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Abstract. Paterson and Quaglia (SCN 2010) proposed the concept of
time-specific encryption (TSE) and its efficient constructions. TSE is a
type of public key encryption with additional functionality where an en-
cryptor can specify a suitable time interval, meaning that the ciphertexts
may only be decrypted within this time interval. In this work, we propose
a new methodology for designing efficient TSE scheme by using forward-
secure encryption (FSE), and based on this methodology, we present a
specific TSE scheme using Boneh-Boyen-Goh FSE, and a generic con-
struction from any FSE. Our proposed TSE schemes are practical in all
aspects with regard to computational costs and data sizes. The sizes of
the ciphertext and the public parameter in our schemes are significantly
smaller than those in previous schemes in an asymptotic sense.

1 Introduction

In SCN 2010, Paterson and Quaglia proposed the concept of time-specific en-
cryption (TSE), and showed its efficient constructions [22]. TSE is a class of
public key encryption (PKE) with additional functionality where an encryp-
tor can specify a suitable time interval such that the ciphertexts may only be
decrypted within this time interval. Such an encryption scheme is useful in appli-
cations where it is necessary to ensure that the receiver can recover the plaintext
within only a specific time interval, e.g. in electronic sealed-bid auctions.

In this paper, we propose a novel methodology for the construction of TSE
schemes, and provide practical constructions based on our methodology. We
show that forward-secure encryption (FSE) [1,7] is a powerful building block
for designing efficient TSE schemes compared to the previous methodologies
[22], which were based on identity-based encryption (IBE) [24,5] and broadcast
encryption (BE) [15,6]. Based on our methodology, new TSE schemes can be
obtained that are practical in terms of computational costs and data sizes.

In the remaining parts of this section, we provide a review of TSE and discuss
our results in detail.
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1.1 Time-Specific Encryption

In a typical scenario where TSE is used, a semi-trusted agent called a time-server
publishes a global system parameter and periodically issues a time instant key
(TIK) that is used by each receiver to decrypt a ciphertext. In TSE, a sender
can specify any interval (decryption time interval, DTI) [tL, tR] when encrypt-
ing a plaintext M to form a ciphertext c, where tL and tR denote the start and
end points of the DTI, respectively, and a receiver can decrypt the ciphertext if
the receiver is in possession of the TIK SKt for some t with t ∈ [tL, tR]. This
functionality seems to be a natural extension of that of timed-release encryp-
tion (TRE) [20,8,9,12,19], but interestingly, it is not easy to construct TSE by
straightforward modifications of existing TRE schemes.

Paterson and Quaglia presented elegant methods to efficiently achieve the
required functionality of TSE [22]. Specifically, they proposed two generic con-
structions of TSE where one is based on IBE, and the other is based on BE, and
instantiations of these schemes can yield significantly higher efficiencies than
those using straightforward modification of existing TRE. However, as shown in
Table 1 (in Sect. 5), these schemes are still not very efficient in some aspects,
and it is thus necessary to explore other solutions which can overcome their (po-
tential) shortcomings. In particular, if we assume that the lifetime of the global
system parameter is divided into T time periods, then the size of a ciphertext in
the generic construction from IBE may be linear in T , and the size of the global
system parameter in the construction from BE may also be linear in T . Because
T is generally a large value, this could be problematic in certain situations.

1.2 Our Contribution

In this work, we propose a new methodology for designing efficient TSE scheme
by using FSE. We consider this approach to be more promising than the previous
methods because of the similarity between the functionalities of TSE and FSE.
In fact, we can immediately produce a TSE scheme that allows only restricted
DTIs with tL = 0 by directly using FSE as it is. Based on this observation,
we give a specific (i.e. not generic) construction of TSE from an existing FSE
scheme1 by Boneh, Boyen, and Goh [4], and a generic construction that can
be used with any FSE scheme. Remarkably, these schemes can yield sufficiently
high efficiency in all aspects in terms of computational cost and data size, and
in particular, with regard to the evaluation items given in Table 1 (in Sect. 5),
the complexities of our proposed schemes are all at most poly-logarithmic in T ,
and are thus significantly smaller than O(T ) in the asymptotic sense. Also, our
specific construction is more efficient than the best-known instantiation from
our generic construction in all aspects (except for the computational cost for
decryption). However, our generic construction is still advantageous in the sense
that when a new construction is discovered, this then automatically results in a

1 This FSE scheme is obtained from the hierarchical IBE (HIBE) scheme in [4] via
the “HIBE-to-FSE” transformation by Canetti, Halevi, and Katz [7]. See Sect. 2.2.
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new TSE scheme via our generic construction, and this scheme may potentially
be more efficient than our specific construction.

Here, we give an overview of our basic ideas for construction of our proposed
schemes. As noted above, from FSE, we can immediately derive a TSE scheme
for restricted DTIs with tL = 0. This is based on the following observation:
in FSE, a decryption key is updated periodically, while the corresponding en-
cryption key is fixed, and more specifically, a decryption key for one particular
time period can be derived from another decryption key for any previous time
period, but not vise versa. Therefore, if a decryption key for one time period
is publicized, then all other decryption keys for subsequent time periods can
be generated from it. This exactly describes a TSE scheme for restricted DTIs
with tL = 0. Similarly to this construction, we can also derive another TSE
scheme for restricted DTIs with tR = T − 1, and it seems that we can also
obtain full-fledged TSE by considering multiple encryptions [27,13] of these two
restrictive TSE schemes. However, unfortunately, this idea does not immediately
work. Because, in this (insecure) TSE scheme, a decryption key for each time
period consists of the two independent decryption keys of the two underlying
restrictive TSE schemes, a malicious user can thus illegally generate decryption
keys for various time periods by combining these components (i.e. the decryp-
tion keys of the underlying restrictive TSE schemes) in multiple decryption keys.
In our proposed schemes, we overcome this technical hurdle by introducing the
following ideas: (1) in our specific construction, the two decryption keys of the
underlying restrictive TSE schemes are connected in an inseparable manner (by
using the algebraic property of the FSE scheme in [4]), meaning that it con-
sequently becomes impossible to generate an illegal decryption key from the
components of multiple decryption keys for the different time periods; and (2)
in our generic construction, we set up many underlying restrictive TSE schemes
(rather than using only two underlying schemes), and avoid the above attack by
using a combinatorial method proposed by Attrapadung et al. [2]. Because our
specific construction requires only two underlying restrictive TSE schemes, it
is more efficient than our generic construction, which requires many underlying
schemes. However, our generic construction does not depend on the algebraic
property of the underlying scheme and therefore can be constructed from any
FSE scheme.

1.3 Related Works

TSE was introduced as an extension of TRE, and thus we briefly describe TRE
here. TRE is a type of encryption system introduced by May [20] in 1993. In
TRE, a message can be encrypted in such a way that it cannot be decrypted (even
by a legitimate receiver who owns the decryption key for the ciphertext) until
the time (called the release-time) that was specified by the encryptor. TRE can
therefore be interpreted as TSE in which we can only use the most restricted type
of DTI [tL, tR] with tL = tR. Many practical applications and situations where
TRE schemes can be used have been considered, including sealed-bid auctions,
electronic voting, content predelivery systems, and on-line examinations.
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There are mainly two major approaches for realizing TRE. One approach is
the use of time-lock puzzles [23]. In this approach, a sender generates a cipher-
text which cannot be completely decrypted until the release-time in a receiver’s
environment, even if the receiver continues computing to decrypt the ciphertext
after it is received. This imposes a heavy computational cost on the receiver,
and it is difficult to precisely estimate the required time at which the receiver
recovers a message. (This approach is also unsuitable for TSE.)

The other approach uses a semi-trusted agent, called the time-server, which
periodically generates the time specific information needed to encrypt a message
and/or decrypt a ciphertext. Earlier TRE schemes [20,23] adopted a model in
which the time-server and the system users needed to interact.

Chan et al. [9] and Cheon et al. [10] proposed TRE schemes in which no
interaction between the time-server and users was required. Most of the TRE
schemes [8,18,11,21,12,19,14] that were proposed after these schemes [9,10], and
the TSE schemes of Paterson and Quaglia [22], follow this approach.

It should be noted that most of the previous TRE schemes that adopted
the time-server model of [9,10] are in fact public-key (or identity-based) TRE
schemes, which consider confidentiality against the time-server. In the model,
each receiver has its own secret key along with its corresponding public infor-
mation (either a public key or an identity), and when encrypting a message, the
encryptor specifies not only release time but also a receiver’s public information
to generate a receiver-specific ciphertext. We can also consider a “plain” ver-
sion of TRE in the time-server model in which each ciphertext is not specific to
any receiver and the ciphertext can be decrypted by anyone who receives the
time-specific information from the time-server. (In this model, the confidentiality
against the time-server is not considered.) This plain TRE can be realized easily
from any IBE by regarding an identity as a time. Indeed, most of the previous
public key TRE schemes mentioned above were realized by combining an IBE-
like primitive with a PKE-like primitive. The difference between these settings
(i.e. the “public key” setting and the “plain” setting) were explicitly considered
for TSE by Paterson and Quaglia [22]. For a more detailed explanation, see
Sect. 2.1.

2 Preliminaries

In this section, we formally introduce the definition of TSE, FSE, and bilinear
groups, and describe the decisional �-weak Bilinear Diffie-Hellman Inversion (�-
wBDHI) assumption.

Notation. Throughout this paper, we will consider time as a discrete set of time
periods, regarding these as integers between 0 and T − 1, where T represents
the number of time periods supported by the system. We denote by [tL, tR],
where tL ≤ tR, the interval containing all time periods from tL to tR inclusive.

“x
U←− y” denotes that x is chosen uniformly at random from y. x ← y denotes

x is output from y if y is an algorithm, or y is assigned to x otherwise. “PPT”
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denotes probabilistic polynomial time. We say that a function f(k) is negligible
(in k) if f(k) < 1/p(k) for any positive polynomial p(k) and all sufficiently
large k.

2.1 Time-Specific Encryption

As explained in the introduction, a TSE scheme is an extension of a TRE scheme
which supports decryption of ciphertexts with respect to DTI. Paterson et al.
[22] defined several settings for TSE, namely, plain TSE, public-key TSE, and
identity-based TSE. In the plain TSE setting, a ciphertext is not specified to
any user and any entity who obtains a TIK corresponding to the DTI of the
ciphertext can decrypt the ciphertext. The plain setting is mainly introduced in
order to be used as building blocks for TSE schemes for the other two settings
(though a plain TSE scheme itself might have some interesting applications).
In public-key and identity-based TSE settings, on the other hand, each user
(receiver) has its own secret key and either a public-key or an identity, and a ci-
phertext is made specific to a particular receiver using these public information.
Correspondingly, to decrypt a ciphertext, not only a TIK but also the receiver’s
secret key is now required. TSE schemes in the latter two settings provide confi-
dentiality even against a curious time-server. In this paper, we will only consider
the plain setting, which is because public-key (resp. identity-based) TSE scheme
with desirable security can be generically obtained by appropriately combining
a plain TSE scheme with a chosen-ciphertext secure PKE (resp. IBE) scheme
with the previously known methods for TRE schemes [10,21,19]. From here on,
when we just write “TSE”, we always mean “plain TSE”.

A TSE scheme is defined by the four algorithms (TSE.Setup, TSE.Ext, TSE.Enc,
TSE.Dec), which has the associated message space MSP . The four algorithms
are as follows: The setup algorithm TSE.Setup(1k, T ) takes a security param-
eter 1k and T ∈ N as input, and outputs a master public key MPK and
a master secret key MSK, where the TSE system supports time space T =
[0, T − 1]. The key extraction algorithm TSE.Ext(MPK,MSK, t) takes MPK,
MSK, and a time t ∈ T as input, and outputs a TIK SKt. The encryption
algorithm TSE.Enc(MPK, [tL, tR],M) takes MPK, a DTI [tL, tR] ⊆ T, and a
message M ∈ MSP as input, and outputs a ciphertext C. The decryption al-
gorithm TSE.Dec(MPK,SKt, C) takes MPK, SKt, and C as input, outputs
either a message M or the failure symbol ⊥. We require, for all k ∈ N, all
T ∈ N, all integers tL, tR, and t satisfying 0 ≤ tL ≤ t ≤ tR ≤ T − 1,
all (MPK,MSK) ← TSE.Setup(1k, T ), and all messages M ∈ MSP , that
TSE.Dec(TSE.Ext(MSK, t), TSE.Enc(MPK, [tL, tR],M)) = M .

Security. We review the security definition for a TSE scheme by Paterson et
al. [22]. This security requires that an adversary cannot gain any useful informa-
tion from a ciphertext under a DTI [tL, tR], if the adversary has no TIKs SKt

for t ∈ [tL, tR].
Formally, we say that a TSE scheme is IND-CPA secure if any PPT ad-

versary A has at most negligible advantage (in the security parameter k) in
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the following game between a challenger C and A for any polynomial T : C runs
TSE.Setup(1k, T ) to generate a master public/secret key pair (MPK,MSP ), and
gives MPK to A. A can adaptively issue TIK extraction queries t1, t2, . . . . For
each TIK extraction query ti, C responds by running TSE.Ext(MPK,MSK, ti)
to generate a TIK SKti corresponding to ti, and then returns SKti to A.
At some point A selects two challenge messages M0,M1 ∈ MSP and the
challenge DTI [tL, tR] ⊆ T with the restriction that ti �∈ [tL, tR] for all of
the previous TIK extraction queries ti that A made before the challenge. A
then sends (M0,M1, [tL, tR]) to C. C chooses a random bit b and computes
C∗ ← TSE.Enc(MPK, [tL, tR],Mb), and returns C∗ to A. A can continue to make
TIK extraction queries ti under the restriction ti �∈ [tL, tR], and C responds to
those as before. Finally, A outputs its guess b′ ∈ {0, 1} for b. The adversary A’s
advantage in the above game is defined as AdvCPA

TSE,A(k) = |Pr[b′ = b]− 1
2 |.

2.2 Forward-Secure Encryption

An FSE scheme has the property that the threat of key exposure is confined to
some span by updating the secret key at each time unit. This scheme realizes the
property by using the functionality that a receiver can update the previous secret
key dt−1 to the next secret key dt without interacting with any outside entity.
We provide a formal definition of FSE by following [7] but slightly customized
for our purpose.

An FSE scheme is defined by the four algorithms (FSE.Gen, FSE.Upd, FSE.Enc,
FSE.Dec), which has the associated message space MSP . The key generation al-
gorithm FSE.Gen(1k, N) takes a security parameter 1k and the total number of
time periods N as input, and outputs a public key pk and an initial secret key d0.
The key update algorithm FSE.Upd(pk, i, j, di) takes pk, an index i < N of a pre-
vious time period, an index j > i for the current time period, and a secret key di
(corresponding to the period i) as input, and outputs a secret key dj for the time
period j. The encryption algorithm FSE.Enc(pk, i,M) takes pk, i < N , and a mes-
sage M ∈ MSP as input, and outputs a ciphertext c. The decryption algorithm
FSE.Dec(pk, di′ , c) takes pk, di′ , and c as input, and outputs either M or a failure
symbol ⊥. We require, for all k ∈ N, all N ∈ N, all (pk, d0)← FSE.Gen(1k, N), all
indices i ∈ [0, N − 1] (for specifying time periods), and all messages M ∈ MSP ,
that FSE.Dec(pk, FSE.Upd(pk, 0, i, d0), FSE.Enc(pk, i,M)) = M .

We note that Canetti et al. [7] defined only the “sequential update” algorithm.
That is, in their syntax, the key update algorithm only allows an update from a
secret key di for the time period i to a key di+1 for the next time period. However,
for the sake of simplicity, we use the syntax in which the update algorithm allows
the “direct update”, so that FSE.Upd takes a key di for the time period i as input
and outputs the secret key dj as long as i < j. It is straightforward to see that the
direct update functionality can be generally achieved by the sequential update
algorithm of [7]. In addition, there are FSE schemes which support efficient
direct update algorithm (compared to running “sequential update algorithms
many times), such as the FSE scheme instantiated with the HIBE scheme by
Boneh et al. [4] via the HIBE-to-FSE transformation shown in [7].



190 K. Kasamatsu et al.

Security. We say that an FSE scheme is IND-CPA secure if any PPT algo-
rithm A has at most negligible advantage (in the security parameter k) in the
following game between a challenger C and A for any polynomial N : At the
beginning of the game A(1k, N) outputs the challenge time period j∗. C runs
FSE.Gen(1k, N) to generate a pair of a public key pk and an initial secret key
d0, runs dj∗+1 ← FSE.Upd(pk, 0, j∗ + 1, d0), and then gives pk and dj∗+1 to A.
A selects two challenge messages m0,m1 ∈ MSP , and sends m0,m1 to C. C
chooses a random bit b, computes c∗ = FSE.Enc(pk, j∗,mb), and returns c∗ to
A. Finally A outputs its guess b′ ∈ {0, 1} for b. The adversary A’s advantage in
the above game is defined as AdvCPA

FSE,A(k) = |Pr[b′ = b]− 1
2 |.

Note that in the above security game, the adversary is required to commit
to the time period to be attacked at the beginning of the game. While this
definition is weaker than the definition of [7], it suffices for our construction of a
TSE scheme from any FSE scheme that we will show in the following sections.

Transformations from Hierarchical IBE. There is a trivial construction of an
FSE scheme that supports N time periods from a hierarchical IBE (HIBE)
scheme that supports hierarchy with depth N , by interpreting a time period i in
FSE as a “chain” (1, . . . , i) of identities in HIBE. More specifically, for a secret
key for the time period t in FSE, we use a decryption key for the identity-vector
(1, · · · , i) in HIBE. To update a secret key for time period j to time period j > i,
one can run the derivation algorithm of the HIBE scheme to obtain a decryption
key for the identity-vector (1, · · · , j).

Another more sophisticated HIBE-to-FSE transformation is the binary tree-
based construction due to Canetti, Halevi, and Katz [7]. This construction has
the advantage in that to instantiate an FSE scheme with N time periods, a
building block HIBE only needs to support a hierarchy with depth logN .

The common feature of these HIBE-to-FSE transformations is that multi-
ple instances of FSE can virtually be instantiated so that they all share the
same public parameters, by regarding the top-level identities as the indices for
specifying an independent HIBE scheme, and then applying the HIBE-to-FSE
transformations to each HIBE scheme instantiated in the second (and lower)
level identity space. This trick will be used in our constructions of TSE.

Concrete Instantiation from the Boneh-Boyen-Goh HIBE Scheme [4]. In Fig. 1,
we review the instantiation of an FSE scheme, which we call the basic BBG-FSE
scheme, using the HIBE scheme by Boneh, Boyen, Goh (BBG HIBE) [4] via the
“chain”-style transformation explained above.

Looking ahead, the basic version of our TSE scheme in Sect. 3.2 is obtained
from the above basic BBG-FSE scheme, and our full TSE scheme in Appendix A
is based on the FSE scheme obtained from the HIBE-to-FSE transformation due
to Canetti et al. [7] (we call this FSE scheme full BBG-FSE ).
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FSE.GenBBG(1
k, N) :

α, β
U←− Zp; g, g2, h0, · · · , hN

U←− G

g1 ← gα; P ← e(gα, gβ); d0 ← gαβ

pk ← (g, g1, g2,h = (h0, · · · , hN ), P )
Return (pk, d0)

FSE.EncBBG(pk, i, σ,M) :
Parse pk as (g, g1, g2,h, P )

s
U←− Zp; C1 ← P s ·M ; C2 ← gs

C3 ← f(i,h, σ, g2)
s

Return C ← (C1, C2, C3)

FSE.DecBBG(di, C) :
Parse C as (C1, C2, C3)
Parse di as (D1, D2, · · · )
Return M ← C1·e(C3,D2)

e(C2,D1)

FSE.UpdBBG(pk, i, j, σ, di): (where j > i)
Parse pk as (g, g1, g2,h, P )

r
U←− Zp

If i = 0 then
dj ← (di · f(j,h, σ, g2)r, gr, hr

j+1, · · · , hr
N )

Else (i.e. i �= 0)
Parse di as (a0, a1, bi+1, · · · , bN )

D0 ← a0 ·∏j
k=i+1 b

σN+k
k · f(j,h, σ, g2)r

D1 ← a1 · gr
D′

u ← bu · hr
u for all u ∈ [j + 1, T ]

dj ← (D0, D1, D
′
j+1, · · · , D′

T )
End If
Return dj

Fig. 1. Basic BBG-FSE: The FSE scheme obtained from the BBG HIBE scheme [4],
where f(i,h = (h0, · · · , hN), σ, b) = h2N+1

0 ·∏i
k=1 h

σN+k
k · b

For notational convenience, in Fig. 1, we describe the scheme so that the
encryption and update algorithms take an additional input σ ∈ {0, 1}. This bit
σ is used to instantiate two BBG-FSE schemes with N time periods under the
same public parameter: the first scheme uses the “ordinary” interval [0, N − 1],
and the second scheme uses the “shifted” interval [N, 2N − 1].

2.3 Decisional �-wBDHI Assumption

We first recall bilinear groups. Let G and GT be groups of order p for some large
prime p (we assume that the size of p is implicitly determined by the security
parameter k), and let e : G × G → GT be an efficiently computable mapping.
We call a tuple (G,GT , e) bilinear groups, and e a bilinear map, if the following
two conditions hold: (Bilinear:) for all generators (g, h) ∈ G × G and a, b ∈ Zp,
we have e(ga, hb) = e(g, h)ab. (Non-degenerate:) for all generators g, h ∈ G, we
have e(g, h) �= 1.

Now we recall the decisional �-wBDHI assumption (which is defined via the
so-called decisional �-wBDHI∗ problem [4, Sect. 2.3]). Let � ∈ N. We say that
the decisional �-wBDHI assumption holds in (G,GT , e) if for any PPT algorithm
A the following difference is negligible in the security parameter k:

|Pr[A(g, h, y1, · · · , y�, e(g, h)α�+1

) = 0]− Pr[A(g, h, y1, · · · , y�,W ) = 0]|
where g, h

U←− G, α
U←− Zp, yi ← g(α

i), and W
U←− GT .

3 Concrete Construction from Specific FSE

In this section, we present our proposed TSE scheme based on a specific FSE
scheme obtained from the BBGHIBE scheme. Although the construction strongly
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depends on the algebraic structure of the underlying BBG-FSE scheme (thus it
is not a generic construction), it leads to an efficient TSE scheme compared to
TSE schemes derived from our generic construction in the next section.

3.1 The Idea of Our Construction

Before going into the description of the scheme, we give an intuitive explanation
of our strategy behind the proposed construction. As explained in Sect. 1.2,
TSE obtained by multiple encryption of two restrictive TSE schemes (which are
derived from FSE) is insecure. In this insecure TSE scheme, a TIK for each time
period consists of two independent decryption keys of underlying two restrictive
TSE schemes. A malicious user can illegally generate decryption keys for various
time period by combining components in multiple decryption keys. Here, observe
that such an attack is possible because these two restrictive TSE schemes are
instantiated independently.

Our idea for the proposed construction is to “connect” the secret keys from the
underlying two restrictive TSE schemes in an “inseparable” manner by using
the specific algebraic structure of the BBG-FSE scheme. Specifically, we divide
the master secret key information d0 = gαβ of the BBG-FSE scheme into two
shares gαβ+ξ and g−ξ in the 2-out-of-2 secret-sharing manner using a “blinding
factor” ξ. This blinding factor ξ is a randomness generated for each execution
of a TIK extraction algorithm. Intuitively, this ξ connects the secret keys from
the underlying restrictive TSE schemes, and thus an adversary cannot come up
with an illegal “virtual” TIK as above by combining multiple TIKs for time
periods that do not include the DTI. In order to make the decryption by the
above TIK possible, we appropriately modify the encryption algorithm so that
the underlying BBG-FSE-based TSE schemes (one with DTI for tL = 0 and
the other with DTI for tR = T − 1) use a common randomness s. Such use of
a common randomness is possible again due to the algebraic structure of the
BBG-FSE scheme.

For the sake of simplicity, in this section we only give the basic version of
our proposed construction whose public parameter size and TIK size are O(T )
and whose ciphertext size is constant. Our full TSE scheme, in which the public
parameter size is O(log T ) and TIKs size is O(log2 T ) by using binary tree struc-
tures inspired by the HIBE-to-FSE transformation of Canetti et al. [7], is given
in Appendix A. We stress that those proposed schemes share the same idea as
explained above, and we believe that the basic version of our proposed scheme
is helpful for understanding the full construction.

3.2 Basic Construction

Here, we give the basic version of our proposed TSE scheme. Let (G,GT , e) be
bilinear groups, and let T ∈ N be the number of time periods. Then we construct
the basic version of our TSE scheme as in Fig. 2.

As mentioned in Sect. 3.1, we combine two basic BBG-FSE schemes (from
Fig. 1) in which one of the schemes is regarded as a TSE scheme which allows
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TSE.Setup(1k, T ) :

(pk, d0)← FSE.GenBBG(1
k, T )

g2,B
U←− G

Parse pk as (g, g1, g2,F ,h, P )
Parse h as (h0, · · · , hT )
MPK ← (g, g1, g2,F , g2,B ,h, P )
MSK ← d0
Return (MPK,MSK)

TSE.Ext(MPK,MSK, t) :
Parse MPK as

(g, g1, g2,F , g2,B,h, P )

ξ
U←− Zp

pkF ← (g, g1, g2,F ,h, P )
pkB ← (g, g1, g2,B ,h, P )
d0,F ←MSK · gξ = gαβ+ξ

d0,B ← g−ξ

dt+1,F

← FSE.UpdBBG(pkF , 0, t+ 1, 0, d0,F )
dT−t,B

← FSE.UpdBBG(pkB, 0, T − t, 1, d0,B)
SKt ← (dt+1,F , dT−t,B , t)
Return SKt

TSE.Enc(MPK, [tL, tR],M) :
Parse MPK as (g, g1, g2,F , g2,B ,h, P )

s
U←− Zp; pkF ← (g, g1, g2,F ,h, P )

pkB ← (g, g1, g2,B ,h, P )
(C1, C2, C3)← FSE.EncBBG(pkF , tR + 1, 0,M ; s)
(C1, C2, C4)← FSE.EncBBG(pkB, T − tL, 1,M ; s)
C5 ← [tL, tR]
Return C ← (C1, C2, C3, C4, C5)

TSE.Dec(MPK,SKt, C) :
Parse MPK as (g, g1, g2,F , g2,B ,h, P )
Parse C as (C1, C2, C3, C4, C5)
Parse SKt as (dt+1,F , dT−t,B, t)
pkF ← (g, g1, g2,F ,h, P )
pkB ← (g, g1, g2,B ,h, P )
CF ← (C1, C2, C3)
If t �∈ C5 then return ⊥
dtR+1,F

← FSE.UpdBBG(pkF , t+ 1, tR + 1, 0, dt+1,F )
dT−tL,B

← FSE.UpdBBG(pkB, T − t, T − tL, 1, dT−t,B)
M ′ ← FSE.DecBBG(dtR+1,F , CF )
Parse dT−tL,B as (R1, R2, · · · )
Return M ← M′·e(R2,C4)

e(R1,C2)

Fig. 2. The basic version of the proposed TSE scheme based on the BBG-FSE scheme

only DTIs with tR = T − 1, by introducing a blinding factor ξ in order to
construct a TSE scheme. More specifically, we set the initial key d0,F of the
TSE scheme for restricted DTIs with tL = 0 as gαβ+ξ which includes the blind
factor gξ, and the initial key d0,B of the TSE scheme for restricted DTIs with
tR = T − 1 as g−ξ which will remove the blinding factor, by using the above
mentioned method.

We would like the reader to notice that in Fig. 2, the scheme is described at
the cost of efficiency, so that it is easy to see that two basic BBG-FSE schemes
are combined by the blinding factor ξ as we explained above. For example, in the
encryption scheme, the ciphertext components C1 and C2 are computed twice
by running FSE.EncBBG from common randomness s. However, in practice, only
C4 needs to be computed in the second execution of FSE.EncBBG, which can be
done without calculating C1 and C2.

The security is guaranteed by the following theorem (the proof is given in the
full version of this paper).

Theorem 1. If the decisional (T + 1)-wBDHI assumption holds in (G,GT , e),
then the TSE scheme (which supports T time periods) constructed as in Fig. 2
is IND-CPA secure.
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4 Generic Construction from Any FSE

In Sect. 3 (and in Appendix A), we proposed an efficient construction of TSE
based on the BBG-FSE scheme, where it directly exploits the algebraic structure
of the BBG-FSE scheme. In this section, we describe a generic construction of
TSE from any FSE scheme in a black-box manner; nevertheless, it can be shown
to be far more efficient compared to trivial generic constructions.

The intuition for our construction is as follows. Recall that we have observed
that any FSE scheme already implies a TSE scheme with restricted interval types
of the form [A, ∗] ⊆ [A,B], where ∗ denotes arbitrary value where the encryptor
would specify, and A,B are a-priori fixed values. By taking the key derivation
in the backward manner, FSE also implies another TSE scheme with restricted
interval types of the form [∗, D] ⊆ [C,D], where C,D are fixed. Our purpose
is to construct a TSE scheme that allows any intervals [∗, ∗] ⊆ [0, T − 1]. The
idea is then to pre-define a collections S of allowed intervals to only consist of
these restricted types in such a way that for any interval we can “cover” it by
using these predefined intervals. That is, for any [x, y] ⊆ [0, T − 1], there exist
some S1, . . . , Sj ∈ S such that [x, y] = S1 ∪ · · · ∪ Sj . This is exactly the idea
of subset-cover broadcast encryption, albeit in our case we deal only with sets
that are intervals. We will therefore utilize a subset-cover system which permits
efficient covering for interval sets. The subset-cover system proposed in [2] allows
exactly this: for any interval, we can cover by using at most two predefined sets
(i.e., j ≤ 2 in the above union). Hence, the ciphertext size of the resulting TSE
will be only at most twice of that of FSE. In the following subsection, we first
capture TSE schemes that allow restricted types of the form [A, ∗] and [∗, D] as
future TSE and past TSE, respectively.

4.1 Future TSE and Past TSE

In this subsection, we introduce two special classes of TSE, which we call future
time-specific encryption (FTSE) and past time-specific encryption (PTSE), that
we will use as “intermediate” building blocks for our generic construction of
a TSE scheme from an FSE scheme. Using FTSE and PTSE, the description
of our generic construction can be simplified. We also show how to generically
construct these schemes from an FSE scheme.

FTSE (resp. PTSE) is a special class of a TSE scheme in which any cipher-
text for time t′ can be decrypted by using a TIK for time t as long as t′ ≥ t
(resp. t′ ≤ t). FTSE (resp. PTSE) can be viewed as a TSE scheme whose start-
ing time tL (resp. closing time tR) of a DTI is always fixed to be 0 (resp. T −
1). An FTSE scheme (resp. a PTSE scheme) consists of the four algorithms
(FTSE.Setup, FTSE.Ext, FTSE.Enc, FTSE.Dec) (resp. (PTSE.Setup, PTSE.Ext, PTSE.
Enc, PTSE.Dec)) that are defined in the same way as those for a TSE scheme, with
the following exceptions: Since the starting time tL (resp. the closing time tR)
of a DTI is always fixed to be 0 (resp. T −1), the encryption algorithm FTSE.Enc
(resp. PTSE.Enc) does not need to take tL (resp. tR) as an input, and thus we
denote by “c← FTSE.Enc(mpk, tR,M)” (resp. “c← PTSE.Enc(mpk, tL,M)”) the
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process of generating a ciphertext c of a plaintext M that can be decrypted using
a TIK generated by FTSE.Ext(msk, t) (resp. PTSE.Ext(msk, t)) with t ∈ [0, tR]
(resp. t ∈ [tL, T − 1]). Furthermore, in order to stress that a TIK for time t
generated by the extraction algorithm can be used to decrypt all ciphertexts
corresponding to time later than t (resp. time t or earlier), a TIK generated by
FTSE.Ext(msk, t) (resp. PTSE.Ext(msk, t)) is denoted by “sk≥t” (resp. “sk≤t”).

Correctness. As a correctness requirement of an FTSE scheme, we require that
for all k ∈ N, T ∈ N, all (mpk,msk) ← FTSE.Setup(1k, T ), all integers t
and tR such that 0 ≤ t ≤ tR ≤ T − 1, and all plaintexts M , it holds that
FTSE.Dec(FTSE.Ext(msk, t), FTSE.Enc(mpk, tR,M)) = M .

In a similar way, as a correctness requirement of a PTSE scheme, we require
that for all k ∈ N, T ∈ N, all (mpk,msk) ← PTSE.Setup(1k, T ), all integers
t and tL satisfying 0 ≤ tL ≤ t ≤ T − 1, and all plaintexts M , it holds that
PTSE.Dec(PTSE.Ext(msk, t), PTSE.Enc(mpk, tL,M)) = M .

Security Definitions. IND-CPA security of an FTSE scheme and that of a PTSE
scheme is defined analogously to that of a TSE scheme.

Generic Constructions. We can construct an FTSE scheme by using an FSE
scheme (FSE.Gen, FSE.Upd, FSE.Enc, FSE.Dec) as shown in Fig. 3. Since the fol-
lowing theorem is straightforward from the security and the functionality of an
FSE scheme, we omit the proof.

Theorem 2. If the building block FSE scheme is IND-CPA secure, then the
FTSE scheme constructed as in Fig. 3 is IND-CPA secure.

We can also easily obtain a PTSE scheme from an FTSE scheme by “reversing”
the role of time in FTSE, i.e., regarding a time t in an FTSE scheme as a time
T−t−1 for a PTSE scheme. This means that we also have a generic construction
of a PTSE scheme from an FSE scheme. More specifically, we identity a TIK sk≤t

with a TIK sk≥T−t−1 of an FTSE scheme. Furthermore, PTSE.Enc(mpk, t′,M)
internally runs FTSE.Enc(mpk, T − t′ − 1,M). Since the construction we explain
here is fairly intuitive and straightforward, we omit the detailed description of
the construction.

4.2 Generic Construction

Here, we show our generic construction of a TSE scheme from an FSE scheme.

Notation for Binary Trees. Let λ ∈ N, and let T = 2λ. Our generic construction
uses a binary tree as its internal structure, and we introduce several notation
regarding them. Consider the complete binary tree with 2λ+1 − 1 nodes. We
number all the internal nodes (i.e. nodes that are not leaves) from the root in
the breast first order (from left to right in numerical order), with the root node
being 1. Furthermore, we also put 0 to the root node for convenience (and thus
the root node has indices 0 and 1 at the same time). We will later put numbers
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FTSE.Setup(1k, T ) :

(pk, d0)← FSE.Gen(1k, T )
Return (mpk,msk)← (pk, d0)

FTSE.Ext(msk, t) :
dt ← FSE.Upd(pk, 0, t,msk)
Return sk≥t ← (t, dt)

FTSE.Enc(mpk, tR,M) :
c← FSE.Enc(mpk, tR,M)
Return C ← (tR, c)

FTSE.Dec(sk≥t, C) :
Parse sk≥t as (t, dt) and C as (tR, c)
If tR < t then return ⊥
dtR ← FSE.Upd(pk, t, tR, dt)
Return FSE.Dec(dtR , c)

Fig. 3. Generic construction of FTSE from FSE

also for leaves, and thus in order not to mix up with them, we denote by INT

the set of indices for the internal nodes. Namely, INT = {0, 1, . . . , 2λ − 1}.
Let LEFT and RIGHT be subsets of INT defined as follows: 0 ∈ LEFT, 1 ∈ RIGHT,

and for any remaining node v ∈ INT\{0, 1}, if v is the left node of its parent
node, then v ∈ LEFT, otherwise v ∈ RIGHT.

We next number the leaves from left to right in numerical order, with the
leftmost node being 0 (and thus the rightmost being T − 1). For v ∈ INT, let
�v (resp. rv) be the index of the leftmost (resp. rightmost) leaf node that is
a descendant of v. That is, we have �v = (v mod 2depth(v)) · 2λ−depth(v) and
rv = �v + 2λ−depth(v) − 1, where depth(v) is defined as the “depth of the node
with the root node being depth 0”.

For v ∈ INT, we define the corresponding set Sv of indices of leaves by:

Sv =

⎧
⎪⎨

⎪⎩

(0 ↽ (2λ − 1)) If v = 0

((�v + 1) ↽ rv) If v ∈ LEFT\{0}
(�v ⇀ (rv − 1)) If v ∈ RIGHT

where we use the followng notations: (i ⇀ j) := {i, i + 1, . . . , j}, (i ↽ j) :=
{j, j − 1, . . . , i}, (i ⇀ i) := {i}, and (i ↽ i) := {i}.

Finally, for v ∈ INT, we let �̃v and r̃v be the smallest index and the largest
index in the set Sv, respectively.

Generic Construction. For simplicity, our TSE scheme is parameterized by
an integer λ ∈ N and supports the total number of time periods T = 2λ.
Let (FTSE.Setup, FTSE.Ext, FTSE.Enc, FTSE.Dec) be an FTSE scheme and let
(PTSE.Setup, PTSE.Ext, PTSE.Enc, PTSE.Dec) be a PTSE scheme. Using these as
building blocks, we construct a TSE scheme as in Fig. 4. In the construction, we
use the following notations: For each DTI [tL, tR], we define the corresponding
left-index vL ∈ LEFT and the right-index vR ∈ RIGHT, that determine which in-
stance(s) of the building block FTSE and/or PTSE schemes are used to encrypt
a message, by:

vL = min{v ∈ LEFT : r̃v ∈ [tL, tR]}

vR = min{v ∈ RIGHT : �̃v ∈ [tL, tR]}
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TSE.Setup(1k, T ) :
For v ∈ LEFT:

(mpkv,mskv)← PTSE.Setup(1k, |Sv |)
For v ∈ RIGHT:

(mpkv,mskv)← FTSE.Setup(1k, |Sv |)
MPK ← {mpkv}v∈INT

MSK ← {mskv}v∈INT

Return (MPK,MSK)

TSE.Enc(MPK, [tL, tR],M) :
vL ← min{v ∈ LEFT : r̃v ∈ [tL, tR]}
vR ← min{v ∈ RIGHT : �̃v ∈ [tL, tR]}
If depth(vL) = depth(vR) then

If vL = 0 then

cL ← PTSE.Enc(mpkvL , tL − �̃vL ,M)
cR ← ∅

Else (i.e. vL �= 0) then

cL ← PTSE.Enc(mpkvL , tL − �̃vL ,M)

cR ← FTSE.Enc(mpkvR , tR − �̃vR ,M)
End If

Else If depth(vL) < depth(vR) then

cL ← PTSE.Enc(mpkvL , tL − �̃vL ,M)
cR ← ∅

Else (i.e. depth(vL) > depth(vR))
cL ← ∅
cR ← FTSE.Enc(mpkvR , tR − �̃vR ,M)

End If
Return C ← ([tL, tR], cL, cR)

TSE.Ext(MSK, t) :
Let NODES(t) = {v ∈ INT : t ∈ Sv}
For v ∈ LEFT ∩ NODES(t):

sk
(v)

≤t−˜�v
← PTSE.Ext(mskv, t− �̃v)

SKt,L ← {sk(v)

≤t−˜�v
}v∈LEFT∩NODES(t)

For v ∈ RIGHT ∩ NODES(t):

sk
(v)

≥t−˜�v
← FTSE.Ext(mskv, t− �̃v)

SKt,R ← {sk(v)

≥t−˜�v
}v∈RIGHT∩NODES(t)

SKt ← (t, SKt,L, SKt,R)
Return SKt

TSE.Dec(SKt, C) :
Parse SKt as (t, SKt,L, SKt,R)
Let NODES(t) = {v ∈ INT : t ∈ Sv}
Parse SKt,L as {sk(v)

≤t−˜�v
}v∈LEFT∩NODES(t)

Parse SKt,R as {sk(v)

≥t−˜�v
}v∈RIGHT∩NODES(t)

Parse C as ([tL, tR], cL, cR)
If parsing fails or t /∈ [tL, tR]

then return ⊥
vL ← min{v ∈ LEFT : r̃v ∈ [tL, tR]}
vR ← min{v ∈ RIGHT : �̃v ∈ [tL, tR]}
v ← min(NODES(t) ∩ {vL, vR})
If v = ∅ then return ⊥
If v ∈ LEFT then

return PTSE.Dec(sk
(v)

≤t−˜�v
, cL)

Else (i.e. v ∈ RIGHT)

return FTSE.Dec(sk
(v)

≥t−˜�v
, cR)

End If

Fig. 4. Generic construction of TSE from FTSE and PTSE

Furthermore, for each t ∈ [0, T − 1], we define the set NODES(t) of internal nodes
that determines which instance(s) of the building block FTSE and PTSE schemes
are used to generate a TIK (for a TSE) in the extraction algorithm, by:

NODES(t) = {v ∈ INT : t ∈ Sv}

Our scheme is IND-CPA secure assuming that the underlying FTSE and PTSE
schemes are both IND-CPA secure (the proof is given in the full version). Since
Fig. 4 might look slightly complicated, in Appendix B we show the instantiation
of our TSE scheme in case T = 23 (see also Fig. 5 there).

Theorem 3. If the FTSE scheme and the PTSE scheme are both IND-CPA
secure, then the proposed TSE scheme constructed as in Fig. 4 is IND-CPA
secure.
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Table 1. Efficiency comparison for TSE schemes. T is the size of the time space. |g|
denotes the length of a group element. |gT | denotes the length of an element in GT . For
[a, b, c], a denotes the number of pairings, b denotes the number of exponentiations, c
denotes the number of multiplications.

Public Ciphertext TIK Size Encryption Decryption
Param. Size Overhead Cost Cost

Ours in O(log T ) |g| 3|g| O(log2 T )|g| [0, O(log T ), [3, O(log T ),
Appendix A + |gT | + |Zp| O(log T )] O(log T )]

Ours §4 O(log T ) |g| 4|g| O(log3 T )|g| [0, O(log T ), [2, O(log T ),
([4]+[7]+§4.3) + |gT | + |Zp| O(log T )] O(log T )]

PQ-IBE [22] 4|g|+ |gT | O(T )|g| O(log T )|g| [0, O(T ), [2, 0, 2]
+ Waters [25] + |Zp| O(T )]

PQ-IBE [22] 3|g|+ |gT | O(T )|g| O(log T )|g| [0, O(T ), [1, 0, 2]
+ Gentry [16] + O(T )|gT | + O(log T )|Zp| O(T )]

PQ-BE [22] O(T )|g| 8|g|+ 2|tT | |g|+ |Zp| [0, 5, O(T )] [2, 3, O(T )]
+ GW [17] + |gT | [0, 5, O(T )] [2, 3, O(T )]

PQ-BE [22] O(T )|g| 2|g| |g|+ |Zp| [0, 2, O(T )] [2, 0, O(T )]
+ BGW1 [6] + |gT | [0, 2, O(T )] [2, 0, O(T )]

PQ-BE [22] O(
√
T )|g| O(

√
T )|g| |g|+ |Zp| [0, O(

√
T ), [2, 0,

+ BGW2 [6] + |gT | O(T )] O(
√
T )]

PQ-BE [22] O(T )|g| 8|g| O(T )|g|+ |Zp| [0, 12, O(T )] [9, 0, O(T )]
+ Waters [26] + |gT | [0, 12, O(T )] [9, 0, O(T )]

4.3 Extension Using HIBE

The proposed generic construction shown in Sect. 4.2 uses T independent in-
stances of the underlying FSE scheme (assuming that the building block FTSE
and PTSE schemes are instantiated with an FSE scheme), and thus the size of
the master public key MPK grows linearly in the total number of time periods
T . However, if the underlying FSE scheme is furthermore instantiated from an
HIBE scheme, we can use the trick of sharing the public parameter (by using the
first-level identities for indices for each “independent” FSE scheme) explained in
the second last paragraph in Sect. 2.2. In this case, the size of the master public
key of the constructed TSE scheme does not depend on the size of the time space
|T|, but becomes identical to that of the underlying HIBE scheme. Using this
trick with the full BBG-FSE (obtained via the HIBE-to-FSE transformation of
[7]), we still obtain a TSE scheme whose parameter size and computational costs
are all polylogarithmic in the number of time periods T .

5 Comparison

Table 1 shows an efficiency comparison among TSE schemes. We compare our
scheme inAppendix Aand an instantiation obtained fromour generic construction
in Sect. 4 in which the full BBG-FSE scheme is used together with the extension
explained in Sect. 4.3, with the existing TSE schemes. Here, for the existing TSE
schemes, we choose the concrete instantiations of TSE schemes obtained from the
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generic construction from IBE schemes (denoted “PQ-IBE”) and the generic con-
struction from BE schemes (denoted “PQ-BE”) both proposed by Paterson and
Quaglia [22]. For concrete IBE schemes, we choose the schemes byWaters [25] and
by Gentry [16], and for concrete BE schemes we choose the schemes by Boneh,
Gentry, and Waters [6] (BGW1 was proposed in Sect. 3.1 of [6], and BGW2 was
proposed in Sect. 3.2 of [6]), by Boneh and Gentry [17], and Waters [26].

As seen in Table 1, our schemes yield both better computational cost for
encryption and short ciphertext length than those of the PQ-IBE schemes. In
particular, our schemes have constant ciphertext overhead, while the PQ-IBE
schemes have the ciphertext overhead of O(T ) group elements. Compared to
the PQ-BE schemes, our schemes are superior in the size of public parameter,
i.e. our schemes have the public parameter size of O(log T ), while the PQ-BE
schemes have the public parameter size of O(T ). Comparing the scheme in Ap-
pendix A and the instantiation from the generic construction in Sect. 4, the
former scheme has shorter TIK size, i.e. the scheme in Appendix A has the
TIK size of O(log2 T ) and the scheme in Sect. 4 has the TIK size of O(log3 T ).
Furthermore, most notably, both of our schemes have at most poly-logarithmic
size/cost in all measures in the table, which has not been achieved by any of
the existing TSE schemes. Therefore, we see that our schemes have a feature
which has not been achieved by all of the previous TSE schemes, and due to our
results, a system designer can choose the parameters regarding TSE schemes
that he/she wants to optimize more flexibly. We believe that our results will
potentially broaden the applicability of TSE.

Lastly, we remark that both of our TSE schemes in Table 1 have the reduc-
tion costs of at least O(T 2), while the PQ-IBE scheme instantiated with Gentry’s
IBE scheme [16] and the PQ-BE scheme instantiated with the Gentry-Waters BE
scheme [17] have tight security reductions to their underlying hardness assump-
tions. However, all the TSE schemes mentioned here require non-static �-type
assumptions (e.g. the decisional �-wBDHI in our case). It would be interesting
to clarify whether it is possible to construct a TSE scheme whose security can
be tightly reduced to more standard “static” assumptions such as decisional lin-
ear (DLIN) and decisional bilinear Diffie-Hellman (DBDH), and whose efficiency
(parameter sizes and computational costs) is comparable to our schemes.
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A Main Concrete Construction

Here, we describe the full TSE scheme obtained by using the binary tree struc-
tures for the basic version of our scheme presented in Sect. 3. As noted earlier,
this construction is obtained by applying the technique from the HIBE-to-FSE
transformation by Canetti et al. [7] to the basic version of the proposed scheme
for reducing the sizes of the public parameter and TIKs.

Let � ∈ N. Consider two complete binary trees B1 and B2 with T = 2� − 1
nodes, where T will be the number of time periods supported by the proposed
TSE construction. The nodes in those binary trees are numbered according to
a pre-order traversal in an incremental order, with the root node of B1 being
1 and that of B2 being T + 1. Then, consider the binary tree B with 2T + 1
nodes in which the children of the root nodes are the root nodes of B1 and B2,
with B1 being left. (That is, B has B1 and B2 as sub trees.) For convenience,
we put the number 2T + 1 to the root node of B. Intuitively, each subtree in
B will correspond to one instantiation of FSE obtained via the HIBE-to-FSE
transformation of Canetti et al. [7] to the BBG HIBE scheme (and will also
correspond to one chain in our basic construction shown in Sect. 3.2).

We need to introduce vectors “TVt” and sets “TVSett” (for t ∈ [1, 2T ]). TVt

is the vector consisting of the indices corresponding to the nodes included in the
path from the node t to the root node (of B). For t ∈ [1, 2T ], the set TVSett
defined as follows: TVSet1 = {TV1}, TVSetT+1 = {TVT+1}. Recursively, for
t ∈ [1, 2T ]\{1, T + 1}, TVSett+1 is defined depending on TVSett as follows: Let
s = min{u : TVu ∈ TVSett}. If TVs is a leaf node, then TVSett+1 is obtained by
removing the vector TVs from the set TVSett. Otherwise, let sF (resp. sB) be
the index of the left (resp. right) node of the node s. TVSett+1 is the set obtained
by removing TVs from and adding TVsF and TVsB to the set TVSett.

Let (G,GT , e) be bilinear maps, and let T = 2� − 1 be a polynomial that
indicates the number of time periods. Using the above notations, We describe
our TSE scheme in the following:
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TSE.Setup(1k, T = 2� − 1): Pick α, β
U←− Zp, g2,F , g2,B, h0, · · · , h�

U←− G. Then
compute MSK ← gαβ and

MPK ← (g, g1 ← gα, g2,F , g2,B, h0, · · · , h�, P ← e(gα, gβ)),

and return (MPK,MSK).

TSE.Ext(MSK, t): Firstly, pick ξ
U←− Zp.

For each TV = (J0, J1, · · · , Jm) ∈ TVSett+1: pick rF
U←− Zp, and compute

dTV ← (gαβ+ξ · (
m∏

i=0

hJi

i · g2,F )rF , grF , hrF
m+1, · · · , hrF

� ).

For each TV ′ = (K0,K1, · · · ,Kn) ∈ TVSet2T−t: pick rB
U←− Zp, and compute

dTV ′ ← (g−ξ · (
n∏

i=0

hKi

i · g2,B)rB , grB , hrB
n+1, · · · , hrB

� ).

Finally, set SKt,L ← {dTV }TV ∈TVSett+1 and SKt,R ← {dTV ′}TV ′∈TVSet2T−t ,
and return SKt = (t, SKt,L, SKt,R).

TSE.Enc(MPK, [tL, tR],M): Let TVtR+1 = (J0, J1, · · · , Jm) and TV2T−tL =

(K0,K1, · · · ,Kn). Pick s
U←− Zp, compute

(C1, C2, C3, C4)← (P s ·M, gs, (

m∏

i=0

hJi

i · g2,F )s, (
n∏

i=0

hKi

i · g2,B)s)

and return C = (C1, C2, C3, C4, [tL, tR]).
TSE.Dec(SKt, C): Let SKt = (t, SKt,L, SKt,R) and C = (C1, C2, C3, C4, C5).

If t �∈ C5, then return ⊥. Otherwise, retrieve dTVtR+1 = (L1, L2, · · · ) and
dTV2T−tL

= (R1, R2, · · · ) from SKt,L and SKt,R, respectively. Compute

M =
C1 · e(L2, C3) · e(R2, C4)

e(L1 · R1, C2)

and return M .

The security is guaranteed by the following (the proof is given in the full version).

Theorem 4. If the decisional (� + 1)-wBDHI assumption holds in (G,GT , e),
then the above TSE scheme (with T = 2� − 1 time periods) is IND-CPA secure.

B Toy Example of Our Generic Construction

In order to better understand our generic construction in Sect. 4.2, here we
describe a toy example of our generic construction in which T = 23. See also
Fig. 5 for the illustration that represents the “directions” (or, “realms” in other
words) that the secret keys from the underlying FTSE and PTSE schemes can
cover. Note that in this example, LEFT = {0, 2, 4, 6}, and RIGHT = {1, 3, 5, 7}.
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Fig. 5. Illustration for our generic construction in case T = 23

TSE.Setup(1k, T ): Run the setup algorithms of the underlying FTSE and PTSE
schemes as follows:
(mpk0,msk0)← PTSE.Setup(1k, 8); (mpk1,msk1)← FTSE.Setup(1k, 7)
(mpk2,msk2)← PTSE.Setup(1k, 3); (mpk3,msk3)← FTSE.Setup(1k, 3)
(mpk4,msk4)← PTSE.Setup(1k, 1); (mpk5,msk5)← FTSE.Setup(1k, 1)
(mpk6,msk6)← PTSE.Setup(1k, 1); (mpk7,msk7)← FTSE.Setup(1k, 1)
MPK ← (mpk0,mpk1, . . . ,mpk7); MSK ← (msk0,msk1, . . . ,msk7)
Return (MPK,MSK).

TSE.Ext(msk, t): The algorithm sets the TIK SKt corresponding to the column
of the time t in Fig. 5 to the secret keys of FTSE and PTSE. For example,

– SK0 = (0, SK0,L, SK0,R) where SK0,L = sk
(0)
≤0 and SK0,R = sk

(1)
≥0 .

– SK1 = (1, SK1,L, SK1,R) where SK1,L = (sk
(0)
≤1 , sk

(2)
≤0, sk

(4)
≤0), and

SK1,R = sk
(1)
≥1 .

– SK4 = (4, SK4,L, SK4,R) where SK4,L = sk
(0)
≤4 and SK4,R = (sk

(1)
≥4 ,

sk
(3)
≥0)

Note that NODES(0) = {0, 1}, NODES(1) = {0, 1, 2, 4}, and NODES(4) = {0, 1, 3}.
TSE.Enc(mpk, [tL, tR],M): We exemplify the cases in which [tL, tR] = [4, 7],

[4, 5], and [2, 6] in the following:

– C = ([4, 7], cL, cR), where cL ← PTSE.Enc(mpk0, 4,M) and cR ← ∅. Note
that vL = min{v ∈ LEFT : r̃v ∈ [4, 7]} = 0 and thus depth(vL) = 0, while

vR = min{v ∈ RIGHT : �̃v ∈ [4, 7]} = 3 and thus depth(vR) = 1.

– C = ([4, 5], cL, cR), where cL ← ∅ and cR ← FTSE.Enc(mpk3, 1,M). Note
that vL = min{v ∈ LEFT : r̃v ∈ [4, 5]} = 6 and thus depth(vL) = 2, while

vR = min{v ∈ RIGHT : �̃v ∈ [4, 5]} = 3 and thus depth(vR) = 1.

– C = ([2, 6], cL, cR), where cL ← PTSE.Enc(mpk2, 1,M) and cR ←
FTSE.Enc(mpk3, 2,M). Note that, vL = min{v ∈ LEFT : r̃v ∈ [2, 6]} = 2

and thus depth(vL) = 1, while vR = min{v ∈ RIGHT : �̃v ∈ [2, 6]} = 3
and thus depth(vR) = 1.
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TSE.Dec(SKt, C): Using SK4 = (4, SK4,L, SK4,R), we can decrypt the above
(correctly generated) ciphertexts:

– If DTI is [4, 7], run M ← FTSE.Dec(sk
(0)
≤4 , cL). Note that in this case,

min(NODES(4) ∩ {vL, vR}) = 0 ∈ LEFT.

– If DTI is [4, 5] or [2, 6], run M ← PTSE.Dec(sk
(3)
≥0 , cR). Note that in both

cases, min(NODES(4) ∩ {vL, vR}) = 3 ∈ RIGHT.
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