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Abstract. The traditional approach to formalizing ideal-model based
definitions of security for multi-party protocols models adversaries (both
real and ideal) as centralized entities that control all parties that devi-
ate from the protocol. While this centralized-adversary modeling suffices
for capturing basic security properties such as secrecy of local inputs
and correctness of outputs against coordinated attacks, it turns out to
be inadequate for capturing security properties that involve restricting
the sharing of information between separate adversarial entities. Indeed,
to capture collusion-freeness and game-theoretic solution concepts, Al-
wen et al. [Crypto, 2012] propose a new ideal-model based definitional
framework that involves a de-centralized adversary.

We propose an alternative framework to that of Alwen et al. We then
observe that our framework allows capturing not only collusion-freeness
and game-theoretic solution concepts, but also several other properties
that involve the restriction of information flow among adversarial enti-
ties. These include some natural flavors of anonymity, deniability, timing
separation, and information-confinement. We also demonstrate the in-
ability of existing formalisms to capture these properties.

We then prove strong composition properties for the proposed frame-
work, and use these properties to demonstrate the security, within the
new framework, of two very different protocols for securely evaluating
any function of the parties’ inputs.

1 Introduction

Rigorously capturing the security properties of cryptographic protocols has
proven to be a tricky endeavor. Over the years, the trusted party (or, simu-
lation) paradigm has emerged as a useful and general definitional methodology.
The basic idea, first coined in [GM84, GMR85, GMW87], is to say that a proto-
col "securely realizes" a given computational task if participating in the protocol
”emulates” the process of interacting with an imaginary "trusted party" that se-
curely receives parties’ inputs and locally computes their outputs. Intuitively,
this paradigm allows expressing and capturing many security properties. More-
over, it has an attractive potential "composability" property: any system using a
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trusted party F should behave the same way when we replace the trusted party
with the realizing protocol.

Over the years, many security definitions were based on this intuitive idea, e.g.,
[GL90, MR91, Can00, DM00, PW00, Can01, PS04, CDPW07]. First, these defini-
tions formulate an execution model; then they formalize the notion of emulating
an ideal task with an "ideal world" attacker, called simulator. The security re-
quirement is based on the inability of an external observer to distinguish an “ideal
world” execution from a real one.

These formalisms differ in many ways; however, they have one major thing
in common: they all model the attacker as a centralized entity, who can corrupt
parties, coordinate their behavior and, intuitively, constitute an "evil coalition"
against the protocol being executed. This seems to be an over-simplification of
real life situations. Indeed, in real life, parties are often individuals who are
not necessary controlled by the same entity or have anything in common. It
would seem that letting the malicious parties coordinate their attacks should
be a strengthening of the model; however, when this power is also given to the
adversary in the ideal model (aka the simulator), the security guarantee can
potentially be weakened. Therefore, a natural question to ask is whether it is
justified to model the attacker as a centralized entity or does this modeling
unduly limit its expressiveness?

Indeed, the existing formalisms do capture basic properties such as privacy
of inputs, and correctness of outputs against coordinated attack. However, as
has been observed in the past, there exist security concerns that are not natu-
rally captured using the centralized adversary approach. Consider for instance
the collusion- freeness concern: a protocol is collusion-free if even misbehaving
protocol participants cannot use the protocol to exchange "disallowed" informa-
tion without being detected. As pointed out by [ILM05], "centralized simulator"
formalisms do not capture the inability of parties to collude. That is, with a cen-
tralized adversary, a protocol might allow collusions between corrupted parties
even when it realizes an ideal task that is collusion-free.

An additional known limitation of standard security notions is cryptographic
implementations of game-theoretic mechanisms. In contrast to cryptography,
game theory considers rational players that behave according to their individ-
ual goals. In many realistic settings, the incentive structure depends on whom
players can collaborate with and the cost of this collaboration. Security with a
centralized adversary does not guarantee that the incentive structure with re-
spect to collaboration is preserved when moving from the ideal protocol to the
one that realizes it. Consequently, it does not correctly capture the incentive
structure and does not suffice for preserving game-theoretic solution concepts
that restrict the formation of coalitions.

A natural way to handle those concerns would be to strengthen the model
by requiring that the simulation be “local” in some sense; that is, shatter-
ing the centralized simulator to many simulators, where each simulator has
only some “local’’ information and is responsible to simulate adversarial
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behavior in only a “local’’ sense. However, requiring local simulators while al-
lowing the adversary to be centralized results in an unrealistically strong secu-
rity requirement that fails to admit many useful schemes that have practical
security guarantees. Therefore, the next promising idea would be to restrict
also the adversary to be local. This approach indeed appears in the works of
[LMS05, ASV08, AKL+09, ILM11, MR11, AKMZ12]. In particular, [AKMZ12]
gives general model with a composition theorem and application to game-theory.
These works give different and incomparable definitions of collusion-freeness; a
common aspect is that they all postulate an adversary/simulator for each par-
ticipant, where a participant represents an entity that is identified via its party
identifier and treated as a “single domain” (i.e., it is corrupt as a unit, either
wholly or none at all). However, as we demonstrate below, there are a num-
ber of security concerns that cannot be naturally captured even by the above
formalizations of local simulation.

Our Contributions. We provide an alternative formalization of the local simu-
lators approach in a way that preserves its intuitive appeal and captures reality
more tightly. In particular, we establish a general security notion that allows
capturing the requirements of arbitrary tasks while preserving the local view of
each individual component and each communication link between components in
the system. This notion enables expressing variety of partitions of the system.
Specifically, we refine the UC framework to deal with the locality of information
available to clusters of components. The new formalism, called local UC (LUC),
assigns a different adversary/simulator to each ordered pair of participants. In-
tuitively, the adversaries/simulators assigned to a pair of parties handle all the
communication between the two parties. Informally,

If π is a LUC-secure protocol that implements a trusted party F , then
each individual entity participating in π affects each other entity in
the system no more than it does so in the ideal execution with F .

Note that this is conceptually different from the guarantees provided by the
UC framework of [Can01] and the Collusion-Preserving framework of [AKMZ12]
(referred as CP). In the UC framework, protocols that implement a trusted
party are guaranteed to have similar effect on the external environment as in
the ideal execution with F . In the CP framework, the protocol is guaranteed
to have the same effect as the trusted party individually on each entity. In the
LUC framework, it is guaranteed that each entity affects each other entity in the
same way as in the ideal execution.

We show that this refined granularity allows LUC to capture various security
concerns that cannot be captured by previous frameworks. We address some fla-
vors of anonymity, deniability, collusion-freeness, information-confinement, and
preservation of incentive structure.

We also extend the UC composition theorem and the dummy adversary the-
orem to the new framework. We obtain strong composition results that enable
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"game theoretic composition", i.e., composition that preserves the power of coali-
tions (whatever they may be). Moreover, our strong composition also preserves
deniability and confinement.

Next we present two protocols for secure function evaluation with LUC secu-
rity. The protocols, called the Physical GMW and the Mediated SFE protocols,
satisfy the new security definition. The protocols are very different from each
other: The Physical GMW protocol, which is strongly inspired by [ILM05], mod-
els players sitting in a room equipped with machines and jointly computing a
function. The Mediated SFE protocol is a simplified version of [AKL+09]. Like
there, we use a semi-trusted mediator. That is, if the mediator is honest then
the protocol is LUC secure. It is also UC secure in the standard sense even if
the mediator is corrupted. It is interesting to note that although these two pro-
tocols have significantly different nature, they are both analyzable within our
framework.

1.1 Our Contributions in More Details

The New Formalism. In a nutshell, the new modeling proceeds as follows. Re-
call that in the UC framework, the adversary is a centralized entity that not only
controls the communication in the network, but also coordinates the corrupted
parties’ behavior. This centralization is also inherited by the simulator. As men-
tioned above, while this modeling captures privacy and correctness, which are
“global’’ properties of the execution, it certainly does not capture rationality
or locality of information. This implicitly means that only the situations where
corrupted parties enjoy global view of the system are being fully captured.

A first attempt to bridge this gap might be to follow the formalisms of previous
works [ASV08, AKMZ12, MR11] and consider one adversary per party. However,
this modeling does not completely capture reality either. Consider for instance
the following scenario: one of two parties A and B is having a conversation with
a third party C. Later C is instructed to transfer this information to some honest
but curious fourth party D without revealing whether the source was A or B.
Clearly for the protocol to make intuitive sense, A and B need to assume that
C is trusted, or “incorruptible’’. However, going back to the suggested model we
notice that the adversary associated with C participates in all the conversations
that C participates in, and can thus correlate the C−D communication with the
A−C and B −C communication without corrupting C at all, thereby harming
the anonymity in a way that is not intended by the protocol (see more detailed
account of this issue in Section 3). In other words, the suggested modeling does
not distinguish between the “obviously insecure” protocol that allows C to be
corrupted, and the “obviously secure” protocol that uses an incorruptible C.
We conclude that having a single adversary per party does not faithfully model
honest parties. This motivates us to look for a more refined model.

To adequately capture locality, we extend the UC model as follows: For each
party identity (denoted PID) we consider an adversary for any PID it might
communicate with. In other words, each pair of PIDs has a pair of adversaries,
where each adversary is in a different side of the "potential communication line".
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Each local adversary is in charge of a specific communication line and is aware
only of the communication via this line.

Another feature of our modeling is that we let the environment directly control
the communication, by letting the local adversaries communicate with each other
only through the environment. This is an important definitional choice that is
different from [AKMZ12]. In particular, this means that the centralized simulator
no longer exists and, each local adversary is replaced with a local simulator in the
ideal process, where the protocol is replaced by the trusted party. The trusted
party may allow different subsets of simulators to communicate by forwarding
messages between them. Therefore, the communication interface provided by the
trusted party to the simulators represents partition of the system to clusters. The
effect of this modeling is that the simulator for an entity can no longer rely on
other parties’ internal information or communication in which it was not present.
This way, a proof of security relies only on each entity’s local information, and
potentially, represents independence of clusters defined by the trusted party.

To preserve meaningfulness, we allow the local adversaries to communicate
across party identities only via the environment or with ideal functionalities.
Aside from these modifications in the adversarial interface, the model is identical
to the UC model.

Capturing security concerns. We discuss variety of security concerns that
are captured by LUC security but not in other security notions:

Collusion-freeness. To provide initial evidence for the expressiveness of LUC,
we consider any UC-secure protocol for multi-party computation (e.g. the
[CLOS02] protocol). While this protocol UC realizes any ideal functionality
(even ones that guarantee collusion freeness) in the presence of malicious
adversaries, it allows individually corrupted parties to collude quite freely,
even when the environment does not pass any information among parties.
Indeed, this protocol does not LUC-realize any ideal functionality that guar-
antees collusion-freeness. This is so even in the presence of only semi-honest
adversaries. The reason for the failure in the LUC model is the inability of
the separate simulators to produce consistent views on adversaries’ shared
information (i.e., scheduling, committed values etc.) We note that this con-
cern is captured by the definitions of [LMS05, ASV08, AKL+09, AKMZ12]
as well.

Anonymity. We consider several flavors of anonymity such as existence-
anonymity, timing-anonymity, and sender-anonymity. Specifically, we show
UC and CP realizations of ideal functionalities that have these anonymity re-
quirements by a protocol that does not have these properties. We’ll then show
that this realization is not LUC secure. Let us informally present the above
flavors of anonymity: The first anonymity concern we present is existence-
anonymity. Intuitively, we would like to have a “dropbox’’ that does not
let the recipient know whether a new message was received, and thus hides
information regarding the existence of the sender.

Consider the following one-time-dropbox functionality. The dropbox is a
virtual box initialized with some random file. People can put files into ones
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dropbox. In addition, the owner can one time query the dropbox if any new
file has been received; if there are any incoming files in the box, they would
be delivered to the owner; else the default file would be delivered.

Indeed, whenever receiving a file from this dropbox, there is no cer-
tainty regarding the existence of a sender. Correspondingly, any protocol that
LUC-realizes the dropbox functionality is guaranteed to provide anonymity
regarding the existence of a sender. This is not so for standard UC security.

An additional anonymity concern that we consider is timing-anonymity.
Timing-anonymity means hiding the time in which an action took place. For
example consider the following email feature: whenever sending an email,
the sender can delay the sending of the email by some amount of time (say,
randomly chosen from some domain).

Indeed, upon receiving an email, the receiver does not know when this
email was sent. This property can be captured via an ideal functionality in a
straightforward way. Again, any protocol that LUC-realizes this functionality
will provide anonymity regarding the time of sending. This is not so for
standard UC security.

An additional anonymity property already mentioned here is sender-
anonymity. The common way to achieve this anonymity property in practice
is onion routing. In the work of [CL05] the onion-routing problem is defined
in the UC framework; however, they only address a potential solution to
the sender-anonymity concern rather than the concern itself. In contrast,
we formalize the sender-anonymity property. We also show how UC security
(and even CP security) fails to capture this property. Specifically, we define
an ideal functionality and show a protocol that is clearly non-anonymous but
still CP-realizes the functionality according to the definition of [AKMZ12].
This protocol is not LUC secure.

Deniability. It was pointed out in [CDPW07, DKSW09] that UC security does
not guarantee deniability due to issues with modeling of the PKI. While these
issues were resolved in the context of global setup and deniable authentica-
tion in the generalized UC framework, it turns out that the UC formalism
does not capture another deniability flavor, called bi-deniability (the name is
taken from [OPW11]): A protocol is bi-deniable if the protocol participants
can "deny" before a judge having participated in the protocol by arguing
that any "evidence" of their participation in the protocol could have been
fabricated without their involvement, even if there exists an external entity
that has an access to parties’ log files of the communication. In the context of
authentication, the judge is provided with “evidences” of sender’s participa-
tion not only by the receiver but also by this external entity. Specifically, the
sender can argue that any “evidence” of participation was fabricated by this
external entity, even though this external entity cannot communicate with
the receiver and only has an access to the communication log files of the
sender. This notion is stronger than standard deniability, in which sender’s
log files are ideally hidden from the judge. To motivate bi-deniability consider
a corporation that is obligated to store its communication log files. The log
files are collected by an external law enforcement agency. Clearly, it would
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be desirable to ensure that even if these files are disclosed, the corporation
can always deny their authenticity.

In this work, we give a simulation-based definition of bi-deniable authen-
tication and prove its equivalence to LUC secure authentication. Moreover,
due to the strong connection between bi-deniability and LUC security, we
obtain that bi-deniability is preserved under composition. In addition, we
show that UC framework fails to capture this flavor of deniability.

Confinement. Another important concern that seems hard to capture by the stan-
dard notions is the information confinement property, defined by [Lam73]. A
protocol is said to enforce confinement if even misbehaving participants can-
not leak secret information that they possess across predefined boundaries.
[HKN05] presents a game based definition of confinement. Their definition
introduces changes in the basic UC model, but still considers a centralized
adversary. We show that the definition of [HKN05] is excessively strong and
protocols that clearly enforce confinement fail to admit it. The root of the
problem is the centralized adversary that enables information flow to unau-
thorized entities.

Intuitively, separate adversaries controlling different parts of the network
or different groups of parties would indeed capture this requirement more
tightly. We present a formal definition of confinement and show that LUC
security implies it. Similarly to bi-deniability, we obtain composability with
respect to confinement. In addition, we show the inability of UC to capture
confinement. More specifically, we show that any UC functionality that en-
forces confinement is super-ideal in some well-defined sense. As before, this
is not so for LUC functionalities.

Game-theoretic implications. As pointed out in [ILM05], standard security does
not suffice for implementation of general equilibria due to collusion. In order
to overcome this problem, new notions of mechanism implementation were
defined in [ILM05, ILM08, ILM11]. However, these notions are specific to the
problem at hand and are not suitable as general definitions of security. Alwen
et al. [AKMZ12] translate their security notion to the game-theoretic setting
and define a corresponding model of mediated games. In addition, they show
that their security notion achieves preservation of incentive-structure for
mediated games.

In this work, we show how protocols modeled in the LUC framework
can be viewed as games. Moreover, we show that any protocol that LUC-
securely realizes some ideal functionality preserves the incentive structure
of the realized functionality. More concretely, for any LUC-secure protocol
π there exists an efficient mapping between real world strategies and ideal
world strategies that can be computed by each player in a local manner and
achieves indistinguishable payoffs. This in particular implies that any Nash
Equilibrium (NE) in the ideal-world game is mapped to a computational
NE in the real-world game and no new equilibria are introduced. A more
complete description of the game-theoretic implications provided by LUC
security appears in [CV12].
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Composition and Dummy Adversary. We demonstrate that LUC-security
is preserved under composition. Due to the local nature of the model, this
preservation applies not only to basic security concerns under composition, but
rather to much more general security concerns such as deniability, confinement,
and game-theoretic solution concepts. The obtained game-theoretic compo-
sition implies that Nash equilibrium is preserved under concurrent composition.

We also extend the dummy adversary notion to the local UC framework, and
show its equivalence to the general LUC-security notion.

An interesting line for future research is to try to cast the LUC framework
within the Abstract Cryptography framework [MR11]. In particular, such a work
might provide a unified basis for the LUC, CP and UC frameworks.

LUC Secure Protocols
We sketch the two secure function evaluation protocols that we analyze in this
work.

The Physical GMW Protocol. The GMW version we use is the protocol
from [Gol04]. Still, our construction is strongly inspired by [ILM05]. We cast
the protocol in the physical world by considering a set of players sitting in a
room and jointly computing a function by evaluation the gates of its circuit. In
order to properly compute the function, the players use the following physical
machinery: boxes with serial number, and machines for addition, multiplication,
duplication, and shuffle of boxed values. In more details, Let P1, ..., Pn be a set
of parties in the room and let f be the function of interest. Next:
1. Sharing the inputs: Each player partitions its input to random shares, one

share for each player and then, it publically sends those shares, in opaque
boxes, to the players.

2. Circuit emulation: Proceeding by the order of wires, all players jointly and
publically evaluate the circuit gates.

3. Output reconstruction: Each player publically hands the Boxes of the output
shares to the appropriate parties. Lastly, each party privately opens the
boxes and computes its output.

Theorem 1 (Informal statement). Let f be a PPT function. Then, there
exists a protocol that information-theoretically LUC-securely computes f with
respect to adaptive adversaries.

Throughout the process, everyone sees which operations are performed by each
player. Still, the actual values inside the boxes remain secret.

In contrast with classic GMW protocol, here the byzantine case is not done
by introducing ZK proofs; rather the primitives themselves are robust.

We achieve LUC-security for any number of corrupted parties. While the
work of [ILM05] requires at least one honest party for the collusion-freeness to
hold, we achieve LUC security (which implies collusion-freeness) even when all
the parties are corrupted. In addition, this protocol meets the strong notion
of perfect implementation defined by [ILM11], and therefore achieves privacy,
strategy, and complexity equivalence.
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The Mediated-SFE Protocol. We present here a high-level description of the
mediated protocol, following [AKL+09].

Let P1, ..., Pn, and mediator M be a set of parties and let π be a k-round pro-
tocol that UC-securely computes function f . (Inspired by [AKMZ12], we think
of the protocol as running directly over unauthenticated communication chan-
nels.) The protocol π is compiled to a new LUC-secure protocol for computing
f with a semi-trusted mediator, where all the communication is done through
the mediator. Specifically, for each round of the protocol π does:

1. Each party andM runs two-party secure computation, which outputs toM
the next round messages of this party in π.

2. M sends a commitment to the relevant messages to each party Pi.
3. In the last round of π, the mediatorM and each party run secure two-party

computation, where each party obtain its output.

Theorem 2 (Informal statement). Given a (poly-time) function f =
(f1, ..., fn) and a protocol π that UC-securely computes f . Then there exists a
protocol Π that LUC-securely computes f with respect to adaptive adversaries.

WhenM is honest it separates the parties of π and makes them be independent
of each other. When M is corrupted, the independence disappears. Still, we
obtain standard UC security.

We strengthen the protocol to be immune to powerful adversaries that control
the scheduling, gain information via leakage in the protocol, and are able to
adaptively corrupt players. In contrast to [AKMZ12], we do not assume ideally
secure channels between parties and the mediator.

Organization. Section 2 presents an overview of the LUC security definition
and composition theorem. Section 3 presents the insufficiency of standard notions
to capture interesting flavors of anonymity. Section 4 presents bi-deniability and
shows its relationship to security notions. Section 5 presents confinement and
states its relationship to various security notions.

2 LUC Security Definition and Composition Overview

The model of protocol execution is defined in terms of a system of ITMs as in
[Can01]. At first, a set of party IDs is chosen. Then, we consider a pair of ad-
versaries for all potentially communicating ITIs based on the chosen party IDs
(the definition of ITI appears in [Can01]). In addition, jointly with the environ-
ment, these adversaries have complete control over the communication between
ITIs which under their custody, as opposed to the UC framework, where a cen-
tralized adversary controls all the communication in the system. Formally, the
technical difference from the UC framework is expressed in the control function,
summarized below. The underlying computational model remains unchanged.

Let π be a protocol over a fixed set of parties. The model is parametrized by
three ITMs: the protocol π to be executed, an environment Z and an adversary A.
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The initial ITM in the system is the environment Z. The input of the initial ITM
Z represent all the external inputs to the system, including the local inputs of
all parties. As a first step, Z chooses a set P of party identities (PIDs) and
session ID s. The first ITIs to be invoked by Z is the adversaries. An adversary
with identity id = ((i, j) ,⊥) where i, j ∈ P , denoted A(i,j), is invoke for each
ordered pair i, j ∈ P . The adversaries code is set to be A. In addition, as the
computation proceeds, Z can invoke any ITI, by passing inputs to it, subject to
the restriction that all these ITIs have session ID s and PID ∈ P. The code of
these ITIs is set to be π. Consequently, all the ITIs invoked by Z, except for
the adversaries, are parties in a single instance of π. Other than that, Z cannot
pass inputs to any ITI other than the adversaries or the parties invoked by Z,
nor can any ITI other than these pass outputs to Z.

Each adversaryA(i,j) is allowed to send messages to any ITI in the system with
PID= i where the sender identity of delivered messages must be PID=j. There
need not be any correspondence between the messages sent by the parties and
the messages delivered by the adversaries. The adversaries may not pass input
to any party, nor can it pass output to any party other than Z. It is important
to notice that there is no direct communication between the adversaries and all
their communication must go through the environment.

Adversaries may also corrupt parties. Corruption of a party (ITI) with identity
id is modeled via a special (Corrupt, id, p) message delivered by A(i,j) to that
ITI, where p denotes potential additional parameters.

Any ITI other than Z and the adversaries, are allowed to pass inputs and out-
puts to any other ITI other than Z and the adversaries subject to the restriction
that the recipient have the same PID as the sender. In addition, they can send
messages to the adversaries where adversary’s PID(i,j) requires sender’s PID i
and recipient’s PID j. (These messages may indicate an identity of an intended
recipient ITI; but the adversaries is not obliged to respect these indications.)

To summarize the above restrictions, for any ordered pair of PIDs (i, j), there
is only one possible route for messages from the ITI with PID i to the ITI with
PID j: a message m from the ITI with PID i is sent to the adversary A(i,j), then
it can only be outputted to Z, then it is given to A(j,i), then it is sent to the
ITI with PID j.

The response of the party or sub-party to a (Corrupt) message is not defined
in the general model; rather, it is left to the protocol. Here we specify one
corruption model, namely that of Byzantine party corruption. We extend the
known definition to fit multiple adversaries. Here, once a party or a sub-party
receives a (Corrupt) message for the first time, it sends to that adversary its
entire current local state. Also, in all future activations, a corrupted ITI merely
forwards the incoming information to that adversary and follows instructions of
all PID related adversaries.

All the restrictions above are enforced by the control function that is formally
presented in [CV12]. Figure 1 presents a graphical depiction of the model.

Let LEXECπ,A,Z denote the output distribution of Z in the execution above.
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Fig. 1. The model of protocol execution. The environment Z writes the inputs and
reads the subroutine outputs of the main parties running the protocol, while the ad-
versaries, jointly with Z, control the communication. In addition, Z may interact freely
with all adversaries. The parties of π may have subroutines, to which Z has no direct
access.

Now we present the general notion of emulating one protocol via another pro-
tocol. Informally, we say that a protocol π emulates protocol φ if no environment
Z can tell whether it is participating in an execution of π or φ. That is, let A
and B be binary distributions, then A ≈ B if the statistical distance between A
and B is negligible.

Balanced Environments. In order to keep the notion of protocol emulation
from being unnecessarily restrictive, we consider only environments where the
amount of resources given to each adversary (namely, the length of the adver-
sary’s input) is at least some fixed polynomial fraction of the amount of resources
given to the protocol. To be concrete, we consider only environments where, at
any point in time during the execution, the overall length of the inputs given
by Z to the parties of the main instance of π is at most k times the length of
input to each adversary, where k is the security parameter in use. We call such
environments Balanced environments.

Definition 1 (LUC-emulation). Let π and φ be PPT protocols. We say that
π LUC-emulates φ if for any PPT adversary A there exists an PPT adversary
S such that for any balanced PPT environment Z we have: LEXECπ,A,Z ≈
LEXECφ,S,Z

If F is an ideal functionality we say that π LUC-realizes F .

Hybrid Protocols. As in the UC framework, we define hybrid protocols to be
protocols where, in addition to communicating via the adversary in the usual
way, the parties also make calls to instances of ideal functionalities. In other
words, an F -hybrid protocol π, denoted by πF , is a protocol that includes sub-
routine calls to F .
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Theorem 3 (Universal composition, informal statement). Let π, ρ, φ be
PPT protocols. If ρ LUC-emulates φ then protocol πρ LUC-emulates protocol πφ.

The formal composition theorem and its proof can be found in [CV12].

3 Anonymity

The timing, existence and sender anonymity were informally presented in the
introduction. Recall that in the introduction, these concerns are presented via
devices such as dropbox, email future, and trusted coordinator; but in fact these
are cryptographic channels guaranteeing anonymity in the subject matter. We
present ideal functionalities, which are the formalizations of these channels, and
realization by non-trivial protocols that do not provide anonymity. The function-
alities are defined in LUC, and the corresponding UC (and CP) functionalities
are defined by replacing the multiple adversarial interfaces with an equivalent
single adversarial interface. We remark that in absence of any formal definition,
we can only show that these protocols do not satisfy our intuitive perception
of anonymity. Here, we present the inability of the UC and CP to capture the
intuitive idea of anonymity.

3.1 Existence-Anonymity

Here our goal is to model a sender-receiver channel, denoted by existence-
anonymous channel that has a strong anonymity guarantee regarding the ex-
istence of a sender. The existence-channel always allows the receiver to retrieve
a message. However, in absence of a sender this message will be some randomly
chosen message. The LUC existence-anonymous channel FEA is formally pre-
sented in Figure 2.

Functionality FD
EA

Functionality FD
EA

runs with parties S, R, adversaries S(S,R), S(R,S), and
parametrized on message distribution D. It proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, record m, and send output (Send, sid, m)
to S(S,R). Ignore any subsequent (Send, ...) inputs. Once S(S,R) allows to forward
the message, mark m as approved.

– Upon receiving an input (Output, sid) from party R do:
1. if there is an approved message m then set OUT = m; else set OUT← D.
2. send output (OUT, sid) to S(R,S); Once S(R,S) allows to forward the message

output (OUT, sid) to R and halt.

Fig. 2. The existence-anonymous channel functionality FEA
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Functionality FEB

Functionality FEB runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize
OUT = ⊥ and proceed as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, record m, and send output (Send, sid, m)
to S(S,R). Ignore any subsequent (Send, ...) inputs. Once S(S,R) allows to forward
the message, mark m as approved.

– Upon receiving an input (Output, sid) from party R and there is an approved
message m do:
1. set OUT = m , and output (OUT, sid) to S(R,S); Once S(R,S) allows to

forward the message output (OUT, sid) to R and halt.

Fig. 3. The basic existence-channel functionality FEB

The underlying communication model is a channel called FEB that is similar to
authentication channel with a difference in the message delivery. More specifically,
a message is delivered to the recipient upon recipient’s request and only if there
exists a message sent to him. It is important to note that FEB does not provide
existence-anonymity since the recipient is guaranteed that any message received
was sent by the sender. The LUC channel FEB is formally presented in Figure 3.

Claim. The functionality FEB UC-realizes FEA and does not LUC-realize FEA.

3.2 Timing-Anonymity

Here, our goal is to define a channel that guarantees to the sender that no
receiver, upon receiving a message from him, can tell when this message was
sent. As mentioned in the introduction, we define a timing-anonymous channel,
denoted by FTA, that randomly delay a message in a way that the amount of
the delay is unknown to the receiver. In particular, the message is delivered only
after a certain delay. The LUC channel FTA is formally presented in Figure 4.

Now we formally define the underlying model. In order to capture time, we
introduce a clock functionality Fclock that is observable by all participants.
This clock is not directly observed by the environment, instead, it is indirectly
advanced by the environment, by instructing the sender to advance the clock;
this captures a setting in which the receiver’s future actions are not affected by
the amount of the delay. The formal description of Fclock presented in Figure 5.
The second component is the authentication functionality Fauth. The difference
between the LUC and the UC authentication functionality is that the LUC func-
tionality, denoted by Fauth, operates not only when a message is sent. That is,
it allows the adversary associated with the sender to approve delivery even when
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Functionality FTA

Functionality FTA runs with parties S, R, and adversaries S(S,R), S(R,S). Let T be
some finite set of natural numbers. The functionality proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, choose uniformly at random N ← T ,
set k = N , and record (k, m). Ignore any subsequent (Send, ...) inputs.

– Upon receiving an input (Advance, sid) from party S and k > 0 do:
1. update k = k − 1 and output (Advance, sid) to adversary S(S,R).
2. if k = 0 output m to S(S,R). Once S(S,R) allows to forward the message

output m to S(R,S). Once also S(R,S) allows to forward m output it to R.

1. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m has not
been delivered to S(R,S), then change the recorded message to m′.

Fig. 4. The timing-anonymous channel functionality FTA

Functionality Fclock

Functionality Fclock runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize
T = 0. Next:

– Upon receiving an input (Advance, sid) from party S do: in the first activation
verify that sid = (S, R, sid′), else ignore the input. Next, set T = T + 1.

– Upon receiving an input (time, sid) from some party, output (time, sid, T ).

Fig. 5. The clock functionality Fclock

no message was sent; in this case Fauth outputs ⊥ to receiver’s adversary and
halts. We note that Fauth seems as a natural relaxation of the UC authentication
functionality. The LUC authentication functionality Fauth is formally presented
in Figure 6.

Claim. There exists a protocol πTA that UC-realizes FTA and does not LUC-
realize FTA.

A protocol πTA that UC-realizes FTA is:
Let T be some finite set of natural numbers.

1. INPUT: Having received input (Send, sid, m), S chooses uniformly at ran-
dom N ← T , set k = N , and records (k, m).

2. ADVANCE: Having received input (Advance, sid), S forward it to Fclock and
updates k = k − 1. Once k = 0 send m to Fauth and halt.

3. OUTPUT: Having received (Send, sid, m) from Fauth, the receiver R out-
puts m.
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Functionality Fauth

Functionality Fauth runs with parties S, R, and adversaries S(S,R), S(R,S). It
proceeds as follows:

1. Upon receiving an input (Send, sid, m) from party S, do: If sid = (S, R, sid′) for
some R, then record m and output (Send, sid, m) to S(S,R).

2. Upon receiving “approve” from S(S,R), if m is recorded provide (Send, sid, m) to
S(R,S), and after S(R,S) approves, output (Send, sid, m) to R and halt. Otherwise,
provide (Send, sid, ⊥) to S(R,S) and halt. (Both adversaries control the channel
delay.)

3. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m has
not yet been delivered to S(R,S), then output (Send, sid, m′) to S(R,S), and after
S(R,S) approves, output (Send, sid, m′) to R and halt.

Fig. 6. The message authentication functionality Fauth

We note that πTA does not provide timing anonymity since all participants in the
protocol observe the clock. In particular, upon receiving a message, the receiver
can retrieve the time by sending (time,sid) to Fclock, and thus knows exactly
when the message was sent.

3.3 Sender-Anonymity

The sender anonymity property is presented in the introduction via a trusted
mediator that masks the identity of the sender. This mediator is similar to the
two-anonymous channels of [NMO08]; however, their formalism is not applica-
ble in our setting. The channel enables two senders and a honest but curious
receiver to communicate anonymously in the following sense: both senders may
send a message to the receiver but only one message is delivered. This sender-
anonymous channel, denoted by FSA, does not disclose the identity of the actual
sender. The LUC formulation of FSA is presented in Figure 7.

Functionality FSA

Functionality FSA running with parties S1, S2, R, and adversaries
S(S1,R), S(S2,R), S(R,S1), S(R,S2). At first activation verify that

sid = (S1, S2, R, sid′), else halt. Next, proceed as follows:

– Upon receiving an input (Send, sid, mi) from party Si do: record mi and send
output (Send, sid, mi) to S(Si,R). Ignore any subsequent (Send, ...) inputs from
Si. Once S(Si,R) allows to forward the message, output (Send, sid, mi) to S(R,Si).
Once approved, output (Send, sid, mi) to R and halt.

Fig. 7. The sender-anonymous channel functionality FSA
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Functionality FS1

Functionality FS1 running with parties S1, S2, R, and adversaries
S(S1,R), S(S2,R), S(R,S1), S(R,S2). Initialize variable BLOCK = 0. At first activation

verify that sid = (S1, S2, R, sid′), else halt. Next, proceed as follows:

– Upon receiving an input (Send, sid, m1) from party S1 do: record m1, and send
output (Send, sid, m1) to S(S1,R). Ignore any subsequent (Send, ...) inputs from
S1. Once S(S1,R) allows to forward the message output (Send, sid, m1) to S(R,S1).
Once approved, if BLOCK = 0 output (Send, sid, m1) to R and halt; else halt.

– Upon receiving an input (Send, sid, m2) from party S2 do: record m2, and send
output (Send, sid, m2) to S(S2,R). Ignore any subsequent (Send, ...) inputs from
S2. Once S(S2,R) allows to forward the message output (Send, sid, m2) to S(R,S2).
Once approved set BLOCK = 1.

Fig. 8. The basic sender-channel functionality FS1

The underlying communication channel, denoted by FS1, is a two-sender one
receiver channel that delivers only messages sent by the first sender S1. We note
that FS1 does not provide sender-anonymity. The formal description of FS1 is
presented in Figure 8.

Claim. The functionality FS1 UC-realizes FSA and does not LUC-realize FSA.

Sender-Anonymity in the CP Framework. We note that in the context
of sender-anonymity, the CP model suffers from the same weakness as the UC
model. That is, the above non sender-anonymous protocol is a CP-realization of
the sender-anonymous channel FSA.

4 Bi-deniability

Here, we formalize a notion of bi-deniable authentication and show that UC
security does not capture this flavor of deniability. In fact, this is true also
for GUC. Moreover, we define bi-deniability separately and show equivalence
between bi-deniable authentication and LUC secure authentication.

4.1 Bi-deniable Authentication

Bi-deniability aims to capture the ability of a participant in a two party protocol
to deny participation in a protocol execution even if its communication had been
externally exposed. The actual definition has some similarities to the definition
presented in [DKSW09] (see details in the full version [CV12]).

The relevant entities are the following: we have a sender S who is potentially
communicating with a receiver R, a judge J who will eventually rule whether
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or not the transmission was attempted, two informants IS , IR who witness the
communication (represented as log files owned by IS , IR) between S and R
and are trying to convince the judge, and two misinformantsMS, MR who did
not witness any communication but still want to convince the judge that one
occurred.

The idea of the bi-deniability definition is that no party should be accused
of participating in a protocol, if any evidence presented to the judge (by the
informants) based on witnessing the protocol execution can be also presented
(by the misinformants) without any communication whatsoever. This idea is
formalized via indistinguishability of experiments as follows: Let π be some two-
party protocol.

Informant-Experiment. The inputs to parties are given by the judge, and
any output produced by the parties is given to the judge. S and R run π in
the presence of the informants IS , IR. The informants report to J regarding
any observed communication and execute all J ’s instruction. The output
distribution of the judge J in this basic informant-experiment is denoted by
EXPπ,IS,IR,J .

Misinformant-Experiment. The inputs to parties are also given to the mis-
informants. S and R do not communicate except withMS, MR. The misin-
formantMS can send a single (signal) message1 toMR; in addition, they
can freely communicate with J . Any message received by the parties from
their misinformant is outputted to the judge. The output distribution of the
judge J in this basic misinformant-experiment is denoted by EXPMS ,MR,J .

Definition 2 (Bi-deniability). Let π be some PPT protocol and let the in-
formants IS , IR be as defined above. We say that π is bi-deniable if there exist
PPT misinformants MR and MS such that for any PPT judge J we have:
EXPπ,IS,IR,J ≈ EXPMS,MR,J .

Theorem 4. Let Fauth be the LUC authentication functionality, and let Fauth

be the UC authentication functionality of [Can01]. Then:
1. Fauth is bi-deniable.
2. Let π be some protocol. Then π LUC-realizes Fauth if and only if π is

bi-deniable.
3. Fauth is not bi-deniable.

5 Confinement

Recall that a protocol is said to enforce confinement if it prevents leakage of
secret information to unauthorized processes in the network. This guarantee
should hold even if all parties are faulty. In this section we present a definition
of confinement and show that any LUC secure realization enforces confinement
as long as the realized task does. In contrast to the other concerns, we will
not show that UC security does not imply confinement but rather argue that
1 Discussion regarding (signal) message appears in the full version [CV12].
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any definition based on a centralized adversary does not enable proper separation
between protocols that enforces confinement and the one that do not. In addition,
we show that any UC functionality that enforces confinement is “super-ideal”,
in a well-defined sense.

5.1 Confinement with a Centralized Adversary

In the work of [HKN05] a definition of confinement is presented. Their definition
considers the UC execution model with the following modifications: the UC
environment is split into two environments EH and EL, where EH interacts with
the high-level processes and EL with the low-level processes. All processes have an
I/O interface with the appropriate environment according to their classification.
In addition, the high-level environment EH cannot give inputs either to the
adversary or to the low-level environment EL. [HKN05] define confinement as
the following game: a random bit b is chosen by EH, the parties run the protocol
π, and eventually EL outputs its guess for b. We say that π enforce confinement
for partition H : L of the parties in π, if for any environments EH, EL and
adversary as above, EL succeeds in the confinement game with probability ≈ 1

2 .
This definition enforces very strong requirements on the examined protocols2,

and as a consequence, many protocols that “obviously enforce confinement” do
not satisfy this definition. We remark that this weakness is not unique to the
[HKN05] definition, and any definition based on centralized adversary is subject
to this weakness.

5.2 Definition of Confinement

Our definition follows the idea of [HKN05]. Like there, we consider split environ-
ments. More precisely, our definition consists of the same entities as in [HKN05]
where the centralized adversary is split to multiple adversaries, an adversary for
each pair of potentially communicating parties. We denote by A(i,j) the adver-
sary with identity ((i, j),⊥) and code A.

The executed experiment for partition H : L of the participating parties in
π is the following: a random bit b is chosen by EH, the parties run π, while
the adversaries, jointly with EH and EL control the communication. The envi-
ronments EH and EL write inputs and read the subroutine outputs of parties
according to their classification. EL can also give inputs to EH. In addition, EL
can interact freely with all adversaries associated with L, and all the adversaries
associated with H can give outputs to EH. The adversaries can communicate
with the appropriate party and corrupt it. Eventually EL outputs its guess for b.

Let CEXPH:L
π,A,EH,EL denote the success indicator of EL in the above experi-

ment.

Definition 3 (Confinement). Let π be a PPT protocol and let H : L be some
partition of the parties in π. We say that π enforces (H : L)-confinement if for

2 Shown in the full version [CV12].
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any PPT adversary A and for any balanced PPT environments EH and EL we
have: CEXPH:L

π,A,EH,EL ≈ U1, where U1 is the uniform distribution over {0, 1}.

Theorem 5. Let π, φ be protocols such that π LUC emulates φ. Then π enforce
(H : L)-confinement for all partitions H : L of the parties in π for which φ
enforce (H : L)-confinement.

5.3 Confinement with Respect to Super-Ideal Functionalities

Here, we show that any UC functionality that enforces confinement must be
“super-ideal”. That is, such functionalities do not provide the adversary with
any information, even when a party is corrupted. We call such functionalities
super-ideal since such functionalities essentially mandate communication chan-
nels which offer absolute physical security that hides even whether communica-
tion took place at all.

Definition 4 ( Super-ideal, informal statement). Let F be a n-party func-
tionality and let H : L be some partition of the parties. Then F is super-ideal
with respect to a set of identities H if for any adversary associated with a party
Pi for i ∈ H and for any two possible inputs the following holds: the adversary
cannot tell, even with the assistance of the adversarial interface of F , which one
of the inputs was used by party Pi.

Claim. Let F be a UC functionality and let H : L be some partition for which F
enforces (H : L)-confinement. Then, F is super-ideal with respect to all parties
in H.
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