History-Free Sequential Aggregate Signatures

Marc Fischlin!, Anja Lehmann?, and Dominique Schréder?

! Darmstadt University of Technology, Germany
21BM Research Zurich, Switzerland
3 University of Maryland, USA & Saarland University, Germany

Abstract. Aggregation schemes allow to combine several cryptographic
values like message authentication codes or signatures into a shorter
value such that, despite compression, some notion of unforgeability is
preserved. Recently, Eikemeier et al. (SCN 2010) considered the notion
of history-free sequential aggregation for message authentication codes,
where the sequentially-executed aggregation algorithm does not need to
receive the previous messages in the sequence as input. Here we dis-
cuss the idea for signatures where the new aggregate does not rely on
the previous messages and public keys either, thus inhibiting the costly
verifications in each aggregation step as in previous schemes by Lysyan-
skaya et al. (Eurocrypt 2004) and Neven (Eurocrypt 2008). Analogously
to MACs we argue about new security definitions for such schemes and
compare them to previous notions for history-dependent schemes. We
finally give a construction based on the BLS signature scheme which
satisfies our notion.

1 Introduction

Aggregate signature schemes [6] allow to combine multiple signatures from differ-
ent senders for possibly different messages, such that the aggregate has roughly
the same size as a single signature. This helps to reduce the communication over-
head in settings where authenticated information is forwarded from one party
to another, such as the S-BGP routing protocol or certificate chains [GIT3U3I5].
As in the case of regular signature schemes, the validity of aggregates can be
publicly verified given all messages and public keys.

The original proposal of Boneh at al. [6] supports aggregation of the data inde-
pendently of the order of the parties and, furthermore, the aggregating algorithm
only relies on the aggregates and public data. In contrast, most other solutions
today like [T4UI3IBIBIT6UTT] are sequential aggregate schemes where each party
derives the next aggregate by taking the private key, the previous aggregate, and
all the previous messages together with the corresponding keys in the sequence
into account. For instance, in alll known sequential signature schemes the ag-
gregation algorithm first checks with the public keys that the current aggregate

! With the exception of the recent work by Brogle et al. [§], discussed at the end of
the introduction.

1. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 113130} 2012.
(© Springer-Verlag Berlin Heidelberg 2012

114 M. Fischlin, A. Lehmann, and D. Schréder

is a valid signature for the preceding message sequence. Often, they also incor-
porate these messages in the computation of the new aggregate. Thus, so far,
the aggregation in sequential signature schemes seems to be much more expen-
sive than in the non-sequential setting, which might render sequential schemes
impractical for resource-constraint devices. Another issue, pointed out in [§], is
that the verification requires also obtaining and checking the public keys of the
users in the sequence.

1.1 History-Free Sequential Aggregation

Recently, Eikemeier et al. [I0] introduced the notion of history-freeness in the
context of aggregate MACs, which aims to preserve the “lightweight” aggre-
gation approach from general aggregate schemes also in the sequential setting.
More precisely, in a history-free MAC a new aggregate is derived only from the
aggregate-so-far and the local message, but does not rely on (explicit) access
to the previous messages. Note that, strictly speaking, the aggregate-so-far cer-
tainly contains some information about the previous messages; this information,
however, is limited due to the size restriction for aggregates.

In this work we adopt the notion of history-freeness to the case of sequential
aggregate signatures, only allowing the aggregate-so-far, the local message, and
signing key to enter the computation, but not the previous messages and pub-
lic keys in the sequence. For signatures this property is especially worthwhile,
because it means that the costly signature verifications for each aggregation
step are suppressed. In fact, since the security of previous schemes strongly re-
lies on such checks, omitting them indicates the hardness of finding history-free
schemes. Eikemeier et al. [I0] achieve this, to some extent, for the case of MACs
by using an underlying pseudorandom permutation to encrypt parts of the data.
This is usually not an admissible strategy for the case of signatures.

At first, history-free sequential aggregation might seem to be the second best
solution compared to non-ordered aggregation (with history-free aggregation
quasi built in). However, sequential aggregation is required for many applica-
tions such as for authenticating routing information or for certificate chains,
and in these applications the verifiability of the order of signing steps is usu-
ally important, whereas general aggregate schemes do not allow this. Following
the terminology for multi-signatures [5] we call such schemes ordered sequential-
aggregate schemes. We also remark that all known sequential aggregate schemes
are ordered, except for the one by Lu et al. [I3], and that we usually consider
history-freeness only in connection with such ordered schemes.

1.2 New Security Models

Introducing the idea of history-freeness affects known security definitions for
sequential signature schemes. Since the history of previously signed messages
is not available to the aggregation algorithm, an adversary can now initiate
aggregation chains “from the middle”, without specifying how the initial message
sequence looks like. The starting aggregate for such a truncated iteration does

History-Free Sequential Aggregate Signatures 115

not even need to be valid, as checking the validity of the aggregate with respect
to the preceding message sequence is impossible for the aggregation algorithm.

Our security notions for history-free schemes, adopted from the work by Eike-
meier et al. [10], follow the well-known approach for (regular and aggregate)
signatures that an adversary can request data via oracles and is supposed to
eventually output a valid but non-trivial forgery. In the original LMRS security
model for sequential aggregation with full information about preceding mes-
sages [14], the adversary is considered to win if it produces a valid aggregate for
a non-trivial sequence, where trivial sequences are previously queried sequences
and, since appending some iterations for controlled parties is easy for the adver-
sary, such extended sequences thereof.

Specifying the trivial combinations in our history-free model is more deli-
cate because the adversary now gets to query partial chains and can potentially
glue several of these data together. We resolve this by following the approach
of Eikemeier et al., that is, by defining a transitive closure of trivial sequences,
consisting of matching combinations of (possibly many) previously seen aggre-
gates and contributions by corrupt parties. We define two versions of this closure,
depending on whether intermediate values of partial chains are available to the
adversary or not, yielding two security notions (one being stronger and implying
the other). Intuitively, due to the additional adversarial power, one would ex-
pect our new security models to be weaker than the original ones for sequential
aggregation. Interestingly, though, both our security notions for history-freeness
are strictly stronger than the security model for sequential aggregation due to
Lu et al. [13], but incomparable to the one of Lysyanskaya et al. [I4], as we show
in Section Even more remarkably, by slightly relaxing the requirement for
history-freeness, we can easily achieve the [I4] security property (on top of our
aggregation-unforgeability notion) if we simply prepend the hash value of all
previous public keys and messages in the sequence to the message to be signed
next. By this we get a strongly secure sequential aggregate signature which does
not need verification of all preceding signatures!

We also briefly revisit the case of non-ordered aggregates. Here, adapting the
idea of the closure yields strictly stronger security guarantees than in previous
definitions for non-sequential schemes. Our models, both for sequential and for
non-ordered schemes, reflect the resistance of aggregate schemes against “mix-
and-match” attacks, where an attacker is already considered successful if it can
recombine learned aggregates into a “fresh” aggregate that it has not seen be-
fore, or is able to remove parts of the aggregates. This is opposed to the common
approach of reducing the unforgeability of aggregation schemes to the unforge-
ability of individual messages, where combining aggregates or removing a party’s
contribution are not deemed to be successful attacks (because they do not forge
an individual signature). This is discussed for the symmetric setting in more de-
tail in [I0]. Yet, we are not aware if that high security standard can be achieved
for aggregate signatures. Nonetheless, as a side effect of our approach, we point
out that the scheme by Boneh et al. [6] allows attacks which are not covered by
their security models. The discussion appears in Section Bl

116 M. Fischlin, A. Lehmann, and D. Schréder

1.3 Building History-Free Schemes

We finally provide a solution meeting our requirements in Section [l We give a
construction based on the signature scheme of Boneh et al. [7], which has already
been successfully transformed into the BGLS scheme for non-sequential aggre-
gation [6]. By this we derive a scheme for history-free sequential aggregation.
Observe again that the resulting scheme also comes with the verifiability of the
aggregation order.

Our construction chains the aggregates with the help of a collision-resistant
hash function, i.e., instead of signing only the local message, we first compute
the hash value of this message together with the previous aggregateﬁ Hence,
instead of verifying a chain of signatures our aggregation algorithm only needs
to compute bilinear mappings. The aggregates of our scheme are slightly larger
than the ones of the original BGLS scheme and the construction satisfies our
weaker security notion.

1.4 Concurrent Work

Recently, Brogle et al. [8] proposed a notion of sequential aggregate signatures
with so-called lazy verification, resembling the idea of history-freeness as defined
in [I0] and also used here closely. They designed and implemented a history-free
scheme based on trapdoor permutations, with a special focus on the BGPsec
protocol [12]. Their security model, albeit appropriate for the BGPsec case, is a
relaxation of the LMRS model which is implied by (even the weaker version of)
our security notion. The reason is roughly that this relaxation merely demands
that the message in the forgery has not been signed by the honest user before,
implying that it cannot be in the closure and therefore also constitutes a breach
of security in our model. We note that the relaxed LMRS notion does not cover
the class of mix-and-match attacks discussed in [I0] and here. The construction in
[8] produces signatures proportional to the number of signers and explicitly relies
on the random oracle model. In contrast, our scheme generates signatures of size
independent of the number of signers, only implicitly relies on the random oracle
model through the currently best proof for the underlying BLS signature scheme
in the random oracle model. Our solution comes with stronger unforgeability
guarantees (under reasonable cryptographic assumptions).

2 Preliminaries

2.1 Sequential Aggregate Signature Schemes

An aggregate signature [6] is a single signature of different signers on differ-
ent messages such that this aggregate has roughly the same size as an ordinary

2 The tricky part here is that we do not use the aggregate as it is, but first apply
the underlying bilinear mapping to it, before giving it to the hash function. This
is necessary to allow verification of aggregates without seeing individual signatures
and relies on specific properties of the BLS scheme.

History-Free Sequential Aggregate Signatures 117

signature. In the sequential case the aggregation algorithm gets as input a se-
quence of public keys pk = (pky, ..., pk;) and messages M = (My,...,M;), an
aggregate o’ for this sequence, a message M and the secret signing key sk (with
corresponding public key pk). It returns the new aggregate o for the sequence
pk||pk := (pky, ..., pk;, pk) and M||M = (M, ..., M;, M). More formally:

Definition 1 (Sequential Aggregate Signature Scheme). A sequential ag-
gregate signature scheme is a tuple of efficient algorithms SAS = (SeqKg, SeqAgg,
SeqAggVf), where

Key Generation. SeqKg(1™) generates a key pair (sk, pk) where pk is recover-
able from sk.

Signature Aggregation. The aggregation algorithm SeqAgg(sk, M, o', M, pk)
takes as input a secret key sk, a message M € {0,1}*, an aggregate o’
and sequences M = (M, ..., M;) of messages and pk = (pky,...,pk;) of
public keys and computes the aggregate o for message sequence M||M =
(My,...,M;, M) and key sequence pk||pk = (pky, ..., vk;, pk). (We assume
that there is a special “starting” symbol oo = O for the empty aggregate,
different from all other possible aggregates.)

Aggregate Verification. The algorithm SeqAggVf(pk, M, o) takes as input a
sequence of public keys pk = (pky,...,pk;), a sequence of messages M =
(My, ..., M;) as well as an aggregate o. It returns a bit.

The scheme is complete if for any sequence of key pairs (sk, pk), (sk1,pk1), ...
SeqKg(1™), for any sequence M of messages, any M € {0,1}*, for any o +
SeqAgg(sk, M,c’, M, pk) with SeqAggVf(pk,M,c’) = 1 or ¢’ = 0, we have
SeqAggVf(pk|pk, M| M, o) = 1.

Note that we do not define “pure” signing and verification algorithms but only
the aggregate counterparts. We can specify such algorithms in a straightforward
way via the aggregation algorithm run on the starting aggregate og. In fact,
this is often how, vice versa, the aggregation algorithm works on this empty
sequence. Second, we do not put any formal restriction on the size of aggregates,
in the sense that aggregates must be smaller than individual signatures. Such
restrictions can be always met by first “inflating” regular signatures artificially.
We thus leave it to common sense to exclude such trivial examples. Finally,
throughout the paper we assume that public keys of parties are unique, say,
they include the identity and a sequence number as common in certificates.

2.2 LMRS Security of Sequential Aggregate Schemes

Lysyanskaya et al. [14] propose a security model for sequential aggregate signa-
ture schemes based on the chosen-key model of [4l6]. The adversary gets as input
a challenge public key pk. and has access to a sequential aggregate signing oracle
SeqAgg(ske, - - -) which takes a message M, an aggregate o’ and sequences M and
pk as input and returns the new aggregate o. The adversary wins if it manages to
output a valid sequential aggregate signature for a sequence M* = (M7, ..., M})

118 M. Fischlin, A. Lehmann, and D. Schréder

under public keys pk™ = (pk], ..., pki) and pk™ contains the challenge key pk,
and the sequence (Mf,..., M) with (pkj,...,pk;) has never been queried to
oracle SeqAgg, where 7. denotes the index of pk, in pk™.

For the sake of distinctiveness with the unforgeability notion for regular signa-
ture schemes we call schemes being immune against such adversaries sequentially

unforgeable:

Definition 2. A sequential aggregate signature scheme SAS = (SeqKg, SeqAgg,
SeqAggV/f) is sequentially unforgeable if for any efficient algorithm A the prob-
ability that the experiment Seq ForgevsétAS evaluates to 1 is negligible (as a function
of n), where

Ezxperiment Seq ForgevsélAS (n)
(ske, pk,), < SeqKg(1™)
(Pk™, M, 0%) ¢ ASeoheB(sher) (pf;)
Let i, be the index of pk. in pk™ = (pki, ..., pk;) and M* = (M7,..., M;).
Return 1 iff SeqAggVf(pk™,M*, o*) =1
and pk, € pk* and pk; # pk; for 1 <i < j <{ and
A never queried SeqAgg(ske, - --) about (M{,..., M), (pki,...,pk;).

c

3 Security of History-Free Sequential Signatures

3.1 History-Freeness

So far, sequential aggregate schemes usually include the previous messages and
public keys when deriving the new aggregate. This is a crucial disadvantage
compared to the “lightweight” aggregation in non-sequential schemes, where the
aggregation only depends on the previous signatures. To circumvent this issue we
now apply the recently proposed notion of history-freeness [I0] which restricts
the input for the aggregation algorithm to the aggregate-so-far and the local
message, i.e., the aggregation does not get access to the previous messages and
keys. More formally:

Definition 3 (History-Freeness). A sequential aggregate signature scheme
SAS = (SeqKg, SeqAgg, SeqAggVf) is called history-free if there exists an ef-
ficient algorithm SeqAggs such that SeqAgg, (-, -,) = SeqAgg(-, -, , M, pk) for
all M, pk.

To save on notation we will often identify SeqAgg, with SeqAgg and simply omit
M, pk from the input of SeqAgg.

Note that history-free sequential signature schemes are not the same as non-
sequential aggregate signatures as defined by Boneh et al. [6]. As mentioned in
the introduction, the security requirement for (history-free) sequential schemes
often allows to check the order of the signers, in contrast to non-sequential
schemes.

History-Free Sequential Aggregate Signatures 119

3.2 Security Model

When considering history-free signature schemes the LMRS security model for
sequential schemes [14] does not fully reflect the new conditions of the adversary
and the desired security guarantees. This stems from the fact that in the history-
free setting the previously signed messages are not available to the aggregation
algorithm, which allows an adversary to trigger new aggregation chains “from
the middle” without knowing the previous message sequence. To capture those
attacks we modify the aggregation oracle such that it returns aggregates for
sequences of messages, starting now with an arbitrary aggregate-so-far. Thus,
we also incorporate some ideas of the aggregation-unforgeability notion [10] into
our new model.

Aggregation-unforgeability here demands that the adversary cannot output a
valid chain, unless its a trivial combination of previous aggregation queries and
values by corrupt parties. An example of such a trivial combination is depicted
in Figure [[where the adversary computes the final value by simply iterating
through the sequence with the help of the aggregation oracle and local compu-
tations by corrupt players. Note that each aggregation query is for a sequence
of honest parties and this requires several public keys.

Attack Scenario. As in the aggregation-unforgeability model of Eikemeier et al.
for aggregated MACs, we also grant the adversary in our model an aggregation
oracle returning aggregates for (ordered) sets of messages. To allow reasonable
aggregation queries we hand the adversary now ¢ genuine public keys pk,, ..., pk,
of initially honest parties as in [15], instead of considering a single challenge key
as in the chosen-key model [46].

The adversary’s attack is divided into two phases. In the first phase, the
adversary has access to a corruption and a key-setting oracle, both initialized
with the t key pairs ((ski, pky) ..., (sk:, pk;)). By querying the corruption oracle
the adversary can obtain at most ¢ — 1 secret keys of his choice. We denote by
Qcor the set of corrupted keys. To model rogue-key attacks we also provide an
oracle SetKey which allows the adversary to change the public key of a previously
corrupted party, i.e., on input pk, pk* the oracle replaces the public key pk of a
corrupt party by pk*. Recall that we assume that public keys must be unique.
Any modifications of corrupted keys are captured by the set Qcor as well.

The adversary starts the second phase by interacting with the sequential
aggregate signature oracle OSeqAgg but is denied access to the corruption or
key-setting oracle in this phase (reflecting static corruptionsﬁ). On input of
an aggregate-so-far o/, a sequence of new messages M for public keys pk the
OSeqAgg oracle checks whether all public keys in pk are distinct and belong to
honest parties. If an invalid public key appears OSeqAgg answers 1, otherwise
it responds with a new valid aggregate o derived by running the aggregation
algorithm stepwise for all input data. We remark that the aggregation oracle

3 We observe that the standard strategy to lift security against static corruptions to
security against adaptive corruptions by guessing the right “target” key in advance
does not work in our setting, as our security notion relies on multiple honest users.

120 M. Fischlin, A. Lehmann, and D. Schréder

aggregation query #1 aggregation query #2

'#OHQH@K 7-“

corrupt part
honest parties only pt party

aggregates available to the adversary (through aggregation queries or local computations)

Fig. 1. Example of a trivial combination of replies to aggregation queries and local
computations by corrupt parties

only aggregates for honest parties, i.e., where the corresponding keys were nei-
ther corrupted nor modified; for corrupt players the adversary, holding the secret
key, must add the values herself.

Eventually the adversary A halts, outputting a tuple (pk*,M*,o*). The
forgery must be valid according to our definition of history-free sequential ag-
gregate signature schemes. In addition, the signature must be non-trivial which
is quantified by defining the closure of all query/answer pairs of A. Here, we
denote by Qseq the set of all query/answer tuples ((o', M, pk), o) that occur
in A’s interaction with the OSeqAgg oracle. Recall that Qco denote the sets
of all keys that were corrupted and possibly modified by the adversary. The
closure contains all admissible combinations of aggregated data for the queried
sequences together with all possible values by corrupted parties.

Closure. For history-free sequential aggregate signatures, defining the closure is
more complex as in the general case that we discuss in Section[Bl Here, an adver-
sary can query partial chains and later possibly combine several of them by us-
ing corrupted keys or chains with matching starting/end points. Thus, we define
the closure recursively through a function Trivialg,,, qc, Which, for parameters
(pk, M, o) describes all sequences that can be derived trivially starting from
message sequence M and aggregate-so-far o, i.e., where one can append (recur-
sively expanded) trivial sequences via aggregation queries or local computations
by corrupt players. For example, if we have an aggregation query (og, pk, M)
with answer o in Qseq and another query (o, pk’, M’) with the answer from the
first query as the starting aggregate, then the sequence (pk||pk’, M||M’) is in
the trivial set. So is any extension of this sequence for corrupt players. We note
that, if the final aggregate of a chain and the starting aggregate do not match,
then the combined sequence is not in the closure, neither are subsequences of
previous queries (unless either sequence appears in another query).

The closure is then defined to contain all trivial sequences starting from the
information available to the adversary at the beginning, namely, the empty mes-
sage sequence, the starting key pky = () and the starting tag o9 = 0. Note that
the closure here is now a set of tuples where each tuple represents a sequential
aggregation.

Definition 4 (Sequential Closure of A’s queries). Let Qcor and Qseq be
the sets corresponding to the different oracle responses and let Trivialgg,, Qc,, be
a recursive function of trivial combinations defined as

History-Free Sequential Aggregate Signatures 121

TriVialeeq 1 Qcor (Pk, M, 0)

= {pk,M)} U U Trivialgs.,, qc.. (PK[[Pk, M|[M, o)
((¢:M,Pk)) €Qseq

U J Trivialgs, qc, (Pkl|pk;, M[[M, o).
VM ,o
Apk; EQcor
The closure Closure of A’s queries Qseq and Qcor is then defined by recursively
generating the trivial combinations starting from the empty tuple as described
above:

Closure(Qseq, Qcor) = Trivialgg,. e, (0, 0,0).

As an example consider an attack on a regular (non-aggregate) signature scheme,
with a single honest party and no corrupt players. Then the closure contains all
queries to the signing oracle and renders these values as trivial. Note that we
do not treat the case of concatenating answers for the same public key in any
special way.

A more important example are the mix-and-match attacks in which the ad-
versary sees several aggregation chains (of honest parties) but is able to combine
them into a new sequence. This new sequence would then be not in the closure
and thus constitute a legitimate forgery attempt. In other words, any secure
scheme according to our notion must prevent such mix-and-match attacks.

Aggregation Unforgeability. With the definition of the sequential closure, we pro-
pose the following security model for history-free sequential aggregate signatures.

Definition 5 (Aggregation Unforgeability). A history-free sequential ag-
gregate signature scheme SAS = (SeqKg, SeqAgg, SeqAggVf) is aggregation-un-
forgeable if for any efficient algorithm A (working in modes CORRUPT, FORGE)
the probability that the experiment SeqForgei\AS evaluates to 1 is negligible (as a
function of n), where

Ezxperiment Seq ForgeilAS (n)

(ski, pky), ..., (skt, pk,) < SeqKg(1™)

K’ « ((ski,pky), ..., (ske, pky))

st < ACormupt(K',).Setkey(K'.) (CORRUPT, pky,pk;)
// it is understood that A keeps state st

Let K be the set of the updated keys of all parties

(pk*, M*, 0*) «+ AOCSeahee(K.) (RORGE, st)

Return 1 iff pk; # pk; for all i # j and SeqAggVf(pk*,M* o*) =1 and
(pk™,M*) ¢ Closure(Qseq, Qcor)-

Relaxed Security Notion. Our definition is very demanding in the sense that
prefixes of aggregation sequences are considered to be non-trivial. In particular,
this means that intermediate values in such a chain cannot be available to the

122 M. Fischlin, A. Lehmann, and D. Schréder

fO-oHor @ {00 -e-

aggregates available to the adversary (through aggregation queries or local computations)

Fig. 2. Relaxed Security Notion: In comparison to the stronger notion (Figure [the
adversary can only make aggregation queries of length 1. The closure potentially allows
more combinations now and thus rules out more sequences as trivial.

adversary, or else successful attacks according to our model are straightforward.
This model corresponds to the case that the forwarded data between honest
parties are for instance encrypted.

Regarding existing sequential aggregate signature schemes like [14], all inter-
mediate signatures that appeared in the computation of the final aggregate can
be re-obtained by simply verifying the aggregate signature, since the verification
algorithm “peels off” the aggregate. Thus, we also propose a relaxed definition of
history-free unforgeability that takes the possibility of obtaining the intermediate
signatures into account, inciting the name mezzo aggregation unforgeability.

We also remark that a simple approach like having the first party in a sequence
create some unique identifier or nonce, which is used by all subsequent players,
usually does not facilitate the design of schemes because the adversary can always
put a corrupt player upfront. Similarly to the case of non-ordered aggregation
we can have a solution with counters or time stamps but this again requires
synchronization between the parties.

We can easily cast the weaker notion in our model by allowing only aggregation
queries for sequences of length one, i.e., where the adversary has to compute
longer chains itself by iterating through the sequence manually. Clearly, this
adversary is a special case of our adversary above and the security guarantee is
therefore weaker (in other words, the closure now contains more trivial elements).
It is also very easy to prove this formally by considering a scheme where the new
aggregate contains the previous aggregate. For the stronger notion this allows to
obtain a valid aggregate of a prefix easily, whereas for the weaker notion the extra
aggregate is already been input by the adversary and thus provides no additional
information. The difference between the models is depicted in Figure

Definition 6 (Mezzo Aggregation Unforgeability). A history-free sequen-
tial aggregate signature scheme SAS = (SeqKg,SeqAgg, SeqAggVf) is mezzo
aggregation-unforgeable if it is aggregation-unforgeable for any efficient algo-
rithm A that only calls oracle OSeqAgg for sequences of length one.

We note that mix-and-match attacks are still ruled out by the above definition.
For this observe that any “manually iterated” sequence can only interfere with
other sequences if intermediate signatures collide. Such collisions are, however,

History-Free Sequential Aggregate Signatures 123

e @ N\ N\ @ —@ @ [\] @
forgery -»/ \.—». forgery

succesful attack according to LMRS succesful attack according to our model

but not according to our model but not according to LMRS model
Fig. 3. Comparison of the LMRS security model and our (strong) model: Prepending
any values by corrupt parties is not considered a successful attack in our model (left
part), whereas branching into a different sequence from some intermediate value is not
considered a successful attack in the LMRS model (right part)

unlikely and can only happen with negligible probability. Else, such collisions
would easily allow to forge individual signatures of honest parties and would
constitute a successful forgery in the above sense.

3.3 Relationship to the LMRS-Model

It is easy to see that our security model is strictly stronger than the one by Lu et
al. [13] because successful attacks according to their definition involve individual
forgeries for fresh messages against a single challenge key (which thus cannot
belong to our closure). At the same time their approach does not allow to verify
the order of aggregation steps, whereas changing the order constitutes a success-
ful attack according to our definition. We therefore focus on the comparison to
the LMRS-model.

On one hand our model gives the adversary more power than in the LMRS-
model for secure sequential aggregation, because it does not need to specify the
starting message sequence for aggregation queries. On the other hand we allow
the adversary less freedom when it comes to values of corrupt players in the
forgery attempt. Hence, the possibilities in the attack are somewhat compen-
sated for and this makes the models incomparable, as we show by the following
separating examples.

The ideas of the separating examples are given in Figure Bl The left part of
the figure shows an attack which is defined as trivial in our model but constitutes
a break in the LMRS model. Indeed, it seems that in the history-free setting the
adversary can always find “bad” keys for corrupt parties which enable collisions
on the intermediate values. Since the information about the starting sequence
then does not enter the further computations preventing such attacks in our
setting seems impossible. The right side shows a successful attack in our model
which takes advantage of a prefix of an aggregation subsequence; this is by
definition not a successful attack in the LMRS model. A similar separation holds
for our relaxed notion. We discuss these cases in more detail in the full version.

We briefly discuss how to add the LMRS security property to our (mezzo)
aggregation unforgeability, if now all preceding public keys pk and messages M
in a sequence are known. The idea is to use a collision-resistant hash function

124 M. Fischlin, A. Lehmann, and D. Schréder

h and, for each signature creation, to prepend the hash value ¢ = h(pk, M) to
the message to be signed. For verification one does the same. Note that, while
this is formally not a history-free scheme anymore, signing still does not require
verification of preceding signatures.

Aggregation unforgeability still holds in the modified scheme if we consider
each hash value to be an integral part of the message to be signed. But the
collision resistance of the hash function A now also ensures LMRS security, be-
cause we can assume that all hash values of sequences are unique. This implies
that in an LMRS forgery attempt the message with the prepended hash value
has not been signed by the honest user in question (either the prefix is new and
thus the hash value, or the message in combination with this sequence is). This
means that the forgery sequence is not in the closure and would thus constitute
a breach of (mezzo) aggregation unforgeability.

4 Construction

We derive a history-free sequential aggregate signature scheme based on the BLS
signature scheme that is secure in the random oracle model [7]. This scheme has
already been successfully applied to derive the non-sequential BGLS aggregate
signature scheme [6]. Below we assume that we have an efficient, non-degenerate
bilinear map e : G; x Gy — Gg3 for system-wide available groups, where g; is a
generator of G; and gs is a generator of Go. We assume that e(-, g2) is one-to-one.
Also, let H : {0,1}* — G be a public hash function.

In the BLS signature scheme the key generation algorithm Kg(1™) picks an
element = < Z, at random and computes v < ¢3. It returns (pk, sk) < (v, x).
The signing algorithm Sign(z, M) takes as input a message M € {0,1}* and a
secret key x. It computes o <— H(M)* and returns the signature o € G1. The
verification algorithm Vf(v, M, o) outputs 1 iff e(c, g2) = e(H (M), v).

4.1 Construction Based on BLS Signatures

The idea of our construction is as follows. We let the signer build a link between
all previous all signatures by linking them through a hash chain. That is, in each
aggregation step the signer receives the aggregate-so-far (o, pk', ', '), consist-
ing of an aggregate o', the public key pk’ of the preceding signer, a hash chain
value ¢’ and the non-aggregated signature s’ of the preceding party. The signer
first checks that s is a valid signature under p¥ for ¢’ and, if so, it extends the
hash chain via ¢ < h(e(o”, g2), M, pk', ¢') for its message M. Note that using the
value under the bilinear mapping instead of ¢’ is necessary for the verification
the whole sequence without knowing the individual aggregates and is a specific
property of the BLS scheme. The signer next computes a non-aggregated signa-
ture s for ¢ and aggregates s to ¢’ to derive o, and finally forwards (o, pk, ¢, s)
to the next signer.

History-Free Sequential Aggregate Signatures 125

Construction 1. Let DS = (Kg,Sig, Vf) be the BLS signature scheme and h :
{0,1}* — {0,1}™ be a hash function. Define the following efficient algorithms:

Key Generation. The key generation algorithm is identical to Kg.

Sequential Signature Aggregation. Algorithm SeqAgg gets as input a pair
of keys (sk, pk) = (x,v), a message M € {0,1}*, and a sequential aggregate
signature (o, pk', c', s'). The algorithm sets c < h(e(d’, g2), M, pk ,), where
e(D, g2) = 1 by definition, checks that Vf(pk',c',s') =1 or that pk',c/,s' =0
are the starting symbols, and stops if not. Else it computes the signature
s = H(c)*” « Sig(sk, c¢) on ¢ and the value o < o’-s. It outputs the sequential
aggregate signature (o, pk,c, s).

Aggregate Verification. The input of algorithm SeqAggVf(pk, M, o) is a se-
quence of public keys pk = (pky,...,pk;), a sequence of messages M =
(M, ..., M) as well as an aggregate o (with pk,c,s). It parses pk; = g5°,

sets
i1

co+ 0 and pky+ 0 and ¢ < h(H e(H (c;), pk;), M, pk; 1, ¢i—1)
§=0

fori=1,...,0, where e(H(D), pk;) = 1 by definition, and outputs 1 if

14

e(0,92) = [[e(H(c:), 95")-

i=1

Completeness follows inductively, as for honest parties each intermediate ag-
gregate o; is a valid signature for ¢, ..., ¢; and therefore the next output also
satisfies e(o;, g2) = e(H(cj),95").

4.2 Security

Our security proof basically follows by reduction to the security to the BLS sig-
nature scheme and the collision resistance of h. We note that we do not explicitly
rely on the random oracle model, only implicitly through the (currently best)
security proof for the BLS scheme. Instead, we could give a straight reduction
to the co-Diffie-Hellman problem [7], but then we would need to program the
random oracle. The main idea of the proof is that we either break the underlying
BLS scheme (in case C* computed in the verification of the adversary’s forgery
attempt contains a new value ¢), or that the adversary has to forge a (regular)
signature for an honest party or to find a collision for A (if all values in C* have
appeared during the attack).

Theorem 2. Let h be a collision-resistant hash function. If the BLS signature
scheme 1is unforgeable, then the scheme defined in Construction [l is a history-
free, mezzo aggregation-unforgeable sequential aggregate signature scheme.

126 M. Fischlin, A. Lehmann, and D. Schréder

Proof. We prove this theorem assuming towards contradiction that there exists
an adversary A breaking aggregation-unforgeability with non-negligible proba-
bility €(n). Assume that this adversary eventually outputs a valid forgery M*,
pk™ and o*. Let C* = (cf, ..., c}) denote the values derived during the verifica-
tion, and assume that the sequence M* does not belong to the closure.

If the probability that the adversary A succeeds and there is some ¢ for
an honest party which has never been queried to an aggregation query for this
party, then we can break the underlying aggregate signature scheme. To this end
we construct an algorithm B (receiving a challenge key and having access to a
signature oracle for this key) as follows:

Setup. Algorithm B gets as input a public key pk,, it picks ¢ — 1 key pairs
(sk;, pk;) < SeqKg(1™) and inserts the key pk, at a random position, pk <
(Pkys- - pkj_q, Pkey Py - - . pky). B simulates A in a black-box way on in-
put pk (if we assume H to be a random oracle then B grants A direct access
to H).

Key Oracles. During the simulation, A is allowed to corrupt keys and to
change them. If A invokes the corruption oracle Corrupt(sk,-) on input pk,
then B returns sk; if pk; = pk, for some ¢ € {1,...,t} \ j, and otherwise
failed. In the case that A wishes to substitute a certain public key pk € pk
and queries its key-modification oracle SetKey(sk,-) about a pair (pk, pk),
then B sets pk; = pk’ if pk; = pk for an index i € {1,...,t} \ j. It returns
succ if such a public key exists and substitution succeeded, otherwise failed.

Aggregate Signing. Whenever A asks the aggregate signing oracle SeqAgg
to build a new sequential aggregate signature for an aggregate-so-far o’,
a message M, and a public key pk, algorithm B answers this query in the
following way. It first checks if the public key pk has never been corrupted nor
substituted (if so, it returns L). Adversary B either computes the aggregate
invoking its external signing oracle (in the case where pk = pk.), or else by
executing the signing algorithm itself (for the corresponding secret key sk).
In both cases all other steps of the aggregation algorithm besides the signing
step can be computed easily. B outputs the full aggregate to A.

Output. At the end of the simulation A outputs a tuple (M*, pk*, o*). Al-
gorithm B computes C* as in the description of the verification procedure
and returns these values together with pk* and o*. Algorithm B checks if
pk. € pk™ and, if so, computes the values ¢! as for verification, and outputs
c; together with o™ - J[, .. H(c;)™"" as the signature (for the known secret
keys z; belonging to the other parties in pk*).

For the analysis note that, in the case that some new ¢; for some honest party
is in C* our algorithm B loses only a factor 1/t for guessing the right public
key. But then, for a valid forgery of A we have e(c*, g2) = Hle e(H(cl),g95°).
Dividing out [[, .. H(c)* of o yields e(o™ [[, .. H(c]) ™", g2) = e(H(c7), pk.)
and therefore a valid forgery for the BLS scheme under public key pk.. Hence,
this case of A winning cannot have non-negligible probability.

Next assume that all the ¢}’s of honest parties have appeared in aggregation
requests before (and are answered without failure), but A still wins. In the

History-Free Sequential Aggregate Signatures 127

forgery attempt consider the leftmost honest party at position ¢ such that the
leading sequence (M7, ..., M}) of M* does not lie in the closure. Since we assume
that ¢} has appeared in some aggregation query to party ¢ before, we must have
a query (o, pk,c'), M with

h(e(a/ng)vapk/vc/) = c:(= h(He<H(c;)’pkj)vMi*’pki—laci—l)-

j<i

By the collision-resistance of h we conclude that M = M}, pk' = pk,_; and ¢/ =
¢, and e(d’, g2) = Hj<ie(H(c;f),pkj). By assumption, the leading sequence
(M7, ..., M) is not in the closure. There are three cases:

— Our “target” party at position 7 is the first one in the sequence (M7, ..., M}),
i.e., i = 1. Since it then only computes an aggregate if o’, pk’, ¢’ = () we derive
the contradiction that the sequence is in fact in the closure, due to the ag-
gregation query (o, pk', '), M = M} yielding c;. This, however, contradicts
our assumption.

— Assume that there is a corrupt party at position ¢ —1 in the forgery sequence.
Then, by construction and since party 4 is the leftmost with the sequence
(Mf, ..., M) not being in the closure, the sequence including the corrupt
party must be in the closure (all subsequences must already be in the closure
by assumption). But then the query triggering the appearance of ¢ again
makes (M7, ..., M}) per definition also part of the closure. This is so since
corrupt parties can “link” any trivial sequences.

— The final case is if there is an honest party at position ¢ — 1. Note that our
party at ¢ only returns an aggregate if the signature s’ is a valid signature
for the incoming value ¢’ = ¢} under the same key pk’ = pk,_; of the honest
party at position i — 1. We conclude again that the adversary needs to make
the honest party at some step sign ¢ (or needs to forge a signature for
honest party at ¢ — 1, which would again contradict the security of the BLS
signature scheme). However, by the collision resistance of h and noting that
the function e(+, g2) is one-to-one, it follows that this requires the same input
(o, pk', "), M’ to the party at position i — 1 as on the “closure path”.
Furthermore, the valid signatures s” for ¢/ and s’ for ¢’ are unique, and it
therefore follows again that the closure extends to the party at position 1,
contradicting again our assumption.

This shows that the adversary can win in this case with negligible probability
only, and concludes the proof. a

We again note that, following the discussion in Section B3] we can easily get a
(non history-free) signature scheme which is simultaneously also LMRS secure
without the verification of signatures in the sequence, This is achieved by in-
serting the sequence of messages and public keys into the evaluation of the hash
function h.

128 M. Fischlin, A. Lehmann, and D. Schréder

5 Security of Non-sequential Aggregation Schemes

The common security model for non-sequential aggregate signatures of Boneh
et al. [6] only considers limited attacks (akin to our weaker security notion),
even though stronger notions may be desirable for some applications (similar to
our strong notion). For the case of symmetric authentication this was already
discussed in [I0] by presenting an attack against an aggregate MAC scheme,
that was outside of the previous security model. Here we show that a similar
argumentation holds for aggregate signatures as well.

Mix-and-Match Attacks. We first recall the example of an “mix-and-match”
attack that was given for aggregate MACs by Eikemeier et al. From an ab-
stract point of view, the attack uses three aggregates for message sets { M7, M2},
{Ms, M5} and {M7, M4} to derive a valid aggregate for a fourth pair {Ms, My}.
The attack is not considered a security breach according to the model by [6].
Roughly, the shortcoming is due to the definition of “trivial” attacks: an adver-
sary is usually not considered to succeed if the messages in the forgery have been
authenticated individually during the attack. In the example above this means
that any combination of the messages My, Mo, M3, M4 cannot be used for a suc-
cessful forgery, although only three of these combinations have actually appeared
before. Ideally, however, an aggregation scheme should be considered insecure
if an adversary is able to transform several aggregates into a new combination
that has not been authenticated before.

More concretely, recall that an aggregate in the scheme by Boneh et al. is of
the form o = [] o; for regular BLS signatures o; = H(M;)" for random oracle
H, message M; and secret key x;. The public key is given by g*¢ and verification
is performed with the help of the pairing operation. Given the replies

g1 = H(Ml)x1~H(M2)I2, g9 :H(Mg)I1~H(M2)m2, 03 — H(Ml)mlH(M4)I2

to three aggregation queries for message sets { My, Mz}, { M3, Ma} and { My, My},
the adversary is able to compute a valid aggregate

CT* = 0'1_1 +09 03 = H(Mg)zl H(M4)I2

for the set {Ms, My}. According to the definition of [6] this, however, does not
constitute a security breach.

Relation to Boneh’s et al. Aggregate Extraction Problem. Our mix-and-match
attack on the scheme of Boneh et al. [6] benefits from the fact that we can
remove some signatures from the aggregate. Interestingly, the authors in [0]
already address the question whether it is possible to extract any subset of (un-
known) signatures from the aggregate or not. This problem is called aggregate-
extraction-problem. Extracting even a single (unknown) signature from such an
aggregate is equivalent to solving the computational Diffie-Hellman problem, as
subsequently shown by Coron and Naccache [9]. Thus, in a sense, our result can

History-Free Sequential Aggregate Signatures 129

also be seen as a generalization of the aggregate extraction problem with respect
to the BGLS aggregate signature scheme, to a more general context where we not
only counsider the extraction of single signatures, but also the (re-)combination
of aggregates (as discussed above).

Defining Stronger Aggregation Unforgeability. To derive a stronger security no-
tion Eikemeier et al. adapt their notion and attack model for the sequential
case, except that the aggregation oracle now takes unordered sets of messages
and public keys. The definition of the closure for our signature case simplifies
and is then given by

Closure(Qagg, @cor) =

{ U MaUMc | ACQag, McC U {(pk*aM)|M€{Ovl}*}}'
Ma€cA pk*EQCov

We remark again that it is unknown whether this notion can indeed be satisfied.

Synchronized Aggregate Signatures. A line of research studies aggregate signa-
tures where signers share a synchronized clock [ITI2/1], showing that efficient
constructions under well known computational assumptions are possible in this
model, even for unordered aggregation. Following this line, Eikemeier et al. [10]
discuss how to derive MAC schemes secure according to a relaxed notion sim-
ilar to the one above, and their ideas transfer to signatures as well. However,
their solution still does not cover deletion attacks. Furthermore, it is of course
preferable to avoid such synchronization assumptions.

Acknowledgments. We thank Leo Reyzin for discussions and clarifications
about [8], especially about the (un)suitability of different security notions for
the secure routing problem.

This work was supported by the Emmy Noether Program Fi 940/2-1 and the
Heisenberg Program Fi 940/3-1 of the German Research Foundation (DFG) and
by CASED (www.cased.de). This work was partially supported by the US Army
Research Laboratory and the UK Ministry of Defense under Agreement Num-
ber WI911NF-06-3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the US Army Research Laboratory,
the US Government, the UK Ministry of Defense, or the UK Government. The
US and UK Governments are authorized to reproduce and distribute reprints
for Government purposes, notwithstanding any copyright notation herein. This
work was also supported by the German Ministry for Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy and Account-
ability (CISPA — www.cispa-security.de). Part of the work of the second and
third author done while being at Darmstadt University.

130

M. Fischlin, A. Lehmann, and D. Schréder

References

10.

11.

12.
13.

14.

15.

16.

17.

. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: New

definitions, constructions and applications. In: Annual Conference on Computer
and Communications Security (CCS), pp. 473-484. ACM Press (2010)
Bagherzandi, A., Jarecki, S.: Identity-Based Aggregate and Multi-Signature
Schemes Based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 480-498. Springer, Heidelberg (2010)

Bellare, M., Namprempre, C., Neven, G.: Unrestricted Aggregate Signatures. In:
Arge, L., Cachin, C., Jurdzidski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411-422. Springer, Heidelberg (2007)

Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 31-46. Springer, Heidelberg (2002)

Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: New multiparty signature
schemes for network routing applications. ACM Trans. Inf. Syst. Secur. 12(1)
(2008)

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures From Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416-432. Springer, Heidelberg (2003)

Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297-319 (2004)

Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification. Cryptology ePrint Archive: Report 2011/222 (2011),
http://eprint.iacr.org/2011/2221

Coron, J.-S., Naccache, D.: Boneh et al.’s k-Element Aggregate Extraction As-
sumption Is Equivalent to the Diffie-Hellman Assumption. In: Laih, C.-S. (ed.)
ASTACRYPT 2003. LNCS, vol. 2894, pp. 392-397. Springer, Heidelberg (2003)
Eikemeier, O., Fischlin, M., Gétzmann, J.-F., Lehmann, A., Schroder, D., Schréder,
P., Wagner, D.: History-Free Aggregate Message Authentication Codes. In: Garay,
J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309-328. Springer,
Heidelberg (2010)

Gentry, C., Ramzan, Z.: Identity-Based Aggregate Signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257-273.
Springer, Heidelberg (2006)

Lepinski, M.: BGPSec protocol specification. IETF Internet-Draft (2011)

Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465-485. Springer, Heidelberg (2006)
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Sig-
natures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 74-90. Springer, Heidelberg (2004)
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Annual Conference on Computer and Communications Security
(CCS), pp. 245-254. ACM Press (2001)

Neven, G.: Efficient Sequential Aggregate Signed Data. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 52—-69. Springer, Heidelberg (2008)
Schréder, D.: How to Aggregate the CL Signature Scheme. In: Atluri, V., Diaz, C.
(eds.) ESORICS 2011. LNCS, vol. 6879, pp. 298-314. Springer, Heidelberg (2011)

http://eprint.iacr.org/2011/222l

	History-Free Sequential Aggregate Signatures
	Introduction
	History-Free Sequential Aggregation
	New Security Models
	Building History-Free Schemes
	Concurrent Work

	Preliminaries
	Sequential Aggregate Signature Schemes
	LMRS Security of Sequential Aggregate Schemes

	Security of History-Free Sequential Signatures
	History-Freeness
	Security Model
	Relationship to the LMRS-Model

	Construction
	Construction Based on BLS Signatures
	Security

	Security of Non-sequential Aggregation Schemes

