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Preface

The 8th Conference on Security and Cryptography for Networks (SCN 2012) was
held in Amalfi, Italy, during September 5-7, 2012. This biennial conference has
traditionally been held in Amalfi, with the exception of the fifth edition which
was held in nearby Maiori.

The world-wide use of computer networks, and in particular of the Internet,
opens new challenges for the security of electronic and distributed transactions.
Cryptography and information security must face both the theoretical and prac-
tical aspects of the above challenges, by providing concepts, techniques, applica-
tions, and practical experiences. The principal aim of SCN as a conference is to
bring together researchers, practitioners, developers, and users interested in the
above fields, to foster cooperation and to exchange techniques, tools, experiences,
and ideas in the stunning Amalfi Coast setting.

The conference received 72 submissions in a broad range of cryptography and
security areas. The selection of papers was a difficult task. This year we received
many high-quality submissions and 31 of them were accepted for publication
in these proceedings on the basis of quality, originality, and relevance to the
conference’s scope.

At least three Program Committee (PC) members—out of 28 world-renowned
experts in the conference’s various areas of interest—reviewed each submitted
paper, while submissions co-authored by a PC member were subjected to the
more stringent evaluation of five PC members.

In addition to the PC members, many external reviewers joined the review
process in their particular areas of expertise. We were fortunate to have this
knowledgeable and energetic team of experts, and are deeply grateful to all of
them for their hard and thorough work, which included a very active discussion
phase—almost as long as the initial individual reviewing period. The paper sub-
mission, review, and discussion processes were effectively and efficiently made
possible by the Web-Submission-and-Review software, written by Shai Halevi,
and hosted by the International Association for Cryptologic Research (IACR).
Many thanks to Shai for his assistance with the system’s various features and
for his constant availability.

Given the perceived quality of the submissions, the PC decided also this year
to give a Best-Paper Award, both to promote outstanding work in the fields
of cryptography and information security and to keep encouraging high-quality
submissions to SCN. “Deterministic Public Key Encryption and Identity-Based
Encryption from Lattices in the Auxiliary-Input Setting” by Xiang Xie, Rue
Xue, and Rui Zhang was conferred such distinction.

The program was further enriched by the invited talks of Yuval Ishai (Tech-
nion, Israel) and Giuseppe Persiano (Universita di Salerno, Italy), top experts
on the subjects of the conference.



VI Preface

We thank all the authors who submitted papers to this conference; the Or-
ganizing Committee members, colleagues, and student helpers for their valuable
time and effort; and all the conference attendees who made this event a truly
intellectually stimulating one through their active participation.

We finally thank the Dipartimento di Informatica of the University of Salerno,
Italy, for the financial support.

September 2012 Ivan Visconti
Roberto De Prisco
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Deterministic Public Key Encryption
and Identity-Based Encryption
from Lattices in the Auxiliary-Input Setting

Xiang Xie', Rui Xue?, and Rui Zhang?

! Institute of Software, Chinese Academy of Sciences
2 The State Key Laboratory of Information Security
Institute of Information Engineering, Chinese Academy of Sciences
xiexiang@is.iscas.ac.cn, {xuerui,r-zhang}@iie.ac.cn

Abstract. Deterministic public key encryption (D-PKE) provides an al-
ternative to randomized public key encryption in various scenarios (e.g.
search on encrypted data) where the latter exhibits inherent drawbacks.
In CRYPTO’11, Brakerski and Segev formalized a framework for study-
ing the security of deterministic public key encryption schemes with re-
spect to auxiliary inputs. A trivial requirement is that the plaintext
should not be efficiently recoverable from the auxiliary inputs.

In this paper, we present an efficient deterministic public key encryp-
tion scheme in the auxiliary-input setting from lattices. The public key
size, ciphertext size and ciphertext expansion factor are improved com-
pared with the scheme proposed by Brakerski and Segev. Our scheme is
also secure even in the multi-user setting where related messages may
be encrypted under multiple public keys. In addition, the security of
our scheme is based on the hardness of the learning with errors (LWE)
problem which remains hard even for quantum algorithms.

Furthermore, we consider deterministic identity-based public key en-
cryption (D-IBE) in the auxiliary-input setting. The only known D-IBE
scheme (without considering auxiliary inputs) in the standard model was
proposed by Bellare et al. in EUROCRYPT’12. However, this scheme is
only secure in the selective security setting, and Bellare et al. identified
it as an open problem to construct adaptively secure D-IBE schemes.
The second contribution of this work is to propose a D-IBE scheme from
lattices that is adaptively secure.

Keywords: deterministic (identity-based) public key encryption, auxil-
iary inputs, lattices.

1 Introduction

The fundamental notion of semantic security for public key encryption schemes
was introduced by Goldwasser and Micali [16]. While semantic security provides
strong privacy guarantees, it inherently requires a randomized encryption al-
gorithm. Unfortunately, randomized encryption only allows linear time search

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 1118 2012.
(© Springer-Verlag Berlin Heidelberg 2012



2 X. Xie, R. Xue, and R. Zhang

[TUI0] on outsourced databases, which is prohibitive when the databases are ter-
abytes in size. Further, randomized encryption necessarily expand the length of
the plaintext, which may be undesirable in some applications such as legacy code
or in-place encryption.

Bellare, Bolyreva, and O’Neill [6] initiated the study of deterministic public
key encryption schemes that were oriented to search on encrypted data. Clearly,
in this setting, no meaningful notion of security can be achieved if the plaintext
space is small. Therefore, Bellare et al. [6] required security to hold only when
the plaintexts are drawn from a high min-entropic distribution. Very recently,
Brakerski and Segev [I1] introduced a framework for modeling the security of
deterministic encryption schemes with respect to auxiliary inputs. This frame-
work is a generalization of the one formalized by Bellare et al. [6] (and further
in [7I9I1]]) to the auxiliary-input setting, in which an adversary possibly obtains
additional information that is related to encrypted plaintext, and might even
fully determine the encrypted plaintext information theoretically. An immediate
consequence of having a deterministic encryption algorithm is that no mean-
ingful notion of security can be satisfied if the plaintext can be recovered from
the adversary’s auxiliary information. Therefore, their framework focuses on the
case of hard-to-invert auxiliary inputs. Brakerski and Segev [I1] proposed two
schemes satisfy this notion of security. However, these two schemes have large
public key size, ciphertext size and ciphertext expansion factor. One result of
this work is to propose a new scheme from lattices with improved public key
size, ciphertext size and ciphertext expansion factor.

A deterministic identity-based encryption (D-IBE) scheme is an identity-
based encryption [22] scheme with deterministic encryption algorithm. Bellare et
al. [8] extended the security definition under high min-entropy into the identity-
based setting. D-IBE allows efficiently searchable identity-based encryption of
database entries while maintaining the maximal possible privacy, bringing the
key-management benefits of the identity-based setting. Bellare et al. proposed
a D-IBE scheme by first constructing identity-based lossy trapdoor functions
(IB-LTDFs). Due to the inherent limitation of IB-LTDFs, their scheme only
achieves selective security, and in fact, it has been identified as an open problem
to construct adaptively secure D-IBE schemes [§].

1.1 Owur Contributions

In this work, we propose a D-PKE scheme in the auxiliary-input setting from
lattices in the standard model. The security of our scheme is based on the hard-
ness of the LWE problem, which is known to be as hard as worst-case lattice
problems [2119]. The public key size, ciphertext size and ciphertext expansion
factor are better than the scheme in [I1], while the private key size is almost the
same. The computations involved in encryption of our scheme are matrix-vector
multiplication and followed by a rounding step. Matrix-vector multiplication can
be implemented very fast in parallel, and rounding operations can also be com-
puted by small low-depth arithmetic circuits. Therefore, the encryption can be
implemented very fast. In addition, our scheme is secure even in the multi-user
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setting (as in [II]) where related messages may be encrypted under multiple
public keys. In this setting we obtain security, with respect to auxiliary inputs,
for any polynomial number of messages and users as long as the messages are
related by invertible linear transformations.

Furthermore, we extend the security definition in the auxiliary-input setting
to D-IBE, and propose a D-IBE scheme in the standard model. The only known
(selectively secure) D-IBE scheme (not under the auxiliary-input setting) in the
standard model was proposed by Bellare, Kiltz, Peikert and Waters [8], based
on IB-LTDFs.

Our D-IBE scheme is the first adaptively secure one in the auxiliary-input
setting. In the full version, we also give a more efficient selectively secure D-
IBE scheme in the auxiliary-input setting whose ciphertext size and ciphertext
expansion factor are comparable to our D-PKE scheme. All our schemes are
secure with respect to auxiliary inputs that are sub-exponentially hard to invert.

1.2 Overview of Our Approach

A crucial technique hurdle is that the hardness of the LWE problem depends
essentially on adding random, independent errors to every output of a mod-g
“parity” function. Indeed, without any error, parity functions are trivially easy to
learn. Fortunately, Banerjee, Peikert and Rosen [5] introduced a “derandomized”
LWE problem, i.e., generating the errors efficiently and deterministically, while
preserving hardness.

The LWE, ,, .o assumption says that for any m = poly(n), modulus ¢ and
error rate a: The pairs (A, Als + e), for random matrix A <+ Zy*™, random
vector s <— Zy, and “small” random error terms e «— Z™ of magnitude ~ aq,
are indistinguishable from (A,u), where u is uniformly random in Z7*. The
derandomization technique for LWE in [5] is very simple: instead of adding
a small random error term to the vector A's € Zy'. They deterministically
round it to the nearest element of a sufficiently “coarse” subgroup Z;" where
p < q. In other words, the “error term” comes solely from deterministically
rounding A's to a relatively nearby value. Denoting the rounding operation as
|As], € Z;", Banerjee et al. call the problem of distinguishing (A, | A’s],) from
uniform random samples the learn with rounding (LWR p n.m) problem. In [5],
Banerjee et al. show that the LWRy j, 5,m is at least as hard as LWE ,, m o for
an error rate a proportional to 1/p, and super-polynomial g (g > p).

In order to make our D-PKE scheme secure in the auxiliary-input setting, it
seems that we need more than the pseudorandomness of LWR p 5 m with uni-
formly random secret. We hope the LWRg , »n,m samples still to be uniformly
random even given some auxiliary information of the secret. That is, we want
(A, |A's]p, f(s)) ~ (A, u, f(s)) for any hard-to-invert function f. Analogous re-
sult of LWE problem was shown in [I5], namely (A, A’s+e, f(s)) = (A, u, f(s))
for properly chosen parameters. We briefly explain this statement. LWE assump-
tion implies that A! can be substituted by Z = B - C 4+ E, where B < Z;”Xd,
C + 7&*", and E € Z™*™ is the error matrix (d is determined by the function
f). Considering the distribution (B, C,E,BCs + Es + €, f(s)). If s is sampled
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from “small” subgroup in Zj such as {0,1}", Es is “small”. For sufficiently
“large” e, the distribution of e statistically hides Es. Then we only need to
consider the distribution (B, C,E,BCs + e, f(s)). According to the generalized
Goldreich-Levin theorem of Dodis et al. in [I3], the distributions of (Cs, f(s))
and (u, f(s)) are statistically close. Applying LWE again, we obtain the above
statement.

Randomized IBE schemes from lattices have been proposed in [T4UT2123I17].
We adopt some of the techniques in [2] to construct our D-IBE. A non-trivial
problem is how to use the artificial abort technique. The artificial abort technique
in [2] does not work here, because that method only works on polynomial ¢. But,
to guarantee the security, here we need g to be super-polynomial. We solve this
problem by extending the technique first appeared in [23]. We remark that some
parts of the proofs of our schemes follow the framework of [5].

1.3 Related Works

Deterministic public key encryption for high min-entropic messages was
introduced by Bellare, Boldyreva and O’Neill [6] who formalized a definitional
framework, which was later refined and extended in [7J9JI8]. Bellare et at. [6]
presented two constructions in the random oracle model: The first relies on any
semantically secure public key encryption scheme; whereas the second relies on
the RSA function. Constructions in the standard model were then presented in
[79], based on trapdoor permutations with (almost) uniformly plaintext space
[7], and lossy trapdoor functions [0]. However these constructions fall short
in the multi-message setting, where arbitrarily related messages are encrypted
under the same public key. O’'Neill [I8] made a step forwards addressing this
problem.

Deterministic public key encryption for auxiliary inputs was proposed by
Brakerski and Segev [11]. In the auxiliary-input setting, Brakerski and Segev
[11] proposed two constructions in the standard model. The first one is based on
d-linear assumptions. This scheme is also secure in the multi-user setting, which
solved an open problem in [6]. The second one is based on a rather general class
of subgroup indistinguishability assumptions. These two schemes are secure with
respect to auxiliary inputs that are sub-exponentially hard to invert.

Deterministic identity-based public key encryption was introduced by Bellare,
Kiltz, Peikert and Waters [§]. Bellare et al. aimed to construct identity-based
lossy trapdoor functions (IB-LTDFs), which is an extension of lossy trapdoor
functions [20]. They built a selectively secure D-IBE as an application of IB-
LTDFs. Bellare et al. gave two constructions of IB-LTDF's, while only the one
based on Decision Linear Diffie-Hellman assumption can be used to get D-IBE
schemed. Since the inherent limitations of IB-LTDFs, it’s hard to directly used
to construct adaptively secure D-IBE schemes.

! The other identity-based lossy trapdoor function is based on LWE assumption.
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2 Preliminaries

For an integer m, we denote [m] as a integer set {1, ..., m}. We use bold capital
letters to denote matrices, and bold lowercase letters to denote vectors. The
notation A denotes the transpose of the matrix A. When we say a matrix
defined over Z, has full rank, we mean that it has full rank modulo ¢. If A; is an
n x m matrix and A is an n x m’ matrix, then [A1]|As] denotes the n x (m+m')
matrix formed by concatenating A, and As. If x; is a vector of length m and x5
is of length m’ | then we let [x;|x2] denote the length m 4+ m’ vector formed by
concatenating x; and x2. When doing matrix-vector multiplication, we always
view vectors as column vectors.

A function negl()) is negligible, if it vanishes faster than the inverse of any
polynomial in A. The statistical distance between two distributions X,Y over
some finite or countable set S is defined as A(X,Y) = ;> o |Pr[X = s] —
Pr[Y = ¢ ’ X and Y are statistically indistinguishable if A(X,Y) is negligible.

For any integer modulus ¢ > 2, Z, denotes the quotient ring of integer mod-
ulo ¢, and we represent Z, by the numbers {quglj,..., [qgl]}. We define a
“rounding” function |-], : Zq — Z,, where ¢ > p > 2, as |z], = |(p/q) - ]
mod p. We extend |-], component-wise to vectors and matrices over Z,.

2.1 Lattices

A full-rank m-dimensional integer lattice A C Z™ is a discrete additive subgroup
whose linear span is R™. Every integer lattice is generated as the Z-linear com-
bination of some basis of linearly independent vectors B = {bq,..., b} C Z™,
e, A = {>", zb; : z € Z}. In this work we deal exclusively with “g-ary”
lattices. For a matrix A € Zy*™, define the integer lattices

AH(A)={z€Z™:Az=0 mod ¢}.

Let S = {s1,...,sx} be a set of vectors in R™. We use S = {81, ..., i} to denote
the Gram-Schmidt orthogonalization of the vectors si,...,s;. We use ||S]| to
denote the length of the longest vector in S, and ||S||o to denote the largest
magnitude of the entries in S . For a real-valued matrix R, we let s1(R) denote
the largest singular value of R, i.e. s;(R)=maxy=1[|Rul].

Let A be a discrete subset of Z™. For any vector ¢ € R and any positive
parameter o € Rs, let p, (%) = exp(—7||x — c||?/o?) be the Gaussian func-
tion on R™ with center ¢ and parameter o. Let py.c(A) = D, c 4 Po,c(X) be the
discrete integral of p, ¢ over A, and let D4 , ¢ be the discrete Gaussian distribu-
tion over A with center ¢ and parameter o. Specifically, for all y € A, we have

Dpoely) = Z:ZE'X; For notional convenience, p, 0 and Dy 0 are abbreviated

as p, and Dy o, respectively.

We recall the learning with errors (LWE) problem, a classic hard problem
on lattices defined by Regev [21]. The (decisional) learning with errors problem
LWEg n,m,a, in dimension n with error rate a € (0,1), stated in matrix form, is:
given an input (A, b), where A € Zy*™ for any m=poly(n) is uniformly random
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and b € Zi" is either of the form b = A's 4+ e mod ¢ for uniform s € Zq and
€ < Dygm o4 or is uniformly random (and independent of A), distinguish which is
the case, with non-negligible advantage. It is known that when ag > 24/n, this
decision problem is at least as hard as approximating several problems on n-
dimensional lattices in the worst-case to within O(n/«a) factors with a quantum
computer [2I] or on a classical computer for a subset of these problems [19]. In
the following, we list some useful facts that make our constructions work.

Lemma 1 ([I7] Lemma 2.11). Let « < Dz, with r > 0, then with over-
whelming probability, |x| < ry/n.

Lemma 2 ([4] Lemma 2.1). Let g,n,m be positive integers with ¢ > 2 be
prime, and m > nlgq+w(lgA). Let A < Zg*™ and R < {—1,1}""*™. Then
(A, AR) is statistically close to uniform.

Lemma 3 ([2] Lemma 15). Let R be a k x m matriz chosen at random from
{—1,1}**™_ Then with overwhelming probability, si(R) < 12 -k + m.

Lemma 4 ([4] Lemma 3.5). Let gq,n,m be positive integers with ¢ > 2 and
m > 6nlgq. There is a probabilistic polynomial-time algorithm TrapGen(q,n,m)
that outputs a pair (A, T) € Zy™™ x Zm*™ such that A is statistically close to
uniform in Z7*™ and T is a basis for A-(A), satisfying | T||sc < O(nlgq) and

IT|| < O(vnlgq) (Alwen and Peikert assert that the constant hidden in the first
O(+) is no more than 20).

Lemma 5 ([2] Theorem 17). Letq >2,m >n, A,B € Zy*™, Ta be a basis of

AL(A), ando > || Tal|-w(vlogm). There exists an efficient randomized algorithm
SampleLeft that, takes as inputs A, B, Ta, o, and outputs a basis S of A+(U) for
U = [A|B] with ||S|| < O(o - m) whose distribution depends on U, o.

Lemma 6 ([2] Theorem 18). Letq > 2,m >n, A,B € Zy*™, B be full rank,
R € {-1,1}™™ Tg be a basis of AL(B), and o > | Tg|| - s1(R) - w(y/logm).
There exists an efficient randomized algorithm SampleRight that, takes as inputs
A R,B,Tg,0, and outputs a basis S of A+(U) for U = [A|AR + B] with
IIS]| < O(o - m) whose distribution depends on U,o. Note that this algorithm

still works if we replace B with kB or CB, where k € Z, is coprime with q and
C e Zy™" is full-rank.

We consider any auxiliary input f(z) from which it is hard to recover the input
. We say that a function f is e-hard-to-invert with respect to a distribution D, if
for every efficient algorithm A it holds that Pr[A(f(z)) = ] < € over the choice
of < D and the internal coin tosses of A. We describe a useful statement as
follow which is crucial to our constructions.

Lemma 7 ([15] Theorem 5). Let klgt > lgq+w(lgA), t = poly(N). Let D be
any distribution over Z and f : ZY — {0, 1}* be any (possibly randomized) func-
tion that is 27 F18t_hard-to-invert with respect to D. For any super-polynomial
q=q(\), and any m = poly(n), any «, 8 € (0,1) such that o/ = negl(N).

(A, Als +e, f(s)) = (A,u, f(5)),
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where A < Zp*™, s < D C Zy and u « Zj' are uniformly random and
A klgt—w(lg )

e < Dy's,. Assuming the LWEq 4, assumption, where d g

For the case of simplicity, we denote the Adviwg, . ,. 5, (A) as the advantage of
any efficient distinguisher of the above two distribution in Lemma [1l According

to Lemma[7, we know that Adviwg, . ;(A) is negligible in A. Assuming the
—w(lgA)

: s klgt
LWEg,d,m,o assumption, where d = * 7% =

2.2 Security Definition

In this section, we describe the security notions introduced in [IT]. Brakerski and
Segev [1I] formalized three security notions with respect to auxiliary inputs,
and proved that all these three are equivalent. Brakerski and Segev [1I] also
showed that for the case of blockwise-hard-to-invert (see [IT] for a definition of
blockwise-hard-to-invert function) auxiliary inputs, encrypting a single message
is equivalent to encrypting multiple messages. For the case of simplicity, in this
paper, we only consider the case of a single message. In the single message case,
hard-to-invert function and the blockwise-hard-to-invert function are equivalent.
Furthermore, we slightly extend the notion in [IT]. We require the ciphertext is
indistinguishable from uniformly random elements in the ciphertext space. This
property implies the strong PRIV1-IND notion defined in [II] and recipient
anonymity.

A deterministic public key encryption scheme consists of three algorithms:
(KeyGen, Enc, Dec). The probabilistic KeyGen algorithm produces a secret key
and a corresponding public key. The deterministic Enc algorithm uses the public
key to map plaintexts into ciphertexts. The deterministic Dec algorithm uses the
secret key to recover plaintexts from ciphertexts.

Definition 1. A deterministic public key encryption scheme D-PKE=(KeyGen,
Enc,Dec) is PRIV1-INDr-secure with respect to e-hard-to-invert auzxiliary inputs
if for any probabilistic polynomial-time algorithm A, for any efficiently sam-
pleable distributions M, and any efficiently computable F = {f} that is e-hard-
to-invert with respect to M such that the advantage of A in the following game
s negligible.

Advg_%%/];l’:‘{f;’jr()\) = | Pr[(pk, sk) < KeyGen(\); b < {0,1};m + M; f + F;
¢y = Enc(pk,m); c; < C;b' < A(pk,cg, f(m)) : b=1b"]—1/2|.
Where C is the ciphertext space. The probability is taken over the choices of

m < M, (pk, sk) < KeyGen(\), and over the internal coin tosses of A.

The multi-user setting of deterministic public key encryption is a straightfor-
ward extension of the above definition. Namely, for any efficient adversary A,
given polynomial many encryptions of the related messages under multiple pub-
lic keys and auxiliary information of these message, can not distinguish them
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from uniformly random elements in the ciphertext space with the same auxil-
iary information.

A deterministic identity-based public key encryption consists of four algo-
rithms: (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec). The probabilistic IBE.Setup
algorithm generates public parameters, denoted by PP, and a master key M SK.
The possibly probabilistic IBE.KGen algorithm uses the master key to extract a
private key sk;q corresponding to a given identity i¢d. The deterministic IBE.Enc
algorithm encrypts messages for a given identity. The deterministic IBE.Dec
algorithm decrypts ciphertexts using the private key.

Definition 2. A deterministic identity-based public key encryption scheme D-
IBE=(IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) is PRIV1-ID-INDr-secure with
respect to e-hard-to-invert auxiliary inputs if for any probabilistic polynomial-
time algorithm A, for any efficiently sampleable distribution M, and any effi-
ciently computable F = {f} that is e-hard-to-invert with respect to M, such that
the advantage of A in the following game is negligible.

AdvEEE 2TV PT(N) = | Pr[(PP,MSK) «+ IBE.Setup());
id* — ATEXCR()(PPY: b {0,1};m  M; f < F; ¢ = IBE.Enc(PP, id*, m);
cf = C;b = APEKERO(PP cp f(m)) b =1]—1/2|.

Where C is the ciphertext space, and oracle IBE.KGen(-) on input id gener-
ates a private key sk;q for the identity id with the restriction that A is not
allowed to query id*. The probability is taken over the choices of m <+ M,
(PP,MSK) + IBE.Setup(\), skiq < IBE.KGen(PP,id, MSK), and over the
internal coin tosses of A.

3 The D-PKE Scheme

In this section, we propose a deterministic public key encryption scheme in the
auxiliary-input setting. Before going to the concrete scheme, we first give a useful
lemma, i.e. a trapdoor to invert the rounding function.

Lemma 8. Let p,q,n,m be positive integers with ¢ > p > 2. Let A € Zj*™ be
full-rank, and T be a basis of AL(A) with | T|e < p/m. Given ¢ = |Alx],,
where x € Z with t < q, there is a polynomial-time algorithm Invert(c, A, T)
that outputs x[2

Proof. Given ¢ = |A'x],, rewrite it into ¢ = (p/q)A'x + e + pv, where e € R™
is an “error” vector with |le|. < 1/2, and v € Z™. Then compute T'c =
(p/q)(AT)'x + T?e + pT'v. Since T is a basis of A-(A), we have

Tic = pv/ + Tle + pTiv = Tle + pw,

2 The strong trapdoor presented in [I7] can be used here. However, we have to sample
a “short” basis first, and we do not know how to “directly” use the strong trapdoor.
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for some v/, w € Z™. Since T?c and pw are integer vectors, then T?e is an integer
vector as well. Therefore, T*c = T*e mod p. By the hypothesis of T, we know
[Tte|lco < 1/2:m-||T||oc < p/2. Then we get that T'e mod p = T'e, and obtain
e, since T is invertible in R. We next compute (¢/p)(c —e) = A'x + gv, then,
(q¢/p)(c —e) mod g = A'x. Since A is full-rank modulo ¢, x can be recovered
by Gaussian elimination. a

The D-PKE scheme is described as follows. Set the parameters p,q,n,m as
specified in Sec. B}

— Key Generation. Algorithm KeyGen(\) takes as input a security parameter
A. It uses the algorithm from Lemmalto generate a (nearly) uniform matrix
and a trapdoor, i.e., (A, T) < TrapGen(q,n,m). It outputs pk = A € Zp*™
and sk =T € Zm*™,

— Encryption. Algorithm Enc(pk, m) takes as input a public key pk = A and
a message m € Zj'(C Z). It outputs a ciphertext ¢ = |[A‘m], € Z".

— Decryption. Algorithm Dec(sk, c) takes as input a secret key sk = T and a
ciphertext ¢ € Z;'. It first computes m < Invert(c, A, T). Then, if m € Z}
it outputs m, and otherwise it outputs L .

3.1 Correctness and Parameters

For the system to work correctly, we need to ensure that: (1) TrapGen can
operate (i.e. m > 6nlgq); (2) Lemma [ holds; (3) Lemma [7] holds. To satisfy
these requirements we set the parameters (g, p, m, n) as follows:

n=),  q=the prime nearest to 2"°, m = [6n!19], p=[120n212%],

where § is constant between 0 and 1. Since A is uniformly random in Zy*™
and m > 6n't9, with overwhelming probability this matrix will have rank n.
According to the Lemma [0 and the Theorem [ which we will give a proof in
the next subsection. We obtain that the security of this scheme is based on the
LWEyg, d,m,a, Where d = klgtf“;(lg’\), and 1/a = on” (0 < ¢’ < §). Given the
state of art algorithms, this problem is sub-exponentially hard. Furthermore,
we can choose klgt to be sub-linear. Therefore, our auxiliary inputs are sub-
exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expansion
factor in our scheme are O(n?*2%), O(n3+3%), O(n'*°1gn), and O(n®lgn/lgt)
respectively. To optimize the ciphertext expansion factor, we can choose t = n,
which makes the ciphertext expansion factor to be O(n?). In [I1], these values are
n2|G|, n®, n|G| and |G| respectively[] where |G| denotes the length of elements
in group G with order 2", It’s easy to see that |G| > n.

3 One can encrypt large messages (other that bits) to reduce the ciphertext expansion
factor, but in this case, it needs much more exponent arithmetics to decrypt.
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3.2 Security of the D-PKE Scheme

Theorem 1. For any k > (gq + w(lgA))/lgt, t = poly(A\) < q. The D-PKE
scheme is PRIV1-INDr-secure with respect to 2~ F18t_hard-to-invert auxiliary in-
puts. If Lemma[7 holds, where 1/8>m - p- nM g =n*D and p = poly()).

Proof. For any distribution M over Z?, let F = {f} be 27*8t hard-to-invert
with respect to distribution M. To prove this theorem, we define a series of
games, and give a reduction from the Lemma [7] with respect to distribution M.

Game Ggy. This game is the original PRIV1-INDr game with adversary A. By
X, we denote the event b = V' in Game G;. By definition, |Pr[Xo] — 1/2| =
Advp e AT ().

Game G;. This game is identical to game Gy, except that the challenger choose
A uniformly at random in Zg*™, and uses A as the public key given to A. Ac-
cording to Lemma] it follows that | Pr[X;] — Pr[Xo]| < negl()), for unbounded
adversary A.

Game G,. This game is identical to game G, except the way to generate
challenge ciphertext. The challenger samples m < M, and samples e < Dj'5, .
Let b= A'm + e mod g. The challenger sets ¢, = |b],, ¢} as in game G, i.e.
chosen at random in Zj'. It outputs (A, cj, f(m)) to A, but with one exception:
we define a “bad event” Bads to be

Bady £ |b+ [-B, B]"™], # {[bl,},

where B = ¢+/n. If Bads occurs on any of b, the challenger immediately abort
the game.

If Bady does not occur for the pair (A, b), then we have |b], = [A'm +e], =
|A*m], with overwhelming probability over the choice of e <= D74, because
llelloo < Bgy/n with overwhelming probability according to Lemma [I} It follows
that for any attacker A,

| Pr[X2] — Pr[X1]| < Pr[Badz] + negl(A).

We do not directly bound the probability of Bads occurring in Gs, instead de-
ferring it to the analysis of the next game, where we can show that it is indeed
negligible.

Game G3. In this game, the challenger chooses b € Z7" uniformly at random,
and samples m < M. It then sets ¢ = |b],, and chooses ¢} uniformly at
random in Zj'. The challenger gives (A,cj, f(m)) to A, subject to the same
“bad event” Bads and abort condition as described in the game G5 above. Un-
der Lemma [l and by the fact “bad event” can be tested efficiently given bE

* Given b = (b1, ..., bm), for each b;, one can compute |b; — B], and |b; + B], and
tests these two values equal to |[b;], or not.



Deterministic Public Key Encryption and Identity-Based Encryption 11

a straightforward reduction implies that |Pr[X3] — Pr[Xs]| < negl()\) for any
efficient attacker A. For the same reason, it also follows that

’Pr[Badg} — Pr[BadgH < negl(A).

Now for each uniform b, Pr[Bads] < m(2B + 1)p/q = negl()), by assumption on
q and . It follows that

Pr[Badz] < negl(\) = |Pr[Xs] — Pr[X;]| < negl(A).

Game G4. This game is similar to game G5, with b being chosen uniformly at
random, m being sampled from M, and Bady being defined similarly. However,
in this game the challenger always returns (A, c;, f(m)) to A, even when Bady
occurs. By the analysis above, we have that for any adversary A,

| Pr[X4] — Pr[X3]| < Pr[Bady] = Pr[Bads] < negl()).

Since f(m) is independent of b and the statistical distance between U (Zg*™, Z;}")
and U(Zy*™) x [U(Zy")]p is at most mp/q = negl(A) by assumption on g, so
we have | Pr[X4] — 1/2| = negl(\) for any efficient adversary .A.

Finally, by the triangle inequality, we have | Pr[Xo] — 1/2| < negl(\) for any
efficient adversary A, which completes the proof. a

The Multi-user Setting. It’s easy to extend the above theorem to multi-user
setting where linear related messages my, ..., my, are encrypted under any poly-
nomial number of public keys Aj,..., Ax. Linear related messages mean that
there exist invertible and efficiently computable matrices Va,.., Vi C Zp*"
and vectors wa, ..., W € Zy, such that m; = V,m; + w; (2 <i<k).In
this case, the joint distribution of ciphertexts is (|A{my]p, ..., [Almy],). Le.,
([Afmy],, [ALVomy + Abwo],, ..., [ALVemy + Alwy],). Since V; is invert-
ible and A; is uniformly random for 2 < i < k, then A;V; is uniformly random.
Because Lemma [ holds for any m = poly(n), V;, w; are efficient computable,
using the technique in the above proof, we can obtain that our D-PKE scheme is
secure in the multi-user for linear related messages. Due to the space limitation,

we omit the proof here.

4 The D-IBE Scheme

In this section, we describe our D-IBE scheme. Set the parameters p, q¢,n, m, o
as specified in Sec. Il We treat an identity id as a non-zero sequence of £ bits,
i.e, id = (b, ...,by) € {0,1}\{0}.

— Setup. Algorithm IBE.Setup(\) takes as input a security parameter A. It
uses the algorithm from Lemma @l to generate (Ao, T) < TrapGen(q,n,m).
Select ¢ + 1 uniformly random matrices Ay, ..., A¢, B in Zg*™. It outputs
PP =(Ay,A4,..,A;,B), MSK =T.
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— Key Generation. Algorithm IBE.KGen(PP, M SK,id) takes as input pub-
lic parameters PP, a master secret key M SK, and an identity id € {0, 1}*.
It first computes F;q = [Ag] Zle biA; + BJ, then it uses the algorithm in
Lemma[flto generate a short basis of AL (F;4). Le., Tp,, + SampleLeft(Ay,
Zle b;A; + B, T, o). It outputs sk;q = Tr,,.

— Encryption. Algorithm IBE.Enc(id, m) takes as input public parameters
PP, an identity id € {0,1}’, and a message m < Z7. It first computes
Fiq = [Ao] Zle b;A; + BJ, then let ¢ = |F!,m],. It outputs c.

— Decryption. Algorithm IBE.Dec(PP,id, ski4,c) takes as input public pa-
rameters PP, an identity ¢d, a secret key sk;q and a ciphertext ¢ € ng.
It first computes m «+ Invert(c,F;q, skiq). Then, if m € Z} it outputs m,
and otherwise it outputs L .

4.1 Correctness of Parameters

To ensure the correctness condition, we require: (1) TrapGen can operate (i.e.
m > 6nlgq); (2) Lemma [§ holds; (3) Lemma [7 holds; (4) o is sufficiently large
for SampleLeft and SampleRight. To satisfy all these requirements, we set the
parameters (g, p, m,n,o) as follows:

n =\ q= the prime nearest to 2", m = [6n119], 0 = 60n'5T0 p = [3¢n35+30]

where ¢ is constant between 0 and 1. According to Lemma [[] and Theorem
which we will give a proof in the next subsection. We obtain an adaptively secure
2 klgt—w(lgX)
, lgq
1/a= on’ (0 < &' < 9). Given the state of art algorithms, this problem is sub-
exponentially hard. Furthermore, we can choose k1g t to be sub-linear. Therefore,
our auxiliary inputs are sub-exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expan-
sion factor in our scheme are O(3(¢ + 2)n?*2%) O(n3*3%), O(2n'*1gln), and
O(n®1g ¢n/lgt) respectively. To optimize the ciphertext expansion factor, we can
choose ¢t = ¢n, which makes the ciphertext expansion factor to be O(n?).

scheme whose security is based on the LWEy g, o, Where d , and

Remark. We also give a more efficient selectively secure D-IBE, the security
definition and the concrete construction are given in the full version.

4.2 Security of D-IBE

Theorem 2. For any k > (1gq+ w(lgN))/1gt, t = poly(N), prime integer ¢ =
n® and p = poly(\). Assume an adversary A on D-IBE’s PRIV1-ID-INDr
security with respect to 27 %18 _hard-to-invert auxiliary inputs, makes at most
Q(N) secret key queries. Then for every polynomial S(\) and 1/8 > fm?-p-n<™)
we have
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AvaRIVl-ID-INDr(A) < 2AAVLWE, 1 5. (A)

1
D-IBE, A, F + + negl(N)

A SOV

where A and f is any 27 *8t_hard-to-invert function.

= seine
According to Lemma [f] and because S is arbitrary, we obtain:

Corollary 1. Let ¢ = n“1) be a prime integer, p = poly()\), 1/8 > ¢m?-p-n*(),
and o/ = negl(\). Assuming LWE, 4.m.o assumption with d = klgtlg‘;(lg)‘),
then for any k > (lgq+w(lgX))/lgt, t = poly(\), the D-IBE scheme is PRIV1-
ID-INDr-secure with respect to 27 %18t _hard-to-invert auziliary inputs.

Proof. For any distribution M over Z?, let F = {f} be 27*!8t hard-to-invert
with respect to distribution M. To prove this theorem, we define a series of
games, and give a reduction from Lemma [7 with respect to distribution M.

Game Gg. This game is the original PRIV1-ID-INDr game with adversary .A.
We assume without loss of generality that A always makes exactly @ = Q()\)
secret key queries. We denote these queries by id; for 1 < j < @, and the chal-
lenge identity chosen by A as id*. By X;, we denote the event b = b’ in Game
G;. By definition, | Pr[Xo] —1/2| = AdvpEEE 2"V P7 (M), In the following, Let
ID? = (id*,idy, ..., idg).

Game G;. In this game, the challenger slightly changes the way to generate
the matrices A;,¢ € [¢] and B. At the setup phase, the challenger first sets an
integer M = 4@Q), and chooses an integer k uniformly at random in between 0
and £. It then chooses a random ¢ + 1-length vector, x = (2/, z1, ..., z¢), where
2’ is chosen uniformly at random in {1,...,M} and z; for ¢ € [¢] are chosen
uniformly at random in Zp;. We define F(id) = (¢— kM) + 2’ + Zle bix;, note
that —kM + 2’ # 0. And we define a binary function K (id) as

K (id) = 0 ifa' + Zle b;x;i =0 mod M
11 otherwise.

Next it chooses matrices B’ uniformly at random in Zj*™, and chooses R; «
{=1,1}m™>*™ for ¢ € [¢]. The challenger sets B = (¢ — kM + z')B’ mod ¢, and
constructs A; fori € [(]as A; = AgR;+x;B’. Since B’ is uniform, and ¢ is prime,
then B is uniform (since —kM+2’ mod ¢ # 0 for sufficiently large ¢). By Lemma
@ A, is uniform with overwhelming probability, then according to Lemmal[2 A,
is statistically close to uniform. Therefore, we have | Pr[X;] — Pr[Xo]| < negl()).
Note that, in G,

L )4
Fio = [AolAg Y biRi+(q— kM +2'+ ) bia;)B]
i=1 i=1
L
= [Ao|Ap D bR, + F(id)B'] mod g

i=1
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Furthermore, F(id) = 0 mod ¢ implies K (id) = 0, since ¢ is super-polynomial,
and ¢ and M are polynomials, we can assume g > ¢M for any reasonable values
of ¢, ¢ and M.

Game G5. In this game, after the adversary has terminated, the challenger
throws an event Goods independently with probability A = 8(¢ +1)Q The chal-
lenger aborts the experiment (and outputs a uniformly random bit) if =Goods
occurs. We get

Pr[Xy] — 1/2 = Pr[Goods] (Pr[Xy] — 1/2) = A - (Pr[X4] — 1/2).

Game Gj3. In this game, the challenger changes the abort policy. We define a
function as

(x,709) = {0 if (N2 K (idy) = 1) Aa! + 30 b, = kM
’ 1 otherwise.

Let E denote the event that T(X,IDQ) evaluates to 0 for a given choice of x.
According to the analysis in [23] (Claim 2), we know that pp = Pr[E] > A =
8(¢ +11) 0 Ideally, we would like to replace event Goods from game G2 with event
E. Unfortunately, £ might not be independent of A’s view, so we use artificial
abort techniques. That is, given the identities in all ID?, we approximate pg
by sufficiently often sampling values of x. Hoeffding’s inequality yields that with
[AS/A] samples, we can obtain an approximation pr > A of pg that satisfies
Prllpe — pr| > A/S] < 1/2*. Now the challenger finally aborts if E does not
occur. But even if E occurs (which might be with probability pg > A), the
challenger artificially enforces an abort with probability 1 — A/pr. We call Goods
be the event the challenger does not abort. We always have

Pr[Goods] = 1 — ((1 —pE) +pe(l - A/p};)) = A pp/ps.
Hence, except with probability 1/ 27
| Pr[Goods]|—Pr[Goods]| = |A—Apr/pE| = A|(pe—pE)/PE| < A-A/Spe < A/S.

Since the above inequality holds for arbitrary ZD? except with probability 1 /22,
we obtain that the statistical distance between the output of game G2 and Gj
is bounded by A/S + 27*. Hence, | Pr[X;3] — Pr[Xs]| < A/S + 272,

Game G4. In this game, the challenger makes the following conceptual change
regarding secret key queries and challenge ciphertext. Namely, upon receiving
a secret key query for id € ZD?\id*, the challenger immediately aborts (with
uniform output) if K(id) = 0. Upon receiving the challenge identity 1d*, the
challenger immediately aborts (with uniform output) if =’ + ZZ L bixs # kM.
This change is purely conceptual: since K(id) = 0, for id € ID%\id*, o

x + ZZ 1 bfxy # kM, event E cannot occur, so the Game G4 would even-
tually abort as well. We get Pr[X4] = Pr[X3s].
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Game G5. In this game, the challenger changes the ways to generate Ay, B’ and
to answer secret key queries. By the change from game G4, we may assume that
K(id) = 1 for all id € TD®\id* and 2’ + Zle bix; = kM for id*. This implies
that F(id) # 0 mod ¢ for all id € TD?\id*, and F(id*) =0 mod ¢. The chal-
lenger chooses A uniformly at random in Z;*™ and use LemmaMlto generate B’
with a trapdoor (B’, Tg’) + TrapGen(q,n, m). From Lemmal we know that the
distribution of Ay, B’ are statistically close. Upon receiving a secret query for id,
the challenge use the algorithm Tr,, <— SampleRight(Ay, Zle bR;, B, Tg/,0),
this could be done, since F'(id) # 0 mod q. This results in the same distribution
of secret keys as in Game G4 with sufficiently large o, up to negligible statistical
distance. Thus | Pr[Xs] — Pr[X4]| < negl(\). Note that, in this case the matrix
of the challenge ciphertext is as F;4» = [Ag|AoR*], where R* = Zle bR;.
Game Gg. In this game, the challenger changes the way to generate challenge
ciphertext. The challenger samples m < M, and sample error vector e < D754
we denote b = Afm +e mod ¢. It sets ¢ = [b'|b'R*]" and let ¢ = [¢],, ¢}
be as in the game G5, i.e. chosen at random in ng. The challenger returns
(ci, f(m)) to A, but with one exception: we define a “bad event” Badg to be

Badg = |¢ + [—B’B}zm-‘p #{lelp}s

where B = {f¢+/nm. If Badg occurs on any of ¢, the challenger immediately
abort the game.

Since (R*)'b = (AgR*)'m + (R*)%e, and R* = Y.'_, biR;, where R; €
{=1,1}™*™ we have ||[(R*)'e|e < ¢Bgy/nm with overwhelming probability,
since e <— Dy’ according to Lemma [Tl If Badg does not occur for some ¢, then

we have

A1 LAtm—&—e]p _ LAthp ot
€= | |yt (R*)te]p} _ [L( Aofg*)tmb] — |F!yom],,

It immediately follows that for any adversary A
Pr[Xs] — Pr[X5] < Pr[Badg] + negl()).

We do not directly bound the probability of Badg occurring in game Gg, instead
deferring it to the analysis of the next game, where we can show that it is neg-
ligible.

Game G7. In this game the only difference is that challenger chooses b €
Zg* uniformly at random, and samples m < M. To generate the challenge
ciphertext, it sets ¢ = [b|b'R*]*, and let ¢§ = [¢]p. It returns (cj, f(m)) to
A, subject to the same “bad event” Bad; and abort condition as described in
the game Gg above. Under Lemma [7] and by the fact “bad event” can be tested
efficiently given ¢, this implies that | Pr[X7] —Pr[Xg]| < Adviwg for any
efficient attacker A. For the same reason, it also follows that

q,n,m,B,f

| Pr[Badﬂ - Pr[Bad(;H S AdVLWE

q,n,m,B,f "
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Let us consider the pair (b*,b'R*), where b € Z7" is uniformly random, R* =

Zle biR; and R;’s are pairwise independently chosen from {—1,1}" at ran-
dom. Since id* # 0, there exists 7, such that bi = 1. By Lemmaf (when n = 1),
we have that (b’,b'R;) is statistically close to U(Z2™). Because R;’s are pair-
wise independent, we obtain that (bf,b'R*) is statistically close to U(Z2™).
This means that ¢ is statistically close to U(Zg’”)7 therefore for each uniform ¢,

Pr[Bad;] < 2m(2B + 1)p/q = negl()), by assumption on ¢ and S. It follows that

Pr[BadG] < AdVLWEq,,,L,,,,L,ﬂ,f + negl()\)

= | Pr[Xg] — Pr[X5]| < Adviwe, , s T negl(A).

Game Ggs. This game is similar to game G7, with b € Zg’” being chosen uni-
formly at random, m being sampled from M, and Badg being defined similarly.
However, in this game the challenger always returns (cj;, f(m)) to A, even when

Badg occurs. By the analysis above, we have that for any adversary A,
| Pr[Xs] — Pr[X7]| < Pr[Bad7] = Pr[Bads] < negl()).

According to the analysis in Game7, we know ¢ is uniformly random, up to
negligible statistical distance. Since f(m) is independent of ¢ and the statistical
distance between U(Z2™) and [U(Z2™)], is at most 2mp/q = negl(X) by assump-
tion on ¢, so we have Pr[Xg] — 1/2 < negl(\) for any efficient
adversary A.

Finally, by the triangle inequality, we obtain the result of Theorem O
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Abstract. The security of BGV-style homomorphic encryption schemes
over polynomial rings relies on rings of very large dimension. This large
dimension is needed because of the large modulus-to-noise ratio in the
key-switching matrices that are used for the top few levels of the evalu-
ated circuit. However, larger noise (and hence smaller modulus-to-noise
ratio) is used in lower levels of the circuit, so from a security standpoint
it is permissible to switch to lower-dimension rings, thus speeding up
the homomorphic operations for the lower levels of the circuit. However,
implementing such ring-switching is nontrivial, since these schemes rely
on the ring algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and
Vaikuntanathan, over polynomial rings of the form Z[X]/(X?" + 1), in
the context of bootstrapping. In this work we generalize and extend this
technique to work over any cyclotomic ring and show how it can be used
not only for bootstrapping but also during the computation itself (in
conjunction with the “packed ciphertext” techniques of Gentry, Halevi
and Smart).

1 Introduction

The last year has seen a rapid advance in the state of fully homomorphic encryp-
tion; yet despite these advances the existing schemes are still too inefficient for
most practical purposes. In this paper we make another step forward in making
such schemes more efficient. In particular we present a technique to reduce the
dimension of the ring needed for homomorphic computation of the lower lev-
els of a circuit. Our techniques apply to homomorphic encryption schemes over
polynomial rings, such as the scheme of Brakerski et al. [4, 15, 3], as well as the
variants due to Lopez-Alt et al. [14] and Brakerski [2].

The most efficient variants of all these schemes work over polynomial rings
of the form Z[X]|/F(X), and in all of them the ring dimension (which is the
degree of F(X)) must be set high enough to ensure security: to be able to
handle depth-L circuits, these schemes must use key-switching matrices with
modulus-to-noise ratio of 2(Lpolylog(N) hence the ring dimension must also
be (L - polylog()\)) (even if we assume that ring-LWE [15] is hard to within

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 19}37] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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fully exponential factors) In practice, the ring dimension for moderately deep
circuits can easily be many thousands. For example, to be able to evaluate AES
homomorphically, Gentry et al. used in [13] circuits of depth L > 50, with
corresponding ring-dimension of over 50000.

As homomorphic operations proceed, the noise in the ciphertext grows (or the
modulus shrinks, if we use the modulus-switching technique from [3,[3]), hence re-
ducing the modulus-to-noise ratio. Consequently, it becomes permissible to start
using lower-dimension rings in order to speed up further homomorphic compu-
tation. However, in the middle of the computation we already have evaluated
ciphertexts over the big ring, and so we need a method for transforming these
into small-ring ciphertexts that encrypt the same thing. Such a “ring switching”
procedure was described by Brakerski et al. [3], in the context of reducing the
ciphertext-size prior to bootstrapping. The procedure in [3], however, is specific
to polynomial rings of the form Rgn = Z[X]/(X2" +1), and moreover by itself
it cannot be combined with the “packed evaluation” techniques of Gentry et al.
[11]. Extending this procedure is the focus of this work.

1.1 Our Contribution
In this work we present two complementary techniques:

— We extend the procedure from [3] to any cyclotomic ring R = Z[X]/®,,(X)
for a composite m. This is important, since the tools from [11] for working
with “packed” ciphertexts require that we work with an odd integer m. For
m = u-w, we show how to break a ciphertext over the big ring R into a collec-
tion of v’ = p(m)/p(w) ciphertexts over the smaller ring R’ = Z[X ]/, (X),
such that the plaintext encrypted in the original big-ring ciphertext can
be recovered as a simple linear function of the plaintexts encrypted in the
smaller-ring ciphertexts.

— We then show how to take a “packed” big-ring ciphertext that contains many
plaintext values in its plaintext slots, and distribute these plaintext values
among the plaintext slots of several small-ring ciphertexts. If the original big-
ring ciphertext was “sparse” (i.e., if only few of its plaintext slots were used),
then our technique yields just a small number of small-ring ciphertexts, only
as many as needed to fit all the used plaintext slots.

The first technique on its own may be useful in the context of bootstrapping,
but it is not enough to achieve our goal of reducing the computational over-
head by switching to small-ring ciphertexts, since we still need to show how to
perform homomorphic operations on the resulting small-ring ciphertexts. This
is achieved by utilizing the second technique. To demonstrate the usefulness of
the second technique, consider the application of homomorphic AES computa-
tion |13], where the original big-ring ciphertext contains only 16 plaintext values

! The schemes from [3, 2] can replace large rings by using higher-dimension vectors
over smaller rings. But their most efficient variants use big rings and low-dimension
vectors, since the complexity of their key-switching step is quadratic in the dimension
of these vectors.
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(corresponding to the 16 bytes of the AES state). If the small-ring ciphertexts
has 16 or more plaintext slots, then we can convert the original big-ring cipher-
text into a single small-ring ciphertext containing the same 16 bytes in its slots,
then continue the computation on this smaller ciphertext.

1.2 An Overview of the Construction

Our starting point is the polynomial composition technique of Brakerski et al.
[3]. When m = wu - w then a polynomial of degree less than ¢(m), a(X) =
Zfz(gn)_l a;X*, can be broken into u polynomials of degree less than ¢(m)/u <
p(w), by splitting the coefficients of a according to their index modulo u. Namely,

denoting by a(y) the polynomial with coefficients a, ax+u, @r+2u; - - -, we have

u—1p(w)—1 e(w)—1

ST g Xt = Zxk Z Atuj X ZX agky (X
k=0 ;=0
(1)

We note that this “very syntactic” transformation of splitting the coefficients of
a high-degree polynomial into several low-degree polynomials, has the following
crucial algebraic properties:

1. The end result is a collection of “parts” a(y), all from the small ring R’
(which is a sub-ring of the big ring R, since w|m).

2. Recalling that f(z) — f(z*) is an embedding of R’ inside R, we have the
property that the original a can be recovered as a simple linear combination
of (the embedding of) the parts a().

3. The transformation T'(a) = (a(q),. .., a(u—1)) is linear, and as such it com-
mutes with the linear operations inside the decryption formula of BGV-type
schemes: If s is a big-ring secret key and ¢ is (part of) a big-ring ciphertext,
then decryption over the big ring includes computing a = s - ¢ € R (and
later reducing @ mod ¢ and mod 2). Due to linearity, the parts of a can be
expressed in terms of the tensor product between the parts of § and ¢ over
the small ring. Namely, T'(s - ¢) is some linear function of T'(s) ® T'(c).

In addition to these algebraic properties, in the case considered in |3] where
m,w are powers of two, it turns out that this transformation also possesses the
following geometric property:

4. If a is a “short” element of R (in the canonical embedding of R), then all
the components a(;y € R’ of T'(a) are also short in the canonical embedding
of R'.

The importance of this last property stems from the fact that a valid ciphertext
in a BGV-type homomorphic encryption scheme must have short noise, namely
its inner product with the unknown secret key must be a short ring element.
Property 3 above is used to convert a big-ring ciphertext encrypting a (relative
to a big-ring secret key s) into a collection of “syntactically correct” small-ring
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ciphertexts encrypting the a()’s (relative to the small-ring secret key T'(s)), and
Property 4 is used to argue that these small-ring ciphertexts are indeed valid.

Attempting to apply the same transformation in the case where m,w are
not powers of two, it turns out that the algebraic properties all still hold, but
perhaps the geometric property does not. In this work we therefore describe a
different transformation T'(-) for breaking a big-ring element into a vector of
small-ring elements, that has all the properties 1-4 aboveE for any integers m, w
such that w|m. This transformation crucially uses the interpretation of R as
a dimension-g(m)/@(w) extension ring of R, and is described in Section
Another advantage of our transformation over the one from [3] is that it breaks
a big-ring element a € R into only u’ = ¢(m)/¢(w) small ring parts a), as
opposed to u = m/w parts for the transformation from [3].

A Key-Switching Optimization. One source of inefficiency in the ring-switching
procedure of Brakerski et al. [3] is that using the tensor product T'(s) ® T(c)
amounts essentially to having w small-ring ciphertexts, each of which is a
dimension-u vector over the small ring. Brakerski et al. point out that we can use
key-switching/dimension-reduction to convert these high dimension ciphertexts
into low-dimension ciphertexts over the small ring, but processing u ciphertexts
of dimension u inherently requires work quadratic in u. Instead, here we describe
an alternative procedure that saves a factor of v in running time.

Before using T'(+) to break the ciphertext into pieces, we apply key-switching
over the big ring to get a ciphertext with respect to another secret key that
happens to belong to the small ring R’. (We again recall that R’ is a sub-ring
of R). The transformation T'(-) has the additional property that when applied
to a small-ring element s’ € R’ C R, the resulting vector T'(s") over R’ has
just a single non-zero entry, namely s’ itself. Hence T'(s’) ® T'(c) is the same as
just s’ - T'(c), and this lets us work directly with low-dimension ciphertexts over
the small ring (as opposed to ciphertexts of dimension u). This is described in
Section Bl where we prove that key-switching into a key from the small subring
is as secure as ring-LWE in that small subring.

Packed Cliphertexts. As sketched so far, the ring-switching procedure lets us con-
vert a big-ring ciphertext encrypting an element a € R into a collection of u’ small-
ring ciphertexts encrypting the parts a() € R'. However, coming in the middle of
homomorphic evaluation, we may need to get small-ring ciphertexts encrypting
elements other than the a()’s. Specifically, if the original a encodes several plain-
text values in its plaintext slots (as in [18, [11]), we may want to get encryptions
of small-ring elements that encode the very same values in their slots.

We note that the plaintext values encoded in the element a € R are the
evaluations a(p;), where the p;’s are primitive m-th roots of unity in some ex-
tension field Fya. (Equivalently, the evaluations a(p;) correspond to the residues

2 An earlier version of the current work |10] used the same transformation as in [3],
and patched the problem with the geometric property by “lifting” everything from
the big ring Z[X]/®m(X) to the even bigger ring Z[X]/(X™ — 1), using techniques
similar to |11, [7].
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a mod p;, where the p; = (2, F;(X)) are the distinct prime ideal factors of (2) in
the ring R. Hence the evaluation representation over Fqq is just Chinese remain-
dering modulo 2 in R.)

Similarly, the plaintext values encoded in an element b € R’ are the evalua-
tions b(7;), where the 7;’s are primitive w-th roots of unity in Fyua (equivalently,
the residues of b modulo the prime ideal factors of 2 in R’). Our goal, then, is to
decompose a big-ring ciphertext encrypting a into small-ring ciphertexts encrypt-
ing some by’s, such that for every ¢ there are some j, k for which by (7;) = a(p;).

On a very high level, the approach that we take is to observe that the linear
transformation T'(-) for break big-ring elements into vectors of small-ring parts,
must as a side-effect of induce some linear transformation (over Fya) on the values
in the plaintext slots. Hence after we apply T', we just need to compute homomor-
phically the inverse linear transformation (e.g., using the techniques from [11] for
computing on packed ciphertexts), thereby recovering the original values.

2 Notation and Preliminaries

For any positive integer u we let [u] = {0,...,u — 1}.

2.1 Algebraic Background

Recall that an ideal (in an arbitrary commutative ring R) is an additive subgroup
which is closed under multiplication by R. Below we typically denote ideals by
p,q, etc. An R-ideal p is prime if ab € p (for some a,b € R) implies a € p or
b € p (or both). When R’ is a sub-ring of R and p is an R'-ideal, we implicitly
identify p with its extension to R, namely the R-ideal pR. For an R-ideal p, the
quotient ring R, = R/pR is a ring consisting of the residue classes a + p for all
a € R, with the ring operations induced by R.

For any positive integer m > 2, let K = Q((n) =& Q[X]/ P (X) be the mth
cyclotomic number field (of degree p(m)), and R = Z[(n] = Z[X]/Pm(X) its
ring of integers, where (,, = exp(2mv/—1/m) is the mth principal complex root
of unity, and @,,,(X) = [[;ez. (X—¢;,) € Z[X] is the mth cyclotomic polynomial.
The elements (7, (equivalently, X7) for j € [p(m)] form a Q-basis of K and a Z-
basis of R, called the “power basis.” That is, any a € K can be written uniquely
as a = ngg)_l aj - ¢, for some ay € Q, and a € R if and only if every a; € Z.

There are p(m) ring homomorphisms from K to C that fix Q pointwise,
called embeddings, which are denoted o;: K — C for ¢ € Z, and character-
ized by 0;((m) = ¢%,. (Equivalently, o;(a(X)) = a(¢?,) € C when viewing K as
Q(X)/®(X).) We note that the o; are automorphisms of K, when viewing it
as a sub-field of C. The (field) trace is a Q-linear function Trg,q: K — Q, which
can be defined as the sum of the embeddings: Trg /g (a) = Zier” oi(a).

The canonical embedding o: K — C#™) is the concatenation of all the em-
beddings, i.e., o(a) = (0i(a))iez:, , and it endows K with a canonical geometry.
In particular, we define the Euclidean (¢2) and £+, norms on K as
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lall = llo(a)ll = \/foi(a)2 and laf|, := [lo(a)ll = max|oi(a)],

respectively. Note that ||a - b|| < ||a||, - ||b]| for any a,b € K, because the o; are
ring homomorphisms.

For some w|m, let v = m/w (so {, = ¢%) and v = p(m)/p(w), and let
K" = Q(¢w) € K and R' = Z[(y] € R be the wth cyclotomic number field
and ring (respectively), with ¢(w) embeddings o} : K’ — C for i € Z, defining
the canonical embedding ¢’: K’ — C#(®). Notice that when we restrict to the
subfield K" = Q(¢Y) of K, for any i € Z! we have o; = 0} 4., because

wy _ ~u(imodw)
O—i(Cm) — tm = 4 mod w( )

Observe that using the polynomial representation in the small ring R/ =
Z[X]/®Pw(X), the element (,, is represented by the indeterminate X. However,
using polynomial representation in the big ring, R & Z[X]/®,,(X), the same
ring element ¢, = (% € R’ C R is represented by the monomial X*. In gen-
eral, if ' € R’ is a small-ring element represented by the polynomial b(X) €
Z[X]/®P.,(X), then the same small-ring element is represented by the polyno-
mial a(X) = b(X") mod &,,,(X) € Z[X]/P(X), when viewed as an element in
the sub-ring R’ of R. In other words, the mapping f(X) — f(X*) mod &,,(X),
mapping polynomials of degree less than ¢(w) into a subset of the polynomials
of degree less than ¢(m), is a ring embedding of Z[X]/®,(X) = R’ as a sub-
ring of Z[X]/®,,(X) = R. Similarly, this mapping is also a field embedding of
Q[X]/Pw(X) 2 K’ as a subfield of Q[X]/P,,(X) 2 K.

We will use extensively the fact that K is a degree-u’ extension of K/, i.e.,
K = K'(¢n), and similarly R = R'[(,,]. The powers (¥, for k € [u] (also called
the “power basis”) form a K'-basis of K, and an R’-basis of R. Looking ahead, our
transformation T'(-) for breaking a big ring element into small-ring components
will just output the vector of coefficients of the big-ring element relative to the
power basis.

One can verify that among all the embeddings o; of K, exactly u’ of them
fix K’ (not just Q) pointwise. Specifically, these are the embeddings o, indexed
by each i = 1 mod w. The intermediate trace function Trg/k/ : K — K’ is a
K’-linear function, defined as the sum of all those K'-fixing embeddings, i.e.,

Trye(a) = Y _oi(a), I={i€Z},:i=1modw}
el

A standard fact from field theory is that every K’-linear map L: K — K’ can be
expressed as L(z) = Trg g/ (d - z) for some d € K. Another standard fact is that
the intermediate trace satisfies Trg /g = Trg/ /g © Trg /-

The following lemma relates the intermediate trace to the embeddings of K
and K’, and will be used later to show that our ciphertext decomposition from
R to R’ produces component ciphertexts having short error terms.
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Lemma 1. For anya € K and i € Z,

oi(Trgywe (@) = Y, oj(a).

j=i mod w

In matriz form, o'(Trgx:(a)) = P - o(a), where P is the p(w)-by-p(m) matriz
(with rows indexed by i € Z%, and columns by j € Z7,) whose (i, j)th entry is 1
if 7 =i mod w, and is 0 otherwise.

Proof. Recall that for any i’ € Z*, such that i’ = i mod w, the K'-embedding
o; and the K-embedding oy coincide on K'. In particular, oj(Trg/x/ (a)) =
oy (Trg ks (a)) because Trg, g:/(a) € K'. Then by definition of Trg, g, and lin-
earity of o;/, we have

AMepe@) =or( X 0(0) =Tavlo@)= ¥ asta)

7=1 mod w j7'=% mod w

*

where for the last equality we have used oy 0 0; = 0. and ¢ € Z7,, so j' =
i’ - j € Z7, runs over all indexes congruent to i = ¢ mod w when j € Z} runs
over all indexes congruent to 1 mod w. O

2.2 The Big Ring-to-Small Ring Decomposition

As sketched in the introduction, our approach is rooted in the technique of
decomposing an element of the “big” ring R = Z[(] (or field K) into several
elements of the “small” ring R’ = Z[(,] (or field K’). Recall from Section 2]
that K = K'[(,,] is a field extension of degree v’ = ¢(m)/¢(w) over K, having
power K'-basis (9, .. .,C}‘nlfl. That is, any a € K can be written uniquely as
a= ZZ:OI ay - ¢ for some “coefficients” a, € K’, and a € R if and only if every
ar € R'. We define the decomposition map 7: K — (K’ )“' (which also maps R
to (R)*) to simply output the vector of these coefficients

T(a) = (ao,...,au/_l). (2)
We note a few simple but important properties of T

1. It is K'-linear (and hence also R’-linear): for any a,b € K and ' € K/,
T(a+b) =T (a)+T(b) (i-e., T is an additive homomorphism), and T'(r"-a) =
- T(a).

2. Any ideal p in R’ induces a bijective Ry,-linear map T,: Ry, — (R},)" , namely,
Tp(a+pR) = Tp(a) + ()" = (a0 + .- .-, aw—1 +p).

3 Alternatively, we could define T to output coefficients with respect to the “dual
power” K'-basis of K, which would map the (fractional) dual ideal RY of R to
(R v)“/. That decomposition has better geometric properties and is more consonant
with the ring-LWE problem as defined in [15], but it is more technically involved.
We defer the details to the full version.
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When using polynomial representations, the K’-linearity of 7" must be inter-
preted relative to the embedding f(X) — f(X*) that maps the polynomial
representation of K’ into that of K. Specifically, it means that for any polynomi-
als b(X) € Q[X]/P,(X) and a(X) € Q[X]/Pn(X), it holds that

T(b(X")-a(X) mod &, (X)) = b(X) T (a(X)) mod &,(X). (3)

Another important property is that 7" maps short elements in R to vectors of
relatively short elements in R’ (where as always, “short” is with respect to the
canonical embeddings).

Lemma 2. For a € R, let T(a) = (ao,...,aw—1). Then for any k € [u'], we
have |lag|| < emw - Ha||/\/u’, where ¢y > 1 s a constant that depends only on
m and w.

Note that the v/u' term appearing above is merely a normalization factor asso-
ciated with the fact that the power basis elements of R’ are a v/u/ factor shorter
than those of R under the canonical embeddings, so the decomposition does not
actually shrink the elements in any effective way.

Te constant ¢, ., turns out to depend only on the ratio » = rad(m)/ rad(w),
where rad(n) denotes the radical of n, i.e., the product of all the prime divisors
of n (without multiplicities). Hence we hereafter denote it by ¢, rather than
Cm.,w- For typical values of r = rad(m)/rad(w), the constant ¢, is (somewhat)
small, e.g., c; =1 and ¢, = \/2 —2/p when p is a prime. (Hence if m and w
share all the same prime divisors, the relevant constant is 1, and if m has only
one additional prime divisor then the constant is smaller than v 2.) Some other
examples are c3.5.7 &= 17.4 and c¢5.7.11 =~ 155. We also note that the constant
factor ¢, can actually be removed entirely, by following the framework of [15, [16]
and defining T' to work with the fractional ideals RY and R’V (as mentioned in
Footnote B)); see the discussion after the proof of Lemma

Proof (sketch). We first express T' in terms of the intermediate field trace Try /k/,
then use Lemma [ to bound |lak||. Recall that every K’'-linear map from K to
K’ can be expressed as L(x) = Trg/x/ (d - ) for some fixed d € K. Since T is
K'-linear, then for every k € [u/] there exists dj, € K such that ap = Trg g/ (dx-a)
(for all @ € K). The elements dj, are “dual” to the power K'-basis elements (¥ :
for every j, k € [u'] we have Trg g/ (¢}, - di) = 1 if j = k and Trg,x/ (¢}, - di) =0
if j # k.

Now by Lemma [l and the fact that the o; are ring homomorphisms, we have

o'(ag)=P-o(dy-a)=P-D-oa),

where D = diag(o(dy)). Notice that the rows of P- D are orthogonal (since each
column has exactly one nonzero entry). Tl}e Euclidean norm of row i € Z, is
ldk,: ||, where di; = (0;(dk))j=i mod w € C* . Therefore, |lax|| < ||a||-max;||dx.||.

It remains to bound maxg ;||dy ;||. For each i € Z7,, denote by Z; the matrix
(of dimension v’ x ') defined as Z; = (0;(C%))j=i mod w,ke[w]- Then the di’s
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are determined by the linear constraints Z! - di; = ej, (where e}, € 7 is k’th
standard basis vector). From Galois theory it follows that ||dy ;| is actually the
same for every i € 7. It can also be shown that maxg||dy 1| - vVu/ depends only
on rad(m)/ rad(w); we omit the details. |

We note again that the constant ¢, in Lemma [2] can be eliminated by defining
the transformation T relative to a different basis, specifically the “dual” of the
power basis, consisting of the vectors dy, d1, ..., dy —1 from the proof above. The
proof then proceeds in the same way, but with the roles of dy and (¥ reversed.
The tighter bound then follows by observing that the magnitude of each o;(¢ )
is exactly one. One technical issue with using the dual basis, however, is that
T no longer maps R to vectors over R’. Instead, it maps the dual ideal RV to
vectors over R’V which introduces some additional algebraic subtleties but also
turns out to have certain other advantages, as described in [15, [16]. We defer
further details to the full version.

2.3 RLWE-Based Cryptosystems

Below and throughout this work, for a residue class z + qZ € Z, we let [2], € Z
denote its canonical representative in the interval [—¢/2, ¢/2). (One can think of
[]q as an operation that takes an arbitrary integer z and reduces it modulo ¢ into
the interval [—¢q/2, q/2), so as to get the canonical representative of z + ¢gZ.) We
extend this to a map from R, = R/qR to R, by applying the operation coefficient-
wise to the input (viewed as a polynomial in coefficient representation). L.e., for
z=3,2zX"€ Ry we get [z]; = >_.[2i]q- X' A standard fact is that if z € a+qR
for some a € R that is sufficiently short relative to ¢ and the dimension of R,
then [z], = a. Throughout the paper we implicitly assume that ¢ is chosen large
enough to ensure that all of the operations we describe produce valid ciphertexts.

In a basic ring-LWE-based cryptosystem [15], secret keys and ciphertexts are
elements of (R,)? for some odd integer g, and moreover the secret key has the
form s = (1,s) mod ¢, where s € R is short. The plaintext space is the quotient
ring R2 = R/2R. A valid ciphertext ¢ = (cg, ¢1) € (R,)? that encrypts a plaintext
a € Ry with respect to s = (1, 5) satisfies

(c,8) =co+5-c1 € (a+2e)+qR (4)

for some sufficiently short a+2e € R. To decrypt, one just computes [co+5-¢1]q =
a + 2e and reduces modulo 2 to recover the plaintext a. Additionally, Brakerski
et al. [4, 3] showed that this system (with certain additions to the public key)
supports additive and multiplicative homomorphisms.

Our ring-switching procedure will be given a ciphertext where Equation (@)
holds over R (for some s € R), and will output ciphertexts for which the equality
holds over R’ (for a different secret s’ € R').

2.4 Plaintext Arithmetic

Following |18, 13, [11413], we recall how to encode vectors over a certain finite
field into the message spaces. A summary is provided in Figure [ below.
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For concreteness, we focus first on R/, viewing it as Z[X]/®,(X). Let d’ be
the order of 2 in the multiplicative group Z¥ . Then &,,(X) factors modulo 2 into
' = p(w)/d" distinct irreducible (over Fy) polynomials F;(X), each of degree
d'. The ideal 2R’ has factorization 2R’ = Hflzl pi, where p; = (2, F;(X)) are
distinct prime ideals. Since each F;(X) is irreducible modulo 2, each R'/p;R’ =
Fy[X]/(F;(X)) is isomorphic to the finite field F,a . By the Chinese remainder
theorem, we can therefore identify elements of R} with elements of (F,a )", as
summarized by the following diagram of ring isomorphisms.

CRT

R /2R D:(R'/p: ) (Fyur )

For our ring-switching application we use a particular ring isomorphism between
R'/2R’ and (F,u )", for some fixed representation of F,. . Consider the quotient
group Z,/ (2) (which has cardinality ¢), and fix a specific set of representatives
for this quotient group, U, = {jo,Jj1,-..,Jer—1} C Z,, containing of exactly
one member from every conjugacy class in Z / (2) 4 Also fix a specific primitive
w-th root of unity 7 € Fye, and identify each element a € R, with the ¢'-vector
consisting of a(77) € Fyu for all j € U,:

’

a€ Ry «— {a(t™),...;a(m)) € (Fou)"

Showing that this is indeed a bijection is standard. In one direction, from a we
can compute all the values a(77%). In the other direction we have the following
simple claim:

Claim. For every vector (ag, a1,...,00—1) € ]ng,, there is a unique polynomial

a € R} such that over F,u it holds that a(77%) = ay, for all k € [¢'].

Proof. We identify R with Fo[X]/P,,(X) C Four [X]/Pw(X), and recall that a
polynomial a € Fou [X]/®,,(X) belongs to the subring R} if and only if a(X?) =
a(X)? (as an identity in R}). Given a vector of values (ag, a1, ...,0p_1) € ]Fg'd,,
we can therefore deduce from a(77*) = aj, the evaluations of a on the other
members of the same conjugacy class, namely a(7%*) = af, a(t%) = af,
a(r8%) = o, ete. Since U, is a complete set of representatives for the quotient
group Z / (2), we can get in this way the evaluations of a(77) for all the indices
J € Z7,. This gives us the evaluation of a at ¢(w) different points, from which a
is uniquely defined (because Fyu is a field and a has degree less than p(w)). O

We thus view the evaluation of the plaintext element at 77% as the k’th “plaintext
slot,” and note that arithmetic operations in the ring R} act on the plaintext
slots in a componentwise manner.

4 In other words, the sets Uy, 2Uw, 40U, . . . 2d/71Uw are all disjoint, and their union
is the entire group Z;,.
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For R = Z[X]/®,»(X) the analysis proceeds similarly. Let d be the order of
2 in the multiplicative group Z},, so d'|d, and let £ = p(m)/d. Recalling that
F;(X™) is the embedding of F;(X) € R’ into R, we denote the factorizaton of
F;(X™) into irreducible factors modulo 2 by F;(X") = []. F; ;(X). We note that
each F;(X) factors into exactly £/¢" distinct irreducible (mod 2) factors, each of
degree d, and that the factorization of @,,(X) into irreducible factors mod 2 is
P (X) =1, ; F1,;(X). Therefore, each prime ideal p; in R’ factors further in R,
into the product of the £/¢' prime ideals p; ; = (2, F; ;(X)), where each R/p; ; R
is isomorphic to Faa.

We use a concrete ring isomorphism between R/2R and (Fy4)* analogous to
the one described above, using some representative set U, of the quotient group
7%,/ (2) and a primitive m-th root of unity p, and considering the “plaintext
slots” of a € Ry as the evaluations a(p?) for all i € U,,. Of course, the analog of
Claim [Z4] holds here too.

Ri2R — L & (rfpiR) —BL L @, (R/pisR) > (Fra)’
A A
T i @1 Tpi i
(R'/2R")" ®,(R /piR)" (Fpar)” ™

Fig. 1. Commutative diagram of various representations of the plaintext spaces, and
morphisms between them. Solid lines are ring isomorphisms, and dashed lines are R'-
linear homomorphisms (i.e., satisfying T'(x +y) = T'(z) + T'(y) and T'(rz) = rT'(x) for
all r € R').

3 The Ring-Switching Procedure

Given a big-ring ciphertext ¢ € (R,)? that encrypts a plaintext a € Ry relative
to a big-ring secret key s € R, our goal is to output u’ small-ring ciphertexts
¢k € (R))? for k € [u/], where each cj encrypts ar € Rj, namely the kth
component T'(a), all relative to some small-ring secret key s’ € R’. The procedure
consists of the following two steps:

1. Key-switch. We use the key-switching method from [5, 3] to switch to a
ciphertext that is still over the big ring R, but which has a secret key s’ € R’
belonging to the small subring R’ C R.

2. Decompose. We break the resulting big-ring ciphertext (over R,) into u’
small-ring ciphertexts (over R;) using the decomposition Tj,. These cipher-
texts will be valid with respect to the small-ring secret key s’ € R’, and will
encrypt the components of T'(a), as desired (see Lemma [Hl).
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3.1 Switching to a Small-Ring Secret Key

To enable this transformation, we include in the public key a “key switching
hint,” essentially encrypting the old big-ring key s under the new small-ring key
s’. Note that using such a small-ring secret key has security implications, since
it severely reduces the dimension of the underlying LWE problem. In our case,
however, the whole point of switching to a smaller ring is to get ciphertexts over
a smaller dimension, so we are not actually losing any additional security by
giving out the hint. Indeed, we show below that assuming the hardness of the
decision-ring-LWE problem [15] over the small ring R/, the key-switching hint is
indistinguishable from uniformly random over R, (even for a distinguisher that
knows the old secret key s).

Ring-LWE. The ring-LWE (RLWE) problem [15] over R is parameterized by
an error distribution x’ over R’, typically derived from a Gaussian and so highly
concentrated on short elementsd For a “secret” element s € R’, a sample from
the RLWE distribution A ,/ is generated by choosing o € Ry uniformly at
random and € < X', computing # < « -5’ + € in R, then outputting the
pair (o, ) € (R;)Q. The decision RLWE problem in Ry is: given arbitrarily
many pairs (a;, 8;) € (R;)Q7 distinguish the case where the samples are chosen
independently from Ag s (for a single §' < x’) from the case where they are
uniformly random and independent.

To set up the key-switching technique, we first prove a lemma of independent
interest about the hardness of RLWE over the big ring R, when the secret is
chosen according to x’ from the subring R’. Define an error distribution x over R
as x = T~ ((x)"), i.e., a sample from y is generated by choosing independent
€ < X' for i € [u/], and outputting € = T (eg,...,ex—1) = Y ;€ - € R.
Note that elements drawn from x are short: because [|o((;, )|, = 1 for all 7, we
have

lo(ei - G)ll = llo(en)ll = V' - ||’ ()]

(where as usual, the vu' term is effectively a normalization factor between R’
and R). Then by the triangle inequality, ||o(¢)|| < (u/)*/? - B, where B is an
upper bound on every ||o’(¢;)||. (Tighter bounds can also be obtained when x’
is Gaussian, as is typical with RLWE.)

Lemma 3. If the decision RLWE problem over R’ with error distribution X’
is hard, then so is the decision RLWE problem over R with error distribution
X = T*I((X’)“'), but where the secret is chosen from X', and in particular is in
subring R'.

Proof. 1t suffices to give a reduction that maps small-ring samples over (R;)Q7
drawn from A, ,s (respectively, the uniform distribution), to big-ring samples
over (R,)? with distribution Ae ,, (resp., the uniform distribution). To generate
each output sample, the reduction takes u’ fresh input samples («;, 8;) € (R;)2

® Or, following [15] more closely, x” would be a distribution over the dual R".
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for i € [u], defines o = (), 8 = (Bi)i € (R;)”/7 and outputs (a, ) =
(Ty ("), T, 1(B) € Ry

Since T} is a bijection, it is clear that the reduction maps the uniform distri-
bution to the uniform distribution. On the other hand, if the samples («;, 8; =
a; - 8’ + ¢;) are drawn from Ay, for some s’ < x’, then « is still uniformly
random, and moreover, letting € = (¢;); € (R')* and by R'-linearity of T, !, we
have (over Ry)

B=T; (s +€)=T () s'+T7'()=a-¢ +e¢,

q

where ¢ = T~1(¢') is distributed according to y by construction. So (a,3) is
distributed according to A ., as desired. a

The Key-Switching Hint. Let s € R be the big-ring secret key, and s’ € R’ C R
be the small-ring secret key that we want to switch to. To construct the key-
switching hint, we independently draw [ = [log, q| error terms ¢; + x and
uniformly random elements «; € Ry, for ¢ € [I]. The hint consists of the all the
pair
(Oéi, Bi = 2.5 — (o7} s+ 261‘) S (Rq)Q.

For security, note that by the form of the hint, it is immediate from Lemma[3that
for any big-ring secret key s € R, the hint (even along with s) is computationally
indistinguishable from uniform.

Since the errors ¢; are short, the hint is functional for key-switching, as de-
scribed in [5]. Specifically, suppose we are given a valid ciphertext ¢ = (cg, ¢1)
relative to s, for which ¢y + s - ¢1 = (a + 2¢) mod ¢ for some short (a + 2¢e) € R.
We decompose ¢ into its bitwise representation as ¢y = Zie[l] 2¢d; mod ¢ for
short elements d; € R having 0-1 coefficients in the power basis. We then have
the relation (over R;)

cO+Zdzﬁz+Zdazs —00+Zd 26+ 2¢;) = co + 1 - 5+22d61

7
~ /\v/

‘30 ¢
=a-+ 2(6 + Zdzg)
i
Since ), d;e; € R is short, (¢, ¢}) is a valid ciphertext encrypting a under §’, as
desired.

3.2 Decomposing the Ciphertext

After switching to a small-ring secret key s’ € R’ in the previous step, the
ciphertext is a pair ¢ = (cg, ¢1) € (Rq)? such that

co+8 -1 € (a+2e)+qR,

5 We could alternatively use the key-switching variant from [13], where the hint con-
sists of a single pair (83, ), but with respect to a large modulus Q ~ ¢* - m. The
proof of security would then depend on the hardness of ring-LWE in Ry, rather than
in Ry,



32 C. Gentry et al.

where a + 2e € R is sufficiently short. We decompose this ciphertext into u’
ciphertexts ¢, = (ck,0,cr1) € (R})? for k € [u/], where for b € {0,1}, Ty(cp) =
(coby--->cu—1). (Recall that T,: Ry — (R;)"/ is the R’-linear bijection induced
by the decomposition T' defined in Section [22])

Lemma 4. Ifc is a valid encryption of plaintext a € Ry under secret key s’ € R/,
then each cy, is a valid encryption of the kth component of Ta(a) € (R5)™ .

Proof. Below we identify s’ € R’ with its mod-q equivalence class s + ¢R' € Ry
Because Ty is Rj-linear, we have

Ty(co) +5 - Ty(er) = Ty(co + 5 - c1) = T(a+2e) + (qu)u,a

where the multiplication of scalar s’ € R’ with T,(c1) € (R;)“/ is coordinate-wise.
By Lemmal2 each component of T'(a+2¢) has length bounded by c,.-||a+2¢||/v/u’/
(where the v/u’ term is a normalization factor), so the “effective” lengths (relative
to ¢ and the dimension of R') grow by at most a fixed constant factor ¢,, and
are sufficiently small. Moreover, T'(a + 2¢) € To(a) € (R,)™, so the message
encrypted by c is the kth component of T5(a). O

4 Homomorphic Computation in the Small Ring

So far we have shown how to break a big-ring ciphertext, encrypting some big-
ring element a € Rs, into a collection of u' small-ring ciphertexts encrypting
the small-ring elements T'(a) = (ag,a1,...,a,—1) € Rh. This, however, still
falls short of our goal of speeding-up homomorphic computation by switching to
small-ring ciphertexts. Indeed we have not shown how to use the encryption of
the ay’s for further homomorphic computation.

Following the narrative of SIMD homomorphic computation from [18, [11H13],
we view the big-ring plaintext element a € R as an encoding of a vector of
plaintext values from the extension field Fya (with d the order of 2 in ZF). We
therefore wish to obtain small-ring ciphertexts encrypting small-ring elements
that encode of the same underlying Fya values.

One potential “algebraic issue” with this goal, is that it is not always possible
to embed Fya values inside small-ring elements from R). Recall that the extension
degree d is determined by the order of 2 in Z} . But the order of 2 in Z, may
be smaller than d, in general it will be some d’ that divides d. If d < d then
we can only embed values from the sub-field Four in small-ring element from Rj,
and not the Fys values that we have encoded in the big-ring element a. For the
rest of this section we only consider the special case where the order of 2 in both
7y, and Z, is the same d, leaving the general case to the full version.

Even for the special case where the order of 2 in Z}, and Z; is the same
(and hence the “plaintext slots” in the small ring contain values from the same
extension field as those in the big ring), we still need to tackle the issue that big
ring elements have more plaintext slots than small ring elements. Specifically,
big-ring elements have ¢ = p(m)/d slots, whereas small-ring elements only have
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¢ = p(w)/d slots. The solution here is obvious: we just use more small-ring
elements to hold all the plaintext slots that we need.

Note that if the original plaintext element a was “sparsely populated”, holding
only a few plaintext values in its slots, then we would like to generate only as
many small-ring ciphertexts as needed to hold these few plaintext slots. A good
example is the computation of the AES circuit in [13]: Since there are only 16
bytes in the AES state, we only use 16 slots in the plaintext element a. In this
case, as long as we have at least 16 slots in small-ring elements, we can continue
working with a single small-ring ciphertext (as opposed to the u’ ciphertexts
that the technique of the previous section gives us).

4.1 Ring-Switching with Plaintext Encoding

Below we describe our method for converting the plaintext encoding between the
different rings, for the special case where the order of 2 is the same in Z;, and Z},.
As sketched in the introduction, the basic observation underlying our approach is
that the transformation T'(a) = (ag, a1, - . ., ay—1) that we apply to our plaintext
when breaking a big-ring ciphertext into its small-ring parts, induces a linear
transformation over the values in the plaintext slots. We then just finish-up
the process by homomorphically computing the inverse linear transformation
over the resulting small-ring ciphertexts (using “general purpose” techniques for
computing on packed ciphertexts, such as in [11]), thereby restoring the plaintext
slots to their original values.

As explained in Section 2.4 each plaintext slot in the big-ring element is
associated with a member of the quotient group Q,, = Z},/(2), and similar
association holds between plaintext slots in small-ring elements and members of
the quotient group Q.,, = Z¥ / (2). We thus begin by relating the structures and
representations of these two quotient groups.

Below let U, C Z} be a representative set for Q,. i.e., a set containing
exactly one index from each conjugacy class in Z% /(2). It is easy to see that
when the order of 2 is the same in 7}, and Z;, then the set
Un={j€Z, : 3i€Uy,st j=1i (mod w)} is a representative set for Q,,.
Fixing in addition a primitive m’th root of unity p € Fsa and the particular
primitive w’th root of unity 7 = p*, we let the plaintext slots encoded in a € Ry
be the evaluations a(p’) € Fyu for j € Uy, and similarly the plaintext slots
encoded in @’ € R} be the evaluations a’(7%) for i € U,.

We proceed to prove that under this representation, the transformation 7'
from Section induces an Fyqs-linear transformation on the values in the Foa
values in the plaintext slots. A key lemma is the following:

Lemma 5. Letm = u-w for odd integers u,w, such that the order of 2 is the same
inZ%, and inZ%,. Let U, be a representative set of Q,, = 7%,/ (2), and fix the repre-
sentative set of Qp, = Z%,/ (2) tobeUp, = {j € Z}, : i€ Uy, s.t. j =i (mod w)}.
Denote the order of 2 (in both Z}, and Z%,) by d, let p € Foa be a primitive m 'th
root of unity, and fix the particular primitive w’th root of unity T = p“.

Finally, fix an arbitrary value o € Faa and let a(X) be the (unique) polynomial
in Fo[X] /P (X) that satisfies a(p’) = a for all j € Uy,.
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Then a is of the form a(X) = b(X") mod (®,(X),2) for some polynomial
b(X) € Fa[X]/P2(X) satzsfymg b(t") = « for alli € U,. In particular a,b repre-
sent the same element 1’ € R, C Ry.

Proof. We first note that a polynomial a(X) as above is indeed unique, due
to Claim 24 Similarly a polynomial b(X) € Fo[X]/®2(X) satisfying b(7?) =
a for all i € U, is also uniquely determined. Denoting ¢(X) def b(X™) mod
(P (X),2) € Ry, it is only left to show that ¢(X) = a(X).

Clearly both ¢ and a are polynomials in Ry = Fo[X]/Pp,(X) C Fau[X]/Pp (X),
so it is sufficient to show that they agree when evaluated on p/ € Fya for all
J € Up, (again by Claim [Z7]). By definition of U,,, for every j € Uy, there exists
i € Uy such that j =¢ (mod w), hence we get

c(p’) = b(p“I) = b(r7) = b(7') = a = a(p). 0

(We note that the fact that 2 has the same order modulo w and m is used in the
assertion that the set U, as above is a representative set for Q,,.)

Corollary 1. With notations as in Lemmald and the transformation T: Ry —
(RY)™ from Section 22, if a,b are as in Lemmald then for any element x € Ry
we have Ta(a-x € Ry) =b-T(z) € (Ry)™

Proof. Follows immediately from the Rj-linearity of T» and the fact that the
polynomials a € Fo[X]/®,(X) and b € F3[X]/P,,(X) represent the same ele-
ment 1’ € R, C Ry (since a(X) = b(X"™) mod (£,,(X), 2)). O

Given Corollary [ the rest of the proof follows quite easily. Consider now the
encoding functions that map Ry elements into the vector of Fya values that are
encoded in all their slots. Namely, for a € Ry denote by Enc,,(a) € IFQ’; the vector
of values a(p?) for j € U,,. Similarly consider the encoding of a vector of R}
elements into the Fys values that are encoded in all the slots of all the elements.
That is, for a vector @ = (ag, a1, ...,a,_1) € (R,)", denote by Enc,(a) the
vector of values ay(7?) for i € U, and k € [u/]. We note that the dimensions
of Enc,,(a) and Ency(T2(a)) are the same, namely they both have dimension

£ =p(m)/d = - p(w)/d.

Lemma 6. There exists an invertible linear transformation L over Fqa such
that for any a € Ry it holds that Ency,(T2(a)) = L( Ency,(a) ).

Proof. Recalling that the encoding functions are bijections (by Claim 24), we

thus define L(m) Encw(Tg(Encm (x))), and note that L must be invertible,
because T5(-) is also a bijection.

It remains only to show that L is Fya-linear. The property L(x) + L(y) =
L(x + y) follows immediately from the facts that the same property holds for
each of Tx(+), Ency,(+), and Ency,(-). We next use Lemma [ and Corollary [l to
show the property L(a - x) = a - L().

Fix a vector € F. and a value a € Fya, and let a € F3[X]/®,,(X) = Ry

be the element that has « in all of its plaintext slots, a = Enc,, 1(0/ Similarly

m
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let * = Enc,,'(z). Observe that since multiplication in Ry implies pointwise
multiplication on the slots, then the product a-z € Ry encodes in its slots exactly
o times the slots of z. In other words, we have Enc,,' (o - € F5) =a-z € Ry.

Since a has the same element « in all its slots then it satisfies the condition
of Lemma [l and Corollary [l Let b € Fo[X]/P,,(X) = R} be the polynomial
promised by Lemma [Bl Then from Corollary [[l we have that Th(a - z) = b -
T(x). Moreover Lemma [ tells us that b also have the values « in all its slots.
Since multiplication in R) also implies pointwise multiplication on the slots, i.e.,
Encw(b-y) = a-Ency,(y) for every y € (R,)" . In particular,

Ency(To(a-x)) = Ency(b-Ta(z)) = a-Ency(a),
or in other words L(«a - ) = - L(x), as needed. |

Our strategy for recovering the original values in the plaintext space after ring-
switching is to first use the transformation 7" to break a big-ring ciphertexts into a
collection of small-ring ciphertexts. By LemmalGlthis operation has the side effect
of transforming the slots according to the invertible Fqs-linear transformation
L, so we compute homomorphically the inverse transformation L~! on the slots,
using the tools from [11] for computing on packed ciphertexts.

If we only need a few of the slots in a (as in the AES example), then we can
compute only the relevant rows of L™!, thereby getting at the end of the process
only as many small-ring ciphertexts as required to encode all the plaintext slots
that we are interested in.

Remarks. Note that the only properties of T' that we used in this work are
the properties 1-4 that were described in the introduction. Namely, all we need
is a transformation 7': R — (R’)* which is injective and Rj-linear, and that
maps small R elements into small R’ vectors. There could be many such trans-
formations, and they could offer different tradeoffs in practice. (For example,
the transformation in a previous version of this work [10], which was based on
the coefficient-splitting technique from [3], turns out to include a very sparse
linear transformations L, making the homomorphic computation of L~! at the
end must easier.) Also, as mentioned in Section [2.2] in some cases we can use a
K/-linear transformation T': K — (K')* even if it does not map R-elements to
R/-vectors.

We also note that Lemma [l (and consequently Corollary [Il and Lemma [@])
can be extended also to the case where the order of 2 modulo w is smaller than
its order modulo m, as long as we only consider elements a € Ry that have
values from the smaller field F,4 in their plaintext slots. We defer details of this
extension to the full version.
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Zero-Knowledge Proofs with Low Amortized
Communication from Lattice Assumptions

Ivan Damgard!* and Adriana Lépez-Alt?

! Aarhus University
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Abstract. We construct zero-knowledge proofs of plaintext knowledge
(PoPK) and correct multiplication (PoPC) for the Regev encryption
scheme with low amortized communication complexity. Previous con-
structions of both PoPK and PoPC had communication cost linear in the
size of the public key (roughly quadratic in the lattice dimension, ignor-
ing logarithmic factors). Furthermore, previous constructions of PoPK
suffered from one of the following weaknesses: either the message and
randomness space were restricted, or there was a super-polynomial gap
between the size of the message and randomness that an honest prover
chose and the size of which an accepting verifier would be convinced.
The latter weakness was also present in the existent PoPC protocols.

In contrast, O(n) proofs (for lattice dimension n) in our PoPK and
PoPC protocols have communication cost linear in the public key. Thus,
we improve the amortized communication cost of each proof by a factor
linear in the lattice dimension. Furthermore, we allow the message space
to be Z, and the randomness distribution to be the discrete Gaussian,
both of which are natural choices for the Regev encryption scheme. Fi-
nally, in our schemes there is no gap between the size of the message
and randomness that an honest prover chooses and the size of which an
accepting verifier is convinced.

Our constructions use the “MPC-in-the-head” technique of Ishai et
al. (STOC 2007). At the heart of our constructions is a protocol for
proving that a value is bounded by some publicly known bound. This
uses Lagrange’s Theorem that states that any positive integer can be
expressed as the sum of four squares (an idea previously used by Boudot
(EUROCRYPT 2000)), as well as techniques from Cramer and Damgard
(CRYPTO 2009).

1 Introduction

The problem of secure multiparty computation (MPC) [L96JI2/31] is central in
the field of modern cryptography. In this problem, N parties P, ..., Py holding
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private inputs z1, ..., zy, respectively, wish to compute a function f(z1,...,2nN)
on their inputs without revealing any information apart from the output of
the evaluation (in particular, they wish to keep their inputs secret from the
other parties). Solutions to this problem abound in the literature. Many of
these solutions use the circuit rerandomization technique of Beaver [3] (see
e.g. [202342TIT458T5], among many others). Circuit rerandomization requires
players to hold (additive) secret sharings of many random triples (a,b,c) such
that ¢ = a - b in some finite field. Traditionally, these triples are created using
zero-knowledge proofs.

Bendlin et al. [§] use zero-knowledge proofs of plaintext knowledge (PoPK)
and correct multiplication (PoCM) for this purpose. To see how this is done,
consider the 2-party setting as an example. To obtain an additive secret sharing
of random values a, b, players P; and Ps can each choose random values u1, vy
and us, v9, respectively, and define ¢ = u; + us and b = vy + vo. Obtaining an
additive secret sharing of ¢ = a - b is more involved. First, notice that c=a-b =
(u1 + u2) - (v1 + v2) = urvy + uvs + ugvy + ugve. If P; and Ps could obtain
an additive sharing of each product w;v; = y;; + 2;; then they could obtain a
sharing for ¢ by simply adding each of these shares: ¢ = (y11 + Y12 + Y21 + y22) +
(211 + z12 + 221 + 222). Thus, the problem reduces to having P; and Ps obtain
an additive sharing of the product of their inputs m; and mq, respectively (in
this case u; and v;).

This can be done with the following protocol. P; encrypts his input under his
public key pk and obtains a ciphertext ¢; = Encpi(mq;71), which he sends to
P,. Upon receiving c1, P2 computes a ciphertext ¢; = Encpi(x; ;) of a random
plaintext x and computes co = mo - ¢1 + ¢, sends it to P, and outputs —z as
his share. If the encryption scheme has certain homomorphic properties, then
¢2 = Encpr(mime + x). P1 decrypts ¢z and outputs mimsg + « as his share, thus
obtaining an additive sharing of mims.

However, when players are malicious, P> needs to ensure that c; is a valid
ciphertext and P; needs to ensure that P performed the multiplication step
correctly. This can be done by having P; and P provide zero-knowledge proofs
that they performed their respective operations correctly: P; sends a proof of
plaintext knowledge, proving that there exist my, 71 such that ¢; = Encpi(ma;r1),
and Ps sends a proof of correct multiplication, proving that there exist ms, z, r;
such that ca = ma - ¢1 + Encp(x; 2.

Unfortunately, these zero-knowledge proofs can incur a large communication
cost, which increases the overall communication complexity of the MPC protocol
in which they are used. A key observation is that even though many triples need
to be created, they can be created simultaneously. This leads to the question of
whether we can lower the amortized communication complexity of each proof,
thus lowering the total communcation cost of all proofs. In this work, we an-
swer this question affirmatively when the encryption scheme used is the Regev
encryption scheme [29], whose security is based on the hardness of the Learning
with Errors (LWE) problem.
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Related Work. Bendlin et al. [8], Bendlin and Damgard [7], and Asharov et
al. [2IT] give constructions of proofs of plaintext knowledge. The work of [§] shows
proofs of plaintext knowledge for any “semi-homomorphic” encryption scheme,
an example of which is the Regev scheme. When applied to this scheme, the
communication cost of each proof is linear in the size of the public key (roughly
quadratic in the lattice dimension, ignoring logarithmic factors). The works of [7]
and [2I1] show proofs of plaintext knowledge specifically for the Regev scheme,
but here again, the communication cost of each proof is linear in the size of
the public key. Similarly, [§] shows proofs of correct multiplication which, when
applied to the Regev encryption scheme, have communication complexity linear
in the public key size per proof.

Unfortunately, the protocol of [7] only works for message space {0,1} and
randomness in {0, 1}™. Furthermore, the proofs of [8] and [2/I] suffer from the
following weakness. To guarantee zero-knowledge, an honest prover must choose
the message and randomness from a sufficiently small range. But in order to
guarantee soundness against a cheating prover, we can only guarantee that if
the verifier accepts then the message and randomness come from a much larger
interval. Thus, there is a gap between the size of the witness of an honest prover
and the size of which an accepting verifier will be convinced. Such a gap, which
turns out to be super-polynomial in the security parameter, is undesirable.

Our Results and Techniques. We improve upon these results by showing proofs
of plaintext knowledge and correct multiplication where the cost of O(n) proofs,
where n is the lattice dimension, is linear in the public key size. Thus, we improve
the amortized cost of each proof by a linear factor in the lattice dimension.
Furthermore, our protocol does not suffer from the weakness of [§] and [2/[I];
there is no gap between the size of the witness of an honest prover and the size
of which an accepting verifier is convinced. The message space in our schemes
can be Z, and the probability distribution for the randomness can be the discrete
Gaussian

Our proof system uses the “MPC-in-the-head” technique of Ishai et al. [22],
who show how to construct zero-knowlege proofs from MPC protocols. The basic
idea is as follows. For an NP relation R(z,w) with statement x and witness w,
the prover runs an MPC protocol for the function f,(w) = R(z,w) “in his head”
and commits to the view of each of the players. The verifier then outputs a subset
T of the players as challenge, and the prover opens the commitments to the views
of the players in T'. If the views are consistent, the verifier accepts.

This is the same technique that was used in [7] yet we improve upon it.
First, we also show how to obtain proofs of correct multiplication. But more
importantly, we expand the proofs to allow the message space to be Z, (rather
than bits), and allow the randomness distribution to be the discrete Gaussian
(rather than bit-vectors). To achieve this, we show a protocol that allows a dealer

! Technically, we’ll need the Regev scheme to have perfect correctness, so the ran-
domness distribution will be a “truncated” discrete Gaussian that is statistically
close to the discrete Gaussian, where values output according to the distribution are
guaranteed to be small (as opposed to small with high probability).
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to prove that the secret that he secret-shared among N players is bounded by
some publicly known bound B. The intuition behind this proof is as follows. Let
[s] denote the sharing of secret s. The dealer distributes a sharing of B, [B],
and the players compute sharings [B — s] and [B + s] by locally adding their
corresponding shares. We know that —B < s < B if and only if both B — s and
B + s are positive, so the problem of proving that s is bounded by B reduces to
proving that a secret s’ that has been secret shared among N players is positive.

For this, we use Lagrange’s Theorem that states that any positive integer can
be written as the sum of four squares (see, e.g. [16]), and moreover, that these
four squares can be computed efficiently [28/24] (a similar technique was used by
Boudot [9]). The dealer computes u, v, w,y such that s’ = u? +v? +w? +y2, and
distributes sharings [u], [v], [w], [y]. The players can then locally compute shares
[u? +v? +w? +y? — s'] = [0], and verify that these final shares reconstruct to 0.

However, we must ensure that the values u, v, w,y are all smaller than \/ q/8.
Otherwise we can have overflow modulo ¢ when we square and add the four
squares, which would mean that we can no longer guarantee that the sum
of the four squares is positive. For this, we use techniques from Cramer and
Damgard [I3]. The same techniques were used in [§], yet the key difference is
that we use them to bound the numbers to be squared (and thus the bound
can be loose), whereas in [§] they were used to bound the secrets themselves
(thus leading to the gap discussed above). The use of this technique requires our
modulus ¢ to be super-polynomial in the security parameter A (as was also the
case in [7IRI2UT]). See Section [ for more details.

Other Applications. Recently, Brakerski et al. showed that a variant of the Regev
scheme is fully homomorphic [TT/I0]. The zero-knowledge PoPKs shown in this
work can be used to prove that a ciphertext encrypted under this Regev-based
FHE scheme is well-formed.

Presentation. In Section[2] we review some background needed for our construc-
tions. This includes the IKOS construction (Section [Z2)), packed secret sharing
(Section 23), and a protocol for verifying the consistency of secret shares
(Section 24)). In Section Bl we show a protocol that allows parties to verify that a
secret that is shared among them is numerically small. In Section @ and Section Gl
we show our protocols for proofs of plaintext knowledge and proofs of correct mul-
tiplication, respectively. Due to lack of space, we defer all proofs to the full version.

2 Preliminaries

2.1 Notation

The natural security parameter in this work is A\. We let Z, = {—¢/2,...,¢/2}
and use a mod ¢ to denote the mapping of a into the interval (—q/2,q/2]. We
use [n] to denote the set {1,...,n} C Z.

We use boldface lower-case letters to represent vectors, such asu = (u1, ..., up)
€ Zy. Throughout what follows, vectors will be assumed to be column vectors,
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unless stated otherwise. We use subscripts to denote coordinates on a vector, e.g.
u; is the ith coordinate of vector u. This is to differentiate between coordinates
of a vector and elements in a sequence. For the latter case, we use superscripts:
m(? is the ith element of sequence m™), ..., m®*) . We will also sometimes use the
notation (u;);c[,) to denote the vector (u1,...,u,). We use boldface upper-case
letters to represent matrices, such as A € Zgy*™. For a vector x = (x1,...,%n)
and a scalar a, we let ax = (axy,...,azxy).

For a distribution x, we denote = < x to be the experiment of choosing z
according to x. If S is a set, then we use & < S to denote the experiment of
choosing = from the uniform distribution on S. For a randomized function f, we
write f(z ;r) to denote the unique output of f on input z with random coins
r. Denote T = R/Z as the group of all reals in [0,1) with addition modulo 1.
For a € RT,¥, is defined to be the distribution on T of a normal variable with
mean 0 and standard deviation a/+v/27, reduced modulo 1. For any probability
distribution ¢ over T and integer q € Z%, its discretization ¢ is the discrete
distribution over Z, of the random variable |g- X4]| mod g, where X, + ¢.

We use lower case 7 to denote MPC protocols, such as 7y, and use upper case
1T to denote zero-knowledge proof protocols, such as ITr. We use greek letters to
represent shares from a secret sharing. For example, o = (a(l), a® . 7oz(N))
denotes the shares a(®) of each of the N share holders.

2.2 Overview of IKOS Construction

Let R(xz,w) be a NP-relation. Consider the following N-player functionality f.
The public statement x is known to all players Pi,...,Pn. The functionality
takes the entire input w from a special player Z called the “input client”, and
outputs R(x,w) to all N players. Ishai et al. [22] show how to construct a zero-
knowledge proof protocol for NP-relation R from a MPC protocol 7y for the
functionality f described above. We give a high-level idea of the construction.
The prover runs the MPC protocol m¢ “in his head” and commits to the views
Vi,..., VN of the N players. The verifier then chooses a subset T' C [N], and
the prover opens his commitments to views {V; };cr. The verifier accepts iff the
commitment openings are successful, the revealed views are consistent, and the
output in each view is 1.

We show the formal statement of the result in Theorem [II but first recall the
security properties that the underlying MPC protocol will need to satisfy in the
construction. The following definitions are taken almost verbatim from [22].

Definition 1 (Correctness). We say that a protocol m realizes functionality f
with perfect correctness if for all inputs (x,w), the probability that the output of
some player is different from the output of f is 0, where the probability is taken
over the random inputs ri,...,rnN.

Definition 2 ((Statistical) ¢-Privacy). Let ¢t € [N]|. We say a protocol
realizes functionality f with statistical t-privacy if there exists a PPT simulator
Sim such that for all inputs (z,w) and all sets of corrupted players T C [N] with
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|T| < t, the joint view (VIEW(P;))ier of players in T is distributed stastistically
close to Sim(T, z, Ry(x, w)).

Definition 3 (t-Robustness). Let t € [N]. We say a protocol m realizes func-
tionality f with perfect t-robustness if it is perfectly correct in the presence of
a semi-honest adversary, and for any computationally unbounded malicious ad-
versary corrupting I and a set T' of at most t players, for all inputs x, it holds
that if there does not exist w such that f(xz,w) =1, then the probability that an
uncorrupted player P; ¢ T outputs 1 is 0.

Theorem 1 ([22]). Let f be the N-player functionality with input client T
described above. Suppose that 7y is a protocol that realizes f with perfect t-
robustness (in the malicious model) and statistical t-privacy (in the semi-honest
model), where t = 2(X), and N = ct for some constant ¢ > 1. Given 7y and an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational honest-verifier zero-knowledge proof protocol Il 7+ for the NP-relation
R, with negligible (in A\) soundness error.

One of the nice properties about the [22] construction is that we get broadcast for
free because the Prover can simply send the broadcasted messages directly to the
Verifier. Therefore, the communication cost of broadcasting a message is simply
the size of the message. We also get coin-flipping among the players for free
because the (honest) Verifier can simply provide the random value. Therefore,
the communication cost of coin-flipping for a value is simply the size of the value.
We will use these two facts in our constructions. Also, as observed by [7], if we use
a commitment scheme that allows us to commit to strings with only a constant
additive length increase such as those implicit in [27], then the zero-knowledge
proof protocol IIg 7.+ (asymptotically) conserves the communication complexity
of the underlying MPC protocol 7.

Finally, using general zero-knowledge techniques, it is possible to convert the
honest-verifier zero-knowledge proof protocol IIg 7 obtained from Theorem [l
into a full zero-knowledge protocol, while (asymptotically) preserving the com-
munication complexity of the protocol. One such technique is described in [22].

2.3 Packed Secret Sharing

We will use the packed secret sharing technique of Franklin and Yung [17].
Similar to Shamir secret sharing over Z, [30], packed secret sharing allows a
dealer to share a vector of k values x = (x1, 22, ..., ) using a single random
polynomial of degree at most d. To guarantee security against at most ¢ corrupted
players, we must have d > t + k — 1. The idea is to chose a random polynomial
P(-) of degree at most d, subject to the condition P(—j + 1) = z; for j € [k].
The share of player i is, as usual, the value a; = P(7).

We use [x]q4 to denote a packed secret-sharing a@ = (o1, ..., o) € ZY for N
players of the block x using a polynomial of degree at most d. We call [x]4 a
d-sharing of x. We say x is correctly shared if every honest player P; is holding
a share «; of x, such that there exists a degree at most d polynomial P(-) with
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P(i) = a; for i € N, and P(—j + 1) = z; for j € [k]. Any (perhaps incomplete)
set of shares is called d-consistent if these shares lie on a polynomial of degree
at most d.

Let Z € Z;”Xk be a matrix of secrets. Suppose we have d-sharings of the rows
of Z: [Zy]a, ..., [Zm]q € ZL*N . We define @ € ZI"* N, called a d-share matriz
of Z, to be a matrix

[Z1]4
= | : |ezyN
[Zm}d

Note that the shares held by P; are precisely the entries in the ith column vector
of @, denoted by 3.

: . x1 "x1
For any function f: Z7**" — Z;

, we abuse notation and write

Z1]4 [Yilar

Zonla yanp

to signify that each player P; locally applies f to his shares of all [Z;]4’s to obtain
his share of each [Y;]q. In other words, if ¥ is the d-share matrix of Z then each
player locally computes f('t,b(i)) = ¢\, where & = [¢(1), ceey (],’)(N)] € Z;n'XN is
the d’-share matrix of Y containing the Y’s as rows.

Tt is easy to see that if f(x) is a linear function and we define f; to be f with
its output restricted to the ith coordinate (i.e. f(x) = (f1(x),..., fur(x))7),

then
Z1]a [AzD) o Auz®)],

[Z;]d [ (2D , fur (2],

Note that if f is a linear function, then the sharings obtained as a result of
applying f are also d-sharings. In partlcular if each player P; multiplies his
share vector w by a matrix M € Zm *m the player obtains a (m' x 1)-vector
representing his corresponding shares of:

d {(Mlzw))ie[k]}d [(Mz)l]d
M= : = : = : ,

[Mm/zm o Mm/z(k)]d [(Mm,zm)jdk]h (MZ),,],

|:].\/.[1Z(1> g ey Mlz(k>]

where (MZ); is the ith row of the matrix MZ.

Parameters. We discuss requirements on the parameters of the scheme. We let
N = ¢qt for ¢; > 2, satisfying the requirements of the IKOS construction. In
order to guarantee privacy of the secret shares, we must have d >t + k — 1. We
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will sometimes use (d/2)-shares, so we assume d/2 > t + k — 1. Furthermore,
we must have enough honest players so that their shares alone can determine
a polynomial of degree d (in case corrupt players do not send their shares for
reconstruction). We therefore need N —t > d > d/2 > t+ k — 1. For our choice
of N this yields k < (¢; — 2)t + 1. Thus, we assume k = O(t). Also, in order to
have enough evaluation points, we must have ¢ > k+ N. Henceforth, we will use
this choice of parameters.

2.4 Verifying Consistency of Shares

We now describe a protocol that can be used by N parties to check that their
shares are d-consistent. Security is guaranteed if at most ¢ < N/2 parties are
corrupted. Players check N — 2t sets of shares at a time. More formally, let
Z c Z,(JN_Qt)Xk be a matrix of secrets, and suppose d-shares [Z1]q, ... [ZNn—2t]d
of the rows of Z are distributed among the N players. The players want to
verify that each sharing is d-consistent without revealing their individual shares.
Beerliova-Trubiniovd and Hirt [4] describe a protocol in which the N parties
can perform this check when they hold N sharings (as opposed to N — 2¢, as
described here) and sharing [Z;]; was created by player P;. Bendlin and Damgard
[7] extend this protocol to the case when all the shares were prepared by a
(possibly corrupt) input client Z. We describe the protocol of [7] in Figure [l
In the protocol, all players receive as common input a hyper-invertible matrix
M e Zév XN=0 for q > 2N. Informally, a hyper-invertible matrix is a matrix
such that every square submatrix of M is invertible. Beerliovd-Trubiniova and
Hirt [4] show how such matrices can be constructed.

Lemma 1. The protocol moupcx described in Figure[dl allows N players, at most
t of which are corrupted, to verify with zero error probability that (N — 2t) pack-
sharings, each of k = O(t) secrets in Zq, are d-consistent (for d >t+k—1). It
1s t-private in the presence of a semi-honest advesary, t-robust in the presence
of a malicious adversary, and has communication complezity N(N + t)loggq.

2.5 Regev Encryption Scheme

Before presenting the Regev encryption scheme [29], we first introduce the hard-
ness assumption on which its security is based. For positive integers n = n(\)
and ¢ = q(\) > 2, a vector s € Z7, and a probability distribution x on Z,,
let As be the distribution obtained by choosing a < Zj and = « x, and
outputting (a, (a,s) + ) € Zy X Z.

Learning with Errors (LWE, 4, and dLWE, ). The Learning with Errors
problem LWE, ,, is defined as follows. Given m = poly(n) samples chosen
according to As y for uniformly chosen s € Zy, output s with noticeable proba-
bility. The Decisional Learning with Errors problem dLWE,, , , is to distinguish
(with non-negligible advantage) m = poly(n) samples chosen according to As
for uniformly chosen s € Zy, from m samples chosen uniformly at random from
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Protocol mwcheck between parties (Pi,...,Pn) to verify d-consistency of
shares.

Common input: hyper-invertible matrix M € Zévx(N*t)

Input to P;: corresponding shares of [Z1]a, ..., [Z(n—2t)]a-

1. Input client Z chooses and d-shares random vectors in ZéXk. Let
[ZN—2t+1]ds - - - [ZN—¢t]a be the resulting shares. Augment matrix Z with rows
ZNn_ot41,...,ZN—¢ to obtain matrix Z' € Z{N "% Let @ € Z{N 7Y be the
d-share matrix of Z'.

2. Players locally compute:

[(Mz'),],
b =MP = : ez

[(M2Z'),],

3. The players reconstruct the resulting shares, each towards a different player:
player P; receives @;. Each player verifies that the shares he receives are d-
consistent and broadcasts “ABORT” if he finds a fault, and otherwise broad-
casts “OK”.

4. If all players broadcast “OK” then the players conclude that the initial shares
were d-consistent.

Fig. 1. Protocol mcurex to verify consistency of shares

Ly X Lq. In other words, if dLWE, 4, is hard then As , is pseudorandom. We
will use x = ¥, and in this case, we write LWE,, ¢ o to mean LWE,, , g .

Discrete Gaussian Distribution. We present an elementary fact that shows that
the discrete Gaussian distribution with standard deviation 7 outputs an element
x with with ||z|| < r/n with high probability.

Lemma 2 (see [25], Theorem 4.4). Let n € N. For any real number r >
w(v/logn), we have Prye pyn [|[%]| > ry/n] < 9—n+l

Using Lemma [2] together with the fact that for all x € R™, ||x||oc > ||X]||/+v/n We
arrive at the following bound.

Lemma 3. Let n € N. For any real number r > w(y/logn), we have
Prac pyn, [|1%lo0 > 7] <277F1

This allows us to define a truncated Gaussian distribution that always outputs
(with probability 1) elements with ¢ norm less than r. Simply define the trun-
cated Gaussian Dgz» , over Z" with standard deviation r to sample a vector
according to the discrete Gaussian Dz~ , and repeat the sampling if the vector
has /¢, norm greater than r. We will use the truncated discrete Gaussian in
our schemes to ensure that samples are bounded by 7 in each coordinate (and
can thus ensure perfect correctness), but state security in terms of the discrete
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Gaussian. Since the distributions are statistically close, all results stated using
the discrete Gaussian also hold when using the truncated distribution.

We present a generalized version of the Regev encryption scheme [29] (with
the modifications of [I8]), using the truncated discrete Gaussian (as above). The
scheme is parametrized by integers n = n(\),m = m(\) > n,q = q(A\),r = r(}\),
and p = p(A) < ¢. The message space is M = Z,, the ciphertext space is
C = (Zy,Z,). All operations are performed over Z,.

— KeyGen(1"): Output sk = s,pk = (A,b), where s - Z7 , A < Zy*™ | x +
x™, b:ATs—&—xEZ;”.

— Encyi(m): Output (u,c), where r <~ Dzm, , u=Ar e Z2?*! , c=b'r+
m-1q/p] € Zq.

— Decgk(u, ¢): Output m = |(c—s"u)-p/q].

Theorem 2 ([29/18]). Let ¢ > 5prm,a < 1/(p-ry/m-w(y/log\)), x = ¥u,m >
2(n + 1)logq + w(log \). With this choice of parameters, the Regev encryption
scheme is correct and IND-CPA-secure, assuming LWE, , . is hard.

Parameters and Worst-case Guarantees. Our construction requires the modu-
lus ¢ to be super-polynomial in the security parameter A\. More specifically, we
require \/q/8 > 2¢(08 ) . max(p/2,7). We can use any choice of parameters
that satisfies this constraint and keeps the cryptosystem secure.

One option is to let the dimension of the lattice be our security parameter,
ie. n = A and set our modulus ¢ to be exponential in the lattice dimension n.
Peikert [26] showed that for such a large g, LWE, ¢ .o is as hard as GapSVPg5,, .,
if ¢ is a product of primes, each of polynomial size. The works of [7I8] use this
choice of parameters.

Another possible choice is to let n = A€ for some ¢ € (0,1) (e.g. n = A\?),
p,r,m = poly(A) and let ¢ = 27" be subexponential in the lattice dimension n.
In this case, we can rely on Regev’s quantum reduction [29] to GapSVPa(n/a)

or Peikert’s classical reduction [26] to GapSVP, . where y(n) > n/(ay/logn),
¢(n) > v(n) and ¢ > ¢ - w(y/logn/n). The work of [2/I] uses this choice of
parameters.

3 Verifying that Secrets are Numerically Small

At the heart of our constructions of proofs of plaintext knowledge and correct
multiplication, we will use a protocol that allows a dealer (in our case the input
client Z) to prove to the players that the secret that he secret-shared among
them is bounded by some publicly known bound B. Formally, let R € Z;”Xk be
a matrix of secrets. And suppose that a dealer has distributed d-sharings of the
rows of R : [Ri]g,...,[Rm]d between N players. We show a protocol myersu
that allows the dealer to prove to each player P;, without revealing R, that all
secrets in R are smaller than B < ¢/2.

We first have the dealer compute and distribute a sharing [b]g of b =
(B,...,B) € Z’;. Players can then compute
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[bl, Ri], [b—Ril, [bl, [Ri], b+ R,
N : = : and ot : = :
[bl, [Rinly [b—Rul, [bl, Rinly b+ R,

Proving that each secret is bounded by B (and thus lies between —B and B)
reduces to proving that all the secrets that are pack-shared by each [b — R;],
and [b 4+ R;], for i € [m], are positive. We thus show a subroutine, described in
Figure [3] that allows a dealer to prove that secrets that are pack-shared among
players are positive. To do this, we follow an idea of Boudot [9] and use La-
grange’s Four-Square Theorem, which states that every positive number can be
written as the sum of four squares (see e.g. [16]). Moreover, these four squares
can be efficiently computed [28/24]. Suppose the dealer has pack-shared a se-
cret vector z € ZL**. For each coordinate z; for j € [k], the dealer finds the
four numbers u;,v;, w;,y; such that z; = u? + sz + w? + y? We let u,v,w,y
be the vectors with u;,v;, w;,y; as the jth coordinate, respectively. The dealer
(d/2)-shares each of these vectors [U]y/2,[V]a/2, [W]a/2, [¥i]a/2. Similarly, we let
u,v,w,y be the vectors with u?, U?,w?,y? as the jth coordinate, respectively.
Players can locally compute sharings [ulq, [v]4, [W]d, [y]a by squaring their cor-
responding shares of [0]g/2, [V]a/2, [W]a/2, [¥i]a/2- Each player then computes,

[Zz]lg —[ulg— [Vl — [Wla—[yla=[z—u—v—-w—yls=[0]4

and together they check that the result is indeed a pack-sharing of the vector
0 Zk.

However, suppose that a cheating dealer chooses |u;| > 1/q/2. Then 3] > q
and we have wrap-around modulo g, which means that the cheating dealer could
convince the players that a secret z; is positive, without this being true. To
ensure this does not happen, we have the dealer prove that each of u;,v;, w;,y;
is bounded by some bound B’, which although larger than B, is certainly much
smaller than /q/2 (in fact, we will need B’ < ,/q/8 so that we don’t have
overflow when adding the four squares).

Our protocol for verifying that numbers are bounded by B’ uses techniques
from Cramer and Damgard [13]. Players check 7 shares at a time, where 7 should
be thought of as the “local security parameter” for the protocol mygrpxp. The
players compute a linear combination of their shares (with some noise added) and
reconstruct the result, such that if the secrets resulting from this reconstruction
are “not too big” then the original secrets (i.e. the entries in R) are also small.
To ensure that the reconstructed result does not reveal R, we let the added noise
be in an interval that is a factor of 27 larger than the entries in R. To guarantee
that Tyverpyp has statistical (in M) ¢-privacy, we set 7 = w(log A). The final bound
that we are able to prove is B’ = 227tlmB. We will thus need to ensure that
Va/8 > 22+ImB.

We give full descriptions of the protocol mygrsy in Figure[2l of the subroutine
to verify that secrets are positive in Figure Bl and the subroutine to verify that
numbers are bounded by B’ in Figure [l
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Protocol myvisu between parties (Pi,...,Pny) and input client Z.

Common input: bound B
Input to Z: R € Z?Xk.
Input to P;: Corresponding shares of [Ri]q,. .., [Rm]a-

1. Z prepares a d-sharing of b = (B, ..., B) € Z¥): [bla. Z gives each player its
corresponding shares.
2. Players run the subroutine mvgrpos (see Figure Bl) with

[b}d [Rl}d [b - Rl]d

[b]d [Rl]d [bJFRl}d
— : = : and : : :

[blg [Rin]y b —Rn], [bl, Rl g [b+ R,

Fig. 2. Protocol mygrsy to verify that secrets are numerically small

Subroutine 7ympos between parties (Pi,...,Pn) and input client Z, to
verify that secrets are positive.

Input to Z: Z € Z;*.
Input to P;: Corresponding shares of [Z1]q, ..., [Zm]a-

1. For each entry zgj) of Z (for i € [m],j € [k]), the dealer finds the four numbers
Wij, Vij, Wij, Yij such that zgj) = ufj + vfj + w?j + yfj Define G,V,Vv,? to be
the matrices with wsj, vij, wij,yi; as the (i, j)th entry, respectively. Similarly,
define U, V, W,Y to be the matrices with u?j, vfj, w?j, y?j as the (4, j)th entry,
respectively.

2. T computes and distributes (d/2)-sharings of the rows of I~J,\~/',VA\7,?:
[Usilayz; [Vilaz, [Wilayz, [Yilaj2, for i € [m].

3. Players run protocol mcueex from  Section [Z4 with the shares
[Uilaj2, [Vilasz, [Wilay2, [Yila2, for i € [m] (a total of 4m/(N — t) times) to
verify that these shares are d/2-consistent.

4. 7 and the players run the subroutine mvespao (see Figure H]) with the shares
[Uilas2, [Vilas2, (Wilajz, [Yilaa, for i € [m] (a total of 4m/r times), to verify
that each of the w;j, vi;, wij, yi; is bounded by B’ < 1/q/8.

5. For each row 1 € [m], players locally compute d-sharings
[Uild, [Vila, [Wila,[Yi]la by squaring their corresponding shares of
[Uilas2, [Vilas2, Wilas2, [Yilay2-

6. For each row i € [m], players locally compute

[Zi]a — [Uila — [Vila — [Wila — [Yila = [Zi —U; = V; — W; — Y4q

and check that the result is a pack-sharing of the vector 0 € Z***.

Fig. 3. Subroutine myerpos to verify that secrets are positive
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Subroutine 7veexo between parties (Pi,...,Pn) and input client Z, to
verify that numbers are bounded by B’ = 22" "'mB.

Common input: bound B

Input to Z: Z' € Z7**.

Input to P;: Corresponding shares of [Z}]4,...,[Z}]q (that are known to be d-
consistent).

1. T chooses X « [-2"mB,2"mB]?" =Yk "and prepares d-sharings of the rows
of X: [Xi]a,---,[X2r—1]a- Z gives each player its corresponding shares.

2. Players P1,..., Py coin-flip for a random vector e € {0,1}7*".

3. Define matrix Me to be the (27 — 1) x 7 matrix with its (¢, j)-th entry defined
by mY) = ei—j+1 for 1 <i—j+ 1 < A. Each player locally computes

e,i

[(MeZ'),],, [Xaly [(MZ' +X),],,
‘ L I z
[(MeZ/)QT—l] d’! [X2T*1]d’ [(Mezl +X)27‘—1:| d’

4. Players reconstruct MeZ' + X row by row and check that all its entries are
bounded by 22" 'mB.

Fig. 4. Subroutine myerpxo to verify that numbers are bounded by B’ = 2277ty B <

Va/3

We set N = O(¢) as is required for the IKOS construction and for privacy (see
Section [2.3)), and analyze the communication complexity of the mygrsy protocol.
Each share has size at most log g. Each execution of mygrpyp has communication
cost O(7N log q): sharing the X,;’s has communication cost (27 — 1) N log g, the
coin-flipping of e has communication cost 7 since we’ll use this MPC protocol
inside the IKOS construction, and reconstructing MeZ’ + X has communication
cost (27 —1)N log q. The subroutine mygrpos (Figure[d) has communication com-
plexity O(mN log q): sharing of the rows of U, V, WY has cost 4mN log g, the
total cost of running meupck is (N(N + t)logq) - 4m/(N — 2t) = O(mN logq),
the total cost of running mygrpp i8 O(T7N logq) - 4m/7 = O(mN log q), and the
final reconstruction has cost mN log g. Finally, the communication complexity
of protocol mygrsy is O(mN logq): sharing b has communication cost N logg,
and we run the subroutine mygrpos twice.

Lemma 4. Let n,m,r,q, N,t, k be as in Theorem[d and Section[2.3, and let B
be some publicly-known bound. If T = w(log\) and \/q/8 > 2°"+'mB then the
protocol Tygrsy described in Figure[d allows N players to verify, with negligible
error probability in X\, that all entries in a secret matriz R € Z;”Xk are bounded
by B. It has statistical t-privacy in the presence of a semi-honest adversary,
perfect t-robustness in the presence of a malicious adversary, and communication
complezity O(mN logq).
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4 Proofs of Plaintext Knowledge

We wish to show a zero-knowledge proof protocol that allows a prover to prove
that he knows the plaintexts of k different ciphertexts, each encrypted under
the same public key. We show how to do this for the Regev encryption scheme
described in Section More formally, we show a zero-knowlege proof protocol
for the following relation:

Rpork = { (z,w) | == ((A,b),(u® D) ... (b Ry,
w = ((m(1)7r(1))’ o (m(k)m(k))) s.t.
Vje k] (uY, ) = Enc s p)(mP); )
and m@| < p/2, |Ir9]oc <7 }

We create protocol Ilpopk for relation Rpopk using the “MPC-in-the-head” tech-
nique of [22] described in Section 22 We let fpopk be the N-party functionality
that takes the entire input w from Z and outputs Rpopk (z,w) to all N players.
In FigureB we show our construction of a t-robust and ¢-private N-party proto-
col, mpopxk, realizing functionality fpopk. The idea is to have Z pack secret-share
the messages, as well as pack secret-share each coordinate of the randomness
vectors. The players then locally run the encryption algorithm on their shares,
reconstruct the resulting shares, and check that the reconstructed secrets are
indeed the claimed ciphertexts. The input client Z also needs to prove that the
messages and randomness come from the correct spaces. For example, he would
need to show that the magnitude of each message is less than p/2 (since the
message space is Z,), and that each coordinate of each randomness vector is
at most 7 (since we are using the truncated Gaussian distribution described in
Section 27H]). For this, we will use the protocol mygrsy described in Section Bl

We set t = O(k) and N = O(t) as is required for the IKOS construction
and for privacy (see Section 2.3)), and analyze the communication complexity of
our protocol mpopk (see Figure (). Since each share has size loggq, step 1 has
communication cost (m + 1)N logq = O(mklogq). We run moupcxk m + 1/(N —
2t) = O(m/k) times, so step 2 has communication cost N(N + t)logg(m/k) =
O(mk log q) The reconstruction in step 3 has cost 2nN log ¢ and running protocol
myersy has cost 2mN log g so the total cost of step 3 and of mpopk is O(mk log q).

Our techniques are similar to those of Bendlin and Damgard [7]. However,
our protocol mygrgy for proving that a secret is small (see Section [B)) allows
us to prove soundness for message space Z, and randomness sampled from the
discrete Gaussian, whereas the construction of [7] only worked for bit messages
and bit-vector randomness. Finally, our use of packed secret sharing allows us to
achieve a better amortized communication complexity. The protocol of [7] has
complexity O(nmlogq) per proof, whereas we achieve an amortized complexity
of O(mlog q) per proof.

Lemma 5. Let n,m,r,p,q,N,t,k be as in Lemmal[f] with B = max(p/2,r). The
protocol Tpopk described in Figure [A realizes fpopk with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complezity O(mklogq).
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Protocol mpopk between parties (Pi,...,Pny) and input client Z.

Common input: p,q, R,z = ((A,b), (u® (1)) o, (u®) )
Input to Z: w = ((m™,r®), ... (m®* ),r(k)))

1. Input client Z prepares and distributes among the N players, d-shares over

Zq of the messages and randomness vectors, with d = k + ¢t — 1. The ith
coordinates of all randomness vectors are pack-shared to produce a bingle set
of shares p,. More formally: define matrices R = [r ; v ; ... ; r®] ¢
zrF o m o= [m® ;s m®) ez U =W u® ; u®] e
Zr**, and ¢ = (Vs s P®ye ZL** . T prepares and distributes d-shares
(mlg, [Rila, ..., [Rm]a.

. Players run protocol mcurex from Section 2] (possibly several times) to verify

that their shares are d-consistent.

. Players “emulate” encryption by running the encryption algorithm on their

local shares. More formally:
— For ¢ € [n], players locally compute {(Agr(j)) J , and check that the
JjE

d
result is a pack-sharing of Uy.

— Similarly, players locally compute

{(brm)jEkLJr L’[I)J (mlg = {(br(j) + L(iJ m(j))j@]

Players check that the result is a pack-sharing of c.

d

— Players use mygrsy from Section [ to check that |m(j)\ < p/2and Hr(j)Hoo <
r for all j € [k].

Fig. 5. MPC protocol mpopk that realizes fpropk

Putting together Lemma [l with Theorem [ yields the following theorem.

Theorem 3. Letn,m,r,p,q be as in Lemma[f] with B = max(p/2,r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol Ilpopk for relation Rpopk with negligible
(in \) soundness error and amortized communication complexity O(mlogq) per

proof.

5 Proofs of Correct Multiplication

In this section we show proofs for correct multiplication for the Regev encryption
scheme. In our protocol, the prover performs k proofs at a time, all under the
same public key. More formally, we give a zero-knowledge proof protocol for the
following relation:
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Protocolnpocm between parties (P1,...,Pn) and input client Z.

Common input: p,q, R,z = ((A,b), (u(l), W v, e(l)), ey (u(k), c®) R e(k)))
Input to Z: w = ((m™,r® M) (m® r®) z(k))

1. Input client Z prepares and distributes among the N players, d-shares over Z,
of the messages and randomness vectors, with d = k + ¢ — 1. The ith coordi-
nates of all randomness vectors are packed shared to produce a single set of

shares.. More formally: define matrices R = [r ; t@® ; . ; t®] ¢ Zyk,
m = [m(l) Do m(k)} c Z;,Xk,x = [m(l) S g;(k)} c Z}ZX’“,U —
® 5 u® 5 o a®] ez e = (W, P ez Vo=
[v(l) cv@ o v(k)} € Zng» and e = (e(l) Do e(k)) € Z}ZX’“, A

prepares and distributes (d/2)-share [m]q and d-shares [x]q4, [R1]4, - -, [Rm]a-
T also prepares and broadcasts (d/2)-shares(clq 2, [U1la/2,- -, [Un]asz-

2. Players run protocol mcusex from Section 2] (possibly several times) to verify
that shares [x]a,[Ri]d;.-.,[Rm]a are d-consistent, and share [m]q is (d/2)-
consistent. They also check locally that ¢, Uy, ..., U,, are correctly shared.

3. Players “emulate” correct computation of each (v(i), c(i)), More formally:

— For ¢ € [n], players locally compute {(Agr(j)) J . They also locally
Jj€k] 4

compute [(br(j) + U}J a:(j)) ’EJ .
i€kl g

— For ¢ € [n], players locally compute

_ {(uy)mm +Aér(j))jek:|

Players check that the result is a pack-sharing of V.

— Players locally compute
(br(j) n VJ x(j)> }
p jek

_ (c(j)m(j)—f—br(j)—l— VJ a:(j)>
p jek

Players check that the result is a pack-sharing of e..
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As in Section 4] we create protocol ITpocn for relation Rpocn using the “MPC-
in-the-head” technique of [22], described in Section 22l We let fpocm be the N-
party functionality that takes the entire input w from Z and outputs Rpocm (2, w)
to all N players. In Figure[6l we show our construction of a t-robust and ¢-private
N-party protocol, mpocm, realizing functionality fpocm. Again, the idea is to
have Z pack secret-share the messages, as well as pack secret-share each coordi-
nate of the randomness vectors. The players then locally emulate the encryption
of the random message and perform the multiplication, then reconstruct the re-
sulting shares, and check that the reconstructed secrets are indeed the claimed
ciphertexts. As before, the input client Z also needs to prove that the messages
and randomness come from the correct spaces. We again use the protocol myvgrsy
described in Section [3] for this purpose.

We set t = 0(k) and N = 6(¢t) as is required for the IKOS construction and for
privacy (see Section 233)), and analyze the communication complexity of mpocm
described in Figure [0l Since each share has size log ¢, step 1 has communication
cost 2(m + 1)N log g = O(mklogq). We run moumex m + 1/(N — 2t) = O(m/k)
times, so step 2 has communication cost N(N + t)loggq(m/k) = O(mklogq).
The reconstruction in step 3 has cost 2nN log ¢ and running protocol mygrsy has
cost 2mN log ¢ so the total cost of step 3 and of mpopk is O(mk log q).

Lemma 6. Letn,m,r,p,q,N,t, k be as in Lemmal[f] with B = max(p/2,r). The
protocol Tpocnm described in Figure [A realizes fpoom with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complexity O(mklogq).

Putting Lemma [0l together with Theorem [ yields the following theorem.

Theorem 4. Letn,m,r,p,q be as in Lemma[f] with B = max(p/2,r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol ITpocn for relation Rpocn with negligible
(in \) soundness error and amortized communication complexity O(mlogq) per

proof.
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Abstract. Anonymous authentication schemes such as group signatures
and anonymous credentials are important privacy-protecting tools in
electronic communications. The only currently known scheme based on
assumptions that resist quantum attacks is the group signature scheme
by Gordon et al. (ASIACRYPT 2010). We present a generalization of
group signatures called anonymous attribute tokens where users are is-
sued attribute-containing credentials that they can use to anonymously
sign messages and generate tokens revealing only a subset of their
attributes. We present two lattice-based constructions of this new prim-
itive, one with and one without opening capabilities for the group man-
ager. The latter construction directly yields as a special case the first
lattice-based group signature scheme offering full anonymity (in the ran-
dom oracle model), as opposed to the practically less relevant notion
of chosen-plaintext anonymity offered by the scheme of Gordon et al.
We also extend our scheme to protect users from framing attacks by
the group manager, where the latter creates tokens or signatures in the
name of honest users. Our constructions involve new lattice-based tools
for aggregating signatures and verifiable CCA2-secure encryption.

Keywords: Anonymous attribute tokens, group signatures, lattices,
post-quantum cryptography.

1 Introduction

We all increasingly use electronic services in our daily lives. To do so, we currently
have no choice but to provide plenty of personal information for authorization,
billing purposes, or as part of the terms and conditions of service providers.
Dispersing all these personal information erodes our privacy and puts us at
risk of abuse of this information by criminals. Therefore, these services and their
authentication mechanisms should be built in a way that minimizes the disclosed
personal information. For instance, to access a resource, users should not need to
identify themselves but rather only to prove to the resource provider that they
possess the necessary attributes (e.g., rights or properties) which are required
for the access. In fact, in Europe it is widely acknowledged that to secure the
future digital infrastructure one must employ this kind of attribute-based access

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 57 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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control and use so-called attribute-based credentials or minimal disclose tokens
(see, e.g., [RIS10,TATI]).

The cryptographic research literature has put forth a large body of proto-
cols that allow for privacy-friendly access control. For instance, group signa-
ture [CvHII] and identity escrow [KP98] schemes allow a user to prove that
she has authorization (i.e., is member of a group of people who all share the
same property) without revealing her identity. Nevertheless, in case of abuse of
this anonymity, group signature and identity escrow schemes allow a designated
party to lift the anonymity and to identify the abusing user. The generaliza-
tion of these schemes are anonymous credentials or pseudonym systems [Cha81,
Bra99l[CLOIDLRSW99]. Such schemes feature a plurality of organizations who
assign attributes to users by issuing attribute-containing credentials. Users are
known to the different issuers under different pseudonyms. Later, when users
need to authenticate somewhere, they can do so in the most privacy-protecting
manner, i.e., users can just prove that they possess credentials asserting them
the attributes required by the authentication policy.

It is well known that the cryptographic assumptions underlying all known
realizations of these privacy-protecting schemes can be broken with quantum
computers. The only exception to this is the group signature scheme by Gordon,
Katz, and Vaikuntanathan [GKV10]. Their scheme works on ordinary computers
but is based on the hardness of lattice problems, which are believed to be immune
to quantum computers. While so far only small quantum computers breaking toy
keys could be built, it seems very plausible that in just a few years computers
breaking currently used keys can be built [Los10]. Even if quantum computers
are not considered an immediate threat, the hardness of lattice problems against
sub-exponential time adversaries and their provable worst-case to average-case
relation makes it desirable to build cryptographic schemes from these problems.

In this paper we provide a number of new schemes for privacy-protecting au-
thentication with security based on lattice problems in the random-oracle model.
In particular, as our first contribution, we define and present an anonymous at-
tribute token scheme without opening (AAT-O). Here, a user can obtain a cre-
dential from a group manager or issuer, the credential containing the attributes
that the manager wants to assert to the user. Later, the user can anonymously
authenticate to a verifier by generating an authentication token from her creden-
tial, the token revealing only a subset of the attributes that are contained in the
credential. Such authentication tokens are anonymous, i.e., a token containing a
set of attributes could originate from any user who has been asserted a super-
set of these attributes. Minimal disclosure tokens as implemented by Microsoft’s
U-Prove [BPI10] are an example of an AAT-O scheme.

As our second and main contribution, we extend our scheme to an anony-
mous attribute token scheme with opening (AAT+O), where the group manager
additionally has the power to reveal the identity of the user who generated a
given token. Group signatures can be seen as special case of AAT+O schemes
where the manager issues to all users a credential without attributes (or a single
attribute with a fixed value). Our scheme provides anonymity to honest users
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in the presence of adversaries with adaptive access to the opening functionality.
This is a major improvement over the group signature scheme of Gordon et al.,
who provide a much weaker form of anonymity. In their model, anonymity may
break down for all users in the system as soon as a single signature (or token
in our terminology) is opened, even for users who never misbehaved and never
had their tokens opened. Hence, their scheme can only be used as long as no
signature (token) is opened—an event that users are typically not even aware
of. This is a severe limitation that we overcome.

We furthermore show how our AAT-0O and AAT+O schemes can be combined
to obtain a new AAT+O scheme that protects users from framing by a dishonest
group manager. That is, in this resulting third scheme, no one except the user
herself can produce tokens that when opened will be attributed to the user.
This is a further property that the Gordon et al. group signature scheme does
not provide and which we believe is rather important when one wants to have
accountability. Group signatures obtained from our AAT+O schemes do not only
provide better security compared to the Gordon et al. scheme, but also offer other
advantages: the manager’s public and secret key are independent of the number
of users (versus linear in their scheme@) and users can join dynamically (in theirs,
all the users’ keys need to be generated at setup time). Thus, while our main
focus is on anonymous attribute token schemes, we present as a corollary the
first lattice-based, non-frameable group signature scheme with full anonymity.

As an aside, to construct our scheme, we improve upon known tools and
introduce a number of new building blocks, which we believe are of interest
in their own right. We provide a verifiable encryption proof protocol for the
CCA2-secure encryption scheme of Peikert [Pei09] and introduce and construct
single-signer aggregate signatures as a restricted, but useful, form of aggregate
signatures [BGLS03].

Related Work. We do not claim anonymous attribute tokens to be a new prim-
itive: the U-Prove scheme [BP10] and the signature scheme with its proof pro-
tocols by Camenisch and Lysyanskaya [CL04|] actually realize instantiations of
it based on the discrete logarithm assumption and the strong RSA assumption,
respectively. Nevertheless, to the best of our knowledge, an anonymous attribute
token scheme (with or without opening) has never been formally defined. As we
have pointed out already, group signature schemes can be seen as a special case
of AAT+O schemes.

Several group signature schemes have been proposed in the literature. Most
of these are based on strong RSA [ACJTO00,[AST02/[CT.0Ta] or on bilinear maps
[BBS04,BS04,[CL04DP06,BCNT10]. The scheme due to Gordon et al. [GKVI0]
is the only based on assumptions that resist attacks by quantum computers.

! Note that secret keys can always be made of constant length by storing the random
seed used to generate the key instead of the key itself. Likewise, one can always
publish the hash of the public key instead of the public key itself. The first trick
involves re-generating keys, which is particularly costly in lattice-based schemes that
use trapdoors. The latter trick comes at the cost of having to attach the full public
key to each signature or token.
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Attribute-based signatures [MPRII] are a related primitive where signatures
cannot be opened and where the signer can prove any predicate over the at-
tributes that can be expressed as a monotone span program, which includes
circuits of threshold gates. Attribute-based group signatures [KhaQ7] are a sim-
ilar primitive where signatures can be opened by a dedicated authority, and is
thereby closely related to our notion of AAT+O schemes. Unfortunately, how-
ever, the security notions proposed in [Kha07] are flawed 2

Ring signatures [STO1] are another privacy-enabling primitive which can be
seen as an ad-hoc group signature scheme without a central group manager and
without the possibility for opening. Ring signatures can also be constructed from
our AAT-O scheme, as we shall point out later. Mesh signatures [Boy07] are a
generalization of ring signatures to monotone access structures where each user
can (be claimed to) sign a different message. Single-attribute AAT-O schemes
are easily obtained from mesh signatures; multi-attribute schemes involve a com-
binatorial blowup of the credential size in the number of attributes. Similarly,
mesh signatures with opening [BDO0§| can be used to build AAT+O schemes.

The most general privacy-enabling primitive are probably anonymous creden-
tial systems with additional features such as proving predicates over attributes,
cryptographic pseudonyms, and partially blind issuing protocols to protect users
against framing attacks by malicious issuers. While they are quite close to anony-
mous attribute token schemes, we leave it as an open problem to construct a
full-fledged anonymous credential system based on lattices.

Organization of the Paper. We define anonymous attribute token schemes in
Section Bl Then, we introduce, analyze, and discuss the building blocks for our
constructions in Section [ followed by our first construction in Section
Based on these results, we describe the full-blown scheme with opening and how
to achieve group signatures and restricted anonymous credential systems in the
full paper [CNRI12]|.

2 Preliminaries

The statement x <—g X means that x is chosen uniformly at random from the
finite set X. A function is negligible if it vanishes faster than 1/p(n) for any
polynomial p. All logarithms are base 2 and we identify {1, ..., k} with [k] and
(xi)?:a with (2g,...,zp). Furthermore, [a,b]z := [a,b] N Z. Instead of a = b
(mod ¢), we simply write a = b. When we write “||”, we mean the concatenation
of strings or matrix columns. The concatenation of two vectors x,y is denoted
[x,y]. The notation #S denotes the cardinality of a finite set S.

2 The “selective-policy” anonymity notion of [KhaO7] allows linkability of signatures
when a signer signs the same message with the same set of revealed attributes twice.
The traceability notion merely implies that any valid signature will open to some
user. There is no guarantee that it opens to the actual signer behind the signature,
however, nor does the notion offer any protection against users claiming attributes
that they do not possess.
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In this work, we only require full-rank lattices. A lattice in R™ is a discrete
subgroup A = {>°7"  x;b;|z; € Z}, typically represented by a matrix B =
[b1,...,by] € Z™*™ of R-linearly independent vectors. The matrix B is a basis of
the lattice A and we write A = A(B). The number of linearly independent vectors
in B is the dimension dim(A). For a lattice A(B) with B € Z™*™ define the (full-
rank) dual lattice as the set of all x € R" with (x,y) € Z for all y € A(B). The
Gram-Schmidt orthogonalization (GSO) B = [by]|...||b,] of the columns of B
is recursively computed by letting b;1 be the orthogonal projection of b;iq
onto span(by,...,b;)*. The length of B is defined as ||B| := max;en)([[billy)-

One of the main computational problems in lattices is the approximate short-
est vector problem (SVP). Given a basis B of A and an approximation factor
v > 1, the task is to find a non-zero vector v € A with length at most v times
the length of a shortest vector in A. A related problem is the approximate short-
est independent vector problem (SIVP), where one is supposed to find a set
{Vv1,...,vn} of linearly independent vectors in A such that max; ||vi|y < Y.
Here, \,, denotes the n-th successive minimum of A, which is the smallest radius
of a sphere that contains n linearly independent lattice vectors. For polynomial
(in the dimension) approximation factors, which are relevant for cryptography,
the best known algorithms require exponential space x time, e.g., [MV10].

In cryptography, we use lattices of a special form, which we call g-ary lattices:
for ¢ € N, A € Z2*™, we define A (A) := {v € Z™ : Av = 0}. Its, up to
scaling, dual lattice A4(A) is defined as {w € Z™ : Je € Z"s.t. Ale = w}.
The main computational problem in Aj(A) is the following “short integer so-
lution” (SIS) problem: given n,m, ¢, uniformly random A, and a norm bound
1<v<gq findve A (A) with 0 < ||v]|, < v. The SIS problem was introduced
and analyzed by Ajtai [Ajt96] but there are numerous improvements to the anal-
ysis [MROT,I(GPV08]. We will also use the (equivalent) inhomogeneous problem
ISIS, where the task is to find a short vector x that solves Ax =y given y. For
v < poly(n), prime ¢ > vg(n) for g(n) = w(y/nlog(n)), and m > 2nlog(q), the
average-case SIS(n,m, ¢, v) is at least as hard as SIVP with v = vO(y/n) in the
worst case. For A4(A), we consider the following “learning with errors® (LWE)
problem: given n,m,q, A, and m “noisy” inner products b = A's + e mod g,
where e is chosen from a certain error distribution ¥ over Z™. The task is to
recover s € Zjy. This search version of LWE is at least as hard as solving the
decision problem, i.e., distinguish (A, b) from uniform. The standard error dis-
tribution is a spherical discretized normal distribution ¥7* with width parameter
to a = a(n) € (0,1). For prime ¢ > 2y/n/a and m < poly(n), these problems
are, on the average, at least as hard as SIVP with v = O(n/a) in the worst
case [Reg09] under a quantum reduction. A similar classical reduction can be
found in [Pei09] at the expense of more constraints. We will use a different, true
discrete Gaussian error distribution as defined below.

Gentry et al. [GPV08] define a special family of one-way trapdoor functions
called a preimage samplable functions. For parameters n € N, ¢ = qg(n) =
poly(n), m = m(n) = 2(nlog(q)), L = L(n) = O(nlog(n), p(n) = w(y/log(n)),
and n > f/p(m) this family of one-way trapdoor functions is defined as follows.
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— GPVGen(1") generates a matrix A € Z;*™, distributed statistically close to
uniform, and a secret trapdoor T € Z™>*™ such that AT = 0 and HTH <L.

— The one-way function associated to A is fa : Z™ — Zy : x = Ax (mod q).

— GPVInvert(A, T, y,7) samples elements from f, ' (y) so that (x, Ax (mod q))
as well as (GPVInvert(A, T, y,n),y) are statistically close for x ~ Dzm , and
y s Zg for a certain distribution D, defined below.

— The samples x returned by GPVInvert have a conditional min-entropy of
w(log(n)), conditioned on Ax =y and ||x||, < ny/m (or, ||x| < np(m)).
Refer to [GPVO08[AP(09,[Peil0)] for further details.

Let A be a lattice. We define the distribution Dy, with parameter 7 as

. < .. D, (x
in [GPVOS]: for all x € A+ ¢, it is Dpye(x) = EyEAj—i [))"(y) for D,(x) =

1/n™ exp(—||x||* /n?). For ¢ = 0, we write D 4. Note that, as in [GKVI10], this
distribution will serve as an error distribution for LWE later.

Theorem 1 ( [GPVO08]). The family is collision-resistant if SIS(n, m, q, 2ny/m)
is hard.

The GPV signature scheme [GPV0§| is essentially a full-domain hash scheme
[BR93] based on this one-way function. It uses A as a public key and the trap-
door T as the signing key. A signature on message M is a vector o such that
Ao = H(M) and ||o||, < ny/m which can be computed using the probabilistic
GPVlnvert algorithm ! Signing is stateful, i.e., when the same message is signed
twice, the same signature is returned.

3 Syntax and Security of Anonymous Attribute Tokens

An anonymous attribute token (AAT) scheme can be seen as an extension of
group signatures or as a simplification of anonymous credentials where the is-
suer can assign a list of attributes to a user’s signing key. When authenticating
to a verifier, the user can selectively reveal some of these attributes in a to-
ken and convince the verifier that she has a valid credential (i.e., signing key
with attributes) certifying the claimed attribute values, without revealing any
information about the non-revealed attributes and without making her tokens
linkable — that is, more linkable than directly implied by the revealed attributes.
We define and design two kind of schemes: AAT without opening (AAT-O)
where anonymity is absolute, i.e., opening tokens is impossible, even for the is-
suer; and AAT with opening (AATH40), where the manager can uncover the
user who created a given token. Minimal disclosure tokens as implemented by
Microsoft’s U-Prove [BP10] are an example of an AAT-O scheme.

3 With negligible probability, GPVInvert returns o = 0 or ||o||, > ny/m. In this case,
the algorithm starts over.
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Our syntax and security definitions take inspiration from those for group
signatures as put forward by Bellare et al. [BMWO03], but we add support for
dynamic issuing of credentials. We first lay out the definitions for the setting
with opening (AAT+0), and then explain the differences to the AAT-O setting.
We note that an AAT+O scheme does not trivially yield an AAT—O scheme,
because in the former the manager can always open tokens, while the latter
requires that even the manager cannot link tokens. The inverse relation does not
hold either due to the lack of an opening algorithm in AAT-O schemes.

Syntax of AAT+0O Schemes. An AAT+O scheme is parameterized by security
parameter n, maximum number of users Umax, and maximum number of at-
tributes per credential £,,,., and is defined by the following algorithms.

— The manager runs MKeyGen on 1™, unyax to generate his public key mpk and
corresponding secret key msk.

— When a user with index u requests a credential for an ordered list of attribute
values (ai)le, with ¢ < 4,42, the manager runs Issue on input msk, u, and
(ai)le to generate a credential cred.

— A user generates an authentication token 7 revealing a subset of attribute
values (a;)ier for R C [¢] and authenticating a message M by running the
GenToken algorithm on input mpk, cred, (ai)le, R, and M. The message M
can be any string; in practice, it could encode authentication context infor-
mation such as the identity of the verifier, a timestamp, a session identifier,
or a random nonce.

— To verify a token, the verifier runs the VToken algorithm on input mpk, the
token 7, the set R, the revealed attribute values (a;);cr, and the message
M. Tt outputs 1 or 0, indicating the validity of 7.

— Using the Open algorithm on input msk, a token 7, a set R, the revealed
attributes (a;);cr, and a message M, the manager recovers the index u of
the user that generated the token.

Correctness is defined in the straightforward way that any honestly generated
token will be accepted. Security consists of anonymity, requiring that tokens
generated by the same user cannot be linked, and traceability, requiring that no
adversary can produce a token that cannot be opened or that, when opened,
falsely incriminates an honest user.

Anonymity of AAT+0O Schemes. We consider full anonymity here, in other
works (e.g., [BBS04]) often referred to as CCA2-anonymity, where the adversary
has access to an opening oracle. The adversary A is given the manager’s public
key mpk as input. It has access to an initialization oracle, an issuing oracle, and
an opening oracle, which offer the following functionalities.

— The initialization oracle, on input user index u and attribute values (ai)le,
generates a credential cred, g lssue(isk,u, (ai)le). The oracle does not
generate any direct output to A, but stores cred,, locally, outside A’s view.
It can only be queried once for each user u. Once user u has been initialized,
the adversary can query the issuing and token generation oracles for u.
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— The issuing oracle, on input a user index w, returns cred,, if a credential for
u was previously initialized, or 1 otherwise.
— The opening oracle, on input token 7, attribute indices R C [¢], attribute

values (a;);cp and message M, returns u < Open(msk, T, R, (a;);cp , M).

At the end of the first phase, A outputs user indices ug,u1 € [Umax], & set
R C [{], and a message M. Let (ai,o)f":l and (%‘,1)51:1 be the attributes with
which ug and u; were associated by the initialization oracle, respectively. If one
of ug or u; has not been initialized, or if a; o # ;1 from some ¢ € R, then A
loses the game. Otherwise, the challenger chooses a random bit b, generates a
token 7* <—¢ GenToken(ipk, opk, cred,, , (a@b)fb:l ,R, M) and hands it to A. The
latter is allowed to make any additional oracle queries except submitting 7% to
the opening oracle. Eventually it outputs a bit b’ and wins the game if b’ = b.

Note that an even stronger anonymity notion would be obtained by consider-
ing an adversarially generated manager public key mpk. We leave the construc-
tion of a scheme satisfying this stronger notion as an open problem.

Traceability of AAT+O Schemes. The adversary A is given as input the man-
ager’s public key mpk. Apart from the initialization, issuing, and opening oracles
described above, it has access to a token generation oracle offering the following
functionality.

— The token generation oracle, on input user index u, attribute indices R C [/],
and message M, returns a token 7 <—g GenToken(mpk, cred,, (ai)le , R, M)
and returns 7 to the adversary if a credential for v was previously initialized,
or returns | otherwise.

At the end of the game, A outputs 7%, R*, (a])icr-, and M*. Let u* <«
Open(msk, 7™, R*, (a} )icr~, M*) be the index of the user to whom the token is at-
tributed by the opening algorithm. The adversary wins the game if VToken(mpk,
ipk, R*, (a} )icr+, M*) = 1 and either

(2

— A initialized u* with attributes (ai)le where a; # o for some i € R*, or
— A never queried the issuing oracle on u* and never queried a token by u* on
M* and R*.

Syntazx and Security of AAT-O Schemes. An AAT-0O scheme does not have an
Open algorithm. It does, however, have an additional VCred algorithm that a
user runs, upon receiving a credential cred, on input mpk, cred, (ai)le, to check
whether cred is a well-formed credential. The algorithm returns 1 in case it is
well-formed, or 0 if not.

We define a stronger anonymity notion for AAT—O than for AAT4+O. The
adversary A is given the manager’s keys mpk and msk as input. At the end of
the first phase, A outputs user indices ug, u1 € [Umax|, credentials cred,,,, cred,, ,
lists of attribute values (ai,o)fozl , (ai,l)flzl, aset R C [min(lo, ¢1)], and a message
M. If VCred(mpk, credy, (ai’b)szl) = 0 for either of b € {0,1} or if a;0 # a1
from some i € R, then A loses the game. Otherwise, the challenger chooses a
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random bit b, generates a token 7* <—g GenToken(mpk, cred., , (ai,b)szl , R, M)
and hands it to A. The latter outputs a bit ¥’ and wins the game if b’ = b.

The traceability notion for AAT+O is replaced with the notion of unforge-
ability for AAT-O. In the unforgeability experiment, the adversary is given mpk
as input. It has access to the same initialization, issuing, and token genera-
tion oracles as in the traceability game above. The adversary wins the game
if VToken(mpk,7*, R*, (a})icr+, M*) = 1 and if for all users u initialized with
attributes (ai)le such that a; = o for all i € R*, A never queried the issuing

oracle on u and never queried a token for u, M*, R*.

4 An Anonymous Attribute Token Scheme without
Opening

Our anonymous attribute token schemes build upon techniques in the GKV group
signature scheme by Gordon et al. [GKV10]. We briefly recall their scheme and
explain the fundamental differences in the way we issue credentials (signing
keys) and generate tokens (signatures). In the GKV scheme, each user u is as-
signed a matrix A, as public key and a corresponding trapdoor matrix T, as
signing key. To group-sign a message M, user u first uses T, to compute a
GPV signature [GPVO08| o, on M, this GPV-signature being a short vector
such that Ao, = H(M), where H is a hash function. She generates a “fake”
GPV-signature o, for all other users v # u through Gaussian elimination, i.e.,
o, will be a long vector such that A,o, = H(M). She subsequently encrypts
each of these signatures using a variant of the Regev encryption scheme [Reg09)
to obtain ciphertexts 7, = Bys + o, for v = 1,..., Umnax, where B, are ma-
trices such that A,B! = 0 and which are included in the group’s public key.
The encrypted GPV-signatures can still be verified by checking whether or not
A,7, = H(M) holds. The group signature contains the vectors 71,..., Ty,
plus a non-interactive witness-indistinguishable proof [MV03] that at least one
of the encrypted GPV-signatures is actually short. Group signatures can be
opened by decrypting 7, using a trapdoor S, associated to B, and checking
which of the signatures o, is short.

Our AAT-O scheme uses only a single pair of matrices A, B for the entire
group, as opposed to a pair of matrices for each user. Only the manager knows
the trapdoor T corresponding to A. To prevent anyone, including the manager,
from knowing a trapdoor corresponding to B, the latter matrix is determined by
a common reference string. The credential of a user u is a list of GPV signatures
o, such that Ao, ; = H(ul|é|la;). A first idea to create a token for attribute
a; and message M could be to encrypt o, ; as in the GKV scheme and include
M as an argument to the random oracle in the non-interactive proof that one of
the ciphertexts 7, encrypts a short vector.

The problem with this approach, however, is that two signatures by the same
user u can be linked by checking whether 7, — 7/, is a lattice point. This can
be fixed by re-randomizing the GPV signatures, for both real and fake ones,
with a small short random x ~ Dzm+in ,. To enable verifiability, we compute
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y < Ax mod g and append a non-interactive witness-indistinguishable proof of
knowledge of a short vector x’ such that Ax’ = y. This proof is the Fiat-Shamir
transformation of a generalization of Lyubashevsky’s identification scheme
|[Lyu08|, where the message M is included as an argument in the hash.

This approach of treating each attribute separately has the obvious disad-
vantage that it blows up the signature size with a factor of #R < ¢. We can
obtain shorter tokens by observing that GPV signatures support a limited form
of aggregation [BGLS03|]. Namely, the GPV signatures o, ; for i € R can be
summed up to form an aggregate signature o, < » ;. 0w . The aggregate
satisfies Aa, = ), p H(ull7]|a;) and is still “somewhat” short. Enabling such
aggregation in Section 1.4 comes at the price of having to choose slightly larger
security parameters, but only by a factor of log(#R).

4.1 Cryptographic Ingredients

4.1.1 Sampling Orthogonal Lattices with Trapdoors Revisited

nXx(m+n)
)

Gordon et al. [GKV10] present an algorithm that, given a matrix B € Z,
samples a matrix A € ng("”r") and an associated trapdoor T € Z"*("+7) guch
that AB! = 0. We give a construction method based on [GKVI0] that is more

efficient and allows for better (i.e., shorter) trapdoors.

Proposition 1. There exists a probabilistic polynomial-time (PPT) algorithm
OrthoSamp that, on input B = B ||Bs € ZZX(er”) with By € (Z7*™)*, outputs a
pair (A, T) € 7o) znx(m+n) sych that (1) AB! = 0; (2) A is distributed
statistically close to uniform (conditioned on AB' = 0); (3) AT = 0; and

5] <

From [CHKP10], we adopt the notion of extending a lattices basis to a larger
dimension. The corresponding algorithm ExtBasis takes as input a matrix Aq,
a basis T of Aj (A1), and an extension As. It picks a uniformly random V €

Ty V> of A4(A) for

Z;”X" such that A1V = —A,. Its output is a basis T = 0 I

A = A4]|A; with HTH < HTlH <L

Proof. First, generate (Aq, Ty) < GPVGen(1"). Then, set Ay < —A; B} (B;')*
= [agz), . ,ag)] and compute the basis T < ExtBasis(A1, T1, As). Output A =
A;]|A; and T. The output satisfies (1) because AB' = A1 B! +A,;B, = A1 B! —
A B{(B;')'BY = 0. Tt satisfies (2) because the output A; of GPVGen is dis-
tributed statistically close to uniform. It satisfies (3) because AT = AT (A4
V + A;) = 0. Finally, to see that it satisfies (4), recall that Ty is a ba-

sis of R™. Thus, after GSO, we have T = (Tol IO
n

i - ] < a

) and, as a consequence,



Fully Anonymous Attribute Tokens from Lattices 67

Notice that essentially the same procedure can be used to compute an orthogonal
A such that AB = 0 without a trapdoor for A-(A). Just sample a uniformly
random matrix A; in the first step and omit all subsequent steps that involve
the trapdoor T};.

In our security proofs, we will require that a pair (A, Ta,B, Tg) does not re-
veal in which order they were generated by OrthoSamp as stated by the following
proposition. We refer to the full paper for the proof.

Proposition 2. Let A, Ta,B,Tg be random wvariables where (B1,Tn,) +
GPVGen(1"); By <3 (Zy*")*; Tp < ExtBasis(B1,Tg,,B2); and (A, Ta)
OrthoSamp(B). Then, the distributions X1 = (A, Ta,B,Tg) and X2 = (B, T,
A Ta) are statistically indistinguishable.

Observe that we have applied a simplification to the above proposition, where
we choose By directly from the set of invertible matrices. Whenever the proposi-
tion is applied in our schemes, this property can be easily ensured by repeating
the sampling procedure a small number of times. For our parameters, a good
approximation of the ratio ’(ZQX”)*’ / ’ZZX”’ is e=1/(a=1) and a lower bound is
(1—1/q)™. Since the choice of ¢ is mainly governed by the worst-case to average-
case reduction for SIS, demanding that ¢ > v for SIS(n,m,q,v), it will exceed
nvm +n = 2(n'5log"®(n)) in all our schemes. Hence, the fraction of invertible
matrices over Zy*" is very close to 1.

All in all, our method differs from the corresponding lemma of [GKVI0] in
that we always use GPVGen in dimension m instead of sampling a trapdoor in
dimension m+n (as in [GKV10]) directly. Instead, we explicitly control how the
trapdoor is extended to the super lattice. Hence, we have more control over the
“shape” of the (m+n)-dimensional input trapdoor to OrthoSamp, resulting in ef-
ficiency advantages and a better-quality trapdoor T. See the full version [CNR12]
for details.

Efficient Sampling with Orthogonal Trapdoors. We apply a slight, well-known im-
provement to GPVInvert whenever we apply it in dimension m+n, i.e., whenever
we call GPVInvert(A, T, t,n) for (A, T) being output by OrthoSamp. Instead of
sampling directly using T, we use the upper-left part T; of T and the following
algorithm: 1. Sample x3 ~ Dzn ,; 2. Call x1 <= GPVInvert(A4, T1,t—Asx2,n); 3.
Output x||x2. The result has norm at most nv/m + n.

4.1.2 Verifiable Encryption of GPV Signatures

As mentioned in the construction sketch, we will “encrypt” GPV signatures with
a variant of the “dual” encryption scheme [GPV0S§|. To this end, we define the
following family of one-way trapdoor functions based on the LWE problem. For
ease of exposition, we will slightly abuse the terms encryption for this trapdoor
one-way function and ciphertext for an image under this trapdoor in the subse-
quent sections. Fix a truncated error distribution ¥ over Z™ with support Dy.
Other parameters are the same as for GPV signatures.

— Keys are generated using GPVGen(1"), yielding a public key B and corre-
sponding trapdoor S.
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— The one-way function associated to B is g : Zy x Z™ — Z7' : (s,e)
B's +emod gq.

— LWElnvert(B,S, 7) uses S to find a vector B's’ that is close to 7. Then, it
computes € < 7 — B's’ and returns (s',€’).

Note that we modified LWEIlnvert() as to output (s’,€’) instead of just s’ as
defined by Peikert [Pei09]. We will use ¥ = Zle Dgm = DZ,,L’ Jen and Dy =

{v ez :|vl|, < nym}. Correctness follows from [Pei09] with ¢(n) > L?p?(m),
security as a one-way function follows from [Reg09}[Pei09,[GKVI0].

Theorem 2 ( [GKV10]). The family is one-way if g (s, e) is indistinguishable
from uniform for s <—g Zyg and e ~W. It is hard to distinguish from uniform for
v if decision LWE is hard with the standard noise distribution !I/\/[
/(av'2)’
Also note that if matrices B, A, S are generated via the GPVGen and OrthoSamp
and o is a GPV signature such that Ao = H(M), then the “encrypted” signature
T < B!'s+ 0 mod q can still be verified by checking that AT = H(M). However,
we need to ensure that the “noise” o is small, which is why we require the
following witness-indistinguishable proof of membership (WIPoM) system for
bounded-distance decodeability (BDD).

4.1.3 Efficient Proofs for Lattice Problems

As mentioned in the construction sketch, we need two non-interactive proofs for
our scheme: a proof that at least one of a number of ciphertexts encrypts a short
vector, and a proof of knowledge of x such that Ax =y.

WIPoM for BDD. We use a variant Lgpp(7, ) = {L55n(7,8), L8O (v, 8)}
of the v-GapCVP language [Regl0] for lattices A,(B). The “YES” and “NO”
instances for words (B, T) € Z3*"™ x Z;* are defined as:

Lgbb (7, 8) = {(B,7)|3s € Zj : |7 = B's mod q]|, < 6}
and  LESp(7,8) = {(B, T)|Vs € Ly - HT — B's mod qH2 > yp5}.

The norms above are computed by taking the absolute smallest representative
modulo g of the coordinates, i.e., integers in the interval [1;‘7, qgl]. Using stan-
dard techniques [CDS94/MV03/[SCPY08] (see the full version [CNR12]), one can
efficiently convert the k-bit parallelized version of Micciancio-Vadhan’s proof of
membership (Pepp, Vepp) [MV03] into a sound WIPoM (Py-pepD, Vv-peDD) for

the OR-combination of such statements:

LY op (7, By thmax) = {((B, 70))2"3* |30 € [tmax] 35, € Z' : |7, — Bs, ||, < 8}

The “NO” instance is defined analogously. The resulting prover Py-pgpD
generates simulated transcripts for all v # w and runs the real prover
Poeop((B, T4),sy) to obtain the transcript for user u, using as a challenge the
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XOR of the given challenge of the P,-,gpp proof and the simulated challenges
for v # w. This proof system is also statistical honest-verifier zero-knowledge. We
will use the non-interactive variant of the proof system using the Fiat-Shamir
transformation [F'S86] where the challenge chy is generated through a random
oracle.

Signatures from ISIS. In addition, our constructions will require a signature
scheme based on a generalized version of the witness-indistinguishable identi-
fication scheme due to Lyubashevsky [Lyu08|. The main difference to [Lyu0§]
is that we require an entirely different distribution of secret keys to make the
scheme applicable in our context.

The secret key is a short vector x ~ Dzm+n ,, while the public key consists
of a matrix A g Z™*(m+7) and the vector y < Ax mod ¢. It follows a typical
three-move structure where the prover first generates a commitment and state
(emtisis, st) <—g Commisis(A). The verifier sends a challenge chigis <—g {0, 1},
upon which the prover sends the response rspigis s Respigis (X, st, chisis). The
verifier accepts iff Verify\gis(A,y, cmtisis, chisis, rspigis) = 1. The identification
scheme has been shown statistically witness-indistinguishable and secure under
active attack assuming that the ISIS problem related to A,y is hard [Lyu08|
Theorem 13]. We will turn the identification scheme into a signature scheme
using the Fiat-Shamir transformation.

4.1.4 Single-Signer Aggregate Signatures
To make the token length logarithmicH instead of linear the number of at-
tributes, we observe that GPV signatures support a restricted form of aggre-
gation [BGLS03] where up to £,q, signatures by the same signer can be com-
pressed to the size of a single signature. Namely, given ¢ < £,,,, signatures
(o‘i)le, the aggregate a < Zle o; can be verified by checking that £ < £,,4z,
that 0 < [|a||, < ¢ny/m, and that Aac = Zle H(M;).

Because of the similarity in structure between GPV signatures and the above
single-signer aggregate scheme, the latter inherits the mechanisms to verifiably
encrypt aggregate signatures from Section

Theorem 3. The above single-signer aggregate signature scheme is existentially
unforgeable in the random oracle model if the SIS(n,m, q, 20mazn\/m) problem
is hard.

4.2 Scheme and Security

In the following, we describe an anonymous attribute token scheme AAT-O =
(IKeyGen, Issue, GenToken, VToken) with security parameter n based on hard lat-
tice problems. The scheme uses random oracles H : {0,1}* — Z™" F :

* While an aggregate signature may seem constant in length, the security parameter
actually needs to grow logarithmically in £p,e. for security.
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{0,1}* — {0,1}*, and G : {0,1}* — {0,1}¢, as well as a uniformly distributed

common reference string B € ng(m+n) that is a valid input to OrthoSamp.

MKeyGen(1™, umax): The manager runs (A, T) < OrthoSamp(B) and sets mpk
+— A and msk + (A, T).

Issue(msk, u, (@)le): For all i € [¢], the manager computes o, ; < GPVInvert(A,
T, H(ul|é||a;),n) and returns cred = (u, (o‘u’i)le).

VCred(mpk, cred, (ai)le): The user parses cred = (u, (o‘i)le) and outputs 1 iff
Ao, = H(uli|a;) and [|oy ill, < nv/m +n for all i € [£].

GenToken(mpk,cred,(ai)f:1 ,R,M): Let cred = (u, (qui)le). The user first
chooses a random x ~ Dzm+n ,, computes y < Ax mod ¢, and creates a
signature (chisis, rspigis) by running (cmtsis, st) <—s Commigis(A), setting
chisis  G(y||emtisis|| M), and computing rspigs «— Respgis(x, st, chigis). In
the unlikely event that Verify,gs(A,y, cmtisis, chisis, spigis) = 0, she simply
repeats these steps.

For all v € [umax]\{u}, she picks a uniformly random &, such that A&, =

> icr H(vli]|a;) using Gauss elimination, chooses s, «—g Z; and computes
7, < B!s, + &, +x mod ¢q. For her own index u, she chooses s, <g ZZ and
computes 7, < B's, + a, + x mod ¢, where o, < ZieR 0. She gen-
erates a non-interactive proof (emty, rsp.,) <= Py-peop(((B, 74)) 03 , u, 8y)
using as challenge chy = F(B| (7,)02%* | emty || (ai)f:1 ||R||M). Finally, the
resulting token becomes 7 < (T1, ..., Tup.s Y, CMLISIS, ISDisis, CMby, TSPy,

VToken(mpk, T, R, (a;)icr, M): The verifier accepts a token if Verify,gs(A,y,
emtisis, G(y||emtisis|| M), rspigis) = 1, if A1y, = Y. g H(vl|i]|a;) +y for all
v € [umax|, and if Vy_pepp accepts the proof (emty,rsp,,) for statement

(B, 7)) and challenge chy = F(BJ (1,)%m% [|emty || (ai)le | R|| M).

v=1 v=1
Otherwise, the verifier rejects the token.

Theorem 4. The above anonymous attribute token scheme is anonymous in the
random oracle model if L\WE is hard for ¥ = Dgmin ,,.

Theorem 5. The above anonymous attribute token scheme is unforgeable in the
random oracle model if SIS(n,m + n, ¢, (2lmaz + 1)nvm +n + O(n'?)) is hard
and the decision LWE problem with noise distribution ¥ is hard.

See the full version for the full-blown scheme with opening and for extended
results on group signatures, ring signature, and for achieving non-frameability.
In short, to add opening functionality to our AAT—O scheme, we generate the
matrix B with an embedded trapdoor S using OrthoSamp, as done in [GKV10].
To achieve full anonymity, however, we need to be able to respond to opening
queries. For this purpose, we borrow techniques from Rosen and Segev [RS09]
and Peikert [Pei09] to obtain CCA-security for the LWE encryption scheme by
using “correlated” ciphertexts. One problem is that the verifier needs a way to
check that the included ciphertexts are valid, i.e., correctly correlated, without
having the trapdoor S. We solve this problem by a clever use of the Py-pepD
proof system so that it simultaneously proves that a ciphertext contains a short
vector and is correctly correlated.
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5 An Anonymous Attribute Token Scheme with Opening

We add opening functionality to our AAT-O scheme by generating the matrix B
with an embedded trapdoor S using OrthoSamp, as done in [GKV10]. To achieve
full anonymity, however, we borrow techniques from Rosen and Segev [RS09] and
Peikert [Pei09] to obtain CCA-security for the LWE encryption scheme using
“correlated” ciphertexts. We then use the P\,-pppp proof system to convince the
verifier that the ciphertexts contain a short vector and are correctly correlated.

Details of the scheme can be found in the full version [CNR12], we only
give a sketch here. Following [RS09,[Pei09], define the family of correlated trap-
door one-way functions CTLWE with parameters n,m,x € N and with public
key (Bo,...,Bx) and trapdoor Sy so that BoSy = 0. The one-way function is

g(s,eq,...,e;) = (Bis +eymodq,...,Bls + e, mod q). Inversion is done by
computing (s’,€’y) < LWElnvert(Bg, So, bg) and checking that ||e’;||, < nym
for all i € {0,...,x} where €; = b; — Bls’ mod ¢q. We also rely on a one-time

signature scheme OTS = (OTKeygen, OTSign, OT Verify) with verification key
length k.

The manager’s keys are mpk < (A, By, B1,0,B1.1,...,By0,Bx1) and msk <
(T, So, mpk) where (A, T) + OrthoSamp(By), where (Bg,B1...,B ) define
a correlated one-way function with trapdoor Sy, and where By 1,...,B, 1 are
random. A user’s credential contains short vectors (o), such that Ao, ; =
H(u||?]|@;) computed using T. To generate a token for attributes indices R and
message M, the user u:

— chooses xg ~ Dgm+n ,, computes yo < Axg mod g, and creates a signature
oisis using G(yo|lemtisis|| M) as challenge;

— computes p,, ZieR Ou,i + Xo mod g, chooses s, < Z; and computes
Tu,0 < Bls, + p, mod g;

— for all v € [umax] \ {u}, computes &, such that Aa, = ),z H(v[i]la:),
computes p, &, + Xo mod g, chooses s, g Zf; and computes 7,0
Bis, + p, mod ¢;

— generates a signature key pair (otvk, otsk) < OTKeygen(1™), and for all v €

[Umax] and i € [k], chooses X, ; ~ Dzm+n ,, and computes T, ; < B;Owkisv +

Xy,; mod g.
Let Bowr = [Bol|B1,otvky || - - - |Br,otvk,. ], and for all v € [umax], let x, = [p,,
Xy, 1y---sXp] a0d Ty = [Ty,0,...,Tvk). Then for all v € [umax] we have that

T, = B!, 18, +X,, and for user u we have that ||x,||, < (#R+ K+ 1)ny/m + n.
The user can therefore create a non-interactive proof my-pgpp using Py-pepD
to simultaneously prove that one of the vectors T, encrypts a short vector a,
and that all ciphertexts 7, are well-formed, i.e., that all components 7, ; are
underlain by the same vector s,. The token contains vectors 71,...,Tuy,.., Yo,
non-interactive proofs oisis and my-pepD, the one-time verification key otvk, and
a one-time signature on everything.
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The verifier checks that o515 and my-pepp are correct, that for all v € [Umax]
AT, 0 =) ,cpHlilla;) + yo, and verifies the one-time signature. Opening is
done by inverting 7, w.r.t. B,sr and for v = 1,...  upmax and returning the first
v where the inversion successfully yields (s), p! ) with p! < (#R+ 1)ny/m + n.

Theorem 6. The AAT+O scheme sketched above is anonymous in the random
oracle model if L\WE is hard for ¥ = Dgmin , and if OTS is existentially un-
forgeable under one-time chosen-message attack. It is traceable in the random
oracle model if SIS(n,m + n, q, (2lmaz + 1)nv/m + n + O(n'%)) is hard and the
decision LWE problem with noise distribution ¥ is hard.

6 Further Extensions and Conclusion

Non-frameability [BSZ05|] ensures that the group manager cannot frame users
by generating tokens on their behalf and falsely hold the users responsible for
these tokens. One can obtain non-frameabilty for our construction by running a
AAT+0O and a AAT-O scheme in parallel, and merging both schemes so that a
token is only accepted if it contains a valid token for both schemes. The AAT-O
scheme ensures that users cannot be framed, while the AAT+O scheme ensures
that tokens can be opened. We refer to the full version [CNR12] for more details.

As mentioned earlier, a group signature scheme can be seen as a special case of
a AAT+O scheme, so our AAT+O0O scheme directly implies the first lattice-based
group signature scheme that enjoys full anonymity, i.e., against an adversary
with access to an opening oracle, as is standard for group signatures [BMWO3].
Our scheme also has constant-size manager keys (versus linear in the number of
group members GKV).

Our results and the above extensions bring us a step closer to a full-fledged
lattice-based anonymous credential systems, but building such a system and
reducing the signature/token size remain challenging open problems.
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Abstract. We present an efficient signature scheme that facilitates
Groth-Sahai proofs [25] of knowledge of a message, a verification key,
and a valid signature on the message, without the need to reveal any
of them. Such schemes are called structure-preserving. More precisely,
the structure-preserving property of the signature scheme requires that
verification keys, messages, and signatures are group elements and the
verification predicate is a conjunction of pairing product equations. Our
structure-preserving signature scheme supports multiple messages and
is proven secure under the DLIN assumption. The signature consists of
53 + 6n group elements, where n is the number of messages signed, and
to the best of our knowledge is the most efficient one secure under a
standard assumption.

We build the scheme from a CCA-2 secure structure-preserving en-
cryption scheme which supports labels, non-interactive zero-knowledge
(NIZK) proofs, and a suitable hard relation. We provide a concrete
realization using the encryption scheme by Camenisch et al. [12], Groth-
Sahai (GS) NIZK proofs, and an instance of the computational Diffie-
Hellman (CDH) problem [I7]. To optimize the scheme and achieve better
efficiency, we also revisit the Camenisch et al. structure-preserving en-
cryption scheme and GS NIZK proofs, and present a new technique for
doing more efficient proofs for mixed types of equations, namely, for
multi-exponentiation and pairing product equations, using pairing ran-
domization techniques.

Together with non-interactive zero-knowledge proofs, our scheme can
be used as a building block for constructing efficient pairing-based cryp-
tographic protocols that can be proven secure without assuming ran-
dom oracles, such as anonymous credential systems [4], oblivious transfer
[23I11], e-cash schemes [I3], range and set membership proofs [9], blind
signatures [2003], group signatures [5].

Keywords: digital signatures, structure-preserving, decisional linear as-
sumption.
1 Introduction

Pairings are a very powerful tool for constructing cryptographic protocols and
pairing-based cryptography has been tremendously developed over the last 10
years. Thereby numerous new cryptographic assumptions have been introduced.

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 76 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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Besides pairing-based variants of standard assumptions such as the Bilinear
Diffie-Hellman (BDH) [8] and Decisional Linear (DLIN) [7] assumption, the new
assumptions include quite a few so-called “g-type” [6] assumptions, for which
the size of the instance of the assumption grows linearly with the number of the
attacker’s queries, as well as interactive assumptions - which are even stronger
than “g-type” ones as they are not falsifiable [27].

The “g-type” assumptions say that given ¢ solutions to the underlying prob-
lem, one cannot come up with a new solution. In the security proof of a signature
scheme secure under a “g-type” assumption, these solutions allow one to sign ¢
messages and then to create a new solution out the adversary’s forgery. Thus,
the size of the instance of the assumption problem is linked to the security
parameter of the signature scheme; furthermore, the security of the signature
scheme is directly derived from the “g-type” assumption itself. This is unfortu-
nate, and it is preferable to construct signature schemes that rely on weaker and
well-established assumptions.

When constructing complex cryptographic protocols, the goal is not only to
satisfy strong security requirements, but also to remain efficient. Generalized
Schnorr protocols [14] or Groth-Sahai (GS) proofs [25] allow one to do zero-
knowledge proofs efficiently, but require staying within the structure of alge-
braic groups. In particular, to get efficient non-interactive zero knowledge proofs
(NIZK) without assuming random oracles, Groth-Sahai proofs [25] seem to be
the only choice. However, these proofs of knowledge can only be realized for
witnesses made up entirely of group elements (and no exponents). This implies
that messages and signatures have to consist only of group elements, and pro-
scribes the use of hash-functions as the signature verification have to use only
group operations. Such schemes are called structure-preserving. More formally,
a signature scheme is called structure-preserving ([I]) if its verification keys,
messages, and signatures are group elements and the verification predicate is
a conjunction of pairing product equations. This also allows one to sign the
verification keys and signatures themselves.

All current structure preserving signature schemes were either proven secure
based on complex “g-type” assumptions or if secure under standard assumptions,
are not practical due to the large constant factor ([24]). So, constructing an
efficient structure preserving signature scheme based on simple assumptions still
remains an open problem.

1.1 Owur Contribution

We look into the problem of constructing structure-preserving signature schemes
under simple assumptions and analyze the techniques of creating such schemes
from encryption schemes, non-interactive zero-knowledge proofs, and hard com-
putational problems. We provide an efficient structure-preserving signature
scheme secure under a simple assumption (i.e., the standard DLIN assumption).
Our signature scheme supports multiple messages, and the signatures consist of
53 4 6n group elements, where n is the number of group elements to sign.
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Our scheme is built from a structure-preserving encryption scheme which
supports labels that are also group elements, non-interactive zero-knowledge
proofs (NIZK), and a hard relation or publicly verifiable random function. We
follow an approach that is similar to ones from [24J26/18]. We present a scheme
that works as follows. The verification key contains the public parameters for
the NIZK proofs, the public key for the encryption scheme, and the public value
of a hard relation. The signing key consists of the verification key and a witness
for the hard relation. Instead of encrypting both the message m and a witness of
the hard relation, like in [24], or binding m and the ciphertext inside the zero-
knowledge proof, like in [26], we make use of labels and their non-malleability
and encrypt only a witness of the hard relation under a label m, which resultsin a
more efficient construction. So a witness for the public value of the hard relation
is encrypted under multiple labels my, ..., m, (the messages to be signed), and
a NIZK proof is created that 1) the encryption is valid and 2) indeed a witness
for the public value of the hard relation is encrypted. The signature consists of
the ciphertext and the NIZK proof. The verification of a signature is done by
verifying the NIZK proof.

To optimize our scheme, we also revisit techniques for combining structure-
pre-serving encryption with NIZK proofs and present a new technique for doing
efficient proofs for mixed types of equations, namely for multi-exponentiation and
pairing product equations, using pairing randomization techniques. We believe
this new technique to be of interest for other applications of GS-proofs as well.

1.2 Related Work

Groth [24], who initiated the research on structure-preserving signature schemes,
suggested a scheme secure under the DLIN assumption, but the scheme is not
practical due to its large constant factor. Green and Hohenberger [22] presented
a structure-preserving signature scheme that provides security against random
message attacks under a ¢-Hidden LRSW assumption. Fuchsbauer [21] presented
an efficient scheme based on the Double Hidden Strong Diffie-Hellman Assump-
tion (DHSDH). However, the messages must have a particular structure.

Cathalo, Libert and Yung [I5] provided a scheme based on a combination
of the ¢g-Hidden Strong Diffie-Hellman Assumption (HSDH), the Flexible Diffie-
Hellman Assumption, and the DLIN assumption. Their signature consists of 9n+
4 group elements, where n is a number of group elements signed and it was left as
an open problem to construct constant-size signatures. Abe et al. [I] proposed the
first constant-size structure-preserving signature scheme for messages of general
bilinear group elements. A signature consists only of 7 group elements regardless
of the size of the message. However it is proven unforgeable against adaptive
chosen message attacks based on a novel non-interactive “g-type” assumption
called the Simultaneous Flexible Pairing Assumption (SFP). While all these
works provide interesting constructions, their security proofs rely on “g-type”
assumptions.

In a different line of work, Abe et al. [2] established lower bounds on the
complexity of structure-preserving signatures, i.e. the signature size must be at
least 3 group elements, and gave a scheme matching those bounds. However,
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the security proof of the construction relies on interactive assumptions which
are even stronger than “g-type” and are not falsifiable [27]. A variant of their
scheme which increases the signature size with 1 or 3 group elements (depending
whether the message contains elements from both base groups) is shown secure
under a “g-type” assumption.

Finally, Chase and Kohlweiss [16] presented a framework for creating a structure-
preserving signature scheme from a stateful signature, F-unforgeable under weak
chosen message attacks, and efficient non-interactive zero-knowledge proofs. Their
scheme is proven secure under the well established DLIN assumption, but the
size of a signature is still 100+24n+9x, where n is the number of group elements
signed and N = 2% is an upper bound on the number of signatures generated
per key pair.

Below we provide a table (Table 1), in which we compare our work with other
structure-preserving signature schemes both in terms of the assumption used
and the size of a signature. One can see that our scheme is the most efficient one
from those that rely on the standard, not “g-type”, DLIN assumption.

Table 1. Comparison of the structure-preserving signature schemes. (n is the number
of group elements signed and N = 2% is an upper bound on the number of signatures
generated per key pair, s - bit-length of the message signed).

Paper Assumption Size of the signature (gr el.) Size of the vk (gr el.)
22] g-type: Hidden LRSW 5 (single msg) 5

[ g-type: SFP 7 12+ 2n

[15] g-type: HSDH In+4 13+n

[24] DLIN O(n) O(n)

[16] DLIN 100 4 24n 4 9z 17+ s

This work DLIN 53 + 6n 25+ 2n

The paper is organized as follows: first we give definitions in Section 2] then
in Section [Blwe describe the building blocks of our scheme, then we revisit NIZK
proofs for structure-preserving encryption schemes and provide a new technique
to improve the efficiency of these proofs in Section [& finally, we present our
construction in Section ] and prove it secure in Section [Gl

2 Definitions

Let Pg(1%) be a bilinear group generator that on input 1* outputs descriptions
of multiplicative groups G,Gr of prime order p. Let G* = Gy \ {1} and let
g € G}. The generated groups are such that there exists an admissible bilinear
map e : G x G — G, meaning that (1) for all a,b € Z, it holds that e(g?, g*) =
e(g,9)%; (2) e(g, g) # 1; and (3) the bilinear map is efficiently computable.

We refer to the output of the pairing group generator G = (p, G, Gr,e, g) as
the group parameters.
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2.1 Signature Scheme

Definition 1. (Digital Signature Scheme). A digital signature scheme Sig is a
set of algorithms Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify):

e Sig.KeyGen(1*) BN (sk, vk) is a probabilistic algorithm that takes as input
a security parameter and outputs a verification key vk and a corresponding secret
key sk. Message space M is associated with vk.

e Sig.Sign(sk, m) 5 oisa (possibly probabilistic) algorithm that takes as
nput a private key sk and a message m and outputs a signature o.

e Sig.Verify(vk,m,o0) — 1/0 is a deterministic algorithm that takes as input
a public key pk, a message m and a signature o and outputs 1 for acceptance or
0 for rejection according to the input.

We define structure preserving signatures formally as follows [2]:

Definition 2. (Structure-preserving Signature Scheme). A signature scheme Sig
over a bilinear group generated by Pg(1%), that outputs system parameters (p, G,
Gr,e,9g), is said to be structure preserving if: (1) the verification key vk con-
sists of the group parameters and group elements in G; (2) the messages and
the signatures consist of group elements in G, and (8) the verification algo-
rithm evaluates membership in G and pairing product equations of the form
IL Hj e(yi,y;) = lgg, where a11,a12,... € Zy, are constants, y1,y2,... € G
are group elements appearing in the group parameters, verification key, messages,
and signatures.

Some works, for example, [2], allow to relax the definition of structure-preserving
signatures so that arbitrary target group elements could be included in the sig-
nature and verification key and appear in the verification equations. However,
this is useful only when witness-indistinguishable proofs are sufficient, as Groth-
Sahai proofs [25] are zero-knowledge when the verification equations contain
group elements only from the base group.

We use the standard notion of existential unforgeability against adaptive cho-
sen message attacks formally defined as follows.

Definition 3. (Ezistential unforgeability against adaptive chosen message at-
tacks
(EUF-CMA)). A signature scheme Sig is (t, q, € )-existentially unforgeable against
adaptive chosen message attacks, if any adversary with runtime t after making
at most q signing queries wins with a probability P at most € the following game:

Step 1. Sig.KeyGen(1%) N (sk,vk). Adversary A is given a verification key
vk.

Step 2. Adversary adaptively queries the signing oracle Og;q q times with a
message m;, and obtains signatures o; = Sig.Sign(sk, m;), 1 <i <gq.

Step 3. Adversary outputs a forgery (m*,o*) and halts.

A wins if Sig.Verify(vk,m*,0%*) =1 and m* ¢ {mq,...,mq}.
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2.2 Encryption Scheme

Definition 4. (Encryption Scheme with Labels). An encryption scheme Enc
with labels is a set of algorithms Enc = (Enc.KeyGen, Enc.Encrypt, Enc.Decrypt):

e Enc.KeyGen(1%) BN (sk, pk) is a probabilistic algorithm that takes as input
a security parameter and outputs a public key pk and a corresponding secret key
sk.

° Enc.EncryptE(pk,m) 5 Cisa probabilistic algorithm that takes as input
a public key pk, a label £, which consists of public data mon-malleably attached
to a ciphertexrt, and a message m and outputs a ciphertext C.

e Enc.Decrypt’(sk,C) — m/L is a deterministic algorithm that takes as
input a secret key sk, a label £, and a ciphertext C and outputs a message m, or
L, if the ciphertext is invalid.

Definition 5. (Structure-preserving Encryption Scheme). A structure-preserving
encryption scheme has public keys, messages, and ciphertexts that consist en-
tirely of group elements. Moreover, the encryption and decription algorithm per-
form only group and bilinear map operations.

We refer to [19] for a formal definition of Security against adaptive Chosen
Ciphertext Attack for an encryption scheme.

2.3 Non-Interactive Zero-Knowledge (NIZK) Proofs

Let R be an NP relation on pairs (X, V'), with a corresponding language Lz =
{Y|3X st. (X,Y) e R}

Definition 6. (Non-Interactive Zero-Knowledge (NIZK) proofs). A Non-
Interactive Ze-ro-Knowledge proof system NIZK for a relation R on (X,Y) is a
set of algorithms: NIZK = (NIZK.Setup, NIZK.Prove, NIZK .Verify, NIZK.SetupSim,
NIZK.Sim):

e NIZK.Setup(1%) = (CRS) is a randomized algorithm that takes as input
a security parameter and outputs a common reference string CRS.

e NIZK.Prove(CRS, Y, X) 2 7 is a randomized algorithm that takes as
input a common reference string CRS, and outputs a proof that R holds.

e NIZK.Verify(m, Y) — 0/1 is a verification algorithm that verifies whether
proof w that (X, Y) € R.

e NIZK.SetupSim(1%) 5 (CRS*™, td) is a randomized algorithm that takes
as input a security parameter and outputs a simulated common reference string
CRS*™ and a corresponding trapdoor key td.

e NIZK.Sim(CRS*™ Y, td) S 75im s q randomized algorithm that takes
as input a simulated common reference string CRS*™ with a trapdoor td and a
statement, but no witness, and outputs a simulated proof w for which
NIZK.Verify(CRS*™, Y, ) accepts.

We refer to [25] for the security definitions of NIZK proofs (correctness, sound-
ness, zero-knowledge).
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3 Preliminaries

3.1 Assumptions

Definition 7. (Decisional Linear Assumption). We say that the DLIN prob-
lem in G of prime order p is hard, if for all algorithms A, with running time

polynomial in r, the following advantage Advg "™ (k)

Pr [A(glaQZagfﬂag;ag;agngs) = 1] - Pr [A(glag%gi’ng;ag;agg) = 1]

is a negligible function in k, where g1, g2, gs E G andr, st & Ly.

Definition 8. (Computational Diffie-Hellman Assumption). We say that the
CDH problem in G of prime order p is hard, if for all algorithms A, with running
time polynomial in K, the following advantage

Advg (k) = Pr[A(g, 9% ¢") = 9*°]

s a negligible function in k, where g &G and a,b & L.

The hardness of the CDH problem is implied by DLIN.

3.2 One-Side Pairing Randomization Technique

Abe et al. [I] introduced techniques to randomize elements in a pairing without
changing their value in Gr. One of these useful techniques is called one-side
randomization and allows one to replace an element from the target group by
a set of elements from the source groups. We use this technique in our scheme
and provide the details below.

RandOneSide({g;, fi}¥_,) — {f/}%_,. Let g; be an element in G} of symmetric
setting G = (p, G, G, e, g). A pairing product A = e(g1, f1) e(ge, f2) - - . e(gk, fx)
is randomized into A = e(g1, f1) e(g2, f3) . . . (g, f1.) as follows.

Let (t1,...,tk—1) Z];*l. First, multiply 1 = e(g1, g5") e(g2, 97 ") to both
sides of the formula. We thus obtain

A =e(g1, f195) e(ga, fogy ) e(gs, f3) - - - €(gn, fr)-

Next multiply 1 = e(gz, g5*) €(g3, g5 *). We thus have

A =e(g1, f195) e(g2, fog1 " 95) e(gs, f395 %) - - - (g, [r)-

This continues until ¢,_; and we eventually have A = e(g1, f1) ... e(gk, f7,). Ob-
serve that every f! for ¢ = 1,...,k — 1 distributes uniformly in G due to the
uniform multiplicative factor gfﬂ In the k-th pairing, f; follows the distribution
determined by A and the preceding k — 1 pairings. Thus (f,..., fi.) is uniform
over G* under constraint of being evaluated to A when paired entry-wise with

g1, ---Gk-
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3.3 Camenisch et al. Structure-Preserving CCA-2 Encryption
Scheme

To build our signature scheme we make use of a structure-preserving encryption
scheme proposed by Camenisch et al. [I2] which supports labels. The scheme
works in a symmetric setting G = (p, G,Gr,e, g), both the message and the
label(s) are in G. The scheme consists of the key generation (Enc.KeyGen), en-
cryption (Enc.Encrypt), and decryption (Enc.Decrypt) algorithms, and works as
follows:

e Enc.KeyGen(1%) 3 (sk, pk):
Pick g1, 92,93 < G, 21,22, x3 & Zp; Yo, .-, Ys & ZS
Compute by = g7 g5%, ha = g525°, {fin = 91" y”,fz =95""95"" }oso-
Return sk = (z,{y:}7_9) ; pk = (91,92,93, M1, ha, {fz,lafz,Q}zzo)-
. Enc.EncryptL](pk,m) 5 .
Pick r, s & Z,. Compute u1 = g}, us = g3, uz = g5 °, ¢ = mhih3,
V =TT el [ ua)e(fi1 fins €)el S5 5. ).
Return C' = (uy,ug,us, ¢, V).
e Enc.Decrypt’(sk,C) = m/L:
Parse C as (ul,ug,ug,c V)
IV = [T el i ul, e de(ul i ule, che(ul™ a0
return m = c- (uﬁflug"’ugs) L
else return L.

Theorem 1. The above scheme is CCA-2 secure if the DLIN assumption holds
in G.

We refer to [12] for the security proof.

3.4 Non-Interactive Zero-Knowledge Proofs

Notation. We start with the descriptions of the basic algorithms of an instan-
tiation of the Groth-Sahai proof system [25] for multi-exponentiation equations:

M 4
stmnt =GS{(x1,...,2x) © /\ vi=][]g;""},
=1 j=1

the proof system where the y;’s and g;’s are public group elements of G (cf. [10]),
wi()isamap {1,..., 4} = {1,...,K},i=1,...,M and j = 1,...,¢. We define
X as (z,,(;)), and Y as ((:), (9i7)).

A trusted third party generates the common public reference string by running
CRS & GS.Setup(1%). A prover generates a proof as m & GS.Prove(CRS, Y, X)
and a verifier checks it via b < GS.Verify(CRS, Y, m), where b = 1 if 7 is true
w.r.t. R(X,Y), and b = 0 otherwise.
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Multi-exponentiation Equations for DLIN Instantiation. We now present
these algorithms in detail, based on the DLIN assumption in the group setting
G = (p,G,Gr,e,g). For ease of notation, we will denote by {v;}, {gi;}, and
{45 the lists  (y1,...,ynm), ((911,---5910)5---,(gnr1,s---,900)), and
((Tuyys > Zpy @)+ (Tppg(1)s - - s Tpng(e))),  Tespectively, whenever —the
indicies are clear from the context.

e GS.Setup(1%) 5 CRS:
1. Generate G = (p, G,Gr, e, g) & Pg(1%).

2. Pick x1, X2, X3, 71,72, 73 & GP.
Return CRS = (G, X1, X2, X35 V1, V25 73)-

o GS.Prove(CRS, ({yi}. {9i}), {zyu, j)})
Foralli=1. Mandjfl R4

1. Pick 7"” Gy T u () & L.
2. For each x,,(j) in {x,,(;)} compute the set of commitments:

’
ZTui() i) Tei() u1(7)+ru )

Czy « (’Y m(J)X ui(J)7,y Xo 77 X3
4 ul(J)

3. For each y; in {y;} compute p} = H] 1 gngJ) Py = HJ 19ij
Return 7 < {p},p}, {Ci; Yi_ }2,.

e GS.Verify(CRS, ({yi}, {gij}),ﬂ') — b
If all equations hold:

M ¢
Nizi (IT5=1 e(Cijy gi5) = e((v1,72,73)s wi)e((xas 1, x3), pie((1, X2, X3), PY)) 5
then return b < 1, else return b < 0.

e GS.SetupSim(1%) = (CRS*™, td):
1. Generate G = (p, G, Gr, e, g) & Pg(1%);
2. Pick x1, x2, x3 & G3, o, B & Lp.
3. Compute 71 = x§, 72 = X’g,'yg X§+B.
Return a simulated CRS and a trapdoor:
(CRS, td) = ({G, x1, X25 X3, 71, Y2, V3 }> 1, B})-

o GS.Sim(CRS*™, ({yi},{gi}), td) = w=im:
Foralli=1...Mand j=1,...,¢
1. Pick 7,,, () & Zp.
2. For each o) in {xu (])} compute the set of commitments:

W) TG T TG
CU <~ (Xl 7X2 aX3 )

3. For each y; in {y;} compute p; = y; H] lgm‘“(” ;P = B H] 1 gz]‘”(”.

Return 7™ « {p, v, {CZ]}] 1}z 1

Theorem 2. The above NIZKGS is a NIZK proof system with perfect correct-
ness, perfect soundness and composable zero-knowledge for satisfiability of a set
of equations over a bilinear group where the DLIN problem is hard.
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We refer to [25] and [I0] for the detailed security definitions and proofs.

4 Combining Camenisch et al. Structure-Preserving
Encryption and Groth-Sahai Proofs

The encryption scheme from [I2] described in Section B3l is the first efficient
CCA-secure scheme that stays within the structure of the algebraic groups. But
to say that it is structure-preserving, we need to be able to combine it with
NIZK proofs.

Examining the encryption equations more closely:

$
ros Ly ul=gi, ux=g5, uz=gs °, c=mhihs,
V= He( 1'7:1 z’s,z,Ui)e(fl,lfizaC)e(fg,lfg,zae),

we notice that the last one needs further discussion. Although it is a pairing
product equation, if one wants to prove correctness of encryption, e.g. when
proving another statement about the plaintext, the witness consists of scalars
(r, s) rather than group elements. But only the latter ones are compatible with
Groth-Sahai proofs, i.e. pairing product equations should contain no exponents
as part of the witness. Given that the authors of [12] do not provide any details
how to address this, we take the time to discuss this here.

So, to be able to prove a statement about the last equation and its scalar
witnesses one would have to introduce new variables {w; = f/ f{ }7_y, commit
to {w;}2_, in order to use them as witnesses for the pairing product equation,
and also produce proofs that these commitments were computed correctly. More-
over, if zero-knowledge proofs are needed, V has to be replaced by a product of
pairing equations, for which the authors suggest the above-described one-sided

randomization technique, that yields
3

V=]]elfl ue(fi,0e(fs0) = J[e(fl1fiauw)e(firfia c)e(fs1f50.0),

i=0 i=0

and the ciphertext being (u1,u2,us, ¢, {f}—y). Note that f/ # f7f, as the
{f}2_, is the output of the one-side randomization which is oblivious to r and
s. While all these equations would be compatible with Groth-Sahai proofs, they
seem rather inefficient - the size of such proof would be more than 100 group
elements if one assumes one label.

Instead of looking at the randomization trick and the encryption scheme in
isolation, we propose to combine them. This results into significantly more effi-
cient proofs.

In the following let {fi = fI fis}i_g,u0 = g,us = c,us = L. Also, let
{f1}2_, < RandOneSide({u;, fi}?_,). As mentioned earlier, the ciphertext is (u1, uz,
us, ¢, {f1}°_,), where the elements {f/}3_, are computed as follows: to, ..., t4 <
Ly,
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t —t t —t t
f6:f51f§2“105 f f1 11 2Uo ‘ug' fézfg,lféq,z% tug?
t —t —t
f f3 1f3 92Uy U43§ f f4 1f4 2U3 3U5 ; fé = f§,1f5 olUy

Now to prove that the ciphertext is correctly formed, we need to generate a proof
only for multi-exponentiation equations, namely:

uy =gy, ua=g3; ug=g5°; c=mhih3;
—t t t t

Uo—f01f02u1 ; f1 f1 11 ,2Uo Tug' ; 2 f2 1f22“1 fug?
—to —t3 gt —t

f fs 1f3 QU 2C f4*f4 1f42U3 AR f5 fg,1f58,2c ‘.

The new proof now costs only 41 group elements, so one can see that this trick
sufficiently reduces the size of the proof. We believe this new technique to be of
interest for other applications of GS-proofs as well.

5 Owur Construction

First we describe the main idea for creating a structure-preserving signature
scheme from encryption schemes, NIZK proofs, one-time signatures and hard
relations. Then we give a construction, analyze its efficiency and prove it secure.

5.1 Main Idea

We build our scheme from a CCA2-secure structure-preserving encryption scheme,
which supports labels that are also group elements, non-interactive zero-knowledge
proofs (NIZK), and a hard relation or publicly verifiable random function. The
scheme works as follows. The signing key contains a public key of the encryption
scheme and a witness for a hard problem. The verification key contains public
parameters for the NIZK proofs, a public key for the encryption scheme, and a
public value of a hard relation. To sign a message m, the signer encrypts the
witness with the label m and produces a proof that the plaintext is a witness
for the hard problem. To verify a signature, one checks the validity of the zero-
knowledge proof. Intuitively, the construction is secure because the encryption
is non-malleable and the proofs are zero-knowledge, hence queried signatures
cannot be modified and reveal no information about the witness, and only the
signer has the witness required to produce a new signature.

Similar approaches were presented in [24] for a structure preserving signature,
and in the context of leakage-resilient signatures in [26/18]. The actual construc-
tion of [24] uses a relaxation of the CCA notion of security, i.e. RCCA, and it
encrypts the message together with a witness for the hard problem instead of
using labels. While the signatures are of constant size, the constant is rather big,
hence the scheme is inefficient. The scheme of [26] used a CPA-secure encryption
scheme and simulation-sound NIZK proofs, treating m as a label for the proof
statement. As pointed out in [I§], both CCA2 + NIZK and CPA + simulation-
sound NIZK can be viewed as variants of specific simulation-extractable NIZK
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proofs, which yields a scheme generalizing both constructions. However, the pre-
vious instantiations of this scheme are not structure-preserving as they require
hash functions or use the bit representation of group elements.

As discussed in Section M, a structure-preserving encryption scheme secure
under DLIN assumption was recently introduced. Therefore, we revisit the ap-
proach of creating a structure-preserving signature scheme and provide an ef-
ficient construction proven secure under the DLIN assumption. Furthermore,
when instantiating it with Camenisch et al. encryption scheme, we present a
new technique for combining structure-preserving encryption with NIZK proofs
using pairing randomization techniques. To the best of our knowledge the pro-
posed scheme is the most efficient structure-preserving signature scheme secure
under a standard assumption.

5.2 Efficient Structure-Preserving Signature Scheme from the
Decisional Linear Assumption

We apply our approach described above in the symmetric setting. The building
blocks we use are efficient structure-preserving CCA secure encryption scheme
with labels by [12], Groth-Sahai NIZK proofs [25] and the computational Diffie-
Hellman problem [I7]. We consider the case where a label m is a single group
element, but we show how to extend the scheme to support messages being vec-
tors of group elements. The scheme consists of the key generation (Sig.KeyGen),
signing (Sig.Sign), and verification (Sig.Verify) algorithms and is presented on
Figure [

5.3 Signing Multiple Messages

Our scheme can also support multiple messages or messages that consist of
multiple group elements. To sign multiple messages myq,...,m, one needs to
encrypt the challenge under a set of labels mq, ..., m,: in this case
V= H?:o e(fir i ui)e(fi1fig c)e(f5 1 f50,ma) - .. - e(f(rn+4)71f(sn+4)72amn)~
Public key will also contain f; 1, fi2 for ¢ = 6,...,n + 4, and the proof will be
extended to prove statements about {f; = f7; f5 ?:64.

The size of the verification key is 25 + 2n group elements, and the signature
consists of 53 + 6n group elements, where n is the number of elements to sign.
The proof optimization technique from Section M reduces almost twice the size

of a signature.

6 Security Proofs

6.1 Correctness

Correctness follows from the correctness of the encryption scheme and Groth-
Sahai proofs.
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e Sig.KeyGen(17) > (sgk, vk):
1. Generate CRS for GS proofs GS.Setup(1™) — CRS:
CRS = (G,71,72,73, X1, X2, X3)-
2. Generate keys for encryption Enc.KeyGen(1%) — (ske, pk,):

2 T3

91, 92,93 — G, & & 235 hy = g1 g5®, ha = g52g5°.
yo,...,y5<iZ forl— 5 fi1=g{" gy? ,f12—93129513~
Ske = (w7{y1}15=0) ; e (917927937}117]127{f1,17f1,2}1=0)'
3. Generate an instantiation of CDH challenge ch:

© & Ly, gy us & G5 hy = gT5 ch = (gs, s, hs).
Return signing and verification keys (sgk, vk):

sgk = (z,vk) ; vk = (CRS, ch, pk,).

o Sig.Sign(sgk, m) 5o
1. Parse sgk as (z, CRS, ch, pk,).
2. Compute y = us.
3. Encrypt y with the label m Enc.Encrypt™ (pke,y) — E :
r,s(in; wi=g7, u2=g5 uz=gs"°, c=uShih};
Fori=0...5: tuizp,
fo= fo, 1f0 2“1 ; M = finfi29 tou2 s fa = fo1f3 QU_ Ug ;
f3= f31f50uy f2¢ts  fa= finfious 5 Pmi s fs = fsafs2c T
E = (u1,u2,us, ¢, fo, ..., f5).
4. Generate GS proof that F is correct: GS.Prove(CRS, Y, X) — 7w(E):
Prove the statement that the following multi-exponentiation equations hold:
GS{(m,r,s,to,...,tg)) Sur =gl Auz = g5 Aus = g5 Ac=ulhThA
Jo=f31F52u° A fi = [l foug Cust A fs = fo1fs50ur PugA
I3 = f51f30uy 2ets A fy = faq1fious ;Bmia A s = fEafSac™ ™ ANy = 9§}~
Here Y contains elements from the ciphertext £ and the verification key vk:
Y = ({ulvUQa us, ¢, fé» fi» fé» fé» féiv fE/)v hs}v {(91), (92)7 (93593)5 (usv ha, h2)7
(fo,1, fo,2,u1), (f1,1, f1,2,u0,u2), (f2,1, f2,2, w1, us), (f3,1, f3,2,u2, ¢),
(fa1, fa2,uz,m), (f5.1, f5,2,¢), (9s)}) 5
and X - elements from the signing key sgk:
X ={(r),(s),(r,s),(z,7,s),(r, s, to), (r,s, —to, t1), (r,s, —t1, t2),
(r,s,—ta2, t3), (r, s, —t3,ta), (1,8, —ta), (z)}.
Return the signature o e {E,n(E)}.

o Sig.Verify(vk;m;0) — 1/0:
1. Parse o as (E,7), parse E as (u1,u2,u3,¢, fo, .-, f5);
2. Compute b « GS.Verify(CRS, Y, ), where Y is derived from(E, vk):
Y = ({’LLl,’LLQ,Ug,C, fé»f{»fé»févfivfévhs}7{(91)7(92)7(93793)7(u87h17h2)7
(fo,15 fo,2,u1), (f1,1, f1,2,u0,u2), (f2,1, f2,2, u1,u3), (f3,1, f3,2,u2, ¢),

(fa1, faz,us,m), (fs,1, f5,2,¢), (95)}) 5
Return b.

Fig. 1. Structure-preserving signature scheme secure under DLIN assumption
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6.2 Unforgeability

Theorem 3. The digital signature scheme Sig described in Section[d is unforge-
able against adaptive chosen message attacks, if the DLIN assumption holds.

Proof. We consider an adaptive chosen message attack described in Section 2]
where the polynomial time adversary Ag;q4, given a verification key vk, adaptively
queries the signing oracle Oy;4 ¢ times with messages m;, and obtains signatures
o; = Sig.Sign(sk,m;), where 1 < i < ¢q. We show that any such adversary Ag;,
has only negligible probability P of producing a valid signature ¢* on a fresh
message m* that was not queried before.

The proof is through a sequence of games. We define the success probability of
Asig to produce a successful forgery in Game-i as P;. Game-0 is the real attack
game (Py = P), and in Game-4 the adversary only sees encryptions of 1 instead
of the encryption of a solution to the CDH problem. Thus from an adversary
how wins Game-4, we can construct an algorithm to break the CDH assumption,
thus Py = negl.

Now we show that |Py — Pol is negligible, i.e., Py = P + negl. This means
that P = negl, i.e., no adversary A,;, can forge a signature with non-negligible
probability.

Game-0. We define Game-0 as the original attack game described above.
More  formally, the keys are generated wusing Sig.KeyGen algorithm:
(sgk, vk) & Sig.KeyGen(1%). The signature on a message m; is computed as
o; < Sig.Sign(sgk,m;),i = 1,...,q. The adversary’s forgery is o* = (E*,7*).
The forgery is successful, if Sig.Verify(c*,m*) =1 and m* ¢ {m1,...,mq}.

As this is the real attack game, the success probability of the adversary in this
game Py =P.

Game-1. Game-1 is the same as Game-0, except that during the key gener-
ation the challenger keeps the secret key for encryption scheme as part of the
signing key (sgk = (sgk, sk.)). After the adversary produces a forgery o* =
(E*,7*), the ciphertext E* is decrypted under the label m* using ske: y' <
Enc.Decryptm* (ske, E*) and the following condition is checked: e(y', gs) = e(us, hs).
The adversary wins Game-1 when this condition is not satisfied.

The forgery is successful, if GS.Verify(CRS, (E*, vk), ) = 1, m* ¢ {mq,...,mq},
and e(y’,gs) = e(us, hs). In this case the adversary may have less advantage
of winning Game-1 compare to Game-0 only if the decryption did not work
correctly, or the proofs were proofs of a false statement.

From the correctness of the encryption scheme follows, that, if the adversary
has a non-negligible advantage in winning Game-1 compare to Game-0 by gen-
erating a proof of a false statement, then one can use it to break the soundness
of the NIZK proofs: [Py — Po| < Psnas(nizk)- By the perfect soundness of GS
proofs described in [25] and Section B4 P; = Py.

Game-2. Game-2 is the same as the previous one, except that now the real CRS
in key generation is replaced by a simulated CRS*™ with a trapdoor, and GS
proofs are simulated using zero-knowledge simulator, described in Section
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By the zero-knowledge property of the GS proofs, described in [25] and Sec-
tion [3.4] the adversary cannot distinguish between this game and the previous
one if the DLIN assumption holds, so he must still produce a successful forgery
with probability only negligibly different from one in the previous game, i.e.,
|Po —P1| < Pzr(NizKk) = PDLIN-

Game-3. Game-3 is the same as Game-2 except that o; = (E;, m;) contains an
encryption of 1 under the label m; instead of y = u?.

To prove that it will only negligibly change the success probability of the ad-
versary we use a hybrid argument. In the Hybrid-3.0 the adversary sees only
ciphertexts with y = u?, and in the Hybrid-3.q - only encryptions of 1, where

q(k) is a polynomial number of queries.
It is easy to see that Hybrid-3.0 is the same as Game-2, so we have Ps.o = Ps.

Hybrid-3.k. When the adversary makes the i'" query, the signatures are com-
puted in the following way:

e for alli < k 1 is encrypted under the label m;;
o fori >k y is encrypted under the label m;.

Now we show that if the adversary A4 can distinguish between Hybrid-k and
Hybrid-k 4+ 1 then we can use it to break CCA-2 security of the encryption
scheme, i.e., to construct an adversary Accas who plays the CCA-2 game and
also represents a challenger with A,;, in adaptive chosen message attack, and,
after A,y produces a successful forgery, wins the CCA-2 game.

After receiving pk, from the CCA-2 challenger, Acc a2 proceeds as follows:

Sig.KeyGen(1%) 3 (sgk, vk):
1. Generate simulated CRS and a trapdoor for GS proofs:
(CRS*™ td) & GS.SetupSim(1%) ;
2. Generate keys for signing (CDH challenge):
g Zp, s, Us E G hy= gs 5 ch = (gs,us, hs) ;
Output signing and verification keys:
sgk « (x, vk, td) ; vk < (CRS*™, ch, pk,).

Sig.Sign(sgk, m;) BN
For the queries 1,...,k — 1 the signature is generated as follows:
1. Parse sgk as (z, CRS*™, ch, pk,, td).
2. Encrypt 1 with label m;:
E; = Enc.Encrypt™ (pke, 1) = (u1,u2,ug, ¢, f§, ..., f2).



Efficient Structure-Preserving Signature Scheme from Standard Assumptions 91

3. Simulate GS proof that E; was formed correctly:
m(E;) = GS.Sim (CRS*™, (E;, vk), td).

Output o; = (E;, w(E;)).

For the queries k, ..., g the signature is generated as follows:

1. Parse sgk as (z, CRS*"™, ch, pk,, td).

2. Compute y = u?.

3. Encrypt y with label m;:
E; = Enc.Encrypt™ (pke,y) = (u1,uz2,us, ¢, fi, ..., f2).

4. Generate GS proof that E; was formed correctly:
7(E;) = GS.Prove(CRS*™, (E;, vk), (sgk)).

Output g; = (EZ,’]T(EZ))

For the query my we define two challenge messages My = 1, M; = y = u? for
Accaz.

When A az receives a challenge encryption E' = Enc.Encrypt™* (pk., Mp) of
one of these messages under the label my, its goal is to break CCA-2 security by
distinguishing which one it received. It answers query k by simulating the proof
and returning the challenge ciphertext E’ together with the simulated proof.
Namely, it does the following;:

Sig.Sign(sgk, m;) = o, :

1. Parse sgk as (z, CRS*"™, ch, pk,, td).

2. Compute y = uf.

3. Encrypt: E' = (uy,ug,us, ¢, fi, ..., ft).

4. Simulate GS proof that E’ was formed correctly:
m(E') = GS.Prove(CRS*™, (E', vk), td).

Output o; = (E', w(E")).

If the challenge encryption has the plaintext 1, then this corresponds exactly to
the Hybrid-%, while if the challenge encryption has plaintext «¥, then it corre-
sponds exactly to the Hybrid-k + 1.

The adversary Ag;, now produces a forged signature (E*, 7%) on message m*
that was not queried before.

Accaz sends (m*, E*) to the decryption oracle. Note, that Accaz2 is not
allowed to submit a pair label-ciphertext equal to the challenge pair ((m*, E*) =
(mg, E')). If this was the case or the ciphertext was formed incorrectly then the
decryption oracle will return 1.

In case the received M* is equal u? Accaz outputs 1, else it outputs 0. In
case of receiving L it outputs 0 as well. By definition, to be successful A, had
to produce a ciphertext for u? with a fresh label m* (i.e., it is never successful
if the answer is € or L).

Therefore, if Ay;4 has more than negligible difference in success probability in
respectively Hybrid-3.i and Hybrid-3.(¢ + 1), then Agc a2 can break the CCA-
2 security of the encryption scheme. By the CCA-2 security of the encryption
scheme under DLIN assumption (see Section [3]), the success probability of the
Asig changes negligibly, i.e. P31 — Paxt1 < Pocaz < Pprin is negligible.
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Summing up all hybrids we have that |Ps ; — Ps.0o| < ¢- Pprin-

Game-4. Now the adversary sees only an encryption of 1 under the label m; on
the i-th query, fori=1,...,q, yet to be successful it has to produce an encryption
of y = u® under the label m* such that e(y, gs) = e(us, hs).

We show how to construct an algorithm Acpgy that plays a challenger with
Asig in adaptive chosen message attack game, and, after A,;, produces a suc-
cessful forgery, solves CDH problem.

Since the adversary sees the same the distribution as in Game-3.q, P4y = Ps3.q.

First Acpu(Asig) gets an input gs, g%, g% and plays a role of a challenger in
the adaptive chosen message attack game with an adversary Agiq. It embeds
the received input in a verification key and simulates the signature scheme as
follows:

Sig.KeyGen(1%) = (sgk, vk):

1. Generate simulated CRS and a trapdoor for GS proofs:

(CRS*™ td) & GS.SetupSim(1~).
2. Incorporate the received CDH challenge: ch < (gs, hs = g%, us = g°).
Output signing and verification keys:

sgk < (x, vk, td) ; vk < (CRS*™, ch, pk,).

Sig.Sign(sgk, m;) = o, :
1. Parse sgk as (x, CRS, ch, pk., td) ;
2. Encrypt 1 with label m;:
E; = Enc.Encrypt™ (pke, 1) = (u1,u,us, ¢, fl, ..., ft);
3. Simulate GS proof that F; was formed correctly:
7(E;) = GS.Sim(CRS*™, (E;, vk), td) ;
Output o; = (EZ,’JT(EZ))
Sig.Verify(vk, m*,o*) — 1/0:
1. Parse o* as (E*, %), parse E* as (u1, u2,us, ¢, f§, .-, f£).
2. Verify GS proofs: b + GS.Verify(CRS*™ (E*, vk), 7).
3. Decrypt ¢’ + Enc.Decryptm*(ske,E*).
4. Check if (e(y', gs) = e(us, hs)) A (m* & {m1,...,mq}).
If b = 1 and equations (4) hold, output ¢’ to the CDH

challenger.
Since in order to win the Game-4 it needs to solve the CDH problem, the

adversary has a negligible success probability in Game-4: Py < Pepir.
Summing up, we have that P < Pepy + q- Pprin + Pprin = negl.
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Abstract. Partially-blind signatures find many applications in the area
of anonymity, such as in e-cash or e-voting systems. They extend classical
blind signatures, with a signed message composed of two parts: a public
one (common to the user and the signer) and a private one (chosen by
the user, and blindly signed). The signer cannot link later the message-
signature to the initial interaction with the user, among other signatures
on messages with the same public part.

This paper presents a one-round partially-blind signature which
achieves perfect blindness in the standard model using a Common Refer-
ence String, under classical assumptions: CDH and DLin assumptions in
symmetric groups, and similar ones in asymmetric groups. This scheme
is more efficient than the previous ones: reduced round complexity and
communication complexity, but still weaker complexity assumptions. A
great advantage is also to end up with a standard Waters signature,
which is quite short.

In addition, in all the previous schemes, the public part required a prior
agreement between the parties on the public part of the message before
running the blind signature protocol. Our protocol does not require such
pre-processing: the public part can be chosen by the signer only.

Our scheme even allows multiple messages provided from indepen-
dent sources to be blindly signed. These messages can either be con-
catenated or aggregated by the signer, without learning any information
about them, before returning the blind signature to the recipient. For
the aggregation (addition of the messages), we provide a new result, of
independent interest, about the Waters hash function over non binary-
alphabets.

1 Introduction

Blind signatures were proposed by Chaum in 1982 [9]: they are an interactive
signature scheme between a user and a signer, in a way that the signed mes-
sage, and even the resulting signature, are unknown to the signer, this is the
blindness property. More precisely, if the signer runs several executions of the
protocol that led to several message-signature pairs, he cannot link back any
pair to a specific execution: the view of the signer is unlinkable to the result-
ing message-signature pair. This unlinkability can either be computational, we
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then talk about computational blindness, or perfect, we then talk about perfect
blindness. In addition, they guarantee some kind of unforgeability for the signer,
which has been formalized in [I8] to cope with e-cash properties: the user cannot
produce more message-signature pairs (coins) than the number of interactions
(withdrawals).

There have been several highly interactive schemes (like [I7]), but Fischlin [11]
gave a generic construction of round-optimal blind signatures. Recent schemes
have instantiated this construction, the user obtains an actual signature on the
message, of which he proves knowledge [I,[12] or can simply randomize it to
make it unlinkable [4L[5]. In the latter case, the blind signature has the same
format as the underlying signatures and, in addition to being round-optimal, is
thus short. Our construction, like this last one produced a simple (randomized)
Waters signature on the message m so two group elements and a scalar m under
basic assumptions DLin, where [I] uses less standard assumption SXDH and
ADH-CDH, and around 38 elements in G; and 34 in G2 for the final signature
because of the required proofs of knowledge. [I3] presented a round-optimal
blind signature without CRS but less efficient than the construction relying on
the Common Reference String.

A loophole in standard blind signatures was detailed by Abe and Okamoto [3]:
the signer has no control over the signed messages (except in some sense the un-
forgeability which limits their number). In e-cash schemes, we want the bank to
sign a coin (a random, and thus unknown, serial number), but with a specific ex-
piration date. Partially-Blind Signatures proposed by Abe and Fujisaki [2] solve
this problem, by allowing the user and the signer to agree on a predetermined
piece of information which must be included in the final signed message.

Recently, in [19], Seo and Cheon presented a construction leading to (Par-
tially) Blind-Signatures in the standard model. However their construction relies
on a trick consisting in starting from prime order groups Gi, G2, G3 and consid-
ering group elements in G = G @ Gy @ G3. While their approach provides nice
theoretical tools, the resulting signatures lies in G2 and are therefore three times
longer than our proposal.

Our Contributions. In this paper, we go one step further, improving [4] in
several directions. We first present a blind signature scheme with perfect blind-
ness, using the perfectly hiding instantiation of Groth-Sahai commitments [14].
We also widen the model of partially-blind signatures to supplement the prede-
termined communication with an on-the-fly public information generated by the
signer: the signer can simply include it during the signing process, even if the
user does not want this extra information. In the latter case, the user can simply
discard the signature and start anew. We call this new primitive signer-friendly
partially-blind signatures. This new notion allows to skip the prior agreement and
allow the public information to be set on-the fly. Of course this new notion does
not forbid any kind of prior agreement on the public part, it just strengthens
the existing notion.

It is now possible to get rid of the prior agreement on the common piece of
information in the signed message and our instantiation allows the signer to do
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so in a round-optimal way. These two constructions being compatible, we can
present a round-optimal partially-blind signature with perfect blindness. Our
protocol does not need any pre-processing for the public part of the message.
Basically both the user and the signer can choose a piece of the public part, but
instead of having a computational overhead for the agreement both can simply
choose during the 2 flows interaction what they want. The signer can always
refuse to sign something where the user’s public information doesn’t suit him
and the user can always choose not to exploit an uninteresting signature, so
a protocol should avoid to waste communication costs when one can manage
without any security loss to stay in a two-flows protocol.

Eventually, discarding the perfect blindness, we take advantage of this asyn-
chronous property (the user and the signer can independently choose their in-
puts) and we consider the new context where the message to be signed comes
from several independent sources that cannot communicate together. We first
present a way to obtain a signature on the concatenation of the input messages.
We also present a shorter instantiation which gives a signature on the sum of the
input messages. Such a sum can be useful when working on ballots, sensor infor-
mation, etc. Since we still apply the Waters signature, this led us to consider the
Waters function programmability over a non-binary alphabet, in a similar way
as it was done in [I5] for the binary alphabet. We prove a negative result on the
(2, 1)-programmability, but a nice positive one on the (1, poly)-programmability,
which is of independent interest.

Instantiations. We give several instantiations of our different blind signatures, all
of which are based on weak assumptions. Our constructions mainly use the two
following building blocks, from which they inherit their security: Groth-Sahai
proofs for languages over pairing-friendly groups [14] and Waters signatures de-
rived from the scheme in [20] and used in [§]. Since verification of the revisited
Waters signatures [4] is a statement of the language for Groth-Sahai proofs, these
two building blocks combine smoothly. The first instantiations are in symmet-
ric pairing-friendly elliptic curves and additionally use linear commitments [7].
Both unforgeability and semantic security of these constructions rely solely on
the decision linear assumption (DLin). The blindness property is easily achieved
granted the homomorphic property of the Waters signature. An instantiation
with improved efficiency, in asymmetric bilinear groups, using the SXDH variant
of Groth-Sahai proofs and commitments is drafted in the full version [6]. This
setting requires an asymmetric Waters signature scheme secure under a slightly
stronger assumption, called CDH™, where some additional elements in the second
group are given to the adversary.

Applications. Our blind signature schemes find various kinds of applications:

E-voting. The security of several e-voting protocols relies on the fact that each
ballot is certified by an election authority. Since this authority should not learn
the voter’s choice, a blind signature scheme (or even partially-blind, if the au-
thority wants to specify the election in the ballot) is usually used to achieve this
property. In order to achieve privacy of the ballot in an information-theoretic
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sense, it is necessary to use a signature scheme that achieves perfect blindness.
Our scheme is the first to achieve this property in the standard model and under
classical complexity assumptions.

E-cash. As mentioned above, partially-blind signatures played an important role
in many electronic commerce applications. In e-cash systems, for instance, the
bank issuing coins must ensure that the message contains accurate information
such as the face value of the e-cash without seeing it and moreover in order
to prevent double-spending, the bank’s database has to record all spent coins.
Partially-blind signatures can cope with these problems, since the bank can
explicitly include some information such as the expiration date and the face
value in the coin. Thanks to our proposal, the coin issuing protocol can be done
without prior agreement between the bank and the client.

Data aggregation in networks. A wireless (ad hoc) sensor network (WSN) con-
sists of many sensor nodes that are deployed for sensing the environment and
collecting data from it. Since transmitting and receiving data are the most en-
ergy consuming operations, data aggregation has been put forward as an essential
paradigm in these networks. The idea is to combine the data coming from dif-
ferent sources — minimizing the number of transmissions and thus saving energy.
In this setting, a WSN consists usually of three types of nodes:

— sensor nodes that are small devices equipped with one or more sensors, a
processor and a radio transceiver for wireless communication.

— aggregation nodes (or aggregators) performing the data aggregation (e.g.
average, sum, minimum or maximum of data).

— base stations responsible for querying the nodes and gathering the data col-
lected by them.

WSNs are at high security risk and two important security goals when doing
in-network data aggregation are data confidentiality and data integrity. When
homomorphic encryption is used for data aggregation, end-to-end encryption
allows aggregation of the encrypted data so that the aggregators do not need
to decrypt and get access to the data and thus provides end-to-end data confi-
dentiality. Achieving data integrity is a harder problem and usually we do not
consider the attack where a sensor node reports a false reading value (the im-
pact of such an attack being usually limited). The main security flaw is a data
pollution attack in which an attacker tampers with the intermediate aggregation
result at an aggregation node. The purpose of the attack is to make the base
station receive the wrong aggregation result, and thus make the improper or
wrong decisions.

While in most conventional data aggregation protocols, data integrity and
privacy are not preserved at the same time, our multi-source blind signature
primitive permits to achieve data confidentiality and to prevent data pollution
attacks simultaneously by using the following simple protocol:

1. Data aggregation is initiated by a base station, which broadcasts a query to
the whole network.
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2. Upon receiving the query, sensor nodes report encrypted values of their read-
ings (for the base station public key) to their aggregators.

3. The aggregators check the validity of the received values, perform data aggre-
gation via the homomorphic properties of the encryption scheme, (blindly)
sign the result and route the aggregated results back to the base station.

4. The base station decrypts the aggregated data and the signature which
proves the validity of the gathered information to the base station (but also
to any other third party).

2 Definition

This section presents the global framework and the security model for partially-
blind signature schemes. A reminder of standard definition and security notions
on Blind Signature can be found in the full version [6].

Blind signatures introduced a nice feature, however it may be undesirable
that requesters can ask the signer to blindly sign any message. For example,
in an e-cash scheme, some expiration date information should be embedded in
the e-coin, to avoid the bank’s database an uncontrolled growth when storing
information for double-spending checking. Partially-blind signatures are thus a
natural extension of blind signatures: instead of signing an unknown message, the
signer signs a message which contains a shared piece of information in addition
to the hidden part. This piece is called info and, in the standard definition, is
expected to have been defined before the execution of the protocol. But since
our schemes will not require the public part to be agreed on by the two players
before the protocol execution (as opposed to all the previous schemes from the
literature), we extend the usual partially-blind signature scheme with two public
parts in the message, in addition to the hidden part: info = info.||infos, where
info.. is the common public part with prior agreement, and info, is set on-the-fly
by the signer. This provides a more flexible scheme, and this definition generalizes
all the above ones. If info, = L, we are in the regular case of partially blind
signature, whereas in case of regular blind signature both parts are empty L.

Definition 1 (Partially-Blind Signature Scheme). A PBS scheme is de-
fined by 4 algorithms or protocols (Setuppps, KeyGenpgs, (S,U), Verif pps) where

— Setuppps(1?) generates the global parameters paramyys of the system;

— KeyGenpps(paramyys) generates a pair of keys (pkpps,skpss);

— Signature Issuing: this is an interactive protocol between S(skpps,info =
infoc|linfos) and U(pkpgs,m,info), for a message m € {0,1}"™ and shared
information info. It generates an output o for the user:

o + (S(skpgs,info),U(pkpss, m,info)).

Verifpps(pkpps, m,info, o) outputs 1 if the signature o is valid with respect
to the message m||info and pkpgs, 0 otherwise.
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Quick Note on Security: The security requirements are a direct extension of the
classical ones: for unforgeability, we consider m||info instead of m, and for the
blindness, we condition the unlinkability between signatures with the same public
part info. Without the latter restriction, anyone can simply distinguish which
message was signed by comparing the public information. The unforgeability is
strengthened by considering also the public information so that the signer can
be sure that the user won’t be able to exploit his signature in another context.

Definition 2 (Signer-Friendly Partially-Blind Signature Scheme). A
signer-friendly partially-blind signature scheme PBS is defined by 4 algorithms
or protocols (Setuppgs, KeyGenpgs, (S,U), Verifpgs) where

— Setup(1*) generates the global parameters paramy,s of the system;

— KeyGen(paramy,s) generates a pair of keys (pkpgs,skpss);

— Signature Issuing: this is an interactive protocol between S(skpgs, info, infoy)
and U(pkpps, m,info.), for a message m € {0,1}", signer information infog
and common information info.. It generates an output o for the user: o <
(8(skpps, info, info,), U (pkprs, m, info.)).

Verif(pkpgs, m, info, infos, o) outputs 1 if the signature o is valid with respect
to the message ml|info.|infos and pkpgs, 0 otherwise.

One notes that info, = info and infoy, = | lead to a standard partially-blind
signature; whereas the case info, = info, = L is the standard blind signature.

The signer always has the last word in the process, and so if he does not want
to sign a specific info, he will simply abort the protocol several times until the
shared part suits his will. So, in the following, we decided that it was wiser to
let him choose this input. If the user wants a specific word in the final message
he can always add it to the blinded message. Intuitively this strengthens the
unforgeability notion as the adversary (the user in this case) won’t be able to
chose the whole message to be signed because of infogs. This is ensured in the
security game, because the adversary should outputs valid signatures, therefore
they should be done with the chosen infos. For the blindness property, the ad-
versary should guess on signatures with the same public info.||infos, component,
if it is not the case we answer with a blind-signature L.

The complete security games can be found in the full version [6].

3 Partially-Blind Signature

Our constructions will combine Groth-Sahai Linear Commitments [14] and the
Waters signature [20] as follows: given a commitment on the “Waters hash”
F(M) (and some additional values proving we know the message M and the
randomness used), a pre-agreed shared information info., the signer can make
a partially-blind signature on M, info, and an extra piece of public information
infogs. This construction makes use of a symmetric pairing, but we extend it to
asymmetric pairings in the full version [6].
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3.1 Assumptions

We rely on classical assumptions only: CDH for the unforgeability of signatures
and DLin for the blindness property (when not perfect), and also for soundness
of the proofs:

Definition 3 (The Computational Diffie-Hellman problem (CDH)). The
CDH assumption, in a cyclic group G of prime order p, states that for a generator
g € G and random a,b € Z,, given (g, 9%, g°) it is hard to compute g®°.

Definition 4 (Decision Linear Assumption (DLin)). The DLin assumption,
in a cyclic group G of prime order p, states that given (g, 9%, g, g*%, g¥°, g¢) for
random a,b,x,y € Zy, it is hard to determine whether ¢ = a + b or a random
value. When (g,u = g%, v = g¥) is fived, a tuple (u®,v°, g2*°) is called a linear
tuple w.r.t. (u,v,g), whereas a tuple (u®,v°, g¢) for a random and independent
c is called a random tuple.

One can easily see that if an adversary is able to solve a CDH challenge, then he
can easily solve a DLin one. So the DLin assumption implies the CDH assumption.
Some reminders on Groth-Sahai Commitments and Waters function can be found
in the full version [6] as those are the main building blocks of our construction.

3.2 Partially-Blind Signature with Perfect Blindness

With those building blocks, we design a partially-blind signature scheme, which
basically consists in committing the message to be signed. And granted the
random coins of the commitment, the user can unblind the signature sent by
the signer. Eventually, using the randomizability of the Waters signature, the
user breaks all the links that could remain between the message-signature pair
and the transaction. Our protocol proceeds as follows, on a commitment of
F = F(M), a public common message info., and a public message info, cho-
sen by the signer. It is split into five steps, that correspond to an optimal
2-flow protocol: Blindgs, which is first run by the user, Signgs, which is there-
after run by the signer, and Verifgs, Unblindgs, Randomps that are eventu-
ally successively run by the user to generate the final signature. We thus have
U = (Blindgs; Verifgs, Unblindgs, Randomps) and S = Signgs:

— Setupgs(1*) first chooses a bilinear group (p, G, Gr, e, g). We need an addi-
tional vector u = (ug, ..., ug) & GF+1 which defines the Waters function F

(where k is the global length of M]||info.||infoy), a generator h & G, and a
tuple of Groth-Sahai parameters (uy, ug, uz) in the perfectly hiding setting:
paramps = (p, G, G, e, g, h, F,ui, us, u3);

— KeyGengs(paramps) chooses a random scalar x & Z,, which defines the
public key as pkps =Y = ¢g*, and the secret key as skgs = Z = h7;

— Signature Issuing (S(skgs, info., infos),U (pkps, M,info.)), which is split in
several steps:
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Blindgs (M, pkgs; (r1,72,73)): For a message M € {0,1}* and ran-

dom scalars (ry,72,73) <£ Zp, define the commitment as ¢ = (01 =
uihug, e = upukl,cs = gt ul’ - F(M)) and compute Yo =
Y7172 Y3 = Y73, One also generates additional proofs of validity of the
commitment:

*x A proof ITy; of knowledge of M in ¢, the encrypted F (M), which
consists of a bit-by-bit commitment Cpy = (C’'(My),...,C" (M,)) and
proofs that each committed value is a bit, and a proof that c3 is
well-formed. IT); is therefore composed of 9¢ + 3 group elements.

* A proof II, containing the commitments C, = (C(Y12),C(Y3)) and
proofs asserting that they are correctly generated. It requires 9 ad-
ditional group elements.

II thus consists of 9¢ 4+ 12 group elements, where £ is the bit-length of
the message M

Signps(skas, (¢, IT), info., infog; s): To sign the commitment ¢, one first
checks if the proof IT is valid. It then appends the public message
info = info.||infos to ¢3 to create ¢ = c3 - Hu';lri/, which thus becomes
a commitment of the Waters function evaluation on M [|info.|linfos of
global length k. It eventually outputs o = (Z-c4”, u§ 3, ¢°) together with
the additional public information info,, for a random scalar s € Z,.
Verif (pkgs, (¢, info., infos), 0 = (01, 02, 03)): In order to check the validity
of the signature, one first computes c§ as above, and then checks whether
the following pairing equations are verified: e(o1, g) = e(h, pkps)-e(ch, 03)
and e(o2,g) = e(us3,03). If it is not the case, then this is not a valid
signature on the original ciphertext, and the blind signature is set as
Y=1.

Unblindgs((r1, 72, 73), pkas, (¢, info., infos), 0): If the previous tests are
positive, one can use the random coins 71,792,713 to get back a valid
signature on M |info.||infos: 0/ = (0} = 01 /(0% T 04?), 0 = 03), which
is a valid Waters signature.

Randomps(pkgs, (¢, info., infos),0’; s’): The latter can eventually be
rerandomized to get X = (0} - F(M]||info.||infos)*", b - ¢* ).

One can note that X is a random Waters signature on M ||info.||infos, where
we denote F' = F(M]|info.||infos):

= (Ull 'FS,vo-IZ'gSI) ( S 01/( g TS)ngI '03)
= (F* - Z -/ (g"" T ugy), got)
(B2 gy (g, gt ) = (M 2,67

— Verifgs(pkss, (M, info., infos), ¥ = (X1, X3)): One checks whether the fol-

lowing pairing equations holds (Waters signature): e(X1,g) = e(h, pkgs) -
e(F (M ||infoc||infos), X2).

Theorem 5. This signer-friendly partially-blind signature scheme is unforge-
able under the CDH assumption in G.
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) A message M can be hidden using ran-
‘User ~+ Blindzss ;oo Signer: dom coins r (Blindgs).

: kps, T : : K . R
S pBrS —= : The signer can adapt this commitment
3 : :and concatenate a public message infos

into the original commitment, with also
the common public information infos,
creating a commitment C’ on F =
F(M]linfo.||infos).

A signature on the plaintext can be
obtained using the randomness r (for
Unblindgs); the result is the same as

. a direct signature on M]||info.||infos by
@ : the signer.
. Unblindss : . Randomizing this signature is easy, and

Randomgs Verif © prevents the signer to actually know
' o S which ciphertext was the one involved.

skgs, C’, info,; s
Signgs

Fig. 1. Partially-Blind Signatures with Perfect Blindness

Proof. Let us denote PBS our above partially-blind signature (but omit it in
the subscripts for clarity). Let us assume there is an adversary A against the
unforgeability that succeeds within probability €, we will build an adversary B
against the CDH problem.

DLin Assumption. The unforgeability means that after ¢, interactions with the
signer, the adversary manages to output ¢s; + 1 valid message-signature pairs
on distinct messages. If the adversary A can do that with probability € with
the above commitment scheme using a perfectly hiding setting, under the DLin
assumption, A can also generate ¢,+1 valid message-signature pairs in a perfectly
binding setting, with not too small probability €.

Signer Simulation. Let us thus now consider the above blind signature scheme
with a commitment scheme using a perfectly binding setting (named PBS’), and
our simulator B can extract values from the commitments since it knows v and
. We thus now assume that A is able to break the unforgeability of PBS’ with
probability € after ¢, interactions with the signer. And we build an adversary B
against the CDH problem: Let (A = g%, B = ¢®) be a CDH-instance in a bilinear
group (pa Ga GTa €, g)

We now generate the global parameters using this instance: for simulating
Setupgs/KeyGengs, B picks a random position j & {0,...,k}, chooses random

indexes Yo, Y1, - - -, Yk & {0,...,2¢s — 1}, and random scalars zg, z1, .. ., 2k &
Zp. One defines Y = A = g%, h = B = g% ug = h¥~2%g% and u; =
h¥ig# for ¢ = 1,...,k. B also picks two random scalars v, u,and generates
the Groth-Sahai parameters (uj,uz,us) in the perfectly binding setting, and
thus with (U1 = (ul,l = gmlalag)aUQ = (1au2,2 = g‘”2,g),uS = ulll GUS)’
for two random scalars z,z2. Note that ugs = g”TH. Tt outputs paramys =
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(p,G,Gr,e,g,h, F,u1,uz,u3); one can note that the signing key is implicitly
defined as Z = h® = B® = ¢, and is thus the expected Diffie-Hellman value.
To answer a signing query on ciphertext ¢ = (c1, 2, ¢3), with the additional
proofs, one first checks the proof IT. From the proof IT and the commitment
secret parameters x1,x2, B can extract M from the bit-by-bit commitments

in IIy, and Y10 = Y172 Y3 = Y™ from II,, where ¢; = uflugfl and
ca = ugHug’y. Furthermore, we can compute ¢5 = ¢ *"2uz’% - F, where we
denote M’ = M||info.||infos and F' = F(M]||info.||infos). B defines
H=-2jgs+yo+ ) yiMl, J=z+Y =M : F=n"g".
i i

If H =0 (mod p) then B aborts, otherwise it sets
o= (VR T (" e ), (T gy y T ),

Defining § = s — a/H, we have

o1 =Y Yy T (W g (6 ") = 7 ()

o5 :Yfl/Hgs — Y*l/HgéJra/H — gs

o2 =(03)" T = g = i

s

It thus exactly looks like a real signature sent by the signer.

Diffie-Hellman Extraction. After at most ¢, signing queries A outputs ¢s+1 valid
Waters signatures. Since there are more than the number of signing queries, there
is a least one message M* that is different from all the messages M ||info.||info,
involved in the signing queries. We define

H™ = =2jg,+yo+ D yiM;, J" =20+ 2M]  F(M)=h"g".
i i

*

If H*=0 (mod p) then B abort, otherwise, for some s*, o* = (h*F(M*)*", ¢°") =
(h*g*"7",g*"). Then, 0% /(c3)”" = h® = g one has solved the CDH problem.

Success Probability. (Based on [I5]) The Waters hash function is (1, ¢,)-program-
mable (i.e., we can find with non negligible probability a case where g5 interme-
diate hashes are not null, and the last one is), therefore the previous simulation
succeeds with non negligible probability (©(e/qsv'k)), and so B breaks CDH. O

Theorem 6. This signer-friendly partially-blind signature scheme achieves per-
fect blindness.

Proof. The transcript sent to the signer contains a commitment on the message
to be signed, but in a perfectly hiding setting: no information leaks about M.
The additional proofs are perfectly witness-indistinguishable and thus do not
provide any additional information about M. This is due to the fact that in
the Groth Sahai framework in the perfectly hiding setting, for any message M,
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committed with randomness r and a message M’, one can find random 7’ such
that ¢(M,r) = ¢(M’',r"). Granted the randomizability of the Waters signature,
the final output signature is a random signature on M |info.||info,, on which no
information leaked, and so the resulting signature is perfectly independent from
the transcript seen by the signer, and any adversary. a

4 Multi-source Blind Signature

4.1 Concatenation

The previous constructions lead to a good way to allow a user to obtain a
signature on a plaintext without revealing it to the signer. But what happens
when the original message is in fact coming from various users? We now present a
new way to obtain a blind signature without requiring multiple users to combine
their messages, providing once again a round-optimal way to achieve our goal.

We thus consider a variation of our blind signature scheme. In the Setup
phase we no longer create perfectly hiding Groth-Sahai generators, but perfectly
binding parameters, so we do not need to compute u3 5 to run Unblind, since it
will be performed with the decryption key and not the random coins. In addition,
in this scenario, we do not consider a unique user providing a ciphertext, but
several users. As a consequence, the signer will have to produce a signature on a
multi-source message, provided as ciphertexts. The signature and the messages
will actually be encrypted under a third-party key. The third-party only will be
able to extract the message and the signature.

Basically the instantiation is similar to the previous ones in the perfectly
binding setting. For the sake of clarity, we remove the partially-blind part, but
of course it could be adapted in the same way.

i everal messages M; can be hidden us-
User - Blindss " Signer Sev 8 ¢

© pkgs,7i : ing random coins 7; (Blindgs) by dif-
B LA At o 3 ferent users.
: : . The signer can adapt these commit-

ments and concatenate the messages

é inside them, creating a commitment on
g A signature on the plaintext can be
O|@ obtained by the tallier using the de-
K cryption key dkgs (for Unblindgs); the

(T ‘ i result is the same as a direct signature

-,  dkas }  on || M; by the signer.
- . . . . .

\ : : :  Randomizing this signature is easy, and

‘ 1 Unblindgs ‘ ;

Lm : prevent the signer from knowing which
Randomgs Verif : 3
e ciphertexts were involved.

Fig. 2. Multi-Source Blind Signature on Concatenation
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A full instantiation of such protocol and its security analysis can be found
in the full version [6]. One can see that it can be efficiently instantiated under
DLin assumption.

4.2 Addition

The previous scheme presents a way to combine multiple blind messages into
one in order to sign it. However it requires a huge number of generators and
the final unblinded signature gives a lot of information on the repartition of the
original messages, since they are simply concatenated. We now want to improve
the previous scheme to drastically reduce the public key size, and the information
leaked about the individual messages when one would like a signature on some
computation on these messages, such as the addition or the mean. Instead of
signing the concatenation of the messages, we now allow the users to use the same
generators, and thus the messages will add together instead of concatenating.
The resulting algorithm is the same as before except during the Setup phase

where u = (ug, ..., ug) & GF+1. We then proceed as before considering F(M;) =
I, u}ni’e. The Unblind algorithm now returns a valid signature on the sum of the
messages. The various Groth-Sahai proofs help to ensure that the messages given
to the Waters hash function are of reasonable size.

With this construction, the exponents in the Waters hash function are not
longer bits but belong to a larger alphabet (e.g. {0, ..., t} if ¢ users sign only bit
strings). Following the work done in [I5], we will show in the next section that
over a non-binary alphabet the Waters function remains (1, poly)-programmable
as long as the size of the alphabet a polynomial in the security parameter. This
result readily implies the security of the multi-source blind signature scheme for
addition:

Theorem 7. This multi-source blind signature scheme for addition is blind and
unforgeable under the DLin assumption as long the alphabet size and the number
of sources are polynomial in the security parameter.

5 Non-binary Waters Function Programmability

In this section, we prove that for a polynomial-size alphabet, the Waters function
remains programmable. We recall some notations introduced in [I5] and show
our result which can be seen as an improvement over the result presented by
Naccache [16] where he considered a variant of Waters identity-based encryption
[20] with shorter public parameters.

5.1 Definitions

Let us recall some basic definitions. A family of cyclic groups G = (G))xen,
indexed by a security parameter \, is called a group family. A group hash function
H for G, an alphabet ¥ = X()\) and an input length ¢ = £(\) is a pair of
probabilistic polynomial-time algorithms (PHF.Gen, PHF.Eval) such that:
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— PHF.Gen takes as input a security parameter A and outputs a key k.
— PHF.Eval takes as input a key & output by PHF.Gen and a string X € %*
and outputs an element of G.

Definition 8 (cf. [15]). A group hash function (PHF.Gen, PHF.Eval) is (m,n, d)-
programmable, if there exist two PPT algorithms (PHF.TrapGen, PHF.TrapEval)
such that

— Syntactics: For g,h € G,PHF.TrapGen(1*,g,h) generates a key k' and a
trapdoor t such that PHF.TrapEval(t, X) produces integers ax,bx for any
Xext

— Correctness: For all generators g,h € G, all (k',t) < PHF. TrapGen(1*, g, h)
and all X € X* H,(X) := PHF.Eval(x’, X) satisfies H./(X) = g®xhtx
where (ax,bx) := PHF.TrapEval(t, X).

— Statistically close trapdoor keys: For all generators g, h € G2, the func-
tions PHF.Gen(1) and PHF.TrapGen(1*, g, h) output keys x and ' statisti-
cally close.

— Well-distributed logarithms: For all generators g, h € G, all (k/,t) output
by PHF.TrapGen(1*, g, h) and all bit-strings (Xi)1....m, (Zi)1,..n € X* such
that Vi, j, X; # Z;, we have Prlax, = ...,ax,, =0Aaz, -...-az, #0] >,
where the probability is taken over the random coins used by PHF.TrapGen
and (ax,,bx,) := PHF.TrapEval(t, X;) and (az,,bz,) := PHF.TrapEval(t, Z;).

5.2 Instantiation with Waters function

Let us consider the Waters function presented in [20].

Definition 9 (Multi-generator PHF). Let G = (G,) be a group family, and
¢ = L(\) a polynomial. We define F = (PHF.Gen, PHF.Eval) as the following
group hash function:

— PHF.Gen(1*) outputs k = (ho, - . -, h¢) & Gf*1;
— PHF.Eval(k, X) parses k and X = (x1,...,7;) € {0, 1} and outputs F.(X) =

hoTTL_y e

This function was shown to be (1,¢,d)-programmable with a § = O(1/(gV/¢))
and (2,1, 0)-programmable with a § = O(1/¢) (¢f. [15]). However this definition
requires to generate and store n+ 1 group generators where n is the bit-length of
the messages one wants to hash. We consider a more general case where instead
of hashing bit-per-bit we decide to hash blocks of bits.

Definition 10 (Improved Multi-generator PHF). Let G = (Gy) be a group
family, ¥ = {0,...,7} a finite alphabet and ¢ = L()\) a polynomial. We define
F = (PHF.Gen, PHF .Eval) as the following group hash function:

— PHF.Gen(1?*) returns k = (ho, - - ., he) & G,
— PHF.Eval(k, X) parses k and X = (z1,...,7¢) € X° and returns F*,.(X) =

ho TTi_y h".
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Using a larger alphabet allows to hash from a larger domain with a smaller
hash key, but it comes at a price since one can easily prove that the function
is no longer (2,1)-programmable (i.e., no longer (2,1,0) programmable for a
non-negligible §):

Theorem 11 ((2,1)-Programmability). For any group family G with known
order and T > 1, the function Ft is not a (2,1)-programmable hash function if
the discrete logarithm problem is hard in G.

Proof. Consider a discrete logarithm challenge (g, h) in a group G, and sup-
pose by contradiction that the function F* is (2,1)-programmable with 7 > 2
(i.e., we suppose that there exist two probabilistic polynomial-time algorithms
(PHF.TrapGen, PHF.TrapEval) satisfying the definition B for a non-negligible ¢).

For any hash key #’ and trapdoor ¢ generated by PHF.TrapGen(1%, g, h), we
can consider the messages X; = (2,0), X2 = (1,1),Z = (0,2) and with non-
negligible probability over the random coins used by PHF.TrapGen we have ax, =
ax, = 0 and az # 0 where (ax,,bx,) := PHF.TrapEval(t, X1), (ax,,bx,) =
PHF.TrapEval(t, X2) and (az,bz) := PHF.TrapEval(¢,Z). By the correctness
property, we have g*2h%2 = hoh3 = h2'*> /h®X1 and we can extract the dis-
crete logarithm of g in base h as follows:

~ 2bx, —bx, —bz

log,,(9) = s mod |G, |. 0

However we still have the interesting property:

Theorem 12 ((1,poly)-Programmability). For any polynomial q and a
group family G with groups of known order, the function F¥ is a (1,q,0)-
programmable hash function with a 6 = 2(1/1q V).

Remark 13. This theorem improves the result presented by Naccache in [16]
where the lower bound on the (1, g, d)-programmability was only § = 2(1/7¢¥).

Remark 14. In order to be able to sign all messages in a set M, we have to
consider parameters 7 and £ such that 7¢ > #M, but the security is proved only
if the value § is non-negligible (i.e. if £ = A9 and 7 = \°(M). In particular
if M is of polynomial size in A (which is the case in our WSN application with
data aggregation), one can use 7 = #M and ¢ = 1 (namely, the Boneh-Boyen
hash function), and therefore get data confidentiality.

Proof. Let us first introduce some notations. Let n € N*, let A; be independent
and uniform random variables in {—1,0,1} (for j € {1,...,n}). If we denote
20? their quadratic moment, we have 20? = 2/3 and 0; = /1/3. We note

s2 = Z?Zl UJQ- =n/3.

The Local Central Limit Theorem. Our analysis relies on a classical result on
random walks, called the Local Central Limit Theorem. It basically provides an
approximation of Pr[) A; = a] for independent random variables A;. This is a
version of the Central Limit Theorem in which the conclusion is strengthened
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from convergence of the law to locally uniform pointwise convergence of the
densities. It is worded as follows in [I0, Theorem 1.1], where ¢ and & are the
standard normal density and distribution functions:

Theorem 15. Let A; be independent, integer-valued random variables where A;
has probability mass function f; (for j € N*). For each j,n € N*, let q(f;) =
>opmin(fi(k), fi(k + 1)) and Qn = 327, q(fj). Denote S, = Ay + -+ + Ap.
Suppose that there are sequences of numbers (ay), (Bn) such that

1. limp o0 Pr[(Sy — an)/Bn) < t] = §(t), —00 < t < o0,
2. Bn — o0,
3. and limsup 82/Q, < oo,

then supy, |Bn Pr[Sn = k] — ¢((k — ap)/Brn)| — 0 as n — odl.

While those notations may seem a little overwhelming, this can be easily ex-
plained in our case. With A; € {—1,0, 1} with probability 1/3 for each value.

1. It requires the variables to verify the Lindeberg-Feller theorem. However
as long as the variables verify the Lindeberg’s conditiorﬁ7 this is true for
Bn = 8, and a,, = 0.

2. In our application, 3, = s, = \/n/3, so again we comply with the condition.

3. Since f;(k) is simply the probability that A; equals k, then ¢(f;) = 2/3.
This leads to Q,, = 2n/3. As a consequence, 32/Q, = 1/2.

So we have: supy, |8, Pr[S, = k] — ¢((k — a)/Bn)| — 0, that is, in our case
sup |/n/3Pr[S, = k] — ¢(k//n/3)| — 0.
k

We solely focus on the case k = 0: since ¢(0) = 1/v/27, Pr[S, = 0] = O(1/y/n).
In addition, it is clear that Pr[S,, = k] < Pr[S,, = 0] for any k # 0 (c.f. [19]).

Lemma 16. Let (Aij)[1nyxq1,5] be independent, integer-valued random vari-
ables in {—1,0,1}, then VX € [1,7]", Pr[S0, 3274 XiAy = 0] = Q(1/7v/nJ),
where the probability distribution is over the A;j.

This lemma will be useful to prove the lower bound in the following, we only
consider word with no null coefficient X, if a X; is null, we simply work with a
shorter random walk of length J - (n — 1) instead of Jn.

Proof. Let us denote d;;, the random variable defined as X;A;;: they are in-
dependent, integer-valued random variables. As above, s2 = Dy Z}]:1 0]2 =
S JX2/3. S0 nJ/3 < s <nr?J/3.

! The so-called Berry-Esseen theorem gives the rate of convergence of this supremum.
2 Lindeberg’s condition is a sufficient criteria of the Lindeberg-Feller theorem, for
variables with a null expected value it requires that Ve > 0, lim,, oo 1/52 - E[A3-

L{ja;/>esn}) — 0. In our case, as soon as n > 3/€%, we have |A4;| < 1 < ey/n/3 < esn,
so the sum is null. (1{|Aj |>esn} i the indicator function of variables greater that esy)
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1. The Lindeberg’s condition is verified. As soon asn > 37/Je? we have es,, > T
and so |d;j| < sp, and so once again the sum is null.
Sp — 00.
3. Each d;; € {—X;,0,X;} with probability 1/3 for each value, so ¢(fi;) =2/3
and @, = Zi,j q(fij) =2nJ/3. So B2/Qn < (n7J/3)/(2nJ/3) < 7/2 < 0.
Then we can apply the Local Central Limit Theorem to the d;;’s, and conclude:
P o Xidi; = 0] = 0(1/s) = ©(1/7+/(n]). 0

In the following, we will denote a(X) = Y7 | a;X;, where X € {0,...,7}". The
probabilities will be over the a;;’s variables while X and Y are assumed to be
chosen by the adversary. Our goal is to show that even for bad choices of X and
Y, a random draw of a;;’s provides enough freedom.

Let J = J(\) be a positive function. We define the following two probabilistic
polynomial-time algorithms (PHF.TrapGen, PHF.TrapEval):

N

— PHF.TrapGen(1?, g, h): which chooses some independent and uniform elements
(aij)o,...0),1,...,;y in {—1,0, 1}, and random group exponents (b;) o,...,¢)- It sets
a; = Z;']=1 ai; and h; = g% hbi fori € {0, ..., £}. It then outputs the hash key
k = (ho, ..., he) and the trapdoor t = (ag, by, - . ., as, be).

— PHF.TrapEval(t, X): which parses X = (X1,...,Xy) € ¢ ={0,...,7}* and
outputs ax = ag + Y. a; X; and bx = by + > b; X;.

As this definition verifies readily the syntactic and correctness requirements, we
only have to prove the two other ones. We stress the importance of the hardwired
1 in front of ag this allows us to consider multisets X' =1: X andY' =1::Y,
and so there is no k such that X’ = kY”’. And we also stress that a; = ijl aij
is already a random walk of length J (described by the a;;), on which we can
apply the Local Central Limit Theorem and so Prla; = 0] = 6(1/v/.J). By
noticing that summing independent random walks is equivalent to a longer one
and applying the Local Central Limit Theorem, we have:

O(1/1y/ (L +1)J) < Pr[a(X') = 0] < O(1/VJ).
To explain further the two bounds:

— For the upper bound: we consider X fixed, and note t = Zle a; X;, by con-
struction a; are independent, so ag is independent from ¢ then

Pr[a(X') = 0] = Prfag = —t] < Prag = 0] < 6(1/VJ)
using the above remark that a random walk is more likely to reach 0 than

any other value, and ag is a random walk of length J.
— For the lower bound, we proceed by recurrence on ¢, to show

Hy:0(1)7\/(t +1)J) < Pr[a(X') = 0] (where X’ €1 :: [0,7]").

For £ = 0, we consider X’ = 1, we have a random walk of length J, so
o1 /v J) < O(1/VJ) < Prla(X’) = 0]. We note Xy = 1 for the hardwired
1 in X’. Let us suppose the property true at rank k, let us prove it at rank
k+1:
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o If Jip, X;, = 0 then we can consider a random walk of length %k and apply
the previous step, and conclude because O(1/7+/(k + 1).J) < O(1/7VkJ)
e Else, one can apply Lemma [I6] to conclude.
Therefore, V£, VX' € 1 :: [0,7]%, ©(1/7/(¢£ + 1)J) < Prla(X’) = 0].
We can now deduce that VX,Y € [0,7]° with X # Y: Prla(Y’) = 0a(X’) =
0] < O(1/VJ). This can easily be seen by noting i the first index where Y; #
X;. We will note X’ = X' — X, in the following we will use the fact that
a(X') =0 a(X') = —a;, X;, B
Prla(Y') = 0]a(X") = 0] < Pr[a(Y’) = a(X")|a(X") = 0]
< Pr[Yioaio + a(Y/) = Xioai, + a(X/)M(X/) = O]
< mtaXPr[(Yio - Xio)aio = t‘a(X/) = _Xioaio] (1)

< max Prla, = #|a(X) = s (2)

< max Pr[a;, = '] (3)

< Prfa;, = 0] < O(1/VJ)
@ we start with (Y;, —Xi,)ai, = a(X’)—a(Y’), and then consider the maximum
probability for all values a(X’) — a(Y").

@) We consider the maximum probability for all values of —X;,a,.
@) @i, and a(X’) are independent.

Hence, for all X;,Y7,...,Y,, we have

Prlax, = 0Aay,,...,ay, # 0] = Prlax, = 0] Prlay,,...,ay, # Olax, = 0]

> O(1/rVeJ) (1 - ipr[ayi =0lax, = 0})

> O0(1/mVE+1J)(1 :q@(l/\/J)).

Now we set .JJ = ¢2, to obtain the result. In that case the experiment success is
lower-bounded by something linear in 1/(g7v/¢ + 1). O
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Abstract. Aggregation schemes allow to combine several cryptographic
values like message authentication codes or signatures into a shorter
value such that, despite compression, some notion of unforgeability is
preserved. Recently, Eikemeier et al. (SCN 2010) considered the notion
of history-free sequential aggregation for message authentication codes,
where the sequentially-executed aggregation algorithm does not need to
receive the previous messages in the sequence as input. Here we dis-
cuss the idea for signatures where the new aggregate does not rely on
the previous messages and public keys either, thus inhibiting the costly
verifications in each aggregation step as in previous schemes by Lysyan-
skaya et al. (Eurocrypt 2004) and Neven (Eurocrypt 2008). Analogously
to MACs we argue about new security definitions for such schemes and
compare them to previous notions for history-dependent schemes. We
finally give a construction based on the BLS signature scheme which
satisfies our notion.

1 Introduction

Aggregate signature schemes [6] allow to combine multiple signatures from differ-
ent senders for possibly different messages, such that the aggregate has roughly
the same size as a single signature. This helps to reduce the communication over-
head in settings where authenticated information is forwarded from one party
to another, such as the S-BGP routing protocol or certificate chains [GIT3U3I5].
As in the case of regular signature schemes, the validity of aggregates can be
publicly verified given all messages and public keys.

The original proposal of Boneh at al. [6] supports aggregation of the data inde-
pendently of the order of the parties and, furthermore, the aggregating algorithm
only relies on the aggregates and public data. In contrast, most other solutions
today like [T4UI3IBIBIT6UTT] are sequential aggregate schemes where each party
derives the next aggregate by taking the private key, the previous aggregate, and
all the previous messages together with the corresponding keys in the sequence
into account. For instance, in alll known sequential signature schemes the ag-
gregation algorithm first checks with the public keys that the current aggregate

! With the exception of the recent work by Brogle et al. [§], discussed at the end of
the introduction.
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is a valid signature for the preceding message sequence. Often, they also incor-
porate these messages in the computation of the new aggregate. Thus, so far,
the aggregation in sequential signature schemes seems to be much more expen-
sive than in the non-sequential setting, which might render sequential schemes
impractical