
Zero-Knowledge Proofs with Low Amortized

Communication from Lattice Assumptions

Ivan Damg̊ard1,� and Adriana López-Alt2

1 Aarhus University
2 New York University

Abstract. We construct zero-knowledge proofs of plaintext knowledge
(PoPK) and correct multiplication (PoPC) for the Regev encryption
scheme with low amortized communication complexity. Previous con-
structions of both PoPK and PoPC had communication cost linear in the
size of the public key (roughly quadratic in the lattice dimension, ignor-
ing logarithmic factors). Furthermore, previous constructions of PoPK
suffered from one of the following weaknesses: either the message and
randomness space were restricted, or there was a super-polynomial gap
between the size of the message and randomness that an honest prover
chose and the size of which an accepting verifier would be convinced.
The latter weakness was also present in the existent PoPC protocols.

In contrast, O(n) proofs (for lattice dimension n) in our PoPK and
PoPC protocols have communication cost linear in the public key. Thus,
we improve the amortized communication cost of each proof by a factor
linear in the lattice dimension. Furthermore, we allow the message space
to be Zp and the randomness distribution to be the discrete Gaussian,
both of which are natural choices for the Regev encryption scheme. Fi-
nally, in our schemes there is no gap between the size of the message
and randomness that an honest prover chooses and the size of which an
accepting verifier is convinced.

Our constructions use the “MPC-in-the-head” technique of Ishai et
al. (STOC 2007). At the heart of our constructions is a protocol for
proving that a value is bounded by some publicly known bound. This
uses Lagrange’s Theorem that states that any positive integer can be
expressed as the sum of four squares (an idea previously used by Boudot
(EUROCRYPT 2000)), as well as techniques from Cramer and Damg̊ard
(CRYPTO 2009).

1 Introduction

The problem of secure multiparty computation (MPC) [19,6,12,31] is central in
the field of modern cryptography. In this problem, N parties P1, . . . ,PN holding

� The first author acknowledges support from the Danish National Research Founda-
tion and The National Science Foundation of China (under the grant 61061130540)
for the Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed; and also from the CFEM research center (sup-
ported by the Danish Strategic Research Council) within which part of this work
was performed.

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 38–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Zero-Knowledge Proofs with Low Amortized Communication 39

private inputs x1, . . . , xN , respectively, wish to compute a function f(x1, . . . , xN)
on their inputs without revealing any information apart from the output of
the evaluation (in particular, they wish to keep their inputs secret from the
other parties). Solutions to this problem abound in the literature. Many of
these solutions use the circuit rerandomization technique of Beaver [3] (see
e.g. [20,23,4,21,14,5,8,15], among many others). Circuit rerandomization requires
players to hold (additive) secret sharings of many random triples (a, b, c) such
that c = a · b in some finite field. Traditionally, these triples are created using
zero-knowledge proofs.

Bendlin et al. [8] use zero-knowledge proofs of plaintext knowledge (PoPK)
and correct multiplication (PoCM) for this purpose. To see how this is done,
consider the 2-party setting as an example. To obtain an additive secret sharing
of random values a, b, players P1 and P2 can each choose random values u1, v1
and u2, v2, respectively, and define a = u1 + u2 and b = v1 + v2. Obtaining an
additive secret sharing of c = a · b is more involved. First, notice that c = a · b =
(u1 + u2) · (v1 + v2) = u1v1 + u1v2 + u2v1 + u2v2. If P1 and P2 could obtain
an additive sharing of each product uivj = yij + zij then they could obtain a
sharing for c by simply adding each of these shares: c = (y11 + y12+ y21+ y22)+
(z11 + z12 + z21 + z22). Thus, the problem reduces to having P1 and P2 obtain
an additive sharing of the product of their inputs m1 and m2, respectively (in
this case ui and vj).

This can be done with the following protocol. P1 encrypts his input under his
public key pk and obtains a ciphertext c1 = Encpk(m1; r1), which he sends to
P2. Upon receiving c1, P2 computes a ciphertext cx = Encpk(x; rx) of a random
plaintext x and computes c2 = m2 · c1 + cx, sends it to P1, and outputs −x as
his share. If the encryption scheme has certain homomorphic properties, then
c2 = Encpk(m1m2 +x). P1 decrypts c2 and outputs m1m2 + x as his share, thus
obtaining an additive sharing of m1m2.

However, when players are malicious, P2 needs to ensure that c1 is a valid
ciphertext and P1 needs to ensure that P2 performed the multiplication step
correctly. This can be done by having P1 and P2 provide zero-knowledge proofs
that they performed their respective operations correctly: P1 sends a proof of
plaintext knowledge, proving that there existm1, r1 such that c1 = Encpk(m1; r1),
and P2 sends a proof of correct multiplication, proving that there exist m2, x, rx
such that c2 = m2 · c1 + Encpk(x; rx).

Unfortunately, these zero-knowledge proofs can incur a large communication
cost, which increases the overall communication complexity of the MPC protocol
in which they are used. A key observation is that even though many triples need
to be created, they can be created simultaneously. This leads to the question of
whether we can lower the amortized communication complexity of each proof,
thus lowering the total communcation cost of all proofs. In this work, we an-
swer this question affirmatively when the encryption scheme used is the Regev
encryption scheme [29], whose security is based on the hardness of the Learning
with Errors (LWE) problem.

40 I. Damg̊ard and A. López-Alt

Related Work. Bendlin et al. [8], Bendlin and Damg̊ard [7], and Asharov et
al. [2,1] give constructions of proofs of plaintext knowledge. The work of [8] shows
proofs of plaintext knowledge for any “semi-homomorphic” encryption scheme,
an example of which is the Regev scheme. When applied to this scheme, the
communication cost of each proof is linear in the size of the public key (roughly
quadratic in the lattice dimension, ignoring logarithmic factors). The works of [7]
and [2,1] show proofs of plaintext knowledge specifically for the Regev scheme,
but here again, the communication cost of each proof is linear in the size of
the public key. Similarly, [8] shows proofs of correct multiplication which, when
applied to the Regev encryption scheme, have communication complexity linear
in the public key size per proof.

Unfortunately, the protocol of [7] only works for message space {0, 1} and
randomness in {0, 1}m. Furthermore, the proofs of [8] and [2,1] suffer from the
following weakness. To guarantee zero-knowledge, an honest prover must choose
the message and randomness from a sufficiently small range. But in order to
guarantee soundness against a cheating prover, we can only guarantee that if
the verifier accepts then the message and randomness come from a much larger
interval. Thus, there is a gap between the size of the witness of an honest prover
and the size of which an accepting verifier will be convinced. Such a gap, which
turns out to be super-polynomial in the security parameter, is undesirable.

Our Results and Techniques. We improve upon these results by showing proofs
of plaintext knowledge and correct multiplication where the cost of O(n) proofs,
where n is the lattice dimension, is linear in the public key size. Thus, we improve
the amortized cost of each proof by a linear factor in the lattice dimension.
Furthermore, our protocol does not suffer from the weakness of [8] and [2,1];
there is no gap between the size of the witness of an honest prover and the size
of which an accepting verifier is convinced. The message space in our schemes
can be Zp and the probability distribution for the randomness can be the discrete
Gaussian.1

Our proof system uses the “MPC-in-the-head” technique of Ishai et al. [22],
who show how to construct zero-knowlege proofs from MPC protocols. The basic
idea is as follows. For an NP relation R(x,w) with statement x and witness w,
the prover runs an MPC protocol for the function fx(w) = R(x,w) “in his head”
and commits to the view of each of the players. The verifier then outputs a subset
T of the players as challenge, and the prover opens the commitments to the views
of the players in T . If the views are consistent, the verifier accepts.

This is the same technique that was used in [7] yet we improve upon it.
First, we also show how to obtain proofs of correct multiplication. But more
importantly, we expand the proofs to allow the message space to be Zp (rather
than bits), and allow the randomness distribution to be the discrete Gaussian
(rather than bit-vectors). To achieve this, we show a protocol that allows a dealer

1 Technically, we’ll need the Regev scheme to have perfect correctness, so the ran-
domness distribution will be a “truncated” discrete Gaussian that is statistically
close to the discrete Gaussian, where values output according to the distribution are
guaranteed to be small (as opposed to small with high probability).

Zero-Knowledge Proofs with Low Amortized Communication 41

to prove that the secret that he secret-shared among N players is bounded by
some publicly known bound B. The intuition behind this proof is as follows. Let
[s] denote the sharing of secret s. The dealer distributes a sharing of B, [B],
and the players compute sharings [B − s] and [B + s] by locally adding their
corresponding shares. We know that −B < s < B if and only if both B − s and
B+ s are positive, so the problem of proving that s is bounded by B reduces to
proving that a secret s′ that has been secret shared among N players is positive.

For this, we use Lagrange’s Theorem that states that any positive integer can
be written as the sum of four squares (see, e.g. [16]), and moreover, that these
four squares can be computed efficiently [28,24] (a similar technique was used by
Boudot [9]). The dealer computes u, v, w, y such that s′ = u2+v2+w2+y2, and
distributes sharings [u], [v], [w], [y]. The players can then locally compute shares
[u2 + v2 +w2 + y2− s′] = [0], and verify that these final shares reconstruct to 0.

However, we must ensure that the values u, v, w, y are all smaller than
√
q/8.

Otherwise we can have overflow modulo q when we square and add the four
squares, which would mean that we can no longer guarantee that the sum
of the four squares is positive. For this, we use techniques from Cramer and
Damg̊ard [13]. The same techniques were used in [8], yet the key difference is
that we use them to bound the numbers to be squared (and thus the bound
can be loose), whereas in [8] they were used to bound the secrets themselves
(thus leading to the gap discussed above). The use of this technique requires our
modulus q to be super-polynomial in the security parameter λ (as was also the
case in [7,8,2,1]). See Section 3 for more details.

Other Applications. Recently, Brakerski et al. showed that a variant of the Regev
scheme is fully homomorphic [11,10]. The zero-knowledge PoPKs shown in this
work can be used to prove that a ciphertext encrypted under this Regev-based
FHE scheme is well-formed.

Presentation. In Section 2, we review some background needed for our construc-
tions. This includes the IKOS construction (Section 2.2), packed secret sharing
(Section 2.3), and a protocol for verifying the consistency of secret shares
(Section 2.4). In Section 3, we show a protocol that allows parties to verify that a
secret that is shared among them is numerically small. In Section 4 and Section 5
we show our protocols for proofs of plaintext knowledge and proofs of correct mul-
tiplication, respectively. Due to lack of space, we defer all proofs to the full version.

2 Preliminaries

2.1 Notation

The natural security parameter in this work is λ. We let Zq = {−q/2, . . . , q/2}
and use a mod q to denote the mapping of a into the interval (−q/2, q/2]. We
use [n] to denote the set {1, . . . , n} ⊂ Z.

We use boldface lower-case letters to represent vectors, such as u = (u1, . . . , un)
∈ Z

n
q . Throughout what follows, vectors will be assumed to be column vectors,

42 I. Damg̊ard and A. López-Alt

unless stated otherwise. We use subscripts to denote coordinates on a vector, e.g.
ui is the ith coordinate of vector u. This is to differentiate between coordinates
of a vector and elements in a sequence. For the latter case, we use superscripts:
m(i) is the ith element of sequencem(1), . . . ,m(k). We will also sometimes use the
notation (ui)i∈[n] to denote the vector (u1, . . . , un). We use boldface upper-case
letters to represent matrices, such as A ∈ Z

n×m
q . For a vector x = (x1, . . . , xn)

and a scalar a, we let ax = (ax1, . . . , axn).
For a distribution χ, we denote x ← χ to be the experiment of choosing x

according to χ. If S is a set, then we use x ← S to denote the experiment of
choosing x from the uniform distribution on S. For a randomized function f , we
write f(x ; r) to denote the unique output of f on input x with random coins
r. Denote T = R/Z as the group of all reals in [0, 1) with addition modulo 1.
For α ∈ R

+, Ψα is defined to be the distribution on T of a normal variable with
mean 0 and standard deviation α/

√
2π, reduced modulo 1. For any probability

distribution φ over T and integer q ∈ Z
+, its discretization φ̄ is the discrete

distribution over Zq of the random variable �q ·Xφ� mod q, where Xφ ← φ.
We use lower case π to denote MPC protocols, such as πf , and use upper case

Π to denote zero-knowledge proof protocols, such as ΠR. We use greek letters to
represent shares from a secret sharing. For example, α = (α(1), α(2), . . . , α(N))
denotes the shares α(i) of each of the N share holders.

2.2 Overview of IKOS Construction

Let R(x,w) be a NP-relation. Consider the following N -player functionality f .
The public statement x is known to all players P1, . . . ,PN . The functionality
takes the entire input w from a special player I called the “input client”, and
outputs R(x,w) to all N players. Ishai et al. [22] show how to construct a zero-
knowledge proof protocol for NP-relation R from a MPC protocol πf for the
functionality f described above. We give a high-level idea of the construction.
The prover runs the MPC protocol πf “in his head” and commits to the views
V1, . . . , VN of the N players. The verifier then chooses a subset T ⊂ [N], and
the prover opens his commitments to views {Vi}i∈T . The verifier accepts iff the
commitment openings are successful, the revealed views are consistent, and the
output in each view is 1.

We show the formal statement of the result in Theorem 1, but first recall the
security properties that the underlying MPC protocol will need to satisfy in the
construction. The following definitions are taken almost verbatim from [22].

Definition 1 (Correctness). We say that a protocol π realizes functionality f
with perfect correctness if for all inputs (x,w), the probability that the output of
some player is different from the output of f is 0, where the probability is taken
over the random inputs r1, . . . , rN .

Definition 2 ((Statistical) t-Privacy). Let t ∈ [N]. We say a protocol π
realizes functionality f with statistical t-privacy if there exists a PPT simulator
Sim such that for all inputs (x,w) and all sets of corrupted players T ⊂ [N] with

Zero-Knowledge Proofs with Low Amortized Communication 43

|T | ≤ t, the joint view (View(Pi))i∈T of players in T is distributed stastistically
close to Sim(T, x,RT (x,w)).

Definition 3 (t-Robustness). Let t ∈ [N]. We say a protocol π realizes func-
tionality f with perfect t-robustness if it is perfectly correct in the presence of
a semi-honest adversary, and for any computationally unbounded malicious ad-
versary corrupting I and a set T of at most t players, for all inputs x, it holds
that if there does not exist w such that f(x,w) = 1, then the probability that an
uncorrupted player Pi /∈ T outputs 1 is 0.

Theorem 1 ([22]). Let f be the N -player functionality with input client I
described above. Suppose that πf is a protocol that realizes f with perfect t-
robustness (in the malicious model) and statistical t-privacy (in the semi-honest
model), where t = Ω(λ), and N = ct for some constant c > 1. Given πf and an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational honest-verifier zero-knowledge proof protocol ΠR,I,t for the NP-relation
R, with negligible (in λ) soundness error.

One of the nice properties about the [22] construction is that we get broadcast for
free because the Prover can simply send the broadcasted messages directly to the
Verifier. Therefore, the communication cost of broadcasting a message is simply
the size of the message. We also get coin-flipping among the players for free
because the (honest) Verifier can simply provide the random value. Therefore,
the communication cost of coin-flipping for a value is simply the size of the value.
We will use these two facts in our constructions. Also, as observed by [7], if we use
a commitment scheme that allows us to commit to strings with only a constant
additive length increase such as those implicit in [27], then the zero-knowledge
proof protocol ΠR,I,t (asymptotically) conserves the communication complexity
of the underlying MPC protocol πf .

Finally, using general zero-knowledge techniques, it is possible to convert the
honest-verifier zero-knowledge proof protocol ΠR,I,t obtained from Theorem 1
into a full zero-knowledge protocol, while (asymptotically) preserving the com-
munication complexity of the protocol. One such technique is described in [22].

2.3 Packed Secret Sharing

We will use the packed secret sharing technique of Franklin and Yung [17].
Similar to Shamir secret sharing over Zq [30], packed secret sharing allows a
dealer to share a vector of k values x = (x1, x2, . . . , xk) using a single random
polynomial of degree at most d. To guarantee security against at most t corrupted
players, we must have d ≥ t+ k − 1. The idea is to chose a random polynomial
P (·) of degree at most d, subject to the condition P (−j + 1) = xj for j ∈ [k].
The share of player i is, as usual, the value αi = P (i).

We use [x]d to denote a packed secret-sharing α = (α1, . . . , αN) ∈ Z
N
q for N

players of the block x using a polynomial of degree at most d. We call [x]d a
d-sharing of x. We say x is correctly shared if every honest player Pi is holding
a share αi of x, such that there exists a degree at most d polynomial P (·) with

44 I. Damg̊ard and A. López-Alt

P (i) = αi for i ∈ N , and P (−j + 1) = xj for j ∈ [k]. Any (perhaps incomplete)
set of shares is called d-consistent if these shares lie on a polynomial of degree
at most d.

Let Z ∈ Z
m×k
q be a matrix of secrets. Suppose we have d-sharings of the rows

of Z: [Z1]d, . . . , [Zm]d ∈ Z
1×N
q . We define Ψ ∈ Z

m×N
q , called a d-share matrix

of Z, to be a matrix

Ψ =

⎡

⎢
⎣

[Z1]d
...

[Zm]d

⎤

⎥
⎦ ∈ Z

m×N
q

Note that the shares held by Pi are precisely the entries in the ith column vector
of Ψ , denoted by ψ(i).

For any function f : Zm×1
q → Z

m′×1
q , we abuse notation and write

f(Ψ) = f

⎛

⎜
⎝

[Z1]d
...

[Zm]d

⎞

⎟
⎠ =

⎡

⎢
⎣

[Y1]d′

...
[Ym′]d′

⎤

⎥
⎦ ,

to signify that each player Pi locally applies f to his shares of all [Zj]d’s to obtain
his share of each [Yj]d′ . In other words, if Ψ is the d-share matrix of Z then each

player locally computes f(ψ(i)) = φ(i), where Φ = [φ(1), . . . ,φ(N)] ∈ Z
m′×N
q is

the d′-share matrix of Y containing the Yj ’s as rows.
It is easy to see that if f(x) is a linear function and we define fi to be f with

its output restricted to the ith coordinate (i.e. f(x) = (f1(x), . . . , fm′(x))�),
then

f

⎛

⎜
⎝

[Z1]d
...

[Zm]d

⎞

⎟
⎠ =

⎡

⎢
⎣

[
f1(z

(1)) , . . . , f1(z
(k))

]
d

...[
fm′(z(1)) , . . . , fm′(z(k))

]
d

⎤

⎥
⎦

Note that if f is a linear function, then the sharings obtained as a result of
applying f are also d-sharings. In particular, if each player Pi multiplies his
share vector ψ(i) by a matrix M ∈ Z

m′×m
q , the player obtains a (m′ × 1)-vector

representing his corresponding shares of:

MΨ =

⎡
⎢⎢⎢⎣

[
M1z

(1) , . . . , M1z
(k)

]
d

...[
Mm′z(1) , . . . , Mm′z(k)

]
d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

[(
M1z

(j)
)
j∈[k]

]

d
...[(

Mm′z(j)
)
j∈[k]

]

d

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣

[
(MZ)1

]
d

...[
(MZ)m′

]
d

⎤
⎥⎦ ,

where (MZ)i is the ith row of the matrix MZ.

Parameters. We discuss requirements on the parameters of the scheme. We let
N = c1t for c1 > 2, satisfying the requirements of the IKOS construction. In
order to guarantee privacy of the secret shares, we must have d ≥ t+ k− 1. We

Zero-Knowledge Proofs with Low Amortized Communication 45

will sometimes use (d/2)-shares, so we assume d/2 ≥ t + k − 1. Furthermore,
we must have enough honest players so that their shares alone can determine
a polynomial of degree d (in case corrupt players do not send their shares for
reconstruction). We therefore need N − t ≥ d ≥ d/2 ≥ t+ k − 1. For our choice
of N this yields k ≤ (c1 − 2)t+ 1. Thus, we assume k = Θ(t). Also, in order to
have enough evaluation points, we must have q > k+N . Henceforth, we will use
this choice of parameters.

2.4 Verifying Consistency of Shares

We now describe a protocol that can be used by N parties to check that their
shares are d-consistent. Security is guaranteed if at most t < N/2 parties are
corrupted. Players check N − 2t sets of shares at a time. More formally, let

Z ∈ Z
(N−2t)×k
q be a matrix of secrets, and suppose d-shares [Z1]d, . . . [ZN−2t]d

of the rows of Z are distributed among the N players. The players want to
verify that each sharing is d-consistent without revealing their individual shares.
Beerliová-Trub́ıniová and Hirt [4] describe a protocol in which the N parties
can perform this check when they hold N sharings (as opposed to N − 2t, as
described here) and sharing [Zi]d was created by player Pi. Bendlin and Damg̊ard
[7] extend this protocol to the case when all the shares were prepared by a
(possibly corrupt) input client I. We describe the protocol of [7] in Figure 1.
In the protocol, all players receive as common input a hyper-invertible matrix

M ∈ Z
N×(N−t)
q for q > 2N . Informally, a hyper-invertible matrix is a matrix

such that every square submatrix of M is invertible. Beerliová-Trub́ıniová and
Hirt [4] show how such matrices can be constructed.

Lemma 1. The protocol πCheck described in Figure 1 allows N players, at most
t of which are corrupted, to verify with zero error probability that (N − 2t) pack-
sharings, each of k = Θ(t) secrets in Zq, are d-consistent (for d ≥ t+ k − 1). It
is t-private in the presence of a semi-honest advesary, t-robust in the presence
of a malicious adversary, and has communication complexity N(N + t) log q.

2.5 Regev Encryption Scheme

Before presenting the Regev encryption scheme [29], we first introduce the hard-
ness assumption on which its security is based. For positive integers n = n(λ)
and q = q(λ) ≥ 2, a vector s ∈ Z

n
q , and a probability distribution χ on Zq,

let As,χ be the distribution obtained by choosing a ← Z
n
q and x ← χ, and

outputting (a, 〈a, s〉 + x) ∈ Z
n
q × Zq.

Learning with Errors (LWEn,q,χ and dLWEn,q,χ). The Learning with Errors
problem LWEn,q,χ is defined as follows. Given m = poly(n) samples chosen
according to As,χ for uniformly chosen s ∈ Z

n
q , output s with noticeable proba-

bility. The Decisional Learning with Errors problem dLWEn,q,χ is to distinguish
(with non-negligible advantage) m = poly(n) samples chosen according to As,χ

for uniformly chosen s ∈ Z
n
q , from m samples chosen uniformly at random from

46 I. Damg̊ard and A. López-Alt

Protocol πCheck between parties (P1, . . . ,PN) to verify d-consistency of
shares.

Common input: hyper-invertible matrix M ∈ Z
N×(N−t)
q

Input to Pi: corresponding shares of [Z1]d, . . . , [Z(N−2t)]d.

1. Input client I chooses and d-shares random vectors in Z
1×k
q . Let

[ZN−2t+1]d, . . . [ZN−t]d be the resulting shares. Augment matrix Z with rows

ZN−2t+1, . . . ,ZN−t to obtain matrix Z′ ∈ Z
(N−t)×k
q . Let Ψ ∈ Z

(N−t)×N
q be the

d-share matrix of Z′.
2. Players locally compute:

Φ = MΨ =

⎡
⎢⎣

[
(MZ′)1

]
d

...[
(MZ′)N

]
d

⎤
⎥⎦ ∈ Z

N×N
q

3. The players reconstruct the resulting shares, each towards a different player:
player Pi receives Φi. Each player verifies that the shares he receives are d-
consistent and broadcasts “ABORT” if he finds a fault, and otherwise broad-
casts “OK”.

4. If all players broadcast “OK” then the players conclude that the initial shares
were d-consistent.

Fig. 1. Protocol πCheck to verify consistency of shares

Z
n
q × Zq. In other words, if dLWEn,q,χ is hard then As,χ is pseudorandom. We

will use χ = Ψ̄α and in this case, we write LWEn,q,α to mean LWEn,q,Ψ̄α
.

Discrete Gaussian Distribution. We present an elementary fact that shows that
the discrete Gaussian distribution with standard deviation r outputs an element
x with with ||x|| ≤ r

√
n with high probability.

Lemma 2 (see [25], Theorem 4.4). Let n ∈ N. For any real number r >
ω(
√
logn), we have Prx←DZn,r

[||x|| > r
√
n] ≤ 2−n+1.

Using Lemma 2 together with the fact that for all x ∈ R
n, ||x||∞ ≥ ||x||/√n we

arrive at the following bound.

Lemma 3. Let n ∈ N. For any real number r > ω(
√
logn), we have

Prx←DZn,r
[||x||∞ > r] ≤ 2−n+1.

This allows us to define a truncated Gaussian distribution that always outputs
(with probability 1) elements with
∞ norm less than r. Simply define the trun-
cated Gaussian DZn,r over Z

n with standard deviation r to sample a vector
according to the discrete Gaussian DZn,r and repeat the sampling if the vector
has
∞ norm greater than r. We will use the truncated discrete Gaussian in
our schemes to ensure that samples are bounded by r in each coordinate (and
can thus ensure perfect correctness), but state security in terms of the discrete

Zero-Knowledge Proofs with Low Amortized Communication 47

Gaussian. Since the distributions are statistically close, all results stated using
the discrete Gaussian also hold when using the truncated distribution.

We present a generalized version of the Regev encryption scheme [29] (with
the modifications of [18]), using the truncated discrete Gaussian (as above). The
scheme is parametrized by integers n = n(λ),m = m(λ) > n, q = q(λ), r = r(λ),
and p = p(λ) < q. The message space is M = Zp, the ciphertext space is
C = (Zn

q ,Zq). All operations are performed over Zq.

– KeyGen(1n): Output sk = s, pk = (A,b), where s← Z
n
q , A← Z

n×m
q , x←

χm , b = A�s+ x ∈ Z
m
q .

– Encpk(m): Output (u, c), where r ← DZm,r , u = Ar ∈ Z
n×1
q , c = b�r +

m · �q/p
 ∈ Zq.

– Decsk(u, c): Output m = �(c− s�u) · p/q�.
Theorem 2 ([29,18]). Let q ≥ 5prm, α ≤ 1/(p ·r√m ·ω(√logλ)), χ = Ψ̄α,m ≥
2(n + 1) log q + ω(logλ). With this choice of parameters, the Regev encryption
scheme is correct and IND-CPA-secure, assuming LWEn,q,χ is hard.

Parameters and Worst-case Guarantees. Our construction requires the modu-
lus q to be super-polynomial in the security parameter λ. More specifically, we
require

√
q/8 > 2ω(logλ) ·m ·max(p/2, r). We can use any choice of parameters

that satisfies this constraint and keeps the cryptosystem secure.
One option is to let the dimension of the lattice be our security parameter,

ie. n = λ and set our modulus q to be exponential in the lattice dimension n.
Peikert [26] showed that for such a large q, LWEn,q,α is as hard as GapSVP

˜O(n/α)

if q is a product of primes, each of polynomial size. The works of [7,8] use this
choice of parameters.

Another possible choice is to let n = λ1/ε for some ε ∈ (0, 1) (e.g. n = λ2),
p, r,m = poly(λ) and let q = 2n

ε

be subexponential in the lattice dimension n.
In this case, we can rely on Regev’s quantum reduction [29] to GapSVP

˜O(n/α)

or Peikert’s classical reduction [26] to GapSVPζ,γ where γ(n) ≥ n/(α
√
logn),

ζ(n) ≥ γ(n) and q ≥ ζ · ω(√logn/n). The work of [2,1] uses this choice of
parameters.

3 Verifying that Secrets are Numerically Small

At the heart of our constructions of proofs of plaintext knowledge and correct
multiplication, we will use a protocol that allows a dealer (in our case the input
client I) to prove to the players that the secret that he secret-shared among
them is bounded by some publicly known bound B. Formally, let R ∈ Z

m×k
q be

a matrix of secrets. And suppose that a dealer has distributed d-sharings of the
rows of R : [R1]d, . . . , [Rm]d between N players. We show a protocol πVerSm

that allows the dealer to prove to each player Pi, without revealing R, that all
secrets in R are smaller than B � q/2.

We first have the dealer compute and distribute a sharing [b]d of b =
(B, . . . , B) ∈ Z

k
q . Players can then compute

48 I. Damg̊ard and A. López-Alt

⎡

⎢
⎣

[b]d
...

[b]d

⎤

⎥
⎦−

⎡

⎢
⎣

[R1]d
...

[Rm]d

⎤

⎥
⎦ =

⎡

⎢
⎣

[b−R1]d
...

[b−Rm]d

⎤

⎥
⎦ and

⎡

⎢
⎣

[b]d
...

[b]d

⎤

⎥
⎦+

⎡

⎢
⎣

[R1]d
...

[Rm]d

⎤

⎥
⎦ =

⎡

⎢
⎣

[b+R1]d
...

[b+Rm]d

⎤

⎥
⎦

Proving that each secret is bounded by B (and thus lies between −B and B)
reduces to proving that all the secrets that are pack-shared by each [b−Ri]d
and [b+Ri]d for i ∈ [m], are positive. We thus show a subroutine, described in
Figure 3 that allows a dealer to prove that secrets that are pack-shared among
players are positive. To do this, we follow an idea of Boudot [9] and use La-
grange’s Four-Square Theorem, which states that every positive number can be
written as the sum of four squares (see e.g. [16]). Moreover, these four squares
can be efficiently computed [28,24]. Suppose the dealer has pack-shared a se-
cret vector z ∈ Z

1×k
q . For each coordinate zj for j ∈ [k], the dealer finds the

four numbers uj , vj , wj , yj such that zj = u2
j + v2j + w2

j + y2j . We let ũ, ṽ, w̃, ỹ
be the vectors with uj, vj , wj , yj as the jth coordinate, respectively. The dealer
(d/2)-shares each of these vectors [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2. Similarly, we let
u,v,w,y be the vectors with u2

j , v
2
j , w

2
j , y

2
j as the jth coordinate, respectively.

Players can locally compute sharings [u]d, [v]d, [w]d, [y]d by squaring their cor-
responding shares of [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2. Each player then computes,

[z]d − [u]d − [v]d − [w]d − [y]d = [z− u− v −w − y]d = [0]d

and together they check that the result is indeed a pack-sharing of the vector
0 ∈ Z

k.
However, suppose that a cheating dealer chooses |uj | >

√
q/2. Then |u2

j | > q
and we have wrap-around modulo q, which means that the cheating dealer could
convince the players that a secret zj is positive, without this being true. To
ensure this does not happen, we have the dealer prove that each of uj , vj , wj , yj
is bounded by some bound B′, which although larger than B, is certainly much
smaller than

√
q/2 (in fact, we will need B′ <

√
q/8 so that we don’t have

overflow when adding the four squares).
Our protocol for verifying that numbers are bounded by B′ uses techniques

from Cramer and Damg̊ard [13]. Players check τ shares at a time, where τ should
be thought of as the “local security parameter” for the protocol πVerBnd. The
players compute a linear combination of their shares (with some noise added) and
reconstruct the result, such that if the secrets resulting from this reconstruction
are “not too big” then the original secrets (i.e. the entries in R) are also small.
To ensure that the reconstructed result does not revealR, we let the added noise
be in an interval that is a factor of 2τ larger than the entries in R. To guarantee
that πVerBnd has statistical (in λ) t-privacy, we set τ = ω(logλ). The final bound
that we are able to prove is B′ = 22τ+1mB. We will thus need to ensure that√
q/8 > 22τ+1mB.
We give full descriptions of the protocol πVerSm in Figure 2, of the subroutine

to verify that secrets are positive in Figure 3, and the subroutine to verify that
numbers are bounded by B′ in Figure 4.

Zero-Knowledge Proofs with Low Amortized Communication 49

Protocol πVerSm between parties (P1, . . . ,PN) and input client I.
Common input: bound B
Input to I: R ∈ Z

m×k
q .

Input to Pi: Corresponding shares of [R1]d, . . . , [Rm]d.

1. I prepares a d-sharing of b = (B, . . . , B) ∈ Z
k
q): [b]d. I gives each player its

corresponding shares.

2. Players run the subroutine πVerPos (see Figure 3) with

⎡
⎢⎣
[b]d
...

[b]d

⎤
⎥⎦−

⎡
⎢⎣

[R1]d
...

[Rm]d

⎤
⎥⎦ =

⎡
⎢⎣
[b−R1]d

...
[b−Rm]d

⎤
⎥⎦ and

⎡
⎢⎣
[b]d
...

[b]d

⎤
⎥⎦+

⎡
⎢⎣

[R1]d
...

[Rm]d

⎤
⎥⎦ =

⎡
⎢⎣

[b+R1]d
...

[b+Rm]d

⎤
⎥⎦

Fig. 2. Protocol πVerSm to verify that secrets are numerically small

Subroutine πVerPos between parties (P1, . . . ,PN) and input client I, to
verify that secrets are positive.

Input to I: Z ∈ Z
m×k
q .

Input to Pi: Corresponding shares of [Z1]d, . . . , [Zm]d.

1. For each entry z
(j)
i of Z (for i ∈ [m], j ∈ [k]), the dealer finds the four numbers

uij , vij , wij , yij such that z
(j)
i = u2

ij + v2ij +w2
ij + y2

ij . Define Ũ, Ṽ,W̃, Ỹ to be
the matrices with uij , vij , wij , yij as the (i, j)th entry, respectively. Similarly,
define U,V,W,Y to be the matrices with u2

ij , v
2
ij , w

2
ij , y

2
ij as the (i, j)th entry,

respectively.

2. I computes and distributes (d/2)-sharings of the rows of Ũ, Ṽ,W̃, Ỹ:

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m].

3. Players run protocol πCheck from Section 2.4 with the shares
[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m] (a total of 4m/(N − t) times) to
verify that these shares are d/2-consistent.

4. I and the players run the subroutine πVerBnd (see Figure 4) with the shares

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m] (a total of 4m/τ times), to verify

that each of the uij , vij , wij , yij is bounded by B′ <
√

q/8.

5. For each row i ∈ [m], players locally compute d-sharings
[Ui]d, [Vi]d, [Wi]d, [Yi]d by squaring their corresponding shares of

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2.

6. For each row i ∈ [m], players locally compute

[Zi]d − [Ui]d − [Vi]d − [Wi]d − [Yi]d = [Zi −Ui −Vi −Wi −Yi]d

and check that the result is a pack-sharing of the vector 0 ∈ Z
1×k.

Fig. 3. Subroutine πVerPos to verify that secrets are positive

50 I. Damg̊ard and A. López-Alt

Subroutine πVerBnd between parties (P1, . . . ,PN) and input client I, to
verify that numbers are bounded by B′ = 22τ+1mB.

Common input: bound B
Input to I: Z′ ∈ Z

τ×k
q .

Input to Pi: Corresponding shares of [Z′
1]d, . . . , [Z

′
τ]d (that are known to be d-

consistent).

1. I chooses X ← [−2τmB, 2τmB](2τ−1)×k, and prepares d-sharings of the rows
of X : [X1]d, . . . , [X2τ−1]d. I gives each player its corresponding shares.

2. Players P1, . . . ,PN coin-flip for a random vector e ∈ {0, 1}τ×1.

3. Define matrix Me to be the (2τ − 1)× τ matrix with its (i, j)-th entry defined

by m
(j)
e,i = ei−j+1 for 1 ≤ i− j + 1 ≤ λ. Each player locally computes

⎡
⎢⎣

[
(MeZ

′)1
]
d′

...[
(MeZ

′)2τ−1

]
d′

⎤
⎥⎦+

⎡
⎢⎣

[X1]d′
...

[X2τ−1]d′

⎤
⎥⎦ =

⎡
⎢⎣

[
(MeZ

′ +X)1
]
d′

...[
(MeZ

′ +X)2τ−1

]
d′

⎤
⎥⎦

4. Players reconstruct MeZ
′ + X row by row and check that all its entries are

bounded by 22τ+1mB.

Fig. 4. Subroutine πVerBnd to verify that numbers are bounded by B′ = 22τ+1mB <√
q/8

We set N = Θ(t) as is required for the IKOS construction and for privacy (see
Section 2.3), and analyze the communication complexity of the πVerSm protocol.
Each share has size at most log q. Each execution of πVerBnd has communication
cost O(τN log q): sharing the Xi’s has communication cost (2τ − 1)N log q, the
coin-flipping of e has communication cost τ since we’ll use this MPC protocol
inside the IKOS construction, and reconstructing MeZ

′+X has communication
cost (2τ−1)N log q. The subroutine πVerPos (Figure 3) has communication com-
plexity O(mN log q): sharing of the rows of U,V,W,Y has cost 4mN log q, the
total cost of running πCheck is (N(N + t) log q) · 4m/(N − 2t) = O(mN log q),
the total cost of running πVerBnd is O(τN log q) · 4m/τ = O(mN log q), and the
final reconstruction has cost mN log q. Finally, the communication complexity
of protocol πVerSm is O(mN log q): sharing b has communication cost N log q,
and we run the subroutine πVerPos twice.

Lemma 4. Let n,m, r, q,N, t, k be as in Theorem 2 and Section 2.3, and let B
be some publicly-known bound. If τ = ω(logλ) and

√
q/8 > 22τ+1mB then the

protocol πVerSm described in Figure 2 allows N players to verify, with negligible
error probability in λ, that all entries in a secret matrix R ∈ Z

m×k
q are bounded

by B. It has statistical t-privacy in the presence of a semi-honest adversary,
perfect t-robustness in the presence of a malicious adversary, and communication
complexity O(mN log q).

Zero-Knowledge Proofs with Low Amortized Communication 51

4 Proofs of Plaintext Knowledge

We wish to show a zero-knowledge proof protocol that allows a prover to prove
that he knows the plaintexts of k different ciphertexts, each encrypted under
the same public key. We show how to do this for the Regev encryption scheme
described in Section 2.5. More formally, we show a zero-knowlege proof protocol
for the following relation:

RPoPK = { (x,w) | x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k))),

w = ((m(1), r(1)), . . . , (m(k), r(k))) s.t.

∀ j ∈ [k] : (u(j), c(j)) = Enc(A,b)(m
(j); r(j))

and |m(j)| ≤ p/2 , ||r(j)||∞ < r }
We create protocolΠPoPK for relationRPoPK using the “MPC-in-the-head” tech-
nique of [22] described in Section 2.2. We let fPoPK be the N -party functionality
that takes the entire input w from I and outputs RPoPK(x,w) to all N players.
In Figure 5, we show our construction of a t-robust and t-private N -party proto-
col, πPoPK, realizing functionality fPoPK. The idea is to have I pack secret-share
the messages, as well as pack secret-share each coordinate of the randomness
vectors. The players then locally run the encryption algorithm on their shares,
reconstruct the resulting shares, and check that the reconstructed secrets are
indeed the claimed ciphertexts. The input client I also needs to prove that the
messages and randomness come from the correct spaces. For example, he would
need to show that the magnitude of each message is less than p/2 (since the
message space is Zp), and that each coordinate of each randomness vector is
at most r (since we are using the truncated Gaussian distribution described in
Section 2.5). For this, we will use the protocol πVerSm described in Section 3.

We set t = Θ(k) and N = Θ(t) as is required for the IKOS construction
and for privacy (see Section 2.3), and analyze the communication complexity of
our protocol πPoPK (see Figure 5). Since each share has size log q, step 1 has
communication cost (m+ 1)N log q = O(mk log q). We run πCheck m+ 1/(N −
2t) = O(m/k) times, so step 2 has communication cost N(N + t) log q(m/k) =
O(mk log q) The reconstruction in step 3 has cost 2nN log q and running protocol
πVerSm has cost 2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Our techniques are similar to those of Bendlin and Damg̊ard [7]. However,
our protocol πVerSm for proving that a secret is small (see Section 3) allows
us to prove soundness for message space Zp and randomness sampled from the
discrete Gaussian, whereas the construction of [7] only worked for bit messages
and bit-vector randomness. Finally, our use of packed secret sharing allows us to
achieve a better amortized communication complexity. The protocol of [7] has
complexity O(nm log q) per proof, whereas we achieve an amortized complexity
of O(m log q) per proof.

Lemma 5. Let n,m, r, p, q,N, t, k be as in Lemma 4 with B = max(p/2, r). The
protocol πPoPK described in Figure 5 realizes fPoPK with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complexity O(mk log q).

52 I. Damg̊ard and A. López-Alt

Protocol πPoPK between parties (P1, . . . ,PN) and input client I.
Common input: p, q,R, x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k)))
Input to I: w = ((m(1), r(1)), . . . , (m(k), r(k)))

1. Input client I prepares and distributes among the N players, d-shares over
Zq of the messages and randomness vectors, with d = k + t − 1. The ith
coordinates of all randomness vectors are pack-shared to produce a single set
of shares ρi. More formally: define matrices R = [r(1) ; r(2) ; . . . ; r(k)] ∈
Z

m×k
q , m = [m(1) ; . . . ; m(k)] ∈ Z

1×k
p , U = [u(1) ; u(2) ; . . . ; u(k)] ∈

Z
n×k
q , and c = (c(1) ; . . . ; c(k)) ∈ Z

1×k
q . I prepares and distributes d-shares

[m]d, [R1]d, . . . , [Rm]d.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify
that their shares are d-consistent.

3. Players “emulate” encryption by running the encryption algorithm on their
local shares. More formally:

– For � ∈ [n], players locally compute

[(
A�r

(j)
)
j∈k

]

d

, and check that the

result is a pack-sharing of U�.

– Similarly, players locally compute

[(
br(j)

)
j∈k

]

d

+

⌊
q

p

⌋
[m]d =

[(
br(j) +

⌊
q

p

⌋
m(j)

)

j∈k

]

d

Players check that the result is a pack-sharing of c.

– Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2 and ||r(j)||∞ <
r for all j ∈ [k].

Fig. 5. MPC protocol πPoPK that realizes fPoPK

Putting together Lemma 5 with Theorem 1 yields the following theorem.

Theorem 3. Let n,m, r, p, q be as in Lemma 4 with B = max(p/2, r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol ΠPoPK for relation RPoPK with negligible
(in λ) soundness error and amortized communication complexity O(m log q) per
proof.

5 Proofs of Correct Multiplication

In this section we show proofs for correct multiplication for the Regev encryption
scheme. In our protocol, the prover performs k proofs at a time, all under the
same public key. More formally, we give a zero-knowledge proof protocol for the
following relation:

Zero-Knowledge Proofs with Low Amortized Communication 53

ProtocolπPoCM between parties (P1, . . . ,PN) and input client I.
Common input: p, q,R, x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k)))
Input to I: w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k)))

1. Input client I prepares and distributes among the N players, d-shares over Zq

of the messages and randomness vectors, with d = k + t − 1. The ith coordi-
nates of all randomness vectors are packed shared to produce a single set of
shares.. More formally: define matrices R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Z

m×k
q ,

m = [m(1) ; . . . ; m(k)] ∈ Z
1×k
p ,x = [x(1) ; . . . ; x(k)] ∈ Z

1×k
q ,U =

[u(1) ; u(2) ; . . . ; u(k)] ∈ Z
n×k
q , c = (c(1), . . . , c(k)) ∈ Z

1×k
q , V =

[v(1) ; v(2) ; . . . ; v(k)] ∈ Z
n×k
q , and e = (e(1) ; . . . ; e(k)) ∈ Z

1×k
q . I

prepares and distributes (d/2)-share [m]d and d-shares [x]d, [R1]d, . . . , [Rm]d.
I also prepares and broadcasts (d/2)-shares[c]d/2, [U1]d/2, . . . , [Un]d/2.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify
that shares [x]d, [R1]d, . . . , [Rm]d are d-consistent, and share [m]d is (d/2)-
consistent. They also check locally that c,U1, . . . ,Um are correctly shared.

3. Players “emulate” correct computation of each (v(i), c(i)). More formally:

– For � ∈ [n], players locally compute

[(
A�r

(j)
)
j∈k

]

d

. They also locally

compute

[(
br(j) +

⌊
q
p

⌋
x(j)

)
j∈k

]

d

.

– For � ∈ [n], players locally compute

[m]d/2 [U�]d/2 +

[(
A�r

(j)
)
j∈k

]

d

=

[(
u
(j)
� m(j) +A�r

(j)
)
j∈k

]

d

Players check that the result is a pack-sharing of V�.

– Players locally compute

[m]d/2 [c]d/2 +

[(
br(j) +

⌊
q

p

⌋
x(j)

)

j∈k

]

d

=

[(
c(j)m(j) + br(j) +

⌊
q

p

⌋
x(j)

)

j∈k

]

d

Players check that the result is a pack-sharing of e..

– Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2, |x(j)| ≤ p/2
and ||r(j)||∞ < r for all j ∈ [k].

Fig. 6. MPC protocol πPoCM that realizes fPoCM

RPoCM = { (x,w) | x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k))),

w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k))) s.t.

∀j ∈ [k] : (v(j), e(j)) = m(j)(u(j), c(j)) + Enc(A,b)(x
(j); r(j))

and |m(j)| ≤ p/2 , |x(j)| ≤ p/2 , ||r(j)||∞ < r }

54 I. Damg̊ard and A. López-Alt

As in Section 4, we create protocol ΠPoCM for relation RPoCM using the “MPC-
in-the-head” technique of [22], described in Section 2.2. We let fPoCM be the N -
party functionality that takes the entire input w from I and outputs RPoCM(x,w)
to all N players. In Figure 6, we show our construction of a t-robust and t-private
N -party protocol, πPoCM, realizing functionality fPoCM. Again, the idea is to
have I pack secret-share the messages, as well as pack secret-share each coordi-
nate of the randomness vectors. The players then locally emulate the encryption
of the random message and perform the multiplication, then reconstruct the re-
sulting shares, and check that the reconstructed secrets are indeed the claimed
ciphertexts. As before, the input client I also needs to prove that the messages
and randomness come from the correct spaces. We again use the protocol πVerSm

described in Section 3 for this purpose.
We set t = θ(k) and N = θ(t) as is required for the IKOS construction and for

privacy (see Section 2.3), and analyze the communication complexity of πPoCM

described in Figure 6. Since each share has size log q, step 1 has communication
cost 2(m+ 1)N log q = O(mk log q). We run πCheck m+ 1/(N − 2t) = O(m/k)
times, so step 2 has communication cost N(N + t) log q(m/k) = O(mk log q).
The reconstruction in step 3 has cost 2nN log q and running protocol πVerSm has
cost 2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Lemma 6. Let n,m, r, p, q,N, t, k be as in Lemma 4 with B = max(p/2, r). The
protocol πPoCM described in Figure 6 realizes fPoCM with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complexity O(mk log q).

Putting Lemma 6 together with Theorem 1 yields the following theorem.

Theorem 4. Let n,m, r, p, q be as in Lemma 4 with B = max(p/2, r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol ΠPoCM for relation RPoCM with negligible
(in λ) soundness error and amortized communication complexity O(m log q) per
proof.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty Computation with Low Communication, Computation and Interaction
via Threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication,
computation and interaction via threshold fhe. Cryptology ePrint Archive: Report
2011/613 (2011)

3. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992)

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

Zero-Knowledge Proofs with Low Amortized Communication 55

5. Beerliová-Trub́ıniová, Z., Hirt, M., Nielsen, J.B.: On the theoretical gap between
synchronous and asynchronous mpc protocols. In: Richa, A.W., Guerraoui, R.
(eds.) PODC, pp. 211–218. ACM (2010)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

7. Bendlin, R., Damg̊ard, I.: Threshold Decryption and Zero-Knowledge Proofs for
Lattice-Based Cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Heidelberg (2010)

8. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption
and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

9. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

13. Cramer, R., Damg̊ard, I.: On the Amortized Complexity of Zero-Knowledge Pro-
tocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

14. Damg̊ard, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From
Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010)

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. IACR Cryptology ePrint Archive, 2011:535
(2011)

16. Fine, B., Rosenberger, G.: Number Theory: An Introduction via the Distribution
of Primes. Birkhäuser (2006)

17. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC, pp. 699–710. ACM (1992)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

20. Hirt, M., Maurer, U.M.: Robustness for Free in Unconditional Multi-party Compu-
tation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001)

21. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous Multi-Party Computation
with Quadratic Communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 21–30.
ACM (2007)

56 I. Damg̊ard and A. López-Alt

23. Katz, J., Koo, C.-Y.: Round-Efficient Secure Computation in Point-to-Point Net-
works. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328.
Springer, Heidelberg (2007)

24. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415.
Springer, Heidelberg (2003)

25. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342. ACM (2009)

27. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

28. Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory. Communi-
cations on Pure and Applied Mathematics 39(S1), S239–S259 (1986)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS,

pp. 160–164 (1982)

	Zero-Knowledge Proofs with Low Amortized Communication from Lattice Assumptions
	Introduction
	Preliminaries
	Notation
	Overview of IKOS Construction
	Packed Secret Sharing
	Verifying Consistency of Shares
	Regev Encryption Scheme

	Verifying that Secrets are Numerically Small
	Proofs of Plaintext Knowledge
	Proofs of Correct Multiplication

