955 0.75582 0.72538

IQRP1 0.07561 0.04862 0.05217 0.04637 0.06051

Chevron solution for P2 lies outside the region dominated by (1, 1)�

bestP2 0.72217 0.82496 0.82939 0.85986 0.81691
worstP2 0.59298 0.65282 0.62709 0.63912 0.56375

medianP2 0.65633 0.77066 0.74338 0.73368 0.68591
IQRP2 0.05402 0.04700 0.06882 0.04597 0.09568

HVChevron, P3=0.69651
bestP3 0.72205 0.82716 0.80311 0.80493 0.79385

worstP3 0.57067 0.64642 0.64401 0.61633 0.59540
medianP3 0.62472 0.74523 0.73737 0.70537 0.71732

IQRP3 0.04176 0.04757 0.05233 0.05825 0.06551

HVChevron, P4=0.16867
bestP4 0.76140 0.88563 0.88149 0.86541 0.83725

worstP4 0.65172 0.71243 0.73296 0.55602 0.55102
medianP4 0.71963 0.71253 0.73299 0.55602 0.55102

IQRP4 0.04089 0.04142 0.03561 0.05149 0.05862

a hypervolume based statistical summary of the results. The reference point is chosen
to be (1, 1)� for simplicity, other values do not change the qualitative behavior. We
see that the Baldwinian methods outperform the Lamarckian ones. Moreover, the array
of positions representation usually delivered better results. The main reason for this is
the higher stability of the individual, when changes are made to them by mutation or
recombination. If an individual of the speed representation is modified at the begin of
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the array then it affects the whole traverse path as the absolute reference position for the
whole following path is shifted. This is not the case for the positions representation as
changing one position only affects the traverse path in the immediate surrounding path
to and from the position. For three out of four problems, we obtain a better hypervolume
than the Chevron method, even if we assume that the Chevron is optimal in terms of the
second objective. If we only consider the first objective, all the five algorithms produce
better results than the Chevron method, for all the problems. The Chevron solution for
P2 lies outside the region dominated by the reference point (F1 > 1.0).

5 Conclusions and Future Work

The results presented in this paper show the optimization potential of bulk material
blending beds that can be calculated and analyzed with the described methods using
evolutionary algorithms. The methods presented in this paper provide a fast and flexible
calculation environment with a scalable simulation system which can be adapted to
various types of blending systems and parameters. We assumed in this paper that we
have the full knowledge about input quality curve, however, the presented methods
can be used to train and validate a Learning Classifier System for real time blending
optimization. Moreover, techniques from [10, 8, 11] will be used to investigate the
trade-off properties of the knee solutions in detail. Finally, attainment function [9] based
statistical hypothesis and post-hoc tests shall also be conducted.
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Abstract. We studied the relative importance of the different cancer
hallmarks in tumor growth in a multicellular system. Tumor growth was
modeled with a cellular automaton which determines cell mitotic and
apoptotic behaviors. These behaviors depend on the cancer hallmarks
acquired in each cell as consequence of mutations. Additionally, these
hallmarks are associated with a series of parameters, and depending on
their values and the activation of the hallmarks in each of the cells, the
system can evolve to different dynamics. Here we focus on the relevance
of each hallmark in the progression of the first avascular phase of tumor
growth and in representative situations.

1 Introduction and Previous Work

Cancer is a disease which arises from mutations in single somatic cells. These
mutations alter the proliferation control of the cells which leads to uncontrolled
cell division, forming a neoplastic lesion that may be invasive (carcinoma) or
benign (adenoma). These two properties are in turn driven by what mutations
the cells have acquired. In the invasive case the tumor grows in an uncontrolled
manner up to a size of approximately 106 cells [4]. At this size the diffusion driven
nutrient supply of the tumor becomes insufficient and the tumor must initiate
new capillary growth (angiogenesis). When the tumor has been vascularized the
tumor can grow further and at this stage metastases are often observed.

Although there are more than 200 different types of cancer that can affect ev-
ery organ in the body, they share certain features. Thus, Hanahan and Weinberg
described the phenotypic differences between healthy and cancer cells in a land-
mark article entitled “The Hallmarks of Cancer” [7]. The six essential alterations
in cell physiology that collectively dictate malignant growth are: self-sufficiency
in growth signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion
of programmed cell death (apoptosis), limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis. In a recent update [8] the au-
thors included two more hallmarks: reprogramming of energy metabolism and
evasion of immune destruction, that emerged as critical capabilities of cancer
cells. Moreover, the authors described two enabling characteristics or properties
of neoplastic cells that facilitate acquisition of hallmark capabilities: genome in-
stability and tumor-promoting inflammation (mediated by immune system cells
recruited to the tumor site).
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In Artificial Life terms [10], tumor growth in multicellular systems is an ex-
ample of emergent behavior, which is present in systems whose elements interact
locally, providing global behavior which is not possible to explain from the be-
havior of a single element, but rather from the “emergent” consequence among
the interactions of the group. In this case, it is an emergent consequence of the
local interactions between the cells and their environment. Emergent behavior
was studied in Artificial Life using models like Cellular Automata (CA) and
Lindenmayer Systems [9][10]. As indicated by Ilachinski [9], CAs have been the
focus of attention because of their ability to generate a rich spectrum of complex
behavior patterns out of sets of relatively simple underlying rules and they ap-
peared to capture many essential features of complex self-organizing cooperative
behavior observed in real systems.

One of the traditional approaches to model cancer growth was the use of
differential equations to describe avascular, and indeed vascular, tumor growth.
CA approaches make easy the modeling at cellular level, where the state of each
cell is described by its local environment. Thus, different works have appeared
which used the CA capabilities for different purposes in tumor growth modeling
[11]. For example, Bankhead and Heckendorn [2] used a CA which incorporated a
simplified genetic regulatory network simulation to control cell behavior and pre-
dict cancer etiology. Ribba et al. [12] used a hybrid CA which combined discrete
and continuous fields, as it incorporated nutrient and drug spatial distribution
together with a simple simulation of the vascular system in a 2D lattice model,
and with the aim of assessing chemotherapy treatment for non-Hodgkin’s lym-
phoma. In the CA model of Gerlee and Anderson [4] each cell was equipped with
a micro-environment response network (modeled with a neural network), that
determined the behavior of the cell based on the local environment. Their focus
was on the analysis of tumor morphologies under different conditions like oxy-
gen concentration. Gevertz et al. [5] used a CA model to study the impact that
organ-imposed physical confinement and heterogeneity have on tumor growth,
that is, to incorporate the effects of tissue shape and structure.

Previous works have used CA models based on the presence of the hallmarks.
For example, Abbott et al. [1] investigated the dynamics and interactions of the
hallmarks in a CAmodel in which the main interest of the authors was to describe
the likely sequences of precancerous mutations or pathways that end in cancer.
They were interested in the relative frequency of different mutational pathways
(what sequences of mutations are most likely), how long the different pathways
take, and the dependence of pathways on various parameters associated with the
hallmarks. In the work of Basanta et al. [3], a 2D cellular automaton modeled
key cancer cell capabilities based on the Hanahan and Weinberg hallmarks. The
authors focused their work on analyzing the effect of different environmental
conditions on the sequence of acquisition of phenotypic traits and tumor expan-
sion. Their results indicated that microenvironmental factors such as the local
concentration of oxygen or nutrients and cell overcrowding may determine the
expansion of the tumor colony.
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We also used a CA model which determines the behavior of cells based on
the Hanahan and Weinberg hallmarks. Nevertheless, our aim is different, as our
simulation tries to determine the dependence of the cellular system behavior,
at cellular level, on the presence of the different cancer cell hallmarks and their
key defining parameters. We focused here on the dependence of the emergent
tumor growth behavior on each individual hallmark, studying their relative im-
portance in tumor development in the first avascular phase. These dependences
are difficult to foresee without a model and associated simulating tool.

As indicated recently by Hanahan and Weinberg [8], in addition to providing
a solid basis for cancer research, the hallmarks have served to identify certain
cell functions that have become therapeutic targets. However, the utility of such
attempts has been limited because tumor cells have demonstrated an ability to
develop resistance to drugs that disrupt a single pathway. This adaptability of
cancer cells suggests to Hanahan and Weinberg that simultaneous targeting of
two or more hallmark pathways may be a more effective approach to therapy.
So, our study can help to discern what are such most relevant hallmarks which
can be targeted and in each multicellular system situation.

2 Methods for the Cellular System Modeling

2.1 Cancer Hallmarks

In the simulation each cell resides in a site in a cubic lattice and has a “genome”
associated with different cancer hallmarks. The essential alterations in cell phys-
iology that collectively dictate malignant growth are [6][7]:

SG. Self-Growth: Growth even in the absence of normal “go” signals. Most
normal cells wait for an external message (growth signals from other cells)
before dividing. Cancer cells often counterfeit their own pro-growth mes-
sages.

IGI. Ignore Growth Inhibit: As the tumor expands, it squeezes adjacent tis-
sue, which sends out chemical messages that would normally bring cell di-
vision to a halt. Malignant cells ignore the commands, proliferating despite
anti-growth signals issued by neighboring cells.

EA. Evasion of apoptosis: In healthy cells, genetic damage above a critical
level usually activates a suicide program (programmed cell death or apopto-
sis). Cancer cells bypass this mechanism.

AG. Ability to stimulate blood vessel construction: Tumors need oxygen
and nutrients to survive. They obtain them by co-opting nearby blood vessels
to form new branches that run throughout the growing mass (angiogenesis).

EI. Effective immortality: Healthy cells can divide no more than several
times (< 100). The limited replicative potential arises because, with the
duplication, there is a loss of base pairs in the telomeres (chromosomes ends
which protect the bases), so when the DNA is unprotected, the cell dies.
Malignant cells overproduce the telomerase enzyme, avoiding the telomere
shorthening, so such cells overcome the reproductive limit.
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Table 1. Definition of the parameters associated with the hallmarks

Parameter name
Default Description
value

Telomere length (tl)

100 Initial telomere length in each cell. Every time
a cell divides, the lenght is shortened by one
unit. When it reaches 0, the cell dies, unless the
“Effective immortality” hallmark (EI) is ON.

Evade apoptosis (e)
10 A cell with n hallmarks mutated has an extra

n/e likelihood of dying each cell cycle, unless
the “Evade apoptosis” hallmark (EA) is ON.

Base mutation rate (m)
100000 Each gene (hallmark) is mutated (when

the cell divides) with a 1/m chance of mutation.

Genetic instability (i)
100 There is an increase of the base mutation rate

by a factor of i for cells with this mutation (GI).

Ignore growth inhibit (g)
10 As in [1], cells with the hallmark “Ignore growth

inhibit” (IGI) activated have a probability 1/g of
killing off a neighbor to make room for mitosis.

Random cell death (a)
1000 In each cell cycle every cell has a 1/a chance

of death from several causes.

MT. Power to invade other tissues and spread to other organs: Can-
cers usually become life-threatening only after they somehow disable the
cellular circuitry that confines them to a specific part of the organ in which
they arose. New growths appear and eventually interfere with vital systems.

GI. Genetic instability: It accounts for the high incidence of mutations in
cancer cells, allowing rapid accumulation of genetic damage. It is an enabling
characteristic of cancer [8] since, while not necessary in the progression from
neoplasm to cancer, makes such progression much more likely [3]. The simu-
lation implies that the cells with this factor will increase their mutation rate.

2.2 Event Model

In our modeling, each cell genome indicates if any hallmark is activated as con-
sequence of mutations. Metastasis and angiogenesis are not considered, as we are
interested in this work in the first avascular phases of tumorigenesis. So, every
cell has its genome which consists in five hallmarks plus some parameters partic-
ular to each cell. All the parameters are commented in Table 1. The parameters
telomere length and base mutation rate can change their values in a particular
cell over time, as explained in the table. The cell’s genome is inherited by the
daughter cells when a mitotic division occurs. The default values indicated in
Table 1 are the same as those used in [1]. Also, Basanta et al. [3] worked with
parameters, such as base mutation rate (10−5) and mutation rate increase for
cells with acquired genetic instability (i = 100), with the same default values.

In the simulation of the cell life cycle, most elements do not change observably
each time step. The only observable changes to cells are apoptosis and mitosis.
In a tissue, only a fraction of all cells are undergoing such transitions at any
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given time. We used an event model, similar to that used by Abbott et al. [1],
summarized in Algorithm 2.1 and which takes into account the main aspects of
the cell cycle from the application point of view. A mitosis is scheduled several
times in the future, being a random variable distributed uniformly between 5
and 10 time steps, simulating the variable duration of the cell life cycle (between
15 and 24 hours). Finally, a grid with 106 sites represents approximately 0.1
mm3 of tissue.

Algorithm 2.1. Event model for cancer simulation()

t ← 0 // Simulation time. Initial cell at the center of the grid.
Schedule a Mitotic Event(5, 10) // Schedule a mitotic event with a random time

// (ts) between 5 and 10 time instants in the future (t+ts). The events
// are stored in an event queue. The events are ordered on event time.

while event in the event queue

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pop event( ) // Pop event with the highest priority (the nearest in time).
t ← t of popped event
Random cell death test( ) // The cell can die with a given probability.
Genetic damage test( ) // The larger the number of hallmark mutations,

// the greater the probability of cell death. If
// “Evade apoptosis” (EA) is ON, death is not applied.

Mitosis tests( ) :
Growth factor checking( ) // cells can perform divisions only

// if they are within a predefined spatial boundary which sufficient
// growth factor; beyond this area cells cannot perform mitosis,
// unless the hallmark “Self-growth” (SG) is ON.

Ignore growth inhibit checking( ) // If there are not empty cells in
// the neighborhood, the cell cannot perform a mitotic division. If the
// “Ignore growth inhibit” hallmark (IGI) is ON, then the cell competes
// for survival with a neighbor cell and with a likelihood of success.

Limitless replicative potential checking( )// If the telomere length
// is 0, the cell dies, unless the hallmark “Effective immortality”
// (Limitless replicative potential, EI) is mutated (ON).

if the three tests indicate possibility of mitosis
then
Perform mitosis( ) :

// Increase the base mutation rate if genetic instability (GI) is ON.
// Add mutations to the new cells according to base mutation rate(1/m).
// Decrease telomere length in both cells.

Push events( )
// Schedule mitotic events (push in event queue) for both cells:
// Mother and daughter, with the random times in the future.

else Push event( )
// Schedule a mitotic event (in queue) for mother cell.

The simulation begins by initializing all elements of the grid to represent
empty space. Then, the element at the center of the grid is changed to represent
a single normal cell (no mutations). Mitosis is scheduled for this initial cell. After
the new daughter cells are created, mitosis is scheduled for each of them, and
so on. Each mitotic division is carried out by copying the genetic information
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(the hallmark status and associated parameters) of the cell to an unoccupied
adjacent space in the grid. Random errors occur in this copying process, so some
hallmarks can be activated, taking into account that once a hallmark is activated
in a cell, it will be never repaired by another mutation [1].

Frequently, cells are unable to replicate because of some limitation, such as
contact inhibition or insufficient growth signal. Cells overcome these limitations
through mutations in the hallmarks. Regarding hallmark self-growth (SG), as in
[1] and [3], cells can perform divisions only if they are within a predefined spatial
boundary, which represents a threshold in the concentration of growth factor;
beyond this area (95% of the inner space in each dimension, which represents
85.7% of the 3D grid inner space) growth signals are too faint to prompt mitosis
(unless hallmark SG is ON). Moreover, cells undergo random cell death with low
probability (1/a chance of death, where a is a tunable parameter).

So, our model corresponds to an “on-lattice model” as called by Rejniak et al.
[11], where the model is constrained by a cubic lattice structure that defines the
locations of cells and cell-cell interaction neighborhods, although there are other
models that describe the spatial and morphological features of cancer develop-
ment in a more biologically plausible way like the Cellular Potts or the Voronoi
diagram-based off-lattice models [11].

Fig. 1. Left: Evolution through time iterations of the number of healthy cells (contin-
uous lines) and cancer cells (dashed lines) for different base mutation rates (1/m) and
default parameters. Right: Evolution of the number of cells with a hallmark acquired.

3 Results

3.1 Simulations with Different Hallmark Parameters

First, we run several simulations with representative hallmark parameters. Figure
1 shows the evolution over time of the number of healthy and cancer cells for two
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different values of the parameter m, which defines the base mutation rate, main-
taining the rest of the parameters in their default values andusing the same grid size
(125000) employed in [1]. The number of time iterations was 1000 in the different
runs. Given the stochastic nature of the problem, the graphs are always an average
of 5 different runs. A cell was considered as cancerous if any of the hallmarks was
present. As expected, with increasing base mutation rate (1/m), the increase in
cancer cells becomes faster. For lower values of the base mutation rate it is difficult
to obtain rapid cancer progression, so we selected those two high values.

The right part of Figure 1 shows the time evolution of the cells with a given
hallmark and such standard parameters. Despite the rapid and initial cancer cell
progression, with m = 100, two hallmarks present an advantage for cancer cell
proliferation: evade apoptosis (EA) and ignore growth inhibit (IGI). The first one
dominates in the cancer cell population because, as there are many mutations in
the cells, the apoptosis mechanism eliminates many of the mutated cells, except
those that have the hallmarkEA acquired, which escape such control so they pro-
liferate in the cell population. The second hallmark is necessary when the space is
full, because in this situation there are no vacant sites for cell proliferation, except
for those with hallmark IGI acquired (the free space limitation can be ignored by
such cells). Using a lower base mutation rate (m = 1000), the hallmark self-growth
SG is relatively more predominant than IGI, as cells with SG acquired prolifer-
ate rapidly when the cells have reached the limits of the area filled with growth
factor. Remember that these hallmarks, that allow the cells to escape those limits,
are acquired by the offspring, so the daughters can continue proliferating.

In Figure 2 we repeated the simulations but using a parameter set that fa-
cilitates the appearance of cancer cells. We selected values as the ones used by
Abbott et al. [1] (m = 100000, tl = 35, e = 20, i = 100, g = 4, a = 400 and
a grid size of 125000) for the determination of possible mutational pathways,
that is, the sequence of appearance of hallmarks that end in a tumor growth.
For example, the lower value of tl implies fewer mitoses in healthy cells, and the
lower value of a facilitates that more vacant sites are available for cancer cells
to propagate, in connection with the higher probability of replacing neighbors
when making room for mitosis (lower value of g).

Fig. 2. Left: Time evolution of the number of healthy cells (continuous line) and cancer
cells (dashed line) with a parameter set which facilitates cancer growth. Right: Time
evolution of the number of cells with a hallmark acquired. All the graphs are an average
of 5 independent runs.
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The right part of Figure 2 shows the time evolution of the cells with a given
hallmark and such parameter set. The dominant hallmark in the tumor growth
is now effective immortality (EI), allowing the progression of the cells with such
mutation even when the telomere length reaches its limit. Such cells have a clear
advantage with respect to the other cells, which die after the maximum number
of 35 divisions. This explains the rapid proliferation of the hallmark EI, before
iteration 1000, when the healthy cells have performed their maximum number
of mitotic divisions. Figure 3 shows snapshots at different time states of the
multicellular system in a run with such parameters. In this case, we used a grid
size of 106, for a better visualization of the tumor progression. These snapshots
show again how EI is the dominant hallmark in such conditions (green color
cells in Figure 3 have hallmark EI acquired).

Fig. 3. Snapshots at different time steps using the parameters of Figure 2

3.2 Relevance of Hallmarks

Our aim is to inspect the relative importance of each hallmark in the emergent
behavior of tumor growth. To answer this, we can analyze the growth behavior
when the individual hallmarks are not present or do not imply any effect on the
cellular behavior. This is the same as considering that mutations do not activate
a particular hallmark. We selected two of the previous representative cases to
study the effect of not considering the individual hallmarks, that is, to inspect
the relative importance of each hallmark in the cancer growth behavior. First,
Figure 4 (Left part) shows the evolution across time iterations of the number
of cancer cells (grid size=125000), using the default parameters with m = 100,
when all the hallmarks are considered (previously shown in Fig. 1), and when
a particular hallmark is not taken into account in the rules of apoptotic and
mitotic behaviors. As seen in Figure 4, the most important hallmark regarding
the growth of cancer cells is evade apoptosis (EA), since its elimination implies
a high decrease in the number of cancer cells. This is because, without the
consideration of EA, all the cancer cells have a probability of death by apoptosis,
so cancer cell proliferation is highly decreased.

The nextmost important hallmark is ignore growth inhibit (IGI), since its elim-
ination implies also an important decrease in the number of cancer cells. This is
because when the grid is almost full of healthy or cancer cells, after time iteration
200, the main limit for the mitotic divisions is the available free space. In this situ-
ation, the cancer cells with the hallmark IGI activated have an advantage, as they
can replace (with a given probability) a neighbor cell to replicate. So, if this ad-
vantage does not exist when hallmark IGI is not considered, the cancer cells tend
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to remain stable in number, even with this very high base mutation rate (1/m). A
hallmark with similar relevance is genetic instability (GI), as without its consid-
eration there are fewer mutations or acquisition of hallmarks. The previous effects
are not present with the elimination in the simulation of the other hallmarks, as
it implies a smaller decrease in the number of cancer cells.

Fig. 4. Left: Effect of elimination of an individual hallmark. Right: Number of cancer
cells when only one hallmark is considered. Simulations with parameter default values
and m = 100, averaged with 5 independent runs.

The right part of Figure 4 shows the same evolution when only one particular
hallmark is considered.As the Figure denotes, hallmarksEA and IGI are again the
most relevant, and because the same reasons exposed. Note that now, when only
genetic instability (GI) is considered, the number of cancer cells with only such a
mutation cannot growth across time iterations. This is becauseGI only increments
the mutations in such cells for the acquisition of the other hallmarks that have a
possible effect on the proliferation of cancer cells. Note also the difference between
the hallmark relevance and the number of cells with a given hallmark (Fig. 1), since
the relative relevance betweenEA and other hallmarks is not reflected in Figure 1.

In Figure 5 we repeated the same analysis with the parameter set previously
used in Fig. 2, which facilitates the appearance of cancer cells. As the Figure shows,

Fig. 5. Number of cancer cells when an individual hallmark is not considered (Left)
and when only one hallmark is considered (Right). Simulations with parameter values
of Figure 2, averaged with 5 independent runs.
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when we do not consider the hallmark effective immortality (EI) in the simula-
tion, the number of cancer cells is maintained to a minimum (close to 0, dark blue
line). This is because, in this case, the great advantage of the limitless replicative
potential is never present, so all cells have the same limit of replications imposed
by the initial telomere length. The other hallmarks do not have relevance except
the low relevance of self-growth (SG), as not considering it eliminates the final
possible progression of cancer cells in the area without growth factor.

4 Conclusions

We used a cellular automaton model to simulate tumor growth at cellular level,
based on the cancer hallmarks acquired in each cell. We focused here on the rel-
evance or relative importance of the different hallmarks in the avascular tumor
progression. The experimentation performed showed that the effect of elimina-
tion of hallmarks is different depending on the main advantage of cancer cells
to propagate. With high mutation rates, the most relevant hallmark is evade
apoptosis. If the space is full of cells, a relevant hallmark is ignore growth inhibit,
as it allows cancer cell proliferation when there is no available free space. When
the cells have reached the proliferation limit imposed by the telomeres, then the
most important hallmark for cancer proliferation is effective immortality, given
its advantage with respect to cells without it in such stage. So, the simulations
can help to analyze what are the most relevant hallmarks which can be targeted
and in each multicellular system situation.

Acknowledgments. This paper has been funded by the Ministry of Science
and Innovation of Spain (project TIN2011-27294).

References

1. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Arti-
ficial Life 12(4), 617–634 (2006)

2. Bankhead, A., Heckendorn, R.B.: Using evolvable genetic cellular automata to
model breast cancer. Genet Program Evolvable Mach. 8, 381–393 (2007)

3. Basanta, D., Ribba, B., Watkin, E., You, B., Deutsch, A.: Computational analysis
of the influence of the microenvironment on carcinogenesis. Mathematical Biosi-
ciences 229, 22–29 (2011)

4. Gerlee, P., Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of
solid tumour growth. Journal of Theoretical Biology 246(4), 583–603 (2007)

5. Gevertz, J.L., Gillies, G.T., Torquato, S.: Simulating tumor growth in confined
heterogeneous environments. Phys. Biol. 5 (2008)

6. Gibbs, W.W.: Untangling the roots of cancer. Scientific American 289, 56–65 (2003)
7. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)
8. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation.

Cell 144(5), 646–674 (2011)
9. Ilachinski, A.: Cellular automata. A discrete universe. World Scientific (2001)



Study of Cancer Hallmarks Relevance Using a CA Tumor Growth Model 499

10. Langton, C.G.: Artificial Life: An overview. MIT Press (1995)
11. Rejniak, K.A., Anderson, A.R.A.: Hybrid models of tumor growth. WIREs Syst.

Biol. Med. 3, 115–125 (2010)
12. Ribba, B., Alarcón, T., Marron, K., Maini, P.K., Agur, Z.: The Use of Hybrid

Cellular Automaton Models for Improving Cancer Therapy. In: Sloot, P.M.A.,
Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 444–453.
Springer, Heidelberg (2004)



Between Selfishness and Altruism:

Fuzzy Nash–Berge-Zhukovskii Equilibrium
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Abstract. Nash equilibrium in many cases is not the best choice for
human players. In case of trust games the Nash equilibrium is often mu-
tual defection which is the worst possible outcome for all players. The
Berge-Zhukovskii equilibrium models a more cooperative behavior, so in
case of trust games, when players gain by cooperating, it is usually a
better choice than Nash equilibrium. Real life results show that players
rarely follow the theoretical predictions. Our aim is to find new equilibria
types that offer a more realistic modeling of human players. The fuzzy
Nash–Berge-Zhukovskii equilibrium is proposed which is a fuzzy combi-
nation of the Nash and Berge-Zhukovskii equilibrium. Several continuous
trust games are investigated. Numerical results indicate that fuzzy Nash–
Berge-Zhukovskii equilibrium is suitable to model real-life situations.

1 Introduction

The most important equilibrium concept in game theory, Nash equilibrium, is
not always the most efficient solution concept. In many cases playing Nash equi-
librium is not the most favorable choice since Nash equilibrium rarely assures
maximal payoffs. Trust games are a class of games where players end up with
greater payoffs by trusting their opponents and choosing a cooperative strategy,
than by mutual defection. Also, since the payoff for defecting with a cooperative
opponent is larger than the payoff for cooperation, the temptation for defection
is high. In most of the cases the Nash equilibrium of trust games is mutual
defection, that is the worst possible outcome for all players.

Other solution concepts, like Pareto or Berge-Zhukovskii equilibrium, are often
better choices in case of trust games. Pareto equilibrium ensures optimal payoffs
for all players while Berge-Zhukovskii equilibrium models a type of altruism.
Berge-Zhukovskii players, when choosing their strategy, beyond their gain, also
take in consideration the gain of their opponent. For trust games, both Pareto
and Berge-Zhukovskii equilibria, usually ensure greater payoffs for all players
than Nash equilibrium.

However, our opinion is, that standard game equilibria presume some restric-
tions. In real life players are rarely rational agents only acting to maximize their
payoffs. Real life players can be more or less cooperative, more or less selfish and
their actions are rarely uniform. One simple step towards a more realistic ap-
proach is to relax the rationality principle, and allow different rationality types in
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a single game. In [2] a fuzzy Nash-Pareto equilibrium is proposed. This concept
allows players to be biased towards a certain type of rationality, which ensures
a more realistic modeling of human players. According to [3] Fuzzy Nash-Pareto
equilibrium is a suitable concept to model the human behavior for the discrete
centipede game.

A more general approach is to explore trust games with continuous strategy
set. Our intuition is that fuzzy equilibria might offer a better modeling of real-
world players. Since fuzzy Nash-Pareto equilibrium does not offer promising
results our goal is to find an equilibrium concept that would capture a more
realistic situation.

1.1 Game Theory Prerequisites

Mathematically a finite non-cooperative one shot game is a system
G = (N, (Si, ui), i = 1, ..., n), where:

– N represents the set of players, and n is the number of players;
– for each player i ∈ N , Si is the set of available actions; S = S1×S2× ...×Sn,

is the set of all possible situations of the game. Each s ∈ S is a strategy (or
strategy profile) of the game;

– for each player i ∈ N , ui : S → R represents the payoff function of i.

Denote by (sij , s
∗
−i) the strategy profile obtained from s∗ by replacing the strat-

egy of player i with sij i.e. (si, s
∗
−i) = (s∗1, s

∗
2, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n).

A solution of the game is called a game equilibrium. At equilibrium all play-
ers are contended with their outcome, and they are not willing to switch their
strategies.

Nash Equilibrium. A strategy profile is a Nash equilibrium if none of the
players have the incentive to unilaterally deviate [7] i.e. no player can improve
her payoff by modifying her strategy while the others do not modify theirs.

More formally: a strategy profile s∗ ∈ S is a Nash equilibrium if the inequality
holds: ui(s

∗) ≥ ui(si, s
∗
−i), ∀i = 1, ..., n, ∀si ∈ Si.

Berge-Zhukovskii Equilibrium. In contrast to the Nash equilibrium, where
players are selfregarding, the Berge-Zhukovskii equilibrium [11] allows reach-
ing cooperative features making it possible to determine cooperation in a non-
cooperative game.

The strategy s∗ is a Berge-Zhukovskii equilibrium when no group of players
can improve the payoff for any of the n players by changing their strategy.

More formally: Let N − i denote any group of players which excludes player i
(can be excluded other players, too). The strategy profile s∗ is a Berge-Zhukovskii
equilibrium if the inequality ui(s

∗) ≥ ui(s
∗
i , sN−i) holds for each player i =

1, ..., n, and sN−i ∈ SN−i.
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1.2 Trust Games

An interesting phenomena can be observed in case of trust games. Trust games
are a class of games in which players obtain much better results, higher payoffs,
if they trust each other and choose a cooperative strategy than in case of mutual
defection. Moreover if one player defects while the other cooperates the payoff for
the defecting player is much better, so the temptation to defect is considerably
high.

Very often, when players gain more by cooperating than defecting, Nash equi-
librium is not the best choice for players. In these type of games the Nash equi-
librium is mutual defection and players following Nash rationality end up with
the worst outcome.

The Berge-Zhukovskii equilibrium models a type of altruism. Players choosing
a Berge-Zhukovskii rationality are more other-regarding when choosing their
strategies, as they also consider the payoffs of the other players. So usually
in trust games the Berge-Zhukovskii equilibrium represents mutual cooperation
which is a favorable outcome for all players.

We think that it would be interesting to investigate rationality types that are
between these two extremes (mutual defection or mutual cooperation). With
fuzzy Nash–Berge-Zhukovskii (N-BZ) equilibrium various intermediate states
can be depicted. Players can be more or less biased towards a certain rationality,
for example a player can have a membership degree of 0.7 to Nash rationality
and 0.3 to Berge-Zhukovskii rationality. Thus the fuzzy N-BZ equilibrium offers
a more realistic modeling of human players.

2 Generative Relations for Game Equilibria

Game equilibria may be characterized by generative relations on the set of game
strategies [5]. The idea is that the non-dominated strategies with respect to the
generative relation equals (or approximate) the equilibrium set.

Let us consider a relation R over S × S. A strategy s is non dominated with
respect to relation R if �s∗ ∈ S : (s, s∗) ∈ R. Let us denote by NDR the set
of non- dominated strategies with respect to relation R. A subset S′ ⊂ S is
non-dominated with respect to R if and only if ∀s ∈ S′, s ∈ NDR.

Relation R is said to be a generative relation for the equilibrium E if and
only if the set of non-dominated strategies with respect to R equals the set E
of strategies i.e. NDR = E.

2.1 Generative Relation for Nash Equilibrium

Let s and s∗ be two pure strategies and k(s∗, s) denotes the number of players
which benefit by deviating from s∗ towards s [5]:

k(s∗, s) = card{i ∈ N, ui(si, s
∗
−i) > ui(s

∗), si 	= s∗i }.
Let s∗, s ∈ S. We say the strategy s∗ is better than strategy s with respect
to Nash equilibrium, and we write s∗ ≺N s, if the following inequality holds:
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k(s∗, s) < k(s, s∗). k(s∗, s) is a relative quality measure of s and s∗ - with respect
to the Nash equilibrium. The relation ≺N can be considered as the generative
relation of Nash equilibrium, i.e. that the set of non-dominated strategies with
respect to ≺N induces the Nash equilibrium [5].

2.2 Generative Relation for Berge-Zhukovskii Equilibrium

Consider two strategy profiles s∗ and s from S. Denote by b(s∗, s) the number of
players who lose by remaining to the initial strategy s∗, while the other players
are allowed to play the corresponding strategies from s and at least one player
switches from s∗ to s.

We may express b(s∗, s) as [4]:

b(s∗, s) = card[i ∈ N, ui(s
∗) < ui(s

∗
i , sN−i)].

Let s, s∗ ∈ S. We say the strategy s∗ is better than strategy s with respect
to Berge-Zhukovskii equilibrium, and we write s∗ ≺BZ s, if and only if the
inequality b(s∗, s) < b(s, s∗) holds. We may consider relation≺BZ as a generative
relation of the Berge-Zhukovskii equilibrium. This means the set of the non-
dominant strategies with respect to the relation ≺BZ equals the set of Berge-
Zhukovskii equilibria.

3 Evolutionary Equilibria Detection

Games can be viewed as multiobjective optimization problem, where the payoffs
of the participating players are to be maximized. All of the objectives to be
optimized are uniform and equally important. A solution of the game is called
an equilibrium. At equilibrium all players are contended with their outcome, and
they are not willing to switch their strategies.

An appealing technique is the use of generative relations and evolutionary al-
gorithms for detecting equilibrium strategies. The payoff of each player is treated
as an objective and the generative relation induces an appropriate dominance
concept, which is used for fitness assignment purpose. Evolutionary multiobjec-
tive algorithms are thus suitable tools in searching for game equilibria.

A population of strategies is evolved. A chromosome is an n-dimensional vec-
tor representing a strategy profile s ∈ S. The initial population is randomly gen-
erated. Population model is generational. The non-dominated individuals from
the population of strategy profiles at iteration t may be regarded as the current
equilibrium approximation. Subsequent application of the search operators is
guided by a specific selection operator induced by the generative relation. Suc-
cessive populations produce new approximations of the equilibrium front, which
hopefully are better than the previous ones.

For evolutionary equilibria detection any state of the art algorithm can be
used. In our numerical experiments we use the NSGA2 [1] algorithm but the
results were also tested with differential evolution [10]. Our goal is to focus on
the detected equilibria types and not on the algorithm used.
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4 Fuzzy Equilibria

In non-cooperative game theory each concept of equilibrium may be associated
to a rationality type. A more realistic approach is allowing each player to be more
or less biased towards a certain rationality type. This bias may be expressed by
a fuzzy membership degree. This way several new types of equilibria, like fuzzy
Nash-Pareto [2], can be obtained.

4.1 Fuzzy Nash–Berge-Zhukovskii Equilibrium

Let us consider a fuzzy set AN on the player set N i.e. AN : N → [0, 1] AN (i)
expresses the membership degree of the player i to the fuzzy class of Nash-
biased players. Therefore AN is the class of Nash-biased players. Similar a fuzzy
set ABZ : N → [0, 1] may describe the fuzzy class of Berge-Zhukovskii-biased
players.

A fuzzy Nash–Berge-Zhukovskii equilibrium concept is introduced in this sec-
tion. Let us consider a game involving both Nash and Berge-biased players. It
is natural to assume that {AN , ABZ} represents a fuzzy partition of the player
set. Therefore the condition AN (i) +ABZ(i) = 1 holds for each player i.

The relative quality measure of two strategies has to involve the fuzzy mem-
bership degrees. Let us consider the threshold function:

t(a) =

{
1, if a > 0,
0, otherwise

The fuzzy version of the quality measure k(s∗, s) is denoted by EN (s∗, s) and
may be defined as

EN (s∗, s) =
n∑

i=1

AN (i)t(ui(s, s
∗
−i)− ui(s

∗)).

EN (s∗, s) expresses the relative quality of the strategies s∗ and s with respect
to the fuzzy class of Nash-biased players.
The fuzzy version of b(s∗, s) may be defined as

EBZ(s
∗, s) =

n∑
i=1

ABZ(i)t(ui(s, s
∗
N−i)− ui(s

∗)).

The relative quality measure of the strategies s∗ and s with respect to fuzzy
Nash–Berge-Zhukovskii rationality may be defined as

E(s∗, s) = EN (s∗, s) + EBZ(s
∗, s).

Using the relative quality measure E we can compare two strategy profiles.
Let us introduce the relation ≺fNBZ defined as s∗ ≺fNBZ s if and only if the

strict inequality E(s∗, s) < E(s, s∗) holds.
Fuzzy Nash–Berge-Zhukovskii (N-BZ) equilibrium is the set of non-dominated

strategies with respect to the relation ≺fNBZ.
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5 Numerical Experiments

Evolutionary method described in Section 3 is used for detecting Fuzzy Nash–
Berge-Zhukovskii equilibria. The multiobjective evolutionary algorithm used for
equilibria detection is NSGA2 [1] with the following parameter settings: popu-
lation size=100, no. of generations=100, probability of crossover=0.9, prob. of
mutation=0.5.

5.1 Continuous Centipede Game

Consider a continuous version of the centipede game [9], the Symmetric Real
Time Trust (SRTT) Game [6].

There is a set of n players. The strategy space of each player is continuous
on the real interval [0, T ]. Each player can make at most a single decision that
”stops the clock” at time e ∈ [0, T ]. The game starts at time t = 0 and ends
either when one of the players stops the clock at some time t < T or when T is
reached with no player stopping the clock.

Suppose that the game ends at time e ∈ [0, T ] with player i stopping the
clock. Than the payoff for the winner i is given by ri = λ(2(t/θ)), where θ ≥ 1
and λ > 0.

Each of the players not stopping the clock receives only a fraction of the
winners payoff. More formally, the payoff for the remaining n − 1 players is
computed from rj(t) = δri(t), where 0 < δ < 1, j = 1, 2, ..., n, and j 	= i.

As time is continuous no tie is possible at times 0 < t < T . If m players
(1 < m ≤ m) stop the clock at exactly t = 0, then one of them is chosen with
probability 1/m to receive the payoff λ, and the other m− 1 players receive δλ.

If no player stops the clock (and the game ends at time t = T ), then the payoff
for each of the n players is g, where 0 ≤ g < (λ2(T/θ)).

The Nash equilibrium of the SRTT game is when all players stop the clock
at zero seconds [6], so all players end up with minimal payoffs (zero for all
players). However, studies on human players show that people do not play Nash
equilibrium. The Berge-Zhukovskii equilibrium of the game is when all players
wait until the last moment to press the button. In [6] an experiment based on
the SRTT repeated game is presented. Results indicate that human players tend
to stop the timer between 25 and 42 seconds (if a unique round is considered).
Our aim is to find a fuzzy Nash–Berge-Zhukovskii equilibrium to model this
situation.

In order to illustrate the Fuzzy Nash–Berge-Zhukovskii equilibrium we use
the continuous centipede (or SRTT) game with the following parameter settings:
n = 2, T = 45, θ = 5, λ = 5, δ = 0.5 and g = 0. Thus there are two players,
the player who looses receives 10% of the winner’s payoff and if no one stops the
clock before 45 seconds the payoff for both players is zero.

Based on our experiments, the Fuzzy Nash-Pareto equilibrium fails to capture
an intermediate equilibrium for the SRTT game. For any membership degree the
fuzzy Nash-Pareto equilibria correspond to the Nash equilibrium.
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Figures 1 and 2 depict the crisp Nash, the crisp Berge-Zhukovskii and the
fuzzy N-BZ equilibrium of the SRTT game for various membership degrees. The
Nash equilibrium of the game is when both players defect, meaning that they
stop the clock at 0 seconds.
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Fig. 1. The detected fuzzy N-BZ equilibrium for the SRTT game with membership
degrees AN (1) = 0.4, ABZ(1) = 0.6 and AN (2) = 0.6, ABZ(2) = 0.4

Figure 1 depicts the case when Player 1 has a Nash membership degree of 0.4
(thus a Berge-Zhukovskii membership degree of 0.6) and Player 2 has a Nash
membership degree of 0.6 (thus a Berge-Zhukovskii membership degree of 0.4).
The fuzzy N-BZ equilibrium is when Player 1 stops the clock around 28 seconds,
thus receives a higher payoff.

In cases where both players have equal memberships to both Nash and Berge-
Zhukovskii equilibria (AN (1), AN (2) and ABZ(1), ABZ(2)) the fuzzy N-BZ equi-
librium converges either to crisp Nash or crisp Berge-Zhukovskii equilibria. For
membership degrees AN (1), AN (2) > 0.5 (and ABZ(1), ABZ(2) < 0.5) the fuzzy
N-BZ equilibrium is the same as theNash equilibriumotherwise ifAN (1), AN (2) <
0.5 (and ABZ(1), ABZ(2) > 0.5) the fuzzy N-BZ equilibrium is the same as the
Berge-Zhukovskii equilibrium.

Figure 2 depicts the case when both players have equal membership degrees
of 0.5. In this case the fuzzy N-BZ equilibrium consists of a set of points, mean-
ing that both players stop the clock somewhere between 25 and 45 seconds.
The payoffs for the players is between 256 and 2560 depending on the chosen
strategy. Thus, both players end up with higher payoffs than in case of the Nash
equilibrium. This equilibrium corresponds to the real-life results presented in [6].

Our numerical experiments show that the fuzzy Nash–Berge-Zhukovskii equi-
libria always lie between the crisp Nash and crisp Berge-Zhukovskii equilibria. In
all the cases the payoffs for the fuzzy Nash–Berge-Zhukovskii equilibria is higher
than for the Nash equilibrium. Moreover, when both players have equal biases
to Nash and Berge-Zhukovskii equilibrium the detected fuzzy N-BZ equilibrium
is suitable to model the human behavior presented in [6].
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Fig. 2. The detected fuzzy N-BZ equilibrium for the SRTT game with membership
degrees: AN(1) = ABZ(1) = 0.5 and AN (2) = ABZ(2) = 0.5

5.2 Partnership Game

Partnership Game considers a firm with n partners. The profit of the firm de-
pends on the partners effort expended on a certain job. The profit function is
given by p(x) = 4(

∑n
i=1 xi+ c

∏n
i=1 xi), where xi is the amount of the expended

effort by partner i. The value c measures how complementary the tasks of part-
ners are. Each partner i incur a personal cost x2

i of expending effort.
All partners select the level of their effort simultaneously and independently

of the other partners. Each partner seeks to maximize their share of the firm’s

profit which is split equally. The payoff for partner i is given by ui(x) =
p(x)
n −x2

i .
The Partnership game is used with the following parameter settings: n = 2,

x1, x2 ∈ [0, 4] and c = 0.2.
The fuzzy Nash-Pareto equilibrium does not offer promising results for the

Partnership game. Similarly as for the SRTT game, for any membership degree
the fuzzy Nash-Pareto equilibria correspond to the Nash equilibrium.

Figures 3 and 4 depict the crisp Nash, crisp Berge-Zhukovskii and the fuzzy
N-BZ equilibrium for various membership degrees. The Nash equilibrium of the
game ensures a smaller payoff for the players (4, 4) while the Berge-Zhukovskii
equilibrium offers a more favorable outcome, a payoff of 6.04 for both players.

Figure 3 depicts the detected fuzzy N-BZ equilibrium when player 1 is a pure
Nash player (AN (2) = 0, ABZ(2) = 1) and player 2 is a pure Berge-Zhukovskii
player (AN (2) = 0, ABZ(2) = 1).

When both players have equal membership degrees to Nash and Berge-
Zhukovskii equilibria, the fuzzy N-BZ equilibrium is the same as the crisp Nash
or crisp Berge-Zhukovskii equilibria, depending on the players’ biases. If the
Nash-bias for both players is higher than 0.5 (AN (1), AN (2) > 0.5 and ABZ(1),
ABZ(2) < 0.5) then the corresponding fuzzy N-BZ equilibrium coincides with
the Nash equilibrium. Otherwise, if both players are biased towards the Berge-
Zhukovskii equilibrium (AN (1), AN (2) < 0.5 and ABZ(1), ABZ(2) > 0.5), the
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corresponding fuzzy N-BZ equilibrium coincides with the crisp Berge-Zhukovskii
equilibrium.

Figure 3 depicts the detected fuzzy N-BZ equilibrium when both players have
equal membership degrees of 0.5 to both Nash and Berge-Zhukovskii equilibrium
(AN (1) = ABZ(1) = AN (2) = ABZ(2) = 0.5). The detected fuzzy N-BZ front is
very close to the Pareto-optimal front.
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Fig. 4. The payoffs of the detected
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6 Conclusions

A new equilibrium concept, the fuzzy Nash–Berge-Zhukovskii equilibrium is pro-
posed which is a fuzzy combination of the Nash and Berge-Zhukovskii equilib-
rium. Game equilibria may be described by generative relations. An evolutionary
method for equilibria detection based on generative relations is considered.

Continuous trust games, the partnership game and a continuous version of the
centipede game (the SRTT game), are investigated. In the case of the studied
games the Nash equilibrium is mutual defection ensuring the lowest possible
payoffs for all players. In contrary, the Berge-Zhukovskii equilibrium induces
mutual cooperation which ensures higher payoffs.

Numerical results indicate that the proposed fuzzy Nash–Berge-Zhukovskii
equilibrium offers a more realistic modeling of the real world. In case of the
SRTT game fuzzy Nash–Berge-Zhukovskii equilibrium corresponds to the real
life results presented in [6].
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Abstract. Most of previous genetic algorithms for solving graph problems have 
used vertex-based encoding. In this paper, we introduce spanning tree-based 
encoding instead of vertex-based encoding for the well-known MAX CUT 
problem. We propose a new genetic algorithm based on this new type of encod-
ing. We conducted experiments on benchmark graphs and could obtain perfor-
mance improvement on sparse graphs, which appear in real-world applications 
such as social networks and systems biology, when the proposed methods are 
compared with ones using vertex-based encoding. 

Keywords: Basis change, encoding, representation, genetic algorithm, MAX 
CUT, spanning tree, graph. 

1 Introduction 

In genetic algorithms (GAs), different encodings lead completely different search on 
solution space, and as a result, encoding can affect performance largely. There have 
been many studies of emphasizing the importance of encoding in GAs. Kim et al. [1] 
improved the performance of genetic algorithms on various problems by rearranging 
the related gene positions to be closely located. This gene rearrangement can be seen 
as a simply type of transformed encoding. There have also been more generalized 
studies of encoding transformation making the relation between genes be the most 
independent by applying invertible linear transformation [2, 3]. These studies just 
showed the importance of encoding transformation, but they failed to show the con-
crete transformation methods. As an extension of these studies, there has been a trial 
to find better encoding using a meta-GA [4]. However it also failed to give a good 
guideline about how we transform encoding in a given problem. 

Most studies about graph problems such as graph partitioning and MAX CUT have 
been vertex-centric when dealing with partitions and representing them [5-14]. Intui-
tive techniques based on vertices, which are easy to manage, have been mainly used 
to solve the graph problems. However, when dealing with partitions, there have been 
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studies [15-19] using methods based on edge, which is a dual of vertex. In particular, 
Armbruster et al. [20] and Yoon et al. [21] used an edge representation for solving 
graph partitioning, which maps a solution to an edge set, not a vertex set. In their 
representation, each location of an encoding is assigned to 1 if its corresponding edge 
is on the cut and 0 otherwise. This representation is well adapted to their integer pro-
gramming formulation, but it is very crucial but difficult to check whether or not a 
given encoding forms a valid graph partition. 

In this paper, we propose a new genetic algorithm based on not vertex-based en-
coding but spanning tree-based encoding [22, 23] as a kind of edge-based encoding. 
Contrary to general edge-based encoding, spanning tree-based encoding represents 
only feasible partitions. As a target problem, we adopted the MAX CUT problem, 
which is well known as a representative NP-hard problem, and examined the perfor-
mance of the proposed genetic algorithms experimentally. The proposed method is 
expected to well perform on sparse graphs. In particular, if we consider that graphs 
appearing in real-world applications such as social networks and systems biology are 
sparse, the proposed method has great potential in real-world graph problems. 

Section 2 discusses the MAX CUT problem and its previous work. Section 3 de-
scribes the proposed spanning tree-based encoding scheme. Section 4 presents expe-
rimental results on various graph sets, and Section 5 concludes the paper. 

2 MAX CUT 

It is important in combinatorial optimization to partition the vertices into two disjoint 
subsets of nearly equal size such that the sum of edge weights with two edge end-
points in different sets (cut size) is maximized or minimized. Given an undirected 
graph G = (V, E) with edge weights, the MAX CUT problem (Fig. 1) is that of find-
ing a subset S⊂V which maximizes the sum of edge weights in the cut (S, V - S). 

 

Fig. 1. Example of MAX CUT 

Every graph has a finite number of cuts, so one can find the minimum or maximum 
weight cut in a graph by an exhaustive search that enumerates the sizes of all the cuts. 
This is not a practical approach for large graphs which arises in real-world applica-
tions since the number of cuts in a graph grows exponentially with the number of 
vertices. Although we can solve the min-cut problem without balance requirement in 
polynomial time using the maxflow-mincut algorithm [24], we have no such fortune 
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when it comes to the MAX CUT problem. There is no known way to solve the prob-
lem optimally other than by exhaustive enumeration. The MAX CUT problem is one 
of Karp's original NP-complete problems [25] and has been known to be NP-complete 
even if the problem is unweighted [26]. 

Since there is no algorithm that guarantees an optimal solution, a typical approach 
to solve such a problem is to find a ρ-approximation algorithm that delivers a solution 
at least ρ times the optimal value in polynomial time. Sahni and Gonzales [27] pre-
sented a 1/2-approximation algorithm for the MAX CUT problem. Their greedy ap-
proach iterates through the vertices and decides which placement (S or V - S) max-
imizes the cut of vertex vi with respect to vertices v1 to vi-1. Since [27], many re-
searchers have presented approximation algorithms for the MAX CUT problem [28-
31], but little progress has been made. For more than twenty years a factor of 0.5 has 
been the best-known polynomial-time performance guarantee for the MAX CUT 
problem. An algorithm by Goemans and Williamson (GW) [32] guarantees a factor of 
0.878 of the optimum. The significant improvements are due to the technique of posi-
tive semidefinite programming and randomized rounding. However, solving semide-
finite programming is computationally expensive. Homer and Peinado [33] gave a 
parallelized version of GW. In [33], GW was improved by combining with simulated 
annealing (SA) [34]. Afterward, Kim et al. [35] successfully applied GAs to the MAX 
CUT problem. In practical, when the GA is combined with lock-gain-based local 
search [11], the hybrid GA could outperform GW (the best approximation algorithm) 
combined with SA. It is known the GAs have good performance when applied to the 
MAX CUT problem [35], we adopted the MAX CUT problem to test our new encod-
ing scheme in this paper. 

The MAX CUT problem has many applications in various fields, It has been ob-
served that one of the phases (the layer assignment problem) in the design process for 
VLSI chips and printed circuit boards (PCB) can be reduced to the MAX CUT prob-
lem [36, 37]. One of the most famous applications of the problem comes from a clas-
sical application to statistical physics [36]. It is concerned with the exact determina-
tion of a minimal energy configuration of a spin glass under no exterior field and 
under a continuously varying exterior magnetic field. Poljak and Tuza [38] provided a 
comprehensive survey of the MAX CUT problem. 

3 Encoding and Evaluation 

Each solution is represented by a chromosome, which is a binary string. In this sec-
tion, we consider two different types of binary encoding to represent solutions for the 
MAX CUT problem. 

3.1 Vertex-Based Encoding  

When we use vertex-based encoding in GAs, the number of genes in the chromosome 
equals n, which is the number of vertices in the graph. Each gene corresponds to a 
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vertex in the graph. A gene has value 0 if the corresponding vertex is in S, and has 
value 1 otherwise. 

To evaluate the cut size of a solution, we should compute the number of cut edges, 
which is an edge whose end-vertices are in different sides. For each edge, to deter-
mine if it is a cut edge, we just check that the values of genes corresponding to its 
end-vertices are different, i.e., (0,1) or (1,0). 

3.2 Spanning Tree-Based Encoding 

If {V1, V2} is a partition of V, the set E(V1, V2) of all the edges of G crossing between 
V1 and V2 is called a cut. Cut space consisting of all the cuts is proven to be vector 
space [23]. It means that an arbitrary cut can be represented by a linear combination 
of basis elements of cut space. 

 

Fig. 2. Example of a graph (left) and its spanning tree (right) 

In the case that the graph G is connected1, we can derive a basis of cut space from a 
spanning tree of G. Finding basis of cut space based on spanning trees are known as 
nontrivial ones. General graph traversal algorithms such as depth-first search (DFS) 
and breadth-first search (BFS) can produce spanning trees of G. Let T be a spanning 
tree of G. For each edge e of the n - 1 edges in T, the graph T - e has exactly two 
components, and the set Ce of edges in G between the two components forms a cut. 
These n - 1 cuts are linearly independent and hence form a basis of cut space. 

 

Fig. 3. Edge of spanning tree, sub-sets and cuts 

When we use a spanning tree-based encoding in GAs, the number of genes in the 
chromosome equals n-1, the number of edges in T. Each gene corresponds to an edge 
in T. To evaluate the cut size of a solution, we should compute the number of cut 
edges. The set of cut edges is easily computed by summing Ce for each edge e in T 
whose gene value is 1. Then the cut size becomes the cardinality of the set of cut 
edges (see Fig. 3). 
                                                           
1  In this paper, we assume that G is connected for convenience. 
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4 Simulation and Analysis 

4.1 Experimental Environments 

This section describes how we evaluated the proposed GA approach to develop span-
ning tree-based encoding for the MAX CUT problem. The GA parameters are shown 
in Table 1. The one-point crossover and random mutation were used for genetic re-
combination, and tournament selection is also adopted. The proposed algorithm was 
implemented using Open Beagle [39] with Boost Graph Library [40]. Three methods - 
Kruskal-like, DFS, and BFS - are used to find spanning trees. Every GA run is re-
peated 30 times for each case. 

Table 1. GA Parameters 

Parameters Values 

Max. # of generations 100 

Population size 100 

Crossover rate 0.9 

Mutation rate 0.1 

Tournament size 7 

4.2 Experimental Results 

The tabular results for various sets on a total of 31 graphs are provided in Table 2. 
The different classes of graphs that we tested our algorithms on are described  
below. 

Gn.p: a random graph on n vertices with edge probability p. E.g., G1000.01 
is a 1,000-vertex graph with p=0.01. 

Un.d: a geometric random graph on n vertices and expected degree d. E.g., 
U500.10 is a 500-vertex geometric graph with "expected degree" 10. 

bregn.b: a regular random graph on n vertices in which each vertex has de-
gree 3 and the optimal bisection size is b with high probability, i.e., 
probability approaches 1 as n approaches infinity. 

cat.n: A caterpillar graph on n vertices, with each vertex having six legs. 
rcat.n is a caterpillar graph with n vertices, where each vertex on the 
spine has √  legs. 

gridn.b: A grid graph on n vertices and whose optimal minimum cut size is 
known to be b. w-gridn.b denotes the same grid but the boundaries are 
wrapped around. 

Please see the reference [41] for details on how this class of graphs is generated. 
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Table 2. Comparison of encoding schemes for various graphs 

Instances Vertex
/ Edge
ratio 
(%) 

Vertex 
encoding 

Edge encodings 

 

Kruskal-like DFS BFS 
Cut 
size 

Std 
dev 

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std 
dev 

Improve 
ment(%) 

G500.005 79.9% 375.0 3.7 391.3 3.0 4.35  392.1 3.2 4.55  388.9 3.8 3.71  
G500.01 40.8% 700.1 4.5 706.1 4.6 0.87  708.1 5.7 1.15  707.0 4.4 1.00  
G500.02 21.2% 1303.1 7.2 1293.3 7.4 -0.75  1294.7 7.9 -0.64  1295.7 7.5 -0.57  
G500.04 9.7% 2747.9 10.0 2718.3 10.5 -1.08  2711.1 7.9 -1.34  2722.2 12.1 -0.94  

G1000.005 40.0% 1373.4 8.4 1383.6 5.4 0.75  1383.5 6.9 0.74  1383.2 4.3 0.71  
G1000.01 19.7% 2711.0 8.5 2699.2 7.7 -0.44  2695.9 9.7 -0.56  2702.0 7.8 -0.33  
G1000.02 9.9% 5307.4 10.9 5271.3 13.6 -0.68  5265.6 15.0 -0.79  5280.5 15.2 -0.51  
U500.05 38.9% 597.2 3.6 606.3 3.8 1.52  605.0 3.7 1.31  606.0 3.4 1.47  
U500.10 20.3% 1276.1 4.8 1282.3 4.5 0.49  1279.3 4.0 0.25  1283.8 6.5 0.61  
U500.20 11.0% 2410.2 5.7 2407.4 5.4 -0.11  2396.0 7.6 -0.59  2402.1 7.5 -0.34  
U500.40 5.7% 4575.6 7.1 4563.2 8.2 -0.27  4547.1 6.6 -0.62  4557.5 7.2 -0.40  
U1000.05 41.7% 1309.0 7.6 1324.9 4.6 1.21  1324.7 5.3 1.20  1323.1 5.0 1.08  
U1000.20 10.7% 4877.9 10.4 4871.1 10.6 -0.14  4851.2 12.1 -0.55  4861.2 12.5 -0.34  
U1000.40 5.5% 9292.5 12.2 9261.0 8.8 -0.34  9234.2 12.2 -0.63  9252.2 15.6 -0.43  
breg500.12 66.5% 445.4 4.8 460.8 3.6 3.47  461.8 3.3 3.67  459.9 3.7 3.25  
breg500.16 66.5% 444.5 3.4 462.5 4.7 4.04  462.3 3.8 4.01  460.0 3.5 3.49  
breg500.20 66.5% 444.9 4.6 460.8 3.1 3.57  460.7 3.2 3.55  461.2 4.3 3.66  

cat.352 100.0% 224.1 2.9 242.1 2.1 8.05  241.5 2.5 7.80  242.7 2.8 8.33  
cat.702 100.0% 419.0 3.3 444.6 3.5 6.10  446.2 3.9 6.49  445.8 3.0 6.40  
cat.1052 100.0% 606.8 5.0 644.9 5.6 6.28  644.9 5.6 6.28  644.9 5.7 6.28  
cat.5252 100.0% 2804.5 10.0 2890.8 10.0 3.07  2885.3 10.7 2.88  2891.2 10.2 3.09  
rcat.134 100.0% 99.4 1.5 106.1 1.5 6.74  106.1 1.5 6.74  106.1 1.6 6.74  
rcat.554 100.0% 339.0 3.1 360.2 2.5 6.26  360.2 2.5 6.26  360.2 2.6 6.26  
rcat.994 100.0% 577.9 5.2 611.3 4.7 5.78  611.3 4.7 5.78  611.3 4.8 5.78  
rcat.5114 100.0% 2736.6 10.3 2817.4 10.0 2.95  2817.6 9.7 2.96  2816.1 9.5 2.91  

grid100.10 55.2% 130.1 2.4 133.2 2.0 2.36  132.9 2.4 2.10  133.7 1.8 2.77  
grid500.21 52.3% 556.9 4.3 569.4 4.3 2.24  571.7 6.0 2.66  570.2 5.5 2.38  
grid1000.20 51.8% 1075.5 5.6 1094.6 7.2 1.77  1096.3 5.1 1.93  1095.9 7.7 1.89  
w-grid100.20 49.5% 145.1 2.6 146.8 1.9 1.22  145.2 2.7 0.07  144.3 2.4 -0.55  
w-grid500.42 49.9% 582.1 4.6 594.0 5.1 2.04  594.5 5.4 2.12  591.3 3.9 1.58  
w-grid1000.40 50.0% 1113.8 9.0 1133.2 7.0 1.74  1130.2 5.1 1.47  1129.5 5.8 1.40  

 
The ratio of vertices to edges in sparse graphs is greater than in dense graphs. For con-

nected graphs, if n is the number of vertices, then the number of edges is between n-1 and 
n(n-1)/2. Therefore, the ratio of vertices to edges has a value between 2/(n-1) to n/(n-1). 

For the case of sparse graphs in which the ratio of vertices to edges is more than 
38.9%, the performance of spanning tree-based encoding is superior to the results of 
vertex-based encoding. The improvement increases for greater ratios of vertices to 
edges, in general. Examples include bregn.b, gridn.b, cat.n, rcat.n, and w-gridn.b. The 
cat.n and rcat.n graph sets with 100% ratio of vertices to edges, show the average of 
approximately 6% improvement using spanning tree-based encoding. 
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On the other hand, the performance of vertex-based encoding is better than that of 
spanning tree-based encoding for dense graphs in which ratio of vertices to edges is 
less than 20%. Some Gn.p and Un.d graph sets are examples of this category. 

The efficiencies for graphs around with ratios of 20% are irregular. For example, 
the performance of spanning tree-based encoding is superior in U500.10, which has a 
20.3% ratio, but the performance of vertex-based encoding is better in G500.02, 
which has a 21.2% ratio. Geometric random graphs are closer to real-world problems 
than random graphs, considering that the randomness of geometric random graphs is 
less than that of random graphs and the vertices connected with edges in geometric 
random graphs are locally clustered. 

Therefore the superiority of spanning tree-based encoding will be expected for real-
world problems which consist of sparse graphs having more than a 20% ratio of vertices 
to edges. In the paper, three methods - Kruskal-like, DFS, and BFS - are used to obtain 
spanning trees and the results differ slightly for each method, but they are not very dif-
ferent. The topic of what kind of algorithms for finding a spanning tree is efficient and 
how these algorithms influence the performance appears to be one of interests. 

5 Conclusions 

We proposed a new encoding method and investigated its performance comparing to 
a widely-used method for the MAX CUT problem. This study is the first trial of ap-
plying spanning tree-based encoding to optimization method for graph problems. To 
demonstrate the effectiveness of our proposed approach, experiments on three span-
ning tree-based encodings were conducted for benchmark graphs and could obtain 
performance improvement on sparse graphs. 

We also found that the change of encoding method can make differences for opti-
mization performance. In other words, edge-based encoding is advantageous for 
sparse graphs and vertex-based encoding is profitable for dense graphs. 

The proposed approach can be applied to other graph partitioning problems, e.g., 
ratio-cut graph partitioning, which are similar to the MAX CUT problem. In particu-
lar, the proposed spanning tree-based encoding scheme has a merit on partitioning of 
sparse graphs, which appear widely in real-world applications. Further study will aim 
at the extension and refinement of the encoding schemes and their application to vari-
ous graph sets. 
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Abstract. Modelling biochemical systems has received considerable at-
tention over the last decade from scientists and engineers across a num-
ber of fields, including biochemistry, computer science, and mathematics.
Due to the complexity of biochemical systems, it is natural to construct
models of the biochemical systems incrementally in a piecewise manner.
This paper proposes a hybrid approach which applies an evolutionary al-
gorithm to select and compose pre-defined building blocks from a library
of atomic models, mutating their products, thus generating complex sys-
tems in terms of topology, and employs a global optimization algorithm
to fit the kinetic rates. Experiments using two signalling pathways show
that given target behaviours it is feasible to explore the model space by
this hybrid approach, generating a set of synthetic models with alterna-
tive structures and similar behaviours to the desired ones.

1 Introduction

Models of biochemical systems can be used in systems biology to predict and
explain behaviour, or as templates for designing novel biological systems in syn-
thetic biology. It is still an open question regarding how to build and verify
models of biochemical systems, involving intelligent methods and tractable com-
putational tools. Traditionally the structures of models are inferred from various
experimental observations, and the kinetic rates are estimated computationally
by considering kinetic laws [3,9].

Much previous research has focused on how to fit the kinetic rates of an ex-
isting biochemical model so that its behaviour coincides with the observations
of a given physical system [7,14,13]. However, another research line is to iden-
tify alternative topologies and optimize the topologies [8,20]. Moreover, a model
of a biochemical system can be engineered by modifying and piecewise con-
structing its network topology, using biological building blocks. As the kinetic
rates (parameters) associated with biochemical reactions (forming the structure)
are crucial for biochemical systems exhibiting observed behaviours, it is neces-
sary to model the systems in terms of both the topology and kinetic rates by a
hybrid method. The challenging aim of our research is the development of a ro-
bust method for the automated construction of models from descriptions of the
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Table 1. An enzymatic reaction and its components

Enzymatic Reaction Petri net Components

A+ E

k1−→
←−
k2

A|E k3−→ B + E E5

BA|EA

4 k3

T3

k2

T2

k1
T1 A+ E

k1−→ A|E
[A] = 4 A|E k2−→ A+ E

[E] = 5 A|E k3−→ B + E
[A|E] = [B] = 0

observed or desired behaviours of the biochemical systems, by the manipulation
of both the topology and kinetic rates.

Some recent research applying evolutionary methodologies to model biological
systems can be found in [18,19,2]. Evolutionary computation and functional Petri
nets have been applied to infer metabolic pathways by Kitagawa and Iba [10];
however their approach relies on starting with an existing network model which
is then modified, whereas our approach is to incrementally piecewise construct
a network from a single node. Previously [21] we have developed a method to
piecewise construct the topology of networks using simulated annealing (SA); in
the research reported here we use a hybrid approach which employs evolution
strategy (ES) to derive the topology and SA for the kinetic rates.

2 Components and Composition Rules

2.1 Pre-defined Components

Components are defined according to the semantics and syntax of the biological
building blocks in [21]. There are two patterns for generating the reusable com-

ponents in a library: (1) binding pattern P1 + P2
ki−→ P3; (2) unbinding pattern

P3
kj−→ P1 + P2. The parameters ki and kj are the kinetic rates of binding and

unbinding reactions, and usually ki $ kj . The two patterns illustrate how a
complex can be synthesized from substrates or broken down into substrates. A
basic enzymatic reaction can be represented by one instantiation of the binding
pattern and two instantiations of the unbinding pattern, as shown in Table 1.
The concentrations of substrates in the enzymatic reaction are indicated with la-
bels within square brackets, such as ‘[A]’ and ‘[A|E]’, where the symbol ‘|’ means
that the biochemical complex ‘A|E’ is made from two substrates A and E.

2.2 Composition Rules

Given an existing biochemical network model BioN and a library of biological
components CompLib, the operation of piecewise composition can be the addi-
tion of one component Ca from CompLib to BioN, or the subtraction of one
component Cs from BioN. We have further developed the original composition
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rules proposed in [21] to permit component subtraction and greater flexibility
in composition. The rules developed are performed by comparing and replacing
parts of the labels of the added component. In this paper, Li (i = 1, 2, 3) is the
label of places Pi from the added component Ca, and LB is the label of a place
PB of a component CB in BioN. The details of composition rules are as follows.

1. Given a binding component P1 + P2
k1−→ P3 or an unbinding component

P3
k2−→ P1+P2, where L1, L2 and L3 are labels of P1, P2 and P3, respectively.

(a) If LB = L1 or LB = L2 or LB = L1|L2, the component Ca is added to
the existing network BioN by adding its reaction equations directly;

(b) If LB 	= L1 or LB 	= L2, all L1 (L2) in Ca are replaced by LB in Ca and
the modified reaction equations are added to BioN ;

(c) If LB 	= L3 and PB is a complex, L3 in Ca is replaced by LB, L1 is
replaced by LB1, and L2 is replaced by LB2 where {LB1, LB2|LB1 ∩
LB2 = 0 and LB1 ∪ LB2 = LB}. The corresponding modified reaction
equations of Ca are added to BioN ;

(d) If LB 	= L3 and PB is not a complex, the reaction equations of Ca are
added into BioN, and a new component C′

a is created by binding P3 with

PB to produce PB |P3 (P3 + PB
k1−→ PB|P3), and reaction equations of

C′
a are added to BioN.

2. A component Cs is selected randomly from BioN for subtraction.

(a) If Cs is the only component in BioN, no subtraction is applied to BioN ;
(b) If Cs is not the only component in BioN, the transition and its incident

arcs in Cs are removed directly. The BioN is checked for connectivity.
Non-connected parts of BioN are linked by creating a binding component
with species selected randomly from the non-connected parts.

3 Hybrid Piecewise Modelling

Current research has focused on generating topologies [16] and fitting kinetic
rates [17], or both [5]. In this paper, we aim to solve a topology optimization
problem by iteratively piecewise assembling components represented by quanti-
tative Petri nets from a user pre-defined library, combined with optimizing the
kinetic rates.

A hybrid evolutionary and heuristic approach has been developed using a
two layer framework: firstly, this hybrid approach evolves the topology of the
model representing the target system by performing ES at the outer layer, and
then SA is applied at the inner layer to optimize the kinetic rates of the evolved
model. The piecewise modelling stops after a pre-defined number of generations
and returns a set of the best synthetic models, offering alternative topologies
with similar behaviours to the target system. The pseudo-code of the hybrid
framework between ES and SA is shown in Algorithm 1. The details of evolving
the topology by the ES layer and optimizing kinetic rates by the SA layer are
described in Section 3.1 and Section 3.2, respectively.
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Algorithm 1. A hybrid piecewise modelling framework

Require: CompLib, Composition Rules
Ensure: BioNbest

1: Initiate the population;
2: while Not reached maximum generation (ES layer) do
3: for Each individual in the population do
4: Mutate the topology of individual by Addition or Subtraction;
5: Check the mutated topology of the individual;
6: Evaluate the mutated individual;
7: if The kinetic rates are required to be optimized then
8: while Not reach minimum temperature (SA layer) do
9: Optimize the kinetic rates of individual by Gaussian distribution;
10: Evaluate the mutated kinetic rates;
11: end while
12: end if
13: end for
14: Crossover the individuals;
15: Select offspring for next generation;
16: end while
17: Return BioNbest

3.1 Evolution Strategy Based Topology Optimization

The (μ+λ)-ES is utilized to iteratively piecewise assemble the components for
the model construction, where μ and λ are the number of parents and children
respectively. The (μ+λ)-ES starts from an initial population of individuals and
each individual is a single component selected randomly from the library. The
individuals are mutated by genetic operators adapted from evolutionary algo-
rithms: Addition (⊕), Subtraction (3) and Crossover (⊗). The individuals with
the best fitness are selected to generate offspring for the next generation.

The three genetic operators are concepts taken from genetic algorithms, and
the implementation of these operators in this paper is inspired by nature. The
addition operator is used to integrate a component to an existing topology of
model. The subtraction operator is used to remove the transition with inci-
dent arcs in a component selected randomly from the model for a removal. The
crossover operator is used to apply a ‘cut and splice’ method to reproduce off-
spring from two models under construction. The set of composition rules has
been introduced in Section 2.2 for the components composition carried out by
the three genetic operators.

3.2 Simulated Annealing Based Kinetic Rates Fitting

SA is a heuristic optimization algorithm for searching a global optimum solu-
tion in a very large solutions space, avoiding local optimum solutions. In our
previous work [21] we have applied the SA to piecewise construct and explore
the topologies of the biological systems. In this paper, the SA layer is integrated
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within the ES layer to estimate the kinetic rates of the synthetic models. The
topologies of these models are fixed while in the SA layer, having been passed
down from the ES based outer layer after mutating their structures.

The rates of reactions in a given model are coded as follows: a vector K(M) =
(kt1, k

t
2, ..., k

t
l ) is used to record the rate values in a model, where l is the number

of reactions, t is the current cooling temperature, and kti is a constant rate of
the ith chemical reaction ri (i = 1, 2, ..., l). The vector K(M) is mutated by the
Gaussian distribution N(μ, σ) by N iteration times at each cooling temperature.
The mutated K(M) of the model is evaluated after each iteration, by comparing
the behaviour of the synthetic model and the target system.

Due to the probabilistic behaviour of the random procedure of SA [1], a mu-
tated vector K(M) could be generated which causes a bad estimated fitness of
the model. This is because there is a chance that the model with a fixed topology
and optimized kinetic rates returned from the SA layer to the ES layer could be
worse than the one passed into the SA layer.

3.3 Model Evaluation

A synthetic model is evaluated by comparing its behaviours with target be-
haviours of a biochemical system. The behaviours are represented by time series
data of the concentrations of species, e.g. enzymes, other proteins, and com-
plexes. The behaviours of the species in the target system can be obtained from
a reference model or by observations of a biochemical system from the wet-lab.

Given a set of reference data for the target system MT , there are N generated
time series XT = (X1, X2, ..., XN ) which represent the behaviours of N species,
N ≥ 1. There are P data points in each time series Xi = (x1

i , x
2
i , ..., x

P
i )

T ,

i = 1, ..., N . There are M time series XG = (X̂1, X̂2, ..., X̂M ) describing the
behaviours of M species in a constructed model MG, with P data points for each
time series X̂j = (x̂1

j , x̂
2
j , ..., x̂

P
j )

T , j = 1, ...,M . The intersection between MT

and MG of species is defined by XC = XT ∩XG = (X1, X2, ..., Xn), 1 ≤ n ≤ N .
The difference between the behaviours of MT and MG is calculated by averaging
the difference of behaviours of each species in XC by a paired comparison of the
P data points. As shown in Eq. (1), the difference of behaviours for one species
Xk ∈ XC is measured by the Euclidean distance function, where η is the total
number of compared substrates in XC :

dMT ,MG(Xk) =
1

η

η∑
k=1

√√√√ P∑
t=1

(xt
k − x̂t

k)
2. (1)

While evaluating the generated model, the species for behaviour comparison can
be specified by the user and are stored in X ′

C (|X ′
C | = n′). In this scenario, there

could be some synthetic substrates in MG which do not exist in MT . Therefore,
if a substrate is specified for comparison in MG but does not exist in MT , then
MG should be punished. If a species for comparison exists both in MT and MG,
a reward can be given to MG. A Reward and Penalty function Φ(Xk) is used
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to improve the objective function as a complement of the Euclidean distance
function: Φ(Xk) = −ε1 if Xk ∈ XG ∧ Xk /∈ XT , where ε1 is a non-negative
real value for the reward; Φ(Xk) = ε2 if Xk ∈ XG ∧ Xk ∈ XT , where ε2 is
a non-negative real value for the punishment. The reward and penalty can be
defined by the user at the initial stage. The return result of Φ(Xk) will partly
contribute to the fitness evaluation of a generated model MG by an objective
function f(MG) in Eq. (2):

f(MG) = dMT ,MG(Xk) +
1

η

η∑
k=1

Φ(Xk) (2)

where η = n if the compared substrates are from the intersection XC , and η = n′

if the compared substrates are from the specific X ′
C . In this paper, modelling is

a minimization problem, therefore the smaller the fitness value, the better the
generated model.

4 Experimental Study

In this section, we present simulation results for the implementation of the hybrid
modelling approach on two signalling pathways: (1) the RKIP pathway, which
is a mathematical model taken from Cho et al [6] for representing the fragment
of the mitogen-activated protein kinase (MAPK) signal transduction pathway
concerned with the inhibition of the extracellular signal regulated kinase (ERK)
by the Raf1 kinase inhibitor protein (RKIP); (2) the Levchenko pathway [11]
for quantitatively analyzing the signal propagation regulated by the formation
of scaffold kinase complexes in the core MAPK cascade. ERK is one of the
MAP Kinases (mitogen activated protein kinases), and can also be referred to
as ‘MAPK’; it is a player in both the Cho et al model of the RKIP fragment of
the MAPK cascade as well as in the Levchenko model of the MAPK cascade.

4.1 Generation of Similar Behaviours

The main aim of our approach is to construct models with similar behaviours
to the target biochemical systems. The RKIP pathway transfers the mitogenic
signals from the cell membrane to the nucleus. The hypothesis is that RKIP can
inhibit activation of Raf1 by binding to it, disrupting the interaction between
Raf1 and MEK, thus playing a part in regulating the activity of the ERK.

Figure 1a shows that the behaviours of substrates in the generated models
are similar to the target behaviour in terms of Euclidean distance. Because the
behaviours of RKIP in the 50 synthetic models are similar both to each other
and also to the target behaviour, we only illustrate the behaviours of RKIP from
the five best generated models (obtained in a single run). The construction of the
models can be driven to approach to that of the target pathway by increasing the
fitness in terms of reducing the Euclidean distance between behaviours employed
to evaluate the models. As shown in Fig. 1b, the fitness of each model converges
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Fig. 1. (a) Behaviours of the RKIP from five best synthetic models and target RKIP
pathway; (b) Average fitness of all 50 synthetic models of RKIP pathway, and fitness
of the five best synthetic models.

to a minimum value with the increased number of generations in the simulation.
In our current implementation, the hybrid modelling process is set to call the
SA layer to optimize the kinetic rates of each model at every 250 generations;
different settings are under study in ongoing research. Due to the probabilistic
mechanism of accepting a worse solution by the SA, there is a jump of fitness
convergence for most models. These fitness values converge again after move
back to the ES layer, following a traditional evolutionary process, see Fig. 1b.

Our results for the Levchenko pathway given in Figure 2a show that models
can be generated with unexpected behaviours regarding ERK which are sim-
ilar in terms of Euclidean distance to the target in the MAPK cascade [11].
Although the target system does not exhibit oscillations, there is an oscillating
substrate behaviour from one of the synthetic models, as supported by Kholo-
denko’s model [12]. This suggests that feedbacks could exist in solution space,
and are indeed incorporated in many MAPK models, e.g. [4], although missing in
our target Levchenko model. Again, the fitness of constructed models converges
with the increased number of generations in the simulation as shown in Fig. 2b.

4.2 Exploration of Alternative Topologies

One of main aims of modelling biochemical systems is to explore alternative
topologies, for understanding the relationships among the compounds in wet-
lab. Our approach can search the model space and suggest a set of alternative
topologies with similar behaviours to the target. The results can be analysed in
terms of the structural difference between models, using Compression and Cov-
erage measures. Compression (adapted from [21]) is a metric which computes the
distance between two networks in terms of the proportion of matched (common)
arcs (between the generated and target model) with respect to the maximum
number of arcs in the generated or target model. Coverage computes inclusion in
terms of the ratio of arcs in the target model which are matched in the generated
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Fig. 3. (a) Compression and coverage of RKIP and Levchenko pathways; (b) A clus-
tering of 50 synthetic models and target RKIP pathway (T).

model. Both measures vary from 0 (worst) to 1 (best). If either compression or
coverage is low for a particular model, then its topology is very different to the
target, even if their behaviours are similar.

Figure 3a illustrates the compression and coverage of two signalling pathways.
Most coverage of synthetic models of RKIP and Levchenko pathways is in the
ranges of [0, 0.53] and [0, 0.27], respectively. Compression for both the RKIP
and the Levchenko generated models is very poor, ranging over [0, 0.18], indi-
cating that the generated models are very different to the target ones in terms of
topologies. Figure 3b is a dendrogram of hierarchical pairwise clustering based
on similarity and complete linkage over compression among 50 generated models
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and the target RKIP pathway, and illustrates the generation of a wide range of
alternative topologies by our hybrid approach; the closest 10 models in terms
of fitness are shown with a ‘+’. Although none of the generated topologies are
close to the target one, the nearest being individual 48 which is 10th closest re-
garding fitness, there are 9 other models which are closer in terms of behaviour
despite being poorly related to the target structurally, and are also fairly widely
scattered over structural space. Thus our approach is able to search model space
for networks which have similar behaviours to the target, even though they may
differ quite significantly in terms of structure.

5 Conclusions and Future Work

Our study addresses the evolution of quantitative Petri nets and could thus
be applied to stochastic and hybrid Petri nets as well as the continuous Petri
nets, which can benefit mathematical modelling. We have applied the proposed
approach to two signalling pathways. The experiments show that it is feasible
to iteratively piecewise model biochemical systems using our hybrid approach
and explore the solution space of alternative models with different topologies
but similar behaviours to the target ones.

One important issue to be investigated in our future research is to study the
switching policy between ES and SA layers, in order to obtain models with good
quality in terms of both topology and kinetic rates. Furthermore, implementa-
tion of the genetic operators can result in different model sizes, and thus one of
our future aims is to exploit the potential tradeoff of the combinatorial applica-
tion of the genetic operators. More biological constraints will be considered for
defining the components and the composition rules, thus improving the biologi-
cal relevance of the synthetic models. Finally, the generated models can be used
as design templates to guide the construction of synthetic biological systems
which may have quite different topologies from existing natural systems.
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Abstract. This paper empirically investigates the behavior of three
variants of covariance matrix adaptation evolution strategies (CMA-
ES) for dynamic optimization. These three strategies include the eli-
tist (1+1)-CMA-ES, the non-elitist (μ, λ)-CMA-ES and sep-CMA-ES. To
better understand the influence of covariance matrix adaptation methods
and of the selection methods to the strategies in dynamic environments,
we use the state-of-art dynamic optimization benchmark problems to
evaluate the performance. We compare these CMA-ES variants with the
traditional (1+1)-ES with the one-fifth success rule. Our experimental
results show that the simple elitist strategies including the (1+1)-ES and
the (1+1)-CMA-ES generally outperform those non-elitist CMA-ES vari-
ants on one out of the six dynamic functions. We also investigate the per-
formance when the dynamic environments change with different severity
and when the problems are in higher dimensions. The elitist strategies
are robust to different severity of dynamic changes, but the performance
is worse when the problem dimensions are increased. In high dimensions,
the performance of the elitist and the non-elitist versions of CMA-ES are
marginally the same.

Keywords: Dynamic Optimization, Evolution Strategies, Covariance
Matrix Adaptation.

1 Introduction

In recent years, there has been a fair amount of research works that have con-
tributed to the state-of-art covariance matrix adaptation evolution strategies
(CMA-ES) [1,2,3,4] that is used to solve many black-box optimization problems.
CMA-ES usually optimizes the real-valued objective functions f : Rn → R in
the continuous domain. On ill-conditioned problems covariance matrix adapta-
tion can accelerate the rate of convergence of evolution strategies by orders of
magnitude. For example, a successful covariance matrix adaptation can enable
strategies to generate candidate solutions predominantly in the direction of nar-
row valleys. The CMA-ES is able to learn the appropriate covariance matrix
from the successful steps that the algorithm has taken. The covariance matrix
is updated such that variances in the directions of the search space that have
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c© Springer-Verlag Berlin Heidelberg 2012



530 C.-K. Au and H.-F. Leung

previously been successful are increased while those in other directions are de-
creased. Even for a small population, the accumulation of information over a
number of successful steps can reliably adapt the covariance matrix.

However, the problem classes that have been considered in most of these works
are of a static nature. In contrast, many problems in engineering, computational
and biological domains are dynamic in that the objective functions are not con-
stant but vary with time. Examples of dynamic optimization problems arise in
the context of online job scheduling, where new jobs arrive in the course of op-
timization. A complete list of survey and works on the evolutionary algorithms
for dynamic optimization has been reviewed by [5,6].

There are a few works that focus on evolution strategies in dynamic optimiza-
tion. The early work [7] has empirically studied the family of evolution strategies
in dynamic rotating problems. It investigated the performance when evolution
strategies employed different forms of mutation step size adaptation. The ex-
perimental results show that a simple mutation step size adaptation achieves
the best results compared to other complicated adaptation mechanisms includ-
ing covariance matrix adaptation. It also suggested to use small populations in
evolution strategies because using large populations implies a higher degree of
dynamism and this is undesirable in dynamic optimization. Another work [8]
studies evolution strategies for the number of mutation step sizes required when
the optima move in one or all n coordinates with different severity. The results
showed that adapting all n mutation step sizes achieves a better performance
than adapting a single mutation step size. The work [9] compares different vari-
ants of mutative self-adaptation and shows that the lognormal self-adaptation
used in evolution strategies performs better than the variants of self-adaptation
commonly used in evolutionary programming. Obviously all these works demon-
strate the difficulty of understanding the behavior of evolution strategies and
their operators and parameters for dynamic environments.

In this paper, we will empirically investigate the state-of-art CMA-ES variants
in the literature and study their performance for dynamic optimization. In the
next two sections, we will briefly recall the CMA-ES variants and the dynamic
optimization benchmark problems. The empirical comparison is described in
Section 4 followed by the conclusion in the last section.

2 CMA-ES Variants

The standard (μ, λ)-CMA-ES: In the standard (μ, λ)-CMA-ES [1,2], in each
iteration g, λ number of candidate solutions are generated by sampling a multi-
variate normal distribution N (0,C) with mean 0 and n× n covariance matrix
C. The μ best solutions are selected to update the distribution parameters for
the next iteration step g + 1. The standard CMA-ES employs the concept of
cumulative step adaptation (CSA). There are two evolution paths pσ and pc

and they are two n-dimensional vectors that are used to accumulate the infor-
mation about the recent steps of the strategy. The learning of the accumulating
information is controlled by three independent learning rates cσ, c1 and cc that
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change the global step size σ and the covariance matrix C. The standard (μ, λ)-
CMA-ES in this paper is identical to that described by [2] and is summarized in
Table 1.

Table 1. Update equations in the standard (μ, λ)-CMA-ES with iteration index
g = 1, 2, 3, . . .. The symbol xi:λ represents the i-th best of the candidate solutions
x1, . . . ,xλ. The values of learning parameters c1, cc, cμ, cσ are set to the same values
as in [1,2].

Given g ∈ N ∪ {0} ,mg ∈ Rn, σg ∈ R,Cg ∈ Rn×n,pg
σ,p

g
c ∈ Rn and

pg=0
σ = pg=0

c = 0,Cg=0 = I

xi ∼mg + σg ×N i(0,C
g) is normally distributed for i = 1, . . . , λ

mg+1 =
∑μ

i=1 wixi:λ where f(x1:λ) ≤ · · · ≤ f(xλ:λ)

pg+1
σ = (1− cσ)p

g
σ +
√

cσ(2− cσ)μwC
g− 1

2 mg+1−mg

σg

for Cg− 1
2 = BD− 1

2BT ,BDBT = C

hσ =

{
1 if ||pg+1

σ || <
√
1− (1− cσ)2(g+1)(1.4 + 2

n+1 )E||N (0, I)||
0 otherwise

pg+1
c = (1− cc)p

g
c + hσ

√
cc(2− cc)μw

mg+1−mg

σg

Cμ =
∑μ

i=1 wi
xi:λ−mg

σg
× (xi:λ−mg)T

σg

Cg+1 = (1− c1 − cμ)C
g + c1p

g+1
c pg+1

c
T
+ cμCμ

σg+1 = σg exp
(

cσ
dσ

( ||pg+1
σ ||

E||N (0,I)|| − 1
))

where E||N (0, I)||
is the expectation of the n-dimensional normal distributed vector.

The sep-CMA-ES: In the standard CMA-ES, the full learning task scales
roughly with n2 and can dominate most of the search cost. This is one of the
major limitations in the standard CMA-ES because of the high degree of freedom
n2+n

2 in the covariance matrix. One of the solutions to this is to reduce the degree

of freedom from n2+n
2 to n where only the diagonal of the covariance matrix is

adapted. The resulting algorithm is called “sep-CMA-ES” [3]. There are two
simple changes undertaken in sep-CMA-ES. First, the covariance matrix C is
constrained to be diagonal. Second, the learning rate cμ is increased. This means
that the mutation distribution is sampled independently in the given coordinate
system using n individual variances. For sep-CMA-ES, the changes to the update
equations in Table 1 are:

1. D =
√
diag(C) where diag(C) is a diagonal matrix with the same diagonal

elements as C. The matrix B remains I for all iterations.

2. csep-CMA-ES
μ = n+2

3 · cμ
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(1+1)-CMA-ES: The (1+1)-CMA-ES is a new variant that has been recently
proposed by [4] as an extension of (1+1)-ES with the one-fifth success rule [10]. It
differs from the standard CMA-ES variant in that: (1) it is an elitist algorithm,
and (2) not only the step size but also a covariance matrix associated to the
search distribution is adapted. The experimental results in [4] shows that it is
about 1.5 times faster than the standard CMA-ES on unimodal functions. We
follow the principles introduced in [4] and the (1+1)-CMA-ES is summarized in
Table 2. A candidate solution yg is sampled by perturbing the current solution
xg by adding a normal distributed vector with mean vector 0 and covariance
matrix Cg and scaled by the mutation step-size σg. This candidate solution is
accepted only if f(yg) < f(xg). The mutation step-size is adapted using the
averaged success rate psucc such that it is increased if the success rate is strictly
larger than the target probability ptargetsucc , and decreased if it is strictly smaller. If
f(yg) < f(xg), the covariance matrix is adapted by adding to a multiple of Cg

the rank-one update matrix pg+1pg+1T where pg+1T is the transpose of pg+1.
We will use the same default settings as in [4] for all strategy parameters.

Table 2. Update equations in the (1 + 1)-CMA-ES with iteration index g = 1, 2, 3, . . .

Given g ∈ N ∪ {0} ,xg ∈ Rn, σg ∈ R,Cg ∈ Rn×n, pgsucc ∈ R,pg=0 = 0,Cg=0 = I
and pg=0

succ = ptargetsucc = 2
11 , cp = 1

12 , cc =
2

N+2 , cμ = 2
N2+6 , pthresh = 0.44

Ag = chol(Cg) where chol(·) is the Cholesky decompositions such that C = AAT

zg ∼ N (0, I)

yg ∼ xg + σgAgzg

pg+1
succ

= (1 − cp)p
g
succ

+ cp1{f(yg)≤f(xg)}

σg+1 = σg exp
(

pg+1
succ−ptarget

succ

n·(1−ptarget
succ )

)
pg+1 =

{
(1− cc)p

g + 1{pg+1
succ<pthresh}

√
cc(2− cc)A

gzg if f(yg) ≤ f(xg)

pg otherwise

Cg+1 =

⎧⎪⎨⎪⎩
(
1− cμ + cμ1{pg+1

succ>pthresh}cc(2 − cc)
)
Cg

+ cμp
g+1pg+1T if f(yg) ≤ f(xg)

Cg otherwise

xg+1 =

{
yg if f(yg) ≤ f(xg)
xg otherwise

3 Dynamic Optimization Benchmark

In dynamic optimization, the objective function changes during the course of
optimization. At any given time t ∈ T, one needs to find the solutions x∗ such
that ∀x,x∗ ∈ Rn, f(x∗, t) ≤ f(x, t) where f : Rn × T→ R is the objective func-
tion of a minimization problem and n is the problem dimension. For dynamic
optimization problems, the fitness functions, design variables and environmen-
tal conditions change from time to time. The simplest way to solve dynamic



An Empirical Comparison of CMA-ES in Dynamic Environments 533

optimization problems is to consider each change as an arrival of a new static
optimization problem if the time and computational resources are sufficient.
However, time and resources given are always limited and the explicit restart
approach may not be feasible.

In this paper, we use the generalized dynamic benchmark generator (GDBG)1.
[11] to evaluate the performance of the CMA-ES variants. This benchmark is a
problem generator that can construct dynamic environments in the continuous
space. It differs from the benchmarks in the literature that it uses the rota-
tion method instead of shifting the positions of the peaks. Using the rotation
method can prevent the unequal challenge per change for the algorithms when
the positions of the peaks bounce back from the boundary of the search space.

Types of Environment Changes: We focus on the non-dimensional changes
in GDBG. In non-dimensional changes, the values of variables within the problem
constraints are changed. One of the examples is to increase or decrease the
number of peaks during the course of optimization. Formally, we can describe
dynamic changes as: φ(t + 1) = φ(t) ⊕ Δφ where φ(t) is the system control
parameters and Δφ is a deviation from the current system control parameters.
At time t, the new environment at time t+1 can be expressed as: f(x, φ, t+1) =
f(x, φ(t)⊕Δφ, t). There are six types of the non-dimensional changes, including
the small step change, the large step change, the random change, the chaotic
change, the recurrent change, and the recurrent change with noisy. We name
them C1 to C6 for our easy reference:

– C1 Small step change: Δφ = α · ||φ|| · r · φseverity

– C2 Large step change: Δφ = ||φ|| · (α · sgn(r) + (αmax − α) · r) · φseverity

– C3 Random step change: Δφ = N (0, 1) · φseverity

– C4 Chaotic change: φ(t+ 1) = A · φ(t) · (1− φ(t)
||φ||)

– C5 Recurrent change: φ(t + 1) = φmin + ||φ|| · (sin(
2πt
P +ϕ)+1)
2

– C6 Recurrent change step with noise:

φ(t+ 1) = φmin + ||φ|| ·
(
sin(2πtP + ϕ) + 1

)
2

+N (0, 1) · φnoisyseverity

where ||φ|| is the range of φ, φseverity ∈ (0, 1) is the change severity of φ, φmin

is the minimum value of φ, φnoisyseverity ∈ (0, 1) is the noisy severity in the
recurrent change change with noise. The parameters α ∈ (0, 1) and αmax ∈ (0, 1)
are constant values in C1 Small step change and C2 Large step change. A logistics
function is used in the C4 Chaotic change, where A is a positive constant between
(1.0, 4.0), if φ is a vector, the initial values of the items in φ should be different
within ||φ|| in C4 chaotic change. P is the period in the C5 Recurrent step change
and the C6 Recurrent step change with noise, ϕ is the initial phase, r is a random

1 Due to pages constraints, we outline the key equations of GDBG. For complete
details, please read [11].
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number drawn uniformly from −1 and 1. The function sgn(x) returns 1 when x
is greater than 0, returns −1 when x is less than 0, otherwise returns 0. Finally,
N (0, 1) returns a normal distributed one dimensional random number with mean
zero and standard derivation one.

Rotation DBG F1: There are two instances in the GBDB benchmark: Rota-
tion DBG and Composition DBG. In the Rotation DBG, the fitness landscape
consists of multiple peaks that can be controlled by tuning the system control
parameters. The height, the width and the position of each peak are changed
in the six change types described above. If the dynamic problem is f(x, φ, t),
then the set of system control parameters is φ = (H,W,X), where H,W and X
are the peak height, the peak width and the peak position respectively. Formally,
the function f(x, φ, t) is

f(x, φ, t) = min

{
Hi(t)+Wi(t)

(
exp

(√√√√ n∑
j=1

(xj −Xi
j(t))

2

n

)
− 1

)}m

i=1

where m is the number of peaks, n is the problem dimension. The height and the
widthof thepeaks are changed:H(t+1)=DynamicChanges

(
H(t),φhseverity , ||φh||

)
andW(t+1) = DynamicChanges

(
W(t), φhseverity , ||φh||

)
where the change sever-

ity of the height and the width are φhseverity and φwseverity respectively. The ranges
of the height and the width are denoted by ||φh|| and ||φw|.

Composition DBG F2 to F6: Another instance of the GDBG benchmark is
the Composition DBG. The basic idea is to construct more challenging bench-
mark functions with randomly located global and local optima. By shifting,
rotating and composing the global optima of the standard functions, more chal-
lenging test functions that possesses many desirable properties can be obtained.
Formally, the Composition DBG can be described as follows:

F (x, φ, t) =
m∑
i=1

{
w

′
i ·
(
f

′
i

(
(x−Oi(t) +Oiold) ·Mi

λi

)
+Hi(t)

)}

where the system control parameter φ = (O,M,H), F (x) is the composition
function, fi(x) is the i-th basic function used to construct the composition func-
tion, m is the number of the basic functions, Mi is the orthogonal rotation ma-
trix for each fi(x), Oi and Oiold are the shifted and the old optimum position
respectively for each basic function fi(x).

4 Experimental Study

Setup: In our setup, we use the same set of problems in [11]. A total of six
dynamic problems F1 to F6 are tested2 . All six problems are multi-modal, scal-
able, rotated and have a large number of local optima. Unless stated otherwise,

2 For details of functions please reference to [11].
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a change will occur only after 1e2 · n number of functions evaluations are used.
50 independent runs are executed per each problem and per each change. All
problems have the global optimum within the given bounds and there is no need
to perform search outside of the given bounds for these problems. All algorithms
will be terminated when the number of changes reaches 60. To evaluate the per-
formance of the algorithms for maximization problems, we record the relative

function error value Elast(t) = f(xbest(t))
f(x∗(t)) after each change. The vector xbest(t)

is the best solutions found by the algorithm at time t and the vector x∗(t) is the
location of the global optimum at time t. In our experiments, all three variants
of CMA-ES and the (1+1)-ES with the one-fifth success rule are compared on all
six benchmark problems. All strategy parameters of evolution strategies are set
to the default values in their original works [10,1,2,3,4]. No parameters tuning
has been conducted.

Results. The experimental results are shown in Figure 1. The graphs show
the relative function error values against the change types. The whiskers in the
graphs mark the 10th and 90th percentiles. We first take a look at the first
problem F1 Rotation Peak Problem. The performances of the (1+1)-ES and
the (1+1)-CMA-ES generally outperform the standard CMA-ES and the sep-
CMA-ES. The results are consistent for all 6 types of dynamic changes. An
elitist evolution strategies using a small population size leads to the best results
compared to all other strategies that are non-elitist and are in large population
sizes. Both the (1+1)-ES and the (1+1)-CMA-ES are statistically indistinguish-
able for all 6 types of dynamic changes. Comparing the standard CMA-ES with
the sep-CMA-ES, their performance are also statistically equivalent. None of our
statistical tests are able to show any significance in these two strategies. Obvi-
ously the simple adaptation technique like the one-fifth success rule can adapt
quickly to the dynamically changing environments. The more complicated mech-
anisms that produce very good results in static optimization, are not adapting
very well for dynamic optimization. If we look into the graph for F2, the results
are consistent with those in F1. The (1+1)-ES and the (1+1)-CMA-ES achieve
the best performance. From functions F3 to F6, the performance of all strategies
becomes worser since the fitness landscapes are more rugged than the functions
F1 and F2. However, the performance differences between the elitist and non-
elitist versions become smaller. In some of the cases in functions F3 and F5, all
four variants are statistically equivalent. In functions F4 and F6, there are a few
cases where the CMA-ES and the sep-CMA-ES outperform the (1+1) variants.
Overall all strategies in most of the cases are indistinguishable in functions F4

and F6.
We next investigate how these strategies are robust to dynamic changes with

different severity and to the problem dimensions. Figure 2 shows the median
numbers of relative function errors against the severity when the underlying
function is F1 and the change type is C3. The severity φseverity is normalized

such that severity is equal to
φseverity

|φ| where |φ| is the range of the system control

parameters. When we increase the severity, the performance generally becomes
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Fig. 1. The median performance of the CMA-ES variants and the (1+1)-ES with the
one-fifth success rule on F1 to F6 over the trials of 50. The dynamic change types are C1

Small step change, C2 Large step change, C3 Random step change, C4 Chaotic change,
C5 Recurrent change and C6 Recurrent change step with noise. For each change type,
from left to right, the bars represent the (1+1)-ES with the one-fifth success rule ( − ),

(1+1)-CMA-ES ( − ), the standard CMA-ES ( − ) and the sep-CMA-ES ( − ).
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Fig. 2. The median performance of the CMA-ES variants and the (1+1)-ES with the
one-fifth success rule on F1 when the change type is C3 random step change. The left
graph shows the performance against the severity of the dynamic changes while the
right graph shows the performance against the problem dimensions.

worser. The elitist (1+1)-ES and the (1+1)-CMA-ES are generally better than
the non-elitist strategies in dynamic changes with different severity. Lastly we
investigate the performance of the strategies when the dimensions are increased.
The right graph in Figure 2 shows the median numbers against the problem di-
mensions. The performance of elitist strategies becomes worser when the problem
dimensions are scaled up. We believe this is due to the small population sizes
of these point-based (1+1) strategies. In contrast to the elitist strategies, the
non-elitist version of the CMA-ES that are population-based improves gradually
in higher dimensions. The performance gap between the elitist and non-elitist
CMA-ES is getting smaller. Obviously when we increase the problem dimension,
the dynamic problems become more challenging and using the population-based
strategies are necessary in order to achieve a reasonable performance.

5 Conclusion

In this paper, we investigate the state-of-art CMA-ES variants for dynamic opti-
mization and they include the elitist (1+1)-CMA-ES, the standard (μ, λ)-CMA-
ES and the sep-(μ, λ)-CMA-ES. We first briefly review the CMA-ES variants in
the context of static optimization and then we discuss the latest dynamic opti-
mization benchmark problems that are used in our simulations. On one out of
the six dynamic functions, the elitist (1+1)-ES with the one-fifth rule and the
(1+1)-CMA-ES achieve the best performance. In most of our simulations, these
two elitist strategies are statistically equivalent. The non-elitist strategies, includ-
ing the standard (μ, λ)-CMA-ES and the sep-CMA-ES, are outperformed by the
elitist variants. The results are consistent for dynamic changeswith different sever-
ity. However, the performance of the elitist strategies, which are pointed-based
search algorithms, becomes worser for higher dimensional problems. Using the
population-based strategies like the standard (μ, λ)-CMA-ES and the sep-CMA-
ES can achieve the equivalent performance as what the elitist (1+1) variants do.
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In the future work, it would be interesting to introduce additional diversity
into the CMA-ES variants. Concentrating the search near the the current op-
tima in a dynamic environment could make the strategies missing the important
changes in different region of the search space. Adding predictions mechanism
and diversity control methods can be a promising way for CMA-ES to optimize
the dynamic functions.
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