
Blackbox Construction of a More Than

Non-Malleable CCA1 Encryption Scheme
from Plaintext Awareness

Steven Myers1, Mona Sergi2, and abhi shelat2

1 Indiana University, Bloomington IN 47408, USA
2 University of Virginia, Charlottesville VA 22904, USA

Abstract. We construct an NM-CCA1 encryption scheme from any
CCA1 encryption scheme that is also plaintext aware and weakly simu-
latable. We believe this is the first construction of a NM-CCA1 scheme
that follows strictly from encryption schemes with seemingly weaker or
incomparable security definitions to NM-CCA1.

Previously, the statistical PA1 notion of plaintext awareness was only
known to imply CCA1. Our result is therefore novel because unlike the
case of CPA and CCA2, it is unknown whether a CCA1 scheme can be
transformed into an NM-CCA1 scheme. Additionally, we show both the
Damg̊ard Elgamal Scheme (DEG) [Dam91] and the Cramer-Shoup Lite
Scheme (CS-Lite) [CS03] are weakly simulatable under the DDH assump-
tion. Since both are known to be statistical PA1 under the Diffie-Hellman
Knowledge (DHK) assumption, they instantiate our scheme securely.

Next, in a partial response to a question posed by Matsuda and Mat-
suura [MM11], we define an extended version of theNM-CCA1, cNM-CCA1,
in which the security definition is modified so that the adversary is per-
muted to ask a c ≥ 1 number of parallel queries after receiving the chal-
lenge ciphertext.We extend our construction to yield a cNM-CCA1 scheme
for any constant c. All of our constructions are black-box.

Keywords: Public-Key Encryption, Plaintext-Awareness, Non-Malleability.

1 Introduction

The standard security definition of an encryption scheme does not prevent an
adversary who observes an encryption of the message m from producing an en-
cryption of the message f(m) for some function f (even though the value m re-
mains private). The seminal work of Dolev, Dwork, and Naor [DDN03] addressed
this security issue by introducing the area of non-malleable cryptographic prim-
itives such as encryption schemes, commitment schemes, and zero-knowledge.
Later, Pass, shelat and Vaikuntanathan [PSV06] strengthened the DDN defini-
tion and presented a construction from CPA to non-malleable CPA using non-
blackbox use of the original encryption scheme. There have been many follow-up
works that propose more efficient constructions of non-malleable primitives. A
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notable achievement in this line of research has been the construction of non-
malleable primitives using only black-box access to the standard version of the
same primitive [CDSMW08, PW09, Wee10]. In particular, [CDSMW08] show
how non-malleable CPA encryption can be constructed from standard versions
of encryption in a black-box manner.

However, the question of whether an NM-CCA1 encryption scheme can be con-
structed from a CCA1 encryption scheme has remained open. This blemish on
our understanding of the theory of encryption has remained despite multiple ad-
vances including many novel techniques for constructing encryption schemes. In
this work, we present a black-box construction of an NM-CCA1 encryption scheme
for a subset of CCA1 encryption schemes, namely those which are also plaintext
aware under multiple keys and weakly simulatable (we will formally define these
concepts later). Intuitively, an encryption scheme is plaintext aware (called sPA1
in [BP04]) if the only way that a p.p.t. adversary can produce a valid cipher-
text is to apply the (randomized) encryption algorithm to the public key and a
message [BP04]. Notice that this definition does not imply non-malleability since
there is no guarantee of what an adversary can do when given a valid ciphertext.
In fact, both encryption schemes from [BP04] are multiplicatively homomorphic.
The weakly simulatable property in our construction is required for technical rea-
sons and roughly corresponds to the ability to to sample ciphertexts and pseudo-
ciphertexts with random coins used to generate them.

Note that there exist encryption schemes that satisfy security notions that “sit
between” standard notions. One such example from Cramer et al. [CHH+07]
consists of a black-box construction of a q-bounded CCA2 encryption scheme
which is not NM-CPA, but which satisfies a stronger security notion than CPA.
In particular, as a generalization of NM-CPA, Matsuda and Matsuura [MM11]
put forth the challenge of constructing encryption schemes that can handle more
than one parallel query after revealing the challenge ciphertext. They write:

Since any (unbounded) CCA secure PKE construction from IND-CPA
secure ones must first be secure against adversaries who make two or
more parallel decryption queries, we believe that overcoming this barrier
of two parallel queries is worth tackling.

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, that is defined
identically to NM-CCA1 except that the adversary can make c adaptive parallel
decryption queries after seeing the challenge ciphertext, where each parallel de-
cryption query can request that a polynomial number of ciphertexts be decrypted
(excluding the challenge ciphertext). (Note that NM-CCA1 is cNM-CCA1 where
the parameter c is set to be one.) Then we show how to construct a cNM-CCA1
secure encryption scheme for an arbitrary constant c. Unfortunately, the size of
the ciphertext in a cNM-CCA1 encryption scheme is polynomially bigger than
the size of the ciphertext in a (c-1)NM-CCA1 encryption scheme and thus the
parameter c must be a constant to obtain an efficient construction.

About Knowledge Extraction Assumptions. Our constructions rely on encryption
schemes that are plaintext aware (sPA1�) in the multi-key setup and are weakly
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simulatable. In Appendix A.1, we show that such encryption schemes exist un-
der a suitable extension of the Diffie-Hellman Knowledge (DHK) assumption
that was originally proposed by Damg̊ard, and modified to permit interactive
extractors by Bellare and Palacio [BP04]. Dent [Den06b] has since shown that it
is secure in the generic group model. We understand that there are some critics
of the DHK assumption, due to its strength and the fact that it is not efficiently
falsifiable. However, it is not our goal to argue whether or not it is an assumption
which should be used in deployable systems. Instead we note it is seemingly a
weaker assumption than the Random Oracle model (which is known to be in-
correct in full generality, cf. [CGH04]), under which it is relatively easy to show
that simple IND-CPA secure encryption schemes imply CCA2 secure ones. In
contradistinction, there are no security definitions that seem weaker or incom-
parable to NM-CCA1 that are known to imply schemes which are NM-CCA1.
Similarly, the gap between NM-CCA1 and CCA2 is poorly understood.

Techniques. Similar to the nested encryption construction in [MS09], both our
NM-CCA1 and cNM-CCA1 constructions are based on the notion of double en-
cryption. We first encrypt the message under one key (we refer to this ciphertext
as the “inner layer”), and encrypt the resulting inner layer ciphertext repetitively
under an additional k keys, where k is the security parameter (we refer to these k
keys as the “outer keys”, and the ciphertexts they produce as the “outer layer”).
During decryption, all the outer layer ciphertexts are decrypted, and it is veri-
fied they all encode the same inner layer value. This is combined with the well
studied notion of non-duplicatable set selection (in this case of public-keys used
to encrypt the outer-layer encryptions), such that anyone attempting to maul
a ciphertext has to perform their own independent outer layer encryption. In-
tuitively, anyone that can encrypt to a consistent outer layer encryption under
a new key must have knowledge of the underlying inner-layer, and thus a valid
ciphertext is not mauled.

On a more technical level, there are several challenges that need to be
overcome. The traditional technical difficulty in proving weaker public-key en-
cryption security notions imply stronger security notions is in showing how to
simulate the decryption oracle. When beginning with a sPA1-secure encryption
primitive, we can easily simulate the initial decryption oracle in the NM-CCA1
security definition, which is present before the challenge ciphertext is presented,
by using the extractor guaranteed by the sPA1 security definition. However,
we cannot simply use the extractor to simulate the decryption oracle after re-
ceiving the challenge ciphertext in the NM-CCA1 security experiment. This is
because the plaintext aware security does not guarantee that an extractor could
decrypt ciphertexts where the underlying randomness is not known to the party
that created the ciphertext. Generally, a party that mauls a ciphertext as in the
case of non-malleability will not have access to this underlying randomness. To
overcome this problem, we make use of a weak notion of simulatability.

To summarize, our contribution is twofold. Firstly, our work shows the first
black-box construction of a non-malleable CCA1 encryption scheme in the stan-
dard model that is not CCA2 secure. Secondly, for the first time, we show how
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to construct an encryption scheme that is not CCA2 secure but is secure against
an adversary that can ask a bounded number of polynomial-parallel queries after
receiving the challenge ciphertext, satisfying a natural extension to the notion of
NM-CCA1 security. This might be of independent interest since the development
of constructions that satisfy stronger notions than non-malleable CCA1 security
but do not satisfy CCA2 security can provide insight in trying to understand the
technical difficulties in understanding the larger relationship between CCA1 and
CCA2.

2 Notations and Definitions

We use [n] to denote the set {1, 2, · · · , n}. We say a function μ : N → R is
negligible if for all polynomials p and all sufficiently large n : μ(n) ≤ 1/p(n).
Given two families of distributions D0 = {D0,i}i∈N and D1 = {D1,i}i∈N, we
denote that they are computationally indistinguishable by writing D0 ≈c D1.
For any vector v, we use |v| to denote the number of elements in v.

Although non-malleability can be defined for any CPA, CCA1 or CCA2 se-
cure encryption scheme (we use the standard definition for CPA/CCA1/CCA2
security),we only use and hence only define non-malleability for CCA1 secure
encryption schemes. We use a definition similar to the non-malleability defini-
tion for CPA secure encryption schemes in [PSV06].

Definition 1 (NM-CCA1). We say that E = (nmg, nme, nmd) is non-malleable
CCA1 secure if for all p.p.t. adversaries and p.p.t. distinguishers A and D respec-
tively and for all polynomials p(·), we have that {NME0(E,A,D, k, p(k))}k ≈c

{NME1(E,A,D, k, p(k))}k where experiment NME is defined as follows:

NMEb(E,A,D, k, p(k))
(1) (npk,nsk)← nmg(1k)
(2) (m0, m1, S1)← Anmdnsk

1 (npk) s.t. |m0| = |m1|
(3) y ← nme(npk,mb)
(4) (c, S2)← A2(y, S1) where |c| = p(k)
(5) Output D(d, S2) where di ← nmd(nsk, ci) if ci �= y and

di ← ⊥ if ci = y

2.1 Plaintext Awareness for Multiple Key Setup

We present a slight generalization to the definition of sPA1 by [BP04] in which
multiple keys are permitted to be constructed and given to the ciphertext creator,
and the extractor must be able to decrypt relative to all of the keys. Notice that
the sPA1 definition is a special case of sPA1� where �(k) = 1.
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sPA1�(E,C,C∗, k)
(1) LetR[C],R[C∗] be randomly chosen bit strings forC andC∗.
(2) ((pk i, sk i))i∈[�(k)] ← gen(1k)

(3) st← (
(pk i)i∈[�(k)], R[C]

)

(4) CC∗(st,.) ((pk i)i∈[�(k)]

)

(5) Let Q = {(qi = (pkji , ci),mi)} be the set of queries C made
to C∗ until it halted and C∗’s responses to them. Return
∧|Q|

i=1(mi = decskji
(ci)).

In the above experiment, C is a ciphertext creator, and C∗ is a stateful p.p.t.
algorithm called the extractor that takes as input the state information st and a
ciphertext given by the ciphertext creator C, and will return the decryption of
that ciphertext and the updated state st. The state information st is initially set
to the public key pk and the adversary C’s random coins. It gets updated by C∗

as C∗ answers each query that the adversary C submits. The above experiment
returns 1 if all the extractor’s answers to queries are the true decryption of those
queries under sk . Otherwise, the experiment returns 0.

Definition 2 (sPA1�). Let � be a polynomial. Let E = (gen, enc, dec) be an
asymmetric encryption scheme. Let the ciphertext-creator adversary C and the
extractor C∗ be p.p.t. algorithms. For k ∈ N, the sPA1-advantage of C relative
to C∗ is defined as:

AdvsPA1�(E,C,C∗, k) = Pr[sPA1�(E,C,C∗, k) = 0]

The extractor C∗ is a successful sPA1�-extractor for the ciphertext-creator ad-
versary C if for all k ∈ N, the function AdvsPA1�(E,C,C∗, k) is negligible. The
encryption scheme E is called sPA1� multi-key secure if for any p.p.t. ciphertext
creator there exists a successful sPA1�-extractor.

We provide further discussion on the relationship between sPA1� security and
sPA1 security in the full version of this paper. In Appendix A.1, we show that
both the Damg̊ard Elgamal encryption scheme (DEG) and the lite version of
Cramer-Shoup encryption scheme (CS-lite) are sPA1� secure under a suitable
generalization of the DHK1 assumption.

2.2 Weakly Simulatable Encryption Scheme

Dent in [Den06a] introduced the notion of simulatability for an encryption scheme.
Intuitively, an encryption scheme is simulatable if no attacker can distinguish valid
ciphertexts from some family of pseudo-ciphertexts (which will include both valid
encryptions and invalid encryptions). This family of pseudo-ciphertexts must be
efficiently and publicly computable (i.e. without access to any private knowledge,
say related to the secret-key), and somewhat invertible (given a pseudo-ciphertext,
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one can find a random looking string that generates it). InDent’s definition, the at-
tacker also has access to a decryption oracle to help it distinguish between pseudo-
ciphertexts and legitimate ones, but it cannot query the decryption oracle on the
challenges that it is trying to distinguish.

For our purposes, consider a restricted notion of simulatability where the
attacker is not given access to the decryption oracle. If an encryption scheme
satisfies this weaker notion of simulatability, we say it is weakly simulatable.

Definition 3. (Weakly Simulatable Encryption Scheme) An asymmetric
encryption scheme (gen, enc, dec) is weakly simulatable if there exist two poly-
time algorithms (f, f−1), where f is deterministic and f−1 is probabilistic, such
that for all k ∈ N there exists the polynomial function p(.) where l = p(k), we
have the following correctness properties:

1. f on inputs of public key pk (in the range of gen) and a random string
r ∈ {0, 1}l, returns elements in C, where C is the set of all possible “cipher
text”-strings that can be submitted to the decryption oracle (notice that C
might not be a valid ciphertext).

2. f−1 on input of a public key pk (in the range of gen) and an element C ∈ C,
outputs elements of {0, 1}l.

3. f(pk , f−1(pk , C)) = C for all C ∈ C.
And the following security properties. No polynomial time attacker A has prob-
ability better than 1/2+μ(k) of winning in the following experiment, where μ is
some negligible function.

1. The challenger generates a random key pair (pk , sk)← gen(1k), and chooses
randomly b ∈ {0, 1}.

2. The attacker A executes on the input 1k and the public key pk outputs m ∈
M. The challenger sends A the pair (f−1(pk , c = encpk (m)), c) if b = 0, or
(r, f(pk , r)) for some randomly generated element r ∈ {0, 1}l if b = 1. The
attacker A terminates by outputting a guess b′ for b.
A wins if b = b′ and its advantage is defined in the usual way.

In a scheme where you cannot distinguish legitimate ciphertexts from pseudo-
ciphertexts that need not encode actual messages, CPA security is immediate.
The converse need not hold, as ciphertexts might be hard to generate, and invalid
ciphertexts might be easily distinguishable from illegitimate ones (for example,
they might contain a zero-knowledge proof of validity). Notice that the weak
simulatability notion is not equivalent to the Invertible Sampling notion intro-
duced in [DN00] since the plaintext is not needed to compute the random looking
string that generates the ciphertext.

Theorem 1. If E is a weakly simulatable encryption scheme, then E is CPA
secure.

Proof. See the full version.

Following the ideas of Dent, in the full version, we show how DEG and CS-lite
schemes can both be weakly simulatable when instantiated in proper groups.
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2.3 A Note on PA1+

Dent [Den06a] also investigated an augmented notion of plaintext awareness
in which he provides the ciphertext creator access to an oracle that produces
random bits, PA1+. The extractor receives the answers to any queries generated
by the creator, but only at the time these queries are issued. The point of this
oracle in the context of a plaintext awareness definition is to model the fact
that the extractor might not receive all of the random coins used by the creator
at the beginning of the experiment. Much in the spirit of “adaptive soundness”
and “adaptive zero-knowledge”, this oracle requires the extractor to work even
when it receives the random coins at the same time as the ciphertext creator.
Therefore, the extractor potentially needs to be able to extract some ciphertexts
independent of future randomness. This modification has implications when the
notion of plaintext awareness is computational—as in the case of Dent’s work.
However, in our case, we require statistical plaintext awareness, and as we argue
below, allowing access to such an oracle does not affect the sPA1� security.

We claim that any encryption scheme that is sPA1� secure is also sPA1+
�

secure.

Definition 4. Define the sPA1+
� experiment in a similar way to the sPA1�

experiment. The only difference between the two is that during the sPA1+
� ex-

periment, the ciphertext creator has access to a random oracle O that takes no
input, but returns independent uniform random strings upon each access. Any
time the creator access the oracle, the oracle’s response is forwarded to both the
creator and extractor.

If an encryption scheme would be deemed sPA1� secure, when we replace the
sPA1� experiment in the definition with the modified sPA1+

� experiment, then
the encryption scheme is said to be sPA1+

� secure.

Lemma 1. If an encryption scheme Π is sPA1� secure, then it is sPA1+
�

secure.

Proof. See the full version.

3 The Construction

Let E = (gen, enc, dec) be any encryption scheme that is weakly simulatable and
sPA1� secure. Then we construct the encryption scheme Π represented in Fig. 1
that is a non-malleable CCA1 encryption scheme. Let Σ = (GenKey, Sign,Verify)
be a strong one-time signature scheme,1 such that on security parameter k the
verification keys that are constructed have length k.

As a first step, we define an encryption scheme E′ = (gen′, enc′, dec′) in which
one encrypts the encryption of a message k times with k independently chosen
public keys. More specifically:

1 A strong one-time signature is a one-time signature where it is not even possible for
an adversary to find an alternate signature to an already signed message.
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— gen′(1k): For i ∈ [0, k], run (pk i, sk i) ← gen(1k). Set the public and secret

keys as pk
def
= (pk0, pk1, . . . , pkk) and sk

def
= (sk0, sk1, . . . , skk)

— enc′pk=pk0,..,pkk
(m): Output [encpk1

(encpk0
(m; r0); r1), . . . encpkk

(encpk0(m; r0); rk)] using independently chosen coins ri.
— dec′sk=sk0,...,skk

([c1, c2, . . . , ck]): Compute c′i = decski
(ci). If all c′i are not

equal, output ⊥, else output decsk0
(c′1).

We are now ready to present our main construction Π defined in Fig. 1.

NMGen(1k)
(1) (pk0, sk0)← gen(1k); (pkb

i , sk
b
i )← gen(1k), ∀i ∈ [k] and b ∈ {0, 1}

(2) Output npk = {pk , pk0} and nsk = {sk , sk0} where
pk = {(pk0

i , pk
1
i )}i∈[k] and sk = {(sk0

i , sk
1
i )}i∈[k]

NMEnc(npk = (pk , pk0),m)
(1) (SigSK, SigVK)← GenKey(1k)
(2) c← enc′

pk0,pk
SigVK1
1 ,...,pk

SigVKk
k

(m)

(3) σ ← SignSigSK(c).
(4) Output (c, SigVK, σ)

NMDec(nsk = (sk , sk0), C = (c, SigVK, σ)))
(1) if VerifySigVK(σ, c) = 0 then Output ⊥
(2) Output dec′

sk0,sk
SigVK1
1 ,...,sk

SigVKk
k

(c1)

Fig. 1. The Non-malleable CCA1 Encryption Scheme Π

Lemma 2. If E = (gen, enc, dec) is weakly simulatable, then E′ = (gen′, enc′, dec′)
is weakly simulatable as well.

Proof. Via a standard hybrid argument.

Theorem 2. If E = (gen, enc, dec) is an encryption scheme that is weakly simu-
latable and also sPA1�(k)=2k+1 secure where k is the security parameter, then the
encryption scheme Π as described in Fig. 1 is a non-malleable CCA1 encryption
scheme.

Proof. Recall that Lemma 1 shows that if E is sPA1� secure, then it is also
sPA1+

� secure. In what follows, the sPA1+
� ciphertext creator adversaries always

have access to an oracle O that produces random strings upon access.
To prove that Π is a non-malleable CCA1 encryption scheme, we need to show

that for any p.p.t. adversaryA and p.p.t. distinguisher D and for all polynomials
p(k),
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{NME0 (Π,A,D, k, p (k))}k∈N ≈c {NME1 (Π,A,D, k, p (k))}k∈N

We show this by a hybrid argument. Consider the following experiments:

Experiment NMEb
(1)(Π,A,D, k, p(k)) modifies NMEb in two ways. First, in-

stead of selecting vkSig∗ when the challenge ciphertext is encrypted, choose this
value as the first step of the experiment. Second, when processing decryption
queries during the experiment, replace Verify with Verify∗ as follows:

Verify∗ Let vkSig∗ be the verification key in the challenge ciphertext
(c∗, σ∗, vkSig∗). Upon receiving a decryption query on (c, σ, vkSig), output
⊥ if either vkSig = vkSig∗ or VerifyvkSig(c, σ) = 0.

Claim. For b ∈ {0, 1}, {NMEb (Π,A,D, k, p (k))}k∈N≈c{NMEb
(1) (Π,A,D,

k, p (k))}k∈N

Proof. Follows using standard techniques from the security of the signature
scheme.

Experiment NMEb
(2)(Π,A,D, k, p(k)) modifies NMEb

(1) to use an extractor
to decrypt the inner layer cipher text for the decryptions in the final parallel
decryption query. Specifically, in NMEb

(2) the calls are submitted to NMDec∗ as
described below. This is unlike NMEb

(1) where the final ciphertexts d1, ..., dp(k)
are presented by A2 for parallel decryption via calls to NMDec, :

NMDec∗(di = C, σ,vkSig) If 0 = Verify∗vkSig(C, σ) output ⊥. For i = 1 . . . k,
do C′

i ← dec
sk

vkSigi
i

(Ci)

If ∃j , C′
1 	= C′

j , output ⊥. Use the extractor C∗
A (defined in Lemma 3) to ex-

tract C′
i, where i is the smallest value s.t. vkSigi 	= vkSig∗i , where vkSig∗ is

the verification key of the challenge ciphertext. Return the extracted plain-
text.

Lemma 3. For b ∈ {0, 1}, {NMEb
(1) (Π,A,D, k, p (k))}k∈N≈c{NMEb

(2) (Π,A,
D, k, p (k))}k∈N

This lemma might, on first glance, seem to follow immediately because the whole
purpose of the extractor is that it be able to simulate a decryption oracle. How-
ever, since the adversary has (i) seen the challenge ciphertext, (ii) it is not aware
of the randomness used to produce this ciphertext, and (iii) created final parallel
decryption queries potentially based on the challenge ciphertext, there is no a
priori reason to believe the sPA1 extractor will “decrypt” properly. However,
we are only extracting on the inner layers of ciphertexts, and the inner layer
of the challenge ciphertext has been hidden by the encryptions on the outer
layer. Further, the outer layer is weakly simulatable, so we can argue that these
new ciphertexts issued for parallel decryption, described in point (iii) above, are
not dependent on the randomness of the inner-layer of the challenge ciphertext.
Therefore, the extractor will function correctly.
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Proof. The experiments differ only if the extractor returns a result that is dif-
ferent from the of the decryption oracle. We define badExtract to capture this
event, and show that it occurs with negligible probability. Assume (for contra-
diction) that there exists an adversary A which induces the event badExtract
to occur with non-negligible probability. We show that E is not a weakly simu-
latable encryption scheme.

Note that the public- and secret-keys for Π are composed of 2k+1 keys that
are generated using the key generation algorithm for encryption scheme E. To
encrypt a message m, we first generate a pair of signing keys, (vkSig, skSig), and
then encrypt m with a fixed public key, pk0, in the set of 2k+1 public keys (we
refer to this ciphertext as the inner layer). Then, we select a subset of size k out
of the 2k remaining keys determined by the bits of vkSig, and encrypt the inner
layer using fresh random coins for k times under those k keys (we refer to these
k ciphertexts as the outer layer). We refer to the key used to encrypt the inner
layer as the inner key, and the remaining 2k keys as the outer keys.

The technical difficulty in showing that badExtract does not occur in the
NMEb

(2) (Π,A,D, k, p (k)) experiment is that by providing the challenge cipher-
text, we actually provide the adversary with ciphertexts that are encrypted using
k keys out of the 2k outer keys. We must argue that even in this case, there should
be a way to extract the plaintext of the queries submitted by the adversary on
the spots in the outer layer that are encrypted under a new key from the k keys
used in the outer layer of the challenge ciphertext.

To do so, we first construct an sPA1+
� ciphertext creator CA using the adver-

saryA. Since the encryption scheme E is sPA1+
� secure, there exists an extractor

for CA which we call C∗
A. Then we define a series of hybrids using CA and C∗

A,
that are indistinguishable assuming E is weakly simulatable. The last hybrid in
that series perfectly simulates the NMEb

(2)(Π,A,D, k, p(k)) experiment for A
up to the point when A returns the vector of the ciphertexts after receiving the
challenge ciphertext. Based on the indistinguishability of the hybrids, we will
argue that there exists an extractor that can decrypt the adversary’s queries on
the first spot i where vkSigi 	= vkSig∗i with overwhelming probability. Notice
that the extractor cannot be used to decrypt the outer layer on the spots where
vkSigi = vkSig∗i , otherwise it could be argued that the encryption scheme E is
indeed PA2 secure (PA2 security is defined in [BP04]) and hence CCA2 secure.

First we construct an sPA1+
� ciphertext creator CA from A where � = 2k+1.

CA interacts with the sPA1+
� experiment in “the outside” as follows:

– CA receives 2k+1 public keys
({pk ′

i}i∈[0...2k]

)
from the sPA1+

� experiment.

It generates a pair of signing keys (vkSig∗, skSig∗)← GenKey(1k) internally
and sets pk =

({pkα
i }i∈[0...2k],α∈{0,1}

)
as described (intuitively, CA arranges

pk such that it can potentially sign a vector of ciphertexts that are supposed
to be encrypted under the last k keys in pk ′,

(
pk ′

k+1, . . . , pk
′
k+k

)
, to generate

a valid ciphertext in the Π scheme):

for i ∈ [0 . . . k] & α ∈ {0, 1}, pkαi =

⎧
⎨

⎩

pk ′
0 if i = 0

pk ′
i else if vkSig∗i 	= α

pk ′
i+k otherwise
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CA runs A1 on the input of pk . Note that this rearrangement of keys is
crucial to make the view of the adversary A on the arrangement of the keys
identical to its view in a real NMEb

(2)(Π,A,D, k, p(k)) experiment. To see
this, consider the following example. The adversary A might abort whenever
the keys used in the outer layer of the challenge ciphertext are the last k keys
in pk . Such a coincidence occurs in the simulated NMEb

(2)(Π,A,D, k, p(k))
experiment with probability 1 if CA sets pk to be the same as pk ′, while
this coincidence occurs in a real NMEb

(2)(Π,A,D, k, p(k)) experiment with
negligible probability due to the security of the signature scheme.

– Whenever CA receives a query
({yi}i∈[k], σ, vkSig

)
from A1, it first checks if

the signature is valid. If not, it returns ⊥ as the answer to this query. Next,
it checks whether vkSig = vkSig∗. If so, it aborts. Otherwise, CA submits
yi’s one by one to the extractor. If all of the queries do not get decrypted
to the same value, CA returns ⊥ to A1 as the answer to that query. But
if all of the queries get decrypted to the same value y0, CA then submits
y0 (which is supposed to be an encryption under pk0

0) to the extractor and
returns the result to A1. Eventually A1 returns (m0,m1, St) and halts. CA
outputs (m0,m1).

– CA accesses its oracle O and generates k blocks of random bits of length l,
giving the vector x = (x1, . . . , xk). Let y =

(
f(pk ′

k+1, x1), . . . , f(pk
′
k+k, xk)

)
.

CA then computes σ∗ = Sign(y, skSig∗), and runs A2 on the input y∗ =
(y, σ∗, vkSig∗) and St.

– A2 returns a vector of ciphertexts Y and the state information S and halts.
For all j ∈ [|Y |],CA does the following: on the query Yj = ({yi}i∈[k], σ, vkSig),
it first checks if the signature is valid. If not, it moves to the next query.
Otherwise, it checks whether vkSig = vkSig∗. If so, it aborts. Otherwise, CA
finds the first index i where vkSigi 	= vkSig∗i , and submits yi to its extractor

to be “decrypted” under pk
vkSigi
i . CA then submits the answer from the

extractor (which is supposed to be an encryption under pk0
0) again to the

extractor to be “decrypted” under pk0
0. Denote the result m′

j .
CA returns {Yj ,m

′
j}j∈[|Y |] and the state information S, it halts.

Since CA is a sPA1+
� ciphertext creator adversary, the sPA1+

� security of E
implies there exists an extractor C∗

A whose answers to the decryption queries
submitted by CA are indistinguishable from their true decryptions. We call the
above interaction Game 1. Let Pr[Wi] be the probability of the adversary CA
inducing the event badExtract in the Game i. The sPA1+

� security implies

that Pr[W1] is bounded by AdvsPA1+
� (E,CA,C∗

A, k) which is negligible in k.
Hence:

Pr[W1] ≤ AdvsPA1+
� (E,CA,C∗

A, k) (1)

We will define another game, Game 2, which is identical to Game 1 with the
difference that instead of a fake ciphertext, A2 is fed with a real ciphertext as
the challenge ciphertext. The aborting probability of A2 in Game 1 and Game
2 is negligibly close otherwise it can be argued that E is not weakly simulat-
able. In what follows, we only deal with the probability of inducing the event
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badExtract. Also notice that Game 2 simulates NMEb
(2)(Π,A,D, k, p(k))

for the adversary A up to the point when the adversary A returns a vector
of ciphertexts after seeing the challenge ciphertext. That is because CA only
needs the vector of the ciphertext generated by A after revealing the chal-
lenge ciphertext to induce the event badExtract to occur. After receiving such
a vector of ciphertexts, CA does not need to complete the simulation of the
NMEb

(2)(Π,A,D, k, p(k)) experiment for A.
In Game 2 we modify the oracle O as follows: when CA accesses the oracle

O for the ith time, instead of r ∈ {0, 1}l, O returns f−1(pk ′
k+i, encpk ′

k+i
(md))

where md is picked randomly out of the two messages returned by A. During
Game 2, the random bit d is fixed. We argue that such a change does not affect
the advantage of CA in inducing the event badExtract as otherwise E is not
weakly simulatable countering our assumption. Using CA and C∗

A, we build the
attacker B that distinguishes (r, f(., r)) and (f−1(., c = enc(., .)), c) as follows:

1. The challenger samples k pairs of random keys (pk i, sk i) ← gen(1k) for
1 ≤ i ≤ k, and a random bit b.

2. The attacker B receives {pk i}i∈[k]. B then samples k+ 1 other random keys

(pk ′
i, sk

′
i) ← gen(1k) for 0 ≤ i ≤ k. Let pk′′ =

(
pk ′

0, pk
′
1, . . . , pk

′
k, pk1, pk2,

. . . , pkk). B samples random coins forCA andC∗
A and sets st← (pk ′′, R[CA]).

B runsCA on the input pk′′, andC∗
A on the input st. EventuallyCA outputs

(m0,m1). B randomly chooses d ∈ {0, 1} and outputs c′d = encpk ′
0
(md). The

challenger samples ri ∈ {0, 1}l for 1 ≤ i ≤ k and returns {(ri, f(pk i, ri))}i∈[k]

if b = 0, and
{(

f−1(pk i, ci = encpki
(c′d)), ci

)}
i∈[k]

if b = 1. Call the resulting

vector (given by the challenger) y. B then forwards
{
f−1(pk i, yi)

}
i∈[k]

toCA
and C∗

A when CA queries O for the ith time. After CA halts, the attacker
B checks if all the queries made by CA to the extractor after outputting m0

and m1 were answered correctly. This is done by using the extractor using
sk ′ (notice that CA was made in a way that after returning m0 and m1, it
always only asks the extractor on the ciphertexts encrypted under pk′ which
are the first k + 1 keys in pk). If so it outputs b′ = 0 otherwise b′ = 1.

When b = 0, Game 1 is being simulated, and when b = 1, Game 2 is being
simulated. Therefore:

Pr[b′ = b] =Pr[b = 0] · Pr[b′ = b|b = 0] + Pr[b = 1] · Pr[b′ = b|b = 1]

=
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2]

On the other hand, by Lemma 2, the advantage of the attacker B in guessing
the bit b is negligible in k, and hence there exists a negligible function ε1(.) such
that Pr[b′ = b] ≤ 1

2 + ε1(k). Therefore:



Blackbox Construction of a More Than NM-CCA1 Encryption Scheme 161

Pr[b′ = b] =
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2] ≤ 1

2
+ ε1(k)

=⇒ Pr[W2] ≤ 2 · ε1(k) + Pr[W1] (2)

=⇒ Pr[W2] ≤ 2 · ε1(k) +AdvsPA1+
� (E,CA,C∗

A, k) (3)

Inequality (3) follows from Inequalities (1) and (2). Therefore Pr[W2] is neg-
ligible. Since Pr[W2] is the probability that the event badExtract occurs, we
conclude that there is a negligible chance that badExtract occurs. Hence:

{NMEb
(1) (Π,A,D, k, p (k))}k∈N ≈c {NMEb

(2) (Π,A,D, k, p (k))}k∈N

Lemma 4. For every p.p.t. adversary A = (A1,A2), there exists a p.p.t. adver-
sary B such that for b ∈ {0, 1},

{NMEb
(2) (Π,A,D, k, p (k))}k∈N ≡ {CPAb (E,B, k)}k∈N

Proof. In the proof of Lemma 3, we showed how to construct the ciphertext
creator CA that runs A internally and proved that there exists an extractor C∗

A
that can decrypt the queries submitted by CA with overwhelming probability.

We build the CPA adversary B that interacts with the CPA experiment. Hav-
ing the algorithms for A, CA and C∗

A, the CPA adversary B acts as follows: B
receives the public key pk ′ from the CPA experiment, and generates 2k keys as

(pk
′′
i , sk

′′
i ) ← gen(1k) for i ∈ [2k]. Let pk =

(
pk ′,pk

′′)
. B runs CA (that sim-

ulates A internally) on pk and its random coins. Whenever CA asks a query, B
runs C∗

A to answer them (C∗
A gets to know the random coins of CA and all of its

input as described in the proof of Lemma 3). EventuallyCA outputs (m0,m1). B
outputs m0 and m1 to the CPA experiment, and receives a ciphertext y. Remem-
ber thatCA now accesses the oracleO k times. Using fresh random coins for each
encryption, B computes Ci = encpkk+i

(y) and sends f−1(pkk+i, Ci) to CA (and

C∗
A) on the ith access to O. Eventually CA returns {Yi,m

′
i}i∈[|Y |] and the state

information S and halts. The only step left in determining the decryption of Yi is
to decrypt all the ciphertexts in the outer layer, and check that they all decrypt
to the same value. B has the 2k secret keys for the outer layer, hence it can do the
mentioned check. If the outer layer ciphertexts of Yi do not decrypt to the same
value, the decryption of Yi is ⊥, otherwise the decryption of Yi is m

′
i. After B de-

crypts all the Yi, it submits the results along with the state information S to the
distinguisher D and forwards D’s output to the CPA experiment.

4 More Than Non-Malleable CCA1 Encryption Scheme

In the previous section, we showed how to build a non-malleable CCA1 encryp-
tion scheme from any encryption scheme that is weakly simulatable and sPA1�
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Algorithm 1: DEG

function G(1k)
(p, q, g)← G(1k)
x1 ← Zq;X1 ← gx1 mod p.
x2 ← Zq;X2 ← gx2 mod p.
Return (pk = (p, q, g,X1, X2),

sk = (p, q, g, x1, x2))

function E(pk,M)
y ← Zq;Y ← gy mod p.
W ← Xy

1 ;V ← Xy
2 mod p.

U ← V ·M mod p
Return C = (Y,W,U)

function D(sk, C)
if W �= Y x1 mod p then Return ⊥.
else Return M ← U · Y −x2 mod p

Algorithm 2: CS-Lite

function G(1k)
(p, q, g1)← G(1k); g2 ← Gq\{1}
x1 ← Zq; x2 ← Zq; z ← Zq.
X ← gx1

1 .gx2
2 mod p;Z ← gz1 mod p.

Return (pk = (p, q, g1, g2, X, Z),
sk = (p, q, g1, g2, x1, x2, z))

function E(pk ,M)
r ← Zq.
R1 ← gr1 mod p;R2 ← gr2 mod p.
E ← Zr ·M mod p;V ← Xr mod p
Return C = (R1, R2, E, V )

function D(sk , C)
if V �= Rx1

1 ·Rx2
2 mod p then Return ⊥.

else Return M ← E ·R−z
1 mod p

secure. Define a parallel query as a query consisting of unbounded number of
ciphertexts, none of which will be decrypted until all the ciphertexts in the
query are submitted. In the NM-CCA1 game, the adversary is allowed to ask an
unbounded number of queries before seeing the challenge ciphertext, and one
parallel query afterwards. This compares with CCA2 secure encryption schemes,
which are secure even if the adversary asks an unbounded number of queries be-
fore and after seeing the challenge ciphertext. The NM-CCA1 constructions seem
to be much weaker primitives. However, between the extremes of the NM-CCA1
security and the CCA2 security, a range of security notions can be defined that
distinguish themselves based on how many queries the adversary may ask af-
ter revealing the challenge ciphertext without sacrificing indistinguishability of
ciphertexts.

Define cNM-CCA1 security identically to NM-CCA1 security except that the
adversary can make c ≥ 1 parallel queries after seeing the challenge ciphertext.
We show how to extend our result to construct an encryption scheme that is
cNM-CCA1 secure where c is a constant. The high level idea for constructing
a cNM-CCA1 scheme is to add another c layers of encryption on top of the ci-
phertext from the previous section. Intuitively, with the first parallel query, the
adversary can only ask queries that can help it to maul the first layer of encryp-
tion from the outside in the future. In other words, with the first parallel query,
the adversary can gain no information about all the inner ciphertexts. Hence,
to penetrate the innermost layer, the adversary has to ask at least c parallel
queries. Notice also that this type of construction can only allow a constant c
since each layer of encryption increases ciphertext size by a polynomial factor.
For more details, see the full version.
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A Plaintext Awareness

A.1 sPA1� Secure Schemes

We argue that Cramer-Shoup Lite (CS-Lite) and Damgard’s ElGammal (DEG)
are sPA1� secure, based on a suitable modification of the Diffie-Hellman Knowl-
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edge definition originally proposed by Damg̊ard, and modified to permit inter-
active extractors by Bellare and Palacio [BP04].

DHK1�(k)

(pi, qi, gi)i∈�[k] ← G(1k); (ai)i∈�[k] ← Zq; Ai ← gai
i mod p for i ∈ �[k]

Let R[H ] and R[H∗] be randomly selected strings for H and H∗.
st← ((pi)i∈�[k], (qi)i∈�[k], (gi)i∈�[k], (Ai)i∈[�], R[H ])
while Simulate H((pi)i∈�[k], (qi)i∈�[k], (gi)i∈�[k], (Ai)i∈[�];R[H ]) do

if H queries (i, B,W ) then
(b, st)← H∗((i, B,W ), st;R[H∗])
if W ≡ Bai mod p and B �≡ gbi mod p then Return 1.
else Return b.

Return 0.

We note that in the experiment, the change requires that the ciphertext creator
be able to generate ciphertexts relative to a polynomial number of randomly cho-
sen public-keys. It seems reasonable to conjecture that any extractor that could
extract exponents with respect to single value A = ga, could do so efficiently for
many Ai.

We now argue that DEG is sPA1� secure under the DHK1� definition.

Theorem 3. For any polynomial �, The DEG scheme is sPA1� secure under
the DHK� assumption.

Proof. We build the DHK� adversary B that runs the sPA1� adversary A inter-
nally and simulates the sPA1� experiment for it. B receives (pi)i∈�[k], (qi)i∈�[k],
(gi)i∈�[k], (Ai)i∈�[k] and its random coins R[H ]. For each i ∈ [�], B samples

âi ← Zqi , computes Âi ← gâi

i mod pi and sets pk i ← (qi, gi, Ai, Âi). B then
runs A on (pk i)i∈[�] and the random coins R[H ] until A halts, answering to A’s
queries as follows: upon receiving the query C = (i, Y,W,U) from A, B sub-
mits (i, Y,W ) to the DHK� extractor. The DHK� extractor returns the value
b. If b = 1 then B returns ⊥ as the decryption of C, otherwise B computes

M ← U.(Âi
b
)−1 mod pi and return the result to A.

Trivially, the integration of algorithm of B and its extractor(which depends
on the algorithm of A and B) is a potential extractor for the sPA1� ciphertext
creator adversary A.

Theorem 4. For any polynomial �, The CS-Lite scheme is sPA1� secure under
the DHK� assumption.

Proof. The proof is similar to the proof for Theorem 3. See the full version.

B Weakly Simulatable Encryption Schemes

We argue that the Damgard ElGamal (DEG) scheme is weakly simulatable us-
ing an argument parallel to that of Dent[Den06a]. We remind the reader that the
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definition for DEG is given on page 162. It has previously been shown that DEG
is sPA1 secure.

We use the notion of a simulatable group given by Dent [Den06a].

Definition 5. (Simulatable Group) [Den06a] A Group G is simulatable if
there exist two polynomial turing machines (f, f−1) such that:

– f is a deterministic turing machine that takes a random element r ∈ {0, 1}l
as input, and outputs elements of G.

– f−1 is a probabilistic turing machine that takes elements of h ∈ G as input,
and outputs elements of {0, 1}l.

– f(f−1(C)) = C for all h ∈ G.
– There exists no polynomial time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger randomly chooses a bit b ∈ {0, 1}.
2. The attacker A executes on the input 1k. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0, and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

– There exists no polynomial-time attacker A that has a non-negligible advan-
tage in winning the following game:
1. The challenger randomly chooses b ∈ {0, 1}.
2. The attacker A executes on the input 1k. The attacker has access to

an oracle Of that takes no input. If b = 0, then the oracle generates a
random r ∈ {0, 1}l and returns f(r). Otherwise the oracle generates a
random h ∈ G and returns h. The attacker terminates by outputting a
guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

Dent showed that groups in which the DDH assumptions are believed to hold
are simulatable.

Lemma 5. [Den06a] If q and p are primes such that p = 2q + 1, and G is the
subgroup of Z∗

p of order q, then G is simulatable.

Using this fact we show that DEG is weakly simulatable.

Theorem 5. The DEG encryption scheme is weakly simulatable if it is in-
stantiated on a simulatable group G (for the definition for simulatable groups,
see [Den06a]) on which the DDH problem is hard.

Proof. See the full version.

Theorem 6. The Cramer-Shoup lite encryption scheme is weakly simulatable if
it is instantiated on a simulatable group G on which the DDH problem is hard.

Proof. Similar to the proof of Theorem 5 which is presented in full version of
the paper.
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