Implementing AES via an Actively/Covertly
Secure Dishonest-Majority MPC Protocol

Ivan Damgard!, Marcel Keller?, Enrique Larraia?,

Christian Miles?, and Nigel P. Smart?

! Department of Computer Science,
University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N,
Denmark
2 Dept. Computer Science,

University of Bristol,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom

Abstract. We describe an implementation of the protocol of Damgard,
Pastro, Smart and Zakarias (SPDZ/Speedz) for multi-party computation
in the presence of a dishonest majority of active adversaries. We present
a number of modifications to the protocol; the first reduces the security
to covert security, but produces significant performance enhancements;
the second enables us to perform bit-wise operations in characteristic
two fields. As a bench mark application we present the evaluation of
the AES cipher, a now standard bench marking example for multi-party
computation. We need examine two different implementation techniques,
which are distinct from prior MPC work in this area due to the use of
MACGCs within the SPDZ protocol. We then examine two implementation
choices for the finite fields; one based on finite fields of size 28 and one
based on embedding the AES field into a larger finite field of size 24°.

1 Introduction

The invention of secure multi-party computation is one of the crowning achieve-
ments of theoretical cryptography, yet despite being invented around twenty-five
years ago it has only recently been implemented and tested in practice. In the
last few years a number of MPC “systems” have appeared [A7I89QIT2ITH22], as
well as experimental research results [I3[T62TI25126).

The work (both theoretical and practical) can be essentially divided into two
camps. On one side we have techniques based on Yao circuits [28], which are mainly
focused on two party computations, and on the other we have techniques based on
secret sharing [6ITT], which can be applied to more general numbers of players. This
israther a coarse divide as some techniques, such as that from [25], only apply in the
two party case but it is based on secret sharing as opposed to Yao circuits. Following
this coarse divide we can then divide work into those which consider only honest-
but-curious adversaries and those which consider more general active adversaries.

1. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 241263} 2012.
(© Springer-Verlag Berlin Heidelberg 2012

242 1. Damgard et al.

As in theory, it turns out that in practice obtaining active security is a much
more challenging task; requiring more computational and communication re-
sources. All prior implementation reports to our knowledge for active adversaries
have either been in the two party setting, or have restricted themselves to the
multi-party setting with honest majority. In the two party setting one can adopt
specialist protocols, such as those based on Yao circuits, whilst the restriction
to honest majority in the multi-party setting means that cheaper information
theoretic constructions can be employed. Recently, Damgard et al [14] following
on from work in [5], presented an actively secure protocol (dubbed “SPDZ” and
pronounced “Speedz”) in the multi-party setting which is secure in the pres-
ence of dishonest majority. The paper [14] contains some simple implementation
results, and extrapolated estimates, but it does not report on a fully working
implementation which computes a specific function.

Whilst active security is the “gold standard” of security, many applications
can accept a weaker notion called covert security [I2]. In this model a dishonest
party deviating from the protocol will be detected with high probability; as
opposed to the overwhelming probability required by active security. Due to the
weaker requirements, covert security can often be achieved for less computational
effort.

Our Contribution. As already remarked much progress has been made on im-
plementation of MPC protocols in the last few years, but most of the “fast”
implementations have been for simpler security models. For example prior work
has focused on protocols for two party computation only, or honest-but-curious
adversaries only, or for threshold adversaries only. In this work we extend the
prior implementation work to the most complex setting namely covert and active
security against a dishonest majority. In addition we examine more than four
players; with some experiments being carried out with ten players. Thus our work
shows that even such stringent security requirements and parameter settings are
beginning to be within reach of practical application of MPC technology.

More concretely, we show how to simplify the SPDZ protocol so that it
achieves covert security for a greatly improved computational performance, we
present the first implementation results for the SPDZ protocol (in both the ac-
tive and covert cases), and we describe an evaluation of the AES functionality
with this protocol. Our protocol implementation is in the random oracle model,
specifically the zero-knowledge proofs required by SPDZ are implemented us-
ing the Fiat—Shamir heuristic. We also simplify some other parts of the SPDZ
protocol in the random oracle model (details are provided below), and present
extensions to enable bit-wise operations in characteristic two fields.

Since the work of [26] it has become common to measure the performance
of an MPC protocol with the time it takes to evaluate the AES functionality.
This is for a number of reasons: Firstly AES provides a well understood func-
tion which is designed to be highly non-linear, secondly AES has a regular and
highly mathematical structure which allows one to investigate various different
optimization techniques in a single function, and thirdly “oblivious” evaluation

Implementing AES 243

of AES on its own is an interesting application which if one could make it fast
enough could have practical application.

The paper is structured as follows. We start by covering details of prior work
on using MPC to implement AES. In Section [l we detail the basics of the SPDZ
protocol and the minor changes we made to the presentation in [I4]. Then in
Section Ml we describe how we implemented the S-Box, this is the only non-linear
component in AES and so it is the only part which requires interaction. Finally
in Section Bl we present our implementation results.

2 Prior Work on Evaluating AES via MPC Protocols

As noted earlier the first MPC evaluation of the AES functionality was presented

n [26]. This paper presented a protocol for the case of two parties, using Yao
circuits as the basic building block. On their own Yao circuits only provide
security against semi-honest adversaries, and in this case the authors obtained
a run-time of 7 seconds to evaluate a single AES block (the model being that
party A holds the key, and party B holds a message, with B wishing to obtain
the encryption of their message under A’s key). To obtain security against active
adversaries a variant of the cut-and-choose methodology of Lindell and Pinkas
[20] was used, this resulted in the run-time dropping to 19 minutes to evaluate
an AES encryption.

In [I5] Henecka et al again look at two-party computation based on Yao
circuits, but restrict to the case of semi-honest adversaries only. They reduce
the run time per block from the previous 7 seconds down to 3.3 seconds. Huang
et al [16] improve this even further obtaining a time of 0.2 seconds per block for
semi-honest adversaries.

In [25] the authors present a two party protocol, but instead of their protocol
being based on Yao circuits they instead base it on OT extension in the Random
Oracle Model, and a form of “secret sharing with MACs” (similar to the SPDZ
protocol which we examine below). This enables the authors to obtain active
security and to improve on the prior performance of other implementations. The
run time for a single evaluation of the AES circuit is 64 seconds, however this
drops to around 2.5 seconds when amortized over a number of encryption blocks.

The most recent result in the two party setting is [17], which returns to using
Yao circuit based protocols. By use of clever engineering of the overall run-time
design the authors are able to significantly improve the execution time for a
single AES evaluation down to 1s in the case of active adversaries.

Moving to the case of more than two players, all prior implementation results
have either been for three or four players; and have been in the semi-honest set-
ting for the case of three players. Like our work, in this setting one utilizes secret
sharing but prior work has been based on Shamir secret sharing, or specialised
protocols; and in the case of active security has been based on Verifiable Secret
Sharing.

The main paper which is related to our work is that of [I3], so we now spend
some time to explain the differences between our approach and that of [13]. In [13]

244 1. Damgard et al.

the authors examine an AES implementation in the case of standard threshold-
secret-sharing based MPC protocols. An implementation for one semi-honest
adversary amongst three players and one active adversary amongst four players is
described using the VIFF framework [I2]. The VIFF framework works much like
the SPDZ protocol, in that it utilizes Beaver’s [3] method for MPC evaluation.
In an Offline Phase “multiplication triples” are produced, and then in an Online
Phase the function specific calculation is performed. The two key differences
between the protocol in [I3] and the use of SPDZ is that the method to produce
the triples is different, and the method to ensure non-cheating adversaries during
the evaluation of the circuit is also different. These differences are induced since
[13] is interested in threshold adversary structures, whereas we are interested in
the more challenging case of dishonest majority.

The protocol of [13] is however similar to our work in that it looks at the
AES circuit as a circuit over the finite field Fas, and not as an arbitrary binary
circuit. The S-Box in AES is (usually) composed of two operations an inversion
in the field Fos followed by a linear operation on the bits of the resulting element.
In [13] the authors discuss various techniques for computing the inversion, and
for the bitwise linear operation they utilize a trick of bit-decomposition of the
shared value. This bit-decomposition is itself implemented using the technique
of pseudorandom secret sharing (PRSS) of bits.

For MPC protocols based on Shamir secret sharing, obtaining a PRSS is
relatively straight forward, indeed it is a local operation assuming some set-up.
However, for protocols using secret sharing with MACs (as in our approach)
it is unknown how to build a PRSS in such a clean way. Thus we produce
such shared random bits by executing another stage in the Offline Phase of the
SPDZ protocol. We also present a simplification of the technique in [I3] to use
such bit-decompositions to implement the S-Box. This approach does however
assume that the Offline Phase somehow “knows” that the computed function
will required shared random bits; which defeats the point of having a function
independent Offline stage and also adds to the run time of the Offline stage.
Thus we also present a distinct approach which utilizes a surprising algebraic
formulation of the S-Box.

The implementation of [13] required less than 2 seconds per AES block (in-
cluding key expansion) when computing with three players and at most one
semi-honest adversary, and less than 7 seconds per AES block when computing
with four players and at most one active adversary. These times include the time
for the Offline Phase. If one is only interested in the Online Phase times, then
the active adversary case can be executed in between three and four seconds per
AES block.

More recent work has focused on the case of semi-honest adversaries and three
players only. Two recent results [I8[19] have used an additive secret sharing
scheme and a novel multiplication protocol to perform semi-honest three party
MPC in the presence of at most one adversary. In [18] the authors present an AES
implementation using a novel implementation of the S-Box component via an
MPC table-lookup procedure. They report being able to perform 67 AES block

Implementing AES 245

cipher evaluations per second. In [19] the authors report on an implementation
of AES, using the Sharemind framework [7], in which they can accomplish over
one thousand AES block cipher evaluations per second.

In summary Table[lsummarizes the different performance figures and security
models for prior work on implementing AES using multi-party computation,
with also a comparison with our own work. Like all network based protocols
a significant time can be spent waiting for data, thus authors have found that
executing many calculations in parallel (as in for example AES-CTR mode)
can have significant performance enhancements. Thus for papers which report
such results we give the improved amortized costs for multiple executions (or
just the blocks-per-second count for a single execution if no improvement via
amortization occurs). However, single execution costs are still important since
this deals with the case of (for example) AES-CBC mode. In our implementation
we found little gain in performing multiple AES evaluations in parallel.

Table 1. A comparison of different MPC implementations of AES. We only give
the online-times for those protocols which have a pre-processing phase. We also note
whether the implementation assumes a pre-expanded key or not.

Total ~Max Time for (Amortized)

Number Number single Blocks Expanded
Paper Security Parties Adv. AES Block per Sec Key Notes
[26] semi-honest 2 1 7.0s 0.1 N Yao
[I5] semi-honest 2 1 3.3s 0.3 N Yao
[I6] semi-honest 2 1 0.2s 5.0 Y Yao
[13] semi-honest 3 1 1.2s 0.9 N Shamir
[I8] semi-honest 3 1 N/A 67 Y Additive
[19] semi-honest 3 1 1.0s 1893 Y Additive
[26] covert 2 1 95s ~ 0 N Yao
This work covert 2 1 0.17s 10.3 Y SPDZ
This work covert 3 2 0.19s 9.6 Y SPDZ
This work covert 4 3 0.18s 9.2 Y SPDZ
This work covert 5 4 0.19s 74 Y SPDZ
This work covert 10 9 0.23s 5.2 Y SPDZ
[26] active 2 1 19m ~ 0 N Yao
[25] active 2 1 4.0s 32 N oT
17 active 2 1 1.0s 1.0 Y Yao
[13] active 4 1 2.1s 0.5 N Shamir
This work active 2 1 0.26s 5.0 Y SPDZ
This work active 3 2 0.29s 4.7 Y SPDZ
This work active 4 3 0.32s 4.6 Y SPDZ
This work active 5 4 0.34s 4.4 Y SPDZ
This work active 10 9 0.41s 3.6 Y SPDZ

In interpreting the table one needs to note that Yao based experiments usually
implement a different functionality. Namely, the circuit constructor is the player

246 I. Damgard et al.

holding the key. Whether the key is expanded or not refers to whether the garbled
circuit has this key hardwired in or not.

3 The SPDZ Protocol

We now give an overview of the SPDZ protocol, for more details see [I4]. The
reader should however note we make a number of minor alterations to the basic
protocol, all of which are describe below. Some of these alterations are due to
us working in the random oracle model (which enables us to simplify a number
of sub-protocols), whilst some are simply a functional change in terms of how
inputs to the parties are created and distributed. In addition we describe how
to simplify the SPDZ protocol to the case of covert adversaries.

The SPDZ protocol, being based on the Beaver circuit randomization tech-
nique [3], comes in two phases. In the first phase a large number of random triples
are produced, such that each party holds a share of the triple, and such that
the underlying values in the triple satisfy a multiplicative relation. This phase is
referred to as the “Offline Phase” since the triples do not depend on either the
function to be evaluated (bar their number should exceed a constant multiple of
the number of multiplication gates in the evaluated function), and the triples do
not depend on the inputs to the function to be evaluated. In the second phase,
called the “Online Phase” the triples are used to evaluate the function on the
given input.

The key to understanding the SPDZ protocol is to note that all values are
shared with respect to a non-standard secret sharing scheme, which incorporates
a MAC value. To describe this secret sharing scheme we fix a finite field F,. The
MAC keys are values a; € Fy for 1 < j < nmac such that player i holds the
share a;; € F, where

o = a1+ Q.

The shared values are then given by the following sharing of a value a € Fy,

TMAC

(@) == (6, (a,...,an), (7331’ s aij’n)jzl),
where a is the shared value, § is public and we have the equalities

a=ay+---+ap,

aj-(a+6) =71+ 4750 for 1 <j < nmac.

Given this data representing a shared value a each player P; holds the data
(6, ai,{7j,:};¥4°). To ease notation we write ;,(a) to denote the share of the
jth MAC on item a held by party ¢. Arithmetic in this representation is compo-

nentwise, more precisely we have
(a)+ () =(a+Db), e-{(a)=(e-a) and e+ {(a)=(e+a),

where
MMAC

et+(a) = (6 —e, (a1 teaz,....an), (V155 Vn)200).

Implementing AES 247

The simplicity of the above method for adding a constant value to (a) is the
reason of the public value 4. In [I4] the presentation is simplified to having only
nmac = 1, however the case of more general values of nyac is discussed. In our
implementation having nuyac > 1 will be vital to ensure active security when
dealing with small finite fields, thus we present the more general case above.

The SPDZ protocol can tolerate active adversaries and dishonest majority
(ignoring the case where one of the dishonest players aborts) amongst a total of
n parties. Thus we can assume that n — 1 of the parties are dishonest and will
arbitrarily deviate from the protocol. The SPDZ protocol guarantees that if the
protocol terminates then the honest parties know that their resulting output is
correct, except with a negligible probability. For active adversaries we set this
probability, to mirror the choice in [I4], to 274°. For covert adversaries we adapt
the protocol so that the probability that a cheating adversary will be detected
is lower bounded by

1
mindl— —nMAC 1— —MnsAc
{ q b q b 2 . (n _ 1) } b
where nmac and nsac are parameters to be discussed later and F, is the finite
field over which our triples are defined.

3.1 Offline Phase

The Offline Phase makes use of a somewhat homomorphic encryption (SHE)
scheme, with a distributed decryption procedure, and zero-knowledge proofs. In
our implementation we use the optimized non-interactive zero-knowledge proofs
of knowledge (NIZKPoKs) derived from the Fiat—Shamir heuristic which are
described in [I4]. Thus our Offline Phase is only secure in the Random Oracle
model.

The specific SHE scheme used is a variant of the BGV scheme [10] over the
mth cyclotomic field. We thus have lattices of dimension ¢(m), over a modulus
of size Q). Each ciphertext consists of two (or three) polynomials modulo @ of
degree less than ¢(m). The underlying plaintext space can hold an element of
(F,)".

The Offline Phase produces many triples of such sharings (a), (b), (c) such that
¢ = a - b, where these values are authenticated via a global set of nyac shared
MAC keys as described above. The NIZKPoKs mentioned above have soundness
error 1/2, and so in [14], we “batch” together sec executions so as to reduce the
soundness error to 27°¢¢. This batching, combined with the vectoral plaintext
space, means that a single execution of the Offline phase produces sec- ¢ triples.

We can trivially modify the Offline Phase so that it also outputs, for charac-
teristic two fields, a set of shared random bits and their associated MACs. We
can produce one such shared bit for roughly one third of the cost of one shared
triple. As for the shared triples, each invocation of the method to produce shared
random bits will produce sec - £ bits in one go.

The main cost of the Offline phase is in the production and verification of
the zero-knowledge proofs. For n players, for each proof that a player needs to

248 I. Damgard et al.

produce he will need to verify n — 1 proofs of the other players. For the case
of covert adversaries we simplify the Offline Phase as follows. We do not batch
together proofs, i.e. we take sec = 1, which results in soundness error for each
proof of 1/2. In addition each player when it receives n — 1 proofs from all other
players only verifies a random proof. This means that a cheating player will be
detected with probability at least 1/(2-(n— 1)) in the Offline phase, as opposed
to 1 — 2749 when we use the standard actively secure Offline Phase.

3.2 Online Phase

Given that our Offline Phase is given in the Random Oracle Model we alter the
Online Phase from [14] so that it too utilizes Random Oracles. This means we
can present a more efficient Online Phase than that used in [14]. Our Online
Phase makes use of three hash functions: The first one Hj is used to ensure
that broadcast has happened, for this hash function we require it is one which
supports an APT of standard hash functions consisting of Init, Update and Finalise
methods. The second hash function Hs is used to generate random values for
checking the linear MAC equations and the triples. The third hash function Hs,
which we model as a random oracle, is used to define a commitment scheme as
follows: To commit to a value x, which we denote by Commit(x), one generates
a random value r € {0, 1}, for some security parameter sec, and computes
comm = Hj(z|r). To open Open(comm, z,) one verifies that comm = Hs(x||r)
returning x if this is true, and _L if it is not.

The first change we make is in how we guarantee that consistent broadcast
occurs. For the Online phase we assume that the point-to-point links between
the parties are authenticated, but we need to guarantee that a dishonest party
is not allowed to send different messages to different players when he is required
to broadcast a single value to all players. This is done by modifying the notion
of a “partial opening” from [14] and the notion of “broadcast”. The “broad-
casts” are ensured to be correct via the parties maintaining a hash of all values
received. This is checked before the output is reconstructed; thus in the final
broadcast to recover the output we utilize the re-transmit method from [I4] to
check consistency of the final broadcast.

In the original protocol “partial opening” just means a broadcast of the share
of a value held by a party, but not the broadcast of the share of the MAC on
that value. Thus only the value is opened, not the MAC on the value. However,
we each ensure player maintains the running totals of the linear equations they
will eventually check. In [14] these linear equations were of the form -, e*ay,
for some random agreed value e. This gives an error probability of T'/q, where
T is the number of partial openings in an execution of the Online Phase. For
small values of ¢ this is not effective, thus we replace the values e* by the output
of hash function Hs. In Figure [l we describe our modified partial opening, and
broadcast protocol, which maintains a hash value of all values broadcast; as well
as a method for checking consistency.

Implementing AES 249

Init(): We initialize the following data:
1. Party ¢ executes Hj.Init().
2. Party ¢ sets cnt; = 0.
3. FOI"j = 1,~~~,7’LMAC
(a) Party 7 sets a;,; = 0 and ~;,; = 0.
4. Party i generates a random value seed; € {0,1}** and sends it to all other

players.
Broadcast(v;): We broadcast v; and receive the equivalent broadcasts from other
players:
1. Party i sends v; to each player.
2. On receipt of {v1,...,vn} \ {vi} execute Hy.Update(vi]| ... [|vn).

3. Return {v1 +--- +vn}.
PartialOpen({a)): Party ¢ obtains the partial opening of the shared value and up-
dates their partial sums:

1. Execute {ai,...,an} = Broadcast(a;).

2. a=a1+ -+ an.

3. (ex]l.- . lenmac) = H2(0||seed1]| ... ||seedy|lcnt;) € Fy.
4. cnt; =cnt; + 1

5. FOI"j: 1,~~~,7’LMAC

(a) @ji= a5 +e;-(a+da).
(b) vii =750+ e - vii(a)
6. Return a.
Verify(): We check all broadcasts have been consistent:
1. Party ¢ computes h; = H;.Finalise() and sends h; to each player.
2. On receipt of h; from player j, if h; # h; then abort.

Fig. 1. Methods for Partial Opening and Broadcast for Party 4

In the Online Phase the key issue is that the triples produced by the Offline
Phase may not satisfy the relation ¢ = a - b, nor may the MACs verify. This is
because we do not ensure that the dishonest parties were “well behaved” in the
Offline Phase. Thus these two properties must be checked. The Online Protocol
of [14] does this as follows: To check that ¢ = a - b for the triples, we will use for
the MPC evaluation we “sacrifice” a set of nsac extra triples per evaluated triple.
For the sacrificing method in our implementation, we adopted the naive method
of [14]. This results in consuming more triples, but is simpler computationally.
To check the MAC values a series of nyac linear equations are checked at the
end of the Online Phase.

Each triple sacrifice and MAC equation check can be made to hold by the
adversary with probability 1/¢. Thus to reduce this to something negligible we
sacrifice many triples, and utilize many MAC equations. But in the case of covert
adversaries we select nyac = nsac = 1, and so the probability of a cheating
adversary being detected is bounded from below by 1 —1/q.

Both of these checks require that the parties agree on some global random
values at different points in the protocol. In [I4] these extra shared values are
determined in the Offline Phase, via a different form of secret sharing; with the
sharings being opened at the critical point in the Online protocol. The benefit

250 I. Damgard et al.

of this approach is that one obtains a protocol which is UC secure without
the need for Random Oracles; however the down-side is that the Offline Phase
becomes relatively complex. In our work we take the view that since Random
Oracles have been used in the Offline Phase one might as well exploit them in
the Online Phase. Thus these shared values are obtained via a Random Oracle
based commitment scheme as we now describe.

The next alteration we make to the Online Phase of [14] is that we assume
that the players shares of the input values are “magically distributed” to them.
This can be justified in two ways. Firstly we are only interested in timing the
main Offline and Online Protocol and the input distribution phase is just an
added complication. Secondly, a key application scenario for MPC is when the
players are computing a function on behalf of some client. In such a situation
the players do not themselves have any input, it is the client which has input. In
such a situation the players would obtain their respective input shares directly
from the client; thus eliminating the need entirely for a special protocol to deal
with obtaining the input shares.

Our final alteration is that we utilize a new online operation, in addition to
local addition and multiplication, called BitDecomposition. We first note that
we can given a sharing (a) of a finite field element a € For = Fo[X]/F(X), and
a set of k randomly shared bits (r;) for i = 0,...,k — 1. Suppose we write a as
Zi‘:ol a;- X', our goal is to produce (a;). Firstly via a local operation we compute
a sharing of r = Y_7; - X* by computing (r) = > (r;) - X*. Then we produce a
masked value of a, via (¢) = (a) + (r). The value of (c) is then opened to reveal ¢
and we compute the decomposition ¢ = Y ¢; - X*. Then we can locally compute
(a;) = ¢; + (r;). Note, if a is known to be in a subfield of Fyx, as it will be in one
of our implementations for k = 40, we can utilize the embedding of the subfield
into the larger field to reduce the number of shared random bits needed for this
decomposition down to the degree of the subfield. We refer to Appendix [Al for
more details.

Given these alterations to the Online Phase of [I4] we present the modified
protocol in Figure 2] of the Appendix.

4 S-Box Implementation

We present two distinct methodologies to implement the S-Box. The first requires
the Offline Phase to only produce multiplication triples, and utilizes the algebraic
properties of the S-Box. The second requires the Offline Phase to also produce
sharings (and associated MACs) of random bits.

4.1 S-Box via Algebraic Operations

A key design criteria of any block cipher is that it should be highly non-linear. In
addition it should be hard to write down a series of simple algebraic equations to
describe the cipher. Since such equations could give rise to an attack via algebraic
cryptanalysis. Indeed one reason for choosing AES as an example benchmark for

Implementing AES 251

MPC protocols, is that being a block cipher it should be highly non-linear and
hence a challenge for MPC protocols. However, as was soon realised after the
standardization of AES the S-Box (the only non-linear component in the entire
cipher) can be represented in a relatively clean algebraic manner.

Our algebraic method to implement the S-Box operation is based on the anal-
ysis of AES of Murphy and Robshaw [23]. In this work the authors demonstrate
that actually AES can be described by (relatively simple) algebraic formulae over
Fos, in other words the transform between byte-wise and bit-wise operations in
the standard representation of the AES S-Box is a bit of a MacGuffin.

Recall the AES S-Box consists of an inversion in Fgs (which is indeed a highly
non-linear function) followed by a linear operation over the bits of the result.
This is usually explained that the mixture of the two operations in two distinct
finite fields “breaks any algebraic structure”. This was shown to be false in [23].
Indeed one can express the S-Box calculation via the following simple polynomial

S-Box(z) = 0x63 4 0x8F - 2'27 4 0xB5 - 2191 4 0x01 - 2223 + 0xF4 - 22%
+ 0x25 - 2247 4 0xF9 - 22 + 0x09 - 2%5% 4 0x05 - 2254,

where (as is usual) operations are in the finite field defined by Fos = Fa[x]/(2® +
2 + 23 + 2 + 1) and the notation 0x12 represents the element defined by the
polynomial 2* + x. That the operation can be defined by a polynomial of degree
bounded by 255 is not surprising, since by interpolation any functions from Fys
to Fys can be represented in such a way. What is surprising is that the polynomial
is relatively sparse, however this can be easily shown from first principles.

Lemma 1. The AES S-Box can be represented by a polynomial which has a non-
zero coefficient for the term i if and only if i € {0,127,191, 223,239, 247, 251, 253,
254}

Proof. Recall the AES S-Box consists first of inversion z — z~! = y followed by
an [y linear operation w = A -y + b on the bits of the result, where y are the
bits in y. The bit matrix A and the bit vector b are fixed. The final result is
obtained by forming the dot-product of the (F3)® vector w with the fixed vector
x = (1,z,2% 2%, 2%, 25, 25, 27) € (Fys)8.

First note that inversion in Fos can be accomplished by computing z~! = 2254,
since 22°® = 1 for all z # 0. The AES standard “defines” 0~! = 0, and so the
formula of 22°* can be applied even when z = 0 as well.

We then note that extracting the bits y = (yo,...,y7) € (F2)® of an element
y=yo+yi-x+---+yr -2’ can be obtained via a linear operation on the action
of Frobenius on y. This follows since Frobenius acts as a linear map, and hence
by applying Frobenius eight times we find eight linear equations linking the set
{vo,...,y7} with the Frobenius actions on y. This in turn allows us to solve for
the bits y = (yo, - - -, y7). Thus there is matrix B € (Fys)3*® such that

y =B (y, 9% y", %, v, %2, % 2T

252 I. Damgard et al.

Hence, the output of the S-Box can be written as

S-Box(z) =x-(A-y +Db),
=x-(4-B)- (v, v v% ¥, v % v +x - b,
=Ss- (]—ayay23y4ay8>y163y32>y64ay128)1—

where s is a fixed nine dimensional vector over Fas. On replacing y with 22%4 in
the above equation, using 22%® = 1 for all z # 0, we obtain our result. With the
result also following for z = 0 by inspection.

Finally to implement the S-Box we therefore need an efficient method to obtain
from an shared input value z, the shared values of the elements {z'27 2191,
2223 5239 24T ;251 5253 22541 This is equivalent to finding a short addition
chain for the set {127,191, 223,239, 247,251, 253,254}. We found the shortest
such addition chain consists of eighteen additions and is the chain

{1,2,3,6,12,15,24,48,63, 64,96, 127,191, 223, 239, 247,251, 253, 254}.

Thus to evaluate a single S-Box requires eighteen MPC multiplication operations,
as well as some local computation. Hence, to evaluate the entire AES cipher we
require 18 - 16 - 10 = 2880 MPC multiplications.

Looking ahead each multiplication operation will require interaction, and to
reduce execution times we need to ensure that each player is kept “busy”, i.e. is
not left waiting for data to arrive. To do this we will interleave various different
multiplications together; essentially exploiting the instruction level parallelism
(ILP) within the basic AES algorithm. Clearly one can execute each of the 16
S-Box operations in a single round in parallel, thus obtaining an immediate 16-
fold factor of ILP. However, further ILP can be exploited in the addition chain
above as can be seen from its graphical realisation in Figure[Bl in the Appendix.
We see that the addition chain can be executed in twelve parallel multiplication
steps; thus the total number of rounds of multiplication need for the entire AES
cipher will be 12 - 10 = 120.

4.2 S-Box via BitDecomposition

As explained in [I3] the S-Box can be implemented if one has access to shared
random bits, via the BitDecomposition operation. In our second implementa-
tion choice we extend this technique, and reduce even further the amount of
interaction needed to compute the S-Box.

We use this BitDecomposition trick in two ways. The first way is to decompose
an element in Fys into it’s bit components, so as to apply the linear map of the
S-Box. This part is exactly as described in [13]; except when we open the value of
(¢) we perform a partial opening, leaving the checking of the MACs until the end.

In our second application of BitDecomposition we use BitDecomposition to
implement the operation — x2°*. This done as follows: We decompose x
into it’s constituent bits. Then the operations x — 2, £ — 2* are all linear

Implementing AES 253
operations, and so can be performed locally. Finally the value of 2% = 27! is
computed via the combination

2254 — ((12 ~x4)) (xs _xlﬁ))) ((x:sz _x64) _x128) 7

which requires a total of six multiplications. We could reduce this down to four
multiplications by applying the Frobenius map to other elements [27]; but this
will consume even more random bits per S-Box thus we settled for the above im-
plementation which consumes 16 sharings of random bits per S-Box invocation.

5 Experimental Results

We implemented the SPDZ protocol over finite fields of characteristic two and
used it to evaluate the AES function, with the S-Box implemented using both the
algebraic formulation described earlier and the variant by BitDecomposition. As
described earlier we examined the case of dealing with both covert adversaries
and fully malicious (a.k.a. active) adversaries (with cheating probability of 2740).
We note that the probability of 2740 could be extended to smaller values, but we
used 2740 50 as to be comparable with the theoretical run-time estimates given
in [14]. For example to reduce the probability down to 273 would essentially
require a doubling of the cost of both the Offline and Online stages.

The first decision one needs to take is as to what finite field one should work
with. Since we are evaluating AES it is natural to pick the field

Kg =Fyfz]/(2® + 2 + 2% + 2 4+ 1).

Another choice, particularly suited to our active adversary cheating probability
of 2749, would be to use the field

Ky =Falyl/ (g + 9> +y" + 40 +1).

Using this finite field has the advantage that, for active adversaries, we only need
to keep one MAC share per data item, and only one triple per multiplication
needs to be sacrificed. In addition the field Kg lies in Kyo via the embedding
z = y® + 1. We also for means of comparison of the Offline phase implemented
the Offline protocol over a finite field F, with ¢ a 64-bit prime.

We also experimented with various numbers of players, and different values
of nmac and nsac. As explained in [I4] all such variants lead to different basic
parameters (m, @, ¢) of the underlying SHE scheme.

We now determine values of (m,Q,¢) for our SHE scheme given a specific
finite field F, (or in the case of ¢ prime a rough size for ¢), a value for the
sec (the number of NIZKPoKs we run in parallel in the Offline stage), and the
number of players n. As a “lattice security parameter” we selected § = 1.0052
which corresponds to roughly 128 bits of symmetric security.

We require finite fields F, of size Fgs and Fosw, as well for comparison a
finite field where ¢ was a 64-bit prime. We also looked for parameters for n €
{2,3,4,5,10} and sec € {1,40}. As in [14] we first search for rough estimate of
the parameters (m, @) which fit these needs:

254 I. Damgard et al.

char(F,) n sec ¢p(m) > log,(Q)
2 2<n<1040 12300 370
2 2<n<5 1 8000 200
2 10 1 8000 210
204 2 < <1040 16700 500
204 2<p<5 1 11000 330
264 10 1 11300 340

We then selected values for m as follows:

Fas and Faa0, sec = 40: We select m = 17425, which gives us ¢(m) = 12800.
The polynomial @,,(X) factors modulo two into ¢ = 320 factors each of degree
40. Thus these parameters can support both our finite fields Fqs and Fo4o.

Fas, sec =1: We select m = 13107, which gives us ¢(m) = 8192. The polyno-
mial @,,(X) factors modulo two into £ = 512 factors each of degree 16.

Faw0, sec=1: We select m = 13175, which gives us ¢(m) = 9600. The polyno-
mial @,,(X) factors modulo two into £ = 240 factors each of degree 40.

p =~ 264 sec =40: We select, as in [14], p = 264 + 4867 and m = 16729 so that
0= ¢(m) = 16728.

p 204 sec =1: We select, as in [14], p = 264 4 8947 and m = 11971 so that
¢ = ¢(m) = 11970.

Recall that one invocation of the Offline Phase produces sec- £ triples; thus using
the choices above we obtain the following summary table, where “# Trip/# Bits”
denotes the number of triples/bits produced per invocation of the Offline Phase.

Adversary nmac # Trip/
Field Type sec = nsac # Bits
Kg covert 1 1 512
Kg active 40 5 12800
Ky covert, 1 1 240
Ky active 40 1 12800

We ran the Offline phase on machines with Intel i5 CPU’s running at 2.8 GHz.
with 4 GB of RAM. The ping between machines over the local area network
was approximately 0.3 ms. We obtained the executions time given in Table
and Table [for the two different finite field choices and covert/active security
choices, and various numbers of players. We did not run an example with ten
players and active adversaries since this took too long. We first ran the Offline
Phase in each example to produce a minimum of 5000 triples. Clearly for some
parameter sets a single run produced much more than 5000, whilst for others we
required multiple runs so as to reach 5000 triples. These results are in Table 2
These runs are compatible with our algebraic S-Box formulation.

Implementing AES 255

This table also presents the average time needed to produce each triple, plus
also the amortized time to produce triples per AES invocation (in the case where
one wants to evaluate the AES functionality many times). Recall to evaluate the
AES functionality with our method requires 10 - 16 - 18 = 2880 multiplications
in total; thus the number of triples needed is 2880 - (nsac + 1), since each multi-
plication consumes nsac + 1 triples. What is clear from the table is that if one is
wishing to obtain security against covert adversaries then utilizing the field Kg
is preferable. However, for security against active adversaries the field Ky is to
be preferred.

Table 2. Offline Run Time Examples For The Algebraic S-Box Method

Covert Security Active Security
Total Time per Offline time Total Time per Offline time
Num. Time Triple per AES blk Time Triple per AES blk
Field Parties (h:m:s) (seconds) (h:m:s) (h:m:s) (seconds) (h:m:s)

No. Triples Produced: 5120 No. Triples Produced: 12800
Ks 2 0:01:31 0.018 0:01:42 1:25:57 0.403 1:56:02
Kg 3 0:01:32 0.018 0:01:43 1:50:25 0.518 2:29:03
K3 4 0:01:32 0.018 0:01:43 2:14:16 0.629 3:01:15
Ky 5 0:01:33 0.018 0:01:44 2:37:30 0.738 3:32:37
K3 10 0:01:48 0.021 0:02:01 4:40:15 1.314 6:18:20

No. Triples Produced: 5040 No. Triples Produced: 12800
Ko 2 0:05:08 0.061 0:05:52 0:29:34 0.136 0:13:18
Ko 3 0:05:13 0.062 0:05:57 0:38:18 0.180 0:17:14
Ko 4 0:05:14 0.062 0:05:58 0:46:02 0.216 0:20:42
Ko 5 0:05:17 0.063 0:06:02 0:55:51 0.262 0:25:07
Ko 10 0:06:02 0.072 0:06:53 1:39:14 0.465 0:44:39

We then run an Offline phase tailored to our BitDecomposition S-Box formu-
lation. Here we need to perform 10 - 16 - 6 = 960 multiplications, and thus we
require 960 - (nsac + 1) triples to evaluate a single block. But we also require
10 - 16 - 16 = 2560 shared random bits so as to perform two eight bit, BitDe-
compositions per S-Box invocation. Thus in Table Bl we present run times for a
second invocation of the Offline Phase in which we aimed to produce a minimum
of 5000 triples and 6600 shared random bits (which is the correct ratio for covert
security). Due to the inbalance between Triple and Bit production the “Offline
Time per AES Block” column needs to be taken as rough estimate. Again we see
that for covert security Kg is preferable, and for active security Ky is preferable.

But, these run times do not seem comparable with the 13ms per triple esti-
mated by the authors of [14] for the Offline Phase. However, this discrepancy can
easily be explained. The run time estimates in [I4] are given for arithmetic circuit
evaluation over a finite field of prime characteristic of 64-bits. With the param-
eter choices in [I4] this means one can select parameters for the SHE scheme
which enable a 16000-fold SIMD parallelism. For our finite fields of degree two

256 I. Damgard et al.

Table 3. Offline Run Time Examples For The S-Box Via BitDecomposition

Covert Security Active Security
Total Offline Time Total Offline Time
Number Time per AES Block Time per AES Block
Field Players (h:m:s) (h:m:s) (h:m:s) (h:m:s)
No. Triples/Bits: 5120/6556 No. Triples/Bits: 12800/12800
Ks 2 0:02:07 0:00:47 1:54:42 0:51:36
Ks 3 0:02:10 0:00:49 2:26:21 1:05:51
Ksg 4 0:02:13 0:00:50 2:56:47 1:19:33
Ksg 5 0:02:36 0:00:52 3:29:49 1:34:25
Ks 10 0:02:33 0:00:58 6:06:20 2:44:51
No. Triples/Bits: 5040/6720 No. Triples/Bits: 12800/12800
Kao 2 0:07:12 0:02:43 0:36:14 0:05:26
Kyo 3 0:07:12 0:02:43 0:47:30 0:07:07
Ko 4 0:07:19 0:02:47 0:58:55 0:08:57
Kao 5 0:07:24 0:02:49 1:10:33 0:10:34
Kyo 10 0:08:32 0:03:15 2:10:03 0:19:32

the amount of SIMD parallelism in the Offline Phase is much lower than this. To
see the difference that using large prime characteristic fields makes to the Offline
Phase we implemented it, using the parameters above to obtain the results in
Table @l As can be seen from the table we produce triples for prime fields of
64-bits in size around twice as fast as the estimates in [14] would predict.

Table 4. Offline Run Time Examples For F, With p ~ 2%

Covert Security Active Security
Total Total Time per Total Total Time per
Number Number Time Triple Number Time Triple
Players Triples (h:m:s) (seconds) Triples (h:m:s) (seconds)

2 11970 0:00:27 0.002 669120 1:10:48 0.006
3 11970 0:00:27 0.002 669120 1:32:13 0.008
4 11970 0:00:28 0.002 669120 1:55:05 0.010
5 11970 0:00:29 0.002 669120 2:20:42 0.013
10 11970 0:00:31 0.002 669120 4:17:10 0.023

We now turn to the Online Phase; recall that this itself comes in two steps
(and two variants). In the first step we evaluate the function itself (consuming
the triples produced in the Offline Phase), whereas in the second step we check
the MAC values and open the final result. In Table Bl we present the run-times to
evaluate the AES functionality for the various parameter sets generated above
using our algebraic formulation of the S-Box. These are average run-times from
all the players, executed over 20 different runs. The Online Phase was run on
the same machines as in the Offline Phase. In Table [l we present the same times
using the S-Box variant utilizing the BitDecomposition method.

Implementing AES 257

Table 5. Online Phase Runtime Examples (all in seconds) — Algebraic S-Box

Covert Security Active Security
Number Function Checking Total Function Checking Total
Field Players Evaluation Step Time Evaluation Step Time

Ky 2 0.284 0.017 0.301 1.319 0.031 1.350
Ky 3 0.307 0.062 0.369 1.381 0.035 1.416
Ks 4 0.316 0.027 0.343 1.422 0.028 1.450
Ky 5 0.344 0.034 0.378 1.461 0.018 1.479
Ky 10 0.444 0.010 0.454 1.659 0.023 1.682
Ko 2 0.449 0.012 0.461 0.460 0.021 0.481
Ko 3 0.486 0.022 0.498 0.475 0.025 0.500
Ko 4 0.490 0.042 0.532 0.486 0.055 0.541
Ko 5 0.508 0.037 0.544 0.510 0.026 0.536
Ko 10 0.765 0.021 0.786 0.672 0.017 0.689

Table 6. Online Phase Runtime Examples (all in seconds) — S-Box Via BitDecompo-
sition

Covert Security Active Security
Number Function Checking Total Function Checking Total
Field Players Evaluation Step Time Evaluation Step Time

Ky 2 0.156 0.009 0.165 0.569 0.011 0.580
Ky 3 0.178 0.008 0.186 0.616 0.019 0.635
Ky 4 0.169 0.015 0.184 0.620 0.015 0.635
Ky 5 0.173 0.019 0.192 0.727 0.019 0.746
Ky 10 0.211 0.015 0.226 0.722 0.044 0.766
Ko 2 0.260 0.006 0.266 0.256 0.004 0.260
Ko 3 0.303 0.009 0.312 0.279 0.011 0.290
Ko 4 0.303 0.010 0.313 0.287 0.029 0.316
Ko 5 0.319 0.022 0.341 0.319 0.016 0.335
Ko 10 0.399 0.016 0.415 0.387 0.027 0.414

The networking between players was implemented in a point-to-point fashion
with each player acting as both a server and a client. We ensured that data was
sent over the sockets as soon as it was ready by disabling Nagle’s algorithm [24].
To complete the function evaluation each player first parses a program written
in a specialised instruction language. This allows our implementation to take
advantage of the instruction level parallelism as described above so as to schedule
many multiplication operations to happen in parallel.

Again we see that if security against covert adversaries is the goal then using
the field Ky is to be preferred. However, for security against active adversaries the
field K49 performs better. We also ran the Online Phase in a run which performed
ten AES encryptions in parallel. This resulted in only a small improvement in
time per AES block over executing just one AES encryption at a time, thus we
do not present these figures. Improving the throughput for parallel execution is
the subject of future research.

258 I. Damgard et al.

Overall, the two methods of AES evaluation are roughly comparable. The
method via BitDecomposition being faster, and significantly faster when one
also takes into account the associated cost of the Offline Phase. However, as
remarked previously this method does not result in a generic Offline Phase;
since the Offline Phase needs to “know” the expected ratio of Bits to Triples
that it needs to produce for the actual function which will be evaluated in the
Online Phase.

In summary we have presented the first experimental results for running MPC
protocols with large numbers of players (10 as opposed to the four or less of prior
work), and for a dishonest majority of active or covert adversaries (as opposed
to threshold adversaries). It is expected that our reported execution times will
fall as dramatically as those have done for two party MPC protocols in the last
couple of years. Thus we can expect actively/covertly secure MPC protocols for
dishonest majority to be within reach of some practical applications within a
few years.

Acknowledgements. The first author acknowledges the support from the Dan-
ish National Research Foundation and The National Science Foundation of China
(under the grant 61061130540) for the Sino-Danish Center for the Theory of In-
teractive Computation, within which [part of] this work was performed; and also
from the CFEM research center (supported by the Danish Strategic Research
Council) within which part of this work was performed.

The second, third and fifth author were partially supported by EPSRC via
grant COED-EP/103126X. The fifth author was also supported by the Euro-
pean Commission through the ICT Programme under Contract ICT-2007-216676
ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under agreement number FA8750-11-2-0079, and
by a Royal Society Wolfson Merit Award. The US Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA,
AFRL, the U.S. Government, the European Commission or EPSRC.

References

1. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Proto-
cols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 137-156. Springer, Heidelberg (2007)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. J. Cryptology 23, 281-343 (2010)

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: Symposium on Theory of Computing, STOC 1996, pp. 479-488. ACM
(1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Implementing AES 259

Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Computer and Communications Security, CCS 2008, pp. 257-266.
ACM (2008)

Bendlin, R., Damgard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption
and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169-188. Springer, Heidelberg (2011)

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Symposium on Theory
of Computing, STOC 1988, pp. 1-10. ACM (1988)

Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192-206. Springer, Heidelberg (2008)

Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Krgigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325-343. Springer, Heidelberg (2009)

Bogetoft, P., Damgard, 1., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.: A Practi-
cal Implementation of Secure Auctions Based on Multiparty Integer Computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142-147.
Springer, Heidelberg (2006)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption with-
out bootstrapping. In: Innovations in Theoretical Computer Science, ITCS 2012,
pp- 309-325. ACM (2012)

Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Symposium on Theory of Computing — STOC 1988, pp. 11-19. ACM (1988)
Damgard, 1., Geisler, M., Krgigaard, M., Nielsen, J.B.: Asynchronous Multi-
party Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 160-179. Springer, Heidelberg (2009)

Damgard, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 367-374. Springer, Heidelberg (2010)

Damgard, 1., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Computation from
Somewhat Homomorphic Encryption. In: Safavi-Naini, R. (ed.) CRYPTO 2012.
LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012),
http://eprint.iacr.org/2011/535

Henecka, W., Kogl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool
for automating secure two-party computations. In: Computer and Communications
Security, CCS 2010, pp. 451-462. ACM (2010)

Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proc. USENIX Security Symposium (2011)

Kreuter, B., Shelat, A., Shen, C.-H.: Towards billion-gate secure computation with
malicious adversaries. IACR e-print 2012/179 (2012),
http://eprint.iacr.org/2012/179

Launchbury, J., Adams-Moran, A., Diatchki, I.: Efficient lookup-table protocol in
secure multiparty computation (2012) (manuscript)

Laur, S., Talviste, R., Willemson, J.: AES block cipher implementation and secure
database join on the SHAREMIND secure multi-party computation framework
(2012) (manuscript)

Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)

http://eprint.iacr.org/2011/535
http://eprint.iacr.org/2012/179

260 I. Damgard et al.

21. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Effi-
ciently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco, R..,
Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2-20. Springer, Heidelberg (2008)

22. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: Proc. USENIX Security Symposium (2004)

23. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1-16. Springer, Heidelberg
(2002)

24. Nagle, J.: Congestion control in IP/TCP internetworks. IETF RFC 896 (1984)

25. Nielsen, J.B., Nordholt, P.S.; Orlandi, C., Sheshank Burra, S.: A new approach
to practical active-secure two-party computation. IACR e-print 2011/91 (2011),
http://eprint.iacr.org/2011/91

26. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Com-
putation Is Practical. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912,
pp. 250-267. Springer, Heidelberg (2009)

27. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413-427. Springer,
Heidelberg (2010)

28. Yao, A.: Protocols for secure computation. In: Proc. Foundations of Computer
Science — FoCS 1982, pp. 160-164. IEEE Press (1982)

A Generalized BitDecomposition

In this section, we describe a generalized variant of BitDecomposition, which
includes bit-decomposition in Kg as a subfield of Kyg.

Let f: V — W be a linear map between two vector spaces over Fy. Then,
(r) and (f(r)) for a random element r € V allows to securely compute (f(z))
for any (x) by computing and opening (x + r), and then computing (f(x)) =
Fa+1) + ().

For bit-decomposition in Kg, define f : Kg — F§ by

7

FO " ai- X7) = (ao, ... ,az).

=0

This function clearly is linear over Fs. In the offline phase, it suffices to gen-
erate ((rg,...,r7)) = ({(ro),...,{(r7)) for random bits (ro,...,r7) because (r) =
ZZ:O {r;) - X* can be computed locally. Note that rg,...,77 are understood as
elements of Ky, like all variables in the protocol over Kg. Therefore, one has to
make sure that they are in fact 0 or 1 and not another element of Kg. This is
done by modifying the Offline Phase; in particular each party encrypts a ran-
dom bit and proves that it is actually a bit. The homomorphic structure of the
NIZKPoKs makes this straight-forward. As with the triples components, the se-
cret bit is defined as the sum of all inputs, and the secret sharing with MAC
is computed by multiplication via the homomorphic property of the ciphertexts
and threshold decryption.

We now move to bit-decomposition for Kg embedded in K. Let + denote the
embedding of Kg in K49. This embedding is a field homomorphism and thus a

http://eprint.iacr.org/2011/91

Implementing AES 261

linear map between vector spaces over Fa. The bit-decomposition for +(Kg) is
defined by f :(Ksg) — F$,

7

f(z(Za,in)) = (aog,...,a7).

=0

Again, f is linear over o, and thus, the protocol explained above is applicable.
Similarly to the case of Kg, it suffices to generate eight bits ({ro),...,{(r7))
in the offline phase. There is one peculiarity in this case: We defined f over
1(Kg) C Kyo, not Ky9. That means, we assume that the input of f is an element
of 1(Kg), not an arbitrary element. This is guaranteed in our application, but
may not be true in general.

In general the function f can easily be extended to f’ : K49 — F§ by defining
J'(x) := f(Puky) (7)) for p,k,) denoting the natural projection to ¢(Kg). How-
ever, masking an arbitrary element z € Kyo with a random element of +(K3)
reveals & — p,(ky) (). Therefore, one has to mask x additionally with a random
r’ € Ky0/1(Ks) before opening it, i.e., compute and open (x+z(zzzo ri- XV 4r').
As above, the homomorphic structure of the NIZKPoKs allow to generate (r’)
with the same cost as a random element.

The above discussion re Fos and Fqso can be extended to an arbitrary field
Fan and a subfield Fom if required.

262 I. Damgard et al.

B Figures

Online Protocol

Initialize: We assume i) the parties have already invoked the Offline Phase to
obtain a sufficient number of multiplication triples ({a), (b), (c)); ii) each party
holds its share of the global MAC keys «; ;; iii) that the parties have obtained
(by some means) the (-) sharing of the input values to the computation.

1. The parties execute Init() to initialize their local copy of the hash function
H1, and the values seed;, cnt;, a;,;, and ;.

2. The parties generate global random values t; € F, for j = 1,...,nsac by
computing (¢1]] ... [[tnsac) = H2(1||seedq]| . .. ||seedy).

The following steps are performed according to the circuit being evaluated.
Add: To add two representations (x), (y),the parties locally compute (z) + (y).
Multiply: To multiply (x), (y) the parties do the following:

1. They take nsac + 1 triples ({a), (b), (c)), ({fi), {gi), (hi))3AC from the set of
the available ones (and update this latter list by deleting these triples).

2. For j =1,...,nsac player P; computes
(a) p; = PartialOpen(t; - (a) — (f;))-
(b) o, = PartialOpen((b) — (g;))-
(c) 7; = PartialOpen(t; - (c) — (h;) — o5 - (fi) — pj - {gi) — &) - pj)-
(d) If 75 # 0 then abort.

3. If no player has aborted the triple ({a), (b), {c}) is accepted, and the parties
execute € = PartialOpen({z) — (a)) and § = PartialOpen({y) — (b)).

4. The parties locally compute the answer (z) = (c) +¢€-(b) + - {a) +€-§

BitDecomposition: This produces the BitDecomposition of a shared value (a).
We present a simplified protocol for when g = 2%.

1. ¢ = PartialOpen ((a) +) X7)
2. Write ¢ = Zi:ol - XE
3. Output (a;) = ¢; + (r;).

Output: We enter this stage when the players have (y) for the output
value vy, but this value has not yet been opened. This output value is
only correct if players have behaved honestly, which we now need to

check. Let ai,...,ar be all values publicly opened so far, where {(ay) =
(519» (ak,lv R ak,n): (ijl(ak)a s 77]',”(@16))7!/1%)'
1. Player P; computes (comm;,7;) = Commit(y;l|(7;,:(y));M).
2. The players execute {commy,...,comm,} = Broadcast(comm;).
3. For j =1,...,nmac the players execute
(a) Player P; computes (commj ;,7;;) < Commit(~v;).
(b) Execute {commj 1, ...,comm;j ,} = Broadcast(commj ;).
(c) Execute {aj1,...,a;n} = Broadcast(a;,;).

(d) Player P; computes a;j = a1 + -+ + jn.

(e) All players open commj; to v, (via a call to Broadcast), the commit-
ments are checked and if Open returns L for a player then it aborts.

(f) Each player verifies that o - a;,: = >, 75, for his own values of a; ;.

4. The players execute Verify() to confirm all broadcasts have been valid.

5. To obtain the output value y, the commitments to y;,v;,:(y) are opened via
each player transmitting to their openings to each player, and each player
transmitting what it receives to each other to check consistency.

6. Now, y is defined as y := >, y: and each player checks that o - (y + dy) =
Zi 'yj,i(y), for j = 1, ..., MMAC-

Fig. 2. The (slightly) modified SPDZ online phase

Implementing AES

> 253 251 254 «

Fig. 3. Data flow graph of our addition chain

263

	Implementing AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol
	Introduction
	Prior Work on Evaluating AES via MPC Protocols
	The SPDZ Protocol
	Offline Phase
	Online Phase

	S-Box Implementation
	S-Box via Algebraic Operations
	S-Box via BitDecomposition

	Experimental Results
	Generalized BitDecomposition
	Figures

