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Preface

The 8th Conference on Security and Cryptography for Networks (SCN 2012) was
held in Amalfi, Italy, during September 5–7, 2012. This biennial conference has
traditionally been held in Amalfi, with the exception of the fifth edition which
was held in nearby Maiori.

The world-wide use of computer networks, and in particular of the Internet,
opens new challenges for the security of electronic and distributed transactions.
Cryptography and information security must face both the theoretical and prac-
tical aspects of the above challenges, by providing concepts, techniques, applica-
tions, and practical experiences. The principal aim of SCN as a conference is to
bring together researchers, practitioners, developers, and users interested in the
above fields, to foster cooperation and to exchange techniques, tools, experiences,
and ideas in the stunning Amalfi Coast setting.

The conference received 72 submissions in a broad range of cryptography and
security areas. The selection of papers was a difficult task. This year we received
many high-quality submissions and 31 of them were accepted for publication
in these proceedings on the basis of quality, originality, and relevance to the
conference’s scope.

At least three Program Committee (PC) members—out of 28 world-renowned
experts in the conference’s various areas of interest—reviewed each submitted
paper, while submissions co-authored by a PC member were subjected to the
more stringent evaluation of five PC members.

In addition to the PC members, many external reviewers joined the review
process in their particular areas of expertise. We were fortunate to have this
knowledgeable and energetic team of experts, and are deeply grateful to all of
them for their hard and thorough work, which included a very active discussion
phase—almost as long as the initial individual reviewing period. The paper sub-
mission, review, and discussion processes were effectively and efficiently made
possible by the Web-Submission-and-Review software, written by Shai Halevi,
and hosted by the International Association for Cryptologic Research (IACR).
Many thanks to Shai for his assistance with the system’s various features and
for his constant availability.

Given the perceived quality of the submissions, the PC decided also this year
to give a Best-Paper Award, both to promote outstanding work in the fields
of cryptography and information security and to keep encouraging high-quality
submissions to SCN. “Deterministic Public Key Encryption and Identity-Based
Encryption from Lattices in the Auxiliary-Input Setting” by Xiang Xie, Rue
Xue, and Rui Zhang was conferred such distinction.

The program was further enriched by the invited talks of Yuval Ishai (Tech-
nion, Israel) and Giuseppe Persiano (Università di Salerno, Italy), top experts
on the subjects of the conference.



VI Preface

We thank all the authors who submitted papers to this conference; the Or-
ganizing Committee members, colleagues, and student helpers for their valuable
time and effort; and all the conference attendees who made this event a truly
intellectually stimulating one through their active participation.

We finally thank the Dipartimento di Informatica of the University of Salerno,
Italy, for the financial support.

September 2012 Ivan Visconti
Roberto De Prisco
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Deterministic Public Key Encryption

and Identity-Based Encryption
from Lattices in the Auxiliary-Input Setting

Xiang Xie1, Rui Xue2, and Rui Zhang2

1 Institute of Software, Chinese Academy of Sciences
2 The State Key Laboratory of Information Security

Institute of Information Engineering, Chinese Academy of Sciences
xiexiang@is.iscas.ac.cn, {xuerui,r-zhang}@iie.ac.cn

Abstract. Deterministic public key encryption (D-PKE) provides an al-
ternative to randomized public key encryption in various scenarios (e.g.
search on encrypted data) where the latter exhibits inherent drawbacks.
In CRYPTO’11, Brakerski and Segev formalized a framework for study-
ing the security of deterministic public key encryption schemes with re-
spect to auxiliary inputs. A trivial requirement is that the plaintext
should not be efficiently recoverable from the auxiliary inputs.

In this paper, we present an efficient deterministic public key encryp-
tion scheme in the auxiliary-input setting from lattices. The public key
size, ciphertext size and ciphertext expansion factor are improved com-
pared with the scheme proposed by Brakerski and Segev. Our scheme is
also secure even in the multi-user setting where related messages may
be encrypted under multiple public keys. In addition, the security of
our scheme is based on the hardness of the learning with errors (LWE)
problem which remains hard even for quantum algorithms.

Furthermore, we consider deterministic identity-based public key en-
cryption (D-IBE) in the auxiliary-input setting. The only known D-IBE
scheme (without considering auxiliary inputs) in the standard model was
proposed by Bellare et al. in EUROCRYPT’12. However, this scheme is
only secure in the selective security setting, and Bellare et al. identified
it as an open problem to construct adaptively secure D-IBE schemes.
The second contribution of this work is to propose a D-IBE scheme from
lattices that is adaptively secure.

Keywords: deterministic (identity-based) public key encryption, auxil-
iary inputs, lattices.

1 Introduction

The fundamental notion of semantic security for public key encryption schemes
was introduced by Goldwasser and Micali [16]. While semantic security provides
strong privacy guarantees, it inherently requires a randomized encryption al-
gorithm. Unfortunately, randomized encryption only allows linear time search

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 X. Xie, R. Xue, and R. Zhang

[1,10] on outsourced databases, which is prohibitive when the databases are ter-
abytes in size. Further, randomized encryption necessarily expand the length of
the plaintext, which may be undesirable in some applications such as legacy code
or in-place encryption.

Bellare, Bolyreva, and O’Neill [6] initiated the study of deterministic public
key encryption schemes that were oriented to search on encrypted data. Clearly,
in this setting, no meaningful notion of security can be achieved if the plaintext
space is small. Therefore, Bellare et al. [6] required security to hold only when
the plaintexts are drawn from a high min-entropic distribution. Very recently,
Brakerski and Segev [11] introduced a framework for modeling the security of
deterministic encryption schemes with respect to auxiliary inputs. This frame-
work is a generalization of the one formalized by Bellare et al. [6] (and further
in [7,9,18]) to the auxiliary-input setting, in which an adversary possibly obtains
additional information that is related to encrypted plaintext, and might even
fully determine the encrypted plaintext information theoretically. An immediate
consequence of having a deterministic encryption algorithm is that no mean-
ingful notion of security can be satisfied if the plaintext can be recovered from
the adversary’s auxiliary information. Therefore, their framework focuses on the
case of hard-to-invert auxiliary inputs. Brakerski and Segev [11] proposed two
schemes satisfy this notion of security. However, these two schemes have large
public key size, ciphertext size and ciphertext expansion factor. One result of
this work is to propose a new scheme from lattices with improved public key
size, ciphertext size and ciphertext expansion factor.

A deterministic identity-based encryption (D-IBE) scheme is an identity-
based encryption [22] scheme with deterministic encryption algorithm. Bellare et
al. [8] extended the security definition under high min-entropy into the identity-
based setting. D-IBE allows efficiently searchable identity-based encryption of
database entries while maintaining the maximal possible privacy, bringing the
key-management benefits of the identity-based setting. Bellare et al. proposed
a D-IBE scheme by first constructing identity-based lossy trapdoor functions
(IB-LTDFs). Due to the inherent limitation of IB-LTDFs, their scheme only
achieves selective security, and in fact, it has been identified as an open problem
to construct adaptively secure D-IBE schemes [8].

1.1 Our Contributions

In this work, we propose a D-PKE scheme in the auxiliary-input setting from
lattices in the standard model. The security of our scheme is based on the hard-
ness of the LWE problem, which is known to be as hard as worst-case lattice
problems [21,19]. The public key size, ciphertext size and ciphertext expansion
factor are better than the scheme in [11], while the private key size is almost the
same. The computations involved in encryption of our scheme are matrix-vector
multiplication and followed by a rounding step. Matrix-vector multiplication can
be implemented very fast in parallel, and rounding operations can also be com-
puted by small low-depth arithmetic circuits. Therefore, the encryption can be
implemented very fast. In addition, our scheme is secure even in the multi-user
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setting (as in [11]) where related messages may be encrypted under multiple
public keys. In this setting we obtain security, with respect to auxiliary inputs,
for any polynomial number of messages and users as long as the messages are
related by invertible linear transformations.

Furthermore, we extend the security definition in the auxiliary-input setting
to D-IBE, and propose a D-IBE scheme in the standard model. The only known
(selectively secure) D-IBE scheme (not under the auxiliary-input setting) in the
standard model was proposed by Bellare, Kiltz, Peikert and Waters [8], based
on IB-LTDFs.

Our D-IBE scheme is the first adaptively secure one in the auxiliary-input
setting. In the full version, we also give a more efficient selectively secure D-
IBE scheme in the auxiliary-input setting whose ciphertext size and ciphertext
expansion factor are comparable to our D-PKE scheme. All our schemes are
secure with respect to auxiliary inputs that are sub-exponentially hard to invert.

1.2 Overview of Our Approach

A crucial technique hurdle is that the hardness of the LWE problem depends
essentially on adding random, independent errors to every output of a mod-q
“parity” function. Indeed, without any error, parity functions are trivially easy to
learn. Fortunately, Banerjee, Peikert and Rosen [5] introduced a “derandomized”
LWE problem, i.e., generating the errors efficiently and deterministically, while
preserving hardness.

The LWEq,n,m,α assumption says that for any m = poly(n), modulus q and
error rate α: The pairs (A,Ats + e), for random matrix A ← Zn×m

q , random
vector s ← Zn

q , and “small” random error terms e ← Zm of magnitude ≈ αq,
are indistinguishable from (A,u), where u is uniformly random in Zm

q . The
derandomization technique for LWE in [5] is very simple: instead of adding
a small random error term to the vector Ats ∈ Zm

q . They deterministically
round it to the nearest element of a sufficiently “coarse” subgroup Zm

p where
p � q. In other words, the “error term” comes solely from deterministically
rounding Ats to a relatively nearby value. Denoting the rounding operation as
�Ats�p ∈ Zm

p , Banerjee et al. call the problem of distinguishing (A, �Ats�p) from
uniform random samples the learn with rounding (LWRq,p,n,m) problem. In [5],
Banerjee et al. show that the LWRq,p,n,m is at least as hard as LWEq,n,m,α for
an error rate α proportional to 1/p, and super-polynomial q (q � p).

In order to make our D-PKE scheme secure in the auxiliary-input setting, it
seems that we need more than the pseudorandomness of LWRq,p,n,m with uni-
formly random secret. We hope the LWRq,p,n,m samples still to be uniformly
random even given some auxiliary information of the secret. That is, we want
(A, �Ats�p, f(s)) ≈ (A,u, f(s)) for any hard-to-invert function f . Analogous re-
sult of LWE problem was shown in [15], namely (A,Ats+e, f(s)) ≈ (A,u, f(s))
for properly chosen parameters. We briefly explain this statement. LWE assump-
tion implies that At can be substituted by Z = B ·C+E, where B ← Zm×d

q ,

C ← Zd×n
q , and E ∈ Zm×n is the error matrix (d is determined by the function

f). Considering the distribution (B,C,E,BCs+Es+ e, f(s)). If s is sampled
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from “small” subgroup in Zn
q such as {0, 1}n, Es is “small”. For sufficiently

“large” e, the distribution of e statistically hides Es. Then we only need to
consider the distribution (B,C,E,BCs+ e, f(s)). According to the generalized
Goldreich-Levin theorem of Dodis et al. in [13], the distributions of (Cs, f(s))
and (u, f(s)) are statistically close. Applying LWE again, we obtain the above
statement.

Randomized IBE schemes from lattices have been proposed in [14,12,2,3,17].
We adopt some of the techniques in [2] to construct our D-IBE. A non-trivial
problem is how to use the artificial abort technique. The artificial abort technique
in [2] does not work here, because that method only works on polynomial q. But,
to guarantee the security, here we need q to be super-polynomial. We solve this
problem by extending the technique first appeared in [23]. We remark that some
parts of the proofs of our schemes follow the framework of [5].

1.3 Related Works

Deterministic public key encryption for high min-entropic messages was
introduced by Bellare, Boldyreva and O’Neill [6] who formalized a definitional
framework, which was later refined and extended in [7,9,18]. Bellare et at. [6]
presented two constructions in the random oracle model: The first relies on any
semantically secure public key encryption scheme; whereas the second relies on
the RSA function. Constructions in the standard model were then presented in
[7,9], based on trapdoor permutations with (almost) uniformly plaintext space
[7], and lossy trapdoor functions [9]. However these constructions fall short
in the multi-message setting, where arbitrarily related messages are encrypted
under the same public key. O’Neill [18] made a step forwards addressing this
problem.

Deterministic public key encryption for auxiliary inputs was proposed by
Brakerski and Segev [11]. In the auxiliary-input setting, Brakerski and Segev
[11] proposed two constructions in the standard model. The first one is based on
d-linear assumptions. This scheme is also secure in the multi-user setting, which
solved an open problem in [6]. The second one is based on a rather general class
of subgroup indistinguishability assumptions. These two schemes are secure with
respect to auxiliary inputs that are sub-exponentially hard to invert.

Deterministic identity-based public key encryption was introduced by Bellare,
Kiltz, Peikert and Waters [8]. Bellare et al. aimed to construct identity-based
lossy trapdoor functions (IB-LTDFs), which is an extension of lossy trapdoor
functions [20]. They built a selectively secure D-IBE as an application of IB-
LTDFs. Bellare et al. gave two constructions of IB-LTDFs, while only the one
based on Decision Linear Diffie-Hellman assumption can be used to get D-IBE
schemes1. Since the inherent limitations of IB-LTDFs, it’s hard to directly used
to construct adaptively secure D-IBE schemes.

1 The other identity-based lossy trapdoor function is based on LWE assumption.
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2 Preliminaries

For an integer m, we denote [m] as a integer set {1, ...,m}. We use bold capital
letters to denote matrices, and bold lowercase letters to denote vectors. The
notation At denotes the transpose of the matrix A. When we say a matrix
defined over Zq has full rank, we mean that it has full rank modulo q. If A1 is an
n×m matrix and A2 is an n×m′ matrix, then [A1|A2] denotes the n×(m+m′)
matrix formed by concatenating A1 and A2. If x1 is a vector of length m and x2

is of length m′ , then we let [x1|x2] denote the length m+m′ vector formed by
concatenating x1 and x2. When doing matrix-vector multiplication, we always
view vectors as column vectors.

A function negl(λ) is negligible, if it vanishes faster than the inverse of any
polynomial in λ. The statistical distance between two distributions X,Y over
some finite or countable set S is defined as Δ(X,Y ) = 1

2

∑
s∈S
∣∣Pr[X = s] −

Pr[Y = s]
∣∣. X and Y are statistically indistinguishable if Δ(X,Y ) is negligible.

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integer mod-
ulo q, and we represent Zq by the numbers {−� q−1

2 
, ..., � q−1
2 �}. We define a

“rounding” function �·�p : Zq → Zp, where q ≥ p ≥ 2, as �x�p = �(p/q) · x�
mod p. We extend �·�p component-wise to vectors and matrices over Zq.

2.1 Lattices

A full-rank m-dimensional integer lattice Λ ⊆ Zm is a discrete additive subgroup
whose linear span is Rm. Every integer lattice is generated as the Z-linear com-
bination of some basis of linearly independent vectors B = {b1, ...,bm} ⊂ Zm,
i.e.,Λ = {

∑m
i=1 zibi : zi ∈ Z}. In this work we deal exclusively with “q-ary”

lattices. For a matrix A ∈ Zn×m
q , define the integer lattices

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.

Let S = {s1, ..., sk} be a set of vectors in Rm. We use S̃ = {s̃1, ..., s̃k} to denote
the Gram-Schmidt orthogonalization of the vectors s1, ..., sk. We use ‖S‖ to
denote the length of the longest vector in S, and ‖S‖∞ to denote the largest
magnitude of the entries in S . For a real-valued matrix R, we let s1(R) denote
the largest singular value of R, i.e. s1(R)=max‖u‖=1‖Ru‖.

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive
parameter σ ∈ R>0, let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian func-
tion on Rm with center c and parameter σ. Let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the

discrete integral of ρσ,c over Λ, and let DΛ,σ,c be the discrete Gaussian distribu-
tion over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ) . For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated

as ρσ and DΛ,σ, respectively.
We recall the learning with errors (LWE) problem, a classic hard problem

on lattices defined by Regev [21]. The (decisional) learning with errors problem
LWEq,n,m,α, in dimension n with error rate α ∈ (0, 1), stated in matrix form, is:
given an input (A,b), where A ∈ Zn×m

q for anym=poly(n) is uniformly random
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and b ∈ Zm
q is either of the form b = Ats + e mod q for uniform s ∈ Zn

q and
e ← DZm,αq or is uniformly random (and independent of A), distinguish which is
the case, with non-negligible advantage. It is known that when αq ≥ 2

√
n, this

decision problem is at least as hard as approximating several problems on n-
dimensional lattices in the worst-case to within Õ(n/α) factors with a quantum
computer [21] or on a classical computer for a subset of these problems [19]. In
the following, we list some useful facts that make our constructions work.

Lemma 1 ([17] Lemma 2.11). Let x ← DZ,r with r > 0, then with over-
whelming probability, |x| ≤ r

√
n.

Lemma 2 ([4] Lemma 2.1). Let q, n,m be positive integers with q ≥ 2 be
prime, and m ≥ n lg q + ω(lgλ). Let A ← Zn×m

q and R ← {−1, 1}m×m. Then
(A,AR) is statistically close to uniform.

Lemma 3 ([2] Lemma 15). Let R be a k×m matrix chosen at random from
{−1, 1}k×m. Then with overwhelming probability, s1(R) ≤ 12 ·

√
k +m.

Lemma 4 ([4] Lemma 3.5). Let q, n,m be positive integers with q ≥ 2 and
m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm TrapGen(q, n,m)
that outputs a pair (A,T) ∈ Zn×m

q × Zm×m such that A is statistically close to

uniform in Zn×m
q and T is a basis for Λ⊥(A), satisfying ‖T‖∞ ≤ O(n lg q) and

‖T̃‖ ≤ O(
√
n lg q) (Alwen and Peikert assert that the constant hidden in the first

O(·) is no more than 20).

Lemma 5 ([2] Theorem 17). Let q > 2,m > n,A,B ∈ Zn×m
q ,TA be a basis of

Λ⊥(A), and σ ≥ ‖T̃A‖·ω(
√
logm). There exists an efficient randomized algorithm

SampleLeft that, takes as inputsA,B,TA, σ, and outputs a basis S of Λ⊥(U) for
U = [A|B] with ‖S‖ ≤ O(σ ·m) whose distribution depends on U, σ.

Lemma 6 ([2] Theorem 18). Let q > 2,m > n, A,B ∈ Zn×m
q , B be full rank,

R ∈ {−1, 1}m×m, TB be a basis of Λ⊥(B), and σ ≥ ‖T̃B‖ · s1(R) · ω(
√
logm).

There exists an efficient randomized algorithm SampleRight that, takes as inputs
A,R,B,TB, σ, and outputs a basis S of Λ⊥(U) for U = [A|AR+B] with
‖S‖ ≤ O(σ · m) whose distribution depends on U, σ. Note that this algorithm
still works if we replace B with kB or CB, where k ∈ Zq is coprime with q and
C ∈ Zn×n

q is full-rank.

We consider any auxiliary input f(x) from which it is hard to recover the input
x. We say that a function f is ε-hard-to-invert with respect to a distribution D, if
for every efficient algorithm A it holds that Pr[A(f(x)) = x] ≤ ε over the choice
of x ← D and the internal coin tosses of A. We describe a useful statement as
follow which is crucial to our constructions.

Lemma 7 ([15] Theorem 5). Let k lg t > lg q+ω(lgλ), t = poly(λ). Let D be
any distribution over Zn

t and f : Zn
t → {0, 1}∗ be any (possibly randomized) func-

tion that is 2−k lg t-hard-to-invert with respect to D. For any super-polynomial
q = q(λ), and any m = poly(n), any α, β ∈ (0, 1) such that α/β = negl(λ).

(A,Ats+ e, f(s)) ≈ (A,u, f(s)),
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where A ← Zn×m
q , s ← D ⊆ Zn

t and u ← Zm
q are uniformly random and

e ← Dm
Z,βq. Assuming the LWEq,d,m,α assumption, where d � k lg t−ω(lg λ)

lg q .

For the case of simplicity, we denote the AdvLWEq,n,m,β,f
(λ) as the advantage of

any efficient distinguisher of the above two distribution in Lemma 7. According
to Lemma 7, we know that AdvLWEq,n,m,β,f

(λ) is negligible in λ. Assuming the

LWEq,d,m,α assumption, where d � k lg t−ω(lg λ)
lg q .

2.2 Security Definition

In this section, we describe the security notions introduced in [11]. Brakerski and
Segev [11] formalized three security notions with respect to auxiliary inputs,
and proved that all these three are equivalent. Brakerski and Segev [11] also
showed that for the case of blockwise-hard-to-invert (see [11] for a definition of
blockwise-hard-to-invert function) auxiliary inputs, encrypting a single message
is equivalent to encrypting multiple messages. For the case of simplicity, in this
paper, we only consider the case of a single message. In the single message case,
hard-to-invert function and the blockwise-hard-to-invert function are equivalent.
Furthermore, we slightly extend the notion in [11]. We require the ciphertext is
indistinguishable from uniformly random elements in the ciphertext space. This
property implies the strong PRIV1-IND notion defined in [11] and recipient
anonymity.

A deterministic public key encryption scheme consists of three algorithms:
(KeyGen, Enc, Dec). The probabilistic KeyGen algorithm produces a secret key
and a corresponding public key. The deterministic Enc algorithm uses the public
key to map plaintexts into ciphertexts. The deterministic Dec algorithm uses the
secret key to recover plaintexts from ciphertexts.

Definition 1. A deterministic public key encryption scheme D-PKE=(KeyGen,
Enc,Dec) is PRIV1-INDr-secure with respect to ε-hard-to-invert auxiliary inputs
if for any probabilistic polynomial-time algorithm A, for any efficiently sam-
pleable distributions M, and any efficiently computable F = {f} that is ε-hard-
to-invert with respect to M such that the advantage of A in the following game
is negligible.

AdvPRIV 1-INDr
D-PKE,A,F (λ) =

∣∣∣Pr[(pk, sk) ← KeyGen(λ); b← {0, 1};m← M; f ← F ;

c∗0 = Enc(pk,m); c∗1 ← C; b′ ← A(pk, c∗b , f(m)) : b = b′]− 1/2
∣∣∣.

Where C is the ciphertext space. The probability is taken over the choices of
m←M, (pk, sk) ← KeyGen(λ), and over the internal coin tosses of A.

The multi-user setting of deterministic public key encryption is a straightfor-
ward extension of the above definition. Namely, for any efficient adversary A,
given polynomial many encryptions of the related messages under multiple pub-
lic keys and auxiliary information of these message, can not distinguish them
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from uniformly random elements in the ciphertext space with the same auxil-
iary information.

A deterministic identity-based public key encryption consists of four algo-
rithms: (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec). The probabilistic IBE.Setup
algorithm generates public parameters, denoted by PP , and a master keyMSK.
The possibly probabilistic IBE.KGen algorithm uses the master key to extract a
private key skid corresponding to a given identity id. The deterministic IBE.Enc
algorithm encrypts messages for a given identity. The deterministic IBE.Dec

algorithm decrypts ciphertexts using the private key.

Definition 2. A deterministic identity-based public key encryption scheme D-
IBE=(IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) is PRIV1-ID-INDr-secure with
respect to ε-hard-to-invert auxiliary inputs if for any probabilistic polynomial-
time algorithm A, for any efficiently sampleable distribution M, and any effi-
ciently computable F = {f} that is ε-hard-to-invert with respect to M, such that
the advantage of A in the following game is negligible.

AdvPRIV 1-ID-INDr
D-IBE,A,F (λ) =

∣∣∣Pr[(PP,MSK) ← IBE.Setup(λ);

id∗ ← AIBE.KGen(·)(PP ); b← {0, 1};m←M; f ← F ; c∗0 = IBE.Enc(PP, id∗,m);

c∗1 ← C; b′ ← AIBE.KGen(·)(PP, c∗b , f(m)) : b = b′]− 1/2
∣∣∣.

Where C is the ciphertext space, and oracle IBE.KGen(·) on input id gener-
ates a private key skid for the identity id with the restriction that A is not
allowed to query id∗. The probability is taken over the choices of m ← M,
(PP,MSK) ← IBE.Setup(λ), skid ← IBE.KGen(PP, id,MSK), and over the
internal coin tosses of A.

3 The D-PKE Scheme

In this section, we propose a deterministic public key encryption scheme in the
auxiliary-input setting. Before going to the concrete scheme, we first give a useful
lemma, i.e. a trapdoor to invert the rounding function.

Lemma 8. Let p, q, n,m be positive integers with q ≥ p ≥ 2. Let A ∈ Zn×m
q be

full-rank, and T be a basis of Λ⊥(A) with ‖T‖∞ < p/m. Given c = �Atx�p,
where x ∈ Zn

t with t ≤ q, there is a polynomial-time algorithm Invert(c,A,T)
that outputs x.2

Proof. Given c = �Atx�p, rewrite it into c = (p/q)Atx+ e+ pv, where e ∈ Rm

is an “error” vector with ‖e‖∞ ≤ 1/2, and v ∈ Zm. Then compute Ttc =
(p/q)(AT)

t
x+Tte+ pTtv. Since T is a basis of Λ⊥(A), we have

Ttc = pv′ +Tte+ pTtv = Tte+ pw,

2 The strong trapdoor presented in [17] can be used here. However, we have to sample
a “short” basis first, and we do not know how to “directly” use the strong trapdoor.
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for some v′,w ∈ Zm. Since Ttc and pw are integer vectors, then Tte is an integer
vector as well. Therefore, Ttc = Tte mod p. By the hypothesis of T, we know
‖Tte‖∞ ≤ 1/2·m·‖T‖∞ < p/2. Then we get thatTte mod p = Tte, and obtain
e, since T is invertible in R. We next compute (q/p)(c− e) = Atx + qv, then,
(q/p)(c− e) mod q = Atx. Since A is full-rank modulo q, x can be recovered
by Gaussian elimination. ��

The D-PKE scheme is described as follows. Set the parameters p, q, n,m as
specified in Sec. 3.1.

– Key Generation. Algorithm KeyGen(λ) takes as input a security parameter
λ. It uses the algorithm from Lemma 4 to generate a (nearly) uniform matrix
and a trapdoor, i.e., (A,T) ← TrapGen(q, n,m). It outputs pk = A ∈ Zn×m

q

and sk = T ∈ Zm×m.

– Encryption. Algorithm Enc(pk,m) takes as input a public key pk = A and
a message m ∈ Zn

t (⊂ Zn
q ). It outputs a ciphertext c = �Atm�p ∈ Zm

p .

– Decryption. Algorithm Dec(sk, c) takes as input a secret key sk = T and a
ciphertext c ∈ Zm

p . It first computes m ← Invert(c,A,T). Then, if m ∈ Zn
t

it outputs m, and otherwise it outputs ⊥ .

3.1 Correctness and Parameters

For the system to work correctly, we need to ensure that: (1) TrapGen can
operate (i.e. m ≥ 6n lg q); (2) Lemma 8 holds; (3) Lemma 7 holds. To satisfy
these requirements we set the parameters (q, p,m, n) as follows:

n = λ, q = the prime nearest to 2n
δ

, m = �6n1+δ�, p = �120n2+2δ�,

where δ is constant between 0 and 1. Since A is uniformly random in Zn×m
q

and m ≥ 6n1+δ, with overwhelming probability this matrix will have rank n.
According to the Lemma 7 and the Theorem 1 which we will give a proof in
the next subsection. We obtain that the security of this scheme is based on the

LWEq,d,m,α, where d � k lg t−ω(lg λ)
lg q , and 1/α = 2n

δ′
(0 < δ′ < δ). Given the

state of art algorithms, this problem is sub-exponentially hard. Furthermore,
we can choose k lg t to be sub-linear. Therefore, our auxiliary inputs are sub-
exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expansion
factor in our scheme are O(n2+2δ), O(n3+3δ), O(n1+δ lg n), and O(nδ lg n/ lg t)
respectively. To optimize the ciphertext expansion factor, we can choose t = n,
which makes the ciphertext expansion factor to be O(nδ). In [11], these values are
n2|G|, n3, n|G| and |G| respectively,3 where |G| denotes the length of elements
in group G with order 2n, It’s easy to see that |G| ≥ n.
3 One can encrypt large messages (other that bits) to reduce the ciphertext expansion
factor, but in this case, it needs much more exponent arithmetics to decrypt.
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3.2 Security of the D-PKE Scheme

Theorem 1. For any k > (lg q + ω(lgλ))/ lg t, t = poly(λ) ≤ q. The D-PKE
scheme is PRIV1-INDr-secure with respect to 2−k lg t-hard-to-invert auxiliary in-
puts. If Lemma 7 holds, where 1/β ≥ m · p · nω(1), q = nω(1), and p = poly(λ).

Proof. For any distribution M over Zn
t , let F = {f} be 2−k lg t-hard-to-invert

with respect to distribution M. To prove this theorem, we define a series of
games, and give a reduction from the Lemma 7 with respect to distribution M.

Game G0. This game is the original PRIV1-INDr game with adversary A. By
Xi, we denote the event b = b′ in Game Gi. By definition, |Pr[X0] − 1/2| =
AdvPRIV 1-INDr

D-PKE,A,F (λ).

Game G1. This game is identical to game G0, except that the challenger choose
A uniformly at random in Zn×m

q , and uses A as the public key given to A. Ac-
cording to Lemma 4, it follows that |Pr[X1]−Pr[X0]| ≤ negl(λ), for unbounded
adversary A.

Game G2. This game is identical to game G1, except the way to generate
challenge ciphertext. The challenger samples m ← M, and samples e ← Dm

Z,βq.

Let b = Atm+ e mod q. The challenger sets c∗0 = �b�p, c∗1 as in game G1, i.e.
chosen at random in Zm

p . It outputs (A, c∗b , f(m)) to A, but with one exception:
we define a “bad event” Bad2 to be

Bad2 � �b+ [−B,B]m�p �= {�b�p},

where B = βq
√
n. If Bad2 occurs on any of b, the challenger immediately abort

the game.
If Bad2 does not occur for the pair (A,b), then we have �b�p = �Atm+ e�p =

�Atm�p with overwhelming probability over the choice of e ← Dm
Z,βq, because

‖e‖∞ ≤ βq
√
n with overwhelming probability according to Lemma 1. It follows

that for any attacker A,

|Pr[X2]− Pr[X1]| ≤ Pr[Bad2] + negl(λ).

We do not directly bound the probability of Bad2 occurring in G2, instead de-
ferring it to the analysis of the next game, where we can show that it is indeed
negligible.

Game G3. In this game, the challenger chooses b ∈ Zm
q uniformly at random,

and samples m ← M. It then sets c∗0 = �b�p, and chooses c∗1 uniformly at
random in Zm

p . The challenger gives (A, c∗b , f(m)) to A, subject to the same
“bad event” Bad3 and abort condition as described in the game G2 above. Un-
der Lemma 7, and by the fact “bad event” can be tested efficiently given b,4

4 Given b = (b1, ..., bm), for each bi, one can compute �bi − B�p and �bi + B�p and
tests these two values equal to �bi�p or not.
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a straightforward reduction implies that |Pr[X3] − Pr[X2]| ≤ negl(λ) for any
efficient attacker A. For the same reason, it also follows that∣∣Pr[Bad3]− Pr[Bad2]

∣∣ ≤ negl(λ).

Now for each uniform b, Pr[Bad3] ≤ m(2B+1)p/q = negl(λ), by assumption on
q and β. It follows that

Pr[Bad2] ≤ negl(λ) ⇒ |Pr[X2]− Pr[X1]| ≤ negl(λ).

Game G4. This game is similar to game G3, with b being chosen uniformly at
random, m being sampled from M, and Bad4 being defined similarly. However,
in this game the challenger always returns (A, c∗b , f(m)) to A, even when Bad4
occurs. By the analysis above, we have that for any adversary A,

|Pr[X4]− Pr[X3]| ≤ Pr[Bad4] = Pr[Bad3] ≤ negl(λ).

Since f(m) is independent of b and the statistical distance between U(Zn×m
q ,Zm

p )
and U(Zn×m

q ) × �U(Zm
q )�p is at most mp/q = negl(λ) by assumption on q, so

we have |Pr[X4]− 1/2| = negl(λ) for any efficient adversary A.
Finally, by the triangle inequality, we have |Pr[X0] − 1/2| ≤ negl(λ) for any

efficient adversary A, which completes the proof. ��

The Multi-user Setting. It’s easy to extend the above theorem to multi-user
setting where linear related messages m1, ...,mk are encrypted under any poly-
nomial number of public keys A1, ...,Ak. Linear related messages mean that
there exist invertible and efficiently computable matrices V2, ..,Vk ⊆ Zn×n

q

and vectors w2, ...,wk ∈ Zn
q , such that mi = Vim1 + wi (2 ≤ i ≤ k). In

this case, the joint distribution of ciphertexts is (�At
1m1�p, ..., �At

kmk�p). I.e.,
(�At

1m1�p, �At
2V2m1 + At

2w2�p, ..., �At
kVkm1 + At

kwk�p). Since Vi is invert-
ible and Ai is uniformly random for 2 ≤ i ≤ k, then AiVi is uniformly random.
Because Lemma 7 holds for any m = poly(n), Vi,wi are efficient computable,
using the technique in the above proof, we can obtain that our D-PKE scheme is
secure in the multi-user for linear related messages. Due to the space limitation,
we omit the proof here.

4 The D-IBE Scheme

In this section, we describe our D-IBE scheme. Set the parameters p, q, n,m, σ
as specified in Sec. 4.1. We treat an identity id as a non-zero sequence of  bits,
i.e, id = (b1, ..., b
) ∈ {0, 1}
\{0
}.

– Setup. Algorithm IBE.Setup(λ) takes as input a security parameter λ. It
uses the algorithm from Lemma 4 to generate (A0,T) ← TrapGen(q, n,m).
Select  + 1 uniformly random matrices A1, ...,A
,B in Zn×m

q . It outputs
PP = (A0,A1, ...,A
,B), MSK = T.
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– Key Generation. Algorithm IBE.KGen(PP,MSK, id) takes as input pub-
lic parameters PP , a master secret key MSK, and an identity id ∈ {0, 1}
.
It first computes Fid = [A0|

∑

i=1 biAi + B], then it uses the algorithm in

Lemma 5 to generate a short basis of Λ⊥(Fid). I.e., TFid
← SampleLeft(A0,∑


i=1 biAi +B,T, σ). It outputs skid = TFid
.

– Encryption. Algorithm IBE.Enc(id,m) takes as input public parameters
PP , an identity id ∈ {0, 1}
, and a message m ← Zn

t . It first computes

Fid = [A0|
∑


i=1 biAi +B], then let c = �Ft
idm�p. It outputs c.

– Decryption. Algorithm IBE.Dec(PP, id, skid, c) takes as input public pa-
rameters PP , an identity id, a secret key skid and a ciphertext c ∈ Z2m

p .
It first computes m ← Invert(c,Fid, skid). Then, if m ∈ Zn

t it outputs m,
and otherwise it outputs ⊥ .

4.1 Correctness of Parameters

To ensure the correctness condition, we require: (1) TrapGen can operate (i.e.
m ≥ 6n lg q); (2) Lemma 8 holds; (3) Lemma 7 holds; (4) σ is sufficiently large
for SampleLeft and SampleRight. To satisfy all these requirements, we set the
parameters (q, p,m, n, σ) as follows:

n = λ, q = the prime nearest to 2n
δ

, m = �6n1+δ�, σ = 6n1.5+δ, p = �3n3.5+3δ�,

where δ is constant between 0 and 1. According to Lemma 7 and Theorem 2
which we will give a proof in the next subsection. We obtain an adaptively secure

scheme whose security is based on the LWEq,d,m,α, where d � k lg t−ω(lg λ)
lg q , and

1/α = 2n
δ′

(0 < δ′ < δ). Given the state of art algorithms, this problem is sub-
exponentially hard. Furthermore, we can choose k lg t to be sub-linear. Therefore,
our auxiliary inputs are sub-exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expan-
sion factor in our scheme are O(3( + 2)n2+2δ), O(n3+3δ), O(2n1+δ lg n), and
O(nδ lg n/ lg t) respectively. To optimize the ciphertext expansion factor, we can
choose t = n, which makes the ciphertext expansion factor to be O(nδ).

Remark. We also give a more efficient selectively secure D-IBE, the security
definition and the concrete construction are given in the full version.

4.2 Security of D-IBE

Theorem 2. For any k > (lg q + ω(lg λ))/ lg t, t = poly(λ), prime integer q =
nω(1), and p = poly(λ). Assume an adversary A on D-IBE’s PRIV1-ID-INDr
security with respect to 2−k lg t-hard-to-invert auxiliary inputs, makes at most
Q(λ) secret key queries. Then for every polynomial S(λ) and 1/β ≥ m2 ·p ·nω(1)
we have
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AdvPRIV 1-ID-INDr
D-IBE,A,F (λ) ≤

2AdvLWEq,n,m,β,f
(λ)

Δ
+

1

S(λ)
+ negl(λ)

where Δ = 1
8(
+1)Q , and f is any 2−k lg t-hard-to-invert function.

According to Lemma 7 and because S is arbitrary, we obtain:

Corollary 1. Let q = nω(1) be a prime integer, p = poly(λ), 1/β ≥ m2 ·p·nω(1),
and α/β = negl(λ). Assuming LWEq,d,m,α assumption with d � k lg t−ω(lg λ)

lg q ,

then for any k > (lg q+ω(lgλ))/ lg t, t = poly(λ), the D-IBE scheme is PRIV1-
ID-INDr-secure with respect to 2−k lg t-hard-to-invert auxiliary inputs.

Proof. For any distribution M over Zn
t , let F = {f} be 2−k lg t-hard-to-invert

with respect to distribution M. To prove this theorem, we define a series of
games, and give a reduction from Lemma 7 with respect to distribution M.

Game G0. This game is the original PRIV1-ID-INDr game with adversary A.
We assume without loss of generality that A always makes exactly Q = Q(λ)
secret key queries. We denote these queries by idj for 1 ≤ j ≤ Q, and the chal-
lenge identity chosen by A as id∗. By Xi, we denote the event b = b′ in Game
Gi. By definition, |Pr[X0]−1/2| = AdvPRIV 1-ID-INDr

D-IBE,A,F (λ). In the following, Let

IDQ = (id∗, id1, ..., idQ).

Game G1. In this game, the challenger slightly changes the way to generate
the matrices Ai, i ∈ [] and B. At the setup phase, the challenger first sets an
integer M = 4Q, and chooses an integer k uniformly at random in between 0
and . It then chooses a random  + 1-length vector, x = (x′, x1, ..., x
), where
x′ is chosen uniformly at random in {1, ...,M} and xi for i ∈ [] are chosen

uniformly at random in ZM . We define F (id) = (q− kM)+ x′+
∑


i=1 bixi, note
that −kM + x′ �= 0. And we define a binary function K(id) as

K(id) =

{
0 if x′ +

∑

i=1 bixi = 0 mod M

1 otherwise.

Next it chooses matrices B′ uniformly at random in Zn×m
q , and chooses Ri ←

{−1, 1}m×m for i ∈ []. The challenger sets B = (q − kM + x′)B′ mod q, and
constructsAi for i ∈ [] asAi = A0Ri+xiB

′. SinceB′ is uniform, and q is prime,
thenB is uniform (since−kM+x′ mod q �= 0 for sufficiently large q). By Lemma
4, A0 is uniform with overwhelming probability, then according to Lemma 2, Ai

is statistically close to uniform. Therefore, we have |Pr[X1]−Pr[X0]| ≤ negl(λ).
Note that, in G1,

Fid = [A0|A0


∑
i=1

biRi + (q − kM + x′ +

∑

i=1

bixi)B
′]

= [A0|A0


∑
i=1

biRi + F (id)B
′] mod q
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Furthermore, F (id) = 0 mod q implies K(id) = 0, since q is super-polynomial,
and  and M are polynomials, we can assume q � M for any reasonable values
of q,  and M .

Game G2. In this game, after the adversary has terminated, the challenger
throws an event Good2 independently with probability Δ = 1

8(
+1)Q . The chal-

lenger aborts the experiment (and outputs a uniformly random bit) if ¬Good2
occurs. We get

Pr[X2]− 1/2 = Pr[Good2](Pr[X1]− 1/2) = Δ · (Pr[X1]− 1/2).

Game G3. In this game, the challenger changes the abort policy. We define a
function as

τ(x, IDQ) =

{
0 if (∧Q

i=1K(idi) = 1) ∧ x′ +
∑


i=1 b
∗
i xi = kM

1 otherwise.

Let E denote the event that τ(x, IDQ) evaluates to 0 for a given choice of x.
According to the analysis in [23] (Claim 2), we know that pE = Pr[E] ≥ Δ =

1
8(
+1)Q . Ideally, we would like to replace event Good2 from game G2 with event

E. Unfortunately, E might not be independent of A’s view, so we use artificial
abort techniques. That is, given the identities in all IDQ, we approximate pE
by sufficiently often sampling values of x. Hoeffding’s inequality yields that with
�λS/Δ� samples, we can obtain an approximation p̂E ≥ Δ of pE that satisfies
Pr[|pE − p̂E | ≥ Δ/S] ≤ 1/2λ. Now the challenger finally aborts if E does not
occur. But even if E occurs (which might be with probability pE ≥ Δ), the
challenger artificially enforces an abort with probability 1−Δ/p̂E. We call Good3
be the event the challenger does not abort. We always have

Pr[Good3] = 1−
(
(1− pE) + pE(1 −Δ/p̂E)

)
= Δ · pE/p̂E.

Hence, except with probability 1/2λ,

|Pr[Good3]−Pr[Good2]| = |Δ−Δ·pE/p̂E | = Δ·|(pE−p̂E)/p̂E | ≤ Δ·Δ/Sp̂E ≤ Δ/S.

Since the above inequality holds for arbitrary IDQ except with probability 1/2λ,
we obtain that the statistical distance between the output of game G2 and G3

is bounded by Δ/S + 2−λ. Hence, |Pr[X3]− Pr[X2]| ≤ Δ/S + 2−λ.

Game G4. In this game, the challenger makes the following conceptual change
regarding secret key queries and challenge ciphertext. Namely, upon receiving
a secret key query for id ∈ IDQ\id∗, the challenger immediately aborts (with
uniform output) if K(id) = 0. Upon receiving the challenge identity id∗, the
challenger immediately aborts (with uniform output) if x′ +

∑

i=1 b

∗
ixi �= kM .

This change is purely conceptual: since K(id) = 0, for id ∈ IDQ\id∗, or

x′ +
∑


i=1 b
∗
i xi �= kM , event E cannot occur, so the Game G4 would even-

tually abort as well. We get Pr[X4] = Pr[X3].
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Game G5. In this game, the challenger changes the ways to generateA0,B
′ and

to answer secret key queries. By the change from game G4, we may assume that
K(id) = 1 for all id ∈ IDQ\id∗ and x′ +

∑

i=1 b

∗
ixi = kM for id∗. This implies

that F (id) �= 0 mod q for all id ∈ IDQ\id∗, and F (id∗) = 0 mod q. The chal-
lenger choosesA0 uniformly at random in Zn×m

q and use Lemma 4 to generateB′

with a trapdoor (B′,TB′) ← TrapGen(q, n,m). From Lemma 4 we know that the
distribution of A0,B

′ are statistically close. Upon receiving a secret query for id,
the challenge use the algorithmTFid

← SampleRight(A0,
∑


i=1 biRi,B
′,TB′ , σ),

this could be done, since F (id) �= 0 mod q. This results in the same distribution
of secret keys as in Game G4 with sufficiently large σ, up to negligible statistical
distance. Thus |Pr[X5] − Pr[X4]| ≤ negl(λ). Note that, in this case the matrix

of the challenge ciphertext is as Fid∗ = [A0|A0R
∗], where R∗ =

∑

i=1 b

∗
iRi.

Game G6. In this game, the challenger changes the way to generate challenge
ciphertext. The challenger samples m ←M, and sample error vector e ← Dm

Z,βq.

we denote b = At
0m+ e mod q. It sets ĉ = [bt|btR∗]t and let c∗0 = �ĉ�p, c∗1

be as in the game G5, i.e. chosen at random in Z2m
p . The challenger returns

(c∗b , f(m)) to A, but with one exception: we define a “bad event” Bad6 to be

Bad6 � �ĉ+ [−B,B]2m�p �= {�ĉ�p},

where B = βq
√
nm. If Bad6 occurs on any of ĉ, the challenger immediately

abort the game.
Since (R∗)tb = (A0R

∗)tm + (R∗)te, and R∗ =
∑


i=1 b
∗
iRi, where Ri ∈

{−1, 1}m×m, we have ‖(R∗)te‖∞ ≤ βq√nm with overwhelming probability,
since e ← Dm

Z,βq according to Lemma 1. If Bad6 does not occur for some ĉ, then
we have

�ĉ�p =

[
�At

0m+ e�p
�(A0R

∗)tm+ (R∗)te�p

]
=

[
�At

0m�p
�(A0R

∗)tm�p

]
= �Ft

id∗m�p.

It immediately follows that for any adversary A

Pr[X6]− Pr[X5] ≤ Pr[Bad6] + negl(λ).

We do not directly bound the probability of Bad6 occurring in game G6, instead
deferring it to the analysis of the next game, where we can show that it is neg-
ligible.

Game G7. In this game the only difference is that challenger chooses b ∈
Zm
q uniformly at random, and samples m ← M. To generate the challenge

ciphertext, it sets ĉ = [bt|btR∗]t, and let c∗0 = �ĉ�p. It returns (c∗b , f(m)) to
A, subject to the same “bad event” Bad7 and abort condition as described in
the game G6 above. Under Lemma 7 and by the fact “bad event” can be tested
efficiently given ĉ, this implies that |Pr[X7]−Pr[X6]| ≤ AdvLWEq,n,m,β,f

for any
efficient attacker A. For the same reason, it also follows that∣∣Pr[Bad7]− Pr[Bad6]

∣∣ ≤ AdvLWEq,n,m,β,f
.
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Let us consider the pair (bt,btR∗), where b ∈ Zm
q is uniformly random, R∗ =∑


i=1 b
∗
iRi and Ri’s are pairwise independently chosen from {−1, 1}m at ran-

dom. Since id∗ �= 0
, there exists j, such that b∗j = 1. By Lemma 2 (when n = 1),

we have that (bt,btRj) is statistically close to U(Z2m
q ). Because Ri’s are pair-

wise independent, we obtain that (bt,btR∗) is statistically close to U(Z2m
q ).

This means that ĉ is statistically close to U(Z2m
q ), therefore for each uniform ĉ,

Pr[Bad7] ≤ 2m(2B+1)p/q = negl(λ), by assumption on q and β. It follows that

Pr[Bad6] ≤ AdvLWEq,n,m,β,f
+ negl(λ)

⇒ |Pr[X6]− Pr[X5]| ≤ AdvLWEq,n,m,β,f
+ negl(λ).

Game G8. This game is similar to game G7, with b ∈ Z2m
q being chosen uni-

formly at random, m being sampled from M, and Bad8 being defined similarly.
However, in this game the challenger always returns (c∗b , f(m)) to A, even when
Bad8 occurs. By the analysis above, we have that for any adversary A,

|Pr[X8]− Pr[X7]| ≤ Pr[Bad7] = Pr[Bad6] ≤ negl(λ).

According to the analysis in Game7, we know ĉ is uniformly random, up to
negligible statistical distance. Since f(m) is independent of ĉ and the statistical
distance between U(Z2m

p ) and �U(Z2m
q )�p is at most 2mp/q = negl(λ) by assump-

tion on q, so we have Pr[X8] − 1/2 ≤ negl(λ) for any efficient
adversary A.

Finally, by the triangle inequality, we obtain the result of Theorem 2. ��
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Abstract. The security of BGV-style homomorphic encryption schemes
over polynomial rings relies on rings of very large dimension. This large
dimension is needed because of the large modulus-to-noise ratio in the
key-switching matrices that are used for the top few levels of the evalu-
ated circuit. However, larger noise (and hence smaller modulus-to-noise
ratio) is used in lower levels of the circuit, so from a security standpoint
it is permissible to switch to lower-dimension rings, thus speeding up
the homomorphic operations for the lower levels of the circuit. However,
implementing such ring-switching is nontrivial, since these schemes rely
on the ring algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and
Vaikuntanathan, over polynomial rings of the form Z[X]/(X2n + 1), in
the context of bootstrapping. In this work we generalize and extend this
technique to work over any cyclotomic ring and show how it can be used
not only for bootstrapping but also during the computation itself (in
conjunction with the “packed ciphertext” techniques of Gentry, Halevi
and Smart).

1 Introduction

The last year has seen a rapid advance in the state of fully homomorphic encryp-
tion; yet despite these advances the existing schemes are still too inefficient for
most practical purposes. In this paper we make another step forward in making
such schemes more efficient. In particular we present a technique to reduce the
dimension of the ring needed for homomorphic computation of the lower lev-
els of a circuit. Our techniques apply to homomorphic encryption schemes over
polynomial rings, such as the scheme of Brakerski et al. [4, 5, 3], as well as the
variants due to Lòpez-Alt et al. [14] and Brakerski [2].

The most efficient variants of all these schemes work over polynomial rings
of the form Z[X ]/F (X), and in all of them the ring dimension (which is the
degree of F (X)) must be set high enough to ensure security: to be able to
handle depth-L circuits, these schemes must use key-switching matrices with

modulus-to-noise ratio of 2Ω̃(L·polylog(λ)), hence the ring dimension must also
be Ω̃(L · polylog(λ)) (even if we assume that ring-LWE [15] is hard to within

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 19–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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fully exponential factors).1 In practice, the ring dimension for moderately deep
circuits can easily be many thousands. For example, to be able to evaluate AES
homomorphically, Gentry et al. used in [13] circuits of depth L ≥ 50, with
corresponding ring-dimension of over 50000.

As homomorphic operations proceed, the noise in the ciphertext grows (or the
modulus shrinks, if we use the modulus-switching technique from [5, 3]), hence re-
ducing the modulus-to-noise ratio. Consequently, it becomes permissible to start
using lower-dimension rings in order to speed up further homomorphic compu-
tation. However, in the middle of the computation we already have evaluated
ciphertexts over the big ring, and so we need a method for transforming these
into small-ring ciphertexts that encrypt the same thing. Such a “ring switching”
procedure was described by Brakerski et al. [3], in the context of reducing the
ciphertext-size prior to bootstrapping. The procedure in [3], however, is specific

to polynomial rings of the form R2n = Z[X ]/(X2n−1

+1), and moreover by itself
it cannot be combined with the “packed evaluation” techniques of Gentry et al.
[11]. Extending this procedure is the focus of this work.

1.1 Our Contribution

In this work we present two complementary techniques:

– We extend the procedure from [3] to any cyclotomic ring R = Z[X ]/Φm(X)
for a composite m. This is important, since the tools from [11] for working
with “packed” ciphertexts require that we work with an odd integer m. For
m = u·w, we show how to break a ciphertext over the big ring R into a collec-
tion of u′ = ϕ(m)/ϕ(w) ciphertexts over the smaller ring R′ = Z[X ]/Φw(X),
such that the plaintext encrypted in the original big-ring ciphertext can
be recovered as a simple linear function of the plaintexts encrypted in the
smaller-ring ciphertexts.

– We then show how to take a “packed” big-ring ciphertext that contains many
plaintext values in its plaintext slots, and distribute these plaintext values
among the plaintext slots of several small-ring ciphertexts. If the original big-
ring ciphertext was “sparse” (i.e., if only few of its plaintext slots were used),
then our technique yields just a small number of small-ring ciphertexts, only
as many as needed to fit all the used plaintext slots.

The first technique on its own may be useful in the context of bootstrapping,
but it is not enough to achieve our goal of reducing the computational over-
head by switching to small-ring ciphertexts, since we still need to show how to
perform homomorphic operations on the resulting small-ring ciphertexts. This
is achieved by utilizing the second technique. To demonstrate the usefulness of
the second technique, consider the application of homomorphic AES computa-
tion [13], where the original big-ring ciphertext contains only 16 plaintext values

1 The schemes from [3, 2] can replace large rings by using higher-dimension vectors
over smaller rings. But their most efficient variants use big rings and low-dimension
vectors, since the complexity of their key-switching step is quadratic in the dimension
of these vectors.
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(corresponding to the 16 bytes of the AES state). If the small-ring ciphertexts
has 16 or more plaintext slots, then we can convert the original big-ring cipher-
text into a single small-ring ciphertext containing the same 16 bytes in its slots,
then continue the computation on this smaller ciphertext.

1.2 An Overview of the Construction

Our starting point is the polynomial composition technique of Brakerski et al.
[3]. When m = u · w then a polynomial of degree less than ϕ(m), a(X) =∑ϕ(m)−1

i=0 aiX
i, can be broken into u polynomials of degree less than ϕ(m)/u ≤

ϕ(w), by splitting the coefficients of a according to their index modulo u. Namely,
denoting by a(k) the polynomial with coefficients ak, ak+u, ak+2u, . . ., we have

a(X) =
u−1∑
k=0

ϕ(w)−1∑
j=0

ak+ujX
k+uj =

u−1∑
k=0

Xk

ϕ(w)−1∑
j=0

ak+ujX
uj =

u−1∑
k=0

Xka(k)(X
u).

(1)

We note that this “very syntactic” transformation of splitting the coefficients of
a high-degree polynomial into several low-degree polynomials, has the following
crucial algebraic properties:

1. The end result is a collection of “parts” a(k), all from the small ring R′

(which is a sub-ring of the big ring R, since w|m).
2. Recalling that f(x) �→ f(xu) is an embedding of R′ inside R, we have the

property that the original a can be recovered as a simple linear combination
of (the embedding of) the parts a(k).

3. The transformation T (a) = (a(0), . . . , a(u−1)) is linear, and as such it com-
mutes with the linear operations inside the decryption formula of BGV-type
schemes: If s is a big-ring secret key and c is (part of) a big-ring ciphertext,
then decryption over the big ring includes computing a = s · c ∈ R (and
later reducing a mod q and mod 2). Due to linearity, the parts of a can be
expressed in terms of the tensor product between the parts of s and c over
the small ring. Namely, T (s · c) is some linear function of T (s)⊗ T (c).

In addition to these algebraic properties, in the case considered in [3] where
m,w are powers of two, it turns out that this transformation also possesses the
following geometric property:

4. If a is a “short” element of R (in the canonical embedding of R), then all
the components a(k) ∈ R′ of T (a) are also short in the canonical embedding
of R′.

The importance of this last property stems from the fact that a valid ciphertext
in a BGV-type homomorphic encryption scheme must have short noise, namely
its inner product with the unknown secret key must be a short ring element.
Property 3 above is used to convert a big-ring ciphertext encrypting a (relative
to a big-ring secret key s) into a collection of “syntactically correct” small-ring
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ciphertexts encrypting the a(k)’s (relative to the small-ring secret key T (s)), and
Property 4 is used to argue that these small-ring ciphertexts are indeed valid.

Attempting to apply the same transformation in the case where m,w are
not powers of two, it turns out that the algebraic properties all still hold, but
perhaps the geometric property does not. In this work we therefore describe a
different transformation T (·) for breaking a big-ring element into a vector of
small-ring elements, that has all the properties 1-4 above,2 for any integers m,w
such that w|m. This transformation crucially uses the interpretation of R as
a dimension-ϕ(m)/ϕ(w) extension ring of R′, and is described in Section 3.2.
Another advantage of our transformation over the one from [3] is that it breaks
a big-ring element a ∈ R into only u′ = ϕ(m)/ϕ(w) small ring parts a(k), as
opposed to u = m/w parts for the transformation from [3].

A Key-Switching Optimization. One source of inefficiency in the ring-switching
procedure of Brakerski et al. [3] is that using the tensor product T (s) ⊗ T (c)
amounts essentially to having u small-ring ciphertexts, each of which is a
dimension-u vector over the small ring. Brakerski et al. point out that we can use
key-switching/dimension-reduction to convert these high dimension ciphertexts
into low-dimension ciphertexts over the small ring, but processing u ciphertexts
of dimension u inherently requires work quadratic in u. Instead, here we describe
an alternative procedure that saves a factor of u in running time.

Before using T (·) to break the ciphertext into pieces, we apply key-switching
over the big ring to get a ciphertext with respect to another secret key that
happens to belong to the small ring R′. (We again recall that R′ is a sub-ring
of R). The transformation T (·) has the additional property that when applied
to a small-ring element s′ ∈ R′ ⊂ R, the resulting vector T (s′) over R′ has
just a single non-zero entry, namely s′ itself. Hence T (s′)⊗ T (c) is the same as
just s′ · T (c), and this lets us work directly with low-dimension ciphertexts over
the small ring (as opposed to ciphertexts of dimension u). This is described in
Section 3.1, where we prove that key-switching into a key from the small subring
is as secure as ring-LWE in that small subring.

Packed Ciphertexts. As sketched so far, the ring-switching procedure lets us con-
vert a big-ring ciphertext encrypting an element a ∈ R into a collection of u′ small-
ring ciphertexts encrypting the parts a(k) ∈ R′. However, coming in the middle of
homomorphic evaluation, we may need to get small-ring ciphertexts encrypting
elements other than the a(k)’s. Specifically, if the original a encodes several plain-
text values in its plaintext slots (as in [18, 11]), we may want to get encryptions
of small-ring elements that encode the very same values in their slots.

We note that the plaintext values encoded in the element a ∈ R are the
evaluations a(ρi), where the ρi’s are primitive m-th roots of unity in some ex-
tension field F2d . (Equivalently, the evaluations a(ρi) correspond to the residues

2 An earlier version of the current work [10] used the same transformation as in [3],
and patched the problem with the geometric property by “lifting” everything from
the big ring Z[X]/Φm(X) to the even bigger ring Z[X]/(Xm − 1), using techniques
similar to [11, 7].



Ring Switching in BGV-Style Homomorphic Encryption 23

a mod pi, where the pi = 〈2, Fi(X)〉 are the distinct prime ideal factors of 〈2〉 in
the ring R. Hence the evaluation representation over F2d is just Chinese remain-
dering modulo 2 in R.)

Similarly, the plaintext values encoded in an element b ∈ R′ are the evalua-
tions b(τj), where the τj ’s are primitive w-th roots of unity in F2d (equivalently,
the residues of b modulo the prime ideal factors of 2 in R′). Our goal, then, is to
decompose a big-ring ciphertext encrypting a into small-ring ciphertexts encrypt-
ing some bk’s, such that for every i there are some j, k for which bk(τj) = a(ρi).

On a very high level, the approach that we take is to observe that the linear
transformation T (·) for break big-ring elements into vectors of small-ring parts,
must as a side-effect of induce some linear transformation (over F2d) on the values
in the plaintext slots. Hence after we apply T , we just need to compute homomor-
phically the inverse linear transformation (e.g., using the techniques from [11] for
computing on packed ciphertexts), thereby recovering the original values.

2 Notation and Preliminaries

For any positive integer u we let [u] = {0, . . . , u− 1}.

2.1 Algebraic Background

Recall that an ideal (in an arbitrary commutative ring R) is an additive subgroup
which is closed under multiplication by R. Below we typically denote ideals by
p, q, etc. An R-ideal p is prime if ab ∈ p (for some a, b ∈ R) implies a ∈ p or
b ∈ p (or both). When R′ is a sub-ring of R and p is an R′-ideal, we implicitly
identify p with its extension to R, namely the R-ideal pR. For an R-ideal p, the
quotient ring Rp = R/pR is a ring consisting of the residue classes a+ p for all
a ∈ R, with the ring operations induced by R.

For any positive integer m ≥ 2, let K = Q(ζm) ∼= Q[X ]/Φm(X) be the mth
cyclotomic number field (of degree ϕ(m)), and R = Z[ζm] ∼= Z[X ]/Φm(X) its
ring of integers, where ζm = exp(2π

√
−1/m) is the mth principal complex root

of unity, and Φm(X) =
∏

i∈Z∗
m
(X−ζim) ∈ Z[X ] is themth cyclotomic polynomial.

The elements ζjm (equivalently, Xj) for j ∈ [ϕ(m)] form a Q-basis of K and a Z-
basis of R, called the “power basis.” That is, any a ∈ K can be written uniquely

as a =
∑ϕ(m)−1

j=0 aj · ζjm for some ak ∈ Q, and a ∈ R if and only if every aj ∈ Z.
There are ϕ(m) ring homomorphisms from K to C that fix Q pointwise,

called embeddings, which are denoted σi : K → C for i ∈ Z∗
m and character-

ized by σi(ζm) = ζim. (Equivalently, σi(a(X)) = a(ζim) ∈ C when viewing K as
Q(X)/Φm(X).) We note that the σi are automorphisms of K, when viewing it
as a sub-field of C. The (field) trace is a Q-linear function TrK/Q : K → Q, which
can be defined as the sum of the embeddings: TrK/Q(a) =

∑
i∈Z∗

m
σi(a).

The canonical embedding σ : K → Cϕ(m) is the concatenation of all the em-
beddings, i.e., σ(a) = (σi(a))i∈Z∗

m
, and it endows K with a canonical geometry.

In particular, we define the Euclidean (2) and ∞ norms on K as
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‖a‖ := ‖σ(a)‖ =

√∑
i

|σi(a)|2 and ‖a‖∞ := ‖σ(a)‖∞ = max
i
|σi(a)|,

respectively. Note that ‖a · b‖ ≤ ‖a‖∞ · ‖b‖ for any a, b ∈ K, because the σi are
ring homomorphisms.

For some w|m, let u = m/w (so ζw = ζum) and u′ = ϕ(m)/ϕ(w), and let
K′ = Q(ζw) ⊆ K and R′ = Z[ζw] ⊆ R be the wth cyclotomic number field
and ring (respectively), with ϕ(w) embeddings σ′i : K

′ → C for i ∈ Z∗
w defining

the canonical embedding σ′ : K′ → Cϕ(w). Notice that when we restrict to the
subfield K′ = Q(ζum) of K, for any i ∈ Z∗

m we have σi = σ′i mod w, because

σi(ζ
u
m) = ζ

u·(i mod w)
m = σ′i mod w(ζw).

Observe that using the polynomial representation in the small ring R′ ∼=
Z[X ]/Φw(X), the element ζw is represented by the indeterminate X . However,
using polynomial representation in the big ring, R ∼= Z[X ]/Φm(X), the same
ring element ζw = ζum ∈ R′ ⊂ R is represented by the monomial Xu. In gen-
eral, if r′ ∈ R′ is a small-ring element represented by the polynomial b(X) ∈
Z[X ]/Φw(X), then the same small-ring element is represented by the polyno-
mial a(X) = b(Xu) mod Φm(X) ∈ Z[X ]/Φm(X), when viewed as an element in
the sub-ring R′ of R. In other words, the mapping f(X) �→ f(Xu) mod Φm(X),
mapping polynomials of degree less than ϕ(w) into a subset of the polynomials
of degree less than ϕ(m), is a ring embedding of Z[X ]/Φw(X) ∼= R′ as a sub-
ring of Z[X ]/Φm(X) ∼= R. Similarly, this mapping is also a field embedding of
Q[X ]/Φw(X) ∼= K′ as a subfield of Q[X ]/Φm(X) ∼= K.

We will use extensively the fact that K is a degree-u′ extension of K′, i.e.,
K = K′(ζm), and similarly R = R′[ζm]. The powers ζkm for k ∈ [u′] (also called
the “power basis”) form a K′-basis of K, and an R′-basis ofR. Looking ahead, our
transformation T (·) for breaking a big ring element into small-ring components
will just output the vector of coefficients of the big-ring element relative to the
power basis.

One can verify that among all the embeddings σi of K, exactly u′ of them
fix K′ (not just Q) pointwise. Specifically, these are the embeddings σi indexed
by each i = 1 mod w. The intermediate trace function TrK/K′ : K → K′ is a
K′-linear function, defined as the sum of all those K′-fixing embeddings, i.e.,

TrK/K′(a) =
∑
i∈I
σi(a), I = {i ∈ Z∗

m : i = 1 mod w}.

A standard fact from field theory is that every K′-linear map L : K → K′ can be
expressed as L(x) = TrK/K′(d · x) for some d ∈ K. Another standard fact is that
the intermediate trace satisfies TrK/Q = TrK′/Q ◦TrK/K′ .

The following lemma relates the intermediate trace to the embeddings of K
and K′, and will be used later to show that our ciphertext decomposition from
R to R′ produces component ciphertexts having short error terms.
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Lemma 1. For any a ∈ K and i ∈ Z∗
w,

σ′i(TrK/K′(a)) =
∑

j=i mod w

σj(a).

In matrix form, σ′(TrK/K′(a)) = P · σ(a), where P is the ϕ(w)-by-ϕ(m) matrix
(with rows indexed by i ∈ Z∗

w and columns by j ∈ Z∗
m) whose (i, j)th entry is 1

if j = i mod w, and is 0 otherwise.

Proof. Recall that for any i′ ∈ Z∗
m such that i′ = i mod w, the K′-embedding

σ′i and the K-embedding σi′ coincide on K′. In particular, σ′i(TrK/K′(a)) =
σi′(TrK/K′(a)) because TrK/K′(a) ∈ K′. Then by definition of TrK/K′ and lin-
earity of σi′ , we have

σ′i(TrK/K′(a)) = σi′

( ∑
j=1 mod w

σj(a)

)
=
∑
j

σi′(σj(a)) =
∑

j′=i mod w

σj′ (a),

where for the last equality we have used σi′ ◦ σj = σi′·j and i′ ∈ Z∗
m, so j′ =

i′ · j ∈ Z∗
m runs over all indexes congruent to i′ = i mod w when j ∈ Z∗

m runs
over all indexes congruent to 1 mod w. ��

2.2 The Big Ring-to-Small Ring Decomposition

As sketched in the introduction, our approach is rooted in the technique of
decomposing an element of the “big” ring R = Z[ζm] (or field K) into several
elements of the “small” ring R′ = Z[ζw] (or field K′). Recall from Section 2.1
that K = K′[ζm] is a field extension of degree u′ = ϕ(m)/ϕ(w) over K′, having
power K′-basis ζ0m, . . . , ζ

u′−1
m . That is, any a ∈ K can be written uniquely as

a =
∑u′−1

k=0 ak · ζkm for some “coefficients” ak ∈ K′, and a ∈ R if and only if every

ak ∈ R′. We define the decomposition map T : K → (K′)u
′
(which also maps R

to (R′)u
′
) to simply output the vector of these coefficients:3

T (a) = (a0, . . . , au′−1). (2)

We note a few simple but important properties of T :

1. It is K′-linear (and hence also R′-linear): for any a, b ∈ K and r′ ∈ K′,
T (a+b) = T (a)+T (b) (i.e., T is an additive homomorphism), and T (r′ ·a) =
r′ · T (a).

2. Any ideal p in R′ induces a bijective R′
p-linear map Tp : Rp → (R′

p)
u′
, namely,

Tp(a+ pR) = Tp(a) + (p)u
′
= (a0 + p, . . . , au′−1 + p).

3 Alternatively, we could define T to output coefficients with respect to the “dual
power” K′-basis of K, which would map the (fractional) dual ideal R∨ of R to

(R′∨)u
′
. That decomposition has better geometric properties and is more consonant

with the ring-LWE problem as defined in [15], but it is more technically involved.
We defer the details to the full version.
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When using polynomial representations, the K′-linearity of T must be inter-
preted relative to the embedding f(X) �→ f(Xu) that maps the polynomial
representation of K′ into that of K. Specifically, it means that for any polynomi-
als b(X) ∈ Q[X ]/Φw(X) and a(X) ∈ Q[X ]/Φm(X), it holds that

T
(
b(Xu) · a(X) mod Φm(X)

)
= b(X) · T

(
a(X)

)
mod Φw(X). (3)

Another important property is that T maps short elements in R to vectors of
relatively short elements in R′ (where as always, “short” is with respect to the
canonical embeddings).

Lemma 2. For a ∈ R, let T (a) = (a0, . . . , au′−1). Then for any k ∈ [u′], we
have ‖ak‖ ≤ cm,w · ‖a‖/

√
u′, where cm,w ≥ 1 is a constant that depends only on

m and w.

Note that the
√
u′ term appearing above is merely a normalization factor asso-

ciated with the fact that the power basis elements of R′ are a
√
u′ factor shorter

than those of R under the canonical embeddings, so the decomposition does not
actually shrink the elements in any effective way.

Te constant cm,w turns out to depend only on the ratio r = rad(m)/ rad(w),
where rad(n) denotes the radical of n, i.e., the product of all the prime divisors
of n (without multiplicities). Hence we hereafter denote it by cr rather than
cm,w. For typical values of r = rad(m)/ rad(w), the constant cr is (somewhat)

small, e.g., c1 = 1 and cp =
√

2− 2/p when p is a prime. (Hence if m and w
share all the same prime divisors, the relevant constant is 1, and if m has only
one additional prime divisor then the constant is smaller than

√
2.) Some other

examples are c3·5·7 ≈ 17.4 and c5·7·11 ≈ 155. We also note that the constant
factor cr can actually be removed entirely, by following the framework of [15, 16]
and defining T to work with the fractional ideals R∨ and R′∨ (as mentioned in
Footnote 3); see the discussion after the proof of Lemma 2.

Proof (sketch). We first express T in terms of the intermediate field trace TrK/K′ ,
then use Lemma 1 to bound ‖ak‖. Recall that every K′-linear map from K to
K′ can be expressed as L(x) = TrK/K′(d · x) for some fixed d ∈ K. Since T is
K′-linear, then for every k ∈ [u′] there exists dk ∈ K such that ak = TrK/K′(dk ·a)
(for all a ∈ K). The elements dk are “dual” to the power K′-basis elements ζkm:
for every j, k ∈ [u′] we have TrK/K′(ζjm · dk) = 1 if j = k and TrK/K′(ζjm · dk) = 0
if j �= k.

Now by Lemma 1 and the fact that the σj are ring homomorphisms, we have

σ′(ak) = P · σ(dk · a) = P ·D · σ(a),

where D = diag(σ(dk)). Notice that the rows of P ·D are orthogonal (since each
column has exactly one nonzero entry). The Euclidean norm of row i ∈ Z∗

w is
‖dk,i‖, where dk,i = (σj(dk))j=i mod w ∈ Cu′

. Therefore, ‖ak‖ ≤ ‖a‖·maxi‖dk,i‖.
It remains to bound maxk,i‖dk,i‖. For each i ∈ Z∗

w, denote by Zi the matrix
(of dimension u′ × u′) defined as Zi = (σj(ζ

k
m))j=i mod w,k∈[u′]. Then the dk,i’s
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are determined by the linear constraints Zti · dk,i = ek (where ek ∈ Zu′
is k’th

standard basis vector). From Galois theory it follows that ‖dk,i‖ is actually the

same for every i ∈ Z∗
w. It can also be shown that maxk‖dk,1‖ ·

√
u′ depends only

on rad(m)/ rad(w); we omit the details. ��
We note again that the constant cr in Lemma 2 can be eliminated by defining
the transformation T relative to a different basis, specifically the “dual” of the
power basis, consisting of the vectors d0, d1, . . . , du′−1 from the proof above. The
proof then proceeds in the same way, but with the roles of dk and ζkm reversed.
The tighter bound then follows by observing that the magnitude of each σj(ζ

k)
is exactly one. One technical issue with using the dual basis, however, is that
T no longer maps R to vectors over R′. Instead, it maps the dual ideal R∨ to
vectors over R′∨, which introduces some additional algebraic subtleties but also
turns out to have certain other advantages, as described in [15, 16]. We defer
further details to the full version.

2.3 RLWE-Based Cryptosystems

Below and throughout this work, for a residue class z + qZ ∈ Zq we let [z]q ∈ Z
denote its canonical representative in the interval [−q/2, q/2). (One can think of
[·]q as an operation that takes an arbitrary integer z and reduces it modulo q into
the interval [−q/2, q/2), so as to get the canonical representative of z+ qZ.) We
extend this to a map fromRq = R/qR to R, by applying the operation coefficient-
wise to the input (viewed as a polynomial in coefficient representation). I.e., for
z =

∑
i ziX

i ∈ Rq we get [z]q =
∑

i[zi]q ·X i. A standard fact is that if z ∈ a+qR
for some a ∈ R that is sufficiently short relative to q and the dimension of R,
then [z]q = a. Throughout the paper we implicitly assume that q is chosen large
enough to ensure that all of the operations we describe produce valid ciphertexts.

In a basic ring-LWE-based cryptosystem [15], secret keys and ciphertexts are
elements of (Rq)

2 for some odd integer q, and moreover the secret key has the
form s = (1, s) mod q, where s ∈ R is short. The plaintext space is the quotient
ringR2 = R/2R. A valid ciphertext c = (c0, c1) ∈ (Rq)

2 that encrypts a plaintext
a ∈ R2 with respect to s = (1, s) satisfies

〈c, s〉 = c0 + s · c1 ∈ (a+ 2e) + qR (4)

for some sufficiently short a+2e ∈ R. To decrypt, one just computes [c0+s·c1]q =
a+ 2e and reduces modulo 2 to recover the plaintext a. Additionally, Brakerski
et al. [4, 3] showed that this system (with certain additions to the public key)
supports additive and multiplicative homomorphisms.

Our ring-switching procedure will be given a ciphertext where Equation (4)
holds over R (for some s ∈ R), and will output ciphertexts for which the equality
holds over R′ (for a different secret s′ ∈ R′).

2.4 Plaintext Arithmetic

Following [18, 3, 11–13], we recall how to encode vectors over a certain finite
field into the message spaces. A summary is provided in Figure 1 below.
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For concreteness, we focus first on R′, viewing it as Z[X ]/Φw(X). Let d′ be
the order of 2 in the multiplicative group Z∗

w . Then Φw(X) factors modulo 2 into
′ = ϕ(w)/d′ distinct irreducible (over F2) polynomials Fi(X), each of degree

d′. The ideal 2R′ has factorization 2R′ =
∏
′

i=1 pi, where pi = 〈2, Fi(X)〉 are
distinct prime ideals. Since each Fi(X) is irreducible modulo 2, each R′/piR′ =
F2[X ]/〈Fi(X)〉 is isomorphic to the finite field F2d′ . By the Chinese remainder

theorem, we can therefore identify elements of R′
2 with elements of (F2d′ )


′ , as
summarized by the following diagram of ring isomorphisms.

R′/2R′ ⊕
i(R

′/piR′) (F2d′ )

′CRT

For our ring-switching application we use a particular ring isomorphism between
R′/2R′ and (F2d′ )


′ , for some fixed representation of F2d′ . Consider the quotient
group Z∗

w/ 〈2〉 (which has cardinality ′), and fix a specific set of representatives
for this quotient group, Uw = {j0, j1, . . . , j
′−1} ⊆ Z∗

w, containing of exactly
one member from every conjugacy class in Z∗

w/ 〈2〉.4 Also fix a specific primitive
w-th root of unity τ ∈ F2d′ , and identify each element a ∈ R′

2 with the ′-vector
consisting of a(τ j) ∈ F2d′ for all j ∈ Uw:

a ∈ R′
2 ←→

〈
a(τ j1 ), . . . , a(τ j�′ )

〉
∈ (F2d′ )


′ .

Showing that this is indeed a bijection is standard. In one direction, from a we
can compute all the values a(τ jk ). In the other direction we have the following
simple claim:

Claim. For every vector (α0, α1, . . . , α
′−1) ∈ F

′

2d′ , there is a unique polynomial

a ∈ R′
2 such that over F2d′ it holds that a(τ jk ) = αk for all k ∈ [′].

Proof. We identify R′
2 with F2[X ]/Φw(X) ⊂ F2d′ [X ]/Φw(X), and recall that a

polynomial a ∈ F2d′ [X ]/Φw(X) belongs to the subring R′
2 if and only if a(X2) =

a(X)2 (as an identity in R′
2). Given a vector of values (α0, α1, . . . , α
′−1) ∈ F


′
2d′ ,

we can therefore deduce from a(τ jk ) = αk the evaluations of a on the other
members of the same conjugacy class, namely a(τ2jk ) = α2k, a(τ

4jk ) = α4k,
a(τ8jk ) = α8k, etc. Since Uw is a complete set of representatives for the quotient
group Z∗

w/ 〈2〉, we can get in this way the evaluations of a(τ j) for all the indices
j ∈ Z∗

w. This gives us the evaluation of a at ϕ(w) different points, from which a
is uniquely defined (because F2d′ is a field and a has degree less than ϕ(w)). ��

We thus view the evaluation of the plaintext element at τ jk as the k’th “plaintext
slot,” and note that arithmetic operations in the ring R′

2 act on the plaintext
slots in a componentwise manner.

4 In other words, the sets Uw, 2Uw, 4Uw , . . . 2
d′−1Uw are all disjoint, and their union

is the entire group Z∗
w.
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For R ∼= Z[X ]/Φm(X) the analysis proceeds similarly. Let d be the order of
2 in the multiplicative group Z∗

m, so d′|d, and let  = ϕ(m)/d. Recalling that
Fi(X

u) is the embedding of Fi(X) ∈ R′ into R, we denote the factorizaton of
Fi(X

u) into irreducible factors modulo 2 by Fi(X
u) =

∏
j Fi,j(X). We note that

each Fi(X) factors into exactly /′ distinct irreducible (mod 2) factors, each of
degree d, and that the factorization of Φm(X) into irreducible factors mod 2 is
Φm(X) =

∏
i,j Fi,j(X). Therefore, each prime ideal pi in R

′ factors further in R,
into the product of the /′ prime ideals pi,j = 〈2, Fi,j(X)〉, where each R/pi,jR
is isomorphic to F2d .

We use a concrete ring isomorphism between R/2R and (F2d)

 analogous to

the one described above, using some representative set Um of the quotient group
Z∗
m/ 〈2〉 and a primitive m-th root of unity ρ, and considering the “plaintext

slots” of a ∈ R2 as the evaluations a(ρi) for all i ∈ Um. Of course, the analog of
Claim 2.4 holds here too.

R/2R
⊕

i(R/piR)
⊕

i,j(R/pi,jR) (F2d)
�

(R′/2R′)u
′ ⊕

i(R
′/piR′)u

′
(F2d

′ )�
′·u′

T2

CRT

CRT

⊕
i Tpi

CRT

Fig. 1. Commutative diagram of various representations of the plaintext spaces, and
morphisms between them. Solid lines are ring isomorphisms, and dashed lines are R′-
linear homomorphisms (i.e., satisfying T (x+ y) = T (x) + T (y) and T (rx) = rT (x) for
all r ∈ R′).

3 The Ring-Switching Procedure

Given a big-ring ciphertext c ∈ (Rq)
2 that encrypts a plaintext a ∈ R2 relative

to a big-ring secret key s ∈ R, our goal is to output u′ small-ring ciphertexts
ck ∈ (R′

q)
2 for k ∈ [u′], where each ck encrypts ak ∈ R′

2, namely the kth
component T (a), all relative to some small-ring secret key s′ ∈ R′. The procedure
consists of the following two steps:

1. Key-switch. We use the key-switching method from [5, 3] to switch to a
ciphertext that is still over the big ring R, but which has a secret key s′ ∈ R′

belonging to the small subring R′ ⊆ R.
2. Decompose. We break the resulting big-ring ciphertext (over Rq) into u′

small-ring ciphertexts (over R′
q) using the decomposition Tq. These cipher-

texts will be valid with respect to the small-ring secret key s′ ∈ R′, and will
encrypt the components of T (a)k as desired (see Lemma 4).
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3.1 Switching to a Small-Ring Secret Key

To enable this transformation, we include in the public key a “key switching
hint,” essentially encrypting the old big-ring key s under the new small-ring key
s′. Note that using such a small-ring secret key has security implications, since
it severely reduces the dimension of the underlying LWE problem. In our case,
however, the whole point of switching to a smaller ring is to get ciphertexts over
a smaller dimension, so we are not actually losing any additional security by
giving out the hint. Indeed, we show below that assuming the hardness of the
decision-ring-LWE problem [15] over the small ring R′

q, the key-switching hint is
indistinguishable from uniformly random over Rq (even for a distinguisher that
knows the old secret key s).

Ring-LWE. The ring-LWE (RLWE) problem [15] over R′
q is parameterized by

an error distribution χ′ over R′, typically derived from a Gaussian and so highly
concentrated on short elements.5 For a “secret” element s′ ∈ R′, a sample from
the RLWE distribution As′,χ′ is generated by choosing α ∈ R′

q uniformly at
random and ε ← χ′, computing β ← α · s′ + ε in R′

q, then outputting the
pair (α, β) ∈ (R′

q)
2. The decision RLWE problem in R′

q is: given arbitrarily
many pairs (αi, βi) ∈ (R′

q)
2, distinguish the case where the samples are chosen

independently from As′,χ′ (for a single s′ ← χ′) from the case where they are
uniformly random and independent.

To set up the key-switching technique, we first prove a lemma of independent
interest about the hardness of RLWE over the big ring Rq when the secret is
chosen according to χ′ from the subring R′. Define an error distribution χ over R
as χ = T−1((χ′)u

′
), i.e., a sample from χ is generated by choosing independent

εi ← χ′ for i ∈ [u′], and outputting ε = T−1(ε0, . . . , εu′−1) =
∑

i εi · ζim ∈ R.
Note that elements drawn from χ are short: because ‖σ(ζim)‖∞ = 1 for all i, we
have

‖σ(εi · ζim)‖ = ‖σ(εi)‖ =
√
u′ · ‖σ′(εi)‖

(where as usual, the
√
u′ term is effectively a normalization factor between R′

and R). Then by the triangle inequality, ‖σ(ε)‖ ≤ (u′)3/2 · B, where B is an
upper bound on every ‖σ′(εi)‖. (Tighter bounds can also be obtained when χ′

is Gaussian, as is typical with RLWE.)

Lemma 3. If the decision RLWE problem over R′ with error distribution χ′

is hard, then so is the decision RLWE problem over R with error distribution
χ = T−1((χ′)u

′
), but where the secret is chosen from χ′, and in particular is in

subring R′.

Proof. It suffices to give a reduction that maps small-ring samples over (R′
q)

2,
drawn from As′,χ′ (respectively, the uniform distribution), to big-ring samples
over (Rq)

2 with distribution As′,χ (resp., the uniform distribution). To generate
each output sample, the reduction takes u′ fresh input samples (αi, βi) ∈ (R′

q)
2

5 Or, following [15] more closely, χ′ would be a distribution over the dual R′∨.
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for i ∈ [u′], defines α′ = (αi)i, β
′ = (βi)i ∈ (R′

q)
u′
, and outputs (α, β) =

(T−1
q (α′), T−1

q (β′)) ∈ Rq.
Since Tq is a bijection, it is clear that the reduction maps the uniform distri-

bution to the uniform distribution. On the other hand, if the samples (αi, βi =
αi · s′ + εi) are drawn from As′,χ′ for some s′ ← χ′, then α is still uniformly

random, and moreover, letting ε′ = (εi)i ∈ (R′)u
′
and by R′-linearity of T−1

q , we
have (over Rq)

β = T−1
q (α′ · s′ + ε′) = T−1

q (α′) · s′ + T−1(ε′) = α · s′ + ε,
where ε = T−1(ε′) is distributed according to χ by construction. So (α, β) is
distributed according to As′,χ, as desired. ��

The Key-Switching Hint. Let s ∈ R be the big-ring secret key, and s′ ∈ R′ ⊂ R
be the small-ring secret key that we want to switch to. To construct the key-
switching hint, we independently draw l = �log2 q� error terms εi ← χ and
uniformly random elements αi ∈ Rq, for i ∈ [l]. The hint consists of the all the
pairs6

(αi, βi = 2i · s− αi · s′ + 2εi) ∈ (Rq)
2.

For security, note that by the form of the hint, it is immediate from Lemma 3 that
for any big-ring secret key s ∈ R, the hint (even along with s) is computationally
indistinguishable from uniform.

Since the errors εi are short, the hint is functional for key-switching, as de-
scribed in [5]. Specifically, suppose we are given a valid ciphertext c = (c0, c1)
relative to s, for which c0 + s · c1 = (a+ 2e) mod q for some short (a+ 2e) ∈ R.
We decompose c1 into its bitwise representation as c1 =

∑
i∈[l] 2

idi mod q for
short elements di ∈ R having 0-1 coefficients in the power basis. We then have
the relation (over Rq)

c0 +
∑
i

diβi︸ ︷︷ ︸
c′0

+
∑
i

diαi︸ ︷︷ ︸
c′1

·s′ = c0 +
∑
i

di(2
is+ 2εi) = c0 + c1 · s+ 2

∑
i

diεi

= a+ 2(e+
∑
i

diεi).

Since
∑

i diεi ∈ R is short, (c′0, c
′
1) is a valid ciphertext encrypting a under s′, as

desired.

3.2 Decomposing the Ciphertext

After switching to a small-ring secret key s′ ∈ R′ in the previous step, the
ciphertext is a pair c = (c0, c1) ∈ (Rq)

2 such that

c0 + s′ · c1 ∈ (a+ 2e) + qR,

6 We could alternatively use the key-switching variant from [13], where the hint con-
sists of a single pair (β, α), but with respect to a large modulus Q ≈ q2 · m. The
proof of security would then depend on the hardness of ring-LWE in R′

Q rather than
in R′

q .
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where a + 2e ∈ R is sufficiently short. We decompose this ciphertext into u′

ciphertexts ck = (ck,0, ck,1) ∈ (R′
q)

2 for k ∈ [u′], where for b ∈ {0, 1}, Tq(cb) =
(c0,b, . . . , cu′−1,b). (Recall that Tq : Rq → (R′

q)
u′

is the R′-linear bijection induced
by the decomposition T defined in Section 2.2.)

Lemma 4. If c is a valid encryption of plaintext a ∈ R2 under secret key s′ ∈ R′,
then each ck is a valid encryption of the kth component of T2(a) ∈ (R′

2)
u′
.

Proof. Below we identify s′ ∈ R′ with its mod-q equivalence class s′ + qR′ ∈ R′
q.

Because Tq is R′
q-linear, we have

Tq(c0) + s′ · Tq(c1) = Tq(c0 + s′ · c1) = T (a+ 2e) + (qR′)u
′
,

where the multiplication of scalar s′ ∈ R′ with Tq(c1) ∈ (R′
q)

u′
is coordinate-wise.

By Lemma 2, each component of T (a+2e) has length bounded by cr ·‖a+2e‖/
√
u′

(where the
√
u′ term is a normalization factor), so the “effective” lengths (relative

to q and the dimension of R′) grow by at most a fixed constant factor cr, and
are sufficiently small. Moreover, T (a + 2e) ∈ T2(a) ∈ (R′

2)
u′
, so the message

encrypted by ck is the kth component of T2(a). ��

4 Homomorphic Computation in the Small Ring

So far we have shown how to break a big-ring ciphertext, encrypting some big-
ring element a ∈ R2, into a collection of u′ small-ring ciphertexts encrypting
the small-ring elements T (a) = (a0, a1, . . . , au′−1) ∈ R′

2. This, however, still
falls short of our goal of speeding-up homomorphic computation by switching to
small-ring ciphertexts. Indeed we have not shown how to use the encryption of
the ak’s for further homomorphic computation.

Following the narrative of SIMD homomorphic computation from [18, 11–13],
we view the big-ring plaintext element a ∈ R2 as an encoding of a vector of
plaintext values from the extension field F2d (with d the order of 2 in Z∗

m). We
therefore wish to obtain small-ring ciphertexts encrypting small-ring elements
that encode of the same underlying F2d values.

One potential “algebraic issue” with this goal, is that it is not always possible
to embed F2d values inside small-ring elements from R′

2. Recall that the extension
degree d is determined by the order of 2 in Z∗

m. But the order of 2 in Z∗
w may

be smaller than d, in general it will be some d′ that divides d. If d′ < d then
we can only embed values from the sub-field F2d′ in small-ring element from R′

2,
and not the F2d values that we have encoded in the big-ring element a. For the
rest of this section we only consider the special case where the order of 2 in both
Z∗
m and Z∗

w is the same d, leaving the general case to the full version.
Even for the special case where the order of 2 in Z∗

m and Z∗
w is the same

(and hence the “plaintext slots” in the small ring contain values from the same
extension field as those in the big ring), we still need to tackle the issue that big
ring elements have more plaintext slots than small ring elements. Specifically,
big-ring elements have  = ϕ(m)/d slots, whereas small-ring elements only have
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′ = ϕ(w)/d slots. The solution here is obvious: we just use more small-ring
elements to hold all the plaintext slots that we need.

Note that if the original plaintext element a was “sparsely populated”, holding
only a few plaintext values in its slots, then we would like to generate only as
many small-ring ciphertexts as needed to hold these few plaintext slots. A good
example is the computation of the AES circuit in [13]: Since there are only 16
bytes in the AES state, we only use 16 slots in the plaintext element a. In this
case, as long as we have at least 16 slots in small-ring elements, we can continue
working with a single small-ring ciphertext (as opposed to the u′ ciphertexts
that the technique of the previous section gives us).

4.1 Ring-Switching with Plaintext Encoding

Below we describe our method for converting the plaintext encoding between the
different rings, for the special case where the order of 2 is the same in Z∗

m and Z∗
w.

As sketched in the introduction, the basic observation underlying our approach is
that the transformation T (a) = (a0, a1, . . . , au′−1) that we apply to our plaintext
when breaking a big-ring ciphertext into its small-ring parts, induces a linear
transformation over the values in the plaintext slots. We then just finish-up
the process by homomorphically computing the inverse linear transformation
over the resulting small-ring ciphertexts (using “general purpose” techniques for
computing on packed ciphertexts, such as in [11]), thereby restoring the plaintext
slots to their original values.

As explained in Section 2.4, each plaintext slot in the big-ring element is
associated with a member of the quotient group Qm = Z∗

m/ 〈2〉, and similar
association holds between plaintext slots in small-ring elements and members of
the quotient group Qw = Z∗

w/ 〈2〉. We thus begin by relating the structures and
representations of these two quotient groups.

Below let Uw ⊆ Z∗
w be a representative set for Qw. i.e., a set containing

exactly one index from each conjugacy class in Z∗
w/ 〈2〉. It is easy to see that

when the order of 2 is the same in Z∗
m and Z∗

w, then the set
Um = {j ∈ Z∗

m : ∃ i ∈ Uw s.t. j ≡ i (mod w)} is a representative set for Qm.
Fixing in addition a primitive m’th root of unity ρ ∈ F2d and the particular
primitive w’th root of unity τ = ρu, we let the plaintext slots encoded in a ∈ R2

be the evaluations a(ρj) ∈ F2d for j ∈ Um, and similarly the plaintext slots
encoded in a′ ∈ R′

2 be the evaluations a′(τ i) for i ∈ Uw.
We proceed to prove that under this representation, the transformation T

from Section 2.2 induces an F2d -linear transformation on the values in the F2d

values in the plaintext slots. A key lemma is the following:

Lemma 5. Letm = u ·w for odd integers u,w, such that the order of 2 is the same
in Z∗

m and in Z∗
w. Let Uw be a representative set ofQw = Z∗

w/ 〈2〉, and fix the repre-
sentative set ofQm = Z∗

m/ 〈2〉 to beUm = {j ∈ Z∗
m : ∃ i ∈ Uw s.t. j ≡ i (mod w)}.

Denote the order of 2 (in both Z∗
m and Z∗

w) by d, let ρ ∈ F2d be a primitive m’th
root of unity, and fix the particular primitive w’th root of unity τ = ρu.

Finally, fix an arbitrary value α ∈ F2d and let a(X) be the (unique) polynomial
in F2[X ]/Φm(X) that satisfies a(ρj) = α for all j ∈ Um.
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Then a is of the form a(X) = b(Xu) mod (Φm(X), 2) for some polynomial
b(X) ∈ F2[X ]/Φ2(X) satisfying b(τ i) = α for all i ∈ Uw. In particular a, b repre-
sent the same element r′ ∈ R′

2 ⊂ R2.

Proof. We first note that a polynomial a(X) as above is indeed unique, due
to Claim 2.4. Similarly a polynomial b(X) ∈ F2[X ]/Φ2(X) satisfying b(τ i) =

α for all i ∈ Uw is also uniquely determined. Denoting c(X)
def
= b(Xu) mod

(Φm(X), 2) ∈ R2, it is only left to show that c(X) = a(X).
Clearly both c and a are polynomials in R2

∼= F2[X ]/Φm(X) ⊂ F2d [X ]/Φm(X),
so it is sufficient to show that they agree when evaluated on ρj ∈ F2d for all
j ∈ Um (again by Claim 2.4). By definition of Um, for every j ∈ Um there exists
i ∈ Uw such that j ≡ i (mod w), hence we get

c(ρj) = b(ρu·j) = b(τ j) = b(τ i) = α = a(ρj). ��

(We note that the fact that 2 has the same order modulo w and m is used in the
assertion that the set Um as above is a representative set for Qm.)

Corollary 1. With notations as in Lemma 5 and the transformation T : R2 →
(R′

2)
u′

from Section 2.2, if a, b are as in Lemma 5 then for any element x ∈ R2

we have T2(a · x ∈ R2) = b · T (x) ∈ (R′
2)

u′
.

Proof. Follows immediately from the R′
2-linearity of T2 and the fact that the

polynomials a ∈ F2[X ]/Φm(X) and b ∈ F2[X ]/Φw(X) represent the same ele-
ment r′ ∈ R′

2 ⊆ R2 (since a(X) = b(Xu) mod (Φm(X), 2)). ��

Given Corollary 1, the rest of the proof follows quite easily. Consider now the
encoding functions that map R2 elements into the vector of F2d values that are
encoded in all their slots. Namely, for a ∈ R2 denote by Encm(a) ∈ F 


2d the vector
of values a(ρj) for j ∈ Um. Similarly consider the encoding of a vector of R′

2

elements into the F2d values that are encoded in all the slots of all the elements.
That is, for a vector a = (a0, a1, . . . , au′−1) ∈ (R′

2)
u′
, denote by Encw(a) the

vector of values ak(τ
i) for i ∈ Uw and k ∈ [u′]. We note that the dimensions

of Encm(a) and Encw(T2(a)) are the same, namely they both have dimension
 = ϕ(m)/d = u′ · ϕ(w)/d.

Lemma 6. There exists an invertible linear transformation L over F2d such
that for any a ∈ R2 it holds that Encw(T2(a)) = L( Encm(a) ).

Proof. Recalling that the encoding functions are bijections (by Claim 2.4), we

thus define L(x)
def
= Encw(T2(Enc

−1
m (x))), and note that L must be invertible,

because T2(·) is also a bijection.
It remains only to show that L is F2d -linear. The property L(x) + L(y) =

L(x + y) follows immediately from the facts that the same property holds for
each of T2(·), Encm(·), and Encw(·). We next use Lemma 5 and Corollary 1 to
show the property L(α · x) = α · L(x).

Fix a vector x ∈ F 

2d and a value α ∈ F2d , and let a ∈ F2[X ]/Φm(X) ∼= R2

be the element that has α in all of its plaintext slots, a = Enc−1
m (α
). Similarly
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let x = Enc−1
m (x). Observe that since multiplication in R2 implies pointwise

multiplication on the slots, then the product a·x ∈ R2 encodes in its slots exactly
α times the slots of x. In other words, we have Enc−1

m (α · x ∈ F 

2d) = a · x ∈ R2.

Since a has the same element α in all its slots then it satisfies the condition
of Lemma 5 and Corollary 1. Let b ∈ F2[X ]/Φw(X) ∼= R′

2 be the polynomial
promised by Lemma 5. Then from Corollary 1 we have that T2(a · x) = b ·
T (x). Moreover Lemma 5 tells us that b also have the values α in all its slots.
Since multiplication in R′

2 also implies pointwise multiplication on the slots, i.e.,
Encw(b · y) = α · Encw(y) for every y ∈ (R′

2)
u′
. In particular,

Encw(T2(a · x)) = Encw(b · T2(x)) = α · Encw(x),

or in other words L(α · x) = α · L(x), as needed. ��

Our strategy for recovering the original values in the plaintext space after ring-
switching is to first use the transformation T to break a big-ring ciphertexts into a
collection of small-ring ciphertexts. By Lemma 6 this operation has the side effect
of transforming the slots according to the invertible F2d -linear transformation
L, so we compute homomorphically the inverse transformation L−1 on the slots,
using the tools from [11] for computing on packed ciphertexts.

If we only need a few of the slots in a (as in the AES example), then we can
compute only the relevant rows of L−1, thereby getting at the end of the process
only as many small-ring ciphertexts as required to encode all the plaintext slots
that we are interested in.

Remarks. Note that the only properties of T that we used in this work are
the properties 1-4 that were described in the introduction. Namely, all we need
is a transformation T : R → (R′)∗ which is injective and R′

2-linear, and that
maps small R elements into small R′ vectors. There could be many such trans-
formations, and they could offer different tradeoffs in practice. (For example,
the transformation in a previous version of this work [10], which was based on
the coefficient-splitting technique from [3], turns out to include a very sparse
linear transformations L, making the homomorphic computation of L−1 at the
end must easier.) Also, as mentioned in Section 2.2, in some cases we can use a
K ′

2-linear transformation T : K → (K′)∗ even if it does not map R-elements to
R′-vectors.

We also note that Lemma 5 (and consequently Corollary 1 and Lemma 6)
can be extended also to the case where the order of 2 modulo w is smaller than
its order modulo m, as long as we only consider elements a ∈ R2 that have
values from the smaller field F2d′ in their plaintext slots. We defer details of this
extension to the full version.
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Communication from Lattice Assumptions
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Abstract. We construct zero-knowledge proofs of plaintext knowledge
(PoPK) and correct multiplication (PoPC) for the Regev encryption
scheme with low amortized communication complexity. Previous con-
structions of both PoPK and PoPC had communication cost linear in the
size of the public key (roughly quadratic in the lattice dimension, ignor-
ing logarithmic factors). Furthermore, previous constructions of PoPK
suffered from one of the following weaknesses: either the message and
randomness space were restricted, or there was a super-polynomial gap
between the size of the message and randomness that an honest prover
chose and the size of which an accepting verifier would be convinced.
The latter weakness was also present in the existent PoPC protocols.

In contrast, O(n) proofs (for lattice dimension n) in our PoPK and
PoPC protocols have communication cost linear in the public key. Thus,
we improve the amortized communication cost of each proof by a factor
linear in the lattice dimension. Furthermore, we allow the message space
to be Zp and the randomness distribution to be the discrete Gaussian,
both of which are natural choices for the Regev encryption scheme. Fi-
nally, in our schemes there is no gap between the size of the message
and randomness that an honest prover chooses and the size of which an
accepting verifier is convinced.

Our constructions use the “MPC-in-the-head” technique of Ishai et
al. (STOC 2007). At the heart of our constructions is a protocol for
proving that a value is bounded by some publicly known bound. This
uses Lagrange’s Theorem that states that any positive integer can be
expressed as the sum of four squares (an idea previously used by Boudot
(EUROCRYPT 2000)), as well as techniques from Cramer and Damg̊ard
(CRYPTO 2009).

1 Introduction

The problem of secure multiparty computation (MPC) [19,6,12,31] is central in
the field of modern cryptography. In this problem, N parties P1, . . . ,PN holding
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private inputs x1, . . . , xN , respectively, wish to compute a function f(x1, . . . , xN )
on their inputs without revealing any information apart from the output of
the evaluation (in particular, they wish to keep their inputs secret from the
other parties). Solutions to this problem abound in the literature. Many of
these solutions use the circuit rerandomization technique of Beaver [3] (see
e.g. [20,23,4,21,14,5,8,15], among many others). Circuit rerandomization requires
players to hold (additive) secret sharings of many random triples (a, b, c) such
that c = a · b in some finite field. Traditionally, these triples are created using
zero-knowledge proofs.

Bendlin et al. [8] use zero-knowledge proofs of plaintext knowledge (PoPK)
and correct multiplication (PoCM) for this purpose. To see how this is done,
consider the 2-party setting as an example. To obtain an additive secret sharing
of random values a, b, players P1 and P2 can each choose random values u1, v1
and u2, v2, respectively, and define a = u1 + u2 and b = v1 + v2. Obtaining an
additive secret sharing of c = a · b is more involved. First, notice that c = a · b =
(u1 + u2) · (v1 + v2) = u1v1 + u1v2 + u2v1 + u2v2. If P1 and P2 could obtain
an additive sharing of each product uivj = yij + zij then they could obtain a
sharing for c by simply adding each of these shares: c = (y11 + y12+ y21+ y22)+
(z11 + z12 + z21 + z22). Thus, the problem reduces to having P1 and P2 obtain
an additive sharing of the product of their inputs m1 and m2, respectively (in
this case ui and vj).

This can be done with the following protocol. P1 encrypts his input under his
public key pk and obtains a ciphertext c1 = Encpk(m1; r1), which he sends to
P2. Upon receiving c1, P2 computes a ciphertext cx = Encpk(x; rx) of a random
plaintext x and computes c2 = m2 · c1 + cx, sends it to P1, and outputs −x as
his share. If the encryption scheme has certain homomorphic properties, then
c2 = Encpk(m1m2 +x). P1 decrypts c2 and outputs m1m2 + x as his share, thus
obtaining an additive sharing of m1m2.

However, when players are malicious, P2 needs to ensure that c1 is a valid
ciphertext and P1 needs to ensure that P2 performed the multiplication step
correctly. This can be done by having P1 and P2 provide zero-knowledge proofs
that they performed their respective operations correctly: P1 sends a proof of
plaintext knowledge, proving that there existm1, r1 such that c1 = Encpk(m1; r1),
and P2 sends a proof of correct multiplication, proving that there exist m2, x, rx
such that c2 = m2 · c1 + Encpk(x; rx).

Unfortunately, these zero-knowledge proofs can incur a large communication
cost, which increases the overall communication complexity of the MPC protocol
in which they are used. A key observation is that even though many triples need
to be created, they can be created simultaneously. This leads to the question of
whether we can lower the amortized communication complexity of each proof,
thus lowering the total communcation cost of all proofs. In this work, we an-
swer this question affirmatively when the encryption scheme used is the Regev
encryption scheme [29], whose security is based on the hardness of the Learning
with Errors (LWE) problem.
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Related Work. Bendlin et al. [8], Bendlin and Damg̊ard [7], and Asharov et
al. [2,1] give constructions of proofs of plaintext knowledge. The work of [8] shows
proofs of plaintext knowledge for any “semi-homomorphic” encryption scheme,
an example of which is the Regev scheme. When applied to this scheme, the
communication cost of each proof is linear in the size of the public key (roughly
quadratic in the lattice dimension, ignoring logarithmic factors). The works of [7]
and [2,1] show proofs of plaintext knowledge specifically for the Regev scheme,
but here again, the communication cost of each proof is linear in the size of
the public key. Similarly, [8] shows proofs of correct multiplication which, when
applied to the Regev encryption scheme, have communication complexity linear
in the public key size per proof.

Unfortunately, the protocol of [7] only works for message space {0, 1} and
randomness in {0, 1}m. Furthermore, the proofs of [8] and [2,1] suffer from the
following weakness. To guarantee zero-knowledge, an honest prover must choose
the message and randomness from a sufficiently small range. But in order to
guarantee soundness against a cheating prover, we can only guarantee that if
the verifier accepts then the message and randomness come from a much larger
interval. Thus, there is a gap between the size of the witness of an honest prover
and the size of which an accepting verifier will be convinced. Such a gap, which
turns out to be super-polynomial in the security parameter, is undesirable.

Our Results and Techniques. We improve upon these results by showing proofs
of plaintext knowledge and correct multiplication where the cost of O(n) proofs,
where n is the lattice dimension, is linear in the public key size. Thus, we improve
the amortized cost of each proof by a linear factor in the lattice dimension.
Furthermore, our protocol does not suffer from the weakness of [8] and [2,1];
there is no gap between the size of the witness of an honest prover and the size
of which an accepting verifier is convinced. The message space in our schemes
can be Zp and the probability distribution for the randomness can be the discrete
Gaussian.1

Our proof system uses the “MPC-in-the-head” technique of Ishai et al. [22],
who show how to construct zero-knowlege proofs from MPC protocols. The basic
idea is as follows. For an NP relation R(x,w) with statement x and witness w,
the prover runs an MPC protocol for the function fx(w) = R(x,w) “in his head”
and commits to the view of each of the players. The verifier then outputs a subset
T of the players as challenge, and the prover opens the commitments to the views
of the players in T . If the views are consistent, the verifier accepts.

This is the same technique that was used in [7] yet we improve upon it.
First, we also show how to obtain proofs of correct multiplication. But more
importantly, we expand the proofs to allow the message space to be Zp (rather
than bits), and allow the randomness distribution to be the discrete Gaussian
(rather than bit-vectors). To achieve this, we show a protocol that allows a dealer

1 Technically, we’ll need the Regev scheme to have perfect correctness, so the ran-
domness distribution will be a “truncated” discrete Gaussian that is statistically
close to the discrete Gaussian, where values output according to the distribution are
guaranteed to be small (as opposed to small with high probability).
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to prove that the secret that he secret-shared among N players is bounded by
some publicly known bound B. The intuition behind this proof is as follows. Let
[s] denote the sharing of secret s. The dealer distributes a sharing of B, [B],
and the players compute sharings [B − s] and [B + s] by locally adding their
corresponding shares. We know that −B < s < B if and only if both B − s and
B+ s are positive, so the problem of proving that s is bounded by B reduces to
proving that a secret s′ that has been secret shared among N players is positive.

For this, we use Lagrange’s Theorem that states that any positive integer can
be written as the sum of four squares (see, e.g. [16]), and moreover, that these
four squares can be computed efficiently [28,24] (a similar technique was used by
Boudot [9]). The dealer computes u, v, w, y such that s′ = u2+v2+w2+y2, and
distributes sharings [u], [v], [w], [y]. The players can then locally compute shares
[u2 + v2 +w2 + y2 − s′] = [0], and verify that these final shares reconstruct to 0.

However, we must ensure that the values u, v, w, y are all smaller than
√
q/8.

Otherwise we can have overflow modulo q when we square and add the four
squares, which would mean that we can no longer guarantee that the sum
of the four squares is positive. For this, we use techniques from Cramer and
Damg̊ard [13]. The same techniques were used in [8], yet the key difference is
that we use them to bound the numbers to be squared (and thus the bound
can be loose), whereas in [8] they were used to bound the secrets themselves
(thus leading to the gap discussed above). The use of this technique requires our
modulus q to be super-polynomial in the security parameter λ (as was also the
case in [7,8,2,1]). See Section 3 for more details.

Other Applications. Recently, Brakerski et al. showed that a variant of the Regev
scheme is fully homomorphic [11,10]. The zero-knowledge PoPKs shown in this
work can be used to prove that a ciphertext encrypted under this Regev-based
FHE scheme is well-formed.

Presentation. In Section 2, we review some background needed for our construc-
tions. This includes the IKOS construction (Section 2.2), packed secret sharing
(Section 2.3), and a protocol for verifying the consistency of secret shares
(Section 2.4). In Section 3, we show a protocol that allows parties to verify that a
secret that is shared among them is numerically small. In Section 4 and Section 5
we show our protocols for proofs of plaintext knowledge and proofs of correct mul-
tiplication, respectively. Due to lack of space, we defer all proofs to the full version.

2 Preliminaries

2.1 Notation

The natural security parameter in this work is λ. We let Zq = {−q/2, . . . , q/2}
and use a mod q to denote the mapping of a into the interval (−q/2, q/2]. We
use [n] to denote the set {1, . . . , n} ⊂ Z.

We use boldface lower-case letters to represent vectors, such as u = (u1, . . . , un)
∈ Zn

q . Throughout what follows, vectors will be assumed to be column vectors,
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unless stated otherwise. We use subscripts to denote coordinates on a vector, e.g.
ui is the ith coordinate of vector u. This is to differentiate between coordinates
of a vector and elements in a sequence. For the latter case, we use superscripts:
m(i) is the ith element of sequencem(1), . . . ,m(k). We will also sometimes use the
notation (ui)i∈[n] to denote the vector (u1, . . . , un). We use boldface upper-case
letters to represent matrices, such as A ∈ Zn×m

q . For a vector x = (x1, . . . , xn)
and a scalar a, we let ax = (ax1, . . . , axn).

For a distribution χ, we denote x ← χ to be the experiment of choosing x
according to χ. If S is a set, then we use x ← S to denote the experiment of
choosing x from the uniform distribution on S. For a randomized function f , we
write f(x ; r) to denote the unique output of f on input x with random coins
r. Denote T = R/Z as the group of all reals in [0, 1) with addition modulo 1.
For α ∈ R+, Ψα is defined to be the distribution on T of a normal variable with
mean 0 and standard deviation α/

√
2π, reduced modulo 1. For any probability

distribution φ over T and integer q ∈ Z+, its discretization φ̄ is the discrete
distribution over Zq of the random variable �q ·Xφ� mod q, where Xφ ← φ.

We use lower case π to denote MPC protocols, such as πf , and use upper case
Π to denote zero-knowledge proof protocols, such as ΠR. We use greek letters to
represent shares from a secret sharing. For example, α = (α(1), α(2), . . . , α(N))
denotes the shares α(i) of each of the N share holders.

2.2 Overview of IKOS Construction

Let R(x,w) be a NP-relation. Consider the following N -player functionality f .
The public statement x is known to all players P1, . . . ,PN . The functionality
takes the entire input w from a special player I called the “input client”, and
outputs R(x,w) to all N players. Ishai et al. [22] show how to construct a zero-
knowledge proof protocol for NP-relation R from a MPC protocol πf for the
functionality f described above. We give a high-level idea of the construction.
The prover runs the MPC protocol πf “in his head” and commits to the views
V1, . . . , VN of the N players. The verifier then chooses a subset T ⊂ [N ], and
the prover opens his commitments to views {Vi}i∈T . The verifier accepts iff the
commitment openings are successful, the revealed views are consistent, and the
output in each view is 1.

We show the formal statement of the result in Theorem 1, but first recall the
security properties that the underlying MPC protocol will need to satisfy in the
construction. The following definitions are taken almost verbatim from [22].

Definition 1 (Correctness). We say that a protocol π realizes functionality f
with perfect correctness if for all inputs (x,w), the probability that the output of
some player is different from the output of f is 0, where the probability is taken
over the random inputs r1, . . . , rN .

Definition 2 ((Statistical) t-Privacy). Let t ∈ [N ]. We say a protocol π
realizes functionality f with statistical t-privacy if there exists a PPT simulator
Sim such that for all inputs (x,w) and all sets of corrupted players T ⊂ [N ] with
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|T | ≤ t, the joint view (View(Pi))i∈T of players in T is distributed stastistically
close to Sim(T, x,RT (x,w)).

Definition 3 (t-Robustness). Let t ∈ [N ]. We say a protocol π realizes func-
tionality f with perfect t-robustness if it is perfectly correct in the presence of
a semi-honest adversary, and for any computationally unbounded malicious ad-
versary corrupting I and a set T of at most t players, for all inputs x, it holds
that if there does not exist w such that f(x,w) = 1, then the probability that an
uncorrupted player Pi /∈ T outputs 1 is 0.

Theorem 1 ([22]). Let f be the N -player functionality with input client I
described above. Suppose that πf is a protocol that realizes f with perfect t-
robustness (in the malicious model) and statistical t-privacy (in the semi-honest
model), where t = Ω(λ), and N = ct for some constant c > 1. Given πf and an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational honest-verifier zero-knowledge proof protocol ΠR,I,t for the NP-relation
R, with negligible (in λ) soundness error.

One of the nice properties about the [22] construction is that we get broadcast for
free because the Prover can simply send the broadcasted messages directly to the
Verifier. Therefore, the communication cost of broadcasting a message is simply
the size of the message. We also get coin-flipping among the players for free
because the (honest) Verifier can simply provide the random value. Therefore,
the communication cost of coin-flipping for a value is simply the size of the value.
We will use these two facts in our constructions. Also, as observed by [7], if we use
a commitment scheme that allows us to commit to strings with only a constant
additive length increase such as those implicit in [27], then the zero-knowledge
proof protocol ΠR,I,t (asymptotically) conserves the communication complexity
of the underlying MPC protocol πf .

Finally, using general zero-knowledge techniques, it is possible to convert the
honest-verifier zero-knowledge proof protocol ΠR,I,t obtained from Theorem 1
into a full zero-knowledge protocol, while (asymptotically) preserving the com-
munication complexity of the protocol. One such technique is described in [22].

2.3 Packed Secret Sharing

We will use the packed secret sharing technique of Franklin and Yung [17].
Similar to Shamir secret sharing over Zq [30], packed secret sharing allows a
dealer to share a vector of k values x = (x1, x2, . . . , xk) using a single random
polynomial of degree at most d. To guarantee security against at most t corrupted
players, we must have d ≥ t+ k − 1. The idea is to chose a random polynomial
P (·) of degree at most d, subject to the condition P (−j + 1) = xj for j ∈ [k].
The share of player i is, as usual, the value αi = P (i).

We use [x]d to denote a packed secret-sharing α = (α1, . . . , αN ) ∈ ZN
q for N

players of the block x using a polynomial of degree at most d. We call [x]d a
d-sharing of x. We say x is correctly shared if every honest player Pi is holding
a share αi of x, such that there exists a degree at most d polynomial P (·) with
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P (i) = αi for i ∈ N , and P (−j + 1) = xj for j ∈ [k]. Any (perhaps incomplete)
set of shares is called d-consistent if these shares lie on a polynomial of degree
at most d.

Let Z ∈ Zm×k
q be a matrix of secrets. Suppose we have d-sharings of the rows

of Z: [Z1]d, . . . , [Zm]d ∈ Z1×N
q . We define Ψ ∈ Zm×N

q , called a d-share matrix
of Z, to be a matrix

Ψ =

⎡⎢⎣ [Z1]d
...

[Zm]d

⎤⎥⎦ ∈ Zm×N
q

Note that the shares held by Pi are precisely the entries in the ith column vector
of Ψ , denoted by ψ(i).

For any function f : Zm×1
q → Zm′×1

q , we abuse notation and write

f(Ψ) = f

⎛⎜⎝ [Z1]d
...

[Zm]d

⎞⎟⎠ =

⎡⎢⎣ [Y1]d′

...
[Ym′ ]d′

⎤⎥⎦ ,
to signify that each player Pi locally applies f to his shares of all [Zj ]d’s to obtain
his share of each [Yj ]d′ . In other words, if Ψ is the d-share matrix of Z then each

player locally computes f(ψ(i)) = φ(i), where Φ = [φ(1), . . . ,φ(N)] ∈ Zm′×N
q is

the d′-share matrix of Y containing the Yj ’s as rows.
It is easy to see that if f(x) is a linear function and we define fi to be f with

its output restricted to the ith coordinate (i.e. f(x) = (f1(x), . . . , fm′(x))
),
then

f

⎛⎜⎝ [Z1]d
...

[Zm]d

⎞⎟⎠ =

⎡⎢⎣
[
f1(z

(1)) , . . . , f1(z
(k))
]
d

...[
fm′(z(1)) , . . . , fm′(z(k))

]
d

⎤⎥⎦
Note that if f is a linear function, then the sharings obtained as a result of
applying f are also d-sharings. In particular, if each player Pi multiplies his
share vector ψ(i) by a matrix M ∈ Zm′×m

q , the player obtains a (m′ × 1)-vector
representing his corresponding shares of:

MΨ =

⎡⎢⎢⎢⎣
[
M1z

(1) , . . . , M1z
(k)

]
d

...[
Mm′z(1) , . . . , Mm′z(k)

]
d

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

[(
M1z

(j)
)
j∈[k]

]
d

...[(
Mm′z(j)

)
j∈[k]

]
d

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎣
[
(MZ)1

]
d

...[
(MZ)m′

]
d

⎤⎥⎦ ,

where (MZ)i is the ith row of the matrix MZ.

Parameters. We discuss requirements on the parameters of the scheme. We let
N = c1t for c1 > 2, satisfying the requirements of the IKOS construction. In
order to guarantee privacy of the secret shares, we must have d ≥ t+ k− 1. We
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will sometimes use (d/2)-shares, so we assume d/2 ≥ t + k − 1. Furthermore,
we must have enough honest players so that their shares alone can determine
a polynomial of degree d (in case corrupt players do not send their shares for
reconstruction). We therefore need N − t ≥ d ≥ d/2 ≥ t+ k − 1. For our choice
of N this yields k ≤ (c1 − 2)t+ 1. Thus, we assume k = Θ(t). Also, in order to
have enough evaluation points, we must have q > k+N . Henceforth, we will use
this choice of parameters.

2.4 Verifying Consistency of Shares

We now describe a protocol that can be used by N parties to check that their
shares are d-consistent. Security is guaranteed if at most t < N/2 parties are
corrupted. Players check N − 2t sets of shares at a time. More formally, let

Z ∈ Z
(N−2t)×k
q be a matrix of secrets, and suppose d-shares [Z1]d, . . . [ZN−2t]d

of the rows of Z are distributed among the N players. The players want to
verify that each sharing is d-consistent without revealing their individual shares.
Beerliová-Trub́ıniová and Hirt [4] describe a protocol in which the N parties
can perform this check when they hold N sharings (as opposed to N − 2t, as
described here) and sharing [Zi]d was created by player Pi. Bendlin and Damg̊ard
[7] extend this protocol to the case when all the shares were prepared by a
(possibly corrupt) input client I. We describe the protocol of [7] in Figure 1.
In the protocol, all players receive as common input a hyper-invertible matrix

M ∈ Z
N×(N−t)
q for q > 2N . Informally, a hyper-invertible matrix is a matrix

such that every square submatrix of M is invertible. Beerliová-Trub́ıniová and
Hirt [4] show how such matrices can be constructed.

Lemma 1. The protocol πCheck described in Figure 1 allows N players, at most
t of which are corrupted, to verify with zero error probability that (N − 2t) pack-
sharings, each of k = Θ(t) secrets in Zq, are d-consistent (for d ≥ t+ k − 1). It
is t-private in the presence of a semi-honest advesary, t-robust in the presence
of a malicious adversary, and has communication complexity N(N + t) log q.

2.5 Regev Encryption Scheme

Before presenting the Regev encryption scheme [29], we first introduce the hard-
ness assumption on which its security is based. For positive integers n = n(λ)
and q = q(λ) ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on Zq,
let As,χ be the distribution obtained by choosing a ← Zn

q and x ← χ, and
outputting (a, 〈a, s〉 + x) ∈ Zn

q × Zq.

Learning with Errors (LWEn,q,χ and dLWEn,q,χ). The Learning with Errors
problem LWEn,q,χ is defined as follows. Given m = poly(n) samples chosen
according to As,χ for uniformly chosen s ∈ Zn

q , output s with noticeable proba-
bility. The Decisional Learning with Errors problem dLWEn,q,χ is to distinguish
(with non-negligible advantage) m = poly(n) samples chosen according to As,χ

for uniformly chosen s ∈ Zn
q , from m samples chosen uniformly at random from
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Protocol πCheck between parties (P1, . . . ,PN ) to verify d-consistency of
shares.

Common input: hyper-invertible matrix M ∈ Z
N×(N−t)
q

Input to Pi: corresponding shares of [Z1]d, . . . , [Z(N−2t)]d.

1. Input client I chooses and d-shares random vectors in Z1×k
q . Let

[ZN−2t+1]d, . . . [ZN−t]d be the resulting shares. Augment matrix Z with rows

ZN−2t+1, . . . ,ZN−t to obtain matrix Z′ ∈ Z
(N−t)×k
q . Let Ψ ∈ Z

(N−t)×N
q be the

d-share matrix of Z′.
2. Players locally compute:

Φ = MΨ =

⎡⎢⎣
[
(MZ′)1

]
d

...[
(MZ′)N

]
d

⎤⎥⎦ ∈ ZN×N
q

3. The players reconstruct the resulting shares, each towards a different player:
player Pi receives Φi. Each player verifies that the shares he receives are d-
consistent and broadcasts “ABORT” if he finds a fault, and otherwise broad-
casts “OK”.

4. If all players broadcast “OK” then the players conclude that the initial shares
were d-consistent.

Fig. 1. Protocol πCheck to verify consistency of shares

Zn
q × Zq. In other words, if dLWEn,q,χ is hard then As,χ is pseudorandom. We

will use χ = Ψ̄α and in this case, we write LWEn,q,α to mean LWEn,q,Ψ̄α
.

Discrete Gaussian Distribution. We present an elementary fact that shows that
the discrete Gaussian distribution with standard deviation r outputs an element
x with with ||x|| ≤ r

√
n with high probability.

Lemma 2 (see [25], Theorem 4.4). Let n ∈ N. For any real number r >
ω(
√
logn), we have Prx←DZn,r

[||x|| > r
√
n] ≤ 2−n+1.

Using Lemma 2 together with the fact that for all x ∈ Rn, ||x||∞ ≥ ||x||/√n we
arrive at the following bound.

Lemma 3. Let n ∈ N. For any real number r > ω(
√
logn), we have

Prx←DZn,r
[||x||∞ > r] ≤ 2−n+1.

This allows us to define a truncated Gaussian distribution that always outputs
(with probability 1) elements with ∞ norm less than r. Simply define the trun-
cated Gaussian DZn,r over Zn with standard deviation r to sample a vector
according to the discrete Gaussian DZn,r and repeat the sampling if the vector
has ∞ norm greater than r. We will use the truncated discrete Gaussian in
our schemes to ensure that samples are bounded by r in each coordinate (and
can thus ensure perfect correctness), but state security in terms of the discrete
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Gaussian. Since the distributions are statistically close, all results stated using
the discrete Gaussian also hold when using the truncated distribution.

We present a generalized version of the Regev encryption scheme [29] (with
the modifications of [18]), using the truncated discrete Gaussian (as above). The
scheme is parametrized by integers n = n(λ),m = m(λ) > n, q = q(λ), r = r(λ),
and p = p(λ) < q. The message space is M = Zp, the ciphertext space is
C = (Zn

q ,Zq). All operations are performed over Zq.

– KeyGen(1n): Output sk = s, pk = (A,b), where s ← Zn
q , A ← Zn×m

q , x ←
χm , b = A
s+ x ∈ Zm

q .

– Encpk(m): Output (u, c), where r ← DZm,r , u = Ar ∈ Zn×1
q , c = b
r +

m · �q/p
 ∈ Zq.

– Decsk(u, c): Output m = �(c− s
u) · p/q�.

Theorem 2 ([29,18]). Let q ≥ 5prm, α ≤ 1/(p ·r√m ·ω(
√
logλ)), χ = Ψ̄α,m ≥

2(n + 1) log q + ω(logλ). With this choice of parameters, the Regev encryption
scheme is correct and IND-CPA-secure, assuming LWEn,q,χ is hard.

Parameters and Worst-case Guarantees. Our construction requires the modu-
lus q to be super-polynomial in the security parameter λ. More specifically, we
require

√
q/8 > 2ω(logλ) ·m ·max(p/2, r). We can use any choice of parameters

that satisfies this constraint and keeps the cryptosystem secure.
One option is to let the dimension of the lattice be our security parameter,

ie. n = λ and set our modulus q to be exponential in the lattice dimension n.
Peikert [26] showed that for such a large q, LWEn,q,α is as hard as GapSVPÕ(n/α)

if q is a product of primes, each of polynomial size. The works of [7,8] use this
choice of parameters.

Another possible choice is to let n = λ1/ε for some ε ∈ (0, 1) (e.g. n = λ2),
p, r,m = poly(λ) and let q = 2n

ε

be subexponential in the lattice dimension n.
In this case, we can rely on Regev’s quantum reduction [29] to GapSVPÕ(n/α)

or Peikert’s classical reduction [26] to GapSVPζ,γ where γ(n) ≥ n/(α
√
logn),

ζ(n) ≥ γ(n) and q ≥ ζ · ω(
√
logn/n). The work of [2,1] uses this choice of

parameters.

3 Verifying that Secrets are Numerically Small

At the heart of our constructions of proofs of plaintext knowledge and correct
multiplication, we will use a protocol that allows a dealer (in our case the input
client I) to prove to the players that the secret that he secret-shared among
them is bounded by some publicly known bound B. Formally, let R ∈ Zm×k

q be
a matrix of secrets. And suppose that a dealer has distributed d-sharings of the
rows of R : [R1]d, . . . , [Rm]d between N players. We show a protocol πVerSm

that allows the dealer to prove to each player Pi, without revealing R, that all
secrets in R are smaller than B � q/2.

We first have the dealer compute and distribute a sharing [b]d of b =
(B, . . . , B) ∈ Zk

q . Players can then compute
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⎡⎢⎣ [b]d...
[b]d

⎤⎥⎦−
⎡⎢⎣ [R1]d

...
[Rm]d

⎤⎥⎦ =

⎡⎢⎣ [b−R1]d
...

[b−Rm]d

⎤⎥⎦ and

⎡⎢⎣ [b]d...
[b]d

⎤⎥⎦+
⎡⎢⎣ [R1]d

...
[Rm]d

⎤⎥⎦ =

⎡⎢⎣ [b+R1]d
...

[b+Rm]d

⎤⎥⎦
Proving that each secret is bounded by B (and thus lies between −B and B)
reduces to proving that all the secrets that are pack-shared by each [b−Ri]d
and [b+Ri]d for i ∈ [m], are positive. We thus show a subroutine, described in
Figure 3 that allows a dealer to prove that secrets that are pack-shared among
players are positive. To do this, we follow an idea of Boudot [9] and use La-
grange’s Four-Square Theorem, which states that every positive number can be
written as the sum of four squares (see e.g. [16]). Moreover, these four squares
can be efficiently computed [28,24]. Suppose the dealer has pack-shared a se-
cret vector z ∈ Z1×k

q . For each coordinate zj for j ∈ [k], the dealer finds the
four numbers uj , vj , wj , yj such that zj = u2j + v

2
j + w2

j + y
2
j . We let ũ, ṽ, w̃, ỹ

be the vectors with uj, vj , wj , yj as the jth coordinate, respectively. The dealer
(d/2)-shares each of these vectors [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2. Similarly, we let
u,v,w,y be the vectors with u2j , v

2
j , w

2
j , y

2
j as the jth coordinate, respectively.

Players can locally compute sharings [u]d, [v]d, [w]d, [y]d by squaring their cor-
responding shares of [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2. Each player then computes,

[z]d − [u]d − [v]d − [w]d − [y]d = [z− u− v −w − y]d = [0]d

and together they check that the result is indeed a pack-sharing of the vector
0 ∈ Zk.

However, suppose that a cheating dealer chooses |uj | >
√
q/2. Then |u2j | > q

and we have wrap-around modulo q, which means that the cheating dealer could
convince the players that a secret zj is positive, without this being true. To
ensure this does not happen, we have the dealer prove that each of uj , vj , wj , yj
is bounded by some bound B′, which although larger than B, is certainly much
smaller than

√
q/2 (in fact, we will need B′ <

√
q/8 so that we don’t have

overflow when adding the four squares).
Our protocol for verifying that numbers are bounded by B′ uses techniques

from Cramer and Damg̊ard [13]. Players check τ shares at a time, where τ should
be thought of as the “local security parameter” for the protocol πVerBnd. The
players compute a linear combination of their shares (with some noise added) and
reconstruct the result, such that if the secrets resulting from this reconstruction
are “not too big” then the original secrets (i.e. the entries in R) are also small.
To ensure that the reconstructed result does not revealR, we let the added noise
be in an interval that is a factor of 2τ larger than the entries in R. To guarantee
that πVerBnd has statistical (in λ) t-privacy, we set τ = ω(logλ). The final bound
that we are able to prove is B′ = 22τ+1mB. We will thus need to ensure that√
q/8 > 22τ+1mB.
We give full descriptions of the protocol πVerSm in Figure 2, of the subroutine

to verify that secrets are positive in Figure 3, and the subroutine to verify that
numbers are bounded by B′ in Figure 4.



Zero-Knowledge Proofs with Low Amortized Communication 49

Protocol πVerSm between parties (P1, . . . ,PN) and input client I.
Common input: bound B
Input to I: R ∈ Zm×k

q .
Input to Pi: Corresponding shares of [R1]d, . . . , [Rm]d.

1. I prepares a d-sharing of b = (B, . . . , B) ∈ Zk
q ): [b]d. I gives each player its

corresponding shares.

2. Players run the subroutine πVerPos (see Figure 3) with⎡⎢⎣ [b]d
...

[b]d

⎤⎥⎦−
⎡⎢⎣ [R1]d

...
[Rm]d

⎤⎥⎦ =

⎡⎢⎣ [b−R1]d
...

[b−Rm]d

⎤⎥⎦ and

⎡⎢⎣ [b]d
...

[b]d

⎤⎥⎦+
⎡⎢⎣ [R1]d

...
[Rm]d

⎤⎥⎦ =

⎡⎢⎣ [b+R1]d
...

[b+Rm]d

⎤⎥⎦

Fig. 2. Protocol πVerSm to verify that secrets are numerically small

Subroutine πVerPos between parties (P1, . . . ,PN) and input client I, to
verify that secrets are positive.

Input to I: Z ∈ Zm×k
q .

Input to Pi: Corresponding shares of [Z1]d, . . . , [Zm]d.

1. For each entry z
(j)
i of Z (for i ∈ [m], j ∈ [k]), the dealer finds the four numbers

uij , vij , wij , yij such that z
(j)
i = u2

ij + v2ij +w2
ij + y2

ij . Define Ũ, Ṽ,W̃, Ỹ to be
the matrices with uij , vij , wij , yij as the (i, j)th entry, respectively. Similarly,
define U,V,W,Y to be the matrices with u2

ij , v
2
ij , w

2
ij , y

2
ij as the (i, j)th entry,

respectively.

2. I computes and distributes (d/2)-sharings of the rows of Ũ, Ṽ,W̃, Ỹ:

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m].

3. Players run protocol πCheck from Section 2.4 with the shares
[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m] (a total of 4m/(N − t) times) to
verify that these shares are d/2-consistent.

4. I and the players run the subroutine πVerBnd (see Figure 4) with the shares

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m] (a total of 4m/τ times), to verify

that each of the uij , vij , wij , yij is bounded by B′ <
√

q/8.

5. For each row i ∈ [m], players locally compute d-sharings
[Ui]d, [Vi]d, [Wi]d, [Yi]d by squaring their corresponding shares of

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2.

6. For each row i ∈ [m], players locally compute

[Zi]d − [Ui]d − [Vi]d − [Wi]d − [Yi]d = [Zi −Ui −Vi −Wi −Yi]d

and check that the result is a pack-sharing of the vector 0 ∈ Z1×k.

Fig. 3. Subroutine πVerPos to verify that secrets are positive
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Subroutine πVerBnd between parties (P1, . . . ,PN) and input client I, to
verify that numbers are bounded by B′ = 22τ+1mB.

Common input: bound B
Input to I: Z′ ∈ Zτ×k

q .
Input to Pi: Corresponding shares of [Z′

1]d, . . . , [Z
′
τ ]d (that are known to be d-

consistent).

1. I chooses X ← [−2τmB, 2τmB](2τ−1)×k, and prepares d-sharings of the rows
of X : [X1]d, . . . , [X2τ−1]d. I gives each player its corresponding shares.

2. Players P1, . . . ,PN coin-flip for a random vector e ∈ {0, 1}τ×1.

3. Define matrix Me to be the (2τ − 1)× τ matrix with its (i, j)-th entry defined

by m
(j)
e,i = ei−j+1 for 1 ≤ i− j + 1 ≤ λ. Each player locally computes⎡⎢⎣

[
(MeZ

′)1
]
d′

...[
(MeZ

′)2τ−1

]
d′

⎤⎥⎦+

⎡⎢⎣ [X1]d′
...

[X2τ−1]d′

⎤⎥⎦ =

⎡⎢⎣
[
(MeZ

′ +X)1
]
d′

...[
(MeZ

′ +X)2τ−1

]
d′

⎤⎥⎦
4. Players reconstruct MeZ

′ + X row by row and check that all its entries are
bounded by 22τ+1mB.

Fig. 4. Subroutine πVerBnd to verify that numbers are bounded by B′ = 22τ+1mB <√
q/8

We set N = Θ(t) as is required for the IKOS construction and for privacy (see
Section 2.3), and analyze the communication complexity of the πVerSm protocol.
Each share has size at most log q. Each execution of πVerBnd has communication
cost O(τN log q): sharing the Xi’s has communication cost (2τ − 1)N log q, the
coin-flipping of e has communication cost τ since we’ll use this MPC protocol
inside the IKOS construction, and reconstructing MeZ

′+X has communication
cost (2τ−1)N log q. The subroutine πVerPos (Figure 3) has communication com-
plexity O(mN log q): sharing of the rows of U,V,W,Y has cost 4mN log q, the
total cost of running πCheck is (N(N + t) log q) · 4m/(N − 2t) = O(mN log q),
the total cost of running πVerBnd is O(τN log q) · 4m/τ = O(mN log q), and the
final reconstruction has cost mN log q. Finally, the communication complexity
of protocol πVerSm is O(mN log q): sharing b has communication cost N log q,
and we run the subroutine πVerPos twice.

Lemma 4. Let n,m, r, q,N, t, k be as in Theorem 2 and Section 2.3, and let B
be some publicly-known bound. If τ = ω(logλ) and

√
q/8 > 22τ+1mB then the

protocol πVerSm described in Figure 2 allows N players to verify, with negligible
error probability in λ, that all entries in a secret matrix R ∈ Zm×k

q are bounded
by B. It has statistical t-privacy in the presence of a semi-honest adversary,
perfect t-robustness in the presence of a malicious adversary, and communication
complexity O(mN log q).
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4 Proofs of Plaintext Knowledge

We wish to show a zero-knowledge proof protocol that allows a prover to prove
that he knows the plaintexts of k different ciphertexts, each encrypted under
the same public key. We show how to do this for the Regev encryption scheme
described in Section 2.5. More formally, we show a zero-knowlege proof protocol
for the following relation:

RPoPK = { (x,w) | x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k))),

w = ((m(1), r(1)), . . . , (m(k), r(k))) s.t.

∀ j ∈ [k] : (u(j), c(j)) = Enc(A,b)(m
(j); r(j))

and |m(j)| ≤ p/2 , ||r(j)||∞ < r }

We create protocolΠPoPK for relationRPoPK using the “MPC-in-the-head” tech-
nique of [22] described in Section 2.2. We let fPoPK be the N -party functionality
that takes the entire input w from I and outputs RPoPK(x,w) to all N players.
In Figure 5, we show our construction of a t-robust and t-private N -party proto-
col, πPoPK, realizing functionality fPoPK. The idea is to have I pack secret-share
the messages, as well as pack secret-share each coordinate of the randomness
vectors. The players then locally run the encryption algorithm on their shares,
reconstruct the resulting shares, and check that the reconstructed secrets are
indeed the claimed ciphertexts. The input client I also needs to prove that the
messages and randomness come from the correct spaces. For example, he would
need to show that the magnitude of each message is less than p/2 (since the
message space is Zp), and that each coordinate of each randomness vector is
at most r (since we are using the truncated Gaussian distribution described in
Section 2.5). For this, we will use the protocol πVerSm described in Section 3.

We set t = Θ(k) and N = Θ(t) as is required for the IKOS construction
and for privacy (see Section 2.3), and analyze the communication complexity of
our protocol πPoPK (see Figure 5). Since each share has size log q, step 1 has
communication cost (m+ 1)N log q = O(mk log q). We run πCheck m+ 1/(N −
2t) = O(m/k) times, so step 2 has communication cost N(N + t) log q(m/k) =
O(mk log q) The reconstruction in step 3 has cost 2nN log q and running protocol
πVerSm has cost 2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Our techniques are similar to those of Bendlin and Damg̊ard [7]. However,
our protocol πVerSm for proving that a secret is small (see Section 3) allows
us to prove soundness for message space Zp and randomness sampled from the
discrete Gaussian, whereas the construction of [7] only worked for bit messages
and bit-vector randomness. Finally, our use of packed secret sharing allows us to
achieve a better amortized communication complexity. The protocol of [7] has
complexity O(nm log q) per proof, whereas we achieve an amortized complexity
of O(m log q) per proof.

Lemma 5. Let n,m, r, p, q,N, t, k be as in Lemma 4 with B = max(p/2, r). The
protocol πPoPK described in Figure 5 realizes fPoPK with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complexity O(mk log q).
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Protocol πPoPK between parties (P1, . . . ,PN) and input client I.
Common input: p, q,R, x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k)))
Input to I: w = ((m(1), r(1)), . . . , (m(k), r(k)))

1. Input client I prepares and distributes among the N players, d-shares over
Zq of the messages and randomness vectors, with d = k + t − 1. The ith
coordinates of all randomness vectors are pack-shared to produce a single set
of shares ρi. More formally: define matrices R = [r(1) ; r(2) ; . . . ; r(k)] ∈
Zm×k

q , m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p , U = [u(1) ; u(2) ; . . . ; u(k)] ∈

Zn×k
q , and c = (c(1) ; . . . ; c(k)) ∈ Z1×k

q . I prepares and distributes d-shares
[m]d, [R1]d, . . . , [Rm]d.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify
that their shares are d-consistent.

3. Players “emulate” encryption by running the encryption algorithm on their
local shares. More formally:

– For 	 ∈ [n], players locally compute

[(
A�r

(j)
)
j∈k

]
d

, and check that the

result is a pack-sharing of U�.

– Similarly, players locally compute[(
br(j)

)
j∈k

]
d

+

⌊
q

p

⌋
[m]d =

[(
br(j) +

⌊
q

p

⌋
m(j)

)
j∈k

]
d

Players check that the result is a pack-sharing of c.

– Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2 and ||r(j)||∞ <
r for all j ∈ [k].

Fig. 5. MPC protocol πPoPK that realizes fPoPK

Putting together Lemma 5 with Theorem 1 yields the following theorem.

Theorem 3. Let n,m, r, p, q be as in Lemma 4 with B = max(p/2, r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol ΠPoPK for relation RPoPK with negligible
(in λ) soundness error and amortized communication complexity O(m log q) per
proof.

5 Proofs of Correct Multiplication

In this section we show proofs for correct multiplication for the Regev encryption
scheme. In our protocol, the prover performs k proofs at a time, all under the
same public key. More formally, we give a zero-knowledge proof protocol for the
following relation:
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ProtocolπPoCM between parties (P1, . . . ,PN) and input client I.
Common input: p, q,R, x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k)))
Input to I: w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k)))

1. Input client I prepares and distributes among the N players, d-shares over Zq

of the messages and randomness vectors, with d = k + t − 1. The ith coordi-
nates of all randomness vectors are packed shared to produce a single set of
shares.. More formally: define matrices R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Zm×k

q ,

m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p ,x = [x(1) ; . . . ; x(k)] ∈ Z1×k

q ,U =

[u(1) ; u(2) ; . . . ; u(k)] ∈ Zn×k
q , c = (c(1), . . . , c(k)) ∈ Z1×k

q , V =

[v(1) ; v(2) ; . . . ; v(k)] ∈ Zn×k
q , and e = (e(1) ; . . . ; e(k)) ∈ Z1×k

q . I
prepares and distributes (d/2)-share [m]d and d-shares [x]d, [R1]d, . . . , [Rm]d.
I also prepares and broadcasts (d/2)-shares[c]d/2, [U1]d/2, . . . , [Un]d/2.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify
that shares [x]d, [R1]d, . . . , [Rm]d are d-consistent, and share [m]d is (d/2)-
consistent. They also check locally that c,U1, . . . ,Um are correctly shared.

3. Players “emulate” correct computation of each (v(i), c(i)). More formally:

– For 	 ∈ [n], players locally compute

[(
A�r

(j)
)
j∈k

]
d

. They also locally

compute

[(
br(j) +

⌊
q
p

⌋
x(j)

)
j∈k

]
d

.

– For 	 ∈ [n], players locally compute

[m]d/2 [U�]d/2 +

[(
A�r

(j)
)
j∈k

]
d

=

[(
u
(j)
� m(j) +A�r

(j)
)
j∈k

]
d

Players check that the result is a pack-sharing of V�.

– Players locally compute

[m]d/2 [c]d/2 +

[(
br(j) +

⌊
q

p

⌋
x(j)

)
j∈k

]
d

=

[(
c(j)m(j) + br(j) +

⌊
q

p

⌋
x(j)

)
j∈k

]
d

Players check that the result is a pack-sharing of e..

– Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2, |x(j)| ≤ p/2
and ||r(j)||∞ < r for all j ∈ [k].

Fig. 6. MPC protocol πPoCM that realizes fPoCM

RPoCM = { (x,w) | x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k))),

w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k))) s.t.

∀j ∈ [k] : (v(j), e(j)) = m(j)(u(j), c(j)) + Enc(A,b)(x
(j); r(j))

and |m(j)| ≤ p/2 , |x(j)| ≤ p/2 , ||r(j)||∞ < r }



54 I. Damg̊ard and A. López-Alt

As in Section 4, we create protocol ΠPoCM for relation RPoCM using the “MPC-
in-the-head” technique of [22], described in Section 2.2. We let fPoCM be the N -
party functionality that takes the entire input w from I and outputs RPoCM(x,w)
to all N players. In Figure 6, we show our construction of a t-robust and t-private
N -party protocol, πPoCM, realizing functionality fPoCM. Again, the idea is to
have I pack secret-share the messages, as well as pack secret-share each coordi-
nate of the randomness vectors. The players then locally emulate the encryption
of the random message and perform the multiplication, then reconstruct the re-
sulting shares, and check that the reconstructed secrets are indeed the claimed
ciphertexts. As before, the input client I also needs to prove that the messages
and randomness come from the correct spaces. We again use the protocol πVerSm

described in Section 3 for this purpose.
We set t = θ(k) and N = θ(t) as is required for the IKOS construction and for

privacy (see Section 2.3), and analyze the communication complexity of πPoCM

described in Figure 6. Since each share has size log q, step 1 has communication
cost 2(m+ 1)N log q = O(mk log q). We run πCheck m+ 1/(N − 2t) = O(m/k)
times, so step 2 has communication cost N(N + t) log q(m/k) = O(mk log q).
The reconstruction in step 3 has cost 2nN log q and running protocol πVerSm has
cost 2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Lemma 6. Let n,m, r, p, q,N, t, k be as in Lemma 4 with B = max(p/2, r). The
protocol πPoCM described in Figure 6 realizes fPoCM with statistical t-privacy in
the presence of a semi-honest adversary and perfect t-robustness in the presence
of a malicious adversary, and has communication complexity O(mk log q).

Putting Lemma 6 together with Theorem 1 yields the following theorem.

Theorem 4. Let n,m, r, p, q be as in Lemma 4 with B = max(p/2, r). Given an
unconditionally-binding commitment scheme, it is possible to construct a compu-
tational zero-knowledge proof protocol ΠPoCM for relation RPoCM with negligible
(in λ) soundness error and amortized communication complexity O(m log q) per
proof.
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Abstract. Anonymous authentication schemes such as group signatures
and anonymous credentials are important privacy-protecting tools in
electronic communications. The only currently known scheme based on
assumptions that resist quantum attacks is the group signature scheme
by Gordon et al. (ASIACRYPT 2010). We present a generalization of
group signatures called anonymous attribute tokens where users are is-
sued attribute-containing credentials that they can use to anonymously
sign messages and generate tokens revealing only a subset of their
attributes. We present two lattice-based constructions of this new prim-
itive, one with and one without opening capabilities for the group man-
ager. The latter construction directly yields as a special case the first
lattice-based group signature scheme offering full anonymity (in the ran-
dom oracle model), as opposed to the practically less relevant notion
of chosen-plaintext anonymity offered by the scheme of Gordon et al.
We also extend our scheme to protect users from framing attacks by
the group manager, where the latter creates tokens or signatures in the
name of honest users. Our constructions involve new lattice-based tools
for aggregating signatures and verifiable CCA2-secure encryption.

Keywords: Anonymous attribute tokens, group signatures, lattices,
post-quantum cryptography.

1 Introduction

We all increasingly use electronic services in our daily lives. To do so, we currently
have no choice but to provide plenty of personal information for authorization,
billing purposes, or as part of the terms and conditions of service providers.
Dispersing all these personal information erodes our privacy and puts us at
risk of abuse of this information by criminals. Therefore, these services and their
authentication mechanisms should be built in a way that minimizes the disclosed
personal information. For instance, to access a resource, users should not need to
identify themselves but rather only to prove to the resource provider that they
possess the necessary attributes (e.g., rights or properties) which are required
for the access. In fact, in Europe it is widely acknowledged that to secure the
future digital infrastructure one must employ this kind of attribute-based access
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control and use so-called attribute-based credentials or minimal disclose tokens
(see, e.g., [RIS10, IA11]).

The cryptographic research literature has put forth a large body of proto-
cols that allow for privacy-friendly access control. For instance, group signa-
ture [CvH91] and identity escrow [KP98] schemes allow a user to prove that
she has authorization (i.e., is member of a group of people who all share the
same property) without revealing her identity. Nevertheless, in case of abuse of
this anonymity, group signature and identity escrow schemes allow a designated
party to lift the anonymity and to identify the abusing user. The generaliza-
tion of these schemes are anonymous credentials or pseudonym systems [Cha81,
Bra99,CL01b,LRSW99]. Such schemes feature a plurality of organizations who
assign attributes to users by issuing attribute-containing credentials. Users are
known to the different issuers under different pseudonyms. Later, when users
need to authenticate somewhere, they can do so in the most privacy-protecting
manner, i.e., users can just prove that they possess credentials asserting them
the attributes required by the authentication policy.

It is well known that the cryptographic assumptions underlying all known
realizations of these privacy-protecting schemes can be broken with quantum
computers. The only exception to this is the group signature scheme by Gordon,
Katz, and Vaikuntanathan [GKV10]. Their scheme works on ordinary computers
but is based on the hardness of lattice problems, which are believed to be immune
to quantum computers. While so far only small quantum computers breaking toy
keys could be built, it seems very plausible that in just a few years computers
breaking currently used keys can be built [Los10]. Even if quantum computers
are not considered an immediate threat, the hardness of lattice problems against
sub-exponential time adversaries and their provable worst-case to average-case
relation makes it desirable to build cryptographic schemes from these problems.

In this paper we provide a number of new schemes for privacy-protecting au-
thentication with security based on lattice problems in the random-oracle model.
In particular, as our first contribution, we define and present an anonymous at-
tribute token scheme without opening (AAT–O). Here, a user can obtain a cre-
dential from a group manager or issuer, the credential containing the attributes
that the manager wants to assert to the user. Later, the user can anonymously
authenticate to a verifier by generating an authentication token from her creden-
tial, the token revealing only a subset of the attributes that are contained in the
credential. Such authentication tokens are anonymous, i.e., a token containing a
set of attributes could originate from any user who has been asserted a super-
set of these attributes. Minimal disclosure tokens as implemented by Microsoft’s
U-Prove [BP10] are an example of an AAT–O scheme.

As our second and main contribution, we extend our scheme to an anony-
mous attribute token scheme with opening (AAT+O), where the group manager
additionally has the power to reveal the identity of the user who generated a
given token. Group signatures can be seen as special case of AAT+O schemes
where the manager issues to all users a credential without attributes (or a single
attribute with a fixed value). Our scheme provides anonymity to honest users
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in the presence of adversaries with adaptive access to the opening functionality.
This is a major improvement over the group signature scheme of Gordon et al.,
who provide a much weaker form of anonymity. In their model, anonymity may
break down for all users in the system as soon as a single signature (or token
in our terminology) is opened, even for users who never misbehaved and never
had their tokens opened. Hence, their scheme can only be used as long as no
signature (token) is opened—an event that users are typically not even aware
of. This is a severe limitation that we overcome.

We furthermore show how our AAT–O and AAT+O schemes can be combined
to obtain a new AAT+O scheme that protects users from framing by a dishonest
group manager. That is, in this resulting third scheme, no one except the user
herself can produce tokens that when opened will be attributed to the user.
This is a further property that the Gordon et al. group signature scheme does
not provide and which we believe is rather important when one wants to have
accountability. Group signatures obtained from our AAT+O schemes do not only
provide better security compared to the Gordon et al. scheme, but also offer other
advantages: the manager’s public and secret key are independent of the number
of users (versus linear in their scheme1) and users can join dynamically (in theirs,
all the users’ keys need to be generated at setup time). Thus, while our main
focus is on anonymous attribute token schemes, we present as a corollary the
first lattice-based, non-frameable group signature scheme with full anonymity.

As an aside, to construct our scheme, we improve upon known tools and
introduce a number of new building blocks, which we believe are of interest
in their own right. We provide a verifiable encryption proof protocol for the
CCA2-secure encryption scheme of Peikert [Pei09] and introduce and construct
single-signer aggregate signatures as a restricted, but useful, form of aggregate
signatures [BGLS03].

Related Work. We do not claim anonymous attribute tokens to be a new prim-
itive: the U-Prove scheme [BP10] and the signature scheme with its proof pro-
tocols by Camenisch and Lysyanskaya [CL04] actually realize instantiations of
it based on the discrete logarithm assumption and the strong RSA assumption,
respectively. Nevertheless, to the best of our knowledge, an anonymous attribute
token scheme (with or without opening) has never been formally defined. As we
have pointed out already, group signature schemes can be seen as a special case
of AAT+O schemes.

Several group signature schemes have been proposed in the literature. Most
of these are based on strong RSA [ACJT00,AST02,CL01a] or on bilinear maps
[BBS04,BS04,CL04,DP06,BCN+10]. The scheme due to Gordon et al. [GKV10]
is the only based on assumptions that resist attacks by quantum computers.

1 Note that secret keys can always be made of constant length by storing the random
seed used to generate the key instead of the key itself. Likewise, one can always
publish the hash of the public key instead of the public key itself. The first trick
involves re-generating keys, which is particularly costly in lattice-based schemes that
use trapdoors. The latter trick comes at the cost of having to attach the full public
key to each signature or token.
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Attribute-based signatures [MPR11] are a related primitive where signatures
cannot be opened and where the signer can prove any predicate over the at-
tributes that can be expressed as a monotone span program, which includes
circuits of threshold gates. Attribute-based group signatures [Kha07] are a sim-
ilar primitive where signatures can be opened by a dedicated authority, and is
thereby closely related to our notion of AAT+O schemes. Unfortunately, how-
ever, the security notions proposed in [Kha07] are flawed.2

Ring signatures [ST01] are another privacy-enabling primitive which can be
seen as an ad-hoc group signature scheme without a central group manager and
without the possibility for opening. Ring signatures can also be constructed from
our AAT–O scheme, as we shall point out later. Mesh signatures [Boy07] are a
generalization of ring signatures to monotone access structures where each user
can (be claimed to) sign a different message. Single-attribute AAT–O schemes
are easily obtained from mesh signatures; multi-attribute schemes involve a com-
binatorial blowup of the credential size in the number of attributes. Similarly,
mesh signatures with opening [BD08] can be used to build AAT+O schemes.

The most general privacy-enabling primitive are probably anonymous creden-
tial systems with additional features such as proving predicates over attributes,
cryptographic pseudonyms, and partially blind issuing protocols to protect users
against framing attacks by malicious issuers. While they are quite close to anony-
mous attribute token schemes, we leave it as an open problem to construct a
full-fledged anonymous credential system based on lattices.

Organization of the Paper. We define anonymous attribute token schemes in
Section 3. Then, we introduce, analyze, and discuss the building blocks for our
constructions in Section 4, followed by our first construction in Section 4.2.
Based on these results, we describe the full-blown scheme with opening and how
to achieve group signatures and restricted anonymous credential systems in the
full paper [CNR12].

2 Preliminaries

The statement x ←$ X means that x is chosen uniformly at random from the
finite set X . A function is negligible if it vanishes faster than 1/p(n) for any
polynomial p. All logarithms are base 2 and we identify {1, . . . , k} with [k] and

(xi)
b
i=a with (xa, . . . , xb). Furthermore, [a, b]Z := [a, b] ∩ Z. Instead of a ≡ b

(mod q), we simply write a ≡ b. When we write “‖”, we mean the concatenation
of strings or matrix columns. The concatenation of two vectors x,y is denoted
[x,y]. The notation #S denotes the cardinality of a finite set S.

2 The “selective-policy” anonymity notion of [Kha07] allows linkability of signatures
when a signer signs the same message with the same set of revealed attributes twice.
The traceability notion merely implies that any valid signature will open to some
user. There is no guarantee that it opens to the actual signer behind the signature,
however, nor does the notion offer any protection against users claiming attributes
that they do not possess.
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In this work, we only require full-rank lattices. A lattice in Rn is a discrete
subgroup Λ = {

∑n
i=1 xi bi |xi ∈ Z}, typically represented by a matrix B =

[b1, . . . ,bn] ∈ Zn×n of R-linearly independent vectors. The matrixB is a basis of
the lattice Λ and we write Λ = Λ(B). The number of linearly independent vectors
in B is the dimension dim(Λ). For a lattice Λ(B) with B ∈ Zn×n define the (full-
rank) dual lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all y ∈ Λ(B). The
Gram-Schmidt orthogonalization (GSO) B̃ = [b̃1‖ . . . ‖b̃n] of the columns of B
is recursively computed by letting b̃i+1 be the orthogonal projection of bi+1

onto span(b̃1, . . . , b̃i)
⊥. The length of B is defined as ‖B‖ := maxi∈[n](‖bi‖2).

One of the main computational problems in lattices is the approximate short-
est vector problem (SVP). Given a basis B of Λ and an approximation factor
γ ≥ 1, the task is to find a non-zero vector v ∈ Λ with length at most γ times
the length of a shortest vector in Λ. A related problem is the approximate short-
est independent vector problem (SIVP), where one is supposed to find a set
{v1, . . . ,vn} of linearly independent vectors in Λ such that maxi ‖vi‖2 ≤ γλn.
Here, λn denotes the n-th successive minimum of Λ, which is the smallest radius
of a sphere that contains n linearly independent lattice vectors. For polynomial
(in the dimension) approximation factors, which are relevant for cryptography,
the best known algorithms require exponential space × time, e.g., [MV10].

In cryptography, we use lattices of a special form, which we call q-ary lattices :
for q ∈ N, A ∈ Zn×m

q , we define Λ⊥
q (A) := {v ∈ Zm : Av ≡ 0}. Its, up to

scaling, dual lattice Λq(A) is defined as {w ∈ Zm : ∃e ∈ Zn s.t. Ate ≡ w}.
The main computational problem in Λ⊥

q (A) is the following “short integer so-
lution” (SIS) problem: given n,m, q, uniformly random A, and a norm bound
1 ≤ ν < q, find v ∈ Λ⊥

q (A) with 0 < ‖v‖2 ≤ ν. The SIS problem was introduced
and analyzed by Ajtai [Ajt96] but there are numerous improvements to the anal-
ysis [MR07,GPV08]. We will also use the (equivalent) inhomogeneous problem
ISIS, where the task is to find a short vector x that solves Ax ≡ y given y. For
ν ≤ poly(n), prime q ≥ νg(n) for g(n) = ω(

√
n log(n)), and m ≥ 2n log(q), the

average-case SIS(n,m, q, ν) is at least as hard as SIVP with γ = νÕ(
√
n) in the

worst case. For Λq(A), we consider the following “learning with errors“ (LWE)
problem: given n,m, q,A, and m “noisy” inner products b ≡ Ats + e mod q,
where e is chosen from a certain error distribution Ψ over Zm. The task is to
recover s ∈ Zn

q . This search version of LWE is at least as hard as solving the
decision problem, i.e., distinguish (A,b) from uniform. The standard error dis-
tribution is a spherical discretized normal distribution Ψmα with width parameter
to α = α(n) ∈ (0, 1). For prime q > 2

√
n/α and m ≤ poly(n), these problems

are, on the average, at least as hard as SIVP with γ = Õ(n/α) in the worst
case [Reg09] under a quantum reduction. A similar classical reduction can be
found in [Pei09] at the expense of more constraints. We will use a different, true
discrete Gaussian error distribution as defined below.

Gentry et al. [GPV08] define a special family of one-way trapdoor functions
called a preimage samplable functions. For parameters n ∈ N, q = q(n) =
poly(n), m = m(n) = Ω(n log(q)), L̃ = L̃(n) = O(n log(n)), ρ(n) = ω(

√
log(n)),

and η ≥ L̃ρ(m) this family of one-way trapdoor functions is defined as follows.
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– GPVGen(1n) generates a matrix A ∈ Zn×m
q , distributed statistically close to

uniform, and a secret trapdoor T ∈ Zm×m such that AT ≡ 0 and
∥∥∥T̃∥∥∥ ≤ L̃.

– The one-way function associated to A is fA : Zm → Zn
q : x �→ Ax (mod q).

– GPVInvert(A,T,y, η) samples elements from f−1
A (y) so that (x,Ax (mod q))

as well as (GPVInvert(A,T,y, η),y) are statistically close for x ∼ DZm,η and
y ←$ Zn

q for a certain distribution D, defined below.
– The samples x returned by GPVInvert have a conditional min-entropy of
ω(log(n)), conditioned on Ax ≡ y and ‖x‖2 ≤ η

√
m (or, ‖x‖∞ ≤ ηρ(m)).

Refer to [GPV08,AP09,Pei10] for further details.

Let Λ be a lattice. We define the distribution DΛ,η,c with parameter η as

in [GPV08]: for all x ∈ Λ + c, it is DΛ,η,c(x) =
Dη(x)∑

y∈Λ+c Dη(y)
for Dη(x) =

1/ηm exp(−π‖x‖2/η2). For c = 0, we write DΛ,η. Note that, as in [GKV10], this
distribution will serve as an error distribution for LWE later.

Theorem 1 ( [GPV08]). The family is collision-resistant if SIS(n,m, q, 2η
√
m)

is hard.

The GPV signature scheme [GPV08] is essentially a full-domain hash scheme
[BR93] based on this one-way function. It uses A as a public key and the trap-
door T as the signing key. A signature on message M is a vector σ such that
Aσ ≡ H(M) and ‖σ‖2 ≤ η

√
m which can be computed using the probabilistic

GPVInvert algorithm.3 Signing is stateful, i.e., when the same message is signed
twice, the same signature is returned.

3 Syntax and Security of Anonymous Attribute Tokens

An anonymous attribute token (AAT) scheme can be seen as an extension of
group signatures or as a simplification of anonymous credentials where the is-
suer can assign a list of attributes to a user’s signing key. When authenticating
to a verifier, the user can selectively reveal some of these attributes in a to-
ken and convince the verifier that she has a valid credential (i.e., signing key
with attributes) certifying the claimed attribute values, without revealing any
information about the non-revealed attributes and without making her tokens
linkable – that is, more linkable than directly implied by the revealed attributes.
We define and design two kind of schemes: AAT without opening (AAT–O)
where anonymity is absolute, i.e., opening tokens is impossible, even for the is-
suer; and AAT with opening (AAT+O), where the manager can uncover the
user who created a given token. Minimal disclosure tokens as implemented by
Microsoft’s U-Prove [BP10] are an example of an AAT–O scheme.

3 With negligible probability, GPVInvert returns σ = 0 or ‖σ‖2 > η
√
m. In this case,

the algorithm starts over.
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Our syntax and security definitions take inspiration from those for group
signatures as put forward by Bellare et al. [BMW03], but we add support for
dynamic issuing of credentials. We first lay out the definitions for the setting
with opening (AAT+O), and then explain the differences to the AAT–O setting.
We note that an AAT+O scheme does not trivially yield an AAT–O scheme,
because in the former the manager can always open tokens, while the latter
requires that even the manager cannot link tokens. The inverse relation does not
hold either due to the lack of an opening algorithm in AAT–O schemes.

Syntax of AAT+O Schemes. An AAT+O scheme is parameterized by security
parameter n, maximum number of users umax, and maximum number of at-
tributes per credential max, and is defined by the following algorithms.

– The manager runs MKeyGen on 1n, umax to generate his public key mpk and
corresponding secret key msk .

– When a user with index u requests a credential for an ordered list of attribute
values (ai)



i=1, with  ≤ max, the manager runs Issue on input msk , u, and

(ai)


i=1 to generate a credential cred .

– A user generates an authentication token τ revealing a subset of attribute
values (ai)i∈R for R ⊆ [] and authenticating a message M by running the

GenToken algorithm on input mpk , cred , (ai)


i=1, R, andM . The messageM

can be any string; in practice, it could encode authentication context infor-
mation such as the identity of the verifier, a timestamp, a session identifier,
or a random nonce.

– To verify a token, the verifier runs the VToken algorithm on input mpk , the
token τ , the set R, the revealed attribute values (ai)i∈R, and the message
M . It outputs 1 or 0, indicating the validity of τ .

– Using the Open algorithm on input msk , a token τ , a set R, the revealed
attributes (ai)i∈R, and a message M , the manager recovers the index u of
the user that generated the token.

Correctness is defined in the straightforward way that any honestly generated
token will be accepted. Security consists of anonymity, requiring that tokens
generated by the same user cannot be linked, and traceability, requiring that no
adversary can produce a token that cannot be opened or that, when opened,
falsely incriminates an honest user.

Anonymity of AAT+O Schemes. We consider full anonymity here, in other
works (e.g., [BBS04]) often referred to as CCA2-anonymity, where the adversary
has access to an opening oracle. The adversary A is given the manager’s public
key mpk as input. It has access to an initialization oracle, an issuing oracle, and
an opening oracle, which offer the following functionalities.

– The initialization oracle, on input user index u and attribute values (ai)


i=1,

generates a credential credu ←$ Issue(isk , u, (ai)


i=1). The oracle does not

generate any direct output to A, but stores credu locally, outside A’s view.
It can only be queried once for each user u. Once user u has been initialized,
the adversary can query the issuing and token generation oracles for u.
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– The issuing oracle, on input a user index u, returns credu if a credential for
u was previously initialized, or ⊥ otherwise.

– The opening oracle, on input token τ , attribute indices R ⊆ [], attribute
values (ai)i∈R and message M , returns u← Open(msk , τ, R, (ai)i∈R ,M).

At the end of the first phase, A outputs user indices u0, u1 ∈ [umax], a set

R ⊆ [], and a message M . Let (ai,0)

0
i=1 and (ai,1)


1
i=1 be the attributes with

which u0 and u1 were associated by the initialization oracle, respectively. If one
of u0 or u1 has not been initialized, or if ai,0 �= ai,1 from some i ∈ R, then A
loses the game. Otherwise, the challenger chooses a random bit b, generates a
token τ∗ ←$ GenToken(ipk , opk , credub

, (ai,b)

b
i=1 , R,M) and hands it to A. The

latter is allowed to make any additional oracle queries except submitting τ∗ to
the opening oracle. Eventually it outputs a bit b′ and wins the game if b′ = b.

Note that an even stronger anonymity notion would be obtained by consider-
ing an adversarially generated manager public key mpk . We leave the construc-
tion of a scheme satisfying this stronger notion as an open problem.

Traceability of AAT+O Schemes. The adversary A is given as input the man-
ager’s public key mpk . Apart from the initialization, issuing, and opening oracles
described above, it has access to a token generation oracle offering the following
functionality.

– The token generation oracle, on input user index u, attribute indices R ⊆ [],

and message M , returns a token τ ←$ GenToken(mpk , credu, (ai)


i=1 , R,M)

and returns τ to the adversary if a credential for u was previously initialized,
or returns ⊥ otherwise.

At the end of the game, A outputs τ∗, R∗, (a∗
i )i∈R∗ , and M∗. Let u∗ ←

Open(msk , τ∗, R∗, (a∗
i )i∈R∗ ,M∗) be the index of the user to whom the token is at-

tributed by the opening algorithm. The adversary wins the game if VToken(mpk ,
ipk , R∗, (a∗

i )i∈R∗ ,M∗) = 1 and either

– A initialized u∗ with attributes (ai)


i=1 where ai �= a∗

i for some i ∈ R∗, or
– A never queried the issuing oracle on u∗ and never queried a token by u∗ on
M∗ and R∗.

Syntax and Security of AAT–O Schemes. An AAT–O scheme does not have an
Open algorithm. It does, however, have an additional VCred algorithm that a
user runs, upon receiving a credential cred , on input mpk , cred , (ai)



i=1, to check

whether cred is a well-formed credential. The algorithm returns 1 in case it is
well-formed, or 0 if not.

We define a stronger anonymity notion for AAT–O than for AAT+O. The
adversary A is given the manager’s keys mpk and msk as input. At the end of
the first phase, A outputs user indices u0, u1 ∈ [umax], credentials credu0 , credu1 ,

lists of attribute values (ai,0)

0
i=1 , (ai,1)


1
i=1, a set R ⊆ [min(0, 1)], and a message

M . If VCred(mpk , credb, (ai,b)

b
i=1) = 0 for either of b ∈ {0, 1} or if ai,0 �= ai,1

from some i ∈ R, then A loses the game. Otherwise, the challenger chooses a
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random bit b, generates a token τ∗ ←$ GenToken(mpk , credub
, (ai,b)


b
i=1 , R,M)

and hands it to A. The latter outputs a bit b′ and wins the game if b′ = b.
The traceability notion for AAT+O is replaced with the notion of unforge-

ability for AAT–O. In the unforgeability experiment, the adversary is given mpk
as input. It has access to the same initialization, issuing, and token genera-
tion oracles as in the traceability game above. The adversary wins the game
if VToken(mpk , τ∗, R∗, (a∗

i )i∈R∗ ,M∗) = 1 and if for all users u initialized with

attributes (ai)


i=1 such that ai = a∗

i for all i ∈ R∗, A never queried the issuing
oracle on u and never queried a token for u,M∗, R∗.

4 An Anonymous Attribute Token Scheme without
Opening

Our anonymous attribute token schemes build upon techniques in the GKV group
signature scheme by Gordon et al. [GKV10]. We briefly recall their scheme and
explain the fundamental differences in the way we issue credentials (signing
keys) and generate tokens (signatures). In the GKV scheme, each user u is as-
signed a matrix Au as public key and a corresponding trapdoor matrix Tu as
signing key. To group-sign a message M , user u first uses Tu to compute a
GPV signature [GPV08] σu on M , this GPV-signature being a short vector
such that Auσu ≡ H(M), where H is a hash function. She generates a “fake”
GPV-signature σv for all other users v �= u through Gaussian elimination, i.e.,
σv will be a long vector such that Avσv ≡ H(M). She subsequently encrypts
each of these signatures using a variant of the Regev encryption scheme [Reg09]
to obtain ciphertexts τ v = Bvs + σv for v = 1, . . . , umax, where Bv are ma-
trices such that AvB

t
v ≡ 0 and which are included in the group’s public key.

The encrypted GPV-signatures can still be verified by checking whether or not
Avτ v ≡ H(M) holds. The group signature contains the vectors τ 1, . . . , τ umax

plus a non-interactive witness-indistinguishable proof [MV03] that at least one
of the encrypted GPV-signatures is actually short. Group signatures can be
opened by decrypting τ v using a trapdoor Sv associated to Bv and checking
which of the signatures σv is short.

Our AAT–O scheme uses only a single pair of matrices A,B for the entire
group, as opposed to a pair of matrices for each user. Only the manager knows
the trapdoor T corresponding to A. To prevent anyone, including the manager,
from knowing a trapdoor corresponding to B, the latter matrix is determined by
a common reference string. The credential of a user u is a list of GPV signatures
σu,i such that Aσu,i ≡ H(u‖i‖ai). A first idea to create a token for attribute
ai and message M could be to encrypt σu,i as in the GKV scheme and include
M as an argument to the random oracle in the non-interactive proof that one of
the ciphertexts τ v encrypts a short vector.

The problem with this approach, however, is that two signatures by the same
user u can be linked by checking whether τ u − τ ′

u is a lattice point. This can
be fixed by re-randomizing the GPV signatures, for both real and fake ones,
with a small short random x ∼ DZm+n,η. To enable verifiability, we compute
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y ← Ax mod q and append a non-interactive witness-indistinguishable proof of
knowledge of a short vector x′ such that Ax′ ≡ y. This proof is the Fiat-Shamir
transformation of a generalization of Lyubashevsky’s identification scheme
[Lyu08], where the message M is included as an argument in the hash.

This approach of treating each attribute separately has the obvious disad-
vantage that it blows up the signature size with a factor of #R ≤ . We can
obtain shorter tokens by observing that GPV signatures support a limited form
of aggregation [BGLS03]. Namely, the GPV signatures σu,i for i ∈ R can be
summed up to form an aggregate signature αu ←

∑
i∈R σu,i. The aggregate

satisfies Aαu ≡
∑

i∈R H(u‖i‖ai) and is still “somewhat” short. Enabling such
aggregation in Section 4.1.4 comes at the price of having to choose slightly larger
security parameters, but only by a factor of log(#R).

4.1 Cryptographic Ingredients

4.1.1 Sampling Orthogonal Lattices with Trapdoors Revisited

Gordon et al. [GKV10] present an algorithm that, given a matrix B ∈ Z
n×(m+n)
q ,

samples a matrix A ∈ Z
n×(m+n)
q and an associated trapdoor T ∈ Zn×(m+n) such

that ABt ≡ 0. We give a construction method based on [GKV10] that is more
efficient and allows for better (i.e., shorter) trapdoors.

Proposition 1. There exists a probabilistic polynomial-time (PPT) algorithm

OrthoSamp that, on input B = B1‖B2 ∈ Z
n×(m+n)
q with B2 ∈ (Zn×n

q )∗, outputs a

pair (A,T) ∈ Z
n×(m+n)
q ×Zn×(m+n) such that (1) ABt ≡ 0; (2) A is distributed

statistically close to uniform (conditioned on ABt ≡ 0); (3) AT ≡ 0; and

(4)
∥∥∥T̃∥∥∥ ≤ L̃.

From [CHKP10], we adopt the notion of extending a lattices basis to a larger
dimension. The corresponding algorithm ExtBasis takes as input a matrix A1,
a basis T1 of Λ⊥

q (A1), and an extension A2. It picks a uniformly random V ∈

Zm×n
q such that A1V ≡ −A2. Its output is a basis T =

(
T1 V
0 In

)
of Λq(A) for

A = A1‖A2 with
∥∥∥T̃∥∥∥ ≤ ∥∥∥T̃1

∥∥∥ ≤ L̃.
Proof. First, generate (A1,T1) ← GPVGen(1n). Then, set A2 ← −A1B

t
1(B

−1
2 )t

= [a
(2)
1 , . . . , a

(2)
n ] and compute the basis T ← ExtBasis(A1,T1,A2). Output A =

A1‖A2 and T. The output satisfies (1) because ABt ≡ A1B
t
1+A2B

t
2 ≡ A1B

t
1−

A1B
t
1(B

−1
2 )tBt

2 ≡ 0. It satisfies (2) because the output A1 of GPVGen is dis-
tributed statistically close to uniform. It satisfies (3) because AT ≡ A1T1‖(A1

V + A2) ≡ 0. Finally, to see that it satisfies (4), recall that T1 is a ba-

sis of Rm. Thus, after GSO, we have T̃ =

(
T̃1 0
0 In

)
and, as a consequence,∥∥∥T̃∥∥∥ = ∥∥∥T̃1

∥∥∥ ≤ L̃. ��



Fully Anonymous Attribute Tokens from Lattices 67

Notice that essentially the same procedure can be used to compute an orthogonal
A such that ABt ≡ 0 without a trapdoor for Λ⊥

q (A). Just sample a uniformly
random matrix A1 in the first step and omit all subsequent steps that involve
the trapdoor T1.

In our security proofs, we will require that a pair (A,TA,B,TB) does not re-
veal in which order they were generated by OrthoSamp as stated by the following
proposition. We refer to the full paper for the proof.

Proposition 2. Let A,TA,B,TB be random variables where (B1,TB1) ←
GPVGen(1n); B2 ←$ (Zn×n

q )∗; TB ← ExtBasis(B1,TB1 ,B2); and (A,TA) ←
OrthoSamp(B). Then, the distributions X1 = (A,TA,B,TB) and X2 = (B,TB,
A,TA) are statistically indistinguishable.

Observe that we have applied a simplification to the above proposition, where
we choose B2 directly from the set of invertible matrices. Whenever the proposi-
tion is applied in our schemes, this property can be easily ensured by repeating
the sampling procedure a small number of times. For our parameters, a good
approximation of the ratio

∣∣(Zn×n
q )∗

∣∣ / ∣∣Zn×n
q

∣∣ is e−1/(q−1) and a lower bound is
(1−1/q)n. Since the choice of q is mainly governed by the worst-case to average-
case reduction for SIS, demanding that q � ν for SIS(n,m, q, ν), it will exceed
η
√
m+ n = Ω(n1.5 log1.5(n)) in all our schemes. Hence, the fraction of invertible

matrices over Zn×n
q is very close to 1.

All in all, our method differs from the corresponding lemma of [GKV10] in
that we always use GPVGen in dimension m instead of sampling a trapdoor in
dimension m+n (as in [GKV10]) directly. Instead, we explicitly control how the
trapdoor is extended to the super lattice. Hence, we have more control over the
“shape” of the (m+n)-dimensional input trapdoor to OrthoSamp, resulting in ef-
ficiency advantages and a better-quality trapdoorT. See the full version [CNR12]
for details.

Efficient Sampling with Orthogonal Trapdoors. We apply a slight, well-known im-
provement to GPVInvert whenever we apply it in dimensionm+n, i.e., whenever
we call GPVInvert(A,T, t, η) for (A,T) being output by OrthoSamp. Instead of
sampling directly using T, we use the upper-left part T1 of T and the following
algorithm: 1. Sample x2 ∼ DZn,η; 2. Call x1 ← GPVInvert(A1,T1, t−A2x2, η); 3.
Output x1‖x2. The result has norm at most η

√
m+ n.

4.1.2 Verifiable Encryption of GPV Signatures
As mentioned in the construction sketch, we will “encrypt” GPV signatures with
a variant of the “dual” encryption scheme [GPV08]. To this end, we define the
following family of one-way trapdoor functions based on the LWE problem. For
ease of exposition, we will slightly abuse the terms encryption for this trapdoor
one-way function and ciphertext for an image under this trapdoor in the subse-
quent sections. Fix a truncated error distribution Ψ over Zm with support DΨ .
Other parameters are the same as for GPV signatures.

– Keys are generated using GPVGen(1n), yielding a public key B and corre-
sponding trapdoor S.
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– The one-way function associated to B is gB : Zn
q × Zm → Zm

q : (s, e) �→
Bts+ e mod q.

– LWEInvert(B,S, τ ) uses S to find a vector Bts′ that is close to τ . Then, it
computes e′ ← τ −Bts′ and returns (s′, e′).

Note that we modified LWEInvert() as to output (s′, e′) instead of just s′ as

defined by Peikert [Pei09]. We will use Ψ =
∑


i=1DZm,η = D
Zm,

√

η and DΨ =

{v ∈ Zm : ‖v‖2 ≤ η
√
m}. Correctness follows from [Pei09] with q(n) ≥ L̃2ρ2(m),

security as a one-way function follows from [Reg09,Pei09,GKV10].

Theorem 2 ( [GKV10]). The family is one-way if gB(s, e) is indistinguishable
from uniform for s ←$ Zn

q and e ∼ Ψ . It is hard to distinguish from uniform for
Ψ if decision LWE is hard with the standard noise distribution Ψm√


η/(q
√
2)
.

Also note that if matrices B,A,S are generated via the GPVGen and OrthoSamp
and σ is a GPV signature such thatAσ ≡ H(M), then the “encrypted” signature
τ ← Bts+σ mod q can still be verified by checking that Aτ ≡ H(M). However,
we need to ensure that the “noise” σ is small, which is why we require the
following witness-indistinguishable proof of membership (WIPoM) system for
bounded-distance decodeability (BDD).

4.1.3 Efficient Proofs for Lattice Problems
As mentioned in the construction sketch, we need two non-interactive proofs for
our scheme: a proof that at least one of a number of ciphertexts encrypts a short
vector, and a proof of knowledge of x such that Ax ≡ y.

WIPoM for BDD. We use a variant LBDD(γ, β) := {LYES
BDD(γ, β),LNO

BDD(γ, β)}
of the γ-GapCVP language [Reg10] for lattices Λq(B). The “YES” and “NO”
instances for words (B, τ ) ∈ Zn×m

q × Zm
q are defined as:

LYES
BDD(γ, β) := {(B, τ )|∃s ∈ Zn

q :
∥∥τ −Bts mod q

∥∥
2
≤ β}

and LNO
BDD(γ, β) := {(B, τ )|∀s ∈ Zn

q :
∥∥τ −Bts mod q

∥∥
2
> γβ}.

The norms above are computed by taking the absolute smallest representative
modulo q of the coordinates, i.e., integers in the interval [1−q

2 ,
q−1
2 ]. Using stan-

dard techniques [CDS94,MV03,SCPY08] (see the full version [CNR12]), one can
efficiently convert the k-bit parallelized version of Micciancio-Vadhan’s proof of
membership (PBDD,VBDD) [MV03] into a sound WIPoM (P∨-pBDD,V∨-pBDD) for
the OR-combination of such statements:

LYES
∨-BDD(γ, β, umax) := {((B, τ v))

umax

v=1 |∃v ∈ [umax] ∃sv ∈ Zn
q :
∥∥τ v −Btsv

∥∥
2
≤ β}.

The “NO” instance is defined analogously. The resulting prover P∨-pBDD

generates simulated transcripts for all v �= u and runs the real prover
PpBDD((B, τ u), su) to obtain the transcript for user u, using as a challenge the
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XOR of the given challenge of the P∨-pBDD proof and the simulated challenges
for v �= u. This proof system is also statistical honest-verifier zero-knowledge. We
will use the non-interactive variant of the proof system using the Fiat-Shamir
transformation [FS86] where the challenge ch∨ is generated through a random
oracle.

Signatures from ISIS. In addition, our constructions will require a signature
scheme based on a generalized version of the witness-indistinguishable identi-
fication scheme due to Lyubashevsky [Lyu08]. The main difference to [Lyu08]
is that we require an entirely different distribution of secret keys to make the
scheme applicable in our context.

The secret key is a short vector x ∼ DZm+n,η, while the public key consists

of a matrix A ←$ Zn×(m+n) and the vector y ← Ax mod q. It follows a typical
three-move structure where the prover first generates a commitment and state
(cmt ISIS, st) ←$ CommISIS(A). The verifier sends a challenge ch ISIS ←$ {0, 1}t,
upon which the prover sends the response rspISIS ←$ RespISIS(x, st , ch ISIS). The
verifier accepts iff VerifyISIS(A,y, cmt ISIS, ch ISIS, rspISIS) = 1. The identification
scheme has been shown statistically witness-indistinguishable and secure under
active attack assuming that the ISIS problem related to A,y is hard [Lyu08,
Theorem 13]. We will turn the identification scheme into a signature scheme
using the Fiat-Shamir transformation.

4.1.4 Single-Signer Aggregate Signatures
To make the token length logarithmic4 instead of linear the number of at-
tributes, we observe that GPV signatures support a restricted form of aggre-
gation [BGLS03] where up to max signatures by the same signer can be com-
pressed to the size of a single signature. Namely, given  ≤ max signatures
(σi)



i=1, the aggregate α ←

∑

i=1 σi can be verified by checking that  ≤ max,

that 0 < ‖α‖2 ≤ η
√
m, and that Aα ≡

∑

i=1 H(Mi).

Because of the similarity in structure between GPV signatures and the above
single-signer aggregate scheme, the latter inherits the mechanisms to verifiably
encrypt aggregate signatures from Section 4.1.2.

Theorem 3. The above single-signer aggregate signature scheme is existentially
unforgeable in the random oracle model if the SIS(n,m, q, 2maxη

√
m) problem

is hard.

4.2 Scheme and Security

In the following, we describe an anonymous attribute token scheme AAT–O =
(IKeyGen, Issue,GenToken,VToken) with security parameter n based on hard lat-
tice problems. The scheme uses random oracles H : {0, 1}∗ → Zm+n

q , F :

4 While an aggregate signature may seem constant in length, the security parameter
actually needs to grow logarithmically in 	max for security.
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{0, 1}∗ → {0, 1}k, and G : {0, 1}∗ → {0, 1}t, as well as a uniformly distributed

common reference string B ∈ Z
n×(m+n)
q that is a valid input to OrthoSamp.

MKeyGen(1n, umax): The manager runs (A,T) ← OrthoSamp(B) and sets mpk
← A and msk ← (A,T).

Issue(msk , u, (ai)


i=1): For all i ∈ [], the manager computes σu,i ← GPVInvert(A,

T,H(u‖i‖ai), η) and returns cred = (u, (σu,i)


i=1).

VCred(mpk , cred , (ai)


i=1): The user parses cred = (u, (σi)



i=1) and outputs 1 iff

Aσu,i ≡ H(u‖i‖ai) and ‖σu,i‖2 ≤ η
√
m+ n for all i ∈ [].

GenToken(mpk , cred , (ai)


i=1 , R,M): Let cred = (u, (σu,i)



i=1). The user first

chooses a random x ∼ DZm+n,η, computes y ← Ax mod q, and creates a
signature (ch ISIS, rspISIS) by running (cmt ISIS, st) ←$ CommISIS(A), setting
ch ISIS ← G(y‖cmt ISIS‖M), and computing rsp ISIS ← RespISIS(x, st , ch ISIS). In
the unlikely event that VerifyISIS(A,y, cmt ISIS, ch ISIS, rspISIS) = 0, she simply
repeats these steps.

For all v ∈ [umax]\{u}, she picks a uniformly random α̃v such thatAα̃v ≡∑
i∈R H(v‖i‖ai) using Gauss elimination, chooses sv ←$ Zn

q and computes
τ v ← Btsv+ α̃v +x mod q. For her own index u, she chooses su ←$ Zn

q and
computes τu ← Btsu + αu + x mod q, where αu ←

∑
i∈R σu,i. She gen-

erates a non-interactive proof (cmt∨, rsp∨) ← P∨-pBDD(((B, τ v))
umax

v=1 , u, su)

using as challenge ch∨ = F(B‖ (τ v)
umax

v=1 ‖cmt∨‖ (ai)
i=1 ‖R‖M). Finally, the
resulting token becomes τ ← (τ 1, . . . , τumax ,y, cmt ISIS, rsp ISIS, cmt∨, rsp∨).

VToken(mpk , τ, R, (ai)i∈R,M): The verifier accepts a token if VerifyISIS(A,y,
cmt ISIS,G(y‖cmt ISIS‖M), rspISIS) = 1, if Aτ v ≡

∑
i∈R H(v‖i‖ai) + y for all

v ∈ [umax], and if V∨-pBDD accepts the proof (cmt∨, rsp∨) for statement

((B, τ v))
umax

v=1 and challenge ch∨ = F(B‖ (τ v)
umax

v=1 ‖cmt∨‖ (ai)
i=1 ‖R‖M).
Otherwise, the verifier rejects the token.

Theorem 4. The above anonymous attribute token scheme is anonymous in the
random oracle model if LWE is hard for Ψ = DZm+n,η.

Theorem 5. The above anonymous attribute token scheme is unforgeable in the
random oracle model if SIS(n,m+ n, q, (2max + 1)η

√
m+ n+ Õ(n1.5)) is hard

and the decision LWE problem with noise distribution Ψ is hard.

See the full version for the full-blown scheme with opening and for extended
results on group signatures, ring signature, and for achieving non-frameability.
In short, to add opening functionality to our AAT–O scheme, we generate the
matrix B with an embedded trapdoor S using OrthoSamp, as done in [GKV10].
To achieve full anonymity, however, we need to be able to respond to opening
queries. For this purpose, we borrow techniques from Rosen and Segev [RS09]
and Peikert [Pei09] to obtain CCA-security for the LWE encryption scheme by
using “correlated” ciphertexts. One problem is that the verifier needs a way to
check that the included ciphertexts are valid, i.e., correctly correlated, without
having the trapdoor S. We solve this problem by a clever use of the P∨-pBDD

proof system so that it simultaneously proves that a ciphertext contains a short
vector and is correctly correlated.
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5 An Anonymous Attribute Token Scheme with Opening

We add opening functionality to our AAT–O scheme by generating the matrix B
with an embedded trapdoor S using OrthoSamp, as done in [GKV10]. To achieve
full anonymity, however, we borrow techniques from Rosen and Segev [RS09] and
Peikert [Pei09] to obtain CCA-security for the LWE encryption scheme using
“correlated” ciphertexts. We then use the P∨-pBDD proof system to convince the
verifier that the ciphertexts contain a short vector and are correctly correlated.

Details of the scheme can be found in the full version [CNR12], we only
give a sketch here. Following [RS09,Pei09], define the family of correlated trap-
door one-way functions CTLWE with parameters n,m, κ ∈ N and with public
key (B0, . . . ,Bκ) and trapdoor S0 so that B0S0 ≡ 0. The one-way function is
g(s, e0, . . . , eκ) = (Bt

0s + e0 mod q, . . . ,Bt
κs + eκ mod q). Inversion is done by

computing (s′, e′0) ← LWEInvert(B0,S0,b0) and checking that ‖e′i‖2 ≤ η
√
m

for all i ∈ {0, . . . , κ} where e′i = bi − Bt
is

′ mod q. We also rely on a one-time
signature scheme OT S = (OTKeygen,OTSign,OTVerify) with verification key
length κ.

The manager’s keys arempk ← (A,B0,B1,0,B1,1, . . . ,Bκ,0,Bκ,1) andmsk ←
(T,S0,mpk) where (A,T) ← OrthoSamp(B0), where (B0,B1,0 . . . ,Bκ,0) define
a correlated one-way function with trapdoor S0, and where B1,1, . . . ,Bκ,1 are
random. A user’s credential contains short vectors (σu,i)



i=1 such that Aσu,i ≡

H(u‖i‖ai) computed using T. To generate a token for attributes indices R and
message M , the user u:

– chooses x0 ∼ DZm+n,η, computes y0 ← Ax0 mod q, and creates a signature
σISIS using G(y0‖cmt ISIS‖M) as challenge;

– computes ρu ←
∑

i∈R σu,i + x0 mod q, chooses su ←$ Zn
q and computes

τu,0 ← Bt
0su + ρu mod q;

– for all v ∈ [umax] \ {u}, computes α̃v such that Aα̃v ≡
∑

i∈R H(v‖i‖ai),
computes ρv ← α̃v + x0 mod q, chooses sv ←$ Zn

q and computes τ v,0 ←
Bt

0sv + ρv mod q;
– generates a signature key pair (otvk , otsk) ← OTKeygen(1n), and for all v ∈

[umax] and i ∈ [κ], chooses xv,i ∼ DZm+n,η and computes τ v,i ← Bt
i,otvki

sv+
xv,i mod q.

Let Botvk = [B0‖B1,otvk1‖ . . . ‖Bκ,otvkκ ], and for all v ∈ [umax], let xv = [ρv,
xv,1, . . . ,xv,κ] and τ v = [τ v,0, . . . , τ v,κ]. Then for all v ∈ [umax] we have that
τ v ≡ Bt

otvksv +xv, and for user u we have that ‖xu‖2 ≤ (#R+κ+1)η
√
m+ n.

The user can therefore create a non-interactive proof π∨-pBDD using P∨-pBDD

to simultaneously prove that one of the vectors τ v encrypts a short vector αv

and that all ciphertexts τ v are well-formed, i.e., that all components τ v,i are
underlain by the same vector sv. The token contains vectors τ 1, . . . , τumax ,y0,
non-interactive proofs σISIS and π∨-pBDD, the one-time verification key otvk , and
a one-time signature on everything.
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The verifier checks that σISIS and π∨-pBDD are correct, that for all v ∈ [umax]
Aτ v,0 ≡

∑
i∈R H(v‖i‖ai) + y0, and verifies the one-time signature. Opening is

done by inverting τ v w.r.t. Botvk and for v = 1, . . . , umax and returning the first
v where the inversion successfully yields (s′v,ρ

′
v) with ρ′

v ≤ (#R+ 1)η
√
m+ n.

Theorem 6. The AAT+O scheme sketched above is anonymous in the random
oracle model if LWE is hard for Ψ = DZm+n,η and if OT S is existentially un-
forgeable under one-time chosen-message attack. It is traceable in the random
oracle model if SIS(n,m+ n, q, (2max + 1)η

√
m+ n+ Õ(n1.5)) is hard and the

decision LWE problem with noise distribution Ψ is hard.

6 Further Extensions and Conclusion

Non-frameability [BSZ05] ensures that the group manager cannot frame users
by generating tokens on their behalf and falsely hold the users responsible for
these tokens. One can obtain non-frameabilty for our construction by running a
AAT+O and a AAT–O scheme in parallel, and merging both schemes so that a
token is only accepted if it contains a valid token for both schemes. The AAT–O
scheme ensures that users cannot be framed, while the AAT+O scheme ensures
that tokens can be opened. We refer to the full version [CNR12] for more details.

As mentioned earlier, a group signature scheme can be seen as a special case of
a AAT+O scheme, so our AAT+O scheme directly implies the first lattice-based
group signature scheme that enjoys full anonymity, i.e., against an adversary
with access to an opening oracle, as is standard for group signatures [BMW03].
Our scheme also has constant-size manager keys (versus linear in the number of
group members GKV).

Our results and the above extensions bring us a step closer to a full-fledged
lattice-based anonymous credential systems, but building such a system and
reducing the signature/token size remain challenging open problems.
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Abstract. We present an efficient signature scheme that facilitates
Groth-Sahai proofs [25] of knowledge of a message, a verification key,
and a valid signature on the message, without the need to reveal any
of them. Such schemes are called structure-preserving. More precisely,
the structure-preserving property of the signature scheme requires that
verification keys, messages, and signatures are group elements and the
verification predicate is a conjunction of pairing product equations. Our
structure-preserving signature scheme supports multiple messages and
is proven secure under the DLIN assumption. The signature consists of
53 + 6n group elements, where n is the number of messages signed, and
to the best of our knowledge is the most efficient one secure under a
standard assumption.

We build the scheme from a CCA-2 secure structure-preserving en-
cryption scheme which supports labels, non-interactive zero-knowledge
(NIZK) proofs, and a suitable hard relation. We provide a concrete
realization using the encryption scheme by Camenisch et al. [12], Groth-
Sahai (GS) NIZK proofs, and an instance of the computational Diffie-
Hellman (CDH) problem [17]. To optimize the scheme and achieve better
efficiency, we also revisit the Camenisch et al. structure-preserving en-
cryption scheme and GS NIZK proofs, and present a new technique for
doing more efficient proofs for mixed types of equations, namely, for
multi-exponentiation and pairing product equations, using pairing ran-
domization techniques.

Together with non-interactive zero-knowledge proofs, our scheme can
be used as a building block for constructing efficient pairing-based cryp-
tographic protocols that can be proven secure without assuming ran-
dom oracles, such as anonymous credential systems [4], oblivious transfer
[23,11], e-cash schemes [13], range and set membership proofs [9], blind
signatures [20,3], group signatures [5].

Keywords: digital signatures, structure-preserving, decisional linear as-
sumption.

1 Introduction

Pairings are a very powerful tool for constructing cryptographic protocols and
pairing-based cryptography has been tremendously developed over the last 10
years. Thereby numerous new cryptographic assumptions have been introduced.
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Besides pairing-based variants of standard assumptions such as the Bilinear
Diffie-Hellman (BDH) [8] and Decisional Linear (DLIN) [7] assumption, the new
assumptions include quite a few so-called “q-type” [6] assumptions, for which
the size of the instance of the assumption grows linearly with the number of the
attacker’s queries, as well as interactive assumptions - which are even stronger
than “q-type” ones as they are not falsifiable [27].

The “q-type” assumptions say that given q solutions to the underlying prob-
lem, one cannot come up with a new solution. In the security proof of a signature
scheme secure under a “q-type” assumption, these solutions allow one to sign q
messages and then to create a new solution out the adversary’s forgery. Thus,
the size of the instance of the assumption problem is linked to the security
parameter of the signature scheme; furthermore, the security of the signature
scheme is directly derived from the “q-type” assumption itself. This is unfortu-
nate, and it is preferable to construct signature schemes that rely on weaker and
well-established assumptions.

When constructing complex cryptographic protocols, the goal is not only to
satisfy strong security requirements, but also to remain efficient. Generalized
Schnorr protocols [14] or Groth-Sahai (GS) proofs [25] allow one to do zero-
knowledge proofs efficiently, but require staying within the structure of alge-
braic groups. In particular, to get efficient non-interactive zero knowledge proofs
(NIZK) without assuming random oracles, Groth-Sahai proofs [25] seem to be
the only choice. However, these proofs of knowledge can only be realized for
witnesses made up entirely of group elements (and no exponents). This implies
that messages and signatures have to consist only of group elements, and pro-
scribes the use of hash-functions as the signature verification have to use only
group operations. Such schemes are called structure-preserving. More formally,
a signature scheme is called structure-preserving ([1]) if its verification keys,
messages, and signatures are group elements and the verification predicate is
a conjunction of pairing product equations. This also allows one to sign the
verification keys and signatures themselves.

All current structure preserving signature schemes were either proven secure
based on complex “q-type” assumptions or if secure under standard assumptions,
are not practical due to the large constant factor ([24]). So, constructing an
efficient structure preserving signature scheme based on simple assumptions still
remains an open problem.

1.1 Our Contribution

We look into the problem of constructing structure-preserving signature schemes
under simple assumptions and analyze the techniques of creating such schemes
from encryption schemes, non-interactive zero-knowledge proofs, and hard com-
putational problems. We provide an efficient structure-preserving signature
scheme secure under a simple assumption (i.e., the standard DLIN assumption).
Our signature scheme supports multiple messages, and the signatures consist of
53 + 6n group elements, where n is the number of group elements to sign.
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Our scheme is built from a structure-preserving encryption scheme which
supports labels that are also group elements, non-interactive zero-knowledge
proofs (NIZK), and a hard relation or publicly verifiable random function. We
follow an approach that is similar to ones from [24,26,18]. We present a scheme
that works as follows. The verification key contains the public parameters for
the NIZK proofs, the public key for the encryption scheme, and the public value
of a hard relation. The signing key consists of the verification key and a witness
for the hard relation. Instead of encrypting both the message m and a witness of
the hard relation, like in [24], or binding m and the ciphertext inside the zero-
knowledge proof, like in [26], we make use of labels and their non-malleability
and encrypt only a witness of the hard relation under a labelm, which results in a
more efficient construction. So a witness for the public value of the hard relation
is encrypted under multiple labels m1, . . . ,mn (the messages to be signed), and
a NIZK proof is created that 1) the encryption is valid and 2) indeed a witness
for the public value of the hard relation is encrypted. The signature consists of
the ciphertext and the NIZK proof. The verification of a signature is done by
verifying the NIZK proof.

To optimize our scheme, we also revisit techniques for combining structure-
pre-serving encryption with NIZK proofs and present a new technique for doing
efficient proofs for mixed types of equations, namely for multi-exponentiation and
pairing product equations, using pairing randomization techniques. We believe
this new technique to be of interest for other applications of GS-proofs as well.

1.2 Related Work

Groth [24], who initiated the research on structure-preserving signature schemes,
suggested a scheme secure under the DLIN assumption, but the scheme is not
practical due to its large constant factor. Green and Hohenberger [22] presented
a structure-preserving signature scheme that provides security against random
message attacks under a q-Hidden LRSW assumption. Fuchsbauer [21] presented
an efficient scheme based on the Double Hidden Strong Diffie-Hellman Assump-
tion (DHSDH). However, the messages must have a particular structure.

Cathalo, Libert and Yung [15] provided a scheme based on a combination
of the q-Hidden Strong Diffie-Hellman Assumption (HSDH), the Flexible Diffie-
Hellman Assumption, and the DLIN assumption. Their signature consists of 9n+
4 group elements, where n is a number of group elements signed and it was left as
an open problem to construct constant-size signatures. Abe et al. [1] proposed the
first constant-size structure-preserving signature scheme for messages of general
bilinear group elements. A signature consists only of 7 group elements regardless
of the size of the message. However it is proven unforgeable against adaptive
chosen message attacks based on a novel non-interactive “q-type” assumption
called the Simultaneous Flexible Pairing Assumption (SFP). While all these
works provide interesting constructions, their security proofs rely on “q-type”
assumptions.

In a different line of work, Abe et al. [2] established lower bounds on the
complexity of structure-preserving signatures, i.e. the signature size must be at
least 3 group elements, and gave a scheme matching those bounds. However,
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the security proof of the construction relies on interactive assumptions which
are even stronger than “q-type” and are not falsifiable [27]. A variant of their
scheme which increases the signature size with 1 or 3 group elements (depending
whether the message contains elements from both base groups) is shown secure
under a “q-type” assumption.

Finally, Chase and Kohlweiss [16] presented a framework for creating a structure-
preserving signature scheme from a stateful signature, F-unforgeable under weak
chosen message attacks, and efficient non-interactive zero-knowledge proofs. Their
scheme is proven secure under the well established DLIN assumption, but the
size of a signature is still 100+24n+9x, where n is the number of group elements
signed and N = 2x is an upper bound on the number of signatures generated
per key pair.

Below we provide a table (Table 1), in which we compare our work with other
structure-preserving signature schemes both in terms of the assumption used
and the size of a signature. One can see that our scheme is the most efficient one
from those that rely on the standard, not “q-type”, DLIN assumption.

Table 1. Comparison of the structure-preserving signature schemes. (n is the number
of group elements signed and N = 2x is an upper bound on the number of signatures
generated per key pair, s - bit-length of the message signed).

Paper Assumption Size of the signature (gr el.) Size of the vk (gr el.)

[22] q-type: Hidden LRSW 5 (single msg) 5

[1] q-type: SFP 7 12 + 2n

[15] q-type: HSDH 9n+ 4 13 + n

[24] DLIN O(n) O(n)

[16] DLIN 100 + 24n+ 9x 17 + s

This work DLIN 53 + 6n 25 + 2n

The paper is organized as follows: first we give definitions in Section 2, then
in Section 3 we describe the building blocks of our scheme, then we revisit NIZK
proofs for structure-preserving encryption schemes and provide a new technique
to improve the efficiency of these proofs in Section 4; finally, we present our
construction in Section 5 and prove it secure in Section 6.

2 Definitions

Let Pg(1κ) be a bilinear group generator that on input 1κ outputs descriptions
of multiplicative groups G,GT of prime order p. Let G∗ = G1 \ {1} and let
g ∈ G∗

1. The generated groups are such that there exists an admissible bilinear
map e : G×G→ GT, meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) =
e(g, g)ab; (2) e(g, g) �= 1; and (3) the bilinear map is efficiently computable.

We refer to the output of the pairing group generator G = (p,G,GT, e, g) as
the group parameters.
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2.1 Signature Scheme

Definition 1. (Digital Signature Scheme). A digital signature scheme Sig is a
set of algorithms Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify):

• Sig.KeyGen(1κ)
$→ (sk , vk) is a probabilistic algorithm that takes as input

a security parameter and outputs a verification key vk and a corresponding secret
key sk. Message space M is associated with vk.

• Sig.Sign(sk ,m)
$→ σ is a (possibly probabilistic) algorithm that takes as

input a private key sk and a message m and outputs a signature σ.

• Sig.Verify(vk ,m, σ) → 1/0 is a deterministic algorithm that takes as input
a public key pk, a message m and a signature σ and outputs 1 for acceptance or
0 for rejection according to the input.

We define structure preserving signatures formally as follows [2]:

Definition 2. (Structure-preserving Signature Scheme). A signature scheme Sig
over a bilinear group generated by Pg(1κ), that outputs system parameters (p,G,
GT, e, g), is said to be structure preserving if: (1) the verification key vk con-
sists of the group parameters and group elements in G; (2) the messages and
the signatures consist of group elements in G, and (3) the verification algo-
rithm evaluates membership in G and pairing product equations of the form∏

i

∏
j e(yi, yj)

aij = 1GT , where a11, a12, . . . ∈ Zp are constants, y1, y2, . . . ∈ G
are group elements appearing in the group parameters, verification key, messages,
and signatures.

Some works, for example, [2], allow to relax the definition of structure-preserving
signatures so that arbitrary target group elements could be included in the sig-
nature and verification key and appear in the verification equations. However,
this is useful only when witness-indistinguishable proofs are sufficient, as Groth-
Sahai proofs [25] are zero-knowledge when the verification equations contain
group elements only from the base group.

We use the standard notion of existential unforgeability against adaptive cho-
sen message attacks formally defined as follows.

Definition 3. (Existential unforgeability against adaptive chosen message at-
tacks
(EUF-CMA)). A signature scheme Sig is (t, q, ε)-existentially unforgeable against
adaptive chosen message attacks, if any adversary with runtime t after making
at most q signing queries wins with a probability P at most ε the following game:

Step 1. Sig.KeyGen(1κ)
$→ (sk , vk). Adversary A is given a verification key

vk.
Step 2. Adversary adaptively queries the signing oracle Osig q times with a

message mi, and obtains signatures σi = Sig.Sign(sk ,mi), 1 ≤ i ≤ q.
Step 3. Adversary outputs a forgery (m∗, σ∗) and halts.
A wins if Sig.Verify(vk ,m∗, σ∗) = 1 and m∗ /∈ {m1, . . . ,mq}.
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2.2 Encryption Scheme

Definition 4. (Encryption Scheme with Labels). An encryption scheme Enc
with labels is a set of algorithms Enc = (Enc.KeyGen,Enc.Encrypt,Enc.Decrypt):

• Enc.KeyGen(1κ)
$→ (sk , pk) is a probabilistic algorithm that takes as input

a security parameter and outputs a public key pk and a corresponding secret key
sk.

• Enc.Encrypt
(pk ,m)
$→ C is a probabilistic algorithm that takes as input

a public key pk, a label , which consists of public data non-malleably attached
to a ciphertext, and a message m and outputs a ciphertext C.

• Enc.Decrypt
(sk , C) → m/⊥ is a deterministic algorithm that takes as
input a secret key sk, a label , and a ciphertext C and outputs a message m, or
⊥, if the ciphertext is invalid.

Definition 5. (Structure-preserving Encryption Scheme). A structure-preserving
encryption scheme has public keys, messages, and ciphertexts that consist en-
tirely of group elements. Moreover, the encryption and decription algorithm per-
form only group and bilinear map operations.

We refer to [19] for a formal definition of Security against adaptive Chosen
Ciphertext Attack for an encryption scheme.

2.3 Non-Interactive Zero-Knowledge (NIZK) Proofs

Let R be an NP relation on pairs (X ,Y ), with a corresponding language LR =
{Y |∃X s.t. (X ,Y ) ∈ R}.

Definition 6. (Non-Interactive Zero-Knowledge (NIZK) proofs). A Non-
Interactive Ze-ro-Knowledge proof system NIZK for a relation R on (X ,Y ) is a
set of algorithms: NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.SetupSim,
NIZK.Sim):

• NIZK.Setup(1κ)
$→ (CRS ) is a randomized algorithm that takes as input

a security parameter and outputs a common reference string CRS.

• NIZK.Prove(CRS ,Y ,X )
$→ π is a randomized algorithm that takes as

input a common reference string CRS, and outputs a proof that R holds.
• NIZK.Verify(π,Y ) → 0/1 is a verification algorithm that verifies whether

proof π that (X ,Y ) ∈ R.

• NIZK.SetupSim(1κ)
$→ (CRS sim , td) is a randomized algorithm that takes

as input a security parameter and outputs a simulated common reference string
CRS sim and a corresponding trapdoor key td.

• NIZK.Sim(CRS sim ,Y , td)
$→ πsim is a randomized algorithm that takes

as input a simulated common reference string CRS sim with a trapdoor td and a
statement, but no witness, and outputs a simulated proof π for which
NIZK.Verify(CRS sim ,Y , π) accepts.

We refer to [25] for the security definitions of NIZK proofs (correctness, sound-
ness, zero-knowledge).
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3 Preliminaries

3.1 Assumptions

Definition 7. (Decisional Linear Assumption). We say that the DLIN prob-
lem in G of prime order p is hard, if for all algorithms A, with running time
polynomial in κ, the following advantage AdvDLIN

G (κ) =

Pr
[
A(g1, g2, g3, g

r
1, g

s
2, g

r+s
3 ) = 1

]
− Pr

[
A(g1, g2, g3, g

r
1, g

s
2, g

t
3) = 1

]
is a negligible function in κ, where g1, g2, g3

$← G∗ and r, s, t
$← Zp.

Definition 8. (Computational Diffie-Hellman Assumption). We say that the
CDH problem in G of prime order p is hard, if for all algorithms A, with running
time polynomial in κ, the following advantage

AdvCDH
G (κ) = Pr

[
A(g, ga, gb) = gab

]
is a negligible function in κ, where g

$← G∗ and a, b
$← Zp.

The hardness of the CDH problem is implied by DLIN.

3.2 One-Side Pairing Randomization Technique

Abe et al. [1] introduced techniques to randomize elements in a pairing without
changing their value in GT. One of these useful techniques is called one-side
randomization and allows one to replace an element from the target group by
a set of elements from the source groups. We use this technique in our scheme
and provide the details below.

RandOneSide({gi, fi}ki=1) → {f ′i}ki=1. Let gi be an element in G∗
1 of symmetric

setting G = (p,G,GT, e, g). A pairing product A = e(g1, f1) e(g2, f2) . . . e(gk, fk)
is randomized into A = e(g1, f

′
1) e(g2, f

′
2) . . . e(gk, f

′
k) as follows.

Let (t1, . . . , tk−1) ← Zk−1
P . First, multiply 1 = e(g1, g

t1
2 ) e(g2, g

−t1
1 ) to both

sides of the formula. We thus obtain

A = e(g1, f1g
t1
2 ) e(g2, f2g

−t1
1 ) e(g3, f3) . . . e(gk, fk).

Next multiply 1 = e(g2, g
t2
3 ) e(g3, g

−t2
2 ). We thus have

A = e(g1, f1g
t1
2 ) e(g2, f2g

−t1
1 gt23 ) e(g3, f3g

−t2
2 ) . . . e(gk, fk).

This continues until tk−1 and we eventually have A = e(g1, f
′
1) . . . e(gk, f

′
k). Ob-

serve that every f ′i for i = 1, . . . , k − 1 distributes uniformly in G due to the
uniform multiplicative factor gtii+1. In the k-th pairing, f ′k follows the distribution
determined by A and the preceding k − 1 pairings. Thus (f ′1, . . . , f

′
k) is uniform

over Gk under constraint of being evaluated to A when paired entry-wise with
g1, . . . gk.
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3.3 Camenisch et al. Structure-Preserving CCA-2 Encryption
Scheme

To build our signature scheme we make use of a structure-preserving encryption
scheme proposed by Camenisch et al. [12] which supports labels. The scheme
works in a symmetric setting G = (p,G,GT, e, g), both the message and the
label(s) are in G. The scheme consists of the key generation (Enc.KeyGen), en-
cryption (Enc.Encrypt), and decryption (Enc.Decrypt) algorithms, and works as
follows:

• Enc.KeyGen(1κ)
$→ (sk , pk ):

Pick g1, g2, g3 ← G, x1, x2, x3
$← Zp ; y0, . . . ,y5

$← Z3
p.

Compute h1 = gx1
1 g

x3
3 , h2 = gx2

2 g
x3
3 , {fi,1 = g

yi,1
1 g

yi,3
3 , fi,2 = g

yi,2
2 g

yi,3
3 }5i=0.

Return sk = (x, {yi}5i=0) ; pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0).

• Enc.Encrypt
(pk ,m)
$→ C:

Pick r, s
$← Zp. Compute u1 = gr1 , u2 = g

s
2, u3 = g

r+s
3 , c = mhr1h

s
2,

V =
∏3

i=0 e(f
r
i,1f

s
i,2, ui)e(f

r
4,1f

s
4,2, c)e(f

r
5,1f

s
5,2, ).

Return C = (u1, u2, u3, c, V ).

• Enc.Decrypt
(sk , C)
$→ m/⊥:

Parse C as (u1, u2, u3, c, V ).

If V =
∏3

i=0 e(u
yi,1
1 u

yi,2
2 u

yi,3
3 , ui)e(u

y4,1
1 u

y4,2
2 u

y4,3
3 , c)e(u

y5,1
1 u

y5,2
2 u

y5,3
3 , )

return m = c · (ux1

1 u
x2

2 u
x3

3 )−1 ;

else return ⊥.

Theorem 1. The above scheme is CCA-2 secure if the DLIN assumption holds
in G.

We refer to [12] for the security proof.

3.4 Non-Interactive Zero-Knowledge Proofs

Notation. We start with the descriptions of the basic algorithms of an instan-
tiation of the Groth-Sahai proof system [25] for multi-exponentiation equations:

stmnt =GS
{
(x1, . . . , xK) :

M∧
i=1

yi =


∏
j=1

g
xμi(j)

j

}
,

the proof system where the yi’s and gj ’s are public group elements of G (cf. [10]),
μi() is a map {1, . . . , } → {1, . . . ,K}, i = 1, . . . ,M and j = 1, . . . , . We define
X as (xμi(j)), and Y as

(
(yi), (gij)

)
.

A trusted third party generates the common public reference string by running

CRS
$← GS.Setup(1κ). A prover generates a proof as π

$← GS.Prove(CRS ,Y ,X )
and a verifier checks it via b ← GS.Verify(CRS ,Y , π), where b = 1 if π is true
w.r.t. R(X ,Y ), and b = 0 otherwise.
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Multi-exponentiation Equations for DLIN Instantiation. We now present
these algorithms in detail, based on the DLIN assumption in the group setting
G = (p,G,GT, e, g). For ease of notation, we will denote by {yi}, {gij}, and
{xμi(j)} the lists (y1, . . . , yM ), ((g11, . . . , g1
), . . . , (gM1, . . . , gM
)), and
((xμ1(1), . . . , xμ1(
)), . . . , (xμM (1), . . . , xμM (
))), respectively, whenever the
indicies are clear from the context.

• GS.Setup(1κ)
$→ CRS :

1. Generate G = (p,G,GT , e, g)
$← Pg(1κ).

2. Pick χ1, χ2, χ3, γ1, γ2, γ3
$← G6.

Return CRS = (G, χ1, χ2, χ3, γ1, γ2, γ3).

• GS.Prove(CRS ,
(
{yi}, {gij}

)
, {xμi(j)})

$→ π:
For all i = 1 . . .M and j = 1, . . . , :

1. Pick r′μi(j)
, r′′μi(j)

$← Zp.

2. For each xμi(j) in {xμi(j)} compute the set of commitments:

Cij ← (γ
xμi(j)

1 χ
r′μi(j)

1 , γ
xμi(j)

2 χ
r′′μi(j)

2 , γ
xμi(j)

3 χ
r′μi(j)

+r′′μi(j)

3 ).

3. For each yi in {yi} compute p′i =
∏


j=1 g
r′μi(j)

ij ; p′′i =
∏


j=1 g
r′′μi(j)

ij .

Return π ← {p′i, p′′i , {Cij}
j=1}Mi=1.

• GS.Verify(CRS ,
(
{yi}, {gij}

)
, π) → b:

If all equations hold:∧M
i=1

(∏

j=1 e(Cij , gij) = e((γ1, γ2, γ3), yi)e((χ1, 1, χ3), p

′
i)e((1, χ2, χ3), p

′′
i )
)
,

then return b← 1, else return b← 0.

• GS.SetupSim(1κ)
$→ (CRS sim , td):

1. Generate G = (p,G,GT , e, g)
$← Pg(1κ);

2. Pick χ1, χ2, χ3
$← G3, α, β

$← Zp.

3. Compute γ1 = χα1 , γ2 = χβ2 , γ3 = χα+β
3 .

Return a simulated CRS and a trapdoor:
(CRS , td) = ({G, χ1, χ2, χ3, γ1, γ2, γ3}, {α, β}).

• GS.Sim(CRS sim ,
(
{yi}, {gij}

)
, td)

$→ πsim:
For all i = 1 . . .M and j = 1, . . . , :

1. Pick rμi(j)
$← Zp.

2. For each xμi(j) in {xμi(j)} compute the set of commitments:

Cij ← (χ
r′μi(j)

1 , χ
r′′μi(j)

2 , χ
r′μi(j)

+r′′μi(j)

3 ).

3. For each yi in {yi} compute p′i = y
−α
i

∏

j=1 g

r′μi(j)

ij ; p′′i = y−β
i

∏

j=1 g

r′′μi(j)

ij .

Return πsim ← {p′i, p′′i , {Cij}
j=1}Mi=1.

Theorem 2. The above NIZKGS is a NIZK proof system with perfect correct-
ness, perfect soundness and composable zero-knowledge for satisfiability of a set
of equations over a bilinear group where the DLIN problem is hard.
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We refer to [25] and [10] for the detailed security definitions and proofs.

4 Combining Camenisch et al. Structure-Preserving
Encryption and Groth-Sahai Proofs

The encryption scheme from [12] described in Section 3.3 is the first efficient
CCA-secure scheme that stays within the structure of the algebraic groups. But
to say that it is structure-preserving, we need to be able to combine it with
NIZK proofs.

Examining the encryption equations more closely:

r, s
$← Zp ; u1 = gr1, u2 = gs2, u3 = gr+s

3 , c = mhr1h
s
2,

V =
3∏

i=0

e(f ri,1f
s
i,2, ui)e(f

r
4,1f

s
4,2, c)e(f

r
5,1f

s
5,2, ),

we notice that the last one needs further discussion. Although it is a pairing
product equation, if one wants to prove correctness of encryption, e.g. when
proving another statement about the plaintext, the witness consists of scalars
(r, s) rather than group elements. But only the latter ones are compatible with
Groth-Sahai proofs, i.e. pairing product equations should contain no exponents
as part of the witness. Given that the authors of [12] do not provide any details
how to address this, we take the time to discuss this here.

So, to be able to prove a statement about the last equation and its scalar
witnesses one would have to introduce new variables {wi = f ri,1f si2}

5
i=0, commit

to {wi}5i=0 in order to use them as witnesses for the pairing product equation,
and also produce proofs that these commitments were computed correctly. More-
over, if zero-knowledge proofs are needed, V has to be replaced by a product of
pairing equations, for which the authors suggest the above-described one-sided
randomization technique, that yields

V =

3∏
i=0

e(f ′i , ui)e(f
′
4, c)e(f

′
5, ) =

3∏
i=0

e(f ri,1f
s
i,2, ui)e(f

r
4,1f

s
4,2, c)e(f

r
5,1f

s
5,2, ),

and the ciphertext being (u1, u2, u3, c, {f ′i}5i=0). Note that f ′i �= f ri,1f si,2 as the

{f ′i}5i=0 is the output of the one-side randomization which is oblivious to r and
s. While all these equations would be compatible with Groth-Sahai proofs, they
seem rather inefficient - the size of such proof would be more than 100 group
elements if one assumes one label.

Instead of looking at the randomization trick and the encryption scheme in
isolation, we propose to combine them. This results into significantly more effi-
cient proofs.

In the following let {fi = f ri,1f
s
i,2}5i=0, u0 = g, u4 = c, u5 = . Also, let

{f ′i}5i=0 ← RandOneSide({ui, fi}5i=0). Asmentioned earlier, the ciphertext is (u1, u2,

u3, c, {f ′i}5i=0), where the elements {f ′i}5i=0 are computed as follows: t0, . . . , t4
$←

Zp,
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f ′0 = f
r
0,1f

s
0,2u

t0
1 ; f ′1 = f r1,1f

s
1,2u

−t0
0 ut12 ; f ′2 = f r2,1f

s
2,2u

−t1
1 ut23 ;

f ′3 = f
r
3,1f

s
3,2u

−t2
2 ut34 ; f ′4 = f r4,1f

s
4,2u

−t3
3 ut45 ; f ′5 = f r5,1f

s
5,2u

−t4
4 .

Now to prove that the ciphertext is correctly formed, we need to generate a proof
only for multi-exponentiation equations, namely:

u1 = g
r
1, u2 = gs2 ; u3 = g

r+s
3 ; c = mhr1h

s
2 ;

v0 = f r0,1f
s
0,2u

t0
1 ; f ′1 = f r1,1f

s
1,2u

−t0
0 ut12 ; f ′2 = f r2,1f

s
2,2u

−t1
1 ut23 ;

f ′3 = f r3,1f
s
3,2u

−t2
2 ct3 ; f ′4 = f r4,1f

s
4,2u

−t3
3 t4 ; f ′5 = f r5,1f

s
5,2c

−t4 .

The new proof now costs only 41 group elements, so one can see that this trick
sufficiently reduces the size of the proof. We believe this new technique to be of
interest for other applications of GS-proofs as well.

5 Our Construction

First we describe the main idea for creating a structure-preserving signature
scheme from encryption schemes, NIZK proofs, one-time signatures and hard
relations. Then we give a construction, analyze its efficiency and prove it secure.

5.1 Main Idea

We build our scheme from a CCA2-secure structure-preserving encryption scheme,
which supports labels that are also group elements, non-interactive zero-knowledge
proofs (NIZK), and a hard relation or publicly verifiable random function. The
scheme works as follows. The signing key contains a public key of the encryption
scheme and a witness for a hard problem. The verification key contains public
parameters for the NIZK proofs, a public key for the encryption scheme, and a
public value of a hard relation. To sign a message m, the signer encrypts the
witness with the label m and produces a proof that the plaintext is a witness
for the hard problem. To verify a signature, one checks the validity of the zero-
knowledge proof. Intuitively, the construction is secure because the encryption
is non-malleable and the proofs are zero-knowledge, hence queried signatures
cannot be modified and reveal no information about the witness, and only the
signer has the witness required to produce a new signature.

Similar approaches were presented in [24] for a structure preserving signature,
and in the context of leakage-resilient signatures in [26,18]. The actual construc-
tion of [24] uses a relaxation of the CCA notion of security, i.e. RCCA, and it
encrypts the message together with a witness for the hard problem instead of
using labels. While the signatures are of constant size, the constant is rather big,
hence the scheme is inefficient. The scheme of [26] used a CPA-secure encryption
scheme and simulation-sound NIZK proofs, treating m as a label for the proof
statement. As pointed out in [18], both CCA2 + NIZK and CPA + simulation-
sound NIZK can be viewed as variants of specific simulation-extractable NIZK
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proofs, which yields a scheme generalizing both constructions. However, the pre-
vious instantiations of this scheme are not structure-preserving as they require
hash functions or use the bit representation of group elements.

As discussed in Section 4, a structure-preserving encryption scheme secure
under DLIN assumption was recently introduced. Therefore, we revisit the ap-
proach of creating a structure-preserving signature scheme and provide an ef-
ficient construction proven secure under the DLIN assumption. Furthermore,
when instantiating it with Camenisch et al. encryption scheme, we present a
new technique for combining structure-preserving encryption with NIZK proofs
using pairing randomization techniques. To the best of our knowledge the pro-
posed scheme is the most efficient structure-preserving signature scheme secure
under a standard assumption.

5.2 Efficient Structure-Preserving Signature Scheme from the
Decisional Linear Assumption

We apply our approach described above in the symmetric setting. The building
blocks we use are efficient structure-preserving CCA secure encryption scheme
with labels by [12], Groth-Sahai NIZK proofs [25] and the computational Diffie-
Hellman problem [17]. We consider the case where a label m is a single group
element, but we show how to extend the scheme to support messages being vec-
tors of group elements. The scheme consists of the key generation (Sig.KeyGen),
signing (Sig.Sign), and verification (Sig.Verify) algorithms and is presented on
Figure 1.

5.3 Signing Multiple Messages

Our scheme can also support multiple messages or messages that consist of
multiple group elements. To sign multiple messages m1, . . . ,mn one needs to
encrypt the challenge under a set of labels m1, . . . ,mn: in this case
V =

∏3
i=0 e(f

r
i,1f

s
i,2, ui)e(f

r
4,1f

s
4,2, c)e(f

r
5,1f

s
5,2,m1) · . . . · e(f r(n+4),1f

s
(n+4),2,mn).

Public key will also contain fi,1, fi,2 for i = 6, . . . , n + 4, and the proof will be
extended to prove statements about {f ′i = f ri,1f si,2}n+4

i=6 .
The size of the verification key is 25 + 2n group elements, and the signature

consists of 53 + 6n group elements, where n is the number of elements to sign.
The proof optimization technique from Section 4 reduces almost twice the size
of a signature.

6 Security Proofs

6.1 Correctness

Correctness follows from the correctness of the encryption scheme and Groth-
Sahai proofs.
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• Sig.KeyGen(1κ)
$→ (sgk , vk):

1. Generate CRS for GS proofs GS.Setup(1κ) → CRS :
CRS = (G, γ1, γ2, γ3, χ1, χ2, χ3).
2. Generate keys for encryption Enc.KeyGen(1κ) → (ske, pke):

g1, g2, g3 ← G,x
$← Z

3
p ; h1 = gx1

1 gx3
3 , h2 = gx2

2 gx3
3 .

y0, . . . ,y5
$← Z

3
p ; for i=0, . . . , 5: fi,1 = g

yi,1
1 g

yi,3
3 , fi,2 = g

yi,2
2 g

yi,3
3 .

ske = (x, {yi}5i=0) ; pke = (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0).
3. Generate an instantiation of CDH challenge ch :

x
$← Zp, gs, us

$← G ; hs = gxs ; ch = (gs, us, hs).

Return signing and verification keys (sgk , vk):
sgk = (x, vk) ; vk = (CRS , ch, pke).

• Sig.Sign(sgk ,m)
$→ σ:

1. Parse sgk as (x,CRS , ch , pke).
2. Compute y = ux

s .
3. Encrypt y with the label m Enc.Encryptm(pke, y) → E :

r, s
$← Zp ; u1 = gr1 , u2 = gs2, u3 = gr+s

3 , c = ux
sh

r
1h

s
2 ;

For i = 0 . . . 5 : ti
$← Zp ;

f ′
0 = fr

0,1f
s
0,2u

t0
1 ; f ′

1 = fr
1,1f

s
1,2g

−t0ut1
2 ; f ′

2 = fr
2,1f

s
2,2u

−t1
1 ut2

3 ;
f ′
3 = fr

3,1f
s
3,2u

−t2
2 ct3 ; f ′

4 = fr
4,1f

s
4,2u

−t3
3 mt4 ; f ′

5 = fr
5,1f

s
5,2c

−t4 .
E = (u1, u2, u3, c, f

′
0, . . . , f

′
5).

4. Generate GS proof that E is correct: GS.Prove
(
CRS ,Y ,X ) → π(E):

Prove the statement that the following multi-exponentiation equations hold:
GS

{
(x, r, s, t0, . . . , t5) : u1 = gr1 ∧ u2 = gs2 ∧ u3 = gr+s

3 ∧ c = ux
sh

r
1h

s
2∧

f ′
0 = fr

0,1f
s
0,2u

t0
1 ∧ f ′

1 = fr
1,1f

s
1,2u

−t0
0 ut1

2 ∧ f ′
2 = fr

2,1f
s
2,2u

−t1
1 ut2

3 ∧
f ′
3 = fr

3,1f
s
3,2u

−t2
2 ct3 ∧ f ′

4 = fr
4,1f

s
4,2u

−t3
3 mt4 ∧ f ′

5 = fr
5,1f

s
5,2c

−t4 ∧ hs = gxs
}
.

Here Y contains elements from the ciphertext E and the verification key vk :
Y =

({u1, u2, u3, c, f
′
0, f

′
1, f

′
2, f

′
3, f

′
4, f

′
5, hs}, {(g1), (g2), (g3, g3), (us, h1, h2),

(f0,1, f0,2, u1), (f1,1, f1,2, u0, u2), (f2,1, f2,2, u1, u3), (f3,1, f3,2, u2, c),
(f4,1, f4,2, u3,m), (f5,1, f5,2, c), (gs)}

)
;

and X - elements from the signing key sgk :
X = {(r), (s), (r, s), (x, r, s), (r, s, t0), (r, s,−t0, t1), (r, s,−t1, t2),

(r, s,−t2, t3), (r, s,−t3, t4), (r, s,−t4), (x)}.
Return the signature σ

def
= {E, π(E)}.

• Sig.Verify(vk ;m;σ) → 1/0 :

1. Parse σ as (E, π), parse E as (u1, u2, u3, c, f
′
0, . . . , f

′
5) ;

2. Compute b ← GS.Verify(CRS ,Y , π), where Y is derived from(E, vk):
Y =

({u1, u2, u3, c, f
′
0, f

′
1, f

′
2, f

′
3, f

′
4, f

′
5, hs}, {(g1), (g2), (g3, g3), (us, h1, h2),

(f0,1, f0,2, u1), (f1,1, f1,2, u0, u2), (f2,1, f2,2, u1, u3), (f3,1, f3,2, u2, c),
(f4,1, f4,2, u3,m), (f5,1, f5,2, c), (gs)}

)
;

Return b.

Fig. 1. Structure-preserving signature scheme secure under DLIN assumption
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6.2 Unforgeability

Theorem 3. The digital signature scheme Sig described in Section 5 is unforge-
able against adaptive chosen message attacks, if the DLIN assumption holds.

Proof. We consider an adaptive chosen message attack described in Section 2,
where the polynomial time adversaryAsig , given a verification key vk , adaptively
queries the signing oracle Osig q times with messages mi, and obtains signatures
σi = Sig.Sign(sk ,mi), where 1 ≤ i ≤ q. We show that any such adversary Asig

has only negligible probability P of producing a valid signature σ∗ on a fresh
message m∗ that was not queried before.

The proof is through a sequence of games. We define the success probability of
Asig to produce a successful forgery in Game-i as Pi. Game-0 is the real attack
game (P0 = P), and in Game-4 the adversary only sees encryptions of 1 instead
of the encryption of a solution to the CDH problem. Thus from an adversary
how wins Game-4, we can construct an algorithm to break the CDH assumption,
thus P4 = negl .

Now we show that |P4 − P0| is negligible, i.e., P4 = P + negl . This means
that P = negl , i.e., no adversary Asig can forge a signature with non-negligible
probability.

Game-0. We define Game-0 as the original attack game described above.
More formally, the keys are generated using Sig.KeyGen algorithm:

(sgk , vk )
$← Sig.KeyGen(1κ). The signature on a message mi is computed as

σi ← Sig.Sign(sgk ,mi), i = 1, . . . , q. The adversary’s forgery is σ∗ = (E∗, π∗).
The forgery is successful, if Sig.Verify(σ∗,m∗) = 1 and m∗ /∈ {m1, . . . ,mq}.
As this is the real attack game, the success probability of the adversary in this
game P0 = P .

Game-1. Game-1 is the same as Game-0, except that during the key gener-
ation the challenger keeps the secret key for encryption scheme as part of the
signing key (sgk = (sgk , ske)). After the adversary produces a forgery σ∗ =
(E∗, π∗), the ciphertext E∗ is decrypted under the label m∗ using ske: y

′ ←
Enc.Decryptm

∗
(sk e, E

∗) and the following condition is checked: e(y′, gs) = e(us, hs).
The adversary wins Game-1 when this condition is not satisfied.

The forgery is successful, if GS.Verify(CRS , (E∗, vk), π) = 1,m∗ /∈ {m1, . . . ,mq},
and e(y′, gs) = e(us, hs). In this case the adversary may have less advantage
of winning Game-1 compare to Game-0 only if the decryption did not work
correctly, or the proofs were proofs of a false statement.

From the correctness of the encryption scheme follows, that, if the adversary
has a non-negligible advantage in winning Game-1 compare to Game-0 by gen-
erating a proof of a false statement, then one can use it to break the soundness
of the NIZK proofs: |P1 − P0| ≤ PSnds(NIZK). By the perfect soundness of GS
proofs described in [25] and Section 3.4, P1 = P0.

Game-2. Game-2 is the same as the previous one, except that now the real CRS
in key generation is replaced by a simulated CRS sim with a trapdoor, and GS
proofs are simulated using zero-knowledge simulator, described in Section 3.4.
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By the zero-knowledge property of the GS proofs, described in [25] and Sec-
tion 3.4, the adversary cannot distinguish between this game and the previous
one if the DLIN assumption holds, so he must still produce a successful forgery
with probability only negligibly different from one in the previous game, i.e.,
|P2 − P1| ≤ PZK(NIZK) = PDLIN .

Game-3. Game-3 is the same as Game-2 except that σi = (Ei, πi) contains an
encryption of 1 under the label mi instead of y = uxs .

To prove that it will only negligibly change the success probability of the ad-
versary we use a hybrid argument. In the Hybrid-3.0 the adversary sees only
ciphertexts with y = uxs , and in the Hybrid-3.q - only encryptions of 1, where
q(κ) is a polynomial number of queries.
It is easy to see that Hybrid-3.0 is the same as Game-2, so we have P3.0 = P2.

Hybrid-3.k. When the adversary makes the ith query, the signatures are com-
puted in the following way:

• for all i < k 1 is encrypted under the label mi;
• for i ≥ k y is encrypted under the label mi.

Now we show that if the adversary Asig can distinguish between Hybrid-k and
Hybrid-k + 1 then we can use it to break CCA-2 security of the encryption
scheme, i.e., to construct an adversary ACCA2 who plays the CCA-2 game and
also represents a challenger with Asig in adaptive chosen message attack, and,
after Asig produces a successful forgery, wins the CCA-2 game.

After receiving pke from the CCA-2 challenger, ACCA2 proceeds as follows:

Sig.KeyGen(1κ)
$→ (sgk , vk):

1. Generate simulated CRS and a trapdoor for GS proofs:

(CRS sim , td)
$← GS.SetupSim(1κ) ;

2. Generate keys for signing (CDH challenge):

x
$← Zp, gs, us

$← G ; hs = g
x
s ; ch = (gs, us, hs) ;

Output signing and verification keys:
sgk ← (x, vk , td) ; vk ← (CRS sim , ch, pke).

Sig.Sign(sgk ,mi)
$→ σi :

For the queries 1, . . . , k − 1 the signature is generated as follows:
1. Parse sgk as (x,CRS sim , ch, pk e, td).
2. Encrypt 1 with label mi:
Ei = Enc.Encryptmi(pke, 1) = (u1, u2, u3, c, f

′
0, . . . , f

′
5).
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3. Simulate GS proof that Ei was formed correctly:
π(Ei) = GS.Sim

(
CRS sim , (Ei, vk), td).

Output σi = (Ei, π(Ei)).
For the queries k, . . . , q the signature is generated as follows:
1. Parse sgk as (x,CRS sim , ch, pke, td).
2. Compute y = uxs .
3. Encrypt y with label mi:
Ei = Enc.Encryptmi(pke, y) = (u1, u2, u3, c, f

′
0, . . . , f

′
5).

4. Generate GS proof that Ei was formed correctly:
π(Ei) = GS.Prove

(
CRS sim , (Ei, vk), (sgk )).

Output σi = (Ei, π(Ei)).

For the query mk we define two challenge messages M0 = 1,M1 = y = uxs for
ACCA2.

When ACCA2 receives a challenge encryption E′ = Enc.Encryptmk(pke,Mb) of
one of these messages under the label mk, its goal is to break CCA-2 security by
distinguishing which one it received. It answers query k by simulating the proof
and returning the challenge ciphertext E′ together with the simulated proof.
Namely, it does the following:

Sig.Sign(sgk ,mi)
$→ σi :

1. Parse sgk as (x,CRS sim , ch, pke, td).
2. Compute y = uxs .
3. Encrypt: E′ = (u1, u2, u3, c, f

′
0, . . . , f

′
5).

4. Simulate GS proof that E′ was formed correctly:
π(E′) = GS.Prove

(
CRS sim , (E′, vk), td).

Output σi = (E′, π(E′)).

If the challenge encryption has the plaintext 1, then this corresponds exactly to
the Hybrid-k, while if the challenge encryption has plaintext uxs , then it corre-
sponds exactly to the Hybrid-k + 1.

The adversary Asig now produces a forged signature (E∗, π∗) on message m∗

that was not queried before.
ACCA2 sends (m∗, E∗) to the decryption oracle. Note, that ACCA2 is not

allowed to submit a pair label-ciphertext equal to the challenge pair
(
(m∗, E∗) =

(mk, E
′)
)
. If this was the case or the ciphertext was formed incorrectly then the

decryption oracle will return ⊥.
In case the received M∗ is equal uxs ACCA2 outputs 1, else it outputs 0. In

case of receiving ⊥ it outputs 0 as well. By definition, to be successful Asig had
to produce a ciphertext for uxs with a fresh label m∗ (i.e., it is never successful
if the answer is ε or ⊥).

Therefore, if Asig has more than negligible difference in success probability in
respectively Hybrid-3.i and Hybrid-3.(i + 1), then ACCA2 can break the CCA-
2 security of the encryption scheme. By the CCA-2 security of the encryption
scheme under DLIN assumption (see Section 3), the success probability of the
Asig changes negligibly, i.e. P3.k − P3.k+1 ≤ PCCA2 ≤ PDLIN is negligible.
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Summing up all hybrids we have that |P3.q − P3.0| ≤ q · PDLIN .

Game-4. Now the adversary sees only an encryption of 1 under the label mi on
the i-th query, for i = 1, . . . , q, yet to be successful it has to produce an encryption
of y = uxs under the label m∗ such that e(y, gs) = e(us, hs).

We show how to construct an algorithm ACDH that plays a challenger with
Asig in adaptive chosen message attack game, and, after Asig produces a suc-
cessful forgery, solves CDH problem.

Since the adversary sees the same the distribution as in Game-3.q, P4 = P3.q.
First ACDH(Asig) gets an input gs, g

a
s , g

b
s and plays a role of a challenger in

the adaptive chosen message attack game with an adversary Asig. It embeds
the received input in a verification key and simulates the signature scheme as
follows:

Sig.KeyGen(1κ)
$→ (sgk , vk):

1. Generate simulated CRS and a trapdoor for GS proofs:

(CRS sim , td)
$← GS.SetupSim(1κ).

2. Incorporate the received CDH challenge: ch ← (gs, hs = g
a
s , us = g

b
s).

Output signing and verification keys:
sgk ← (x, vk , td) ; vk ← (CRS sim , ch, pke).

Sig.Sign(sgk ,mi)
$→ σi :

1. Parse sgk as (x,CRS , ch, pke, td) ;
2. Encrypt 1 with label mi:
Ei = Enc.Encryptmi(pke, 1) = (u1, u2, u3, c, f

′
0, . . . , f

′
5) ;

3. Simulate GS proof that Ei was formed correctly:
π(Ei) = GS.Sim

(
CRS sim , (Ei, vk), td) ;

Output σi = (Ei, π(Ei)).
Sig.Verify(vk ,m∗, σ∗) → 1/0:

1. Parse σ∗ as (E∗, π∗), parseE∗ as (u1, u2, u3, c, f ′0, . . . , f
′
5).

2. Verify GS proofs: b← GS.Verify(CRS sim , (E∗, vk), π∗).
3. Decrypt y′ ← Enc.Decryptm

∗
(ske, E

∗).
4. Check if (e(y′, gs) = e(us, hs)) ∧ (m∗ /∈ {m1, . . . ,mq}).
If b = 1 and equations (4) hold, output y′ to the CDH

challenger.
Since in order to win the Game-4 it needs to solve the CDH problem, the

adversary has a negligible success probability in Game-4: P4 ≤ PCDH .
Summing up, we have that P ≤ PCDH + q · PDLIN + PDLIN = negl.
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Abstract. Partially-blind signatures find many applications in the area
of anonymity, such as in e-cash or e-voting systems. They extend classical
blind signatures, with a signed message composed of two parts: a public
one (common to the user and the signer) and a private one (chosen by
the user, and blindly signed). The signer cannot link later the message-
signature to the initial interaction with the user, among other signatures
on messages with the same public part.

This paper presents a one-round partially-blind signature which
achieves perfect blindness in the standard model using a Common Refer-
ence String, under classical assumptions: CDH and DLin assumptions in
symmetric groups, and similar ones in asymmetric groups. This scheme
is more efficient than the previous ones: reduced round complexity and
communication complexity, but still weaker complexity assumptions. A
great advantage is also to end up with a standard Waters signature,
which is quite short.

In addition, in all the previous schemes, the public part required a prior
agreement between the parties on the public part of the message before
running the blind signature protocol. Our protocol does not require such
pre-processing: the public part can be chosen by the signer only.

Our scheme even allows multiple messages provided from indepen-
dent sources to be blindly signed. These messages can either be con-
catenated or aggregated by the signer, without learning any information
about them, before returning the blind signature to the recipient. For
the aggregation (addition of the messages), we provide a new result, of
independent interest, about the Waters hash function over non binary-
alphabets.

1 Introduction

Blind signatures were proposed by Chaum in 1982 [9]: they are an interactive
signature scheme between a user and a signer, in a way that the signed mes-
sage, and even the resulting signature, are unknown to the signer, this is the
blindness property. More precisely, if the signer runs several executions of the
protocol that led to several message-signature pairs, he cannot link back any
pair to a specific execution: the view of the signer is unlinkable to the result-
ing message-signature pair. This unlinkability can either be computational, we
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then talk about computational blindness, or perfect, we then talk about perfect
blindness. In addition, they guarantee some kind of unforgeability for the signer,
which has been formalized in [18] to cope with e-cash properties: the user cannot
produce more message-signature pairs (coins) than the number of interactions
(withdrawals).

There have been several highly interactive schemes (like [17]), but Fischlin [11]
gave a generic construction of round-optimal blind signatures. Recent schemes
have instantiated this construction, the user obtains an actual signature on the
message, of which he proves knowledge [1, 12] or can simply randomize it to
make it unlinkable [4, 5]. In the latter case, the blind signature has the same
format as the underlying signatures and, in addition to being round-optimal, is
thus short. Our construction, like this last one produced a simple (randomized)
Waters signature on the message m so two group elements and a scalar m under
basic assumptions DLin, where [1] uses less standard assumption SXDH and
ADH-CDH, and around 38 elements in G1 and 34 in G2 for the final signature
because of the required proofs of knowledge. [13] presented a round-optimal
blind signature without CRS but less efficient than the construction relying on
the Common Reference String.

A loophole in standard blind signatures was detailed by Abe and Okamoto [3]:
the signer has no control over the signed messages (except in some sense the un-
forgeability which limits their number). In e-cash schemes, we want the bank to
sign a coin (a random, and thus unknown, serial number), but with a specific ex-
piration date. Partially-Blind Signatures proposed by Abe and Fujisaki [2] solve
this problem, by allowing the user and the signer to agree on a predetermined
piece of information which must be included in the final signed message.

Recently, in [19], Seo and Cheon presented a construction leading to (Par-
tially) Blind-Signatures in the standard model. However their construction relies
on a trick consisting in starting from prime order groups G1,G2,G3 and consid-
ering group elements in G = G1 ⊕ G2 ⊕ G3. While their approach provides nice
theoretical tools, the resulting signatures lies in G2 and are therefore three times
longer than our proposal.

Our Contributions. In this paper, we go one step further, improving [4] in
several directions. We first present a blind signature scheme with perfect blind-
ness, using the perfectly hiding instantiation of Groth-Sahai commitments [14].
We also widen the model of partially-blind signatures to supplement the prede-
termined communication with an on-the-fly public information generated by the
signer: the signer can simply include it during the signing process, even if the
user does not want this extra information. In the latter case, the user can simply
discard the signature and start anew. We call this new primitive signer-friendly
partially-blind signatures. This new notion allows to skip the prior agreement and
allow the public information to be set on-the fly. Of course this new notion does
not forbid any kind of prior agreement on the public part, it just strengthens
the existing notion.

It is now possible to get rid of the prior agreement on the common piece of
information in the signed message and our instantiation allows the signer to do
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so in a round-optimal way. These two constructions being compatible, we can
present a round-optimal partially-blind signature with perfect blindness. Our
protocol does not need any pre-processing for the public part of the message.
Basically both the user and the signer can choose a piece of the public part, but
instead of having a computational overhead for the agreement both can simply
choose during the 2 flows interaction what they want. The signer can always
refuse to sign something where the user’s public information doesn’t suit him
and the user can always choose not to exploit an uninteresting signature, so
a protocol should avoid to waste communication costs when one can manage
without any security loss to stay in a two-flows protocol.

Eventually, discarding the perfect blindness, we take advantage of this asyn-
chronous property (the user and the signer can independently choose their in-
puts) and we consider the new context where the message to be signed comes
from several independent sources that cannot communicate together. We first
present a way to obtain a signature on the concatenation of the input messages.
We also present a shorter instantiation which gives a signature on the sum of the
input messages. Such a sum can be useful when working on ballots, sensor infor-
mation, etc. Since we still apply the Waters signature, this led us to consider the
Waters function programmability over a non-binary alphabet, in a similar way
as it was done in [15] for the binary alphabet. We prove a negative result on the
(2, 1)-programmability, but a nice positive one on the (1, poly)-programmability,
which is of independent interest.

Instantiations.We give several instantiations of our different blind signatures, all
of which are based on weak assumptions. Our constructions mainly use the two
following building blocks, from which they inherit their security: Groth-Sahai
proofs for languages over pairing-friendly groups [14] and Waters signatures de-
rived from the scheme in [20] and used in [8]. Since verification of the revisited
Waters signatures [4] is a statement of the language for Groth-Sahai proofs, these
two building blocks combine smoothly. The first instantiations are in symmet-
ric pairing-friendly elliptic curves and additionally use linear commitments [7].
Both unforgeability and semantic security of these constructions rely solely on
the decision linear assumption (DLin). The blindness property is easily achieved
granted the homomorphic property of the Waters signature. An instantiation
with improved efficiency, in asymmetric bilinear groups, using the SXDH variant
of Groth-Sahai proofs and commitments is drafted in the full version [6]. This
setting requires an asymmetric Waters signature scheme secure under a slightly
stronger assumption, called CDH+, where some additional elements in the second
group are given to the adversary.

Applications. Our blind signature schemes find various kinds of applications:

E-voting. The security of several e-voting protocols relies on the fact that each
ballot is certified by an election authority. Since this authority should not learn
the voter’s choice, a blind signature scheme (or even partially-blind, if the au-
thority wants to specify the election in the ballot) is usually used to achieve this
property. In order to achieve privacy of the ballot in an information-theoretic
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sense, it is necessary to use a signature scheme that achieves perfect blindness.
Our scheme is the first to achieve this property in the standard model and under
classical complexity assumptions.

E-cash. As mentioned above, partially-blind signatures played an important role
in many electronic commerce applications. In e-cash systems, for instance, the
bank issuing coins must ensure that the message contains accurate information
such as the face value of the e-cash without seeing it and moreover in order
to prevent double-spending, the bank’s database has to record all spent coins.
Partially-blind signatures can cope with these problems, since the bank can
explicitly include some information such as the expiration date and the face
value in the coin. Thanks to our proposal, the coin issuing protocol can be done
without prior agreement between the bank and the client.

Data aggregation in networks. A wireless (ad hoc) sensor network (WSN) con-
sists of many sensor nodes that are deployed for sensing the environment and
collecting data from it. Since transmitting and receiving data are the most en-
ergy consuming operations, data aggregation has been put forward as an essential
paradigm in these networks. The idea is to combine the data coming from dif-
ferent sources – minimizing the number of transmissions and thus saving energy.
In this setting, a WSN consists usually of three types of nodes:

– sensor nodes that are small devices equipped with one or more sensors, a
processor and a radio transceiver for wireless communication.

– aggregation nodes (or aggregators) performing the data aggregation (e.g.
average, sum, minimum or maximum of data).

– base stations responsible for querying the nodes and gathering the data col-
lected by them.

WSNs are at high security risk and two important security goals when doing
in-network data aggregation are data confidentiality and data integrity. When
homomorphic encryption is used for data aggregation, end-to-end encryption
allows aggregation of the encrypted data so that the aggregators do not need
to decrypt and get access to the data and thus provides end-to-end data confi-
dentiality. Achieving data integrity is a harder problem and usually we do not
consider the attack where a sensor node reports a false reading value (the im-
pact of such an attack being usually limited). The main security flaw is a data
pollution attack in which an attacker tampers with the intermediate aggregation
result at an aggregation node. The purpose of the attack is to make the base
station receive the wrong aggregation result, and thus make the improper or
wrong decisions.

While in most conventional data aggregation protocols, data integrity and
privacy are not preserved at the same time, our multi-source blind signature
primitive permits to achieve data confidentiality and to prevent data pollution
attacks simultaneously by using the following simple protocol:

1. Data aggregation is initiated by a base station, which broadcasts a query to
the whole network.



Compact Round-Optimal Partially-Blind Signatures 99

2. Upon receiving the query, sensor nodes report encrypted values of their read-
ings (for the base station public key) to their aggregators.

3. The aggregators check the validity of the received values, perform data aggre-
gation via the homomorphic properties of the encryption scheme, (blindly)
sign the result and route the aggregated results back to the base station.

4. The base station decrypts the aggregated data and the signature which
proves the validity of the gathered information to the base station (but also
to any other third party).

2 Definition

This section presents the global framework and the security model for partially-
blind signature schemes. A reminder of standard definition and security notions
on Blind Signature can be found in the full version [6].

Blind signatures introduced a nice feature, however it may be undesirable
that requesters can ask the signer to blindly sign any message. For example,
in an e-cash scheme, some expiration date information should be embedded in
the e-coin, to avoid the bank’s database an uncontrolled growth when storing
information for double-spending checking. Partially-blind signatures are thus a
natural extension of blind signatures: instead of signing an unknown message, the
signer signs a message which contains a shared piece of information in addition
to the hidden part. This piece is called info and, in the standard definition, is
expected to have been defined before the execution of the protocol. But since
our schemes will not require the public part to be agreed on by the two players
before the protocol execution (as opposed to all the previous schemes from the
literature), we extend the usual partially-blind signature scheme with two public
parts in the message, in addition to the hidden part: info = infoc‖infos, where
infoc is the common public part with prior agreement, and infos is set on-the-fly
by the signer. This provides a more flexible scheme, and this definition generalizes
all the above ones. If infos = ⊥, we are in the regular case of partially blind
signature, whereas in case of regular blind signature both parts are empty ⊥.

Definition 1 (Partially-Blind Signature Scheme). A PBS scheme is de-
fined by 4 algorithms or protocols (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS) where

– SetupPBS(1λ) generates the global parameters parampbs of the system;
– KeyGenPBS(parampbs) generates a pair of keys (pkPBS , skPBS);
– Signature Issuing: this is an interactive protocol between S(skPBS , info =

infoc‖infos) and U(pkPBS ,m, info), for a message m ∈ {0, 1}n and shared
information info. It generates an output σ for the user:
σ ← 〈S(skPBS , info),U(pkPBS ,m, info)〉.

– VerifPBS(pkPBS ,m, info, σ) outputs 1 if the signature σ is valid with respect
to the message m‖info and pkPBS , 0 otherwise.
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Quick Note on Security: The security requirements are a direct extension of the
classical ones: for unforgeability, we consider m‖info instead of m, and for the
blindness, we condition the unlinkability between signatures with the same public
part info. Without the latter restriction, anyone can simply distinguish which
message was signed by comparing the public information. The unforgeability is
strengthened by considering also the public information so that the signer can
be sure that the user won’t be able to exploit his signature in another context.

Definition 2 (Signer-Friendly Partially-Blind Signature Scheme). A
signer-friendly partially-blind signature scheme PBS is defined by 4 algorithms
or protocols (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS ) where

– Setup(1λ) generates the global parameters parampbs of the system;
– KeyGen(parampbs) generates a pair of keys (pkPBS , skPBS);
– Signature Issuing: this is an interactive protocol between S(skPBS , infoc, infos)

and U(pkPBS ,m, infoc), for a message m ∈ {0, 1}n, signer information infos
and common information infoc. It generates an output σ for the user: σ ←
〈S(skPBS , infoc, infos),U(pkPBS ,m, infoc)〉.

– Verif(pkPBS ,m, infoc, infos, σ) outputs 1 if the signature σ is valid with respect
to the message m‖infoc‖infos and pkPBS, 0 otherwise.

One notes that infoc = info and infos = ⊥ lead to a standard partially-blind
signature; whereas the case infoc = infos = ⊥ is the standard blind signature.

The signer always has the last word in the process, and so if he does not want
to sign a specific info, he will simply abort the protocol several times until the
shared part suits his will. So, in the following, we decided that it was wiser to
let him choose this input. If the user wants a specific word in the final message
he can always add it to the blinded message. Intuitively this strengthens the
unforgeability notion as the adversary (the user in this case) won’t be able to
chose the whole message to be signed because of infos. This is ensured in the
security game, because the adversary should outputs valid signatures, therefore
they should be done with the chosen infos. For the blindness property, the ad-
versary should guess on signatures with the same public infoc‖infos component,
if it is not the case we answer with a blind-signature ⊥.

The complete security games can be found in the full version [6].

3 Partially-Blind Signature

Our constructions will combine Groth-Sahai Linear Commitments [14] and the
Waters signature [20] as follows: given a commitment on the “Waters hash”
F(M) (and some additional values proving we know the message M and the
randomness used), a pre-agreed shared information infoc, the signer can make
a partially-blind signature on M, infoc and an extra piece of public information
infos. This construction makes use of a symmetric pairing, but we extend it to
asymmetric pairings in the full version [6].
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3.1 Assumptions

We rely on classical assumptions only: CDH for the unforgeability of signatures
and DLin for the blindness property (when not perfect), and also for soundness
of the proofs:

Definition 3 (The Computational Diffie-Hellman problem (CDH)). The
CDH assumption, in a cyclic group G of prime order p, states that for a generator
g ∈ G and random a, b ∈ Zp, given (g, ga, gb) it is hard to compute gab.

Definition 4 (Decision Linear Assumption (DLin)). The DLin assumption,
in a cyclic group G of prime order p, states that given (g, gx, gy, gxa, gyb, gc) for
random a, b, x, y ∈ Zp, it is hard to determine whether c = a + b or a random
value. When (g, u = gx, v = gy) is fixed, a tuple (ua, vb, ga+b) is called a linear
tuple w.r.t. (u, v, g), whereas a tuple (ua, vb, gc) for a random and independent
c is called a random tuple.

One can easily see that if an adversary is able to solve a CDH challenge, then he
can easily solve a DLin one. So the DLin assumption implies the CDH assumption.
Some reminders on Groth-Sahai Commitments andWaters function can be found
in the full version [6] as those are the main building blocks of our construction.

3.2 Partially-Blind Signature with Perfect Blindness

With those building blocks, we design a partially-blind signature scheme, which
basically consists in committing the message to be signed. And granted the
random coins of the commitment, the user can unblind the signature sent by
the signer. Eventually, using the randomizability of the Waters signature, the
user breaks all the links that could remain between the message-signature pair
and the transaction. Our protocol proceeds as follows, on a commitment of
F = F(M), a public common message infoc, and a public message infos cho-
sen by the signer. It is split into five steps, that correspond to an optimal
2-flow protocol: BlindBS , which is first run by the user, SignBS , which is there-
after run by the signer, and VerifBS , UnblindBS , RandomBS that are eventu-
ally successively run by the user to generate the final signature. We thus have
U = (BlindBS ;VerifBS ,UnblindBS ,RandomBS) and S = SignBS :

– SetupBS(1λ) first chooses a bilinear group (p,G,GT , e, g). We need an addi-

tional vector u = (u0, . . . , uk)
$← Gk+1 which defines the Waters function F

(where k is the global length of M ||infoc||infos), a generator h
$← G, and a

tuple of Groth-Sahai parameters (u1,u2,u3) in the perfectly hiding setting:
parambs = (p,G,GT , e, g, h,F ,u1,u2,u3);

– KeyGenBS(parambs) chooses a random scalar x
$← Zp, which defines the

public key as pkBS = Y = gx, and the secret key as skBS = Z = hx;
– Signature Issuing (S(skBS , infoc, infos),U(pkBS ,M, infoc)), which is split in

several steps:
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• BlindBS(M, pkBS ; (r1, r2, r3)): For a message M ∈ {0, 1}
 and ran-

dom scalars (r1, r2, r3)
$← Zp, define the commitment as c =

(
c1 =

ur11,1u
r3
3,1, c2 = ur22,2u

r3
3,2, c3 = gr1+r2ur33,3 · F(M)

)
and compute Y1,2 =

Y r1+r2 , Y3 = Y r3 . One also generates additional proofs of validity of the
commitment:
∗ A proof ΠM of knowledge of M in c, the encrypted F(M), which
consists of a bit-by-bit commitment CM = (C′(M1), . . . , C′(M
)) and
proofs that each committed value is a bit, and a proof that c3 is
well-formed. ΠM is therefore composed of 9+ 3 group elements.

∗ A proof Πr containing the commitments Cr = (C(Y1,2), C(Y3)) and
proofs asserting that they are correctly generated. It requires 9 ad-
ditional group elements.

Π thus consists of 9 + 12 group elements, where  is the bit-length of
the message M

• SignBS(skBS , (c,Π), infoc, infos; s): To sign the commitment c, one first
checks if the proof Π is valid. It then appends the public message
info = infoc‖infos to c3 to create c′3 = c3 ·

∏
uinfoii+
 , which thus becomes

a commitment of the Waters function evaluation on M‖infoc‖infos of
global length k. It eventually outputs σ = (Z ·c′3

s
, us3,3, g

s) together with
the additional public information infos, for a random scalar s ∈ Zp.

• Verif(pkBS , (c, infoc, infos), σ = (σ1, σ2, σ3)): In order to check the validity
of the signature, one first computes c′3 as above, and then checks whether
the following pairing equations are verified: e(σ1, g) = e(h, pkBS)·e(c′3, σ3)
and e(σ2, g) = e(u3,3, σ3). If it is not the case, then this is not a valid
signature on the original ciphertext, and the blind signature is set as
Σ = ⊥.

• UnblindBS((r1, r2, r3), pkBS , (c, infoc, infos), σ): If the previous tests are
positive, one can use the random coins r1, r2, r3 to get back a valid
signature on M‖infoc‖infos: σ′ = (σ′1 = σ1/(σ

r1+r2
3 σr32 ), σ′2 = σ3), which

is a valid Waters signature.
• RandomBS(pkBS , (c, infoc, infos), σ′; s′): The latter can eventually be
rerandomized to get Σ = (σ′1 · F(M ||infoc||infos)s

′
, σ′2 · gs

′
).

One can note that Σ is a random Waters signature onM ||infoc||infos, where
we denote F = F(M ||infoc||infos):

Σ = (σ′1 · F s′ , σ′2 · gs
′
) = (F s′ · σ1/(σr1+r2

3 σr32 ), gs
′
· σ3)

= (F s′ · Z · c′3
s
/(gs(r1+r2)usr33,3 ), g

s+s′)

= (F s′ · Z · gs(r1+r2)usr33,3 · F s/(gs(r1+r2)usr33,3 ), g
s+s′) = (M s+s′ · Z, gs+s′)

– VerifBS(pkBS , (M, infoc, infos), Σ = (Σ1, Σ2)): One checks whether the fol-
lowing pairing equations holds (Waters signature): e(Σ1, g) = e(h, pkBS) ·
e(F(M ||infoc||infos), Σ2).

Theorem 5. This signer-friendly partially-blind signature scheme is unforge-
able under the CDH assumption in G.
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A message M can be hidden using ran-
dom coins r (BlindBS).
The signer can adapt this commitment
and concatenate a public message infos
into the original commitment, with also
the common public information infos,
creating a commitment C′ on F =
F(M ||infoc||infos).
A signature on the plaintext can be
obtained using the randomness r (for
UnblindBS); the result is the same as
a direct signature on M ||infoc||infos by
the signer.
Randomizing this signature is easy, and
prevents the signer to actually know
which ciphertext was the one involved.

Fig. 1. Partially-Blind Signatures with Perfect Blindness

Proof. Let us denote PBS our above partially-blind signature (but omit it in
the subscripts for clarity). Let us assume there is an adversary A against the
unforgeability that succeeds within probability ε, we will build an adversary B
against the CDH problem.

DLin Assumption. The unforgeability means that after qs interactions with the
signer, the adversary manages to output qs + 1 valid message-signature pairs
on distinct messages. If the adversary A can do that with probability ε with
the above commitment scheme using a perfectly hiding setting, under the DLin
assumption,A can also generate qs+1 valid message-signature pairs in a perfectly
binding setting, with not too small probability ε′.

Signer Simulation. Let us thus now consider the above blind signature scheme
with a commitment scheme using a perfectly binding setting (named PBS′), and
our simulator B can extract values from the commitments since it knows ν and
μ. We thus now assume that A is able to break the unforgeability of PBS′ with
probability ε′ after qs interactions with the signer. And we build an adversary B
against the CDH problem: Let (A = ga, B = gb) be a CDH-instance in a bilinear
group (p,G,GT , e, g).

We now generate the global parameters using this instance: for simulating

SetupBS/KeyGenBS , B picks a random position j
$← {0, . . . , k}, chooses random

indexes y0, y1, . . . , yk
$← {0, . . . , 2qs − 1}, and random scalars z0, z1, . . . , zk

$←
Zp. One defines Y = A = ga, h = B = gb, u0 = hy0−2jqsgz0 , and ui =
hyigzi for i = 1, . . . , k. B also picks two random scalars ν, μ,and generates
the Groth-Sahai parameters (u1,u2,u3) in the perfectly binding setting, and
thus with (u1 = (u1,1 = gx1, 1, g),u2 = (1, u2,2 = gx2 , g),u3 = uν1 $ uμ2 ),
for two random scalars x1, x2. Note that u3,3 = gν+μ. It outputs parambs =



104 O. Blazy, D. Pointcheval, and D. Vergnaud

(p,G,GT , e, g, h,F ,u1,u2,u3); one can note that the signing key is implicitly
defined as Z = ha = Ba = gab, and is thus the expected Diffie-Hellman value.

To answer a signing query on ciphertext c = (c1, c2, c3), with the additional
proofs, one first checks the proof Π . From the proof Π and the commitment
secret parameters x1, x2, B can extract M from the bit-by-bit commitments
in ΠM , and Y1,2 = Y r1+r2 , Y3 = Y r3 , from Πr, where c1 = ur11,1u

r3
3,1 and

c2 = ur22,2u
r3
3,2. Furthermore, we can compute c′3 = gr1+r2ur33,3 · F , where we

denote M ′ =M ||infoc||infos and F = F(M ||infoc||infos). B defines

H = −2jqs + y0 +
∑
i

yiM
′
i , J = z0 +

∑
i

ziM
′
i : F = hHgJ .

If H ≡ 0 (mod p) then B aborts, otherwise it sets

σ = (Y −J/H(Y1,2Y
ν+μ
3 )−1/H(F (c

1/x1

1 c
1/x2

2 ))s, (Y −1/Hgs)ν+μ, Y −1/Hgs).

Defining s̃ = s− a/H , we have

σ1 =Y −J/H(Y1,2Y
ν+μ
3 )−1/H(hHgJ(c

1/x1

1 c
1/x2

2 ))s = Z · (c′3)s̃

σ3 =Y −1/Hgs = Y −1/Hgs̃+a/H = gs̃

σ2 =(σ3)
ν+μ = g(ν+μ)s̃ = us̃3,3

It thus exactly looks like a real signature sent by the signer.

Diffie-Hellman Extraction. After at most qs signing queriesA outputs qs+1 valid
Waters signatures. Since there are more than the number of signing queries, there
is a least one message M∗ that is different from all the messages M ||infoc||infos
involved in the signing queries. We define

H∗ = −2jqs + y0 +
∑
i

yiM
∗
i , J

∗ = z0 +
∑
i

ziM
∗
i : F(M∗) = hH

∗
gJ

∗
.

IfH∗ �≡0 (mod p) then B abort, otherwise, for some s∗, σ∗=(haF(M∗)s
∗
, gs

∗
) =

(hags
∗J∗
, gs

∗
). Then, σ∗1/(σ∗2)J

∗
= ha = gab: one has solved the CDH problem.

Success Probability. (Based on [15]) The Waters hash function is (1, qs)-program-
mable (i.e., we can find with non negligible probability a case where qs interme-
diate hashes are not null, and the last one is), therefore the previous simulation
succeeds with non negligible probability (Θ(ε/qs

√
k)), and so B breaks CDH. ��

Theorem 6. This signer-friendly partially-blind signature scheme achieves per-
fect blindness.

Proof. The transcript sent to the signer contains a commitment on the message
to be signed, but in a perfectly hiding setting: no information leaks about M .
The additional proofs are perfectly witness-indistinguishable and thus do not
provide any additional information about M . This is due to the fact that in
the Groth Sahai framework in the perfectly hiding setting, for any message M ,
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committed with randomness r and a message M ′, one can find random r′ such
that c(M, r) = c(M ′, r′). Granted the randomizability of the Waters signature,
the final output signature is a random signature on M ||infoc||infos, on which no
information leaked, and so the resulting signature is perfectly independent from
the transcript seen by the signer, and any adversary. ��

4 Multi-source Blind Signature

4.1 Concatenation

The previous constructions lead to a good way to allow a user to obtain a
signature on a plaintext without revealing it to the signer. But what happens
when the original message is in fact coming from various users? We now present a
new way to obtain a blind signature without requiring multiple users to combine
their messages, providing once again a round-optimal way to achieve our goal.

We thus consider a variation of our blind signature scheme. In the Setup
phase we no longer create perfectly hiding Groth-Sahai generators, but perfectly
binding parameters, so we do not need to compute us3,3 to run Unblind, since it
will be performed with the decryption key and not the random coins. In addition,
in this scenario, we do not consider a unique user providing a ciphertext, but
several users. As a consequence, the signer will have to produce a signature on a
multi-source message, provided as ciphertexts. The signature and the messages
will actually be encrypted under a third-party key. The third-party only will be
able to extract the message and the signature.

Basically the instantiation is similar to the previous ones in the perfectly
binding setting. For the sake of clarity, we remove the partially-blind part, but
of course it could be adapted in the same way.

SignerBlindBS

S
ig
n B

S

RandomBS

s′

pkBS , ri
ri Ci

σ(
∏

Ci)

Fi

σ(
∏
F)

dkBS

User i

T sk
BS

,C
1
,.
..
,C

n
;s

UnblindBS
Verif

Several messages Mi can be hidden us-
ing random coins ri (BlindBS) by dif-
ferent users.
The signer can adapt these commit-
ments and concatenate the messages
inside them, creating a commitment on
F =

∏Fi.
A signature on the plaintext can be
obtained by the tallier using the de-
cryption key dkBS (for UnblindBS); the
result is the same as a direct signature
on ||Mi by the signer.
Randomizing this signature is easy, and
prevent the signer from knowing which
ciphertexts were involved.

Fig. 2. Multi-Source Blind Signature on Concatenation
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A full instantiation of such protocol and its security analysis can be found
in the full version [6]. One can see that it can be efficiently instantiated under
DLin assumption.

4.2 Addition

The previous scheme presents a way to combine multiple blind messages into
one in order to sign it. However it requires a huge number of generators and
the final unblinded signature gives a lot of information on the repartition of the
original messages, since they are simply concatenated. We now want to improve
the previous scheme to drastically reduce the public key size, and the information
leaked about the individual messages when one would like a signature on some
computation on these messages, such as the addition or the mean. Instead of
signing the concatenation of the messages, we now allow the users to use the same
generators, and thus the messages will add together instead of concatenating.

The resulting algorithm is the same as before except during the Setup phase

where u = (u0, . . . , uk)
$← Gk+1. We then proceed as before consideringF(Mi) =∏


 u
mi,�


 . The Unblind algorithm now returns a valid signature on the sum of the
messages. The various Groth-Sahai proofs help to ensure that the messages given
to the Waters hash function are of reasonable size.

With this construction, the exponents in the Waters hash function are not
longer bits but belong to a larger alphabet (e.g. {0, . . . , t} if t users sign only bit
strings). Following the work done in [15], we will show in the next section that
over a non-binary alphabet the Waters function remains (1, poly)-programmable
as long as the size of the alphabet a polynomial in the security parameter. This
result readily implies the security of the multi-source blind signature scheme for
addition:

Theorem 7. This multi-source blind signature scheme for addition is blind and
unforgeable under the DLin assumption as long the alphabet size and the number
of sources are polynomial in the security parameter.

5 Non-binary Waters Function Programmability

In this section, we prove that for a polynomial-size alphabet, the Waters function
remains programmable. We recall some notations introduced in [15] and show
our result which can be seen as an improvement over the result presented by
Naccache [16] where he considered a variant of Waters identity-based encryption
[20] with shorter public parameters.

5.1 Definitions

Let us recall some basic definitions. A family of cyclic groups G = (Gλ)λ∈N,
indexed by a security parameter λ, is called a group family. A group hash function
H for G, an alphabet Σ = Σ(λ) and an input length  = (λ) is a pair of
probabilistic polynomial-time algorithms (PHF.Gen,PHF.Eval) such that:
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– PHF.Gen takes as input a security parameter λ and outputs a key κ.
– PHF.Eval takes as input a key κ output by PHF.Gen and a string X ∈ Σ


and outputs an element of Gλ.

Definition 8 (cf. [15]). A group hash function (PHF.Gen,PHF.Eval) is (m,n, δ)-
programmable, if there exist two PPT algorithms (PHF.TrapGen,PHF.TrapEval)
such that

– Syntactics: For g, h ∈ G,PHF.TrapGen(1λ, g, h) generates a key κ′ and a
trapdoor t such that PHF.TrapEval(t,X) produces integers aX , bX for any
X ∈ Σ


– Correctness: For all generators g, h ∈ G, all (κ′, t)←PHF.TrapGen(1λ, g, h)
and all X ∈ Σ
, Hκ′(X) := PHF.Eval(κ′, X) satisfies Hκ′(X) = gaXhbX

where (aX , bX) := PHF.TrapEval(t,X).
– Statistically close trapdoor keys: For all generators g, h ∈ G2, the func-

tions PHF.Gen(1λ) and PHF.TrapGen(1λ, g, h) output keys κ and κ′ statisti-
cally close.

– Well-distributed logarithms: For all generators g, h ∈ G, all (κ′, t) output
by PHF.TrapGen(1λ, g, h) and all bit-strings (Xi)1,...,m, (Zi)1,...,n ∈ Σ
 such
that ∀i, j,Xi �= Zj, we have Pr[aX1 = . . . , aXm = 0∧ aZ1 · . . . · aZn �= 0] ≥ δ,
where the probability is taken over the random coins used by PHF.TrapGen
and (aXi , bXi) := PHF.TrapEval(t,Xi) and (aZi , bZi) := PHF.TrapEval(t, Zi).

5.2 Instantiation with Waters function

Let us consider the Waters function presented in [20].

Definition 9 (Multi-generator PHF). Let G = (Gλ) be a group family, and
 = (λ) a polynomial. We define F = (PHF.Gen,PHF.Eval) as the following
group hash function:

– PHF.Gen(1λ) outputs κ = (h0, . . . , h
)
$← G
+1;

– PHF.Eval(κ,X) parses κ and X=(x1, . . . , x
) ∈ {0, 1}
 and outputs Fκ(X) =

h0
∏


i=1 h
xi

i .

This function was shown to be (1, q, δ)-programmable with a δ = O(1/(q
√
))

and (2, 1, δ)-programmable with a δ = O(1/) (cf. [15]). However this definition
requires to generate and store n+1 group generators where n is the bit-length of
the messages one wants to hash. We consider a more general case where instead
of hashing bit-per-bit we decide to hash blocks of bits.

Definition 10 (Improved Multi-generator PHF). Let G = (Gλ) be a group
family, Σ = {0, . . . , τ} a finite alphabet and  = (λ) a polynomial. We define
F = (PHF.Gen,PHF.Eval) as the following group hash function:

– PHF.Gen(1λ) returns κ = (h0, . . . , h
)
$← G
+1;

– PHF.Eval(κ,X) parses κ and X = (x1, . . . , x
) ∈ Σ
 and returns F+
κ(X) =

h0
∏


i=1 h
xi

i .
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Using a larger alphabet allows to hash from a larger domain with a smaller
hash key, but it comes at a price since one can easily prove that the function
is no longer (2, 1)-programmable (i.e., no longer (2, 1, δ) programmable for a
non-negligible δ):

Theorem 11 ((2,1)-Programmability). For any group family G with known
order and τ > 1, the function F+ is not a (2,1)-programmable hash function if
the discrete logarithm problem is hard in G.

Proof. Consider a discrete logarithm challenge (g, h) in a group Gλ and sup-
pose by contradiction that the function F+ is (2, 1)-programmable with τ ≥ 2
(i.e., we suppose that there exist two probabilistic polynomial-time algorithms
(PHF.TrapGen,PHF.TrapEval) satisfying the definition 8 for a non-negligible δ).

For any hash key κ′ and trapdoor t generated by PHF.TrapGen(1λ, g, h), we
can consider the messages X1 = (2, 0), X2 = (1, 1), Z = (0, 2) and with non-
negligible probability over the random coins used by PHF.TrapGen we have aX1 =
aX2 = 0 and aZ �= 0 where (aX1 , bX1) := PHF.TrapEval(t,X1), (aX2 , bX2) :=
PHF.TrapEval(t,X2) and (aZ , bZ) := PHF.TrapEval(t, Z). By the correctness
property, we have gaZhbZ = h0h

2
2 = h2bX2 /hbX1 and we can extract the dis-

crete logarithm of g in base h as follows:

logh(g) =
2bX2 − bX1 − bZ

aZ
mod |Gλ|. ��

However we still have the interesting property:

Theorem 12 ((1,poly)-Programmability). For any polynomial q and a
group family G with groups of known order, the function F+ is a (1, q, δ)-
programmable hash function with a δ = Ω(1/τq

√
).

Remark 13. This theorem improves the result presented by Naccache in [16]
where the lower bound on the (1, q, δ)-programmability was only δ = Ω(1/τq).

Remark 14. In order to be able to sign all messages in a set M, we have to
consider parameters τ and  such that τ 
 ≥ #M, but the security is proved only
if the value δ is non-negligible (i.e. if  = λO(1) and τ = λO(1)). In particular
if M is of polynomial size in λ (which is the case in our WSN application with
data aggregation), one can use τ = #M and  = 1 (namely, the Boneh-Boyen
hash function), and therefore get data confidentiality.

Proof. Let us first introduce some notations. Let n ∈ N∗, let Aj be independent
and uniform random variables in {−1, 0, 1} (for j ∈ {1, . . . , n}). If we denote
2σ2j their quadratic moment, we have 2σ2j = 2/3 and σj =

√
1/3. We note

s2n =
∑n

j=1 σ
2
j = n/3.

The Local Central Limit Theorem. Our analysis relies on a classical result on
random walks, called the Local Central Limit Theorem. It basically provides an
approximation of Pr[

∑
Aj = a] for independent random variables Aj . This is a

version of the Central Limit Theorem in which the conclusion is strengthened
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from convergence of the law to locally uniform pointwise convergence of the
densities. It is worded as follows in [10, Theorem 1.1 ], where φ and Φ are the
standard normal density and distribution functions:

Theorem 15. Let Aj be independent, integer-valued random variables where Aj
has probability mass function fj (for j ∈ N∗). For each j, n ∈ N∗, let q(fj) =∑

kmin(fj(k), fj(k + 1)) and Qn =
∑n

j=1 q(fj). Denote Sn = A1 + · · · + An.
Suppose that there are sequences of numbers (αn), (βn) such that

1. limn→∞ Pr[(Sn − αn)/βn) < t] = Φ(t),−∞ < t <∞,
2. βn →∞,
3. and lim supβ2n/Qn <∞,

then supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0 as n→∞1.

While those notations may seem a little overwhelming, this can be easily ex-
plained in our case. With Aj ∈ {−1, 0, 1} with probability 1/3 for each value.

1. It requires the variables to verify the Lindeberg-Feller theorem. However
as long as the variables verify the Lindeberg’s condition2, this is true for
βn = sn and αn = 0.

2. In our application, βn = sn =
√
n/3, so again we comply with the condition.

3. Since fj(k) is simply the probability that Aj equals k, then q(fj) = 2/3.
This leads to Qn = 2n/3. As a consequence, β2n/Qn = 1/2.

So we have: supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0, that is, in our case

sup
k

|
√
n/3Pr[Sn = k]− φ(k/

√
n/3)| → 0.

We solely focus on the case k = 0: since φ(0) = 1/
√
2π, Pr[Sn = 0] = Θ(1/

√
n).

In addition, it is clear that Pr[Sn = k] ≤ Pr[Sn = 0] for any k �= 0 (c.f. [15]).

Lemma 16. Let (Aij)[[1,n]]×[[1,J]] be independent, integer-valued random vari-

ables in {−1, 0, 1}, then ∀X ∈ [[1, τ ]]n, Pr[
∑n

i=1

∑J
j=1XiAij = 0] = Ω(1/τ

√
nJ),

where the probability distribution is over the Aij .

This lemma will be useful to prove the lower bound in the following, we only
consider word with no null coefficient Xi, if a Xi is null, we simply work with a
shorter random walk of length J · (n− 1) instead of Jn.

Proof. Let us denote dij , the random variable defined as XiAij : they are in-

dependent, integer-valued random variables. As above, s2n =
∑n

i=1

∑J
j=1 σ

2
j =∑n

i=1 JX
2
i /3. So nJ/3 ≤ s2n ≤ nτ2J/3.

1 The so-called Berry-Esseen theorem gives the rate of convergence of this supremum.
2 Lindeberg’s condition is a sufficient criteria of the Lindeberg-Feller theorem, for
variables with a null expected value it requires that ∀ε > 0, limn→∞ 1/s2n

∑n
j=1 E[A2

j ·
1{|Aj |>εsn}] → 0. In our case, as soon as n > 3/ε2, we have |Aj | ≤ 1 ≤ ε

√
n/3 ≤ εsn,

so the sum is null. (1{|Aj |>εsn} is the indicator function of variables greater that εsn)
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1. The Lindeberg’s condition is verified. As soon as n > 3τ/Jε2 we have εsn > τ
and so |dij | < sn, and so once again the sum is null.

2. sn →∞.
3. Each dij ∈ {−Xi, 0, Xi} with probability 1/3 for each value, so q(fij) = 2/3

and Qn =
∑

i,j q(fij) = 2nJ/3. So β2n/Qn ≤ (nτJ/3)/(2nJ/3) ≤ τ/2 <∞.

Then we can apply the Local Central Limit Theorem to the dij ’s, and conclude:

Pr[
∑n

i=1

∑J
j=1XiAij = 0] = Θ(1/sn) = Θ(1/τ

√
(nJ). ��

In the following, we will denote a(X) =
∑n

i=1 aiXi, where X ∈ {0, . . . , τ}n. The
probabilities will be over the aij ’s variables while X and Y are assumed to be
chosen by the adversary. Our goal is to show that even for bad choices of X and
Y , a random draw of aij ’s provides enough freedom.

Let J = J(λ) be a positive function. We define the following two probabilistic
polynomial-time algorithms (PHF.TrapGen,PHF.TrapEval):

– PHF.TrapGen(1λ, g, h):which chooses some independent anduniformelements
(aij)(0,...,
),(1,...,J) in {−1, 0, 1}, and randomgroup exponents (bi)(0,...,
). It sets

ai =
∑J

j=1 aij and hi = g
aihbi for i ∈ {0, . . . , }. It then outputs the hash key

κ = (h0, . . . , h
) and the trapdoor t = (a0, b0, . . . , a
, b
).
– PHF.TrapEval(t,X): which parses X = (X1, . . . , X
) ∈ Σ
 = {0, . . . , τ}
 and

outputs aX = a0 +
∑
aiXi and bX = b0 +

∑
biXi.

As this definition verifies readily the syntactic and correctness requirements, we
only have to prove the two other ones. We stress the importance of the hardwired
1 in front of a0 this allows us to consider multisets X ′ = 1 :: X and Y ′ = 1 :: Y ,
and so there is no k such that X ′ = kY ′. And we also stress that ai =

∑J
j=1 aij

is already a random walk of length J (described by the aij), on which we can

apply the Local Central Limit Theorem and so Pr[ai = 0] = Θ(1/
√
J). By

noticing that summing independent random walks is equivalent to a longer one
and applying the Local Central Limit Theorem, we have:

Θ(1/τ
√

(+ 1)J) ≤ Pr[a(X ′) = 0] ≤ Θ(1/
√
J).

To explain further the two bounds:

– For the upper bound: we consider X fixed, and note t =
∑


i=1 aiXi, by con-
struction ai are independent, so a0 is independent from t then

Pr[a(X ′) = 0] = Pr[a0 = −t] ≤ Pr[a0 = 0] ≤ Θ(1/
√
J)

using the above remark that a random walk is more likely to reach 0 than
any other value, and a0 is a random walk of length J .

– For the lower bound, we proceed by recurrence on , to show

H
 : Θ(1/τ
√

(+ 1)J) ≤ Pr[a(X ′) = 0] (where X ′ ∈ 1 :: [[0, τ ]]
).

For  = 0, we consider X ′ = 1, we have a random walk of length J , so
Θ(1/τ

√
J) ≤ Θ(1/

√
J) ≤ Pr[a(X ′) = 0]. We note X0 = 1 for the hardwired

1 in X ′. Let us suppose the property true at rank k, let us prove it at rank
k + 1:
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• If ∃i0, Xi0 = 0 then we can consider a random walk of length k and apply
the previous step, and conclude becauseΘ(1/τ

√
(k + 1)J) ≤ Θ(1/τ

√
kJ)

• Else, one can apply Lemma 16 to conclude.
Therefore, ∀, ∀X ′ ∈ 1 :: [[0, τ ]]
, Θ(1/τ

√
(+ 1)J) ≤ Pr[a(X ′) = 0].

We can now deduce that ∀X,Y ∈ [[0, τ ]]
 with X �= Y : Pr[a(Y ′) = 0|a(X ′) =
0] ≤ Θ(1/

√
J). This can easily be seen by noting i0 the first index where Yi �=

Xi. We will note X̄ ′ = X ′ − Xi0 , in the following we will use the fact that
a(X ′) = 0 ⇔ a(X̄ ′) = −ai0Xi0 .

3

Pr[a(Y ′) = 0|a(X ′) = 0] ≤ Pr[a(Y ′) = a(X ′)|a(X ′) = 0]

≤ Pr[Yi0ai0 + a(Ȳ
′) = Xi0ai0 + a(X̄

′)|a(X ′) = 0]

≤ max
t

Pr[(Yi0 −Xi0)ai0 = t|a(X̄ ′) = −Xi0ai0 ] (1)

≤ max
s,t′

Pr[ai0 = t′|a(X̄ ′) = s] (2)

≤ max
t′

Pr[ai0 = t′] (3)

≤ Pr[ai0 = 0] ≤ Θ(1/
√
J)

(1) we start with (Yi0−Xi0)ai0 = a(X̄ ′)−a(Ȳ ′), and then consider the maximum
probability for all values a(X̄ ′)− a(Ȳ ′).

(2) We consider the maximum probability for all values of −Xi0ai0 .
(3) ai0 and a(X̄ ′) are independent.

Hence, for all X1, Y1, . . . , Yq, we have

Pr[aX1 = 0 ∧ aY1 , . . . , aYq �= 0] = Pr[aX1 = 0]Pr[aY1 , . . . , aYq �= 0|aX1 = 0]

≥ Θ(1/τ
√
J)

(
1−

q∑
i=1

Pr[aYi = 0|aX1 = 0]

)
≥ Θ(1/τ

√
+ 1J)(1 − qΘ(1/

√
J)).

Now we set J = q2, to obtain the result. In that case the experiment success is
lower-bounded by something linear in 1/(qτ

√
+ 1). ��
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Abstract. Aggregation schemes allow to combine several cryptographic
values like message authentication codes or signatures into a shorter
value such that, despite compression, some notion of unforgeability is
preserved. Recently, Eikemeier et al. (SCN 2010) considered the notion
of history-free sequential aggregation for message authentication codes,
where the sequentially-executed aggregation algorithm does not need to
receive the previous messages in the sequence as input. Here we dis-
cuss the idea for signatures where the new aggregate does not rely on
the previous messages and public keys either, thus inhibiting the costly
verifications in each aggregation step as in previous schemes by Lysyan-
skaya et al. (Eurocrypt 2004) and Neven (Eurocrypt 2008). Analogously
to MACs we argue about new security definitions for such schemes and
compare them to previous notions for history-dependent schemes. We
finally give a construction based on the BLS signature scheme which
satisfies our notion.

1 Introduction

Aggregate signature schemes [6] allow to combine multiple signatures from differ-
ent senders for possibly different messages, such that the aggregate has roughly
the same size as a single signature. This helps to reduce the communication over-
head in settings where authenticated information is forwarded from one party
to another, such as the S-BGP routing protocol or certificate chains [6,13,3,5].
As in the case of regular signature schemes, the validity of aggregates can be
publicly verified given all messages and public keys.

The original proposal of Boneh at al. [6] supports aggregation of the data inde-
pendently of the order of the parties and, furthermore, the aggregating algorithm
only relies on the aggregates and public data. In contrast, most other solutions
today like [14,13,5,3,16,17] are sequential aggregate schemes where each party
derives the next aggregate by taking the private key, the previous aggregate, and
all the previous messages together with the corresponding keys in the sequence
into account. For instance, in all1 known sequential signature schemes the ag-
gregation algorithm first checks with the public keys that the current aggregate

1 With the exception of the recent work by Brogle et al. [8], discussed at the end of
the introduction.

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 113–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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is a valid signature for the preceding message sequence. Often, they also incor-
porate these messages in the computation of the new aggregate. Thus, so far,
the aggregation in sequential signature schemes seems to be much more expen-
sive than in the non-sequential setting, which might render sequential schemes
impractical for resource-constraint devices. Another issue, pointed out in [8], is
that the verification requires also obtaining and checking the public keys of the
users in the sequence.

1.1 History-Free Sequential Aggregation

Recently, Eikemeier et al. [10] introduced the notion of history-freeness in the
context of aggregate MACs, which aims to preserve the “lightweight” aggre-
gation approach from general aggregate schemes also in the sequential setting.
More precisely, in a history-free MAC a new aggregate is derived only from the
aggregate-so-far and the local message, but does not rely on (explicit) access
to the previous messages. Note that, strictly speaking, the aggregate-so-far cer-
tainly contains some information about the previous messages; this information,
however, is limited due to the size restriction for aggregates.

In this work we adopt the notion of history-freeness to the case of sequential
aggregate signatures, only allowing the aggregate-so-far, the local message, and
signing key to enter the computation, but not the previous messages and pub-
lic keys in the sequence. For signatures this property is especially worthwhile,
because it means that the costly signature verifications for each aggregation
step are suppressed. In fact, since the security of previous schemes strongly re-
lies on such checks, omitting them indicates the hardness of finding history-free
schemes. Eikemeier et al. [10] achieve this, to some extent, for the case of MACs
by using an underlying pseudorandom permutation to encrypt parts of the data.
This is usually not an admissible strategy for the case of signatures.

At first, history-free sequential aggregation might seem to be the second best
solution compared to non-ordered aggregation (with history-free aggregation
quasi built in). However, sequential aggregation is required for many applica-
tions such as for authenticating routing information or for certificate chains,
and in these applications the verifiability of the order of signing steps is usu-
ally important, whereas general aggregate schemes do not allow this. Following
the terminology for multi-signatures [5] we call such schemes ordered sequential-
aggregate schemes. We also remark that all known sequential aggregate schemes
are ordered, except for the one by Lu et al. [13], and that we usually consider
history-freeness only in connection with such ordered schemes.

1.2 New Security Models

Introducing the idea of history-freeness affects known security definitions for
sequential signature schemes. Since the history of previously signed messages
is not available to the aggregation algorithm, an adversary can now initiate
aggregation chains “from the middle”, without specifying how the initial message
sequence looks like. The starting aggregate for such a truncated iteration does
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not even need to be valid, as checking the validity of the aggregate with respect
to the preceding message sequence is impossible for the aggregation algorithm.

Our security notions for history-free schemes, adopted from the work by Eike-
meier et al. [10], follow the well-known approach for (regular and aggregate)
signatures that an adversary can request data via oracles and is supposed to
eventually output a valid but non-trivial forgery. In the original LMRS security
model for sequential aggregation with full information about preceding mes-
sages [14], the adversary is considered to win if it produces a valid aggregate for
a non-trivial sequence, where trivial sequences are previously queried sequences
and, since appending some iterations for controlled parties is easy for the adver-
sary, such extended sequences thereof.

Specifying the trivial combinations in our history-free model is more deli-
cate because the adversary now gets to query partial chains and can potentially
glue several of these data together. We resolve this by following the approach
of Eikemeier et al., that is, by defining a transitive closure of trivial sequences,
consisting of matching combinations of (possibly many) previously seen aggre-
gates and contributions by corrupt parties. We define two versions of this closure,
depending on whether intermediate values of partial chains are available to the
adversary or not, yielding two security notions (one being stronger and implying
the other). Intuitively, due to the additional adversarial power, one would ex-
pect our new security models to be weaker than the original ones for sequential
aggregation. Interestingly, though, both our security notions for history-freeness
are strictly stronger than the security model for sequential aggregation due to
Lu et al. [13], but incomparable to the one of Lysyanskaya et al. [14], as we show
in Section 3.3. Even more remarkably, by slightly relaxing the requirement for
history-freeness, we can easily achieve the [14] security property (on top of our
aggregation-unforgeability notion) if we simply prepend the hash value of all
previous public keys and messages in the sequence to the message to be signed
next. By this we get a strongly secure sequential aggregate signature which does
not need verification of all preceding signatures!

We also briefly revisit the case of non-ordered aggregates. Here, adapting the
idea of the closure yields strictly stronger security guarantees than in previous
definitions for non-sequential schemes. Our models, both for sequential and for
non-ordered schemes, reflect the resistance of aggregate schemes against “mix-
and-match” attacks, where an attacker is already considered successful if it can
recombine learned aggregates into a “fresh” aggregate that it has not seen be-
fore, or is able to remove parts of the aggregates. This is opposed to the common
approach of reducing the unforgeability of aggregation schemes to the unforge-
ability of individual messages, where combining aggregates or removing a party’s
contribution are not deemed to be successful attacks (because they do not forge
an individual signature). This is discussed for the symmetric setting in more de-
tail in [10]. Yet, we are not aware if that high security standard can be achieved
for aggregate signatures. Nonetheless, as a side effect of our approach, we point
out that the scheme by Boneh et al. [6] allows attacks which are not covered by
their security models. The discussion appears in Section 5.
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1.3 Building History-Free Schemes

We finally provide a solution meeting our requirements in Section 4. We give a
construction based on the signature scheme of Boneh et al. [7], which has already
been successfully transformed into the BGLS scheme for non-sequential aggre-
gation [6]. By this we derive a scheme for history-free sequential aggregation.
Observe again that the resulting scheme also comes with the verifiability of the
aggregation order.

Our construction chains the aggregates with the help of a collision-resistant
hash function, i.e., instead of signing only the local message, we first compute
the hash value of this message together with the previous aggregate.2 Hence,
instead of verifying a chain of signatures our aggregation algorithm only needs
to compute bilinear mappings. The aggregates of our scheme are slightly larger
than the ones of the original BGLS scheme and the construction satisfies our
weaker security notion.

1.4 Concurrent Work

Recently, Brogle et al. [8] proposed a notion of sequential aggregate signatures
with so-called lazy verification, resembling the idea of history-freeness as defined
in [10] and also used here closely. They designed and implemented a history-free
scheme based on trapdoor permutations, with a special focus on the BGPsec
protocol [12]. Their security model, albeit appropriate for the BGPsec case, is a
relaxation of the LMRS model which is implied by (even the weaker version of)
our security notion. The reason is roughly that this relaxation merely demands
that the message in the forgery has not been signed by the honest user before,
implying that it cannot be in the closure and therefore also constitutes a breach
of security in our model. We note that the relaxed LMRS notion does not cover
the class of mix-and-match attacks discussed in [10] and here. The construction in
[8] produces signatures proportional to the number of signers and explicitly relies
on the random oracle model. In contrast, our scheme generates signatures of size
independent of the number of signers, only implicitly relies on the random oracle
model through the currently best proof for the underlying BLS signature scheme
in the random oracle model. Our solution comes with stronger unforgeability
guarantees (under reasonable cryptographic assumptions).

2 Preliminaries

2.1 Sequential Aggregate Signature Schemes

An aggregate signature [6] is a single signature of different signers on differ-
ent messages such that this aggregate has roughly the same size as an ordinary

2 The tricky part here is that we do not use the aggregate as it is, but first apply
the underlying bilinear mapping to it, before giving it to the hash function. This
is necessary to allow verification of aggregates without seeing individual signatures
and relies on specific properties of the BLS scheme.
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signature. In the sequential case the aggregation algorithm gets as input a se-
quence of public keys pk = (pk1, . . . , pki) and messages M = (M1, . . . ,Mi), an
aggregate σ′ for this sequence, a messageM and the secret signing key sk (with
corresponding public key pk). It returns the new aggregate σ for the sequence
pk||pk := (pk1, . . . , pki, pk) and M||M := (M1, . . . ,Mi,M). More formally:

Definition 1 (Sequential Aggregate Signature Scheme). A sequential ag-
gregate signature scheme is a tuple of efficient algorithms SAS = (SeqKg, SeqAgg,
SeqAggVf), where

Key Generation. SeqKg(1n) generates a key pair (sk, pk) where pk is recover-
able from sk.

Signature Aggregation. The aggregation algorithm SeqAgg(sk,M, σ′,M,pk)
takes as input a secret key sk, a message M ∈ {0, 1}∗, an aggregate σ′

and sequences M = (M1, . . . ,Mi) of messages and pk = (pk1, . . . , pki) of
public keys and computes the aggregate σ for message sequence M||M =
(M1, . . . ,Mi,M) and key sequence pk||pk = (pk1, . . . , pki, pk). (We assume
that there is a special “starting” symbol σ0 = ∅ for the empty aggregate,
different from all other possible aggregates.)

Aggregate Verification. The algorithm SeqAggVf(pk,M, σ) takes as input a
sequence of public keys pk = (pk1, . . . , pki), a sequence of messages M =
(M1, . . . ,Mi) as well as an aggregate σ. It returns a bit.

The scheme is complete if for any sequence of key pairs (sk, pk), (sk1, pk1), . . .←
SeqKg(1n), for any sequence M of messages, any M ∈ {0, 1}∗, for any σ ←
SeqAgg(sk,M, σ′,M,pk) with SeqAggVf(pk,M, σ′) = 1 or σ′ = ∅, we have
SeqAggVf(pk‖pk,M‖M,σ) = 1.

Note that we do not define “pure” signing and verification algorithms but only
the aggregate counterparts. We can specify such algorithms in a straightforward
way via the aggregation algorithm run on the starting aggregate σ0. In fact,
this is often how, vice versa, the aggregation algorithm works on this empty
sequence. Second, we do not put any formal restriction on the size of aggregates,
in the sense that aggregates must be smaller than individual signatures. Such
restrictions can be always met by first “inflating” regular signatures artificially.
We thus leave it to common sense to exclude such trivial examples. Finally,
throughout the paper we assume that public keys of parties are unique, say,
they include the identity and a sequence number as common in certificates.

2.2 LMRS Security of Sequential Aggregate Schemes

Lysyanskaya et al. [14] propose a security model for sequential aggregate signa-
ture schemes based on the chosen-key model of [4,6]. The adversary gets as input
a challenge public key pkc and has access to a sequential aggregate signing oracle
SeqAgg(skc, · · · ) which takes a messageM , an aggregate σ′ and sequencesM and
pk as input and returns the new aggregate σ. The adversary wins if it manages to
output a valid sequential aggregate signature for a sequenceM∗ = (M∗

1 , . . . ,M
∗
i )
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under public keys pk∗ = (pk∗1, . . . , pk
∗
i ) and pk∗ contains the challenge key pkc

and the sequence (M∗
1 , . . . ,M

∗
ic
) with (pk∗1, . . . , pk

∗
ic) has never been queried to

oracle SeqAgg, where ic denotes the index of pkc in pk∗.
For the sake of distinctiveness with the unforgeability notion for regular signa-

ture schemes we call schemes being immune against such adversaries sequentially
unforgeable:

Definition 2. A sequential aggregate signature scheme SAS = (SeqKg, SeqAgg,
SeqAggVf) is sequentially unforgeable if for any efficient algorithm A the prob-
ability that the experiment SeqForgeSASA evaluates to 1 is negligible (as a function
of n), where

Experiment SeqForgeSASA (n)
(skc, pkc),← SeqKg(1n)
(pk∗,M∗, σ∗) ← ASeqAgg(skc,··· )(pkc)
Let ic be the index of pkc in pk∗ = (pk∗1, . . . , pk

∗

 ) and M∗ = (M∗

1 , . . . ,M
∗

 ).

Return 1 iff SeqAggVf(pk∗,M∗, σ∗) = 1
and pkc ∈ pk∗ and pki �= pkj for 1 ≤ i < j ≤  and
A never queried SeqAgg(skc, · · · ) about (M∗

1 , . . . ,M
∗
ic
), (pk∗1, . . . , pk

∗
ic).

3 Security of History-Free Sequential Signatures

3.1 History-Freeness

So far, sequential aggregate schemes usually include the previous messages and
public keys when deriving the new aggregate. This is a crucial disadvantage
compared to the “lightweight” aggregation in non-sequential schemes, where the
aggregation only depends on the previous signatures. To circumvent this issue we
now apply the recently proposed notion of history-freeness [10] which restricts
the input for the aggregation algorithm to the aggregate-so-far and the local
message, i.e., the aggregation does not get access to the previous messages and
keys. More formally:

Definition 3 (History-Freeness). A sequential aggregate signature scheme
SAS = (SeqKg, SeqAgg, SeqAggVf) is called history-free if there exists an ef-
ficient algorithm SeqAgghf such that SeqAgghf(·, ·, ·) = SeqAgg(·, ·, ·,M,pk) for
all M,pk.

To save on notation we will often identify SeqAgghf with SeqAgg and simply omit
M,pk from the input of SeqAgg.

Note that history-free sequential signature schemes are not the same as non-
sequential aggregate signatures as defined by Boneh et al. [6]. As mentioned in
the introduction, the security requirement for (history-free) sequential schemes
often allows to check the order of the signers, in contrast to non-sequential
schemes.
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3.2 Security Model

When considering history-free signature schemes the LMRS security model for
sequential schemes [14] does not fully reflect the new conditions of the adversary
and the desired security guarantees. This stems from the fact that in the history-
free setting the previously signed messages are not available to the aggregation
algorithm, which allows an adversary to trigger new aggregation chains “from
the middle” without knowing the previous message sequence. To capture those
attacks we modify the aggregation oracle such that it returns aggregates for
sequences of messages, starting now with an arbitrary aggregate-so-far. Thus,
we also incorporate some ideas of the aggregation-unforgeability notion [10] into
our new model.

Aggregation-unforgeability here demands that the adversary cannot output a
valid chain, unless its a trivial combination of previous aggregation queries and
values by corrupt parties. An example of such a trivial combination is depicted
in Figure 1, where the adversary computes the final value by simply iterating
through the sequence with the help of the aggregation oracle and local compu-
tations by corrupt players. Note that each aggregation query is for a sequence
of honest parties and this requires several public keys.

Attack Scenario. As in the aggregation-unforgeability model of Eikemeier et al.
for aggregated MACs, we also grant the adversary in our model an aggregation
oracle returning aggregates for (ordered) sets of messages. To allow reasonable
aggregation queries we hand the adversary now t genuine public keys pk1, . . . , pkt
of initially honest parties as in [15], instead of considering a single challenge key
as in the chosen-key model [4,6].

The adversary’s attack is divided into two phases. In the first phase, the
adversary has access to a corruption and a key-setting oracle, both initialized
with the t key pairs ((sk1, pk1) . . . , (skt, pkt)). By querying the corruption oracle
the adversary can obtain at most t − 1 secret keys of his choice. We denote by
QCor the set of corrupted keys. To model rogue-key attacks we also provide an
oracle SetKey which allows the adversary to change the public key of a previously
corrupted party, i.e., on input pk, pk∗ the oracle replaces the public key pk of a
corrupt party by pk∗. Recall that we assume that public keys must be unique.
Any modifications of corrupted keys are captured by the set QCor as well.

The adversary starts the second phase by interacting with the sequential
aggregate signature oracle OSeqAgg but is denied access to the corruption or
key-setting oracle in this phase (reflecting static corruptions3). On input of
an aggregate-so-far σ′, a sequence of new messages M for public keys pk the
OSeqAgg oracle checks whether all public keys in pk are distinct and belong to
honest parties. If an invalid public key appears OSeqAgg answers ⊥, otherwise
it responds with a new valid aggregate σ derived by running the aggregation
algorithm stepwise for all input data. We remark that the aggregation oracle

3 We observe that the standard strategy to lift security against static corruptions to
security against adaptive corruptions by guessing the right “target” key in advance
does not work in our setting, as our security notion relies on multiple honest users.
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aggregation query #1

honest parties only

aggregation query #2

aggregates available to the adversary (through aggregation queries or local computations)

corrupt party

Fig. 1. Example of a trivial combination of replies to aggregation queries and local
computations by corrupt parties

only aggregates for honest parties, i.e., where the corresponding keys were nei-
ther corrupted nor modified; for corrupt players the adversary, holding the secret
key, must add the values herself.

Eventually the adversary A halts, outputting a tuple (pk∗,M∗, σ∗). The
forgery must be valid according to our definition of history-free sequential ag-
gregate signature schemes. In addition, the signature must be non-trivial which
is quantified by defining the closure of all query/answer pairs of A. Here, we
denote by QSeq the set of all query/answer tuples ((σ′,M,pk), σ) that occur
in A’s interaction with the OSeqAgg oracle. Recall that QCor denote the sets
of all keys that were corrupted and possibly modified by the adversary. The
closure contains all admissible combinations of aggregated data for the queried
sequences together with all possible values by corrupted parties.

Closure. For history-free sequential aggregate signatures, defining the closure is
more complex as in the general case that we discuss in Section 5. Here, an adver-
sary can query partial chains and later possibly combine several of them by us-
ing corrupted keys or chains with matching starting/end points. Thus, we define
the closure recursively through a function TrivialQSeq,QCor

which, for parameters
(pk,M, σ) describes all sequences that can be derived trivially starting from
message sequence M and aggregate-so-far σ, i.e., where one can append (recur-
sively expanded) trivial sequences via aggregation queries or local computations
by corrupt players. For example, if we have an aggregation query (σ0,pk,M)
with answer σ in QSeq and another query (σ,pk′,M′) with the answer from the
first query as the starting aggregate, then the sequence (pk||pk′,M||M′) is in
the trivial set. So is any extension of this sequence for corrupt players. We note
that, if the final aggregate of a chain and the starting aggregate do not match,
then the combined sequence is not in the closure, neither are subsequences of
previous queries (unless either sequence appears in another query).

The closure is then defined to contain all trivial sequences starting from the
information available to the adversary at the beginning, namely, the empty mes-
sage sequence, the starting key pk0 = ∅ and the starting tag σ0 = ∅. Note that
the closure here is now a set of tuples where each tuple represents a sequential
aggregation.

Definition 4 (Sequential Closure of A’s queries). Let QCor and QSeq be
the sets corresponding to the different oracle responses and let TrivialQSeq,QCor

be
a recursive function of trivial combinations defined as
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TrivialQSeq,QCor
(pk,M, σ)

:= {(pk,M)} ∪
⋃

((σ,M,pk),σ)∈QSeq

TrivialQSeq,QCor
(pk||pk,M||M, σ)

∪
⋃

∀M,σ
∧pki∈QCor

TrivialQSeq,QCor
(pk||pki,M||M,σ) .

The closure Closure of A’s queries QSeq and QCor is then defined by recursively
generating the trivial combinations starting from the empty tuple as described
above:

Closure(QSeq, QCor) := TrivialQSeq,QCor
(∅, ∅, ∅).

As an example consider an attack on a regular (non-aggregate) signature scheme,
with a single honest party and no corrupt players. Then the closure contains all
queries to the signing oracle and renders these values as trivial. Note that we
do not treat the case of concatenating answers for the same public key in any
special way.

A more important example are the mix-and-match attacks in which the ad-
versary sees several aggregation chains (of honest parties) but is able to combine
them into a new sequence. This new sequence would then be not in the closure
and thus constitute a legitimate forgery attempt. In other words, any secure
scheme according to our notion must prevent such mix-and-match attacks.

Aggregation Unforgeability. With the definition of the sequential closure, we pro-
pose the following security model for history-free sequential aggregate signatures.

Definition 5 (Aggregation Unforgeability). A history-free sequential ag-
gregate signature scheme SAS = (SeqKg, SeqAgg, SeqAggVf) is aggregation-un-
forgeable if for any efficient algorithm A (working in modes corrupt, forge)
the probability that the experiment SeqForgeSASA evaluates to 1 is negligible (as a
function of n), where

Experiment SeqForgeSASA (n)
(sk1, pk1), . . . , (skt, pkt) ← SeqKg(1n)
K′ ← ((sk1, pk1), . . . , (skt, pkt))

st ← ACorrupt(K′,·),SetKey(K′,·,·)(corrupt, pk1, . . . .pkt)
// it is understood that A keeps state st

Let K be the set of the updated keys of all parties

(pk∗,M∗, σ∗) ← AOSeqAgg(K,··· )(forge, st)
Return 1 iff pki �= pkj for all i �= j and SeqAggVf(pk∗,M∗, σ∗) = 1 and

(pk∗,M∗) �∈ Closure(QSeq, QCor).

Relaxed Security Notion. Our definition is very demanding in the sense that
prefixes of aggregation sequences are considered to be non-trivial. In particular,
this means that intermediate values in such a chain cannot be available to the
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aggregates available to the adversary (through aggregation queries or local computations)

Fig. 2. Relaxed Security Notion: In comparison to the stronger notion (Figure 1) the
adversary can only make aggregation queries of length 1. The closure potentially allows
more combinations now and thus rules out more sequences as trivial.

adversary, or else successful attacks according to our model are straightforward.
This model corresponds to the case that the forwarded data between honest
parties are for instance encrypted.

Regarding existing sequential aggregate signature schemes like [14], all inter-
mediate signatures that appeared in the computation of the final aggregate can
be re-obtained by simply verifying the aggregate signature, since the verification
algorithm “peels off” the aggregate. Thus, we also propose a relaxed definition of
history-free unforgeability that takes the possibility of obtaining the intermediate
signatures into account, inciting the name mezzo aggregation unforgeability.

We also remark that a simple approach like having the first party in a sequence
create some unique identifier or nonce, which is used by all subsequent players,
usually does not facilitate the design of schemes because the adversary can always
put a corrupt player upfront. Similarly to the case of non-ordered aggregation
we can have a solution with counters or time stamps but this again requires
synchronization between the parties.

We can easily cast the weaker notion in our model by allowing only aggregation
queries for sequences of length one, i.e., where the adversary has to compute
longer chains itself by iterating through the sequence manually. Clearly, this
adversary is a special case of our adversary above and the security guarantee is
therefore weaker (in other words, the closure now contains more trivial elements).
It is also very easy to prove this formally by considering a scheme where the new
aggregate contains the previous aggregate. For the stronger notion this allows to
obtain a valid aggregate of a prefix easily, whereas for the weaker notion the extra
aggregate is already been input by the adversary and thus provides no additional
information. The difference between the models is depicted in Figure 2.

Definition 6 (Mezzo Aggregation Unforgeability). A history-free sequen-
tial aggregate signature scheme SAS = (SeqKg, SeqAgg, SeqAggVf) is mezzo
aggregation-unforgeable if it is aggregation-unforgeable for any efficient algo-
rithm A that only calls oracle OSeqAgg for sequences of length one.

We note that mix-and-match attacks are still ruled out by the above definition.
For this observe that any “manually iterated” sequence can only interfere with
other sequences if intermediate signatures collide. Such collisions are, however,
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succesful attack according to LMRS
but not according to our model

forgery

succesful attack according to our model
but not according to LMRS model

forgery

Fig. 3. Comparison of the LMRS security model and our (strong) model: Prepending
any values by corrupt parties is not considered a successful attack in our model (left
part), whereas branching into a different sequence from some intermediate value is not
considered a successful attack in the LMRS model (right part)

unlikely and can only happen with negligible probability. Else, such collisions
would easily allow to forge individual signatures of honest parties and would
constitute a successful forgery in the above sense.

3.3 Relationship to the LMRS-Model

It is easy to see that our security model is strictly stronger than the one by Lu et
al. [13] because successful attacks according to their definition involve individual
forgeries for fresh messages against a single challenge key (which thus cannot
belong to our closure). At the same time their approach does not allow to verify
the order of aggregation steps, whereas changing the order constitutes a success-
ful attack according to our definition. We therefore focus on the comparison to
the LMRS-model.

On one hand our model gives the adversary more power than in the LMRS-
model for secure sequential aggregation, because it does not need to specify the
starting message sequence for aggregation queries. On the other hand we allow
the adversary less freedom when it comes to values of corrupt players in the
forgery attempt. Hence, the possibilities in the attack are somewhat compen-
sated for and this makes the models incomparable, as we show by the following
separating examples.

The ideas of the separating examples are given in Figure 3. The left part of
the figure shows an attack which is defined as trivial in our model but constitutes
a break in the LMRS model. Indeed, it seems that in the history-free setting the
adversary can always find “bad” keys for corrupt parties which enable collisions
on the intermediate values. Since the information about the starting sequence
then does not enter the further computations preventing such attacks in our
setting seems impossible. The right side shows a successful attack in our model
which takes advantage of a prefix of an aggregation subsequence; this is by
definition not a successful attack in the LMRS model. A similar separation holds
for our relaxed notion. We discuss these cases in more detail in the full version.

We briefly discuss how to add the LMRS security property to our (mezzo)
aggregation unforgeability, if now all preceding public keys pk and messages M
in a sequence are known. The idea is to use a collision-resistant hash function
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h and, for each signature creation, to prepend the hash value c = h(pk,M) to
the message to be signed. For verification one does the same. Note that, while
this is formally not a history-free scheme anymore, signing still does not require
verification of preceding signatures.

Aggregation unforgeability still holds in the modified scheme if we consider
each hash value to be an integral part of the message to be signed. But the
collision resistance of the hash function h now also ensures LMRS security, be-
cause we can assume that all hash values of sequences are unique. This implies
that in an LMRS forgery attempt the message with the prepended hash value
has not been signed by the honest user in question (either the prefix is new and
thus the hash value, or the message in combination with this sequence is). This
means that the forgery sequence is not in the closure and would thus constitute
a breach of (mezzo) aggregation unforgeability.

4 Construction

We derive a history-free sequential aggregate signature scheme based on the BLS
signature scheme that is secure in the random oracle model [7]. This scheme has
already been successfully applied to derive the non-sequential BGLS aggregate
signature scheme [6]. Below we assume that we have an efficient, non-degenerate
bilinear map e : G1 × G2 → G3 for system-wide available groups, where g1 is a
generator of G1 and g2 is a generator of G2. We assume that e(·, g2) is one-to-one.
Also, let H : {0, 1}∗ �→ G1 be a public hash function.

In the BLS signature scheme the key generation algorithm Kg(1n) picks an
element x ← Zp at random and computes v ← gx2 . It returns (pk, sk) ← (v, x).
The signing algorithm Sign(x,M) takes as input a message M ∈ {0, 1}∗ and a
secret key x. It computes σ ← H(M)x and returns the signature σ ∈ G1. The
verification algorithm Vf(v,M, σ) outputs 1 iff e(σ, g2) = e(H(M), v).

4.1 Construction Based on BLS Signatures

The idea of our construction is as follows. We let the signer build a link between
all previous all signatures by linking them through a hash chain. That is, in each
aggregation step the signer receives the aggregate-so-far (σ′, pk′, c′, s′), consist-
ing of an aggregate σ′, the public key pk′ of the preceding signer, a hash chain
value c′ and the non-aggregated signature s′ of the preceding party. The signer
first checks that s′ is a valid signature under pk′ for c′ and, if so, it extends the
hash chain via c← h(e(σ′, g2),M, pk′, c′) for its messageM . Note that using the
value under the bilinear mapping instead of σ′ is necessary for the verification
the whole sequence without knowing the individual aggregates and is a specific
property of the BLS scheme. The signer next computes a non-aggregated signa-
ture s for c and aggregates s to σ′ to derive σ, and finally forwards (σ, pk, c, s)
to the next signer.
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Construction 1. Let DS = (Kg, Sig,Vf) be the BLS signature scheme and h :
{0, 1}∗ �→ {0, 1}n be a hash function. Define the following efficient algorithms:

Key Generation. The key generation algorithm is identical to Kg.
Sequential Signature Aggregation. Algorithm SeqAgg gets as input a pair

of keys (sk, pk) = (x, v), a message M ∈ {0, 1}∗, and a sequential aggregate
signature (σ′, pk′, c′, s′). The algorithm sets c← h(e(σ′, g2),M, pk′, c′), where
e(∅, g2) = 1 by definition, checks that Vf(pk′, c′, s′) = 1 or that pk′, c′, s′ = ∅
are the starting symbols, and stops if not. Else it computes the signature
s = H(c)x ← Sig(sk, c) on c and the value σ ← σ′ ·s. It outputs the sequential
aggregate signature (σ, pk, c, s).

Aggregate Verification. The input of algorithm SeqAggVf(pk,M, σ) is a se-
quence of public keys pk = (pk1, . . . , pk
), a sequence of messages M =
(M1, . . . ,M
) as well as an aggregate σ (with pk, c, s). It parses pki = g

xi
2 ,

sets

c0 ← ∅ and pk0 ← ∅ and ci ← h
( i−1∏
j=0

e(H(cj), pkj),Mi, pki−1, ci−1

)
for i = 1, . . . , , where e(H(∅), pkj) = 1 by definition, and outputs 1 if

e(σ, g2) =

∏

i=1

e(H(ci), g
xi
2 ).

Completeness follows inductively, as for honest parties each intermediate ag-
gregate σi is a valid signature for c1, . . . , ci and therefore the next output also
satisfies e(σi, g2) = e(H(cj), g

xi
2 ).

4.2 Security

Our security proof basically follows by reduction to the security to the BLS sig-
nature scheme and the collision resistance of h. We note that we do not explicitly
rely on the random oracle model, only implicitly through the (currently best)
security proof for the BLS scheme. Instead, we could give a straight reduction
to the co-Diffie-Hellman problem [7], but then we would need to program the
random oracle. The main idea of the proof is that we either break the underlying
BLS scheme (in case C∗ computed in the verification of the adversary’s forgery
attempt contains a new value c∗i ), or that the adversary has to forge a (regular)
signature for an honest party or to find a collision for h (if all values in C∗ have
appeared during the attack).

Theorem 2. Let h be a collision-resistant hash function. If the BLS signature
scheme is unforgeable, then the scheme defined in Construction 1 is a history-
free, mezzo aggregation-unforgeable sequential aggregate signature scheme.
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Proof. We prove this theorem assuming towards contradiction that there exists
an adversary A breaking aggregation-unforgeability with non-negligible proba-
bility ε(n). Assume that this adversary eventually outputs a valid forgery M∗,
pk∗ and σ∗. Let C∗ = (c∗1, . . . , c

∗

 ) denote the values derived during the verifica-

tion, and assume that the sequence M∗ does not belong to the closure.
If the probability that the adversary A succeeds and there is some c∗i for

an honest party which has never been queried to an aggregation query for this
party, then we can break the underlying aggregate signature scheme. To this end
we construct an algorithm B (receiving a challenge key and having access to a
signature oracle for this key) as follows:

Setup. Algorithm B gets as input a public key pkc, it picks t − 1 key pairs
(ski, pki) ← SeqKg(1n) and inserts the key pkc at a random position, pk ←
(pk1, . . . , pkj−1, pkc, pkj+1 . . . , pkt). B simulates A in a black-box way on in-
put pk (if we assume H to be a random oracle then B grants A direct access
to H).

Key Oracles. During the simulation, A is allowed to corrupt keys and to
change them. If A invokes the corruption oracle Corrupt(sk, ·) on input pk,
then B returns ski if pki = pk, for some i ∈ {1, . . . , t} \ j, and otherwise
failed. In the case that A wishes to substitute a certain public key pk ∈ pk
and queries its key-modification oracle SetKey(sk, ·) about a pair (pk, pk′),
then B sets pki = pk′ if pki = pk for an index i ∈ {1, . . . , t} \ j. It returns
succ if such a public key exists and substitution succeeded, otherwise failed.

Aggregate Signing. Whenever A asks the aggregate signing oracle SeqAgg
to build a new sequential aggregate signature for an aggregate-so-far σ′,
a message M , and a public key pk, algorithm B answers this query in the
following way. It first checks if the public key pk has never been corrupted nor
substituted (if so, it returns ⊥). Adversary B either computes the aggregate
invoking its external signing oracle (in the case where pk = pkc), or else by
executing the signing algorithm itself (for the corresponding secret key sk).
In both cases all other steps of the aggregation algorithm besides the signing
step can be computed easily. B outputs the full aggregate to A.

Output. At the end of the simulation A outputs a tuple (M∗,pk∗, σ∗). Al-
gorithm B computes C∗ as in the description of the verification procedure
and returns these values together with pk∗ and σ∗. Algorithm B checks if
pkc ∈ pk∗ and, if so, computes the values c∗i as for verification, and outputs
c∗c together with σ∗ ·

∏
i�=cH(ci)

−xi as the signature (for the known secret

keys xi belonging to the other parties in pk∗).

For the analysis note that, in the case that some new c∗i for some honest party
is in C∗ our algorithm B loses only a factor 1/t for guessing the right public

key. But then, for a valid forgery of A we have e(σ∗, g2) =
∏


i=1 e(H(c∗i ), g
xi

2 ).
Dividing out

∏
i�=cH(c∗i )

xi of σ∗ yields e(σ∗ ·
∏

i�=cH(c∗i )
−xi , g2) = e(H(c∗c), pkc)

and therefore a valid forgery for the BLS scheme under public key pkc. Hence,
this case of A winning cannot have non-negligible probability.

Next assume that all the c∗i ’s of honest parties have appeared in aggregation
requests before (and are answered without failure), but A still wins. In the
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forgery attempt consider the leftmost honest party at position i such that the
leading sequence (M∗

1 , . . . ,M
∗
i ) ofM

∗ does not lie in the closure. Since we assume
that c∗i has appeared in some aggregation query to party i before, we must have
a query (σ′, pk′, c′),M with

h(e(σ′, g2),M, pk′, c′) = c∗i = h(
∏
j<i

e(H(c∗j ), pkj),M
∗
i , pki−1, ci−1).

By the collision-resistance of h we conclude that M =M∗
i , pk

′ = pki−1 and c′ =
c∗i−1 and e(σ′, g2) =

∏
j<i e(H(c∗j ), pkj). By assumption, the leading sequence

(M∗
1 , . . . ,M

∗
i ) is not in the closure. There are three cases:

– Our “target” party at position i is the first one in the sequence (M∗
1 , . . . ,M

∗
i ),

i.e., i = 1. Since it then only computes an aggregate if σ′, pk′, c′ = ∅ we derive
the contradiction that the sequence is in fact in the closure, due to the ag-
gregation query (σ′, pk′, c′),M =M∗

i yielding c∗i . This, however, contradicts
our assumption.

– Assume that there is a corrupt party at position i−1 in the forgery sequence.
Then, by construction and since party i is the leftmost with the sequence
(M∗

1 , . . . ,M
∗
i ) not being in the closure, the sequence including the corrupt

party must be in the closure (all subsequences must already be in the closure
by assumption). But then the query triggering the appearance of c∗i again
makes (M∗

1 , . . . ,M
∗
i ) per definition also part of the closure. This is so since

corrupt parties can “link” any trivial sequences.

– The final case is if there is an honest party at position i − 1. Note that our
party at i only returns an aggregate if the signature s′ is a valid signature
for the incoming value c′ = c∗i under the same key pk′ = pki−1 of the honest
party at position i− 1. We conclude again that the adversary needs to make
the honest party at some step sign c∗i (or needs to forge a signature for
honest party at i− 1, which would again contradict the security of the BLS
signature scheme). However, by the collision resistance of h and noting that
the function e(·, g2) is one-to-one, it follows that this requires the same input
(σ′′, pk′′, c′′),M ′ to the party at position i − 1 as on the “closure path”.
Furthermore, the valid signatures s′′ for c′′ and s′ for c′ are unique, and it
therefore follows again that the closure extends to the party at position i,
contradicting again our assumption.

This shows that the adversary can win in this case with negligible probability
only, and concludes the proof. ��

We again note that, following the discussion in Section 3.3, we can easily get a
(non history-free) signature scheme which is simultaneously also LMRS secure
without the verification of signatures in the sequence, This is achieved by in-
serting the sequence of messages and public keys into the evaluation of the hash
function h.
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5 Security of Non-sequential Aggregation Schemes

The common security model for non-sequential aggregate signatures of Boneh
et al. [6] only considers limited attacks (akin to our weaker security notion),
even though stronger notions may be desirable for some applications (similar to
our strong notion). For the case of symmetric authentication this was already
discussed in [10] by presenting an attack against an aggregate MAC scheme,
that was outside of the previous security model. Here we show that a similar
argumentation holds for aggregate signatures as well.

Mix-and-Match Attacks. We first recall the example of an “mix-and-match”
attack that was given for aggregate MACs by Eikemeier et al. From an ab-
stract point of view, the attack uses three aggregates for message sets {M1,M2},
{M3,M2} and {M1,M4} to derive a valid aggregate for a fourth pair {M3,M4}.
The attack is not considered a security breach according to the model by [6].
Roughly, the shortcoming is due to the definition of “trivial” attacks: an adver-
sary is usually not considered to succeed if the messages in the forgery have been
authenticated individually during the attack. In the example above this means
that any combination of the messagesM1,M2,M3,M4 cannot be used for a suc-
cessful forgery, although only three of these combinations have actually appeared
before. Ideally, however, an aggregation scheme should be considered insecure
if an adversary is able to transform several aggregates into a new combination
that has not been authenticated before.

More concretely, recall that an aggregate in the scheme by Boneh et al. is of
the form σ =

∏
σi for regular BLS signatures σi = H(Mi)

xi for random oracle
H , messageMi and secret key xi. The public key is given by gxi and verification
is performed with the help of the pairing operation. Given the replies

σ1 = H(M1)
x1 ·H(M2)

x2 , σ2 = H(M3)
x1 ·H(M2)

x2 , σ3 = H(M1)
x1 ·H(M4)

x2

to three aggregation queries for message sets {M1,M2}, {M3,M2} and {M1,M4},
the adversary is able to compute a valid aggregate

σ∗ = σ−1
1 · σ2 · σ3 = H(M3)

x1 ·H(M4)
x2

for the set {M3,M4}. According to the definition of [6] this, however, does not
constitute a security breach.

Relation to Boneh’s et al. Aggregate Extraction Problem. Our mix-and-match
attack on the scheme of Boneh et al. [6] benefits from the fact that we can
remove some signatures from the aggregate. Interestingly, the authors in [6]
already address the question whether it is possible to extract any subset of (un-
known) signatures from the aggregate or not. This problem is called aggregate-
extraction-problem. Extracting even a single (unknown) signature from such an
aggregate is equivalent to solving the computational Diffie-Hellman problem, as
subsequently shown by Coron and Naccache [9]. Thus, in a sense, our result can
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also be seen as a generalization of the aggregate extraction problem with respect
to the BGLS aggregate signature scheme, to a more general context where we not
only consider the extraction of single signatures, but also the (re-)combination
of aggregates (as discussed above).

Defining Stronger Aggregation Unforgeability. To derive a stronger security no-
tion Eikemeier et al. adapt their notion and attack model for the sequential
case, except that the aggregation oracle now takes unordered sets of messages
and public keys. The definition of the closure for our signature case simplifies
and is then given by

Closure(QAgg, QCor) ={ ⋃
MA∈A

MA ∪ MC

∣∣∣∣ A ⊆ QAgg, MC ⊆
⋃

pk∗∈QCor

{(pk∗,M) |M ∈ {0, 1}∗}
}
.

We remark again that it is unknown whether this notion can indeed be satisfied.

Synchronized Aggregate Signatures. A line of research studies aggregate signa-
tures where signers share a synchronized clock [11,2,1], showing that efficient
constructions under well known computational assumptions are possible in this
model, even for unordered aggregation. Following this line, Eikemeier et al. [10]
discuss how to derive MAC schemes secure according to a relaxed notion sim-
ilar to the one above, and their ideas transfer to signatures as well. However,
their solution still does not cover deletion attacks. Furthermore, it is of course
preferable to avoid such synchronization assumptions.
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10. Eikemeier, O., Fischlin, M., Götzmann, J.-F., Lehmann, A., Schröder, D., Schröder,
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Abstract. Suppose we have a signature scheme for signing elements of
message space M1, but we need to sign messages from M2. The tradi-
tional approach of applying a collision resistant hash function from M1

to M2 can be inconvenient when the signature scheme is used within
more complex protocols, for example if we want to prove knowledge of
a signature. Here, we present an alternative approach in which we can
combine a signature for M1, a pairwise independent hash function with
key space M1 and message space M2, and a non-interactive zero knowl-
edge proof system to obtain a signature scheme for message space M2.
This transform also removes any dependence on state in the signature
for M1.

As a result of our transformation we obtain a new signature scheme
for signing a vector of group elements that is based only on the decisional
linear assumption (DLIN). Moreover, the public keys and signatures of
our scheme consist of group elements only, and a signature is verified by
evaluating a set of pairing-product equations, so the result is a structure-
preserving signature. In combination with the Groth-Sahai proof system,
such a signature scheme is an ideal building block for many privacy-
enhancing protocols.

1 Introduction

The Hash and Sign Approach. In most settings it is straightforward to sign
elements of any message space. We simply view the message as a binary string
and apply a collision resistant hash function to map it into the desired range
(usually Zp or Zn) at which point it can be signed using constructions based
on number theoretic primitives. However, in some applications there is also a
disadvantage to this approach. In particular, it seems to be much more difficult
to build efficient protocols for dealing with signatures on hidden messages, e.g.
for proving knowledge of a signature on a hidden message, or issuing a signature
given only the commitment to the message (as in blind signatures).

Such protocols are essential in numerous privacy-enhancing applications such
as group signatures [ACJT00], anonymous credentials [CL01, BCL04], compact
e-cash [CHL05, CHL06, CLM07], range proofs [CCS08], oblivious database ac-
cess [CGH09], and others [CHK+06, TS06, CGH06]. One of the key elements in
all of these protocols is the ability to prove that certain hidden values have been
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signed without revealing the signature nor all of the certified values. Similarly,
one might want to jointly compute a signature without revealing the key or all
the certified values.

While such protocols are extremely useful, there are relatively few known
efficient constructions. Of course one could construct these protocols based on
general commitment schemes, two party computation, and proofs of knowledge.
However, these general building blocks are extremely inefficient. A far more
practical approach is to consider particular languages for which we can generate
efficient proofs and efficient protocols using Σ-protocols [CDS94, Cra97, Dam02]
or the recent proof system of Groth and Sahai [GS08]. These protocols rely on
the structure of the underlying groups to generate efficient proofs for large classes
of statements.

This is where hash functions cease to be useful as universal domain extenders
for digital signatures. If the original message must be first hashed and then
signed, then a proof that a committed message has been signed must not only
prove knowledge of a valid signature on the resulting hash, but must also prove
that the pre-image of this value is contained in the given commitment. For most
modern hash functions it is completely unclear how to do this efficiently.

On the other hand, pairwise-independent hash functions often have very sim-
ple, algebraic constructions that make them much better suited for proofs and
multi-party computation. (For example, for a group G of prime order p, the sim-
ple function Ha,b(x) = g

axb for key (a, b) ∈ Z2
p can be shown to be a family of

pairwise independent functions from G to G.) Thus, we consider an alternative
approach, in which we can use pairwise-independent hash functions (together
with NIZK proofs) to change the message spaces allowed by a given signature
scheme.

Structure Preserving Signatures. The known efficient signature schemes
used in the above applications, which are sometimes referred to as CL-signatures
[CL02], focus on signing elements of Zp or Zn, where no hashing is necessary,
so one can directly construct efficient proof systems or multi-party protocols.
However, these schemes do have significant limitations. First, the resulting proof
systems must be either interactive or in the random oracle model, which means,
among other things, that it will be impossible to give a proof of knowledge of a
proof that a message has been signed. This is unfortunate, since such an approach
seems to be the key to allowing delegation in anonymous scenarios [CG08, CL06,
FP08]. Furthermore, in many cases we need to prove knowledge of a signature
on a public key, a ciphertext, a commitment, or another signature. This can be
difficult since these values are often group elements and thus not elements of the
original message space. An additional disadvantage is that the known efficient
constructions of CL-signatures require significantly stronger assumptions than
traditional signature schemes.

Because of these limitations, there have been a number of efforts in recent
years to look for alternate constructions. Many of these efforts have focused on
constructions in bilinear groups because of their rich mathematical structure. In
this setting public keys, ciphertexts, and signatures are usually group elements,
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and so the ideal scheme would be one whose message space consists of the ele-
ments of the bilinear group. Furthermore, if the signatures are made up of group
elements and the signature verification is done using the bilinear pairing, then
the proof system of Groth and Sahai [GS08] allows for simple, efficient proofs.
Abe et al. [AHO10] formalized these requirements (that messages, signatures,
and public keys be group elements and verification proceed via a product of
pairings) as structure-preserving signatures (SPS).1

Even before the term was coined, several early protocols made use of
adhoc structure-preserving signature schemes but relied on very strong assump-
tions [AWSM07, ASM08, GH08]. Recently there have been a series of con-
structions for structure-prserving signature schemes [CLY09, AHO10, AGHO11].
However, all known efficient schemes are based on so-called “q-type” or interac-
tive assumptions that are primarily justified based on the Generic Group model.2

Thus, we ask whether it is possible to construct structure preserving signatures
for bilinear group elements based on weaker assumptions. Ideally we would like
to be able to base privacy-protecting cryptography on the same assumptions as
conventional pairing-based cryptography.

One partial result in this direction is the scheme by Groth [Gro06], which
satisfies the standard notion of EUF-CMA security and is based on the deci-
sional linear assumption(DLIN). DLIN is one of the weakest assumptions used
in the pairing-based setting, and is also one of the assumptions underlying the
Groth-Sahai proof system, so it seems a fairly natural choice. However, while
asymptotically efficient, a signature in Groth’s scheme requires as confirmed by
the author himself [Gro07] “thousands if not millions of group elements” per
signature, so it is mainly of theoretical interest.

We focus on achieving reasonably efficient constructions based on the DLIN
assumption. Protocols based on our primitives are within an order of magnitude
or two of the efficiency of the efficient protocols mentioned above.

Our Results. First, we give a general approach for constructing a signature
scheme for a message space M1 from a signature scheme for message space M2,
a NIZK proof system, and a pairwise independent hash function with message
space M2, key space M1, and any exponential sized range.

Then, as an application, we construct the first practical structure preserving
signature scheme secure under the DLIN assumption. To do this, we use the
above transformation to transform a signature for signing elements of Zp (with
certain additional properties) into a structure preserving signature scheme.

Signature schemes for signing elements of Zp seem to be simpler to construct,
and there are a number of constructions based on various hardness assump-
tions [BCKL08, BCKL09, Fuc09]. Thus, this already generates a range of struc-
ture preserving signatures schemes. However, all of these possible underlying

1 For details on applications of SPS, we refer to [AFG+10] and to the full ver-
sion [CK11].

2 The parameter q influences the instance size of the assumption and depends on the
number of signatures an adversary is allowed to see.
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signature constructions are based on fairly strong q-type assumptions, and thus
they don’t help us to achieve our final goal.

Instead, we construct a new DLIN based signature scheme with the necessary
properties based on the scheme of Hohenberger and Waters (HW) [HW09a].
Combining this with our transformation yields our final result: a structure pre-
serving signature scheme whose security is based on the DLIN assumption, which
is among the weakest assumptions used in the bilinear group setting.3

2 Preliminaries

In this section, we first describe the building blocks that we will use in our
generic construction, and then summarize the assumptions that we will need for
our application to structure-preserving signatures.

2.1 Weak F -Unforgeable Signature Schemes

Our construction will require a signatures scheme unforgeable under a weak
chosen message attack (Weak CMA) for signing elements of some messages space
K. In a weak chosen message attack, the adversary is required to make all of his
signature queries at once, before seeing the public key or any signatures. In fact,
we will see later that this signature scheme will only be used to sign random
messages, thus security under weak chosen message attacks will suffice. In our
SPS application, we will also require that the signature scheme be F -unforgeable
for an appropriate bijection F . Intuitively, F -unforgeability guarantees that it
is hard for the adversary to produce F (m) and a signature on m for an m that
wasn’t signed. In our SPS application this is important because when the message
space is Zp , known pairing based proof systems only allow one to efficiently prove
knowledge of some function of the message (e.g. gm). We now formally define
these notions:

Definition 1 (Unforgeability under Weak Chosen Message Attacks).
A weak chosen message attack (Weak CMA) [BB04, HW09b] requires that the
adversary submits all signature queries before seeing the public key. A signature
scheme is unforgeable under weak chosen message attacks if for all A1, A2 there
exists a negligible function ν such that

Pr[(m1, . . . ,mQ, state) ← A1(1
λ); (sk , pk) ← SigKg(1λ);

σ(i) = Sign(sk ,mi) for i = 1, . . . , Q;

(σ̃, m̃) ← A2(state, pk , σ
(1), . . . , σ(Q)) :

m̃ /∈ {m1, . . . ,mQ} ∧ SigVerify(pk , m̃, σ̃) = accept] = ν(λ) .

3 Alternatively if we use a different instantiation of GS proofs, we can also prove our
scheme secure based on the SXDH assumption and an additional computational
assumption that is implied by DLIN in the asymmetric pairing setting.
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For a bijection F , the Weak CMA F -unforgeability game is the same with the
exception that instead of m̃, A1 only has to output f̃ , such that F−1(f̃ ) /∈
{m1, . . . ,mQ} ∧ SigVerify(pk , F−1(f̃ ), σ̃) = accept.

2.2 Pairwise Independent Hash Functions

The second ingredient will be a family of pairwise independent hash functions.
This will be a family of functions parameterized by a “key” k ∈ K. Intuitively,
pairwise independence means that knowing the result of a random hash function
on any one input gives no information about the result of that function on any
other point. More formally:

Definition 2. A family of hash-functions {Hk}k∈K, where Hk : M → R is
called pairwise independent if ∀x �= y ∈M and ∀a, b ∈ R, the probability

Pr[k ← K : Hk(x) = a ∧Hk(y) = b] =
1

|R|2 .

2.3 Non-Interactive Zero-Knowledge Proofs

The final tool we need is a non-interactive zero-knowledge (NIZK) proof of
knowledge system. A NIZK proof system consists of three algorithms PKSetup,
PKProve, and PKVerify. PKSetup(1k) is run by a trusted party and generates
parameters crs (sometimes refered to as a common reference string) which are
given to both the prover and the verifier. The prover runs PKProve(crs , x, w) to
prove statement x with witness w which generates a proof π. The verifier runs
PKVerify(crs , x, π) to verify the proof. Informally, zero knowledge means that
there should exist a simulator (PKSimSetup,PKSimProve) that generates sim-
ulated parameters and simulated proofs that are indistinguishable from those
produced by the prover (PKSetup,PKProve); a proof system is a proof of knowl-
edge if there exists an extractor algorithm PKExtract that can extract a valid
witness from any adversarially generated proof that is accepted by PKVerify.

We use the notation π ← NIZKPK{(f(w)) : RL(x,w)} to indicate that π is a
proof for statement x with witness w satisfying relation RL and that from π we
can extract f(w).

2.4 Assumptions

Our concrete constructions will use bilinear groups groups G,GT of prime order
p with a map e such that for any g ∈ G, and any a, b ∈ Zp, it must hold
that e(ga, gb) = e(g, g)ab, and if g is a generator for G, then e(g, g) must be a
generator for GT . We rely on the following assumptions:

Definition 3 (Decision Linear (DLIN) [BBS04]).
Given g, ga, gb, gac, gbd, Z ∈ G, for random exponents a, b, c, d ∈ Zp , decide
whether Z = gc+d or a random element in G. The Decision Linear assump-
tion holds if all p.p.t. algorithms have negligible (with respect to the bit length of
p) advantage in solving the above problem.



136 M. Chase and M. Kohlweiss

Definition 4 (External Diffie-Hellman (XDH)).
The XDH assumption requires that the DDH assumption holds for a group with
a bilinear map. By necessity this can only be the case for an asymmetric bilinear
map e : G1 × G2 → GT . Moreover, w.l.o.g., say that DDH should hold for G1,
there must not exist efficiently computable homomorphisms that map elements
of G1 to elements of G2. If homomorphisms in both directions are excluded,
and if DDH is also required to hold for G2, the combined assumption is called
Symmetric XDH (SXDH) assumption.

We also introduce a new assumption which we show is implied by DLIN:

Assumption 1 (Randomized Computational Diffie-Hellman (RCDH)).
Let G be a group of prime order p ∈ Θ(2k). For all p.p.t. adversaries A, the fol-
lowing probability is negligible in k:

Pr[g, ĝ ← G; a, b← Zp ; (R1, R2, R3) ← A(g, ĝ, ga, gb) :

∃r ∈ Zp such that R1 = gr, R2 = ĝr, R3 = gabr]

Theorem 1. In groups with a symmetric bilinear pairing RCDH is implied by
DLIN. The proof can be found in the full version [CK11].

3 A New Hash-and-Sign Approach

Ourmain result is to showhow to construct a signature scheme for signing elements
of a message space M based on an efficient NIZK proof of knowledge system, a
signature scheme for signingmessage spaceK and a family of pairwise independent
hash functions {Hk} : M → R with key space K and exponential sized range.

The basic idea is that, instead of hashing messages and signing the hash,
we certify the key k of a pairwise independent hash function and append the
output of the hash h = Hk(M) to the certificate. Each hash-function key k is
used exactly once, and by the pairwise independence of Hk the hash value h does
not help an attacker to find the hash (under the same key) of any other message.
Then, for the certification of k we make use of the signature scheme for K and
the zero-knowledge proof of knowledge protocol. This allows us to guarantee that
the adversary cannot learn any useful knowledge from the certification process
about k and thus even given many signatures, he is not able to guess a hash
value h′ for any message M ′ different from M .

3.1 A Stateless Signature Scheme for Message Space M
Let SigK = (KgK, SignK,VerifyK) be a (potentially stateful) Weak CMA F -
unforgeable signature scheme on message space K for some bijection F . (Note
that a stateless signature scheme would suffice - the construction would then
simply not use the state s.) Let {hk}K(λ) : M → R be a pairwise independent
hash function.4 Let Setup,Prove,VerifyProof be a non-interactive zero knowledge

4 We will omit the security parameter λ and simply write K when it is clear from
context.
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proof of knowledge system. We construct a signature scheme with message space
M as follows:

SigKg(1λ): Run KgK(1λ) to generate a key pair (pkK, skK). Generate the com-
mon reference string crs for a NIZKPK proof system. Output pk = (pkK, crs)
and sk = (skK, crs).

Sign(sk ,M): Parse sk = (skK, crs). Choose random key k ← K. Compute the
signature σK ← SignKs=0(skK, k) and the hash value h = Hk(M). Finally,
construct a proof of knowledge of F (k) and the corresponding signature, i.e.:

π ∈ NIZKPK{(f, σK) : {∃k ∈ K s.t. f = F (k)∧
VerifyK(pkK, k, σK) = 1 ∧ h = Hk(M)}}

Output σ = (h, π).

Note that we write SignKs=0 to indicate that in case of a stateful signature
we reset the state to the initial state after each signing operation. We will
see below that as the signature is always used inside of a NIZKPK this does
not impact security.

SigVerify(pk ,M, σ): Parse pk = (pkK, crs) and σ = (h, π). Verify the proof π
w.r.t. crs and pkK, h,M .

3.2 Unforgeability of the Signature Scheme

We now prove our main result:

Theorem 2. Given a (potentially stateful) Weak CMA F -unforgeable signature
scheme (KgK, SignKs,VerifyK), a secure NIZKPK proof system (Setup,Prove,
VerifyProof), and a pairwise independent hash function family {Hk}k∈K(λ) whose
range is exponential in λ, the resulting construction (SigKg, Sign, SigVerify) is a
stateless CMA unforgeable signature scheme.

Proof. We formally prove the security of the transformation using a sequence of
games. For simplicity, we will assume that the proof system has perfect soundness
and perfect extraction, but this can be relaxed to allow for a negligible error. Let
pi(λ) be the probability that the adversary succeeds in Game i. We let Game
1 be the EUF-CMA game for the signature scheme described above. We will
show via a series of hybrid games that the success probability in this game must
be negligible.

Game 1: EUF-CMA. This is the original EUF-CMA game for the signature
scheme described above, i.e. signing queries are answered using Sign and the
adversary succeeds if it can make SigVerify accept for a message vector that
was never signed before.
The adversary succeeds with probability p1(λ).

Game 2: Implement State Updates. This game proceeds just as the EUF-
CMA game except that Sign uses calls to SignKs instead of calls to SignKs=0.
This means that the state is no longer reset. Let p2(λ) be the probability
that the adversary succeeds in this game.
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Lemma 1. Δ1(λ) = |p2(λ) − p1(λ)| is negligible by computational witness
indistinguishability property of the proof system.

Proof. Note first that a proof system that is zero-knowledge is also witness
indistinguishable. Clearly, both the signatures generated by SignKs=0 and
by SignKs correspond to valid witnesses for the NIZKPK in the signing al-
gorithm. We first construct a sequence of hybrid games. In each hybrid an
additional call to SignKs=0 is replaced by SignKs. Given an adversary A that
has a non-negligible success difference between any of these hybrids, we can
build an algorithm B that breaks the witness indistinguishability property
of the proof system. B computes two witnesses w0 and w1 that are based on
SignKs=0 and SignKs respectively. B outputs w0 and w1 to the witness indis-
tinguishability challenge game and uses the resulting proof π to respond to
the ith signature query. Depending on the bit flipped by the challenge game,
A will interact with one of the two hybrids. If A succeeds in producing a
forgery, B outputs 1, otherwise 0. It follows that since A can make at most
a polynomial number of queries, Δ1(λ) is negligible ��

Game 3: Reusing k. This game will proceed just asGame 2 except that once
the adversary outputs his forgery, M̃, σ̃ = (h̃, π̃), we will extracts f̃ from π̃,
and compare it against the values used to answer the adversary’s queries.
The adversary succeeds in this game if and only if the signature verifies,
the message is new, and the value f̃ corresponds to F (k) for some k used
to answer a previous query. Let p3(λ) be the probability that the adversary
succeeds in this game.

Lemma 2. Δ2(λ) = |p3(λ) − p2(λ)| is negligible by the F-unforgeability of
the signature scheme.

Proof. The two games differ only in the event Bad that A outputs a forgery
from which a value f̃ can be extracted that does not correspond to previous
signature queries. We give a reduction to show that an attacker for which
this event has non-negligible probability can be used to construct an algo-
rithm B that breaks the security of the underlying Weak CMA F -unforgeable
signature scheme.
Let Q correspond to the maximum number of signing queries made by A. B
publishes Q random values k1 . . . kQ ∈ K to the Weak F -unforgeability CMA
challenger and receives Q signatures in return. It sets up the proof system
by providing extraction parameters, and uses these signatures to answer the
signing queries of A. B extracts σ̃K and f̃ /∈ {F (k1), . . . , F (kQ)} from π̃ and
outputs it as a forgery. By perfect extraction, we are guaranteed that σ̃K is
a valid signature on F−1(f), so if A is successful in producing event Bad,
then f̃ , σ̃K exactly matches the definition of a valid Weak CMA F -forgery.
Consequently we conclude that Δ2(λ) ≤ Pr[Bad]. ��

Game 4: Check h. This game will proceed as in Game 2 except that once
the adversary outputs his forgery,M,σ = (h, π), we let K = (k1, . . . , kQ) be
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the set of hash keys used to answer the adversary’s queries. Then we verify
whether h = Hki(M) for any i ∈ 1 . . .Q. The adversary succeeds if and
only if the signature verifies, the message is new, and this check succeeds
(i.e. there is such a value). Let p4(λ) be the probability that the adversary
succeeds in this game.

Lemma 3. p3(λ) ≤ p4(λ) +Δ3(λ) for negligible Δ3(λ) by the soundness of
the proof system.

Proof. If h is computed correctly with the hash key k corresponding to the
value f̃ = F (k) extracted from the proof, Game 4 will be successful in all
cases in which Game 3 is successful. Thus, this follows directly from the
perfect extraction of the proof system. ��

Game 5: Simulate Proofs. In this game, when the public parameters are gen-
erated, the challenger will run SimSetup to generate parameters crs , and
trapdoor sim . When responding to signature queries, the challenger chooses
random k ← K and forms h as in the real signing protocol, but generates
the proof using SimProve. As above, we judge the adversary’s success by
verifying the proof and checking the h component of the signature against
the set of hash keys {k1, . . . , kQ} used in previous queries. Let p5(λ) be the
probability that the adversary succeeds in this game.

Lemma 4. Δ4(λ) = |p5(λ)−p4(λ)| is negligible by the zero-knowledge prop-
erty of the proof system.

Proof. An attacker with non-negligible Δ4(λ) can be used to break the zero-
knowledge property of the proof system. We use the standard definition
of multi-theorem zero-knowledge. Given an attacker A with non-negligible
Δ4(λ), we construct an algorithm B that can distinguish whether, when
interacting with a multi-theorem zero-knowledge challenge game, it is given
real proofs or simulated proofs. B sets up the public key using the parameters
received from the challenge game; to generate each signature, it chooses
random k ← K, generates h, σK as in the signing algorithm, and generate
the zero-knowledge proof using an oracle query. If A succeeds in producing h
which does not correspond to any of the hash keys k1, . . . , kQ together with a
proof π that verifies, then B outputs 1. If |p5(λ)−p4(λ)| is non-negligible, then
B will succeed in the zero knowledge game with non-negligible advantage.

��
Lemma 5. p5(λ) is negligible when h is computed by a pairwise-independent
hash function whose range R is exponential in λ.

Proof. Suppose we know h and M for some unknown hash key k. Then for
any other h′ ∈ R, M ′ ∈ M, the probability (taken over possible values of
k ∈ K) that h′ = Hk(M

′) is 1/|R| by pairwise independence. Thus, for any
key k used by the signer, the probability of A producing a correct pair h′,
M ′ for that tuple is at most 1/|R|. Taking a union bound over all tuples
used gives q/|R| where q is the total number of queries made by A. This will
be negligible since q is polynomial and |R| is exponential in λ.
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By the triangle inequality p1(λ) ≤ Δ1(λ) + Δ2(λ) + Δ3(λ) + Δ4(λ) + p5(k) is
negligible as desired. ��

4 Structure-Preserving Signatures from DLIN

Here we show that we can instantiate the building blocks described in the previ-
ous section based on DLIN, to construct a structure-preserving signature scheme.
(In fact, we will describe a structure preserving scheme which allows us to sign
vectors of  group elements at once.)

First, we will review the Groth-Sahai NIZK proof system [GS08], which gives
efficient proofs that are compatible with many pairing based schemes. Then we
briefly present the pairwise-independent hash function we use, and how it can
be used with Groth-Sahai. Finally, we will construct a new signature scheme
for elements in Z
+1

p which is both secure under DLIN and compatible with
the Groth-Sahai proof system. Putting all of these together using the generic
construction in Section 3 gives a secure signature scheme. Finally, since the hash
function produces elements in the bilinear group G, and Groth-Sahai proofs are
composed of elements in G and can be verified with pairing product equations,
the result is a structure preserving signature scheme.

4.1 NIZK Proofs Based on DLIN: The Groth-Sahai Proof System

Groth and Sahai [GS08] (in an extension of the results of [GOS06b] and [GOS06a])
showed how to construct non-interactive proof systems under the sub-group hid-
ing, decisional linear, and external Diffie-Hellman assumptions that allow one to
directly prove the pairing product equations common in pairing-based cryptog-
raphy.

Groth-Sahai Proofs. The Groth-Sahai proof system allows to generate non-
interactive zero-knowledge proofs of knowledge of values satisfying pairing prod-
uct equations. We denote a proof π that proves knowledge of secret values
x1, . . . , xN that fulfill a pairing product equation with constants {ai}i=1..N ∈
G, t ∈ GT and {γi,j}i=1..N,j=1..N by

π ← NIZKPK{(x1, . . . , xN ) :

N∏
i=1

e(ai, xi)

N∏
i=1

N∏
j=1

e(xi, xj)
γi,j = t} .

In a nutshell, Groth-Sahai proofs work by committing to all secret elements us-
ing either Linear [BBS04] or ElGamal [EG85] commitments (depending on the
assumption used). The homomorphic properties of these commitments allow one
to evaluate the pairing product equation in the committed domain. In addition,
a Groth-Sahai proof contains a constant number of group elements that allow a
verifier to check that the result of this computation corresponds to t. The ver-
ification algorithm only consists of pairings between the group elements of the
commitments and these additional proof elements. Linear and ElGamal com-
mitments are extractable. Given a setup with an extraction trapdoor, we can
extract the committed value xi from a proof, but not the opening openi. This
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means that given a Groth-Sahai proof for a pairing product equation we can
extract all the elements of G that make up the witness.

4.2 Pairwise Independent Hash Functions

We will need a pairwise independent family of hash-functions {Hk}, where Hk :
G
 → G with M = G
 and k ∈ Z
+1

p . The function we propose is computed as

Hk(M1, . . . ,M
) = g
k0

∏
i=1..


Mki

i ,

where k = (k0, . . . , k
). We show that this function family is indeed pairwise
independent:

Theorem 3. The above function family is pairwise independent.

Proof. Let us express the probability

Pr[k ← K : Hk(x) = a ∧Hk(y) = b] =

|{k0, . . . , k
 | gk0
∏

i=1..
 x
ki

i = a ∧ gk0
∏

i=1..
 y
ki

i = b}
|Zp |
+1

.

We have to show that the numerator equals |Zp |
−1. This can be seen by looking

at gk0
∏

i=1..
 x
ki

i = a and gk0
∏

i=1..
 y
ki

i = b as independent linear equations
over the variables k0, . . . , k
 (independence follows from x �= y). As there are
 + 1 variables and 2 equations, the solution set has  − 1 dimensions and thus
has size |Zp |
−1.

Finally, we observe that, given gk0 , . . . , gk� , we can easily use a pairing prod-
uct equation to verify that h is correctly computed: for key k = k0, . . . , k
 and
message M = M1, . . . ,M
, it will be the case that h = Hk(M) iff e(h, g) =

e(g, gk0)
∏


i=1 e(Mi, g
ki). Thus, we can use the Groth-Sahai proof system to

prove knowledge of gk0 , . . . , gk1 and M1, . . . ,Mk such that h is correct.

4.3 A Signature Scheme for Elements of Zp

We will base our exponent-signature scheme Sign·exp on the Hohenberger and
Waters [HW09a] stateful signature scheme which was proved secure under the
CDH assumption. In that scheme, each signature is indexed by a unique index
s that is initialized to 0, and increased before each signing. A signature with
message m, secret key a, public bases u, v, d, w, z, and randomness t, r consists
of two group elements σ1 = (umvrd)a(w�lg(s)�zsh)t and σ2 = gt, and the two
exponents r, s ∈ Zp . We adapt their scheme to obtain a stateful signature that is
F-unforgeable under weak chosen message attacks (Weak CMA F-unforgeable)
under the Randomized Computational Diffie-Hellman (RCDH) assumption, a
new assumption which is implied by the DLIN assumption. We also show how to
reuse the state to sign multiple message blocks. Interestingly, when we apply the
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transformation presented in Section 3, the result will be a fully secure, stateless
signature scheme for signing group elements.

Simplifying the Hohenberger and Waters scheme. Recall that in the HW
scheme, signatures include elements σ1 = (umvrd)a(w�lg(s)�zsh)t and σ2 = gt,
and the two exponents r, s ∈ Zp . When building a zero-knowledge proof of
knowledge of signature possession, we must prove that the signature is well
formed, which in this case requires proving the correspondence between �lg(s)�
and s. This typically involves two steps: 1) proving that a commitment contains
the value 2�lg(s)�, and 2) proving that this value is bigger than s. The range proof
technique by [Bou00] for interactively proving the latter relation for large s uses
hidden order groups and is based on the Strong RSA assumption. To obtain a
scheme that is based purely on CDH, one has to use alternative range proof
techniques, e.g. [BCDvdG87]. While such proofs can be efficiently computed
([Bou00] estimates a proof size of 27.5 kB), we are primarily interested in non-
interactive proofs based on the Groth-Sahai proof system.

As pointed out in [HW09a], instead of signing lg(s) as part of σ1 one can
also sign s using a signature scheme that is already CMA secure under the
CDH assumption, e.g. by employing the Waters signature [Wat05]. While this
approach may be slightly circular, it gives us a performance advantage, as the
expected number of signatures is usually much smaller than the size of the
message space Zp .

5 Moreover, as we will see, when many messages are signed
with related state (e.g. when we sign multiple message blocks at once), we need
only sign a single state value, thus resulting in greater advantage.

Finally, we note that for our transformation we only require a weak signature
scheme; thus we can simplify the resulting signature scheme further by replacing
the Chameleon hash umvr with um itself.6

Our Construction. Let G be a symmetric bilinear group with pairing operation
e : G × G → GT . Let g, ĝ be random generators for G. The resulting signature
scheme is as follows:

SigKgexp(1
λ) runs the Waters key generation to generate (pkw, skw), chooses

random a← Zp and u, d, z, h← G, and outputs secret key sk = (a, skw) and
a public key pk = (g, ĝ, ga, u, d, z, h, pkw). (The initial value of s is 0.)

Signsexp(sk ,m) is a stateful signature algorithm which first increases the state s.
To sign a message m, it computes σ1 = (umd)a(zsh)t, σ2 = gt, and a Waters
signature σ3 on s. The algorithm outputs σ = (σ1, σ2, σ3, s).

5 The Waters signature operates bit-by-bit on it’s message, and directly proving
knowledge of a valid Waters signature has cost proportional to the bit-length of
the message. Thus, proving correctness of our resulting signature will thus have cost
proportional to the bit-length of the maximum possible value of s rather than the
bit length of the message.

6 We note that, as part of their result, Hohenberger and Waters [HW09b] give a generic
transformation from Weak CMA security to CMA security based on Chameleon
hashes. Weak CMA F-unforgeable signatures are, however, sufficient to obtain a
CMA secure signature scheme for signing group elements via our transform.
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SigVerifyexp(pk ,m, σ) parses σ as (σ1, σ2, σ3, i) and checks that signature σ3 on i

is valid. Then it uses the bilinear map to check e(σ1, g) = e(u
md, ga)e(σ2, z

ih).

Note: We write Signsexp(sk ,m) to indicate that we run the signing algorithm on
state s.

Security of Our Construction. We show that this signature scheme is un-
forgeable under weak chosen message attacks, and moreover, that it is F -
unforgeable under such attacks for a simple function F that maps exponents
to group elements. (Recall that F -unforgeability means that it is impossible to
produce F (m) and a forged signature on m. This allows us to prove a contra-
diction even when we can extract only F (m) and not m as is the case when we
use the Groth-Sahai proof system.)

Theorem 4. Our (SigKgexp , Sign
s
exp , SigVerifyexp) signature scheme is unforge-

able under weak chosen message attacks under the CDH assumption. The proof
is omitted. It follows very closely the proof of F -unforgeability presented below.

Theorem 5. Let F (m) = (gm, ĝm). Our (SigKgexp , Sign
s
exp , SigVerifyexp) signa-

ture scheme is Weak CMA F -unforgeable under the RCDH assumption. Since
RCDH is implied by DLIN, this means the signature is secure under DLIN.

Proof. A successful adversary A outputs a forgery σ̃ = (σ̃1, σ̃2, σ̃3, ĩ). If the
signature on index ĩ was never created, we break the signature scheme that is
used to sign the index s. Thus we concentrate on the case where the adversary
reuses one of the s values from the signing queries as ĩ . The first step in a
reduction to RCDH will be to guess this ĩ . (Here we have at most a polynomial
loss in the tightness of the reduction.)

Setup: As we consider a weakly secure signature scheme, the game starts with
the adversary outputting polynomially many messagesm1, . . . ,mQ,Q ≤ poly(λ).
The reduction chooses a random index i∗, 1 ≤ i∗ ≤ Q. Given (g, ga, gb) as
specified in the RCDH assumption, the parameters are set up as follows. Choose
random yd ∈ Zp and set u = gb, d = g−bmi∗ gyd , then choose random xz , xh ∈ Zp ,
and set z = gbgxz , h = g−bi∗gxh . The reduction outputs pk = (g, ga, u, d, z, h).

Sign: The adversary is now given signatures on messages m1, . . . ,mQ, Q ≤
poly(λ), that are computed as follows:

For s = i∗, choose random t and form σ1 = (ga)yd(zsh)t, σ2 = gt. Note that this
results in a correctly distributed signature as

(ga)yd(zsh)t =

((gab)mi∗−mi∗ )(ga)yd(zsh)t =

((gb)mi∗ (g−bmi∗ gyd))a(zsh)t =(umi∗d)a(zsh)t .

For s �= i∗ , choose random t′ and implicitly let t = t′−a(ms−mi∗)/(s−i∗). Form
σ1 = (ga)ydT xzs+xh(gb)t

′(s−i∗) and σ2 = T for T = gt
′
/(ga)(ms−mi∗ )/(s−i∗).
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Then T = gt
′−a(ms−mi∗)/(s−i∗) = gt and

(ga)ydT xzs+xh(gb)t
′(s−i∗) =

(gyd)a(gxzsgxh)t(gb)t
′(s−i∗) =

(umsd)a(gxzsgxh)t(gb)t
′(s−i∗)(g−ab)(ms−mi∗) =

(umsd)a(gxzsgxh)t(gb(s−i∗))t =

(umsd)a(g(b+xz)sg−bi∗+xh)t =(umsd)a(zsh)t .

Response: Eventually the adversary responds with a forgery σ̃ = (σ̃1, σ̃2, σ̃3, ĩ),
gm̃ , ĝm̃ , such that m̃ /∈ {m1, . . . ,mQ}. If ĩ �= i∗ the reduction aborts. Otherwise

it outputs gm̃/gmi∗ , ĝm̃/ĝmi∗ and σ̃1/g
ayd σ̃

(xz ĩ−xh)
2 as a RCDH triple.

Signing Multiple Message Blocks. For our transformation, we actually need
to be able to sign vector of exponents, i.e. we need our signature scheme Signexp
to have message space Zn

p for n > 1. There is also an efficiency advantage to
batching several messages together: We note that the Waters signature on the
index s needs to be done only once. The indices of the individual signatures will
be set to n · (s− 1) + 1, . . . , n · (s− 1) + n.

Our multiple message block signature is as follows:

SigKgexp(1
λ) is unchanged.

Signsn·exp(sk ,m1, . . . ,mn). The signature algorithm increases the state s. To sign

message m, it then computes σ1,j = (umjd)a(zn(s−1)+jh)tj , and σ2,j = gtj ,
for j = 1..n and tj ← Zp . We also add a Waters signature σ3 on s. The
algorithm outputs σ = ({σ1,j , σ2,j}j=1..n, σ3, s).

SigVerifyn·exp(pk ,m1, . . . ,mn, σ). Parse σ as ({σ1,j , σ2,j}j=1..n, σ3, i). The verifi-
cation algorithm first checks that signature σ3 on i is valid. It uses the bilinear
map to verify e(σ1,j , g) = e(u

mjd, ga)e(σ2,j , z
n(i−1)+jh), for j = 1..n.

Unforgeability and F -unforgeability under weak CMA attacks can be shown via
a straightforward extension of the proof for the single message scheme. Note
that the reduction now has to guess values i∗ and j∗, where 1 ≤ i∗ ≤ Q and
1 ≤ j∗ ≤ n respectively. The RCDH challenge is embedded into message block
j∗ of signature query i∗.

Efficient Zero-Knowledge Proof of Knowledge. Except for the value s, the
signature σ = ({σ1,j , σ2,j}j=1..n, σ3, s) consists only of group elements. When
employing the Groth-Sahai proof system, the Waters signature σ3 is proved in
a bit-by-bit fashion that allows us to extract s (see [FP09] for further details).
It is thus possible to give proofs of knowledge for the above signature scheme
using the pairing-product equation proofs in [GS08] in a straightforward way.
If we combine this with the pairing-product equations described in Section 4.2,
we can generate an efficient GS proof for the relation needed for our generic
construction.
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Table 1. Estimated size in group elements of a signature and a proof for different
versions of our transform: 	 is the number of group elements signed and N = 2x is an
upper bound on the number of signatures generated per key pair

Instantiation stateless signature

DLIN 100 + 24	 + 9x
q-BB-HSDH + q-TDH + DLIN 79 + 7	
RCDH + SXDH 77 + 18	 + 6x
q-BB-HSDH + q-TDH + SXDH 61 + 6	

4.4 Performance Analysis

For the performance analysis we instantiate our signatures and proofs with two
signature schemes – the scheme based on RCDH described in Section 4.3 and one
based on q-BB-HSDH and q-TDH described in [BCKL09].7 We instantiate the
Groth-Sahai proofs under DLIN and SXDH. Here  is the number of signatures,
and 2x is the maximum number of signatures issued. Table 1 gives estimates for
the size of a signature and a proof of signature possession (expressed in number of
group elements). More details concerning the performance analysis can be found
in the full version [CK11]. We note that while our signatures and proofs are still
somewhat expensive, they are still within the realm of feasibility (and not much
more expensive than the signature scheme used in [BCKL09] for example).

5 Conclusion and Open Problems

We construct a reasonably efficient signature scheme for signing group elements
based on DLIN, one of the weakest decisional assumptions in the pairing setting
(and the weakest one that was used to construct Groth-Sahai proofs). We show
that such a signature scheme is an important building block for numerous cryp-
tographic protocols. As our construction does not make use of “q-type” assump-
tions, it can be used for instantiations of protocols under weaker assumptions
for which as of now only instantiations in the random oracle or generic group
model were known.

Thus, we see a tradeoff between efficiency and security, and we argue that
in many cases sacrificing an order of magnitude in efficiency for a significantly
weaker (and non q-type) and more standard assumption may be a reasonable
exchange. Furthermore, this result can be seen as evidence that schemes based
on relatively weak assumptions can be practical, and as support for the argument
that, while they are very important developments, we need not necessarily be
satisfied with schemes based on the generic group model, but rather that we
should continue looking for schemes which are both efficient and based on weak
assumptions.

7 For a discussion of other possible instantiations for the exponent signature scheme,
see the full version [CK11].
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Abstract. We construct an NM-CCA1 encryption scheme from any
CCA1 encryption scheme that is also plaintext aware and weakly simu-
latable. We believe this is the first construction of a NM-CCA1 scheme
that follows strictly from encryption schemes with seemingly weaker or
incomparable security definitions to NM-CCA1.

Previously, the statistical PA1 notion of plaintext awareness was only
known to imply CCA1. Our result is therefore novel because unlike the
case of CPA and CCA2, it is unknown whether a CCA1 scheme can be
transformed into an NM-CCA1 scheme. Additionally, we show both the
Damg̊ard Elgamal Scheme (DEG) [Dam91] and the Cramer-Shoup Lite
Scheme (CS-Lite) [CS03] are weakly simulatable under the DDH assump-
tion. Since both are known to be statistical PA1 under the Diffie-Hellman
Knowledge (DHK) assumption, they instantiate our scheme securely.

Next, in a partial response to a question posed by Matsuda and Mat-
suura [MM11], we define an extended version of theNM-CCA1, cNM-CCA1,
in which the security definition is modified so that the adversary is per-
muted to ask a c ≥ 1 number of parallel queries after receiving the chal-
lenge ciphertext.We extend our construction to yield a cNM-CCA1 scheme
for any constant c. All of our constructions are black-box.

Keywords: Public-Key Encryption, Plaintext-Awareness, Non-Malleability.

1 Introduction

The standard security definition of an encryption scheme does not prevent an
adversary who observes an encryption of the message m from producing an en-
cryption of the message f(m) for some function f (even though the value m re-
mains private). The seminal work of Dolev, Dwork, and Naor [DDN03] addressed
this security issue by introducing the area of non-malleable cryptographic prim-
itives such as encryption schemes, commitment schemes, and zero-knowledge.
Later, Pass, shelat and Vaikuntanathan [PSV06] strengthened the DDN defini-
tion and presented a construction from CPA to non-malleable CPA using non-
blackbox use of the original encryption scheme. There have been many follow-up
works that propose more efficient constructions of non-malleable primitives. A
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notable achievement in this line of research has been the construction of non-
malleable primitives using only black-box access to the standard version of the
same primitive [CDSMW08, PW09, Wee10]. In particular, [CDSMW08] show
how non-malleable CPA encryption can be constructed from standard versions
of encryption in a black-box manner.

However, the question of whether an NM-CCA1 encryption scheme can be con-
structed from a CCA1 encryption scheme has remained open. This blemish on
our understanding of the theory of encryption has remained despite multiple ad-
vances including many novel techniques for constructing encryption schemes. In
this work, we present a black-box construction of an NM-CCA1 encryption scheme
for a subset of CCA1 encryption schemes, namely those which are also plaintext
aware under multiple keys and weakly simulatable (we will formally define these
concepts later). Intuitively, an encryption scheme is plaintext aware (called sPA1
in [BP04]) if the only way that a p.p.t. adversary can produce a valid cipher-
text is to apply the (randomized) encryption algorithm to the public key and a
message [BP04]. Notice that this definition does not imply non-malleability since
there is no guarantee of what an adversary can do when given a valid ciphertext.
In fact, both encryption schemes from [BP04] are multiplicatively homomorphic.
The weakly simulatable property in our construction is required for technical rea-
sons and roughly corresponds to the ability to to sample ciphertexts and pseudo-
ciphertexts with random coins used to generate them.

Note that there exist encryption schemes that satisfy security notions that “sit
between” standard notions. One such example from Cramer et al. [CHH+07]
consists of a black-box construction of a q-bounded CCA2 encryption scheme
which is not NM-CPA, but which satisfies a stronger security notion than CPA.
In particular, as a generalization of NM-CPA, Matsuda and Matsuura [MM11]
put forth the challenge of constructing encryption schemes that can handle more
than one parallel query after revealing the challenge ciphertext. They write:

Since any (unbounded) CCA secure PKE construction from IND-CPA
secure ones must first be secure against adversaries who make two or
more parallel decryption queries, we believe that overcoming this barrier
of two parallel queries is worth tackling.

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, that is defined
identically to NM-CCA1 except that the adversary can make c adaptive parallel
decryption queries after seeing the challenge ciphertext, where each parallel de-
cryption query can request that a polynomial number of ciphertexts be decrypted
(excluding the challenge ciphertext). (Note that NM-CCA1 is cNM-CCA1 where
the parameter c is set to be one.) Then we show how to construct a cNM-CCA1
secure encryption scheme for an arbitrary constant c. Unfortunately, the size of
the ciphertext in a cNM-CCA1 encryption scheme is polynomially bigger than
the size of the ciphertext in a (c-1)NM-CCA1 encryption scheme and thus the
parameter c must be a constant to obtain an efficient construction.

About Knowledge Extraction Assumptions. Our constructions rely on encryption
schemes that are plaintext aware (sPA1
) in the multi-key setup and are weakly
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simulatable. In Appendix A.1, we show that such encryption schemes exist un-
der a suitable extension of the Diffie-Hellman Knowledge (DHK) assumption
that was originally proposed by Damg̊ard, and modified to permit interactive
extractors by Bellare and Palacio [BP04]. Dent [Den06b] has since shown that it
is secure in the generic group model. We understand that there are some critics
of the DHK assumption, due to its strength and the fact that it is not efficiently
falsifiable. However, it is not our goal to argue whether or not it is an assumption
which should be used in deployable systems. Instead we note it is seemingly a
weaker assumption than the Random Oracle model (which is known to be in-
correct in full generality, cf. [CGH04]), under which it is relatively easy to show
that simple IND-CPA secure encryption schemes imply CCA2 secure ones. In
contradistinction, there are no security definitions that seem weaker or incom-
parable to NM-CCA1 that are known to imply schemes which are NM-CCA1.
Similarly, the gap between NM-CCA1 and CCA2 is poorly understood.

Techniques. Similar to the nested encryption construction in [MS09], both our
NM-CCA1 and cNM-CCA1 constructions are based on the notion of double en-
cryption. We first encrypt the message under one key (we refer to this ciphertext
as the “inner layer”), and encrypt the resulting inner layer ciphertext repetitively
under an additional k keys, where k is the security parameter (we refer to these k
keys as the “outer keys”, and the ciphertexts they produce as the “outer layer”).
During decryption, all the outer layer ciphertexts are decrypted, and it is veri-
fied they all encode the same inner layer value. This is combined with the well
studied notion of non-duplicatable set selection (in this case of public-keys used
to encrypt the outer-layer encryptions), such that anyone attempting to maul
a ciphertext has to perform their own independent outer layer encryption. In-
tuitively, anyone that can encrypt to a consistent outer layer encryption under
a new key must have knowledge of the underlying inner-layer, and thus a valid
ciphertext is not mauled.

On a more technical level, there are several challenges that need to be
overcome. The traditional technical difficulty in proving weaker public-key en-
cryption security notions imply stronger security notions is in showing how to
simulate the decryption oracle. When beginning with a sPA1-secure encryption
primitive, we can easily simulate the initial decryption oracle in the NM-CCA1
security definition, which is present before the challenge ciphertext is presented,
by using the extractor guaranteed by the sPA1 security definition. However,
we cannot simply use the extractor to simulate the decryption oracle after re-
ceiving the challenge ciphertext in the NM-CCA1 security experiment. This is
because the plaintext aware security does not guarantee that an extractor could
decrypt ciphertexts where the underlying randomness is not known to the party
that created the ciphertext. Generally, a party that mauls a ciphertext as in the
case of non-malleability will not have access to this underlying randomness. To
overcome this problem, we make use of a weak notion of simulatability.

To summarize, our contribution is twofold. Firstly, our work shows the first
black-box construction of a non-malleable CCA1 encryption scheme in the stan-
dard model that is not CCA2 secure. Secondly, for the first time, we show how
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to construct an encryption scheme that is not CCA2 secure but is secure against
an adversary that can ask a bounded number of polynomial-parallel queries after
receiving the challenge ciphertext, satisfying a natural extension to the notion of
NM-CCA1 security. This might be of independent interest since the development
of constructions that satisfy stronger notions than non-malleable CCA1 security
but do not satisfy CCA2 security can provide insight in trying to understand the
technical difficulties in understanding the larger relationship between CCA1 and
CCA2.

2 Notations and Definitions

We use [n] to denote the set {1, 2, · · · , n}. We say a function μ : N → R is
negligible if for all polynomials p and all sufficiently large n : μ(n) ≤ 1/p(n).
Given two families of distributions D0 = {D0,i}i∈N and D1 = {D1,i}i∈N, we
denote that they are computationally indistinguishable by writing D0 ≈c D1.
For any vector v, we use |v| to denote the number of elements in v.

Although non-malleability can be defined for any CPA, CCA1 or CCA2 se-
cure encryption scheme (we use the standard definition for CPA/CCA1/CCA2
security),we only use and hence only define non-malleability for CCA1 secure
encryption schemes. We use a definition similar to the non-malleability defini-
tion for CPA secure encryption schemes in [PSV06].

Definition 1 (NM-CCA1). We say that E = (nmg, nme, nmd) is non-malleable
CCA1 secure if for all p.p.t. adversaries and p.p.t. distinguishers A and D respec-
tively and for all polynomials p(·), we have that {NME0(E,A,D, k, p(k))}k ≈c

{NME1(E,A,D, k, p(k))}k where experiment NME is defined as follows:

NMEb(E,A,D, k, p(k))
(1) (npk,nsk) ← nmg(1k)
(2) (m0, m1, S1) ← Anmdnsk

1 (npk) s.t. |m0| = |m1|
(3) y ← nme(npk,mb)
(4) (c, S2) ← A2(y, S1) where |c| = p(k)
(5) Output D(d, S2) where di ← nmd(nsk, ci) if ci = y and

di ← ⊥ if ci = y

2.1 Plaintext Awareness for Multiple Key Setup

We present a slight generalization to the definition of sPA1 by [BP04] in which
multiple keys are permitted to be constructed and given to the ciphertext creator,
and the extractor must be able to decrypt relative to all of the keys. Notice that
the sPA1 definition is a special case of sPA1
 where (k) = 1.
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sPA1�(E,C,C∗, k)
(1) LetR[C],R[C∗] be randomly chosen bit strings forC andC∗.
(2) ((pk i, sk i))i∈[�(k)] ← gen(1k)

(3) st ← (
(pk i)i∈[�(k)], R[C]

)
(4) CC∗(st,.) ((pk i)i∈[�(k)]

)
(5) Let Q = {(qi = (pkji , ci),mi)} be the set of queries C made

to C∗ until it halted and C∗’s responses to them. Return
∧|Q|

i=1(mi = decskji
(ci)).

In the above experiment, C is a ciphertext creator, and C∗ is a stateful p.p.t.
algorithm called the extractor that takes as input the state information st and a
ciphertext given by the ciphertext creator C, and will return the decryption of
that ciphertext and the updated state st. The state information st is initially set
to the public key pk and the adversary C’s random coins. It gets updated by C∗

as C∗ answers each query that the adversary C submits. The above experiment
returns 1 if all the extractor’s answers to queries are the true decryption of those
queries under sk . Otherwise, the experiment returns 0.

Definition 2 (sPA1
). Let  be a polynomial. Let E = (gen, enc, dec) be an
asymmetric encryption scheme. Let the ciphertext-creator adversary C and the
extractor C∗ be p.p.t. algorithms. For k ∈ N, the sPA1-advantage of C relative
to C∗ is defined as:

AdvsPA1�(E,C,C∗, k) = Pr[sPA1
(E,C,C
∗, k) = 0]

The extractor C∗ is a successful sPA1
-extractor for the ciphertext-creator ad-
versary C if for all k ∈ N, the function AdvsPA1�(E,C,C∗, k) is negligible. The
encryption scheme E is called sPA1
 multi-key secure if for any p.p.t. ciphertext
creator there exists a successful sPA1
-extractor.

We provide further discussion on the relationship between sPA1
 security and
sPA1 security in the full version of this paper. In Appendix A.1, we show that
both the Damg̊ard Elgamal encryption scheme (DEG) and the lite version of
Cramer-Shoup encryption scheme (CS-lite) are sPA1
 secure under a suitable
generalization of the DHK1 assumption.

2.2 Weakly Simulatable Encryption Scheme

Dent in [Den06a] introduced the notion of simulatability for an encryption scheme.
Intuitively, an encryption scheme is simulatable if no attacker can distinguish valid
ciphertexts from some family of pseudo-ciphertexts (which will include both valid
encryptions and invalid encryptions). This family of pseudo-ciphertexts must be
efficiently and publicly computable (i.e. without access to any private knowledge,
say related to the secret-key), and somewhat invertible (given a pseudo-ciphertext,
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one can find a random looking string that generates it). InDent’s definition, the at-
tacker also has access to a decryption oracle to help it distinguish between pseudo-
ciphertexts and legitimate ones, but it cannot query the decryption oracle on the
challenges that it is trying to distinguish.

For our purposes, consider a restricted notion of simulatability where the
attacker is not given access to the decryption oracle. If an encryption scheme
satisfies this weaker notion of simulatability, we say it is weakly simulatable.

Definition 3. (Weakly Simulatable Encryption Scheme) An asymmetric
encryption scheme (gen, enc, dec) is weakly simulatable if there exist two poly-
time algorithms (f, f−1), where f is deterministic and f−1 is probabilistic, such
that for all k ∈ N there exists the polynomial function p(.) where l = p(k), we
have the following correctness properties:

1. f on inputs of public key pk (in the range of gen) and a random string
r ∈ {0, 1}l, returns elements in C, where C is the set of all possible “cipher
text”-strings that can be submitted to the decryption oracle (notice that C
might not be a valid ciphertext).

2. f−1 on input of a public key pk (in the range of gen) and an element C ∈ C,
outputs elements of {0, 1}l.

3. f(pk , f−1(pk , C)) = C for all C ∈ C.
And the following security properties. No polynomial time attacker A has prob-
ability better than 1/2+μ(k) of winning in the following experiment, where μ is
some negligible function.

1. The challenger generates a random key pair (pk , sk) ← gen(1k), and chooses
randomly b ∈ {0, 1}.

2. The attacker A executes on the input 1k and the public key pk outputs m ∈
M. The challenger sends A the pair (f−1(pk , c = encpk (m)), c) if b = 0, or
(r, f(pk , r)) for some randomly generated element r ∈ {0, 1}l if b = 1. The
attacker A terminates by outputting a guess b′ for b.
A wins if b = b′ and its advantage is defined in the usual way.

In a scheme where you cannot distinguish legitimate ciphertexts from pseudo-
ciphertexts that need not encode actual messages, CPA security is immediate.
The converse need not hold, as ciphertexts might be hard to generate, and invalid
ciphertexts might be easily distinguishable from illegitimate ones (for example,
they might contain a zero-knowledge proof of validity). Notice that the weak
simulatability notion is not equivalent to the Invertible Sampling notion intro-
duced in [DN00] since the plaintext is not needed to compute the random looking
string that generates the ciphertext.

Theorem 1. If E is a weakly simulatable encryption scheme, then E is CPA
secure.

Proof. See the full version.

Following the ideas of Dent, in the full version, we show how DEG and CS-lite
schemes can both be weakly simulatable when instantiated in proper groups.
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2.3 A Note on PA1+

Dent [Den06a] also investigated an augmented notion of plaintext awareness
in which he provides the ciphertext creator access to an oracle that produces
random bits, PA1+. The extractor receives the answers to any queries generated
by the creator, but only at the time these queries are issued. The point of this
oracle in the context of a plaintext awareness definition is to model the fact
that the extractor might not receive all of the random coins used by the creator
at the beginning of the experiment. Much in the spirit of “adaptive soundness”
and “adaptive zero-knowledge”, this oracle requires the extractor to work even
when it receives the random coins at the same time as the ciphertext creator.
Therefore, the extractor potentially needs to be able to extract some ciphertexts
independent of future randomness. This modification has implications when the
notion of plaintext awareness is computational—as in the case of Dent’s work.
However, in our case, we require statistical plaintext awareness, and as we argue
below, allowing access to such an oracle does not affect the sPA1
 security.

We claim that any encryption scheme that is sPA1
 secure is also sPA1+



secure.

Definition 4. Define the sPA1+

 experiment in a similar way to the sPA1


experiment. The only difference between the two is that during the sPA1+

 ex-

periment, the ciphertext creator has access to a random oracle O that takes no
input, but returns independent uniform random strings upon each access. Any
time the creator access the oracle, the oracle’s response is forwarded to both the
creator and extractor.

If an encryption scheme would be deemed sPA1
 secure, when we replace the
sPA1
 experiment in the definition with the modified sPA1+


 experiment, then
the encryption scheme is said to be sPA1+


 secure.

Lemma 1. If an encryption scheme Π is sPA1
 secure, then it is sPA1+



secure.

Proof. See the full version.

3 The Construction

Let E = (gen, enc, dec) be any encryption scheme that is weakly simulatable and
sPA1
 secure. Then we construct the encryption scheme Π represented in Fig. 1
that is a non-malleable CCA1 encryption scheme. Let Σ = (GenKey, Sign,Verify)
be a strong one-time signature scheme,1 such that on security parameter k the
verification keys that are constructed have length k.

As a first step, we define an encryption scheme E′ = (gen′, enc′, dec′) in which
one encrypts the encryption of a message k times with k independently chosen
public keys. More specifically:

1 A strong one-time signature is a one-time signature where it is not even possible for
an adversary to find an alternate signature to an already signed message.
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— gen′(1k): For i ∈ [0, k], run (pk i, sk i) ← gen(1k). Set the public and secret

keys as pk
def
= (pk0, pk1, . . . , pkk) and sk

def
= (sk0, sk1, . . . , skk)

— enc′pk=pk0,..,pkk
(m): Output [encpk1

(encpk0
(m; r0); r1), . . . encpkk

(encpk0(m; r0); rk)] using independently chosen coins ri.
— dec′sk=sk0,...,skk

([c1, c2, . . . , ck]): Compute c′i = decski
(ci). If all c′i are not

equal, output ⊥, else output decsk0
(c′1).

We are now ready to present our main construction Π defined in Fig. 1.

NMGen(1k)
(1) (pk0, sk0) ← gen(1k); (pkb

i , sk
b
i ) ← gen(1k), ∀i ∈ [k] and b ∈ {0, 1}

(2) Output npk = {pk , pk0} and nsk = {sk , sk0} where
pk = {(pk0

i , pk
1
i )}i∈[k] and sk = {(sk0

i , sk
1
i )}i∈[k]

NMEnc(npk = (pk , pk0),m)
(1) (SigSK, SigVK) ← GenKey(1k)
(2) c ← enc′

pk0,pk
SigVK1
1 ,...,pk

SigVKk
k

(m)

(3) σ ← SignSigSK(c).
(4) Output (c, SigVK, σ)

NMDec(nsk = (sk , sk0), C = (c, SigVK, σ)))
(1) if VerifySigVK(σ, c) = 0 then Output ⊥
(2) Output dec′

sk0,sk
SigVK1
1 ,...,sk

SigVKk
k

(c1)

Fig. 1. The Non-malleable CCA1 Encryption Scheme Π

Lemma 2. If E = (gen, enc, dec) is weakly simulatable, then E′ = (gen′, enc′, dec′)
is weakly simulatable as well.

Proof. Via a standard hybrid argument.

Theorem 2. If E = (gen, enc, dec) is an encryption scheme that is weakly simu-
latable and also sPA1
(k)=2k+1 secure where k is the security parameter, then the
encryption scheme Π as described in Fig. 1 is a non-malleable CCA1 encryption
scheme.

Proof. Recall that Lemma 1 shows that if E is sPA1
 secure, then it is also
sPA1+


 secure. In what follows, the sPA1+

 ciphertext creator adversaries always

have access to an oracle O that produces random strings upon access.
To prove that Π is a non-malleable CCA1 encryption scheme, we need to show

that for any p.p.t. adversaryA and p.p.t. distinguisher D and for all polynomials
p(k),
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{NME0 (Π,A,D, k, p (k))}k∈N ≈c {NME1 (Π,A,D, k, p (k))}k∈N

We show this by a hybrid argument. Consider the following experiments:

Experiment NMEb
(1)(Π,A,D, k, p(k)) modifies NMEb in two ways. First, in-

stead of selecting vkSig∗ when the challenge ciphertext is encrypted, choose this
value as the first step of the experiment. Second, when processing decryption
queries during the experiment, replace Verify with Verify∗ as follows:

Verify∗ Let vkSig∗ be the verification key in the challenge ciphertext
(c∗, σ∗, vkSig∗). Upon receiving a decryption query on (c, σ, vkSig), output
⊥ if either vkSig = vkSig∗ or VerifyvkSig(c, σ) = 0.

Claim. For b ∈ {0, 1}, {NMEb (Π,A,D, k, p (k))}k∈N≈c{NMEb
(1) (Π,A,D,

k, p (k))}k∈N

Proof. Follows using standard techniques from the security of the signature
scheme.

Experiment NMEb
(2)(Π,A,D, k, p(k)) modifies NMEb

(1) to use an extractor
to decrypt the inner layer cipher text for the decryptions in the final parallel
decryption query. Specifically, in NMEb

(2) the calls are submitted to NMDec∗ as
described below. This is unlike NMEb

(1) where the final ciphertexts d1, ..., dp(k)
are presented by A2 for parallel decryption via calls to NMDec, :

NMDec∗(di = C, σ,vkSig) If 0 = Verify∗vkSig(C, σ) output ⊥. For i = 1 . . . k,
do C′

i ← dec
sk

vkSigi
i

(Ci)

If ∃j , C′
1 �= C′

j , output ⊥. Use the extractor C∗
A (defined in Lemma 3) to ex-

tract C′
i, where i is the smallest value s.t. vkSigi �= vkSig∗i , where vkSig∗ is

the verification key of the challenge ciphertext. Return the extracted plain-
text.

Lemma 3. For b ∈ {0, 1}, {NMEb
(1) (Π,A,D, k, p (k))}k∈N≈c{NMEb

(2) (Π,A,
D, k, p (k))}k∈N

This lemma might, on first glance, seem to follow immediately because the whole
purpose of the extractor is that it be able to simulate a decryption oracle. How-
ever, since the adversary has (i) seen the challenge ciphertext, (ii) it is not aware
of the randomness used to produce this ciphertext, and (iii) created final parallel
decryption queries potentially based on the challenge ciphertext, there is no a
priori reason to believe the sPA1 extractor will “decrypt” properly. However,
we are only extracting on the inner layers of ciphertexts, and the inner layer
of the challenge ciphertext has been hidden by the encryptions on the outer
layer. Further, the outer layer is weakly simulatable, so we can argue that these
new ciphertexts issued for parallel decryption, described in point (iii) above, are
not dependent on the randomness of the inner-layer of the challenge ciphertext.
Therefore, the extractor will function correctly.
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Proof. The experiments differ only if the extractor returns a result that is dif-
ferent from the of the decryption oracle. We define badExtract to capture this
event, and show that it occurs with negligible probability. Assume (for contra-
diction) that there exists an adversary A which induces the event badExtract
to occur with non-negligible probability. We show that E is not a weakly simu-
latable encryption scheme.

Note that the public- and secret-keys for Π are composed of 2k+1 keys that
are generated using the key generation algorithm for encryption scheme E. To
encrypt a message m, we first generate a pair of signing keys, (vkSig, skSig), and
then encrypt m with a fixed public key, pk0, in the set of 2k+1 public keys (we
refer to this ciphertext as the inner layer). Then, we select a subset of size k out
of the 2k remaining keys determined by the bits of vkSig, and encrypt the inner
layer using fresh random coins for k times under those k keys (we refer to these
k ciphertexts as the outer layer). We refer to the key used to encrypt the inner
layer as the inner key, and the remaining 2k keys as the outer keys.

The technical difficulty in showing that badExtract does not occur in the
NMEb

(2) (Π,A,D, k, p (k)) experiment is that by providing the challenge cipher-
text, we actually provide the adversary with ciphertexts that are encrypted using
k keys out of the 2k outer keys. We must argue that even in this case, there should
be a way to extract the plaintext of the queries submitted by the adversary on
the spots in the outer layer that are encrypted under a new key from the k keys
used in the outer layer of the challenge ciphertext.

To do so, we first construct an sPA1+

 ciphertext creator CA using the adver-

saryA. Since the encryption scheme E is sPA1+

 secure, there exists an extractor

for CA which we call C∗
A. Then we define a series of hybrids using CA and C∗

A,
that are indistinguishable assuming E is weakly simulatable. The last hybrid in
that series perfectly simulates the NMEb

(2)(Π,A,D, k, p(k)) experiment for A
up to the point when A returns the vector of the ciphertexts after receiving the
challenge ciphertext. Based on the indistinguishability of the hybrids, we will
argue that there exists an extractor that can decrypt the adversary’s queries on
the first spot i where vkSigi �= vkSig∗i with overwhelming probability. Notice
that the extractor cannot be used to decrypt the outer layer on the spots where
vkSigi = vkSig∗i , otherwise it could be argued that the encryption scheme E is
indeed PA2 secure (PA2 security is defined in [BP04]) and hence CCA2 secure.

First we construct an sPA1+

 ciphertext creator CA from A where  = 2k+1.

CA interacts with the sPA1+

 experiment in “the outside” as follows:

– CA receives 2k+1 public keys
(
{pk ′

i}i∈[0...2k]

)
from the sPA1+


 experiment.

It generates a pair of signing keys (vkSig∗, skSig∗) ← GenKey(1k) internally
and sets pk =

(
{pkαi }i∈[0...2k],α∈{0,1}

)
as described (intuitively, CA arranges

pk such that it can potentially sign a vector of ciphertexts that are supposed
to be encrypted under the last k keys in pk ′,

(
pk ′

k+1, . . . , pk
′
k+k

)
, to generate

a valid ciphertext in the Π scheme):

for i ∈ [0 . . . k] & α ∈ {0, 1}, pkαi =

⎧⎨⎩pk ′
0 if i = 0

pk ′
i else if vkSig∗i �= α

pk ′
i+k otherwise
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CA runs A1 on the input of pk . Note that this rearrangement of keys is
crucial to make the view of the adversary A on the arrangement of the keys
identical to its view in a real NMEb

(2)(Π,A,D, k, p(k)) experiment. To see
this, consider the following example. The adversary A might abort whenever
the keys used in the outer layer of the challenge ciphertext are the last k keys
in pk . Such a coincidence occurs in the simulated NMEb

(2)(Π,A,D, k, p(k))
experiment with probability 1 if CA sets pk to be the same as pk ′, while
this coincidence occurs in a real NMEb

(2)(Π,A,D, k, p(k)) experiment with
negligible probability due to the security of the signature scheme.

– Whenever CA receives a query
(
{yi}i∈[k], σ, vkSig

)
from A1, it first checks if

the signature is valid. If not, it returns ⊥ as the answer to this query. Next,
it checks whether vkSig = vkSig∗. If so, it aborts. Otherwise, CA submits
yi’s one by one to the extractor. If all of the queries do not get decrypted
to the same value, CA returns ⊥ to A1 as the answer to that query. But
if all of the queries get decrypted to the same value y0, CA then submits
y0 (which is supposed to be an encryption under pk0

0) to the extractor and
returns the result to A1. Eventually A1 returns (m0,m1, St) and halts. CA
outputs (m0,m1).

– CA accesses its oracle O and generates k blocks of random bits of length l,
giving the vector x = (x1, . . . , xk). Let y =

(
f(pk ′

k+1, x1), . . . , f(pk
′
k+k, xk)

)
.

CA then computes σ∗ = Sign(y, skSig∗), and runs A2 on the input y∗ =
(y, σ∗, vkSig∗) and St.

– A2 returns a vector of ciphertexts Y and the state information S and halts.
For all j ∈ [|Y |],CA does the following: on the query Yj = ({yi}i∈[k], σ, vkSig),
it first checks if the signature is valid. If not, it moves to the next query.
Otherwise, it checks whether vkSig = vkSig∗. If so, it aborts. Otherwise, CA
finds the first index i where vkSigi �= vkSig∗i , and submits yi to its extractor

to be “decrypted” under pk
vkSigi
i . CA then submits the answer from the

extractor (which is supposed to be an encryption under pk0
0) again to the

extractor to be “decrypted” under pk0
0. Denote the result m′

j .
CA returns {Yj ,m′

j}j∈[|Y |] and the state information S, it halts.

Since CA is a sPA1+

 ciphertext creator adversary, the sPA1+


 security of E
implies there exists an extractor C∗

A whose answers to the decryption queries
submitted by CA are indistinguishable from their true decryptions. We call the
above interaction Game 1. Let Pr[Wi] be the probability of the adversary CA
inducing the event badExtract in the Game i. The sPA1+


 security implies

that Pr[W1] is bounded by AdvsPA1+
� (E,CA,C∗

A, k) which is negligible in k.
Hence:

Pr[W1] ≤ AdvsPA1+
� (E,CA,C∗

A, k) (1)

We will define another game, Game 2, which is identical to Game 1 with the
difference that instead of a fake ciphertext, A2 is fed with a real ciphertext as
the challenge ciphertext. The aborting probability of A2 in Game 1 and Game
2 is negligibly close otherwise it can be argued that E is not weakly simulat-
able. In what follows, we only deal with the probability of inducing the event
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badExtract. Also notice that Game 2 simulates NMEb
(2)(Π,A,D, k, p(k))

for the adversary A up to the point when the adversary A returns a vector
of ciphertexts after seeing the challenge ciphertext. That is because CA only
needs the vector of the ciphertext generated by A after revealing the chal-
lenge ciphertext to induce the event badExtract to occur. After receiving such
a vector of ciphertexts, CA does not need to complete the simulation of the
NMEb

(2)(Π,A,D, k, p(k)) experiment for A.
In Game 2 we modify the oracle O as follows: when CA accesses the oracle

O for the ith time, instead of r ∈ {0, 1}l, O returns f−1(pk ′
k+i, encpk ′

k+i
(md))

where md is picked randomly out of the two messages returned by A. During
Game 2, the random bit d is fixed. We argue that such a change does not affect
the advantage of CA in inducing the event badExtract as otherwise E is not
weakly simulatable countering our assumption. Using CA and C∗

A, we build the
attacker B that distinguishes (r, f(., r)) and (f−1(., c = enc(., .)), c) as follows:

1. The challenger samples k pairs of random keys (pk i, sk i) ← gen(1k) for
1 ≤ i ≤ k, and a random bit b.

2. The attacker B receives {pk i}i∈[k]. B then samples k+ 1 other random keys

(pk ′
i, sk

′
i) ← gen(1k) for 0 ≤ i ≤ k. Let pk′′ =

(
pk ′

0, pk
′
1, . . . , pk

′
k, pk1, pk2,

. . . , pkk). B samples random coins forCA andC∗
A and sets st← (pk ′′, R[CA]).

B runsCA on the input pk′′, andC∗
A on the input st. EventuallyCA outputs

(m0,m1). B randomly chooses d ∈ {0, 1} and outputs c′d = encpk ′
0
(md). The

challenger samples ri ∈ {0, 1}l for 1 ≤ i ≤ k and returns {(ri, f(pk i, ri))}i∈[k]

if b = 0, and
{(
f−1(pk i, ci = encpki

(c′d)), ci
)}

i∈[k]
if b = 1. Call the resulting

vector (given by the challenger) y. B then forwards
{
f−1(pk i, yi)

}
i∈[k]

toCA
and C∗

A when CA queries O for the ith time. After CA halts, the attacker
B checks if all the queries made by CA to the extractor after outputting m0

and m1 were answered correctly. This is done by using the extractor using
sk ′ (notice that CA was made in a way that after returning m0 and m1, it
always only asks the extractor on the ciphertexts encrypted under pk′ which
are the first k + 1 keys in pk). If so it outputs b′ = 0 otherwise b′ = 1.

When b = 0, Game 1 is being simulated, and when b = 1, Game 2 is being
simulated. Therefore:

Pr[b′ = b] =Pr[b = 0] · Pr[b′ = b|b = 0] + Pr[b = 1] · Pr[b′ = b|b = 1]

=
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2]

On the other hand, by Lemma 2, the advantage of the attacker B in guessing
the bit b is negligible in k, and hence there exists a negligible function ε1(.) such
that Pr[b′ = b] ≤ 1

2 + ε1(k). Therefore:
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Pr[b′ = b] =
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2] ≤

1

2
+ ε1(k)

=⇒ Pr[W2] ≤ 2 · ε1(k) + Pr[W1] (2)

=⇒ Pr[W2] ≤ 2 · ε1(k) +AdvsPA1+
� (E,CA,C∗

A, k) (3)

Inequality (3) follows from Inequalities (1) and (2). Therefore Pr[W2] is neg-
ligible. Since Pr[W2] is the probability that the event badExtract occurs, we
conclude that there is a negligible chance that badExtract occurs. Hence:

{NMEb
(1) (Π,A,D, k, p (k))}k∈N ≈c {NMEb

(2) (Π,A,D, k, p (k))}k∈N

Lemma 4. For every p.p.t. adversary A = (A1,A2), there exists a p.p.t. adver-
sary B such that for b ∈ {0, 1},

{NMEb
(2) (Π,A,D, k, p (k))}k∈N ≡ {CPAb (E,B, k)}k∈N

Proof. In the proof of Lemma 3, we showed how to construct the ciphertext
creator CA that runs A internally and proved that there exists an extractor C∗

A
that can decrypt the queries submitted by CA with overwhelming probability.

We build the CPA adversary B that interacts with the CPA experiment. Hav-
ing the algorithms for A, CA and C∗

A, the CPA adversary B acts as follows: B
receives the public key pk ′ from the CPA experiment, and generates 2k keys as

(pk
′′
i , sk

′′
i ) ← gen(1k) for i ∈ [2k]. Let pk =

(
pk ′,pk

′′)
. B runs CA (that sim-

ulates A internally) on pk and its random coins. Whenever CA asks a query, B
runs C∗

A to answer them (C∗
A gets to know the random coins of CA and all of its

input as described in the proof of Lemma 3). EventuallyCA outputs (m0,m1). B
outputs m0 and m1 to the CPA experiment, and receives a ciphertext y. Remem-
ber thatCA now accesses the oracleO k times. Using fresh random coins for each
encryption, B computes Ci = encpkk+i

(y) and sends f−1(pkk+i, Ci) to CA (and

C∗
A) on the ith access to O. Eventually CA returns {Yi,m′

i}i∈[|Y |] and the state
information S and halts. The only step left in determining the decryption of Yi is
to decrypt all the ciphertexts in the outer layer, and check that they all decrypt
to the same value. B has the 2k secret keys for the outer layer, hence it can do the
mentioned check. If the outer layer ciphertexts of Yi do not decrypt to the same
value, the decryption of Yi is ⊥, otherwise the decryption of Yi is m

′
i. After B de-

crypts all the Yi, it submits the results along with the state information S to the
distinguisher D and forwards D’s output to the CPA experiment.

4 More Than Non-Malleable CCA1 Encryption Scheme

In the previous section, we showed how to build a non-malleable CCA1 encryp-
tion scheme from any encryption scheme that is weakly simulatable and sPA1
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Algorithm 1: DEG

function G(1k)
(p, q, g) ← G(1k)
x1 ← Zq;X1 ← gx1 mod p.
x2 ← Zq;X2 ← gx2 mod p.
Return (pk = (p, q, g,X1, X2),

sk = (p, q, g, x1, x2))

function E(pk,M)
y ← Zq;Y ← gy mod p.
W ← Xy

1 ;V ← Xy
2 mod p.

U ← V ·M mod p
Return C = (Y,W,U)

function D(sk, C)
if W = Y x1 mod p then Return ⊥.
else Return M ← U · Y −x2 mod p

Algorithm 2: CS-Lite

function G(1k)
(p, q, g1) ← G(1k); g2 ← Gq\{1}
x1 ← Zq; x2 ← Zq; z ← Zq.
X ← gx1

1 .gx2
2 mod p;Z ← gz1 mod p.

Return (pk = (p, q, g1, g2, X, Z),
sk = (p, q, g1, g2, x1, x2, z))

function E(pk ,M)
r ← Zq.
R1 ← gr1 mod p;R2 ← gr2 mod p.
E ← Zr ·M mod p;V ← Xr mod p
Return C = (R1, R2, E, V )

function D(sk , C)
if V = Rx1

1 ·Rx2
2 mod p then Return ⊥.

else Return M ← E ·R−z
1 mod p

secure. Define a parallel query as a query consisting of unbounded number of
ciphertexts, none of which will be decrypted until all the ciphertexts in the
query are submitted. In the NM-CCA1 game, the adversary is allowed to ask an
unbounded number of queries before seeing the challenge ciphertext, and one
parallel query afterwards. This compares with CCA2 secure encryption schemes,
which are secure even if the adversary asks an unbounded number of queries be-
fore and after seeing the challenge ciphertext. The NM-CCA1 constructions seem
to be much weaker primitives. However, between the extremes of the NM-CCA1
security and the CCA2 security, a range of security notions can be defined that
distinguish themselves based on how many queries the adversary may ask af-
ter revealing the challenge ciphertext without sacrificing indistinguishability of
ciphertexts.

Define cNM-CCA1 security identically to NM-CCA1 security except that the
adversary can make c ≥ 1 parallel queries after seeing the challenge ciphertext.
We show how to extend our result to construct an encryption scheme that is
cNM-CCA1 secure where c is a constant. The high level idea for constructing
a cNM-CCA1 scheme is to add another c layers of encryption on top of the ci-
phertext from the previous section. Intuitively, with the first parallel query, the
adversary can only ask queries that can help it to maul the first layer of encryp-
tion from the outside in the future. In other words, with the first parallel query,
the adversary can gain no information about all the inner ciphertexts. Hence,
to penetrate the innermost layer, the adversary has to ask at least c parallel
queries. Notice also that this type of construction can only allow a constant c
since each layer of encryption increases ciphertext size by a polynomial factor.
For more details, see the full version.
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A Plaintext Awareness

A.1 sPA1� Secure Schemes

We argue that Cramer-Shoup Lite (CS-Lite) and Damgard’s ElGammal (DEG)
are sPA1
 secure, based on a suitable modification of the Diffie-Hellman Knowl-
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edge definition originally proposed by Damg̊ard, and modified to permit inter-
active extractors by Bellare and Palacio [BP04].

DHK1�(k)

(pi, qi, gi)i∈�[k] ← G(1k); (ai)i∈�[k] ← Zq; Ai ← gai
i mod p for i ∈ 	[k]

Let R[H ] and R[H∗] be randomly selected strings for H and H∗.
st ← ((pi)i∈�[k], (qi)i∈�[k], (gi)i∈�[k], (Ai)i∈[�], R[H ])
while Simulate H((pi)i∈�[k], (qi)i∈�[k], (gi)i∈�[k], (Ai)i∈[�];R[H ]) do

if H queries (i, B,W ) then
(b, st) ← H∗((i, B,W ), st;R[H∗])
if W ≡ Bai mod p and B ≡ gbi mod p then Return 1.
else Return b.

Return 0.

We note that in the experiment, the change requires that the ciphertext creator
be able to generate ciphertexts relative to a polynomial number of randomly cho-
sen public-keys. It seems reasonable to conjecture that any extractor that could
extract exponents with respect to single value A = ga, could do so efficiently for
many Ai.

We now argue that DEG is sPA1
 secure under the DHK1
 definition.

Theorem 3. For any polynomial , The DEG scheme is sPA1
 secure under
the DHK
 assumption.

Proof. We build the DHK
 adversary B that runs the sPA1
 adversary A inter-
nally and simulates the sPA1
 experiment for it. B receives (pi)i∈
[k], (qi)i∈
[k],
(gi)i∈
[k], (Ai)i∈
[k] and its random coins R[H ]. For each i ∈ [], B samples

âi ← Zqi , computes Âi ← gâi

i mod pi and sets pk i ← (qi, gi, Ai, Âi). B then
runs A on (pk i)i∈[
] and the random coins R[H ] until A halts, answering to A’s
queries as follows: upon receiving the query C = (i, Y,W,U) from A, B sub-
mits (i, Y,W ) to the DHK
 extractor. The DHK
 extractor returns the value
b. If b = 1 then B returns ⊥ as the decryption of C, otherwise B computes

M ← U.(Âi
b
)−1 mod pi and return the result to A.

Trivially, the integration of algorithm of B and its extractor(which depends
on the algorithm of A and B) is a potential extractor for the sPA1
 ciphertext
creator adversary A.

Theorem 4. For any polynomial , The CS-Lite scheme is sPA1
 secure under
the DHK
 assumption.

Proof. The proof is similar to the proof for Theorem 3. See the full version.

B Weakly Simulatable Encryption Schemes

We argue that the Damgard ElGamal (DEG) scheme is weakly simulatable us-
ing an argument parallel to that of Dent[Den06a]. We remind the reader that the
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definition for DEG is given on page 162. It has previously been shown that DEG
is sPA1 secure.

We use the notion of a simulatable group given by Dent [Den06a].

Definition 5. (Simulatable Group) [Den06a] A Group G is simulatable if
there exist two polynomial turing machines (f, f−1) such that:

– f is a deterministic turing machine that takes a random element r ∈ {0, 1}l
as input, and outputs elements of G.

– f−1 is a probabilistic turing machine that takes elements of h ∈ G as input,
and outputs elements of {0, 1}l.

– f(f−1(C)) = C for all h ∈ G.
– There exists no polynomial time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger randomly chooses a bit b ∈ {0, 1}.
2. The attacker A executes on the input 1k. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0, and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

– There exists no polynomial-time attacker A that has a non-negligible advan-
tage in winning the following game:
1. The challenger randomly chooses b ∈ {0, 1}.
2. The attacker A executes on the input 1k. The attacker has access to

an oracle Of that takes no input. If b = 0, then the oracle generates a
random r ∈ {0, 1}l and returns f(r). Otherwise the oracle generates a
random h ∈ G and returns h. The attacker terminates by outputting a
guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

Dent showed that groups in which the DDH assumptions are believed to hold
are simulatable.

Lemma 5. [Den06a] If q and p are primes such that p = 2q + 1, and G is the
subgroup of Z∗

p of order q, then G is simulatable.

Using this fact we show that DEG is weakly simulatable.

Theorem 5. The DEG encryption scheme is weakly simulatable if it is in-
stantiated on a simulatable group G (for the definition for simulatable groups,
see [Den06a]) on which the DDH problem is hard.

Proof. See the full version.

Theorem 6. The Cramer-Shoup lite encryption scheme is weakly simulatable if
it is instantiated on a simulatable group G on which the DDH problem is hard.

Proof. Similar to the proof of Theorem 5 which is presented in full version of
the paper.
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Abstract. A broadcast encryption system generally involves three kinds
of entities: the group manager that deals with the membership, the en-
cryptor that encrypts the data to the registered users according to a
specific policy (the target set), and the users that decrypt the data if
they are authorized by the policy. Public-key broadcast encryption can
be seen as removing this special role of encryptor, by allowing anybody
to send encrypted data. In this paper, we go a step further in the de-
centralization process, by removing the group manager: the initial setup
of the group, as well as the addition of further members to the system,
do not require any central authority. Our construction makes black-box
use of well-known primitives and can be considered as an extension to
the subset-cover framework. It allows for efficient concrete instantiations,
with parameter sizes that match those of the subset-cover constructions,
while at the same time achieving the highest security level in the stan-
dard model under the DDH assumption.

1 Introduction

Broadcast encryption (BE), introduced by Fiat and Naor [18] in 1993, allows a
sender to securely send private messages to a subset of users, the target set. In
2001, Naor, Naor, and Lotspiech (NNL [24]) introduced the subset-cover frame-
work, where for any target set, the sender can find a partition of the user set,
encrypt a session key using the keys associated to each subset in the partition,
and finally encrypt the content using the session key. The ciphertext length of
the subset-difference (SD) version of NNL depends linearly on the number of
users in the revoked set, which was considered to be efficient enough for use in
the AACS DRM standard [1]. We generalize the subset-cover framework of NNL
to deal with both public-key encryption and dynamic changes of the registered
user sets. We furthermore remove the need for trusted authorities by eliminating
the group manager, who typically interacts with users to distribute keys at the
setup phase or when users join the system. Our approach makes use of group key
exchange with subgroup keys [2,23], a primitive that simultaneously distributes
different keys to certain subsets of the user group and applies well to the subset-
cover framework if one can assign keys for the subgroups involved in the subset
cover.

We first instantiate our construction with the Diffie-Hellman key agreement
for the key generation and the ElGamal encryption for the public-key encryp-
tion, which leads to quite an efficient scheme. The complete-subtree (CS) tree
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construction resembles the tree-based group key agreement in [21], with the ex-
ception that we also create key pairs for internal nodes, and we go beyond their
scheme in our construction of SD trees. We then show how our scheme can be
extended to achieve the strongest security notion by using Cramer-Shoup en-
cryption, which allows adaptive corruptions and chosen-ciphertext attacks, in
the standard model, under the DDH assumption. In addition, we consider var-
ious criteria of efficiency: ciphertext size, private part and public part of the
decryption keys, number of rounds for the key generation, etc. Thanks to the
modularity of our approach, we can use any appropriate group key exchange with
subgroup keys: our initial technique iteratively uses the two-party Diffie-Hellman
key exchange in a binary tree, which requires a logarithmic number of rounds;
we can replace it by logarithmically many parallel executions of the Burmester-
Desmedt group key exchange protocol [8], which reduces the number of rounds
to two. Besides allowing members to join the system, we also sketch how groups
could merge at low cost, and how to permanently revoke some users, but we
cannot elaborate on this due to space constraints. Our scheme thus achieves a
maximum of functionality and security under minimal assumptions, while still
being reasonably efficient.

Related Work. Dodis and Fazio [14] already constructed a public-key version of
the subset-cover framework using IBE for the Complete-Subtree (CS) structure
and HIBE of depth logN for the Subset-Difference (SD) structure. They retain
the same efficiency, using (H)IBE keys instead of symmetric keys, and achieve
generalized CCA security. In the same year, Dodis and Fazio presented a dy-
namic, IND-CCA-secure BE scheme [15], where the adversary may corrupt users
before the challenge phase. IND-CPA-security under adaptive corruption was
first achieved by Boneh and Waters [7], who presented a fully-collusion resistant
trace-and-revoke scheme. More recently, Gentry and Waters [19] described an-
other adaptively IND-CPA-secure scheme. For both schemes, there is no obvious
way to make them IND-CCA-secure in the standard model.

Delerablée [11] constructed selectively IND-CPA-secure ID-based BE, which
allows adding users after the setup. The only existing dynamic BE scheme was
developed by Delerablée, Paillier, and Pointcheval [12]. However, their scheme
does not provide forward-secrecy, i. e. a new user can decrypt all ciphertexts sent
before he joined. Because our scheme provides forward-secrecy, we have to re-
lax their definition of “dynamic”. Forward-security has been considered by Yao,
Fazio, Dodis, and Lysyanskaya [30], first for HIBE and then by extension for BE.
Their notion of forward-security refers to security of ciphertexts against later
corruption of users, which means that user keys must evolve so that previously
sent messages remain secure. This is distinct from our notion of forward-secrecy,
where we only require that newly joined users cannot decrypt previously sent
ciphertexts. However, when a user gets corrupted, messages this user received
prior to corruption can be read by the adversary, since the adversary gets the
same power as the user. The scheme in [30] is IND-CCA-secure, but the adver-
sary is more restricted in corrupting users after the challenge phase than in our
setting.
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Broadcast encryption without a central authority replaces the traditional
setup with a group key exchange process that can be an interactive protocol.
It was proposed under the name “contributory broadcast encryption” (CBE)
in [29], along with a semi-adaptively IND-CPA-secure scheme that is not dy-
namic. A possible application of this could be communication in a social net-
work, where some private information is meant to be read only be a subset
of a user’s acquaintances, and the network is either peer-to-peer or the service
provider is not trusted. The first steps toward subgroup key exchange were done
by Manulis [23], who extended a group key exchange (GKE) protocol to allow
any two users to compute a common key after the initial phase in which the
group key is computed. Following this work, Abdalla et al. [2] generalized this
approach to allow the computation of session keys for arbitrary subsets. We use
such a group key exchange protocol with subgroup keys to derive asymmetric
encryption keys for subsets. Something similar has been done under the name of
“asymmetric group key agreement” (ASGKA) [28]. In [28], ASGKA is defined
in a way that guarantees only that the keys held by the participants are good
for use with a specific encryption scheme. We want to generalize this require-
ment so that at the end of the protocol run, each user has some randomness,
which can thereafter be used for any key generation, and namely to generate
key pairs for any key encapsulation mechanism. Since this randomness is shared
between various subgroups, we call the scheme we use for the setup “subgroup
key exchange” (SKE). Kurnio, Safavi-Naini, and Wang [22] explicitly consider
sponsorship of group candidates by existing members. In our scheme, because
of the tree structure, each user can act as a sponsor, and only one sponsor is
required for a candidate to join the user set.

Contributions and Organization. In section 2, we define decentralized dynamic
broadcast encryption and subgroup key exchange, a building block we use in our
construction that may be of independent interest. We extend the security notions
of adaptive IND-CPA and IND-CCA from [26] to our case. We describe a black-box
construction of decentralized dynamic broadcast encryption using the subset-
cover framework in section 3 and prove the security of the construction, assuming
that the building blocks are secure. In section 4, we construct a subgroup key
exchange protocol based on any secure two-party key exchange protocol. We give
two concrete instantiations using our methodology in section 5, that provide keys
for subgroups in the CS and SD structures. Combined with the Cramer-Shoup
encryption scheme, this gives us a decentralized dynamic broadcast encryption
schemes which additionally achieves the highest security level (fully adaptive
IND-CCA-security) in the standard model under the DDH-assumption.

2 Definitions

In the following, we describe some generic constructions for broadcast encryption
that make use of standard definitions of well-known primitives. We briefly review
the notations here, but provide full definitions in the full version [25].
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A public-key encryption scheme is defined by a tuple of four algorithms
PKE = (Setup,KeyGen,Encrypt,Decrypt). A two-party key exchange protocol
is a tuple of two algorithms/protocols KE = (Setup,CommonKey). Note that
CommonKey is an interactive protocol, but we expect it to be one-round only
for the efficiency of our constructions. A message authentication code is a tu-
ple of three algorithms MAC = (KeyGen,GenMac,VerifMac). A pseudo-random
generator is a function F : X → Y with |X | ≤ |Y |.

2.1 Decentralized Broadcast Encryption

Let us start with the main protocol we want to build: a broadcast encryption
scheme, which aims at encrypting a message for a group of users, with a fine-
grained selection of the target group. As in [18], broadcast encryption generally
involves a group manager, that deals with the membership of the users, and an
encryptor that specifies the target group (a subgroup of the registered members)
for a ciphertext. The encryptor is either a specific person in case of secret-key
broadcast encryption, or anybody in case of public-key broadcast encryption.
The group manager is either involved once only, at the setup phase, in static
schemes, or at any time a new member wants to join the system, in dynamic
schemes [12]. The latter dynamic situation is the most realistic, but makes the
group manager quite sensitive, for both security and availability. Our goal is to
get rid of such a centralized system.

We thus extend the dynamic broadcast encryption setting [12] so that the
membership management can be decentralized. At the same time, we would like
to keep everything as small as possible.

1. The ciphertext size should be as small as possible: the ciphertext has to
contain the target group structure, and so cannot be smaller than the rep-
resentation of this structure, which can either be encoded on N bits, where
N is the total number of users, and each bit tells whether a user is in the
target group or not, or on r logN bits (resp. s logN bits), where r (resp. s) is
the number of revoked users (resp. included users) among the N registered
users. This is sometimes considered independently from the ciphertext, in
the header, but anyway both the target set and the encrypted data have to
be sent. Our goal is to make the global length as small as possible.

2. When a new user joins the system, it should have minimal impact on other
users’ secret information and the public information: no impact at all on the
keys as in [12] is of course optimal, but when one wants to achieve forward
secrecy, it is not possible: some of the keys have to be modified. We will try
to keep the impact as small as possible too.

Since we want to avoid any centralized group manager, we will also focus on
public-key broadcast encryption, in which a public key is enough to target any
subgroup at the encryption time. In addition, instead of encrypting a message,
our schemes will generate an encapsulation (or key header) and session keys to
be used with any symmetric encryption scheme [27].
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Definition 1 (Decentralized Dynamic Broadcast Encapsulation). A de-
centralized dynamic broadcast encapsulation scheme is a tuple of five algorithms
or protocols DBE = (Setup, KeyGen, Join, Encaps,Decaps):

– Setup(1k), where k is the security parameter, generates the global parameters
param of the system.

– KeyGen(param, U) is an interactive protocol between the users in the set U .
After the protocol run, it returns the public encryption key EK and a list Reg
of the registered users with additional public information. Each user u ∈ U
eventually gets a secret decryption key dku.

– Join(v, {u(dku)}u∈U ,Reg,EK) is an interactive protocol run between a user v
and the set of users U , described in Reg. Each user takes as input his secret
key and/or some random coins, the list Reg, and the encryption key EK.
After the protocol, Reg and EK are updated, and each user (including v) has
a secret decryption key.

– Encaps(EK,Reg, S) takes as input the encryption key EK, the user register
Reg, and a target set S. It outputs a key header H and a session key K ∈
{0, 1}k.

– Decaps(dku, S,H) takes as input the target set S and a user decryption key
dku together with a key header H. If dku corresponds to a recipient user, it
outputs the session key K, else it outputs the error symbol ⊥.

The correctness requirement is that for all N , any target set S ⊂ UN = [1, N ]
and for any u ∈ UN , if u ∈ S then the decapsulation algorithm gives back the
key. A decentralized scheme requires that no authority is involved in the KeyGen
and Join protocols.

Security Notions. A general overview of the security notions for broadcast en-
cryption has been done in [26]. We extend the strongest one to the decentral-
ized setting. The adversary is still given unlimited access to the Join oracle
(dynamic), the Corrupt oracle (adaptive) and Decaps oracle (chosen-ciphertext
security). For the group key generation, the definition from [26] models passive
adversaries only, since they only receive the public keys. Since in our case this
group key generation may be an interactive protocol, we make it more explicit
with a Execute-oracle that outputs the public transcript of the full run of this
protocol. The security game for DBE is presented in figure 1: the restriction
for the adversary is not to ask for the decapsulation of the challenge ciphertext
(which includes the target set S) nor corrupt any user in the target set.

The adversary can ask once the generation of the group structure with a single
call to Execute on a group U of its choice, from which it gets the transcript τ ,
the encryption key EK and the register Reg. It can thereafter make as many
calls it wants to Join, to add a user to the structure Reg, which updates EK. The
adversary also gets the transcript τ of this interactive protocol. At any time, the
adversary can also corrupt a user with a key pair, calling Cor and getting back
all the secret information of the user, and decapsulate a ciphertext H , calling
Dec in the name of a user u.



Decentralized Dynamic Broadcast Encryption 171

Expind−acca−b
DBE,A (k)

QC ← ∅; QD ← ∅;
param ← Setup(1k);
(st , U) ← A(SETUP; param);
(EK,Reg, τ ) ← Execute(U);

(st , S) ← AJoin(·),Cor(·),Dec(·,·,·)(st ;EK,Reg, τ );
(H,K) ← Encaps(EK,Reg, S);

Kb ← K; K1−b
$← K;

b′ ← AJoin(·),Cor(·),Dec(·,·,·)(st ;H,K0,K1);
if ∃i ∈ S, (i, S,H) ∈ QD or i ∈ QC ;
then return 0
else return b′;

Execute(U)
(EK,Reg) ← KeyGen(param, U);
return EK,Reg, τ ;

Join(v)
(EK,Reg) ← Join(v, U,Reg,EK);
return EK,Reg, τ ;

Cor(u)
QC ← QC ∪ {u}; return dku;

Dec(u, S,H)
QD ← QD ∪ {(u, S,H)};
K ← Decaps(dku, S,H);
return K;

Fig. 1. DBE : Key Indistinguishability (IND-ACCA)

The main security goal of an encryption scheme (or an encapsulation scheme)
is the indistinguishability of a challenge ciphertext: at some point, the adversary
thus gets a challenge (H,K0,K1), where H encapsulates either K0 or K1 for
a target set S chosen by the adversary. It has to guess which key is actually
encapsulated. Of course, there are the natural restrictions, which are controlled
granted the lists QC and QD:

– (S,H) has not been asked to the decapsulation oracle for a user u in S
– none of the users in S have been corrupted

A dynamic broadcast encapsulation scheme is (t, N, qC , qD, ε)-IND-ACCA-secure
(security against adaptive corruption and chosen-ciphertext attacks) if in the
security game presented in figure 1, the advantage Advind−acca

DBE (k, t,N, qC , qD),
of any t-time adversary A creating at most N users (Join oracle), corrupting at
most qC of them (Cor oracle), and asking for at most qD decapsulation queries
(Dec oracle), is bounded by ε.

Advind−acca
DBE (k, t,N, qC , qD)

= max
A

{Pr[Expind−acca−1
DBE,A (k) = 1]− Pr[Expind−acca−0

DBE,A (k) = 1]}.

This definition includes IND-ACPA (for adaptive chosen-plaintext attacks) when
qD = 0.

Remark 2 (Forward-secrecy). This definition includes forward-secrecy against
new users, i. e. a new user cannot decrypt ciphertexts that were created before
he joined. For a definition without forward secrecy, the adversary is prohibited
from corrupting users that joined after the challenge phase.
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2.2 Subgroup Key Exchange

The novelty of our definition is the decentralized key generation procedure, that
should also generate keys for certain subgroups in order to be able to broadcast
to any target set. This is thus in the same vein as the notion of group key
exchange with on-demand computation of subgroup keys (GKE+S) from [2],
that allows some subgroups of users to run a protocol to establish keys between
them. But we extend this definition by allowing for keys of some subgroups to be
computed during the first protocol run that establishes the global key, without
any additional interaction.

Since we want to remain independent of the encryption scheme to be used
with the session key, we require that for each subgroup a proto-key is computed,
whose entropy can be used as input to a PKE key-pair generation, or to generate
a symmetric encryption key.

Definition 3 (Dynamic S-Subgroup Key Exchange Protocol). For a col-
lection S : N → P(N) of subsets of the user set, where for any N , S(N) ∈ P(N),
a dynamic S-subgroup key exchange protocol SKE is a tuple of three algorithms
and interactive protocols:

– Setup(1k), where k is the security parameter, generates the global parameters
param of the system;

– KeyGen(param, U) is an interactive protocol run between all users in U . It
outputs a register Reg that contains a description of U and the subsets for
which keys were established according to S, and for each user u ∈ U a secret
usku that contains the proto-keys ptS for all the sub-groups S containing u.

– Join(v, U,Reg) is an interactive protocol run between user v and the group
of users U . It outputs an updated register Reg and for user v and some of
the users in U a new secret usku that contains the proto-keys ptS of all the
subgroups S they are part of.

We require that all the users u ∈ U that run KeyGen(param, U) receive the same
register Reg and compute matching proto-keys for the subsets they have in com-
mon. The same is required of Join.

For the security definition, we extend the definition given in [2], which seems to
be most applicable to our case. Since the protocol is dynamic, the user set can
change over time. As in the previous section, we stick to passive adversaries. This
is a way of modularizing protocol construction, as passively secure protocols can
be made secure against active adversaries using constructions such as [20], with
additional authentication mechanisms.

The adversary can ask once the generation of the group structure with a
unique call to Execute, at time t = 0, on a group U of its choice from which it
gets the transcript τ and the register Reg. It can thereafter make as many calls
as it wants to Join, to add a user to the structure Reg. Each query increases
the time index t. The adversary also gets the transcripts τ of these interactive
protocols.
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Expind−b
SKE,A(k)

Reg ← ∅; QT ← ∅;
param ← Setup(1k);
(st , U) ← A(param);
(EK,Reg, τ ) ← Execute(U);

b′ ← AJoin(·),OTest(·,·)(st ;EK,Reg, τ );
return b′;

Execute(U)
t ← 0;
Reg ← KeyGen(param, U);
return Reg, τ ;

OTest(t, S)
if ∃(t′,K) ∧ t ≡S t′ ∧ (t′, S,K) ∈ QT

then return K;
else if b = 0 then K ← ptS(t);

else K
$←− K;

QT ← QT ∪ {(t, S,K)};
return K;

Join(v)
t ← t+ 1;
Reg ← Join(v, U,Reg);
return Reg, τ ;

Fig. 2. SKE : Key Indistinguishability (IND)

The main security goal of key exchange is the indistinguishability of the keys,
and their independence. Hence, we use the stronger notion proposed in [3], simi-
lar to the Real-or-Random [5] for encryption. The adversary has access to many
OTest(t, S) queries, that are either answered by the real keys or by truly ran-
dom and independent keys. Note that according to the protocol, some keys may
remain unchanged even when the time period evolves. We even hope to have
as many keys as possible that do not evolve, since we want that not too many
users are impacted by a new member in the system. We thus say that two pairs
(t1, S) and (t2, S) are equivalent (denoted by t1 ≡S t2) if S is unchanged be-
tween the time periods and therefore they should have the same key. For such
equivalent pairs, the same random key is output. We do not provide direct access
to a OReveal oracle, which returns the secret key of a user, because as explained
in [3], having access to many OTest queries annihilates the advantage provided
by OReveal queries.

A subgroup key exchange scheme is said to be (t, N, qT , ε)-IND-secure if, in
the security game presented in figure 2, the advantage AdvindSKE(k, t,N, qT ) of
any t-time adversary A creating at most N users (the final size of the set U),
testing at most qT keys is bounded by ε.

AdvindSKE(k, t,N, qT ) = max
A

{Pr[Expind−1
SKE,A(k) = 1]− Pr[Expind−0

SKE,A(k) = 1]}.

3 Generic Decentralized Broadcast Encryption

As already remarked, in the first definition of dynamic broadcast encryption
schemes [12], it is required that the existing users are not affected by a join:
their decryption keys should not be modified. Only the encryption key could
be modified. This constraint is actually achieved by their scheme, but this is
possible because the scheme is not forward-secure: a new user can decrypt all
ciphertexts that were sent before he joined (since he cannot be in any revoked
set).
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To achieve forward-secrecy, we have to relax their definition and allow updates
of the user decryption keys. Namely, updates of the decryption keys are necessary
for forward-secrecy in the subset-cover framework [24], because some keys are
shared by several users. With an appropriate subset-cover structure, it can reach
asymptotically optimal overall ciphertext size. On the other hand, the naive
scheme, where each user has a single key specific to him, can be made dynamic
without decryption key updates, but has ciphertexts whose length is linear in
the number of users. As soon as keys are shared between users, forward-secrecy
makes it necessary to update these shared keys. Hence our relaxation of the
model. However, we require these updates of existing keys to be made via public
channels.

3.1 Generic Public-Key Subset Cover

A subset-cover structure SC = {Si}i∈I is a set of subsets Si of a user set U such
that for any subset S ⊂ U there is a subset L ⊂ I such that S can be partitioned
as S =

⋃
i∈L Si. In particular, this implies that for all users u ∈ U , {u} ∈ SC.

In [24], a secret key is assigned to each set Si, so a message can be encrypted to
any subset S ⊂ U by finding the cover L of S. Then a session key is encrypted
under all the keys associated to the selected subsets. All the other users are then
implicitly revoked, since they cannot decrypt the session key. Because of the
partition property, a user in S is in one subset Si only. Efficiency will thereafter
depend on the subset-cover structure.

We extend this framework in three directions:

1. First, we transfer this approach to the public-key world. Each Si is assigned
a key pair of some PKE scheme by some key assignment procedure. This
means that the assignment of keys to the subsets depends on the PKE scheme
used as well as the assignment procedure. For example, for a subset-cover
structure SC and a PKE PKE , we can use the key assignment that assigns
each subset with a key pair drawn independently at random by the trusted
center.

2. Second, we replace the trusted center by an interactive protocol, a subgroup
key exchange.

3. Third, we allow for the addition of users, hence using a dynamic subgroup
key exchange to generate the keys for a dynamic subset-cover structure.

We first deal with a dynamic subset-cover structure, assuming a subgroup key
exchange as a black box. Thereafter, we will consider concrete structures and
efficient subgroup key exchanges.

3.2 Dynamic Subset-Cover

We define a dynamic subset-cover as a sequence of subset-covers {SCi} for i ≥ 0
users, where each SCi contains subsets Sj . These subsets never change, so instead
of adding a user to a subset, we remove the old one and add a new one. This
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also means that the same subset Sj can occur in different time periods (the time
period changes each time a new user joins). We start with SC0 = ∅ and an empty
user set U0 = ∅, and then have Un+1 = Un ∪ {un+1}. From the definition, it is
clear that |Un| = n, and w.l.o.g. Un = [1, n].

For subset-cover based dynamic broadcast encryption, we will have to generate
the keys for all the subsets that are involved in SCn. The following property will
optimize efficiency, in the sense that a minimal number of existing users will be
impacted by a new member.

Definition 4 (Splitting Property). We say that a dynamic subset cover SC
has the splitting property, if the subset cover at time n+1 is composed of subsets
that either were part of the subset cover at time n, or contain the new user.
SCn+1 = SC′

n+1 ∪ SC′′
n+1, where SC′

n+1 ⊂ SCn and Si ∈ SC′′
n+1 ⇒ un+1 ∈ Si.

With this property, if a subset changes, it is either removed, or it contains un+1.
Then only sets with the new user need new key generation, which is a minimal
requirement anyway.

3.3 SC-Based Decentralized Dynamic Broadcast Encryption

We first assume we have a dynamic subgroup key exchange SKE that is com-
patible with our dynamic subset-cover structure. It means that for any n, the
subgroup key exchange provides keys for all the subsets S in SCn. We will later
instantiate such a dynamic subgroup key exchange for some dynamic subset-
cover structures.

Let us recall that the SC-based broadcast encryption [24] consists in encrypt-
ing the same message under the keys of all the subsets that cover the target set.
Since one of our goals is to achieve the highest security level, adaptive chosen-
ciphertext security, any modification of the description of the target set or one
of the ciphertexts in the list should make the global ciphertext invalid, otherwise
the scheme is somewhat malleable, and thus insecure against chosen-ciphertext
attacks. We will add a MAC to bind the target header and the ciphertexts to-
gether. A similar approach has been used by [6, 16]. Instead of a master secret
key, our scheme needs only a public register Reg to keep track of the users
currently enrolled in the system and their public keys.

We first present in details our construction, and then state the security of
the construction. It is important to remember that the subgroup key exchange
scheme is only assumed to be passively secure, meaning that the protocol requires
authenticated channels. This can be achieved in several ways that we will not
discuss here. Because the subset cover is a fixed part of the protocol and defines
the subsets for each number of users, and we assume that the number of users
in the system is always known, the number of a new user and the subsets he
belongs to can be computed deterministically by all users. Meta-issues like trust
between users and how they should agree on which users to allow into the group
are beyond the scope of this paper.
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Definition 5 (dBE). Let PKE be a PKE, MAC a MAC, F : K → R a pseudo-
random generator, SC a dynamic subset-cover, and SKE a dynamic subgroup key
exchange compatible with SC with keys in K. Our Broadcast Encryption Scheme
is defined as follows.

– Setup(1k):
1. Run PKE .Setup(1k) to get paramPKE ;
2. Run SKE .Setup(1k) to get paramSKE ;
3. Publish param = (paramPKE , paramSKE).

– KeyGen(param, Un), for some integer n:
1. Run SKE .KeyGen(paramSKE , Un) to get Reg; Each user u ∈ Un gets as

output of the protocol the proto-keys ptS for all subsets S he belongs to
according to SC. The decryption key dku consists of all these ptS.

2. He computes (dkS , ekS) ← PKE .KeyGen(paramPKE ;F(ptS)), where we
use the PRG to generate from the proto-key the random coins of the key
generation algorithm;

3. All the encryption keys ekS are published as EK;
4. The decryption keys dkS can be either stored in dku for users u ∈ S, or

deleted since they can be recomputed;
– Join(v, {u(dku)}u∈Un ,Reg,EK):

1. Run SKE .Join(v, {u(dku)}u∈Un ,Reg) to get the new Reg;
2. Each user u does as above to compute dkS, ekS and dku. Note that

granted the splitting properties, only dkS, and thus ekS , for S that con-
tain v are affected;

– Encaps(EK,Reg, S):
1. From the target set S, generate the partition L with S = ∪LSi;
2. Generate a session key Ke and a MAC key Km;
3. For each subset i ∈ L, generate ci = PKE .Encrypt(ekSi ,Ke||Km);
4. Compute σ = MAC.GenMac(Km, S||(ci)i∈L);
5. Output Ke and H = ((ci)i∈L, σ).

– Decaps(dku, S,H):
1. If u ∈ S, then there is a unique i such that u ∈ Si, and then dku allows

to derive dk = dkSi ;
2. Extract Ke||Km = PKE .Decrypt(dk, ci);
3. Check if σ is a valid MAC under key Km;
4. In case of validity, output Ke, otherwise output ⊥.

The scheme is a correct dynamic broadcast encryption scheme, because of the
correctness of the basic primitives PKE , MAC and F , but also SKE .

Theorem 6. Let us consider the scheme BEPKE,MAC,F ,SKE from definition 5.
We define LN to be the total number of distinct subsets over all time periods
and N to be the maximal number of subsets necessary to cover any authorized
target set S in SCi for any i. If PKE is an IND-CCA-secure PKE, MAC is a
SUF-CMA-secure MAC, SKE is a IND-secure SKE, and F is a pseudo-random
generator, then this scheme is a forward-secure IND-ACCA-secure BE scheme:

Advind−acca
DBE (k, t,N, qC , qD) ≤ 2Advind

SKE(k, t, LN , LN ) + 3	NLNAdvind−cca
PKE (k, t, qD)

+ 2LNAdvprg
F (k, t) + 2Succsuf−cma

MAC (k, t, 1, qD).
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The variables LN and N depend on the type of subset cover used in the scheme.
For CS, LN is less than N logN (since at most logN sets change in each of the
at most N steps), and N is r log N

r , which is bounded by N/2 (the worst-case

ciphertext length). For SD, we have LN ≤ N log2N and N = 2r − 1. The
complete security proof can be found in the full version [25].

4 Tree-Based Subgroup Key Exchange

In this section, we define two subgroup key exchange protocols compatible with
the efficient tree-based methods defined in [24]. The tree-based methods are
special cases in the subset-cover framework, where the users are organized as
leaves in a binary tree, and the subsets Si can be described in terms of subtrees
of this tree.

Complete Subtree. We first review the static complete subtree (CS) structure for
N users {u0, . . . , uN−1}. For simplicity, we assume N = 2d, but the description
can be generalized to any N . All the users are leaves of the tree, and can be
seen as singletons S2d+i = {ui}, for i = 0, . . . , 2d − 1. Then, for i = 2d − 1 to 1,
Si = S2i ∪ S2i+1 which contains all the leaves below the node with index i.

Subset Difference. The subset difference (SD) method uses subsets Si,j = Si\Sj ,
where Si, Sj are defined as in the CS method, and Sj is a subtree of Si. All
sets Si from the CS tree are also contained in the SD method, because Si =
Sparent(i),sibling(i); S0 is included as a special set.

4.1 Static Tree Construction

Let us show how such subset-cover structures naturally give rise to subgroup
key exchange protocols. The main tools for our construction of the subgroup key
exchange are two primitives: a 2-party key exchange protocol KE that outputs
keys in KKE and a pseudo-random generator G : KKE → K×RKE .

Two users start from random coins in RKE , and run a key exchange protocol
KE .CommonKey in order to derive a secret value ck for the subset represented
by the node in the tree that is their parent. This common key ck is used as
the seed for the PRG G to derive the two secret keys, the proto-key pt ∈ K
and the random coins r ∈ RKE for the next key exchange at the level above.
Internal nodes thus involve “virtual” users. In summary, the tree is constructed
by executing KE .CommonKey, then computing G, at each level from the bottom
up. We derive generic instantiations of the complete subtree (CS) and subset
difference (SD) methods on binary trees described in [24].

CS Tree. We define the neighbour of user u with identifier i to be the user u′

with identifier i + 1 if i ≡ 0 mod 2, i − 1 else and its parent to be the user w
with identifier �i/2
. At round r, each (virtual) user u created in round r−1 has
a uniquely defined neighbour u′ and a parent w. If he does not, the protocol run
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is completed: we are either at the root of the tree, or the tree is not complete.
The users u and u′ have random coins ru and ru′ , which they use to run the KE
protocol, resulting in a common key ckw. From this common key, they derive the
proto-key of node w and the randomness for the virtual user w to participate in
the next round of key exchanges. The user with the smaller identifier then plays
the role of the virtual user w in the next round. As a consequence, for N users,
there are logN rounds. Round r involves N/2r−1 (virtual) users.

– KeyGen(Un): In round r, for r = 1, . . . , logn, the users u, u′ with parent w
at level (logn− r) proceed as follows:
1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw) ← G(ckw);
3. If u < u′, set u def

= w;

A similar construction is possible for the more efficient SD scheme. Due to lack
of space, we present this construction in the full version [25].

4.2 Dynamic Tree Construction

Dynamic CS. We define a join procedure for the CS tree described above. We
go from SCn to SCn+1 by taking the leaf u′ with the lowest distance to the root,
and if there are several with that property, the one with the lowest index. We
then replace it with an inner node w, to which we append both the leaf u′ and
the new user v. We note that the user identifiers will not be in the same order
as the node numbers in the tree.Then we replace the subsets Sj where j is an
ancestor of the new user with the new subsets. This ensures that our dynamic
CS scheme is forward-secure and has the splitting property of definition 4. The
CS key assignment is done as follows.

First the new user v derives a common key cw with its sibling u′. From this
common key, he derives the proto-key of node w and the randomness for the
virtual user w to participate in the next round of key exchanges. The user with
the smaller identifier then plays the role of w in the next round. This procedure
is repeated until the keys of all ancestors of v are recomputed.

– Join(v, Un) In the first round, set u
def
= v. In round r, for r = 1, . . . , log(n+1),

the user u with neighbour u′ and parent w at level (log(n+1)− r) proceeds
as follows:
1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw) ← G(ckw);
3. set u

def
= w, u′ def

= neighbour(w), w
def
= parent(w);

A similar construction is possible for the more efficient SD scheme. Due to lack
of space, we present this construction in the full version [25]. We state exactly
the security of the dynamic CS construction. Because of the similarities in the
construction, a similar result can be obtained for SD.
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Theorem 7. Let KE be an IND-secure KE scheme with session keys in KKE ,
and G : KKE → K × RKE be a PRG. Then our dynamic CS construction of a
SKE is IND-secure and

AdvindSKE(k, t,N, qT ) ≤ (N logN)
(
AdvindKE(k, t) + AdvprgG (k, t)

)
.

The full proof can be found in the full version [25].

4.3 Efficiency Properties

One of the main advantages of the NNL constructions [24] is the efficient re-
vocation with small ciphertext lengths (O(r logN/r) for CS, O(2r − 1) for SD)
which is immediately inherited in our public-key scheme. The decryption key is
the same length for CS, where each user has to store logN keys only, and longer
(O(N logN) for SD), where we cannot use the same key derivation.

In our scheme, for many instantiations of the 2-party key exchange, the pri-
vate part of the decryption key can even be constant-size: each user keeps his
secret random coins ri, which is enough to iteratively generate all the private
information from the public transcript of the key exchange protocols (stored in
Reg or in the public key). Then, granted the key exchange scheme and logN
public keys, each user can iteratively compute the decryption keys along the
path to the root of the tree, and it is in this sense that the user random coins
“contain” the keys used to decrypt, as required by the decapsulation algorithm.

Permanent Revocation. Because the length of the ciphertext for SC schemes
depends on the number of revoked users, it is desirable to be able to completely
remove users from a group. To permanently remove a user at leaf 2i, we remove
it and its sibling leaf 2i+ 1 and simply move the user at 2i+ 1 to be at node i
which becomes a leaf. The keys of the user now at i remain the same as his own
key before (at node 2i+1) and we thus have to update the keys of all subsets in
which the revoked user was a member. Concerning the security, it is easy to see
that the user 2i, not having the key of the user 2i + 1, can not learn anything
about the updated keys, and this ensures the forward secrecy.

The only problem we face is that we need to keep the tree balanced. Fortu-
nately, our constructions allow a re-organization of the tree in a very efficient
manner. Indeed, the tree could be maintained to be an AVL tree at low cost [4].
Whenever a user leaves the system and makes the tree unbalanced, by using
logN rotations, we can re-balance the tree. Note that a rotation needs logN
update operations at worst, so the total cost for a re-balancing is just log2N
update operations at worst.

Merging Groups. Instead of joining a single user, we can also efficiently merge
two existing groups by executing the key exchange protocol for their root nodes.
This will allow every user in the two groups to compute the keys of the new root
node.
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5 Concrete Instantiations

We now give two instantiations of our scheme. The first one is probably the sim-
plest possible case, and achieves IND-ACPA-security under the DDH-assumption.
We use the Diffie-Hellman protocol [13] as our KE (where the users publish gx

and gy from their random coins x and y, and get gxy as common key) and El-
Gamal [17] as the PKE where ek = gdk, for a random scalar dk). A similar idea
can be found in [21], where the authors use a group key exchange protocol on a
DH-tree. Because the random coin spaces of both protocols are identical, when
we run both in the same group G of order q (scalars in Zq), if we only want
to prove IND-ACPA-security, we can identify dk with the random coins for the
key exchange, and thus ek is part of the transcript of the key exchange protocol,
leaving us with a single key pair for both schemes. There are several alternatives
for the PRG, the simplest one being a hash function modeled by a random ora-
cle, to extract dk ∈ Zq from the proto-key pt ∈ G. But we can avoid it, and even
any computational assumption, by using a deterministic randomness extractor,
as described in [9, Th. 7], that is a bijection and thus a perfect generator:

Definition 8. If p = 2q + 1, and G is defined as the sub-group of the squares
in Z∗

p, then ord(G) = q and f is a bijection from G onto Zq: f(x) = x (if x ≤
q) or p− x (if x > q).

The second instantiation is more involved. To achieve IND-ACCA-security, we use
Cramer-Shoup encryption [10] as our PKE. Because the keys in Cramer-Shoup
are larger, our KE is a 3-to-8 parallel Diffie-Hellman, where we use public and
private keys consisting of three elements each to generate a shared key consisting
of eight elements, which allows us to generate additional pseudo-randomness in
each step. Our PRG is an embedding function G8 → Z3

q × Z5
q that applies the

above function f to all components. The first part in Z3
q will be used again as

random coins for the key exchange, whereas the second part in Z5
q leads to the

Cramer-Shoup decryption key. To counter malleability of our scheme, we also
need a SUF-CMA-secure MAC scheme. As the first scheme, this one relies only
on the DDH assumption.

When using the Cramer-Shoup PKE, the decryption key of node i is the tuple
dki = (vi, wi, xi, yi, zi), the corresponding encryption key eki is (Xi, Yi, Hi) =
(gxihvi , gyihwi , gzi). We need to generate more pseudo-randomness than before,
so we define a new key exchange that is essentially a parallel Diffie-Hellman.

Definition 9 (3-8-DHKE). We define a modified Diffie-Hellman key exchange
scheme.

– User i draws ai, bi, ci
$← Zq, and sends (Ai, Bi, Ci) = (gai , gbi , gci);

– User j draws aj , bj, cj
$← Zq, and sends (Aj , Bj , Cj) = (gaj , gbj , gcj);

– Then ck = (A
aj

i , A
bj
i , A

cj
i , B

aj

i , B
bj
i , B

cj
i , C

aj

i , C
bj
i ).

This easily defines the CommonKey protocol. Its key indistinguishability follows
from the following theorem.
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Theorem 10 (3-8-DDH). Under the DDH assumption, it is infeasible to dis-
tinguish the 14-tuple
(ga, gb, gc, ga

′
, gb

′
, gc

′
, gaa

′
, gab

′
, gac

′
, gba

′
, gbb

′
, gbc

′
, gca

′
, gcb

′
) from a random 14-

tuple even when given g, and Adv3−8−ddh(k, t) ≤ 8 ·Advddh(k, t+11τexp), where
τexp is the time for an exponentiation.

Proof. We define tuple T0 to be the tuple as defined above, Ti as the same tuple
with all “combined” elements up to the i-th one replaced by a random element.
T8 is therefore a tuple of 14 random elements. Given a distinguisherA between Ti
and Ti+1, we construct a solver B for DDH as follows. Let (X,Y, Z) = (gx, gy, gz)
be a DDH challenge tuple. Let gde

′
be the i+1-st combined element. B chooses a

tuple Ti and replaces gd with X , ge
′
with Y , and gde

′
with Y . All other combined

elements can be constructed because at least one exponent is known, which takes
11 exponentiations (11τexp) time. If z = xy, T ′ = Ti, else T ′ = Ti+1 and the
theorem follows.

As a PRG we use the PRG of definition 8 on each component of the common
key. This gives us all the components we need to construct an IND-ACCA-secure
BE scheme, whose security is based only on the DDH-assumption. (The DDH-
assumption implies the existence of OWF, which is sufficient for MACs.)

Constant-Round Key Generation. While this construction achieves constant-size
secrets for the users and requires very little interaction during the Join-procedure,
it requires a logarithmic number of rounds for the subgroup key exchange pro-
tocol to complete. The Burmester-Desmedt group key exchange protocol [8] is,
like the above scheme, passively secure in the standard model under the DDH
assumption [20]. It requires only two rounds, and several instances could be run
in parallel to compute keys for all subsets in two rounds. This would however
require interaction between all the users each time a new users wants to join.

Acknowledgments. This work was supported by the French ANR-09-VERS-
016 BEST Project and the European Commission through the ICT Programme
under Contract ICT-2007-216676 ECRYPT II.

References

1. AACS Consortium. Advanced Access Content System (AACS) - introduction and
common cryptographic elements book. Revision 0.951 (September 2009),
http://www.aacsla.com/specifications/

2. Abdalla, M., Chevalier, C., Manulis, M., Pointcheval, D.: Flexible Group Key
Exchange with On-demand Computation of Subgroup Keys. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 351–368. Springer,
Heidelberg (2010)

3. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-Based Authenticated Key
Exchange in the Three-Party Setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

http://www.aacsla.com/specifications/


182 D.H. Phan, D. Pointcheval, and M. Strefler

4. Adelson-Velskii, G., Landis, E.M.: An algorithm for the organization of informa-
tion. Proceedings of the USSR Academy of Sciences 146, 263–266 (1962)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997, pp. 394–403. IEEE Computer Society Press
(October 1997)

6. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

7. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke sys-
tem. In: ACM CCS, pp. 211–220. ACM (2006), Full version available at Cryptology
ePrint Archive http://eprint.iacr.org/2006/298

8. Burmester, M., Desmedt, Y.: A secure and scalable group key exchange system.
Inf. Proc. Letters 94(3), 137–143 (2005)

9. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented
Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006),
http://eprint.iacr.org/2005/061

10. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ci-
phertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

12. Delerablée, C., Paillier, P., Pointcheval, D.: Fully Collusion Secure Dynamic Broad-
cast Encryption with Constant-Size Ciphertexts or Decryption Keys. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info.
Theory 22(6), 644–654 (1976)

14. Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

15. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 100–115. Springer, Heidelberg (2002), http://eprint.iacr.org/2003/095

16. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

18. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

19. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with
Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009), http://eprint.iacr.org/2008/268

20. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. Jour-
nal of Cryptology 20(1), 85–113 (2007)

21. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. on
Inf. Systems Security 7(1), 60–96 (2004)

22. Kurnio, H., Safavi-Naini, R., Wang, H.: A Group Key Distribution Scheme with
Decentralised User Join. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002.
LNCS, vol. 2576, pp. 146–163. Springer, Heidelberg (2003)

http://eprint.iacr.org/2006/298
http://eprint.iacr.org/2005/061
http://eprint.iacr.org/2003/095
http://eprint.iacr.org/2008/268


Decentralized Dynamic Broadcast Encryption 183

23. Manulis, M.: Group Key Exchange Enabling On-Demand Derivation of Peer-to-
Peer Keys. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 1–19. Springer, Heidelberg (2009),
http://www.manulis.eu/pub.html

24. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001); Full version available at Cryptology ePrint Archive at
http://www.cs.brown.edu/~anna/research.html

25. Phan, D.H., Pointcheval, D., Strefler, M.: Decentralized dynamic broadcast en-
cryption. Cryptology ePrint Archive, Report 2011/463 (2011),
http://eprint.iacr.org/

26. Phan, D.H., Pointcheval, D., Strefler, M.: Security Notions for Broadcast Encryp-
tion. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 377–394.
Springer, Heidelberg (2011)

27. Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

28. Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric Group Key
Agreement. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 153–170.
Springer, Heidelberg (2009)

29. Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Farràs, O.: Bridging Broad-
cast Encryption and Group Key Agreement. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 143–160. Springer, Heidelberg (2011)

30. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: Id-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In:
ACM CCS 2004, ACM (2004), http://www.cs.brown.edu/~anna/research.html

http://www.manulis.eu/pub.html
http://www.cs.brown.edu/~anna/research.html
http://eprint.iacr.org/
http://www.cs.brown.edu/~anna/research.html


Time-Specific Encryption

from Forward-Secure Encryption

Kohei Kasamatsu1, Takahiro Matsuda2,�, Keita Emura3,
Nuttapong Attrapadung2, Goichiro Hanaoka2, and Hideki Imai1

1 Chuo University, Japan
{kasamatsu-kohei,h-imai}@imailab.sakura.ne.jp

2 National Institute of Advanced Industrial Science and Technology, Japan
{t-matsuda,n.attrapadung,hanaoka-goichiro}@aist.go.jp

3 National Institute of Information and Communications Technology, Japan
k-emura@nict.go.jp

Abstract. Paterson and Quaglia (SCN 2010) proposed the concept of
time-specific encryption (TSE) and its efficient constructions. TSE is a
type of public key encryption with additional functionality where an en-
cryptor can specify a suitable time interval, meaning that the ciphertexts
may only be decrypted within this time interval. In this work, we propose
a new methodology for designing efficient TSE scheme by using forward-
secure encryption (FSE), and based on this methodology, we present a
specific TSE scheme using Boneh-Boyen-Goh FSE, and a generic con-
struction from any FSE. Our proposed TSE schemes are practical in all
aspects with regard to computational costs and data sizes. The sizes of
the ciphertext and the public parameter in our schemes are significantly
smaller than those in previous schemes in an asymptotic sense.

1 Introduction

In SCN 2010, Paterson and Quaglia proposed the concept of time-specific en-
cryption (TSE), and showed its efficient constructions [22]. TSE is a class of
public key encryption (PKE) with additional functionality where an encryp-
tor can specify a suitable time interval such that the ciphertexts may only be
decrypted within this time interval. Such an encryption scheme is useful in appli-
cations where it is necessary to ensure that the receiver can recover the plaintext
within only a specific time interval, e.g. in electronic sealed-bid auctions.

In this paper, we propose a novel methodology for the construction of TSE
schemes, and provide practical constructions based on our methodology. We
show that forward-secure encryption (FSE) [1,7] is a powerful building block
for designing efficient TSE schemes compared to the previous methodologies
[22], which were based on identity-based encryption (IBE) [24,5] and broadcast
encryption (BE) [15,6]. Based on our methodology, new TSE schemes can be
obtained that are practical in terms of computational costs and data sizes.

In the remaining parts of this section, we provide a review of TSE and discuss
our results in detail.
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1.1 Time-Specific Encryption

In a typical scenario where TSE is used, a semi-trusted agent called a time-server
publishes a global system parameter and periodically issues a time instant key
(TIK) that is used by each receiver to decrypt a ciphertext. In TSE, a sender
can specify any interval (decryption time interval, DTI) [tL, tR] when encrypt-
ing a plaintext M to form a ciphertext c, where tL and tR denote the start and
end points of the DTI, respectively, and a receiver can decrypt the ciphertext if
the receiver is in possession of the TIK SKt for some t with t ∈ [tL, tR]. This
functionality seems to be a natural extension of that of timed-release encryp-
tion (TRE) [20,8,9,12,19], but interestingly, it is not easy to construct TSE by
straightforward modifications of existing TRE schemes.

Paterson and Quaglia presented elegant methods to efficiently achieve the
required functionality of TSE [22]. Specifically, they proposed two generic con-
structions of TSE where one is based on IBE, and the other is based on BE, and
instantiations of these schemes can yield significantly higher efficiencies than
those using straightforward modification of existing TRE. However, as shown in
Table 1 (in Sect. 5), these schemes are still not very efficient in some aspects,
and it is thus necessary to explore other solutions which can overcome their (po-
tential) shortcomings. In particular, if we assume that the lifetime of the global
system parameter is divided into T time periods, then the size of a ciphertext in
the generic construction from IBE may be linear in T , and the size of the global
system parameter in the construction from BE may also be linear in T . Because
T is generally a large value, this could be problematic in certain situations.

1.2 Our Contribution

In this work, we propose a new methodology for designing efficient TSE scheme
by using FSE. We consider this approach to be more promising than the previous
methods because of the similarity between the functionalities of TSE and FSE.
In fact, we can immediately produce a TSE scheme that allows only restricted
DTIs with tL = 0 by directly using FSE as it is. Based on this observation,
we give a specific (i.e. not generic) construction of TSE from an existing FSE
scheme1 by Boneh, Boyen, and Goh [4], and a generic construction that can
be used with any FSE scheme. Remarkably, these schemes can yield sufficiently
high efficiency in all aspects in terms of computational cost and data size, and
in particular, with regard to the evaluation items given in Table 1 (in Sect. 5),
the complexities of our proposed schemes are all at most poly-logarithmic in T ,
and are thus significantly smaller than O(T ) in the asymptotic sense. Also, our
specific construction is more efficient than the best-known instantiation from
our generic construction in all aspects (except for the computational cost for
decryption). However, our generic construction is still advantageous in the sense
that when a new construction is discovered, this then automatically results in a

1 This FSE scheme is obtained from the hierarchical IBE (HIBE) scheme in [4] via
the “HIBE-to-FSE” transformation by Canetti, Halevi, and Katz [7]. See Sect. 2.2.
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new TSE scheme via our generic construction, and this scheme may potentially
be more efficient than our specific construction.

Here, we give an overview of our basic ideas for construction of our proposed
schemes. As noted above, from FSE, we can immediately derive a TSE scheme
for restricted DTIs with tL = 0. This is based on the following observation:
in FSE, a decryption key is updated periodically, while the corresponding en-
cryption key is fixed, and more specifically, a decryption key for one particular
time period can be derived from another decryption key for any previous time
period, but not vise versa. Therefore, if a decryption key for one time period
is publicized, then all other decryption keys for subsequent time periods can
be generated from it. This exactly describes a TSE scheme for restricted DTIs
with tL = 0. Similarly to this construction, we can also derive another TSE
scheme for restricted DTIs with tR = T − 1, and it seems that we can also
obtain full-fledged TSE by considering multiple encryptions [27,13] of these two
restrictive TSE schemes. However, unfortunately, this idea does not immediately
work. Because, in this (insecure) TSE scheme, a decryption key for each time
period consists of the two independent decryption keys of the two underlying
restrictive TSE schemes, a malicious user can thus illegally generate decryption
keys for various time periods by combining these components (i.e. the decryp-
tion keys of the underlying restrictive TSE schemes) in multiple decryption keys.
In our proposed schemes, we overcome this technical hurdle by introducing the
following ideas: (1) in our specific construction, the two decryption keys of the
underlying restrictive TSE schemes are connected in an inseparable manner (by
using the algebraic property of the FSE scheme in [4]), meaning that it con-
sequently becomes impossible to generate an illegal decryption key from the
components of multiple decryption keys for the different time periods; and (2)
in our generic construction, we set up many underlying restrictive TSE schemes
(rather than using only two underlying schemes), and avoid the above attack by
using a combinatorial method proposed by Attrapadung et al. [2]. Because our
specific construction requires only two underlying restrictive TSE schemes, it
is more efficient than our generic construction, which requires many underlying
schemes. However, our generic construction does not depend on the algebraic
property of the underlying scheme and therefore can be constructed from any
FSE scheme.

1.3 Related Works

TSE was introduced as an extension of TRE, and thus we briefly describe TRE
here. TRE is a type of encryption system introduced by May [20] in 1993. In
TRE, a message can be encrypted in such a way that it cannot be decrypted (even
by a legitimate receiver who owns the decryption key for the ciphertext) until
the time (called the release-time) that was specified by the encryptor. TRE can
therefore be interpreted as TSE in which we can only use the most restricted type
of DTI [tL, tR] with tL = tR. Many practical applications and situations where
TRE schemes can be used have been considered, including sealed-bid auctions,
electronic voting, content predelivery systems, and on-line examinations.
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There are mainly two major approaches for realizing TRE. One approach is
the use of time-lock puzzles [23]. In this approach, a sender generates a cipher-
text which cannot be completely decrypted until the release-time in a receiver’s
environment, even if the receiver continues computing to decrypt the ciphertext
after it is received. This imposes a heavy computational cost on the receiver,
and it is difficult to precisely estimate the required time at which the receiver
recovers a message. (This approach is also unsuitable for TSE.)

The other approach uses a semi-trusted agent, called the time-server, which
periodically generates the time specific information needed to encrypt a message
and/or decrypt a ciphertext. Earlier TRE schemes [20,23] adopted a model in
which the time-server and the system users needed to interact.

Chan et al. [9] and Cheon et al. [10] proposed TRE schemes in which no
interaction between the time-server and users was required. Most of the TRE
schemes [8,18,11,21,12,19,14] that were proposed after these schemes [9,10], and
the TSE schemes of Paterson and Quaglia [22], follow this approach.

It should be noted that most of the previous TRE schemes that adopted
the time-server model of [9,10] are in fact public-key (or identity-based) TRE
schemes, which consider confidentiality against the time-server. In the model,
each receiver has its own secret key along with its corresponding public infor-
mation (either a public key or an identity), and when encrypting a message, the
encryptor specifies not only release time but also a receiver’s public information
to generate a receiver-specific ciphertext. We can also consider a “plain” ver-
sion of TRE in the time-server model in which each ciphertext is not specific to
any receiver and the ciphertext can be decrypted by anyone who receives the
time-specific information from the time-server. (In this model, the confidentiality
against the time-server is not considered.) This plain TRE can be realized easily
from any IBE by regarding an identity as a time. Indeed, most of the previous
public key TRE schemes mentioned above were realized by combining an IBE-
like primitive with a PKE-like primitive. The difference between these settings
(i.e. the “public key” setting and the “plain” setting) were explicitly considered
for TSE by Paterson and Quaglia [22]. For a more detailed explanation, see
Sect. 2.1.

2 Preliminaries

In this section, we formally introduce the definition of TSE, FSE, and bilinear
groups, and describe the decisional -weak Bilinear Diffie-Hellman Inversion (-
wBDHI) assumption.

Notation. Throughout this paper, we will consider time as a discrete set of time
periods, regarding these as integers between 0 and T − 1, where T represents
the number of time periods supported by the system. We denote by [tL, tR],
where tL ≤ tR, the interval containing all time periods from tL to tR inclusive.

“x
U←− y” denotes that x is chosen uniformly at random from y. x ← y denotes

x is output from y if y is an algorithm, or y is assigned to x otherwise. “PPT”
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denotes probabilistic polynomial time. We say that a function f(k) is negligible
(in k) if f(k) < 1/p(k) for any positive polynomial p(k) and all sufficiently
large k.

2.1 Time-Specific Encryption

As explained in the introduction, a TSE scheme is an extension of a TRE scheme
which supports decryption of ciphertexts with respect to DTI. Paterson et al.
[22] defined several settings for TSE, namely, plain TSE, public-key TSE, and
identity-based TSE. In the plain TSE setting, a ciphertext is not specified to
any user and any entity who obtains a TIK corresponding to the DTI of the
ciphertext can decrypt the ciphertext. The plain setting is mainly introduced in
order to be used as building blocks for TSE schemes for the other two settings
(though a plain TSE scheme itself might have some interesting applications).
In public-key and identity-based TSE settings, on the other hand, each user
(receiver) has its own secret key and either a public-key or an identity, and a ci-
phertext is made specific to a particular receiver using these public information.
Correspondingly, to decrypt a ciphertext, not only a TIK but also the receiver’s
secret key is now required. TSE schemes in the latter two settings provide confi-
dentiality even against a curious time-server. In this paper, we will only consider
the plain setting, which is because public-key (resp. identity-based) TSE scheme
with desirable security can be generically obtained by appropriately combining
a plain TSE scheme with a chosen-ciphertext secure PKE (resp. IBE) scheme
with the previously known methods for TRE schemes [10,21,19]. From here on,
when we just write “TSE”, we always mean “plain TSE”.

A TSE scheme is defined by the four algorithms (TSE.Setup, TSE.Ext, TSE.Enc,
TSE.Dec), which has the associated message space MSP . The four algorithms
are as follows: The setup algorithm TSE.Setup(1k, T ) takes a security param-
eter 1k and T ∈ N as input, and outputs a master public key MPK and
a master secret key MSK, where the TSE system supports time space T =
[0, T − 1]. The key extraction algorithm TSE.Ext(MPK,MSK, t) takes MPK,
MSK, and a time t ∈ T as input, and outputs a TIK SKt. The encryption
algorithm TSE.Enc(MPK, [tL, tR],M) takes MPK, a DTI [tL, tR] ⊆ T, and a
message M ∈ MSP as input, and outputs a ciphertext C. The decryption al-
gorithm TSE.Dec(MPK,SKt, C) takes MPK, SKt, and C as input, outputs
either a message M or the failure symbol ⊥. We require, for all k ∈ N, all
T ∈ N, all integers tL, tR, and t satisfying 0 ≤ tL ≤ t ≤ tR ≤ T − 1,
all (MPK,MSK) ← TSE.Setup(1k, T ), and all messages M ∈ MSP , that
TSE.Dec(TSE.Ext(MSK, t), TSE.Enc(MPK, [tL, tR],M)) =M .

Security. We review the security definition for a TSE scheme by Paterson et
al. [22]. This security requires that an adversary cannot gain any useful informa-
tion from a ciphertext under a DTI [tL, tR], if the adversary has no TIKs SKt

for t ∈ [tL, tR].
Formally, we say that a TSE scheme is IND-CPA secure if any PPT ad-

versary A has at most negligible advantage (in the security parameter k) in



Time-Specific Encryption from Forward-Secure Encryption 189

the following game between a challenger C and A for any polynomial T : C runs
TSE.Setup(1k, T ) to generate a master public/secret key pair (MPK,MSP ), and
gives MPK to A. A can adaptively issue TIK extraction queries t1, t2, . . . . For
each TIK extraction query ti, C responds by running TSE.Ext(MPK,MSK, ti)
to generate a TIK SKti corresponding to ti, and then returns SKti to A.
At some point A selects two challenge messages M0,M1 ∈ MSP and the
challenge DTI [tL, tR] ⊆ T with the restriction that ti �∈ [tL, tR] for all of
the previous TIK extraction queries ti that A made before the challenge. A
then sends (M0,M1, [tL, tR]) to C. C chooses a random bit b and computes
C∗ ← TSE.Enc(MPK, [tL, tR],Mb), and returns C∗ to A. A can continue to make
TIK extraction queries ti under the restriction ti �∈ [tL, tR], and C responds to
those as before. Finally, A outputs its guess b′ ∈ {0, 1} for b. The adversary A’s
advantage in the above game is defined as AdvCPA

TSE,A(k) = |Pr[b′ = b]− 1
2 |.

2.2 Forward-Secure Encryption

An FSE scheme has the property that the threat of key exposure is confined to
some span by updating the secret key at each time unit. This scheme realizes the
property by using the functionality that a receiver can update the previous secret
key dt−1 to the next secret key dt without interacting with any outside entity.
We provide a formal definition of FSE by following [7] but slightly customized
for our purpose.

An FSE scheme is defined by the four algorithms (FSE.Gen, FSE.Upd, FSE.Enc,
FSE.Dec), which has the associated message spaceMSP . The key generation al-
gorithm FSE.Gen(1k, N) takes a security parameter 1k and the total number of
time periods N as input, and outputs a public key pk and an initial secret key d0.
The key update algorithm FSE.Upd(pk, i, j, di) takes pk, an index i < N of a pre-
vious time period, an index j > i for the current time period, and a secret key di
(corresponding to the period i) as input, and outputs a secret key dj for the time
period j. The encryption algorithm FSE.Enc(pk, i,M) takes pk, i < N , and a mes-
sageM ∈ MSP as input, and outputs a ciphertext c. The decryption algorithm
FSE.Dec(pk, di′ , c) takes pk, di′ , and c as input, and outputs eitherM or a failure
symbol ⊥. We require, for all k ∈ N, all N ∈ N, all (pk, d0) ← FSE.Gen(1k, N), all
indices i ∈ [0, N − 1] (for specifying time periods), and all messagesM ∈ MSP ,
that FSE.Dec(pk, FSE.Upd(pk, 0, i, d0), FSE.Enc(pk, i,M)) =M .

We note that Canetti et al. [7] defined only the “sequential update” algorithm.
That is, in their syntax, the key update algorithm only allows an update from a
secret key di for the time period i to a key di+1 for the next time period. However,
for the sake of simplicity, we use the syntax in which the update algorithm allows
the “direct update”, so that FSE.Upd takes a key di for the time period i as input
and outputs the secret key dj as long as i < j. It is straightforward to see that the
direct update functionality can be generally achieved by the sequential update
algorithm of [7]. In addition, there are FSE schemes which support efficient
direct update algorithm (compared to running “sequential update algorithms
many times), such as the FSE scheme instantiated with the HIBE scheme by
Boneh et al. [4] via the HIBE-to-FSE transformation shown in [7].
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Security. We say that an FSE scheme is IND-CPA secure if any PPT algo-
rithm A has at most negligible advantage (in the security parameter k) in the
following game between a challenger C and A for any polynomial N : At the
beginning of the game A(1k, N) outputs the challenge time period j∗. C runs
FSE.Gen(1k, N) to generate a pair of a public key pk and an initial secret key
d0, runs dj∗+1 ← FSE.Upd(pk, 0, j∗ + 1, d0), and then gives pk and dj∗+1 to A.
A selects two challenge messages m0,m1 ∈ MSP , and sends m0,m1 to C. C
chooses a random bit b, computes c∗ = FSE.Enc(pk, j∗,mb), and returns c∗ to
A. Finally A outputs its guess b′ ∈ {0, 1} for b. The adversary A’s advantage in
the above game is defined as AdvCPA

FSE,A(k) = |Pr[b′ = b]− 1
2 |.

Note that in the above security game, the adversary is required to commit
to the time period to be attacked at the beginning of the game. While this
definition is weaker than the definition of [7], it suffices for our construction of a
TSE scheme from any FSE scheme that we will show in the following sections.

Transformations from Hierarchical IBE. There is a trivial construction of an
FSE scheme that supports N time periods from a hierarchical IBE (HIBE)
scheme that supports hierarchy with depth N , by interpreting a time period i in
FSE as a “chain” (1, . . . , i) of identities in HIBE. More specifically, for a secret
key for the time period t in FSE, we use a decryption key for the identity-vector
(1, · · · , i) in HIBE. To update a secret key for time period j to time period j > i,
one can run the derivation algorithm of the HIBE scheme to obtain a decryption
key for the identity-vector (1, · · · , j).

Another more sophisticated HIBE-to-FSE transformation is the binary tree-
based construction due to Canetti, Halevi, and Katz [7]. This construction has
the advantage in that to instantiate an FSE scheme with N time periods, a
building block HIBE only needs to support a hierarchy with depth logN .

The common feature of these HIBE-to-FSE transformations is that multi-
ple instances of FSE can virtually be instantiated so that they all share the
same public parameters, by regarding the top-level identities as the indices for
specifying an independent HIBE scheme, and then applying the HIBE-to-FSE
transformations to each HIBE scheme instantiated in the second (and lower)
level identity space. This trick will be used in our constructions of TSE.

Concrete Instantiation from the Boneh-Boyen-Goh HIBE Scheme [4]. In Fig. 1,
we review the instantiation of an FSE scheme, which we call the basic BBG-FSE
scheme, using the HIBE scheme by Boneh, Boyen, Goh (BBG HIBE) [4] via the
“chain”-style transformation explained above.

Looking ahead, the basic version of our TSE scheme in Sect. 3.2 is obtained
from the above basic BBG-FSE scheme, and our full TSE scheme in Appendix A
is based on the FSE scheme obtained from the HIBE-to-FSE transformation due
to Canetti et al. [7] (we call this FSE scheme full BBG-FSE ).
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FSE.GenBBG(1
k, N) :

α, β
U←− Zp; g, g2, h0, · · · , hN

U←− G

g1 ← gα; P ← e(gα, gβ); d0 ← gαβ

pk ← (g, g1, g2,h = (h0, · · · , hN ), P )
Return (pk, d0)

FSE.EncBBG(pk, i, σ,M) :
Parse pk as (g, g1, g2,h, P )

s
U←− Zp; C1 ← P s ·M ; C2 ← gs

C3 ← f(i,h, σ, g2)
s

Return C ← (C1, C2, C3)

FSE.DecBBG(di, C) :
Parse C as (C1, C2, C3)
Parse di as (D1, D2, · · · )
Return M ← C1·e(C3,D2)

e(C2,D1)

FSE.UpdBBG(pk, i, j, σ, di): (where j > i)
Parse pk as (g, g1, g2,h, P )

r
U←− Zp

If i = 0 then
dj ← (di · f(j,h, σ, g2)r, gr, hr

j+1, · · · , hr
N )

Else (i.e. i = 0)
Parse di as (a0, a1, bi+1, · · · , bN )

D0 ← a0 ·∏j
k=i+1 b

σN+k
k · f(j,h, σ, g2)r

D1 ← a1 · gr
D′

u ← bu · hr
u for all u ∈ [j + 1, T ]

dj ← (D0, D1, D
′
j+1, · · · , D′

T )
End If
Return dj

Fig. 1. Basic BBG-FSE: The FSE scheme obtained from the BBG HIBE scheme [4],
where f(i,h = (h0, · · · , hN), σ, b) = h2N+1

0 ·∏i
k=1 h

σN+k
k · b

For notational convenience, in Fig. 1, we describe the scheme so that the
encryption and update algorithms take an additional input σ ∈ {0, 1}. This bit
σ is used to instantiate two BBG-FSE schemes with N time periods under the
same public parameter: the first scheme uses the “ordinary” interval [0, N − 1],
and the second scheme uses the “shifted” interval [N, 2N − 1].

2.3 Decisional 	-wBDHI Assumption

We first recall bilinear groups. Let G and GT be groups of order p for some large
prime p (we assume that the size of p is implicitly determined by the security
parameter k), and let e : G × G → GT be an efficiently computable mapping.
We call a tuple (G,GT , e) bilinear groups, and e a bilinear map, if the following
two conditions hold: (Bilinear:) for all generators (g, h) ∈ G × G and a, b ∈ Zp,
we have e(ga, hb) = e(g, h)ab. (Non-degenerate:) for all generators g, h ∈ G, we
have e(g, h) �= 1.

Now we recall the decisional -wBDHI assumption (which is defined via the
so-called decisional -wBDHI∗ problem [4, Sect. 2.3]). Let  ∈ N. We say that
the decisional -wBDHI assumption holds in (G,GT , e) if for any PPT algorithm
A the following difference is negligible in the security parameter k:

|Pr[A(g, h, y1, · · · , y
, e(g, h)α
�+1

) = 0]− Pr[A(g, h, y1, · · · , y
,W ) = 0]|

where g, h
U←− G, α

U←− Zp, yi ← g(α
i), and W

U←− GT .

3 Concrete Construction from Specific FSE

In this section, we present our proposed TSE scheme based on a specific FSE
scheme obtained from the BBGHIBE scheme. Although the construction strongly
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depends on the algebraic structure of the underlying BBG-FSE scheme (thus it
is not a generic construction), it leads to an efficient TSE scheme compared to
TSE schemes derived from our generic construction in the next section.

3.1 The Idea of Our Construction

Before going into the description of the scheme, we give an intuitive explanation
of our strategy behind the proposed construction. As explained in Sect. 1.2,
TSE obtained by multiple encryption of two restrictive TSE schemes (which are
derived from FSE) is insecure. In this insecure TSE scheme, a TIK for each time
period consists of two independent decryption keys of underlying two restrictive
TSE schemes. A malicious user can illegally generate decryption keys for various
time period by combining components in multiple decryption keys. Here, observe
that such an attack is possible because these two restrictive TSE schemes are
instantiated independently.

Our idea for the proposed construction is to “connect” the secret keys from the
underlying two restrictive TSE schemes in an “inseparable” manner by using
the specific algebraic structure of the BBG-FSE scheme. Specifically, we divide
the master secret key information d0 = gαβ of the BBG-FSE scheme into two
shares gαβ+ξ and g−ξ in the 2-out-of-2 secret-sharing manner using a “blinding
factor” ξ. This blinding factor ξ is a randomness generated for each execution
of a TIK extraction algorithm. Intuitively, this ξ connects the secret keys from
the underlying restrictive TSE schemes, and thus an adversary cannot come up
with an illegal “virtual” TIK as above by combining multiple TIKs for time
periods that do not include the DTI. In order to make the decryption by the
above TIK possible, we appropriately modify the encryption algorithm so that
the underlying BBG-FSE-based TSE schemes (one with DTI for tL = 0 and
the other with DTI for tR = T − 1) use a common randomness s. Such use of
a common randomness is possible again due to the algebraic structure of the
BBG-FSE scheme.

For the sake of simplicity, in this section we only give the basic version of
our proposed construction whose public parameter size and TIK size are O(T )
and whose ciphertext size is constant. Our full TSE scheme, in which the public
parameter size is O(log T ) and TIKs size is O(log2 T ) by using binary tree struc-
tures inspired by the HIBE-to-FSE transformation of Canetti et al. [7], is given
in Appendix A. We stress that those proposed schemes share the same idea as
explained above, and we believe that the basic version of our proposed scheme
is helpful for understanding the full construction.

3.2 Basic Construction

Here, we give the basic version of our proposed TSE scheme. Let (G,GT , e) be
bilinear groups, and let T ∈ N be the number of time periods. Then we construct
the basic version of our TSE scheme as in Fig. 2.

As mentioned in Sect. 3.1, we combine two basic BBG-FSE schemes (from
Fig. 1) in which one of the schemes is regarded as a TSE scheme which allows
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TSE.Setup(1k, T ) :

(pk, d0) ← FSE.GenBBG(1
k, T )

g2,B
U←− G

Parse pk as (g, g1, g2,F ,h, P )
Parse h as (h0, · · · , hT )
MPK ← (g, g1, g2,F , g2,B ,h, P )
MSK ← d0
Return (MPK,MSK)

TSE.Ext(MPK,MSK, t) :
Parse MPK as

(g, g1, g2,F , g2,B,h, P )

ξ
U←− Zp

pkF ← (g, g1, g2,F ,h, P )
pkB ← (g, g1, g2,B ,h, P )
d0,F ← MSK · gξ = gαβ+ξ

d0,B ← g−ξ

dt+1,F

← FSE.UpdBBG(pkF , 0, t+ 1, 0, d0,F )
dT−t,B

← FSE.UpdBBG(pkB, 0, T − t, 1, d0,B)
SKt ← (dt+1,F , dT−t,B , t)
Return SKt

TSE.Enc(MPK, [tL, tR],M) :
Parse MPK as (g, g1, g2,F , g2,B ,h, P )

s
U←− Zp; pkF ← (g, g1, g2,F ,h, P )

pkB ← (g, g1, g2,B ,h, P )
(C1, C2, C3) ← FSE.EncBBG(pkF , tR + 1, 0,M ; s)
(C1, C2, C4) ← FSE.EncBBG(pkB, T − tL, 1,M ; s)
C5 ← [tL, tR]
Return C ← (C1, C2, C3, C4, C5)

TSE.Dec(MPK,SKt, C) :
Parse MPK as (g, g1, g2,F , g2,B ,h, P )
Parse C as (C1, C2, C3, C4, C5)
Parse SKt as (dt+1,F , dT−t,B, t)
pkF ← (g, g1, g2,F ,h, P )
pkB ← (g, g1, g2,B ,h, P )
CF ← (C1, C2, C3)
If t ∈ C5 then return ⊥
dtR+1,F

← FSE.UpdBBG(pkF , t+ 1, tR + 1, 0, dt+1,F )
dT−tL,B

← FSE.UpdBBG(pkB, T − t, T − tL, 1, dT−t,B)
M ′ ← FSE.DecBBG(dtR+1,F , CF )
Parse dT−tL,B as (R1, R2, · · · )
Return M ← M′·e(R2,C4)

e(R1,C2)

Fig. 2. The basic version of the proposed TSE scheme based on the BBG-FSE scheme

only DTIs with tR = T − 1, by introducing a blinding factor ξ in order to
construct a TSE scheme. More specifically, we set the initial key d0,F of the
TSE scheme for restricted DTIs with tL = 0 as gαβ+ξ which includes the blind
factor gξ, and the initial key d0,B of the TSE scheme for restricted DTIs with
tR = T − 1 as g−ξ which will remove the blinding factor, by using the above
mentioned method.

We would like the reader to notice that in Fig. 2, the scheme is described at
the cost of efficiency, so that it is easy to see that two basic BBG-FSE schemes
are combined by the blinding factor ξ as we explained above. For example, in the
encryption scheme, the ciphertext components C1 and C2 are computed twice
by running FSE.EncBBG from common randomness s. However, in practice, only
C4 needs to be computed in the second execution of FSE.EncBBG, which can be
done without calculating C1 and C2.

The security is guaranteed by the following theorem (the proof is given in the
full version of this paper).

Theorem 1. If the decisional (T + 1)-wBDHI assumption holds in (G,GT , e),
then the TSE scheme (which supports T time periods) constructed as in Fig. 2
is IND-CPA secure.
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4 Generic Construction from Any FSE

In Sect. 3 (and in Appendix A), we proposed an efficient construction of TSE
based on the BBG-FSE scheme, where it directly exploits the algebraic structure
of the BBG-FSE scheme. In this section, we describe a generic construction of
TSE from any FSE scheme in a black-box manner; nevertheless, it can be shown
to be far more efficient compared to trivial generic constructions.

The intuition for our construction is as follows. Recall that we have observed
that any FSE scheme already implies a TSE scheme with restricted interval types
of the form [A, ∗] ⊆ [A,B], where ∗ denotes arbitrary value where the encryptor
would specify, and A,B are a-priori fixed values. By taking the key derivation
in the backward manner, FSE also implies another TSE scheme with restricted
interval types of the form [∗, D] ⊆ [C,D], where C,D are fixed. Our purpose
is to construct a TSE scheme that allows any intervals [∗, ∗] ⊆ [0, T − 1]. The
idea is then to pre-define a collections S of allowed intervals to only consist of
these restricted types in such a way that for any interval we can “cover” it by
using these predefined intervals. That is, for any [x, y] ⊆ [0, T − 1], there exist
some S1, . . . , Sj ∈ S such that [x, y] = S1 ∪ · · · ∪ Sj . This is exactly the idea
of subset-cover broadcast encryption, albeit in our case we deal only with sets
that are intervals. We will therefore utilize a subset-cover system which permits
efficient covering for interval sets. The subset-cover system proposed in [2] allows
exactly this: for any interval, we can cover by using at most two predefined sets
(i.e., j ≤ 2 in the above union). Hence, the ciphertext size of the resulting TSE
will be only at most twice of that of FSE. In the following subsection, we first
capture TSE schemes that allow restricted types of the form [A, ∗] and [∗, D] as
future TSE and past TSE, respectively.

4.1 Future TSE and Past TSE

In this subsection, we introduce two special classes of TSE, which we call future
time-specific encryption (FTSE) and past time-specific encryption (PTSE), that
we will use as “intermediate” building blocks for our generic construction of
a TSE scheme from an FSE scheme. Using FTSE and PTSE, the description
of our generic construction can be simplified. We also show how to generically
construct these schemes from an FSE scheme.

FTSE (resp. PTSE) is a special class of a TSE scheme in which any cipher-
text for time t′ can be decrypted by using a TIK for time t as long as t′ ≥ t
(resp. t′ ≤ t). FTSE (resp. PTSE) can be viewed as a TSE scheme whose start-
ing time tL (resp. closing time tR) of a DTI is always fixed to be 0 (resp. T −
1). An FTSE scheme (resp. a PTSE scheme) consists of the four algorithms
(FTSE.Setup, FTSE.Ext, FTSE.Enc, FTSE.Dec) (resp. (PTSE.Setup, PTSE.Ext, PTSE.
Enc, PTSE.Dec)) that are defined in the same way as those for a TSE scheme, with
the following exceptions: Since the starting time tL (resp. the closing time tR)
of a DTI is always fixed to be 0 (resp. T −1), the encryption algorithm FTSE.Enc
(resp. PTSE.Enc) does not need to take tL (resp. tR) as an input, and thus we
denote by “c← FTSE.Enc(mpk, tR,M)” (resp. “c← PTSE.Enc(mpk, tL,M)”) the
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process of generating a ciphertext c of a plaintextM that can be decrypted using
a TIK generated by FTSE.Ext(msk, t) (resp. PTSE.Ext(msk, t)) with t ∈ [0, tR]
(resp. t ∈ [tL, T − 1]). Furthermore, in order to stress that a TIK for time t
generated by the extraction algorithm can be used to decrypt all ciphertexts
corresponding to time later than t (resp. time t or earlier), a TIK generated by
FTSE.Ext(msk, t) (resp. PTSE.Ext(msk, t)) is denoted by “sk≥t” (resp. “sk≤t”).

Correctness. As a correctness requirement of an FTSE scheme, we require that
for all k ∈ N, T ∈ N, all (mpk,msk) ← FTSE.Setup(1k, T ), all integers t
and tR such that 0 ≤ t ≤ tR ≤ T − 1, and all plaintexts M , it holds that
FTSE.Dec(FTSE.Ext(msk, t), FTSE.Enc(mpk, tR,M)) =M .

In a similar way, as a correctness requirement of a PTSE scheme, we require
that for all k ∈ N, T ∈ N, all (mpk,msk) ← PTSE.Setup(1k, T ), all integers
t and tL satisfying 0 ≤ tL ≤ t ≤ T − 1, and all plaintexts M , it holds that
PTSE.Dec(PTSE.Ext(msk, t), PTSE.Enc(mpk, tL,M)) =M .

Security Definitions. IND-CPA security of an FTSE scheme and that of a PTSE
scheme is defined analogously to that of a TSE scheme.

Generic Constructions. We can construct an FTSE scheme by using an FSE
scheme (FSE.Gen, FSE.Upd, FSE.Enc, FSE.Dec) as shown in Fig. 3. Since the fol-
lowing theorem is straightforward from the security and the functionality of an
FSE scheme, we omit the proof.

Theorem 2. If the building block FSE scheme is IND-CPA secure, then the
FTSE scheme constructed as in Fig. 3 is IND-CPA secure.

We can also easily obtain a PTSE scheme from an FTSE scheme by “reversing”
the role of time in FTSE, i.e., regarding a time t in an FTSE scheme as a time
T−t−1 for a PTSE scheme. This means that we also have a generic construction
of a PTSE scheme from an FSE scheme. More specifically, we identity a TIK sk≤t

with a TIK sk≥T−t−1 of an FTSE scheme. Furthermore, PTSE.Enc(mpk, t′,M)
internally runs FTSE.Enc(mpk, T − t′ − 1,M). Since the construction we explain
here is fairly intuitive and straightforward, we omit the detailed description of
the construction.

4.2 Generic Construction

Here, we show our generic construction of a TSE scheme from an FSE scheme.

Notation for Binary Trees. Let λ ∈ N, and let T = 2λ. Our generic construction
uses a binary tree as its internal structure, and we introduce several notation
regarding them. Consider the complete binary tree with 2λ+1 − 1 nodes. We
number all the internal nodes (i.e. nodes that are not leaves) from the root in
the breast first order (from left to right in numerical order), with the root node
being 1. Furthermore, we also put 0 to the root node for convenience (and thus
the root node has indices 0 and 1 at the same time). We will later put numbers
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FTSE.Setup(1k, T ) :

(pk, d0) ← FSE.Gen(1k, T )
Return (mpk,msk) ← (pk, d0)

FTSE.Ext(msk, t) :
dt ← FSE.Upd(pk, 0, t,msk)
Return sk≥t ← (t, dt)

FTSE.Enc(mpk, tR,M) :
c ← FSE.Enc(mpk, tR,M)
Return C ← (tR, c)

FTSE.Dec(sk≥t, C) :
Parse sk≥t as (t, dt) and C as (tR, c)
If tR < t then return ⊥
dtR ← FSE.Upd(pk, t, tR, dt)
Return FSE.Dec(dtR , c)

Fig. 3. Generic construction of FTSE from FSE

also for leaves, and thus in order not to mix up with them, we denote by INT

the set of indices for the internal nodes. Namely, INT = {0, 1, . . . , 2λ − 1}.
Let LEFT and RIGHT be subsets of INT defined as follows: 0 ∈ LEFT, 1 ∈ RIGHT,

and for any remaining node v ∈ INT\{0, 1}, if v is the left node of its parent
node, then v ∈ LEFT, otherwise v ∈ RIGHT.

We next number the leaves from left to right in numerical order, with the
leftmost node being 0 (and thus the rightmost being T − 1). For v ∈ INT, let
v (resp. rv) be the index of the leftmost (resp. rightmost) leaf node that is
a descendant of v. That is, we have v = (v mod 2depth(v)) · 2λ−depth(v) and
rv = v + 2λ−depth(v) − 1, where depth(v) is defined as the “depth of the node
with the root node being depth 0”.

For v ∈ INT, we define the corresponding set Sv of indices of leaves by:

Sv =

⎧⎪⎨⎪⎩
(0↽ (2λ − 1)) If v = 0

((v + 1)↽ rv) If v ∈ LEFT\{0}
(v ⇀ (rv − 1)) If v ∈ RIGHT

where we use the followng notations: (i ⇀ j) := {i, i + 1, . . . , j}, (i ↽ j) :=
{j, j − 1, . . . , i}, (i ⇀ i) := {i}, and (i ↽ i) := {i}.

Finally, for v ∈ INT, we let ̃v and r̃v be the smallest index and the largest
index in the set Sv, respectively.

Generic Construction. For simplicity, our TSE scheme is parameterized by
an integer λ ∈ N and supports the total number of time periods T = 2λ.
Let (FTSE.Setup, FTSE.Ext, FTSE.Enc, FTSE.Dec) be an FTSE scheme and let
(PTSE.Setup, PTSE.Ext, PTSE.Enc, PTSE.Dec) be a PTSE scheme. Using these as
building blocks, we construct a TSE scheme as in Fig. 4. In the construction, we
use the following notations: For each DTI [tL, tR], we define the corresponding
left-index vL ∈ LEFT and the right-index vR ∈ RIGHT, that determine which in-
stance(s) of the building block FTSE and/or PTSE schemes are used to encrypt
a message, by:

vL = min{v ∈ LEFT : r̃v ∈ [tL, tR]}

vR = min{v ∈ RIGHT : ̃v ∈ [tL, tR]}
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TSE.Setup(1k, T ) :
For v ∈ LEFT:

(mpkv,mskv) ← PTSE.Setup(1k, |Sv |)
For v ∈ RIGHT:

(mpkv,mskv) ← FTSE.Setup(1k, |Sv |)
MPK ← {mpkv}v∈INT

MSK ← {mskv}v∈INT

Return (MPK,MSK)

TSE.Enc(MPK, [tL, tR],M) :
vL ← min{v ∈ LEFT : r̃v ∈ [tL, tR]}
vR ← min{v ∈ RIGHT : 	̃v ∈ [tL, tR]}
If depth(vL) = depth(vR) then

If vL = 0 then

cL ← PTSE.Enc(mpkvL , tL − 	̃vL ,M)
cR ← ∅

Else (i.e. vL = 0) then

cL ← PTSE.Enc(mpkvL , tL − 	̃vL ,M)

cR ← FTSE.Enc(mpkvR , tR − 	̃vR ,M)
End If

Else If depth(vL) < depth(vR) then

cL ← PTSE.Enc(mpkvL , tL − 	̃vL ,M)
cR ← ∅

Else (i.e. depth(vL) > depth(vR))
cL ← ∅
cR ← FTSE.Enc(mpkvR , tR − 	̃vR ,M)

End If
Return C ← ([tL, tR], cL, cR)

TSE.Ext(MSK, t) :
Let NODES(t) = {v ∈ INT : t ∈ Sv}
For v ∈ LEFT ∩ NODES(t):

sk
(v)

≤t−�̃v
← PTSE.Ext(mskv, t− 	̃v)

SKt,L ← {sk(v)

≤t−�̃v
}v∈LEFT∩NODES(t)

For v ∈ RIGHT ∩ NODES(t):

sk
(v)

≥t−�̃v
← FTSE.Ext(mskv, t− 	̃v)

SKt,R ← {sk(v)

≥t−�̃v
}v∈RIGHT∩NODES(t)

SKt ← (t, SKt,L, SKt,R)
Return SKt

TSE.Dec(SKt, C) :
Parse SKt as (t, SKt,L, SKt,R)
Let NODES(t) = {v ∈ INT : t ∈ Sv}
Parse SKt,L as {sk(v)

≤t−�̃v
}v∈LEFT∩NODES(t)

Parse SKt,R as {sk(v)

≥t−�̃v
}v∈RIGHT∩NODES(t)

Parse C as ([tL, tR], cL, cR)
If parsing fails or t /∈ [tL, tR]

then return ⊥
vL ← min{v ∈ LEFT : r̃v ∈ [tL, tR]}
vR ← min{v ∈ RIGHT : 	̃v ∈ [tL, tR]}
v ← min(NODES(t) ∩ {vL, vR})
If v = ∅ then return ⊥
If v ∈ LEFT then

return PTSE.Dec(sk
(v)

≤t−�̃v
, cL)

Else (i.e. v ∈ RIGHT)

return FTSE.Dec(sk
(v)

≥t−�̃v
, cR)

End If

Fig. 4. Generic construction of TSE from FTSE and PTSE

Furthermore, for each t ∈ [0, T − 1], we define the set NODES(t) of internal nodes
that determines which instance(s) of the building block FTSE and PTSE schemes
are used to generate a TIK (for a TSE) in the extraction algorithm, by:

NODES(t) = {v ∈ INT : t ∈ Sv}

Our scheme is IND-CPA secure assuming that the underlying FTSE and PTSE
schemes are both IND-CPA secure (the proof is given in the full version). Since
Fig. 4 might look slightly complicated, in Appendix B we show the instantiation
of our TSE scheme in case T = 23 (see also Fig. 5 there).

Theorem 3. If the FTSE scheme and the PTSE scheme are both IND-CPA
secure, then the proposed TSE scheme constructed as in Fig. 4 is IND-CPA
secure.
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Table 1. Efficiency comparison for TSE schemes. T is the size of the time space. |g|
denotes the length of a group element. |gT | denotes the length of an element in GT . For
[a, b, c], a denotes the number of pairings, b denotes the number of exponentiations, c
denotes the number of multiplications.

Public Ciphertext TIK Size Encryption Decryption
Param. Size Overhead Cost Cost

Ours in O(log T ) |g| 3|g| O(log2 T )|g| [0, O(log T ), [3, O(log T ),
Appendix A + |gT | + |Zp| O(log T )] O(log T )]

Ours §4 O(log T ) |g| 4|g| O(log3 T )|g| [0, O(log T ), [2, O(log T ),
([4]+[7]+§4.3) + |gT | + |Zp| O(log T )] O(log T )]

PQ-IBE [22] 4|g|+ |gT | O(T )|g| O(log T )|g| [0, O(T ), [2, 0, 2]
+ Waters [25] + |Zp| O(T )]

PQ-IBE [22] 3|g|+ |gT | O(T )|g| O(log T )|g| [0, O(T ), [1, 0, 2]
+ Gentry [16] + O(T )|gT | + O(log T )|Zp| O(T )]

PQ-BE [22] O(T )|g| 8|g|+ 2|tT | |g|+ |Zp| [0, 5, O(T )] [2, 3, O(T )]
+ GW [17] + |gT | [0, 5, O(T )] [2, 3, O(T )]

PQ-BE [22] O(T )|g| 2|g| |g|+ |Zp| [0, 2, O(T )] [2, 0, O(T )]
+ BGW1 [6] + |gT | [0, 2, O(T )] [2, 0, O(T )]

PQ-BE [22] O(
√
T )|g| O(

√
T )|g| |g|+ |Zp| [0, O(

√
T ), [2, 0,

+ BGW2 [6] + |gT | O(T )] O(
√
T )]

PQ-BE [22] O(T )|g| 8|g| O(T )|g|+ |Zp| [0, 12, O(T )] [9, 0, O(T )]
+ Waters [26] + |gT | [0, 12, O(T )] [9, 0, O(T )]

4.3 Extension Using HIBE

The proposed generic construction shown in Sect. 4.2 uses T independent in-
stances of the underlying FSE scheme (assuming that the building block FTSE
and PTSE schemes are instantiated with an FSE scheme), and thus the size of
the master public key MPK grows linearly in the total number of time periods
T . However, if the underlying FSE scheme is furthermore instantiated from an
HIBE scheme, we can use the trick of sharing the public parameter (by using the
first-level identities for indices for each “independent” FSE scheme) explained in
the second last paragraph in Sect. 2.2. In this case, the size of the master public
key of the constructed TSE scheme does not depend on the size of the time space
|T|, but becomes identical to that of the underlying HIBE scheme. Using this
trick with the full BBG-FSE (obtained via the HIBE-to-FSE transformation of
[7]), we still obtain a TSE scheme whose parameter size and computational costs
are all polylogarithmic in the number of time periods T .

5 Comparison

Table 1 shows an efficiency comparison among TSE schemes. We compare our
scheme inAppendix Aand an instantiation obtained fromour generic construction
in Sect. 4 in which the full BBG-FSE scheme is used together with the extension
explained in Sect. 4.3, with the existing TSE schemes. Here, for the existing TSE
schemes, we choose the concrete instantiations of TSE schemes obtained from the
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generic construction from IBE schemes (denoted “PQ-IBE”) and the generic con-
struction from BE schemes (denoted “PQ-BE”) both proposed by Paterson and
Quaglia [22]. For concrete IBE schemes, we choose the schemes byWaters [25] and
by Gentry [16], and for concrete BE schemes we choose the schemes by Boneh,
Gentry, and Waters [6] (BGW1 was proposed in Sect. 3.1 of [6], and BGW2 was
proposed in Sect. 3.2 of [6]), by Boneh and Gentry [17], and Waters [26].

As seen in Table 1, our schemes yield both better computational cost for
encryption and short ciphertext length than those of the PQ-IBE schemes. In
particular, our schemes have constant ciphertext overhead, while the PQ-IBE
schemes have the ciphertext overhead of O(T ) group elements. Compared to
the PQ-BE schemes, our schemes are superior in the size of public parameter,
i.e. our schemes have the public parameter size of O(log T ), while the PQ-BE
schemes have the public parameter size of O(T ). Comparing the scheme in Ap-
pendix A and the instantiation from the generic construction in Sect. 4, the
former scheme has shorter TIK size, i.e. the scheme in Appendix A has the
TIK size of O(log2 T ) and the scheme in Sect. 4 has the TIK size of O(log3 T ).
Furthermore, most notably, both of our schemes have at most poly-logarithmic
size/cost in all measures in the table, which has not been achieved by any of
the existing TSE schemes. Therefore, we see that our schemes have a feature
which has not been achieved by all of the previous TSE schemes, and due to our
results, a system designer can choose the parameters regarding TSE schemes
that he/she wants to optimize more flexibly. We believe that our results will
potentially broaden the applicability of TSE.

Lastly, we remark that both of our TSE schemes in Table 1 have the reduc-
tion costs of at least O(T 2), while the PQ-IBE scheme instantiated with Gentry’s
IBE scheme [16] and the PQ-BE scheme instantiated with the Gentry-Waters BE
scheme [17] have tight security reductions to their underlying hardness assump-
tions. However, all the TSE schemes mentioned here require non-static -type
assumptions (e.g. the decisional -wBDHI in our case). It would be interesting
to clarify whether it is possible to construct a TSE scheme whose security can
be tightly reduced to more standard “static” assumptions such as decisional lin-
ear (DLIN) and decisional bilinear Diffie-Hellman (DBDH), and whose efficiency
(parameter sizes and computational costs) is comparable to our schemes.

References

1. Anderson, R.: Two remarks on public key cryptology. Invited Lecture, ACM CCS
1997 (1997), http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

2. Attrapadung, N., Imai, H.: Graph-Decomposition-Based Frameworks for Subset-
Cover Broadcast Encryption and Efficient Instantiations. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

4. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. Full version of [3]. Cryptology ePrint Archive: Report
2005/015 (2005)

http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html


200 K. Kasamatsu et al.

5. Boneh,D., Franklin,M.: Identity-BasedEncryption from theWeil Pairing. In:Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

7. Canetti, R., Halevi, S., Katz, J.: A Forward-secure Public-key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 646–646. Springer,
Heidelberg (2003)

8. Cathalo, J., Libert, B., Quisquater, J.J.: Efficient and Non-interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS
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A Main Concrete Construction

Here, we describe the full TSE scheme obtained by using the binary tree struc-
tures for the basic version of our scheme presented in Sect. 3. As noted earlier,
this construction is obtained by applying the technique from the HIBE-to-FSE
transformation by Canetti et al. [7] to the basic version of the proposed scheme
for reducing the sizes of the public parameter and TIKs.

Let  ∈ N. Consider two complete binary trees B1 and B2 with T = 2
 − 1
nodes, where T will be the number of time periods supported by the proposed
TSE construction. The nodes in those binary trees are numbered according to
a pre-order traversal in an incremental order, with the root node of B1 being
1 and that of B2 being T + 1. Then, consider the binary tree B with 2T + 1
nodes in which the children of the root nodes are the root nodes of B1 and B2,
with B1 being left. (That is, B has B1 and B2 as sub trees.) For convenience,
we put the number 2T + 1 to the root node of B. Intuitively, each subtree in
B will correspond to one instantiation of FSE obtained via the HIBE-to-FSE
transformation of Canetti et al. [7] to the BBG HIBE scheme (and will also
correspond to one chain in our basic construction shown in Sect. 3.2).

We need to introduce vectors “TVt” and sets “TVSett” (for t ∈ [1, 2T ]). TVt
is the vector consisting of the indices corresponding to the nodes included in the
path from the node t to the root node (of B). For t ∈ [1, 2T ], the set TVSett
defined as follows: TVSet1 = {TV1}, TVSetT+1 = {TVT+1}. Recursively, for
t ∈ [1, 2T ]\{1, T + 1}, TVSett+1 is defined depending on TVSett as follows: Let
s = min{u : TVu ∈ TVSett}. If TVs is a leaf node, then TVSett+1 is obtained by
removing the vector TVs from the set TVSett. Otherwise, let sF (resp. sB) be
the index of the left (resp. right) node of the node s. TVSett+1 is the set obtained
by removing TVs from and adding TVsF and TVsB to the set TVSett.

Let (G,GT , e) be bilinear maps, and let T = 2
 − 1 be a polynomial that
indicates the number of time periods. Using the above notations, We describe
our TSE scheme in the following:
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TSE.Setup(1k, T = 2
 − 1): Pick α, β
U←− Zp, g2,F , g2,B, h0, · · · , h


U←− G. Then
compute MSK ← gαβ and

MPK ← (g, g1 ← gα, g2,F , g2,B, h0, · · · , h
, P ← e(gα, gβ)),

and return (MPK,MSK).

TSE.Ext(MSK, t): Firstly, pick ξ
U←− Zp.

For each TV = (J0, J1, · · · , Jm) ∈ TVSett+1: pick rF
U←− Zp, and compute

dTV ← (gαβ+ξ · (
m∏
i=0

hJi

i · g2,F )rF , grF , hrFm+1, · · · , hrF
 ).

For each TV ′ = (K0,K1, · · · ,Kn) ∈ TVSet2T−t: pick rB
U←− Zp, and compute

dTV ′ ← (g−ξ · (
n∏
i=0

hKi

i · g2,B)rB , grB , hrBn+1, · · · , hrB
 ).

Finally, set SKt,L ← {dTV }TV ∈TVSett+1 and SKt,R ← {dTV ′}TV ′∈TVSet2T−t ,
and return SKt = (t, SKt,L, SKt,R).

TSE.Enc(MPK, [tL, tR],M): Let TVtR+1 = (J0, J1, · · · , Jm) and TV2T−tL =

(K0,K1, · · · ,Kn). Pick s
U←− Zp, compute

(C1, C2, C3, C4) ← (P s ·M, gs, (
m∏
i=0

hJi

i · g2,F )s, (
n∏
i=0

hKi

i · g2,B)s)

and return C = (C1, C2, C3, C4, [tL, tR]).
TSE.Dec(SKt, C): Let SKt = (t, SKt,L, SKt,R) and C = (C1, C2, C3, C4, C5).

If t �∈ C5, then return ⊥. Otherwise, retrieve dTVtR+1 = (L1, L2, · · · ) and
dTV2T−tL

= (R1, R2, · · · ) from SKt,L and SKt,R, respectively. Compute

M =
C1 · e(L2, C3) · e(R2, C4)

e(L1 · R1, C2)

and return M .

The security is guaranteed by the following (the proof is given in the full version).

Theorem 4. If the decisional ( + 1)-wBDHI assumption holds in (G,GT , e),
then the above TSE scheme (with T = 2
 − 1 time periods) is IND-CPA secure.

B Toy Example of Our Generic Construction

In order to better understand our generic construction in Sect. 4.2, here we
describe a toy example of our generic construction in which T = 23. See also
Fig. 5 for the illustration that represents the “directions” (or, “realms” in other
words) that the secret keys from the underlying FTSE and PTSE schemes can
cover. Note that in this example, LEFT = {0, 2, 4, 6}, and RIGHT = {1, 3, 5, 7}.
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Fig. 5. Illustration for our generic construction in case T = 23

TSE.Setup(1k, T ): Run the setup algorithms of the underlying FTSE and PTSE
schemes as follows:
(mpk0,msk0) ← PTSE.Setup(1k, 8); (mpk1,msk1) ← FTSE.Setup(1k, 7)
(mpk2,msk2) ← PTSE.Setup(1k, 3); (mpk3,msk3) ← FTSE.Setup(1k, 3)
(mpk4,msk4) ← PTSE.Setup(1k, 1); (mpk5,msk5) ← FTSE.Setup(1k, 1)
(mpk6,msk6) ← PTSE.Setup(1k, 1); (mpk7,msk7) ← FTSE.Setup(1k, 1)
MPK ← (mpk0,mpk1, . . . ,mpk7); MSK ← (msk0,msk1, . . . ,msk7)
Return (MPK,MSK).

TSE.Ext(msk, t): The algorithm sets the TIK SKt corresponding to the column
of the time t in Fig. 5 to the secret keys of FTSE and PTSE. For example,

– SK0 = (0, SK0,L, SK0,R) where SK0,L = sk
(0)
≤0 and SK0,R = sk

(1)
≥0 .

– SK1 = (1, SK1,L, SK1,R) where SK1,L = (sk
(0)
≤1 , sk

(2)
≤0, sk

(4)
≤0), and

SK1,R = sk
(1)
≥1 .

– SK4 = (4, SK4,L, SK4,R) where SK4,L = sk
(0)
≤4 and SK4,R = (sk

(1)
≥4 ,

sk
(3)
≥0)

Note that NODES(0) = {0, 1}, NODES(1) = {0, 1, 2, 4}, and NODES(4) = {0, 1, 3}.
TSE.Enc(mpk, [tL, tR],M): We exemplify the cases in which [tL, tR] = [4, 7],

[4, 5], and [2, 6] in the following:

– C = ([4, 7], cL, cR), where cL ← PTSE.Enc(mpk0, 4,M) and cR ← ∅. Note
that vL = min{v ∈ LEFT : r̃v ∈ [4, 7]} = 0 and thus depth(vL) = 0, while

vR = min{v ∈ RIGHT : ̃v ∈ [4, 7]} = 3 and thus depth(vR) = 1.

– C = ([4, 5], cL, cR), where cL ← ∅ and cR ← FTSE.Enc(mpk3, 1,M). Note
that vL = min{v ∈ LEFT : r̃v ∈ [4, 5]} = 6 and thus depth(vL) = 2, while

vR = min{v ∈ RIGHT : ̃v ∈ [4, 5]} = 3 and thus depth(vR) = 1.

– C = ([2, 6], cL, cR), where cL ← PTSE.Enc(mpk2, 1,M) and cR ←
FTSE.Enc(mpk3, 2,M). Note that, vL = min{v ∈ LEFT : r̃v ∈ [2, 6]} = 2

and thus depth(vL) = 1, while vR = min{v ∈ RIGHT : ̃v ∈ [2, 6]} = 3
and thus depth(vR) = 1.
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TSE.Dec(SKt, C): Using SK4 = (4, SK4,L, SK4,R), we can decrypt the above
(correctly generated) ciphertexts:

– If DTI is [4, 7], run M ← FTSE.Dec(sk
(0)
≤4 , cL). Note that in this case,

min(NODES(4) ∩ {vL, vR}) = 0 ∈ LEFT.

– If DTI is [4, 5] or [2, 6], run M ← PTSE.Dec(sk
(3)
≥0 , cR). Note that in both

cases, min(NODES(4) ∩ {vL, vR}) = 3 ∈ RIGHT.
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Abstract. We optimize the communication (and, indirectly, computa-
tion) complexity of two-party secure function evaluation (SFE). We pro-
pose a new approach, which relies on the information-theoretic (IT)
Garbled Circuit (GC), which is more efficient than Yao’s GC on shallow
circuits. When evaluating a large circuit, we “slice” it into thin layers and
evaluate them with IT GC. Motivated by the client-server setting, we pro-
pose two variants of our construction: one for semi-honestmodel (relatively
straightforward), and one secure against a semi-honest server and covert
client (more technically involved). One of our new building blocks, String-
selection Oblivious Transfer (SOT), may be of independent interest.

Our approach offers asymptotic improvement over the state-of-the-art
GC, both in communication and computation, by a factor log κ, where
κ is a security parameter. In practical terms, already for today’s κ ∈
{128, 256} our (unoptimized) algorithm offers approximately a factor 2
communication improvement in the semi-honest model, and is only a
factor ≈ 1.5 more costly in setting with covert client.

1 Introduction

We propose efficiency improvements of two-party Secure Function Evaluation
(SFE). SFE allows two parties to evaluate any function on their respective in-
puts x and y, while maintaining privacy of both x and y. SFE is justifiably a
subject of an immense amount of research. Efficient SFE algorithms enable a
variety of electronic transactions, previously impossible due to mutual mistrust
of participants. Examples include auctions, contract signing, set intersection,
etc. As computation and communication resources have increased, SFE of many
useful functions has become practical for common use.

Still, SFE of most of today’s functions of interest is either completely out of
reach of practicality, or carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.
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On the Cost of SFE Rounds. This work is mainly motivated by the client-
server setting, and its specific scalability and performance issues. We argue that
in this setting, the number of communication rounds in SFE often plays an
insignificant role in practice.

Of course, additional rounds may cause somewhat increased latency of an
individual computation – a possible inconvenience to the user of interactive ap-
plications. However, many SFE protocols allow for a significant precomputation
and also for streaming, where message transmission may begin (and even a re-
sponse may be received) before the sender completes the computation of the
message. Thus, even in the peer-to-peer setting round-related latency need not
be a wasted time. And this is certainly true in the client-server environment,
where the idle server can always busy itself with the next client.

Further, in the server environment, where computation and communication
resources are provisioned as close to demand as possible, we are particularly
interested in throughput (rather than latency) of the total computation.

1.1 Our Setting

As justified above, we aim to optimize computation and, mainly, communication
of two-party SFE, without particular worry about round complexity. Further, our
main algorithm is in an asymmetric setting: one player (presumably, server) is
semi-honest, while the other (presumably, client), is covert [4]. This is in line with
our goal of achieving maximal performance, while providing appropriate security
guarantees. We argue that it is reasonable that a server (a business) would not
deviate from a prescribed protocol for fear of lawsuits and bad publicity, and the
client – for fear of being caught with probability guaranteed by the covert-secure
protocol. While we also give a simpler protocol in the semi-honest model, the
hybrid protocol (semi-honest server and covert client) is our main focus.

Finally, we remark that we are interested in the scalable client-server setting,
since we believe it to be the setting most likely to pioneer practical use of SFE.

For simplicity, we present our protocols in the Random Oracle (RO) model.
We stress that we can weaken this assumption to correlation-robust hash func-
tions, sufficient for OT extension [14,13] (cf. Observation 5). Further, as shown
by [2], OT extension can be obtained from semantically encryption secure against
related key attacks (RKA).

1.2 Our Contributions, Outline of the Work, and Results

We optimize computation and communication complexity of two-party SFE for
the important practical settings of semi-honest server and semi-honest or covert
client. Our Garbled-Circuit (GC)-like protocol, built on consecutive secure eval-
uation of “slices” of the original circuit, takes advantage of the high efficiency of
underlying information-theoretic (IT) GC-variant of Kolesnikov [19].

The main technical challenge with this approach is efficient wire key transla-
tion between the circuit slices, secure against covert GC evaluator. Natural but
expensive use of committed OT [8,18] would negate IT GC performance gain.
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Instead, we introduce and efficiently implement a new OT variant of independent
interest, which we call String-selection OT (SOT). Here, the receiver submits a
selection string (instead of just one bit); he obtains corresponding OT output
only if he submitted one of the two sender-specified (presumably secret) strings.
Our second contribution is a construction of SFE slice-evaluation protocol, which
also has several subtleties in the covert-client setting.

We start with presenting detailed overview of our entire solution in Section 1.4,
and cover preliminaries in Section 2. In Section 3.1, we define SOT and build
SFE protocol secure against covert client C, assuming a SOT protocol in the
same model. Next, in Section 3.2 we present an efficient SOT protocol, based on
OT extension [14,13]. Our SOT protocol is actually secure against a malicious C,
since we are able to get this advantage at comparable cost to that with a covert
C. In Section 3.1 we remark on shortcuts our SFE protocol could take when both
server S and client C are semi-honest.

Finally, in Section 4, we calculate the costs of our protocol, and compare
them with that of state-of-the-art Yao GC protocols, such as [32]. We achieve
asymptotic log factor improvement in security parameter κ in communication
and computation in both covert and semi-honest C settings. In practical terms,
for today’s κ ∈ {128, 256} we offer approximately a factor 2 communication im-
provement in the semi-honest model, and are a factor≈ 1.5 more costly in setting
with covert client. We note that our protocols can be further optimized, resulting
in even better concrete performance, while GC protocols we are comparing with
have been highly fine-tuned for performance.

1.3 Related Work

We survey efficient state-of-the-art SFE, and discuss how it relates to our work.
Most relevant to us is a comparatively small body of work that provides im-

provements to the SFE core techniques that address the semi-honest model. We
mention, but do not discuss in detail here the works that specifically concen-
trate on the malicious setting, such as [22,16,31,24,33,30,6,9]. This is because
their improvement techniques cannot be transferred into the semi-honest world,
and, further, malicious-secure protocols are much more costly than the protocols
we are considering. To securely evaluate circuits of size c, even the most efficient
protocols in this setting (e.g., [30]) incur a multiplicative overhead of O(κ/ log c)
over protocols in the semi-honest setting. In fact, to match the scale of circuits
that are computable efficiently in the semi-honest setting, researchers have ap-
pealed to the power of parallelization [21] in the construction of malicious-secure
protocols. However, it is conceivable that improvement techniques for malicious-
secure protocols can be transferred to protocols in the covert setting. We stress
that state-of-the-art malicious-secure protocols build on top of either semi-honest
Yao garbled circuit protocol, or semi-honest GMW protocol, and consequently,
their complexity is at least as high as these semi-honest protocols. On the other
hand, our protocols (including our construction in the covert setting) asymptot-
ically outperform state-of-the-art SFE protocols in the semi-honest setting.
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After Yao’s original GC work [34], we are aware of few improvements to the
core algorithm. Naor et al. [29] mentioned that it was possible to reduce the
number of entries (each of size security parameter κ) in the GC garbled table to
3 from 4. Kolesnikov [19] introduced the GESS construction, which can be viewed
as information-theoretic (IT) GC, and is much more efficient than standard GC
on shallow circuits. Using a GESS block in GC, Kolesnikov and Schneider [20]
showed how to get XOR gates “for free” in GC. Finally, Pinkas et al. [32] showed
how to reduce the garbled table size to 3 entries, while preserving the free-XOR
compatibility, or to two entries, but disallowing free-XOR technique.

Aside from the cost of OT, GMW [12], a non-constant-round SFE protocol
like ours, is very communication-efficient. However, using today’s best two-party
OT [14], GMW’s communication cost, 4κ per gate, is slightly worse than GC.
Further, GMW is not secure against covert client.

In this work, we are building on [19], and demonstrate communication cost
improvement over [32], as a trade-off with round complexity. Our costs are corre-
spondingly better than that of GMW, and we need fewer rounds than GMW. We
also point out that the “slicing” technique is also used in [5] mainly as a method
to reduce rounds in multi-party secure computation with an honest majority.

We note the theoretical work of Naor and Nissim [27], which uses indexing
to perform SFE of branching programs (BP), and achieves costs polynomial in
the communication complexity of the insecurely computed function. We note
that, firstly, [27] is not performance-optimized. However, more importantly, BP
function representation often carries dramatic overhead (exponential for integer
multiplication), as compared to circuits.

Finally, we mention recent efficiency improvements in secure computation
[3,26,25,11] based on fully homomorphic encryption [10], and note that these
solutions are still orders of magnitude less efficient than symmetric-key-based
approaches we consider.

1.4 Overview of Our Solution

As discussed and justified above, our main goal is communication and com-
putational complexity reduction of the solution. We allow ourselves additional
communication rounds.

Our main idea is to build on the information-theoretic version of GC of
Kolesnikov [19], which, due to its avoidance of encryption, is more efficient than
computational GC for small-depth circuits. We capitalize on this by “slicing”
our original circuit C into a sequence of shallow circuits C1, . . . , C
, which we
then evaluate and obtain corresponding efficiency improvement. There are sev-
eral technical problems that need to be solved.

First, recall that Kolesnikov’s scheme, GESS, does not require generation or
sending of garbled tables. It does use wire keys, which may start with 1-bit-
long strings for output wires, and grow in size approximately quadratically with
the depth d of the fan-out-one circuit. For generic fan-out-2 circuits, thus, total
length of wire keys at depth d is up to O(2dd2).
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The first problem is allowing for piece-wise secure circuit evaluation, given
the circuit’s slicing. In the semi-honest model, this can be achieved as follows.
Consider any slicing of C, where some wire wj of C is an output wire of Ci, and
is an input wire of Ci+1. Now, when a slice Ci is evaluated, Ci’s 1-bit wire key for
wj is computed by the evaluator, and then used, via OT, to obtain the wire key
for the corresponding input wire of Ci+1. This process repeats until C’s output
wire keys are computed by the evaluator. In order to prevent the evaluator from
learning the intermediate wire values of C, the 1-bit wire keys of slices’ output
wires are randomly assigned to wire values.

While secure against passive adversaries, above construction is easily com-
promised by an active evaluator. Indeed, he can influence the output of the
computation simply by flipping the 1-bit key of wj before using it in OT, which
will result in flipping the underlying bit on that wire.

To efficiently resolve this problem and achieve covert security against the
evaluator, we introduce String-selection OT (SOT), a variant of 1-out-of-2 OT,
where the receiver submits a selection string (instead of a selection bit). Natu-
rally, in SOT, receiver obtains OT output corresponding to his selection string;
submission of a string not expected by the sender S results in error output. In
our construction, we will use multi-bit wire keys on output wires of each slice;
client C will submit them to SOT to obtain input wire keys for next slice. Now,
a cheating C wishing to flip a wire value must guess, in the on-line fashion, the
multi-bit wire key corresponding to the opposite wire value. We will show that
this results in covert security against the evaluator.

Efficient OT is a critical component in our construction. Another technical
contribution of this paper is an efficient SOT protocol for arbitrary-length selec-
tion strings, secure against malicious C.

Finally, we evaluate and compare efficiency of our approach to previous solu-
tions.

2 Preliminaries and Notation

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [34], excellently presented in [23], is the most
efficient method for one-round secure evaluation of a boolean circuit C. We
summarize its ideas in the following. The circuit constructor (server S) creates

a garbled circuit C̃: for each wire wi of the circuit, he randomly chooses two
garblings w̃0

i , w̃
1
i , where w̃

j
i is the garbled value of wi’s value j. (Note: w̃ji does

not reveal j.) Further, for each gate Gi, S creates a garbled table T̃i with the

following property: given a set of garbled values of Gi’s inputs, T̃i allows to
recover the garbled value of the corresponding Gi’s output, but nothing else. S
sends these garbled tables, called garbled circuit C̃ to the evaluator (client C).
Additionally, C obliviously obtains the garbled inputs w̃i corresponding to inputs
of both parties: the garbled inputs x̃ corresponding to the inputs x of S are sent
directly and ỹ are obtained with a parallel 1-out-of-2 oblivious transfer (OT)
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protocol [28,1,23]. Now, C can evaluate the garbled circuit C̃ on the garbled

inputs to obtain the garbled outputs by evaluating C̃ gate by gate, using the
garbled tables T̃i. Finally, C determines the plain values corresponding to the
obtained garbled output values using an output translation table received from
S. Correctness of GC follows from the way garbled tables T̃i are constructed.

2.2 GESS: Efficient Information-Theoretic GC for Shallow Circuits

We review the Gate Evaluation Secret Sharing (GESS) scheme of Kolesnikov
[19], which is the most efficient information-theoretic analog of GC. Because en-
cryption there is done with bitwise XOR and bit shufflings, rather than with
standard primitives such as AES, GESS is significantly more efficient than stan-
dard GC, both in computation and communication, for shallow circuits.

At a high level, GESS is a secret sharing scheme, designed to match with the
gate function g, as follows. The output wire keys are the secrets, from which the
constructor produces four secret shares, one for each of the wire keys of the two
input wires. GESS guarantees that a combination of shares, corresponding to
any of the four possible gate inputs, reconstructs the corresponding key of the
output wire. This secret sharing can be applied recursively, enabling reduction
of SFE to OT (to transfer the wire secrets on the input wires). One result
of [19] is the SFE protocol for a boolean formula F of communication complexity
≈
∑
d2i , where di is the depth of the i-th leaf of F . This improvement (prior

best construction – [17] combined with [7] – cost ≈
∑

2θ(
√
di)) will allow us to

outperform the standard GC by evaluating thin slices of the circuit. We note
that other IT GC variants (e.g., [15]) could also be used in our work, with
corresponding performance disadvantage.

2.3 Covert Security

In this work, we consider a semi-honest server, and a stronger client-adversary
who may deviate from the protocol specification in an attempt to cheat. While
cheating attempts may be successful, the covert model [4] guarantees that any
attempted cheating is caught with a certain minimal probability.

Aumann and Lindell [4] give three formalizations of this notion; we consider
their strongest definition, the strong explicit-cheat formulation. Informally, this
variant of the covert-security definition guarantees that, if caught, the adversary
does not learn the honest player’s input. If not caught, the adversary may succeed
either in learning the honest player’s input or influencing the computation (or
both). The definition is given in the standard ideal-real paradigm. Intuitively,
the difference with the malicious model is that covert ideal world allows the cheat
request: if successful (based on the coin flip by a trusted party), the adversary
is allowed to win, if not, honest players are informed of cheat attempt.

We refer the reader to [4] for details and formal definitions.

2.4 Notation

Let κ be the computational security parameter.
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Our SFE protocol is given a circuit C which represents a function f that
a server S (with input x) and a client C (with input y) wish to compute. Let
d denote the depth of C. Our protocol proceeds by dividing the circuit C into
horizontal slices. Let  denote the number of such slices, and let C1, . . . , C
 denote
these  slices of C. We let d′ denote the depth of each slice Ci.

In circuit slice Ci, we let ui,j (resp. vi,j) denote the j-th input (resp. output)
wire. For a wire ui,j (resp. vi,j), we refer to the garbled values corresponding
to 0 and 1 by ũ0i,j , ũ

1
i,j (resp. ṽ0i,j , ṽ

1
i,j) respectively. In our protocol, let k (resp.

k′) denote the length of input (resp. output) wire garblings (k′ will be related
to the covert deterrent factor as ε = 1 − 1

2k′−1
). While evaluating the garbled

circuit, C will possess only one of two garbled values for each wire in the circuit.
We let ũ′i,j (resp. ṽ′i,j) denote the garbled value on wire ui,j (resp. vi,j) that is
possessed by C.

In Section 3, we introduce the primitive SOTk,k′ which requires a receiver
R, with input a k′-bit selection string, to select one of two k-bit strings held
by sender S. Our protocol for SOTk,k′ uses calls to the standard 1-out-of-2 OT
primitive (where receiver R, with input a selection bit, selects one of two k-bit
strings held by sender S).

3 Our Protocol for Secure Two-Party Computation

We describe our protocol for secure two-party computation against a semi-honest
server and a covert receiver in a hybrid model with ideal access to String-selection
OT (SOT), defined below:

Definition 1. String-selection OT, SOTk,k′ , is the following functionality:

Inputs: S holds two pairs (x0, r0), (x1, r1), where each x0, x1 are k-bit strings,
and r0, r1 are k′-bit strings (with r0 �= r1). R holds k′-bit selection string r.

Outputs: If r = ri for some i ∈ {0, 1}, then R outputs xi, and S outputs empty
string λ. Otherwise, R and S both output error symbol ⊥.

3.1 Our Protocol

We now present our protocol for securely computing a function f , represented
by a circuit C, where semi-honest S has input x and covert C has input y.

Our protocol uses OT, the standard 1-out-of-2 OT protocol, and SOTk,k′ ,
a SOT protocol, as defined in Definition 1. Assume both OT and SOTk,k′ are
secure against a semi-honest sender and a covert receiver with deterrent ε (the
required value of ε will depend on the parameters of the SFE protocol and is
stated in the security theorems below). We prove security in the strongest covert
formulation of [4], the strong explicit cheat formulation.

We evaluate C slice-by-slice. Further, each slice is viewed as a fan-out-1 circuit,
as needed for the GESS scheme. We will discuss slicing the circuit with the view
for performance, and the corresponding calculations in the full version of this
paper.
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Protocol 1. 1. Circuit Preparation:

(a) Slicing. Given d, d′, server S divides circuit C of depth d into horizontal
sub-circuit layers, or slices, C1, . . . , C
 of depth d′.

(b) Preparing each slice. In this step, S randomly generates the output secrets
of the slice, and, applying the GESS sharing scheme, obtains correspond-
ing input secrets, as follows.
Denote by ui,j the input wires and by vi,j the output wires of the slice
Ci. For each wire vi,j, S picks two random garblings ṽ0i,j , ṽ

1
i,j of length

k′ ≥ 1 (conditioned on ṽ0i,j �= ṽ1i,j). S then (information-theoretically)
computes the GESS garblings for each input wire in the subcircuit, as
described in [19]. Let k be the maximal length of the garblings ũ0i,j , ũ

1
i,j

of the input wires ui,j. Recall, GESS does not use garbled tables.

2. Circuit Evaluation:

For 1 ≤ i ≤ , in round i do:

(a) Oblivious transfer of keys.
i. For the top slice (the sub-circuit C1), do the standard SFE garblings

transfer:
For each client input wire u1,j (representing the bits of C’s input y),
S and C execute a 1-out-of-2 OT protocol, where S plays the role of
a sender, with inputs ũ01,j, ũ

1
1,j, and C plays the role of the receiver,

directly using his inputs for OT.
For each server input wire u1,j (representing the bits of S’s input x),
S sends to C one of ũ01,j, ũ

1
1,j, corresponding to its input bits.

ii. For slices Ci, i �= 1, transfer next slice’s input keys based on the
current output keys:
For each input wire ui,j of the slice Ci, S uniformly at random
chooses a string ri,j of length k (this will mask the transferred se-
crets1). S then acts as sender in SOTk,k′ with input ((ũ0i,j⊕ri,j , ṽ0i−1,j),

(ũ1i,j ⊕ ri,j , ṽ1i−1,j)), and C acts as receiver with input ṽ′i−1,j (this is
the output wire secret of the one-above slice Ci−1, which C obtains
by executing Step 2b described next). Let C obtain ũ′i,j ⊕ ri,j as the
output from SOTk,k′ .
Once all SOTk,k′ have been completed, S sends all ri,j to C, who then
computes all ũ′i,j.

(b) Evaluating the slice. C evaluates the GESS sub-circuit Ci, using garbled
input values ũ′i,j to obtain the output values ṽ′i,j .

3. Output of the computation. Recall, w.l.o.g., only C receives the output. S
now sends the output translation tables to C. For each output wire of C, C
outputs the bit corresponding to the wire secret obtained in evaluation of the
last slice C
.

Observation 1. We note that technically the reason for sending masked wire
values via SOTk,k′ in Step 2(a)ii is to facilitate the simulation proof, as follows.
When simulating covert C∗ without the knowledge of the input, the simulator

1 The reason for the masking is to enable simulation of C. See Observation 1 for details.
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SimC’s messages to C∗ “commit” SimC to certain randomized representation of
players’ inputs. When, in SOT of the i-th slice Ci, a covert C∗ successfully cheats,
he will be given both wire keys for some wire of Ci. Without the masking, this
knowledge, combined with the knowledge of the gate function and a key on a
sibling wire, allows C∗ to infer the wire value encrypted by the simulation, which
might differ from the expected value. We use the mask to hide the encrypted
value even when both wire keys are revealed. Mask can be selected to “decommit”
transcript seen by C∗ to either wire value.

Observation 2. We note that in the semi-honest-C case the above protocol can
be simplified and made more efficient. In particular, k′ is set to 1, in Step 2(a)ii,
it is sufficient to use OT (vs. SOT), and offset strings ri,j are not needed.

We prove security of Protocol 1 against a semi-honest server S and a covert
client C.

Theorem 3. Let OT be a 1-out-of-2 OT, and SOTk,k′ be a string-selection OT
(cf. Definition 1), both secure against semi-honest sender. Then Protocol 1 is
secure against a semi-honest server S.

Further, let k′ be a parameter upper-bounded by poly(n), and set ε = 1− 1
2k′−1

.

Let f be any probabilistic polynomial-time function. Assume that the underly-
ing OT and SOT protocols are secure in the presence of covert receiver with
ε-deterrent, in the strong explicit cheat formulation of covert security. Then,
Protocol 1 securely computes f in the presence of covert client C with ε-deterrent,
in the strong explicit cheat formulation.

We note that the deterrent ε = 1− 1
2k′−1

reflects the probability of C incorrectly

guessing the selection string unknown to him from the set of all strings of size
k′. In particular, setting k′ = 2 results in ε = 2/3.

Proof. Security against semi-honest S. Given input x, the semi-honest S∗

is simulated as follows. SimS chooses a random input y′ for C and plays honest
C interacting with S∗. He then outputs whatever S∗ outputs.

It is easy to see that S∗ does not receive any messages – all protocol messages
related to C’s input are delivered inside OT and SOTk,k′ , the protocols that do
not return output to S∗ (other than possible error symbols, which will never be
output in this simulation, since it presumes that C is acting honestly, and S∗ is
semi-honest). Hence, this is a perfect simulation (however, the function calls to
underlying OT and SOT primitives will not be perfectly simulated).

The proof of security in the client-corruption case is somewhat more complex.

Security against Covert C. This part of the proof is somewhat more involved.
We present the simulator SimC of a covert attacker C∗, and argue that it produces
a good simulation.

SimC starts C∗ and interacts with it, sending C∗ messages it expects to receive,
and playing the role of the trusted party for the OT and SOTk,k′ oracle calls
that C∗ may make, where C∗ plays the role of the receiver. Unless terminating
early (e.g. due to simulating abort), SimC will first simulate processing the top
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slice C1, then all internal slices (using same procedure for each internal slice),
and then the last, output slice C
.

For each output wire of each slice Ci, SimC samples two random strings of
length k′ (with the restriction that these two strings are different per wire).
Based on these, SimC computes Ci’s input wire garblings by applying the GESS

algorithm.
For the top slice C1, SimC plays the role of OT trusted party, where C∗ is the

receiver, and receives OT input from C∗.

1. If the input is abort or corrupted, then SimC sends abort or corrupted (re-
spectively) to the trusted party computing f , simulates C aborting and halts
(outputting whatever C∗ outputs).

2. If the input is cheat, then SimC sends cheat to the trusted party. If it receives
back corrupted, then it hands C∗ the message corrupted as if it received it
from the trusted party, simulates C aborting and halts (outputting whatever
C∗ outputs). If it receives back undetected (and thus S’s input x as well),
then SimC works as follows. First, it hands C∗ the string undetected together
with all the input wire keys that were part of server’s input in the OT (C∗

expects to receive OT inputs in this case). Next, SimC uses the input x of S
that it received in order to perfectly emulate S in the rest of the execution.
This is easily done, since so far SimC had not delivered to C∗ any messages
“from S” that depended on S’s input.

3. If the input is a representation of C∗’s input to OT, then SimC hands C∗

the input wire garbling keys that are “chosen” by the C∗’s OT input, and
proceeds with the simulation below.

SimC now also sends C∗ the wire secrets corresponding to a random input of S.
Now, presumably, C∗ will evaluate the slice and use the output wire secrets in
SOTk,k′ oracles.

For all internal slices C2, ..., C
−1 SimC plays SOTk,k′ trusted party, where C∗

is the receiver, and receives SOTk,k′ input from C∗.

1. If the input is abort or corrupted, then SimC sends abort or corrupted (re-
spectively) to the trusted party computing f , simulates C aborting and halts
(outputting whatever C∗ outputs).

2. If the input is cheat, then SimC sends cheat to the trusted party.
If it receives back corrupted, then it hands C∗ the message corrupted as if it
received it from the trusted party, simulates C aborting and halts (outputting
whatever C∗ outputs).
If it receives back undetected (and thus S’s input x as well), then SimC works
as follows. First, it hands C∗ the string undetected together with all the
masked input wire keys ũ0i,j⊕ri,j , ũ1i,j⊕ri,j and the corresponding selection-

string keys ṽ0i−1,j , ṽ
1
i−1,j that were part of sender’s input in current SOTk,k′

(C∗ expects to receive SOT inputs in this case). These input wire keys were
generated by SimC by running GESS wire key generation for the current
slice, the selection-string keys are the output keys from preceding slice, and
the wire-key to selection-string correspondence is set at random at this time
(we will reconcile it when needed later).
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Next, SimC uses the input x of S that it just received and the input y of C∗

that it received in OT in slice C1, to perfectly emulate S in the rest of the
execution. We note that SimC had already sent messages to C∗ which should
depend on S’s input, which we now need to reconcile with the real input x
received. First, we observe that the view of C∗ of the prior slices’ evaluation
is consistent with any input of S, since C∗ is never given both secrets on
any wire. (C∗ only sees both secrets on the immediately preceding slice’s
output wires since SimC gave him both string-selection keys for current slice.
However, this is allowed in the underlying GESS scheme, and hence is also
consistent with any input of S.) At the same time, both SOTk,k′ secrets are
revealed to C∗ in the current slice, and C∗ can obtain both wire encodings
for each of the slice’s input wires, which, in turn, may reveal correspondence
between wire values and encodings (cf. Observation 1). Since C∗’s SOTk,k′

selection string determines the “active” SOTk,k′ value, which is offset by
ri,j into the “active” wire encoding, we now have to be careful that it is
consistent with the players’ input into the function. This reconciliation is
easily achieved by appropriately setting the simulated offset string r′i,j for
each wire j. The simulated r′i,j is selected so that the “active” (resp. “inac-
tive”) encoding corresponding to the function’s inputs x and y is obtained by
XORing r′i,j with the “active” (resp. “inactive”) string-selection OT value. In
other words, for each wire where SimC chose incorrect wire-key to selection-
string correspondence, this correspondence is flipped by choosing the right
offset r′i,j . This flipping selection is computed as follows: for GESS input
keys ũ0, ũ1, offset r (and SOTk,k′ inputs ũ0 ⊕ r, ũ1 ⊕ r) the correspondence
is reversed by applying offset r′ = ũ0 ⊕ ũ1 ⊕ r.
SimC simulates the rest of the interaction simply by playing the honest S.

3. If the input is a representation of C∗’s input to SOTk,k′ then SimC proceeds
as follows. We stress that SimC knows exactly the garblings of the input wires
of Ci−1 sent to C∗ (and hence the garblings of the output wires of Ci−1 that
C∗ should reconstruct and use as inputs to SOTk,k′ oracles for slice Ci).
(a) If C∗ submits SOTk,k′ inputs as expected, then SimC sends C∗ the cor-

responding garblings of the Ci input wires.
(b) Otherwise, we deal with the cheating attempt by C∗. SimC then sends

cheat to the trusted party. By the definition of the ideal model, with
probability 1 − ε = 1

2k′−1
SimC receives back the message undetected

together with S’s input x, and with probability ε = 1− 1
2k′−1

it receives

the message corrupted.
If it receives back corrupted, then it simulates S aborting due to de-

tected cheating and outputs whatever C∗ outputs.
If it receives back undetected, then it receives S’s input, simulates

honest S, and outputs whatever C∗ outputs. We stress that the C∗’s view
of execution so far is independent of S’s input, since C∗ never receives
more than one wire-key per wire. (The only exception to this is the
information inferred by C∗ based on the fact that he was undetected in
attempting to submit another string to string-selection OT. Specifically,
this gives C∗ the knowledge of both wire keys on one of the output wires
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of the preceding slice (importantly, he will not learn both input garblings
of the corresponding input wire of the current slice). This information is
allowed in the GESS protocol, and will not allow to correlate wire keys.)
Therefore, the simulation goes through in this case.

To simulate the output slice C
, SimC first performs the simulation steps of an
internal slice described above. Upon completion, he additionally has to reconcile
the view with the output of the function. If after the SOTk,k′ step C∗ still
has not attempted to cheat, SimC provides to the trusted party the input that
was provided by C∗ in the OT of slice C1, and gets back the output of the
computation. Now SimC simply provides C∗ the output translation tables with
the mapping of the output values, which would map to the output received from
the trusted party.

3.2 A Protocol for SOTk,k′

In this section, we introduce an efficient string-selection OT protocol, secure
against semi-honest sender and malicious receiver, which works for selection
strings of arbitrary length k′. We build it from k′ standard 1-out-of-2 OTs. We
note that, while Protocol 1 requires only covert-C security, we provide a stronger
building block (at no or very little extra cost).

The intuition behind our construction is as follows. We will split each of
the two secrets x0, x1 into k′ random shares xji (i.e. 2k′ total shares), with the

restriction that the sets of xji , indexed by each of the two selection strings, recon-
structs the corresponding secret. Then, in the semi-honest model, performing k′

standard OTs allows receiver to reconstruct one of the two secrets, corresponding
to his selection string.

To protect against malicious or covert receiver, we, firstly, assume that un-
derlying OTs are secure against such receiver. Further, we allow the sender to
confirm that the receiver indeed received one of the two secrets, as follows. De-
note by h0 (resp. h1) the hash of the vector of secret shares corresponding to the
secret x0 (resp. x1). To confirm that receiver obtained shares to reconstruct at
least one of x0, x1, the sender will send h0⊕h1 to R, and expect to receive both
h0 and h1 back (actually, it is sufficient to receive just one of h0, h1 selected by
R at random).

The above check introduces a subtle vulnerability: the value h0 ⊕ h1 leaks
information if selection strings differ in a single position. Indeed, then there is
only one secret share unknown to malicious R, and secrets’ values can be verified
by checking against received h0 ⊕ h1. (If we restricted the selection strings to
differ in at least two positions, this approach can be made to work. However,
such restriction is less natural.) As a result, we now can not transfer the SOTk,k′

secrets directly. To address this, we transfer SOTk,k′ secrets by encrypting each
with a random key, and then OT-transferring one of the two keys as above,
which is secure for OT of long random secrets.

Our Protocol. Let sender S have input (x0, r0), (x1, r1) with |x0| = |x1| = k,
and |r0| = |r1| = k′. Let receiver R have input r ∈ {r0, r1}. Let κ be a security
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parameter, OT be a standard 1-out-of-2 OT, and H : {0, 1}∗ → {0, 1}κ be a
random oracle.

Protocol 2. String-Selection OT

1. Let r0 = r01, r02, ..., r0k′ , and r1 = r11, r12, ..., r1k′ , where rij are bits. S
chooses sji ∈R {0, 1}κ, for i ∈ {0, 1}, j ∈ {1, . . . , k′}. S sets keys s0 =⊕

j s
r0j
j , and s1 =

⊕
j s

r1j
j .

2. S and R participate in k′ OTs as follows. For j = 1 to k′:
(a) S with input (s0j , s

1
j), and R with input rj, where rj is the j-th bit of R’s

selection string r, send their inputs to OT. R receives s
rj
j .

3. S computes hashes of shares corresponding to the two secrets/selection strings:
h0 = H(sr011 , s

r02
2 , ..., s

r0k′
k′ ), and h1 = H(sr111 , s

r12
2 , ..., s

r1k′
k′ ). S then sends

h = h0 ⊕ h1 to R.
4. R computes hR = H(sr11 , ..., s

rk′
k′ ) and sends to S either hR or h ⊕ hR,

equiprobably.
5. S checks that the hash received from R is equal to either h0 or h1. If so, it

sends, in random order, H(s0)⊕ x0, H(s1)⊕ x1 and terminates with output
λ; if not, S sends ⊥ to R and outputs failure symbol ⊥.

6. R computes key sr =
⊕

j s
rj
j and recovers the secret by canceling out H(sr).

For readability, we omitted simple technical details, such as adding redundancy
to xi which allows R to identify the recovered secret. We also slightly abuse
notation and consider the output length of H sufficiently stretched when we use
it to mask secrets xi.

Theorem 4. Assume that the underlying OT is secure in the presence of semi-
honest sender and malicious receiver. When k′ > 1, Protocol 2 is a secure SOT
protocol in the presence of semi-honest sender and malicious receiver.

Proof. (sketch) Security against semi-honest S. We start with showing that
the protocol is secure against the semi-honest sender S. The information received
by S are transcripts of the underlying OTs, and the hash of one of the two
shares sequences. Neither leaks information. Firstly, OT’s are secure against
semi-honest S. Further, an honest receiver uses r ∈ {r0, r1} selection string,
hence the hash sent to S will in fact be of one of the two sequences corresponding
to the selection strings. The simulator SimS follows naturally.

Security against Malicious Receiver R. We present the simulator SimR of
a malicious R∗, and argue that it produces a good simulation.

SimR starts R∗ and interacts with it, sending it messages it expects to receive,
and playing the role of the trusted party for the OT oracle calls that R∗ makes,
in which R∗ plays the role of the receiver.

SimR starts by playing OT trusted party k′ times, where R∗ is the receiver;
as such, SimR receives all k′ OT selection bits from R∗ and each time uses a
random string s′j to hand to R∗ as his OT output. If any of the underlying OT’s
input is abort, then SimR sends abort to the trusted party computing SOTk,k′

and halts, outputting whatever R∗ outputs.
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SimR then sends a random κ-bit string h′ to R∗, simulating the message of
Step 3. SimR then receives a hash value from R∗ as Step 4 message. If this
value was not computed correctly from the simulated OT strings s′j and hash h′,
then SimR sends abort to the trusted party, and terminates outputting whatever
R∗ outputs. Otherwise, SimR feeds R∗’s selection bits to the trusted party of
SOTk,k′ . SimR gets back from the trusted party either:

– string x′, one of S’s secrets. In this case, R∗ submitted a valid selection
string, and we simulate successful completion. SimR sends, in random order,
x′ ⊕ H(⊕js

′
j) and a random string of equal length, and then terminates

outputting whatever R∗ outputs.
– ⊥. In this case, R∗ did not submit a valid selection string, and we simu-

late abnormal termination. SimR sends ⊥ to R∗ and terminates outputting
whatever R∗ outputs.

We now argue that SimR produces view indistinguishable from the real execution.
We first note that SimR’s interaction with R∗ is indistinguishable from that of
honest S. Indeed, OT secrets delivered to R∗ are distributed identically to real
execution. Further, since non-selected OT secrets remain hidden, the string h′

sent is also indistinguishable from real execution. Finally, the simulation of Step 5
is indistinguishable from real, since it is infeasible to search for a preimage of H
to check whether it satisfies both simulation of Steps 3 and 5.

Observation 5. We stress that our use of RO H is not inherent in Protocol 2,
and a PRFG or certain encryption can be appropriately used instead. Hence we
can remove the RO assumption, and assume correlation-robust hash functions
or RKA-secure encryption sufficient for OT extension [14,13,2].

4 Performance Analysis

For the lack of space, we present all calculations in the full version of this paper.
Here we summarize the results.

Consider a fan-out 2 circuit C with c gates. To simplify our cost calculation
and w.l.o.g., we assume C is a rectangular circuit of constant width, where each
gate has fan-out 2. Let C be divided into  slices, each of depth d′. Let k (resp.
k′) be key length on input (resp. output) wires of each slice. k′ is effectively the
covert deterrent parameter, and k grows as O(2d

′
) due to fan-out 2.

Then communication cost (measured in bits) of GC [32] is cost(Yao) = 2κc,
and of GMW is cost(GMW) = 4c+ 4κc. Our costs are O(κc/ log κ) in the semi-
honest model, and O(k′κc/ log(κ/k′)) in the covert-client setting, with small
constants. Intuitively, in the semi-honest model, our gain of log κ comes from
the fact that for slice of depth d′ ≈ log κ, the total size of GESS wire secrets to
be transferred by OT is approximately equal to the total GC wire secrets length
of a single layer of GC. Same intuition applies to the covert-client case. The
computation costs (the number of hash function evaluations) of all protocols,
including ours is proportional to the communication cost; hence our asymptotic
improvements translate into computation as well.
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In concrete terms, we get up to factor 2 improvement in the semi-honest
model for today’s typical parameters. Setting d′ = 3 and κ = 256, our cost is
≈ 208c, as compared to ≈ 512c of [32]. In the setting with covert client (k′ = 2,
deterrent 2/3), our protocol has cost ≈ 818c, at less than factor 2 disadvantage;
it surpasses [32] for κ ≈ 4800.

Finally, while the GC protocol has been highly fine-tuned for performance,
we note that our protocols have room for optimization, resulting in even better
concrete advantage.

Acknowledgments. The authors would like to thank the anonymous reviewers
of SCN 2012.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Chazelle, B. (ed.) ICS, pp. 45–60. Tsinghua University Press
(2011)
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Abstract. In this paper we consider the problem of secure pattern
matching that allows single character wildcards and substring matching
in the malicious (stand-alone) setting. Our protocol, called 5PM, is exe-
cuted between two parties: Server, holding a text of length n, and Client,
holding a pattern of length m to be matched against the text, where our
notion of matching is more general and includes non-binary alphabets,
non-binary Hamming distance and non-binary substring matching.

5PM is the first protocol with communication complexity sub-linear
in circuit size to compute non-binary substring matching in the mali-
cious model (general MPC has communication complexity which is at
least linear in the circuit size). 5PM is also the first sublinear protocol
to compute non-binary Hamming distance in the malicious model. Addi-
tionally, in the honest-but-curious (semi-honest) model, 5PM is asymp-
totically more efficient than the best known scheme when amortized for
applications that require single charcter wildcards or substring pattern
matching. 5PM in the malicious model requires O((m+n)k2) bandwidth
and O(m + n) encryptions, where m is the pattern length and n is the
text length. Further, 5PM can hide pattern size with no asymptotic ad-
ditional costs in either computation or bandwidth. Finally, 5PM requires
only 2 rounds of communication in the honest-but-curious model and 8
rounds in the malicious model. Our techniques reduce pattern match-
ing and generalized Hamming distance problem to a novel linear algebra
formulation that allows for generic solutions based on any additively ho-
momorphic encryption. We believe our efficient algebraic techniques are
of independent interest.

Keywords: Secure pattern matching, wildcard pattern matching, sub-
string pattern matching, non-binary Hamming distance, secure two-party
computation, malicious adversary, full simulation, homomorphic encryp-
tion, threshold encryption.

1 Introduction

Patternmatching1 is fundamental to computer science. It is used inmany areas, in-
cluding text processing, database search [1], networking and security applications

1 The full version of this paper can be found at
http://www.ics.uci.edu/~keldefra/papers/5pm_scn12.pdf

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 222–240, 2012.
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[2] and recently in the context of bioinformatics and DNA analysis [3,4,5]. It is a
problem that has been extensively studied, resulting in several efficient (although
insecure) techniques to solve its many variations, e.g,[6,7,8,9]. The most common
interpretation of the pattern matching problem is the following: given a finite
alphabet Σ, a text T ∈ Σn and a pattern p ∈ Σm, the exact pattern matching
decision problem requires one to decide whether or not a pattern appears in the
text. The exact pattern matching search problem requires finding all indices i of
T (if any) where p occurs as a substring starting at position i. If we denote by
Ti the ith character of T , the output should be the set of matching positions
MP := {i | p matches T beginning at Ti}. The following generalizations of the
exact matching problem are often encountered, where the output in all cases is
the set MP :

– Pattern matching with single character wildcards2: There is a special char-
acter “ ∗ ” /∈ Σ that matches any single character of the alphabet, where
p ∈ {Σ ∪ {∗}}m and T ∈ Σn. Using such a “wildcard” character allows
one pattern to be specified that could match several sequences of charac-
ters. For example the pattern “TA∗” , would match any of the following
character sequence in a text3: TAA, TAC, TAG, and TAT .

– Substring pattern matching: Fix some l ≤ m; a match for p is found
whenever there exists in T an m-length string that differs in l characters
from p (i.e., has Hamming distance l from p). For example, the pattern
“TAC” has m = 3. If l = 1, then any of the following words would match:
∗AC, T ∗C, or TA∗; note that this is an example of non-binary substring
matching.

A secure version of pattern matching has many applications. For example, se-
cure pattern matching can help secure databases containing medical information,
such as DNA records, while still allowing one to perform pattern matching op-
erations on such data. The need for privacy-preserving DNA matching has been
highlighted in recent papers [10,11,12]. In addition to the case of DNA matching,
where substring matching may be particularly useful, Hamming distance-based
approximate matching has also been demonstrated in the case of secure facial
recognition [3]. We note that both of these settings require computation over
non-binary alphabets.

1.1 Our Contributions

This paper presents a new protocol for arbitrary alphabets, 5ecure Pattern
Matching (or 5PM), that addresses, in addition to exact matching, more ex-
pressive search queries including single character wildcards and substring pattern
matching, in addition to providing the ability to hide pattern length.

5PM is the first protocol with communication complexity sub-linear in circuit
size (as opposed to general MPC, which has communication complexity linear in

2 Such wildcards are also called “do not cares” and “mismatches” in the literature.
3 Here and throughout, we use the DNA alphabet (Σ = {A,C,G, T}) for examples.
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circuit size) to securely compute non-binary substring matching in the malicious
model and is also the first non-general MPC protocol to compute non-binary
Hamming distance in the malicious model. In addition, our extension of Ham-
ming distance computation to substring matching has minimal overhead; our
protocol makes a single computation pass per text element, even for multiple
Hamming distance values, and therefore is able to securely compute non-binary
substring matching efficiently (see Table 2 for details).

5PM performs exact, single character wildcard, and substring pattern match-
ing in the honest-but-curious and malicious (static corruption) models. Our ma-
licious model protocol requires O((m+n)k2) bandwidth complexity. Further, our
protocol can be specified to require 2 (one-way) rounds of communication in the
semi-honest model and 8 (one-way) rounds of communication in the malicious
model.

We construct our protocols by reducing the problems of Hamming distance
and pattern matching, including single character wildcards and substring match-
ing, to a sequence of linear operations. We then rely on the observation that such
linear operations, such as the inner products and matrix multiplication, can be
efficiently computed in the malicious model using additively homomorphic en-
cryption schemes.

The security requirements (informally) dictate that the party holding the text
learns nothing except the upper bound on the length of the pattern, while the
party holding the pattern only learns either a binary (yes/no) answer for the
decision problem or the matching positions (if any), and nothing else.

1.2 Comparison to Previous Work

Exact Matching. In the exact pattern matching setting, the algorithm of
Freedman, Ishai, Pinkas and Reingold [13] achieves polylogarithmic overhead
in m and n and polynomial overhead in the security parameters in the honest-
but-curious setting. Using efficient arguments [17,18] with the modern proba-
bilistically checkable proofs (PCP) of proximity [19], one can extend (at least
asymptotically) their results to the malicious (static corruption) model. However,
the protocol in [13] works only for exact matching and does not address more
general problems including single character wildcards and substring matching,
which is the main focus of our work. Other protocols that address secure exact
matching (and not wildcard or substring matching) are [12,20,21,22,23,11]; of
these, only [22] obtains (full) security in the malicious setting. We note that [23]
is more efficient than [13] but only in the random oracle model; here, we are
interested in standard security models.

Single Character Wildcards. Recently, Vergnaud [14] built on the work of
Hazay and Toft [16] to construct an efficient secure pattern matching scheme
for wildcard matching (over arbitrary alphabets) and binary substring matching
(requiring t runs over the preliminary matching result to search for t differ-
ent Hamming distance values, which is also required by 5PM) in the malicious
adversary model. Unlike our work, neither [14] nor [16] are able to compute



5PM: Secure Pattern Matching 225

Table 1. Comparison of previous protocol functionality, NB= Non-Binary HBC =
Honest but Curious, M= Malicious, *=Can be extended

Protocol NB Hamming Exact Wildcard NB Substring Security
Distance Matching Matching Matching

[13] No Yes No No HBC/M

[14] No Yes Yes No HBC/M

[15] Yes No∗ No∗ No∗ HBC

5PM Yes Yes Yes Yes HBC/M

Table 2. Detailed comparison with [15] for non-binary substring matching in HBC
model with Text length=n, Pattern length=m, Security Parameter=k

Protocol Encryptions Exponentiations Multiplications Bandwidth Rounds

[15] O(n+m) O(nm) O(nm) O((nm)k) O(1)

5PM O(n+m) O(n+m) O(nm) O((n+m)k) 2

Table 3. Detailed comparison with [14] and [16] for arbitrary alphabets and single
character wildcards in malicious model with Text length=n, Pattern length=m, Secu-
rity Parameter=k

Protocol Encryptions Exponentiations Multiplications Bandwidth Rounds

[16] O(mn) O(mn) O(mn) O(mnk2) O(1)

[14] O(n+m) O(n logm) O(nm) O((n+m)k2) O(1)

5PM O(n+m) O(nm) O(nm) O((n+m)k2) 8

non-binary Hamming distance or non-binary substring matching; the reason is
that their schemes are built on top of oblivious polynomial evaluations that
can count non-binary character matches but cannot count individual non-binary
character mismatches. More specifically, [14,16] take advantage of the fact that
(pi− ti)2 equals 0 if binary values pi and ti are equal and 1 if they are not equal;
therefore, binary Hamming distance can essentially be computed by counting
the number of 1s in the computation. However, when pi and ti are non-binary,
it is unknown how to execute oblivious polynomial computations that output 0
when pi and ti equal and 1 (or some other fixed value) when they do not equal.
Therefore [14,16] only discuss binary Hamming distance, which may not be suit-
able for applications such as DNA and secure biometric substring matching as
the number of binary mismatches does not generally capture the number of non-
binary character mismatches. [14] requires O(m + n) encryptions, O(n logm)
exponentiations, O(nm) multiplications (of encrypted elements), and O(n+m)
bandwidth, all in a constant number of rounds. By contrast, 5PM has the same
overhead except for O(nm) exponentiations (see Table 3).

Non-binary Hamming Distance. Jarrous and Pinkas [15] gave the first con-
struction of a secure protocol for computing non-binary Hamming distances. In
order to count the non-binary mismatches, they leverage 1-out-of-2 oblivious
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transfers. 5PM can also compute non-binary Hamming distance even when the
text and pattern have the same length (and where the output is not blinded to
only reveal whether or not a pattern match occurred). We note that [15] can be
used to implement exact and substring matching with additional tools to blind
Hamming distance output (for instance, see [14]). [15], to compare 2 strings of
length n, requires O(n) 1-out-of-2 OTs, O(n) multiplications of encryptions and
O(nk) bandwidth, while 5PM requires O(n) exponentiations (which require less
computation than OTs), O(n2) multiplications, and O(nk) bandwidth. The ad-
vantage of 5PM over [15] is twofold: the first is that it is proven secure in the
malicious model while [15] is not. The second advantage is that 5PM, in both the
honest-but-curious and malicious models, amortizes well in the substring match-
ing setting, while [15] does not amortize because it cannot reuse OT outputs to
compute substring matching (see table 2).

Other Techniques. In the most general case, secure exact, approximate and
single character wildcards pattern matching is an instance of general secure two-
party computation techniques (for instance, [24,25,26,27]). All of these schemes
have bandwidth and computational complexity at best linear in the circuit size.
For instance, a naive implementation of Yao [24] requires bandwidth O(mn) in
the security parameter. In contrast, we aim for a protocol where circuit size is
O(mn) yet we achieve communication complexity of O(m+ n).

Finally, we observe that with the construction of fully homomorphic encryp-
tion (FHE) schemes [28], the following “folklore” construction can be executed
for any pattern matching algorithm: Client encrypts its pattern using an FHE
scheme and sends it to Server. Server applies the appropriate pattern matching
circuit to the encrypted pattern (where the circuits output is a yes/no indicat-
ing whether a match exists or not), and sends the FHE circuit output to Client.
Client decrypts to obtain the answer. Such a scheme requires O(m) bandwidth,
but since FHE schemes are not yet practical, we view the 5PM protocol outlined
here as an efficient and practical solution to secure pattern matching with single
character wildcards and substring matching.

2 Preliminaries

The rationale behind our secure 5PM protocol is based on a modification of an in-
secure pattern matching algorithm (IPM) [29] that can perform exact matching,
exact matching with single character wildcards and substring matching within
the same algorithm. In Section 3.1, we show how our modified algorithm can be
reduced to basic linear operations whose secure and efficient evaluation allows
us to obtain our 5PM protocol.

2.1 Insecure Pattern Matching (IPM) Algorithm

To illustrate how our modified algorithm works, we begin by describing how it
performs exact matching; we then show how it handles single character wildcards
and substring matching.
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2.1.1 Exact Matching
IPM involves the following steps:

a. Inputs : An alphabet Σ, a text T ∈ Σn and a pattern p ∈ Σm.
b. Initialization: For each character in Σ, the algorithm constructs a vector,

here termed a Character Delay Vector (CDV ), of length equal to the
pattern length, m. These vectors are initialized with zeros. For example,
if the pattern is: “TACT ” over Σ = {A,C,G, T }, then the CDV s will
be initialized to: CDV (A) = [0, 0, 0, 0], CDV (C) = [0, 0, 0, 0], CDV (G) =
[0, 0, 0, 0] and CDV (T ) = [0, 0, 0, 0].

c. Pattern preprocessing: For each pattern character pi (i ∈ {1, ...,m}), a
delay value, drpi , is computed to be the number of characters from pi to
the end of the pattern, i.e., drpi = m − i for the rth occurrence of pi in
p. The drpith position of CDV (pi) is set to 1. For example the CDV s of
“TACT ” would be:
CDV (A) = [0, 0, 1, 0] because d1A = 4− 2 = 2
CDV (C) = [0, 1, 0, 0] because d1C = 4− 3 = 1
CDV (G) = [0, 0, 0, 0] because G �∈ p
CDV (T ) = [1, 0, 0, 1] because d1T = 4− 4 = 0 and d2T = 4− 1 = 3

d. Matching pass and comparison with pattern length: A vector of length n
called the Activation Vector (AV ) is constructed and its elements are
initialized with zeros. For each input text character Tj , CDV (Tj) is added
element-wise to the AV from position j to position min(n, j +m− 1). To
determine if there was a pattern match in the text, after these operations
the algorithm checks (when j ≥ m) if AVj = m. If so, then the match
started at position j −m+ 1. The value j −m+ 1 is added to the set of
matching positions (MP ). Note that n−AVj is the non-binary Hamming
distance of the pattern and the text staring at position j −m+ 1.

The intuition behind the algorithm is that when an input text character matches
a character in the pattern, the algorithm optimistically assumes that the follow-
ing characters will correspond to the rest of the pattern characters. It then adds
a 1 at the position in the activation vector several steps ahead, where it would
expect the pattern to end (if the character appears in multiple positions in the
pattern, it adds a 1 to all the corresponding positions where the pattern might
end). If all subsequent characters are indeed characters in the pattern, then at
the position where a pattern would end the number of added 1s will sum up
to the pattern length; otherwise the sum will be strictly less than the pattern
length. This algorithm does not incur false positives and always indicates when
(and where) a pattern occurs if it exists, as shown in [29].

2.1.2 Single Character Wildcards, Pattern Hiding and Substring
Matching

Single character wildcards can be handled in IPM by representing a single char-
acter wildcard with a special character,“∗” which is not in the text alphabet.
When “∗” is encountered in the pattern preprocessing phase it is ignored, i.e.,
no 1s are added to any CDV . Additionally, at the last step when elements of the
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AV are searched in the comparison phase, the threshold value being compared
against will be m− l instead of m, where l is the number of occurrences of “∗” in
the pattern. The intuition behind single character wildcards is that by reducing
the threshold for each wildcard, the algorithm implicitly skips matching that
position in the text, allowing that position of the pattern to correspond to any
character. This operation does not incur any false positives for the same reason
that the exact matching IPM algorithm does not: there, for each pattern p, there
is only one encoding into CDV s and only one sequence of adding CDV s as one
moves along the text that could add up to m. The same reasoning holds when
“∗” is present in p (except that the sequence adds to m− l).

We note that, using single character wildcards, one can always hide pattern
length by setting p′ as the concatenation of p and a string of n −m wildcards,
∗n−m, and using p′ to execute pattern matching for p.

Substring matching, or matching text substrings of Hamming distance m− l
from the pattern, is handled similarly to single character wildcards; the threshold
value being compared against in the AV is decreased tom−l. For further details,
we refer the reader to [29].

2.2 Preliminary Cryptographic Tools

This section outlines preliminary cryptographic tools required for our protocols.
For x, y ∈ Zn

q , we define the inner product of x and y over Zq, denoted 〈x, y〉, as∑
xiyi mod q.
Additively Homomorphic Encryption: We make use of additively homomor-

phic semantically secure encryption schemes.
For concreteness, we concentrate in the rest of the paper on the additively

homomorphic ElGamal encryption scheme whose security depends on the Deci-
sional Diffie-Hellman (DDH) computational hardness assumption. An additively
homomorphic ElGamal encryption scheme [30] is instantiated by choosing a
group of appropriate prime order q, Gq, with generator g, and setting the secret-
key to be x ∈ Zq and the public-key to be (g, h = gx). To encrypt a message m
one chooses a uniformly random r ∈ Zq and computes (gr, gmhr). To decrypt a

pair (α, β), one computes logg
β
αx . It is important to note for additive ElGamal

that the decryptor has to both decrypt and also compute a discrete logarithm
to discover the message. However, our scheme only requires a determination of
whether an encrypted value is of a 0 or not, which can accomplished without
computing logarithms.

Threshold Encryption: The malicious model version of 5PM requires an ad-
ditively homomorphic, semantically secure, threshold encryption scheme [31].
While we use threshold ElGamal, in practice, any scheme is acceptable if it
satisfies the required properties and supports the needed zero-knowledge argu-
ments. Threshold ElGamal in the two party case can be informally defined as
follows [32]: party P1 has share x1 and party P2 has share x2. The parties jointly
set the secret-key to be x = x1 + x2 (this can be performed without revealing
x1 and x2, see subprotocol πencr in Section 3.3). Without loss of generality, P1
partially decrypts (α, β) by sending (α, β

αx1
) to P2, who fully decrypts (α, β)
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by computing β
αx1αx2

= β
αx1+x2

. We denote the partial decryption algorithm for
party Pi as DPi .

Commitment Schemes: For the malicious model protocol, we will make use
of perfectly hiding, computationally binding commitment schemes (for further
discussion, see [33]). The Pedersen commitment scheme [34] is a well-known
example of such a commitment scheme; for a multiplicative group of prime or-
der q, Gq and for fixed generators g, h ∈ Gq, commitment to message s using
randomness r is gshr = comm(g, h, r, s).

Zero-Knowledge Arguments of Knowledge: In order to construct a protocol
that guarantees that each party behaves properly even in the malicious set-
ting, we utilize efficient interactive zero-knowledge arguments of knowledge (ZK-
AoKs) (for further discussion, see [35]).

2.3 Computing Linear Operations Using Additively Homomorphic
Encryption Schemes

Our secure pattern matching protocol relies on the following observations about
linear operations and additively homomorphic encryption schemes. In what fol-
lows, let E be the encryption algorithm for an additively homomorphic encryp-
tion scheme for key pair (pk, sk). Suppose the plaintext groupG can be expressed
as Zn for some n ∈ N; in particular, G is a ring. Let Ma,b(G) denote the set of
matrices of size a× b with entries in G.

2.3.1 Matrix Multiplication
Consider two matrices, A and B, where A ∈ Mk,l(G) and B ∈ Ml,m(G). Sup-
pose that P1 possesses pk, Epk(A), the entry-wise encryption of A , and also
the unencrypted matrix B. Then P1 can compute Epk(A · B), the encryption
of the multiplication of A and B under the same pk. Such an operation is pos-
sible because one can obtain an encryption of the inner product over G of an
unencrypted vector (x1, ..., xm) with an encrypted vector (E(y1), ..., E(ym)) by
computing ΠE(yi)

xi = E(
∑
xiyi)).

2.3.2 Matrix Operators
Consider a matrix A ∈ Mk,l(G). One can construct a k × (k + l − 1) matrix A′

by initializing A′ as a matrix with all 0s and then, for each row 1 ≤ i ≤ k, setting
(A′(i, i), ..., A′(i, i + l − 1)) = (A(i, 1), ..., A(i, l)). We denote such a function by
A′ ← Stretch(A), and note that since this function is a linear operator, it can be
computed using matrixmultiplication.We observe that for any encryption scheme
E, E(Stretch(A)) = Stretch(E(A)), when E is applied to each entry in A.

Consider a matrix A ∈ Mk,l(G). We denote by Cut(A, j) as the matrix A′ ∈
Mk,l−2j+2 such that for 1 ≤ a ≤ k, 1 ≤ b ≤ l− 2j +2, A′(a, b) = A(a, b+ j − 1).
In particular, such a function outputs the middle l− 2j+2 columns of Mk,l. We
note that Cut is a simple projection operator and is also computable by matrix
multiplication. We observe that for any encryption scheme E, E(Cut(A, j)) =
Cut(E(A), j).
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Finally, consider a matrix A ∈Mk,l(G). We denote by ColSum(A) the func-
tion that takes as input A and outputs a 1 × l vector whose ith entry is the
sum of all entries in the i column of A. In particular, ColSum(A) = [1....1] ·
A. We observe that for any additively homomorphic encryption scheme E,
ColSum(E(A)) = E(ColSum(A)).

Since we will be composing these functions, a shorthand for their composition
will be convenient. For matrices A ∈ Mk,l(G) and B ∈ Ml,m(G), we denote the
composition function ColSum(Cut(Stretch(A · B), j)) by PM5PM (A,B, j).

2.3.3 Searching an Encrypted Vector, πV Find

Suppose party P1 possesses (pk, sk) for an additively homomorphic encryption
algorithm E, and a single value m ∈ G and P2 possesses a vector of l distinct
encryptions Epk(vec), where vec = (x1, . . . , xl) ∈ Gl. Then P1 can determine if
E(vec) contains an encryption of m while learning nothing else about vec, while
P2 cannot learn m, through the following protocol πV Find:

1. P1 computes E(−m) from −m. P1 sends E(−m) to P2.
2. P2 computes E(vec′) by multiplying (via the group operation of the ci-

phertext space) E(−m) to each encrypted entry in E(vec). Note that an
entry in E(vec′) will be an encryption of 0 if and only if one of the encryp-
tions of E(vec) was an encryption ofm. P2 computes E(vecr) from E(vec′)
by exponentiating each encrypted entry of E(vec′) by an (independent)
random exponent. P2 sends E(vecr) to P1.

3. P1 decrypts E(vecr) to obtain vecr; if a 0 exists at position i, the ith
position of E(vec) is E(m).

Note that if P2 wishes to hide the position of E(m) from P1, P2 could randomly
permute the positions of E(vecr) and send the permuted vector to P1.

2.3.4 Efficiently Determining Equality of Two Matrices, πV ecEQ

Suppose parties P1 and P2 have agreed upon an additively homomorphic thresh-
old encryption scheme Eth. Further, suppose P1 and P2, possess encrypted matri-
ces Eth(A) ∈ Mk,l(G

′) and Eth(B) ∈ Mk,l(G
′), respectively, where the message

space G′ is the group Zq, for a prime q. Let DPi denote the partial decryption
algorithm of party Pi. P1 and P2 wish to determine if their encrypted matrices
are equal without exchanging their decryptions. They can do so by hashing their
encrypted matrices to a single group element and exchanging the outcome of the
hashes. More specifically, an affine hash function Zkl

q → Zq can be specified by

letting P1 and P2 jointly compute a uniformly random pair (a, b) ∈ Zkl
q ×Zq us-

ing standard commitment techniques and setting the hash to hf(x) = 〈x, a〉+ b,
where 〈·, ·〉 is the inner product over Zq (here, we consider the matrices as kl-
length strings). Note that such a hash function can be computed on encrypted
strings because the encryption scheme is additively homomorphic. Denote by
comm a (perfectly hiding, computationally binding) commitment scheme; in
practice we use Pedersen commitments [34]. We denote the following subproto-
col by πV ecEQ:
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1. P1 selects (a1, b1) ∈ Zkl
q × Zq uniformly at random and computes Eth(b1).

P1 computes and sends
comm(a1), comm(Eth(b1)), comm(Eth(A)) to P2.

2. P2 selects (a2, b2) ∈ Zkl
q × Zq uniformly at random and computes Eth(b2).

P2 sends a2, Eth(b2), Eth(B) to P1.
3. P1 sets a = a1+a2, Eth(b) = Eth(b1+b2) and computes z1 = Eth(〈a,A〉+b),
z2 = Eth(〈a,B〉+b). P1 decommits to a1, Eth(b1) and Eth(A) to P2 and sends
DP1(z1), DP1(z2) to P2.

4. P2 aborts if it does not accept the decommitments, else P2 sets a = a1 + a2,
Eth(b) = Eth(b1+b2) and computes z1 = Eth(〈a,A〉+b), z2 = Eth(〈a,B〉+b).
P2 sends DP2(z1), DP2(z2), DP2(DP1(z1)), and DP2(DP1(z2)) to P1.

5. P1 aborts ifDP2(DP1(z1)) �= DP2(DP1(z2)), otherwise P1 sendsDP1(DP2(z1))
and DP1(DP2(z2)) to P2.

6. P2 aborts if DP1(DP2(z1)) �= DP1(DP2(z2)).

The bandwidth complexity of πV ecEQ is dominated by the size of Eth(A) (and
Eth(B)). Only with probability 1/q will the decryptions equal each other when
A �= B because the hash function is chosen uniformly at random. In the malicious
case, arguments of consistency for correct partial decryptions will also be needed.

3 5PM Protocol

This section utilizes the above observations and cryptographic tools to construct
the secure pattern matching protocol (5PM). We develop πH5PM for the honest-
but-curious adversary model and πM5PM for the malicious (static corruption)
adversary model.

3.1 Converting IPM to Linear Operations

For a fixed alphabet Σ, a text T ∈ Σn, and pattern p ∈ (Σ ∪ {∗})m, IPM can
be represented in terms of linear operations described in Section 2.3 as follows:

a. The text T can be transformed into an n× |Σ| matrix, MT . The transfor-
mation is performed by applying a unary encoding of alphabet characters
to T , i.e., MT (i, Ti) = 1, ∀i ∈ {1, ..., n}; all other entries in MT are 0. We
denote the algorithm that computes MT from T as MT ← GenMT (T ).

b. The CDV s of alphabet characters can be grouped into a |Σ| × m ma-
trix, MCDV . This step is equivalent to constructing CDV s for alphabet
characters (steps b and c in Section 2.1.1).We denote the algorithm that
compute MCDV from p as MCDV ← GenMCDV (p).

c. Multiply MT by MCDV to obtain an n × m matrix MT (CDV ) that rep-
resents T row-wise in terms of CDV s, where the ith row is CDV (Ti). In
reality, sinceMT andMCDV are 0/1 matrices, multiplication is more com-
putationally expensive than necessary, and vectors can simply be selected
(as shown in IPM description in Section 2.1).

d. Compute MT (CDV ) = Stretch(MT (CDV )). This transformation, jointly
with the previous step, constructs a matrix of CDV s where the ith row
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contains only CDV (Ti), which starts in the ith position in the ith row
(sets up step d in Section 2.1.1).

e. Compute AV = ColSum(Cut(MT (CDV ),m)) to obtain the final activa-
tion vector AV of length n−m+1. Entries in AV are checked to see if any
are equal to the threshold value m, or m− l for single character wildcards
or substring matching (completes step d in Section 2.1.1).

A key observation is that if only one of MT and MCDV are encrypted, an en-
crypted activation vector, E(AV ) can be obtained by both parties as shown in
Sections 2.3.1 and 2.3.2.

3.2 Honest-But-Curious (HBC) 5PM Protocol

We begin by describing the intuition behind required modifications to secure
IPM in the HBC adversary model. We then describe details of the HBC protocol,
πH5PM .

3.2.1 Protocol Intuition
For an additively homomorphic encryption scheme E, if Client sends Server
E(MCDV ), by the reasoning of Sections 2.3 and 3.1, since the pattern matching
operation can be reduced to a sequence of linear operations (namely matrix mul-
tiplication and the functions Stretch, Cut, and ColSum), Server can compute
E(AV ), an encrypted activation vector, using only MT and E(MCDV ). Since
Client sends only E(MCDV ) and E(m− l), Server learns nothing about Client’s
pattern due to semantic security of the encryption scheme.

Next, Client, for pattern matching thresholdm (orm−l in the single character
wildcards/substring matching case) executes πV Find specified in Section 2.3.3,
where Client uses E(AV ), to discover whether (and where) a pattern exists. By
the security of πV Find, Server does not learn m and Client learns nothing about
E(AV ) other than whether or not (and where, if the pattern matching locations
are not hidden by Server) an encryption of m exists in E(AV ). In practice,
Client sends E(m) in the same (first) round as E(MCDV ), and Server’s response
to πV Find occurs in the second round, concluding execution of the secure pattern
matching protocol.

3.2.2 πH
5PM Protocol Specification

Recall that, over a specified alphabet Σ, Server holds text T ∈ Σn and Client
holds a pattern p ∈ (Σ ∪{∗})m. The output of Server is an encrypted activation
vector E(AV ) of length n. We refer the reader to Sections 3.1 and 2.3.2 for the
notation used here. The protocol operation is as follows:

1. Client computes (sk, pk) ← Key(1k) using the key generation algorithm
of an additively homomorphic encryption scheme, E.

2. Client computes MCDV ← GenCDV (p). In the case where Client wishes
to hide the length of p, Client computes MCDV for the pattern p′ equal
to the concatenation of p with ∗n−m.

3. Client encryptsMCDV entry-wise using public-key pk to obtainE(MCDV ).
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4. Client sends E(MCDV ) and pk to Server. In addition, Client sends E(−m)
(or E(−m + l) in the single character wildcards or substring matching
cases).

5. Server computes MT ← GenT (T ). Server computes E(AV ) =
E(PM5PM (MT ,MCDV ,m)), which is computed as specified in Section
2.3.1 and Section 2.3.2.

6. Server executes round 2 of πV Find (see Section 2.3.3) using E(−m) and
E(AV ). Server sends output of the subprotocol, denotedE(AV r

S ), to Client.
7. Optional: Per πV Find, Server randomly permutes E(AV r

S ) to hide possible
pattern match locations.

8. Client executes round 3 of πV Find using E(AV r
S ) to determine results of

the pattern matching.

We note that πH5PM can perform substring matching for multiple substring
lengths (such as for a Hamming distance bound) simultaneously by sending
multiple E(m − l) values at step 6 in the above specification. Then, for each
value of l, Server constructs a distinct E(AV ) and sends Client a distinct corre-
sponding E(AV r

S ) indicating matching locations for that l value. In particular,
πH5PM does not require multiple independent protocol executions to compute
substring matching for a range of substring length values. In addition, πH5PM can
simply compute the Hamming distance of the pattern with each consecutive m
positions of the text by simply not executing πV Find and sending the output
of the protocol at step 5, and Client can decrypt to obtain all of the Hamming
distance values between the pattern and the text.

Theorem 1. Given an additively homomorphic semantically secure encryption
scheme over a prime-order cyclic group (Key,E,D), πH5PM is secure in the HBC
model.

See the full version for a detailed security proof.

3.3 Malicious Model 5PM Protocol

In this section, we explain how to modify πH5PM to obtain a protocol, πM5PM , which
is secure in the malicious (static corruption) model. We describe an instantiation
of πM5PM based on additively homomorphic threshold ElGamal encryption (see
Section 2.2) for concreteness; generalization to other encryption schemes follows
provided they have efficient Σ protocols for the statements required here. First,
we explain intuition behind πM5PM . Second, we give interactive zero-knowledge
consistency arguments that will be required. Finally, we divide πM5PM into 6 sub-
protocols and describe their construction and how they are combined into the
final protocol πM5PM . In the interest of clarity and space, we leave the exact pro-
tocol specification and security proof to the full version of this paper. Note that
this protocol, as noted in Section 2.1.2, can be modified to both hide pattern
length (by using, for pattern p, the pattern p′ equal to to p concatenated with
∗n−m) and also to match against multiple substring values without multiple ex-
ecutions of the entire protocol (i.e., by sending multiple E(m − l) values and
computing a new activation vector for each value).
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3.3.1 Protocol Intuition
The 8 round protocol for the malicious model, πM5PM , consists of the following
six subprotocols:

1. πencr: initializes an additively homomorphic threshold encryption scheme.
2. πS,AV : allows Server to construct an encrypted activation vector for Client’s

encrypted pattern and Server’s text.
3. πC,AV : allows Client to construct an encrypted activation vector for Client’s

pattern and Server’s encrypted text.
4. πvec: allows Client and Server to verify that their activation vectors are equal

without revealing them.
5. πrand: allows Server to send an encryption of its randomized activation vector

to Client.
6. πans: demonstrates to Client where the pattern matches the text (if at all).

The intuition behind constructing πM5PM is as follows: in πH5PM , only Server
performs the computation to obtain the activation vector, AV . In the malicious
setting, Client has to verify that Server correctly computed AV . Since Server
performs O(nm) multiplications when computing AV in πH5PM , requiring a zero-
knowledge argument for each multiplication therefore would require bandwidth
of at least O(nm). Such overhead is unacceptable if bandwidth O(n + m) is
desired.

We utilize a more bandwidth-efficient approach to ensure that a malicious
Server has computed the correct AV : in πM5PM , both Client and Server perform
secure pattern matching independently using the function PM5PM where one
of MCDV and MT are encrypted, and then compare their results. Each party
computes an AV in parallel (see subprotocols πC,AV and πS,AV , respectively, in
Section 3.3.3) using an additively homomorphic threshold encryption scheme (in-
stantiated using subprotocol πencr in Section 3.3.3). To ensure that no cheating
has occurred, Client and Server then check that each other’s AV was computed
correctly. Therefore, proving that Server has behaved honestly is reduced to
proving that Client and Server have obtained the same result from matching p
against T . To efficiently perform comparison of encrypted AV s, Client and Server
check that their encrypted AV s are equal using subprotocol πV ecEQ described
in Section 2.3.4 (in addition to some zero-knowledge arguments to demonstrate
well-formedness). Only if hashed AV values match will Server provide Client
with its decrypted (and blinded) AV (using the subprotocols πrand and πans in
Section 3.3.3). The comparison subprotocol is denoted by πvec in Section 3.3.3.

Throughout, both Client and Server will have to use various arguments of
consistency outlined in Section 3.3.2 to prove that they have not deviated from
the protocol.

There is one additional technical difficulty that we have to overcome: in or-
der to prove security we must provide simulators that simulate transcripts when
interacting with adversarial parties (see full version for security definitions and
simulator constructions). When constructing the Simulator for Client’s view,
Simulator receives the actual answer that it must provide to Client from the
ideal functionality only at the last moment (if Client does not abort). Thus, the
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Simulator must provide a final answer which is not consistent with the previous
interactions, while the real Server must be unable to do so. To achieve this, we
demonstrate that the Simulator can extract the knowledge of the exponent of
some h∗ specified by Client during the first subprotocol (πencr); then, the final
subprotocol (πans) utilizes a zero-knowledge argument of knowledge that demon-
strates that either the final randomized AV is correct or that Server knows the
discrete logarithm of h∗. Since a real Server cannot extract the discrete loga-
rithm of h∗ but the Simulator can by construction, this allows the Simulator to
reveal the correct randomized AV even when it is inconsistent with the previous
outputs of the conversation. We stress that we do not use NP-reductions and
rather build highly efficient protocols to fit our needs.

3.3.2 Zero-Knowledge Arguments of Knowledge (ZK-AoKs) of
Consistency

We first describe five required interactive arguments which we rely on to prove
statements required for the πM5PM protocol. They are designed for use with
the specified threshold ElGamal encryption scheme (Section 2.2). We apply a
standard construction outlined in the full version of this paper to transform
three-move arguments of knowledge and construct five-move ZK arguments of
knowledge πDL, πisBit, πeqDL and πfin, respectively. All ZK-AoKs are executed
between a prover P and a verifier V in five moves; we note that either Client or
Server may execute the arguments of consistency as P while the other party will
then execute as V . πDL is the only ZK-AoK used on its own in πM5PM ; it proves
knowledge of a discrete logarithm of a public h = gx. πisBIT is a ZK-AoK that
proves that an encryption is either of a 0 or of a 1, πeqDL is a ZK-AoK that proves
that two discrete logarithms are equal, and πfin is a ZK-AoK that proves that
either two discrete logarithms are equal or that P knows the discrete logarithm
of a public h = gx. The five required interactive arguments are:

1. AM01, an AoK of Consistency for Matrix formation 0/1: P , for an l ×
u matrix of encryptions, E(M), proves to V that each column of E(M)
contains encryptions of 0 and at most one 1.

2. AM1, an AoK of Consistency for Matrix formation 0/1-1: P , for an l × u
matrix of encryptions, E(M), proves to V that each row of E(M) contains
encryptions of 0 and exactly one 1.

3. APD, an AoK of Consistency for Partial Decryption: P , for a vector of l
encryptions, (xi, yi) and a vector of their l partial decryptions (x′i, y

′
i), proves

to V that the partial decryptions are correctly constructed.
4. ARand, an AoK of Consistency for Randomization: P , for a vector of l

encryptions (xi, yi) and a vector of their exponentiations, (xrii , y
ri
i ), proves

to V that P knows ri for each i.
5. AFD, an AoK of Consistency for Final Decryption: P , for a vector of l

encryptions (xi, yi), their partial decryptions (x′i, y
′
i), and some gw, proves

to V that either P has computed all the partial decryptions correctly or that
possesses the discrete logarithm w of gw.
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3.3.3 πM
5PM Protocol Outline

We provide the details of πM5PM by describing individual subprotocols that
constitute it, πencr , πS,AV , πC,AV , πvec, πrand and πans. These subprotocols
utilize the interactive arguments described in Section 3.3.2 to prove various
statements of consistency. We denote by comm(s) as the (perfectly hiding, com-
putationally binding) commitment of s, which using Pedersen commitments [34]
is gshr = comm(g, h, r, s). For the exact protocol specification of πM5PM , includ-
ing precisely how the subprotocols are interleaved so that πM5PM requires only 8
rounds, see the full version; we will however mention here during which global
rounds (1 through 8) these subprotocols occur.

We remark that in our construction of ZK arguments of knowledge from Σ
protocols, whenever a ZK subprotocol is required, the first two rounds of the five
round protocol can be completed in parallel at the very beginning of the overall
protocol πM5PM . Such “preprocessing” does not affect security. Further, knowledge
extraction used in the security proofs is not affected by this preprocessing.
πencr is a two party protocol executed between Client and Server that ini-

tializes an additively homomorphic threshold encryption scheme (e.g., ElGamal)
and also sets up an independent “trapdoor” s∗ alluded to in Section 3.3.1 and
required for the simulator in the security proof. In the ElGamal case, for sim-
plicity, we assume that Client and Server have already agreed on appropriate
prime q such that log q = O(k), Gq and g ∈ Gq. This subprotocol begins at the
first global round and ends at global round 6. Client chooses its secret-key sC
and trapdoor s∗, and sets h1 ← gsC , h∗ ← gs∗ . Client sends h1, h

∗ to Server.
Client executes two parallel instantiations of πDL proving knowledge of the dis-
crete logs of h1 and h∗ (i.e., sC and s∗). Then, Server chooses its secret-key
sS , sets h2 ← gsS , and sends h2 to Client and executes πDL proving knowledge
of the discrete logarithm of h2 (i.e., sS). Both parties set the public-key to be
h = h1h2 = gsC+sS .
πC,AV is a two party protocol executed between Client and Server which out-

puts to Client an encrypted activation vector E(AVC) corresponding to matching
Client’s p against Server’s T . This subprotocol starts at global round 2 and ends
at global round 6. First, Server constructs MT ← GenMT (T ) as specified in
Section 3.1. Then, Server encrypts MT and sends E(MT ) to Client. Server also
executes, for E(MT ), AM1 to prove that E(MT ) is formatted correctly (namely,
that each row of E(MT ) has one encryption of a 1 per row and encryptions of
0 everywhere else- therefore each row of E(MT ) corresponds to the encoding of
exactly one element of the alphabet Σ). Client then obtains E(AVC) by comput-
ing E(PM5PM (MT ,MCDV ,m)) (see Section 2.3.2) and then multiplying each
encryption by E(−pt) (where pt is the pattern matching threshold), observing
the function PM5PM can be computed using encrypted E(MT ).
πS,AV is a two party protocol executed between Client and Server which

outputs to Server an encrypted activation vector corresponding to matching
Client’s p against Server’s T . This subprotocol starts at global round 3 and
ends at global round 5, with ZK preprocessing occurring during global rounds
1 and 2. Client encrypts MCDV and pt and sends E(MCDV ) and E(pt) to
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Server. Client also executes AM01 to prove that E(MCDV ) is formatted cor-
rectly (namely, E(MCDV ) consists of at most one encryption of 1 per column
and consists of encryptions of 0 everywhere else, therefore ensuring that there
is at most one character delay value per distance). Server computes E(AVS)
by computing E(PM5PM (MT ,MCDV ,m)) and then multiplying each encryp-
tion by E(−pt) (this slightly differs from Server’s actions during πH5PM since the
consistency proof of πvec must also include subtraction of the pattern matching
threshold pt).
πvec is a two party protocol executed between Client and Server that outputs

to each party whether their respective encrypted activation vectors are equal
(without revealing their values). This subprotocol begins at global round 3 and
ends at global round 8, with ZK preprocessing occurring during global rounds
1, 2 and 3. Client computes E(AV ′

C) by multiplying each element of AVC with
an encryption of 0; Server computes E(AV ′

S) from E(AVS) similarly. Client and
Server execute πV ecEQ (see Section 2.3.4) where Client has input E(AV ′

C) and
Server has input E(AV ′

S). In addition, whenever a party sends the other a partial
decryption, they execute APD to prove that the execution is well formed. Note
that the probability that πV ecEQ will complete without abort for unequal vectors
AVS and AVC is negligible (1q ).
πrand is a two party protocol executed between Client and Server that out-

puts to Client an encrypted vector E(AV r
S ) that contains randomizations of the

values in non-matching (non-zero) positions in E(AV ′
S). This subprotocol starts

at global round 6 and ends at global round 8, with ZK preprocessing occurring
during global rounds 2 and 3. Server computes E(AV r

S ) from E(AV
′
S) by expo-

nentiating each encryption in E(AV ′
S) by a random value. Server sends E(AV r

S )
to Client and executes Arand to prove that E(AV r

S ) was obtained correctly from
E(AV ′

S).
πans is a two party protocol executed between Client and Server that out-

puts to Client the randomization, AV r
S , of Server’s activation vector AVS . Note

that AV r
S will have a 0 wherever there is a match; every non-matching entry

will contain a random element. Client is assumed to already know E(AV r
S ).

This subprotocol starts at global round 6 and ends at global round 8, with ZK
preprocessing occurring during global rounds 2 and 3. We present a slightly
modified version of the actual subprotocol used because this protocol in prac-
tice must be rearranged slightly to keep πM5PM at 8 rounds (see full version for
details). Server sends DS(E(AV

r
S )) to Client and executes AFD to prove that

either DS(E(AV
r
S )) was obtained correctly or that Server knows s∗ (for h∗ sent

by Client in the first round of πencr). Client aborts if it does not accept AFD
and otherwise obtains AV r

S by computing DC(DS(E(AV
r
S ))).

Protocol Efficiency and Security. Overall bandwidth of πM5PM is dominated
by the O(m|Σ|) encrypted values that Client sends to Server in πS,AV and
O(n|Σ|) encrypted values that Server sends to Client in πC,AV and πans. Since
alphabet size, |Σ|, is constant, we obtain the desired bandwidth, including the
ZK protocols, of O((m + n)k2) for security parameter k and total number of
encryptions of O(m + n). In particular, when Client hides pattern size, the
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corresponding pattern will have length n and therefore the bandwidth com-
plexity is O(nk2). Computational complexity for Client is dominated by the
subprotocol πC,AV where Client performs O(mn) exponentiations of encrypted
elements, and computational complexity for Server is dominated by subprotocols
πS,AV , where Server performs O(mn) multiplications of encrypted elements, and
πvec and πans, where O(nk) exponentiations are needed for the ZK protocols.

Theorem 2. Assuming that the Decisional Diffie-Hellman (DDH) problem is
hard, πM5PM is secure in the malicious (static corruption) model.

See the full version for detailed security proofs.

4 Implementation Results

We implemented πH5PM in C++ using several additively homomorphic encryption
schemes (including additive ElGamal) to show that the protocol is efficient in
performing secure single character wildcards and substring pattern matching. For
example, using fast-decryption Paillier [36], for k = 1024 and using the DNA
alphabet, performing secure single character wildcards and substring pattern
matching can be performed in 64 seconds for a pattern of 100 characters and a
text of 100,000 characters.

We note that while πH5PM can easily be shown to have security that reduces
to the semantic security of Paillier encryption, we will require Paillier-specific
ZK-AoKs in order to use Paillier encryption in πM5PM .
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Abstract. We describe an implementation of the protocol of Damg̊ard,
Pastro, Smart and Zakarias (SPDZ/Speedz) for multi-party computation
in the presence of a dishonest majority of active adversaries. We present
a number of modifications to the protocol; the first reduces the security
to covert security, but produces significant performance enhancements;
the second enables us to perform bit-wise operations in characteristic
two fields. As a bench mark application we present the evaluation of
the AES cipher, a now standard bench marking example for multi-party
computation. We need examine two different implementation techniques,
which are distinct from prior MPC work in this area due to the use of
MACs within the SPDZ protocol. We then examine two implementation
choices for the finite fields; one based on finite fields of size 28 and one
based on embedding the AES field into a larger finite field of size 240.

1 Introduction

The invention of secure multi-party computation is one of the crowning achieve-
ments of theoretical cryptography, yet despite being invented around twenty-five
years ago it has only recently been implemented and tested in practice. In the
last few years a number of MPC “systems” have appeared [4,7,8,9,12,15,22], as
well as experimental research results [13,16,21,25,26].

The work (both theoretical and practical) can be essentially divided into two
camps.On one side we have techniques based onYao circuits [28], which aremainly
focused on two party computations, and on the other we have techniques based on
secret sharing [6,11], which can be applied tomore general numbers of players.This
is rather a coarse divide as some techniques, such as that from [25], only apply in the
twoparty case but it is based on secret sharing as opposed toYao circuits. Following
this coarse divide we can then divide work into those which consider only honest-
but-curious adversaries and those which consider more general active adversaries.

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 241–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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As in theory, it turns out that in practice obtaining active security is a much
more challenging task; requiring more computational and communication re-
sources. All prior implementation reports to our knowledge for active adversaries
have either been in the two party setting, or have restricted themselves to the
multi-party setting with honest majority. In the two party setting one can adopt
specialist protocols, such as those based on Yao circuits, whilst the restriction
to honest majority in the multi-party setting means that cheaper information
theoretic constructions can be employed. Recently, Damg̊ard et al [14] following
on from work in [5], presented an actively secure protocol (dubbed “SPDZ” and
pronounced “Speedz”) in the multi-party setting which is secure in the pres-
ence of dishonest majority. The paper [14] contains some simple implementation
results, and extrapolated estimates, but it does not report on a fully working
implementation which computes a specific function.

Whilst active security is the “gold standard” of security, many applications
can accept a weaker notion called covert security [1,2]. In this model a dishonest
party deviating from the protocol will be detected with high probability; as
opposed to the overwhelming probability required by active security. Due to the
weaker requirements, covert security can often be achieved for less computational
effort.

Our Contribution. As already remarked much progress has been made on im-
plementation of MPC protocols in the last few years, but most of the “fast”
implementations have been for simpler security models. For example prior work
has focused on protocols for two party computation only, or honest-but-curious
adversaries only, or for threshold adversaries only. In this work we extend the
prior implementation work to the most complex setting namely covert and active
security against a dishonest majority. In addition we examine more than four
players; with some experiments being carried out with ten players. Thus our work
shows that even such stringent security requirements and parameter settings are
beginning to be within reach of practical application of MPC technology.

More concretely, we show how to simplify the SPDZ protocol so that it
achieves covert security for a greatly improved computational performance, we
present the first implementation results for the SPDZ protocol (in both the ac-
tive and covert cases), and we describe an evaluation of the AES functionality
with this protocol. Our protocol implementation is in the random oracle model,
specifically the zero-knowledge proofs required by SPDZ are implemented us-
ing the Fiat–Shamir heuristic. We also simplify some other parts of the SPDZ
protocol in the random oracle model (details are provided below), and present
extensions to enable bit-wise operations in characteristic two fields.

Since the work of [26] it has become common to measure the performance
of an MPC protocol with the time it takes to evaluate the AES functionality.
This is for a number of reasons: Firstly AES provides a well understood func-
tion which is designed to be highly non-linear, secondly AES has a regular and
highly mathematical structure which allows one to investigate various different
optimization techniques in a single function, and thirdly “oblivious” evaluation
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of AES on its own is an interesting application which if one could make it fast
enough could have practical application.

The paper is structured as follows. We start by covering details of prior work
on using MPC to implement AES. In Section 3 we detail the basics of the SPDZ
protocol and the minor changes we made to the presentation in [14]. Then in
Section 4 we describe how we implemented the S-Box, this is the only non-linear
component in AES and so it is the only part which requires interaction. Finally
in Section 5 we present our implementation results.

2 Prior Work on Evaluating AES via MPC Protocols

As noted earlier the first MPC evaluation of the AES functionality was presented
in [26]. This paper presented a protocol for the case of two parties, using Yao
circuits as the basic building block. On their own Yao circuits only provide
security against semi-honest adversaries, and in this case the authors obtained
a run-time of 7 seconds to evaluate a single AES block (the model being that
party A holds the key, and party B holds a message, with B wishing to obtain
the encryption of their message under A’s key). To obtain security against active
adversaries a variant of the cut-and-choose methodology of Lindell and Pinkas
[20] was used, this resulted in the run-time dropping to 19 minutes to evaluate
an AES encryption.

In [15] Henecka et al again look at two-party computation based on Yao
circuits, but restrict to the case of semi-honest adversaries only. They reduce
the run time per block from the previous 7 seconds down to 3.3 seconds. Huang
et al [16] improve this even further obtaining a time of 0.2 seconds per block for
semi-honest adversaries.

In [25] the authors present a two party protocol, but instead of their protocol
being based on Yao circuits they instead base it on OT extension in the Random
Oracle Model, and a form of “secret sharing with MACs” (similar to the SPDZ
protocol which we examine below). This enables the authors to obtain active
security and to improve on the prior performance of other implementations. The
run time for a single evaluation of the AES circuit is 64 seconds, however this
drops to around 2.5 seconds when amortized over a number of encryption blocks.

The most recent result in the two party setting is [17], which returns to using
Yao circuit based protocols. By use of clever engineering of the overall run-time
design the authors are able to significantly improve the execution time for a
single AES evaluation down to 1s in the case of active adversaries.

Moving to the case of more than two players, all prior implementation results
have either been for three or four players; and have been in the semi-honest set-
ting for the case of three players. Like our work, in this setting one utilizes secret
sharing but prior work has been based on Shamir secret sharing, or specialised
protocols; and in the case of active security has been based on Verifiable Secret
Sharing.

The main paper which is related to our work is that of [13], so we now spend
some time to explain the differences between our approach and that of [13]. In [13]
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the authors examine an AES implementation in the case of standard threshold-
secret-sharing based MPC protocols. An implementation for one semi-honest
adversary amongst three players and one active adversary amongst four players is
described using the VIFF framework [12]. The VIFF framework works much like
the SPDZ protocol, in that it utilizes Beaver’s [3] method for MPC evaluation.
In an Offline Phase “multiplication triples” are produced, and then in an Online
Phase the function specific calculation is performed. The two key differences
between the protocol in [13] and the use of SPDZ is that the method to produce
the triples is different, and the method to ensure non-cheating adversaries during
the evaluation of the circuit is also different. These differences are induced since
[13] is interested in threshold adversary structures, whereas we are interested in
the more challenging case of dishonest majority.

The protocol of [13] is however similar to our work in that it looks at the
AES circuit as a circuit over the finite field F28 , and not as an arbitrary binary
circuit. The S-Box in AES is (usually) composed of two operations an inversion
in the field F28 followed by a linear operation on the bits of the resulting element.
In [13] the authors discuss various techniques for computing the inversion, and
for the bitwise linear operation they utilize a trick of bit-decomposition of the
shared value. This bit-decomposition is itself implemented using the technique
of pseudorandom secret sharing (PRSS) of bits.

For MPC protocols based on Shamir secret sharing, obtaining a PRSS is
relatively straight forward, indeed it is a local operation assuming some set-up.
However, for protocols using secret sharing with MACs (as in our approach)
it is unknown how to build a PRSS in such a clean way. Thus we produce
such shared random bits by executing another stage in the Offline Phase of the
SPDZ protocol. We also present a simplification of the technique in [13] to use
such bit-decompositions to implement the S-Box. This approach does however
assume that the Offline Phase somehow “knows” that the computed function
will required shared random bits; which defeats the point of having a function
independent Offline stage and also adds to the run time of the Offline stage.
Thus we also present a distinct approach which utilizes a surprising algebraic
formulation of the S-Box.

The implementation of [13] required less than 2 seconds per AES block (in-
cluding key expansion) when computing with three players and at most one
semi-honest adversary, and less than 7 seconds per AES block when computing
with four players and at most one active adversary. These times include the time
for the Offline Phase. If one is only interested in the Online Phase times, then
the active adversary case can be executed in between three and four seconds per
AES block.

More recent work has focused on the case of semi-honest adversaries and three
players only. Two recent results [18,19] have used an additive secret sharing
scheme and a novel multiplication protocol to perform semi-honest three party
MPC in the presence of at most one adversary. In [18] the authors present an AES
implementation using a novel implementation of the S-Box component via an
MPC table-lookup procedure. They report being able to perform 67 AES block
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cipher evaluations per second. In [19] the authors report on an implementation
of AES, using the Sharemind framework [7], in which they can accomplish over
one thousand AES block cipher evaluations per second.

In summary Table 1 summarizes the different performance figures and security
models for prior work on implementing AES using multi-party computation,
with also a comparison with our own work. Like all network based protocols
a significant time can be spent waiting for data, thus authors have found that
executing many calculations in parallel (as in for example AES-CTR mode)
can have significant performance enhancements. Thus for papers which report
such results we give the improved amortized costs for multiple executions (or
just the blocks-per-second count for a single execution if no improvement via
amortization occurs). However, single execution costs are still important since
this deals with the case of (for example) AES-CBC mode. In our implementation
we found little gain in performing multiple AES evaluations in parallel.

Table 1. A comparison of different MPC implementations of AES. We only give
the online-times for those protocols which have a pre-processing phase. We also note
whether the implementation assumes a pre-expanded key or not.

Total Max Time for (Amortized)
Number Number single Blocks Expanded

Paper Security Parties Adv. AES Block per Sec Key Notes

[26] semi-honest 2 1 7.0s 0.1 N Yao
[15] semi-honest 2 1 3.3s 0.3 N Yao
[16] semi-honest 2 1 0.2s 5.0 Y Yao
[13] semi-honest 3 1 1.2s 0.9 N Shamir
[18] semi-honest 3 1 N/A 67 Y Additive
[19] semi-honest 3 1 1.0s 1893 Y Additive

[26] covert 2 1 95s ≈ 0 N Yao
This work covert 2 1 0.17s 10.3 Y SPDZ
This work covert 3 2 0.19s 9.6 Y SPDZ
This work covert 4 3 0.18s 9.2 Y SPDZ
This work covert 5 4 0.19s 7.4 Y SPDZ
This work covert 10 9 0.23s 5.2 Y SPDZ

[26] active 2 1 19m ≈ 0 N Yao
[25] active 2 1 4.0s 32 N OT
[17] active 2 1 1.0s 1.0 Y Yao
[13] active 4 1 2.1s 0.5 N Shamir

This work active 2 1 0.26s 5.0 Y SPDZ
This work active 3 2 0.29s 4.7 Y SPDZ
This work active 4 3 0.32s 4.6 Y SPDZ
This work active 5 4 0.34s 4.4 Y SPDZ
This work active 10 9 0.41s 3.6 Y SPDZ

In interpreting the table one needs to note that Yao based experiments usually
implement a different functionality. Namely, the circuit constructor is the player
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holding the key. Whether the key is expanded or not refers to whether the garbled
circuit has this key hardwired in or not.

3 The SPDZ Protocol

We now give an overview of the SPDZ protocol, for more details see [14]. The
reader should however note we make a number of minor alterations to the basic
protocol, all of which are describe below. Some of these alterations are due to
us working in the random oracle model (which enables us to simplify a number
of sub-protocols), whilst some are simply a functional change in terms of how
inputs to the parties are created and distributed. In addition we describe how
to simplify the SPDZ protocol to the case of covert adversaries.

The SPDZ protocol, being based on the Beaver circuit randomization tech-
nique [3], comes in two phases. In the first phase a large number of random triples
are produced, such that each party holds a share of the triple, and such that
the underlying values in the triple satisfy a multiplicative relation. This phase is
referred to as the “Offline Phase” since the triples do not depend on either the
function to be evaluated (bar their number should exceed a constant multiple of
the number of multiplication gates in the evaluated function), and the triples do
not depend on the inputs to the function to be evaluated. In the second phase,
called the “Online Phase” the triples are used to evaluate the function on the
given input.

The key to understanding the SPDZ protocol is to note that all values are
shared with respect to a non-standard secret sharing scheme, which incorporates
a MAC value. To describe this secret sharing scheme we fix a finite field Fq. The
MAC keys are values αj ∈ Fq for 1 ≤ j ≤ nMAC such that player i holds the
share αj,i ∈ Fq where

αj = αj,1 + · · ·+ αj,n.
The shared values are then given by the following sharing of a value a ∈ Fq,

〈a〉 := (δ, (a1, . . . , an), (γj,1, . . . , γj,n)
nMAC
j=1 ),

where a is the shared value, δ is public and we have the equalities

a = a1 + · · ·+ an,
αj · (a+ δ) = γj,1 + · · ·+ γj,n for 1 ≤ j ≤ nMAC.

Given this data representing a shared value a each player Pi holds the data
(δ, ai, {γj,i}nMAC

j=1 ). To ease notation we write γj,i(a) to denote the share of the
jth MAC on item a held by party i. Arithmetic in this representation is compo-
nentwise, more precisely we have

〈a〉+ 〈b〉 = 〈a+ b〉, e · 〈a〉 = 〈e · a〉 and e + 〈a〉 = 〈e+ a〉,

where
e+ 〈a〉 = (δ − e, (a1 + e, a2, . . . , an), (γj,1, . . . , γj,n)nMAC

j=1 ).
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The simplicity of the above method for adding a constant value to 〈a〉 is the
reason of the public value δ. In [14] the presentation is simplified to having only
nMAC = 1, however the case of more general values of nMAC is discussed. In our
implementation having nMAC > 1 will be vital to ensure active security when
dealing with small finite fields, thus we present the more general case above.

The SPDZ protocol can tolerate active adversaries and dishonest majority
(ignoring the case where one of the dishonest players aborts) amongst a total of
n parties. Thus we can assume that n − 1 of the parties are dishonest and will
arbitrarily deviate from the protocol. The SPDZ protocol guarantees that if the
protocol terminates then the honest parties know that their resulting output is
correct, except with a negligible probability. For active adversaries we set this
probability, to mirror the choice in [14], to 2−40. For covert adversaries we adapt
the protocol so that the probability that a cheating adversary will be detected
is lower bounded by

min

{
1− q−nMAC , 1− q−nSAC ,

1

2 · (n− 1)

}
,

where nMAC and nSAC are parameters to be discussed later and Fq is the finite
field over which our triples are defined.

3.1 Offline Phase

The Offline Phase makes use of a somewhat homomorphic encryption (SHE)
scheme, with a distributed decryption procedure, and zero-knowledge proofs. In
our implementation we use the optimized non-interactive zero-knowledge proofs
of knowledge (NIZKPoKs) derived from the Fiat–Shamir heuristic which are
described in [14]. Thus our Offline Phase is only secure in the Random Oracle
model.

The specific SHE scheme used is a variant of the BGV scheme [10] over the
mth cyclotomic field. We thus have lattices of dimension φ(m), over a modulus
of size Q. Each ciphertext consists of two (or three) polynomials modulo Q of
degree less than φ(m). The underlying plaintext space can hold an element of
(Fq)


.
The Offline Phase produces many triples of such sharings 〈a〉, 〈b〉, 〈c〉 such that

c = a · b, where these values are authenticated via a global set of nMAC shared
MAC keys as described above. The NIZKPoKs mentioned above have soundness
error 1/2, and so in [14], we “batch” together sec executions so as to reduce the
soundness error to 2−sec. This batching, combined with the vectoral plaintext
space, means that a single execution of the Offline phase produces sec ·  triples.

We can trivially modify the Offline Phase so that it also outputs, for charac-
teristic two fields, a set of shared random bits and their associated MACs. We
can produce one such shared bit for roughly one third of the cost of one shared
triple. As for the shared triples, each invocation of the method to produce shared
random bits will produce sec ·  bits in one go.

The main cost of the Offline phase is in the production and verification of
the zero-knowledge proofs. For n players, for each proof that a player needs to
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produce he will need to verify n − 1 proofs of the other players. For the case
of covert adversaries we simplify the Offline Phase as follows. We do not batch
together proofs, i.e. we take sec = 1, which results in soundness error for each
proof of 1/2. In addition each player when it receives n− 1 proofs from all other
players only verifies a random proof. This means that a cheating player will be
detected with probability at least 1/(2 · (n− 1)) in the Offline phase, as opposed
to 1− 2−40 when we use the standard actively secure Offline Phase.

3.2 Online Phase

Given that our Offline Phase is given in the Random Oracle Model we alter the
Online Phase from [14] so that it too utilizes Random Oracles. This means we
can present a more efficient Online Phase than that used in [14]. Our Online
Phase makes use of three hash functions: The first one H1 is used to ensure
that broadcast has happened, for this hash function we require it is one which
supports an API of standard hash functions consisting of Init,Update and Finalise
methods. The second hash function H2 is used to generate random values for
checking the linear MAC equations and the triples. The third hash function H3,
which we model as a random oracle, is used to define a commitment scheme as
follows: To commit to a value x, which we denote by Commit(x), one generates
a random value r ∈ {0, 1}sec, for some security parameter sec, and computes
comm = H3(x‖r). To open Open(comm, x, r) one verifies that comm = H3(x‖r)
returning x if this is true, and ⊥ if it is not.

The first change we make is in how we guarantee that consistent broadcast
occurs. For the Online phase we assume that the point-to-point links between
the parties are authenticated, but we need to guarantee that a dishonest party
is not allowed to send different messages to different players when he is required
to broadcast a single value to all players. This is done by modifying the notion
of a “partial opening” from [14] and the notion of “broadcast”. The “broad-
casts” are ensured to be correct via the parties maintaining a hash of all values
received. This is checked before the output is reconstructed; thus in the final
broadcast to recover the output we utilize the re-transmit method from [14] to
check consistency of the final broadcast.

In the original protocol “partial opening” just means a broadcast of the share
of a value held by a party, but not the broadcast of the share of the MAC on
that value. Thus only the value is opened, not the MAC on the value. However,
we each ensure player maintains the running totals of the linear equations they
will eventually check. In [14] these linear equations were of the form

∑
k e

kak,
for some random agreed value e. This gives an error probability of T/q, where
T is the number of partial openings in an execution of the Online Phase. For
small values of q this is not effective, thus we replace the values ek by the output
of hash function H2. In Figure 1 we describe our modified partial opening, and
broadcast protocol, which maintains a hash value of all values broadcast; as well
as a method for checking consistency.
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Init(): We initialize the following data:
1. Party i executes H1.Init().
2. Party i sets cnti = 0.
3. For j = 1, . . . , nMAC

(a) Party i sets âj,i = 0 and γj,i = 0.
4. Party i generates a random value seedi ∈ {0, 1}sec and sends it to all other

players.
Broadcast(vi): We broadcast vi and receive the equivalent broadcasts from other

players:
1. Party i sends vi to each player.
2. On receipt of {v1, . . . , vn} \ {vi} execute H1.Update(v1‖ . . . ‖vn).
3. Return {v1 + · · ·+ vn}.

PartialOpen(〈a〉): Party i obtains the partial opening of the shared value and up-
dates their partial sums:
1. Execute {a1, . . . , an} = Broadcast(ai).
2. a = a1 + · · ·+ an.
3. (e1‖ . . . ‖enMAC) = H2(0‖seed1‖ . . . ‖seedn‖cnti) ∈ Fq.
4. cnti = cnti + 1
5. For j = 1, . . . , nMAC

(a) âj,i = âj,i + ej · (a+ δa).
(b) γj,i = γj,i + ej · γj,i(a).

6. Return a.
Verify(): We check all broadcasts have been consistent:

1. Party i computes hi = H1.Finalise() and sends hi to each player.
2. On receipt of hj from player j, if hi = hj then abort.

Fig. 1. Methods for Partial Opening and Broadcast for Party i

In the Online Phase the key issue is that the triples produced by the Offline
Phase may not satisfy the relation c = a · b, nor may the MACs verify. This is
because we do not ensure that the dishonest parties were “well behaved” in the
Offline Phase. Thus these two properties must be checked. The Online Protocol
of [14] does this as follows: To check that c = a · b for the triples, we will use for
the MPC evaluation we “sacrifice” a set of nSAC extra triples per evaluated triple.
For the sacrificing method in our implementation, we adopted the näıve method
of [14]. This results in consuming more triples, but is simpler computationally.
To check the MAC values a series of nMAC linear equations are checked at the
end of the Online Phase.

Each triple sacrifice and MAC equation check can be made to hold by the
adversary with probability 1/q. Thus to reduce this to something negligible we
sacrifice many triples, and utilize many MAC equations. But in the case of covert
adversaries we select nMAC = nSAC = 1, and so the probability of a cheating
adversary being detected is bounded from below by 1− 1/q.

Both of these checks require that the parties agree on some global random
values at different points in the protocol. In [14] these extra shared values are
determined in the Offline Phase, via a different form of secret sharing; with the
sharings being opened at the critical point in the Online protocol. The benefit
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of this approach is that one obtains a protocol which is UC secure without
the need for Random Oracles; however the down-side is that the Offline Phase
becomes relatively complex. In our work we take the view that since Random
Oracles have been used in the Offline Phase one might as well exploit them in
the Online Phase. Thus these shared values are obtained via a Random Oracle
based commitment scheme as we now describe.

The next alteration we make to the Online Phase of [14] is that we assume
that the players shares of the input values are “magically distributed” to them.
This can be justified in two ways. Firstly we are only interested in timing the
main Offline and Online Protocol and the input distribution phase is just an
added complication. Secondly, a key application scenario for MPC is when the
players are computing a function on behalf of some client. In such a situation
the players do not themselves have any input, it is the client which has input. In
such a situation the players would obtain their respective input shares directly
from the client; thus eliminating the need entirely for a special protocol to deal
with obtaining the input shares.

Our final alteration is that we utilize a new online operation, in addition to
local addition and multiplication, called BitDecomposition. We first note that
we can given a sharing 〈a〉 of a finite field element a ∈ F2k = F2[X ]/F (X), and
a set of k randomly shared bits 〈ri〉 for i = 0, . . . , k − 1. Suppose we write a as∑k−1

i=0 ai ·X i, our goal is to produce 〈ai〉. Firstly via a local operation we compute
a sharing of r =

∑
ri ·X i by computing 〈r〉 =

∑
〈ri〉 ·X i. Then we produce a

masked value of a, via 〈c〉 = 〈a〉+ 〈r〉. The value of 〈c〉 is then opened to reveal c
and we compute the decomposition c =

∑
ci ·X i. Then we can locally compute

〈ai〉 = ci+ 〈ri〉. Note, if a is known to be in a subfield of F2k , as it will be in one
of our implementations for k = 40, we can utilize the embedding of the subfield
into the larger field to reduce the number of shared random bits needed for this
decomposition down to the degree of the subfield. We refer to Appendix A for
more details.

Given these alterations to the Online Phase of [14] we present the modified
protocol in Figure 2 of the Appendix.

4 S-Box Implementation

We present two distinct methodologies to implement the S-Box. The first requires
the Offline Phase to only produce multiplication triples, and utilizes the algebraic
properties of the S-Box. The second requires the Offline Phase to also produce
sharings (and associated MACs) of random bits.

4.1 S-Box via Algebraic Operations

A key design criteria of any block cipher is that it should be highly non-linear. In
addition it should be hard to write down a series of simple algebraic equations to
describe the cipher. Since such equations could give rise to an attack via algebraic
cryptanalysis. Indeed one reason for choosing AES as an example benchmark for
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MPC protocols, is that being a block cipher it should be highly non-linear and
hence a challenge for MPC protocols. However, as was soon realised after the
standardization of AES the S-Box (the only non-linear component in the entire
cipher) can be represented in a relatively clean algebraic manner.

Our algebraic method to implement the S-Box operation is based on the anal-
ysis of AES of Murphy and Robshaw [23]. In this work the authors demonstrate
that actually AES can be described by (relatively simple) algebraic formulae over
F28 , in other words the transform between byte-wise and bit-wise operations in
the standard representation of the AES S-Box is a bit of a MacGuffin.

Recall the AES S-Box consists of an inversion in F28 (which is indeed a highly
non-linear function) followed by a linear operation over the bits of the result.
This is usually explained that the mixture of the two operations in two distinct
finite fields “breaks any algebraic structure”. This was shown to be false in [23].
Indeed one can express the S-Box calculation via the following simple polynomial

S-Box(z) = 0x63 + 0x8F · z127 + 0xB5 · z191 + 0x01 · z223 + 0xF4 · z239

+ 0x25 · z247 + 0xF9 · z251 + 0x09 · z253 + 0x05 · z254.

where (as is usual) operations are in the finite field defined by F28 = F2[x]/(x
8+

x4 + x3 + x + 1) and the notation 0x12 represents the element defined by the
polynomial x4 +x. That the operation can be defined by a polynomial of degree
bounded by 255 is not surprising, since by interpolation any functions from F28

to F28 can be represented in such a way. What is surprising is that the polynomial
is relatively sparse, however this can be easily shown from first principles.

Lemma 1. The AES S-Box can be represented by a polynomial which has a non-
zero coefficient for the term i if and only if i ∈ {0, 127, 191, 223, 239, 247, 251, 253,
254}.

Proof. Recall the AES S-Box consists first of inversion z → z−1 = y followed by
an F2 linear operation w = A · yT + b on the bits of the result, where y are the
bits in y. The bit matrix A and the bit vector b are fixed. The final result is
obtained by forming the dot-product of the (F2)

8 vector w with the fixed vector
x = (1, x, x2, x3, x4, x5, x6, x7) ∈ (F28)

8.
First note that inversion in F28 can be accomplished by computing z−1 = z254,

since z255 = 1 for all z �= 0. The AES standard “defines” 0−1 = 0, and so the
formula of z254 can be applied even when z = 0 as well.

We then note that extracting the bits y = (y0, . . . , y7) ∈ (F2)
8 of an element

y = y0+ y1 ·x+ · · ·+ y7 ·x7 can be obtained via a linear operation on the action
of Frobenius on y. This follows since Frobenius acts as a linear map, and hence
by applying Frobenius eight times we find eight linear equations linking the set
{y0, . . . , y7} with the Frobenius actions on y. This in turn allows us to solve for
the bits y = (y0, . . . , y7). Thus there is matrix B ∈ (F28)

8×8 such that

y = B · (y, y2, y4, y8, y16, y32, y64, y128)T.
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Hence, the output of the S-Box can be written as

S-Box(z) = x · (A · y + b),

= x · (A · B) · (y, y2, y4, y8, y16, y32, y64, y128)T + x · b,
= s · (1, y, y2, y4, y8, y16, y32, y64, y128)T

where s is a fixed nine dimensional vector over F28 . On replacing y with z254 in
the above equation, using z255 = 1 for all z �= 0, we obtain our result. With the
result also following for z = 0 by inspection.

Finally to implement the S-Box we therefore need an efficient method to obtain
from an shared input value z, the shared values of the elements {z127, z191,
z223, z239, z247, z251, z253, z254}. This is equivalent to finding a short addition
chain for the set {127, 191, 223, 239, 247, 251, 253, 254}. We found the shortest
such addition chain consists of eighteen additions and is the chain

{1, 2, 3, 6, 12, 15, 24, 48, 63, 64, 96, 127, 191, 223, 239, 247, 251, 253, 254}.

Thus to evaluate a single S-Box requires eighteen MPCmultiplication operations,
as well as some local computation. Hence, to evaluate the entire AES cipher we
require 18 · 16 · 10 = 2880 MPC multiplications.

Looking ahead each multiplication operation will require interaction, and to
reduce execution times we need to ensure that each player is kept “busy”, i.e. is
not left waiting for data to arrive. To do this we will interleave various different
multiplications together; essentially exploiting the instruction level parallelism
(ILP) within the basic AES algorithm. Clearly one can execute each of the 16
S-Box operations in a single round in parallel, thus obtaining an immediate 16-
fold factor of ILP. However, further ILP can be exploited in the addition chain
above as can be seen from its graphical realisation in Figure B. in the Appendix.
We see that the addition chain can be executed in twelve parallel multiplication
steps; thus the total number of rounds of multiplication need for the entire AES
cipher will be 12 · 10 = 120.

4.2 S-Box via BitDecomposition

As explained in [13] the S-Box can be implemented if one has access to shared
random bits, via the BitDecomposition operation. In our second implementa-
tion choice we extend this technique, and reduce even further the amount of
interaction needed to compute the S-Box.

We use this BitDecomposition trick in two ways. The first way is to decompose
an element in F28 into it’s bit components, so as to apply the linear map of the
S-Box. This part is exactly as described in [13]; except when we open the value of
〈c〉 we perform a partial opening, leaving the checking of the MACs until the end.

In our second application of BitDecomposition we use BitDecomposition to
implement the operation x −→ x254. This done as follows: We decompose x
into it’s constituent bits. Then the operations x −→ x2, x −→ x4 are all linear
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operations, and so can be performed locally. Finally the value of x254 = x−1 is
computed via the combination

x254 =
((
x2 · x4

)
·
(
x8 · x16

))
·
((
x32 · x64

)
· x128

)
,

which requires a total of six multiplications. We could reduce this down to four
multiplications by applying the Frobenius map to other elements [27]; but this
will consume even more random bits per S-Box thus we settled for the above im-
plementation which consumes 16 sharings of random bits per S-Box invocation.

5 Experimental Results

We implemented the SPDZ protocol over finite fields of characteristic two and
used it to evaluate the AES function, with the S-Box implemented using both the
algebraic formulation described earlier and the variant by BitDecomposition. As
described earlier we examined the case of dealing with both covert adversaries
and fully malicious (a.k.a. active) adversaries (with cheating probability of 2−40).
We note that the probability of 2−40 could be extended to smaller values, but we
used 2−40 so as to be comparable with the theoretical run-time estimates given
in [14]. For example to reduce the probability down to 2−80 would essentially
require a doubling of the cost of both the Offline and Online stages.

The first decision one needs to take is as to what finite field one should work
with. Since we are evaluating AES it is natural to pick the field

K8 = F2[x]/(x
8 + x4 + x3 + x+ 1).

Another choice, particularly suited to our active adversary cheating probability
of 2−40, would be to use the field

K40 = F2[y]/(y
40 + y20 + y15 + y10 + 1).

Using this finite field has the advantage that, for active adversaries, we only need
to keep one MAC share per data item, and only one triple per multiplication
needs to be sacrificed. In addition the field K8 lies in K40 via the embedding
x = y5 + 1. We also for means of comparison of the Offline phase implemented
the Offline protocol over a finite field Fq with q a 64-bit prime.

We also experimented with various numbers of players, and different values
of nMAC and nSAC. As explained in [14] all such variants lead to different basic
parameters (m,Q, ) of the underlying SHE scheme.

We now determine values of (m,Q, ) for our SHE scheme given a specific
finite field Fq (or in the case of q prime a rough size for q), a value for the
sec (the number of NIZKPoKs we run in parallel in the Offline stage), and the
number of players n. As a “lattice security parameter” we selected δ = 1.0052
which corresponds to roughly 128 bits of symmetric security.

We require finite fields Fq of size F28 and F240 , as well for comparison a
finite field where q was a 64-bit prime. We also looked for parameters for n ∈
{2, 3, 4, 5, 10} and sec ∈ {1, 40}. As in [14] we first search for rough estimate of
the parameters (m,Q) which fit these needs:
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char(Fq) n sec φ(m) ≥ log2(Q)
2 2 ≤ n ≤ 10 40 12300 370
2 2 ≤ n ≤ 5 1 8000 200
2 10 1 8000 210

≈ 264 2 ≤ n ≤ 10 40 16700 500
≈ 264 2 ≤ n ≤ 5 1 11000 330
≈ 264 10 1 11300 340

We then selected values for m as follows:

F28 and F240 , sec = 40: We select m = 17425, which gives us φ(m) = 12800.
The polynomial Φm(X) factors modulo two into  = 320 factors each of degree
40. Thus these parameters can support both our finite fields F28 and F240 .

F28 , sec = 1: We select m = 13107, which gives us φ(m) = 8192. The polyno-
mial Φm(X) factors modulo two into  = 512 factors each of degree 16.

F240 , sec = 1: We select m = 13175, which gives us φ(m) = 9600. The polyno-
mial Φm(X) factors modulo two into  = 240 factors each of degree 40.

p ≈ 264, sec = 40: We select, as in [14], p = 264 + 4867 and m = 16729 so that
 = φ(m) = 16728.

p ≈ 264, sec = 1: We select, as in [14], p = 264 + 8947 and m = 11971 so that
 = φ(m) = 11970.

Recall that one invocation of the Offline Phase produces sec · triples; thus using
the choices above we obtain the following summary table, where “# Trip/# Bits”
denotes the number of triples/bits produced per invocation of the Offline Phase.

Adversary nMAC # Trip/
Field Type sec = nSAC # Bits
K8 covert 1 1 512
K8 active 40 5 12800
K40 covert 1 1 240
K40 active 40 1 12800

We ran the Offline phase on machines with Intel i5 CPU’s running at 2.8 GHz.
with 4 GB of RAM. The ping between machines over the local area network
was approximately 0.3 ms. We obtained the executions time given in Table 2
and Table 3, for the two different finite field choices and covert/active security
choices, and various numbers of players. We did not run an example with ten
players and active adversaries since this took too long. We first ran the Offline
Phase in each example to produce a minimum of 5000 triples. Clearly for some
parameter sets a single run produced much more than 5000, whilst for others we
required multiple runs so as to reach 5000 triples. These results are in Table 2.
These runs are compatible with our algebraic S-Box formulation.



Implementing AES 255

This table also presents the average time needed to produce each triple, plus
also the amortized time to produce triples per AES invocation (in the case where
one wants to evaluate the AES functionality many times). Recall to evaluate the
AES functionality with our method requires 10 · 16 · 18 = 2880 multiplications
in total; thus the number of triples needed is 2880 · (nSAC +1), since each multi-
plication consumes nSAC+1 triples. What is clear from the table is that if one is
wishing to obtain security against covert adversaries then utilizing the field K8

is preferable. However, for security against active adversaries the field K40 is to
be preferred.

Table 2. Offline Run Time Examples For The Algebraic S-Box Method

Covert Security Active Security
Total Time per Offline time Total Time per Offline time

Num. Time Triple per AES blk Time Triple per AES blk
Field Parties (h:m:s) (seconds) (h:m:s) (h:m:s) (seconds) (h:m:s)

No. Triples Produced: 5120 No. Triples Produced: 12800

K8 2 0:01:31 0.018 0:01:42 1:25:57 0.403 1:56:02
K8 3 0:01:32 0.018 0:01:43 1:50:25 0.518 2:29:03
K8 4 0:01:32 0.018 0:01:43 2:14:16 0.629 3:01:15
K8 5 0:01:33 0.018 0:01:44 2:37:30 0.738 3:32:37
K8 10 0:01:48 0.021 0:02:01 4:40:15 1.314 6:18:20

No. Triples Produced: 5040 No. Triples Produced: 12800

K40 2 0:05:08 0.061 0:05:52 0:29:34 0.136 0:13:18
K40 3 0:05:13 0.062 0:05:57 0:38:18 0.180 0:17:14
K40 4 0:05:14 0.062 0:05:58 0:46:02 0.216 0:20:42
K40 5 0:05:17 0.063 0:06:02 0:55:51 0.262 0:25:07
K40 10 0:06:02 0.072 0:06:53 1:39:14 0.465 0:44:39

We then run an Offline phase tailored to our BitDecomposition S-Box formu-
lation. Here we need to perform 10 · 16 · 6 = 960 multiplications, and thus we
require 960 · (nSAC + 1) triples to evaluate a single block. But we also require
10 · 16 · 16 = 2560 shared random bits so as to perform two eight bit, BitDe-
compositions per S-Box invocation. Thus in Table 3 we present run times for a
second invocation of the Offline Phase in which we aimed to produce a minimum
of 5000 triples and 6600 shared random bits (which is the correct ratio for covert
security). Due to the inbalance between Triple and Bit production the “Offline
Time per AES Block” column needs to be taken as rough estimate. Again we see
that for covert securityK8 is preferable, and for active securityK40 is preferable.

But, these run times do not seem comparable with the 13ms per triple esti-
mated by the authors of [14] for the Offline Phase. However, this discrepancy can
easily be explained. The run time estimates in [14] are given for arithmetic circuit
evaluation over a finite field of prime characteristic of 64-bits. With the param-
eter choices in [14] this means one can select parameters for the SHE scheme
which enable a 16000-fold SIMD parallelism. For our finite fields of degree two
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Table 3. Offline Run Time Examples For The S-Box Via BitDecomposition

Covert Security Active Security
Total Offline Time Total Offline Time

Number Time per AES Block Time per AES Block
Field Players (h:m:s) (h:m:s) (h:m:s) (h:m:s)

No. Triples/Bits: 5120/6556 No. Triples/Bits: 12800/12800

K8 2 0:02:07 0:00:47 1:54:42 0:51:36
K8 3 0:02:10 0:00:49 2:26:21 1:05:51
K8 4 0:02:13 0:00:50 2:56:47 1:19:33
K8 5 0:02:36 0:00:52 3:29:49 1:34:25
K8 10 0:02:33 0:00:58 6:06:20 2:44:51

No. Triples/Bits: 5040/6720 No. Triples/Bits: 12800/12800

K40 2 0:07:12 0:02:43 0:36:14 0:05:26
K40 3 0:07:12 0:02:43 0:47:30 0:07:07
K40 4 0:07:19 0:02:47 0:58:55 0:08:57
K40 5 0:07:24 0:02:49 1:10:33 0:10:34
K40 10 0:08:32 0:03:15 2:10:03 0:19:32

the amount of SIMD parallelism in the Offline Phase is much lower than this. To
see the difference that using large prime characteristic fields makes to the Offline
Phase we implemented it, using the parameters above to obtain the results in
Table 4. As can be seen from the table we produce triples for prime fields of
64-bits in size around twice as fast as the estimates in [14] would predict.

Table 4. Offline Run Time Examples For Fp With p ≈ 264

Covert Security Active Security
Total Total Time per Total Total Time per

Number Number Time Triple Number Time Triple
Players Triples (h:m:s) (seconds) Triples (h:m:s) (seconds)

2 11970 0:00:27 0.002 669120 1:10:48 0.006
3 11970 0:00:27 0.002 669120 1:32:13 0.008
4 11970 0:00:28 0.002 669120 1:55:05 0.010
5 11970 0:00:29 0.002 669120 2:20:42 0.013
10 11970 0:00:31 0.002 669120 4:17:10 0.023

We now turn to the Online Phase; recall that this itself comes in two steps
(and two variants). In the first step we evaluate the function itself (consuming
the triples produced in the Offline Phase), whereas in the second step we check
the MAC values and open the final result. In Table 5 we present the run-times to
evaluate the AES functionality for the various parameter sets generated above
using our algebraic formulation of the S-Box. These are average run-times from
all the players, executed over 20 different runs. The Online Phase was run on
the same machines as in the Offline Phase. In Table 6 we present the same times
using the S-Box variant utilizing the BitDecomposition method.
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Table 5. Online Phase Runtime Examples (all in seconds) – Algebraic S-Box

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.284 0.017 0.301 1.319 0.031 1.350
K8 3 0.307 0.062 0.369 1.381 0.035 1.416
K8 4 0.316 0.027 0.343 1.422 0.028 1.450
K8 5 0.344 0.034 0.378 1.461 0.018 1.479
K8 10 0.444 0.010 0.454 1.659 0.023 1.682

K40 2 0.449 0.012 0.461 0.460 0.021 0.481
K40 3 0.486 0.022 0.498 0.475 0.025 0.500
K40 4 0.490 0.042 0.532 0.486 0.055 0.541
K40 5 0.508 0.037 0.544 0.510 0.026 0.536
K40 10 0.765 0.021 0.786 0.672 0.017 0.689

Table 6. Online Phase Runtime Examples (all in seconds) – S-Box Via BitDecompo-
sition

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.156 0.009 0.165 0.569 0.011 0.580
K8 3 0.178 0.008 0.186 0.616 0.019 0.635
K8 4 0.169 0.015 0.184 0.620 0.015 0.635
K8 5 0.173 0.019 0.192 0.727 0.019 0.746
K8 10 0.211 0.015 0.226 0.722 0.044 0.766

K40 2 0.260 0.006 0.266 0.256 0.004 0.260
K40 3 0.303 0.009 0.312 0.279 0.011 0.290
K40 4 0.303 0.010 0.313 0.287 0.029 0.316
K40 5 0.319 0.022 0.341 0.319 0.016 0.335
K40 10 0.399 0.016 0.415 0.387 0.027 0.414

The networking between players was implemented in a point-to-point fashion
with each player acting as both a server and a client. We ensured that data was
sent over the sockets as soon as it was ready by disabling Nagle’s algorithm [24].
To complete the function evaluation each player first parses a program written
in a specialised instruction language. This allows our implementation to take
advantage of the instruction level parallelism as described above so as to schedule
many multiplication operations to happen in parallel.

Again we see that if security against covert adversaries is the goal then using
the fieldK8 is to be preferred. However, for security against active adversaries the
fieldK40 performs better. We also ran the Online Phase in a run which performed
ten AES encryptions in parallel. This resulted in only a small improvement in
time per AES block over executing just one AES encryption at a time, thus we
do not present these figures. Improving the throughput for parallel execution is
the subject of future research.
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Overall, the two methods of AES evaluation are roughly comparable. The
method via BitDecomposition being faster, and significantly faster when one
also takes into account the associated cost of the Offline Phase. However, as
remarked previously this method does not result in a generic Offline Phase;
since the Offline Phase needs to “know” the expected ratio of Bits to Triples
that it needs to produce for the actual function which will be evaluated in the
Online Phase.

In summary we have presented the first experimental results for running MPC
protocols with large numbers of players (10 as opposed to the four or less of prior
work), and for a dishonest majority of active or covert adversaries (as opposed
to threshold adversaries). It is expected that our reported execution times will
fall as dramatically as those have done for two party MPC protocols in the last
couple of years. Thus we can expect actively/covertly secure MPC protocols for
dishonest majority to be within reach of some practical applications within a
few years.
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A Generalized BitDecomposition

In this section, we describe a generalized variant of BitDecomposition, which
includes bit-decomposition in K8 as a subfield of K40.

Let f : V → W be a linear map between two vector spaces over F2. Then,
〈r〉 and 〈f(r)〉 for a random element r ∈ V allows to securely compute 〈f(x)〉
for any 〈x〉 by computing and opening 〈x + r〉, and then computing 〈f(x)〉 =
f(x+ r) + 〈f(r)〉.

For bit-decomposition in K8, define f : K8 → F8
2 by

f
( 7∑
i=0

ai ·X i
)
:= (a0, . . . , a7).

This function clearly is linear over F2. In the offline phase, it suffices to gen-
erate 〈(r0, . . . , r7)〉 = (〈r0〉, . . . , 〈r7〉) for random bits (r0, . . . , r7) because 〈r〉 =∑7

i=0〈ri〉 · X i can be computed locally. Note that r0, . . . , r7 are understood as
elements of K8, like all variables in the protocol over K8. Therefore, one has to
make sure that they are in fact 0 or 1 and not another element of K8. This is
done by modifying the Offline Phase; in particular each party encrypts a ran-
dom bit and proves that it is actually a bit. The homomorphic structure of the
NIZKPoKs makes this straight-forward. As with the triples components, the se-
cret bit is defined as the sum of all inputs, and the secret sharing with MAC
is computed by multiplication via the homomorphic property of the ciphertexts
and threshold decryption.

We now move to bit-decomposition for K8 embedded in K40. Let ı denote the
embedding of K8 in K40. This embedding is a field homomorphism and thus a

http://eprint.iacr.org/2011/91
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linear map between vector spaces over F2. The bit-decomposition for ı(K8) is
defined by f : ı(K8) → F8

2,

f
(
ı
( 7∑
i=0

ai ·X i
))

:= (a0, . . . , a7).

Again, f is linear over F2, and thus, the protocol explained above is applicable.
Similarly to the case of K8, it suffices to generate eight bits (〈r0〉, . . . , 〈r7〉)
in the offline phase. There is one peculiarity in this case: We defined f over
ı(K8) ⊂ K40, not K40. That means, we assume that the input of f is an element
of ı(K8), not an arbitrary element. This is guaranteed in our application, but
may not be true in general.

In general the function f can easily be extended to f ′ : K40 → F8
2 by defining

f ′(x) := f(pı(K8)(x)) for pı(K8) denoting the natural projection to ı(K8). How-
ever, masking an arbitrary element x ∈ K40 with a random element of ı(K8)
reveals x− pı(K8)(x). Therefore, one has to mask x additionally with a random

r′ ∈ K40/ı(K8) before opening it, i.e., compute and open 〈x+ı(
∑7

i=0 ri ·X i)+r′〉.
As above, the homomorphic structure of the NIZKPoKs allow to generate 〈r′〉
with the same cost as a random element.

The above discussion re F28 and F240 can be extended to an arbitrary field
F2n and a subfield F2m if required.
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B Figures

Online Protocol

Initialize: We assume i) the parties have already invoked the Offline Phase to
obtain a sufficient number of multiplication triples (〈a〉, 〈b〉, 〈c〉); ii) each party
holds its share of the global MAC keys αj,i; iii) that the parties have obtained
(by some means) the 〈·〉 sharing of the input values to the computation.
1. The parties execute Init() to initialize their local copy of the hash function

H1, and the values seedi, cnti, âj,i, and γj,i.
2. The parties generate global random values tj ∈ Fq for j = 1, . . . , nSAC by

computing (t1‖ . . . ‖tnSAC) = H2(1‖seed1‖ . . . ‖seedn).
The following steps are performed according to the circuit being evaluated.

Add: To add two representations 〈x〉, 〈y〉,the parties locally compute 〈x〉+ 〈y〉.
Multiply: To multiply 〈x〉, 〈y〉 the parties do the following:

1. They take nSAC + 1 triples (〈a〉, 〈b〉, 〈c〉), (〈fi〉, 〈gi〉, 〈hi〉)nSAC
i=1 from the set of

the available ones (and update this latter list by deleting these triples).
2. For j = 1, . . . , nSAC player Pi computes

(a) ρj = PartialOpen(tj · 〈a〉 − 〈fj〉).
(b) σj = PartialOpen(〈b〉 − 〈gj〉).
(c) τj = PartialOpen(tj · 〈c〉 − 〈hj〉 − σj · 〈fj〉 − ρj · 〈gj〉 − σj · ρj).
(d) If τj �= 0 then abort.

3. If no player has aborted the triple (〈a〉, 〈b〉, 〈c〉) is accepted, and the parties
execute ε = PartialOpen(〈x〉 − 〈a〉) and δ = PartialOpen(〈y〉 − 〈b〉).

4. The parties locally compute the answer 〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ
BitDecomposition: This produces the BitDecomposition of a shared value 〈a〉.

We present a simplified protocol for when q = 2k.

1. c = PartialOpen
“
〈a〉+

Pk−1
i=0 〈ri〉 ·Xi

”
.

2. Write c =
Pk−1

i=0 ci ·Xi.
3. Output 〈ai〉 = ci + 〈ri〉.

Output: We enter this stage when the players have 〈y〉 for the output
value y, but this value has not yet been opened. This output value is
only correct if players have behaved honestly, which we now need to
check. Let a1, . . . , aT be all values publicly opened so far, where 〈ak〉 =
(δk, (ak,1, . . . , ak,n), (γj,1(ak), . . . , γj,n(ak))

nMAC
j=1 ).

1. Player Pi computes (commi, ri) = Commit(yi‖(γj,i(y))
nMAC
j=1 ).

2. The players execute {comm1, . . . , commn} = Broadcast(commi).
3. For j = 1, . . . , nMAC the players execute

(a) Player Pi computes (commj,i, rj,i) ← Commit(γj,i).
(b) Execute {commj,1, . . . , commj,n} = Broadcast(commj,i).
(c) Execute {αj,1, . . . , αj,n} = Broadcast(αj,i).
(d) Player Pi computes αj = αj,1 + · · ·+ αj,n.
(e) All players open commj,i to γj,i (via a call to Broadcast), the commit-

ments are checked and if Open returns ⊥ for a player then it aborts.
(f) Each player verifies that αj · âj,i =

P
i γj,i for his own values of âj,i.

4. The players execute Verify() to confirm all broadcasts have been valid.
5. To obtain the output value y, the commitments to yi, γj,i(y) are opened via

each player transmitting to their openings to each player, and each player
transmitting what it receives to each other to check consistency.

6. Now, y is defined as y :=
P

i yi and each player checks that αj · (y + δy) =P
i γj,i(y), for j = 1, . . . , nMAC.

Fig. 2. The (slightly) modified SPDZ online phase
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Abstract. Cryptography has developed numerous protocols for solving
“partial information games” that are seemingly paradoxical. Some pro-
tocols are generic (e.g., secure multi-party computation) and others, due
to the importance of the scenario they represent, are designed to solve
a concrete problem directly. Designing efficient and secure protocols for
(off-line) e-cash, e-voting, and e-auction are some of the most heavily re-
searched concrete problems, representing various settings where privacy
and correctness of the procedure is highly important.

In this work, we initiate the exploration of the relationships among e-
cash, e-voting and e-auction in the universal composability (UC) frame-
work, by considering general variants of the three problems. In particular,
we first define ideal functionalities for e-cash, e-voting, and e-auction, and
then give a construction of a protocol that UC-realizes the e-voting (resp.,
e-auction) functionality in the e-cash hybrid model. This (black-box) re-
ducibility demonstrates the centrality of off-line e-cash and implies that
designing a solution to e-cash may bear fruits in other areas. Construct-
ing a solution to one protocol problem based on a second protocol problem
has been traditional in cryptography, but typically has concentrated on
building complex protocols on simple primitives (e.g., secure multi-party
computation from Oblivious Transfer, signature from one-way functions,
etc.). The novelty here is reducibility among mature protocols and using
the ideal functionality as a design tool in realizing other ideal functional-
ities. We suggest this new approach, and we only consider the very basic
general properties from the various primitives to demonstrate its viability.
Namely, we only consider the basic coin e-cash model, the e-voting that is
correct and private and relies on trusted registration, and e-auction rely-
ing on a trusted auctioneer. Naturally, relationships among protocols with
further properties (i.e., extended functionalities), using the approach ad-
vocated herein, are left as open questions.

1 Introduction

1.1 Motivation

Research on the security and privacy of cryptographic protocols where parties
share information (i.e., partial information games) is a major area of research in

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 264–280, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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cryptography. Many scenarios which seem paradoxical and unsolvable have been
shown to be realizable, based on the power of information distribution and/or
that of public-key cryptography.

While a good deal of research has been performed on constructing generic pro-
tocols (i.e., general secure multi-party computation) [Yao86, GMW87], there still
exist important real life procedures that deserve special considerations: e-cash
[Cha83, CFN88], e-voting [Cha81, CF85, BY86] and e-auction [FR96, NPS99].
Due to the great impact on the viability of cyberspace transactions that the suc-
cessful deployment of these protocols brings about, they have attracted numerous
researchers, and for decades, much work has been done on defining security and
constructing secure protocols for these tasks. These specific partial information
games share some basic configuration: Each of these games is structured so that
players are either authorities (i.e., banks, talliers and auctioneers) or users. These
fundamental similarities naturally beg the question:

What are the (black-box) relations among e-cash, e-voting and e-auction
in the UC framework?

This question is firstly of theoretical interest. Although, initiated in [IR89], a
fairly complete picture of the black-box relations amongmost cryptographic primi-
tives hasbeenobtained, notmuch is knownabout theblack-box relationshipamong
fairly complicated concrete protocols. This direction of researchmay shed new light
on understanding the definitions, security and complexity of these protocols.

Moreover, it is desirable to explore such relations in the modern UC framework
introduced by Canetti [Can01]. Informally speaking, protocols secure in this
framework remain secure even when executed concurrently with other arbitrary
protocols running in some larger network, and can be used as subroutines of
larger protocols in a modular fashion. The property is important considering
that nowadays many protocols are executed concurrently with others on the
Internet. We note that there are only a few results on the relationship among
cryptographic primitives in the UC framework.

The question is also of practical interest. In practice, the simpler the system
implementation is, the better. That is, if there is a significant black-box compo-
nent that makes the implementation much simpler, there is no reason not to use
it. Building a system from scratch, not employing available software in a black
box manner, but using instead “smaller” black boxes (i.e., lower primitives such
as one-way functions) potentially entails a lot of design and thus creates further
sources for bugs in protocols or the need to embed the new protocol in a secure
trusted systems component, which in turn lead to high costs (involved in resolv-
ing these issues). For example, if it is known that protocol-Y can be constructed
from protocol-X, an optimized secure implementation (suitable for the setting)
of protocol-X may lead to fairly simple deployment of a secure protocol-Y.

1.2 Our Results

Motivated by the above theoretical and practical considerations, we explore the
relations among (off-line) e-cash, e-voting, and e-auction in the UC framework.
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Concretely, we explore whether a secure protocol for e-voting (and for e-auction)
can be constructed using a secure protocol for e-cash. This type of an investiga-
tion involves two tasks: defining security and achieving constructions in the UC
framework.

Definition of Security. We first present ideal functionalities capturing the secu-
rity of e-cash, e-voting, and e-auction; we concentrate in this work only on basic
models with the most important security properties (generalizations to include
further properties require extended functionalities and are left for future inves-
tigations). Intuitively, the e-cash functionality provides two important features
of protection against double-spending and anonymity of honest spenders (we
do not deal with extensions such as “fair cash” and “divisible cash”). The e-
voting functionality provides protection against double-voting and unlinkability
between voters and votes, i.e., correctness of voting and voter privacy. Again,
it doesn’t provide advanced properties like incoercibility [BT94, JCJ05].1 The
e-auction functionality provides secrecy of the bidding information until the end
of the bidding procedure (once again, ignoring various added more advanced
concerns like totally untrusted auctioneer, etc.).

E-Voting from E-Cash. We show a construction of a protocol that UC realizes
the e-voting functionality in the e-cash hybrid model, under a certain restric-
tion on the corruption pattern of the adversary. Due to the UC composition
theorem [Can01], this implies that there exists a protocol πvote UC-realizing
the e-voting functionality with black-box access to πcash UC-realizing the e-cash
functionality.

We first notice similar security features between e-cash and e-voting. That
is, if a voter casts a ballot more than once, his vote is rejected and possibly
the identity of the double-voter is compromised (similarly to protection against
double-spending in e-cash); on the other hand, voters and votes should be un-
linkable (similarly to unlinkability between spenders and coins in e-cash). By
utilizing these similarities (which are certainly known in the folklore) and by
exploring more carefully the relationships and the needs of each problem, we
were able to construct an e-voting protocol in the e-cash hybrid.

E-Auction from E-Cash. We also give a construction for e-auction (with a bound
on the maximum bidding amount) in the e-cash hybrid. In the construction,
there are two authorized agents, and it is assumed that at most one of them
is semi-honestly corrupted. In the bidding stage, each bidder spends coins with
the two authorities so that the bidding amount may be equal to the number of
coins doubly-spent. Note that secrecy of the bidding amount is guaranteed since
neither authority alone can determine the number of doubly-spent coins. Then,
after the bidding stage ends, both authorities deposit their coins and count the
number of doubly-spent coins for each bidder.

1 In an e-voting scheme with incoercibility, it is infeasible for the adversary to deter-
mine if a coerced voter complies with the demands. We leave as an interesting open
problem achieving incoercibile e-voting from e-cash.
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1.3 Related Work

There have been a few results that provide an ideal functionality for e-cash
[Tro05, Lin09] or e-voting [Gro04, dMPQ07]. The e-cash functionality in [Tro05]
is not general enough in that the functionality contains a hash function and
a tree structure inside. The e-cash functionality in [Lin09] does not deal with
anonymous coins or detection of double-spending. The e-voting functionality in
[Gro04] is different from ours in that it allows the adversary to prevent a voter
from casting a vote while our functionality does not. The e-voting functionality
in [dMPQ07] is parameterized with a post-processing function on the gathered
ballots and can consider more general types of voting, e.g., outputting three
most-favored candidates.

Maji, Prabhakaran, and Rosulek considered relations between cryptographic
primitives in the UC framework [PR08, MPR09, MPR10a, MPR10b]. However,
they have a different focus, and they rather retained more of a complexity the-
oretic perspectives (general feasibility) and explored which ideal functionality is
complete.

1.4 Organization

In Section 2 we define ideal functionalities for e-cash, e-voting, and e-auction.
Constructions of e-voting and e-auction in the e-cash hybrid are described in
Section 3 and Section 4 respectively. We conclude in Section 5.

2 Ideal Functionalities

We present below the ideal functionalities for e-cash, e-voting and e-auction. We
note that, although not explicitly stated in the description of the functionalities,
the ideal adversary initially corrupts a subset of parties by sending a corrupt
message for each party in the subset to the ideal functionality. Thus, the ideal
functionality is always aware of the set of corrupted parties.

2.1 Ideal Functionality for E-Cash

We start with defining the ideal functionality Fcash for e-cash in Fig. 1. In the
functionality, a user may open an account with his identity or a pseudonym
Nym under the permission of the bank. Each coin is associated with a randomly
generated serial number; when withdrawing w coins, a user is given w serial
numbers, with which he can spend coins on other parties.

The functionality achieves anonymity of honest spenders in executing the com-
mand spend by directly notifying the serial number, but with no information
about the corresponding spender, to the merchant. Note that the functionality
stipulates that neither the bank nor the merchant should have any knowledge of
who the spender is. We believe this modeling is reasonable; if merchants know
the information about the spenders they may be able to sell it to the banks
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Functionality Fcash

– Upon receiving (setup, sid) from the prospective bank B:
If there is already a party registered as the bank, ignore this message.
Otherwise, record B as the bank. If there is no registered bank for this
session sid, all the messages below are ignored.

– Upon receiving (open account, sid,Nym, k) from Ui:
If there is already an account for Ui, ignore the request. Otherwise, send
(open account, sid,Nym, k, type) to the bank, where type is identity if Ui =
Nym, or anonymous otherwise. Let (opened account, sid,Nym, rep) be the
reply from the bank. If rep = ⊥, initialize an account for Ui tagged with
Nym with initial balance k. Send (opened account, sid, rep) to Ui.

– Upon receiving (withdraw, sid, w) from Ui:
1. If there is no account for Ui or if the balance of account Ui is less than w,

send (withdrawn, sid,⊥) to Ui and terminate.
2. Decrease the balance of Ui by w, choose w random numbers

(serial1, . . . , serialw), and record the tuples (withdrawn, Ui, serial1, . . . ,
serialw). Then, send (withdrawn, sid, serial1, . . . , serialw) to Ui and
(withdrawn, sid,Nym, w) to the bank B, where Nym is the tag for Ui.

– Upon receiving (spend, sid,Nym, serial) from Ui:
1. If there is no such record as (withdrawn, Ui, serial), send (spent, sid,⊥) to

Ui and terminate.
2. Let Uj be the user whose account is tagged with Nym — if

there no such user, send (spent, sid,⊥) to Ui and terminate. Record
the tuple (spent, Ui, Uj , serial), send (spent, sid,Nym) to Ui, and send
(spent, sid, serial) to Uj .

– Upon receiving (deposit, sid, serial) from Uj :
1. If there is no record of a form (spent, ∗, Uj , serial) or if there is already

a record (deposited, ∗, Uj , serial), then send (deposited, sid,⊥) to Uj and
terminate.

2. Let Nym be the tag for Uj . If there is already a record (deposited, Ui, Uk,
serial) for some Ui and Uk = Uj , then record (doubly-spent, serial, Uj),
send (deposited, sid, doubly-spent) to Uj , send (deposited, sid, Nym, serial,
doubly-spent) to the bank, and terminate.

3. Record (deposited, Ui, Uj , serial) where Ui is the spender of the coin
(i.e., there is a record (spent, Ui, Uj , serial)). Increment the balance
of Uj ’s account. Then send (deposited, sid, serial) to Uj and send
(deposited, sid,Nym, serial) to the bank.

– Upon receiving (double spender, sid, serial) from the bank B:
If there is no such record as (doubly-spent, serial, ∗), send
(double spender, sid,⊥) to B. Otherwise, find the record (deposited,
Ui, Uj , serial) for some Ui and Uj , and send (double spender, sid,Nymi,
Nymj) to B, where Nymi and Nymj are the tags for Ui and Uj respectively.

– Upon receiving (double spenders, sid) from the bank B:
Perform as above for serial such that there is a record
(doubly-spent, serial, ∗). Let S be the list of the tuples (serial,Nymi,Nymj),
where Nymi is the tag for a double spender, Nymi is the tag on which the
coin serial is deposited. Send (double spender, sid, S) to B.

– Upon receiving (balance, sid) from Ui:
Let b be the balance of Ui. Send (balance, sid, b) to Ui.

– Upon receiving (balance, sid,Nym) from the bank B:
Let b be the balance of the account with a tag Nym. Send (balance, sid, b)
to B.

Fig. 1. Ideal Functionality for E-Cash
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and other marketing organizations, which defeats the purpose Chaum [Cha83]
originally tries to achieve. Indeed, this goes in line with a standard method to
achieve a secure e-cash system, that is, executing an e-cash scheme through an
anonymous channel [Cha81, SGR97, RR98, SL00, DMS04].

The functionality also provides detecting the double-spender of a coin in an off-
line manner — detection occurs when the coin is deposited. Note that the power
of the bank is restricted in that it only approves the account-opening requests,
observes withdrawals and deposits, and detects double spenders. Further recall
that we do not model more advanced properties of various e-cash schemes beyond
the simple “basic coin” model.

2.2 Ideal Functionality For Basic E-Voting

Next, we define the ideal functionality Fvote for e-voting. The functionality as-
sumes an authority that manages the voting procedure. Each party registers for
voting, and then casts a vote for his favorite candidate.

At the tallying stage, the functionality allows corrupted candidates, not know-
ing the voting information of others, to decrease the number of votes they have
received. Since it only allows them to give up the election, the functionality re-
gards this case as legitimate. Note also that the voting information is kept secret
even to the authority until the voting stage ends. As mentioned above, note
that the functionality does not consider further advanced properties desired in
various election scenarios, such as incoercibility [BT94, JCJ05].

2.3 Ideal Functionality for Basic E-Auction

Finally, we formulate the ideal functionality Fauc for e-auction in Fig. 3. The
functionality assumes an authority that manages the auction process. Each party
registers for auction, and then casts a bid. The authority does not know the
bidding information until the bidding stage ends.

In our formulation, however, the authority will eventually see all the bidding
information. As mentioned above, this is the basic case we deal with in this work.
Obviously, more private auctions are suitable in many scenarios, yet considering
that in many practical scenarios the authority ultimately sees the bids (e.g.,
Google AD Exchange), we believe our modeling is still a meaningful starting
point.

3 E-Voting from E-Cash

We present an e-voting protocol that UC-realizes Fvote in the Fcash hybrid, with
some restrictions on the corruption pattern of an adversary. In the protocol, we
employ the similar security features between e-cash and e-voting. That is, if a
voter casts a ballot more than once, his vote is rejected and possibly the iden-
tity of the double-voter is compromised (similarly to protection against double-
spending in e-cash); on the other hand, voters and votes should be unlinkable
(similarly to unlinkability between spenders and coins in e-cash).
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Functionality Fvote

Let A be the voting authority and C1, . . . , Ck be the candidates.
– Upon receiving (register, sid) from Vi:

If there is a record (registered, Vi), ignore this message. Otherwise, record
the tuple (registered, Vi) and broadcast (registered, sid, Vi).

– Upon receiving (vote, sid, v) from Vi:

If there is no such record as (registered, Vi) or if v ∈ [k], then ignore this
message. Otherwise, record the tuple (voted, Vi, v).

– Upon receiving (tally, sid) from the authority A:

1. Compute the tally result R = (r1, . . . , rk), where ri is the tally for can-
didate Ci. In computing the tally results, ignore all tuples of the form
(voted, Vj , ∗) such that Vj appears more than once.

2. For 1 ≤ i ≤ k, if candidate Ci is corrupted, send message (tally, sid, ri) to
candidate Ci.

3. Upon receiving a message of the form (tally, sid, r′i) from each corrupted
candidate Ci, compute Rfinal = R− (r′′1 , . . . , r

′′
k ), where r′′i = r′i if 0 ≤ r′i ≤

ri, or r
′′
i = 0 otherwise, and broadcast (tally, sid, Rfinal).

Fig. 2. Ideal Functionality for E-Voting

We emphasize that the construction does not use any cryptographic tools
or assumptions beyond Fcash. Therefore, given a secure e-cash scheme, we can
construct a secure e-voting scheme against an adversary with the specified cor-
ruption pattern.

Toy Construction. We start with a toy construction illustrating the basic idea
of how to use an e-cash scheme, although with weak security.

Some of the participants are designated as candidates. Each voter with-
draws one coin from his bank account and spends his coin on the can-
didate of his choice. At the end of the election, each candidate deposits
the coins that he receives, and broadcasts his balance as the result of the
election.

In the above scheme, due to the anonymity of honest spenders of e-cash, the
voting authority does not know the tallying information during the voting stage.
However, the scheme is only secure against an adversary that corrupts voters
maliciously and the authority semi-honestly but does not corrupt candidates. In
particular, each candidate knows the exact number of votes in favor of himself.

3.1 Construction

Our final construction uses the following ideas to remove the trust trust that is
placed in each of the candidates in the toy construction.
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Functionality Fauc

Let A be the auction authority.
- Upon receiving (register, sid) from party Pi:

If there is a record (registered, Pi), ignore this message. Otherwise, record
the tuple (registered, Pi) and broadcast (registered, sid, Pi).

- Upon receiving (bid, sid, Pi, v) from party Pi:

If there is no such record as (registered, Pi) or if there is a record of a
form (bid, Pi, ∗), then ignore this message. Otherwise, record the tuple
(bid, Pi, v).

- Upon receiving (result, sid, A) from the auctioneer A:

Send all the bidding information to A, that is, (result, sid, {(Pi, vi)}ni=1),
where n is the number of registered bidders and vi is the bidding amount
of Pi. Also, broadcast (result, sid,P), where P is the set of highest bidders.

Fig. 3. Ideal Functionality for E-Auction

Two Authorities: The construction has two authorities: A registration au-
thority B1 and a tallying authority B2.

Use of Detecting Double Spenders in E-Cash: The construction actively
uses the feature of detection of double spenders in the e-cash scheme. In
particular, let k be the number of candidates. Suppose a voter wants to cast
a vote to the j-th candidate. Then, he withdraws k coins from the bank (i.e.,
the tallying authority B2), spends each of the k coins to each candidate,
and then spends the j-th coin to the registration authority. Each candidate
deposits the coins that it received.

At the tallying stage, the registration authority deposits the coins that it
has. Then the doubly spent coins are used to compute the tally result.

Use of Anonymous Spending in E-Cash: One security concern in the above
description is that the identity of the voter is revealed, since the feature of de-
tecting double spenders is used legitimately. To avoid this, each voter uses a
pseudonym in spending coins. In particular, the registration authority plays a
role of another bank, and the serial number of the coin with respect to the reg-
istration authority becomes a pseudonym of a voter. Since the serial number
is generated at random, the pseudonym reveals no information of its owner’s
identity. The coins with respect to the tallying authority can now be safely
used as explained above.

The description of the overall protocol πvote is given in Figure 4.
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Protocol πvote

There are two distinguished parties — registration authority B1 and tallying
authority B2. Both play the role of a bank in the e-cash scheme. Let C1, . . . , Ck

be the candidates.

– B1 and B2 send (setup, sid1) and (setup, sid2) to Fcash respectively. Each
candidate Ci opens an account with balance 0 with respect to B2.

– When Vi receives a message (register, sid) from the environment Z:
1. Visends (open account, sid1, Vi, 1) to Fcash. Then B1 in turn approve

the open account request via Fcash, if Vi is a fresh, legitimate voter.
Upon receiving (opened account, sid1, rep) from Fcash, if rep = ⊥, Vi

terminates.
2. Vi sends (withdraw, sid1, 1) to Fcash. Let (withdrawn, sid1, s) be the

reply from Fcash. If s = ⊥, Vi terminates; otherwise Vi sets Ni = s.
3. Vi sends (spend, sid1, B2, Ni) to Fcash. If the reply from Fcash is

(spent, sid1,⊥), Vi terminates.
4. Vi sends (open account, sid2, Ni, k) to Fcash. Then, B2, upon receiving

the (spent, sid1, Ni) and (opened account, sid2, Ni, k, anonymous) from
Fcash, will send (deposit, sid1, B2, Ni) to Fcash; if the response from
Fcash is (deposited, sid1, Ni), B2 will send (open account, sid2, Ni, ok)
to Fcash; otherwise B2 will send (open account, sid2, Ni,⊥).

– When Vi receives a message (vote, sid, v) from the environment Z:
1. Vi sends (withdraw, sid2, k) to Fcash. If Fcash responds with a mes-

sage (withdrawn, sid2, serial1, . . ., serialk), then Vi records the values
serial1, . . ., serialk; otherwise, Vi terminates.

2. For 1 ≤ � ≤ k, Vi sends (spend, sid2, C�, serial�) to Fcash. If Fcash

responds with a message (spent, sid2,⊥) for any of the requests, Vi

terminates.
3. Vi sends (spend, sid2, B1, serialv) to Fcash. If Fcash responds with a

message (spent, sid2,⊥), Vi terminates.
4. Now, each candidate C�, upon receiving a message (spent, sid2, s) from

Fcash, sends a message (deposit, sid2, s) to Fcash.
– When B1 receives a message (tally, sid) from Z:

1. B1 sends a message (deposit, sid2, s) to Fcash for each s of the coins
that it has received; while B1 is doing so, B2 records the serial num-
ber s if B2 receives (deposited, sid2, B1, s, doubly-spent) from Fcash. B1

sends (tally, sid) to B2.
2. For each recorded serial number s, B2 sends (double spender, sid2, s)

to Fcash and retrieves the corresponding pseudonym (i.e., the double
spender) and the corresponding candidate. Using this list, B2 com-
putes the tally R = (r1, . . . , rk) and broadcasts (tally, sid, R). If a
pseudonym appears more than once in the list, B2 ignores all the
votes given by the pseudonym.

3. Each party outputs R.

Fig. 4. The Protocol for E-Voting in the Fcash-Hybrid
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3.2 Security

The authorities, once corrupted, are assumed to behave in a semi-honest manner.
Also, we consider the case where at most one of the authorities is corrupted by
the adversary. A more serious restriction is that the adversary is not allowed
to corrupt the registration authority and candidates at the same time. If both
the registration authority and a candidate have received a coin with the same
serial number, it means that someone voted for the candidate. Therefore, such
corruptions reveal to the adversary the number of votes casted for the corrupted
voters before the tallying stage. We believe this restriction on the authorities is
reasonable.

Theorem 1. The protocol πvote UC-realizes Fvote functionality against an ad-
versary that corrupts voters and candidates maliciously and the authorities semi-
honestly, with the restriction that it is not allowed to corrupt the registration
authority and some candidates at the same time.

Proof. We show that for every adversary A, there exists a PPT S such that for
every non-uniform PPT Z it holds that

exec
Fcash

πvote,A,Z ≈ idealFvote,S,Z .

Fix A. Wlog, we assume B2 is semi-honestly corrupted; the proof is only easier
when B2 is not corrupted. We consider two cases according to whether B1 is
corrupted or not.

We will refer to the communication of S with Z and Fvote as external commu-
nication, and that with A as internal communication. For clarity, the message
exchanges between the real adversary A (on behalf of a corrupted party P )
and the simulator S (simulating ideal functionality Fcash) are represented as
exchanges between P and S.

Roughly speaking, the simulator S simulates the functionality Fcash internally
and tries to extract votes from corrupted voters.

Throughout the running of S, it S forwards all the messages between A and
Z. Below, we describe how S handles other messages.

Case 1: B1 Is Not Corrupted. Let’s first consider the case where B1 is not
corrupted. Then, the adversary may corrupt some candidates as well.

Handling register. S handles register messages as follows:

– S, as Fcash and B1 in the internal communication, handles the following
messages exactly as Fcash and B1 would do:
• (setup, sid2) from B2.
• (open account, sid1, Vi, bal) from a corrupted Vi.
• (withdraw, sid1, w) from a corrupted Vi.
• (spend, sid1, B2, serial) from a corrupted Vi.
• (deposit, sid1, serial) from B2.
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– When S as Fcash receives (open account, sid2, serial, k) from a corrupted Vi:
S does exactly what Fcash would do. In addition, when B2 approves the
request with (opened account, sid2, ok), then S, as the corrupted Vi in
the external communication, sends (register, sid) to Fvote.

– When S receives (registered, sid, Vj) externally from Fvote for an uncorrupted
Vj :

S does exactly what Vj will do in the internal communication. In par-
ticular, S handles virtual register, open account, withdraw, and spend
messages for Vj , as specified in the protocol.

Handling vote. S handles vote messages as follows:

– S as Fcash handles the following messages exactly as Fcash would do:
• (withdraw, sid2, k) from a corrupted Vi.
• (spend, sid2, B1, s) from Vi.
• (spend, sid2, Cj , s) from Vi.

– When S as Fcash receives (deposit, sid2, s) from a corrupted candidate Cj :
S behaves exactly Fcash would. In addition, if the coin s has been suc-
cessfully deposited and if the coin s has also been spent on B1, find the
spender Vi of the coins s using the recorded data, and S as the cor-
rupted Vi (in the external communication), externally sends a message
(vote, sid, v) to Fvote.

– For each uncorrupted voter Vi, S simulates its behavior as specified in the
protocol. The only exception is that Vi delays spending a coin on B1 until
the tally result comes out. This is because S cannot know which vote to cast
on behalf of the honest party until it receives the final tally from the ideal
voting functionality.

– For each uncorrupted candidate Ci, S simulates its behavior as specified in
the protocol. In addition, if Ci has successfully deposited a coin s and if the
coin s has also been spent on B1, find the spender Vi of the coins s using the
recorded data, and S as the corrupted Vi (in the external communication),
externally sends a message (vote, sid, v) to Fvote.

Handling tally. S handles tally messages as follows:

– When S, as a corrupted candidate Ci (in the external communication), ex-
ternally receives (tally, sid, ri) from Fvote:
1. Let mi be the number of votes given by the corrupted voters to Ci, in

the internal communication. This can be computed from the recorded
data.

2. Let hi = ri −mi; that is, hi is the number of votes from uncorrupted
voters. S arbitrary generate a set Hi (disjoint with Hj for other candi-
date Cj) of uncorrupted voters of size hi. On behalf of each uncorrupted
voter V in Hi, S now handles a virtual message (spend, sid2, B1, s

′) from
V , where s′ is the coin that V has spent on Ci. Note that this simula-
tion is good since Fcash guarantees that identities of spenders and serial
numbers of coins are completely disassociated.
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3. Let h′i be the number of coins belonging to Hi that Ci didn’t deposit. S,
as the corrupted Ci (in the external communication), externally sends
(tally, sid, h′i) to Fvote.

– Once S handles the tallymessages from Fvote for all the corrupted candidates
in the external communication, S as B1 internally sends (tally, sid) to B2.

– When S as Fcash receives a message (double spender, sid2, s) from B2:
S does exactly what Fcash would do.

Case 2: When B1 Is Corrupted. In this case, due the restriction on the
corruption pattern of the adversary, the candidates are not to be corrupted.

Handling register. S handles register messages as follows:

– S as Fcash handles the following messages as Fcash would do:
• setup messages from B1 or B2.
• (open account, sid1, Vi, bal) from a corrupted Vi.
• (withdraw, sid1, w) from a corrupted Vi.
• (spend, sid1, B2, serial) from a corrupted Vi.
• (deposit, sid1, serial) from B2.

– When S as Fcash receives (open account, sid2, serial, k) from a corrupted Vi:
S does exactly what Fcash would do. In addition, when B2 approves
the request with (opened account, sid2, ok), S as the corrupted Vi (in the
external communication) externally sends (register, sid) to Fvote.

– When S receives (registered, sid, Vj) from Fvote:
S internally simulates what the uncorrupted Vj would do. In particular,
S handles virtual register, open account, withdraw, and spend messages
for Vj , as specified in the protocol.

Handling vote. S handles vote messages as follows:

– S as Fcash handles the following messages as Fcash would do:
• (withdraw, sid2, k) from a corrupted Vi.
• (spend, sid2, B1, s) from a corrupted Vi.
• (spend, sid2, Cj , s) from a corrupted Vi:

– For each uncorrupted voter Vi, S simulates its behavior as specified in the
protocol, except the following:

Let s1, . . . , sk be the coins that Vi has. Vi spends s1 on B1 and delays
spending coins on candidates until the tally result comes out.

– For each uncorrupted candidate Ci, S simulates its behavior as specified in
the protocol.

– If Ci, whether or not it is corrupted, has successfully deposited a coin s
and if the coin s has also been spent on B1, find the spender Vi of the
coins s using the recorded data, and S as the corrupted Vi (in the external
communication), externally sends a message (vote, sid, v) to Fvote.
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Handling tally. S handles tally messages as follows:

– When S, as Fcash, starts to get deposit requests from B1, S, as the corrupted
registration authority (in the external communication) sends (tally, sid) to
Fvote. The deposit requests are handled as Fcash would do.

– Upon receiving (tally, sid, Rfinal) externally from Fvote:
1. Let Rfinal = (r1, . . . , rk). For each candidate Ci, let mi be the number

of votes given by corrupted voters to Ci in the internal communication.
This can be computed from the recorded data. Let hi = ri−mi; that is,
hi is the number of votes from uncorrupted voters. S arbitrary generate a
set Hi (disjoint with Hj for other candidate Cj) of uncorrupted voters of
size hi. Now, each uncorrupted voter V in Hi spends coins on candidates.
Let s1, . . . , sk be the coins that V has. V spends (s1, s2, s3, . . . , sk) on
(Ci, C2, C3, . . . , Ci−1, C1, Ci+1, . . . Ck).

– When S as Fcash receives a message (double spender, sid2, s) from B2:
S does exactly what Fcash would do.

4 E-Auction from E-Cash

We construct a protocol πauc for e-auction with a bound on the maximum bid-
ding amount in the Fcash-hybrid that UC-realizes the Fauc functionality in Fig.
5.

Overview of the Protocol. In the protocol, there are two authorized agents
A1 and A2, which will play the role of a bank in the e-cash scheme. We note
that A1 and A2 are assumed to be semi-honest and are trusted not to collude
(i.e., we allow at most one of them to be corrupted).

Let θ be the maximum bidding value. Each player withdraws 2θ coins from
the first authority A1 and spends θ coins on A1 and A2 respectively. The idea is
that each party spends coin, using the feature of detecting the double spenders in
Fcash, so that the bidding amount may be equal to the number of coins doubly-
spent. For example, party P with bidding amount k will spend the k coins (out
of θ) on both A1 and A2. Then, after the bidding stage ends, A1 and A2 will
deposit their coins and count the number of doubly-spent coins for each bidder.

Theorem 2. The protocol πauc UC-realizes Fauc functionality as long as at
most one of A1 and A2 is semi-honestly corrupted.

Proof. We show that for every adversary A, there exists a PPT S such that for
every non-uniform PPT Z it holds that

exec
Fcash

πauc,A,Z ≈ idealFauc,S,Z .

Fix A. At the outset of the protocol, there are some bidders that are corrupted.
We consider the case where A1 is semi-honestly corrupted; the case where A1 is
not corrupted is only easier. We will refer to the communication of S with Z and
Fauc as external communication, and that with A as internal communication.
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Protocol πauc

Let θ be the maximum bidding value and A1 and A2 be auction authorities.

– A1 sends (setup, sid) to Fcash. A1 and A2 open their accounts respectively.
– When Pi receives a message (register, sid) from the environment Z:

1. Pi sends (open account, sid, Pi, 2θ) to Fcash. Then A1 in turn will re-
ceive the open account request from Fcash and, if Pi is legitimate,
approve the request.

2. Upon receiving (opened account, sid, rep) from Fcash, if rep = ⊥, Pi

terminates.
3. Pi sends (withdraw, sid1, Pi, A1, 2θ) to Fcash. If Fcash responds with a

message (withdrawn, sid1, serial1, . . ., serial2θ), then Pi records the
values serial1, . . . , serial2θ .

– When Pi receives a message (bid, sid, v) from the environment Z:
1. If Pi does not have a recorded serial1, . . . , serial2θ, it terminates.
2. For 1 ≤ j ≤ θ, Pi sends a message (spend, sid, Pi, A1, serialj) to Fcash.

If Fcash responds with a message (spent, sid,⊥) to any of the requests,
Pi terminates.

3. For θ−v+1 ≤ j ≤ 2θ−v, Pi sends a message (spend, sid, Pi, A2, serialj)
to Fcash. If Fcash responds with a message (spent, sid,⊥) to any of the
requests, Pi terminates.

– When A1 receives a message (result, sid) from Z:
1. A1 tells A2 to deposit its coins. After A2 has finished the de-

posit procedure, A1 deposits all the coins. For each serial num-
ber serialj that has been doubly-spent, A1 sends a message
(double spender, sid, serialj) to Fcash and receives back the identity
of the spender of coin serialj . Now, using this information, A1 deter-
mines the bidding amount of each participant Pk. A1 broadcasts the
message (result, sid,P), where P is the set of parties whose bidding
amount is the largest.

Fig. 5. Protocol for E-Auction in the Fcash-hybrid

Roughly speaking, the simulator S simulates the functionality Fcash internally
and tries to extract bids from corrupted bidders.

For clarity, message exchanges between the real adversary A (on bahalf of a
corrupted party P ) and the simulator S (simulating ideal functionality Fcash)
are represented as exchanges between P and S.

Throughout the running of S, it S forwards all the messages between A and
Z. Below, we describe how S handles other messages.

Handling register
The simulator S handles the register messages as follows:

– When S as Fcash receives (open account, sid1, Pi, 2θ) from a corrupted bidder
Pi:

S does exactly what Fcash would do.
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– When S as Fcash receives (withdraw, sid1, Pi, w) from a corrupted Pi:
S does exactly what Fcash would do. In addition, for a successful with-
drawal, S, as Pi in the external communication, sends (register, sid) ex-
ternally to Fauc.

– When S receives (registered, sid, Pj) externally from Fauc for an uncorrupted
Pj :

S does exactly what Pj will do in the internal communication. In par-
ticular, S as Pj sends (open account, sid1, Pi, 2θ) to Fcash (S itself) and
handles the virtual withdraw message (i.e., sends the message to S itself).

Handling bid
The simulator S handles the bid messages as follows:

– When S as Fcash receives (spend, sid1, Pi, Aj , serial) where j ∈ {1, 2} from a
corrupted Pi:

S does exactly what Fcash would do:
– S handles virtual spend messages from the uncorrupted parties. That is, for

each uncorrupted Pj , let serial1, . . . , serial2θ be the serial numbers of the

coins belonging to Pj . S as Fcash sends
{
(spent, Pj , A1, seriali)

}θ
i=1

to A1,

and it also sends
{
(spent, Pj , A2, seriali)

}2θ

i=θ+1
to A2.

Handling result
The simulator S handles the result messages as follows:

– When S as A2 receives a message from the corrupted A1 to deposit the coins:
1. For each corrupted bidder Pi, S computes the number b of doubly-spent

coins by Pi, and, as Pi in the external communication, sends (bid, sid, b)
to Fauc externally.

2. S as the corrupted A1 (in the external communication)
sends (result, sid, A1) externally to Fauc and gets the results
(result, sid, {(Pi, vi)}ni=1). Now, S changes the serial numbers spent
by uncorrupted parties Pj so that the number of doubly-spend coins by
Pj are vj . Then S handles the virtual deposit messages — i.e., sends
(deposit, sid, A2, serial) messages to itself — exactly as Fcash would do,
using the recorded data.

– When S as Fcash receives deposit and double spender messages from the
corrupted A1, S handles the messages exactly Fcash would do using the
recorded data.

The only modification that S performs lies in the serial numbers of the uncor-
rupted parties spend on A2. However, to the view of the adversary (in particular
to A1), this modification is invisible. Therefore, the simulation is perfect.

The case where A1 is honest and A2 is semi-honestly corrupted can be
simulated in a similar fashion. In particular, the simulator extracts the bid-
ding amount of corrupted bidders while simulating Fcash. Then, upon receiving
(result, sid,P) from Fauc, S, as A1 in the internal communication, internally
broadcasts (result, sid,P).
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5 Conclusions

Our work reveals interesting relationships between some basic protocols that
have been so far developed independently. Natural questions remain:

– Is it possible to eliminate the restriction on the corruption pattern of the
adversary that the current constructions have or to show a separation when
an arbitrary number of parties may be corrupt?

– It is also interesting to explore the remaining relationships among e-cash, e-
voting, and e-auction, to consider extended functionalities (with extra prop-
erties) and explore relationships among them.

– Are there other “partial information protocols” that can be used as building
blocks for other protocols or can be built on top of some known protocols?
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Universally Composable Security
with Local Adversaries

Ran Canetti� and Margarita Vald�
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Abstract. The traditional approach to formalizing ideal-model based
definitions of security for multi-party protocols models adversaries (both
real and ideal) as centralized entities that control all parties that devi-
ate from the protocol. While this centralized-adversary modeling suffices
for capturing basic security properties such as secrecy of local inputs
and correctness of outputs against coordinated attacks, it turns out to
be inadequate for capturing security properties that involve restricting
the sharing of information between separate adversarial entities. Indeed,
to capture collusion-freeness and game-theoretic solution concepts, Al-
wen et al. [Crypto, 2012] propose a new ideal-model based definitional
framework that involves a de-centralized adversary.

We propose an alternative framework to that of Alwen et al. We then
observe that our framework allows capturing not only collusion-freeness
and game-theoretic solution concepts, but also several other properties
that involve the restriction of information flow among adversarial enti-
ties. These include some natural flavors of anonymity, deniability, timing
separation, and information-confinement. We also demonstrate the in-
ability of existing formalisms to capture these properties.

We then prove strong composition properties for the proposed frame-
work, and use these properties to demonstrate the security, within the
new framework, of two very different protocols for securely evaluating
any function of the parties’ inputs.

1 Introduction

Rigorously capturing the security properties of cryptographic protocols has
proven to be a tricky endeavor. Over the years, the trusted party (or, simu-
lation) paradigm has emerged as a useful and general definitional methodology.
The basic idea, first coined in [GM84, GMR85, GMW87], is to say that a proto-
col "securely realizes" a given computational task if participating in the protocol
”emulates” the process of interacting with an imaginary "trusted party" that se-
curely receives parties’ inputs and locally computes their outputs. Intuitively,
this paradigm allows expressing and capturing many security properties. More-
over, it has an attractive potential "composability" property: any system using a
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trusted party F should behave the same way when we replace the trusted party
with the realizing protocol.

Over the years, many security definitions were based on this intuitive idea, e.g.,
[GL90, MR91, Can00, DM00, PW00, Can01, PS04, CDPW07]. First, these defini-
tions formulate an execution model; then they formalize the notion of emulating
an ideal task with an "ideal world" attacker, called simulator. The security re-
quirement is based on the inability of an external observer to distinguish an “ideal
world” execution from a real one.

These formalisms differ in many ways; however, they have one major thing
in common: they all model the attacker as a centralized entity, who can corrupt
parties, coordinate their behavior and, intuitively, constitute an "evil coalition"
against the protocol being executed. This seems to be an over-simplification of
real life situations. Indeed, in real life, parties are often individuals who are
not necessary controlled by the same entity or have anything in common. It
would seem that letting the malicious parties coordinate their attacks should
be a strengthening of the model; however, when this power is also given to the
adversary in the ideal model (aka the simulator), the security guarantee can
potentially be weakened. Therefore, a natural question to ask is whether it is
justified to model the attacker as a centralized entity or does this modeling
unduly limit its expressiveness?

Indeed, the existing formalisms do capture basic properties such as privacy
of inputs, and correctness of outputs against coordinated attack. However, as
has been observed in the past, there exist security concerns that are not natu-
rally captured using the centralized adversary approach. Consider for instance
the collusion- freeness concern: a protocol is collusion-free if even misbehaving
protocol participants cannot use the protocol to exchange "disallowed" informa-
tion without being detected. As pointed out by [ILM05], "centralized simulator"
formalisms do not capture the inability of parties to collude. That is, with a cen-
tralized adversary, a protocol might allow collusions between corrupted parties
even when it realizes an ideal task that is collusion-free.

An additional known limitation of standard security notions is cryptographic
implementations of game-theoretic mechanisms. In contrast to cryptography,
game theory considers rational players that behave according to their individ-
ual goals. In many realistic settings, the incentive structure depends on whom
players can collaborate with and the cost of this collaboration. Security with a
centralized adversary does not guarantee that the incentive structure with re-
spect to collaboration is preserved when moving from the ideal protocol to the
one that realizes it. Consequently, it does not correctly capture the incentive
structure and does not suffice for preserving game-theoretic solution concepts
that restrict the formation of coalitions.

A natural way to handle those concerns would be to strengthen the model
by requiring that the simulation be “local” in some sense; that is, shatter-
ing the centralized simulator to many simulators, where each simulator has
only some “local’’ information and is responsible to simulate adversarial
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behavior in only a “local’’ sense. However, requiring local simulators while al-
lowing the adversary to be centralized results in an unrealistically strong secu-
rity requirement that fails to admit many useful schemes that have practical
security guarantees. Therefore, the next promising idea would be to restrict
also the adversary to be local. This approach indeed appears in the works of
[LMS05, ASV08, AKL+09, ILM11, MR11, AKMZ12]. In particular, [AKMZ12]
gives general model with a composition theorem and application to game-theory.
These works give different and incomparable definitions of collusion-freeness; a
common aspect is that they all postulate an adversary/simulator for each par-
ticipant, where a participant represents an entity that is identified via its party
identifier and treated as a “single domain” (i.e., it is corrupt as a unit, either
wholly or none at all). However, as we demonstrate below, there are a num-
ber of security concerns that cannot be naturally captured even by the above
formalizations of local simulation.

Our Contributions. We provide an alternative formalization of the local simu-
lators approach in a way that preserves its intuitive appeal and captures reality
more tightly. In particular, we establish a general security notion that allows
capturing the requirements of arbitrary tasks while preserving the local view of
each individual component and each communication link between components in
the system. This notion enables expressing variety of partitions of the system.
Specifically, we refine the UC framework to deal with the locality of information
available to clusters of components. The new formalism, called local UC (LUC),
assigns a different adversary/simulator to each ordered pair of participants. In-
tuitively, the adversaries/simulators assigned to a pair of parties handle all the
communication between the two parties. Informally,

If π is a LUC-secure protocol that implements a trusted party F , then
each individual entity participating in π affects each other entity in
the system no more than it does so in the ideal execution with F .

Note that this is conceptually different from the guarantees provided by the
UC framework of [Can01] and the Collusion-Preserving framework of [AKMZ12]
(referred as CP). In the UC framework, protocols that implement a trusted
party are guaranteed to have similar effect on the external environment as in
the ideal execution with F . In the CP framework, the protocol is guaranteed
to have the same effect as the trusted party individually on each entity. In the
LUC framework, it is guaranteed that each entity affects each other entity in the
same way as in the ideal execution.

We show that this refined granularity allows LUC to capture various security
concerns that cannot be captured by previous frameworks. We address some fla-
vors of anonymity, deniability, collusion-freeness, information-confinement, and
preservation of incentive structure.

We also extend the UC composition theorem and the dummy adversary the-
orem to the new framework. We obtain strong composition results that enable
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"game theoretic composition", i.e., composition that preserves the power of coali-
tions (whatever they may be). Moreover, our strong composition also preserves
deniability and confinement.

Next we present two protocols for secure function evaluation with LUC secu-
rity. The protocols, called the Physical GMW and the Mediated SFE protocols,
satisfy the new security definition. The protocols are very different from each
other: The Physical GMW protocol, which is strongly inspired by [ILM05], mod-
els players sitting in a room equipped with machines and jointly computing a
function. The Mediated SFE protocol is a simplified version of [AKL+09]. Like
there, we use a semi-trusted mediator. That is, if the mediator is honest then
the protocol is LUC secure. It is also UC secure in the standard sense even if
the mediator is corrupted. It is interesting to note that although these two pro-
tocols have significantly different nature, they are both analyzable within our
framework.

1.1 Our Contributions in More Details

The New Formalism. In a nutshell, the new modeling proceeds as follows. Re-
call that in the UC framework, the adversary is a centralized entity that not only
controls the communication in the network, but also coordinates the corrupted
parties’ behavior. This centralization is also inherited by the simulator. As men-
tioned above, while this modeling captures privacy and correctness, which are
“global’’ properties of the execution, it certainly does not capture rationality
or locality of information. This implicitly means that only the situations where
corrupted parties enjoy global view of the system are being fully captured.

A first attempt to bridge this gap might be to follow the formalisms of previous
works [ASV08, AKMZ12, MR11] and consider one adversary per party. However,
this modeling does not completely capture reality either. Consider for instance
the following scenario: one of two parties A and B is having a conversation with
a third party C. Later C is instructed to transfer this information to some honest
but curious fourth party D without revealing whether the source was A or B.
Clearly for the protocol to make intuitive sense, A and B need to assume that
C is trusted, or “incorruptible’’. However, going back to the suggested model we
notice that the adversary associated with C participates in all the conversations
that C participates in, and can thus correlate the C−D communication with the
A−C and B −C communication without corrupting C at all, thereby harming
the anonymity in a way that is not intended by the protocol (see more detailed
account of this issue in Section 3). In other words, the suggested modeling does
not distinguish between the “obviously insecure” protocol that allows C to be
corrupted, and the “obviously secure” protocol that uses an incorruptible C.
We conclude that having a single adversary per party does not faithfully model
honest parties. This motivates us to look for a more refined model.

To adequately capture locality, we extend the UC model as follows: For each
party identity (denoted PID) we consider an adversary for any PID it might
communicate with. In other words, each pair of PIDs has a pair of adversaries,
where each adversary is in a different side of the "potential communication line".
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Each local adversary is in charge of a specific communication line and is aware
only of the communication via this line.

Another feature of our modeling is that we let the environment directly control
the communication, by letting the local adversaries communicate with each other
only through the environment. This is an important definitional choice that is
different from [AKMZ12]. In particular, this means that the centralized simulator
no longer exists and, each local adversary is replaced with a local simulator in the
ideal process, where the protocol is replaced by the trusted party. The trusted
party may allow different subsets of simulators to communicate by forwarding
messages between them. Therefore, the communication interface provided by the
trusted party to the simulators represents partition of the system to clusters. The
effect of this modeling is that the simulator for an entity can no longer rely on
other parties’ internal information or communication in which it was not present.
This way, a proof of security relies only on each entity’s local information, and
potentially, represents independence of clusters defined by the trusted party.

To preserve meaningfulness, we allow the local adversaries to communicate
across party identities only via the environment or with ideal functionalities.
Aside from these modifications in the adversarial interface, the model is identical
to the UC model.

Capturing security concerns. We discuss variety of security concerns that
are captured by LUC security but not in other security notions:

Collusion-freeness. To provide initial evidence for the expressiveness of LUC,
we consider any UC-secure protocol for multi-party computation (e.g. the
[CLOS02] protocol). While this protocol UC realizes any ideal functionality
(even ones that guarantee collusion freeness) in the presence of malicious
adversaries, it allows individually corrupted parties to collude quite freely,
even when the environment does not pass any information among parties.
Indeed, this protocol does not LUC-realize any ideal functionality that guar-
antees collusion-freeness. This is so even in the presence of only semi-honest
adversaries. The reason for the failure in the LUC model is the inability of
the separate simulators to produce consistent views on adversaries’ shared
information (i.e., scheduling, committed values etc.) We note that this con-
cern is captured by the definitions of [LMS05, ASV08, AKL+09, AKMZ12]
as well.

Anonymity. We consider several flavors of anonymity such as existence-
anonymity, timing-anonymity, and sender-anonymity. Specifically, we show
UC and CP realizations of ideal functionalities that have these anonymity re-
quirements by a protocol that does not have these properties. We’ll then show
that this realization is not LUC secure. Let us informally present the above
flavors of anonymity: The first anonymity concern we present is existence-
anonymity. Intuitively, we would like to have a “dropbox’’ that does not
let the recipient know whether a new message was received, and thus hides
information regarding the existence of the sender.

Consider the following one-time-dropbox functionality. The dropbox is a
virtual box initialized with some random file. People can put files into ones
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dropbox. In addition, the owner can one time query the dropbox if any new
file has been received; if there are any incoming files in the box, they would
be delivered to the owner; else the default file would be delivered.

Indeed, whenever receiving a file from this dropbox, there is no cer-
tainty regarding the existence of a sender. Correspondingly, any protocol that
LUC-realizes the dropbox functionality is guaranteed to provide anonymity
regarding the existence of a sender. This is not so for standard UC security.

An additional anonymity concern that we consider is timing-anonymity.
Timing-anonymity means hiding the time in which an action took place. For
example consider the following email feature: whenever sending an email,
the sender can delay the sending of the email by some amount of time (say,
randomly chosen from some domain).

Indeed, upon receiving an email, the receiver does not know when this
email was sent. This property can be captured via an ideal functionality in a
straightforward way. Again, any protocol that LUC-realizes this functionality
will provide anonymity regarding the time of sending. This is not so for
standard UC security.

An additional anonymity property already mentioned here is sender-
anonymity. The common way to achieve this anonymity property in practice
is onion routing. In the work of [CL05] the onion-routing problem is defined
in the UC framework; however, they only address a potential solution to
the sender-anonymity concern rather than the concern itself. In contrast,
we formalize the sender-anonymity property. We also show how UC security
(and even CP security) fails to capture this property. Specifically, we define
an ideal functionality and show a protocol that is clearly non-anonymous but
still CP-realizes the functionality according to the definition of [AKMZ12].
This protocol is not LUC secure.

Deniability. It was pointed out in [CDPW07, DKSW09] that UC security does
not guarantee deniability due to issues with modeling of the PKI. While these
issues were resolved in the context of global setup and deniable authentica-
tion in the generalized UC framework, it turns out that the UC formalism
does not capture another deniability flavor, called bi-deniability (the name is
taken from [OPW11]): A protocol is bi-deniable if the protocol participants
can "deny" before a judge having participated in the protocol by arguing
that any "evidence" of their participation in the protocol could have been
fabricated without their involvement, even if there exists an external entity
that has an access to parties’ log files of the communication. In the context of
authentication, the judge is provided with “evidences” of sender’s participa-
tion not only by the receiver but also by this external entity. Specifically, the
sender can argue that any “evidence” of participation was fabricated by this
external entity, even though this external entity cannot communicate with
the receiver and only has an access to the communication log files of the
sender. This notion is stronger than standard deniability, in which sender’s
log files are ideally hidden from the judge. To motivate bi-deniability consider
a corporation that is obligated to store its communication log files. The log
files are collected by an external law enforcement agency. Clearly, it would
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be desirable to ensure that even if these files are disclosed, the corporation
can always deny their authenticity.

In this work, we give a simulation-based definition of bi-deniable authen-
tication and prove its equivalence to LUC secure authentication. Moreover,
due to the strong connection between bi-deniability and LUC security, we
obtain that bi-deniability is preserved under composition. In addition, we
show that UC framework fails to capture this flavor of deniability.

Confinement. Another important concern that seems hard to capture by the stan-
dard notions is the information confinement property, defined by [Lam73]. A
protocol is said to enforce confinement if even misbehaving participants can-
not leak secret information that they possess across predefined boundaries.
[HKN05] presents a game based definition of confinement. Their definition
introduces changes in the basic UC model, but still considers a centralized
adversary. We show that the definition of [HKN05] is excessively strong and
protocols that clearly enforce confinement fail to admit it. The root of the
problem is the centralized adversary that enables information flow to unau-
thorized entities.

Intuitively, separate adversaries controlling different parts of the network
or different groups of parties would indeed capture this requirement more
tightly. We present a formal definition of confinement and show that LUC
security implies it. Similarly to bi-deniability, we obtain composability with
respect to confinement. In addition, we show the inability of UC to capture
confinement. More specifically, we show that any UC functionality that en-
forces confinement is super-ideal in some well-defined sense. As before, this
is not so for LUC functionalities.

Game-theoretic implications. As pointed out in [ILM05], standard security does
not suffice for implementation of general equilibria due to collusion. In order
to overcome this problem, new notions of mechanism implementation were
defined in [ILM05, ILM08, ILM11]. However, these notions are specific to the
problem at hand and are not suitable as general definitions of security. Alwen
et al. [AKMZ12] translate their security notion to the game-theoretic setting
and define a corresponding model of mediated games. In addition, they show
that their security notion achieves preservation of incentive-structure for
mediated games.

In this work, we show how protocols modeled in the LUC framework
can be viewed as games. Moreover, we show that any protocol that LUC-
securely realizes some ideal functionality preserves the incentive structure
of the realized functionality. More concretely, for any LUC-secure protocol
π there exists an efficient mapping between real world strategies and ideal
world strategies that can be computed by each player in a local manner and
achieves indistinguishable payoffs. This in particular implies that any Nash
Equilibrium (NE) in the ideal-world game is mapped to a computational
NE in the real-world game and no new equilibria are introduced. A more
complete description of the game-theoretic implications provided by LUC
security appears in [CV12].
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Composition and Dummy Adversary. We demonstrate that LUC-security
is preserved under composition. Due to the local nature of the model, this
preservation applies not only to basic security concerns under composition, but
rather to much more general security concerns such as deniability, confinement,
and game-theoretic solution concepts. The obtained game-theoretic compo-
sition implies that Nash equilibrium is preserved under concurrent composition.

We also extend the dummy adversary notion to the local UC framework, and
show its equivalence to the general LUC-security notion.

An interesting line for future research is to try to cast the LUC framework
within the Abstract Cryptography framework [MR11]. In particular, such a work
might provide a unified basis for the LUC, CP and UC frameworks.

LUC Secure Protocols
We sketch the two secure function evaluation protocols that we analyze in this
work.

The Physical GMW Protocol. The GMW version we use is the protocol
from [Gol04]. Still, our construction is strongly inspired by [ILM05]. We cast
the protocol in the physical world by considering a set of players sitting in a
room and jointly computing a function by evaluation the gates of its circuit. In
order to properly compute the function, the players use the following physical
machinery: boxes with serial number, and machines for addition, multiplication,
duplication, and shuffle of boxed values. In more details, Let P1, ..., Pn be a set
of parties in the room and let f be the function of interest. Next:
1. Sharing the inputs: Each player partitions its input to random shares, one

share for each player and then, it publically sends those shares, in opaque
boxes, to the players.

2. Circuit emulation: Proceeding by the order of wires, all players jointly and
publically evaluate the circuit gates.

3. Output reconstruction: Each player publically hands the Boxes of the output
shares to the appropriate parties. Lastly, each party privately opens the
boxes and computes its output.

Theorem 1 (Informal statement). Let f be a PPT function. Then, there
exists a protocol that information-theoretically LUC-securely computes f with
respect to adaptive adversaries.

Throughout the process, everyone sees which operations are performed by each
player. Still, the actual values inside the boxes remain secret.

In contrast with classic GMW protocol, here the byzantine case is not done
by introducing ZK proofs; rather the primitives themselves are robust.

We achieve LUC-security for any number of corrupted parties. While the
work of [ILM05] requires at least one honest party for the collusion-freeness to
hold, we achieve LUC security (which implies collusion-freeness) even when all
the parties are corrupted. In addition, this protocol meets the strong notion
of perfect implementation defined by [ILM11], and therefore achieves privacy,
strategy, and complexity equivalence.
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The Mediated-SFE Protocol. We present here a high-level description of the
mediated protocol, following [AKL+09].

Let P1, ..., Pn, and mediator M be a set of parties and let π be a k-round pro-
tocol that UC-securely computes function f . (Inspired by [AKMZ12], we think
of the protocol as running directly over unauthenticated communication chan-
nels.) The protocol π is compiled to a new LUC-secure protocol for computing
f with a semi-trusted mediator, where all the communication is done through
the mediator. Specifically, for each round of the protocol π does:

1. Each party andM runs two-party secure computation, which outputs toM
the next round messages of this party in π.

2. M sends a commitment to the relevant messages to each party Pi.
3. In the last round of π, the mediatorM and each party run secure two-party

computation, where each party obtain its output.

Theorem 2 (Informal statement). Given a (poly-time) function f =
(f1, ..., fn) and a protocol π that UC-securely computes f . Then there exists a
protocol Π that LUC-securely computes f with respect to adaptive adversaries.

WhenM is honest it separates the parties of π and makes them be independent
of each other. When M is corrupted, the independence disappears. Still, we
obtain standard UC security.

We strengthen the protocol to be immune to powerful adversaries that control
the scheduling, gain information via leakage in the protocol, and are able to
adaptively corrupt players. In contrast to [AKMZ12], we do not assume ideally
secure channels between parties and the mediator.

Organization. Section 2 presents an overview of the LUC security definition
and composition theorem. Section 3 presents the insufficiency of standard notions
to capture interesting flavors of anonymity. Section 4 presents bi-deniability and
shows its relationship to security notions. Section 5 presents confinement and
states its relationship to various security notions.

2 LUC Security Definition and Composition Overview

The model of protocol execution is defined in terms of a system of ITMs as in
[Can01]. At first, a set of party IDs is chosen. Then, we consider a pair of ad-
versaries for all potentially communicating ITIs based on the chosen party IDs
(the definition of ITI appears in [Can01]). In addition, jointly with the environ-
ment, these adversaries have complete control over the communication between
ITIs which under their custody, as opposed to the UC framework, where a cen-
tralized adversary controls all the communication in the system. Formally, the
technical difference from the UC framework is expressed in the control function,
summarized below. The underlying computational model remains unchanged.

Let π be a protocol over a fixed set of parties. The model is parametrized by
three ITMs: the protocol π to be executed, an environment Z and an adversary A.
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The initial ITM in the system is the environment Z. The input of the initial ITM
Z represent all the external inputs to the system, including the local inputs of
all parties. As a first step, Z chooses a set P of party identities (PIDs) and
session ID s. The first ITIs to be invoked by Z is the adversaries. An adversary
with identity id = ((i, j) ,⊥) where i, j ∈ P , denoted A(i,j), is invoke for each
ordered pair i, j ∈ P . The adversaries code is set to be A. In addition, as the
computation proceeds, Z can invoke any ITI, by passing inputs to it, subject to
the restriction that all these ITIs have session ID s and PID ∈ P. The code of
these ITIs is set to be π. Consequently, all the ITIs invoked by Z, except for
the adversaries, are parties in a single instance of π. Other than that, Z cannot
pass inputs to any ITI other than the adversaries or the parties invoked by Z,
nor can any ITI other than these pass outputs to Z.

Each adversaryA(i,j) is allowed to send messages to any ITI in the system with
PID= i where the sender identity of delivered messages must be PID=j. There
need not be any correspondence between the messages sent by the parties and
the messages delivered by the adversaries. The adversaries may not pass input
to any party, nor can it pass output to any party other than Z. It is important
to notice that there is no direct communication between the adversaries and all
their communication must go through the environment.

Adversaries may also corrupt parties. Corruption of a party (ITI) with identity
id is modeled via a special (Corrupt, id, p) message delivered by A(i,j) to that
ITI, where p denotes potential additional parameters.

Any ITI other than Z and the adversaries, are allowed to pass inputs and out-
puts to any other ITI other than Z and the adversaries subject to the restriction
that the recipient have the same PID as the sender. In addition, they can send
messages to the adversaries where adversary’s PID(i,j) requires sender’s PID i
and recipient’s PID j. (These messages may indicate an identity of an intended
recipient ITI; but the adversaries is not obliged to respect these indications.)

To summarize the above restrictions, for any ordered pair of PIDs (i, j), there
is only one possible route for messages from the ITI with PID i to the ITI with
PID j: a message m from the ITI with PID i is sent to the adversary A(i,j), then
it can only be outputted to Z, then it is given to A(j,i), then it is sent to the
ITI with PID j.

The response of the party or sub-party to a (Corrupt) message is not defined
in the general model; rather, it is left to the protocol. Here we specify one
corruption model, namely that of Byzantine party corruption. We extend the
known definition to fit multiple adversaries. Here, once a party or a sub-party
receives a (Corrupt) message for the first time, it sends to that adversary its
entire current local state. Also, in all future activations, a corrupted ITI merely
forwards the incoming information to that adversary and follows instructions of
all PID related adversaries.

All the restrictions above are enforced by the control function that is formally
presented in [CV12]. Figure 1 presents a graphical depiction of the model.

Let LEXECπ,A,Z denote the output distribution of Z in the execution above.
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Fig. 1. The model of protocol execution. The environment Z writes the inputs and
reads the subroutine outputs of the main parties running the protocol, while the ad-
versaries, jointly with Z, control the communication. In addition, Z may interact freely
with all adversaries. The parties of π may have subroutines, to which Z has no direct
access.

Now we present the general notion of emulating one protocol via another pro-
tocol. Informally, we say that a protocol π emulates protocol φ if no environment
Z can tell whether it is participating in an execution of π or φ. That is, let A
and B be binary distributions, then A ≈ B if the statistical distance between A
and B is negligible.

Balanced Environments. In order to keep the notion of protocol emulation
from being unnecessarily restrictive, we consider only environments where the
amount of resources given to each adversary (namely, the length of the adver-
sary’s input) is at least some fixed polynomial fraction of the amount of resources
given to the protocol. To be concrete, we consider only environments where, at
any point in time during the execution, the overall length of the inputs given
by Z to the parties of the main instance of π is at most k times the length of
input to each adversary, where k is the security parameter in use. We call such
environments Balanced environments.

Definition 1 (LUC-emulation). Let π and φ be PPT protocols. We say that
π LUC-emulates φ if for any PPT adversary A there exists an PPT adversary
S such that for any balanced PPT environment Z we have: LEXECπ,A,Z ≈
LEXECφ,S,Z

If F is an ideal functionality we say that π LUC-realizes F .

Hybrid Protocols. As in the UC framework, we define hybrid protocols to be
protocols where, in addition to communicating via the adversary in the usual
way, the parties also make calls to instances of ideal functionalities. In other
words, an F -hybrid protocol π, denoted by πF , is a protocol that includes sub-
routine calls to F .
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Theorem 3 (Universal composition, informal statement). Let π, ρ, φ be
PPT protocols. If ρ LUC-emulates φ then protocol πρ LUC-emulates protocol πφ.

The formal composition theorem and its proof can be found in [CV12].

3 Anonymity

The timing, existence and sender anonymity were informally presented in the
introduction. Recall that in the introduction, these concerns are presented via
devices such as dropbox, email future, and trusted coordinator; but in fact these
are cryptographic channels guaranteeing anonymity in the subject matter. We
present ideal functionalities, which are the formalizations of these channels, and
realization by non-trivial protocols that do not provide anonymity. The function-
alities are defined in LUC, and the corresponding UC (and CP) functionalities
are defined by replacing the multiple adversarial interfaces with an equivalent
single adversarial interface. We remark that in absence of any formal definition,
we can only show that these protocols do not satisfy our intuitive perception
of anonymity. Here, we present the inability of the UC and CP to capture the
intuitive idea of anonymity.

3.1 Existence-Anonymity

Here our goal is to model a sender-receiver channel, denoted by existence-
anonymous channel that has a strong anonymity guarantee regarding the ex-
istence of a sender. The existence-channel always allows the receiver to retrieve
a message. However, in absence of a sender this message will be some randomly
chosen message. The LUC existence-anonymous channel FEA is formally pre-
sented in Figure 2.

Functionality FD
EA

Functionality FD
EA

runs with parties S, R, adversaries S(S,R), S(R,S), and
parametrized on message distribution D. It proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, record m, and send output (Send, sid, m)
to S(S,R). Ignore any subsequent (Send, ...) inputs. Once S(S,R) allows to forward
the message, mark m as approved.

– Upon receiving an input (Output, sid) from party R do:
1. if there is an approved message m then set OUT = m; else set OUT← D.
2. send output (OUT, sid) to S(R,S); Once S(R,S) allows to forward the message

output (OUT, sid) to R and halt.

Fig. 2. The existence-anonymous channel functionality FEA
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Functionality FEB

Functionality FEB runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize
OUT = ⊥ and proceed as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, record m, and send output (Send, sid, m)
to S(S,R). Ignore any subsequent (Send, ...) inputs. Once S(S,R) allows to forward
the message, mark m as approved.

– Upon receiving an input (Output, sid) from party R and there is an approved
message m do:
1. set OUT = m , and output (OUT, sid) to S(R,S); Once S(R,S) allows to

forward the message output (OUT, sid) to R and halt.

Fig. 3. The basic existence-channel functionality FEB

The underlying communication model is a channel called FEB that is similar to
authentication channel with a difference in the message delivery. More specifically,
a message is delivered to the recipient upon recipient’s request and only if there
exists a message sent to him. It is important to note that FEB does not provide
existence-anonymity since the recipient is guaranteed that any message received
was sent by the sender. The LUC channel FEB is formally presented in Figure 3.

Claim. The functionality FEB UC-realizes FEA and does not LUC-realize FEA.

3.2 Timing-Anonymity

Here, our goal is to define a channel that guarantees to the sender that no
receiver, upon receiving a message from him, can tell when this message was
sent. As mentioned in the introduction, we define a timing-anonymous channel,
denoted by FTA, that randomly delay a message in a way that the amount of
the delay is unknown to the receiver. In particular, the message is delivered only
after a certain delay. The LUC channel FTA is formally presented in Figure 4.

Now we formally define the underlying model. In order to capture time, we
introduce a clock functionality Fclock that is observable by all participants.
This clock is not directly observed by the environment, instead, it is indirectly
advanced by the environment, by instructing the sender to advance the clock;
this captures a setting in which the receiver’s future actions are not affected by
the amount of the delay. The formal description of Fclock presented in Figure 5.
The second component is the authentication functionality Fauth. The difference
between the LUC and the UC authentication functionality is that the LUC func-
tionality, denoted by Fauth, operates not only when a message is sent. That is,
it allows the adversary associated with the sender to approve delivery even when
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Functionality FTA

Functionality FTA runs with parties S, R, and adversaries S(S,R), S(R,S). Let T be
some finite set of natural numbers. The functionality proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid =
(S, R, sid′), else ignore the input. Next, choose uniformly at random N ← T ,
set k = N , and record (k, m). Ignore any subsequent (Send, ...) inputs.

– Upon receiving an input (Advance, sid) from party S and k > 0 do:
1. update k = k − 1 and output (Advance, sid) to adversary S(S,R).
2. if k = 0 output m to S(S,R). Once S(S,R) allows to forward the message

output m to S(R,S). Once also S(R,S) allows to forward m output it to R.

1. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m has not
been delivered to S(R,S), then change the recorded message to m′.

Fig. 4. The timing-anonymous channel functionality FTA

Functionality Fclock

Functionality Fclock runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize
T = 0. Next:

– Upon receiving an input (Advance, sid) from party S do: in the first activation
verify that sid = (S, R, sid′), else ignore the input. Next, set T = T + 1.

– Upon receiving an input (time, sid) from some party, output (time, sid, T ).

Fig. 5. The clock functionality Fclock

no message was sent; in this case Fauth outputs ⊥ to receiver’s adversary and
halts. We note that Fauth seems as a natural relaxation of the UC authentication
functionality. The LUC authentication functionality Fauth is formally presented
in Figure 6.

Claim. There exists a protocol πTA that UC-realizes FTA and does not LUC-
realize FTA.

A protocol πTA that UC-realizes FTA is:
Let T be some finite set of natural numbers.

1. INPUT: Having received input (Send, sid, m), S chooses uniformly at ran-
dom N ← T , set k = N , and records (k, m).

2. ADVANCE: Having received input (Advance, sid), S forward it to Fclock and
updates k = k − 1. Once k = 0 send m to Fauth and halt.

3. OUTPUT: Having received (Send, sid, m) from Fauth, the receiver R out-
puts m.
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Functionality Fauth

Functionality Fauth runs with parties S, R, and adversaries S(S,R), S(R,S). It
proceeds as follows:

1. Upon receiving an input (Send, sid, m) from party S, do: If sid = (S, R, sid′) for
some R, then record m and output (Send, sid, m) to S(S,R).

2. Upon receiving “approve” from S(S,R), if m is recorded provide (Send, sid, m) to
S(R,S), and after S(R,S) approves, output (Send, sid, m) to R and halt. Otherwise,
provide (Send, sid, ⊥) to S(R,S) and halt. (Both adversaries control the channel
delay.)

3. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m has
not yet been delivered to S(R,S), then output (Send, sid, m′) to S(R,S), and after
S(R,S) approves, output (Send, sid, m′) to R and halt.

Fig. 6. The message authentication functionality Fauth

We note that πTA does not provide timing anonymity since all participants in the
protocol observe the clock. In particular, upon receiving a message, the receiver
can retrieve the time by sending (time,sid) to Fclock, and thus knows exactly
when the message was sent.

3.3 Sender-Anonymity

The sender anonymity property is presented in the introduction via a trusted
mediator that masks the identity of the sender. This mediator is similar to the
two-anonymous channels of [NMO08]; however, their formalism is not applica-
ble in our setting. The channel enables two senders and a honest but curious
receiver to communicate anonymously in the following sense: both senders may
send a message to the receiver but only one message is delivered. This sender-
anonymous channel, denoted by FSA, does not disclose the identity of the actual
sender. The LUC formulation of FSA is presented in Figure 7.

Functionality FSA

Functionality FSA running with parties S1, S2, R, and adversaries
S(S1,R), S(S2,R), S(R,S1), S(R,S2). At first activation verify that

sid = (S1, S2, R, sid′), else halt. Next, proceed as follows:

– Upon receiving an input (Send, sid, mi) from party Si do: record mi and send
output (Send, sid, mi) to S(Si,R). Ignore any subsequent (Send, ...) inputs from
Si. Once S(Si,R) allows to forward the message, output (Send, sid, mi) to S(R,Si).
Once approved, output (Send, sid, mi) to R and halt.

Fig. 7. The sender-anonymous channel functionality FSA
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Functionality FS1

Functionality FS1 running with parties S1, S2, R, and adversaries
S(S1,R), S(S2,R), S(R,S1), S(R,S2). Initialize variable BLOCK = 0. At first activation

verify that sid = (S1, S2, R, sid′), else halt. Next, proceed as follows:

– Upon receiving an input (Send, sid, m1) from party S1 do: record m1, and send
output (Send, sid, m1) to S(S1,R). Ignore any subsequent (Send, ...) inputs from
S1. Once S(S1,R) allows to forward the message output (Send, sid, m1) to S(R,S1).
Once approved, if BLOCK = 0 output (Send, sid, m1) to R and halt; else halt.

– Upon receiving an input (Send, sid, m2) from party S2 do: record m2, and send
output (Send, sid, m2) to S(S2,R). Ignore any subsequent (Send, ...) inputs from
S2. Once S(S2,R) allows to forward the message output (Send, sid, m2) to S(R,S2).
Once approved set BLOCK = 1.

Fig. 8. The basic sender-channel functionality FS1

The underlying communication channel, denoted by FS1, is a two-sender one
receiver channel that delivers only messages sent by the first sender S1. We note
that FS1 does not provide sender-anonymity. The formal description of FS1 is
presented in Figure 8.

Claim. The functionality FS1 UC-realizes FSA and does not LUC-realize FSA.

Sender-Anonymity in the CP Framework. We note that in the context
of sender-anonymity, the CP model suffers from the same weakness as the UC
model. That is, the above non sender-anonymous protocol is a CP-realization of
the sender-anonymous channel FSA.

4 Bi-deniability

Here, we formalize a notion of bi-deniable authentication and show that UC
security does not capture this flavor of deniability. In fact, this is true also
for GUC. Moreover, we define bi-deniability separately and show equivalence
between bi-deniable authentication and LUC secure authentication.

4.1 Bi-deniable Authentication

Bi-deniability aims to capture the ability of a participant in a two party protocol
to deny participation in a protocol execution even if its communication had been
externally exposed. The actual definition has some similarities to the definition
presented in [DKSW09] (see details in the full version [CV12]).

The relevant entities are the following: we have a sender S who is potentially
communicating with a receiver R, a judge J who will eventually rule whether
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or not the transmission was attempted, two informants IS , IR who witness the
communication (represented as log files owned by IS , IR) between S and R
and are trying to convince the judge, and two misinformantsMS, MR who did
not witness any communication but still want to convince the judge that one
occurred.

The idea of the bi-deniability definition is that no party should be accused
of participating in a protocol, if any evidence presented to the judge (by the
informants) based on witnessing the protocol execution can be also presented
(by the misinformants) without any communication whatsoever. This idea is
formalized via indistinguishability of experiments as follows: Let π be some two-
party protocol.

Informant-Experiment. The inputs to parties are given by the judge, and
any output produced by the parties is given to the judge. S and R run π in
the presence of the informants IS , IR. The informants report to J regarding
any observed communication and execute all J ’s instruction. The output
distribution of the judge J in this basic informant-experiment is denoted by
EXPπ,IS,IR,J .

Misinformant-Experiment. The inputs to parties are also given to the mis-
informants. S and R do not communicate except withMS, MR. The misin-
formantMS can send a single (signal) message1 toMR; in addition, they
can freely communicate with J . Any message received by the parties from
their misinformant is outputted to the judge. The output distribution of the
judge J in this basic misinformant-experiment is denoted by EXPMS ,MR,J .

Definition 2 (Bi-deniability). Let π be some PPT protocol and let the in-
formants IS , IR be as defined above. We say that π is bi-deniable if there exist
PPT misinformants MR and MS such that for any PPT judge J we have:
EXPπ,IS,IR,J ≈ EXPMS,MR,J .

Theorem 4. Let Fauth be the LUC authentication functionality, and let Fauth

be the UC authentication functionality of [Can01]. Then:
1. Fauth is bi-deniable.
2. Let π be some protocol. Then π LUC-realizes Fauth if and only if π is

bi-deniable.
3. Fauth is not bi-deniable.

5 Confinement

Recall that a protocol is said to enforce confinement if it prevents leakage of
secret information to unauthorized processes in the network. This guarantee
should hold even if all parties are faulty. In this section we present a definition
of confinement and show that any LUC secure realization enforces confinement
as long as the realized task does. In contrast to the other concerns, we will
not show that UC security does not imply confinement but rather argue that
1 Discussion regarding (signal) message appears in the full version [CV12].
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any definition based on a centralized adversary does not enable proper separation
between protocols that enforces confinement and the one that do not. In addition,
we show that any UC functionality that enforces confinement is “super-ideal”,
in a well-defined sense.

5.1 Confinement with a Centralized Adversary

In the work of [HKN05] a definition of confinement is presented. Their definition
considers the UC execution model with the following modifications: the UC
environment is split into two environments EH and EL, where EH interacts with
the high-level processes and EL with the low-level processes. All processes have an
I/O interface with the appropriate environment according to their classification.
In addition, the high-level environment EH cannot give inputs either to the
adversary or to the low-level environment EL. [HKN05] define confinement as
the following game: a random bit b is chosen by EH, the parties run the protocol
π, and eventually EL outputs its guess for b. We say that π enforce confinement
for partition H : L of the parties in π, if for any environments EH, EL and
adversary as above, EL succeeds in the confinement game with probability ≈ 1

2 .
This definition enforces very strong requirements on the examined protocols2,

and as a consequence, many protocols that “obviously enforce confinement” do
not satisfy this definition. We remark that this weakness is not unique to the
[HKN05] definition, and any definition based on centralized adversary is subject
to this weakness.

5.2 Definition of Confinement

Our definition follows the idea of [HKN05]. Like there, we consider split environ-
ments. More precisely, our definition consists of the same entities as in [HKN05]
where the centralized adversary is split to multiple adversaries, an adversary for
each pair of potentially communicating parties. We denote by A(i,j) the adver-
sary with identity ((i, j),⊥) and code A.

The executed experiment for partition H : L of the participating parties in
π is the following: a random bit b is chosen by EH, the parties run π, while
the adversaries, jointly with EH and EL control the communication. The envi-
ronments EH and EL write inputs and read the subroutine outputs of parties
according to their classification. EL can also give inputs to EH. In addition, EL
can interact freely with all adversaries associated with L, and all the adversaries
associated with H can give outputs to EH. The adversaries can communicate
with the appropriate party and corrupt it. Eventually EL outputs its guess for b.

Let CEXPH:L
π,A,EH,EL denote the success indicator of EL in the above experi-

ment.

Definition 3 (Confinement). Let π be a PPT protocol and let H : L be some
partition of the parties in π. We say that π enforces (H : L)-confinement if for

2 Shown in the full version [CV12].



Universally Composable Security with Local Adversaries 299

any PPT adversary A and for any balanced PPT environments EH and EL we
have: CEXPH:L

π,A,EH,EL ≈ U1, where U1 is the uniform distribution over {0, 1}.

Theorem 5. Let π, φ be protocols such that π LUC emulates φ. Then π enforce
(H : L)-confinement for all partitions H : L of the parties in π for which φ
enforce (H : L)-confinement.

5.3 Confinement with Respect to Super-Ideal Functionalities

Here, we show that any UC functionality that enforces confinement must be
“super-ideal”. That is, such functionalities do not provide the adversary with
any information, even when a party is corrupted. We call such functionalities
super-ideal since such functionalities essentially mandate communication chan-
nels which offer absolute physical security that hides even whether communica-
tion took place at all.

Definition 4 ( Super-ideal, informal statement). Let F be a n-party func-
tionality and let H : L be some partition of the parties. Then F is super-ideal
with respect to a set of identities H if for any adversary associated with a party
Pi for i ∈ H and for any two possible inputs the following holds: the adversary
cannot tell, even with the assistance of the adversarial interface of F , which one
of the inputs was used by party Pi.

Claim. Let F be a UC functionality and let H : L be some partition for which F
enforces (H : L)-confinement. Then, F is super-ideal with respect to all parties
in H.
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Abstract. At present, the RSA cryptosystem is most widely used in
public key cryptography. On the other hand, elliptic curve cryptography
(ECC) has recently received much attention since smaller ECC key sizes
provide the same security level as RSA. Although there are a lot of pre-
vious works that analyze the security of ECC and RSA, the comparison
of strengths varies depending on analysis. The aim of this paper is once
again to compare the security strengths, considering state-of-the-art of
theory and experiments. The security of RSA is closely related to the
hardness of the integer factorization problem (IFP), while the security
of ECC is closely related to the elliptic curve discrete logarithm problem
(ECDLP). In this paper, we compare the computing power required to
solve the ECDLP and the IFP, respectively, and estimate the sizes of the
problems that provide the same level of security.

1 Introduction

After Rivest, Shamir, and Adleman proposed the RSA cryptosystem in 1977
[38], Koblitz and Miller independently proposed ECC in 1985 [20,28,32]. We can
break RSA (resp. ECC) if we can solve the IFP (resp. the ECDLP). Currently,
subexponential-time algorithm to solve the IFP are known. On the other hand,
the best known algorithm to solve the ECDLP has fully exponential running
time. This fact ensures that smaller ECC key sizes provide the same security
level as RSA. The advantages of smaller key sizes are very important to use
devices with limited processing capacity, storage or power supply, like smart
cards. Hence ECC can be used more widely in the future, and it is important to
compare the security strengths of ECC and RSA in order to embed ECC into
information systems. In this paper, we estimate the computing power required
to solve the ECDLP and the IFP in a year, respectively. Using special-purpose
hardware for the ECDLP or the IFP is a theme of great interest and there
are some previous works such as [18,22,42,43]. However, these platforms and
architectures vary, and it is difficult to make an analysis on the cost performance.
We focus on the hardness of the ECDLP and the IFP from the view point of
software implementation.

� The preliminary version of this work was presented at SHARCS 2012 [50].
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Table 1. The comparable security strengths by NIST SP 800-57 [34]

Bits of Symmetric key FFC IFP ECDLP
security algorithms (e.g., DSA, D-H) (e.g., RSA) (e.g., ECDSA)

80 2TDEA L = 1024, N = 160 k = 1024 f = 160− 223
112 3TDEA L = 2048, N = 224 k = 2048 f = 224− 255
128 AES-128 L = 3072, N = 256 k = 3072 f = 256− 383
192 AES-192 L = 7680, N = 384 k = 7680 f = 384− 511
256 AES-256 L = 15360, N = 512 k = 15360 f = 512+

L is the size of the public key and N is the size of the private key. The
values of k and f are commonly considered as the key sizes.

Although a number of ways to solve the ECDLP are known, Pollard’s rho
method [36] is the fastest known algorithm for solving the ECDLP except spe-
cial cases such as the supersingular and the anomalous cases [11,20,31,40,41,44].
To evaluate the hardness of the ECDLP, we estimate the complexity of the rho
method. The rho method works by giving a pseudo-random sequence defined
by an iteration function and then detecting a collision in the sequence (see [20]
for details of the rho method). The complexity of the rho method is determined
by the number of iterations before obtaining a collision and the processing per-
formance of iterations. Since the number of iterations depends heavily on an
iteration function, we first discuss the choice of iteration functions suitable for
solving the ECDLP. Since the rho method is probabilistic, we next estimate the
number of iterations required to solve the ECDLP with very high probability
based on our experiments (we here consider 99% as the success probability).
Based on the previously known methods, we implement elliptic curve operations
with our software and estimate the processing performance of iterations. Fur-
thermore, we consider three types in the ECDLP, namely, prime fields, binary
fields, and Koblitz curves types.

On the other hand, it is known that the general number field sieve (GNFS)
is the most efficient known algorithm for solving the IFP of large composite
integers [29]. Similarly to the ECDLP side, we estimate the complexity of the
GNFS for evaluating the hardness of the IFP. To evaluate the complexity of the
GNFS, we use the result of CRYPTREC report 2006 [10] which is based on the
papers [23,24]. This report gives the estimated computing power required to solve
the IFP of composite integers of N -bit with N = 768, 1024, 1536 and 2048 by
investigating the complexity of the sieving step based on extensive experiments.
In [50], we estimated the computing power of the GNFS under the condition
with limited memory size. In contrast, we estimate the computing power in the
case with unlimited memory size.

Previously known estimations : We here summarize previously known results
of the security evaluation of the ECDLP and the strength comparison of the
ECDLP and the IFP: In Table 1, we show the comparable security strengths
for the approved algorithms reported by NIST SP 800-57 [34, Table 2 in p. 63].
We also show the evaluation of solving the ECDLP reported by ANSI X9.62



304 M. Yasuda et al.

Table 2. The evaluation of solving the
ECDLP of order n by ANSI X9.62 [1]

bit sizes of n
√

πn/4 MIPS year

160 280 8.5× 1011

186 293 7.0× 1015

234 2117 1.2× 1023

354 2177 1.3× 1041

426 2213 9.2× 1051

Table 3. The comparison of security
strengths of the ECDLP and the IFP with
80-bit security

Report ECDLP IFP

NIST [34] 160 1024
Lenstra-Verheul [30] 160 1300
RSA Labs. [39] 160 760
NESSIE [33] 160 1536
IETF [35] - 1228
ECRYPT II [14] 160 1248

[1] in Table 2. For example, the data of Table 2 imply that we need to have
a computer with 8.5 × 1011 MIPS to solve the ECDLP of 160-bit in a year. It
needs 485 years to solve the ECDLP of 160-bit even if we use a ‘Jaguar’, which
is one of the most powerful computers in the world and has 1.75× 1015 FLOPS
(≈ 1.75 × 109 MIPS). Furthermore, we summarize results of the comparable
security strengths of the ECDLP and the IFP given by certain organizations
and researchers in Table 3.

Organization : In Section 2 (resp. Section 3), we estimate the hardness of the
ECDLP (resp. the IFP) based on our own experiment and implementation re-
sults. In Section 4, we compare the computing power required to solve the
ECDLP and the IFP, and calculate the bit sizes of the problems that provide
the same level of security. Finally in Section 5, we conclude our work.

2 The Hardness of the ECDLP

To evaluate the hardness of the ECDLP, we estimate the complexity of the rho
method.

2.1 Review of the Rho Method

To fix our notations, we review the rho method for the ECDLP due to [20].

Definition 1 (ECDLP). Given an elliptic curve E defined over a finite field
Fq with q elements, a point S ∈ E(Fq) of prime order n, and a point T ∈ 〈S〉,
find the integer k ∈ [0, n− 1] with T = kS.

Fix an iteration function f : 〈S〉 → 〈S〉 such that it is easy to compute X ′ =
f(X) and c′, d′ ∈ [0, n − 1] with X ′ = c′S + d′T for given X = cS + dT . For
a starting point X0 = c0S + d0T with randomly chosen c0, d0 ∈ [0, n − 1],
we define a sequence {Xi}i≥0 by Xi+1 = f(Xi) for i ≥ 0. It follows from the
property of the iteration function f that we can easily compute ci, di ∈ [0, n− 1]
with Xi = ciS + diT . Since the set 〈S〉 is finite, the sequence will eventually
meet a point that has occurred before, which is called a collision. A collision
Xi = Xj with i �= j gives the relation ciS + diT = cjS + djT . Since we have
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(ci − cj)S = (dj − di)T = (dj − di)kS, we can compute the solution k = (ci −
cj) · (dj − di)−1 mod n of the ECDLP if dj �≡ di mod n. This is the basic idea of
the rho method for solving the ECDLP (see [20, pp. 157- 158] for details).

Since a collision gives the solution of the ECDLP with very high probability,
the number of iterations before obtaining a collision is significant for the running
time of the rho method. To solve the ECDLP efficiently, we take an iteration
function f with the characteristic of a random function. If f is a random function,
the expected number of iterations before obtaining a collision is approximately√
πn/2 ≈ 1.2533

√
n by the birthday paradox.

Improving the Rho Method

Parallelized rho method : Van Oorschot andWiener [47] proposed a variant of the
rho method that yields a factor M speed up when M processors are employed.

The idea is to allow the sequences {X(j)
i }i≥0 generated by the processors to

collide with one another, where j is the index of processors. More precisely, each

processor randomly selects its own starting point X
(j)
0 , but all processors use

the same iteration function f to compute subsequent points X
(j)
i .

Collision detection : Floyd’s cycle-finding algorithm [27] finds a collision in the
sequence generated by a single processor. The following strategy enables efficient
finding of a collision in the sequences generated by different processors. An easy
testable distinguishing property of points is selected. For example, a point may
be distinguished if the leading t bits of its x-coordinate are zero. Let 0 < θ < 1
be the proportion of points in the set 〈S〉 having this distinguishing property.
Whenever a processor encounters a distinguished point, it transmits the point
to a central server that stores it in a list. When the server receives the same
distinguished point for the second time, it computes the desired logarithm and
terminates all processors. The expected number of iterations per processor be-
fore obtaining a collision is (

√
πn/2)/M , when M processors are employed. A

subsequent distinguished point is expected after 1/θ iterations. Hence the ex-
pected number of elliptic curve operations performed by each processor before
observing a collision of distinguished points is 1

M

√
πn
2 + 1

θ . We note that the
running time of 1/θ iterations after a collision occurs is negligible for the total
running time if we select θ such that 1/θ is small enough compared to

√
n.

Speeding up the rho method using automorphisms : Wiener and Zuccherato [48]
and Gallant, Lambert and Vanstone [17] show that we can speed up the rho
method using automorphisms. Let ψ : 〈S〉 → 〈S〉 be a group automorphism of
order r such that ψ can be computed very efficiently. We define an equivalence
relation ∼ on the set 〈S〉 by P ∼ Q⇐⇒ P = ψj(Q) for some j ∈ [0, r − 1]. We
denote the set of equivalence classes by 〈S〉/ ∼, and let [P ] denote the equivalence
class containing a point P . The idea of the speed-up using the automorphism
ψ is to modify an iteration function on 〈S〉 so that it is defined on 〈S〉/ ∼. To
achieve this, we can define an iteration function f on 〈S〉/ ∼ by f([P ]) := [g(P )]
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for an iteration function g on 〈S〉. Since almost all equivalence classes have size
r, then the collision search space has size approximately n/r. Hence the expected
number of iterations of the rho method sped up by the automorphism ψ is

√
πn
2r ,

which is a speed-up by a factor of
√
r.

Any elliptic curve has the negation map ψ(P ) = −P of order 2 as an automor-
phism. Since the negation map can be computed efficiently, it is useful to use the
speed-up of the rho method. Hence the expected number of iterations of the rho

method sped up by the negation map is
√
πn
2 , which is a speed-up by a factor of√

2. Koblitz curves were first suggested for use in cryptography by Koblitz [28].
The defining equation for a Koblitz curves E is y2 + xy = x3 + ax2 + b, where
a, b ∈ F2 with b �= 0. The Frobenius map φ : E(F2m) → E(F2m) is defined by
φ : (x, y) �→ (x2, y2) and φ : O �→ O, where O is the point of infinity of E. We
note that the Frobenius map is a group automorphism of order m on the group
E(F2m) and can be computed efficiently since squaring in F2m is relatively inex-
pensive (see [20] for details). Using both the Frobenius and the negation maps,
the rho method on Koblitz curves is sped up. The expected number of iterations
of the rho method sped up by both the Frobenius and the negation maps is
1
2

√
πn
m , which is a speed-up by a factor of

√
2m.

2.2 Discussion on the Rho Method for Solving the ECDLP

In this subsection, we first discuss the choice of iteration functions suitable for
solving the ECDLP. We next estimate the number of iterations before obtaining
a collision and the processing performance of iterations.

Choice of Suitable Iteration Functions: The complexity of the rho method
heavily depends on choice of iteration functions. An iteration function f is most
suitable for solving the ECDLP if f is a random function (see §2.1 for details).
To analyze the randomness of iteration functions, we consider the value defined
by

δ(f) := # {iterations with f before obtaining a collision} /Exp,

where ‘Exp’ denotes the expected number of iterations (see §2.1 for details). We
see that f has enough randomness if δ(f) is very close to 1.

Prime and binary fields cases : A typical iteration function is as follows: Let
{H1, H2, . . . , HL} be a random partition of the set 〈S〉 into L sets of roughly
the same size. We call L a partition number. We write H(X) = j if X ∈ Hj .
For aj , bj ∈R [0, n − 1], 1 ≤ j ≤ L, set Mj = ajS + bjT ∈ 〈S〉. Then we
define an iteration function by fTA(X) = X + Mj , where j = H(X). For
given a point X = cS + dT , we can compute X ′ = fTA(X) = c′S + d′T with
c′ = c+ aj mod n and d′ = d+ bj mod n. This iteration function is called an L-
adding walk proposed by Teske (see [45,46]). Teske investigated the randomness
of some iteration functions and showed that fTA has better randomness than the
other iteration functions. In [46], Teske also analyzed the randomness of fTA by
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experiments on the ECDLP over prime fields of 5−13 digits and concluded that
fTA has enough randomness over prime fields if L ≥ 16. Furthermore, from our
experimental results for solving the ECDLP over prime and binary fields of 40
and 50-bits, we see that the average of δ(fTA) is very close to 1 over prime and
binary fields if L ≥ 20 (see Fig. 4). Hence we conclude that fTA with L ≥ 20 has
enough randomness over prime and binary fields on average. In using the speed-
up with the negation map, the iteration function fTA can fall into short cycles
not giving the solution, which are called fruitless cycles [16,17], and hence we
have to deal with the fruitless cycles. Note that choosing larger L decreases the
chance of hitting a fruitless cycle, and hence it helps us to reduce the frequency
for checking fruitless cycles.

Koblitz curves case : Let E be a Koblitz curve and let E/ ∼ denote the set
of equivalence classes defined by both the Frobenius and the negation maps. In
[49], we proposed an iteration function on Koblitz curves, which is an extension
of that proposed by Gallant, Lambert and Vanstone in [17] based on Teske’s
idea [45]: For 0 ≤ s ≤ m, we define an iteration function on E(F2m) given by

gs(X) =

{
2X if 0 ≤ j ≤ s,
X + φj(X) otherwise,

with j = hashm(L(X)), where hashm is a conventional hash function (in the
computer science) with range [0,m− 1] and L is a labeling function from E/ ∼
to some set of representatives. We then give an iteration function fGLV,s on
E/ ∼ defined by fGLV,s([X ]) = [gs(X)] for X ∈ E. Note that fGLV,s is well-
defined on E/ ∼ and fGLV,s with s = 0 is the same as the iteration function
proposed by Gallant, Lambert and Vanstone. We give our experimental results
on the average of δ(fGLV,s) in Appendix A-2. From our experimental results, we
see the following (see Table 12): The number of iterations with fGLV,s increases
as the parameter s becomes large on average. In particular, we see that fGLV,s

with s = 0, which was proposed by Gallant, Lambert and Vanstone, has enough
randomness on average since the average of δ(fGLV,s) with s = 0 is equal to 1.05.

Remark 1. For solving the ECC2K-130 which is one of the Certicom ECC chal-
lenges on Koblitz curves [13], the authors in [2,5,7] proposed new iteration func-
tion f on E/ ∼ as follows (see also [21] for the iteration used to solve the
ECC2K-95 and the ECC2K-108):

f([X ]) = [g(X)], g(X) = X + φj(X), j = ((HW(x)/2 mod 8) + 3), (1)

where HW(x) is the Hamming weight of the x-coordinate of X . Although this
function has the advantage of fast processing performance, this function might
reduce the randomness due to using HW(x) (see [7, Appendix B] for details).
The authors analyzed the randomness of this function based on a refinement of
the heuristic method given by Brent and Pollard [8]. Their analysis shows that
we have δ(f) = 1.07 on average. In order to estimate the number of iterations
required to solve the ECDLP with very high probability, we used fGLV,s with
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Fig. 1. Distribution of the frequencies of the number of iterations of the rho method
for solving the ECDLP over prime field of 40-bit (we set 1 =

√
πn/2 as the expected

number of iterations)
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Fig. 2. Same as Fig. 1, but over binary field of 40-bit

s = 0 in our analysis. To investigate the randomness of this function in more
detail is our future work.

The Number of Iterations of the Rho Method for the ECDLP: For
simplicity, we denote fGLV,s with s = 0 by fGLV. To estimate the number of
iterations required to solve the ECDLP with very high probability, we consider
fTA with L ≥ 20 (resp. fGLV) as an iteration function for solving the ECDLP in
prime and binary fields cases (resp. Koblitz curves case).

Prime and binary fields cases : In Fig. 1 and 2, we give our experimental re-
sults on the distribution of the frequencies of the number of iterations fTA with
L = 20. Data of Fig. 1 and 2 are obtained by solving the ECDLP over prime
and binary fields of 40-bit for 10, 000 times with randomly chosen starting points
(note that we did not use the speed-up with the negation map). As the numbers
of iterations before obtaining a collision can be modeled as waiting times, it
is reasonable to approximate the graph by Γ-distribution. The theoretic value
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in Fig. 1 and 2 is the curve of Γ-distribution, where we set shape parameter
k = 3.46 and scale parameter θ = 0.317 in the probability density function

f(x; k, θ) =
1

θkΓ(k)
xk−1e−

x
θ .

With this approximation, we see that we can solve the ECDLP with 99% proba-
bility if we compute iterations of the rho method by three times of Exp =

√
πn/2

in using fTA with L = 20. We expect that the same result follows in using fTA
with L ≥ 20 since the standard deviation of the number of iterations with fTA is
roughly the same if L ≥ 20 (see Table 9 and 10 in Appendix A-1 for the standard
deviation with fTA).

Recently, Bernstein, Lange and Schwabe in [6] improved the rho method for
obtaining the speed-up with the negation map and showed a speed-up very close
to

√
2 on hardware with fTA. To estimate the complexity of the rho method,

we consider 3·√πn
2 as the number of iterations for solving the ECDLP with 99%

probability in using fTA with L ≥ 20.

Koblitz curves case : Since the standard deviation of the number of iterations
with fTA (L = 20) divided Exp (see Table 9 and 10 in Appendix A-1) is close to
that with fGLV (see Table 11 in Appendix A-2), we expect that the distribution
of the frequencies of the number of iterations with fGLV is approximated by the
same Γ-distribution as Fig. 1 and 2. Hence we consider 3

2 ·
√

πn
m as the number

of iterations for solving the ECDLP with 99% probability in using fGLV.

The Processing Performance of Iterations: We here estimate the process-
ing performance of iterations fTA with L ≥ 20 and fGLV by our implementation.
Fix an integer number N and let t(f) denote the processing performance of an
iteration function f on an elliptic curve of N -bit.

Prime fields case : The authors in [6] implemented the L-adding walk fTA for
solving the ECDLP on the elliptic curve secp112r1 over prime field of 112-bit.
They showed from their implementation that it needs 306.08 cycles per iteration
for their software (CPU: Cell SPE 3GHz). They also reported that their software
actually took 362 cycles per iteration. Based on their implementation method,
we implement the addition operation on the same curve with our software. They
implemented fTA in a SIMD environment, while we use the normal registers for
the addition operation. Let p denote the 112-bit prime number over which the
curve secp112r1 is defined. Since p has the special form p = (2128 − 3)/76439,
they used operations over the ring R := Z/(2128 − 3)Z for the fast implemen-
tation. Since our software has the advantage of the fast processing performance
of the 64-bit× 64-bit → 128-bit multiplication operation (the paper [19] shows
that it needs about 4 clocks for this multiplication operation), we use the normal
method for the multiplication over R, instead of the Karatsuba method used in
[6]. In their implementation, they used the standard formulas for elliptic curve
addition in affine coordinates with Montgomery’s trick for batching the inversion
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in A = 224 independent iterations. It follows from [6, Section 3] that it needs
(1/A) · (I − 3M) + 5M + 1S + 6b for implementing the elliptic curve addition
operation over prime fields, where I,M,S and b are the costs of the inversions,
multiplications, squarings and subtractions over the field, respectively. Our im-
plementation shows that we have the following (CPU: Intel Xeon X3460 2.8GHz
8GB memory, cf. [6, Section 5]):

– 5M : 39.654×5 = 198.27 cycles (cf. 53.61×5 = 268.05 by using the Karatsuba
method);
• The authors in [6] reported that it needs 218.75 cycles for 5M with their
software, which costs more almost 20 cycles than our implementation.
This difference is due to the property that our software has the much
faster processing performance of the multiplication operation than their
software (the CPU used in their implementation only has the 16-bit ×
16-bit → 32-bit multiplication operation).

– 1S : 37.94 cycles;
– 6b : 3.105× 6 = 18.63 cycles;
– (1/224) · (I− 3M): (5676.65− 39.654× 3)/224 = 24.81 cycles.

By adding them up, we estimate that it needs 279.65 cycles per elliptic curve
addition over R. Our software actually takes 270.05 per elliptic curve addition
over R, about 3.5% less than the estimation. This is due to the efficiency of the
inline implementation and the parallelized ALU operations.

Remark 2. According to [6, Section 5], we also need to estimate the cost of
the ‘canonicalization’ operation for estimating the cost of fTA on the curve
secp112r1. Note that this operation is necessary to obtain the unique repre-
sentation of Fp from an element of R. Since it follows from [6, Section 5] that
the cost of this operation is almost half of that of the multiplication over R, we
estimate that the cost of this operation is 39.654/2 ≈ 19.83 cycles. By adding it
to our implementation result, we estimate that it needs 270.05+ 19.83 = 289.88
cycles per iteration. The method in [6] is specialized for the curve secp112r1, in
which p has the special form. Since the cost of the canonicalization operation is
approximately equal to 8% of the total cost in the implementation of [6], we es-
timate the processing performance of fTA only from the cost of an elliptic curve
addition in the next paragraph, and consider 270.05 cycles per elliptic curve
addition over R as the cost over prime fields of 128-bit.

There can be a loss in performance if we take so large L that the precomputed
points do not fit in cache. Therefore we assume that we take L so that the
precomputed points fit in cache and t(fTA) is not affected by the size of L.
Moreover, since t(fTA) is approximately equal to the processing performance of
a point addition on elliptic curves, we estimate that t(fTA) is proportional to

the value
(⌈

N
64

⌉)2
due to the normal method for the multiplication over prime

fields with 64-bit registers. We compare the efficiency of the normal method
and the Karatsuba method for the multiplication: In the case N = 256, we
estimate that 1M = 39.61×(256/128)2 = 158.62 cycles with the normal method.



On the Strength Comparison of the ECDLP and the IFP 311

On the other hand, we estimate that 1M = 53.61×(256/128)1.585 = 160.83 cycles
with the Karatsuba method. These estimations show that the normal method is
better than the Karatsuba method if N ≤ 256. From the above arguments, we
estimate that we have

t(fTA) =
270.05

4
×
(⌈
N

64

⌉)2

cycles (64 ≤ N ≤ 256).

Binary fields case : The authors in [7] implemented the iteration function defined
by (1) for solving the Certicom ECC2K-130 challenge. The challenge curve is
given by the Koblitz curve E : y2 + xy = x3 + 1 over binary field of 131-
bit (the polynomial basis representation is given by F2131 = F2[z]/(F ) with
F (z) = z131 + z13 + z2 + z + 1). Their implementation method is similar to
that in [6], and they showed from their implementation that it needs 534 cycles
per iteration for their software (CPU: Core 2 Extreme Q6850 3GHz). As in
the case of prime fields, we implement the addition operation in polynomial-
basis on the same curve E with our software based on their implementation
method. Note that a Koblitz curve is one of the binary elliptic curves on which
we can implement the addition operation effectively. In this case, we use the
128-bit MMX registers in a SIMD environment for effectively using the bitslice
technique, which is the main part of their method. Furthermore, we use the
Karatsuba method for the fast multiplication over F2131 as in [7]. It follows from
[7, Section 3] that it needs (1/A) · (I− 3M)+ 5M+1S+7a for the elliptic curve
operation over binary fields, where a is the cost of the additions over the field.
We set A = 52 as in [7]. Note that the larger A causes the delay of memory
access since the data size is big compared to the prime field case due to the
bitslice technique. Our implementation shows that we have the following (CPU:
Intel Xeon E31275 3.4GHz 16GB memory):

– 5M : 76.288× 5 = 381.44 cycles;

• The authors in [7] reported that it needs 94 cycles per multiplication and
hence 94× 5 = 470 cycles for 5M with their software. Their implemen-
tation costs more almost 90 cycles than our implementation. This seems
to be mainly due to the fact that the CPU used in our implementation
has three throughputs while the CPU used in their implementation has
only two throughputs.

– 1S : 6.15 cycles;

– 7a : 1.814× 7 = 12.70 cycles;

– (1/52) · (I− 3M): (1284.559− 76.288× 3)/52 = 20.30 cycles.

By adding them up, we estimate that it needs 420.59 cycles per elliptic curve
addition over F2131 . Our software actually takes 388.48 cycles per elliptic curve
addition, about 7.6% less than the estimation due to the same reason in the
prime fields case.

In this case, we estimate that t(fTA) is proportional to the value N1.585 due
to the Karatsuba method with the bitslice technique (note that the bitslice
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Table 4. The estimated cost of each Step in computing g(X) = X + φj(X)

Step 1 Step 2 Step 3 Step 4 Total

Cost 0.22 0.25 1.00 0.15 1.62

We consider the cost of a point addition on E in
polynomial-basis as the standard value.

technique is not effected by the size of the registers). Therefore we estimate that
we have

t(fTA) = 388.48× (N/131)1.585 cycles.

Our software actually takes 720.05 cycles over F2192 and 1102.09 cycles over F2256

for the elliptic curve operation on the Koblitz curve E. Since we have t(fTA) =
712.08 cycles in the case N = 192 and t(fTA) = 1123.45 cycles in the case
N = 256, we see that our estimation t(fTA) is very close to our implementation
results.

Koblitz curves case : For simplicity, we denote gs with s = 0 by g. In computing
fGLV, the cost of computing g(X) = X+φj(X) is dominant. In our implementa-
tion, we take a point X ∈ E represented by normal-basis as input, get the index
j = hashm(L(X)) by computing m− 1 elements φi(X) for i = 1, . . . ,m− 1 and
take Y = φj(X) in normal-basis (Step 1), transform normal-basis to polynomial-
basis (Step 2), compute X + Y in polynomial-basis (Step 3), transform bases
again (Step 4) and finally output g(X) represented by normal-basis. Note that
it needs to map g(X) ∈ E to [g(X)] ∈ E/ ∼ in computing fGLV, but the cost
of this mapping is included in Step 1 of the next computation of g. In Table
4, we give the cost of each Step from our implementation. We estimate from
Table 4 that t(fGLV) is 1.62 times of the processing performance of a point ad-
dition on E over binary fields in polynomial-basis. Therefore we estimate that
we have

t(fGLV) = 1.62× 388.48× (N/131)1.585 cycles.

As we said above, the authors in [7] implemented the iteration function defined
by (1) over F2131 and showed that it needs 534 cycles per iteration over F2131 . On
the other hand, our estimation shows that it needs 1.62×389.50 = 631 cycles per
iteration over F2131 . This delay is mainly due to the difference of the iteration
function used for solving the ECDLP.

2.3 Estimation of the Complexity of the Rho Method

Since the running time due to the collision detection of distinguished points
is negligible, we see that the complexity of the rho method with f for solving
the ECDLP of N -bit is approximately equal to #{iterations} × t(f). Hence we
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Table 5. Estimation of the computing power TECDLP required to solve the ECDLP of
N-bit in a year by using the rho method (FLOPS is the unit of TECDLP)

Prime fields case Binary fields case Koblitz curves case

N log10 TECDLP N log10 TECDLP N log10 TECDLP

112 12.21 112 12.27 117 12.22
113 12.37 113 12.42 118 12.38
124 14.02 124 14.14 129 14.08
133 15.73 134 15.70 139 15.62
153 18.74 154 18.81 159 18.69
160 19.79 160 19.74 166 19.76
168 21.00 168 20.97 174 20.99
195 25.31 196 25.29 202 25.27
224 29.67 224 29.60 231 29.70
247 33.14 247 33.13 254 33.21
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estimate the computing power TECDLP required to solve the ECDLP of N -bit in
a year using the rho method as follows (FLOPS is the unit of TECDLP):

TECDLP =⎧⎪⎨⎪⎩
3 ·

√
π2N/2× 270.05

4 ·
(⌈

N
64

⌉)2
/Y (prime fields case, 64 ≤ N ≤ 256),

3 ·
√
π2N/2× 388.48 · (N/131)1.585/Y (binary fields case),

3 ·
√
π2N/N/2× 1.62 · 388.48 · (N/131)1.585/Y (Koblitz curves case).

We set Y = 365 · 24 · 60 · 60 (seconds) and n = 2N as the order of the point S.
In Table 5, we give TECDLP for each N .

Remark 3. In [5], Bernstein et al. measured the computing power to break the
Certicom ECC2K-130 challenge based on their extensive experiments. This chal-
lenge is to solve the ECDLP on a Koblitz curve E over F2131 with #E(F2m) = 4n
and n ≈ 2129. They showed that this challenge would be solved in two years on
average using 534 GPUs (1.242 GHz NVIDIA GTX 295, 60 core). On the other
hand, we extrapolate by our estimation formula that it needs 1014.086 FLOPS
≈ 1636 GPUs to solve the ECDLP of 129-bit in a year with 99% probability
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(1 GPU=1.242 · 109 · 60 FLOPS). The difference is mainly due to the solving
period (2 years vs 1 year), the success probability of the rho method (50% vs
99%) and the processing performance of iterations (1164 cycles [5] vs 631 cycles).

3 The Hardness of the IFP

To evaluate the hardness of the IFP, we estimate the complexity of the GNFS.

3.1 The GNFS and Its Complexity

The GNFS consists of four steps, namely, the polynomial selection step, the
sieving or the relation finding step, the linear algebra step, and the square root
step. Among these four steps, the sieving step is dominant procedure theoreti-
cally and experimentally. The conjectural complexity of the GNFS for factoring
a composite large integer n is given by

O

(
Ln

(
1

3
,

3

√
64

9
+ o(1)

))
as n→∞ (2)

where Ln(s, c) = exp(c(log n)s(log logn)1−s). According to [29,37], the above
complexity is obtained by the following way:

For two positive integers x and z with 2 ≤ z < x, let Φ(x, z) denote the
probability that an arbitrary integer in the range [1, x] is z-smooth. Note that
a positive integer is z-smooth if none of its prime factors is greater than z. It
is known that there is a function ρ : R>0 → R>0 called the Dickman-de Bruijn
function satisfying limx→∞ Φ(x, x1/u) = ρ(u) for u ≥ 1. A crude but very useful
estimation of ρ is ρ(u) = u−u(1+o(1)) as u → ∞. By using this result on ρ,
Canfield, Erdös and Pomerance [9] showed that we have

Φ(x, z) = u−u(1+o(1)) as x→∞ (3)

for z ≥ (log x)1+ε with ε > 0, where u = log x/ log z. We see from the above
estimation of Φ(x, z) that

Φ(Lx(a, c), Lx(b, d)) = Lx(a− b,−c(a− b)/d+ o(1)) as x→∞. (4)

Note that the o(1)-value in the expression (4) is approximately equal to −c(a−
b)/d times of the o(1)-value of Φ(x, z) in the expression (3). In the GNFS for
factoring a composite large integer n, we take a polynomial f(X) = cdX

d +
cd−1X

d−1+· · ·+c0 ∈ Q[X ] of degree d and an integerM such that f(M) ≡ 0 mod
n andM ≈ n1/(d+1). Note that d is determined by d = �λ−1(logn/ log logn)1/3

and the most suitable value of λ will be determined in the next paragraph
(λ = 3

√
1/3). Fix a root θ of f(X) = 0 and let K = Q(θ) denote the number field

generated by θ. For a relation (a, b), the size of the algebraic norm cdNK/Q(a+

bθ) = (−b)df(−a/b) = cda
d + cd−1a

d−1(−b) + · · · + c0(−b)d is approximately
equal to n1/(d+1) ·max(a, b)d.
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Table 6. The estimated computing power T required to solve the IFP of N-bit in a
year by CRYPTREC report 2006 [10] (FLOPS is the unit of T )

N 768 1024 1536 2048

log10 T 12.4026 15.6646 20.8987 25.2455

Take Ln(1/3, 2λ
2) as both the upper bound B of the factor base and the siev-

ing area of the relations (a, b). Then the size of cdNK/Q(a+ bθ) is approximately
equal to

Ln(1/3, 2λ
2)d · n1/(d+1)

= exp(2λ(log n)2/3(log logn)1/3) · exp(λ(log n)2/3(log logn)1/3)
= Ln(2/3, 3λ)

and the size of M is approximately equal to

n1/(d+1) = exp(λ(log n)2/3(log log n)1/3) = Ln(2/3, λ).

We have the probability that both the above numbers become B = Ln(1/3, 2λ
2)-

smooth is

Φ(Ln(2/3, 3λ), B) · Φ(Ln(2/3, λ), B) = Ln(1/3,−2/(3λ) + o(1))

by the expression (4). Note that the o(1)-value in the above expression is approx-
imately equal to −2/(3λ) times of the o(1)-value of Φ(x, z). Since the number of
relations should be more than that of the factor base, we have Ln(1/3,−2/(3λ)+
o(1)) · Ln(1/3, 2λ2)2 ≥ Ln(1/3, 2λ2). We then have λ3 ≥ 1/3, which shows that
3
√
1/3 is the most suitable value for λ. Set λ = 3

√
1/3. Since we need more smooth

relations than the number of the elements in the factor base, the complexity of
the GNFS is given by

Ln(1/3, 2λ
2)︸ ︷︷ ︸

�(the factor base)

· Ln(1/3,−2/(3λ) + o(1))−1︸ ︷︷ ︸
(probability of the smoothness)−1

= Ln

(
1

3
,

3

√
64

9
+ o(1)

)
,

which gives the conjectural complexity (2). Note that the o(1)-value of the above
expression is approximately equal to 2/(3λ) ≈ 0.9615 times of the o(1)-value of
Φ(x, z).

3.2 Estimation of the Complexity of the GNFS

Let TIFP denote the computing power required to solve the IFP of N -bit in a
year. By the complexity (2), we expect that we have

TIFP =  · L2N
(
1

3
,

3

√
64

9
+ o(1)

)
(5)
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Fig. 3. Experimental result on the o(1)-value of Φ(x, z) with z = 236, 240, 244

for some o(1) and . To evaluate the complexity of the GNFS for each N ,
we set o(1) and  as follows: CRYPTREC report 2006 [10, Figure 2.2] gives
the estimated computing power required to solve the IFP of N -bit with N =
768, 1024, 1536 and 2048 under the condition with unlimited memory size, which
we show in Table 6. The result [10] is based on the papers [23,24], and the data
of Table 6 are estimated by evaluating the computing power of the sieving step
by extensive experiments. To determine TIFP, we set o(1) and  satisfying the
condition that the complexity of TIFP is very close to each data of Table 6. A
computation shows that

o(1) = −0.1091 and  = 10−11.9368 (6)

satisfy the above condition. The constants (6) are determined by the following
method: We first consider the relation of o(1) and  satisfying that TIFP is equal
to the data of Table 6 in the case N = 1024. By the binary search algorithm, we
next determine o(1) (and hence  with the relation) so that TIFP is equal to the
data of Table 6 in the case N = 2048. Then TIFP with the constants (6) is very
close to the data of Table 6 in the cases N = 768 and 1536.

In Fig. 3, we give our experimental result on the o(1)-value of Φ(x, z) by
computing Φ(x, z) with 232 ≤ x ≤ 2256 and z = 236, 240, 244. From Fig. 3, we see
that the o(1)-value of Φ(x, z) is included in the range [−0.2, 0] if x ≥ 264. As we
explained in §3.1, the o(1)-value of TIFP is approximately equal to 0.9615 times
of the o(1)-value of Φ(x, z). Therefore we expect that the o(1)-value of TIFP is
included in the range [−0.1923, 0] for large N . Since o(1) = −0.1091 is included
in this range, we expect that the computing power TIFP with the o(1) and 
same as (6) is practically suitable for evaluating the complexity of the GNFS.
In Table 7, we give the estimation of the computing power TIFP.

4 Comparison of the ECDLP and the IFP

In our estimation, we make the following assumptions:
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Table 7. The computing power TIFP with the o(1) and � same as (6) (FLOPS is the
unit of TIFP)

N 755 768 894 1024 1308 1413 1536 2048 2671 3241

log10 TIFP 12.22 12.40 14.08 15.66 18.75 19.79 20.95 25.25 29.67 33.20
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CRYPTREC 2006

– ECDLP (the rho method) side : The processing performance of iter-
ations scales proportionally to (�N/64�)α or Nα, where N is the bit size
of the order of the ECDLP and α is a constant determined by the method
for the multiplication over fields. We note that N is different from the bit
size of fields in the cases of binary fields and the Koblitz curves. Table 5
and 8 are obtained when we use the normal method in the prime fields case
(i.e., (�N/64�)2), and the Karatsuba method in the cases of binary and the
Koblitz curves (i.e., N1.585). The memory requirement of the rho method
can be controlled by using the technique of distinguished points. Therefore
the memory requirement of the rho method is negligible.

– IFP (the GNFS) side : The complexity of the GNFS is given by the
computing power TIFP with the o(1) and  same as (6). Although we in
[50] assumed the limited memory size, we here assume that the memory
requirement for executing the GNFS is unlimited (note that limited memory
size would increase the complexity of the GNFS).

We then calculate the bit sizes of the ECDLP and the IFP that provide the same
level of security. In Table 8, we give an estimation of the strength comparison of
the ECDLP and the IFP. In particular, we have the following from Table 8:

– The security of 768-bit IFP is close to that of 113-bit ECDLP over prime field,
113-bit ECDLP over binary field, or 118-bit ECDLP on Koblitz curves. The
world records of 2011 for solving the IFP and the ECDLP are 768-bit IFP in
2010 [25,26] and 112-bit ECDLP over prime field in 2009 [15], respectively.
Since the times of these two records are close, we consider that these records
indicate reasonability of our estimation.
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Table 8. Estimation of the bit sizes of the ECDLP and the IFP providing the same
level security

Bit sizes of Bit sizes of the ECDLP
the IFP Prime fields Binary fields Koblitz curves

512 87 87 92
755 112 112 117
768 113 113 118
894 124 124 129
1024 133 134 139
1308 153 154 159
1413 160 160 166
1536 168 168 174
2048 195 196 202
2671 224 224 231
3241 247 247 254
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– The security of 1024-bit IFP is close to that of 133-bit ECDLP over prime
field, 134-bit ECDLP over binary field, or 139-bit ECDLP on Koblitz curves.
Though it is often said that 160-bit ECDLP corresponds to 1024-bit IFP,
our estimation indicates that shorter ECC key sizes provide the same level
of security.

5 Conclusions

In this paper, we estimated the complexity of the rho method for solving the
ECDLP based on state-of-the-art of theory and experiments, and estimated the
computing power required to solve the ECDLP in a year (see Table 5). We also
estimated the computing power required to solve the IFP based on CRYPTREC
Report 2006 result (see Table 7), and gave an estimation of the strength com-
parison of the ECDLP and the IFP (see Table 8). Although we estimated the
complexity of the GNFS under the assumption of unlimited memory size, the
bit sizes of the IFP in Table 8 would decrease under the assumption of limited
memory size of the GNFS. In particular, we estimated from Table 8 that the
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security of 1024-bit IFP is close to that of 140-bit ECDLP. If we say 160-bit ECC
has 80-bit security because the complexity of the rho method is square root, our
estimation indicates that 1024-bit RSA does not reach the 80-bit security.
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Appendix A: Experimental Results on the Randomness

A-1: Randomness of fTA

The randomness of fTA depends heavily on the partition number L. To analyze
the randomness of fTA with L accurately, we solved the ECDLP over both prime
and binary fields of 40 and 50-bits. In the following, we describe our experiments:

– We used the parallelized rho method with M = 10 processors and collision
detection using distinguished points.

– We used fTA with some 3 ≤ L ≤ 100. For each L, we solved the ECDLP
for 100 times with randomly chosen starting points. Note that we did not
use the speed-up with the negation map in our experiments (hence we have
Exp =

√
πn/2).

http://2012.sharcs.org/


322 M. Yasuda et al.

Table 9 and 10 show our experimental results on the randomness of fTA with
3 ≤ L ≤ 100. In Table 9 and 10, we give the following data (In particular, we
summarize our experimental results on the average of δ(fTA) in Fig. 4):

– μ: the average number of iterations before obtaining a collision.
– σ: the standard deviation of the number of iterations.
– μ/Exp: the average number of iterations divided by Exp, which is the same

as δ(f).
– σ/Exp: the standard deviation divided by Exp.

In the following, we show parameters of the ECDLP over prime and binary fields.

Prime fields case : Let E : y2 = x3 + ax + b be an elliptic curve defined over
a prime field Fq. Parameters of the ECDLP over prime fields of 40 and 50-bits
are as follows (each data is represented in hexadecimal): Note that S = (xS , yS)
and T = (xT , yT ) are two points of E, n is the order of S and k is the cofactor
defined by E(Fq)/n.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = 1000000000F,
a = 58B15FA9BD,
b = 2C053EE7E9,
xS = 2E6105B3EF,
yS = 855C930596,
xT = 6F0F05F8AE,
yT = A03DF7A253,
n = FFFFFAFEA9 (≈ 40-bit),
k = 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = 5AF3107A4727,
a = 513126EC56EB,
b = 271F6BAD88F1,
xS = 295ADCF2FC02,
yS = 47126D966B08,
xT = 2E5C9B0B2BC8,
yT = 41B1DD3BEBF0,
n = 5AF3114927D9 (≈ 50-bit),
k = 1.

Binary fields case : Let E : y2 + xy = x3 + ax2 + b be an elliptic curve defined
over a binary field Fq. Parameters of the ECDLP over prime fields of 40 and
50-bits are as follows (each data is represented in hexadecimal): In this case,
each data of q represents the reduction polynomial which defines the polynomial
basis of a binary field Fq.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = 10008000007,
a = 93E84A3D71,
b = 4C52A09C07,
xS = F89BE06701,
yS = 53357B5E9,
xT = 1834458EB8,
yT = 77EA789F07,
n = 7FFFF92FF1 (≈ 40-bit),
k = 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = 4000000000207,
a = 35D9C8DBE00B2,
b = 2A1F0D81C88F3,
xS = 1D6C6E2802BB9,
yS = 100733D4F059E,
xT = 1BF0F3287E51E,
yT = 22828E9AE5DA5,
n = 1FFFFFED2C77B (≈ 50-bit),
k = 2.
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Table 9. Experimental results on the randomness of fTA for solving the ECDLP over
prime fields of 40 and 50-bits (without the speed-up using the negation map)

40-bit case (Exp = 1314195)

partition Av. of the number St. deviation Av. of δ(fTA) St. deviation
number L of iterations (μ) of iterations (σ) (μ/Exp) (σ/Exp)

3 3780998.8 1686618.94 2.877046 1.283386
10 1480367.1 771647.108 1.126444 0.587163
15 1332788.1 718925.636 1.014148 0.547046
20 1376661.5 722977.738 1.047532 0.55013
30 1254674.4 696777.35 0.95471 0.530193
50 1321172.9 660277.4 1.00531 0.50242
100 1394145.9 590048.911 1.060836 0.448981

50-bit case (Exp = 12533142)

partition Av. of the number St. deviation Av. of δ(fTA) St. deviation
number L of iterations (μ) of iterations (σ) (μ/Exp) (σ/Exp)

3 36150929 16451208.7 2.884427 1.312616
10 14018496 6499862.24 1.118514 0.518614
15 12532011 5726785.38 0.99991 0.456931
20 13704980 7750317.31 1.093499 0.618386
30 13370033 5930133.94 1.066774 0.473156
50 13361654 6859717.02 1.066106 0.547326
100 13348175 7163665.54 1.06503 0.571578

A-2: Randomness of fGLV,s

The randomness of fGLV,s depends heavily on the parameter s. To analyze the
randomness of fGLV,s, we solved the ECDLP on Koblitz curves E(F2m) with
m = 41, 53, 83, 89 by using fGLV,s for s = 0,m/5,m/3,m/2. Similarly to the
case of fTA, our experiments are as follows (see [49] for details):

– We used the parallelized rho method with M = 10 processors and collision
detection using distinguished points.

– For each parameter, we solved the ECDLP for 100 times with randomly
chosen starting point. Since fGLV,s is defined on E/ ∼, we have Exp =
1
2

√
πn
m .

Table 11 shows our experimental results on the randomness of fGLV,s for s =
0,m/5,m/3,m/2. In particular, we summarize our experimental results on the
average of δ(fGLV,s) in Table 12. Parameters of the ECDLP on Koblitz curves
are showed in [49, Section 4.2].
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Table 10. Same as Table 9, but over binary fields

40-bit case (Exp = 929275)

partition Av. of the number St. deviation Av. of δ(fTA) St. deviation
number L of iterations (μ) of iterations (σ) (μ/Exp) (σ/Exp)

3 2360560.1 1201327.8 2.540214 1.292757
10 1113151.3 489458.635 1.197869 0.52671
15 1023983 522466.937 1.101915 0.56223
20 987927.74 457815.575 1.063116 0.492658
30 905661.7 508812.744 0.974589 0.547537
50 958556 553241.565 1.031509 0.595347
100 899006.13 488759.614 0.967426 0.525957

50-bit case (Exp = 29736841)

partition Av. of the number St. deviation Av. of δ(fTA) St. deviation
number L of iterations (μ) of iterations (σ) (μ/Exp) (σ/Exp)

3 52886657 43926581.2 1.778489 1.477177
10 33894170 17743071.6 1.139804 0.59667
15 32213318 16864852.9 1.08328 0.567137
20 30470124 16128602.2 1.024659 0.542378
30 28145732 15094088.7 0.946494 0.507589
50 32036952 16071089.1 1.077349 0.540444
100 26390118 12484665.3 0.887455 0.419838

Table 11. Experimental results on the randomness of fGLV,s for solving the ECDLP on
Koblitz curves E(F2m) with m = 41, 53, 83, 89 (with the speed-up using the Frobenius
and the negation maps) [49, Table 2]

Parameter Av. of the number Av. of δ(fGLV,s) St. deviation
s of iterations (μ) (μ/Exp) (σ/Exp)

m = 41 s = 0 109789 1.06 0.52
s = m/5 117708 1.14 0.64
s = m/3 133100 1.29 0.64
s = m/2 120467 1.17 0.62

m = 53 s = 0 616273 1.10 0.56
s = m/5 540220 0.96 0.50
s = m/3 628533 1.12 0.59
s = m/2 706519 1.26 0.65

m = 83 s = 0 9362605 1.03 0.49
s = m/5 8979741 0.99 0.56
s = m/3 11278465 1.25 0.59
s = m/2 10531561 1.16 0.63

m = 89 s = 0 64270064 1.01 0.48
s = m/5 74819712 1.20 0.62
s = m/3 67569759 1.08 0.58
s = m/2 80869338 1.29 0.60

Exp = 1
2

√
πn
m

= 102620 (m = 41), 558438 (m = 53), 905047 (m = 83), 62348200 (m = 89)
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ECDLP over prime field of 50-bit
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ECDLP over binary field of 40-bit
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ECDLP over binary field of 50-bit
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Fig. 4. Experimental results on the average of δ(fTA) for solving the ECDLP over
prime and binary fields of 40 and 50-bits (Exp =

√
πn/2, without the speed-up using

the negation map)

Table 12. Experimental results on the average of δ(fGLV,s) for s = 0,m/5, m/3,m/2
on Koblitz curves E(F2m) with m = 41, 53, 83, 89 (Exp = 1

2

√
πn/m) [49, Table 3]

s = 0 s = m/5 s = m/3 s = m/2

m = 41 1.06 1.14 1.29 1.17
m = 53 1.10 0.96 1.12 1.26
m = 83 1.03 0.99 1.25 1.16
m = 89 1.01 1.20 1.08 1.29

average 1.05 1.07 1.18 1.22
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Abstract. In this paper, we revisit Shamir’s well-known attack (and a
variant due to Lagarias) on the basic Merkle-Hellman Knapsack cryp-
tosystem (MH scheme). The main observation is that the superincreasing
property of the secret key sequence a used in the original MH construc-
tion is not necessary for the attack. More precisely, the attack is appli-
cable as long as there are sufficiently many secret key elements ai whose
size is much smaller than the size of the secret modulus M .

We then exploit this observation to give practical attacks on two re-
cently introduced MH-like cryptosystems. Both schemes are particularly
designed to avoid superincreasing sequences but still provide enough
structure to allow for complete recovery of (equivalent) decryption keys.
Similarly to Shamir’s attack, our algorithms run in two stages and we
need to solve different fixed-dimensional simultaneous Diophantine ap-
proximation problems (SDA). We implemented the attacks in Sage and
heuristically solved the SDA by lattice reduction. We recovered secret
keys for both schemes and various security levels in a matter of seconds.

Keywords: Knapsack Cryptosystem, Merkle-Hellman, Shamir’s attack,
Diophantine approximation.

1 Introduction

Shortly after Diffie and Hellman proposed the seminal concept of public-key cryp-
tography [1] in 1976, Merkle and Hellman proposed their knapsack cryptosys-
tem [2] in 1978 representing one of the first instantiations within the public-key
framework. As the name implies, their basic scheme is based on the combina-
torial knapsack / subset sum problem, i.e. given a vector of integer weights
a = (a1, . . . , an) and a target sum S, find a selection of the weights that exactly
sum up to S, i.e. find x ∈ {0, 1}n such that

n∑
i=1

xiai = S . (1)

The public key in the original MH-scheme is exactly such a n-dimensional vec-
tor a and a n-bit message x ∈ {0, 1}n is encrypted by simply computing the
corresponding sum S =

∑
xiai.

� Supported by RURS, Germany Excellence Initiative [DFG GSC 98/1].

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 326–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To achieve correct decryption, we only employ certain a’s so that at most
one solution to (1) for every fixed S exists. In the public key setting, we need
to efficiently generate such a public key a together with a secret key a that
allows for fast decryption (throughout this paper, usage of Fraktur type letters
(e.g. a,b, . . .) will emphasize secret key elements). Thus, the well-known NP-
hardness result [3] for the general subset sum problem forces us to embed a
special structure both in a and a. As usual, we intend to hide this special
structure in a trapdoor so that only the legitimate receiver is able to decrypt. In
the basic MH-scheme, the special structure is given by a so-called superincreasing
sequence of secret knapsack weights a, i.e.

ak >

k−1∑
i=1

ai for all k ∈ {2, . . . , n} . (2)

For those sequences, decryption can easily be done by a straightforward greedy
algorithm in linear time. To hide the superincreasing property, Merkle and Hell-
man applied a linear modular transformation to the secret weights, i.e. the public
key consists of ai = ai ·u mod M for a large modulusM (not necessarily prime),
i.e.

M >

n∑
i=1

ai , (3)

where u ∈ Z∗
M is a secret multiplier. The secret key is then given by the modulus

M and the inverse multiplier u = u−1 mod M . To decrypt a ciphertext S =∑
xiai, one simply computes S = S · u mod M =

∑
xiai mod M . The size

condition (3) guarantees that this equations holds over Z and thus the greedy
algorithm can be applied due to the superincreasing property of a to recover x.

Compared to many other prominent public key schemes, e.g. those based on
the factorization or discrete log problem, the original MH-scheme offers an at-
tractive efficiency due to its comparably cheap operations, e.g. no exponentiation
is needed. Over the last thirty years, many researchers proposed various knapsack
based schemes many of who have been broken and some remained secure, see
[13] or [12] for a survey. Recently, there has been progress in constructing prov-
ably secure schemes connected to the subset-sum problem like the lattice-based
schemes of Ajtai and Dwork [16], Regev [17] and Peikert [18] or the remarkably
direct and simple construction of Lyubashevsky et al. [21].

Despite these efforts in provable security, there are still many ad-hoc construc-
tions whose security remains questionable. Indeed, there are serious indications
for an inherent difficulty of embedding a trapdoor in a knapsack based scheme
that stem from several practical attacks on various schemes in the late 1970’s
culminating in Shamir’s polynomial time attack on the basic MH-scheme [10]
or Brickell’s attack on the multiply-iterated MH system [8]. While those attacks
heavily rely on the specific structure of the proposed knapsacks, there are also
so-called low-density attacks working for generic knapsacks whose weights are
rather large, see [4,11,14,15].
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Shamir’s original result [10] provides an algorithm running in time poly(n)
that recovers equivalent decryption keys for almost all public keys of the ba-
sic MH-scheme. Shortly afterwards, Lagarias gave a simplified description of
Shamir’s attack based on simultaneous Diophantine approximation [6] and pro-
vided a rigorous analysis in [9]. As our algorithm heavily relies on those ideas, we
start with a revision of [6] in the next section. For the moment, it is enough to
think of Lagarias’ version of Shamir’s attack as the following two step procedure:

i) Use the public information a to derive a D-dimensional Diophantine approx-
imation problem (SDA) with at least one “unnaturally good” approximation
and recover this particular approximation.

ii) Use the approximation of step i) to recover an equivalent decryption key
(ũ, M̃), i.e. the sequence ãi = ai · ũ mod M̃ is also superincreasing and the
size condition (3) also holds for M̃ and ã.

Observe that every equivalent key allows for correct decryption. The SDA in
step i) is fixed-dimensional and comes with an “unnaturally good” approximation
because of the way the a are constructed, i.e. this uses the fact that the sequence
a is superincreasing. As we will see in Section 2, the superincreasing property
itself is not necessarily needed for the attack to work; rather one only needs
an unnaturally large gap between some of the ai and M . We will exploit this
to present attacks on two different recently proposed cryptosystems based on
knapsacks, namely [20] and (a generalized version of) [19], both of which were
specifically designed to resist Shamir’s attack.

Our Contributions. As a first contribution, we will present an efficient
heuristic algorithm that breaks a recently proposed cryptosystem based on mul-
tiple knapsacks [20]. This scheme is based on three different knapsacks, i.e.
f = (f1, . . . , fn), g = (g1, . . . , gn) and h = (h1, . . . , hn) where

fi = fi · u mod M

gi = gi · v mod M (4)

hi = hi · u · v mod M

with two secret multipliers u, v ∈ Z∗
M and corresponding inverses u = u−1

mod M and v = v−1 mod M . The public key is given by the three vectors
f , g and h and the secret key consists of the two inverse multipliers u and v
together with the modulus M . Here, the first two knapsacks f and g are non-
superincreasing and meant to preclude an attacker from using the structure of
the third knapsack h which itself is indeed superincreasing1. To be more pre-
cise, the encryption of a message x ∈ {0, 1}n is computed as S := Sf · Sg + Sh

1 Clearly, Shamir’s attack is directly applicable to the third equation of (4) to recover
an equivalent secret key (ũv, M̃). However, the authors of [20] claim that breaking
the scheme requires to find a suitable factorization ũ, ṽ of ũv which is assumed to
be hard.
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where the subindex indicates the appropriate knapsack used to compute the re-
spective sum, i.e. Sf =

∑
fixi. To decrypt S, one first reverses the modular

transformations of (4) by multiplying with u · v, i.e. one computes

u · v · S = Sf · Sg + Sh =

n∑
i=1

fixi ·
n∑
i=1

gixi +

n∑
i=1

hixi mod M . (5)

To achieve correct decryption, one intuitively chooses f and g quite small com-
pared to h so that the perturbations caused by Sf · Sg do not prevent from
recovering x in a greedy fashion. Additionally, the modulus has to fulfill a size
condition similar to (3) and hence the f,g are also rather small compared to M .

This observation is the starting point for our attack: Since f and g are small
compared to M , we can easily derive two independent SDAs of fixed dimension
which are both equipped with “unnaturally good” approximations as in Shamir’s
attack on the basic MH-scheme. Once we find those approximations, we are able
to derive two high-quality approximations δu and δv of u

M and v
M respectively.

We can further use those approximations δu, δv to efficiently reveal the secret
key (u, v,M) by just solving another two-dimensional SDA.

As a second contribution, we present an efficient heuristic algorithm that
breaks a variant of the cryptosystem of [19]. This cryptosystem uses as the easy
knapsack a = (a0, . . . , an−1), with

ai =2i · ci, i = 0, . . . , n− 1 (6)

where ci is a random odd n− i + l-bit number. Here l(n) is a parameter of the
scheme, where the original version of [19] had l = 0. The public knapsack a is
again given by ai = u·ai modM for some random n+l+logn-bit modulusM and
u ∈ Z∗

M , so the size constraint from Eq.3 is satisfied. a is the public key, whereas
u = u−1 modM and M are the secret key. x ∈ {0, 1}n is again encrypted as
S =

∑
xiai. To decrypt a ciphertext S, one can compute S = u · S modM and

recover x by considering
∑
xiai = S mod 2j for j = 0, . . . , n− 1.

Although this scheme avoids superincreasing sequences and the ai are indeed
rather large, Shamir’s attack is still applicable: the easiest way to see this is
to consider ã = a · 2−α modM as the secret knapsack with secret multiplier
ũ = u · 2α modM , where α = n− β for small β > 0.

To conclude, we would like to stress that we heuristically solved all SDA via
lattice reduction and we confirmed our heuristic analysis by a large number of
experiments. For both schemes we almost always recovered equivalent secret keys
in a matter of seconds, see the full version [22] for details.

2 Attacking Knapsack Schemes via Diophantine
Approximation

In [6], Lagarias gave a neat representation of Shamir’s original attack in terms
of Diophantine approximations. Generally, the D-dimensional simultaneous Dio-
phantine approximation problem (SDA) considers the task of approximating a
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given real vector α ∈ RD by a rational vector ξ ∈ QD with common denomina-
tor Z ∈ Z, i.e. ξi =

zi
Z for all i (where zi ∈ Z). In our setting, we are faced with

a slightly different scenario: We need to approximate a D-dimensional rational
vector

αD :=

(
a2
a1
, . . . ,

aD+1

a1

)

with common denominator a1 with a rational vector ξD =
(
k2

k1
, . . . , kD+1

k1

)
with

smaller denominator k1.
The crucial cryptographic weakness of the public sequence a of the basic MH-

scheme can now be stated as an unusual Diophantine approximation property.
To see this, we write the key equations u ·ai ≡ ai mod M as ai = u · ai− ki ·M
and transform this into

u

M
− ki
ai

=
1

ai
· 1
γ

(7)

for unknown ki ∈ Z, where we call γ := |M|
|ai| the gap.

For the MH-cryptosystem γ represents the gap between the size of the secret

ai and M . Weakening this to
∣∣∣ uM − ki

ai

∣∣∣ ≤ 1
ai

· 1
γ , this inequality constraints

u
M ∈ [0, 1] to a near-integer multiple of 1

ai
(up to a small error of 1/γ). The

set of possible values for u
M thus is a union of ai disjoint intervals that cover

an O (1/γ)-fraction of [0, 1]. Heuristically, we expect that by considering this
inequality for the D − 1 values i = 2, . . . , i = D of i, u

M is restricted to a
O
(
1/γD−1

)
-fraction of [0, 1], so when considering another D’th value i = 1, the

corresponding interval and hence k1 will be unique if 1
γD−1 · a1 = o(1).

A crucial point to note here is that we only need to consider a constant
number D of ai’s for sufficiently large gaps. To tackle these equation via lattices,
we substract Eq.(7) for i = 1 and i ≥ 2, multiplying by ai and a1 and obtain

|kia1 − k1ai| ≤
|a1 − ai|
γ

(8)

which we recognize as exactly the SDA problem from above if we would divide
by k1a1. Note here that |a1 − ai| ≈ ai ≈ a1 ≈ M as far as orders of magnitude
are concerned.

We will now show that one can heuristically recover k1 by using lattice re-
duction as long as the lattice dimension D is appropriately chosen (depending
on the size of the ai ≈ M and γ), see Sect. 2.1. Once k1 has been learned, the
second step of Shamir’s attack recovers an equivalent decryption key (u∗,M∗).
Essentially, plugging k1 and a1 into Eq.(7) yields a good approximation to u

M

and a subsequent refined interval search reveals u∗
M∗ . Since both of our attacks

proceed differently here, we omit a deeper description and refer the interested
reader to [6,9,10].
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2.1 Solving Simultaneous Diophantine Approximation via Lattices

Our aim is to exploit Eq.(8) in order to recover k1. Therefore, we briefly recall
some basic facts about lattices. Generally, a D-dimensional full-rank lattice L ⊂
RD is a discrete (abelian) subgroup of RD with spanR(L) = RD. One usually
describes L by a basis B = (b1, . . . , bD)

T ∈ RD×D, i.e. L(B) consists of all
linear combination of the basis vectors bi with integer coefficients. An important
invariant of L is its determinant det(L) which is defined as the absoulte value of
the determinant of B. We denote the length of a shortest vector v ∈ L by λ1(L),
i.e. λ1(L) := min0�=v∈L‖v‖ where we use the Euclidean norm for convenience.
The following crucial upper bound on λ1(L) was given by Minkowski.

Lemma 1 (Minkowski’s First Theorem). For any D-dimensional full-rank
lattice L it holds

λ1(L) ≤
√
D det(L)

1
D . (9)

This upper bound is frequently used in lattice-based cryptanalysis where one
often assumes that a lattice vector v fulfilling the Minkowski bound is indeed
a shortest vector of the lattice. If so, we can efficiently compute v as long as
the dimension of L is fixed by computing a reduced basis B̃, i.e. B̃ is a basis of
shortest possible vectors. Note that in general B̃ does not contain the D shortest
vectors of the lattice L since L is not always spanned by these vectors.

We now show how to construct a lattice L in order to recover k1. Consider
the D-dimensional γ-scaled lattice spanned by the basis

B :=

⎛⎜⎜⎜⎝
γa1 0

. . .
...

γa1 0
−γa2 . . . −γaD 1

⎞⎟⎟⎟⎠ .

Observe that the lattice L(B) contains the vector v := (k2, . . . , kD, k1)·B whose
last coordinate reveals k1. Suppose a1 ≈ 2m and |ai| < 2m for any i, which will
be the bound given by the modulus and write γ = 2g for the gap size. It holds

‖v‖2 =
D∑
i=2

γ2|a1ki − aik1|2 + k21 < D22m

and thus ‖v‖ ≤
√
D2m. If we can fix a constant D > m+g

g , or equivalently
1

γD−1 · ai = o(1), this guarantees m < (m+ g)D−1
D , which eventually yields

‖v‖ <
√
D2m � 2(m+g)D−1

D ≈ (γ|a1|)
D−1
D = det(L)

1
D .

Unfortunately, L(B) contains another short vector w := (a2, . . . , aD, a1) ·B =
(0, . . . , 0, a1) linearly independent of v of roughly the same length ‖w‖ ≈ |M |.
This implies that a reduced basis B̃ not necessarily contains the wanted vector
v, but it has been verified experimentally, see e.g. [5], that v can be repre-
sented as an integer linear combination of the two shortest basis vectors, i.e.
v ∈ span(b̃1, b̃2). Since v itself is rather small the corresponding integer coeffi-
cients are also small and can easily be determined by enumeration.
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3 The Multiple Knapsack Cryptosystem

In order to show our first result, we first give a precise description of the multiple
knapsack scheme (MKS for shorthand) of Kobayashi et al. [20]. Since our algo-
rithm recovers the original secret key by simply exploiting the structure of the
public key elements, we do not present the encryption or decryption procedure.
Instead, we only discuss the key generation algorithm and some very specific size
conditions both on the secret sequences f, g, h and the modulusM as introduced
in Eq.(4). The first condition is intended to avoid Shamir’s attack and concerns
the two non-superincreasing sequences f and g. It essentially complements the
usual superincreasing property as defined in Eq.(2).

Condition 1. The secret sequences f = (f1, . . . , fn) and g = (g1, . . . , gn) are
non-superincreasing, i.e.

fk ≤
k−1∑
i=1

fi and gk ≤
k−1∑
i=1

gi (10)

for all k = 2, . . . , n.

The second condition is necessary to allow for correct decryption and gives a
complicated restriction on the size of the elements hk which depends on the
previously chosen elements fi, gi for i ≤ k and hi for i < k.

Condition 2. The sequence h has to fulfill

hk >− fkgk +

k−1∑
i=1

fi ·
k−1∑
i=1

gi +

k−1∑
i=1

hi (11)

− f1
(
2n − 2k

)(
fk −

k−1∑
i=1

fi

)
− g1

(
2n − 2k

)(
gk −

k−1∑
i=1

gi

)

for all k = 2, . . . , n.

For simplicity, we denote the formula on the right hand side of Eq.(11) by

Cond2(k). Note that substituting (10) into (11) implicitly gives hk >
∑k−1

k=1 hi,
i.e. the sequence h is still superincreasing in the usual sense. As already men-
tioned, one also needs to impose a size condition on the modulus M in order to
obtain an equation over Z when applying the inverse modular transformation as
given in Eq.(5). This size condition is explicitly given by

M >

n∑
i=1

fi ·
n∑
i=1

gi +

n∑
i=1

hi . (12)

Note that combining Condition 1 and 2 gives a simple way of successively gen-
erating the secret sequences. We now give a concrete key generation algorithm
realizing this task when picking initial elements f1, g1 and h1 of bit size Fn, Gn
and Hn respectively for positive integers F,G,H ∈ N, see Alg.1.
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Algorithm 1. KeyGen

Input: Positive integers n, F,G,H ∈ N

Choose f1
R←− [2Fn, 2Fn+1), g1

R←− [2Gn, 2Gn+1) and h1
R←− [2Hn, 2Hn+1).

For k = 2 to n do
fk

R←− [0,
∑k−1

i=1 fi]

gk
R←− [0,

∑k−1
i=1 gi]

hk
R←− [Cond2(k), 2 · Cond2(k)]

Return f, g, h (fulfilling Cond. 1 and Cond. 2)

We would like to stress that this key generation algorithm slightly deviates from
the informal description given by the authors in [20]. The main difference is
that we allow for a proper parametrization of the size of the secret sequences
in the main parameter n. Furthermore we provide concrete intervals where the
elements have to be chosen from successively. Alternatively to Alg.1, one could
also chose all elements of the sequences f and g of the same bit size Fn and Gn
respectively and resample unless all conditions are fulfilled. As we will see next,
the key observation for our attack is an exponentially large gap between the size
of M and the size of the first few elements of f, g. This gap also occurs for the
modified key generation algorithm and thus does not avoid our attack.

From the size condition Eq.(12) we expect that M is at least quadratic in the
fi. Let us make this statement more precise:

Proposition 1. Let D > 2 + max{FG ,
G
F } be a constant. For i ≤ D, we always

have log fi < Fn+O(1) and log gi < Gn+O(1). Furthermore, logM > Fn+Gn.

Proof. By construction, f1 < 2Fn+1. By the property of being non-increasing,
fi ≤

∑i−1
j=1 fj , which shows the first statement by induction on D. Since M >

f1 · g1, we get M > 2Fn+Gn, which proves the claim.

While this already gives us a large enough gap for the first phase, we need a
slightly stronger version for the second phase:

Proposition 2. For almost all keys output by Alg.1 and for some constant c it
holds that M > 2Fn+Gn+cn.

Proof. This is more complicated than Prop. 1 and uses M > h2. The proof is
somewhat technical and can be found in the appendix.

4 Our Attack on the MKS Cryptosystem

We are now ready to describe the two phases of our attack. In the first phase,
we merely use the public fi and gi for 1 ≤ i ≤ D. The gap between the size
of those integers and the modulus M as given by Prop. 1 allows to derive two
approximations δu and δv of u

M and v
M respectively. Once these approximations

are known, we will proceed with the second phase which eventually recovers the
secret key (M,u, v).
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4.1 The First Phase(MKS): Computing Approximations δu and δv

We only give a detailed description for δu, as δv can be treated completely
similar. As in Shamir’s attack in Sect. 2, one rewrites the key equation fi = fi ·u
mod M as ufi = fi + kiM for unknown ki ∈ Z, or equivalently∣∣∣∣ uM − ki

fi

∣∣∣∣ = fi
fiM

(13)

for 1 ≤ i ≤ D. Let us assume that M
fi

is bounded by a constant for i ≤ D, which
happens with good probability (in fact, since our analysis is very conservative,
we can even use D = 3 and we can tolerate a rather large bound here, so
this is not a problem in practice). We now use the results from Sect. 2 with
m = log fi = logM + O(1) and g = logM − log fi. We easily compute, using
Prop. 1 and D > 2 + max{FG ,

G
F }

m+ g

m
= 1 +

logM

logM − log fi
= 2 +

log fi
logM − log fi

< 2 +
Fn+O(1)

Gn+O(1)
< D .

This implies that the technique of Sect. 2 is applicable and gives us approxima-
tions δu and δv for u

M and v
M respectively.

Remarks. A standard technique to complicate Shamir’s attack on the original
MH scheme is to permute the public key elements. Then the first few elements
do not belong any longer to the smallest secret key elements. But since only a
constant number of D elements is needed in the first phase of the attack, see
Sect. 2, one can simply guess the D smallest elements in time O(nD). For our
attack the situation is even better: It is possible to show that we can always
use D = 3 and that any selection of public key elements fi can be used for our
attack. Thus permuting them does not provide any further security.

4.2 The Second Phase(MKS): Revealing the Secret Key (M,u, v)

In the previous phase, we obtained high-quality approximations δu :=
ku
1

f1
and

δv :=
kv
1

g1
of u

M and v
M respectively. From Eq.(13), we get for the quality of those

approximations: ∣∣∣ u
M

− δu
∣∣∣ < fi
fiM

,
∣∣∣ v
M

− δv
∣∣∣ < gi
giM

or after multiplying by M and using Prop. 1 and that M
fi

is bounded

|u−Mδu| < 2Fn−logM+O(1), |v −Mδv| < 2Gn−logM+O(1) .

Now let us consider the lattice

B :=

⎛⎝α βδu γδv0 β 0
0 0 γ

⎞⎠
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where α := 2−2 logM , β := 2−Fn and γ := 2−Gn. These choices yield a lattice
vector

v := (M,−u,−v) ·B = (αM, β(Mδu − u), γ(Mδv − v)) (14)

of length ‖v‖ < 2− logM+O(1) that obviously reveals the secret key (M,u, v). By
comparison, for the lattice determinant we get, using Prop. 2

det(L)
1
3 = (αβγ)

1
3 = 2

1
3 (−2 logM−Fn−Gn)+O(1) > 2− logM+ c

3n+O(1) .

Since det(L)
1
3 is larger than ‖v‖ by at least an exponetially large factor, heuristi-

cally we find the secret key by computing the reduced basis of B whose shortest
vector reveals the secret key (M,u, v) according to Eq.(14).

5 The 2-adic Knapsack Cryptosystem

As a second result, we will give a polynomial time attack on (a generalized
version) of the 2-adic knapsack cryptosystem (2KS) of Zhang, Wang and Hu
[19] that heuristically recovers an equivalent decryption key from the public key.
To fix some notation, let us recall the key generation from Section 1: The secret
knapsack is given by

ai = 2i · ci, i = 0, . . . , n− 1

and the public knapsack is given by

ai = u · ai modM .

The ai are the public key, whereas u = u−1 modM and M are the secret key.
Here, the ci are uniformly random odd n−i+l-bit integers, such that ai is a n+l-
bit number with μ2(ai) = i. M is chosen as a random n+ l+ logn-bit modulus
to ensure

∑
ai < M and u ∈ Z∗

M . By μ2 we denote the 2-adic weight, i.e. μ2(x)
is maximal such that 2μ2(x) divides x. In contrast to the original scheme [19] we
introduced an additional parameter l = o(n), whose role will be discussed in the
next subsection. Potentially, we may permute the ai in the public key, so we are
only given bi = aπ(i) for some unknown permutation π.

Our attack will recoverM and u, or at least an equivalent pair M̃ and ũ, such
that ãi = ai · ũ mod M̃ has the same structure as the ai and M̃ >

∑
ãi.

5.1 Attacks on l = 0 or l Too Large

Note that the original cryptosystem didn’t have the parameter l and explicitly
sets cn−1 = 1. This renders the scheme trivially insecure, which we will only
sketch: An adversary can simply guess cn−2, which can be either 1 or 3. Since
cn−2 · an−1 ≡ 2cn−1 · an−2 modM , we have cn−2 · an−1 − 2an−2 = κM , where
|κ| ≤ 3. With at least constant probability, κ �= 0 and this directly reveals M
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(and hence u via an−1 ·u = 2n−1 modM ifM is odd). Note that one can improve
the success probability of this attack by guessing more of the ci’s for large i and
also note that if the attack fails for a particular pair, this reveals information
about those ci (and also about any potential permutation of the ai).

We thus introduced l to avoid this kind of attack. In general, the above attack
still works if one can correctly guess three adjacent ci. Since we only get a mul-
tiple of M we need the additional third ci to compute a gcd. In our experiments
for the attack below, see [22], we conservatively set l ≥ 40.

Observe that increasing l will reduce the density of the knapsack, which is
given by n

n+l+logn here, and this can make the scheme vulnerable to low-density

attacks [4,11,14,15]. In order to avoid low-density attacks, we will conservatively
assume that l = o(n) for our further analysis, although our attack can be easily
seen to extend to l = O (n).

5.2 Our Attack on the 2-adic Knapsack Cryptosystem

Again, our attack consists of 2 phases. In the first phase we solve a SDA problem
and use the approximation we obtained to recover an equivalent key in the second
phase.

One way to express the underlying idea is to write (for M odd) the public
key as ai = ci · 2i−α · 2αu modM and consider 2αu as the secret multiplier. If
we choose α slightly smaller than n, we can use Shamir’s attack to obtain an

approximation of 2−α·u mod M
M and proceed from that.

5.3 The First Phase(2KS): Computing Approximations δu and Δu

For the first phase, let us write the key equations as

ai = ai · u− iM (15)

i =
⌊
ai ·
u

M

⌋
(16)

For simplicity, we will assume that M is odd. If not, u and u will be odd and
all ai but a1 (which we may ignore) will be even and we can extend our attack
to any bounded μ2(M) by just iteratively dividing Eq.(15) by 2. Now, choose
α = n− β for some small constant β and consider Eq.(15) modulo 2α for any D
values of i with i ≥ α to obtain

i = ai · uM−1 mod 2α (17)

We define the rational δu := u
M ∈ [0, 1] and the integer Δ

(i)
u := u ·M−1 mod 2i,

shorthand writing Δu for Δ
(n)
u . Here, δu is the exact value and not an approxi-

mation. Combining Equations (16) and (17) gives us

ai · δu − 1 < ai ·Δ(α)
u − ki · 2α ≤ ai · δu (18)
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with unknown integers ki, whenever i ≥ α. Reorganize those equations gives

− 1

ai
< (Δ(α)

u − δu)−
2α

ai
· ki ≤ 0 . (19)

After dividing by 2α, in the notation of Sect. 2, we have a gap γ = 2α and the
ai are of size 2

n+l+logn. So g = α = n−β and m = n+ l+ logn. Since l = o(n),
we may set β = D = 3 to satisfy D > m+g

m (due to the heuristics involved, one
should choose D as a slightly larger constant) and using the results from Sect. 2,
this allows us to recover those ki in polynomial time with high probability and

hence an approximation for Δ
(α)
u −δu up to an error of at most 1

ai
for the largest

ai considered. Note that if a permutation π is present, we need to guess the
position of the D largest ai, for which there are O

(
nD
)
possibilities. In Rmk. 3

we will sketch how to improve that by choosing D < β.

Since Δ
(α)
u is an integer and 0 ≤ δu < 1, our approximation determines Δ

(α)
u

completely after guessing at most one bit and we get an approximation δu for
δu with

∣∣δu − δu∣∣ ≤ 1
ai
. Denote the rational bounds obtained for δu by ω and Ω

(i.e. ω ≤ δu < Ω) and the approximation quality Ω − ω as ϑ
M . While our attack

can tolerate a very large ϑ, to simplify the further analysis, let us assume that
ϑ is bounded by some small constant, which happens with good probability.

5.4 The Second Phase: Computing an Equivalent Secret Key

In the second phase of our attack, we will compute an equivalent secret key from

Δ
(α)
u and δu. The second phase can be further subdivided into 2 steps. In the

first step, we will recover all i and the permutation π (if present) and obtain
updated rational bounds ω ≤ δu < Ω. In the second step, we just read off an
equivalent key from the values we previously obtained.

First Step: Recover the Permutation π and the 	i. For the first step,
let us begin by just guessing the missing β highest bits of Δu. Our aim is to
recover the permutation π of the ai (if present) and all i: Recall we are only
given bi = aπ(i) for some yet unknown permutation. Plugging in δu ∈ [ω,Ω[ into
Eq.(16) directly gives us each π−1(j) up to an error of at most �ϑ�. Now, the
special structure of our hidden easy knapsack can be expressed as

ai = ai · u− iM ≡ 2i mod 2i+1 (20)

which, since M is odd, we can rewrite as

μ2(ai ·Δu − i) = i (21)

For any given bj with j = π(i), we can then simply compute a list L(j) of all
possible values of μ2(bj ·Δu − π−1(j)).

Due to the way the 2-adic weight of consecutive numbers behave, whenever
i > log �ϑ�, we can only get the correct value i ∈ L(j) and additionally some
values from 0, . . . , �log �ϑ�
 as possible values in L(j). For i ≤ log �ϑ�, we may get
one arbitrarily large wrong value V (i) and some values among 0, . . . , �log �ϑ�
.
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As a consequence, any i > log �ϑ� that is not among the V (i)’s can only
appear in exactly one L(j), so we must have π(i) = j for these pairs. This also
gives us i for these pairs, as the 2-adic weight can only be correct for one of the
possible values of i. So we get i and π(i) for all but at most 2 log �ϑ� values of
i. For the remaining values of π and the i’s, the total number of possibilities left
is bounded by a constant, so we can simply guess them. Note here that every
time we recover any i for which there were previously several possibilities, we
also get improved updated bounds ω ≤ δu < Ω via Eq.(16). In our experiments,
we only ever had to guess at most one bit here.

Second Step: Compute an Equivalent Decryption Key. After having
recovered Δu, all i and π, we can proceed to the final step to procure an
equivalent decryption key. To start, note that equivalent keys must additionally
satisfy

M >
∑

ai . (22)

This is enforced by the key generation by settingM of appropriate bit size. Since
we know the i, this can be expressed as M >

∑
ai · u − iM , or equivalently

δu <
1+

∑

i∑

ai
, which we incorporate into our bound ω ≤ δu < Ω by possibly

updating Ω.
Note at this point that ω and Ω are both rational numbers in [0, 1]. Since

they came either from Eq.(16) for fixed i or Eq.(22), each denominators is
either one of the ai or

∑
ai. In particular, both numerators and denominators

can be bounded by 2n+l+2 logn. Also note that since the lower bound may be
satisfied with equality, whereas the upper may not, we have ω < Ω with strict
inequality, which implies 0 < Ω+ω

2 < 1 and Ω−ω
2 > 0. Due to the size constraints

on the numerators and denominators, each of Ω+ω
2 , 1−Ω+ω

2 and Ω−ω
2 is bounded

by 2−2n−2l−4 log n−1.
Now we claim that any odd M̃ and 0 < ũ < M̃ satisfying both ω ≤ ũ

M̃
< Ω

and ũ ·M̃−1 mod 2n = Δu will be an equivalent decryption key. To see this, note
that ũ

M̃
< Ω implies Eq.(22) with u,M replaced by ũ, M̃ . By construction of

our bounds, ω ≤ ũ

M̃
< Ω fixes the i defined by Eq.(16) (with ũ, M̃ rather that

u,M) to exactly the values i we obtained in the first step. This in turn implies

that for ũ · M̃−1 = Δu, Eq.(21) and equivalently Eq.(20) (with ũ, M̃ rather that

u,M) are satisfied, which says that ãi = ai · ũ mod M̃ has exactly the structure

we want. To find such ũ, M̃ , we just express the conditions as

ωM̃ < ũ < ΩM̃ (23)

ũ = M̃ ·Δu − κ · 2n (24)

for some integer κ. By using the second equation, we can restate the first one as

ω < Δu − 2n
κ

M̃
< Ω (25)
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Except for M̃ having to be odd, setting κ

M̃
= 1

2n (Δu− ω+Ω
2 ) would work. In order

to obtain an odd M̃ , let us write 1
2n (Δu − ω+Ω

2 ) as a rational r
s . By multiplying

both r and s by appropriate powers of 2, we can ensure that s is even and
2 log s−log r > 6n+2l+4 logn. Now, we just set κ := r and M̃ := s+1 and define
ũ by Eq.(24). If we set ε := Δu− ω+Ω

2 − 2n κ

M̃
, then our large (and conservative)

choice of r, s implies
∣∣∣ rs − κ

M̃

∣∣∣ < 2−6n−2l−4 log n, so 0 < ε < 2−5n−2l−4 log n. The

size constraints on the numerators and denominators of ω and Ω then imply
ε < Ω−ω

2 , which implies that Eq.(25) is satisfied. A simple computation gives
ũ

M̃
= ω+Ω

2 +ε, from which we infer 0 < ũ < M̃ , so indeed the ũ, M̃ we constructed

form an equivalent key. Let us summarize our findings:

Theorem 1. Let ϑmax be any constant. Under the heuristic that our lattice-
based approach to Eq.(19) uniquely recovers the ki considered (or at least gives
only polynomially many candidates) and under the heuristic that the quality
of the approximation thereby obtained satisfies Ω − ω < ϑmax

N , we obtain a

polynomial-time algorithm that computes an equivalent decryption key (ũ, M̃)

from the public key of the 2KS-scheme. The key (ũ, M̃) allows for correct de-
cryption with 2KS’s decryption algorithm.

Proof. This is an immediate consequence of our previous exposition. It is clear
that the algorithm implicit above runs in polynomial time. Note that the guess-
ing needed in the algorithm above gives only a polynomial factor O(nD) (from
guessing the position of the D largest i’s if a permutation is present) and we can
always verify whether we output an equivalent key.

Remark 3. We would like to note that phase 1 can be replaced by Lenstra’s pt.
integer programming algorithm [7] for fixed dimension (which is much slower in
pratice), as originally considered by [10], so we can weaken the first heuristic
to require that the ki are uniquely determined by the equations considered (or
at least that there are only polynomially many possibilities). For the second
heuristic, recall again that Ω−ω is at most 1

an−1
(and usually much smaller), so

for M prime this provably holds with high probability ≥ 1
2 even for ϑmax = 2.

In our experiments, we did set β = D = 10 to a rather large value to simplify
the first phase (this helps for the heuristic arguments), but did not guess the
positions of the 10 largest i’s, which would give another polynomial factor of
nD. We would like to remark that one can actually do much better and get rid
of this large polynomial factor (under yet another heuristic):

Rather than choosing α = n− β and D = β in phase 1 of the algorithm, one
can also choose α = n

2 and so g = n
2 . We can still choose D > m+g

g = O(1),
where in practice we will need to choose a bigger D. Guessing D of the bj ’s with
π−1(j) > α requires only O(2D) = O(1) effort. We can then proceed with the
first step of the second phase, but without guessing the β highest bits of Δu.

With only Δ
(n
2 )

u known, this still gives us i and π(i) for all but 2 logϑ of the
i’s with i < n

2 . We make the additional heuristic assumption that if we make a
wrong choice for the bj’s then the first step of the second phase will give us a
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contradiction, so we only proceed if we made a correct guess. We can then go
back and iteratively repeat the first phase, but with α = 3n

4 , α = 7n
8 , . . . (and

always the same D). Using the already known values for π from the previous
iteration, guessing a correct set of bj ’s only requires at most constant O(2D)
tries on average for each iteration. By this trick, we can actually reduce the
factor to the runtime that comes from having to guess a good set of bi’s from
O(nD) down to O(log n), if we make the heuristic assumption that whenever we
guess wrongly in phase 1, step 1 of phase 2 will give us a contradiction with
overwhelming probability.
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A Proof of Proposition 2

We need to show Prop. 2, which states that for almost all keys output by Alg.1
it holds that M > 2Fn+Gn+cn for some constant c.

In order to show this, let us assume w.l.o.G. that F ≤ G. We first need a
simple lemma:

Lemma 2. Let 0 < c̃ < 1 be an arbitrary constant. For a randomly chosen
sequence g according to Alg.1 it holds

Pr
[
g1 − g2 ≥ 2(1−c̃)Gn

]
= 1− negl(n) (26)

where the probability is taken over the random choice of g1 and the random
choice of g2 conditioned on g1 ≥ g2.

Proof. An easy computation shows

Pr
[
g1 − g2 ≥ 2(1−c̃)Gn

]
= 1−Pr

[
g1 − g2 < 2(1−c̃)Gn

]
≥ 1−Pr

[
g2
g1
> 1− 2−c̃Gn

]
= 1− negl(n) .

Note that the expected value of the difference g1 − g2 can be easily computed

as E [g1 − g2] = E[g1]
2 = 3

42
Gn. Thus, the above lemma states that the key

http://eprint.iacr.org
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generation algorithm almost always outputs a sequence g such that the difference
g1 − g2 is concentrated around its expectation.

We now examine Condition 2 of the MKS system more carefully for k = 2
and use Lem. 2 to argue that the size of h2 can be lower bounded by ≈ 2(2G+c)n

for some positive constant c > 0. Then M > h2 is already provides a sufficiently
good lower bound for M , although one could easily obtain better bounds by
estimating the size of hn where one can take the superincreasing property of h
into account. Formally, since F ≤ G, proposition 2 follows from

Lemma 3. For almost all secret keys output by Alg.1 it holds

log(M)

n
≥ 2G+ c (27)

for some positive constant c > 0.

Proof. Consider Cond. 2 for k = 2 and first observe that −f2g2 + f1g1 ≥ 0 and
−f1(2

n − 4)(f2 − f1) ≥ 0 due to Cond. 1. Using g2 − g1 ≤ 0 we can now lower
bound h2 as

h2 > g1(2
n − 4)(g1 − g2)

and applying Lem.2 with c̃ := 1
G+1 gives

h2 > 2(2G+1− G
G+1 )n

which proves the claim for c := 1− G
G+1 > 0.
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1 Introduction

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir
[3, 4] in order to break the Data Encryption Standard block cipher. This sta-
tistical cryptanalysis exploits the existence of a differential, i.e., a pair (α, β)
of differences such that for a given input difference α, the output difference
after encryption equals β with a high probability. This attack has been success-
fully applied to many ciphers and has been extended to various attacks, such as
truncated differential cryptanalysis or impossible differential cryptanalysis, for
instance.

In the original version of differential cryptanalysis [3], a unique differential is
exploited. Then, Biham and Shamir improved their attack by considering sev-
eral differentials having the same output difference [4]. Truncated differential
cryptanalysis introduced by Knudsen [19] uses differentials with many output
differences that are structured as a linear space. A theoretical framework have
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recently been proposed to analyze attacks using multiple differentials by sum-
ming the corresponding counters [9].

The motivation of this work is to investigate other different techniques for
combining information from multiple differentials. As shown in the case of linear
cryptanalysis, different approaches may be used depending on the context. In
2004, Biryukov et al. proposed a multiple linear cryptanalysis under the assump-
tion that linear approximations are statistically independent1 [5]. Later Hermelin
et al. introduced the multidimensional linear cryptanalysis [14, 15]. Contrary to
previous attacks, the multidimensional technique focuses on the distribution of
the vector of parity bits obtained when applying approximations to a single
plaintext/ciphertext pair instead of considering the vector of empirical biases.
In that case, the independence assumption is removed but some heuristic might
be used when theoretically analyzing the attack. For both approaches, classical
statistical tools are used to distinguish the statistic corresponding to the correct
key guess from wrong ones. Again, the choice of the tool may depend on the con-
text. For instance, in [10], because of the hardness of profiling the distribution
corresponding to the correct key, the attack on PRESENT shows better results
using χ2 than using LLR statistic.

Our Contributions. Our contributions are threefold. First, we introduce a gen-
eral way of formalizing differential attacks by defining the notion of partition
functions (this corresponds to the way counters corresponding to output differ-
ences are gathered). Second, we consider the χ2 and the LLR statistical tests
used in multidimensional linear cryptanalysis as tools for combining information
from the groups of differentials determined by the partition function. We derive
estimates for the data complexities of the corresponding differential attacks. Fi-
nally, we present a set of experiments that aim at (i) evaluating the accuracy
of the estimates derived, (ii) comparing χ2 and LLR combining tools and (iii)
comparing different partition functions.

The paper is organized as follows. In Section 2 we define the notations and re-
call some results from order statistics that will be used to derive data complexity
estimates. Further, in Section 3 we present a general model for multiple differen-
tial cryptanalysis, introduce the notion of partition function and link this notion
with already published differential attacks. Then, in Section 4, we present two
tools for combining information based on the LLR and the χ2 statistical tests.
We derive estimates for the corresponding data complexities and also discuss the
way of choosing partition functions. Finally, Section 5 contains the experiments
that have been performed to compare the different methods.

2 Theoretical Background

2.1 Differential Cryptanalysis against SPN Ciphers

In this paper we consider SPN ciphers that form a subclass of iterated block
ciphers. Let m be the block size of the considered cipher E and K the key used

1 While not abusive for the DES cipher, this assumption is misleading for new ciphers.
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for enciphering samples: E : Fm2 −→ Fm2 , x �→ EK(x). Then, since E is an
iterated block cipher, it can be expressed as EK(x) = FKr ◦ · · · ◦ FK1(x), where
F is the round function parameterized by round sub-keys K1, . . . ,Kr.

The attack we are interested in is a member of the so-called last-round attacks,
which themselves constitute the major part of statistical cryptanalyses. These
last-round2 attacks use a particular behavior of FKr−1 ◦ · · · ◦ FK1 (that is often
referred as statistical characteristic) to partially recover the value of Kr. In the

following we will use the compact notation F r′
K

def
= FKr′ ◦ · · · ◦ FK1 . The idea is

to partially decipher ciphertexts using different values for a part of Kr that we
name candidates and denote by k. In the case of an incorrect guess we obtain
outputs corresponding to F−1

k ◦F r
K while for the correct key guess k0 the outputs

correspond to F r−1
K and thus the statistical characteristic should be observed if

enough samples are available. Such attack relies on the assumption that F r−1
K

can be distinguished from the set of functions F−1
k ◦F r

K . In practical situations,
the latter functions behave as randomly chosen permutations as stated by the
following Wrong Key Randomization Hypothesis.

Hypothesis 1. (Wrong Key Randomization) Functions F−1
k ◦ F r

K for wrong
key candidates k are indistinguishable from randomly chosen permutations.

Assuming that this hypothesis does not hold would mean that r + 1 rounds of
the cipher are distinguishable and hence the attacker should be able to attack
more rounds. As a consequence, this hypothesis is quite reasonable as soon as
the attacker targets the largest number of rounds he is able to attack (which is
typically the case). The resulting attack consists of the following three steps.

1 Distillation. For each key candidate ciphertexts are partially deciphered.
The number of occurrences of the characteristic is stored for each candidate.

2 Analysis. Key candidates are ranked according to the counters computed
in the Distillation step.

3 Search. Finally, all master keys corresponding to the most likely key candi-
date are exhaustively tested. If the correct master key is not found then the
search step is performed again using the second most likely candidate and
so on . . .

Differential Cryptanalysis. Here we consider the basic differential cryptanalysis
which is a last-round attack where the statistical characteristic is an (r − 1)-
round differential. It is a pair of input/output differences (δ0, δr−1) and the
corresponding probability p(δ0 → δr−1),

p(δ0 → δr−1)
def
= PrX,K

[
F−1
Kr

(EK(X))⊕ F−1
Kr

(EK(X⊕ δ0)) = δr−1

]
.

Usually, it is assumed that for an incorrect key candidate the probability of
observing the differential is 1

2m−1 . Nevertheless, it has been recalled in [12] that

considering that F−1
k ◦ F r

K acts as a random permutation, the distribution of
this probability is known to be a Poisson distribution with parameter 1

2m−1 .

2 Notice that the attacker may be able to consider less rounds than r − 1 but for the
sake of simplicity we detail the attack assuming one round only is considered.
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Using More Than One Characteristic. Using many characteristics allows the
attacker to extract more information from available samples what is of interest
as soon as the induced overhead (in both distillation and analysis steps) is neg-
ligible compared to the gain in the final search step induced by the additional
information obtained (due to the better ranking of the correct key). Premise
of this approach have already been proposed in some papers by independently
considering different differentials [4] (different analysis phases for different char-
acterics) or by summing the information coming from the different characterics
to perform all in one step. In the context of linear cryptanalysis, the method
known as multiple linear cryptanalysis [18, 5, 13] considers each characteristic
independently and proposes to analyze the vectors of information for each key
candidate. While the question of characteristics combination have been deeply
studied for linear cryptanalysis [18, 5, 13–15], the lack of a comprehensive study
on this topic in the context of differential cryptanalysis motivates the present
work. In the following, and after presenting the required background, we propose
a general framework and instantiate it with statistical tools already shown to
be useful for linear cryptanalysis. Later on, we present experiments we ran to
determine what seems to be the best combining technique in practice.

2.2 Order Statistics for Gaussian Variables

We propose here to recall a result on order statistics for normally distributed
random variables that have been used by Selçuk to derive estimates of the data
complexity for single linear3 cryptanalysis [22]. Let us model the attack as fol-
lows. We will see later that, due to the tools used, scores obtained will fit into
this model.

Model 1. Let S(k) be the score/statistic obtained for a key candidate k. Then,

S(k) ∼
{
N (μR, σ

2
R), if k = k0,

N (μW , σ
2
W ), otherwise.

Assuming that this model holds then the distributions of ordered wrong-key
scores are also normally distributed. This allows expressing the number of re-
quired samples for the attack as a function of the minimum rank wished for the
correct key and the probability of this rank to be reached. Works have shown
that the data complexity of an attack is not influenced by n but by its advantage
a [22, 8] that we define now.

Definition 1. Let 2n be the number of possible key candidates and  the maxi-
mum number of candidates that will be considered in the final search step. Then,
the advantage of such attack over exhaustive search is defined as:

a
def
= n− log2().

3 While single differential cryptanalysis has also been studied in the mentioned paper,
results are far from being satisfying as admitted by the author. In that case Poisson
distribution is more accurate [12, 7].
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The success probability of an attack Ps is the probability that the correct key
candidate is ranked among the  first candidates at the output of analysis step.

The following result expresses the success probability of an attack in the Model 1
as a function of the parameters μR, σR, μW and σW . This result is the cornerstone
of further data complexity estimate derivations.

Lemma 1. Let a be the advantage of an attack and Ns be the number of available
samples, then, the success probability of the attack PS can be approximated by:

PS ≈ Φ0,1

(
μR − μa√
σ2a + σ

2
R

)
,

where μa = μW + σWΦ
−1
0,1 (1− 2−a), and, σ2a ≈

σ2
W 2−(n+a)

ϕ2
0,1(Φ

−1
0,1(1−2−a))

.

Proof. The proof follows the one of Theorem 1 in [22]. �

Remark. For the different applications considered in this paper, σa turns out to
be negligible compared to σr and hence we will consider that σ2a + σ2R = σ2R.

Indeed, it can be proved4 that 2−(n+a)

ϕ2
0,1(Φ

−1
0,1(1−2−a))

≈ 2−n√
2π

. In typical cases, n will

be large enough for σ2a to be small compared to σ2W . Since in the worst observed
case, σ2R ≈ σ2W , then σ2a will also be negligible compared to σ2R. Hence, we will
use the following approximation for Ps:

PS = Φ0,1

(
μR − μW − σWΦ−1

0,1 (1− 2−a)

σR

)
. (1)

We will discuss this last point later in the respective sections and provide ob-
served values.

3 General Model for Multiple Differential Cryptanalysis

In simple differential cryptanalysis, one sample is composed of a pair of plaintexts
(x, x⊕ δ0) and the corresponding ciphertexts (y = EK(x), y′ = Ek(x⊕ δ0)).
Eventually, multiple input differences may be used to perform an attack and
then structures should be use to generate more samples from less plaintexts.
In the following, we will study the complexities of different attacks in terms of
the number Ns of required samples to avoid ambiguities. In the case where a
single input difference is used then the corresponding data complexity N will be
N = 2Ns. If more than one input difference is used, then plaintexts should be
grouped into structures and then the coefficient 2 in the data complexity may
change.

4 This result can be derived from the Taylor series of the error function.
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3.1 Partition in Differential Cryptanalysis

In this section, we propose a general model for multiple differential cryptanalysis.
The aim of such a model is to provide a common language to express various
notions of differential cryptanalysis (multiple, improbable, impossible, . . . ) in
such a way that the same analysis tools can be used to evaluate performance
of the attacks. This model will also help in the investigation for new techniques
that handle multiple characteristics.

From a very abstract point of view, a differential cryptanalysis is composed
of two functions.

– First a sampling function processes, for each key candidate k, the Ns avail-
able samples (si)1≤i≤Ns and extracts the corresponding difference distri-
butions qk by normalizing the counters. This function corresponds to the
distillation step.

η : FNs

22m ×K → [0, 1]2
m

,
(
{s1, . . . , sNs}, k

)
�→ qk = (qkδ )δ∈F2m

where

qkδ =
1

Ns
#
{
si = (yi, y

′
i), F

−1
k (yi)⊕ F−1

k (y′i) = δ
}
.

– Second, a scoring function extract a score for the candidate k from the
empirical distribution qk of observed differences. This function corresponds
to the first part of the analysis step (then candidates are ordered from the
most likely to the least one).

ψ : [0, 1]2
m → R, qk �→ ψ(qk).

Since in actual ciphersm ≥ 64, the storage of distributions qk is not possible. The
solution is to consider smaller distributions. From a general point of view, this
can be done by projecting the observed differences on a set of smaller cardinality
by partitioning the space of output differences. We will show later how known
attacks translate into this model. We denote by π such partition function from
F2m to a set V (we assume that V = Im(π)). We can generalize the sampling
and scoring functions by considering the partition function π.

Model 2. In differential cryptanalysis, the score of a key candidate is obtained
composing the following two functions defined for a given mapping π from F2m

to a set V .

ηπ : FNs

22m ×K → [0, 1]|V |,
(
{s1, . . . , sNs}, k

)
�→ qk = (qkv )v∈V

where

qkv
def
=

1

Ns
#
{
si = (yi, y

′
i), π

(
F−1
k (yi)⊕ F−1

k (y′i)
)
= v
}
,

and
ψπ : [0, 1]|V | → R, qk �→ ψπ(qk).
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Scoring Functions and Difference Distributions. Later in Section 4,we will in-
stantiate different scoring functions ψπ. Some of them are based on the knowl-
edge of the theoretical behavior of difference distributions qk. This behavior
obviously depends on whether k corresponds to the correct key or not. If yes,
the distribution qk will be determined by differential probabilities, while if not,
Hypothesis 1 implies that qk follows a distribution corresponding to what would
be obtained when considering the output of a random permutation. Hence, we
place ourselves in the following model.

Model 3. Let k be a subkey candidate and qk the corresponding difference dis-
tribution obtained by a sampling function ηπ. Then,

Pr
[
qkv = x

]
=

{
Pr [pv = x] , if k = k0,
Pr [θv = x] , otherwise,

where distributions p and θ are defined as

pv =
∑

d∈π−1(v)

p(δ0 → d) and θv =
1

#π−1(v)
.

Remark. An attack based on partitioning input and output spaces was proposed
by Harpes and Cramer in [17]. We would like to stress that such attack uses a
partition of the plaintext (ciphertext, resp.) space while we consider in this paper
partitions of input (output, resp.) difference space.

3.2 Partitions and Actual Attacks

Simple/Impossible/Improbable Differential Attacks. In these attacks, one consid-
ers a single differential (δ0, δr−1) having an unexected behavior (eg. a too large
or too small probability of occurring). Such cryptanalyses can be represented in
our model using the following function identifying differences to the set indexed
by V = {0, 1}.

π(d) =

{
1, if d = δr−1,
0, otherwise.

The corresponding scoring function is determined by the number of times the
characteristic occurred hence only takes into consideration the value q1 of the
projected distribution.

Truncated Differential Attacks. Truncated differential cryptanalysis [19] is sim-
ilar to differential cryptanalysis in the sense that usually only one truncated
differential characteristic (Δ0, Δr−1) is used. Such attacks can be represented in
our model in the same way that the previous ones i.e. using the projected space
V = {0, 1} and a similar partition function

π(d) =

{
1, if d ∈ Δr−1,
0, otherwise.

Again, the corresponding scoring function only takes into consideration the value
q1 of the projected distribution.
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Multiple Differential Attacks. To improve the performances of differential at-
tacks, information coming from different differentials may be combined. We
consider here attacks such that differentials used have the same input differ-
ence. We discuss at the end of Section 5 how our model can be extended
to the use of multiple input differences. Assuming that the collection of dif-

ferential
(
δ0, δ

(i)
r−1

)
i=1,...,A

is used, we model the attack with projected space

V = {0, 1, . . . , A} and partition function:

π(d) =

{
i, if d = δ

(i)
r−1,

0, otherwise.

4 Instantiations and Complexity Estimates

In this section, we provide instantiations of scoring functions and the corre-
sponding estimates for data complexities. Later, in Section 5 we experiment
these scoring functions using different partition functions by attacking a reduced
version of PRESENT [6, 20] and discuss the corresponding time and memory
complexities.

4.1 The Sum-of-Counters Scoring Function

This technique consists in summing counters corresponding to considered dif-
ferentials. Theoretical analysis of this method is done in [9]. Taking notations

of the previous section, the scoring function is determined by
∑A

i=1 qi or equiv-
alently by the value 1 − q0. In this setting the scores cannot be approximated
by a Gaussian distribution and even Poisson approximation leads to pessimistic
results. This has been explained in [9] where a formula is given to obtain a better
estimate than using Poisson distribution. For more details please refer to [9].

4.2 The LLR Scoring Function

The Neyman-Pearson lemma [21] gives the optimal form of the acceptance region
on which is derived the LLR method. The optimality requires that both p and θ
distributions are known (or at least the values pv/θv).

Definition 2. Let p = [pv]v∈V be the expected probability distribution vector, θ
the uniform one and qk the observed one for a key candidate k. For a given num-
ber of sample Ns, the optimal statistical test consists in comparing the following
statistic to a fixed threshold.

LLR(qk, p, θ)
def
= Ns

∑
v∈V
qv log

(
pv
θv

)
.

An important remark here is that, similarly to the case presented in Section 4.1,
the LLR statistic can be computed with a memory complexity of one floating-
point counter per candidate. Indeed, this statistic is a weighted sum of counters
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for which weights are known before attacking. This test has been applied in [2]
by Baignères et al. in the case of linear cryptanalysis. Applying the law of large
numbers, they shown that the LLR statistic tends toward a Gaussian distribution
with different means and variances according to the distribution q is extracted
from. These means are expressed in terms of relative entropy.

Definition 3. Let p and p′ be two probability distribution vectors over V . The
relative entropy (aka. Kullback-Leibler divergence) between p and p′ is

D (p||p′) def
=
∑
v∈V
pv log

(
pv
p′v

)
.

We also define the following metrics

D2 (p||p′) def
=
∑
v∈V
pv log

2

(
pv
p′v

)
, and ΔD (p||p′) def

= D2 (p||p′)−D (p||p′)2 .

Lemma 2. (Proposition 3 in [2]) The distributions of LLR(qk, p, θ) asymptoti-
cally tend toward a Gaussian distribution as the number of samples Ns increases.
If samples are obtained from distribution p (θ, resp.), the LLR statistic tends to-
ward N (μR, σ

2
R) (N (μW , σ

2
W ), resp.), where

μR = NsD (p||θ) , μW = −NsD (θ||p) ,
σ2R = NsΔD (p||θ) , σ2W = NsΔD (θ||p) .

Then, we can use Lemma 1 to obtain the following result.

Theorem 1. Let a be the advantage of an attack then the number Ns of samples
required to reach success probability PS is

Ns =

[√
ΔD (p||θ)Φ−1

0,1(PS) +
√
ΔD (θ||p)Φ−1

0,1 (1− 2−a)
]2

[D (p||θ) +D (θ||p)]2
. (2)

Proof. The proof is based on Lemma 1 and can be found in [1]. �

4.3 The χ2 Scoring Function

The aforementioned LLR test is optimal when both distributions are known. In
our context, the knowledge of θ relies on Hypothesis 1 and the knowledge of p
is based on the possibility of the attacker to theoretically compute differential
probabilities. Hence, the use of an alternative statistic may be of interest when
one of these two distributions is unknown to the attacker. The χ2 method has
already proved out to be useful particularly in the context of linear cryptanal-
ysis, where the correct-guess distributions vary a lot with the key [10].Also in
the differential case, obtaining a good estimate of the correct-guess distribution
may be impossible. The idea is then to compare the empirical distribution to
the wrong-guess distribution: the vector corresponding to the correct key-guess
should end up with one of the largest scores (i.e., the smallest probability of
being drawn from θ).
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Definition 4. Let qk be an empirical distribution vector. The χ2 statistic used
to determine the probability of the vector to correspond to a realization from
distribution θ is

χ2(qk, θ) = Ns

∑
v∈V

(qkv − θv)2
θv

.

Notice that using χ2 method, all the counters should be stored since it is not
possible to compute the statistic on-the-fly as it was the case when summing
counters or for LLR. This results in an increased memory cost when using this
technique. The following quantity appears when considering the parameters of
the χ2 score distributions.

Definition 5. Let p be a probability distribution vector over V . The capacity of
this vector is defined by

C(p)
def
=
∑

v∈V
(pv − θv)2

θv
.

Lemma 3. [16] The distribution of χ2(qk, θ) asymptotically tends toward a
Gaussian distribution as the number Ns of samples increases. If samples are
obtained from distribution p (θ, resp.), the χ2 statistic tends toward N (μR, σ

2
R)

(N (μW , σ
2
W ), resp.) where,

μR = |V |+NsC(p) , μW = |V |,
σ2R = 2|V |+ 4NsC(p) , σ2W = 2|V |.

In [16], Hermelin et al. proposed an approximation of the data complexity of a
χ2 statistical test. It turns out that, at least in the present context, the estimate
proposed in the following theorem is tighter.

Theorem 2. Let C(p) be the capacity of the correct-candidate probability vector
p. Then, the number Ns of samples of the corresponding attack with success
probability PS and advantage a can be estimated by

Ns =

√
2|V |b+ 2t2 + t(

√
2|V |+ 2b)

√
1 + 4 t2−b2

(
√

2|V |+2b)2

C(p)
, (3)

where b = Φ−1
0,1(1− 2−a) and t = Φ−1

0,1(PS). Fixing the success probability to 0.5,
we obtain the following estimate for the number of samples:

Ns =

√
2|V |Φ−1

0,1(1 − 2−a)

C(p)
. (4)

Proof. The proof is based on Lemma 1 and can be found in [1]. �
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4.4 Different Partition Functions

We present here two different types of partition functions. The first one encom-
pass all previously proposed attacks by projecting some considered differences
to corresponding elements of V and all others to 0. The second family of par-
tition functions induce a balanced partitioning of the difference space (the sets
of differences that are projected to elements of V are all of equal cardinality).
This last type of partitioning has (to our knowledge) never been investigated
and seems to be the most promising one regarding the motivation of this paper.
We will now refer to these two techniques for building partition functions as
respectively balanced and unbalanced partitioning.

Let us recall that we consider that differentials used all have the same input
difference, we will explain later how different input differences can be handled.

Unbalanced Partitioning. When the attacker knows the probability of some dif-

ferentials (δ0, δ
(i)
r−1)1≤i≤A, then the natural way of partitioning is to allocate a

counter to each of these differentials. A “trash” counter will gather all other
output differences.

πunbal(d) =

{
i, if d = δi,
0, otherwise.

(5)

Let us denote by Δr−1 the set of output differences Δr−1
def
= (δ

(i)
r−1)1≤i≤A. It

is likely that this set allows early discarding of the so-called wrong pairs, i.e.,
pairs (y, y′) such that, for all candidates k, F−1

k (y)⊕F−1
k (y′) �∈ Δr−1. Using such

sieving process allows to decrease the number of partial decryptions in the attack
and typically results in considering active bits in the difference y ⊕ y′. In our

model such wrong pairs will only account for the counters qk0 . As
∑|V |−1

v=0 q
k
v = 1

(|V | = A + 1), for each candidate k, qk0 can be derived from the other values.

The theoretical probability θ0 is equal to θ0 = 1−
∑|V |−1

v=1 θv = 1− |V |−1
2m−1

Balanced Partitioning. This alternative results in a balanced partitioning of the
space of differences and hence the sieving process will not be as effective as in the
case of unbalanced partitioning (if needed at all). Balanced partition functions
consider in the experiments have a particular structure linked to truncated differ-
entials. A support s to indicate the set of targeted difference bits, s ⊂ {0,m−1},
is determined (|V | = 2|s|) and the partition function consists of considering only
bits belonging to this support:

πbal(d) = d|s =
|s|∑
i=0

2i · ds(i), (6)

where s(i) denote the i-th bit that belong to the support.
What may be considered as an advantage is that such partition functions make

use of all pairs of plaintexts. Hence more information may be available (at the
potential cost of higher time or memory requirements). In this balanced model
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the distribution θ of the wrong key is uniform. That means, in the notation of
Model 3, that the quantity θv is equal, for all v ∈ V : θv = 2m

|V | .
The main drawback of this model is that the differentials are grouped, and

depending on the way this is done, the attack may be more or less efficient.

5 Experiments

In this section, we experiment different combinations of partition and scor-
ing functions on nine rounds of SMALLPRESENT-[8]5 a reduced-version of
PRESENT presented in [20]. The goal is to investigate the potential improve-
ments mentioned in Section 4 and to test their robustness in a real attack context
(that is with potentially badly estimated distributions). More details about the
choices of experiment parameters can be found in [1].

5.1 On the Choice of Partition Functions

Depending on the targeted cipher, the structure of the possible partition func-
tions may differ a lot. Nevertheless, using both a balanced and an unbalanced
partitioning, (see Equations (6), and (5)) we expect to cover a large spectrum
of attack possibilities in the context of SPN ciphers.

About πunbal. Such unbalanced partition function is generally chosen in such
a way that an efficient sieve can be performed to discard wrong pairs. In our
settings, see Equation (5) , the discarded pairs correspond to the ones that
increment counter q0 for all key candidates. The use of such sieving process
leads to an important gain in the time complexity of the partial decryption
phase.

The weakness of this kind of partition function is that only few pairs are really
useful to the attack (non-discarded pairs). More precisely, for Ns samples and a
given index value v �= 0,

#
{
(y, y′)|πunbal

(
F−1
k (y)⊕ F−1

k (y′)
)
= v
}
= O

(
Ns

2m

)
, where Ns

2m ≤ 1.

In the context of classical simple differential cryptanalysis this phenomenon is
related to the thresholds that can be observed on curves representing success
rate or advantage as a function of the number of available samples. When using
scoring techniques as the one proposed in this paper, this may explain part of
the discrepancies between theoretical and empirical results, particularly in the
context of χ2.

About πbal. In the case of balanced partition functions, the aforementioned be-
havior is not observed since all pairs are taken into account. Indeed,

#
{
(y, y′)|πbal

(
F−1
k (y)⊕ F−1

k (y′)
)
= v
}
= O (Ns · θv) , while θv =

1

|V | .

5 It is an SPN cipher that processes 32-bit blocs using a 40-bit master key. One round is
composed of a key addition, a non-linear layer of 4-bit S-boxes and a bit permutation.
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That means that for balanced partition functions, if Ns is larger than |V |, the
noise is reduced6. Nevertheless, in such context we generally cannot use an effi-
cient sieving process hence the time complexity of the resulting attack is more
important: for each sample a partial decryption of the last round has to be per-
formed. Part of this drawback is removed due to the smaller data complexity.
Hence both approaches may be of interest depending on the context.

5.2 Experimental Results

The present work proposes to model multiple differential cryptanalysis as the
combination of a partition and a scoring function. We derived estimates for the
data complexity corresponding to different scoring functions and introduced two
families of partition functions. Hence, there are many things that experiments
may tell us about the relevance of these tools. We will first discuss the accuracy
of the estimates for the data complexity we derived. Then, we will focus on the
scoring functions and their robustness regarding badly estimated distributions.
Thus, we ran experiments in two different contexts:

(i) using “actual” correct-key distribution: this distribution was obtained by
experimentally computing differential probabilities for fixed keys and then
averaging over 200 different keys7;

(ii) using estimated correct-key distribution: we model the fact that an attacker
may only have access to estimates of the differential probabilities by degrad-
ing the actual correct-key distribution for a given error rate.

All experiments have been performed targeting nine rounds of the cipher. The
main reason is that the corresponding data complexities are high enough for the
attack to make sense and small enough for us to perform enough experiments.
For the same reason, we choose size of output spaces |V | in such a way that the
counter storage of the resulting attacks can be handled in RAM and that the
number of key candidates is at most 216.

Accuracy of the Data Complexity Estimates. Accuracy of the data com-
plexity estimates presented in Theorem 1 and Theorem 2 depends on different
parameters (the size of the output space, the partition function and so on). It
also strongly depends on the correctness of estimates used for the distributions.
In order to focus on the validity of provided formulas, we ran experiments in the
setting (i)8 correct-key distribution thus any observed deviation should not be
attributed to an incorrect estimate of the differential probabilities.

We observe that for both χ2 (Figure 1) and LLR (Figure 2), formulas provided
by Theorem 2 and Theorem 1 give rather good estimates for the data complexity.
6 Intuitively: for a fixed value of |V |, the noise is decreasing as the number of sample
is increasing

7 This technique has been shown to provide good results in [7].
8 Notice that for the χ2 scoring function, we first computed capacities for different
fixed keys and then averaged obtained values.
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Fig. 1. Data complexities of attacks using χ2 scoring and balanced partitioning
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Fig. 2. Data complexities of attacks using LLR scoring and balanced partitioning

Comparison of Scoring Functions (Known Distributions). We now con-
sider Figure 1 and Figure 2 in a different way, since we aim at comparing both χ2

and LLR scoring functions. Obviously the LLR scoring function has much smaller
data requirement. For instance, for an advantage a = 7 and an output space size
|V | = 212, it only requires 218.7 plaintexts to reach a success probability of one
half while 223.55 is required using χ2. This is a natural result since LLR attacks
are run with actual values of the differential probabilities and hence have more
information to process the available data.

Comparison of Scoring Functions (Estimated Distributions). In [10],
Cho has shown that if the attacker only has a badly estimated correct-key distri-
bution then using the LLR statistical test is not relevant anymore. We conducted
experiments in that direction assuming that the estimated probability distribu-
tions were biased. We emulated this phenomenon by adding some random noise
to the distribution estimate (that is p̂v = pv ± pv

100 ) then normalizing p̂v.
We present in Figure 3 the results of our investigation in the case of a bal-

anced partition function with |V | = 28 (case were the best match is obtained
between theory and practice) when the attacker only knows a correct estimate
of the distribution. Using both LLR or χ2 scoring functions leads to inaccurate
estimations of the data complexity.
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Fig. 3. Data complexities for biased distribution (using balanced partitioning of a set
of cardinality |V | = 28 with advantage a = 4)

It turns out that the noised distribution we obtained can be distinguished
from the corresponding uniform distribution θ more easily and hence theoretical
expectations are optimistic. For χ2 method, it can be seen by comparing capaci-
ties (the noised distribution has a larger capacity than the actual one) and in the
case of LLR method this can be seen by looking at the relative entropy between
θ and the noised distribution (that is larger). The main information is that this
badly estimated distribution does not affect the attack using χ2 scoring function,
what is quite natural since the distribution p is not involved in the process, while
for LLR scoring function this induces an overhead in the data complexity. With
only a 1% bias, χ2 scoring function achieve slightly better performance than LLR

(in terms of data complexity).
Notice that in practice, when instantiating attacks on real ciphers with large

state size, it is not so easy to obtain a good estimation of the correct-key dis-
tributions. A folklore result is that the differential probability can be underesti-
mated by adding probabilities of corresponding differential trails found using a
Branch-and-Bound algorithm. The main difficulty comes from the choice made
by designers known as “wide trail strategy” [11]. Such strategy implies that the
number of significant trails in a differential (or linear approximation) exponen-
tially increases with the number of rounds. Experiments made (but not presented
in this paper) show that even on SMALLPRESENT-[8] estimating distributions
directly using a Branch-and-Bound algorithm leads to an error drastically larger
than 1%. Hence in practice, an attacker may favor the χ2 scoring function.

Comparing Partition Functions. Let us now consider the impact of parti-
tion functions used. Figure 1 and Figure 2 are related to experiments that have
been performed using the newly introduced balanced partitioning. We also ran
experiments using the former unbalanced partitioning for which an efficient siev-
ing process can be performed (see Figure 4). We chose to perform attacks with
an output set of size |V | = 216. The reason is that for smaller sizes corresponding
attacks require much more data. Hence, to fairly compare partition functions we
used best possible parameters that allow performing enough attacks for plotting
results in a given time.
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Fig. 4. Data complexities for an unbalanced partitioning (set of cardinality 216)

First we observe that due to the use of a sieving process, the theoretical
estimates for the data complexity are pretty optimistic (a sketch of explanation
is given in Section 5.1). Focusing on experimental curves, we can conclude that
from a purely information theoretical point of view, using balanced partitioning
allows extracting more information from available samples than using unbalanced
ones. Nevertheless, also the cost of memory and time, see [1], has to be considered
when comparing both types of partition functions.

On the Use of Differentials with Different Input Differences. There are
two straightforward ways of extending this work to multiple input differences.
The first one is to consider the same partition function for each input difference
so that only one output distribution is considered. The second technique is or-
thogonal since it consists in considering independently the distributions coming
from different input differences. The corresponding scoring functions boils down
to summing scores obtain for each distribution.

We ran experiments using both approaches and surprisingly did not obtained
radically better results than using a single input difference. Nevertheless, we
observed a strong correlation between the distributions obtained that should be
exploited. This is a very promising scope for further improvements of this work.

6 Conclusion

This paper builds on the work made on the topic of linear cryptanalysis using
multiple approximations. We investigate different statistical tests (namely LLR

and χ2) to combine information coming from a large number of differentials
while, to our knowledge, only summing counters was considered up to now. To
analyze these tools, we introduce a formal way of representing multiple differen-
tial cryptanalysis using partition functions and present two different families of
such functions namely balanced and unbalanced partitioning (previous attacks
being modelled as unbalanced partitioning). Finally, we present experiments
performed on a reduced version of PRESENT that confirm the accuracy of the
data complexity estimates derived in some contexts. These experiments show a
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relatively good accuracy of the estimates and illustrate the fact that using bal-
anced partitioning one is able to take profit of all available pairs.

Further research include exploiting the similarities observed between distri-
butions corresponding to different input differences and solving the challenging
problem of estimating correct-key distributions for actual ciphers.
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Abstract. The Rainbow Signature Scheme is a non-trivial generaliza-
tion of the well known Unbalanced Oil and Vinegar Signature Scheme
(Eurocrypt ’99) minimizing the length of the signatures. Recently a new
variant based on non-commutative rings, called NC-Rainbow, was intro-
duced at CT-RSA 2012 to further minimize the secret key size.
We disprove the claim that NC-Rainbow is as secure as Rainbow in gen-
eral and show how to reduce the complexity of MinRank attacks from
2288 to 2192 and of HighRank attacks from 2128 to 296 for the proposed
instantiation over the ring of Quaternions. We further reveal some facts
about Quaternions that increase the complexity of the signing algorithm.
We show that NC-Rainbow is just a special case of introducing further
structure to the secret key in order to decrease the key size. As the re-
sults are comparable with the ones achieved by equivalent keys, which
provably do not decrease security, and far worse than just using a PRNG,
we recommend not to use NC-Rainbow.

Keywords: Multivariate Cryptography, Algebraic Cryptanalysis, Rain-
bow, MinRank, HighRank, Non-commutative Rings, Quaternions.

1 Introduction

Rainbow was proposed in 2005 [4] and is a layer-based variant of the well known
multivariate quadratic (MQ) signature scheme Unbalanced Oil and Vinegar
(UOV). UOV itself was proposed by Patarin et al. [8] at Eurocrypt 1999 and
is one of the oldest MQ-schemes still unbroken. The downside of UOV is a
comparably large signature expansion by a factor of 3 for current parameters
(m = 28, n = 84) [16]. Rainbow improves this to signatures of length n = 42 for
messages of length m = 24, also for current parameters (28, 18, 12, 12) [5].
MQ-schemes in general suffer from comparably large key sizes. The Rainbow
scheme over non-commutative rings proposed at CT-RSA 2012, also called NC-
Rainbow [17], claims to reduce the secret key size by 75% while obtaining the
same level of security.
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Related Work. The parameter set (28, 6, 6, 5, 5, 11) proposed for Rainbow in
the original paper [4] was broken by Billet and Gilbert [2] in 2006 using a Min-
Rank attack. The idea of those attacks was known since 2000 and first proposed
in [7]. At Crypto 2008 Faugère et al. [6] refined the technique of Billet and
Gilbert using Gröbner Bases. Ding et al. took this attack into account and pro-
posed new parameters of Rainbow in [5]. For a comprehensive comparison of all
known attacks on Rainbow and proposals for secure parameters we refer to [12].
So far there are two different techniques known to reduce the secret key size of
Rainbow. On the one hand we can introduce a special structure, such like a cyclic
coefficient matrix [11] and on the other hand we can use equivalent keys [13].
The latter exploits that large parts of the key are redundant and do not provide
any security, whereas for the first variant it is an open problem to quantify the
loss of security.

Achievement and Organization. Section 2 introduces the NC-Rainbow sig-
nature scheme as proposed in [17]. For readers unfamiliar with multivariate
quadratic schemes, we start by briefly describing the Unbalanced Oil and Vine-
gar scheme and its layer-based variant Rainbow. Section 3 explains the algebraic
structure of the ring of Quaternions and show how these seriously speed up
MinRank and HighRank attacks.

2 Basics

In this section we explain the Rainbow signature scheme over non-commutative
rings as proposed in [17] and introduce the necessary notation. For a better
understanding we first briefly introduce the Unbalanced Oil and Vinegar as well
as the Rainbow Signature Scheme.

The general idea of MQ-signature schemes is to use a public multivariate
quadratic map P : Fn

q → Fm
q with

P =

⎛⎜⎝ p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

⎞⎟⎠
and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ̃
(k)
ij xixj = xᵀP(k)x,

where γ̃
(k)
ij ∈ Fq are some coefficients, P(k) is the (n× n) matrix describing the

quadratic form of p(k) and x = (x1, . . . , xn)ᵀ. Note that we can neglect linear
and constant terms as they never mix with quadratic terms and thus have no
positive effects on security.

The trapdoor is given by a structured central map F : Fn
q → Fm

q with

F =

⎛⎜⎝ f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)

⎞⎟⎠
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and
f (k)(u1, . . . , un) :=

∑
1≤i≤j≤n

γ
(k)
ij uiuj = uᵀF(k)u.

In order to hide this trapdoor we choose two secret linear transformations S, T
and define P := T ◦ F ◦ S. See figure 1 for illustration.

Fn
q Fm

q

Fn
q Fm

q

P

S T

F

Fig. 1. MQ-Scheme in general

For the Unbalanced Oil and Vinegar (UOV) signature scheme the vari-
ables ui with i ∈ V := {1, . . . , v} are called vinegar variables and the remaining
variables ui with i ∈ O := {v + 1, . . . , n} are called oil variables. The central
map f (k) is given by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V

γ
(k)
ij uiuj +

∑
i∈V,j∈O

γ
(k)
ij uiuj.

The corresponding matrix F(k) is depicted in figure 2.

F(k) =

x1 . . . xv . . . xn

0

x1

...
xv

...
xn

︷︸︸︷︷︸︸︷

vinegar variables

oil variables

Fig. 2. Central map F(k) of UOV. White parts denote zero entries while gray parts
denote arbitrary entries.

As we have m equations in m + v variables, fixing v variables will yield a
solution with high probability. Due to the structure of F(k), i.e. there are no
quadratic terms of two oil variables, we can fix the vinegar variables at random
to obtain a system of linear equations in the oil variables, which is easy to solve.
This procedure is not possible for the public key, as the transformation S of
variables fully mixes the variables (like oil and vinegar in a salad). Note that
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for UOV we can discard the transformation T of equations, as the trapdoor is
invariant under this linear transformation.

Rainbow uses the same idea as UOV but in different layers. A current choice
of parameters is given by (q, v1, o1, o2) = (28, 18, 12, 12). In particular the field
size q = 28 and the number of layers is two. Note, two layers seems to be
the best choice in order to prevent MinRank attacks and preserve short sig-
natures at the same time. The central map F of Rainbow is divided into two
layers F(1), . . . , F(12) and F(13), . . . , F(24) of form given in figure 3. Let V1 :=
{1, . . . , v1}, O1 := {v1 +1, . . . , v1 + o1} and O2 := {v1 + o1 +1, . . . , v1 + o1 + o2}.
A formal description of F is given by the following formula.

f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑
i∈V1,j∈O1

γ
(k)
ij uiuj

for k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑
i∈V1∪O1,j∈O2

γ
(k)
ij uiuj

for k = o1 + 1, . . . , o1 + o2

0

0

0

0

00

18 12 12

for F(1), . . . , F(12)

and

0

18 12 12

for F(13), . . . , F(24)

Fig. 3. Central map of Rainbow (28, 18, 12, 12). White parts denote zero entries while
gray parts denote arbitrary entries.

To use the trapdoor we first solve the small UOV system F(1), . . . , F(o1) by fixing
the v1 vinegar variables at random. The solution u1, . . . , uv1+o1 is now used as
vinegar variables of the second layer. Solving the obtained linear system yields
uv1+o1+1, . . . , uv1+o1+o2 .

The NC-Rainbow signature scheme proposed at CT-RSA 2012 [17] uses
some non-commutative ring Qq with dimension r over Fq to further decrease the
secret key size. Due to the existence of a Fq -linear isomorphism φñ : Fñr

q → Qñ
q

with ñr := n and m̃r := m, the central map F can be replaced by φ−m̃ ◦ F̃ ◦ φñ

for F̃ : Qñ
q → Qm̃

q . Let Ṽ1 := {1, . . . , ṽ1}, Õ1 := {ṽ1 + 1, . . . , ṽ1 + õ1} and
Õ2 := {ṽ1 + õ1 + 1, . . . , ṽ1 + õ1 + õ2} with rṽ1 := v1, rõ1 := o1 and rõ2 := o2.
The central map F̃ , as defined in [17], is given by the following polynomials.
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f̃ (k)(u1, . . . , un) :=
∑

i∈Ṽ1,j∈Ṽ1

uiγ
(k)
ij uj +

∑
i∈Ṽ1,j∈Õ1

uiγ
(k)
ij uj + ujγ

(k)
ji ui

for k = 1, . . . , õ1

f̃ (k)(u1, . . . , un) :=
∑

i∈Ṽ1∪Õ1,j∈Ṽ1∪Õ1

uiγ
(k)
ij uj +

∑
i∈Ṽ1∪Õ1,j∈Õ2

uiγ
(k)
ij uj + ujγ

(k)
ji ui

for k = õ1 + 1, . . . , õ1 + õ2

Note that in contrast to [17] we neglect linear and constant terms. As not all
coefficients of those terms are chosen uniformly at random over Fq (cf. section 3)
they would provide further equations to speed up the Reconciliation attack (cf.
Sec. 5, Eq. 4 in [15]). As we will not investigate Reconciliation attacks, we just
forget about this flaw of NC-Rainbow.

3 Cryptanalysis of NC-Rainbow

The authors of [17] claimed that NC-Rainbow is as secure as the original Rainbow
scheme, as every instance (Qq, ṽ1, õ1, õ2) of the former can be transformed to an
instance (Fq, v1, o1, o2) of the latter, due to the Fq-linear isomorphism φ. Well,
as we will see below, this only provides an upper bound on the security.

First, we need the other direction to prove security, which does not hold due to
the special choice of F̃ . More precisely, we will see in lemma 2 that the size of
F̃ must be at least as large as the size of F to obtain exactly the same level of
security.
Second, φ is not Fr

q-linear. So even if the size of F̃ is large enough, it is not clear
at all, if the additional structure of Qq can be used to attack the scheme. We
will later use the structure of Quaternions to speed up MinRank and HighRank
attacks.
Third, the ring used by the authors of [17] is commutative. But we do not
restrict our cryptanalysis to this case and also investigate non-commutative rings
(cf. remark 1).

In the sequel we explain and attack NC-Rainbow over the ring of Quaternions
(cf. definition 1), as proposed by the authors of [17]. Note that the amount
of additional structure introduced by F̃ is independent of the encoding of the
non-commutative ring and thus NC-Rainbow is not equally secure to Rainbow
for every non-commutative ring (cf. lemma 2). But there might be smarter en-
codings than Quaternions, which speed up known attacks a little less. We still
do not think it is worthwhile to search for those non-commutative rings, as the
whole construction is just a special case of reducing key size by introducing some
structure to the secret key. Compare [11, 13] for the state of the art.
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Definition 1 (Ring of Quaternions). The non-commutative ring of Quater-
nions (Qq, +,�) of dimension r = 4 is defined by

Qq := {(a, b, c, d)ᵀ | a, b, c, d ∈ Fq}

with ⎛⎜⎜⎝
a1

b1

c1

d1

⎞⎟⎟⎠ +

⎛⎜⎜⎝
a2

b2

c2

d2

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
a1 + a2

b1 + b2

c1 + c2

d1 + d2

⎞⎟⎟⎠
and ⎛⎜⎜⎝

a1

b1

c1

d1

⎞⎟⎟⎠�
⎛⎜⎜⎝

a2

b2

c2

d2

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
a1a2 − b1b2 − c1c2 − d1d2

a1b2 + b1a2 + c1d2 − d1c2

a1c2 − b1d2 + c1a2 + d1b2

a1d2 + b1c2 − c1b2 + d1a2

⎞⎟⎟⎠ .

The authors of [17] suggested to use the finite field F28 . Note there exists a
F28-linear map given by φ : F4

28 → Q256 : (a, b, c, d)ᵀ 	→ (a, b, c, d)ᵀ.

Remark 1. The ring of Quaternions is commutative over fields of even charac-
teristic, by definition of multiplication � [14]. Thus we will distinguish between
odd and even characteristic for every single attack in the sequel.

Remark 2. The ring of Quaternions over finite fields is not a division ring (skew
field) [1]. This can be easily followed by a theorem of Wedderburn, who proved in
1905 that every finite skew field is a field (cf. theorem 2.55, page 70 in [10]). The
authors of [17] did not address the impact of this fact to the signing algorithm.
For example the element (1, 1, 1, 1) ∈ Q2k does not have an inverse and thus it
might become much harder to find a solution of the linear system of oil variables.
Note that the probability of a random element in Qq to have no inverse is 1/q. For
the proposed parameters (ṽ1, õ1, õ2) = (5, 4, 4) we need 12 inversions to perform
the Gaussian elimination in both layers and additional 8 inversions to obtain
the solution. Hence the probability of finding a solution is 0.99620 ≈ 0.923 in
Q28 and 0.93720 ≈ 0.272 in Q24 . Note that NC-Rainbow over Q2 has probability
2−20 and thus would hardly work in practice.

Hidden Structure of NC-Rainbow. Before we continue to improve
MinRank and HighRank attacks, we want to determine the hidden structure
of NC-Rainbow over Quaternions in general. Example 1 gives a first impression.

Example 1. To illustrate special structures over Fq introduced by NC-Rainbow,
we use the following example throughout the paper. Let v1 = 8, o1 = 4, o2 = 4
and thus ṽ1 = 2, õ1 = 1, õ2 = 1. In figure 4 the central polynomials F1, . . . , F8 of
Rainbow are compared to the central polynomials F̃1, . . . , F̃8 over fields of odd
characteristic obtained by NC-Rainbow. Thereby crosses denote arbitrary values
and empty squares denote systematical zeros. Later we will see that even the
crosses of different maps are connected in some way. Further figure 5 shows that
the structure is even stronger over fields of even characteristic.
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F1, . . . ,F4 F5, . . . ,F8

F̃1 F̃2 F̃3 F̃4

F̃5 F̃6 F̃7 F̃8

Fig. 4. Central map of Rainbow compared to NC-Rainbow over fields of odd charac-
teristic

To determine all the structure over Fq, we have a closer look at uiγijuj +ujγjiui

over Q for i 
= j. Let u1 := (u11, u12, u13, u14)ᵀ, u2 := (u21, u22, u23, u24)ᵀ,
γ12 := (t1, t2, t3, t4)ᵀ and γ21 := (t5, t6, t7, t8)ᵀ. Due to remark 1 we only have to
consider uiγijuj in fields of even characteristic. We obtain φ−1 ◦ (u1γ12u2) ◦φ =
uᵀ

1(M1, M2, M3, M4)u2 with Mi given below.

M1 =

⎛⎜⎝ t1 t2 t3 t4
t2 t1 t4 t3
t3 t4 t1 t2
t4 t3 t2 t1

⎞⎟⎠ , M2 =

⎛⎜⎝ t2 t1 t4 t3
t1 t2 t3 t4
t4 t3 t2 t1
t3 t4 t1 t2

⎞⎟⎠ ,

M3 =

⎛⎜⎝ t3 t4 t1 t2
t4 t3 t2 t1
t1 t2 t3 t4
t2 t1 t4 t3

⎞⎟⎠ , M4 =

⎛⎜⎝ t4 t3 t2 t1
t3 t4 t1 t2
t2 t1 t4 t3
t1 t2 t3 t4

⎞⎟⎠ .

Note that φ−1 ◦ uiγijuj ◦ φ produces 4 polynomials over Fq with 16 monomials
u1iu2j , i, j = 1, 2, 3, 4. Further for the original Rainbow scheme, all these 64
coefficients of u1iu2j for 1 ≤ i, j ≤ 4 in the secret polynomials f (1), . . . , f (4) of F
are chosen independently, uniformly at random. But due to the special choice of
the central map of NC-Rainbow, now only 4 coefficients ti are chosen uniformly
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F̃1, . . . , F̃4 F̃5, . . . , F̃8

Fig. 5. Central map of NC-Rainbow over fields of even characteristic

at random. Clearly this introduce additional structure to the secret key F that
can be used for algebraic attacks (cf. [15]). In order to be as secure as the original
scheme, we need at least as many coefficients in the central map of NC-Rainbow
as in the original. This is not possible for dimensions r > 2 due to lemma 1.

Lemma 1. Let Fq be any finite field and R a non-commutative ring of dimen-
sion r > 2 over Fq. Then NC-Rainbow over R with any secret map F̃ can never
be as secure as Rainbow.

Proof. The maximal number of quadratic monomials containing variables u1 and
u2 in R is 6, namely γ1u1u2, γ2u2u1, u1γ3u2, u2γ4u1, u1u2γ5, u2u1γ6 for some
coefficients γi ∈ R. Every element γi ∈ R encodes r elements of Fq and thus the
maximal number of coefficients we can choose uniformly at random over Fq is
6r. On the other hand there are r2 monomials over Fq produced by u1 and u2.
All those monomials occur in r different polynomials and thus are represented
by r3 coefficients in Fq. In the case of Rainbow all these coefficients are chosen
independently, uniformly at random. While r3 > 6r for r > 2 this is not possible
for NC-Rainbow. �

Next we observe that the matrices Mi are heavily structured. A simple addition
M1 + M2 + M3 + M4 provides a matrix with the same value in every entry and
thus with rank 1 instead of 4. We will use this fact later on to improve MinRank
attacks.

The following matrices produced by uiγiiui provide even more structure (cf.
figure 5).

M1 =

⎛⎜⎜⎝
t1 0 0 0
0 t1 0 0
0 0 t1 0
0 0 0 t1

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
t2 0 0 0
0 t2 0 0
0 0 t2 0
0 0 0 t2

⎞⎟⎟⎠ ,

M3 =

⎛⎜⎜⎝
t3 0 0 0
0 t3 0 0
0 0 t3 0
0 0 0 t3

⎞⎟⎟⎠ , M4 =

⎛⎜⎜⎝
t4 0 0 0
0 t4 0 0
0 0 t4 0
0 0 0 t4

⎞⎟⎟⎠ .
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For fields of odd characteristic the structure of Mi produced by uiγijuj +ujγjiui

becomes slightly more difficult.

M1 =

⎛⎜⎜⎝
t1 + t5 −t2 − t6 −t3 − t7 −t4 − t8

−t2 − t6 −t1 − t5 t4 − t8 −t3 + t7
−t3 − t7 −t4 + t8 −t1 − t5 t2 − t6
−t4 − t8 t3 − t7 −t2 + t6 −t1 − t5

⎞⎟⎟⎠ ,

M2 =

⎛⎜⎜⎝
t2 + t6 t1 + t5 −t4 + t8 t3 − t7
t1 + t5 −t2 − t6 −t3 − t7 −t4 − t8
t4 − t8 −t3 − t7 t2 + t6 t1 − t5

−t3 + t7 −t4 − t8 −t1 + t5 t2 + t6

⎞⎟⎟⎠ ,

M3 =

⎛⎜⎜⎝
t3 + t7 t4 − t8 t1 + t5 −t2 + t6

−t4 + t8 t3 + t7 −t2 − t6 −t1 + t5
t1 + t5 −t2 − t6 −t3 − t7 −t4 − t8
t2 − t6 t1 − t5 −t4 − t8 t3 + t7

⎞⎟⎟⎠ ,

M4 =

⎛⎜⎜⎝
t4 + t8 −t3 + t7 t2 − t6 t1 + t5
t3 − t7 t4 + t8 t1 − t5 −t2 − t6

−t2 + t6 −t1 + t5 t4 + t8 −t3 − t7
t1 + t5 −t2 − t6 −t3 − t7 −t4 − t8

⎞⎟⎟⎠ .

Obtaining a generic, i.e. independent of the choice of coefficients ti, linear com-
bination a1M1 + a2M2 + a3M3 + a4M4 =: N with rank less than 4 becomes
a little more involved. We now want to show that there always exists a ma-
trix N with rank 3, i.e. we can find a linear combination of columns such that
b1N·1 + b2N·2 + b3N·3 + N·4 = 0. Collecting the coefficients of t1, . . . , t8 in every
of the 4 components and setting them to zero provides 32 quadratic equations
in the unknowns a1, a2, a3, a4 and b1, b2, b3. We obtain the following solution by
computing the Gröbner Basis of this system.

a1 = 1, a2 = b1, a3 = b2, a4 = b3 and b2
1 + b2

2 + b2
3 = −1

Lemma 2 proves that b2
1 + b2

2 + b2
3 = −1 with b1 = 0 always has a solution over

Fp with p > 2 prime. Note that this implies the existence of a solution also over
extension fields.

Lemma 2. Let p > 2 be prime. Then there exists a, b such that

a2 + b2 + 1 ≡ 0 (mod p).

Proof. This lemma, as well as its proof, is well-known in literature. As the proof
itself is very elegant, we give a brief description for readers who are unfamilar
with this topic. Consider the two sets

A =

{
02, 12, . . . ,

(
p− 1

2

)2
}

and B =

{
−02 − 1,−12 − 1, . . . ,−

(
p− 1

2

)2

− 1

}
.

Obviously all elements of A as well as of B are pairwise distinct. Due to |A| =
|B| = p+1

2 we obtain a total amount of |A|+ |B| = p + 1 elements. As |Fp | = p
there must be one element contained in both sets and thus a2 ≡ −b2−1 (mod p).

�
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To conclude the preparation of our MinRank attack, we give the matrices pro-
duced by uiγiiui over fields of odd characteristic.

M1 =

⎛⎜⎜⎝
2t1 −2t2 −2t3 −2t4

−2t2 −2t1 0 0
−2t3 0 −2t1 0
−2t4 0 0 −2t1

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
2t2 2t1 0 0
2t1 −2t2 −2t3 −2t4

0 −2t3 2t2 0
0 −2t4 0 2t2

⎞⎟⎟⎠ ,

M3 =

⎛⎜⎜⎝
2t3 0 2t1 0

0 2t3 −2t2 0
2t1 −2t2 −2t3 −2t4

0 0 −2t4 2t3

⎞⎟⎟⎠ , M4 =

⎛⎜⎜⎝
2t4 0 0 2t1

0 2t4 0 −2t2
0 0 2t4 −2t3

2t1 −2t2 −2t3 −2t4

⎞⎟⎟⎠ .

MinRank Attack. The main idea of rank attacks is that the rank of F(k) is
invariant under the bijective transformation of variables S but not under the
transformation of equations T . Thus we can use the rank as distinguisher to
recover T . Note that once T is known, S is also recovered comparably fast by
UOV attacks like the one of Kipnis and Shamir [9] due to the special choice of
parameters.

A naive way of performing a MinRank attack [2] is to sample a vector ω ∈R Fn
q

and hope that it lies in the kernel of a linear combination of low-rank matrices.
If this is true, solving the linear system of equations

m∑
i=1

λiP
(i)ω = 0 for ω ∈R Fn

q , λi ∈ Fq, P
(i) ∈ Fn×n

q

reveals a part of the secret transformation T . The complexity of sampling
ω ∈ ker(F) is qn−d with n the number of variables and d = dim(ker(F)). Note
n− d = rank(F).

Lemma 3. The complexity of MinRank attacks on NC-Rainbow over fields Fq

of even characteristic is at most q4ṽ1+õ1 instead of q4ṽ1+4õ1 .

Proof. For fields of even characteristic we already showed that M1+M2+M3+M4

has rank 1 instead of 4. Remember that for F(1) + F(2) + F(3) + F(4) =: F every
(4× 4) submatrix contains only equal elements, i.e. Fi,j = Fx,y with 4k ≤ i, x ≤
4(k + 1), 4	 ≤ j, y ≤ 4(	 + 1) for some k 
= 	. Adding column v1 + 4k to the
columns v1 + 4k − 1, v1 + 4k − 2, v1 + 4k − 3 for 1 ≤ k ≤ õ1 vanishes a total of
3õ1 columns. Hence F has rank 4ṽ1 + õ1. Compare example 1 for an illustration:

�
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Lemma 4. The complexity of MinRank attacks on NC-Rainbow over fields Fq

of odd characteristic is at most q4ṽ1+3õ1 instead of q4ṽ1+4õ1 .

Proof. Due to lemma 2 there exists a linear combination of every four columns
v1+4k, v1+4k−1, v1+4k−2, v1+4k−3 with 1 ≤ k ≤ õ1 of F(1)+F(2)+F(3)+F(4),
such that one column vanishes. �

We implemented NC-Rainbow using the software system Magma V2.16-1 [3]
and observed that the ranks are even smaller than given by lemma 3 and 4.
Table 1 illustrate the ranks of the central polynomials and their linear combi-
nation for fields of even characteristic and different sets of parameters. The last
two columns give the maximum of all minimal ranks that we brute-forced in
several experiments.

Table 1. Ranks of NC-Rainbow over even characteristic, experimentally derived. The
last two columns give the maximum of all minimal ranks that we brute-forced in several
experiments.

ṽ1 õ1 õ2 Fi

1 ≤ i ≤ o1

Fi

o1 < i ≤ m

4∑
i=1

Fi

o1+4∑
i=o1+1

Fi

o1∑
i=1

γiFi

o1+o2∑
i=o1+1

γiFi

5 1 1 24 28 20 24 16 20

5 1 2 24 32 20 24 16 18

5 2 1 28 32 20 28 14 24

5 2 2 28 36 20 28 14 20

5 3 3 32 44 20 32 14 22

Table 2. Ranks of NC-Rainbow over odd characteristic, experimentally derived. The
last two columns give the maximum of all minimal ranks that we brute-forced in several
experiments.

ṽ1 õ1 õ2 Fi

1 ≤ i ≤ o1

Fi

o1 < i ≤ m

o1∑
i=1

γiFi

o1+o2∑
i=o1+1

γiFi

5 1 1 24 28 22 26

5 1 2 24 32 22 28

5 2 1 28 32 24 30

5 2 2 28 36 24 31

5 3 3 32 44 27 39
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Heuristic: We have experimentally derived that F(1) +F(2) +F(3) +F(4) has rank
4ṽ1 instead of 4ṽ1 + õ1 for even characteristic. Moreover, for 4õ1 > ṽ1 there
always exists a linear combination such that all (4 × 4) matrices on the diag-
onal are zero. Experiments suggest that this linear combination has rank 3ṽ1−1.

Table 3. Log2 complexity of MinRank attacks against NC-Rainbow over Qq with even
characteristic

(ṽ1, õ1, õ2) claimed real heuristic
(5, 4, 4) 288 192 112
(7, 5, 5) 384 264 160
(9, 6, 6) 480 336 208

HighRank attack. Our observation regarding HighRank attacks holds both
for even and odd characteristic.

Lemma 5. The complexity of HighRank attacks on NC-Rainbow over Qq is at
most qo2−õ2 instead of qo2 .

Proof. We already mentioned that there exists a linear combination of high rank
matrices such that the rank decrease. In particular for fields of even character-
istic M1 + M2 + M3 + M4 has rank 1 instead of 4 and for fields of odd charac-
teristic we showed in lemma 2 that there exists a generic linear combination of
M1, M2, M3, M4 with rank 3. Thus we do not have to remove all polynomials Fi

of high rank to observe a decrease of rank, but only 3 out of 4, i.e. in total we have
to brute force 4õ2 − õ2 = o2 − õ2 linear combinations of public polynomials Pi.

Table 4. Log2 complexity of HighRank attacks against NC-Rainbow over Qq

(ṽ1, õ1, õ2) claimed real
(5, 4, 4) 128 96
(7, 5, 5) 160 120
(9, 6, 6) 192 144
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Abstract. We propose a generic approach to design homomorphic en-
cryption schemes, which extends Gjøsteen’s framework. From this generic
method, we deduce a new homomorphic encryption scheme in a com-
posite-order subgroup of points of an elliptic curve which admits a pair-
ing e : G × G → Gt. This scheme has some interesting theoretical and
practical properties: it allows an arbitrary number of multiplications in
the groups G and Gt, as well as a pairing evaluation on the underlying
plaintexts. We prove the semantic security under chosen plaintext attack
of our scheme under a generalized subgroup membership assumption,
and we also prove that it cannot achieve ind-cca1 security. We eventually
propose an original application to shared decryption. On the theoretical
side, this scheme is an example of cryptosystem which can be naturally
implemented with groups of prime order, as the homomorphic properties
require only a projecting pairing using Freeman’s terminology. However
the application to shared decryption also relies on the fact that the pair-
ing is cancelling and therefore does not survive this conversion.

1 Introduction

Homomorphic encryption scheme allows one to operate on plaintexts, only from
their given ciphertexts. The Elgamal encryption is a classical example of such a
homomorphic encryption, since, given two ciphertexts, it is easy to obtain the
encryption of the product of the two corresponding plaintexts. This malleability
property is of crucial interest since it is the core of many electronic realizations
of real-life applications like electronic voting [BFP+01, DJ01], private informa-
tion retrieval [Lip05], verifiable encryption [FPS00], mix-nets [NSNK06, Jur03],
auction protocols [MMO10], etc. In most of these cases, there is a need for an
additively homomorphic encryption, in the sense that it is possible to obtain
the encryption of the sum of plaintexts. Since the introduction of the first prob-
abilistic encryption scheme by Goldwasser and Micali in 1984 [GM84] (where
they also formally defined the notion of semantic security for encryption), many

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 374–392, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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schemes were designed along the same lines, like Benaloh [Ben88], Naccache
and Stern [NS98], or Okamoto and Uchiyama [OU98]. These cryptosystems are
based on modular arithmetic, and use indeed several quotients of Z, so that
their one-wayness relies on the hardness of the factorization of (special form
of) RSA modulus and their semantic security on distinguishing some powers.
Significant improvements appear in the subsequent scheme designed by Pail-
lier [Pai99] in 1999 which is still very popular. Its semantic security is based
on the decisional composite residuosity assumption. Paillier’s scheme has then
been generalized by Damg̊ard and Jurik [DJ01], allowing one to encrypt larger
messages. All these schemes fit Gjøsteen’s framework around subgroup member-
ship problems [Gjo04, Gjo05], which encompasses also multiplicative schemes
like Elgamal. Encryption schemes supporting both additive and multiplicative
homomorphisms are of course critical for the design of highly functional cryp-
tosystems. A spectacular breakthrough was made by Gentry who proposed the
first fully homomorphic encryption scheme [Gen09], which allows to compute ar-
bitrary functions over encrypted data without the decryption key. Recent works
show that efficiency of such systems could become reality (see for instance some
solutions based on the (ring) learning with error problems [BV11, BGV12]).
On the way towards practical fully homomorphic encryption are schemes that
partially support additive and multiplicative homomorphisms, like Boneh, Goh
and Nissim’s scheme (BGN) [BGN05]. It is based on groups of points of elliptic
curves of composite orders which admit a pairing, supports an arbitrary number
of additions and only one multiplication. This remains sufficient to make possible
the evaluation of a formula in disjunctive normal form where each conjunction
has at most 2 literals. In practice, this provides efficient solutions, with quite
standard objects, for operations on encrypted data which do not require fully
homomorphic schemes, such as search or statistics.

Our Contributions. In this paper, we propose a homomorphic encryption scheme
which supports an arbitrary number of group operations and pairing evaluation
on the underlying plaintexts. We first give a generic construction of a homomor-
phic scheme which goes a step forward compared to Gjøsteen’s framework and
extends its properties. We provide an instantiation within groups of composite
orders with a pairing which has richer homomorphic properties, and discuss if
this instantiation can be moved into a prime-order setting.

One of the features of our new scheme is that it is possible to encrypt any
element of a subgroup of composite order of the group of points of a pairing-
friendly elliptic curve. Moreover, it is publicly possible, given the encryptions
of two points, to compute the encryption of the products of these points (if we
consider the group of points of the curve as multiplicative). It is as well possible to
publicly compute an encryption of the pairing of these two points. To finish, given
the encryptions of two pairing evaluations, it is possible to publicly compute an
encryption of the product of these values.

Even if the global setting of our scheme (bilinear groups of composite order) is
quite similar to the setting of BGN, the malleability properties of our scheme are
indeed very different from the ones of BGN. This comes from the fact that the
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plaintexts of BGN are small integers (or elements of Z/2Z) encoded in elliptic
curve points by exponentiation whereas plaintexts of our scheme are just points.

Quite surprisingly, our system is not ind−cca1 (cf. Prop. 1). This result proves
that even with strong assumptions, there exist homomorphic schemes which can-
not reach such a level of security. Moreover, the role of the splitting problem in
our system makes it possible to provide a natural and original application to
shared decryption, that does not rely on traditional secret sharing techniques.
Concerning the conversion in the prime-order setting, we are able to benefit
from Freeman’s transformation (cf. [Fre10, MSF10, SC12]) from pairing-based
schemes in composite-order groups into equivalent ones in prime-order groups:
Our basic scheme can be directly converted, which gives a more efficient cryp-
tosystem, based on the Decision Linear Problem. However, the nice result on
ind− cca1 security and the application to shared decryption do not survive this
conversion. This may give an evidence of the existence of limits to Freeman’s
transformation.

The paper is organized as follows. In section 2, we give the necessary background
to define a homomorphic encryption scheme for multiplications and pairing eval-
uation. In section 3, we describe a generic construction of a multiplicative homo-
morphic scheme. This construction gives schemes whose one-wayness is based on
a generalization of the splitting problem in finite groups and whose semantic secu-
rity is based on a generalization of the symmetric subgroup membership problem.
These problems have been introduced by Gjøsteen [Gjo04, Gjo05] and our generic
construction can be viewed as a generalization of his construction with more than
two subgroups. An instantiation of our construction in quotients ofZ can be found
in [GBD05]. Section 4 is devoted to an instantiation in bilinear groups of compos-
ite order that gives a concrete and efficient homomorphic scheme for multiplica-
tions and pairing evaluation. As detailed in that section, it is necessary, contrary
to BGN, to use groups whose order is the product of at least three prime num-
bers to get a secure scheme. At the end of this section we give an application to
shared decryption. Eventually, we compare our new cryptosystem with existing
schemes and discuss the (im)possibility to move our scheme into a prime-order
setting.

2 Background

2.1 Encryption Scheme: Definitions

Definition. Let λ ∈ N be a security parameter. An encryption scheme is a triple
of algorithms E = (KeyGen,Encrypt,Decrypt). The probabilistic polynomial-time
key generation algorithm KeyGen takes 1λ as input and returns a pair (pk, sk)
of public key and the matching secret key. The probabilistic polynomial-time
encryption algorithm Encrypt takes 1λ, a public key pk and a message m as
inputs, and outputs a ciphertext c. The deterministic polynomial-time decryp-
tion algorithm Decrypt takes 1λ, a secret key sk and a ciphertext c as inputs
and returns either a message m or the symbol ⊥ which indicates the invalidity
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of the ciphertext. The scheme must be correct, which means that for all secu-

rity parameters λ, and for all messages m, if (pk, sk)
$←− E .KeyGen(1λ) then

E .Decrypt(1λ, sk, E .Encrypt(1λ, pk,m)) = m with probability (taken on all inter-
nal random coins and random choices) 1.

Security Requirements. The total break of an encryption scheme is declared
if an attacker can recover the secret key from (at least) the public key. Therefore
any probabilistic polynomial-time Turing machine A (the attacker) must have a
success in recovering the public key arbitrarily small, where the success is defined,

for an integer λ, as SucctbE (A) = Pr
[
(pk, sk)

$←− E .KeyGen(1λ) : A(pk) = sk
]
.

A stronger security notion expected from an encryption scheme is the one-
wayness, which means that, given only the public data, an adversary cannot
recover the message corresponding to a given ciphertext. More precisely, if we
denote by M the set of plaintexts, any probabilistic polynomial-time Turing
machine A has a success in inverting the encryption algorithm arbitrarily small,
where the success is defined, for an integer λ, as SuccowE (A) equals to

Pr
[
(pk, sk)

$←− E .KeyGen(1λ),m $←− M : A(pk, E .Encrypt(1λ, pk,m)) = m
]
.

Note that the previous definition supposes that the attacker has no more infor-
mation than the public key : the attacker is said to do a chosen-plaintext attack
(since he can produce the ciphertext of messages of his choice). If he has access
to a decryption oracle, the attack is said be a chosen-ciphertext attack.

An encryption scheme must indeed reach a stronger notion of security : it
must have semantic security (a.k.a. indistinguishability). This means that an
attacker is computationally unable to distinguish between two messages, chosen
by himself, which one has been encrypted, with a probability significantly better
than one half. The indistinguishability game is formally defined as:

Experiment Expind−atk
E (A)

(pk, sk)
$←− E .KeyGen(1λ)

(m0,m1, s)
$←− AO1

1 (pk)

b�
$←− {0, 1}

c�
$←− E .Encrypt(1λ, pk,mb�)

b
$←− AO2

2 (s, c�)
if b = b� then return 1
else return 0

with

– atk = cpa and
• O1 = ∅
• O2 = ∅

– atk = cca1 and
• O1 = E .Decrypt(1λ, sk, ·)
• O2 = ∅

– atk = cca2 and
• O1 = E .Decrypt(1λ, sk, ·)
• O2 = E .Decrypt(1λ, sk, ·)

where the adversary A is modeled as a 2-stage probabilistic polynomial-time
Turing machine (A1,A2). In the CCA2 game, a natural restriction is imposed
to A2 which is not allowed to query O2 on c�. The advantage of the attacker is

then defined as Advind−atk
E (A) =

∣∣∣Pr(Expind−atk
E (A) = 1

)
− 1

2

∣∣∣ .
It is well known that encryption schemes which enjoy homomorphic properties,

cannot achieve the highest level of security (namely IND-CCA2 security), but can
still achieve IND-CCA1 security (see for instance [APK10]).
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2.2 Homomorphic Encryption for Multiplications and Pairing
Evaluation

In order to describe more precisely our new encryption scheme with its features,
we will use the following less general definition of encryption schemes but more
adapted to our setting.

First of all, the set of plaintexts will be composed of two distinct multiplicative
groups (M,×M) and (Mt,×Mt). Similarly, the set of ciphertexts is composed of
two distinct sets C and Ct corresponding respectively to encryptions of elements
of M and Mt. Moreover, a particular characteristic of our encryption scheme
is that there is a function e (a pairing) mapping elements from M × M onto
elements of Mt.

Definition 1. Let λ ∈ N be a security parameter. An homomorphic encryption
scheme for multiplications and pairing evaluation is composed of the following
algorithms:

– KeyGen is a probabilistic algorithm which takes as input 1λ and outputs the
keys pair (pk, sk) of public and secret key respectively, the groups of plaintexts
M and Mt, the sets of ciphertexts C and Ct and the pairing e : M×M →
Mt. The description of the groups M,Mt,C,Ct and of the pairing e will be
common parameters for each of the following algorithms;

– Encrypt is a probabilistic algorithm which takes as inputs 1λ, the public key
pk and a plaintext m. If m ∈ M it outputs a ciphertext c ∈ C else if m ∈ Mt

it outputs a ciphertext c ∈ Ct;
– Decrypt is a deterministic algorithm which takes as inputs 1λ, the secret key
sk and a ciphertext c. It outputs either a plaintext m (in M if c ∈ C and in
Mt if c ∈ Ct) or ⊥;

– EvalMul is a probabilistic algorithm which takes as inputs 1λ, the public key
pk and two ciphertexts c and c′ of unknown plaintexts m and m′ of the same
group. If c and c′ are elements of C, it outputs an element c′′ ∈ C which is
a random encryption1 of m ×M m

′ ; else if c and c′ are elements of Ct it
outputs a random encryption c′′ ∈ Ct of m×Mt m

′;
– EvalPair is a probabilistic algorithm which takes as inputs 1λ, a public key
pk, and two ciphertexts c and c′ of C of unknown plaintexts m and m′ of
M. It outputs a random encryption c′′ ∈ Ct of e(m,m′) ∈ Mt.

These algorithms must verify the different correctness properties, defined as fol-
lows. For all λ ∈ N,

Pr
[
(pk, sk)

$←− KeyGen(1λ),m
$←− M ∪Mt, c

$←− Encrypt(1λ, pk,m) :
Decrypt(1λ, sk, c) = m

]
= 1.

Pr
[
(pk, sk)

$←− KeyGen(1λ),m
$←− M,m′ $←− M,

c
$←− Encrypt(1λ, pk,m), c′ $←− Encrypt(1λ, pk,m′), c′′ $←− EvalMul(1λ, c, c′, pk) :

Decrypt(1k, sk, c′′) = m×M m
′] = 1

1 By random encryption, we mean that the distribution of the outputs c′′ of EvalMul
is the same as the distribution of the encryption algorithm on inputs m×M m′.
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Pr
[
(pk, sk)

$←− KeyGen(1λ),m
$←− Mt,m

′ $←− Mt,

c
$←− Encrypt(1λ, pk,m), c′ $←− Encrypt(1λ, pk,m′), c′′ $←− EvalMul(1λ, c, c′, pk) :

Decrypt(1k, sk, c′′) = m×Mt m
′] = 1

and for pairing evaluation:

Pr
[
(pk, sk)

$←− KeyGen(1λ),m
$←− M,m′ $←− M,

c
$←− Encrypt(1λ, pk,m), c′ $←− Encrypt(1λ, pk,m′), c′′ $←− EvalPair(1λ, c, c′, pk) :

Decrypt(1k, sk, c′′) = e(m,m)′
]
= 1

At that point, it is important to keep in mind that in our scheme, a first level of
plaintexts will lie in the group (M,×M) and their corresponding ciphertexts will
lie in the set C. Once EvalPair is evaluated on two such ciphertexts, the result is
an encryption of the pairing of the original first level plaintexts from M and so
lies in Ct: this gives a second level of ciphertexts, corresponding to the second
level of plaintexts Mt. Since the homomorphic property will also apply on the
second level, it is possible to obtain the encryption of products of such pairings.
This is why our scheme is homomorphic for the two multiplications ×M and
×Mt and for the pairing evaluation.

Another important remark is that the scheme can not be semantically secure
for the whole message set: The first stage adversary of the indistinguishability
game can pick one plaintext inM and the other one inMt. Then the second stage
adversary will observe if the challenge ciphertext is in C or Ct. The semantic
security of the scheme will rather hold for plaintexts of M and for plaintexts of
Mt separately.

3 General Setting

In this section, we first give a natural generic construction of an homomor-
phic scheme on which our instance of an homomorphic encryption scheme for
multiplications and pairing evaluation will be based. This construction is quite
natural but the algorithmic problem on which relies the one wayness of the
scheme is not. That’s why we give in Subsection 3.3 a particular setting of this
construction for which the one wayness of the scheme is related to a classical
splitting problem. This construction generalizes the scheme from [GBD05] in an
abstract group with more than 2 subgroups. This generalization actually allows
the design of richer cryptosystems: indeed, the scheme from [GBD05] does not
support bilinear groups (see Subsection 4.2), whereas it is possible to implement
our framework with such specific groups, which leads to an encryption scheme
which is more versatile. In the next section, we show how to apply this con-
struction to pairing-friendly elliptic curves to get the homomorphic encryption
scheme for multiplications and pairing evaluation.

3.1 A Generic Construction

Let λ ∈ N be a security parameter and k be a fixed integer. Let G be a finite
Abelian multiplicative group and for i ∈ {1, . . . , k}, Hi is a subgroup of G of
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order denoted by |Hi|. We impose that the orders of the subgroups H1, . . . ,Hk

are k distinct integers of λ bits such that gcd(|H1|, . . . , |Hk|) = 1. We denote

(u1, . . . , uk) the integers such that
∑k

i=1 ui|Hi| = 1. We call Bézout the algorithm
which computes these k values from the orders |H1|, . . . , |Hk|.

In the following, whenever a group appears in the input or output of an
algorithm, it means that an efficient way to compute the group law is known
and that we can sample random elements of this group. For example, the groups
are cyclic and a generator is given.

We denote as GroupsGen the probabilistic algorithm that takes as input 1λ and
outputs the tuple (G,H1, . . . ,Hk, |H1|, . . . , |Hk|). The public key pk consists of
the groups G,H1, . . . ,Hk whereas the private key sk will consist of their orders
and the Bézout coefficients. More precisely, the key generation algorithm is as
follows:

Algorithm KeyGen(1λ)

(G,H1, . . . ,Hk, |H1|, . . . , |Hk|) $←− GroupsGen(1λ)
(u1, . . . , uk) ← Bézout(|H1|, . . . , |Hk|)
pk ← (G,H1, . . . ,Hk)
sk ← (|H1|, . . . , |Hk|, u1, . . . , uk)
return (pk, sk)

The encryption algorithm will use the homomorphism Π : G → G/H1 × · · · ×
G/Hk. This homomorphism is the Cartesian product of the surjective homomor-
phisms πi : G → G/Hi for i = 1, . . . , k. The set of plaintexts is defined to be G.
Let m be an element of G: It is encrypted as a random representative of the k-
tuple of classes Π(m) = (mH1, . . . ,mHk) ∈ G/H1 × · · · ×G/Hk. For example,
when generators (h1, . . . , hk) of (H1, . . . ,Hk) are publicly known, an encryption
ofm consists therefore of (mhr11 , . . . ,mh

rk
k ) for random r1, . . . , rk ∈ {1, . . . , |G|}.

To decrypt C = (c1, . . . , ck) ∈ Gk, one computes
∏k

i=1 c
ui|Hi|
i . If C is an encryp-

tion of m, then
∏k

i=1 c
ui|Hi|
i = m

∑k
i=1 ui|Hi| = m, and the encryption scheme is

correct.
More formally, the encryption and decryption algorithms are described bellow.

It is easy to see that this gives an homomorphic scheme : if C1 (resp. C2) is an
encryption ofm1 (resp.m2) then C1C2 (with the component-wise multiplication)
is an encryption of m1m2 that can be randomized by a multiplication by a
random element of (H1, . . . ,Hk).

Algorithm Encrypt(1k, pk,m)

(G,H1, . . . ,Hk) ← pk
C

$←− Π(m)
return C

Algorithm Decrypt(1k, sk, C)

(c1, . . . , ck) ← C
(|H1|, . . . , |Hk|, u1, . . . , uk) ← sk
m←

∏k
i=1 c

ui|Hi|
i

return m

3.2 Security of the Generic Construction

The total break under a chosen plaintext attack of the scheme presented in the
previous subsection is equivalent to the following problem: given G and k of its
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subgroups H1, . . . ,Hk, find the orders of H1, . . . ,Hk. This is a standard order-
finding problem which can be solved with standard algorithms for computing
discrete logarithms. These algorithms are of complexity either exponential or
sub-exponential in the security parameter, depending on context (when the dis-
crete logarithm is supposed to be hard). If the order of G is given, the total
break is equivalent to the factorization of this number, which is at least a λ bit
integer (note that not the whole factorization of |G| might be found). The best
algorithms for factoring have a sub-exponential complexity.

The one wayness of the scheme under a chosen plaintext attack is equivalent
to the difficulty of the following problem: Given a random representative of the
image Π(m) ∈ G/H1 × · · · × G/Hk, recover m ∈ G. In the next subsection,
we give a specific setting where this problem is equivalent to a more common
problem, namely the splitting problem [Gjo05].

Concerning the indistinguishability under a chosen plaintext attack, we define
the following problem, which is generally called a subgroup membership prob-
lem. In this specific form it is a direct generalization of the symmetric subgroup
membership problem (cf. [Gjo04, Gjo05]), where k = 2, H1 ∩ H2 = {1} and
G = H1H2.

Definition 2 (Generalized Symmetric Subgroup Membership Prob-
lem). The generalized symmetric subgroup membership problem (GSSMP) con-
sists, given the tuple (G,H1, . . . ,Hk) as input, in distinguishing the two distri-
butions G × · · · × G and H1 × · · · × Hk. More formally, let us consider the
following random experiment:

Experiment ExpGSSMP
GroupsGen(A)

(G,H1, . . . ,Hk, |H1|, . . . , |Hk|) $←− GroupsGen(1λ)

b�
$←− {0, 1}

if b� = 0 then X
$←− G× · · · ×G

else X
$←− H1 × · · · ×Hk

b← A(G,H1, . . . ,Hk, X)
if b = b� then return 1
else return 0

The advantage of A in solving the generalized symmetric subgroup membership
problem is

AdvGSSMP
GroupsGen(A) =

∣∣∣∣Pr[ExpGSSMP
GroupsGen(A) = 1]− 1

2

∣∣∣∣ .
Theorem 1 (ind− cpa). Let k be an integer. If there exists an attacker against
the indistinguishability of the generic encryption scheme of subsection 3.1 with
parameter k in a chosen plaintext attack with security parameter λ, running time
τ and advantage ε, then there exists an algorithm for the generalized symmetric
subgroup membership problem with the same security parameter, advantage ε/2
and running time τ + Tk-Mul where Tk-Mul is the time to perform k multiplica-
tions in G.
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Remark that conversely, given a distinguisher for the GSSMP, it is trivial to
build an attacker for the semantic security. As a result, the two problems are
polynomially equivalent.

3.3 A Particular Setting

A particular specialization of the generic construction of subsection 3.1, is when
there exists subgroups G1, . . . ,Gk of G such that G =

∏k
i=1 Gi and Gi ∩Gj =

{1} if i �= j. We suppose that |G1|, . . . , |Gk| are k distinct primes of λ/(k − 1)
bits. In this case, we define the subgroupsHi asHi =

∏
j �=iGj for i ∈ {1, . . . , k}.

We denote as GroupsGen′ the algorithm that takes as input 1λ and outputs
the tuple (G,H1, . . . ,Hk, |H1|, . . . , |Hk|,G1, . . . ,Gk).

We still suppose that there exists a public method to sample random elements
of G and of the subgroups H1, . . . ,Hk. However, it is not necessary that anyone
can sample elements of the subgroups G1, . . . ,Gk (as we shall see in subsection
4.2, such an implementation of the construction with elliptic curves equipped
with pairings, actually leads to an insecure scheme). The encryption scheme
is defined in the same way as in subsection 3.1. Only the construction of the
subgroups H1, . . . ,Hk differs (with GroupsGen′ instead of GroupsGen).

For each i ∈ {1, . . . , k}, G/Hi is isomorphic to Gi. We denote as φi this
isomorphism and as Φ the Cartesian product of the φi for i ∈ {1, . . . , k}. This
map Φ is an isomorphism between G/H1 × · · · ×G/Hk and G1 × · · · ×Gk.

We have the following commutative diagram where each map is an isomor-
phism:

G G/H1 × · · · ×G/Hk

G1 × · · · ×Gk

Π

Ψ
Φ

Let m be an element of G, then there is a unique decomposition of m as a
k−tuple (m1, . . . ,mk) ∈ G1 × · · · × Gk such that m =

∏k
i=1mi. The map Ψ

corresponds to this decomposition, and Ψ−1 is the computation of the product∏k
i=1mi.

Remark 1. Decrypting a ciphertext C = (c1, . . . , ck) associated to the plain-
text m is closely related to the decomposition of Ψ as it corresponds to the
computation of Ψ−1 ◦ Φ. More precisely, let us fix i ∈ {1, . . . , k} and let us
consider a representative ci = mhi ∈ G of πi(m) with hi ∈ Hi. Remember

that we have
∑k

j=1 uj |Hj | = 1. Modulo |Gi| this sum gives ui|Hi| = 1 as |Gi|
divides all |Hj| with j �= i. As a consequence, if (m1, . . . ,mk) = Ψ(m), then

m
ui|Hi|
j = 1 if j �= i and mui|Hi|

i = mi. The decryption
∏k

i=1 c
ui|Hi|
i gives∏k

i=1 c
ui|Hi|
i =

∏k
i=1(mhi)

ui|Hi| =
∏k

i=1(m1m2 . . .mk)
ui|Hi| =

∏k
i=1mi = m.
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To sum up, the decryption process corresponds to the computation of the
tuple (m1, . . . ,mk) with Φ and making their product with ψ−1.

In this special setting, breaking the one wayness of the encryption scheme is
equivalent to solving a direct generalization of a well known problem, the split-
ting problem defined in (cf. [Gjo04, Gjo05]) where k = 2.

Definition 3 (Splitting Problem). The splitting problem consists, given the
tuple (G,H1, . . . ,Hk) and m ∈ G, in finding (m1, . . . ,mk) ∈ G1 × · · · × Gk

such that m =
∏k

i=1mi. More formally, let us consider the following random
experiment:

Experiment ExpSP
GroupsGen′(A)

(G,H1, . . . ,Hk, |H1|, . . . , |Hk|,G1, . . . ,Gk) ← GroupsGen′(1λ)

m
$←− G

(m1, . . . ,mk) ← A(G,H1, . . . ,Hk,m)

if ∀i ∈ {1, . . . , k},mi ∈ Gi and
∏k

i=1mi = m then return 1
else return 0

The success of A in solving the splitting problem is

SuccSPGroupsGen′(A) = Pr
[
ExpSP

GroupsGen′(A) = 1
]
.

Theorem 2 (One-Wayness-CPA). If there exists an attacker against the
one-wayness under a chosen plaintext attack of the encryption scheme of sub-
section 3.3 with security parameter λ, running time τ and success ε, then there
exists an algorithm for the splitting problem with the same security parameter,
success εk and running time τ + (k+ 1)Tk-Mul + Tk-Inv + (k + 1)Tk-Rand where
Tk-Mul (resp. Tk-Inv) is the time to perform a multiplication (resp. an inver-
sion) in G × · · · × G, and Tk-Rand the time to sample a random element of
H1 × · · · ×Hk.

Proof. Let us denote E ′ the encryption scheme of this subsection and suppose
that there is an attacker A which succeeds in breaking the one-wayness of the
scheme with probability ε = SuccowE′ (A) and running time τ . We show that
this attacker can be used to design a successful algorithm B which solves the
Splitting Problem. The challenge of B consists of (G,H1, . . . ,Hk,m). Let us
denote Ψ(m) = (m1, . . . ,mk), the solution that B is looking for. The algorithm
B first retrieves m1 thanks to its oracle A. Let (h1, . . . , hk) be a random element
of H1 × · · · ×Hk and f another random element of H1. B builds the ciphertext
C = (mh1, h2f, . . . , hkf). Denote (1, f2, . . . , fk) = Ψ(f). It is easy to see that C is
a random encryption ofm1f2f3 . . . fk = m1f where f is known by B. As a result,
B forward the public key (G,H1, . . . ,Hk) and the ciphertext C to A, and gets
m1 with probability ε. Iterating this procedure, B outputs (m1, . . . ,mk) with
probability εk, k calls to A, k+1 samples of random elements of H1 × · · · ×Hk

and (k + 1) multiplications and one inversion in G× · · · ×G. ��
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Again, there is an equivalence between the two problems. Let us denote C =
(c1, c2, . . . , ck) an encryption of m where ci = mhi, with hi ∈ Hi for all i ∈
{1, . . . , k} and (m1,m2, . . . ,mk) = Ψ(m). For i ∈ {1, . . . , k}, Ψ(ci) = Ψ(m)Ψ(hi)
and Ψ(hi) = (hi,1, . . . , hi,i−1, 1, hi,i+1, . . . , hi,k) due to the construction of Hi.
As a result, an oracle for the Splitting Problem called on the input ci gives mi in
the i-th coordinate. With k calls to the oracle, one can retrievem = m1m2 . . .mk

and break the one wayness of the encryption scheme.

3.4 Known Implementations of the Construction

Let p = 2n + 1, n = q1q2 where p, q1, q2 are distinct primes. The particular
setting described in the previous subsection was used in [GBD05] with G the
cyclic subgroup of the multiplicative group (Z/pZ)∗ of order n and k = 2. The
subgroup H1 = G2 (resp. H2 = G1) is the cyclic subgroup of order q2 (resp. of
order q1). In this work the Splitting Problem was named Projection Problem.
This scheme was generalized in an abstract group G still with k = 2 in [Bro07].
Our construction can thus be viewed as a generalization of this last work with
k ≥ 2. Other schemes based on the Symmetric Subgroup Membership Problem
and the Splitting Problem are implementations of this construction, such as the
scheme of [Gjo05].

4 A Concrete Homomorphic Scheme for Multiplications
and Pairing Evaluation

In this section, we consider the construction of subsection 3.3 in a context of
pairing-friendly elliptic curves. This means that there exists a non-degenerate
efficiently computable bilinear map e : G ×G → Gt, where Gt is a group iso-
morphic to G called the target group. In this case, G is essentially a group of
points of an elliptic curve. We will then enjoy a double homomorphic property:
The homomorphy for the group of points of the elliptic curve and the homomor-
phy in the target group of the pairing. As a result we will get a secure scheme
satisfying Definition 1, which is more versatile than existing schemes.

4.1 Implementation of the Generic Construction with Bilinear
Groups with Composite Orders

As in the generic construction, let k be a fixed integer and λ ∈ N be a security
parameter. Let q1, . . . , qk be k distinct prime integers of λ bits and n =

∏k
i=1 qi

be the product of these primes. The integer  is defined as the smallest integer
such that p = n − 1 is prime and p ≡ 2 (mod 3). The following construction
of a bilinear group with composite order has been initially proposed in [BGN05]
with k = 2.

Let us consider the supersingular elliptic curve of equation y2 = x3+1 defined
over Fp. The Fp-rational points of this curve form a group of cardinality p+1 =
n and we denote by G its subgroup of order n. Let Gt be the subgroup of (Fp2)

�
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of order n. Finally, let e : G×G → Gt be the modified Weil Pairing as defined
in [BF03, Mil04]. In [BRS11], a method with ordinary curves and embedding
degree 1 is also proposed which is quite equivalent in terms of efficiency: For
the supersingular curve construction, ρ := log p/ logn ≈ 1 ( is less than 10 bits
in practice, for a 1500 bits n) and the embedding degree is 2. In [BRS11], the
curves constructed with embedding degree 1 have ρ ≈ 2. So both constructions
are close to the minimum ρ× κ = 2 where κ is the embedding degree.

As in the construction of subsection 3.3, we denote by Gi the subgroup of
G of order qi, for all integers i ∈ {1, . . . , k} and the subgroups Hi are again

defined as Hi =
∏k

j=1
j �=i

Gj . With these groups, one can apply the construction of

subsection 3.3 to get an homomorphic encryption scheme in G. Moreover, we can
define the corresponding subgroups in Gt and we will get another homomorphic
encryption scheme inGt. With the pairing e, we get an homomorphic encryption
scheme for multiplications and pairing evaluation.

We denote as BG the algorithm which takes as input 1λ and k and outputs
the tuple (G,Gt, e,H1, . . . ,Hk,G1, . . . ,Gk, q1, . . . , qk).

4.2 Insecure Instantiation with k = 2

If one chooses k = 2, then H2 = G1 is of order q1 and H1 = G2 is of order q2.
In this case, the corresponding encryption scheme in Gt is a direct generaliza-
tion of the [GBD05] scheme in Fp2 . Unfortunately, in this case, the Generalized
Symmetric Subgroup Membership Problem of Definition 2 is tractable and the
encryption scheme is therefore not semantically secure. Indeed, as we want to be
able to sample random elements of H1 and H2 then generators h1 of order q2
and h2 of order q1, must be public. In that case, we can easily recognize elements
of H1 ×H2 thanks to the pairing e: Let (x1, x2) ∈ G×G, then

(x1, x2) ∈ H1 ×H2 ⇐⇒ e(x1, h2) = 1 and e(x2, h1) = 1.

To see that fact, let g be a generator of G and let us write h2 = grq2 for some
r prime to q1 and x1 = gr

′
for some integer r′. Then x1 is an element of H1 if

and only if q1 divides r′, if and only if e(x1, h2) = e(g, g)
rr′q2 = 1. The criterion

for x2 ∈ H2 holds by symmetry.
In the BGN scheme (cf. [BGN05]), a composite bilinear group with k = 2

is actually used. However, in that particular scheme, only a random generator
of the subgroup G1 is given in the public key which makes the previous attack
unfeasible. As a result, only messages modulo G1 can be encrypted. This is not
a problem since in the BGN cryptosystem, only small plaintext messages m of
N are encoded with the exponentiation g �→ gm; the decryption can then be
performed by the computation of a small discrete logarithm in basis g modulo
G1. In our scheme, we want to encrypt any element of G, that is why we also
need to publish a generator of G2 and this attack is then possible. Therefore we
need at least k = 3 to get a secure scheme.
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4.3 Description of Our Scheme with k = 3

As previously said, to design a secure instantiation from our methodology, we
need to use the bilinear groups with composite-order generator BG with k at
least equals to 3. For simplicity, we expose our scheme with k = 3. This means
that the integer n is the product of three primes n = q1q2q3. We suppose also
that hi are random generators of the groups Hi of orders n/qi for i = 1, 2, 3.
They can be produced by taking a generator g of G and setting hi = g

αiqi , for
random αi prime to n.

Note that e(g, g) generates the group Gt and e(g, hi) generates the subgroup
of Gt of order n/qi. We can therefore apply the generic construction in G and
Gt: to encrypt of elements ofGt, instead of multiplying the message by a random
power of hi, one has to multiply by a random power of e(g, hi).

This gives an homomorphic scheme for multiplications and pairing evaluation
with M = G, Mt = Gt, C = G3 and Ct = Gt

3. This scheme is presented in
Figure 1.

Algorithm KeyGen(1λ)

(G,Gt, e,H1,H2,H3,G1,G2,G3, q1, q2, q3)
$←− BG(1λ, k = 3)

g
$←− G of order n ; gt ← e(g, g)

for i from 1 to 3 do
hi

$←− Hi of order n/qi
hti ← e(g, hi)

(u, v, w) ← Bézout(q2q3, q1q3, q1q2)
n ← q1q2q3
pk ← (g, h1, h2, h3, gt, ht1 , ht2 , ht3 , n,G,Gt, e)
sk ← pk ∪ (q1, q2, q3, u, v, w)
return (pk, sk)

Algorithm Encrypt(1λ, pk,m)

if m ∈ G then
for i from 1 to 3 do

ri
$←− {1, . . . , n}

ci ← mhri
i

C ← (c1, c2, c3)
else

for i from 1 to 3 do
ri

$←− {1, . . . , n}
ci ← mhri

ti

C ← (c1, c2, c3)
return C

Algorithm Decrypt(1λ, sk, C)

(c1, c2, c3) ← C
m ← cuq2q31 × cvq1q32 × cwq1q2

3

return m

Algorithm EvalPair(1k, pk, C,C′)

(c1, c2, c3) ← C
(c′1, c

′
2, c

′
3) ← C′

for i from 1 to 3 do
ri

$←− {1, . . . , n}
c′′i ← e(ci, c

′
i)h

ri
ti

return (c′′1 , c
′′
2 , c

′′
3 )

Algorithm EvalMul(1λ, pk, C,C′)

(c1, c2, c3) ← C
(c′1, c

′
2, c

′
3) ← C′

if C ∈ G3 then
for i from 1 to 3 do

ri
$←− {1, . . . , n}

c′′i ← cic
′
ih

ri
i

else
for i from 1 to 3 do

ri
$←− {1, . . . , n}

c′′i ← cic
′
ih

ri
ti

return (c′′1 , c
′′
2 , c

′′
3 )

Fig. 1. Our new homomorphic encryption for multiplications and pairing evaluation
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Correctness of Decryption and Homomorphic Properties. The correct-
ness of the decryption algorithm follows from the generic construction. The ho-
momorphic property of EvalMul for both multiplication in G and Gt can be
checked easily. Concerning the pairing evaluation, for i = 1, 2, 3, we have

e(ci, c
′
i) = e(mh

ri
i ,m

′hr
′
i

i ) = e(m,m′) e(hrii ,m
′)e(m,hr

′
i

i )e(hrii , h
r′i
i )︸ ︷︷ ︸

of order n/qi

and the element e(hrii ,m
′)e(m,hr

′
i

i )e(hrii , h
r′i
1 ) lies in the subgroup of Gt of order

n/qi, therefore e(ci, c
′
i) is the i-th part of an encryption of e(m,m′).

Security Results. The one-wayness of our scheme against chosen plaintext
attacks follows from Theorem 2 if the splitting problem is hard. In G, this means
it must be hard to decompose an element m in m1,m2,m3 ∈ G1 × G2 × G3

such that m = m1m2m3. According to Theorem 1, our encryption scheme is
semantically secure against chosen plaintext attacks for messages in G if the
generalized symmetric subgroup membership problem with pairing is hard in G,
i.e., if it is hard to distinguish elements of H1 ×H2 ×H3 in G×G×G, given
generators ofG,H1,H2 andH3 and a pairing e : G×G → Gt. Given the pairing
e, it is easy to see that this GSSMP problem in G reduces to the GSSMP problem
in Gt. As a consequence, under the assumption that the generalized symmetric
subgroup membership problem with pairing is hard in G, our encryption scheme
is semantically secure against chosen plaintext attacks for both messages in G
and in Gt. This assumption can be proved to hold in the generic group model
if factoring n is hard, following the lines of the proofs of [KSW08, Section A.2]
and [JS08, Theorem 4].

Regarding the security against adaptive chosen ciphertexts attacks, the cryp-
tosystem being homomorphic, it cannot be even one-way (ow − cca2) in this
scenario. Little is known on the security of homomorphic schemes in the cca1
scenario without strong assumptions (cf. [BP04, APK10]). Surprisingly for our
cryptosystem, we are able to prove that for messages in G, ind− cca1 security
cannot be reached. This result proves that even with strong assumptions, all the
homomorphic schemes cannot be proved to be ind− cca1 secure.

Proposition 1. The new homomorphic encryption for multiplications and pair-
ing evaluation of Figure 1 is not ind− cca1 secure for plaintext messages in G.

Proof. Before getting its challenge ciphertext in the ind − cca1 experiment,
an adversary can use its decryption oracle to decompose a random x ∈ G in
x1, x2, x3 ∈ G1 ×G2 ×G3 such that x = x1x2x3 following the reduction of the
proof of Theorem 2. Knowing elements of G1,G2,G3, the subgroups of order q1,
q2 and q3, the adversary can now solve the subgroup membership problem like in
the case k = 2 (see subsection 4.2). Hence, he can break the indistinguishability
of the scheme.
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As the scheme is not ind − cca1 secure in G, from c = (c1, c2, c3) a ciphertext
for m ∈ G, the attacker can get some information on m. For example, the
proposition tells us that during a “lunchtime” attack, an attacker can solve the
splitting problem and compute elements x1, x2, x3 ∈ G1×G2×G3. As a result,
he can compute, e(ci, xi) = e(mi, xi) for i ∈ {1, . . . , 3}. The product of these
three pairings evaluations gives e(m,x). If x is a generator, the adversary can
further get the pairing evaluation of m with elements of G of his choice. Note
that this lunchtime attack in not a full break, the adversary only gets a piece of
information on the plaintext. Moreover this attack does not apply in Gt. Note
also that Proposition 1 can be generalized for all k.

4.4 Application to Shared Decryption

Our cryptosystem uses three projections whose kernels are subgroups of coprime
orders. This particular setting makes it possible to design an original shared de-
cryption process. Suppose that c = (c1, c2, c3) is an encryption of m ∈ G. The
goal is that three entities A1, A2, A3, cooperate to decrypt c. Moreover, we want
to achieve some kind of robustness, i.e., that each entity can check if the other
ones give correct results. The protocol is a simple modification of our cryptosys-
tem (see Figure 1) as follows: at the end of the KeyGen algorithm, performed by
a trusted dealer, each Ai is given the public key together with the prime qi. The
Encrypt, EvalMul and EvalPair algorithms remain unchanged. During the new

Decrypt algorithm, each entity recovers mi := c
ui(n/qi)
i where ui is the inverse

of n/qi modulo qi. Then, in a reconstruction phase, each party broadcasts mi

to the others and each party can recover the plaintext message m = m1m2m3.
The correctness of the decryption follows from Remark 1. Moreover, before the
reconstruction, each entity Ai can check the validity of the message sent by the
others. Without loss of generality, A1 can compute a random element x2 ∈ G2

(resp. x3 ∈ G3) by selecting a random power of hq13 (resp. of hq12 ). Following the
discussion at the end of the previous subsection, A1 accepts m2 and m3 if and
only if e(ci, xi) equals e(mi, xi) for i ∈ {2, 3}.

This process can be easily extended to more participants by using our con-
struction with k > 3. We note that in this protocol, each Ai learns a part of the
secret key and can break the semantic security of the scheme as he can generate
elements of G1,G2,G3 and solve the subgroup membership problem (as in the
case k = 2). However, we believe that this protocol is of interest because of its
simplicity and originality compared to standard secret sharing techniques.

5 Comparison with Other Works and Conclusion

As we saw in subsection 4.2, the BGN scheme from [BGN05] is quite similar to
ours but with k = 2. In that cryptosystem, only small plaintext messagesm ofN
are encoded with the exponentiation g �→ gm. This encoding allows to compute
sums of messages by computing product of points and to get products with the
pairing evaluations. We can also use this encoding in our cryptosystems to get
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such homomorphic properties. Contrary to our scheme, in the BGN cryptosystem
one cannot get encryption of product of arbitrary points, and one cannot get
encryption of pairings and of product of pairings. Thus the properties of our
scheme are quite different from the ones of BGN.

In [BWY11, Lew12] a general subgroup decision problem is formulated, uni-
fying several decision assumptions made in bilinear composite groups this past
few years in the area of (hierarchical) identity-based encryption. This decision
problem is different from GSSMP (see Def. 2): two of the subgroups play a dif-
ferent roles from the others, whereas in the problem we consider the role played
by all subgroups Hi to be the same.

In [Fre10], Freeman provides a framework to translate features of composite-
order bilinear groups in the prime-order setting. To this purpose, he defines two
kinds of property for pairing: cancelling and projecting. Projecting intuitively
means that the pairing and some projections maps commute. This is the core
of our construction: a projection map is used in the decryption algorithm, since
a ciphertext is projected in G1 × G2 × G3 * G/H1 × G/H2 × G/H3, and
the product of each terms gives the plaintext message (cf. Remark 1). The fact
that the projection and the pairing commute ensures that the pairing of two
ciphertexts in G3 decrypts to the pairing of the corresponding plaintexts.

Our cryptosystem can thus be adapted in the prime-order setting following
Freeman’s construction of a projecting pairing to convert the BGN cryptosystem.
For example, we can obtain a cryptosystem satisfying Definition 1 as follows: Let
e : G × G → Gt be a symmetric pairing where G and Gt are groups of prime
order q. Freeman’s framework (cf. [Fre10, subsection 3.1]) allows to construct
a subgroup H of G = G3, a pairing ê : G × G → G9

t and a subgroup Ht of
Gt := G9

t such that there exits maps π1 : G → G and πt : Gt → Gt with
H ⊂ kerπ1, Ht ⊂ kerπt and ê(π1(x), π1(y)) = πt(ê(x, y)), for all (x, y) ∈ G2.
The public key consists ofG,H,Gt and Ht. The private key is the maps (π1, πt).
To encrypt m ∈ G, one computes c = (m,m,m)h where h is a random element
of H. Decryption of c is done by applying π1, which gives π1((m,m,m)). From
that, m is recovered as the first element is a power of m, ms where s is an
explicit non zero element of Fq. Decryption in Gt is carried out in the same way
with the map πt. The scheme is homomorphic for multiplication and for pairing
evaluation thanks to the projecting property.

As for the BGN cryptosystem, this conversion gives a more efficient scheme in
terms of key size and computation cost. The ind− cpa security of the converted
scheme relies on the Decision Linear Problem.

Our framework also uses a pairing with the cancelling property since we have
a decomposition G = G1G2G3 such that e(gi, gj) = 1 if gi ∈ Gi and gj ∈ Gj

with i �= j. This cancelling property is needed for the proof of the result on
ind − cca1 security of Proposition 1. Moreover, this property and the relation
with the splitting problem is also the core of our application to shared decryption.
These properties do not remain after the conversion.

In [MSF10, SC12], the problem of the transposition of all cryptosystems using
composite-order bilinear groups in prime-order groups is discussed. In [SC12] a
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prime-order construction with both cancelling and projecting properties is given,
together with a new security proof of the blind signature scheme of [MSF10] in
the prime-order setting, which was believed impossible to get outside composite
bilinear group.

We leave as open the problem of proving that the additional properties of our
cryptosystem, which need particular projecting and cancelling maps, can or can
not be instantiated in prime-order groups with a direct approach. An impossible
result would answer the open problem left in [SC12].
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Abstract. In many applications where encrypted traffic flows from an
open (public) domain to a protected (private) domain there exists a gate-
way that bridges the two domains and faithfully forwards the incoming
traffic to the receiver. We observe that indistinguishability against (adap-
tive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal
in face of active attacks in a public domain, can be essentially relaxed
to indistinguishability against chosen-plaintext attacks (IND-CPA) for
ciphertexts once they pass the gateway that acts as an IND-CCA/CPA
filter, by first checking the validity of an incoming IND-CCA ciphertext,
then transforming it (if valid) into an IND-CPA ciphertext, and finally
forwarding the latter to the recipient in the private domain. “Non-trivial
filtering” can result in reduced decryption costs on the receiver’s side.

We identify a class of encryption schemes with publicly verifiable ci-
phertexts that admit generic constructions of (non-trivial) IND-CCA/
CPA filters. These schemes are characterized by existence of public al-
gorithms that can distinguish between valid and invalid ciphertexts. To
this end, we formally define (non-trivial) public verifiability of ciphertexts
for general encryption schemes, key encapsulation mechanisms, and hy-
brid encryption schemes, encompassing public-key, identity-based, and
tag-based encryption flavors. We further analyze the security impact of
public verifiability and discuss generic transformations and concrete con-
structions that enjoy this property.

1 Introduction

Transmission of sensitive information over public networks necessitates the use
of cryptographic protection. Modern cryptography offers various techniques, in-
cluding public key encryption (PKE) and identity-based encryption (IBE), by
which the sender can use public information to encrypt a message only the in-
tended receiver can decrypt. These two encryption flavors can be combined into
a common syntax, called general encryption (GE) [1], and for longer messages,
hybrid encryption schemes based on key and data encapsulation techniques, i.e.
the KEM/DEM approach [10], are often more efficient.
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The most standard security notion for encryption schemes is indistinguisha-
bility (IND) — a ciphertext may not leak any information about the encrypted
message (except possibly its length) — whose definitions consider different types
of attacks. The strongest is an adaptive chosen-ciphertext attack (CCA), in which
an attacker can ask for decryption of ciphertexts of her own choice (other than
the target ciphertext). IND-CCA-security hence protects encrypted messages of
honest senders despite the threat that receivers may also have to decrypt ci-
phertexts constructed by the adversary. More generally, such threat exists if the
network is susceptible to active attacks. In contrast, if senders are trustworthy
and their messages are delivered over a network that protects authenticity, then
security against chosen-plaintext attacks (CPA) would already provide sufficient
confidentiality guarantees, possibly resulting in better performance.

IND-CCA/CPA Filtering and Its Applications. Consider an intermediate
party, called a gateway, and assume that encrypted sender’s messages are trans-
mitted over a public network until they reach the gateway and are then forwarded
by the gateway over a private network to the receiver, with the gateway being
trusted by the receiver to forward faithfully.

By the above reasoning, IND-CCA security would be required for the encrypted
traffic from (possibly malicious) senders towards the gateway. But for messages
on the internal network— including from the gateway to the receiver— IND-CPA
security would be sufficient in practice to preserve confidentiality. If the gateway
just forwards all (IND-CCA) ciphertexts from the outside world without modifi-
cation, all security goals remain satisfied, but perhaps we can improve efficiency
for the receiver by having the gateway do some processing on ciphertexts before
forwarding them.

An often observed difference between IND-CPA and IND-CCA schemes is that
IND-CPA schemes successfully decrypt every given ciphertext, whereas the ma-
jority of IND-CCA schemes typically check ciphertexts for consistency and de-
crypt only those that are “well-formed” [8,10,17,18,19]. For such schemes the
gateway could act as a filter that would sort out inconsistent IND-CCA cipher-
texts. There exist few IND-CCA schemes [4,25,26], that decrypt every ciphertext
to a possibly meaningless (random) message. Such schemes are not well-suited to
filtering since the gateway would need to know the receiver’s private key to de-
cide whether the message is meaningful, which would in general be unacceptable
since it requires trusting gateways for confidentiality, not just integrity.

In this paper, we are interested in solutions that allow an honest-but-
curious gateway to transform IND-CCA-secure traffic from a public network into
IND-CPA-secure traffic for a private network at low cost and while fully preserv-
ing confidentiality of encrypted messages; the key step is that the gateway is
trusted to correctly perform a “validity check” of traffic from the public network
before forwarding it on to the private network. Recipient devices on the private
network can then use a more efficient decryption procedure.

Many real applications could benefit from this “sender-gateway-receiver” sce-
nario: for example, sensor networks often consist of many low-powered nodes
that communicate with each other locally and which use a single more powerful
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gateway device to communicate with the Internet. To protect their local com-
munications, nodes may have shared keys with the sink which they use in highly
efficient symmetric key algorithms, only needing to resort to more expensive
asymmetric algorithms when communicating with the outside world. In our
paradigm, the gateway could take IND-CCA-secure traffic from senders in the
outside world, check it for validity, and convert it to a simpler (IND-CPA-secure)
format to reduce the processing costs for receiving sensor nodes. As a second ex-
ample, mail servers (MTAs) generally receive emails over unprotected networks,
whereas email recipients typically contact these servers to access their emails
after having established an end-to-end authenticated (and possibly encrypted)
channel with them. Hence, for encrypted emails or attachments, the mail server
could perform a “sanity check” and filter out inconsistent ciphertexts, saving the
client from their local processing.

Ciphertext Consistency Checks. IND-CCA-secure schemes where incon-
sistent ciphertexts can be filtered out based on consistency checks seem very
suitable for our purposes. Consistency checks can be either private or public:
the check is private if it requires at least partial knowledge of the private key
(e.g. in [10]), while public checks do not require any secrets (e.g. in [8,17]).

We will focus on IND-CCA-secure cryptosystems with publicly verifiable ci-
phertexts. Interestingly, public verifiability has been treated so-far in a rather
folklore manner, e.g. as a property of concrete schemes, e.g. [8,17,19,18]. To
make use of this property in general, for example to enable “black-box” con-
structions of higher-level security protocols from publicly verifiable encryption
schemes, a more formal and thorough characterization of public verifiability is
merited. We also note that public verifiability has been extensively addressed
in a different context, namely with regard to threshold encryption, where as ob-
served initially in [20] and then provably realized in [32,8,7,22], this property is
useful to make the threshold decryption process of an IND-CCA-secure threshold
encryption scheme non-interactive and robust.

In our applications, public verifiability can immediately be used to detect and
filter out invalid IND-CCA ciphertexts, i.e. by trusting the gateway to perform
the check. This filtering could also be performed for IND-CCA schemes with pri-
vate consistency checks, as long as these checks need only parts of the private
key that are by themselves not sufficient to break IND-CPA security. Existence
of such IND-CCA schemes has been demonstrated by Persiano [27] through his
concept of trapdoor cryptosystems. For instance, he proved that a trapdoor con-
taining private-key components in Cramer-Shoup PKE [10] that are used in the
consistency check cannot be used for an IND-CPA attack (although their dis-
closure allows malleability attacks). Being concerned about IND-CCA-security,
Persiano argued that existence of such trapdoors is a drawback. Taking a look
at trapdoor cryptosystems in [27] from the perspective of our work, we observe
that the gateway could indeed be given trapdoor information to check IND-CCA
consistency without losing IND-CPA security. However, this approach would of-
fer somewhat weaker guarantees in contrast to publicly verifiable schemes: if
the delegated trapdoor keys are ever leaked, then IND-CCA security can never
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be recovered. This contrasts with our approach, in which the receiver always
has the potential to obtain IND-CCA security at any particular time simply by
performing more operations.

Contributions. We formalize the property of publicly verifiable ciphertexts for
general encryption, general KEMs, and general KEM/DEM hybrid schemes. Our
definitions emphasize the role of public ciphertext consistency checks within the
decryption procedure. In our approach, decryption algorithms of publicly veri-
fiable schemes follow a strictly modular design where the consistency check can
be performed independently of the remaining “lightweight” decryption proce-
dure. Success or failure of the entire decryption procedure is indicated by the
consistency check, which can be performed by any third party without access to
any secret information. The only exception is the KEM/DEM approach, where
we relax these conditions to account for decryption failures in the DEM part.
Our definitions employ the syntax of generalized encryption by Abdalla et al. [1]
which we extend to also capture tag-based encryption (TBE) [3,17] and to ad-
dress KEMs and the KEM/DEM framework.

With these definitions, we first prove the very general statement that any
IND-CCA-secure scheme with publicly verifiable ciphertexts remains at least
IND-CPA-secure if the underlying consistency check is outsourced from the de-
cryption procedure. In some sense, this gives us the trivial and well-known result
that any IND-CCA-secure ciphertext can be publicly converted into a cipher-
text that still guarantees basic IND-CPA protection (since every IND-CCA-secure
scheme is also IND-CPA-secure). However, the notion of public verifiability is
particular interesting in the case where the verification algorithm is strictly non-
trivial — the public consistency check fails exactly when the IND-CCA-secure
scheme’s decryption algorithm fails — as such publicly verifiable schemes can
readily be used to build the aforementioned IND-CCA/CPA filters.

We provide several constructions (general and concrete) of IND-CCA-secure
schemes with strictly non-trivial publicly verifiability. In addition to existing
schemes, e.g. [8,17,19,18], for which public verifiability was discussed informally,
we first show that two well-known general ways for obtaining IND-CCA secure
schemes offer public verifiability (although not strictly non-trivial public verifi-
ability), namely the Canetti-Halevi-Katz (CHK) transform [9] and the NIZK-
based transform [29,23]. The result on CHK contrasts with the related transform
by Boneh and Katz [6] that uses a message authentication code (MAC) and
does not offer public verifiability. We present a concrete PKE scheme, obtained
through a tweak on the KEM of Kiltz [18], that offers an especially lightweight
decryption procedure for ciphertexts that passed its strictly non-trivial public
verification. In addition to PKE we consider KEMs and give examples of public
key-based, identity-based, and tag-based KEMs with strictly non-trivial pub-
lic verification. Finally, we look into the KEM/DEM paradigm and show that
strictly non-trivial public verification of the KEM partially carries over to the
hybrid scheme — namely, we define a somewhat non-trivial public verification
for hybrid encryption schemes by linking a failure in the hybrid decryption pro-
cess to a verification failure in either the KEM or the DEM, and show that by
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outsourcing KEM consistency check the hybrid construction remains at least
IND-CPA-secure.

2 Publicly Verifiable Ciphertexts in General Encryption

2.1 Definition: General Encryption

A general encryption (GE) scheme GE = (PG,KG,Enc,Dec) consists of four
algorithms:

PG(1k): The parameter generation algorithm PG takes input a security param-
eter 1k, k ≥ 0, and returns public parameters par and a master secret key
msk. Public parameters include a description of the identity space IDSp, the
message space MsgSp, and the tag space TagSp.

KG(par,msk, id): On input par, msk, and id ∈ IDSp, the key generation algorithm
KG produces an encryption key ek and decryption key dk.

Enc(par, ek,M, t): On input par, ek, a messageM ∈ MsgSp, and a tag t ∈ TagSp,
the encryption algorithm Enc outputs a ciphertext C.

Dec(par, ek, dk, C, t): On input par, ek, dk, C, and a tag t, the deterministic
decryption algorithm Dec returns either a plaintext message M or ⊥ to
indicate that it rejects.

This GE formalism encompasses public-key, identity-based, and tag-based en-
cryption schemes:

PKE: Setmsk = ε and assume that IDSp and TagSp contain a single fixed element
that can be omitted as implicit input to the algorithms.

IBE: Consider KG that on input id outputs ek = id and assume that TagSp
contains again a single fixed element that can be omitted as implicit input
to the algorithms.

TBE: Set msk = ε and assume that IDSp contains again a single fixed element
that can be omitted as implicit input to the algorithms.

Correctness. A general encryption scheme GE = (PG,KG,Enc,Dec) is correct
if, for all (par,msk) ∈ [PG], all plaintextsM ∈ MsgSp, all identities id ∈ IDSp, all
(ek, dk) ∈ [KG(par,msk, id)], and all tags t ∈ TagSp, we have Dec(par, ek, dk,Enc(
par, ek,M, t), t) = M with probability one, where the probability is taken over
the coins of Enc.

Indistinguishability. The IND-CCA/CPA security games between a challenger
and an adversary A are defined by the experiments in Figure 1 (left column).
The advantage of A in those games is defined as

AdvIND-xxx
A,GE (k) =

∣∣∣Pr(ExpIND-xxx,0
A,GE (k) = 1

)
− Pr

(
ExpIND-xxx,1

A,GE (k) = 1
)∣∣∣ ,

where xxx ∈ {CPA,CCA}. A GE scheme is IND-xxx-secure if the advantage of
any PPT adversary A in the corresponding game is negligible in the security
parameter k.
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ExpIND-xxx,b
A,GE (k) :

1. (par,msk)
$← PG(1k)

2. U, V,KList,DList ← ∅
3. (st,M0,M1, id

∗, t∗) $← AOEK,ODK[,ODec]
1 (par)

If A queries OEK(id):
(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}
(c) (ek[id], dk[id])

$← KG(par,msk, id)
(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]
If A queries ODK(id) :
(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList
If A queries ODec(C, id, t) (if xxx = CCA):
(a) If id /∈ U then return ⊥
(b) M ← Dec(par, ek[id], dk[id], C, t)
(c) Append (C, id, t) to DList
(d) Answer A with M

4. If M0 = M1 or |M0| = |M1| then return ⊥
5. If id∗ /∈ U then return ⊥
6. C∗ $← Enc(par, ek[id∗],Mb, t

∗)

7. b′ $← AOEK,ODK[,ODec]
2 (st, C∗)

Answer queries as above
8. If id∗ ∈ V then return ⊥
9. If (C∗, id∗, t∗) ∈ DList then return ⊥

10. Return 1 if b′ = b, else return 0.

ExpIND-xxx,b
A,GKEM (k) :

1. (par,msk)
$← PG(1k)

2. U, V,KList,DList ← ∅
3. (st, id∗, t∗) $← AOEK,ODK[,ODec]

1 (par)
If A queries OEK(id):
(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}
(c) (ek[id], dk[id])

$← KG(par,msk, id)
(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]
If A queries ODK(id) :
(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList
If A queries ODec(C, id, t) (if xxx = CCA):
(a) If id /∈ U then return ⊥
(b) K ← Decap(par, ek[id], dk[id], C, t)
(c) Append (C, id, t) to DList
(d) Answer A with K

4. If id∗ /∈ U then return ⊥
5. (C∗,K∗

0 )
$← Encap(par, ek[id∗], t∗)

6. K∗
1

$← KeySp(k)

7. b′ $← AOEK ,ODK[,ODec]
2 (st, C∗,K∗

b )
Answer queries as above.

8. If id∗ ∈ V then return ⊥
9. If (C∗, id∗, t∗) ∈ DList then return ⊥

10. Return 1 if b′ = b, else return 0.

Fig. 1. IND-CCA/CPA security experiments for General Encryption (left) and General
Key Encapsulation (right)

2.2 General Encryption with Publicly Verifiable Ciphertexts

In our definition of general encryption with publicly verifiable ciphertexts we
require existence of a separate algorithm for ciphertext validation and that the
scheme’s original decryption procedure can be logically divided into this public
validation check followed by a lightweight decryption algorithm.

Definition 1 (Publicly Verifiable GE). A general encryption scheme GE =
(PG,KG,Enc,Dec) is said to be publicly verifiable with respect to auxiliary algo-
rithms Ver and Dec′ if Dec(par, ek, dk, C, t) has the same input/output behavior
as the following sequence of operations:

1. C′ ← Ver(par, ek, C, t)
2. If C′ = ⊥, then return ⊥
3. M ← Dec′(par, ek, dk, C′, t)
4. Return M

where Ver and Dec′ satisfy the following:
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Ver(par, ek, C, t): Given public parameters par, the encryption key ek, a cipher-
text C, and a tag t, this algorithm outputs either ⊥ if the ciphertext fails the
validation or a (transformed) ciphertext C′. Note that Ver does not take any
secrets as input.

Dec′(par, ek, dk, C′, t): This deterministic algorithm takes input public parame-
ters par, encryption and decryption keys (ek, dk), a ciphertext C′, and a tag
t, and outputs a message M or ⊥.

Hereafter, when we say Dec = Dec′ ◦ Ver we mean that Dec can be decomposed
into two algorithms Ver and Dec′ according to the above construction. Note that
all IND-CCA-secure general encryption schemes trivially achieve public verifi-
ability with respect to Ver(par, ek, C, t) := C and Dec′ := Dec. We are often
interested in the case where something non-trivial is occurring in Ver, i.e. where
the consistency check is essential for successful decryption. Note that this sepa-
ration does not formally ensure that Dec′ is more efficient than Dec, though in
practice we are of course interested primarily in such schemes.

Definition 2 (Strictly Non-Trivial Public Verification). Let GE = (PG,
KG,Enc,Dec) be a general encryption scheme that is publicly verifiable with
respect to auxiliary algorithms Ver and Dec′. Let (par,msk) ← PG(1k). Ver
is said to be strictly non-trivial if, for all id ∈ IDSp, all t ∈ TagSp, and
(ek, dk) ← KG(par,msk, id),

1. Ver(par, ek, C, t) = ⊥ ⇔ Dec(par, ek, dk, C, t) = ⊥ for all C, and
2. there exists a ciphertext C for which Dec(par, ek, dk, C, t) = ⊥.

Condition 1 requires that successful public verification is both necessary and
sufficient for the decryption algorithm not to fail. Condition 2 formally excludes
IND-CCA-secure schemes where Dec never outputs ⊥ (e.g. [25,26,4] where modi-
fied (challenge) ciphertexts decrypt to random messages) to capture the intuition
that in order to determine whether C carries some meaningful message one must
have at least partial knowledge of the private key (which contradicts the goals
of strictly non-trivial public verification).

Theorem 1 (proven in Appendix A) shows that any IND-CCA-secure GE
scheme with publicly verifiable ciphertexts remains at least IND-CPA-secure if
its decryption algorithm Dec is replaced with Dec′. In the original decryption
procedure a strictly non-trivial verification process may syntactically modify the
ciphertext. For syntactical reasons we must ensure that ciphertexts output by
the encryption algorithm of the new scheme can be processed with Dec′. This
is achieved via post-processing of original ciphertexts using Ver and by viewing
this step as part of the new encryption algorithm.

Theorem 1. Let GE = (PG,KG,Enc,Dec) be an IND-CCA-secure general en-
cryption scheme that is publicly verifiable with respect to Ver and Dec′. Let
Enc′ := Ver ◦ Enc (where ◦ denotes the obvious composition) and let GE′ :=
(PG,KG,Enc′,Dec′). For every IND-CPA adversary A against GE′ there exists
an IND-CCA adversary B against GE such that, for all k ≥ 0, AdvIND-CPA

A,GE′ (k) ≤
AdvIND-CCA

B,GE (k), where B has (asymptotically) the same running time as A.
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2.3 Publicly Verifiable Ciphertexts through CHK Transformation

Canetti, Halevi, and Katz [9] described an method for constructing an IND-CCA-
secure public key encryption scheme PKE from any IND-CPA-secure identity-
based encryption scheme IBE with identity-space {0, 1}
s(k) and any strongly
unforgeable one-time signature scheme OTS = (KG, Sign,Vrfy) with the verifi-
cation key space {0, 1}
s(k) (see [9] for the syntax of OTS and the details of
the original CHK transform; note that one-time signature schemes can be con-
structed from any one-way function [28]). Later, Kiltz [17] showed that CHK
transform works also if the IND-CPA-secure IBE scheme is replaced by a weakly
IND-CCA-secure tag-based encryption scheme TBE with tag-space {0, 1}
s(k).

Figure 2 (which uses GE notation) shows that in both cases, the resulting
PKE is public verification with respect to PKE.Ver and PKE.Dec′, but impor-
tantly the public verification is not strictly non-trivial: the IBE or TBE de-
cryption operation may still fail. In the IBE-based case ek = ε remains empty
while dk = msk and par are output by IBE.PG. In the TBE-based case ek and
dk are output by TBE.KG using par generated by TBE.PG. Original IBE-based
transform from [9] and its TBE-based version from [17] are obtained using
PKE.Dec = PKE.Dec′ ◦ PKE.Ver.

PKE.Enc(par, ek,M) :

1. (vk, sigk)
$← OTS.KG(1k)

2. If IBE-based:
c ← IBE.Enc(par, vk,M)
If TBE-based:
c ← TBE.Enc(par, ek,M, vk)

3. σ ← OTS.Sign(sigk, c)
4. Return C = (c, σ, vk)

PKE.Ver(par, ek, C) :

1. (c, σ, vk) ← C
2. If OTS.Vrfy(c, σ, vk) = ⊥

then return ⊥
3. Return C′ = (c, vk)

PKE.Dec′(par, ek, dk, C′) :

1. (c, vk) ← C′

2. If IBE-based:
uskvk ← IBE.KG(par, dk, vk)
M ← IBE.Dec(par, vk, uskvk, c)
If TBE-based:
M ← TBE.Dec(par, ek, dk, c, vk)

3. Return M

Fig. 2. PKE with Publicly Verifiable Ciphertexts from CHK Transformation

2.4 Publicly Verifiable Ciphertexts Using NIZKs

An IND-CPA-secure public key encryption scheme PKE′ = (PG,KG,Enc,Dec) can
be converted into an IND-CCA-secure one using a non-interactive zero-knowledge
(NIZK) proof (P, V ) with simulation soundness, as proven by Sahai [29] based on
the Naor-Yung approach [23]. The private/public key pair of the resulting scheme
PKE is given by (dk, ek) = ((dk1, dk2), (ek1, ek2, ρ)) where (dki, eki), i ∈ {1, 2},
are obtained from two independent runs of PKE′.KG and ρ is the common refer-
ence string of the NIZK proof system for languages of the form (c1, c2, ek1, ek2)
satisfying c1 = PKE′.Enc(par, ek1,M) ∧ c2 = PKE′.Enc(par, ek2,M) where M
(and implicitly random coins used in the encryption process) play the role of the
witness. As demonstrated in Figure 3, IND-CCA schemes output by this transfor-
mation offer public verifiability, though not strictly non-trivial public verifiability
as the PKE′.Dec operation in PKE.Dec′ may output ⊥. This reasoning also ap-
plies to the NIZK-based constructions from [12] and to the first IND-CCA-secure
PKE scheme by Dolev, Dwork, and Naor [11] that uses NIZK-proofs in a slightly
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different way. Although NIZK-based schemes are regarded as not efficient, we
notice that their lightweight decryption procedure Dec′ (if the scheme is viewed
from the public verifiability perspective) is as efficient as that of CHK-based
schemes in Figure 2.

PKE.Enc(par, ek,M) :

1. (ek1, ek2, ρ) ← ek
2. c1 ← PKE′.Enc(par, ek1,M)
3. c2 ← PKE′.Enc(par, ek2,M)
4. π ← P (M, (c1, c2, ek1, ek2), ρ)
5. Return C = (c1, c2, π)

PKE.Ver(par, ek, C) :

1. (ek1, ek2, ρ) ← ek
2. (c1, c2, π) ← C
3. If V (ρ, (c1, c2, ek1, ek2), π) = ⊥

then return ⊥
4. Return C′ = c1

PKE.Dec′(par, ek, dk, C′) :

1. (dk1, dk2) ← dk
2. c1 ← C′

3. M ← PKE′.Dec(par, ek1, dk1,
c1)

4. Return M

Fig. 3. PKE with Publicly Verifiable Ciphertexts from NIZK-based Transformation

2.5 Our PKE Scheme with Strictly Non-trivial Publicly Verifiable
Ciphertexts

In this section, we propose a practical IND-CCA-secure PKE scheme, whose
public verification is strictly non-trivial and is well-suited for IND-CCA/CPA
filters described in the introduction due to an especially light algorithm Dec′.
Our construction is inspired by the IND-CCA public-key KEM of Kiltz [18],
which when plugged into a KEM/DEM framework would yield an IND-CCA-
secure PKE scheme (but loose strictly non-trivial public verification as discussed
in Section 4). In contrast, we obtain strictly non-trivial publicly verifiable PKE
in a more direct way, by using the encapsulated key in [18] as a one-time pad
for the message and by linking the resulting ciphertext components together
with a one-time signature, whose verification key is in turn bound to the KEM
ciphertext part through a tweak on the original scheme from [18]. Our scheme
provides strictly non-trivial public verifiability, unlike the schemes presented in
Sections 2.3 and 2.4 based on the CHK and NIZK transformations.

The scheme. Our PG algorithm is similar to [18] except that it uses gap groups:
PG(1k) outputs public parameters par = (G, p, g,DDH,H) where G = 〈g〉 is a
multiplicative cyclic group of prime order p, 2k < p < 2k+1, DDH is an efficient
algorithm such that DDH(ga, gb, gc) = 1 ⇔ c = ab (p), and H : G → {0, 1}
1(k)
is a cryptographic hash function such that 1(k) is a polynomial in k. We also
use a strong one-time signature scheme OTS = (KG, Sign,Vrfy) with verification
key space {0, 1}
2(k) such that 2(k) is a polynomial in k and a target colli-
sion resistant hash function TCR : G × {0, 1}
2(k) → Zp. The message space is
MsgSp = {0, 1}
1(k). The scheme works as shown in Figure 4.

Security Analysis. First we give intuition why our scheme is IND-CCA-secure.
Let (c∗, σ∗, vk∗) be the challenge ciphertext. As we discussed above, without the
CHK transform, the proposed PKE can be seen as a KEM/DEM combination
which is at least IND-CPA-secure due to Herranz et al. [15]. As for the KEM, the
Hashed Diffie-Hellman (HDH) assumption [2] can be used to prove the IND-CPA
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PKE.KG(par) :

1. x
$← Z∗

p

2. u ← gx, v
$← G

3. ek ← (u, v), dk ← x
4. Return (ek, dk)

PKE.Enc(par, ek,M) :

1. (u, v) ← ek

2. (vk, sigk)
$← OTS.KG(1k)

3. r
$← Z∗

p, c1 ← gr

4. t ← TCR(c1, vk), π ← (utv)r

5. K ← H(ur), c2 ← M ⊕K
6. c ← (c1, c2, π)
7. σ ← OTS.Sign(sigk, c)
8. Return C = (c, σ, vk)

PKE.Ver(par, ek, C) :

1. (u, v) ← ek
2. (c, σ, vk) ← C
3. (c1, c2, π) ← c
4. t ← TCR(c1, vk)
5. If DDH(c1, u

tv, π) = 1 or
OTS.Vrfy(c, σ, vk) = ⊥
return ⊥

6. Return C′ = (c1, c2)

PKE.Dec′(par, ek, dk, C′) :

1. (c1, c2) ← C′

2. x ← dk
3. K ← H(cx1 ), M ← c2 ⊕K
4. Return M

Fig. 4. Our PKE with Strictly Non-Trivial Publicly Verifiable Ciphertexts

security of the resulting PKE. Note that the message does not depend on vk∗,
and σ∗ is just the signature on c∗. Therefore c∗ being an output of the IND-CPA-
secure scheme hides the value of the chosen b from the adversary.

We now claim that the IND-CCA adversary A may access decryption oracle
but gains no help in guessing the value of b. Suppose the adversary submits a
ciphertext (c′, σ′, vk′) �= (c∗, σ∗, vk∗) to the decryption oracle. Now there are
two cases: (a) vk′ = vk∗ or (b) vk′ �= vk∗. When vk′ = vk∗, the decryption
oracle will output ⊥ as the adversary fails to break the underlying strongly
unforgeable one-time signature scheme with respect to vk′. When vk′ �= vk∗,
the attacker B against the HDH problem can set the public keys as seen in the
IND-CCA security proof for the KEM by Kiltz [18] such that (1) B can answer
except for the challenge ciphertext all decryption queries from A even without
the knowledge of the secret key and (2) B solves HDH if A wins. This security
is captured by the following theorem, which is proven in the full version [13].

Theorem 2. Assume that TCR is a target collision resistant hash function and
OTS is a strongly unforgeable one-time signature scheme. Under the Hashed
Diffie-Hellman assumption for G and H, the PKE scheme (PKE.KG,PKE.Enc,
PKE.Dec = PKE.Dec′ ◦ PKE.Ver) based on Figure 4 is IND-CCA-secure.

Efficiency. Our PKE scheme in Figure 4 is more efficient than previous
schemes with public consistency checks. In our scheme, public keys consist of 2
group elements, the ciphertext overhead is 2 group elements, a one-time signature
and a one-time verification key, encryption requires 3.5 group exponentiations
(using simultaneous exponentiation) and 1 one-time signature, verification re-
quires 1 group exponentiation, 2 pairings, and 1 one-time signature verification,
and lightweight decryption requires only one exponentiation.
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Amongst existing PKE constructions with public consistency checks, only two
seem to offer the same efficiency for lightweight decryption: Kiltz [18] describes
a (direct) PKE construction (in addition to KEM) that is publicly verifiable
with the same lightweight decryption cost of 1 group exponentiation, but at the
cost of requiring public keys with the number of group elements being linear
in the security parameter, as opposed to only 2 group elements in the public
key of our scheme. Hanaoka and Kurosawa [14] describe a publicly verifiable
KEM that, when combined with a DEM, would yield a (somewhat non-trivial,
cf. Section 4) publicly verifiable PKE. Its lightweight decryption would require 1
group exponentiation (plus any costs from the DEM) but its public keys would
contain 3 group elements, compared to 2 group elements in our scheme.

3 Publicly Verifiable Ciphertexts in General KEMs

3.1 Definition: General KEM

A general key encapsulation mechanism (GKEM) is a tuple GKEM = (PG,KG,
Encap,Decap) of four algorithms such that PG and KG have the same syntax
as in case of general encryption (cf. Section 2.1) except that message space is
replaced with the key space KeySp, whereas the syntax of Encap and Decap
matches that of Enc and Dec, respectively, with the only difference that Encap
outputs a ciphertext C and a session key K ∈ KeySp, while Decap outputs either
K or ⊥.

GKEM correctness and adversarial advantage AdvIND-xxx
A,GKEM(k), xxx ∈ {CPA,

CCA} in indistinguishability experiments from Figure 1 are also defined analo-
gously to the case of general encryption.

3.2 General KEMs with Public Verifiable Ciphertexts

Definition 3 (Publicly Verifiable GKEM). A general key encapsulation
mechanism GKEM = (PG,KG,Encap,Decap) is said to be publicly verifiable with
respect to auxiliary algorithms Ver and Decap′ if Decap = Decap′ ◦Ver where Ver
and Decap′ satisfy the following:

Ver(par, ek, C, t): Given public parameters par, the encryption key ek, a cipher-
text C, and a tag t, this algorithm outputs either ⊥ if the ciphertext fails the
validation, or a (transformed) ciphertext C′. Note that Ver does not take any
secrets as input.

Decap′(par, ek, dk, C′, t): This deterministic algorithm takes input public param-
eters par, encryption and decryption keys (ek, dk), a ciphertext C′, and a tag
t, and outputs a key K.

Since all IND-CCA-secure general GKEMs trivially achieve public verifiability
with respect to Ver(par, ek, C, t) := C and Decap′ := Decap we can reuse Defini-
tion 2 for GKEMs to define their strictly non-trivial public verification.
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Theorem 3 (whose proof is identical to that of Theorem 1 and is omitted
here) shows that any publicly verifiable IND-CCA-secure GKEM scheme will
remain at least IND-CPA-secure if the verification algorithm Ver is run by an
honest-but-curious gateway. To account for a non-trivial verification process that
may modify the ciphertext, we again apply post-processing to the output of the
encapsulation algorithm (cf. Section 2.2).

Theorem 3. Let GKEM = (PG,KG,Encap,Decap) be an IND-CCA-secure gen-
eral KEM and publicly verifiable with respect to Ver and Decap′. Let Encap′ :=
Ver ◦ Encap and let GKEM′ := (PG,KG,Encap′,Decap′). For every IND-CPA ad-
versary A against GKEM′, there exists an IND-CCA adversary B against GKEM
such that, for all k ≥ 0, AdvIND-CPA

A,GKEM′(k) ≤ AdvIND-CCA
B,GKEM (k), where B has (asymp-

totically) the same running time as A.

3.3 Constructions of Strictly Non-trivial Publicly Verifiable KEMs

We now present some examples for KEMs with publicly verifiable ciphertexts.
First, we discuss the publicly verifiable construction of an identity-based KEM
that we obtain immediately from the IND-CCA-secure IB-KEM proposed by Kiltz
and Galindo [19]. Parameters par′ = (G1,GT , p, g, e,H) chosen by parameter
generation algorithm PG(1k), k ∈ Z≥0, are such that G1 is a multiplicative
cyclic group of prime order p : 22k < p, GT is a multiplicative cyclic group
of the same order, g is a random generator of G1, e : G1 × G1 → GT is a
non-degenerate bilinear map, and H : {0, 1}
(k) → G1 is a hash function such
that (k) is a polynomial in k. We also use a target collision resistant function
TCR : G1 → Zp. Figure 5 details the scheme.

Note that by defining KEM.Decap = KEM.Decap′ ◦ KEM.Ver we immediately
obtain the original Kiltz-Galindo IB-KEM [19]. It is easy to see that its public
verification algorithm KEM.Ver is strictly non-trivial. Further, Kiltz and Galindo
noted that ignoring all operations associated to the identity in their IB-KEM
yields a simplified version of the IND-CCA-secure public-key schemes from [8,17].
Therefore, by removing computations related to the ciphertext component c2 and
the key generation algorithm KG from Kiltz-Galindo’s IB-KEM, we immediately
obtain publicly verifiable constructions of a public-key KEM and a tag-based
KEM with strictly non-trivial public verification.

4 Publicly Verifiable Ciphertexts in Hybrid Encryption

Since its invention, the KEM/DEM approach [10,30], being very simple and flex-
ible, has become popular and part of several encryption standards [16,24,31]. It
has been shown that if both the KEM and the DEM are secure against chosen-
ciphertext attacks, then so is the resulting hybrid encryption scheme [10]. Her-
ranz et al. [15] studied necessary and sufficient security conditions for KEMs
and DEMs in relation with the security of the hybrid construction. They showed
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KEM.PG(1k) :

1. Generate
par′ = (G1,GT , p, g, e,H)

2. α
$← G1, msk ← α

3. u, v
$← G1, z ← e(g,α)

4. pk ← (u, v, z)
5. par ← (par′, pk)
6. Return (par,msk)

KEM.Encap(par, id) :

1. (par′, pk) ← par
2. Parse par′ and pk

3. r
$← Z∗

p, c1 ← gr

4. t ← TCR(c1)
5. c2 ← H(id)r

6. c3 ← (utv)r

7. K ← zr ∈ GT

8. C ← (c1, c2, c3) ∈ G3
1

9. Return (C,K)

KEM.KG(par,msk, id) :

1. Parse (par′, pk) ← par and par′

2. s
$← Zp, dk[id] ← (α · H(id)s, gs)

3. Return dk[id]

KEM.Ver(par, pk, id, C) :

1. (par′, pk) ← par
2. Parse par′ and pk
3. (c1, c2, c3) ← C, t ← TCR(c1)
4. If e(g, c3) = e(c1, u

tv) or
e(g, c2) = e(c1,H(id)),
then return ⊥

5. Return C′ = (c1, c2)

KEM.Decap′(par, id, dk[id], C′) :

1. (par′, pk) ← par
2. Parse par′

3. (c1, c2) ← C′, (d1, d2) ← dk[id]
4. K ← e(c1, d1)/e(c2, d2)
5. Return K

Fig. 5. Kiltz-Galindo IB-KEM with Publicly Verifiable Ciphertexts

that for the IND-CCA-security of the hybrid scheme, the KEMmust be IND-CCA-
secure while the security requirement on the DEM can be relaxed from IND-CCA
to IND-OTCCA that prevents one-time (adaptive) chosen-ciphertext attacks.

Therefore, when dealing with public verifiability of hybrid schemes we must
take into account existence of consistency checks in the decryption of DEM
(in addition to checks for the KEM part). Since DEM consistency checks are
performed using the decapsulated key, hybrid schemes cannot provide strictly
non-trivial public verification from Definition 2. We show, however, that these
schemes can offer a somewhat relaxed property, where public verifiability refers
only to the KEM part, meaning that successful public consistency check of the
KEM part is a necessary but not a sufficient condition for the overall success
of decryption. In the context of gateway-assisted IND-CCA/CPA conversion this
property effectively allows to outsource the consistency check of the KEM part to
the gateway. In this way clients would only need to perform private consistency
checks for the DEM part, which means negligible costs in comparison to the
verification costs for KEMs.

4.1 Definition: Hybrid General Encryption

Let GKEM = (PG,KG,Encap,Decap) be a general KEM scheme (as defined in
Section 3.1) and let DEM = (Enc,Dec) be a one-time symmetric key encryption
scheme [15]. The two schemes are assumed to be compatible, i.e. session keys
output by KEM are appropriate for DEM.

A hybrid general encryption (HGE) scheme is a tuple HGE = (PG,KG,Enc,Dec)
of four algorithms as defined in Figure 6.
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HGE.PG(1k) :

1. (par,msk)
$← KEM.PG(1k)

2. Return (par,msk)

HGE.Enc(par, ek,M, t) :

1. (C1,K) ← KEM.Encap(par, ek, t)
2. C2 ← DEM.Enc(K,M)
3. Return C = (C1, C2)

HGE.KG(par,msk, id) :

1. (ek, dk)
$← KEM.KG(par,msk, id)

2. Return (ek, dk)

HGE.Dec(par, ek, dk, C, t) :

1. (C1, C2) ← C
2. K ← KEM.Decap(par, ek, dk, C1, t)
3. If K = ⊥ then return ⊥
4. M ← DEM.Dec(K,C2)
5. Return M (possibly as ⊥)

Fig. 6. Hybrid General Encryption Scheme HGE

Correctness. A hybrid general encryption scheme HGE = (PG,KG,Enc,Dec)
is correct if, for all (par,msk) ∈ [HGE.PG], all plaintexts M , all identities id ∈
IDSp, all (ek, dk) ∈ [HGE.KG(par,msk, id)], and all tags t ∈ TagSp, we have
HGE.Dec(par, ek, dk,HGE.Enc(par, ek,M, t), t) = M with probability one, where
the probability is taken over the coins of HGE.Enc.

4.2 Hybrid General Encryption with Publicly Verifiable Ciphertexts

When defining public verifiability of HGE = (PG,KG,Enc,Dec) schemes with
respect to Ver and Dec′, we can essentially reuse Definition 1 for general en-
cryption. Note that message M output by the lightweight decryption algorithm
Dec′ could also be an error symbol ⊥. As previously mentioned, in general HGE
cannot satisfy Definition 2 of strictly non-trivial public verification since failure
of the original decryption procedure HGE.Dec may not necessarily imply failure
of the verification algorithm Ver′. For this reason we define the following relaxed
notion:

Definition 4 (Somewhat Non-trivial Public Verification). Let HGE =
(PG,KG,Enc,Dec) be a hybrid general encryption scheme from Figure 6 that is
publicly verifiable with respect to auxiliary algorithms Ver and Dec′. Let (par,msk)
← PG(1k). Ver is said to be somewhat non-trivial if, for all id ∈ IDSp, all
t ∈ TagSp, and (ek, dk) ← KG(par,msk, id),

1. (Ver(par, ek, C, t) = ⊥ ∨ DEM.Dec(K,C2) = ⊥) ⇔ Dec(par, ek, dk, C, t) = ⊥
for all C, where C = (C1, C2) and K = KEM.Decap(par, ek, dk, C1, t), and

2. there exists a ciphertext C for which Dec(par, ek, dk, C, t) = ⊥.

Condition 1 requires that successful public verification is necessary but not suf-
ficient for the decryption algorithm to successfully decrypt. In particular, if
Ver succeeds then the only reason why HGE.Dec fails is because of a failure
in DEM.Dec. Condition 2 remains as in Definition 2.

Theorem 4 (proven in the full version [13]) shows that if the underlying general
KEM is publicly verifiable with strictly non-trivial verification then the hybrid
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general encryption scheme is publicly verifiable in the somewhat non-trivial way
and that by outsourcing verification of the KEM part the hybrid scheme remains
at least IND-CPA-secure.

Theorem 4. Let GKEM = (PG,KG,Encap,Decap) be an IND-CCA-secure gen-
eral key encapsulation mechanism that is publicly verifiable with respect to GKEM.
Ver and GKEM.Decap′, DEM = (Enc,Dec) be an IND-OTCCA-secure data en-
capsulation mechanism, and HGE = (PG,KG,Enc,Dec) be the resulting hybrid
general encryption scheme.

1. If GKEM.Ver is strictly non-trivial then HGE is publicly verifiable with re-
spect to a somewhat non-trivial HGE.Ver and an algorithm HGE.Dec′.

2. Let HGE′ := (PG,KG,Enc′,Dec′) with HGE′.Enc′ = HGE.Ver ◦ HGE.Enc and
HGE′.Dec′ = HGE.Dec′. For any IND-CPA adversary A against HGE′, there
exists an IND-CPA adversary B1 against GKEM′ and an IND-OTCCA adver-
sary B2 against DEM such that

AdvIND-CPA
A,HGE′ (k) ≤ AdvIND-CCA

B1,GKEM′(k) +AdvIND-OTCCA
B2,DEM (k) ∀k ≥ 0

and B1 and B2 have (asymptotically) the same running time as A.

4.3 Constructions of Hybrid Encryption with Publicly Verifiable
Ciphertexts

Herranz et al. [15] showed that if some IND-CCA-secure KEM is combined with
an IND-OTCCA-secure DEM then the resulting hybrid encryption scheme is also
IND-CCA-secure. As shown by Cramer and Shoup [10], one can easily construct
an IND-OTCCA-secure DEM by adding a one-time MAC to a one-time-secure
DEM such as one-time pad. Moreover, Theorem 4 states that if the underly-
ing KEM is publicly verifiable then the resulting hybrid encryption scheme is
publicly verifiable as well. We can thus immediately obtain a range of publicly
verifiable constructions of hybrid encryption schemes with somewhat non-trivial
verification from these two building blocks; for instance, we can apply publicly
verifiable KEM constructions from Section 3.3.

In the case of tag-based KEM/DEM approach, Abe et al. [3] showed that
IND-CCA-secure hybrid encryption can be obtained by combining an IND-CCA-
secure tag-based KEM with a one-time secure DEM. They also provide con-
structions of IND-CCA-secure tag-based KEMs that they obtain generically from
IND-CCA-secure public-key KEMs and one-time MACs. Our publicly verifiable
public-key-based KEM constructions from Section 3.3 can be used to instantiate
their tag-based KEMs, resulting in further publicly verifiable hybrid encryption
schemes.

5 Conclusion

In this work we formalized the notion of public verifiability for encryption
schemes, KEMs, and hybrid KEM/DEM constructions. By adopting and extend-
ing the generalized syntax from [1] our definitions of publicly verifiable schemes
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and corresponding security results hold for public-key based, identity-based, and
tag-based settings. We defined conditions under which public verifiability can be
seen as a non-trivial requirement for IND-CCA security and have proven that
by outsourcing verification those schemes remain at least IND-CPA secure. We
showcased that well-known CHK and NIZK-based transforms offer strictly non-
trivial public verification, proposed a new PKE scheme that makes most use of
this property, and discussed different flavors of efficient strictly non-trivial pub-
licly verifiable KEMs. With regard to hybrid schemes we showed that although
strictly non-trivial verification is not achievable, a relaxed notion of somewhat
non-trivial public verifiability can be obtained, which still offers sufficient per-
formance gains in IND-CCA/CPA filters that are useful for applications where
outsourcing of ciphertext verification to an honest-but-curios gateway without
losing confidentiality is sufficient for practical purposes.
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A Proof of Theorem 1

Proof. Let A be an adversary that breaks the IND-CPA security of GE′ and runs
in time tA. We build an algorithm B running in time tB that, using A as a
sub-routine, breaks the IND-CCA security of GE. Let CGE denote the challenger
in the associated IND-CCA security game for GE.

Algorithm B interacts with CGE and A. With A, B acts as a challenger playing
the IND-CPA security game for GE′. In detail, B does the following: On input
public par, B forwards them on to A. At some point A outputs the challenge
consisting of two messages M0 and M1, a target identity id∗, and a target tag
t∗. B forwards M0 and M1 along with id∗ and t∗ to GE challenger CGE, which
in turn responds with a ciphertext C∗ on M∗

b for a random bit b (unknown to
B). Since C∗ is publicly verifiable, B hands C̄∗ ← Ver(par, ek[id∗], C∗, t∗) as the
challenge ciphertext over to A. Eventually, A outputs a bit b′, which B uses as
it own output.

Queries of A to the oracles OEK and ODK are answered by B as follows:

• OEK(id): B queriesOEK(id) to CGE and responds toA with whatever it receives
from CGE. Note that A is allowed to query OEK on id∗.

• ODK(id): B queries ODK(id) to CGE and responds to A with whatever it re-
ceives from CGE. Note that A is not allowed to query ODK on id∗.

The total running time of B is tB ≤ tA + tVer with tA being the running time of
A and tVer being the execution time of Ver.

Given the above perfect simulation of oracles, B clearly breaks the IND-CCA
security of GE whenever A breaks the IND-CPA security of GE′. ��

http://libeccio.dia.unisa.it/Papers/Trapdoor/Trapdoor.pdf
http://shoup.net/papers
http://shoup.net/iso/std6.pdf
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Abstract. In a public-key encryption scheme, if a sender is not con-
cerned about the security of a message and is unwilling to generate costly
randomness, the security of the encrypted message can be compromised.
This is caused by the laziness of the sender. In this work, we charac-
terize lazy parties in cryptography. Lazy parties are regarded as honest
parties in a protocol, but they are not concerned about the security of
the protocol in a certain situation. In such a situation, they behave in
an honest-looking way, and are unwilling to do a costly task. We study,
in particular, public-key encryption with lazy parties. Specifically, as the
first step toward understanding the behavior of lazy parties in public-key
encryption, we consider a rather simple setting in which the costly task is
to generate randomness used in algorithms, and parties can choose either
costly good randomness or cheap bad randomness. We model lazy parties
as rational players who behaves rationally to maximize their utilities, and
define a security game between lazy parties and an adversary. A secure
encryption scheme requires that the game is conducted by lazy parties
in a secure way if they follow a prescribed strategy, and the prescribed
strategy is a good equilibrium solution for the game. Since a standard
secure encryption scheme does not work for lazy parties, we present some
public-key encryption schemes that are secure for lazy parties.

1 Introduction

Consider the following situation. Alice is a teacher of a course “Introduction to
Cryptography.” She promised to inform the students of their grades by using
public-key encryption. Each student prepared his/her public key, and sent it
to Alice. Since there are many students taking the course, it is very costly to
encrypt the grades of all the student. However, since she promised to use public-
key encryption, she decided to encrypt the grades. To encrypt messages, she
needs to generate randomness. Generating good randomness is also a costly
task. While the grades are personal information for the students and thus they
want them to be securely transmitted, the grades are not personal information
for Alice. The security of the grades is not her concern. She noticed that, even if
she used bad randomness for encryption, no one may detect it. Consequently, she
used cheap bad randomness for encryption instead of costly good randomness.

The above situation resulted in an undesirable consequence. This example
demonstrates that, if some party in a cryptographic protocol is not concerned
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c© Springer-Verlag Berlin Heidelberg 2012



412 K. Yasunaga

about the security and is unwilling to do a costly task, then the security of the
protocol may be compromised. The insecurity is caused by the laziness of the
party. A traditional cryptography did not consider the laziness of players who
are regarded as honest. However, the security should be preserved even if such
lazy parties exist.

1.1 This Work

We introduce the notion of lazy parties, who may compromise the security of
cryptographic protocols. We characterize lazy parties such that (1) they are not
concerned about the security of the protocol in a certain situation, and (2) they
behave in an honest-looking way and are unwilling to do a costly task. We study,
in particular, public-key encryption schemes with lazy parties. As the first step
toward understanding the behavior of lazy parties in public-key encryption, we
consider the following rather simple setting. The sender and the receiver have
their own valuable messages. They want to transmit a message securely if it
is valuable for them. However, since both the sender and the receiver are lazy,
the sender is not willing to do a costly task if a message is not valuable for
him, and the receiver vice versa. The costly task we consider is to generate
randomness used in algorithms. For simplicity, we assume that players can choose
either costly good randomness or cheap bad randomness. While the costly good
randomness is a truly random string, the cheap bad randomness is some fixed
string in our setting. Our goal is to design public-key encryption schemes in which
valuable messages of the sender or the receiver can be transmitted securely by
the lazy sender and receiver who may use bad randomness in algorithms.

Formalizing the Problem. We formalize the security of public-key encryption
for lazy parties as follows. First we define a security game between a sender, a
receiver, and an adversary. The game is a variant of the usual chosen plaintext
attack (CPA) game of public-key encryption. In this game we see the sender and
the receiver as rational players. The sender and the receiver have their utility
functions, the values of which are determined by the outcome of the game, and
they play the game to maximize their utilities. Roughly speaking, we say that
an encryption scheme is secure for lazy parties if there is a pair of prescribed
strategies of the sender and the receiver for the game, the game is conducted
in a secure way if they follow the prescribed pair of strategies, and the pair of
strategies is a good equilibrium solution. The solution concepts we consider in
this work are Nash equilibrium and strict Nash equilibrium, which is stronger
than Nash equilibrium.

Impossibility Results. As impossibility results, we show that to achieve the secu-
rity for lazy parties with a Nash equilibrium solution in our setting, the sender
must generate a secret key, and the encryption phase requires at least two rounds.
Neither of them is satisfied in the usual public-key encryption. Therefore, we
need to consider encryption schemes in which the sender generates a secret key
in the key generation phase, and the sender and the receiver interacts at least
two times in encrypting a message.
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Constructions. The security for lazy parties varies according to what information
each player knows. We consider several situations according to the information
each player knows, and present a secure encryption scheme for lazy parties in
each situation.

First we consider a basic situation in which the receiver does not know whether
a message to be encrypted is valuable for him or not, and the sender knows the
value of the message for him. We propose a two-round encryption scheme that is
secure for lazy parties with a strict Nash equilibrium solution. The idea is simple.
First the receiver generates a random string, encrypts it by the public key of the
sender, and sends it to the sender. Next the sender recovers the random string
from the ciphertext and uses it to encrypt a message by the one-time pad. Since
the receiver does not know whether a message to be encrypted is valuable for
him or not, the receiver will generate good randomness.

Next, we consider a situation in which the receiver may know whether a
message to be encrypted is valuable for him or not. This captures a real-life
situation; If we use encryption, in many cases, it is realized not only by the
sender but also the receiver that what kind of message will be sent. Under this
situation, the above two-round scheme seems no longer secure since the receiver
would not generate good randomness if a message to be encrypted is not valuable
for him. We show that for any pair of strategies the above two-round scheme
cannot achieve the security for lazy parties with a Nash equilibrium solution.
Thus we propose a three-round encryption scheme that is secure in this situation.
The encryption phase is conducted as follows. First the sender and the receiver
perform a key-agreement protocol to share a random string between them so
that the shared string will be good randomness if at least one of them uses good
randomness in the key-agreement protocol. Then, the sender uses the shared
string as randomness in the encryption algorithm. Finally, after recovering a
message, the receiver encrypts the message by the sender’s public key and makes
it public. At first glance, the final step of making the encrypted message public
seems redundant, but our scheme does not achieve the security without this step.
Our three-round scheme is secure for lazy parties with a strict Nash equilibrium
solution.

We generalize the above situation such that both the sender and the receiver
may know that a message to be encrypted is valuable for them. The difference
from the previous situation is that the sender may be able to know the value of
the message for the receiver, and the receiver vice versa. In this situation, we
realized that the above three-round scheme has two different pairs of strategies
that achieve the security with a strict Nash equilibrium. There is a situation
such that one pair yields a higher utility to the sender, and the other pair yields
a higher utility to the receiver. Moreover, if the sender follows a strategy that
yields a higher utility to him and the receiver also does so, they will conduct an
encryption protocol in an insecure way, which is worse for both of them. Thus,
we propose a simple way to avoid such a consequence.

Finally, we consider constructing a non-interactive encryption scheme that
is secure for lazy parties. We avoid the impossibility of existing non-interactive
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schemes by adding some reasonable assumption to lazy parties. The assumption
is that players do not want to reveal their secret key to adversaries. Then we
employ a signcryption scheme for an encryption scheme. A signcryption scheme is
a cryptographic primitive that achieves both public-key encryption and signature
simultaneously, and thus the sender also has the secret key. Some of signcryption
schemes (e.g., [1]) have the key-exposure property, which means that the sender’s
secret key can be efficiently recovered from a ciphertext and its random string.
This property seems to be undesirable in a standard setting. However, we show
that if a signcryption scheme with the key-exposure property is employed as a
public-key encryption scheme, it is secure for lazy parties with a strict Nash
equilibrium solution.

1.2 Related Work

Halpern and Pass [2] have introduced Bayesian machine games in which players’
utilities can depend on the computational costs of their strategies. We could use
the framework of Halpern and Pass to define a security of public-key encryption
schemes for lazy parties since the utilities of lazy parties depend on their compu-
tational cost. We did not use their framework in this work since their framework
seems too general for our purpose.

There have been many studies on rational cryptography [3,4,5], in which play-
ers in cryptographic protocols are considered rational players. Much study has
been devoted to designing rational secret sharing [6,7,8,9,10,11,12,13]. Recently,
the problem of fair two-party computation with rational players was consid-
ered [14,15]. The work in this paper also can be seen as a study of rational
cryptography. As far as we know, this is the first study of rational behavior in
public-key encryption schemes.

In cryptography, there are several characterizations of parties who are nei-
ther honest nor malicious [16,17,18]. In particular, the deviations of honest-
looking parties were studied in [16,17]. All types of honest-looking parties defined
in [16,17] deviate from the protocol in a way that is computationally indistin-
guishable from the view of external or internal parties. This means that any
efficient statistical test cannot tell the difference between honest parties and
honest-looking parties. In this study, we consider honest-looking parties who
may deviate from the protocol by using a fixed string instead of a truly random
string. Since the difference between fixed strings and truly random strings can
be told by a simple statistical test, the deviations of lazy parties in this study
are bolder than honest-looking parties in [16,17]. Note that all the characteriza-
tion in [16,17] appeared in the context of general multiparty computation, not
in public-key encryption.

A main problem of public-key encryption with lazy parties is that lazy parties
might not use good randomness in algorithms. There are many studies on the
security of cryptographic tasks when only weak randomness is available. If there
are only high min-entropy sources, not including truly random one, many impos-
sibility results are known [19,20]. Bellare et al. [21] introduced hedged public-key
encryption, which achieves the usual CPA security if good randomness is used,
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and achieves a weaker security if bad randomness is used. In this work, we con-
sider only two types of randomness sources, truly random ones and fixed ones.
We achieve the security by a mechanism such that lazy parties choose to use
good randomness for their purpose.

1.3 Future Work

Possible future work is extending the framework of this work to more general
settings. For example, in this work, lazy players can choose either truly random
(full entropy) strings or fixed (zero entropy) strings as the randomness in algo-
rithms. Since it seems more realistic for players to be able to choose random
strings from general entropy sources, extending the framework to such a gen-
eral setting and defining a reasonable security on that setting are interesting for
future work.

Another possible future work is to explore cryptographic protocols that may
be compromised in the presence of lazy parties. Although we consider only gen-
erating good randomness as a costly task, it is possible to consider another thing
as cost, such as time for computation and delay in the protocol.

1.4 Organization

In Section 2, we introduce the CPA game for lazy parties, define utility functions
of lazy parties, and provide a definition of the CPA security for lazy parties. Our
secure encryption schemes in various situations are presented in Section 3. All
the proofs of propositions and theorems can be found in the full version of this
paper.

1.5 Notations

A function ε(·) is called negligible if for any constant c, ε(n) < 1/nc for every
sufficiently large n. For two families of random variables X = {Xn}n∈N and Y =
{Yn}n∈N, we say that X and Y are computationally indistinguishable, denoted by
X ≈c Y , if for every probabilistic polynomial-time (PPT) distinguisher D, there
is a negligible function ε(·) such that |Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ ε(n)
for every sufficiently large n. For a probabilistic algorithm A, the output of A
when the input is x is denoted by A(x), and denoted by A(x; r) when the random
string r used in A is represented explicitly.

2 Lazy Parties in Public-Key Encryption

We consider the following setting of public-key encryption between a lazy sender
and a lazy receiver. Each lazy party has a set of valuable messages, and wants
a message to be sent securely if it is valuable for that party. If a message to be
encrypted is not valuable for a party, he is not concerned about the security of
the message, and does not want to use good randomness in the computation.
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In this paper, we consider only two types of randomness, good randomness and
bad randomness. Good randomness is a truly random string but costly. Bad
randomness is generated with zero cost, but is some fixed string.

We formalize the security as follows. Lazy parties are considered as rational
players who have some utility functions and behave rationally to maximize their
utilities. We define a security game between a lazy sender, a lazy receiver, and
an adversary. Then, we say that an encryption scheme is secure if there is a pair
of prescribed strategies of the sender and the receiver for the game, the game is
conducted in a secure way if they follow the strategies, and the pair of strategies
is a good equilibrium solution.

We define public-key encryption as an interactive protocol between a sender
and a receiver. The reason is that we cannot achieve the security if the sender
does not have a secret key or the encryption phase is conducted in one round,
which will be described in the last of this section. In the key generation phase,
both the sender and the receiver generate their own public key and secret
key, then each public key is distributed to the other player. In the encryption
phase, the players conduct an interactive protocol in which the sender has a
message as an input. After the encryption phase, the receiver can recover the
message by running the decryption algorithm. This definition is much more gen-
eral than the usual public-key encryption, in which only the receiver generates a
public key and a secret key, and the encryption phase is just sending a ciphertext
from the sender to the receiver.

Definition 1 (Public-key encryption scheme). An n-round public-key en-
cryption scheme Π is the tuple ({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) such
that

– Key generation: For each w ∈ {S,R}, on input 1k, Genw outputs
(pkw, skw). Let M denote the message space.

– Encryption: For a message m ∈ M, set stS = (pkS , pkR, skS ,m), stR =
(pkS , pkR, skR), and c0 = ⊥. Let w ∈ {S,R} be the first sender, and w̄ ∈
{S,R}\{w} the second sender. For each round i ∈ {1, . . . , n}, when i is odd,
Enci(ci−1, stw) outputs (ci, st

′
w), and stw is updated to st′w, and when i is

even, Enci(ci−1, stw̄) outputs (ci, st
′
w̄), and stw̄ is updated to st′w̄.

– Decryption: After the encryption phase, on input stR, Dec outputs m̂.

– Correctness: For any message m ∈ M, after the encryption phase,
Dec(stR) = m.

We provide a definition of the chosen plaintext attack (CPA) game for lazy par-
ties. The game is a variant of the usual CPA game for public-key encryption.
The game is conducted as follows. The sender S (and the receiver R) has his
valuable message space MS (and MR), which is a subset of {0, 1}∗. First, each
player w ∈ {S,R} are asked to choose good randomness or bad randomness for
the key generation algorithm. If player w chooses good randomness, a random
string rgw for key generation is sampled as a truly random string. Otherwise,
rgw is generated by the adversary of this game. Then, pairs of public and se-
cret keys for the two parties are generated using rgw as a random string, and
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the public keys are distributed to the sender, the receiver, and the adversary.
Next, the adversary generates two sequences m0 and m1 of challenge messages,
where mb = (mb,1, . . . ,mb,
) for b ∈ {0, 1} and some polynomial . After that,
the challenger chooses b ∈ {0, 1} uniformly at random. The sender receives mb

and asked to choose good or bad randomness for the encryption protocol. If he
chooses good randomness, random strings rei,j for encryption is sampled as truly
random strings, where rei,j represents a random string used in the j-th round
of the encryption for the i-th message mb,i. Otherwise, strings rei,j ’s are gener-
ated by the adversary. Similarly, the receiver also asked to choose good or bad
randomness for the encryption protocol without seeing the challenge messages
mb, and random strings rei,j ’s are generated in the same way as the sender.
Then, a sequence of challenge messages are encrypted using rei,j ’s as random
strings. Finally, the adversary receives a sequence of challenge ciphertexts, and
outputs a guess b′ ∈ {0, 1}. The outcome of the game consists of five values
Win,ValS ,ValR,NumS , and NumR. The value Win takes 1 if the guess of the
adversary is correct, namely b = b′, and 0 otherwise. The value Valw for player
w ∈ {S,R} takes 1 if there is at least one valuable message for player w in the
sequence mb of challenge messages, and 0 otherwise. The value Numw for player
w ∈ {S,R} represents the number of times that player w chose good randomness
in the game, which is between 0 and 2.

In the following, we provide a formal definition of the CPA game for lazy
parties. For a probabilistic algorithm A, we denote by (A) the length of random
bits required in running A. We define Samp(·) to be an algorithm such that
Samp(A) samples a random string from {0, 1}
(A).

Definition 2 (CPA game for lazy parties). Let Π = ({Genw}w∈{S,R},
{Enci}i∈{1,...,n},Dec) be a public-key encryption scheme. For an adversary A,
the security parameter k, valuable message spaces MS and MR, and a pair of
strategies (σS , σR), we define the following game.

Gamecpa(Π, k,A,MS ,MR, σS , σR):

1. Choice of randomness for key generation: For each w ∈ {S,R},
compute xgw ← σw(1

k,Mw), where xgw ∈ {Good,Bad}. If xgw = Bad,

then given (1k, w), A outputs rgw ∈ {0, 1}
(Genw(1k)). Otherwise sample
rgw ← Samp(Genw(1

k)).

2. Key generation: For each w ∈ {S,R}, generate (pkw, skw) ←
Genw(1

k; rgw). Let M be the corresponding message space.

3. Challenge generation: Given (pkS , pkR), A outputs m0 =
(m0,1, . . . ,m0,
) and m1 = (m1,1, . . . ,m1,
), where  ∈ N is a polyno-
mial in k and mi,j ∈ M for each i ∈ {0, 1} and j ∈ {1, . . . , }. Then sample
b ∈ {0, 1} uniformly at random.

4. Choice of randomness for encryption: For each w ∈ {S,R}, compute
xew ← σw(pkS , pkR, skw, auxw), where xew ∈ {Good,Bad}, auxS = mb, and
auxR = ⊥. If xew = Bad, then given w, A outputs rei,j ∈ {0, 1}
(Encj(·))
for each i ∈ {1, . . . , } and j ∈ {1, . . . , n}. Otherwise sample rei,j ←
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Samp(Encj(·)) for each i ∈ {1, . . . , } and j ∈ {1, . . . , n}. Let w be the
first sender, and w̄ the second sender, which are determined by Π.

5. Encryption: For i ∈ {1, . . . , }, do the following. Set stS =
(pkS , pkR, skS ,mb,i), stR = (pkS , pkR, skR), and ci,0 = ⊥. For j ∈
{1, . . . , n}, when j is odd, compute (ci,j , st

′
w) ← Encj(ci,j−1, stw; r

e
i,j)

and stw is updated to st′w, and when j is even, compute s(ci,j , st
′
w̄) ←

Encj(ci,j−1, stw̄; r
e
i,j) and stw̄ is updated to st′̄w.

6. Guess: Given {ci,j : i ∈ {1, . . . , }, j ∈ {1, . . . , n}}, A outputs b′ ∈ {0, 1}.
7. Output (Win,ValS ,ValR,NumS ,NumR), where Win takes 1 if b′ = b, and

0 otherwise, Valw takes 1 if mb,i ∈ Mw for some i ∈ {1, . . . , }, and 0
otherwise, and Numw represents the number of times that σw output Good
in the game.

Next, we define the utility functions of lazy sender and receiver for this game.

Definition 3 (Utility function for CPA game). Let (σS , σR) be a pair of
strategies of the game Gamecpa. The utility of player w ∈ {S,R} when the
outcome Out = (Win,ValS ,ValR,NumS ,NumR) happens is defined by

uw(Out) = (−αw) ·Win · Valw + (−βw) · Numw,

where αw, βw ∈ R are some non-negative constant. Let qw be the maximum
number that Numw can take. (qw is either 0, 1, or 2, depending on the scheme
Π.) We say that the utility is valid if αw/2 > qw · βw for each w ∈ {S,R}.

The utility when the players follow a pair of strategies (σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E[uw(Out)]},

where Out is the outcome of the game Gamecpa(Π, k,A,MS ,MR, σS , σR), and
the minimum is taken over all PPT adversaries A and valuable message spaces
MS and MR for every sufficiently large k.

Note that, in the above definition, we take the minimum over all possible ad-
versaries (and valuable message spaces) to define the utility when players follow
a pair of strategies (σS , σR). This is because we would like to evaluate a pair
of strategies (σS , σR) by considering the worst-case for possible adversaries and
valuable message spaces. In other words, we would like to say that a pair of
strategies is good if it is guaranteed to yield high utility for any adversary and
players, who are associated with valuable message spaces.

Note that the validity condition of the utility guarantees that players have an
incentive to use good randomness for achieving the security. If players do not
use good randomness, then there is an adversary such that Win · Valw is always
1. The best we can hope for is that the expected value of Win ·Valw is 1/2 (plus
some negligible value), which increases the utility by αw/2. Since Numw takes
at most qw in the game, the inequality αw/2 > qw · βw means that achieving
the security is worth paying the cost of good randomness. Hereafter, we assume
that the utility functions are valid.
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As game theoretic solution concepts, we define Nash equilibrium and strict
Nash equilibrium. Since any strategy that a player can follow should be com-
putable in a polynomial time and a negligible difference of the outcome of the
game should be ignored for PPT algorithms, we consider a computational Nash
equilibrium.

Definition 4 (Computational Nash equilibrium). A pair of PPT strategies
(σS , σR) of the game Gamecpa is called a computational Nash equilibrium if for
each player w ∈ {S,R}, it holds that

Uw(σ
∗
S , σ

∗
R) ≤ Uw(σS , σR) + ε(k)

for every PPT strategy σ′w of player w, where (σ∗S , σ
∗
R) = (σ′S , σR) if w = S,

(σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise, and ε(·) is a negligible function.

Strict Nash equilibrium guarantees that if a player deviates from the strategy,
then the utility of the player decreases by a non-negligible amount. The definition
is based on that of [22], which appeared in the context of rational secret sharing.
To define strict Nash equilibrium, we need to introduce the notion of equivalent
strategy.

Definition 5 (Equivalent strategy). Let (σS , σR) be a pair of strategies of
the game Gamecpa, and σ′w any strategy of player w ∈ {S,R}. We say σ′w is
equivalent to σw, denoted by σ′w ≈ σw, if for any PPT adversary A and valuable
message spaces MS and MR,

{Trans(1k, σw)} ≈c {Trans(1k, σ′w)},

where Trans(1k, ρw) represents the transcript of the game
Gamecpa(Π, k,A,MS ,MR, σ

∗
S , σ

∗
R), which includes all values generated

in the game except the internal random coin of σ′w, and (σ∗S , σ
∗
R) = (σ′S , σR) if

w = S, (σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

Definition 6 (Computational strict Nash equilibrium). A pair of strate-
gies (σS , σR) of the game Gamecpa is called a computational strict Nash equi-
librium if

1. (σS , σR) is a Nash equilibrium;

2. For any w ∈ {S,R} and any σ′w �≈ σw, there is a constant c > 0 such that
Uw(σ

∗
S , σ

∗
R) ≤ Uw(σS , σR) − 1/kc for infinitely many k, where (σ∗S , σ

∗
R) =

(σ′S , σR) if w = S, (σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

We define the security of encryption schemes for lazy parties.

Definition 7 (CPA security for lazy parties). Let Π = ({Genw}w∈{S,R},
{Enci}i∈{1,...,n},Dec) be a public-key encryption scheme, and (σS , σR) a pair
of strategies of the game Gamecpa. We say that (Π,σS , σR) is CPA secure with
a (strict) Nash equilibrium for Gamecpa if
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1. For any PPT adversary A, valuable message spaces MS ,MR, and every
sufficiently large k, it holds that Pr[Win · (ValS + ValR) �= 0] ≤ 1/2 +
ε(k), where Win,ValS ,ValR are components of the outcome of the game
Gamecpa(Π, k,A,MS ,MR, σS , σR), and ε(·) is a negligible function;

2. The pair of strategies (σS , σR) is a computational (strict) Nash equilibrium.

In the first condition, we evaluate the value of Win · (ValS +ValR) since if ValS +
ValR = 0, all the messages chosen by the adversary are not valuable for both the
sender and the receiver.

Note that the usual CPA security of usual (non-interactive) public-key en-
cryption is a special case of the above definition. If the scheme Π consists of
(GenR,Enc1,Dec), a pair of strategies (σS , σR) is such that both σS and σR
always output Good, and the second condition of the security is not considered,
then the above security is equivalent to the usual CPA security of public-key
encryption. For a usual encryption scheme Π = (Gen,Enc,Dec), we say that
Π is CPA secure if it is CPA secure in this sense.

Impossibility Results. The first observation for achieving the security for lazy
parties is that the sender must generate a secret key and the encryption phase
requires at least two rounds, neither of them is satisfied in the usual public-key
encryption. Roughly speaking, the reason why secure schemes require to generate
a secret key for a sender is that if the messages to be encrypted are valuable for
the receiver but not for the sender, the sender does not use good randomness
and thus the adversary can correctly guess which of the challenge messages was
encrypted because she known all the input to the sender. Furthermore, even if
the sender has his secret key, if the encryption phase is 1-round, there is an
adversary who can guess the challenge correctly. Consider an adversary who
submits challenge messages such that one consists of the same two messages and
the other consists of different two messages, and all the messages are valuable
for the receiver but not for the sender. Then the sender does not use good
randomness, and thus the adversary can choose randomness for encryption. If
she choose the same random strings for two challenge messages, then although
the adversary does not know the secret key of the sender, since the encryption
is 1-round, she can correctly guess which of the challenges was encrypted by
checking whether given two challenge ciphertexts are the same or not. See the
full version for the formal statements and proofs.

3 Secure Encryption Schemes for Lazy Parties

3.1 Two-Round Encryption Scheme

We present a two-round public-key encryption scheme that is CPA secure with a
strict Nash equilibrium. The encryption phase is conducted as follows. First the
receiver generates a random string, encrypts it by the public key of the sender,
and sends it to the sender. Next the sender encrypt a messages by the one-time
pad, in which the sender uses the random string received from the receiver. The
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receiver can recover the message since he knows the random string. Our scheme is
based on any CPA-secure public-key encryption scheme Π = (Gen,Enc,Dec)
in which the message space is {0, 1}μ and the length of random bits required in
Enc is μ.

The description of our two-round scheme Πtwo = (GenS , {Enci}i∈{1,2},
DecR) is the following.

– GenS(1
k): Generate (pkS , skS) ← Gen(1k), and output (pkS , skS).

Let M = {0, 1}μ be the message space, where μ is a polynomial in k. Set
stS = (pkS , skS) and stR = pkS .

– Enc1(stR): Sample r ∈ {0, 1}μ uniformly at random, compute c1 ←
Enc(pkS , r), and output (c1, (skR, r)).

Enc2(c1, stS): Compute r̂ ← Dec(skS , c1) and c2 = m⊕ r̂, and output c2.

– DecR(c2, (skR, r)): Compute m̂ = c2 ⊕ r and output m̂.

We define a pair of strategies (σS , σR) such that

– σS(1
k,MS) outputs Good with probability 1. σS(pkS , skS , auxS) is not de-

fined.

– σR(1
k,MR) is not defined. σR(pkS , auxR) outputs Good with probability 1.

Theorem 1. If Π is CPA secure, (Πtwo, σS , σR) is CPA secure with a strict
Nash equilibrium for Gamecpa.

3.2 Additional Information to the Receiver

In this section, we consider a situation in which the receiver may know whether
a message to be encrypted is valuable for the receiver or not. This situation can
be reflected by changing the game Gamecpa such that the adversary can choose
either “auxR = ⊥” or “auxR = ValR” in the challenge generation phase. Let
GamecpaR denote the modified game.

In this situation, the scheme presented in Section 3.1 is no longer secure.
Intuitively, this is because the receiver does not generate good randomness if a
message to be encrypted is not valuable for him.

Proposition 1. For any pair of strategies (σS , σR), (Πtwo, σS , σR) is not CPA
secure with a Nash equilibrium for GamecpaR .

We present a three-round encryption scheme that is secure for GamecpaR . In the
encryption phase, first the sender and the receiver perform a key-agreement pro-
tocol that generates a random string shared between them. The shared string
is good randomness if one of the sender and the receiver uses good randomness
in the key-agreement protocol. Then, the sender uses the shared string as ran-
domness to encrypt a message. Finally, after recovering a message, the receiver
encrypt the message by the sender’s public key and makes it public. As described
later, the final step is necessary to achieve the security. Our scheme is based on
any CPA-secure public-key encryption scheme Π = (Gen,Enc,Dec) in which
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the message space is {0, 1}2μ and the length of random bits required in Enc is
μ.

The description of the encryption scheme Πthree = ({Genw}w∈{S,R},
{Enci}i∈{1,2,3}) is the following. The decryption algorithm does not exist in
Πthree since the receiver decrypts a message in computing Enc3.

– Genw(1
k) : Generate (pkw, skw) ← Gen(1k), and output (pkw, skw).

Let M = {0, 1}2μ be the message space, where μ is a polynomial in k. Set
stS = (pkS , pkR, skS) and stR = (pkS , pkR, skR).

– Enc1(stR): Sample r1 ∈ {0, 1}μ uniformly at random, compute c1 ←
Enc(pkS , r1), and output (c1, (skR, r1)).

Enc2(c1, stS): Sample r2 ∈ {0, 1}μ uniformly at random and compute c2 ←
Enc(pkR, r2) and r̂1 ← Dec(skS , c1). Then set rL ◦ rR = r̂1 ⊕ r2 such that
|rL| = |rR| = μ, compute c3 ← Enc(pkR,m; rL), and output ((c2, c3), skS),
where x ◦ y denote the concatenation of strings x and y.

Enc3((c2, c3), stR): Compute r̂2 ← Dec(skR, c2), set r̂L ◦ r̂R = r1 ⊕ r̂2,
compute m̂← Dec(skS , c3) and c4 ← Enc(pkS , m̂; r̂R), and make c4 public.
The decrypted message is m̂.

We define a pair of strategies (σS , σR) such that

– σS(1
k,MS) outputs Good with probability 1. σS(pkS , pkR, skS , auxS) out-

puts Good if mb,i ∈ MS for some i ∈ {1, . . . , }, and Bad otherwise.

– σR(1
k,MR) outputs Good with probability 1. σR(pkS , pkR, skR, auxR) out-

puts Good if auxR = ⊥ or ValR = 1, and Bad otherwise.

At first glance, it does not seem necessary to make c4 public at the third round of
the encryption phase. However, it is necessary to do so because if not, the sender
can achieve the security without using good randomness in the key generation
phase.

Theorem 2. If Π is CPA secure, (Πthree, σS , σR) is CPA secure with a strict
Nash equilibrium for GamecpaR .

3.3 Additional Information to the Sender and the Receiver

In this section, we consider a situation in which both the sender and the receiver
may know that a message to be encrypted is valuable for them. The situation
is different from that of the previous section because the sender may be able
to know the value of a message for the receiver, and the receiver vice versa.
This situation can be reflected by changing the game GamecpaR such that the
adversary can choose either “auxS = mb” or “auxS = (mb,ValR)”, and either
“auxR = ⊥”, “auxR = ValR”, “auxR = ValS”, or “auxR = (ValS ,ValR)” in the
challenge generation phase. Let GamecpaS,R denote the modified game.

In this game, the scheme Πthree has two different strict Nash equilibria.
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Proposition 2. There are two pairs of strategies (σS , σR) and (ρS , ρR) such
that σS �≈ ρS, σR �≈ ρR, and both (Πthree, σS , σR) and (Πthree, ρS , ρR) are CPA
secure with strict Nash equilibrium for GamecpaS,R. Furthermore, there is a PPT
adversary A and valuable message spaces MS and MR such that E[uS(Outρ)]−
E[uS(Outσ)] ≥ βS − ε(k) and E[uR(Outσ)]−E[uR(Outρ)] ≥ βR − ε(k) for every
sufficiently large k, where Outσ is the outcome of the game GamecpaS,R in which

players follow (σS , σR), Outρ is the outcome of the game GamecpaS,R in which
players follow (ρS , ρR), and ε(·) is a negligible function.

As shown in the proof, the difference between outputs of (σS , σR) and (ρS , ρR)
is only in the case that auxS = (mb,ValR), auxR = (ValS ,ValR), and ValS =
ValR = 1. In this case, the sender uses good randomness and the receiver uses
bad randomness in (σS , σR), while the sender uses bad randomness and the
receiver uses good randomness in (ρS , ρR). Therefore, the sender prefers to fol-
lowing (ρS , ρR), while the receiver prefers to following (σS , σR). It is difficult to
determine which pair of strategies the players follow. If the protocol have started,
but the sender and the receiver have not agreed on which pair of strategies they
follow, the outcome can be worse for both of them. If the sender follows (ρS , ρR)
and the receiver follows (σS , σR) when ValS = ValR = 1, in this case both players
are to use bad randomness in the encryption, thus the adversary can correctly
guess b with probability 1. Such an outcome should be avoided for both players.

There is a simple way of avoiding that outcome. In the encryption phase, if
xeR �= Good, the receiver uses the all-zero string as a random string. Since the
sender can verify if the random string chosen by the receiver is all-zero or not,
if so, the sender will use good randomness if a message is valuable. The all-zero
string is a signal that the receiver did not used good randomness.

3.4 Signcryption with an Additional Assumption

A signcryption scheme is one of cryptographic primitives that achieves both
public-key encryption and signature simultaneously. In particular, a secret key
for encryption and a signing key for signature is common, and a public key for
encryption and a verification key for signature is also common.

We show that signcryption schemes with some property can achieve the CPA
security for lazy parties if we add an assumption for players. The assumption is
that players do not want to reveal their secret keys. This is plausible since, if
the secret key of some player is revealed, it is equivalent to that the encrypted
messages to the player are revealed and the signatures of the player are forged.

Formally, a signcryption scheme Πsigenc consists of three PPT algorithms
({Genw}w∈{S,R},SigEnc,VerDec) such that

– Genw(1
k): Output a signing/decryption key (secret key) skw and a verifica-

tion/encryption key (public key) pkw; Let M denote the message space.

– SigEnc(pkR, skS ,m): For a message m ∈M, output the ciphertext c;

– VerDec(pkS , skR, c): For a ciphertext c, output ⊥ if the verification fails,
and the decrypted message m̂ otherwise.
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Some of signcryption schemes (e.g., [1]) have the key-exposure property that, if
the randomness used in SigEnc is revealed, then the secret key of the sender is
efficiently computed from the randomness. This property seems to be undesir-
able in a standard setting. However, if a signcryption scheme with key-exposure
property is used as a public-key encryption scheme, it can achieve the CPA
security for lazy parties.

We modify the game Gamecpa such that the adversary outputs (b′, sk′S) in
the guess phase, and Secret is included in the output of the game, where Secret
takes 1 if skS = sk′S and 0 otherwise. Let Gamecpasecret denote the modified game.

The utility function for the sender when the outcome Out =
(Win,ValS ,ValR,NumS ,NumR, Secret) happens is defined by

uS(Out) = (−αS) ·Win · ValS + (−βS) · NumS + (−γS) · Secret,

where γS ∈ R is a non-negative constant such that γS > αS/2 + qS · βS . The
condition on γS implies that achieving Secret = 0 is the most valuable for the
sender.

We define a pair of strategies (σS , σR) for the game Gamecpasecret such that

– σS(1
k,MS) outputs Good with probability 1. σS(pkS , skS , auxS) outputs

Good with probability 1.

– σR(1
k,MR) outputs Good with probability 1. σR(pkS , auxR) is not defined.

Theorem 3. Let Πsigenc = ({Genw}w∈{S,R},SigEnc,VerDec) be a signcryp-
tion scheme with CPA security and key-exposure property. Then (Πsigenc, σS , σR)
is CPA secure with a strict Nash equilibrium for the game Gamecpasecret.

Acknowledgments. The author would like to thank Keisuke Tanaka and Keita
Xagawa for their constructive comments and suggestions. The author would also
like to thank anonymous reviewers for their helpful comments and suggestions.

References

1. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

2. Halpern, J.Y., Pass, R.: Game theory with costly computation. In: Innovations in
Computer Science, pp. 120–142 (2010)

3. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future
Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008)

4. Dodis, Y., Rabin, T.: Cryptography and game theory. In: Nisan, N., Roughgar-
den, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 181–207.
Cambridge University Press (2007)

5. Halpern, J.Y.: Computer science and game theory. In: Durlauf, S.N., Blume, L.E.
(eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan (2008)



Public-Key Encryption with Lazy Parties 425

6. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM (2004)

7. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty com-
putation. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 53–62. ACM (2006)

8. Dov Gordon, S., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg
(2006)

9. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-
changing information. In: [23], pp. 320–339

10. Kol, G., Naor, M.: Games for exchanging information. In: Dwork, C. (ed.) STOC,
pp. 423–432. ACM (2008)

11. Micali, S., Shelat, A.: Purely rational secret sharing (extended abstract). In: [24],
pp. 54–71

12. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an honest minority
and a rational majority. In: [24], pp. 36–53

13. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret
sharing. J. Cryptology 24(1), 157–202 (2011)

14. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure
Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
426–445. Springer, Heidelberg (2011)

15. Groce, A., Katz, J.: Fair Computation with Rational Players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012)

16. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639–648 (1996)

17. Canetti, R., Ostrovsky, R.: Secure computation with honest-looking parties: What
if nobody is truly honest (extended abstract). In: STOC, pp. 255–264 (1999)

18. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology 23(2), 281–343 (2010)

19. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: FOCS, pp. 196–205 (2004)

20. Bosley, C., Dodis, Y.: Does Privacy Require True Randomness? In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 1–20. Springer, Heidelberg (2007)

21. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

22. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in
Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

23. Canetti, R. (ed.): TCC 2008. LNCS, vol. 4948. Springer, Heidelberg (2008)
24. Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)



Probabilistically Correct Secure Arithmetic

Computation for Modular Conversion, Zero
Test, Comparison, MOD and Exponentiation�

Ching-Hua Yu1,2 and Bo-Yin Yang2

1 National Taiwan University, Taipei, Taiwan
2 Center for Information Tech. and Innovation,

Academia Sinica, Taipei, Taiwan
chinghua.yu@gmail.com, by@crypto.tw

Abstract. When secure arithmetic is required, computation based on
secure multiplication (MULT) is much more efficient than computation
based on secure Boolean circuits. However, a typical application may
also require other building blocks, such as comparison, exponentiation
and the modulo (MOD) operation. Secure solutions for these functions
proposed in the literature rely on bit-decomposition or other bit-oriented
methods, which require O(�) MULTs for �-bit inputs. In the absence of
a known bit-length independent solution, the complexity of the whole
computation is often dominated by these non-arithmetic functions.

In this paper, we resolve the above problem for the case of two-party
protocols against a malicious adversary. We start with a general modular
conversion, which converts secret shares over distinct moduli. For this,
we propose a probabilistically correct protocol with a complexity that is
independent of �. Then, we show that when these non-arithmetic func-
tions are based on secure modular conversions, they can be computed in
constant rounds and O(k) MULTs, where k is a parameter with an error
rate of 2−Ω(k).

Keywords: secure arithmetic, two-party computation, probabilistically
correct algorithm, data privacy.

1 Introduction

Secure two-party computation allows two parties, Alice and Bob, to jointly com-
pute a function f(xA,xB) without revealing anything about their inputs, where
xA and xB are secret vectors held by Alice and Bob respectively. Solutions
based on Boolean circuits [7, 12, 21, 34] provide general feasibility results, while
solutions based on secure arithmetic computation, constructed by using e.g.,
homomorphic encryption or oblivious transfer [17, 23, 36], are efficient for ad-
dition and multiplication. Specifically, in arithmetic applications, such as data
mining, machine learning, auction, and distributed generation of cryptographic
keys [4, 8, 10, 16, 24, 25], the second choice is usually considered more efficient
in practice.

� An extended version of this paper, which is [37], is at IACR e-Print Archive 2011/560.

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 426–444, 2012.
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Besides addition and multiplication, several non-arithmetic functions that in-
volve integer comparison, the zero test, which tests whether an input value is
zero, the modulo (MOD) operation, which computes the remainder of x divided
by a public integer P , while the input and the output are both shares in ZQ,
and exponentiation also play important roles in many arithmetic applications.
To realize the best of both worlds, recent works of secure arithmetic computa-
tion involve two directions. Some works [17, 23, 27, 36] developed efficient se-
cure arithmetic primitives (i.e., techniques for an efficient secure multiplication);
others [14, 22, 30, 33, 36] considered how to compute non-arithmetic functions
efficiently based on a secure multiplication. However, the complexity of the ex-
isting protocols to these non-arithmetic functions is still much higher than that
of secure multiplication. Therefore, even though the arithmetic functions can
be computed efficiently, the computation of these non-arithmetic functions may
dominate the complexity in many applications. For instance, from the existing
results, we can use bit-decomposition, which converts a secret number into a
secret binary set [14, 28, 32], as a generic solution to compute non-arithmetic
functions in a bit-oriented manner; or we can use more efficient solutions tai-
lored for specific problems, such as integer comparison [30], the MOD operation
[22, 28] and modular exponentiation [36]. Unfortunately, the complexity of these
solutions is still at least O() secure multiplications1, where  is the bit-length
of the inputs.

The above limitation raises some interesting questions. First, are there con-
stant round and probabilistically correct solutions to these problems such that
the complexity only depends on a correctness parameter k and has an expo-
nentially low error rate of 2−Ω(k)? From a theoretical viewpoint, such solutions
serve as evidence of a complexity breakthrough regarding non-arithmetic com-
putation using arithmetic operations. They are also in accord with the direction
of a recent study [33], on sub-linear secure comparison (whose complexity is
O(

√
(k + log )) secure multiplications and constant rounds). From a practical

viewpoint, such solutions provide a trade-off between the efficiency and the error
rate. Moreover, is there a unified framework better than bit-decomposition for
integer comparison, the zero test, the MOD operation and the modular expo-
nentiation?

1.1 Problem Statement

We study secure two-party computation of several non-arithmetic functions that
involve the zero test (equality test), integer comparison, the MOD operation, and
modular exponentiation based on the modular conversion protocol. The objective
is to find bit-length independent solutions, where the complexity depends on the
number of secure multiplications.

Instead of using bit-decomposition as the bridge between the arithmetic func-
tions and the non-arithmetic functions, we use modular conversion, which

1 Using the method in [36], integer exponentiation takes O(1) secure multiplications,
but modular exponentiation requires an additional comparison and zero test. Thus,
in general cases, the complexity is still bounded by O(�).
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converts the shares in ZQ into shares in ZP . The setting of modular conver-
sion is as follows. Let Q,P ≥ 2 be two distinct integers, and let x be a secret in
ZQ.

2 In addition, let xA and xB be additive shares of x in ZQ, i.e., x = x
A+xB

mod Q, held by Alice and Bob respectively. Modular conversion converts xA and
xB into zA and zB such that x = zA + zB mod P .

On one hand, modular conversion can serve a general purpose. First, modular
conversion is related to the MOD operation. We show a simple reduction from
modular conversion to the MOD operation in Section 3.7. Second, let  be the
bit-length of Q. Then, bit-decomposition can be reduced to − 1 parallel MOD
operations by computing x mod 2
−1, ..., x mod 2 and some linear combina-
tions. This implies the general use of modular conversion for binary functions.
Moreover, because the MOD operation is reducible to modular conversion, but
not vice versa, modular conversion serves as a more general functionality.

On the other hand, for many well used functions like the zero test (equality
test), integer comparison, the MOD operation, and modular exponentiation, it
may be not necessary to perform full bit-decomposition, as the solutions can be
constructed directly by modular conversion.

1.2 Contributions

We propose a new secure two-party modular conversion scheme for general mod-
uli. That is, the input and the output are secret shares in ZQ and ZP respec-
tively, where Q and P are arbitrary integers greater than or equal to 2. Then,
using modular conversion, we derive efficient solutions to several non-arithmetic
functions.

Our framework for the general modular conversion protocol is based on a
probabilistically correct computation that relies on the manipulation of secret
shares. When the secret shares of an input are generated uniformly, the error rate
of the computation is constant. Therefore, by using uniformly random re-sharing
k times, we can construct a solution with an error rate of 2−Ω(k).

To obtain solutions that would block a malicious adversary, we first construct
the protocols of these functions in the passive security model, and then show
that these protocols can be enhanced to be actively secure by efficient arithmetic
zero-knowledge proofs.

In the passive security model, assuming the existence of a Multiplicative to
Additive Sharing Conversion or a secure multiplication, we derive the following
protocols and results.

– A general modular conversion protocol that uses O(k) (about 7k+30) secure
multiplications and O(1) (about 8) rounds, with an error rate of 2−Ω(k) (at
most (7/10)k for all k ≥ 20).

– A randomized zero-test protocol whose cost is O(k) (about k) secure multi-
plications and O(1) (about 8) rounds with an error rate of 2−k at most.

2 In this paper, unless otherwise specified, x ∈ ZQ simply means that x ∈ {0, ..., Q−1},
and y = x mod Q means that y ∈ {0, ..., Q− 1}.
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– Solutions to the sign function, integer comparison, the MOD operation and
modular exponentiation based on modular conversion and the zero test are
described. The complexity of all the solutions is O(k) secure multiplications
and O(1) rounds, with an error rate of 2−Ω(k) at most.

Our schemes can be adapted to the active security model by O(k) multiplication
proofs. See [37] for the implementation detail of this extension.

1.3 Potential Application and Open Problem

In this paper, we proposed the first probabilistically-correct protocols which
is non-binary and has an input-independent complexity to several problems of
secure two-party computation. In the following, we describe and recall some
potential applications for instance.

Let Alice be a bank issuing a credit card CC. Alice wants to know the ratio
of their CC users to spend more than 21% of their personal income last year
with CC card, as the assessment of whether their policies of interest, rewards,
and benefits packages are attractive, as well as adjusts its commercial strategy
in accordance with it. In addition, Alice would like to know what ratio of the CC
users to borrow more than 73% of their income using CC short-term loan, one of
the criteria as a financial risk evaluation in order to judge whether to raise the
threshold of issuing and lending conditions. When computing the ratio, Alice
also put a weight according to each user’s credit level. In the second assessment,
Alice needs to compute 1

n

∑n
i=1 wi(xi>73% · pi), where xi, pi, and wi ∈ [0, 100]

are the CC card spending, the personal income, and the credit weight of Useri
in the last year respectively. Alice owns the credit card spending record and the
credit weight of the CC users, which is possibly stored in a confidential way, but
the personal income record of the CC users is held by some government agency.
Let Bob be such an agency. Hence Alice would like to conduct a cooperative
computation with Bob. However most people consider their personal income
and spending record as privacy and hope the Government and the bank not to
disclose this information to a third party under any circumstances. Hence the
computation should be conducted with privacy guarantees. This can be done
through secure two-party computation. First, Alice sends Bob secret shares of
xi and wi over a sufficient large ring/field ZQ, and Bob sends Alice a secret
share of pi over ZQ for each i. Then, Alice and Bob compute [z]Q ←

∑n
i=1[wi]Q ·

CMPQ(100 · [xi]Q>73 · [pi]Q), where CMPQ is a secure comparison protocol with
input/output shares over ZQ. To reveal the output to Alice, Bob simply sends
his secret share of z to Alice. Using our CMPQ protocol, Alice can obtain a
probabilistically correct result. Our CMPQ protocol is implemented by 21k +
90 MULT2 and 6 MULTQ with an error rate (7/10)k, where MULT2 and MULTQ

are secure multiplication protocols over Z2 and ZQ respectively. Assume n =
100000, and set k = 13 for an error rate less than 0.01 for each invocation of the
CMPQ protocol. By Chernoff bound, we have Pr[error(z/n) ≤ 0.02] ≥ 1− e−10.
Note that a small k is adequate for a high accurate learning.
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In this instance, the computation involves secure operations of addition, mul-
tiplication, and comparison; in other cases, the computation can involve a more
complex formula or algorithm. In addition, before revealing the output to Alice,
a small noise (e.g., noise drawn from the Laplace distribution [19]) can be added
to the output to reduce the information of individual items, which is important
when many functions are evaluated. This method can have some guarantee of
data privacy (e.g., the notion of differential privacy [19]) and encourage individ-
uals to be willing to agree on such revelation. In [18], Dwork et al. show how
to generate shares of an approximate exponential noise for this purpose. Recent
works on this line involve [6, 26].

Recently in [13], Choi et al. conduct a comparison between secure Boolean
circuits and secure arithmetic circuits for implementing their algorithm of an ap-
plication in on-line marketplace. They show that the GMW protocol [21] (which
relies on Boolean-circuit representation) are more efficient than the VIFF proto-
col [15] and the SEPIA protocol [11] (which rely on arithmetic-circuit represen-
tation). On one hand, besides the addition operation, their algorithm is mainly
composed of binary operations involving AND, MUX, XOR, and comparison
but does not contain multiplication. Hence in their case, it can be more suit-
able to use a boolean circuit-based solution instead of an arithmetic one, but
the result can not be generalized to other applications. In addition, they only
tested computation with input length of 16 bits, which may be too small for
general cases while the advantage of using secure arithmetic circuits for addi-
tion and multiplication gets larger with the input length). On the other hand,
their application can serve as another witness of the importance of an efficient
comparison protocol. Because unlike addition and multiplication, the compari-
son has been considered as a very expensive operation and often dominates the
complexity of the whole computation for a long time (as also mentioned in [11]),
the improvement of its complexity is critical to these practical applications.

More generally, addition, multiplication, zero test, comparison, exponentia-
tion and MOD are basic arithmetic computation. They are extensively used in
arithmetic applications, such as data mining, machine learning and distributed
generation of cryptographic keys [4, 8, 10, 16, 24, 25]. More projects relying on
secure arithmetic computation can be found in the web pages of [1, 2].

Besides these potential applications, future directions involve solutions to
other expensive non-arithmetic operations, e.g., whether there is a probabilisti-
cally correct protocol with sub-linear complexity for integer division when both
the divisor and the dividend are secrets, solutions in the multiparty case, and
deterministic solutions with sub-linear complexity. See [35] for a recent study of
this line.

1.4 Related Work

Share Conversion is usually regarded as a tool for bridging different kinds of
computation. In [14], Damg̊ard et al. proposed a constant-round protocol for
bit-decomposition to support integer comparison, the zero test, the MOD oper-
ation and exponentiation in arithmetic circuits. The communication complexity



Probabilistically Correct Secure Arithmetic Computation 431

of the bit-decomposition protocol in [14] is O( log ) (secure multiplications).
Subsequently, it was improved to O( log∗ ) in [32]. A statistically secure con-
version between integer shares and ZQ shares was proposed in [3], and a deter-
ministic conversion from a prime field ZQ to ZQ−1 was presented in [36]. Both
solutions are efficient compared to secure multiplications; however, the former

requires the secret x < Q
16 ·

2−σ

n , where σ is a security parameter, and the latter

requires x < Q
2 . Although the solutions are not effective for general cases, they

motivate the direction of our work. Moreover, in [36], efficient protocols for the
transformation between additive and multiplicative shares are proposed to take
care of private exponentiation in a non-bit-oriented manner.

Integer Comparison is an important functionality in many arithmetic applica-
tions. Besides using bit-decomposition [3, 14], a protocol for secure comparison
without bit-decomposition is described in [30]. Recently, Toft [33] proposed a
sub-linear protocol for secure two-party comparison (or an extension for two
non-colluding parties known in multiple parties). The constant-round protocol
involves

√
 equality tests (in parallel), each of which can be performed by us-

ing O(k) secure multiplications with a 2−k error rate by using a similar equal-
ity test scheme to that in [30]. Hence, the total complexity of the protocol is
O(

√
(k + log )).

MOD Operation. In [28], a protocol that uses constant rounds and O() se-
cure multiplications is proposed for secure MOD operations without using bit-
decomposition. Recently, Guajardo et al. [22] introduced a statistically secure
solution for modulo reduction. It requires at most O(n2σa) secure multiplica-
tions, where n is the number of parties, σ is a security parameter, and a is the
bit length of a (public) modulus. However, for general cases, such as a = Q − 1
or a = Q/2, this solution still requires O() secure multiplications.

Modular Exponentiation. The first constant-round solution proposed by Dam-
g̊ard et al. [14] was based on bit-decomposition, which dominated the complex-
ity. More recently, Yu et al. [36] developed a constant-round protocol for secure
two-party exponentiation using O() secure multiplications. The protocol’s com-
plexity is dominated by modular reduction, which we will improve to derive a
better result.

In Table 1, we summarize our results for two-party computation of the general
modular conversion, zero test, integer comparison, modular exponentiation and
modulo reduction protocols, and compare their complexity with existing solu-
tions. All of the compared solutions are based on a MULT, so the multiparty
protocols in [28–30] can also be applied to the two-party case provided there is
a secure two-party MULT.

2 Preliminaries

We assume the computation involves two non-colluding parties, Alice and Bob,
communicating over a public channel. For a functionality f(·, ·), a protocol is
said to be passively secure or semi-honest secure if, for any honest-but-curious
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Table 1. Comparison of our results and those of the protocols in [28–30, 33, 36] for
computing additive shares over ZQ. (� = logQ is the length of the elements in the field
ZQ; and k is the correctness parameter for exponentially low error rates.)
∗ The cost of ModCNVQ→P is about 7k + 30 MULTP ’s.
∗∗ The cost of CMPQ is about 21k + 90 MULT2’s and 6 MULTQ’s, upper-bounded by
the complexity of 21k + 96 MULTQ’s.

Problem Solution Rounds Complexity (MULTQ) Error Rate

General Modular Con-
version

Section 3.3 8 7k+30 ∗ (7/10)k

Zero Test
[30] 8 81� deterministic

[30] 4 12k (1/2)k

Section 3.4 8 k (1/2)k

Integer Comparison
[30] 15 297� + 5 deterministic

[33] O(1) O(
√
�(k + log �)) (1/2)k

Section 3.6 11 21k + 96 ∗∗ (7/10)k

Modular Exponentiation
[29] 24 162� + 46

√
�+ 28 deterministic

Section 3.6,
based on [36]

13 8k + 36 (7/10)k

MOD (modulo
reduction)

[28] 22 354� + 3 deterministic
Section 3.6 8 7k + 30 (7/10)k

adversary A who corrupts Alice, there exists a probabilistic polynomial time
simulator S that, given the inputs and the randomness of A, can produce a
view of A that is (statistically/computationally) indistinguishable from the real
interaction with Bob. A similar rationale should hold if Bob is corrupted. For
a standard formal definition, readers may refer to [20]. We construct protocols
based on arithmetic operations, i.e., additions and multiplications of (sufficiently
large) finite fields/rings and assume that all the inputs and outputs of the pro-
tocols are secret shares.

Secret Shares and Secure Protocols. To protect a secret, such as a private value, a
widely used method hides the secret in secret shares. In two-party computation,
secret shares are usually expressed in an additive form. For example, let x be a
secret in ZQ. If Alice and Bob hold xA and xB respectively, such that x = xA+xB

mod Q, Alice’s (resp. Bob’s) view on xA (resp. xB) should be indistinguishable
from a uniformly random value in ZQ, so that Alice (resp. Bob) cannot learn
anything about x from xA (resp. xB). In this scenario, x is called a shared secret.
Note that a linear combination of secret shares can be computed locally, but the
multiplication of two secrets would involve communication. To formulate the
computation based on secret shares, all the inputs and outputs of a protocol
π are expressed as shared secrets as (yA, yB) ← π(A(xA), B(xB)), where the
superscript A (resp. B) of xA (resp. xB) denotes Alice’s (resp. Bob’s) share of
x, and A(.) (resp. B(.)) denotes Alice’s (resp. Bob’s) inputs.

Multiplicative to Additive Sharing (M2A). M2A is a basic functionality in secure
two-party computation. Let xA and xB be the secret inputs of Alice and Bob
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respectively. An M2A protocol outputs yA and yB, held by Alice and Bob re-
spectively, such that yA + yB ≡ xA · xB mod Q. We formulate this procedure
as (yA, yB) ← M2AQ(A(x

A), B(xB)).

Secure Multiplication (MULT). MULT is a functionality that securely computes
the multiplication of two shared secrets. For example, Alice and Bob have xA, yA

and xB, yB respectively as inputs, where x = xA+ xB mod Q and y = yA+ yB

mod Q; and they get zA and zB respectively as outputs such that zA + zB

mod Q = x · y mod Q = (xA + xB) · (yA + yB) mod Q. Since xAyA and xByB

can be computed locally by Alice and Bob respectively, the procedure involves
two invocations of M2A for xAyB and xByA. We formulate the procedure as
(zA, zB) ← MULTQ(A(x

A, yA), B(xB , yB)).

Assumption 1 (M2A or MULT). We assume the existence of a M2A or a
MULT. We take them as the cost units and regard the computation of one M2A
or MULT as one communication round.

There have been solutions to M2AQ and MULTQ for an arbitrarily modulus
Q. The implementation can be based on various cryptographic assumptions such
as homomorphic encryption [17, 23, 27, 36] and oblivious transfers [23]. For
example, when M2A is constructed using the Paillier cryptosystem [31], it should
follow the hardness assumption of decisional composite residuosity (DCRA), and
there will be a hidden security parameter σ. Nevertheless,M2A and MULTcan be
implemented by computing O(1) modular exponentiations and communicating
O(1) ciphertexts, or equivalently O( + σ) bits, in O(1) rounds.

2.1 Some Building Blocks

Polynomial Function Evaluation (POLY). Given a non-zero shared secret x =
xA + xB mod Q as the input, POLY computes a polynomial function f(x) =∑k

i=1 cix
i, where c1, ..., ck are public constants. We formulate the computation as

(zA, zB) ← POLYQ(f(x), A(x
A), B(xB)). Note that POLY is only used in cases

where the input secret x is non-zero. The POLY protocol for the multiparty
case can be found in [5, 14]. Their protocol can be modified for the two-party
use by carefully considering required commitments and zero-knowledge proofs.
Alternatively, see [37], for a simple implementation of two-party POLYQ. The
total cost is less than k + 4M2AQ’s and 3 rounds.

m-Fan-In AND (ANDm
Q ). Given a set of shared secret xi = x

A
i + xBi mod Q,

where xi ∈ {0, 1} for i = 1 to m as the inputs, ANDm
Q computes x1 ∧ ... ∧ xm.

We formulate this protocol as (zA, zB) ← ANDm
Q (A(xA1 , ...x

A
m), B(xB1 , ..., x

B
m)).

It is similar to the unbounded fan-in multiplication in [5]; however, the latter
only supports non-zero inputs and finite fields. By contrast, the inputs of ANDm

Q

can be 0, and Q can be an arbitrary integer greater than or equal to 2. An
implementation of a two-party ANDm

Q can be found in [37]. The total cost of our
implementation is about 5 rounds with m+ 5 M2AP ’s and 1 M2AQ, where P is
the smallest prime greater than m+ 1.
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3 Probabilistically Correct Protocols with Passive
Security

3.1 Our Framework

In this section, we explain how several non-arithmetic functions can be imple-
mented by using secure arithmetic computation in the passive security model.

First, we construct a modular conversion protocol that converts shares in ZQ

into shares in ZP . Let x be a secret in ZQ, and let xA and xB be the additive
shares of x in ZQ (i.e., x = xA+xB mod Q) held by Alice and Bob respectively.
Modular conversion converts xA and xB into zA and zB respectively such that
x = zA + zB mod P .

To obtain a general modular conversion, we first build more limited protocols
that only work with the input secret in a certain range. Then, we tweak them
to ensure their validity regardless of the values of the secret shares. With uni-
formly random re-sharing, we can derive a probabilistically correct randomized
algorithm of modular conversion with no constraint on the input secret.

In addition to the general modular conversion protocol, a randomized zero test
protocol can be built by using modular conversion protocols of limited validity.
Using the modular protocols as primitives, we also build several applications that
involve the sign test, integer comparison and MOD operations. The applications
form the centerpiece of an efficient modular exponentiation scheme. Please refer
to the protocol hierarchy in [37].

3.2 Modular Conversion with Input Constraints

First, We implement the modular conversion protocols with some constraints
on the input secret x. If an input satisfies the constraints, it can be assumed
that partial information about the input secret is known. Specifically, when
the sign of the input (whether x < Q/2 or x ≥ Q/2) is known, the modular
conversion of x from Q to P for arbitrary Q and P can be computed efficiently.
By using this information to determine whether a wrap-around modulo Q occurs
in x = xA + xB mod Q, only one invocation of M2AP is required. Hence, based
on this observation, we implement two function-limited protocols: one �modular
conversion protocol for the case where x < Q/2 (�ModCNV⊥

Q→P ), and one for

the case where x ≥ Q/2 (�ModCNV

Q→P ), as shown in Fig. 1. Moreover, when

Q is a small constant, the modular conversion of x from Q to an arbitrary P
can be computed by using O(1) MULTP ’s deterministically and validly without
input constraints. Specifically, when Q = 2, the implementation of ModCNV2→P

only requires one M2AP , as shown in Fig. 1.

Correctness. We only reason the case where x < Q/2 ( �ModCNV⊥
Q→P ) because

the case where x ≥ Q/2 (�ModCNV

Q→P ) is similar, and the correctness of

ModCNV2→P is easy to follow. First, note that xA + xB can only be x + Q or
x depending on whether a wrap-around modulo Q occurs. If xA, xB < Q/2, the
outcome must be x, i.e., x = xA + xB . If xA, xB ≥ Q/2, we can be certain that
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Two half valid modular conversion protocols:

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA + xB

mod Q. Q,P are two public integers, Q > 2, P ≥ 2.
– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB = x mod P .

Case 1: �ModCNV⊥
Q→P (A(xA), B(xB)), valid for x < Q

2
:

1. Alice computes a number bA locally such that bA = 1 if xA < Q
2
, otherwise 0.

2. Bob computes a number bB locally such that bB = 1 if xB < Q
2
, otherwise 0.

3. Run (z′A, z′B) ← M2AP (A(bA), B(bB)).
4. Alice computes zA = (xA + z′A · Q) mod P , and Bob computes zB = (xB +

(z′B − 1) ·Q) mod P

Case 2: �ModCNV�
Q→P (A(xA), B(xB)), valid for x ≥ Q

2
:

1. Alice computes a number bA locally such that bA = 1 if xA ≥ Q
2
, otherwise 0.

2. Bob computes a number bB locally such that bB = 1 if xB ≥ Q
2
, otherwise 0.

3. Run (z′A, z′B) ← M2AP (A(bA), B(bB)).
4. Alice computes zA = (xA−z′A ·Q) mod P , and Bob computes zB = (xB−z′B ·Q)

mod P

ModCNV2→P (A(xA), B(xB)) modular conversion protocol for the case where x ∈ Z2:

– Inputs: Alice holds xA ∈ Z2 and Bob holds xB ∈ Z2 such that x = xA + xB

mod 2. P is a public integer, P > 2.
– Outputs: Alice obtains zA ∈ ZP and Bob obtains zB ∈ ZP such that zA+zB = x

mod P .

1. Run (z′A, z′B) ← M2AP (A(xA), B(xB)).
2. Alice computes zA = (xA−2 ·z′A) mod P , and Bob computes zB = (xB−2 ·z′B)

mod P .

Fig. 1. Protocol �ModCNV⊥
Q→P (A(xA), B(xB)), �ModCNV�

Q→P (A(xA), B(xB)) and
ModCNV2→P (A(xA), B(xB))

x = xA + xB −Q. Otherwise, if xA < Q/2, xB ≥ Q/2 or xA ≥ Q/2, xB < Q/2,
we have Q/2 ≤ xA + xB < Q/2 +Q. Specifically, when x < Q/2, xA + xB can
only be x + Q.Therefore, when x < Q/2, only the case where xA, xB < Q/2
does not involve a wrap-around modulo Q. This corresponds to the Boolean
test in Step 3, where z′A + z′B mod P = bAbB = (xA<Q/2) ∧ (xB<Q/2).
Since we have x = xA + xB + ((z′A + z′B mod P )− 1)Q, which implies that x
mod P = (xA + z′AQ mod P ) + (xB + (z′B − 1)Q mod P ) mod P , protocol
�ModCNV⊥

Q→P is valid for x < Q/2.

Security and Complexity. The communication part of the above protocols only
involves one invocation of M2AP , so the security and efficiency follows from
those of M2AP . Note that we assume M2AP is secure, and the secret share z′A
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(resp. z′B) should be indistinguishable from a uniformly random value from
Alice’s (resp. Bob’s) view. Hence, Alice (resp. Bob) does not obtain any addi-
tional information from the communication. The detailed security proofs will be
provided in the full paper.

3.3 General Modular Conversion

Next, we describe a protocol for general modular conversion based on the proto-
cols for modular conversion with input constraints We focus on the case where Q
is an odd number. The extension regarding an arbitrary Q (Q ≥ 2) is discussed
in [37].

Recall that, while ModCNV2→Q is always valid, the validity of �ModCNV⊥
Q→2

is only guaranteed when x < Q/2. When x ≥ Q/2, the validity of �ModCNV⊥
Q→2

depends on the value of the shares. Assume one of the shares is sampled according
to the uniformly distribution in ZQ. Then, for x ∈ [Q/2, Q − 1], the error rate
of �ModCNV⊥

Q would decree linearly when x gets large. When x is close to Q/2,

�ModCNV⊥
Q would return a correct output with a high probability; when x is close

to Q− 1, �ModCNV⊥
Q would return an incorrect output with a high probability.

More accurate formula is described in the following lemma.

Lemma 1. Let Q > 2, P ≥ 2, where P � Q. Assume that Q
2 ≤ x < Q and let xA

and xB be a pair of shares of x. If xA is a random number sampled according to
the uniform distribution in ZQ, then the error rate of �ModCNV⊥

Q→P (A(x
A), B(

xB)) would be 2(x−�(Q−1)/2�)
Q .

Specifically, when Q is an odd number, for all Q
2 ≤ x < Q, there always exists

at least one pair of shares (xA, xB) such that (xA < Q
2 , x

B ≥ Q
2 ) or (xA ≥

Q
2 , x

B < Q
2 ); and there always exists at least one pair of shares such that (xA <

Q
2 , x

B < Q
2 ). The former case results in a fault in �ModCNV⊥

Q→P , and the latter

works properly in �ModCNV⊥
Q→P . This implies that �ModCNV⊥

Q→P can serve as
a randomized test. Therefore, we use uniformly random re-sharing to generate k
pairs of shares of x and run �ModCNV⊥

Q→P k times. If x < Q/2, �ModCNV⊥
Q→P

would return (random) shares of the correct x mod P over ZP for all derived
pairs of shares; otherwise, with a non-negligible probability, at least one pair of
shares would have a wrong and different result from the others. However, if x
is close to Q/2 (resp. Q − 1), since the error rate of �ModCNV⊥

Q→P is close to

0 (resp. 1) , all the k tests of �ModCNV⊥
Q→P would be correct (resp. wrong)

with high probability. On the other hand, if x is close to 3Q/4, the error rate
of �ModCNV⊥

Q→P would be close to 1/2; and hence, with high probability, at
least one of the k pairs of shares would have a different result. Therefore, we test
x+ �iQ/ρ
 mod Q for i = 0, ..., ρ− 1 in parallel. Because at least one element
of x, x + �Q/ρ
 ..., x + �(ρ− 1)Q/ρ
 mod Q is close to 3Q/4, there is a high
probability that we can identify this element successfully (in a private way).
Thus, we have the following lemma.
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Lemma 2. Let Q > 2, P ≥ 2, where P � Q, and let x ∈ ZQ. For i = 0, ..., ρ− 1,

let xi = x +
⌊
i · Qρ

⌋
; and let (xAi,1, x

B
i,1), ..., (x

A
i,k, x

B
i,k) be k pairs of shares of xi,

where for all j, xAi,j is a uniformly and independently random number in ZQ.

In addition, let (yAi,j , y
B
i,j) be the outputs of �ModCNV⊥

Q→P (A(x
A
i,j), B(x

B
i,j)) and

let yi,j = yAi,j + y
B
i,j mod P . Then, the probability that yi,1 = ... = yi,k for all

i = 0, ..., ρ− 1 is at most
(

1
2 + 1

ρ

)k
.

As a result, at least one of x, x + �Q/ρ
 , ..., x + �(ρ− 1)Q/ρ
 mod Q can be
identified as greater than or equal toQ/2 with high probability (in a private way).
Therefore, by utilizing �ModCNV


Q→P , which is valid in this interval, we can
derive a valid modular conversion of x from modulo Q to P with high probability.
Our general modular conversion protocol is shown in Fig. 2. In Step 1, note that

αi stands for whether a wrap-around modulo Q occurs when xAi = xA +
⌊
i · Qσ

⌋
mod Q is computed; this will be used later in Step 7. As we have explained above,
at least one of xi would be close to 3Q/4. For the convenience of illustration,
we denote any one of such xi by xs with index s. In Step 2(a), a public random
number is easy to obtain by letting Alice and Bob sample rAj and rBj respectively

and then reveal them to compute rj = r
A
j + rBj mod Q in the passively secure

setting. In Step 3, ui (resp. vi) stands for wether yi,1, ..., yi,k are all 1 (resp. all
0). In Step 4, ai denotes whether there are distinct values among yi,1, ..., yi,k.
Here we use the fact that uBi − uAi = uBi + uAi mod 2 and the fact that ui and
vi cannot be 1 at the same time. Note that ai = 1 if and only if xi ≥ �Q/2
,
and from Lemma 7, with high probability, as would be 1. In Step 5, because the
output shares are required to be in ZP , they convert the shares of ai from Z2

to ZP . Note that this step is deterministically correct. The conversion in Step
7 is valid when xi ≥ �Q/2
, and so the computation of ws is deterministically
correct. Finally, recall there can be multiple i satisfying xi ≥ �Q/2
, and in Step
4, there is a non-negligible probability to get ai = 1 (which implies bi = 1) when
xi ≥ �Q/2
. Because ai = 1 if and only if xi ≥ �Q/2
 (which implies wi is
valid), we simply pick the first valid one, which is the computation in Step 8.
The following theorem proves the correctness of this randomized protocol.

Theorem 3 (Correctness). Let Q > 2 and P ≥ 2 be two numbers, where Q
is odd; and let xA, xB ∈ ZQ be the secret shares of x in ZQ i.e., x = xA + xB

mod Q. (zA, zB) ← ModCNVQ→P ( A(x
A), B(xB), k) form shares of x in ZP

with an error rate at most
(

1
2 + 1

ρ

)k
, where ρ is the optimum parameter in

ModCNVQ→P .

Security. Besides of the generation of k public random numbers that do not
contain any information about the secret values, the communication only takes
place in the sub-protocols whose outputs are all secret shares that are indistin-
guishable from uniformly random numbers from each party’s view. Hence, the
security follows from that of the sub-protocols. The detailed proof is deferred to
the full version of this paper.
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– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA + xB

mod Q. Q > 2 and P ≥ 2 are two public numbers. Q is odd.
– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB = x mod P .

If P |Q, Alice and Bob output zA = xA mod P and zB = xB mod P respectively;
else, let ρ be a parameter for the optimum adjustment and k be a parameter for the
error rate.

1. For i = 0, ..., ρ−1, Alice sets αi = (xA
i +

⌊
i · Q

ρ

⌋
≥ Q) and xA

i = xA+
⌊
i · Q

ρ

⌋
−αiQ,

and Bob sets xB
i = xB.

2. Alice and Bob run the following procedure for j = 1, ..., k in parallel:
(a) Generate a public random number rj (uniformly and independently).
(b) For each i, Alice and Bob locally compute xA

i,j ← xA
i +rj mod Q and xB

i,j ←
xB
i − rj mod Q respectively.

(c) For each i, run (yA
i,j , y

B
i,j) ← �ModCNV⊥

Q→2(A(xA
i,j), B(xB

i,j)).
3. For each i, compute (uA

i , u
B
i ) ← ANDk

2(A(yA
i,1, ..., y

A
i,k)), B(yB

i,1, ..., y
B
i,k))

and (vAi , vBi ) ← ANDk
2(A(1− yA

i,1, ..., 1− yA
i,k)), B(−yB

i,1, ...,−yB
i,k)).

4. For each i, Alice sets aA
i = 1− uA

i − vAi , and Bob sets aB
i = 0;

5. For each i, run (bAi , b
B
i ) ← ModCNV2→P (a

A
i , a

B
i ).

6. For each i, run (w′A
i , w′B

i ) ← �ModCNV�
Q→P (A(xA

i ), B(xB
i )).

7. For each i, Alice sets wA
i = w′A

i −
⌊
i · Q

ρ

⌋
+αiQ mod P , and Bob sets wB = w′B .

8. Compute zA and zB such that zA+zB = b0w0+ b̄0b1w1+...+(b̄0...̄bρ−2bρ−1wρ−1)
mod P using (1 + ρ)ρ/2 MULTP (where b̄i = 1 − bi, bi = bAi + bBi mod P and
wi = wA

i +wB
i mod P ).

Fig. 2. General modular conversion protocol: ModCNVQ→P (A(xA), B(xB), k)

Complexity and Parameter Optimization. Note that Step 8 can be computed by
using (1+ρ)ρ/2 MULTP in log2 ρ parallel rounds, and Steps 5 and 6 can be com-
puted in parallel. The communication part of the protocol involves generating k
random public numbers, kρ �ModCNV⊥

Q→P , ρ AND
k
2 , k MULT2, k ModCNV2→P ,

k �ModCNV

Q→P , and (1 + ρ)ρ/2 MULTP . For simplicity, we estimate the cost

by the number of MULTP , counting the cost of 2 M2AP as 1 MULTP . Note
that the cost of MULT2 is no more than MULTP ; and the total cost is at most
(1+ ρ)ρ/2+ kρ+2k+3ρ MULTP and 5+ �log2 ρ� rounds. Since ρ is a constant,
the complexity is O(k) MULTP and O(1) rounds.

Furthermore, ρ ( and k) can be chosen to optimize the cost. Suppose we expect
that the protocol to have an error rate of at most 2−c, c > 0. Then, according
to Theorem 3, (

1

2
+

1

ρ

)k
≤ 2−c =⇒ k ≥ −c

log2(
1
2 + 1

ρ )
,
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so the total cost would be at most

(7 + ρ)ρ

2
+

−c(ρ+ 2)

log2(
1
2 + 1

ρ)
MULTP ’s.

Hence, for optimization purposes, we choose ρ = 3 for 0 < c ≤ 1, ρ = 4 for
2 ≤ c ≤ 9 and ρ = 5 for all c ≥ 10. We summarize the complexity of this
optimization strategy in the following lemma.

Lemma 4. The optimum parameter ρ in ModCNVQ→P is always less than or
equal to 5; and the cost of ModCNVQ→P is at most 7k + 30 MULTP ’s and 8

rounds with an error rate of at most
(

7
10

)k
when k ≥ 20.

3.4 Zero Test

Nishide and Ohta [30] proposed a non-bitwise zero test that calculates the Leg-
endre symbol multiple times. Given an odd prime Q, the solution is based on

the observation that if a = 0, “
(
a+r
Q

)
=
(

r
Q

)
” is always true; and if a �= 0,

“
(
a+r
Q

)
=
(

r
Q

)
” is valid with a probability of about 1/2 for a random value r

uniformly sampled from ZQ. The method requires 12k MULTQ’s with an error

rate of
(
1
2

)k
. Instead of comparing the Legendre symbol, we provide an even

more lightweight solution for two-party computation based on �ModCNV⊥
Q→2.

Here, we consider the case where Q is a prime. An extension for an arbitrary
modulus is described in [37].

First, note that the validity of �ModCNV⊥
Q→2 is only guaranteed when the

input secret is less than Q/2. In addition, by Lemma 1, the error rate increases
linearly with x when x ≥ Q/2 (when the shares of x are sampled uniformly from
ZQ). However, because the counts of odd and even numbers in [Q/2, Q− 1] are
the same, when x is sampled uniformly from ZQ (or Z∗

Q), �ModCNV⊥
Q→2 has

approximately the same probability of returning 1 or 0. The following lemma
states the condition more accurately.

Lemma 5. Let Q be an odd number (Q > 2), r be a random number uniformly
sampled from Z∗

Q, r
A be a random number uniformly sampled from ZQ, and r

B =

r−rA mod Q. In addition, let (zA, zB) be an output of �ModCNV⊥
Q→2(A(r

A), B(

rB)) and z = zA + zB mod 2. Then, when Q = 4a + 1, Pr[z = 1] = Q+1
2Q ;

otherwise, (when Q = 4a− 1), Pr[z = 1] = Q2+1
2Q(Q−1) .

Combining this with the fact that, because Q is a prime, f(r) = rx : Z∗
Q → Z∗

Q is
an isomorphism. Therefore, we provide an efficient randomized protocol through
random re-sharing, as shown in Fig. 3. Note that when Q = 2, (x=0) is simply
1− x mod 2. Otherwise, when Q is an odd prime, the correctness of ZeroTestQ
is proved by the following theorem.

Theorem 6 (Correctness). Let Q be an odd prime, and let (xA, xB) be a pair
of shares of x in ZQ. Then, (zA, zB) ← ZeroTestQ(A(x

A), B(xB), k) forms a
pair of shares of (x=0) with an error rate less than (12 )

k.
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– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ, such that x = xA + xB

mod Q. Q is a public prime.
– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB mod Q = 1

if x = 0, otherwise 0.

When Q = 2: output zA ← 1− xA and zB ← xB,
else (when Q > 2):

1. Alice and Bob run the following procedure for i = 1, ..., k in parallel:
(a) Generate a public random number si (uniformly and independently).
(b) Generate a public non-zero random number ri (uniformly and indepen-

dently).
(c) Alice and Bob locally compute xA

i ← rix
A + si mod Q and xB

i ← rix
B − si

mod Q respectively.
(d) Run (wA

i , w
B
i ) ← �ModCNV⊥

Q→2(A(xA
i ), B(xB

i )).
2. Run (w′A, w′B) ← ANDk

2(A(1− wA
1 , ..., 1−wA

k ), B(−wA
1 , ...,−wA

k )).
3. Run (zA, zB) ← ModCNV2→Q(A(w′A), B(w′B)).

Fig. 3. Zero test protocol: ZeroTestQ(A(xA), B(xB), k)

Security and Complexity. The communication part of the protocol comprises
generating k public si ∈R ZQ and k public ri ∈R Z∗

Q, k �ModCNV⊥
Q→2, 1 ANDk

2 ,
and 1 ModCNV2→Q. Since no public si or ri contain any information about
the secrets, the security of the protocol follows from that of the sub-protocols.
Besides, since the cost of M2A2 is not more than that of M2AQ, and a MULTQ

involves two M2AQ’s, for simplicity, we estimate the cost by the number of
MULTQ. The total cost is approximately k MULTQ’s and 8 rounds.

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA + xB

mod Q, where Q is a public odd number.
– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB mod Q = 1

if x ≤ ⌊
Q
2

⌋
, otherwise 0.

1. Alice and Bob locally compute x′A = 2xA mod Q and x′B = 2xB mod Q re-
spectively.

2. Run (yA, yB) ← ModCNVQ→2(A(x′A), B(x′B), k).
3. Run (zA, zB) ← ModCNV2→Q(A(1− yA), B(yB)).

Fig. 4. Sign test protocol: SIGNQ(A(xA), B(xB))

3.5 Sign Test

Let 1, ..., �Q/2
 correspond to positive numbers, and let �(Q+ 1)/2� , ..., Q − 1
correspond to negative numbers (−�(Q + 1)/2� , ...,−1). For all x in ZQ, we
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compute the sign of x through general modular conversion. Here, we consider
the case where Q is an odd number. An extension for an arbitrary Q is discussed
in [37].

A simple implementation of the protocol is described in Fig. 4. The protocol’s
validity follows that of ModCNVQ→2 and ModCNV2→Q and the fact that, for all
x < Q/2, 2x (0 ≤ 2x < Q) is even; and for all x ≥ Q/2, 2x−Q (0 ≤ 2x−Q < Q)
is odd.

Security and Complexity. SIGNQ only involves ModCNVQ→2 and ModCNV2→Q,
so the security follows from those sub-protocols. Hence, by Lemma 4, the output
of SIGNQ is valid with a probability of at least 1− (7/10)

k
; and the cost is about

7k + 30 MULT2’s and 1 M2AQ and 9 rounds.

3.6 Applications

In this section, we consider several applications of the modular conversion pro-
tocols and the zero test protocol. Using our implementation of SIGNQ, the com-
plexity of the applications is at most O(k) MULTQ’s and O(1) rounds, with an
error rate of 2−Ω(k) at most.

Integer Comparison (CMPQ). Integer comparison assesses whether (x ≤ y) or
(x ≥ y), etc. When the input secrets x and y are known to be in the inter-
val [0, Q/2], the computation is just SignQ(A(x

A − yA mod Q), B(xB − yB
mod Q)). Otherwise, if x and y are known to be in ZQ, similar to the derivation
in [30], CMPQ can be reduced to a cubic combination of SignQ(A(x

A), B(xB)),
SignQ(A(y

A), B(yB)) and SignQ(A(x
A− yA mod Q), B(xB − yB mod Q)) by

2 rounds and 3 MULTQ’s
3. Hence, the whole computation mainly requires 3

invocations of SIGNQ.

Exponentiation (EXPQ). Yu et al. [36] proposed an efficient method for per-
forming secure two-party modular exponentiation in an arithmetic way. Under
their scheme, the secret base is first converted into multiplicative shares over Z∗

Q

and the secret exponent is converted into additive shares over ZQ−1. Then, the
computation can be expressed as (x + (x=0))(y mod Q−1) − (x=0) mod Q. In
the authors’ implementation, the scheme can be computed efficiently except the
zero test (x=0) and modular conversion (converting the shares of y from Q to
Q−1) components. The cost of the computation is estimated to be 5 rounds and
12 M2AQ’s, or equivalently about 6 MULTQ’s. Hence, our zero test and general
modular conversion solutions can complement the implementation in [36].

MOD Operation (MODQ,P ). Here, the MOD operation is defined as the remain-
der of an integer division of a secret x, shared over ZQ, with a public divisor P . In
[14, 28], this function is called modulo reduction, which is related to modular con-
version. With input xA, xB ∈ ZQ, MODQ,P is expected to output zA, zB ∈ ZQ

3 Let α = (x≤Q/2), β = (y≤Q/2) and γ = (x − y≤Q/2). We have (x≤y) = αβ +
αβγ + αβγ = α(β + γ − 2βγ) + 1− β − γ + βγ.
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such that zA + zB mod Q = x mod P , where x = xA + xB mod Q. That is,
the input and the output are both shares in ZQ. However, it can be reduced to
two invocations of the general modular conversion protocols, ModCNVQ→P and
ModCNVP→Q.
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Abstract. Wireless sensor networks (WSN) collect and report
measurements, such as temperature, to a central node. Because sen-
sors are usually low-powered devices, data is transmitted hop-by-hop,
through neighboring nodes, before it reaches the destination.

Each nodes’ messages are authenticated with a MAC (Message Au-
thentication Code), keyed with a key known to the generating sensor and
the control node. Because transmission channel capacity is often small,
MACs represent a significant overhead. Indeed, a typical 128-bit MAC is
as much as an order of magnitude larger than the data it authenticates
– a temperature or consumption reading, even with a timestamp, can
be stored in 10-15 bits. To mitigate these overheads, methods to com-
pute aggregate MACs, of length much shorter than the concatenation of
constituent MACs, were proposed.

Unfortunately, known MAC aggregation techniques require that any
message may not appear twice in the aggregate MAC. This is entrenched
both in the definitions and constructions/proofs. This is a significant im-
pediment in many typical practical deployments of WSNs. Indeed, one
typical message relay strategy, flooding, relies on each node retransmit-
ting received packets to all neighbors, almost certainly causing message
repetition and inability to aggregate MACs. Further, we are not aware
of any WSN protocols that guarantee non-duplication of messages.

We propose a simple and very practical new way of MAC aggrega-
tion which allows message duplicates, and hence is usable in many more
deployment scenarios. We derive a new security definition of this type
of aggregate MAC, and discuss several variants of our construction and
additional benefits such as Denial-of-Service resilience.

1 Introduction

In many of today’s and future applications, both military (e.g., surveillance)
and civilian (e.g., building management systems), scores of cheap low-power
sensors report measurements, such as motion, vibration, radiation, temperature,
electricity consumption and other parameters, to a control node. To save power
and reduce deployment costs, it is often the case that data is sent wirelessly,
and sensors serve as relay nodes that retransmit messages from other, more
remote sensors. These types of wireless sensor networks (WSN) is a very rapidly
developing research area, due to the utility WSNs provide at a very low cost.

To prevent en route accidental and malicious data corruption, nodes’ mes-
sages are authenticated with a MAC (Message Authentication Code), keyed

I. Visconti and R. De Prisco (Eds.): SCN 2012, LNCS 7485, pp. 445–460, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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with a key known to the generating sensor and the control node. Because trans-
mission channel capacity is often small, MACs represent a significant overhead.
Indeed, a typical 128-bit MAC is as much as an order of magnitude larger than
the data it authenticates – a temperature or consumption reading, even with a
timestamp, can be stored in 10-15 bits. To mitigate these overheads, methods
to compute aggregate MACs (AggMAC), of length much shorter than the con-
catenation of constituent MACs, were proposed [KL08, EFG+10]. One of the
important assumptions of these AggMAC schemes is that no message may ap-
pear twice in the aggregate MAC. This is entrenched both in the definitions and
constructions/proofs (cf. Section 2).

We next argue that this is is a significant use restriction for AggMAC in
WSNs.

1.1 The Need for AggMAC with Message Multiplicity and
Aggregation of Already-Aggregated MACs

We now argue that AggMAC which allows for aggregation of identical messages
is critical in many typical practical deployments of WSNs. Conversely, existing
AggMAC restriction of aggregation of distinct messages only is a significant
impediment in many (but not all – see below) practical scenarios. We refer the
interested reader to [DP10, SMZ07] for thorough WSN overview; here we briefly
summarize relevant discussion from WSN network design literature.

We first argue that message duplication/multiplicity (we will use the terms
interchangeably) is very hard to avoid (and often is a feature) in network design,
and especially in WSN design.

Ubiquity of Message Duplication. The underlying reason for message du-
plication is the message forwarding techniques in WSNs, and, more generally, in
many multi-hop mesh networks, which often rely on sending the same message
on more than one path, and almost certainly do not guarantee that a particular
message does not follow several paths. In turn, some of the reasons for such
routing are

1. non-central, distributed knowledge of the network structure,
2. need for robustness in dealing with message loss and adversarial intervention,

and
3. standard routing techniques, which require resending message thought to

be lost (but which might in fact be buffered somewhere), multiple paths
between nodes, etc.

We now consider these in some more detail, and provide examples to further
substantiate our claim.

We start with noting one popular WSNmessage forwarding technique flooding.
The idea here is that when a node wants to send a message, it sends it down to
all available paths (or, in geographic routing, only to nodes who are physically
closer to the receiver). We note that overheads here are not as dramatic as
it may seem at the first glance, since, firstly, duplicate messages are discarded
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before forwarding (of course, if aggregate authentication is desired, a count of the
number of dropped copies of a particular message will need to be maintained).
Further, transmission to several nodes incurs no overhead as compared to a single
node transmission, due to the properties of wireless broadcast.

Complete network flooding is a rather extreme use of the technique; it is often
used in critical paths and parts of the network where more robustness is desired.
Such use constitutes a frequent compromise in network design. We stress that in
some applications, such as some military applications, where there are concerns
of adversarial or even accidental interference with the network, the robustness
property of flooding (or other duplication approaches) is a critical architectural
feature.

Further, we note that WSNs are frequently deployed with a priori unknown
and, furthermore, constantly changing network structure, similarly to MANETs
(Mobile Ad-hoc Networks). As such, routing paths and their properties often
change, forcing messages to be sent and delivered via multiple paths.

Finally, in the scenarios where in normal operation a protocol never sends
a message on more than one path, error conditions will often cause messages
to be duplicated. For example, if a message is thought to be lost, it will be
retransmitted, perhaps after a delay, and it may take a different path. Hovewer,
it is probable that a message in fact was not lost, but buffered (longish-term
buffering is essential in WSNs, since sensors must be in sleep mode most of the
time for power conservation). In this case, the two messages are duplicated.

Protocol Message Duplication Disrupts Existing AggMAC Schemes.
We now argue that message duplication is in fact very disruptive to application
of AggMACs which do not support message multiplicity.

At the first glance, it may seem that message duplication may be technically
avoided by randomizing a part of the message or inserting a counter. This way,
a message m would each time be viewed as (m, r), where r may be discarded
by the receiver. There are several problems with this approach. Firstly, r incurs
transmission overhead. More important, however, is the fact that only the node
that generated m can generate (m, r). That is, if an intermediate node needs to
retransmit a message, it will not be able to generate an authenticated (m, r′),
and must resend (m, r), causing duplication.

Hence, when an intermediate node receives two sets of messages M1,M2 and
two AggMACs σ1, σ2, it will not be able to aggregate them, if at least one
message is duplicated, i.e. if M1 ∩M2 �= ∅.

Use Cases for Existing AggMAC Approaches. Existing AggMAC algo-
rithms, which do not allow message duplication, are sufficient for certain types
of manually deployed WSNs where there is a layer of intermediate aggregator
nodes, with a fixed and centrally known connectivity matrix (and hence with
fixed routing tables), and where sensors talk directly to these intermediate ap-
plication. We stress that the non-duplication assumption is an expensive one to
enforce in many network types and protocols, and it is highly desirable not to
burden network and routing designers with meeting this requirement.
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The Need for Aggregation of AggMACs of Sets. From the above discus-
sion it immediately follows that it is highly desirable for the AggMAC aggrega-
tion function to be able to aggregate the already aggregated MACs, rather than
simply being able to incorporate a single MAC into the aggregate.

1.2 Our Contributions and Outline of the Work

Addressing the need discussed above, we present two simple and very practical
solutions which allow duplicate messages to be securely aggregated in an aggre-
gate MAC. Importantly, our AggMAC functions accept as input sets of messages
and corresponding aggregate MACs. We mention additional benefits of one of
our constructions, such as Denial-of-Service resilience, and their trade-offs.

We start with the discussion of related work in Section 2. We then informally
present our two constructions in Section 3:

In our main construction, we achieve our stronger notion of AggMAC, while
keeping the size of aggregate MAC equal to that of the size of a single constituent
MAC. This construction achieves optimal MAC size, and gives a complete use
flexibility.

Our second construction offers Denial-of-Service (DoS) resilience, i.e., limits
the disruption of an authentication failure of the entire message chain forced
by a transmission error or an active attacker anywhere in the delivery path. In
contrast with [KL08] (and similarly to [EFG+10]), this construction requires the
order of AggMAC application to be maintained to enable verification.

In Section 4, we formalize our (until then) informal discussion. In Section 4.1,
taking as the base the definition of [KL08], we derive a new security definition of
this type of aggregate MAC, simply by allowing sets with element multiplicity,
and removing the [KL08]’s restriction that the two aggregated sets must not
have common elements. We then formally present our constructions, and state
and prove corresponding security theorems in Section 4.2.

Performance. The performance characteristics of our first scheme are the same
as those of [KL08] (which are shown optimal by [KL08]). Specifically, the size of
our AggMAC is equal to the size of a single MAC, it takes small constant time
to aggregate two AggMACs, and verification is linear in the number of MACs
incorporated in AggMAC.

Our second construction offers similar performance, with the exception of
AggMAC size, which starts at the size of a MAC tag, and grows by one bit per
incorporated tag.

2 Related Work

There is a large body of work on security of data transmission in wireless net-
works, and specifically in WSNs, a very rapidly developing area today. Vast
majority of this work is only tangentially related to cryptography.
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MAC aggregation was considered in security literature, e.g., [CPS06, HE03],
but without a model or proof of security1. Bhaskar et al. [BHL07] considered
aggregateMAC as a tool in constructing aggregate designated-verifier signatures.
They proposed XOR-based aggregate MAC as in [KL08], but did not model its
security properties formally.

We are not aware of the issue of message multiplicity in aggregate MAC
being considered even informally, nor we are aware of prior constructions, even
those presented only with informal security argument, that satisfy our notion
of security. At the same time, analogously to this work, Bellare et al. [BNN07]
showed how to lift the restrictions of distinct message and distinct message per
signer in the context of aggregate signatures.

Here we review in detail only the works [KL08, EFG+10, KLH11], which
formally address MAC aggregation. We show that not only existing definitions,
but also constructions, do not allow for message multiplicity.

[KL08]. Katz and Lindell [KL08] were the first to map the idea of authenti-
cator aggregation from public-key signatures [BGLS03] to symmetric-key MACs.
They suggested an efficient construction that allows to aggregate any number
of MACs (generated under different keys) into the aggregate short MAC which
will validate the integrity of the entire data set. The main idea of their construc-
tion is to simply bitwise XOR the constituent MACs, as shown on Figure 1.
Katz and Lindell also consider scenarios where only a particular message, and
not all the messages in the set, needs to be authenticated by the receiver. They
suggest a variant of their approach, where they create several “XOR buckets”,
or AggMACs, each authenticating up to  messages. This trade-off allows faster
individual MAC verification at the expense of extra communication.

We note that the scheme of [KL08] cannot be used if message sets may contain
duplicates. The definition of [KL08] explicitly disallows message multiplicity, and
this is inherent in their contruction. Indeed, it is easy to see that the XOR-based
scheme of [KL08] is insecure when one duplicate MAC is aggregated, since this
MAC simply cancels its already-aggregated duplicate (hence, duplicate messages
must be considered unauthenticated by AggMAC).

[EFG+10]. Eikemeier et al. [EFG+10] extended the security guarantees
of [KL08]. They included subtle optional aggregate MAC security properties,
such as putting the order of the message chain under the protection of aggregate
MAC, and proposed simple constructions achieving their definition. The main
idea of their sequential aggregation construction is that each node, when adding
its message to the set of authenticated messages, computes (with its key) the
MAC of the concatenation of its message and previous aggregated MAC. The
model and the proof of security is quite involved, and requires a partially invert-
ible MAC. (Roughly, a partially invertible MAC allows to obtain the last block
of the MAC’ed message, given the tag and rest of the message.) This type of
MAC is needed in the proof, to be able to compute a basic MAC forgery from
aggregate MAC forgery.

1 [CPS06]’s XOR-based scheme is essentially the same as [KL08], and [HE03]’s scheme
is similar to that of [EFG+10].
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As in [KL08], the definition of security of [EFG+10] prohibits message duplica-
tion. While their construction is not clearly insecure in the presence of duplicate
messages, their proof (or, more specifically, the reduction from aggregate to ba-
sic MAC), seems to inherently rely on non-duplication of constituent MACs,
and we don’t immediately see how remove this requirement. Further, their Ag-
gMAC construction takes the tuple (k,m,M, σ) of the secret key, message, set
of MAC’ed messages, and the current aggregate MAC as input. It does not ag-
gregate two already-aggregatedMACs. However, we note that their construction
guarantees the ordering of the aggregated messages, which we (and other works)
do not.

[KLH11]. Kolesnikov et al. [KLH11] and its full version [KL12] consider pro-
tection against denial-of-service (DoS) attacks and line transmission errors. To
this effect, they prove security (in the sense of [KL08]) for a large class of ag-
gregation functions, which are one-to-one and efficiently computable on their
components (i.e. constituent MAC inputs). They also describe several interest-
ing aggregation functions, such as XOR shifted in the staircase manner (shown
on Figure 2), and discuss their DoS-resilient properties. We note that their
constructed family is not secure in the presence of message multiplicity, and
counterexamples can be readily constructed (e.g., the [KL08] construction is a
member of the family proven secure in [KLH11]).

Our second construction, the “staircase XOR”, is a special case of the family
considered in [KLH11]. In this work, we prove that it has stronger security
properties than claimed in [KLH11], namely, that it is secure in the presence of
message multiplicity.

To summarize, in contrast with all prior work, we allow message multiplicity
in secure aggregate MAC. Further, in contrast with [EFG+10], we also allow
aggregation of two already-aggregated MACs.

3 Our Constructions at the High Level

For the sake of presentation, we take the simple construction of [KL08] (illus-
trated in Figure 1) as our starting point; we provide several modifications and
discuss their benefits and trade offs.

The simple idea of [KL08] (which nevertheless involves non-trivial model-
ing and proof) is that bitwise XORing the constituent (standard) deterministic
MACs will result in unforgeable aggregate MAC of the same length as one con-
stituent MAC. At the very high level, their proof of security of aggregate MAC
is as follows. Suppose an adversary can forge the aggregate MAC computed by
XORing basic MACs. Then, such an adversary can be used to break the security
of a constituent MAC: given a forged aggregate MAC, we “XOR out” all but
one constituent MACs, to obtain a valid MAC on the remaining message. Since
we assume basic MACs are unforgeable, we arrive at a contradiction.

Construction 1. Let τ be a deterministic MAC tag. The simplest and very
practically useful idea we propose is to replace the bitwise XOR in the AggMAC
of [KL08] with field addition. More specifically, consider a field Fp, where p ≥ 2|τ |.
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Fig. 1. Bitwise XOR AggMAC of [KL08]

Fig. 2. The staircase AggMAC

We will view the MAC tag τ as an element in Fp in the natural way. When
aggregating two message sets M1,M2 with AggMACs τ1, τ2, we simply compute
new AggMAC(M1,M2) = τ1 + τ2 (mod p). Jumping ahead, we note that we
will not need to translate elements of Fp back into the domain of MAC tags,
since Vrfy can compare tags in Fp.

The proof of security of our aggregate MAC is as follows. Suppose an adver-
sary can forge the aggregate MAC computed as above. Then such an adversary
can be used to break the security of a constituent MAC: given a forged aggre-
gate MAC, we subtract out all but one constituent MACs (or AggMAC of its
several duplicates). We then obtain a valid MAC on the remaining message mj

by dividing the remaining MAC by the multiplicity of mj in aggregate MAC.
All operations are performed in the field Fp. Since we assume basic MACs are
unforgeable, we arrive at a contradiction.

Theorem 1. (Informal; see Section 4.2 for formal statement and proof.) MAC
aggregation scheme informally described above is a secure aggregation function
of deterministic MACs, even when message multiplicity is allowed.
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Construction 2. As pointed out in [KLH11, KL12], existing AggMAC schemes
[KL08, EFG+10] are vulnerable to denial-of-service (DoS) attacks and simply
to transmission errors. Indeed, a single incorrectly transmitted bit (i.e., which
is not corrected by error-correction) invalidates authenticity of the entire set of
messages. To help remedy this, the authors proved security of a large class of
AggMAC functions, among them the “staircase” aggregation function, shown on
Figure 2. This and other constructions of the family provide a useful trade off
between message length and error isolation, so that a bit-error invalidates only a
limited number of AggMAC-authenticated messages. [KLH11, KL12] prove secu-
rity in the model of [KL08], and do not allow message multiplicity in AggMAC.

In this work, we prove that specifically the “staircase” AggMAC is secure
even if message multiplicity is allowed. The intuition for the proof is as follows.
Suppose an adversary can forge the aggregate MAC as above. Then, such an
adversary can be used to break the security of any constituent MAC: as before,
given a forged aggregate MAC, we XOR out all but one constituent MACs (or
AggMAC of its several duplicates). If this AggMAC is of multiplicity mult = 1,
we have a MAC forgery candidate. If mult > 1, we observe that its constituent
MACs are stacked in the staircase manner, and at least one bit of the MAC
(one “sticking out” on the top level of the staircase, and which is not XORed
with anything) can be readily computed from remaining AggMAC. We thus fix
this bit (which fixes the corresponding bits in this MAC’s other copies of the
staircase). We repeat this process until the entire MAC is computed, and we use
this as basic MAC forgery candidate.

Theorem 2. (Informal; see Section 4.2 for formal statement and proof.) The
“staircase” MAC aggregation scheme informally described above and shown on
Figure 2 is a secure aggregation function of deterministic MACs, even when
message multiplicity is allowed.

4 MAC Aggregation with Message Multiplicity: Formal
Constructions and Theorems

4.1 Preliminaries: Notation, Conventions and Definitions

In this section we discuss some of the required preliminaries, such as definitions
and notation.

In our definitions and constructions, we always consider sets with element
multiplicity. Such sets are usually referred to as multisets. However, because our
discussion is intertwined with prior work, which specifically excluded multisets,
we chose to refer to both notions as “sets”, or “sets (possibly with multiplicity)”.
Similarly, we will sometimes overload the term aggregate MAC to mean either
our notion or that of [KL08], depending on the context.

We now give the basic definition of Message Authentication Code (MAC).
MAC is a tool for ensuring authenticity of messages. It is commonly used in
authenticating communication: two parties have shared a random private key
k of length n; later, one of them wants to use k to authenticate messages by
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generating corresponding tags. The tag generation function is stateless and de-
terministic, and verification is done by applying the tagging function to compute
the correct tag of the given message, and comparing it with the candidate tag.
More formally:

Definition 1. A Message Authentication Code (MAC) is a stateless determin-
istic algorithm MAC : {0, 1}n×{0, 1}∗ �→ TAG. On input key k ∈ {0, 1}n and a
message m ∈ {0, 1}∗, MAC outputs a tag τ ∈ TAG. (Here TAG is the domain
of tags, which depends on n, and is independent of the signed message length.)
We will sometimes write MACk(m) to mean MAC(k,m).

Let k ∈R {0, 1}n. Let Adv be a polytime adversary with an access to the
MAC oracle O(m) = MACk(m). Adv outputs a message m′ and its alleged
authentication tag τ ′, and must never call O(m′). We say that MAC is secure, if
for every such Adv, Prob(τ ′ = MACk(m

′)) < 1/nc for every c and sufficiently
large n.

We note that MAC is a special case of the more general notion of message
authentication schemes. MAC satisfies the strongest requirements of message
authentication schemes [BGM04], and is sufficient for our purposes.

Aggregate MAC with Message Multiplicity. An important notion of ag-
gregate MACs was introduced in [KL08]. We prove security with respect to the
following stronger definition, derived from [KL08]2, with the only difference that
it allows message multiplicity.

Definition 2. (Aggregate MAC with Message Multiplicity.) An aggregate mes-
sage authentication code is a tuple of probabilistic polynomial-time algorithms
(MAC, Agg, Vrfy) such that:

– Authentication algorithm MAC: upon input a key k ∈ {0, 1}n and a message
m ∈ {0, 1}∗, algorithm MAC outputs a tag τ .

– Aggregation algorithm Agg: upon input two sets of message/identifier pairs
M1 = {(m1

1, id
1
1), ..., (m

1
i1
, id1i1)},M2 = {(m2

1, id
2
1), ..., (m

2
i2
, id2i2)}, and as-

sociated tags τ1, τ2, algorithm Agg outputs a new tag τ . We stress that Agg
is unkeyed.

– Verification algorithm Vrfy: upon receiving a set of key/identifier pairs {(k1,
id1), ..., (kt, idt)}, a set (possibly with multiplicity) of message/identifier
pairs M = {(m1, id

′
1), ..., (mi, id

′
i)}, and a tag τ , algorithm Vrfy outputs

a single bit, with ‘1’ denoting acceptance and ‘0’ denoting rejection. We de-
note this procedure by Vrfy(k1,id1),...,(kn,idt)(M, τ). (In normal usage, id′i ∈
{id1, ..., idt} for all i.)

2 [EFG+10] proposed additional aggregate MAC security properties, such as includ-
ing the order of the messages under the protection of aggregate MAC. We view
these properties as optional in a the majority of scenarios. Further, the definition
of [EFG+10] does not provide for aggregation of two already-aggregated MACs, a
property we find extremely useful in practice.
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The following correctness conditions are required to hold:

– For all k, id,m ∈ {0, 1}∗, it holds that Vrfyk,id(m,MACk(m)) = 1. (This
is essentially the correctness condition for standard MACs.)

– (Aggregation of MAC tags enables correct verification.) Let M1,M2 be two
sets of message/identifier pairs (possibly with element multiplicity and fur-
ther possibly with M1 ∩ M2 �= ∅), and let M = M1 ∪ M2, with element
multiplicity. If:
1. Vrfy(k1,id1),...,(kt,idt)(M

1, τ1) = 1, and

2. Vrfy(k1,id1),...,(kt,idt)(M
2, τ2) = 1, then

Vrfy(k1,id1),...,(kn,idn)(M,Agg(M1,M2, τ1, τ2)) = 1.

We now present the security part of the definition.

Definition 3. (Security properties of Aggregate MAC with Message Multiplic-
ity.) Let Adv be a non-uniform probabilistic polynomial-time adversary, and con-
sider the following experiment involving Adv and parameterized by a security
parameter n:

– Key generation: Keys k1, ..., kt ∈ {0, 1}n, for t = poly(n), are generated.
– Attack phase: Adv may query the following oracles:

• Message authentication oracle Mac: On input (i,m), the oracle returns
MACki(m).

• Corruption oracle Corrupt: upon input i, the oracle returns ki.
– Output: The adversary Adv outputs a set of message/identifier pairs M =
{(m1, id1), ..., (mi, idi)} (possibly with multiplicity) and a tag τ .

– Success determination: We say Adv succeeds if (1) Vrfyk1,...,kt
(M, τ) = 1

and (2) there exists a pair (mi∗, idi∗) ∈M such that
1. Adv never queried Corrupt(idi∗), and
2. Adv never queried Mac(idi∗,mi∗).

We say that the aggregate MAC scheme (MAC, Agg, Vrfy) is secure if for all
t = poly(n) and all non-uniform probabilistic polynomial-time adversaries Adv,
the probability that Adv succeeds in the above experiment is negligible.

Observation 1. Message multiplicity in AggMAC is not guaranteed. That is,
an adversary is allowed to create AggMAC which incorporates additional (or
fewer) copies of honestly generated and MAC’ed messages.

This, of course, is not a security weakness, as message duplicates only repre-
sent message forwarding inefficiencies, and are simply discarded, leaving a single
authenticated copy of the message. Further, such duplicates can always be gen-
erated by the adversary simply by replaying the entire MAC or AggMAC in any
MAC/AggMAC scheme.

Observation 2. We note that our constructions also satisfy natural variants
of the Definition 3, such as the one where the the adversary is allowed to set
all but one of the keys ki (on which he must later produce a forgery). This, in
particular, holds because we don’t rely in our proofs on the fact that the opened
keys were properly sampled.
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4.2 Constructions and Security Theorems

We now present our constructions and theorems.

The Main Construction

Construction 1. (Aggregate MAC Scheme with Message Multiplicity) Let MAC
be a deterministic algorithm producing tags from domain {0, 1}n. Let p > 2n be
a prime. We define (MAC,Agg,Vrfy) as follows:

– Algorithm MAC: upon input k ∈ {0, 1}n and m ∈ {0, 1}∗, outputs τ =
MACk(m). We will naturally view the tag τ as an element of Fp, whose
binary representation in Fp is equal to the string τ .

– Algorithm Agg: upon input two sets (possibly with element multiplicity)
M1,M2 of message/identifier pairs, two tags τ1, τ2 ∈ Fp, the algorithm
outputs τ = τ1 + τ2 (mod p).

– Algorithm Vrfy: upon input a set of keys k1, ..., kt ∈ {0, 1}n, a set M =
{(m1, i1), ..., (mj , ij)} of message/identifier pairs (possibly with multiplicity)
where ij ∈ {1, ..., t} for all j, algorithm Vrfy computes τ ′ by computing
individual message tags MACk(m), and applying the aggregation algorithm.
Vrfy outputs 1 if and only if τ ′ = τ .

Theorem 3. Assume MAC is a secure deterministic message authentication
code according to Definition 1. Then Construction 1 is a secure aggregate MAC
with message multiplicity scheme according to Definition 3.

Proof. Our proof is similar to that of [KL08].
Fix a probabilistic polynomial-time adversary Adv and some t = poly(n) as

in Definition 2. We construct a probabilistic polynomial-time MAC forgery algo-
rithm F that interacts with an instance of MAC, i.e. its oracles MAC and Vrfy
with unknown key k, and attempts to produce a valid forgery for a previously-
unauthenticated message.

The main idea of the reduction is as follows. F will execute Adv and answer
its queries of the game of Definition 3. Since, by assumption, Adv wins the
aggregate-MAC game by constructing a forgery, our goal is to translate this win
into the MAC game, which F will also win. We will do this by obtaining the
challenge from the MAC game, and using it to construct the aggregate-MAC
game challenge to Adv. We do it in a way that, firstly, Adv will not know that
he is playing a doctored game (this is needed to prevent Adv from “losing on
purpose”), and secondly, Adv’s winning advantage can be readily translated into
the winning advantage of F .
F proceeds as follows:

– F chooses a random i′ ∈ {t1, ..., t(n)}. This will be F ’s guess of under which
key ki Adv will attempt forgery.

– For i = 1 to t(n):
• If i′ �= i, choose random ki ∈ {0, 1} (F will use this key to respond to
Mac and Corrupt queries of the game of Definition 3).
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• If i′ = i, do nothing (we will redirect the MAC queries associated with
this key to the MAC game that F is trying to win).

– Run Adv, answering its queries as follows:
• Query Mac(i,m): If i �= i′ then F answers the query using the known key
ki. If i = i

′ then F queries its own MAC oracle MACk(m) and returns
the result.

• Query Corrupt(i): If i �= i′ then give Adv the known key ki. If i = i
′ then

abort (F gives up on attempting to win this game. This is not a problem,
since, as we show below, F will still have a non-negligible advantage in
winning).

– At some point, Adv outputs the set (possibly with message multiplicity)
M = {(m1, id

′
1), ..., (mk, id

′
k)} and aggregate tag τ . Let j be the first index

such that (1) Adv never queried Corrupt(id′j) and (2) Adv never queried
Mac(id′j,mj). (We assume without loss of generality that some such j exists.)
Here, if idj = i′, then we will be able to translate the Adv’s presumably
winning response to the MAC game F is playing. Thus, if id′j �= i′ then
abort; otherwise, proceed as described below.

– What remains is to see how to translate Adv’s response to the MAC game
F is playing. Recall, Adv gave F the set of messages (with multiplicity)
M and the aggregate tag τ . F can obtain the MACs of all the individual
messages mi, with the exception of mj , since F is not allowed query the
oracle Mac(j,mj) or to corrupt the corresponding player. Denote bymulti the
multiplicity of message mi ∈ M . Then, F computes tag τj = MAC(j,mj)
from the value of the function τ and all other constituent MAC tags:

τj =
τ −

∑
i�=j multi · τi
multj

(mod p). (1)

Now, F simply submits (mj , τj) as his MAC forgery, treating τj as element
of {0, 1}n. (If τj cannot be represented in {0, 1}n – which means aggregate
tag τ was not valid – F outputs a random string in {0, 1}n.)

The proof now follows from the observation that the probability that F does not
abort (i.e. that Adv will select i′ = i) is exactly 1/t(n). It is easy to see that, if
in such non-aborting execution, Adv’s output (M, τ) is a valid aggregate MAC,
then the computed τj is a valid MAC of message mj in the MAC game F wants
to win (this is because all operations are done in the field Fp). Finally, it is easy to
see that manipulations with the (unsecured) message ordering information can
be also effected by corresponding message substitution; this theorem and the
proof applies in this case as well. In sum, we have constructed F that wins the
MAC game with non-negligible advantage if the aggregate-MAC adversary Adv
wins the corresponding game non-negligibly often. This completes the proof. ��

The “Staircase” Construction. Let ⊕i↔ be the string XOR operation with
partial string overlap of length i, as follows (see also Figure 3). Given two strings
s1, s2 ∈ {0, 1}∗ and 0 ≤ i ≤ min{|s1|, |s2|}, we compute s1⊕i↔ s2 as follows. We
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Fig. 3. The ⊕i↔ operation with overlap i = |s1| − 3 = |s2| − 2

append j1 = |s2| − i zeros to the string s1 and then XOR it with s2 (prepended
with j2 = |s1|−i zeros). That is, s1⊕i↔ s2 = {s1||〈j1 zeros〉}⊕{〈j2 zeros〉||s2}.
It is easy to check that this ensures that original strings s1, s2 overlap in i
positions in the applied XOR operation, and the length of the output string is
|s1|+ |s2| − i.

We note that we need to define ⊕i↔ on two strings of different sizes, since
we will aggregate already-aggregated MACs. Further, of course, the order of
operands matters in the ⊕i↔ operation.

In the following construction, we slightly abuse the notation, and allow the
verification algorithm to additionally take the message ordering information suf-
ficient replicate the application sequence of aggregation algorithms Agg.

Construction 2. (Staircase AggMAC Scheme with Message Multiplicity) Let
MAC be a deterministic algorithm with tags of size n. Let i ∈ {0, ..., n− 1} be
the “staircase overlap” parameter. We define (MAC,Agg,Vrfy) as follows:

– AlgorithmMAC: upon input k ∈ {0, 1}n andm ∈ {0, 1}∗, outputsMACk(m).
– Algorithm Agg: upon input two sets (M1,M2) of message/identifier pairs,

possibly with element multiplicity, and two tags τ1, τ2, the algorithm outputs
τ = τ1 ⊕i↔ τ2.

– Algorithm Vrfy: upon input a set of keys k1, ..., kt ∈ {0, 1}n, a set (possibly
with multiplicity) M = {(m1, i1), ..., (mj , ij)} of message/identifier pairs,
where ij ∈ {1, ..., t} for all j, and ordering information sufficient repli-
cate the application sequence of aggregation algorithms Agg, algorithm Vrfy
computes τ ′ by computing individual message tags MACk(m), and applying
aggregation algorithms in the specified order. Vrfy outputs 1 if and only if
τ ′ = τ .

Kolesnikov et al. [KLH11, KL12] discuss in detail several message transmission
algorithms that take advantage of the “staircase” MAC aggregation to achieve
denial-of-service resilience. The main idea of their general approach is that a
single bit of AggMAC only depends on a constant number of constituent MACs.
This way, if a bit is incorrectly transmitted, MACs which did not contribute to
it can still be successfully verified. Further, by having nodes set only specific
bits of AggMAC, they allow for basic tools allowing to isolate the source of
errors/attack. We refer the interested reader to their work for more details.
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Theorem 4. Assume MAC is a secure deterministic message authentication
code according to Definition 1. Then, for any i ∈ {0, ..., n− 1}, Construction 2
is a secure aggregate MAC with message multiplicity scheme according to Defi-
nition 3.

Proof. Our proof is similar to that of Theorem 3.
Fix a probabilistic polynomial-time adversary Adv and some t = poly(n) as

in Definition 2. We construct a probabilistic polynomial-time MAC forgery algo-
rithm F that interacts with an instance of MAC, i.e. its oracles MAC and Vrfy
with unknown key k, and attempts to produce a valid forgery for a previously-
unauthenticated message.

The main idea of the reduction is as follows. F will execute Adv and answer
its queries of the game of Definition 3. Since, by assumption, Adv wins the
aggregate-MAC game by constructing a forgery, our goal is to translate this win
into the MAC game, which F will also win. We will do this by obtaining the
challenge from the MAC game, and using it to construct the aggregate-MAC
game challenge to Adv. We do it in a way that, firstly, Adv will not know that
he is playing a doctored game (this is needed to prevent Adv from “losing on
purpose”), and secondly, Adv’s winning advantage can be readily translated into
the winning advantage of F .
F proceeds as follows:

– F chooses a random i′ ∈ {t1, ..., t(n)}. This will be F ’s guess of under which
key ki Adv will attempt forgery.

– For i = 1 to t(n):
• If i′ �= i, choose random ki ∈ {0, 1} (F will use this key to respond to
Mac and Corrupt queries of the game of Definition 3).

• If i′ = i, do nothing (we will redirect the MAC queries associated with
this key to the MAC game that F is trying to win).

– Run Adv, answering its queries as follows:
• Query Mac(i,m): If i �= i′ then F answers the query using the known key
ki. If i = i

′ then F queries its own MAC oracle MACk(m) and returns
the result.

• Query Corrupt(i): If i �= i′ then give Adv the known key ki. If i = i
′ then

abort (F gives up on attempting to win this game. This is not a problem,
since, as we show below, F will still have a non-negligible advantage in
winning).

– At some point, Adv outputs the set (possibly with message multiplicity)
M = {(m1, id

′
1), ..., (mk, id

′
k)}, ordering information sufficient to reproduce

MAC aggregation sequence, and aggregate tag τ . Let j be the first index
such that (1) Adv never queried Corrupt(id′j) and (2) Adv never queried
Mac(id′j,mj). (We assume without loss of generality that some such j exists.)
Here, if idj = i′, then we will be able to translate the Adv’s presumably
winning response to the MAC game F is playing. Thus, if id′j �= i′ then
abort; otherwise, proceed as described below.
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– What remains is to see how to translate Adv’s response to the MAC game F
is playing. Recall, Adv gave F the set of messages (with multiplicity)M and
the aggregate tag τ . F can obtain the MACs of all the individual messages
mi, with the exception of mj , since F is not allowed to query the oracle
Mac(j,mj). F then XORs out all but one constituent MACs, with appropriate
multiplicity, in appropriate positions specified in ordering information. This
operation leaves aggregateMAC of (possibly several identical messages)mj

3.
Denote this AggMAC by τ . If this AggMAC is just a MAC (i.e. mj is of
multiplicity mult = 1), we have a MAC forgery candidate. If mult > 1,
we observe that τ ′s constituent MACs are stacked in the staircase manner
(possibly with different overlaps, or with no overlap at all), and at least one
bit of the MAC (one on the top of the staircase, which is not XORed with
anything) can be readily computed from τ . We thus compute and fix this
bit (which fixes the corresponding bits in this MAC’s other copies of the
staircase). We repeat this process until the entire MAC is computed (it is
always possible to repeat as above bit fixing together with τ will determine
another bit of the MAC, due to the staircase construction). We use the
obtained MAC as the forgery candidate.

The proof now follows from the observation that the probability that F does not
abort (i.e. that Adv will select i′ = i) is exactly 1/t(n). It is easy to see that, if in
such non-aborting execution, Adv’s output (M, τ) is a valid aggregateMAC, then
the computed τj is a valid MAC of messagemj in the MAC game F wants to win.
In sum, we have constructed F that wins the MAC game with non-negligible
advantage if the aggregate-MAC adversary Adv wins the corresponding game
non-negligibly often. This completes the proof.
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Abstract. We study the problem of constructing efficient proofs of
knowledge of preimages of general group homomorphisms. We simplify
and extend the recent negative results of Bangerter et al. (TCC 2010)
to constant round (from three-message) generic protocols over concrete
(instead of generic) groups, i.e., we prove lower bounds on both the
soundness error and the knowledge error of such protocols. We also give
a precise characterization of what can be extracted from the prover in the
direct (common) generalization of the Guillou-Quisquater and Schnorr
protocols to the setting of general group homomorphisms.

Then we consider some settings in which these bounds can be circum-
vented. For groups with no subgroups of small order we present: (1) a
three-move honest verifier zero-knowledge argument under some set-up
assumptions and the standard discrete logarithm assumption, and (2) a
Σ-proof of both the order of the group and the preimage. The former
may be viewed as an offline/online protocol, where all slow cut-and-
choose protocols can be moved to an offline phase.

1 Introduction

An honest-verifier zero-knowledge proof of knowledge is a two party protocol
where a prover demonstrates knowledge of a secret and the verifier does not
learn anything he can not compute himself. A protocol is complete if the honest
verifier accepts when interacting with the honest prover. The prover is honest-
verifier zero-knowledge if the view of the honest verifier interacting with the
prover can be simulated efficiently.

The probability that a malicious prover convinces the verifier of a false state-
ment is called the soundness error. The prover is said to know the secret when
there exists an efficient extractor which after interacting with the prover out-
puts the secret. On the other hand, a malicious prover who does not know the
secret still has some probability, called the knowledge error, of convincing the
verifier. Making the knowledge error as small as possible at low computational
and communication costs is an important goal in the construction of protocols.

Guillou’s and Quisquater’s [12] protocol for proving knowledge of an RSA
root and Schnorr’s well-known proof of knowledge of a discrete logarithm [14]
in a group of prime order q are particularly nice proofs of knowledge. Recall
that in Schnorr’s proof of knowledge of w such that y = gw, the prover first
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© Springer-Verlag Berlin Heidelberg 2012
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commits to randomness r ∈ Zq by sending α = gr to the verifier. The verifier
then sends a random challenge c ∈ Zq and the prover responds with d = cw +
r mod q. To extract the secret w, the extractor only needs to sample interactions
until it finds two accepting transcripts (α, c, d) and (α, c′, d′), where c′ 
= c, and
compute w = (d − d′)(c − c′)−1 mod q. Similar protocols with exponentially
small knowledge errors can be constructed for statements involving several group
elements. The protocols exhibiting this form, with three messages, extraction
from two accepting transcripts sharing the first message, and a strong form of
honest-verifier simulation, are called Σ-proofs [7].

There is a simple and well-known generalization of Schnorr’s protocol that
can be executed over a group of unknown order, or even prove knowledge of a
preimage w ∈ G of an element y ∈ H under a group homomorphism φ : G →
H. Unfortunately, the resulting protocol has soundness and knowledge error
1/2. These errors can be reduced to 2−n by n repetitions, but this approach is
impractical because it increases both the computation and communication costs
considerably. Thus, a natural question is whether there exist protocols with small
knowledge error and a structure similar to the Guillou-Quisquater and Schnorr
proofs, but which works for any groups G and H and group homomorphism φ.

1.1 Previous Work

Proofs of knowledge over groups of unknown order have been studied before and
both positive and negative results are known. Shoup [15] gave a three-message
protocol for proving knowledge of w such that y = w2m

in an RSA group and
showed that a knowledge error of 1/2 is optimal.

Bangerter, Camenisch and Krenn [1] considered generic Σ-protocols, i.e.,
three-message protocols where the prover computes integer linear combinations
of the secret witness and random elements, and possibly applies the homomor-
phism. They proved a lower bound on the knowledge error of such protocols
in the generic group model. They also showed that the lower bounds hold for
some natural generalizations of Schnorr’s protocol in concrete groups. Specif-
ically, they generalized Shoup’s result on powers in RSA groups to arbitrary
exponents and proved a lower bound of the knowledge error of exponentiation
homomorphisms φ(w) = gw in groups of unknown order, under mild assumptions
on the extractor.

There is a vast literature on constructing protocols for specific groups and
homomorphisms, with and without computational assumptions, and we only
mention a few. Fujisaki and Okamoto [9] created an integer commitment scheme
(subsequently generalized and corrected by Damgård and Fujisaki [8]) along
with an argument of knowledge of the opening of the commitment under the
strong RSA assumption. The argument of knowledge is actually a Σ-protocol of
(w, r) ∈ Z2 such that y = gwhr. Other protocols [3] have been proposed based
on the same principles.

Bangerter, Camenisch and Maurer [2] proposed two protocols for proving
knowledge of a preimage in a group with unknown order. The first protocol
assumed that the players are given an auxiliary pseudo-preimage (e′, u′) such
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that ye′
= φ(u′) where e′ is a prime larger than any challenge. Thus, if the

ordinary extractor has found a pseudo-preimage (e, u) such that ye = φ(u), one
knows that gcd(e, e′) = 1, which implies that there exist integers a, b such that
ae + be′ = 1. Hence y = φ(u)aφ(u′)b = φ(au + bu′). This method of finding
a proper preimage is sometimes called “Shamir’s trick”. Their second protocol
is based on running two Σ-protocols in parallel, one being a Damgård-Fujisaki
commitment. This protocol was later criticized by Kunz-Jacques et al. [13], since
a verifier can choose a bad RSA-modulus. The prefix protocol of Wikström [16]
used to establish a safe modulus suffers from the same flaw, though his main
protocol remains secure.

Groups of unknown order have been used in several identification schemes.
Brickell and McCurley [5] constructed an identification scheme that is secure
as long as either discrete logarithms or factoring is hard. In their scheme, the
prover knows the (prime) order of the generator g but the verifier does not. Their
protocol share some similarities with our Protocol 3 for proving knowledge of a
multiple of the order and subsequent proof of knowledge of the discrete logarithm
in Protocol 4. Girault et al. [10] suggested an identification scheme that uses
Schnorr’s protocol in a group of unknown order (cf. our Protocol 1) to prove
knowledge of a secret w for the public identity gw. However, the security model
in [10] only requires the extractor to output a witness if the attacker can forge
the proof for a randomly chosen public identity with non-negligible probability,
and they note that this protocol is not a proof of knowledge.

Cramer and Damgård [6] recently gave a method for amortizing the cost of
cut-and-choose protocols over several instances, which reduces both the com-
putational complexity and the size of the proof. This does not contradict our
lower bounds since we only consider a single instance of the problem of proving
knowledge of w such that y = φ(w).

1.2 Our Results

We begin by giving a precise characterization of the knowledge of the prover in
the well-known generalization of the Guillou-Quisquater and Schnorr-protocols
to the setting of group homomorphisms. We essentially prove that if a prover
convinces the honest verifier with probability p, then we can extract e ≈ 1/p
and u such that ye = φ(u) in time O(T (n)e) for some polynomial T (n).

Then we consider a generalization of Bangerter et al.’s [1] class of generic
Σ-protocols for proving knowledge of a preimage of a group homomorphism. We
extend their model from three-message protocols to protocols with any constant
number of rounds with challenges that could depend on previous messages and
we prove lower bounds on both the knowledge error and the soundness error of
protocols from this class.

– Under mild assumptions, we show that a malicious prover who knows a
pseudo-preimage u = 2w + σ of y = φ(w), where φ(σ) = 1, can convince the
verifier with some constant probability, where the constant depends on the
protocol. Thus, an efficient extractor for w can, in general, not be constructed



464 B. Terelius and D. Wikström

unless w can be computed from (2, u). This generalizes the result for three-
message protocols given in [1] to constant-round protocols. Furthermore, our
analysis is simpler and does not rely on the generic group model.

– We show that if the group H has an element γ of small order and the verifier
uses a natural type of verification test, then the proof does not even need to
be sound. In particular, we construct a malicious prover who knows γ and
w such that y = γφ(w), yet manages to convince the verifier that y = φ(w′)
for some w′. The technique is similar to that of Kunz-Jacques et al. [13].

These results shed some new light on what is needed from a protocol for proving
knowledge of a preimage.

Finally, we investigate two ways of circumventing the negative results. We
present two honest-verifier zero-knowledge protocols that allow (a precisely char-
acterized) partial knowledge extractor in general, and a proper knowledge ex-
tractor under assumptions on the order of the underlying group.

– Our first protocol, Protocol 2, only works for the exponentiation homomor-
phism under the standard discrete logarithm assumption in a different group
of known prime order, and requires set-up assumptions. We show that if a
prover convinces the verifier with probability p, then we can extract e ≈ 1/p
and u such that ye = geu. In contrast to the basic protocol, Protocol 1, this
may, loosely, be viewed as an argument of knowledge of the preimage up to
small subgroups, and an argument of knowledge of w when the order of the
underlying group contains no small factors. The set-up assumptions require
cut-and-choose protocols, but these can be executed in an offline phase.

– Our second protocol, Protocol 4, works for any group homomorphism, but
requires that the prover knows the order of the underlying group (in fact
it proves knowledge of both a multiple of the order and the preimage). We
show that if a prover convinces the verifier with probability p, then we can
extract e ≈ 1/p and u such that ye = φ(u) and every factor of e divides the
order of y. Again, if the order of the group contains no small factors, this
gives a proof of knowledge.

Although neither protocol solves the problem of constructing an efficient proof
of knowledge of a preimage in general, our protocols suffice in certain situations.
The first protocol can, e.g., be used to prove knowledge of an integer w such that
y0 = gw

0 and y1 = gw
1 , where g0 and g1 are generators of two groups of distinct

large prime orders.

1.3 Notation

Throughout the paper, we use the standard definitions of zero-knowledge pro-
tocols [11] and proofs of knowledge [4]. Let n and nc to denote the security
parameter and bit-size of challenges. When executing proofs of knowledge of ex-
ponents, we denote by nw the bit-size of the exponent and nr the additional bits
in the randomizer. We let G and H denote abelian groups and let φ : G → H be a
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group homomorphism. Since φ will often be an exponentiation homomorphism,
we will write G additively and H multiplicatively.

We sometimes use overlining to indicate that something is a vector or a list,
e.g., z ∈ Gn is a list of n elements in G. We write φ(z) as a short-hand for the
list obtained by applying the homomorphism to each component of z. Similarly,
if w ∈ G and α ∈ Zn, we use the convention that wα = (wα1 , . . . , wαn). For a
list or vector v, the number of components is denoted by dim(v). We adopt the
definition of a pseudo-preimage of Bangerter et al. [1].

Definition 1. Let φ : G → H be a group homomorphism and let y be an element
of H. A pseudo-preimage of y is a pair (e, u) ∈ Z× G such that ye = φ(u).

The following observation follows immediately from the definition.

Lemma 1. Let y = φ(w). Any pseudo-preimage (e, u) of y must have the form
u = ew + σ, where φ(σ) = 1, i.e., σ is an element in the kernel of φ.

2 Tight Analysis of the Basic Protocol

Below we recall the natural generalization of Schnorr’s protocol for proving
knowledge of a discrete logarithm to the setting where the prover instead needs
to show that it knows a preimage w ∈ G of y ∈ H under a homomorphism
φ : G → H.

Protocol 1 (Basic Protocol)
Common Input. An element y ∈ H and a homomorphism φ : G → H of abelian
groups G and H.
Private Input. An element w ∈ G such that y = φ(w).

1. P chooses r ∈ G randomly1 and hands α = φ(r) to V .
2. V chooses c ∈ [0, 2nc − 1] randomly and hands c to P .
3. P computes d = cw + r in G and hands d to V .
4. V verifies that ycα = φ(d)

We obtain Schnorr’s proof of knowledge of a discrete logarithm in a group 〈g〉
of prime order q by setting G = Zq, H = 〈g〉 and φ(w) = gw. When the order
of g is unknown, we treat φ(w) = gw as a homomorphism from G = Z to 〈g〉.
More precisely, we assume that w ∈ [0, 2nw−1] and choose r ∈ [0, 2nw+nc+nr−1]
which is statistically close to uniform modulo the order of g if nr is large enough.
As a slight generalization, we may let the verifier check that d ∈ [0, 2nw+nc+nr −
1]. This modification does not affect Theorem 1 and 2 below, except that the
protocol is overwhelmingly complete rather than perfectly complete. We use this
variant in Protocol 3.
1 It is sufficient that the distribution of r is statistically close to uniform in G or even

that the distribution of cw + r is statistically close to c′w′ + r′ for any c, c′, w, w′

allowed in the protocol.
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It is well-known that Protocol 1 is honest-verifier zero-knowledge, so we state
that theorem without proof. It is also well-known that the protocol, in general,
is not a proof of knowledge of w such that y = φ(w). On the other hand, it is
clear that the prover shows that it knows something related to w and as far as
we know there is no precise characterization in the literature of what can, and
can not, be extracted from a convincing prover. Such a characterization is useful
in the rest of the paper.

Theorem 1 (Zero-Knowledge). Protocol 1 is complete and honest-verifier
statistical (perfect) zero-knowledge if for each w and each c ∈ [0, 2nc − 1], the
distributions of cw + r and r are statistically close (identical).

Informally, the following theorem says that if a prover convinces the verifier with
probability p, then we can extract e ≈ 1/p and u such that ye = φ(u). In other
words, the more successful a prover is, the more it needs to know about the
preimage of y. The extractor depends on a parameter ε that controls how close
e is to 1/p. The reader may think of ε = 1

4 . The proof of Theorem 2 is given in
the full version.

Theorem 2 (Extraction and Soundness). There exists an extractor Eε, pa-
rameterized by ε < 1/2 with ε−1 ∈ Poly(n), using any PPT prover P∗ as an
oracle such that if P∗ convinces V with probability Δ > κ on common input
(y, φ), then Eε(y, φ) extracts an integer 0 < e ≤ 1

(1−ε)2Δ and u ∈ G such that
ye = φ(u). The extractor runs in expected time O

(
ε−2T (n)/(Δ − κ)

)
, where

T (n) is a polynomial (independent of ε) and the knowledge error κ is defined as
κ = 21−nc/ε.

The following theorem shows that we can not hope to find an extractor which
extracts significantly more. This theorem is very similar to a theorem in [1], but
differs in that their formulation concerns a restricted class of extractors.

Theorem 3. A malicious prover knowing only y, e and ew + σ such that ye =
φ(ew+σ), where φ(σ) = 1, can convince the verifier with probability 1/e−negl(n)
if the distributions of r + c

eσ and r are statistically close for each c ∈ [0, 2nc − 1]
such that e | c.

Proof. The prover chooses r and sends φ(r) as usual. After receiving the chal-
lenge c, the prover halts if e � c, and responds with

d′ =
c

e
(ew + σ) + r = cw + r +

c

e
σ

otherwise. We clearly have φ(d′) = φ(d), since d = cw + r. Furthermore, the
verifier notices that the prover is cheating with negligible probability, since d′ is
statistically close in distribution to a correctly formed response. �

If c is not chosen uniformly from an interval as in Protocol 1, e.g., if e never
divides c, we are not able to apply the previous theorem directly. However, it
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is always possible to find c∗ such that e | (c − c∗) with probability 1/e. The
malicious prover can then answer with d′ = r + (c−c∗)

e (ew + σ) = r − c∗w +
(c−c∗)

e σ + cw whenever e divides c − c∗. This is indistinguishable from the real
response provided that the distributions of r−c∗w+ (c−c∗)

e σ and r are statistically
close, which happens for example if r is chosen from a sufficiently large interval.
We generalize this approach in the next section.

3 Lower Bound on the Knowledge Error

Suppose that we wish to prove knowledge of w such that y = φ(w) in a group of
unknown order. Bangerter et al. [1] defined generic Σ-protocols as the class of
protocols where the verifier only sends random challenges and the prover only
uses the homomorphism and linear combinations of group elements to generate
his responses. They proved a lower bound on the knowledge error in the generic
group model for such protocols and gave concrete examples of protocols where
the bounds hold in the plain model.

In this section we generalize their result to any constant round protocol of the
same type (Σ-protocols have three messages) and give the verifier more freedom
in how it chooses its challenges. We also provide a novel analysis that does not
rely on the generic group model.

Definition 2. Consider a protocol for proving knowledge of a preimage, executed
by a prover P and a verifier V with common input G, H, a group homomorphism
φ : G → H and y ∈ H, and private input w such that y = φ(w). We call it a
constant-round generic protocol if in the ith round:

1. V sends integer vectors α(i), β
(i)

chosen according to some distributions,
possibly depending on the messages in the earlier rounds, and

2. P responds with t
(i) = φ

(
A(i)r + α(i)w

)
and s(i) = B(i)r + β

(i)
w,

where A(i) and B(i) are public integer matrices and r denotes the random tape,
viewed as a vector of elements in G, given to the prover. The verifier may use
any polynomial time test to decide whether or not to accept the proof.

Remark 1. Readers familiar with the generic Σ-protocols in [1] may notice that
their definition is a special case of Definition 2, obtained by restricting the pro-
tocol to two rounds. In the first round, α(0) and β

(0)
are part of the protocol

specification. In the second round, α(1) and β
(1)

are defined (using the notation
of [1]) as

α
(1)
j = fj +

∑
gjici and β

(1)

j = dj +
∑

ejici ,

where fj , dj , gji and eji are public constants and c1, . . . , cp are the challenges
chosen by the verifier.
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In the following, we consider all of the rounds simultaneously. To simplify the
exposition, we define α and t as the column vectors formed by all elements of
α(i) and t

(i) respectively, and let A be the matrix formed by the rows of all A(i).
We define B, β and s analogously. This permits us to write all the equations
concisely as

t = φ(Ar + αw) and s = Br + βw .

Note that a malicious prover can generate t as ti = φ ((Ar)i)φ(w)αi . This shows
that the protocol could equivalently have been designed to just send φ ((Ar)i)
since the powers of φ(w) can be computed from the public information and
added or removed from whatever the prover sends. It is, however, not as easy
to generate s, since the prover does not know w. Intuitively, we want to avoid
this problem by constructing a prover that “almost” knows 2w and only answers
when the challenge has a given parity.

Theorem 4. Let (P ,V) be a constant-round generic protocol as in Definition 2.
There exists a prover P∗ that takes as input the groups G, H, a homomorphism
φ : G → H, an integer vector v∗, a group element y ∈ H, and a pseudo-preimage
(2, u) such that u = 2w + σ where y = φ(w) and φ(σ) = 1.

Define S = {β : ∃v such that β = Bv} as the set of challenges β in the
protocol that have preimages under B. For each β ∈ S, let vβ denote a preimage2

of β under B, i.e., β = Bvβ. Let T ⊂ {vβ : β ∈ S} be a subset of the preimages
vβ such that for every v, v′ ∈ T for which v = v′ mod 2, the statistical distance
between the distributions of r and r∗ = r + v′w − v−v′

2 σ is at most ε.
If the integer vector v∗ ∈ T is chosen such that Pr[vβ = v∗ mod 2] ≥ 2− dim(v),

when the probability is taken over the choice of β conditioned on β ∈ S and
vβ ∈ T , then P∗ convinces V with probability at least

Pr[β ∈ S] · Pr[vβ ∈ T | β ∈ S] · 2− dim(v) − ε ,

where dim(v) is the (constant) number of components in v.

About the Assumptions. To ensure that βw is completely hidden in Br+βw, we
expect that every integer vector β has a preimage under B, or in other words
that the lattice spanned by B contains all points with integer coordinates. If this
is the case, then Pr[β ∈ S] = 1 and moreover, the preimages vβ can be chosen

such that vβ = vβ
′ mod 2 whenever β = β

′
mod 2. Hence we can choose v∗ such

that Pr[vβ = v∗ mod 2] ≥ 2− dim(β) rather that Pr[vβ = v∗ mod 2] ≥ 2− dim(v).
The set T encodes a subset of preimages vβ for which the distributions r and

r∗ are statistically close. If the components of r are chosen from a sufficiently
large subset of G, then T contains all preimages, so Pr[vβ ∈ T | β ∈ S] = 1. This

2 There may be several integer vectors v such that β = Bv. Let vβ be some choice
among those preimages.
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happens for example if r is chosen uniformly from a finite group, or if G = Z
and r is chosen from a large interval. We remark that this assumption was also
made implicitly for G = Z by Bangerter et al. [1]. Using these two stronger
assumptions gives us the following corollary.

Corollary 1. Let (P ,V) be a constant-round generic protocol as in Theorem 4
and suppose that every integer vector has a preimage under B and that the
randomness r is chosen from a sufficiently large subset of G so that T = {vβ :
β ∈ S}. Then the malicious prover P∗, who knows v∗, y = φ(w), and a pseudo-
preimage (2, u), convinces V with probability at least 2− dim(β) − ε.

Interpretation of Theorem 4. Recall that Protocol 1 and Theorem 2 showed that
we can extract a pseudo-preimage in any group. This is sufficient if a preim-
age can be computed from the pseudo-preimage, which is the case in groups of
known prime order, for example. On the other hand, computing w from 2w + σ
in Z∗

N where N is a safe RSA modulus, would imply computing a multiple of
the group order φ(N). This is believed to be infeasible, even for machines run-
ning in expected polynomial time. Theorem 4 shows that (under some plausible
assumptions) we can not extract more than the pseudo-preimage, since that is
all the malicious prover is given. In particular, it gives a lower bound on the
knowledge error assuming that it is infeasible to compute a preimage from the
pseudo-preimage. (To see this, suppose that there is an extractor which after in-
teracting with any prover outputs a true preimage in expected time T (n)/(Δ−κ)
where Δ is the prover’s success probability and κ is the knowledge error. Run-
ning this extractor with e.g. the malicious prover of Corollary 1 gives an algo-
rithm which takes a pseudo-preimage and outputs a preimage in expected time
T (n)/(2−dim(β)− ε− κ). Since it was assumed hard to compute a preimage, the
distance between κ and 2− dim(β) must be negligible.) We note, however, that it
may be possible to construct an efficient protocol by violating the hypothesis of
the theorem. Thus, like many other negative results in cryptography, the result
should be viewed as a guide for future research, and not as the final answer.

Proof (of Theorem 4). We consider only the case where β ∈ S and vβ ∈ T ,
which explains the factor

Pr[β ∈ S] Pr[vβ ∈ T | β ∈ S]

in the success probability of our adversary. There exists a v∗ ∈ T such that

Pr[vβ = v∗ mod 2 | β ∈ S ∧ vβ ∈ T ] ≥ 2−dim(v) ,

where the probability is taken over the choice of β. This follows, since there are
at most 2dim(v) possibilities for the parities. If each had probability less than
2− dim(v), the probabilities would not sum to 1.

Define v as v = vβ. The malicious prover P∗ samples r′ with the distribution
of r in the protocol and then generates s′ and t

′ as follows

t
′ = φ(Ar′)yα−Av∗

and s′ = Br′ +
β − β

∗

2
u ,
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where β
∗

= Bv∗. Consider now an s formed in an execution with the honest
prover, conditioned on β ∈ S, v ∈ T , and v = v∗ mod 2. It can be expressed as

s = Br + βw = B(r + v∗w) +
β − β

∗

2
2w

= B

(
r + v∗w − v − v∗

2
σ

)
+

β − β
∗

2
u

= Br∗ +
β − β

∗

2
u ,

where r∗ = r + v∗w − v−v∗
2 σ. We may similarly express t as

t = φ(Ar + αw) = φ

(
Ar∗ −Av∗w + A

v − v∗

2
σ + αw

)
= φ(Ar∗)φ(w)α−Av∗

.

To conclude the proof, we note that the statistical distance between (s′, t′) and
(s, t) is at most ε since the statistical distance between the distributions of r∗

and r is at most ε. �

4 Lower Bound on the Soundness Error

Next, we show that if the group has a subgroup of small order and the verifier
uses a constant round generic protocol with a natural type of acceptance test,
then the proof does not even need to be sound. In particular, we show that a
malicious prover knowing an element γ of small order and w such that ỹ = γφ(w)
can convince the verifier that ỹ = φ(w′) for some w′. Note that γ does not have
to be in the image of φ.

Recall that Cauchy’s theorem states that if H is a finite group and q is a
prime dividing the order of H, then there is an element of order q in H. Thus,
when the order of H is unknown, we can not exclude the possibility of elements
of small order.

Theorem 5. Let H be an abelian group, let φ : Z → H be a group homomor-
phism, and let γ ∈ H be an element of prime order q. Define s, t, α, and β
as in Definition 2 except that we only allow α and β to depend on s, not on t.
Let fi(·, ·, ·) and gij(·, ·, ·) be polynomials and let hi(·, ·, ·) be a polynomial time
computable function. If the verifier’s acceptance test is of the form

yfi(s,α,β)
∏

j
t
gij(s,α,β)
j = φ(hi(s, α, β)) ∀i ∈ I ,

where the product is taken over all components of t, then there exists a PPT
prover P∗, a PPT algorithm Mσ, and a PPT algorithm MV∗ such that at least
one of the following holds for each γ, w and y = φ(w), where
Δ = q−(dim s+dim β+dim α)/3:
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1. On input γ and w, P∗ convinces the honest verifier on common input ỹ =
γφ(w) with probability at least Δ over the random tapes of the prover and
verifier.

2. On input w, Mσ outputs a non-zero element in the kernel of φ with probability
at least Δ over the random tape of Mσ.

3. On input q and a transcript of an execution between an honest prover and
an honest verifier on private input w and common input y = φ(w), MV∗

outputs either w mod q or ⊥, where w mod q is output with probability at
least Δ over the random tapes of the prover and verifier.

The intuition is that the malicious prover P∗ can guess the residue modulo q of
fi(s, α, β) and gij(s, α, β) and be correct with probability 3Δ. P∗ then generates
(s, t) as if producing a correct proof for y = φ(w), but modifies t to cancel any
factors γ that appear in the verifier’s acceptance test when run with ỹ = γy.
This modification can be done as long as a certain linear system is solvable. Case
2 and 3 in the theorem give the possibilities when this system is not solvable.
The full proof of Theorem 5 is given in the full version of this paper.

To see why it may be hard to compute an element in the kernel, note that
for, e.g., the exponentiation homomorphism, finding an element in the kernel
corresponds to finding a multiple of the order of the underlying group.

We require that α and β do not depend on t in order to be able to take
a valid transcript and modify t without changing anything else. On the other
hand, the requirement that fi and gij are polynomials is only used to express
the probability that we correctly guess the residue modulo q in terms of the
number of messages. This requirement can be relaxed to allow any polynomial
time computable functions if there are not too many functions fi and gij .

5 On Circumventing the Limitations

The previous work mentioned in the introduction, and the results in previous
sections, give considerable evidence that an efficient zero-knowledge proof (of
knowledge) of a preimage of a group homomorphism can not be constructed.
In this section we consider two settings where we nevertheless are able to con-
struct efficient protocols for proving knowledge of something more than a pseudo-
preimage.

5.1 When We Know That a Committed Integer Is Small

In this section we restrict our attention to the exponentiation homomorphism
φ(w) = gw, where g ∈ H. Our protocol can be used to prove knowledge of e and
u such that ye = geu and e = Poly(n). The small remaining exponent e is needed
to circumvent Theorem 5.

Note that if the order of (y, g), considered as an element in H×H, contains
no factors of polynomial size, then this shows that the prover knows u such that
y = gu. An example of an application where this is the case is a prover that
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needs to show knowledge of an integer w of bounded size, such that y0 = gw
0 and

y1 = gw
1 , where gi generates a group of prime order qi and q0 
= q1.

Our protocol takes a commitment C(w, s) of the witness w as additional input
and the prover is given the randomness s used to form the commitment. Before
the protocol is executed, the verifier must be convinced that the committed value
is an integer with bounded absolute value. We postpone the discussion of how
this can be enforced to Section 5.1 below.

We use a statistically hiding homomorphic commitment scheme with an effi-
cient Σ-proof of the committed value, e.g., Pedersen’s commitment scheme, and
write Cck (w, s) for a commitment of w ∈ Zm using randomness s ∈ R, where Zm

and R are the message space and randomizer spaces of the commitment scheme.
We stress that the message space Zm of the commitment scheme can depend on
the commitment parameter ck and that there are no restrictions on m except
that 2nw+nc+nr < m/2. In particular, we do not need an integer commitment
scheme and we can rely on the standard discrete logarithm assumption.

Similarly to standard Σ-proofs over groups of prime order, our protocol can
easily be generalized to prove various more complicated statements involving
multiple exponents.

Protocol 2 (Proof of Knowledge of Logarithm)
Common Input. Elements y and g of an abelian group H, a joint commitment
parameter ck , and a commitment W .
Private Input. An exponent w ∈ [0, 2nw − 1] such that y = gw, and s ∈ R
such that W = Cck(w, s).

1. P chooses r ∈ [0, 2nw+nc+nr − 1] and t ∈ R randomly, computes α = gr and
R = C(r, t), and hands (α, R) to V .

2. P proves knowledge of u, s, r, and t such that W = C(u, s) and R = C(r, t).
This is done in parallel with the remaining three rounds (the honest prover
sets u = w).

3. V hands a randomly chosen challenge c ∈ [0, 2nc − 1] to P .
4. P computes d0 = cw + r over Z and d1 = cs + t over R, and hands (d0, d1)

to V .
5. V verifies that d0 ∈ [0, 2nw+nc+nr − 1], W cR = C(d0, d1), and ycα = gd0 .

Theorem 6 (Zero-Knowledge). Protocol 2 is overwhelmingly complete and
honest-verifier statistical zero-knowledge.

The proof of Theorem 6 is given in the full version.
Informally, if a prover convinces the verifier with probability p, then we can

extract integers e and u such that ye = geu and e ≈ 1/p. Formally, we need
to take care of the commitment parameter ck and commitment W given as
additional inputs. In our theorem, the adversary may in a first phase choose the
instance (y, g, W ) based on the commitment parameter. This is formalized as a
PPT instance chooser I. In an application the instance chooser represents the
events occurring before the protocol is executed.
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Theorem 7 (Soundness and Knowledge Extraction). Let ck be a random
commitment parameter. Given a PPT instance chooser I, we define (y, g, u, s, z) =
I(ck ) and W = C(u, s), where u is an integer satisfying |u| ∈ [0, 2nw − 1].

There exists an extractor Eε, parametrized by ε < 1/2, with ε−1 ∈ Poly(n),
using any prover P∗(z) as an oracle such that if P∗(z) convinces V(y, g, ck , W )
with non-negligible probability Δ, then the extractor Eε(y, g, ck , W ) outputs (e, u)
such that 0 < e ≤ 1

(1−ε)2Δ and ye = geu with overwhelming probability under
the assumption that the commitment scheme is binding. The extractor runs in
expected time O

(
ε−2T (n)/(Δ− κ)

)
for some polynomial T (n) and negligible κ.

The proof of Theorem 7 is given in the full version.

Enforcing Small Exponents. We could of course construct a cut-and-choose
protocol for proving that a committed value is small when viewed as an integer,
but then we could just as well prove knowledge of the exponent directly using
this approach. Similarly, it makes little sense to let a trusted party certify a
commitment of the secret exponent w, when it can just as well certify (y, g)
directly. For Protocol 2 to be of interest we need to decouple the size-guarantee
of the committed value from the choice of a particular exponent w.

A trusted party certifies several commitments Z1, . . . , Zk with Zi = Cck(zi, ti),
where both zi ∈ [0, 2nw+nr − 1] and ti ∈ R are randomly chosen and handed
to the prover. Then it is easy to prove that another commitment W = C(w, s)
contains an integer with absolute value less than 2nw+nr by simply revealing
(z, t) = (w + zi, s + ti) such that ZiW = Cck (z, t). The receiver verifies the
certificate of Zi and that 0 < z < 2nw+nr . Note that using this method, we
must effectively reduce the maximum size of w by nr bits, i.e., the security
parameters in Protocol 2 must be modified slightly. The trusted party can go
offline after publishing the commitments, but z = w + zi reveals w, so the
trusted party learns w. The latter can be avoided by instead letting the prover
register its commitments with the trusted party (or directly with the receiver)
and prove that they are correctly formed using a (slow) cut-and-choose protocol
in a preliminary phase.

5.2 When the Prover Knows the Order of the Group

We consider the problem of constructing a protocol for proving knowledge of a
preimage of a homomorphism, when the prover knows (a multiple of) the order
of y. From here on, we use σ to denote the group order rather than any element
in the kernel.

Recall that in the protocol for proving knowledge of a discrete logarithm in
groups of unknown order, Bangerter et al. [2] assume that the prover has been
given a pseudo-preimage (e, u) such that ye = gu and e > 2nc is a large prime
such that e � u. The reason that the prime is large is to ensure that when a pair
of accepting transcripts are extracted in the basic protocol, we have a relation
yc−c′ = φ(u − u′) and gcd(c − c′, e) is already one, effectively terminating the
extraction procedure of Theorem 2 in a single step.
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We observe that if the prover knows such a pseudo-preimage and a proper
witness w such that y = gw as well, then it can actually compute a multiple
ew − u 
= 0 of the order of g. Thus, it seems that the prover essentially knows
the order of g in their setting.

The idea of the main protocol of this section is that the prover first proves
knowledge of the group order and then proves knowledge of a preimage using the
basic protocol (Protocol 1). Combining knowledge of a pseudo-preimage (e, u)
with small e with knowledge of the order σ of the group allows the extractor to
simplify both quantities.

Proof of Knowledge of a Multiple of the Order of an Element. We do
not know how to construct an efficient proof of knowledge of the order of a group
element, but it turns out that a proof of knowledge of a multiple of the order
suffices for our purposes. The proofs of the following theorems appear in the
full version of this paper.

Protocol 3 (Knowledge of Multiple of the Order of an Element)
Common Input. An element g of an abelian group H and an upper bound 2nw

of |〈g〉|.
Private Input. The order |〈g〉| of g.

1. P and V compute u = 2nw+2nc+nr+2 and y = gu.
2. P computes w = u mod |〈g〉|.
3. Using Protocol 1, P proves knowledge of integers e and u′ (e.g., 1 and w)

such that |e| < 2nc+1, |u′| < 2nw+nc+nr+1, and ye = gu′
.

Theorem 8. Protocol 3 is complete and an honest-verifier statistical zero-
knowledge proof of knowledge of a multiple of the order of g.

Proof of Knowledge of a Preimage. Using the above protocol for proving
knowledge of a multiple of the order of a group element, we now construct a
proof of knowledge of a preimage for provers that know the order of y.

Protocol 4 (Proof of Knowledge of a Preimage)
Common Input. An element y ∈ H and a homomorphism φ : G → H of abelian
groups G and H.
Private Input. A preimage w ∈ G such that y = φ(w) and the order σ of y.

1. P and V execute Protocol 3 on common input y and an upper bound 2nw

of the order σ = |〈y〉|, and private input σ, i.e., P proves knowledge of a
multiple of σ.

2. P and V execute Protocol 1 on common input y and private input w, i.e., P
proves knowledge of a pseudo-preimage of y under φ.

Theorem 9. Protocol 4 is complete and honest-verifier statistical zero-knowledge.
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The only difference between the results below and Theorem 2 is that here we
can not only bound the size of e, we can also reduce it further until all its factors
appear in σ, the order of y. When σ has no small factors, the result is a proper
proof of knowledge.

Theorem 10 (Extraction and Soundness). There exists an extractor Eε,
parameterized by ε < 1/2 with ε−1 ∈ Poly(n), such that for every (y, φ), and
every PPT prover P∗ which convinces V(y, φ) with probability Δ > κ, Eε(y, φ),
using P∗ as an oracle, extracts an integer 0 < e ≤ 1

(1−ε)2Δ and u ∈ G such
that ye = φ(u) and each factor of e divides σ. The extractor runs in expected
time O

(
ε−2T (n)/(Δ− κ)

)
, where T (n) is a polynomial and κ is defined as κ =

21−nc/ε.

Corollary 2. If every factor of σ is greater than 2nc , then Protocol 4 is a proof
of knowledge with negligible soundness/knowledge error of a preimage w such
that y = φ(w).
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Non-Interactive Zero-Knowledge Shuffle
Argument
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Abstract. We propose a new non-interactive (perfect) zero-knowledge
(NIZK) shuffle argument that, when compared the only previously known
efficient NIZK shuffle argument by Groth and Lu, has a small constant
factor times smaller computation and communication, and is based on
more standard computational assumptions. Differently from Groth and
Lu who only prove the co-soundness of their argument under purely
computational assumptions, we prove computational soundness under a
necessary knowledge assumption. We also present a general transforma-
tion that results in a shuffle argument that has a quadratically smaller
common reference string (CRS) and a small constant factor times times
longer argument than the original shuffle.

Keywords: Bilinear pairings, cryptographic shuffle, non-interactive
zero-knowledge, progression-free sets.

1 Introduction

In a shuffle argument, the prover proves that two tuples of randomized cipher-
texts encrypt the same multiset of plaintexts. Such an argument is needed in
e-voting and anonymous broadcast. In the case of e-voting, shuffles are used to
destroy the relation between the voters and their ballots. There, the voters first
encrypt their ballots. The ciphertexts are then sequentially shuffled by several in-
dependent mix servers, where every server also produces a zero-knowledge shuffle
argument. At the end, all shuffle arguments are verified and the final ciphertexts
are threshold-decrypted. If all arguments are accepted, then the shuffle is cor-
rect. Moreover, as long as one mix server is honest, the shuffle remains private
(that is, one cannot relate the voters and their ballots).

A lot of research has been conducted in the area of constructing secure and
efficient shuffle arguments, with recent work resulting in shuffles that have sub-
linear communication and very competitive computational complexity. However,
it is also important that the shuffle argument is non-interactive, due to the fact
that non-interactive arguments are transferable (create once, verify many times
without interacting with the prover). This is especially important in e-voting,
where the correctness of e-voting (and thus of the shuffle) should be verifiable
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Table 1. Brief comparison of existing (not random-oracle based) and new (two last
ones) NIZK shuffle arguments. Here, the communication complexity and the CRS
length are given in group elements, prover’s computation is given in exponentiations,
and verifier’s computation is given in (symmetric or asymmetric) bilinear pairings.

|CRS| Comm. P’s comp. V’s comp. Pairing Sound Assumption

[14] 2n+ 8 15n+ 120 51n+ 246 75n+ 282 Sym. Co- PPA+SPA+DLIN

Sect. 5 7n+ 6 6n+ 11 17n+ 16 28n+ 18 Asym. Sound PKE+PSDL+DLIN

[19] 7
√
n+ 6 30n+ 33

√
n 63n+ 48

√
n 84n+ 54

√
n Asym. Sound PKE+PSDL+DLIN

in years to come. Practically all previous shuffle arguments are interactive, and
can only be made non-interactive by using the Fiat-Shamir heuristic, that is, in
the random oracle model. For example, Groth and Ishai [13], Groth [11], and
Bayer and Groth [2] have constructed shuffle arguments with communication
Θ(n2/3), Θ(n1/2), and Θ(n1/2) respectively, where n is the number of cipher-
texts. Unfortunately, they make use of the Schwartz-Zippel lemma that requires
the verifier to first provide a random input. The only known way to make the
Schwartz-Zippel lemma based arguments non-interactive is to use the random
oracle model. Unfortunately, it is well-known that there are protocols that are
secure in the random oracle model but not in the plain model. Even if there are
no similar distinguishing attacks against any of the existing shuffle arguments,
it is prudent to design alternative non-interactive shuffle arguments that are not
based on random oracle model.

The only known (not random-oracle based) efficient non-interactive zero-
knowledge (NIZK) shuffle argument (for the BBS cryptosystem [3]) was pro-
posed by Groth and Lu in [14]. The security of the Groth-Lu argument is based
on the common reference string model and on two new computational assump-
tions, the permutation pairing assumption (PPA, see [14]) and the simultaneous
pairing assumption (SPA). While Groth and Lu proved that their assumptions
are secure in the generic group model, one can argue that their assumptions are
specifically constructed so as the concrete shuffle argument will be co-sound [16]
(see [14] and Sect. 2 for discussions on co-soundness). It is therefore interesting
to construct a shuffle argument from “more standard” assumptions. Moreover,
their shuffle argument has a relatively large computational complexity and com-
munication complexity. (See Tbl. 1 for a comparison.)

We construct a new non-interactive shuffle argument that has better com-
munication and is based on more standard computational security assumptions
than the Groth-Lu argument. Full comparison between the Groth-Lu and the
new argument is given later. Recall that permutation matrix is a Boolean ma-
trix that has exactly one 1 in every row and column. From a very high-level
point of view, following [9] and subsequent papers, we let the prover to commit
to a permutation matrix and then present an efficient permutation matrix ar-
gument (given commitments commit to a permutation matrix). We then prove
that the plaintext vector corresponding to the output ciphertext vector is equal
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to the product of this matrix and the plaintext vector corresponding to the input
ciphertext vector, and thus is correctly formed. Both parts are involved. In par-
ticular, coming up with a characterization of permutation matrices that allows
for an efficient cryptographic implementation was not a trivial task.

Terelius and Wikström [23] constructed an interactive permutation matrix
argument based on the fact that a matrix is a permutation matrix iff its every
column sums to 1 and its every row has exactly one non-zero element. To verify
that the committed matrix satisfies these properties, they used the Schwartz-
Zippel lemma with the verifier sending a random vector to the prover. This
introduces interaction (or the use of a random oracle). We do not know how
to prove efficiently in NIZK that a commitment commits to a unit vector; how
to construct such an efficient argument is an interesting open problem. We
propose a superficially similar permutation matrix argument that is based on
the (related) fact that a matrix is a permutation matrix exactly if every column
sums to 1 and every row has at most one non-zero element. However, we do not
explicitly use the Schwartz-Zippel lemma, and this makes it possible for us to
create a NIZK argument without using the random oracle model.

Cryptographically, the new permutation matrix argument is based on recent
techniques of Groth [12] and Lipmaa [18] who proposed an NIZK argument for
circuit satisfiability based on two subarguments, for Hadamard — that is, entry-
wise — product and permutation. (The same basic arguments were then used
in [4] to construct an efficient non-interactive range proof.) Unfortunately, in

their subarguments, the prover has quadratic (or quasilinear O(n22
√

2 log2 n), if
one only counts the group operations) computational complexity. This is not
acceptable in our case, and therefore we do not use any of the arguments that
were constructed in [12,18].

We propose 2 new basic arguments (a zero argument, see Sect. 3.1, and a
1-sparsity argument, see Sect. 3.2), and then combine them in Sect. 3.3 to form
a permutation matrix argument. The zero argument (the prover can open the
given commitment to the zero tuple) can be interpreted as a knowledge of the
discrete logarithm argument, and is a special case of Groth’s restriction argument
from [12]. On the other hand, the 1-sparsity argument (the prover can open the
given commitment to a tuple a = (a1, . . . , an), where at most one coordinate ai
is non-zero) is conceptually new.

Like the basic arguments of [18], the new 1-sparsity argument relies on the
existence of a dense progression-free set. However, the costs of the 1-sparsity
argument do not depend explicitly on the size of the used progression-free sets.
Briefly, in [18] and the new 1-sparsity argument, the discrete logarithm of the
non-interactive argument is equal to the sum of two polynomials Fcon(x) and
Fπ(x), where x is the secret key. The first polynomial Fcon has exactly one
monomial per constraint that a honest prover has to satisfy. The number of
constraints is linear (for any i, ai · bi = ci) in [18] and quadratic (for any two
different coefficients ai and aj , ai · aj = 0) in the new 1-sparsity argument. The

second polynomial consists of monomials (a quasilinear number O(n22
√

2 log2 n)
in [18] and a linear number in the new 1-sparsity argument) that have to be
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computed by a honest prover during the argument, and this is the main reason
why both the CRS length and the prover’s computational complexity are lower
in the 1-sparsity argument compared to the arguments in [18]. We find this to
be an interesting result by itself, leading to an obvious question whether similar
arguments (that have a superlinear number of constraints and a linear number
of spurious monomials) can be used as an underlying engine to construct other
interesting NIZK proofs.

In Sect. 5, we combine the permutation matrix argument with a knowledge
version of the BBS [3] cryptosystem to obtain an efficient NIZK shuffle argument.
Informally, by the KE assumption [6], in the knowledge BBS cryptosystem (de-
fined in Sect. 4) the ciphertext creator knows both the used plaintext and the
randomizer. Since it is usually not required that the ciphertext creator also knows
the randomizer, the knowledge BBS cryptosystem satisfies a stronger than usual
version of plaintext-awareness. While this version of plaintext-awareness has not
been considered in the literature before, it is also satisfied by the Damg̊ard’s
Elgamal cryptosystem from [6].

According to [1], only languages in P/poly can have direct black-box perfect
NIZK arguments.1 Since all known constructions of NIZK arguments use direct
black-box reductions, one can argue that the “natural” definition of soundness
is not the right definition of soundness for perfect NIZK arguments, see [14] for
more discussion. To overcome the impossibility results of [1], Groth and Lu [14]
proved co-soundness [14,16] of their argument under purely computational as-
sumptions.

Our subarguments (the zero argument, the 1-sparsity argument, and the per-
mutation matrix argument) are not computationally sound since their languages
are based on a perfectly hiding commitment scheme, see Sect. 3. Instead, we
prove that these arguments satisfy a weak version of soundness [12,18] under
purely computational assumptions. We could use a similar definition of the weak
soundness of the shuffle argument and prove that the new shuffle argument
is (weakly) sound by using only standard computational assumptions. Instead
(mostly since computational soundness is a considerably more standard security
requirement), we prove computational soundness of the shuffle argument under
a (known) knowledge assumption. This is also the reason why we need to use
the knowledge BBS cryptosystem.

Apart from the knowledge assumption, the security of the new shuffle
argument is based on the DLIN assumption [3] (which is required for the CPA-
security of the BBS cryptosystem), and on the power symmetric discrete loga-
rithm (PSDL, see Sect. 2) assumption from [18]. The PSDL assumption is much
more standard(-looking) than the SPA and PPA assumptions from [14].

1 It is not necessary to have a perfect NIZK argument for a shuffle (one could in-
stead construct a computational NIZK proof), but the techniques of both [14] and
especially of the current paper are better suited to construct efficient perfect NIZK
arguments. We leave it as an open question to construct a computational NIZK proof
for shuffle with a comparable efficiency.
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Tbl. 1 provides a comparison between [14] and the new shuffle argument.
Since it was not stated in [14], we have calculated ourselves2 the computational
complexity of the Groth-Lu argument. As seen from Tbl. 1, the new argument
is computationally about 2.5 to 3 times more efficient and communication-wise
about 2 times more efficient, if one just counts the number of exponentiations
(in the case of the prover’s computation), pairings (verifier’s computation), or
group elements (communication). In addition, the new argument uses asymmet-
ric pairings ê : G1×G2 → GT , while [14] uses symmetric pairings with G1 = G2.
This means in particular that the difference in efficiency is larger than seen
from Tbl. 1. First, asymmetric pairings themselves are much more efficient than
symmetric pairings. Second, if asymmetric pairings were used in the Groth-Lu
shuffle, one would have to communicate two different versions (one in group G1

and another one in group G2) of some of the group elements.
The main drawback of the new shuffle argument is that its soundness relies

additionally on a knowledge assumption. However, a non-standard assumption
is necessary to achieve perfect zero-knowledge [1]. Differently from the random
oracle assumption that is known to be false in general, knowledge assumptions
are just known to be non-falsifiable and thus might be true for any practical
purposes. (In comparison, the Groth-Lu argument was proven to be co-sound,
which is a weaker version of computational soundness, under purely computa-
tional assumptions.)

Moreover, the Groth-Lu shuffle uses the BBS cryptosystem (where one cipher-
text is 3 group elements), while we use the new knowledge BBS cryptosystem (6
group elements). This difference is small compared to the reduction in the argu-
ment size. The use of knowledge BBS cryptosystem corresponds to adding a proof
of knowledge of the plaintexts (and the randomizers) by the voters. However, it
means that in the proof of soundness, we show security only against (white-box)
adversaries who have access to the secret coins of all voters and mixservers. It is
a reasonable compromise, comparable to the case in interactive (or Fiat-Shamir
heuristic based) shuffles where the ballots are accompanied by a proof of knowl-
edge of the ballot, from which either the adversary of the simulator can obtain
the actual votes, but without the use of a random oracle, see Sect. 5 for more dis-
cussion. As we note there, our soundness definition follows that of [14], but the
mentioned issues are due to the use of a knowledge assumption. We hope that the
current work will motivate more research on clarifying such issues.

Another drawback of our scheme as compared to [14] is that it uses a lifted
cryptosystem, and thus can be only used to shuffle small plaintexts. This is fine
in applications like e-voting (where the plaintext is a candidate number). Many
of the existing e-voting schemes are based on (lifted) Elgamal and thus require
the plaintexts to be small. We note that significant speedups can be achieved
in both cases by using efficient multi-exponentiation algorithms and thus for a
meaningful computational comparison, one should implement the shuffle argu-
ments.

2 Our calculations are based on the Groth-Sahai proofs [17] that were published after
the Groth-Lu shuffle argument. The calculations may be slightly imprecise.
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In the full version [19], we show that one can transform both the Groth-Lu ar-
gument and the new argument, by using the Clos network [5], to have a CRS of size
Θ(

√
n) while increasing the communication and computation by a small constant

factor. This version of the new argument is computationally/communication-wise
only slightly less efficient than the Groth-Lu argument but has a quadratically
smaller CRS, see Tbl. 1. This transformation can be applied to any shuffle ar-
gument that has linear communication and computation, and a CRS of length
f(n) = Ω(1). We pose it as an open problem to construct (may be using similar
techniques) an NIZK shuffle argument where both the CRS and the communica-
tion are sublinear.

Due to the lack of space, some proofs are only given in the full version [19].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. If y = hx, then let logh y := x. To help readability in

cases like gri+x
λ
ψ−1(i)

2 , we sometimes write exp(h, x) instead of hx. Let κ be
the security parameter. PPT denotes probabilistic polynomial time. For a tuple
of integers Λ = (λ1, . . . , λn) with λi < λi+1, let (ai)i∈Λ = (aλ1 , . . . , aλn). We
sometimes denote (ai)i∈[n] as a. We say that Λ = (λ1, . . . , λn) ⊂ Z is an (n, κ)-
nice tuple, if 0 < λ1 < · · · < λi < · · · < λn = poly(κ). Let Sn be the set of
permutations from [n] to [n].

By using notation that is common in additive combinatorics [22], if Λ1

and Λ2 are subsets of some additive group (Z or Zp within this paper),
then Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 −
Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their difference set. In particular, if

Λ is a set, then kΛ = {
∑k

i=1 λi : λi ∈ Λ} is an iterated sumset. On the
other hand, k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ. We also let 2̂Λ =
{λ1 + λ2 : λ1 ∈ Λ ∧ λ2 ∈ Λ ∧ λ1 �= λ2} ⊆ Λ+ Λ to denote a restricted sumset.

A set Λ = {λ1, . . . , λn} of integers is progression-free [22], if no three elements
of Λ are in arithmetic progression, that is, λi + λj = 2λk only if i = j = k. Let
r3(N) denote the cardinality of the largest progression-free set that belongs to

[N ]. Recently, Elkin [7] showed that r3(N) = Ω((N · log1/4N)/22
√

2 log2 N ). On
the other hand, it is known that r3(N) = O(N(log logN)5/ logN) [21]. Thus,
according to [21], the minimal N such that r3(N) = n is ω(n), while according

to Elkin, N = O(n22
√

2 log2 n) = n1+o(1). Thus, for any fixed n > 0, there exists
N = n1+o(1), such that [N ] contains an n-element progression-free subset [18].

While the efficiency of arguments from [18] directly depended on the choice of
the progression-free set, in our case the only thing dependent on this choice is the
tightness of most of our security reductions; see the definition of PSDL below,
or the proofs of Thm. 2, Thm. 4 and Thm. 5. Due to this, one may opt to use
a less dense (but easy to construct) progression-free set. As an example, Erdős
and Turán [8] defined a set T (n) of all integers up to n that have no number
2 in their ternary presentation. Clearly, |T (n)| ≈ nlog3 2 ≈ n0.63 and T (n) is
progression-free. One can obtain a dense set of progression-free odd positive
integers by mapping every a in T (n) to 2a+ 1.
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A bilinear group generator Gbp(1
κ) outputs gk := (p,G1,G2,GT , ê, g1, g2) ←

Gbp(1
κ) such that p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic

groups of order p, ê : G1×G2 → GT is a bilinear map (pairing), and gt ← Gt\{1}
is a random generator of Gt for t ∈ {1, 2}. Additionally, it is required that (a)
∀a, b ∈ Z, ê(ga1 , g

b
2) = ê(g1, g2)

ab, (b) ê(g1, g2) generates GT , and (c) it is effi-
cient to decide the membership in G1, G2 and GT , the group operations and the
pairing ê are efficiently computable, generators of G1 and G2 are efficiently sam-
pleable, and the descriptions of the groups and group elements each are O(κ) bit
long. One can represent an element of G1/G2/GT in respectively 512/256/3072
bits, by using an optimal (asymmetric) Ate pairing over a subclass of Barreto-
Naehrig curves.

A public-key cryptosystem (Gbp,Gpkc, Enc,Dec) is a tuple of efficient algo-
rithms, where Gbp is a bilinear group generator that outputs gk, Gpkc(gk)
generates a secret/public key pair (sk, pk), randomized encryption algorithm
Encpk(μ; r) produces a ciphertext c, and deterministic decryption algorithm
Decsk(c) produces a plaintext μ. It is required that for all gk ← Gbp(1

κ),
(sk, pk) ∈ Gpkc(gk) and for all valid μ and r, Decsk(Encpk(μ; r)) = μ. Assume
that the randomizer space R is efficiently sampleable. A public-key cryptosys-
tem (Gbp,Gpkc, Enc,Dec) is CPA-secure, if for all stateful non-uniform PPT ad-
versaries A, the following probability is negligible in κ:∣∣∣∣∣Pr

[
gk ← Gbp(1

κ), (sk, pk) ← Gpkc(gk), (μ0, μ1) ← A(pk),

b← {0, 1} , r ←R : A(Encpk(μb; r)) = b

]
− 1

2

∣∣∣∣∣ .
Let Λ be an (n, κ)-nice tuple for n = poly(κ). A bilinear group generator Gbp is
Λ-PSDL secure [18], if for any non-uniform PPT adversary A,

Pr[gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1
κ), x← Zp : A(gk; (gx

�

1 , g
x�

2 )
∈Λ) = x]

is negligible in κ. (Note that A also has access to gx
0

t since it belongs to gk.) A
version of PSDL assumption in a non pairing-based group was defined in [10].
Lipmaa [18] proved that the Λ-PSDL assumption holds in the generic group
model for any (n, κ)-nice tuple Λ given that n = poly(κ). More precisely, any
successful generic adversary for Λ-PSDL requires timeΩ(

√
p/λn) where λn is the

largest element of Λ. Thus, the choice of the actual security parameter depends
on λn and thus also on Λ.

Let Gbp be a bilinear group generator, and let gk := (p,G1,G2,GT , ê, g1, g2) ←
Gbp(1

κ). Let R = {(gk;C,w)} be an efficiently computable group-specific binary
relation such that |w| = poly(|C|). Here, C is a statement, and w is a witness.
Let L = {(gk;C) : (∃w) (gk;C,w) ∈ R} be a group-specific NP-language. Shuf-
fle (see Sect. 5) has a natural corresponding group-specific language, since one
proves a relation between elements of the same group.

A non-interactive argument for R consists of the following PPT algorithms: a
bilinear group generator Gbp, a common reference string (CRS) generator Gcrs, a
prover P , and a verifier V . For gk ← Gbp(1

κ) and crs ← Gcrs(gk), P(gk, crs;C,w)
produces an argument π. The verifier V(gk, crs;C, π) outputs either 1 (accept)
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or 0 (reject). If the verifier only accesses a small part crsv of crs, we say that
crsv is the verifier’s part of the CRS and we will give just crsv as an input to V .
When efficiency is not important (e.g., in the security definitions), we give the
entire crs to V .

An argument (Gbp,Gcrs,P ,V) is perfectly complete, if for all gk ←
Gbp(1

κ), all crs ← Gcrs(gk) and all (C,w) such that (gk;C,w) ∈ R,
V(gk, crs;C,P(gk, crs;C,w)) = 1. An argument (Gbp,Gcrs,P ,V) is adaptively
computationally sound, if for all non-uniform PPT adversaries A, the proba-
bility

Pr

[
gk ← Gbp(1

κ), crs ← Gcrs(gk), (C, π) ← A(gk, crs) :

(gk;C) �∈ L ∧ V(gk, crs;C, π) = 1

]

is negligible in κ. The soundness is adaptive in the sense that the adversary
sees the CRS before producing the statement C. An argument (Gbp,Gcrs,P ,V)
is perfectly witness-indistinguishable, if for all gk ∈ Gbp(1

κ), crs ∈ Gcrs(gk)
and ((gk;C,w0), (gk;C,w1)) ∈ R2, the distributions P(gk, crs;C,w0) and
P(gk, crs;C,w1) are equal. An argument (Gbp,Gcrs,P ,V) is perfectly zero-
knowledge, if there exists a PPT simulator S = (S1,S2), such that for all stateful
interactive non-uniform PPT adversaries A,

Pr

⎡⎢⎢⎢⎣
gk ← Gbp(1

κ), crs ← Gcrs(gk),

(C,w) ← A(gk, crs),

π ← P(gk, crs;C,w) :

(gk;C,w) ∈ R ∧ A(π) = 1

⎤⎥⎥⎥⎦ = Pr

⎡⎢⎢⎢⎣
gk ← Gbp(1

κ), (crs, td) ← S1(gk),

(C,w) ← A(gk, crs),

π ← S2(gk, crs, td;C) :

(gk;C,w) ∈ R ∧ A(π) = 1

⎤⎥⎥⎥⎦ .

Here, td is the simulation trapdoor.
The soundness of NIZK arguments (for example, an argument that a computa-

tionally binding commitment scheme commits to 0) seems to be an unfalsifiable
assumption in general. We will use a weaker version of soundness in the sub-
arguments, but in the case of the shuffle argument, we will prove soundness.
Similarly to [12,18], we will base the soundness of that argument on an explicit
knowledge assumption.

For two algorithms A and XA, we write (y; z)← (A||XA)(x) if A on input x
outputs y, and XA on the same input (including the random tape of A) outputs
z. Let Λ be an (n, κ)-nice tuple for some n = poly(κ). Consider t ∈ {1, 2}. The
bilinear group generator Gbp is Λ-PKE secure in group Gt if for any non-uniform
PPT adversary A there exists a non-uniform PPT extractor XA, such that

Pr

⎡⎢⎢⎢⎢⎣
gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ), (α, x) ← Z2
p,

crs ← (gαt , (g
x�

t , g
αx�

t )
∈Λ), (c, ĉ; (a
)
∈{0}∪Λ) ← (A||XA)(gk; crs) :

ĉ = cα ∧ c �=
∏


∈{0}∪Λ
ga�x

�

t

⎤⎥⎥⎥⎥⎦
is negligible in κ. Note that the element a0 is output since gt belongs to the

CRS, and thus the adversary has access to (gx
�

t , g
αx�

t ) for  ∈ {0}∪Λ. Groth [12]
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proved that the Λ-PKE assumption holds in the generic group model in the case
Λ = [n]; his proof can be straightforwardly modified to the general case. We
later need the special case where Λ = ∅, that is, the CRS contains only gαt , and
the extractor returns a0 such that c = ga0

t . This KE assumption (in a bilinear
group) is similar to Damg̊ard’s KE assumption [6], except that it is made in a
bilinear group setting.

A (tuple) commitment scheme (Gcom, Com) consists of two PPT algorithms:
a randomized CRS generation algorithm Gcom, and a randomized commit-
ment algorithm Com. Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and
Comt(ckt;a; r), with a = (a1, . . . , an), outputs a commitment value A ∈ Gt.
Within this paper, we open a commitment Comt(ckt;a; r) by publishing the
values a and r.

A commitment scheme (Gcom, Com) is computationally binding in group Gt, if
for every non-uniform PPT adversary A and positive integer n = poly(κ), the
probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2) ← A(ckt) :

(a1, r1) �= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]
is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group
Gt, if for any positive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two mes-
sages a1 and a2, the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal.
We use the following variant of the knowledge commitment scheme from [12] as
modified by Lipmaa [18]:

CRS Generation Gtcom(1κ, n): Let Λ be an (n, κ)-nice tuple with n =
poly(κ). Define λ0 = 0. Given a bilinear group generator Gbp, set gk :=
(p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ). Choose random α, x ← Zp. The CRS is

ckt ← (gk; ĝt, (gti, ĝti)i∈[n]), where gti = gx
λi

t and ĝti = gαx
λi

t . Note that
gt = gt0 is a part of gk.

Commitment: To commit to a = (a1, . . . , an) ∈ Zn
p in group Gt, the com-

mitting party chooses a random r ← Zp, and defines Comt(ckt;a; r) :=
(grt ·

∏n
i=1 g

ai

ti , ĝ
r
t ·
∏n

i=1 ĝ
ai

ti ).

Let t = 1. Fix a commitment key ck1 that in particular specifies g2, ĝ2 ∈ G2.
A commitment (A, Â) ∈ G2

1 is valid, if e(A, ĝ2) = e(Â, g2). The case of t = 2 is
dual.

As shown in [18], the knowledge commitment scheme in group Gt is perfectly
hiding, and computationally binding under the Λ-PSDL assumption in group
Gt. If the Λ-PKE assumption holds in group Gt, then for any non-uniform PPT
algorithm A, that outputs some valid knowledge commitments there exists a
non-uniform PPT extractor XA that, given as an input the input of A together
with A’s random coins, extracts the contents of these commitments.

A trapdoor commitment scheme has 3 additional efficient algorithms: (a) A
trapdoor CRS generation algorithm inputs t, n and 1κ and outputs a CRS ck∗

(that has the same distribution as Gtcom(1κ, n)) and a trapdoor td, (b) a ran-
domized trapdoor commitment that takes ck∗ and a randomizer r as inputs and
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outputs the value Comt(ck∗;0; r), and (c) a trapdoor opening algorithm that
takes ck∗, td, a and r as an input and outputs an r′, s.t. Comt(ck∗;0; r) =
Comt(ck∗;a; r′). The knowledge commitment scheme is trapdoor, with the trap-
door being td = x: after trapdoor-committing A ← Comt(ck;0; r) = grt for
r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a [12,18].
To avoid knowledge assumptions, one can relax the notion of soundness. Fol-

lowing [16] and [14], Rco-soundness is a weaker version of soundness, where
it is required that an adversary who knows that (gk;C) �∈ L should not
be able to produce a witness wco such that (gk;C,wco) ∈ Rco (see [14]
or [16] for a longer explanation). More formally, let R = {(gk;C,w)} and
L = {(gk;C) : (∃w)(gk;C,w) ∈ R} be defined as earlier. LetRco = {(gk;C,wco)}
be an efficiently computable binary relation. An argument (Gbp,Gcrs,P ,V) is
(adaptively) Rco-sound, if for all non-uniform PPT adversaries A, the following
probability is negligible in κ:

Pr

[
gk ← Gbp(1

κ), crs ← Gcrs(gk), (C,wco, π) ← A(gk, crs) :

(gk;C,wco) ∈ Rco ∧ V(gk, crs;C, π) = 1

]
.

In [12], Groth proposed efficient NIZK arguments that he proved to be sound
under the power computational Diffie-Hellman assumption and the PKE as-
sumption. Groth’s arguments were later made more efficient by Lipmaa [18],
who also showed that one can use somewhat weaker security assumptions (PSDL
instead of PCDH). Groth [12] and Lipmaa [18] proposed two basic arguments
(for Hadamard product and permutation). In both cases, Lipmaa showed that
by using results about progression-free sets one can construct a set Λ2 with

|Λ2| = O(n22
√

2 log2 n) = n1+o(1). Together with a trivial Hadamard sum argu-
ment, one obtains a complete set of arguments that can be used to construct
NIZK arguments for any NP language. (See [12,18] for discussion.) However, this
is always not the most efficient way to obtain a NIZK argument for a concrete
language. In Sect. 3 we define new basic arguments that enable us to construct a
very efficient permutation matrix argument and thus also a very efficient shuffle
argument.

3 New Subarguments

In this section we present some subarguments that are required to construct the
final shuffle argument. However, we expect them to have independent applica-
tions and thus we will handle each of them separately.

3.1 New Zero Argument

In a zero argument, the prover aims to convince the verifier that he knows
how to open knowledge commitment At ∈ Gt to the all-zero message tuple
0 = (0, . . . , 0). Alternatively, one aims to prove the knowledge of the discrete
logarithm of At, that is, that At = grt for some r. By using the homomorphic
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CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ). Let α̊ ← Zp.
Denote g̊t ← gα̊t for t ∈ {1, 2}. The CRS is crs ← (̊g1, g̊2). The commitment key is
ck2 ← (gk; g̊2), and the verifier’s part of the CRS is crsv ← g̊1.

Common input: A2 ← gr2 ∈ G2.
Argument generation P0(gk, crs;A2, r): The prover defines Å2 ← g̊r2 , and sends

π ← Å2 ∈ G2 to V as the argument.
Verification V0(gk, crsv;A2, π = Å2): The verifier accepts if ê(̊g1, A2) = ê(g1, Å2).

Protocol 1: New zero argument in group G2

properties of the knowledge commitment scheme, the prover can use the zero
argument to show that At can be opened to an arbitrary constant.

This argument can be derived from [12,18]. Intuitively, we set (only for this
argument) n = 0 and show that A = A2 is a commitment to a length-0 tuple.
For this, we only have to include to the CRS the elements g̊1 and g̊2. (The case
t = 1 can be handled dually.) The following theorem is basically a tautology,
since the KE assumption states that the prover knows r. However, since any
(A2, Å2), where Å2 = Aα̊2 , is a commitment of 0 (and thus, (gk;A2) ∈ L) for
some r, we cannot claim that Prot. 1 is computationally sound (even under
a knowledge assumption). Instead, analogously to [12,18], we prove a weaker
version of soundness (which is however sufficient to achieve soundness of the
shuffle argument). Note that the last statement of the theorem basically says
that no efficient adversary can output an input to the product argument together
with an accepting argument and openings to all commitments and all other pairs
of type (y, ȳ) that are present in the argument, such that aibi �= ci for some i.

Theorem 1. The non-interactive zero argument in Prot. 1 is perfectly com-
plete, perfectly zero-knowledge. Any non-uniform probabilistic-polynomial time
adversary has a negligible chance of returning an input inp0 = A2 and a satis-
fying argument π0 = Å2 together with a opening witness w0 = (a, r), such that
(A2, Å2) = Com2(ck2;a; r), a �= 0 but the verification V0(gk, crs;A2, Å2) accepts.

Proof. Perfect completeness is straightforward, since ê(̊g1, A2) =
ê(gα̊1 , A2) = ê(g1, A

α̊
2 ) = ê(g1, Å2). Perfect zero-knowledge: we con-

struct the following simulator S = (S1,S2). The simulator S1 generates first
td = α̊ ← Zp, and then crs ←

(̊
g1 ← gα̊1 , g̊2 ← gα̊2

)
, and saves td. Since the sim-

ulator S2 later knows α̊, it can compute a satisfying argument Å2 as Å2 ← Aα̊2 .
Clearly, Å2 has the same distribution as in the real argument.

Weaker version of soundness: assume that there exists an adversary
A that can break the last statement of the theorem. That is, A can cre-
ate (A2, (a, r), Å2) such that (A2, Å2) = Com2(a; r), a �= 0, and ê(̊g1, A2) =

ê(g1, Å2). But then (A2, Å2) = (gr2 ·
∏n

i=1 g
aix

λi

2 , g̊r2 ·
∏n

i=1 g̊
aix

λi

2 ) with λI �= 0

for some I ∈ [n]. Since (gk, crs) contains g̊x
�

2 only for  ∈ {0}, the adversary has
thus broken the ∅-PSDL assumption. But the ∅-PSDL assumption is straightfor-
wardly true, since then the input of the adversary does not depend on x at all.
Thus, the argument in Prot. 1 satisfies the last statement of the theorem. ��
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The fact that the weaker version of soundness of this argument does not require
any (non-trivial) assumption is, while somewhat surprising, also a logical con-

sequence of CRS including g̊x
�

2 only for  �= 0. In fact, if the CRS contained
g̊x�
2 for some other value of  then the argument would not be sound under any
(reasonable) computational assumption. The proof of the following lemma is
straightforward.

Lemma 1. The CRS length in Prot. 1 is 1 element from the group G1 and 1
element from the group G2. The argument size in Prot. 1 is 1 element from the
group G2. Prover’s computational complexity is dominated by 1 exponentiation.
The verifier’s computational complexity is dominated by 2 bilinear pairings.

3.2 New 1-Sparsity Argument

Assume that A2 ∈ G2. A vector a ∈ Zn
p is k-sparse, if it has at most k non-zero

coefficients. In a 1-sparsity argument in G2, the prover aims to convince the
verifier that he knows an opening A2 = gr2 ·

∏n
i=1 g

ai

2,λi
such that a is 1-sparse,

that is, there exists I ∈ [n] such that for i �= I, ai = 0, while aI can take any
value, including 0. Alternatively, since Zp has no zero divisors, this means that
the prover aims to convince the verifier that aiaj = 0 for every i, j ∈ [n] such
that i �= j. (Note that the zero argument can seen as a 0-sparsity argument.)
A new 1-sparsity argument is depicted by Prot. 2; 1-sparsity argument in G1 is
defined dually.

Intuitively, the new 1-sparsity argument is constructed by following the same
main ideas as the basic arguments (for Hadamard product and permutation)
from [18]. That is, we start with a verification equation ê(A1, A2) = ê(g1, F ),
where the discrete logarithm of the left-hand side, see Eq. (1), is a sum of two
polynomials Fcon(x) and Fπ(x), where x is the secret key. In this case, Fcon(x)
has n(n − 1) monomials (with coefficients aiaj with i �= j) that all vanish ex-
actly if the prover is honest. On the other hand, the polynomial Fπ(x) has only
2n+ 1 monomials. Therefore, a honest prover can compute the argument given
2n + 1 pairs (g2
, ḡ2
). Moreover, the prover can construct F by using 10 ex-
ponentiations. For comparison, in the basic arguments (the Hadamard product
argument and the permutation argument) of [18], the polynomial Fcon(x) had

n monomials, and the polynomial Fπ(x) had O(n22
√

2 log2 n) = n1+o(1) mono-

mials. Thus, the CRS had O(n22
√

2 log2 n) = n1+o(1) group elements and the

prover’s computational complexity was dominated by O(n22
√

2 log2 n) = n1+o(1)

exponentiations.
Similarly to the zero argument, we cannot prove the computational soundness

of this argument, since for every a, there exists r such that A2 = gr2
∏

i∈[n] g
aix

λi

2 .

Instead, following [12,18], we prove a weaker version of knowledge. Intuitively,
the theorem statement includes f ′
 only for  ∈ Λ̄ (resp., a
 for  ∈ Λ together
with r) since ḡ2
 (resp., ḡ1
) belongs to the CRS only for  ∈ Λ̄ (resp.,  ∈ {0}
∪ Λ).
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Theorem 2. The 1-sparsity argument in Prot. 2 is perfectly complete and perfectly
witness-indistinguishable. Let Λ be a progression-free set of odd positive integers.
If the Gbp is Λ̄-PSDL secure, then any non-uniform PPT adversary has negligi-
ble chance of outputting inpspa ← (A2, Ā2) and a satisfying argument πspa ←
(A1, Ā1, F, F̄ ) together with an opening witness wspa ← ((a
)
∈Λ, r, (f ′
)
∈Λ̄), such

that (A2, Ā2) = Com2(ck2;a; r), (F, F̄ ) = (g
∑

�∈Λ̄ f ′
�x�

2 , ḡ
∑

�∈Λ̄ f ′
�x�

2 ), for some
i �= j ∈ [n], aiaj �= 0, and the verification Vspa(gk, crs; (A2, Ā2), π

spa) accepts.

The (weak) soundness reduction is tight, except that it requires to factor a
polynomial of degree 2λn = max

{
i ∈ Λ̄

}
.

Proof. Let η ← ê(A1, A2) and h ← ê(g1, g2). Perfect witness-

Indistinguishability: since satisfying argument πspa is uniquely determined,
all witnesses result in the same argument, and thus this argument is witness-
indistinguishable.

Perfect completeness. All verifications but the last one are straight-
forward. For the last verification ê(A1, A2) = ê(g1, F ), note that logh η =
(r +

∑n
i=1 aix

λi)(r +
∑n

j=1 ajx
λj ) = Fcon(x) + Fπ(x), where

Fcon(x) =
n∑
i=1

n∑
j=1:j �=i

aiajx
λi+λj

︸ ︷︷ ︸
δ∈2̂Λ

and Fπ(x) = r
2 + 2r

n∑
i=1

aix
λi +

n∑
i=1

a2ix
2λi

︸ ︷︷ ︸
δ∈Λ̄

.

(1)
Thus, logh η is equal to a sum of xδ for δ ∈ 2̂Λ and δ ∈ Λ̄. If the prover is
honest, then aiaj = 0 for i �= j, and thus logh η is a formal polynomial that has
non-zero monomials γxδ with only δ ∈ Λ̄. Since then ai = 0 for i �= I, we have
logh η = r

2 +2raIx
λI + a2Ix

2λI = logg2 F . Thus, if the prover is honest, then the
third verification succeeds.

Weaker version of soundness: Assume that A is an adversary that can
break the last statement of the theorem. Next, we construct an adversary A′

against the Λ̄-PSDL assumption. Let gk ← Gbp(1
κ) and x← Zp. The adversary

A′ receives crs ← (gk; (gx
�

1 , g
x�

2 )
∈Λ̄) as her input, and her task is to output x. She

sets ᾱ ← Zp, crs
′ ← (ḡ1, ḡ2, (g

x�

1 , g
ᾱx�

1 )
∈Λ, (gx
�

2 , g
ᾱx�

2 )
∈Λ∪(2·Λ)), and then for-
wards crs′ to A. Clearly, crs′ follows the distribution imposed by Gcrs(1

κ). Denote

ck2 ← (gk; ḡ2, (g
x�

2 , g
ᾱx�

2 )
∈Λ). According to the last statement of the theorem,
A(gk; crs′) returns ((A2, Ā2), w

spa = ((a
)
∈Λ, r, (f ′
)
∈Λ̄), π
spa = (A1, Ā1, F, F̄ )).

Assume that A was successful, that is, for some i, j ∈ [n] and i �= j, aiaj �= 0.
Since (A2, Ā2) = Com2(ck2;a; r) and Vspa(gk, crs′; (A2, Ā2), π

spa) = 1, A′ has
expressed logh η = logg2 F as a polynomial f(x), where at least for some  ∈ 2̂Λ,

x
 has a non-zero coefficient.
On the other hand, logg2 F =

∑

∈Λ̄ f

′

x


 = f ′(x). Since Λ is a progression-free

set of odd positive integers, then 2̂Λ ∩ Λ̄ = ∅ and thus if  ∈ Λ̄ then  �∈ 2̂Λ.
Therefore, all coefficients of f ′(x) corresponding to any x
,  ∈ 2̂Λ, are equal to
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System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be an (n, κ)-nice
progression-free set of odd positive integers. Denote λ0 := 0. Let Λ̄ = {0}∪Λ∪(2·Λ).

CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ). Let ᾱ, x ←
Zp. Denote ḡt ← gᾱt , gt� ← gx

�

t and ḡt� ← gᾱx�

t for t ∈ {1, 2} and � ∈ Λ̄. The CRS
is crs ← (ḡ1, ḡ2, (g1�, ḡ1�)�∈Λ, (g2�, ḡ2�)�∈Λ∪(2·Λ)). Set ck2 ← (gk; ḡ2, (g2�, ḡ2�)�∈Λ),
and let crsv ← (ḡ1, ḡ2) be the verifier’s part of crs.

Common input: (A2, Ā2) = Com2(ck2;a; r) = (gr2 ·gaI
2,λI

, ḡr2 ·ḡaI
2,λI

) ∈ G
2
2, with I ∈ [n].

Argument generation Pspa(gk, crs; (A2, Ā2), (a, r)): The prover defines A1 ← gr1 ·
gaI
1,λI

, Ā1 ← ḡr1 · ḡaI
1,λI

, F ← gr
2

2 · g2raI
2,λI

· ga2
I

2,2λI
, and F̄ ← ḡr

2

2 · ḡ2raI
2,λI

· ḡa2
I

2,2λI
. The

prover sends πspa ← (A1, Ā1, F, F̄ ) ∈ G
2
1 ×G

2
2 to the verifier as the argument.

Verification Vspa(gk, crsv; (A2, Ā2), π
spa): Vspa accepts iff ê(A1, g2) = ê(g1, A2),

ê(Ā1, g2) = ê(A1, ḡ2), ê(g1, Ā2) = ê(ḡ1, A2), ê(g1, F̄ ) = ê(ḡ1, F ), and ê(A1, A2) =
ê(g1, F ).

Protocol 2: New 1-sparsity argument

0. Thus f(X) =
∑
f
X


 and f ′(X) =
∑


∈Λ̄ f
′

X


 are different polynomials with

f(x) = f ′(x) = logg2 F .

Therefore, A′ has succeeded in creating a non-zero polynomial d = f − f ′, such
that d(x) =

∑

∈Λ̄ d
x


 = 0.
Next, A′ can use an efficient polynomial factorization algorithm in Zp[X ] to

efficiently compute all 2λn+1 roots of d(x). For some root y, gx
�

1 = gy
�

1 . A′ sets
x← y, thus violating the Λ̄-PSDL assumption. ��

The 1-sparsity argument is not perfectly zero-knowledge. The problem is that
the simulator knows td = (ᾱ, x), but given td and (A2, Ā2) she will not be able to

generate πspa. E.g., she has to compute A1 = gr1 ·gaIx
λI

1 based on A2 = gr2 ·gaIx
λI

2

and x, but without knowing r, I or aI . This seems to be impossible without
knowing an efficient isomorphism G1 → G2. Computing F and F̄ is even more
difficult, since in this case the simulator does not even know the corresponding
elements in G1. Technically, the problem is that due to the knowledge of the
trapdoor, the simulator can, knowing one opening (a, r), produce an opening
(a′, r′) to any other a′. However, here she does not know any openings. For the
same reason, the permutation matrix argument of Sect. 3.3 will not be zero-
knowledge. On the other hand, in the final shuffle argument of Sect. 5, the
simulator creates all commitments by herself and can thus properly simulate
the argument. By the same reason, the subarguments of [12,18] are not zero-
knowledge but their final argument (for circuit satisfiability) is.

Theorem 3. Consider Prot. 2. The CRS consists of 2n+1 elements of G1 and
4n + 1 elements of G2, with the verifier’s part of the CRS consisting of only 1
element of G1 and 1 element of G2. The communication complexity (argument
size) of the argument in Prot. 2 is 2 elements from G1 and 2 elements from G2.
Prover’s computational complexity is dominated by 10 exponentiations. Verifier’s
computational complexity is dominated by 10 bilinear pairings.
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Setup: let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1
κ).

Common reference string Gcrs(gk): Let ᾱ, α̊, x ← Zp, ḡt ← gᾱt , g̊t ←
gα̊t , gt� ← gx

�

t , and ḡt� ← ḡx
�

t . Let D ← ∏n
i=1 g2,λi . Let crs ←

(ḡ1, ḡ2, g̊1, g̊2, (g1�, ḡ1�)�∈Λ, (g2�, ḡ2�)�∈Λ∪(2·Λ), D), ck2 = (gk; ḡ2, (g2�, ḡ2�)�∈Λ),

c̊k2 = (gk; g2, g̊2), and crsv = (ḡ1, ḡ2, g̊1).
Common input: (c2i, c̄2i) = Com2(ck2;Pi; ri) = (gri2 ·g2,λψ(i)

, ḡri2 ·ḡ2,λψ(i)
) for i ∈ [n].

Argument Generation Ppm(gk, crs; (c2, c̄2), (P, r)): Construct a zero argument

π0 ← g̊
∑n

i=1 ri
2 that (

∏n
i=1 c2i)/D commits to 0. For i ∈ [n], construct a 1-sparsity

argument πspa
i = (c1i, c̄1i, Fi, F̄i) that (c2i, c̄2i) commits to a 1-sparse row. Send

πpm ← (π0,πspa) to the verifier.
Verification Vpm(gk, crsv; (c2, c̄2);π

pm): The verifier checks n + 1 arguments
(π0,πspa).

Protocol 3: New permutation matrix argument in group G2 with P = Pψ

3.3 New Permutation Matrix Argument

In this section, we will design a new permutation matrix argument where the
prover aims to convince the verifier that he knows a permutation matrix P
such that (c2i, c̄2i) ∈ G2

2 are knowledge commitments to P ’s rows. Recall that
a permutation matrix is a Boolean matrix with exactly one 1 in every row and
column: if ψ is a permutation then the corresponding permutation matrix Pψ is
such that (Pψ)ij = 1 iff j = ψ(i). Thus (Pψ−1)ij = 1 iff i = ψ(j). We base our
argument on the following lemma.

Lemma 2. An n×n matrix P is a permutation matrix if and only if the follow-
ing two conditions hold: (a) the sum of elements in any single column is equal
to 1, and (b) no row has more than 1 non-zero elements.

Proof. First, assume that P is a permutation matrix. Then every column has
exactly one non-zero element (namely, with value 1), and thus both claims hold.
Second, assume that (a) and (b) are true. Due to (a), every column must have at
least one non-zero element, and thus the matrix has at least n non-zero elements.
Due to (b), no row has more than 1 non-zero elements, and thus the matrix has
at most n non-zero elements. Thus the matrix has exactly n non-zero elements,
one in each column. Due to (a), all non-zero elements are equal to 1, and thus
P is a permutation matrix. ��

We now use the 1-sparsity argument and the zero argument to show that the
committed matrix satisfies the claims of Lem. 2. Therefore, by Lem. 2, P is
a permutation matrix. Following [12,18] and similarly to the case of the zero
and 1-sparsity arguments, we prove that the permutation argument satisfies a
“weaker” version of soundness.

Theorem 4. The argument in Prot. 3 is a perfectly complete and perfectly
witness-indistinguishable permutation matrix argument. Let Λ be a progression-
free set of odd positive integers. If the Λ̄-PSDL assumption holds, then any non-
uniform PPT adversary has a negligible chance in outputting an input inppm ←
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(c2, c̄2) and a satisfying argument πpm ←
(
π0, (c1i, c̄1i, Fi, F̄i)i∈[n]

)
together

with an opening witness wpm ←
(
(ai)i∈Λ, ra, (Pi, ri, (f

′
ij)j∈Λ̄)i∈[n]

)
, such that(

(
∏n

i=1 c2i) /D, π
0
)
= Com2(ck2;a; ra), (∀i ∈ [n])(c2i, c̄2i) = Com2(ck2;Pi; ri),

(∀i ∈ [n]) logg2 Fi =
∑

j∈Λ̄ f
′
ijx

j, (a �= 0 ∨ (∃i ∈ [n])Pi is not 1-sparse), and the
verification Vpm(gk, crs; (c2, c̄2), π

pm) accepts.

Proof. Perfect Completeness: follows from the completeness of the 1-
sparsity and zero arguments and from Lem. 2, if we note that

∏n
i=1 c2i/D =

g
∑n

i=1 ri
2 , and thus (

∏n
i=1 c2i/D, π

0) commits to 0 iff every column of P
sums to 1.

Weaker version of soundness: Let A be a non-uniform PPT adversary
that creates (c2, c̄2), an opening witness ((a
)
∈Λ, ra, (Pi, ri, (f ′ij)j∈Λ̄)i∈[n]), and
an accepting NIZK argument πspa.

Since the zero argument is (weakly) sound, verification of the argument π0

shows that every column of P sums to 1. Here the witness is w0 = (a, ra)
with a =

∑n
i=1 Pi − 1. By the Λ̄-PSDL assumption, the 1-sparsity assumption

is (weakly) sound. Therefore, verification of the arguments πspa shows that
every row of P has exactly one 1 (here the witness is wspai = (Pi, ri, (f

′
ij)j∈Λ̄)).

Therefore, by Lem. 2 and by the (weak) soundness of the 1-sparsity and zero
arguments, P is a permutation matrix.

Perfect witness-indistinguishability: since satisfying argument πpm is
uniquely determined, all witnesses result in the same argument, and therefore
the permutation matrix argument is witness-indistinguishable. ��

Lemma 3. Consider Prot. 3. The CRS consists of 2n+ 2 elements of G1 and
5n+ 4 elements of G2. The verifier’s part of the CRS consists of 2 elements of
G1 and of 2 elements of G2. The communication complexity is 2n elements of G1

and 2n+1 elements of G2. The prover’s computational complexity is dominated
by 10n+1 exponentiations. The verifier’s computational complexity is dominated
by 10n+ 2 pairings.

4 Knowledge BBS Cryptosystem

Boneh, Boyen and Shacham [3] proposed the BBS cryptosystem Π =
(Gbp,Gpkc, Enc,Dec). We will use a (publicly verifiable) “knowledge” version of
this cryptosystem so that according to the KE (that is, the ∅-PKE) assumption,
the party who produces a valid ciphertext must know both the plaintext and the
randomizer. We give a definition for group G1, the knowledge BBS cryptosystem
for group G2 can be defined dually.

Setup (1κ): Let gk ← (p,G1,G2,GT , ê, g1, g2) ← Gbp(1
κ).

Key Generation Gpkc(gk): Set (α̃1, α̃2, α̃3) ← Z3
p, g̃1 ← gα̃3

1 , g̃
(1)
2 ← gα̃1

2 ,

g̃
(2)
2 ← gα̃2

2 , g̃
(3)
2 ← gα̃3

2 . The secret key is sk := (sk1, sk2) ← (Z∗
p)

2, and

the public key is pk ← (gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), where f = g

1/sk1
1 ,

f̃ = f α̃1 , h = g
1/sk2
1 , and h̃ = hα̃2 .
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Encryption Encpk(μ;σ, τ): To encrypt a message μ ∈ Zp with randomizer
(σ, τ) ∈ Z2

p, output the ciphertext u = (u1, u2, u3, ũ1, ũ2, ũ3), where u1 = fσ,

u2 = hτ , u3 = gμ+σ+τ
1 , ũ1 = f̃σ, and ũ2 = h̃τ , and ũ3 = g̃μ+σ+τ

1 .

Decryption Decsk(u1, u2, u3, ũ1, ũ2, ũ3): if ê(u1, g̃
(1)
2 ) = ê(ũ1, g2), ê(u2, g̃

(2)
2 ) =

ê(ũ2, g2) and ê(u3, g̃
(3)
2 ) = ê(ũ3, g2), then return the discrete logarithm of

gμ1 ← u3/(u
sk1
1 usk22 ). Otherwise, return ⊥.

Since Encpk(μ1;σ1, τ1) · Encpk(μ2;σ2, τ2) = Encpk(μ1 + μ2;σ1 + σ2, τ1 + τ2),
the knowledge BBS cryptosystem is additively homomorphic (with respect
to element-wise multiplication of the ciphertexts). In particular, one can re-
encrypt (that is, blind) a ciphertext efficiently: if σ2 and τ2 are random, then
Encpk(μ;σ1, τ1) · Encpk(0;σ2, τ2) = Encpk(μ;σ1 + σ2, τ1 + τ2) is a random encryp-
tion of μ, independently of σ1 and τ1.

The cryptosystem has to be lifted (i.e., the value μ be in exponent) for the
soundness proof of the new shuffle argument in Sect. 5 to go through; see there
for a discussion. Thus, to decrypt, one has to compute discrete logarithms. Since
this the latter is intractable, in real applications one has to assume that μ is
small. Consider for example the e-voting scenario where μ is the number of the
candidate (usually a small number).

One can now use one of the following approaches. First, discard the ballots
if the ciphertext does not decrypt. (This can be checked publicly.) Second, use
a (non-interactive) range proof [20,4] (in the e-voting scenario, range proofs are
only given by the voters and not by the voting servers, and thus the range proof
can be relatively less efficient compared to the shuffle argument) to guarantee
that the ballots are correctly formed. In this case, invalid ballots can be removed
from the system before starting to shuffle (saving thus valuable time otherwise
wasted to shuffle invalid ciphertexts). Both approaches have their benefits, and
either one can be used depending on the application.

The inclusion of ũ3 to the ciphertext is required because of our proof technique.
Without it, the extractor in the proof of of the soundness of the new shuffle
argument can extract μ only if μ is small. Thus, security would not be guaranteed
against an adversary who chooses u3 without actually knowing the element μ.

It is easy to see that the knowledge BBS cryptosystem, like the original BBS
cryptosystem, is CPA-secure under the DLIN assumption (see Sect. A for the
definition of the latter).

5 New Shuffle Argument

Let Π = (Gpkc, Enc,Dec) be an additively homomorphic cryptosystem. Assume
that ui and u′i are valid ciphertexts of Π . We say that (u′1, . . . , u

′
n) is a shuffle

of (u1, . . . , un) iff there exists a permutation ψ ∈ Sn and randomizers r1, . . . , rn
such that u′i = uψ(i) · Encpk(0; ri) for i ∈ [n]. (In the case of the knowledge
BBS cryptosystem, ri = (σi, τi).) In a shuffle argument, the prover aims to
convince the verifier in zero-knowledge that given (pk, (ui, u

′
i)i∈[n]), he knows a

permutation ψ ∈ Sn and randomizers ri such that u′i = uψ(i) · Encpk(0; ri) for
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i ∈ [n]. More precisely, we define the group-specific binary relationRsh exactly as
in [14]: Rsh := {((p,G1,G2,GT , ê, g1, g2), (pk, {ui} , {u′i}), (ψ, {ri})) : ψ ∈ Sn ∧(
∀i : u′i = uψ(i) · Encpk(0; ri)

)
} Note that both according to the corresponding

computational soundness definition and the Groth-Lu co-soundness definition
(see App. B), the adversary picks not only the final ciphertexts u′i but also the
initial ciphertexts ui.

In a real life application of the shuffle argument, the adversary (e.g., a mali-
cious mix server) usually gets the ciphertexts ui from a third party (from voters,
or from another mix server), and thus does not know their discrete logarithms.
However, in such a case we can still prove soundness of the full e-voting sys-
tem (including the voters and all mix servers) if we give the adversary access to
secret coins of all relevant parties. The use of knowledge BBS guarantees that
the encrypters (voters) know the plaintexts and the randomizers, and thus the
use of knowledge BBS can be seen as a white-box non-interactive knowledge
argument. This corresponds to the case in several interactive (or Fiat-Shamir
heuristic based) shuffles, where the ballots are accompanied by a proof of knowl-
edge of the actual vote, from what the (black-box) simulator obtains the actual
plaintexts necessary to complete the simulation. We thus think that soundness in
our model is relevant, and corresponds to the established cryptographic practice
with a twist. We leave the question of whether this model is necessary in applica-
tions like e-voting (where initial ciphertexts are not provided by the mixservers),
and when co-soundness is undesired, as an interesting open problem. Using the
Groth-Lu co-soundness definition avoids this issue, since in that case the adver-
sary does not have access to the random coins of the participants.

We note that Groth and Lu made in addition a similar assumption in [14]
where they prove co-soundness against adversaries who also output and thus
know the secret key of the cryptosystem. (See App. B for a precise definition.)
Thus, the adversary can decrypt all the ciphertexts, and thus knows the plain-
texts (but does not have to know the randomizers). As argued in [14], this is
reasonable in the setting of mixnet where the servers can usually threshold-
decrypt all the results. Their approach is however not applicable in our case,
since the knowledge of the secret key enables the adversary to obtain the plain-
texts and the randomizers in exponents, while to prove the soundness in Thm. 5
the adversary has to know the plaintexts and the randomizers themselves.

Next, we construct an efficient shuffle argument that works with the
knowledge BBS cryptosystem of Sect. 4. Assume that the ciphertexts
(ui1, ui2, ui3, ũi1, ũi2, ũi3), where i ∈ [n], are created as in Sect. 4. The shuf-
fled ciphertexts with permutation ψ ∈ Sn and randomizers (σ′i, τ

′
i)i∈[n] are

u′i = (u′i1, u
′
i2, u

′
i3, ũ

′
i1, ũ

′
i2, ũ

′
i3) = uψ(i) · Encpk(0;σ′i, τ ′i) = Encpk(μψ(i);σψ(i) +

σ′i, τψ(i) + τ
′
i). Let P = Pψ−1 denote the permutation matrix corresponding to

the permutation ψ−1.
The new shuffle argument is described in Prot. 4. Here, the prover first con-

structs a permutation matrix and a permutation matrix argument πpm. After
that, he shows that the plaintext vector of u′i is equal to the product of this per-
mutation matrix and the plaintext vector of ui. Importantly, we can prove the
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adaptive computational soundness of the shuffle argument. This is since while
in the previous arguments one only relied on (perfectly hiding) knowledge com-
mitment scheme and thus any commitment could commit at the same time to
the correct value (for example, to a permutation matrix) and to an incorrect
value (for example, to an all-zero matrix), here the group-dependent language
contains statements about a public-key cryptosystem where any ciphertext can
be uniquely decrypted. Thus, it makes sense to state that (pk, (ui, u

′
i)i∈[n]) is

not a shuffle. To prove computational soundness, we need to rely on the PKE
assumption. It is also nice to have a shuffle argument that satisfies a standard
security notion.

Theorem 5. Prot. 4 is a non-interactive perfectly complete and perfectly zero-
knowledge shuffle argument of the knowledge BBS ciphertexts. Assume that μ
is sufficiently small so that logg1 g

μ
1 can be computed in polynomial time. If the

Λ-PSDL, the DLIN, the KE (in group G1), and the Λ̄-PKE (in group G2) as-
sumptions hold, then the argument is also adaptively computationally sound.

We recall that ∅-PKE is equal to the KE assumption (in the same bilinear group).
Thus, if Λ̄-PKE is hard then also Λ-PKE and KE are hard (in the same group).

Proof. Perfect completeness: To verify the proof, the verifier first checks
the consistency of the commitments, ciphertexts and the permutation matrix
argument; here one needs that the permutation matrix argument is perfectly
complete. Assume that the prover is honest. The verification equation in step 5a
holds since

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f, g
Rσ
2 ·

n∏
i=1

g
σ′
i

2,λi
) ·

n∏
i=1

(ê(ui1, g
ri
2 ) · ê(fσi , g2,λψ−1(i)

))

=ê(fRσ ·
n∏
i=1

urii1, g2) ·
n∏
i=1

ê(fσψ(i)+σ′
i , g2,λi)

=ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

The equations in steps 5b and 5c can be verified similarly.
Adaptive computational soundness: Let A be a non-uniform

PPT adversary that, given gk and a crs, creates a statement (pk =

(gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), (ui, u

′
i)i∈[n]) and an accepting NIZK argument

πsh (as in Eq. (2) in Prot. 4), such that the plaintext vector (u′i)i∈[n] is not a
permutation of the plaintext vector (ui)i∈[n]. Assume that the DLIN assumption
holds in G1, the KE assumption holds in G1 and Λ̄-PKE (and thus also Λ-PKE
and KE) assumption holds in G2. We now construct an adversary A′ that breaks
the Λ-PSDL assumption.

Recall that πpm contains values π0 and πspai = (c1i, c̄1i, Fi, F̄i). By applying
the relevant knowledge assumption, we can postulate the existence of the fol-
lowing non-uniform PPT knowledge extractors that, with all but a negligible
probability, return certain values:
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Common reference string: Similarly to the permutation matrix argument, let

ᾱ, α̊, x ← Zp, ḡt ← gᾱt , g̊t ← gα̊t , gt� ← gx
�

t , and ḡt� ← ḡx
�

t . Let D ← ∏n
i=1 g2,λi .

In addition, let sk1, sk2 ← Z
∗
p and α̃1, α̃2, α̃3 ← Zp. Let f ← g

1/sk1
1 , h ← g

1/sk2
1 ,

f̃ ← f α̃1 , h̃ ← hα̃2 , g̃1 ← gα̃3
1 , g̃

(1)
2 ← gα̃1

2 , g̃
(2)
2 ← gα̃2

2 , and g̃
(3)
2 ← gα̃3

2 .
The CRS is crs := (ḡ1, ḡ2, g̊1, g̊2, (g1�, ḡ1�)�∈Λ, (g2�, ḡ2�)�∈Λ∪(2·Λ), D). The commit-

ment keys are ckt ← (gk; ḡt, (gt�, ḡt�)�∈Λ) and c̊k2 ← (gk; g̊2). The public key is

pk = (gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), and the secret key is sk = (sk1, sk2).

Common input: (pk, (ui, u
′
i)i∈[n]), where ui = Encpk(μi;σi, τi) ∈ G

3
1 and u′i =

Encpk(μψ(i);σψ(i) + σ′
i, τψ(i) + τ ′

i) ∈ G
3
1.

Argument Psh(gk, crs; (pk, (ui, u
′
i)i∈[n]), (ψ, (σ

′
i, τ

′
i)i∈[n])): the prover does the follow-

ing.

1. Let P = Pψ−1 be the n× n permutation matrix corresponding to the permu-
tation ψ−1.

2. For i ∈ [n], let ri ← Zp and (c2i, c̄2i) ← Com2(ck2;Pi; ri) = (gri2 ·g2,λ
ψ−1(i)

, ḡri2 ·
ḡ2,λ

ψ−1(i)
).

3. Generate a permutation matrix argument πpm for inputs (c2, c̄2).
4. Set (Rσ, Rτ ) ← Z

2
p, (cσ, c̄σ) ← Com2(ck2;σ

′
1, . . . , σ

′
n;Rσ), and (cτ , c̄τ ) ←

Com2(ck2; τ
′
1, . . . , τ

′
n;Rτ ).

5. Compute (uσ, ũσ) ← (fRσ · ∏n
i=1 u

ri
i1, f̃

Rσ · ∏n
i=1 ũ

ri
i1), (uτ , ũτ ) ← (hRτ ·∏n

i=1 u
ri
i2 , h̃

Rτ ·∏n
i=1 ũ

ri
i2), (uμ, ũμ) ← (gRσ+Rτ

1 ·∏n
i=1 u

ri
i3 , g̃

Rσ+Rτ
1 ·∏n

i=1 ũ
ri
i3).

6. The argument is

πsh ← ((c2i, c̄2i)i∈[n], π
pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uμ, ũμ) . (2)

Verification Vsh(gk, crs; (pk, (ui, u
′
i)i∈[n]), π

sh): the verifier does the following.
1. Check that ê(ḡ1, cσ) = ê(g1, c̄σ) and ê(ḡ1, cτ ) = ê(g1, c̄τ ).

2. Check that ê(uσ, g̃
(1)
2 ) = ê(ũσ, g2), ê(uτ , g̃

(2)
2 ) = ê(ũτ , g2), and ê(uμ, g̃

(3)
2 ) =

ê(ũμ, g2).

3. For i ∈ [n], check that ê(ui1, g̃
(1)
2 ) = ê(ũi1, g2), ê(ui2, g̃

(2)
2 ) = ê(ũi2, g2),

ê(ui3, g̃
(3)
2 ) = ê(ũi3, g2), ê(u

′
i1, g̃

(1)
2 ) = ê(ũ′i1, g2), ê(u

′
i2, g̃

(2)
2 ) = ê(ũ′i2, g2), and

ê(u′i3, g̃
(3)
2 ) = ê(ũ′i3, g2).

4. Check the permutation matrix argument πpm.
5. Check that the following three equations hold:

(a) ê(f, cσ) ·∏n
i=1 ê(ui1, c2i) = ê(uσ, g2) ·∏n

i=1 ê(u
′
i1, g2,λi),

(b) ê(h, cτ ) ·∏n
i=1 ê(ui2, c2i) = ê(uτ , g2) ·∏n

i=1 ê(u
′
i2, g2,λi), and

(c) ê(g1, cσcτ ) ·∏n
i=1 ê(ui3, c2i) = ê(uμ, g2) ·∏n

i=1 ê(u
′
i3, g2,λi).

Protocol 4: New shuffle argument
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– By the KE assumption in group G1, there exists a knowledge extractor
that, given (uij , ũij , u

′
ij , ũ

′
ij)j∈[3] and access to A’s random coins, returns

the values μi, σi, τi, μ
′
i, σ

′
i and τ ′i , such that ui = Encpk(μi;σi, τi) and

u′i = Encpk(μ′i;σ′i, τ ′i). Note that it might be the case that μ′i �= μ (i).
– By the Λ-PKE assumption in group G2, there exists a knowledge extractor

that, given (cσ, c̄σ, cτ , c̄τ ) and access to A’s random coins, returns open-
ings (σ∗, Rσ) and (τ∗, Rτ ), such that (cσ, c̄σ) = Com2(ck2;σ

∗;Rσ) and
(cτ , c̄τ ) = Com2(ck2; τ

∗;Rτ ). It does not have to hold that σ′i = σψ(i) + σ
∗
i

and τ ′i = τψ(i) + τ
∗
i for i ∈ [n].

– By the KE assumption in group G1, there exists a knowledge extractor that,
given (uσ, ũσ, uτ , ũτ , uμ, ũμ) and access to A’s random coins, returns open-

ings (vσ, vτ , vμ), such that (uσ, ũσ) = (fvσ , f̃vσ ), (uτ , ũτ ) = (hvτ , h̃vτ ), and
(uμ, ũμ) = (g

vμ
1 , g̃

vμ
1 ). (Thus, it is not necessary that the adversary created

the values uσ, uτ and uμ correctly, it is just needed that she knows their
discrete logarithms.)

– By the KE assumption in group G2, there exists a knowledge extractor that,
given ((

∏n
i=1 c2i)/D, π

0) and access to A’s random coins, returns an opening

((ai)i∈[n], ra), such that ((
∏n

i=1 c2i)/D, π
0) = Com2(c̊k2;a; ra).

– By the Λ-PKE assumption in group G2, for every i ∈ [n] there exists a
knowledge extractor that, given (c2i, c̄21) and access to A’s random coins,
returns an opening ((Pij)j∈[n], ri) such that (c2i, c̄2i) = Com2(ck2;Pi; ri).

– By the Λ̄-PKE assumption in group G2, for every i there exists a knowl-
edge extractor that, given (Fi, F̄i) and access to A’s random coins, returns
openings (f ′ij)j∈Λ̄ such that logg2 Fi =

∑
j∈Λ̄ f

′
ijx

j .

The probability that any of these extractors fails is negligible, in this case we
can abort. In the following, we will assume that all extractors succeeded.

Let a be A’s output. Based on A and the last three type of ex-
tractors, we can build an adversary A′ that returns a together with
((ai)i∈[n], ra, (Pi, ri, (f

′
ij)j∈Λ̄)i∈[n]). Since the permutation matrix argument is

(weakly) sound (as defined in the last statement of Thm. 4) and πpm verifies, we
have that c2 = (c2i)i∈[n] commits to a permutation matrix. Thus, there exists

ψ ∈ Sn such that for every i ∈ [n], c2i = exp(g2, ri + x
λ(ψ−1(i))).

Assume now that the equation in step 5a holds. Then

ê(uσ, g2) =ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i)/

n∏
i=1

ê(u′i1, g2,λi)

=ê(f, g
Rσ+

∑n
i=1 σ

∗
i x

λi

2 ) ·
n∏
i=1

ê(fσi , gri+x
λ
ψ−1(i)

2 )/
n∏
i=1

ê(fσ
′
i , gx

λi

2 )

=ê(fRσ+
∑n

i=1 σiri+
∑n

i=1(σψ(i)+σ∗
i −σ′

i)x
λi
, g2) .

Since uσ = fvσ ,
∑n

i=1(σψ(i) + σ
∗
i − σ′i)xλi + Rσ +

∑n
i=1 σiri − vσ = 0. If σ′i �=

σψ(i) + σ
∗
i for some i ∈ [n], then the adversary has succeeded in creating a non-

trivial polynomial f∗(X) =
∑n

i=1 f
∗
i X

λi + f∗0 , with f
∗
i = σψ(i) + σ

∗
i − σ′i and
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f∗0 = Rσ+
∑n

i=1 σiri−vσ, such that f∗(x) = 0. By using an efficient polynomial
factorization algorithm, one can now find all λn + 1 roots of f∗(X). For one of
those roots, say y, we have gy2 = gx2 . A′ can now return y = x. Since (gk, crs) only

contains fx
�

for  = 0, the adversary has thus broken the ∅-PSDL assumption,
an assumption that is true unconditionally since the adversary’s input does not
depend on x at all. Thus, σ′i = σψ(i) + σ

∗
i for i ∈ [n].

Analogously, by the verification in step 5b,
∑n

i=1(τψ(i) + τ
∗
i − τ ′i)xλi +Rτ +∑n

i=1 τiri − vτ = 0, and thus, τ ′i = τψ(i) + τ
∗
i for all i ∈ [n].

Finally, by the verification in step 5c,

ê(uμ, g2) =ê(g1, cσcτ ) ·
n∏
i=1

ê(ui3, c2i)/

n∏
i=1

ê(u′i3, g2,λi)

=ê(g1, g
Rσ+Rτ+

∑n
i=1(σ

∗
i +τ∗

i )x
λi

2 )·
n∏
i=1

ê(gμi+σi+τi
1 , exp(g2, ri + x

λψ−1(i)))/

n∏
i=1

ê(g
μ′
i+σ′

i+τ ′
i

1 , gx
λi

2 ) .

Thus,

logg1 uμ =Rσ +Rτ +

n∑
i=1

(σ∗i + τ
∗
i )x

λi +

n∑
i=1

(μi + σi + τi)(ri + x
λψ−1(i))−

n∑
i=1

(μ′i + σ
′
i + τ

′
i)x

λi

=Rσ +Rτ +

n∑
i=1

(μi + σi + τi)ri+

n∑
i=1

(μψ(i) − μ′i + σψ(i) + σ
∗
i − σ′i + τψ(i) + τ

∗
i − τ ′i)xλi

=Rσ +Rτ +

n∑
i=1

(μi + σi + τi)ri +

n∑
i=1

(μψ(i) − μ′i)xλi .

If μ′i �= μψ(i) for some i ∈ [n], then the adversary has succeeded in creating a

non-trivial polynomial f∗(X) =
∑n

i=1 f
∗
i X

λi + f∗0 , with f∗i =
∑n

i=1(μψ(i) − μ′i)
and f∗0 = Rσ+Rτ +

∑n
i=1(μi+σi+ τi)ri− vμ, such that f∗(x) = 0. By using an

efficient polynomial factorization algorithm, one can now find all λn+1 roots of
f∗. For one of those roots, say y, we have gy2 = gx2 . Since (gk, crs) only contains

gx
�

1 for  ∈ Λ, the adversary has thus broken the Λ-PSDL assumption. Therefore,
due to the Λ-PSDL assumption, μ′i = μψ(i) for i ∈ [n].3

3 For the argument in this paragraph to go through, we need the knowledge BBS
cryptosystem to be lifted and the plaintexts to be small. Otherwise, the adversary
will not know the coefficients of f ′(X), and thus one could not use a polynomial
factorization algorithm to break the Λ-PSDL assumption. Thus, a crafty adversary
might be able to break soundness by choosing gμ1 from which she cannot compute μ.
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Inputs: gk and CRS as in Prot. 4, trapdoor td = (α̊, ᾱ, x), and (pk, (ui, u
′
i)i∈[n])

Output: πsh

Simulation:
1. Pick random zi, ri1, ri2 ← Zp for i ∈ [n].
2. Set cσ ← ∏n

i=1 g
ri1
2 , cτ ← ∏n

i=1 g
ri2
2 , c2i ← gzi2 and c̄2i ← ḡzi2 for i ∈ [n].

3. Set (uσ, ũσ) ← (
∏n

i=1(f
ri1 · uzii1 · (u′i1)−xλi

),
∏n

i=1(f̃
ri1 · ũzii1 · (ũ′i1)−xλi

)), (uτ , ũτ ) ←
(
∏n

i=1(h
ri2 ·uzii2 ·(u′i2)−xλi

),
∏n

i=1(h̃
ri2 · ũzii2 ·(ũ′i2)−xλi

)), (uμ, ũμ) ← (
∏n

i=1(g
ri1+ri2
1 ·

uzii3 · (u′i3)−xλi
),
∏n

i=1(g̃
ri1+ri2
1 · ũzii3 · (ũ′i3)−xλi

)).
4. Complete the remaining part of the proof.
5. Simulate πpm by using the trapdoor opening of commitments as follows:

(a) Let π0 ← ((
∏n

i=1 c2i)/D)α̊.
(b) Let πspa

i be a 1-sparsity argument that (c2i, c̄2i) commits to a 1-sparse vector.

That is, πspa
i = (c1i, c̄1i, Fi, F̄i) for c1i ← gzi1 , c̄1i ← ḡzi1 , Fi ← g

z2i
2 , F̄i ← ḡ

z2i
2 .

(c) Let πpm ← (π0,πspa).
6. Set πsh ← ((c2i, c̄2i)i∈[n], π

pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uμ, ũμ).

Protocol 5: Simulator S2: construction

Thus, u′i1 = fσψ(i)+σ∗
i , u′i2 = hτψ(i)+τ∗

i , u′i3 = g
μψ(i)+σψ(i)+σ∗

i +τψ(i)+τ∗
i

1 and
similarly for elements ũ′ij , and therefore, {u′i} is indeed a correct shuffle of {ui}.

Perfect zero-knowledge: We construct a simulator S = (S1,S2) as fol-
lows. First, S1 generates random å, ᾱ, x ← Zq, and sets td ← (̊a, ᾱ, x). He then
creates crs as in Prot. 4, and stores td. The construction of S2 is given in Prot. 5.
Next, we give an analysis of the simulated proof. Note that cσ, cτ and c2i are in-
dependent and random variables in G, exactly as in the real run of the protocol.
With respect to those variables, we define uσ, uτ and uμ so that they satisfy the
verification equations. Thus, we are now only left to show that the verification
equations in steps 5a, 5b and 5c hold.

Clearly, πpm is simulated correctly, since ê (̊g1, (
∏n

i=1 c2i)/D) = ê(g1, π
0),

ê(c1i, g2) = ê(g1, c2i), ê(c̄1i, g2) = ê(c1i, ḡ2), ê(g1, c̄2i) = ê(ḡ1, c2i), ê
(
g1, F̄i

)
=

ê(ḡ1, Fi), and ê(c1i, c2i) = ê(g
zi
1 , g

zi
2 ) = ê

(
g1, g

z2i
2

)
= ê(g1, Fi).

Finally, we have

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f,

n∏
i=1

gri12 ) ·
n∏
i=1

ê(ui1, g
zi
2 ) = ê(

n∏
i=1

f ri1 ·
n∏
i=1

uzii1, g2)

=ê(

n∏
i=1

(f ri1uzii1(u
′
i1)

−xλi
), g2) ·

n∏
i=1

ê(u′i1, g2,λi)

=ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

Similarly, ê(h, cτ ) ·
∏n

i=1 ê(ui2, c2i) = ê(uτ , g2) ·
∏n

i=1 ê(u
′
i2, g2,λi) and ê(g1, cσcτ ) ·∏n

i=1 ê(ui3, c2i) = ê(uμ, g2) ·
∏n

i=1 ê(u
′
i3, g2,λi). Thus all three verification
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equations hold, and therefore the simulator has succeeded in generating an ar-
gument that has the same distribution as the real argument. ��

Theorem 6. Consider Prot. 4. The CRS consists of 2n + 2 elements of G1

and 5n+ 4 elements of G2, in total 7n+ 6 group elements. The communication
complexity is 2n+6 elements of G1 and 4n+5 elements of G2, in total 6n+11
group elements. The prover’s computational complexity is dominated by 17n+16
exponentiations. The verifier’s computational complexity is dominated by 28n+
18 pairings.

We note that in a mix server-like application where several shuffles are done
sequentially, one can get somewhat smaller amortized cost. Namely, the output
ciphertext u′i of one shuffle is equal to the input ciphertext ui of the following
shuffle. Therefore, in step 3, one only has to check the correctness of the ci-
phertexts u′i in the case of the very last shuffle. This means that the verifier’s
amortized computational complexity is dominated by 22n+18 pairings (that is,
one has thus saved 6n pairings).
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A Decisional Linear Assumption

We say that a bilinear group generator Gbp is DLIN (decisional linear) secure [3]
in group Gt, for t ∈ {1, 2}, if for all non-uniform polynomial time adversaries A,
the following probability is negligible in κ:∣∣∣∣∣∣∣Pr

⎡⎢⎣ gk ← Gbp(1
κ),

(f, h) ← (G∗
t )

2, (σ, τ) ← Z2
p :

A(gk; f, h, fσ, hτ , gσ+τ
t ) = 1

⎤⎥⎦− Pr

⎡⎢⎣ gk ← Gbp(1
κ),

(f, h) ← (G∗
t )

2, (σ, τ, z) ← Z3
p :

A(gk; f, h, fσ, hτ , gzt ) = 1

⎤⎥⎦
∣∣∣∣∣∣∣ .
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B Groth-Lu Co-soundness Definition

The Groth-Lu shuffle argument is proven to be Rsh
co -sound with respect to the

next language [14] (here, as in [14], we assume the setting of symmetric pairings
ê : G × G → GT , and like [14] we give the definition with respect to the BBS
cryptosystem only):

Rsh
co :=

{
((p,G,GT , ê, g) , (f, h, {ui} , {u′i}) , sk = (sk1, sk2)) : (x, y) ∈ (Z∗

p)
2∧

f = gsk1 ∧ h = gsk2 ∧
(
∀ψ ∈ Sn∃i : Decsk(u

′
i) �= Decsk(uψ(i))

) }
.

That is, the adversary is required to return not only a non-shuffle ({ui} , {u′i}),
but also a secret key sk that makes it possible to verify efficiently that ({ui} , {u′i})
is really not a shuffle. As argued in [14], this definition of Rsh

co makes sense in
practice, since there is always some coalition of the parties who knows the secret
key. See [14] for more.
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of corrupted parties t < n/3, which was shown optimal), and later protocols
with improved efficiency and security against general adversary structures were
presented [15,10,11,6,16,18,17,19,2,7]. Yet a common feature of those protocols
is that they reduce general multiparty computation to performing addition and
multiplication computations over a field. This raises the natural problem of re-
alizing multiparty computation over other algebraic structures. The question is
interesting not only intrinsically from a theoretical point of view, but may lead
to new techniques that may have advantages over those used for multiparty com-
putation over fields. Generalizations of the field-based protocols to work over a
ring have been investigated (e.g. [5]), but the problem of performing multiparty
computation over an arbitrary group has received less attention so far, with only
passive-secure protocols known [9]. The problem of multiparty computation over
a non-abelian group is of particular interest, since, as pointed out in [8], a result
due to Barrington [1] (see Sec. 3.4) implies that multiparty computation over
the non-abelian symmetric group S5 is complete for general multiparty compu-
tation, i.e. it allows construction of secure computation protocols for arbitrary
functions.

Let G denote a finite (multiplicatively written) group, and C denote a G-
circuit, i.e. a circuit in which the inputs are elements of G and the allowed
circuit gates are either a multiplication gate (taking two inputs in G and out-
putting their product in G) or a constant multiplication gate (taking an input
in G and returning the input multiplied by some constant in G). A multiparty
computation protocol for C over a black box group G [8] is an n-party protocol
in which, for i = 1, . . . , m, input xi ∈ G is held by one of the n parties, and
at the end of the protocol, all parties hold y = fC(x1, . . . , xm) ∈ G, where fC

is the function over G computed by the G-circuit C. The protocol is said to be
black-box if it treats the group G as a black-box: the only operations performed
in the protocol are sampling random elements in G, multiplying elements in G
and computing inverses in G.

Desmedt et al [9,8] introduced a novel construction for a black-box protocol
for fC , by reducing it to a certain graph coloring problem. The approach of [9]
differs in an interesting way from classical multiparty computation protocols
that work over fields and rings [3,4]. The latter protocols designed to handle
an adversary structure Δ (specifying the collection of party subsets that may
be corrupted) make use of a secret sharing scheme SSΔ secure against adver-
sary structure Δ; to multiply two circuit values shared among the parties using
SSΔ, each party does a local multiplication operation on its shares, and then
performs a full SSΔ sharing to reshare the result among all parties, who then
perform a recombination operation to compute their new share. In contrast, in
the group-based protocol of [9], two circuit values shared by a secret sharing
scheme SSΔ are multiplied by a sequence of simple resharing and combining
operations specified by a colored communication graph; each of these sharing
operations are typically much simpler that running a full resharing operation
for SSΔ (for instance, in the scheme of [9], a sharing operation just involves
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computing a 2-of-2 sharing of a group element and sending the two shares to
two parties).

Unfortunately, the protocol of [9] only achieves security against passive adver-
saries, since it does not provide a way of verifying the correctness of the compu-
tations performed. It thus left the natural open problem of designing multiparty
protocols over a black-box group secure against active adversaries.

Our Results. In this paper, we address the above-mentioned open problem. We
present the first n-party protocol for unconditionally secure multiparty computa-
tion over a black-box group G which is secure under an active attack model. Our
protocol achieves the optimal resilience in the active setting, namely it is can tol-
erate any adversary structure Δ satisfying the Q3 property, in which no union of
three subsets from Δ covers the whole player set, which is known to be necessary
for achieving security in the active setting [15]. The communication complexity
of our protocol for computing a G-circuit C is O(|C| ·M(Δ)2 · poly(n)) group
elements, where M(Δ) denotes the number of maximal sets in the adversary
structure Δ, and |C| denotes the size of C.

A corollary of our result is a new active-secure protocol for securely computing
an arbitrary Boolean circuit C, via Barrington’s result mentioned above, with
communication complexity O(|C| ·M(Δ)2 · poly(n)) bits. Note that a similar
communication complexity proportional to M(Δ)2 is achieved in [20] but using
a completely different field-based approach.

Our construction is based on an extension of the communication graph ap-
proach used in [9]. However, whereas in [9] each node in the graph is assigned
a single color corresponding to the party that performs a multiplication and re-
sharing computation at that node, in our protocol each edge is assigned a subset
of colors corresponding to a subset of players that send or receive shares along the
edge and jointly participate in the computation performed at the graph nodes
adjacent to the edge. To ensure the validity of the initial input sharing, we use
Maurer’s simple construction of a Verifiable Secret Sharing (VSS) scheme [19],
which works over a black-box group. At each internal node of our graph, the
correctness of the computation is verified by a multiparty pairwise comparison
protocol inspired by Maurer’s field-based multiplication protocol from [19].

Interestingly, unlike Maurer’s field-based multiplication protocol in [19], our
protocol retains the essential simplicity of the resharing operations used at each
node of the graph in the protocol of [9]: each party in the subset of players
assigned to a node in our protocol does not rerun the VSS sharing protocol
for resharing the intermediate protocol multiplication values at each node, but
uses just a 2-of-2 sharing of its output value, and consequently has an efficiency
advantage over Maurer’s protocol when applied to computing Boolean circuits
(see Sec. 3.4 for more details). Please note however, that similarly to Mau-
rer’s protocol in [19], we do not claim that our Boolean circuit protocol offers
any asymptotic complexity advantages over previous field-based protocols for
Boolean circuit computation. Indeed, the field-based protocol from [20] offers a
similar asymptotic complexity for general adversary structures, and the protocols
from [3,4] are asymptotically significantly more efficient for threshold structures.
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Rather, we view it mainly as an illustration of the power of our protocols over
black-box groups.

Due to limited space, the proofs of some results have been omitted from this
version of the paper. They can be found the full version, available from the
authors’ web page.

Open Problems. A central and interesting open problem left by our work is
to construct an active-secure protocol over black box groups tolerating a more
restricted but useful class of adversary structures, such as a t-of-n threshold
adversary structure, while achieving a communication complexity polynomial in
n. Currently, we do not see how to adapt our approach to achieve this goal,
and it seems to require new ideas. In particular, there seems to be an inherent
contradiction between the requirement to have at least 2t + 1 colors assigned
to each edge in our protocol graph (in order to achieve an honest majority at
the node and thus ensure correctness of the computation at the node) and the
optimal resilience condition n = 3t + 1, which means that each edge excludes a
unique t-subset of parties. The security of our approach (like that of [9]) against
a t-subset I of parties requires the existence of an I-avoiding path in the graph
whose edges exclude I. Thus if each edge excludes only a unique t-subset, that
edge can be used for only one I-avoiding path, whereas in a polynomial-sized
graph, each edge must be re-used for exponentially many paths, since there are
exponentially many t-subsets I.

Other Related Work. Sun et al [21] gave improvements to the graph coloring
constructions of Desmedt et al [9], showing them to be polynomial-sized for
certain resilience cases. These apply to the ‘t-reliable’ coloring notion needed for
the passive-secure protocols in [9], but do not seem applicable to our stronger
‘Δ-active-reliable’ coloring notion that we use to achieve active-security, and
involves coloring the graph edges with 2t+1-subsets of colors. As discussed above,
this notion seems to require exponential-sized graphs. Barrington’s encoding of
Boolean circuits into S5 was used in secure multiparty computation already in
1987 [14]. However, the security achieved in [14] was in the computationally
bounded attack model, while in [8] and in this paper, the security achieved is
against computationally unbounded attacks.

2 Preliminaries

2.1 Active Attack Model

We first recall the formal definition of secure multi-party computation in the
active (malicious), computationally unbounded attack model, restricted to de-
terministic symmetric functionalities and perfect emulation [13]. The number of
parties participating in the protocol is denoted by n, and the parties are denoted
by P1, . . . , Pn. We assume a general static party corruption model specified an
adversary structure Δ, which is a (monotone) collection of subsets of the player
index set [n] = {1, . . . , n}, corresponding to the player subsets that may be
corrupted. It is known [15] that secure multiparty computation in the active
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computationally unbounded model is possible for an adversary structure Δ if
and only if Δ has the Q3 property, i.e. [n] 
= I1 ∪ I2 ∪ I3 for all I1, I2, I3 ∈ Δ.

The uncorrupted players are assumed to correctly follow the protocol, whereas
the corrupted players can behave arbitrarily and are allowed to communicate
with each other. Also, every pair of parties can communicate via a private au-
thenticated channel (meaning that communication between two parties Pi and
Pj cannot be eavesdropped by any other party, and that when Pi receives a mes-
sage from Pj , Pi knows that the message was sent by Pj ; moreover, an honest
player Pi can detect that an expected message from Pj has not arrived - in this
case, we assume that Pi substitutes a certain ‘default’ message, as specified in
the protocol).

Security in the active model must guarantee not only the privacy of the inputs
held by the honest parties (as in the passive case), but also the correctness of the
protocol output computed by the honest parties. But note that perfect correctness
can never be achieved in the following sense: regardless of the protocol, nothing can
prevent an adversary-controlled party Pi from ignoring its protocol input xi and
substituting a different value x′

i when participating in the protocol. Accordingly,
the security definition is constructed to ensure that this substitution “attack” is
essentially the only attack possible on correctness of the protocol (in particular, it
ensures that the substituted value x′

i cannot depend on the values of honest party
inputs). To achieve this, the security definition compares the execution of the real
protocol in question (called the REAL model), to the execution of an idealized
protocol involving an honest trusted entity in addition to the parties running the
protocol (called the IDEAL model). In the IDEAL model, each party privately
sends its (possibly substituted) protocol input to the honest trusted entity. The
trusted entity evaluates the desired function f on the inputs it received and sends
the result back to all parties. It is clear that in the IDEAL model, the ‘substitution’
attack is the only possible attack. So, a protocol is said to be secure if for every ad-
versaryA in the REAL model, there is an adversary B in the IDEAL model which
produces the same output distribution (for the honest parties and the adversary).
We now present the formal definition.

Definition 1. Let f : ({0, 1}∗)n → {0, 1}∗ denote an n-input, single-output
function, and let

∏
be an n-party protocol for computing f . We denote the party

input sequence by x = (x1, . . . , xn), and the projection of the n-ary sequence x on
the coordinates in I ⊆ [n] by xI . Let A denote a REAL model adversary against
protocol

∏
, where A controls a subset I ∈ Δ of corrupted parties. Let OUT

∏
I,A(x)

(respectively OUT
∏
[n]\I,A(x)) denote the vector of outputs of the corrupted players

Pi with i ∈ I using some standard ordering (respectively, the list of outputs of
honest players Pi with i ∈ [n] \ I using some standard ordering) after running
protocol

∏
on input x, with A run on input (xI , I) and controlling parties Pi

for i ∈ I.
We say that

∏
is a Δ-secure protocol for computing f if, for every REAL

model adversary A, there exists an IDEAL model adversary B = (B1, B2) such
that, for all I ∈ Δ and for all x ∈ ({0, 1}∗)n, the random variables REAL

∏
I,A(x)
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and IDEALf
I,B(x) are identically distributed, where we define:

REAL
∏
I,A(x) = (OUT

∏
[n]\I,A(x), OUT

∏
I,A(x))

and
IDEALf

I,B(x) = (f(x′)n−t, B2(xI , I, f(x′); r))

with x′ = (x′
1, . . . , x

′
n), x′

i = B1(xI , I, i; r) for i ∈ I and x′
i = xi for i ∈

[n] \ I. Here, r is the (common) uniformly random coins input of deterministic
algorithms B1 and B2.

Note that in the IDEAL model adversary B = (B1, B2) in the above def-
inition, algorithm B1 performs the substitution of corrupted player inputs,
whereas B2 simulates the output of the corrupted players. The first compo-
nent of IDEALI,B(x), namely f(x′)n−t represents the n− t outputs of the honest
players indexed by [n] \ I in the IDEAL model; these outputs are all equal to
f(x′).

2.2 Maurer’s Simple Verifiable Secret Sharing Scheme

Our protocol makes use of a Verifiable Secret Sharing (VSS) scheme due to
Maurer [19], which works over any black-box group. We now recall this scheme.

First, we recall the definition of VSS. It is an adaptation of standard secret
sharing to the active-security setting, in which both the dealer and some share-
holders may be actively corrupted.

Definition 2 (VSS). A VSS scheme is run among n parties P1, . . . , Pn, one
of which is the dealer. The players with indices in I ∈ Δ (possibly including the
dealer) are actively corrupted, and all other players honestly follow the protocol.
It consists of two protocols: a sharing protocol VSS Share used by the dealer
to distribute shares of his secret among all parties, and a VSS Reconstruct
protocol used by the shareholders to reconstruct the secret. The protocols satisfy
the following conditions:

– Unique Reconstruction: At the end of a run of the VSS Share protocol,
the dealer is committed to a unique secret s, in the following sense: a subse-
quent run of VSS Reconstruct ends with all honest parties returning the
value s.

– Honest Dealer Correctness: If the dealer is honest with secret s, VSS
Reconstruct ends with all honest parties returning the value s.

– Honest Dealer Privacy: If the dealer is honest, the distribution of the ad-
versary’s view during the VSS Share protocol is independent of the dealer’s
secret s.

Let us now recall Maurer’s simple VSS scheme [19] for adversary structure Δ.
We denote by M(Δ) the number of maximal sets in Δ. Below, G denotes any
(black-box) group. Also note that, if Δ is Q3, a broadcast from one player to all
players (as used below) can be simulated with communication polynomial in n
using only point to point communication links between any pair of players [12].
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Protocol 1 Maurer’s VSS Share
Input: Dealer holds a secret s ∈ G.
1: Let 	 = M(Δ) and I1, . . . , I� denote the sequence of all maximal sets in Δ

(in some ordering).
2: Dealer chooses uniformly random shares s1, . . . , s� in G such that

s1s2 · · · s� = s.
3: For i ∈ [	], dealer sends si to each party Pj with j ∈ [n] \ Ii.
4: For i ∈ [	], every pair of parties Pj , Pk with j, k ∈ [n]\Ii check (by exchanging

values) whether their received values of si agree. If any party detects a
disagreement, it broadcasts a complaint.

5: Dealer broadcasts to all parties all shares si for which a complaint was broad-
cast.

Output: Party Pj holds shares {si : j ∈ [n] \ Ii}, for j ∈ [n].

Protocol 2 Maurer’s VSS Reconstruct
Input: Party Pj holds shares {si : j ∈ [n] \ Ii}, for j ∈ [n].
1: For j ∈ [n], party Pj sends its shares {si : j ∈ [n] \ Ii}, to every other party.
2: For i ∈ [	], each party P reconstructs si as the unique value v for which

there exists a J ∈ Δ such that P received v as the value of si in the previous
step from all parties Pj with j ∈ [n] \ (Ii ∪ J).

3: Each party reconstructs s = s1 · · · s�, where for i ∈ [	], si is the value recon-
structed in the previous step.

Output: Party Pj holds secret s, for j ∈ [n].

Theorem 1 ([19]). If Δ is Q3, then Maurer’s VSS Share and VSS Recon-
struct protocols form a VSS scheme (i.e. secure against adversary structure
Δ). The communication complexity of VSS Share and VSS Reconstruct is
O(M(Δ) · poly(n)) group elements.

2.3 G-Circuits

We recall the definition of G-circuits. In the following, for a group G, we define
an m-input 1-output G-circuit C as a circuit (directed acyclic graph) with m
input nodes, one output node, and two types of gates (corresponding to all other
circuit nodes):

1. Mult: Given two inputs x and y in G, the gate output is x · y ∈ G1

2. CMultα,β : Given one input x ∈ G, the gate output is α · x · β ∈ G (note that
the constants α, β ∈ G are built into the gate).

We denote by fC : Gm → G the function computed by the G-circuit C.

1 The incoming edges to Mult gates need to be labeled to indicate which one is the
left input.
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3 Our New Protocol

First, in Sec. 3.1, we reduce the G-circuit computation protocol problem (in
which at the beginning, each party holds xi ∈ G, and at the end each party
holds the circuit output) to the Shared 2-Product protocol problem (in which
at the beginning, the parties hold shares of two elements x, y ∈ G, and at the
end, the parties holds shares of z = x · y). This part of our protocol is almost
identical to that of [9]. Then, in Sec. 3.2, we show how to construct a Shared
2-Product protocol, using a suitable coloring of a certain planar graph. In this
part we introduce significant modifications to the protocol in [9] to handle active
attacks.

3.1 Construction of G-Circuit Protocol from a Shared 2-Product
Subprotocol

We begin by reducing the problem of constructing a Δ-private protocol for com-
puting an m-input G-circuit computing a function fC(x1, . . . , xm) (where each
input xi is held by one of the parties), to the problem of constructing a subpro-
tocol for the Shared 2-Product function f ′

G(x, y) = x · y, where inputs x, y and
output z = x · y are shared among the parties. We define for this subprotocol
active correctness and strong Δ-security properties, which strengthen the cor-
rectness and strong Δ-privacy of the passive model in [9] to the active case. In
the definition below, the share ownership functions Ox,Oy,Oz specify for each
share index j ∈ [	], the indices of the sets of players Ox(j),Oy(j),Oz(j) ⊆ [n]
which hold the jth input shares sx(j) and sy(j) and jth output share sz(j),
respectively.

Definition 3 (Shared n-Party 2-Product Subprotocol). A n-Party Shared
2-Product subprotocol

∏
S with sharing parameter 	 and share ownership func-

tions Ox,Oy,Oz : [	]→ 2[n] has the following features:

– Input: For j ∈ [	], each party in set Ox(j) holds jth share sx(j) ∈ G of
x, and each party in set Oy(j) holds jth share sy(j) ∈ G of y, where x

def=

sx(1) · sx(2) · · · sx(	) and y
def= sy(1) · sy(2) · · · sy(	), respectively.

– Output: For j ∈ [	], each party in set Oz(j) holds jth share sz(j) of output
z

def= sz(1) · · · sz(	).
– Active-Correctness: We say that

∏
S is active-correct if it has the following

property. Suppose that, at the beginning of the protocol, for j ∈ [	], all hon-
est parties in set Ox(j) (resp. Oy(j)) hold the same input share sx(j) (resp.
sy(j)), defining protocol inputs x = sx(1) · · · sx(	) and y = sy(1) · · · sy(	).
Then, at the end of the protocol, for each j ∈ [	], all honest parties in
set Oz(j) hold the same output share sz(j) defining protocol output z =
sz(1) · · · sz(	), and z = x · y holds.

– Strong Δ-Security: Let A denote a REAL model adversary against sub-
protocol

∏
S, where A controls a subset I ∈ Δ of corrupted parties. Let

Ix = {j ∈ [	] : (Ox(j) ∩ I) 
= ∅} and Iy = {j ∈ [	] : (Oy(j) ∩ I) 
= ∅}.
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Let A
∏

S(sx,sy)({sx(j)}j∈Ix , {sy(j)}j∈Iy , zaux) denote the output state of A
at the end of a run of subprotocol

∏
S with protocol inputs sx, sy, in which A

is run on input ({sx(j)}j∈Ix , {sy(j)}j∈Iy , zaux), where zaux is an auxiliary
input (representing the adversary’s input state), and let sz(j) denote the jth
output share held by the honest parties in set Oz(j) at the end of this run.
We say that

∏
S achieves strong Δ-security if, for every I ∈ Δ, there exist

j∗x, j∗y , j∗z ∈ [	] with j∗z ∈ {j∗x, j∗y} and sets Ox(j∗x),Oy(j∗y),Oz(j∗z ) all disjoint
from I, such that for every active adversary A against

∏
S corrupting parties

Pi for i ∈ I, there exists a probabilistic simulator algorithm S such that for
all protocol inputs sx, sy and auxiliary inputs zaux, the random variables
REAL

∏
S

I,A and SIM
∏

S

I,S are identically distributed. Here, we define:

REAL
∏

S

I,A = 〈A
∏

S(sx,sy)({sx(j)}j∈Ix , {sy(j)}j∈Iy , zaux), {sz(j)}j∈[�]\{j∗z }〉,

SIM
∏

S

I,S = S(I, {sx(j)}j∈[�]\{j∗x}, {sy(j)}j∈[�]\{j∗y}, zaux).

If j∗z = j∗x (resp. j∗z = j∗y) then we say
∏

S achieves x-preserving strong
Δ-security (resp. y-preserving strong Δ-security). If j∗z = j∗x = j∗y for
all I, then we say

∏
S achieves symmetric strong Δ-security.

Remark. In the above definition, the simulator S must simulate both the output
of A and all but one of the output shares sz(j), given all but one of the x-input
(resp. y-input) shares sx(j) (resp. sy(j)).

Our construction of an active-secure G-circuit computation protocol∏
a(C,

∏
S) given a G-circuit C with m input nodes, and a Shared 2-Product

subprotocol
∏

S , runs similarly to the corresponding passive construction in [9],
except that here, the secrets xi are shared out using Maurer’s VSS scheme, and
each share is held by a set of parties, rather than a single party. Due to space
limitations, we defer the formal specification of protocol

∏
a(C,

∏
S) to the full

version of the paper. We assume that
∏

S satisfies symmetric strong Δ-security,
with sharing parameter 	 and share ownership functions Ox = Oy = Oz (for
simplicity, we do not consider here the more general case of x-preserving or y-
preserving strong Δ-security as in [9] since our constructions for ΠS in later
sections satisfy symmetric strong Δ-security). Since our protocol makes use of
Maurer’s VSS scheme (see Sec. 2.2), we also assume here for compatibility that
the sharing parameter 	 = M(Δ), and that Ox(i) = [n] \ Ii, for i ∈ [	], where
Ii is the ith t-subset of [n] (in some ordering), as used in Maurer’s VSS scheme.
Below, for i ∈ [m], we let j(i) ∈ [n] denote the index of the party holding the
ith circuit input xi.

The following lemma establishes the Δ-security of protocol
∏

a(T,
∏

S), as-
suming the active-correctness and strong Δ-security of subprotocol

∏
S . The

IDEAL model adversary in the proof makes use of the unique reconstruction
property of the VSS scheme to reconstruct from the shares held by the honest
parties, the ‘substituted’ input values x′

i committed by the corrupted players
during the dealing phase of the VSS. The IDEAL model adversary then sim-
ulates the view of the corrupted parties at each node of the tree T by using
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the known inputs to the subprotocol run at the node as input to the simulator
associated to subprotocol ΠS thanks to its strong Δ-security. This lemma can
be viewed as an extension of Lemma 3 in [9] to the active attack setting. Its
proof can be found in the full version.

Lemma 1. For any G-circuit C, if the n-party Shared 2-Product subprotocol
∏

S

satisfies active-correctness and symmetric strong Δ-security, then the protocol∏
a(C,

∏
S) is an n-party Δ-secure protocol for computing function fC computed

by C.

3.2 Construction of a t-Secure Shared 2-Product Subprotocol from
a t-Active-Reliable Coloring

We now show how to reduce the problem of constructing a t-Private n-Party
Shared 2-Product Subprotocol

∏
S to a certain combinatorial coloring problem

for a planar graph. In contrast to the coloring in [9] in which graph nodes are
assigned colors, our coloring assigns colors to graph edges. More significantly,
whereas in [9] each node was assigned a single color from [n] denoting the index
of the party performing computation at that node, we assign a subset of colors
from [n] to each edge, denoting the indices of parties receiving the share sent
along the edge, and participating in the computation at the node that the edge
is directed towards. Our construction is specific to the PDAG Ggrid(	) shown in
Fig. 1, with 	 = M(Δ), the number of maximal sets in the adversary structure
Δ. The node rows (resp. columns) of Ggrid(	) are numbered consecutively from

Fig. 1. The PDAG Ggrid(�)

1 to 	 from top to bottom (resp. left to right). We label the edges of Ggrid(	) as
follows: the label (i, j, d) denotes the edge of Ggrid(	) which is directed into the
node in the ith row and jth column in the direction d ∈ {H, V } (horizontal if
d = H or vertical if d = V ). An exception is that (	 + 1, j, V ) denotes the jth
outgoing edge of the node in row 	 and column j. Note also that the nodes on
column 	 do not have horizontal outgoing edges. We call the horizontal incoming
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edges to the leftmost column the x-input edges (and edge (	+1−j, 1, H) is called
the jth x-input edge), the vertical incoming edges to the top row the y-input
edges (and edge (1, j, V ) is called the jth y-input edge), and the vertical outgoing
edges in the bottom row the output edges (and edge (	+1, j, V ) is called the jth
output edge).

Let C : [	 +1]× [	]×{H, V } → 2[n] be an n-Active-Reliable coloring function
that associates to each edge (i, j, d) a color subset C(i, j, d) from the set of n
possible colors [n]. We now define the notion of a Δ-active-reliable n-coloring,
which may be viewed as an ‘active’ variant of the t-reliable coloring in [9].

Definition 4 (Δ-active-reliable n-coloring). We say that C : [	 + 1]× [	]×
{H, V } → 2[n] is a Δ-active-reliable n-coloring for PDAG Ggrid(	) if C(i, j, H)∩
C(i, j, V ) /∈ Δ and C(i, j, d) 
= I1 ∪ I2 for all i, j, d and I1, I2 ∈ Δ, and, for each
I ∈ Δ, there exists j∗ ∈ [	] and:

– A path PATHx in Ggrid(	) from the j∗th x-input edge (i.e. edge (	 + 1 −
j∗, 1, H)) to the j∗th output edge (i.e. edge (	+1, j∗, V )), such that all edges
(i, j, d) along the path have color sets C(i, j, d) disjoint from the subset I (we
call such a path I-avoiding), and

– An I-avoiding path PATHy in Ggrid(	) from the j∗th y-input edge (i.e. edge
(1, j∗, V )) and the j∗th output edge (i.e. edge (	 + 1, j∗, V )).

If the jth x-input, y-input and output edges are assigned the same color subset by
C for all j ∈ [	] (i.e. C(1, j, V ) = C(	 + 1− j, 1, H) = C(	 + 1, j, V ) for j ∈ [	]),
then we say that C is a symmetric Δ-active-reliable n-coloring.

Given a Δ-active-reliable coloring for PDAG Ggrid, our Shared 2-Product pro-
tocol ΠS(Ggrid, C) is given below as Protocol 3.

Our protocol makes use of a subprotocol NodeMult that is run at each node
of the graph Ggrid and given below as Protocol 4. At each protocol step, if a
party Pi expects to receive a group element a from some other party Pj , and Pi

does not receive the group element (because Pj is corrupted and sends nothing),
we assume that Pi substitutes the default value 1 for the element a.

Theorem 2. If C is a symmetric Δ-active-reliable n-coloring for Ggrid(	) then
Shared 2-Product protocol

∏
S(Ggrid(	), C) achieves active-correctness and strong

Δ-security.

The proof of Theorem 2 is based on the properties of the NodeMult protocol
stated in Lemma 2 below. Due to limited space, the proofs of Lemma 2 and
Theorem 2 are deferred to the full version of this paper. Here, we provide an
informal overview of the protocol and its security analysis.

Informal overview of protocol ΠS(Ggrid, C). The edges of Ggrid are labeled with
shares sent in the protocol, the nodes of Ggrid represent multiplication operations
on the shares labelling the incoming edges to the node, and the node product
is then reshared along the node outgoing edges. The color subsets assigned by
coloring C indicate the indices of players receiving the shares sent along the edge,
and the multiplication and resharing computations at each node are performed
by the subprotocol NodeMult among these parties.
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Given a simulatable NodeMult subprotocol that produces at each node’s
outgoing edges a fresh resharing of the product of the incoming edge shares,
the Δ-security of ΠS(Ggrid, C) follows from the existence of adversary-avoiding
input-output paths in PDAG Ggrid (these paths are guaranteed to exist by the
Δ-active-reliable property of coloring C). Thanks to the fresh resharing at each
node, the output shares sent along outgoing edges not on the adversary-avoiding
paths can be simulated by independent random elements.

The main novelty in our protocol versus the passive-secure protocol in [9] is
in the design of the NodeMult subprotocol. The fact that each edge share is
held by a set of parties containing a sufficiently large subset of honest parties,
allows us to design appropriate correctness verification checks in NodeMult
(reminiscent of those in Maurer’s robust multiplication protocol [19] over a field)
that ensure the correctness of the computation at each node (whereas in the
protocol in [9], each node computation is performed by a single party and may
fail if the corresponding party is actively corrupted). An interesting aspect of
our protocol is that NodeMult verification checks can ensure the correctness
of the computation without having to rerun the full VSS resharing protocol
at each node (only a simple 2-of-2 resharing is needed), whereas in Maurer’s
multiplication protocol, each pairwise product of shares has to be reshared with
a VSS, leading to a lower efficiency. The NodeMult protocol is run at each
internal node of the graph Ggrid(	). Before the protocol is run, the parties in
the set S (labeling the horizontal incoming edge to the node) each hold a share
s ∈ G and the parties in the set T (labeling the vertical incoming edge to the
node) each hold a share t ∈ G. The purpose of the protocol is to compute s ·t and
reshare this product as a · b where a and b are fresh shares. Accordingly, at the
end of the protocol, each of the parties in the set A (labeling the outgoing vertical
edge) all hold the share a ∈ G and each of the parties in the set B (labeling the
outgoing horizontal edge) all hold the share b ∈ G, such that a · b = s · t. Note
that in the coloring construction presented in the next section, we have A = T
and B = S. The protocol runs in two phases.

In the first phase (lines 1 to 11), each party Pk that holds both incoming
shares s and t (i.e. each party Pk in S ∩ T ) computes s · t and a fresh resharing
of this value (ak, bk) with ak · bk = s · t (note that by construction of S and T
from the Δ-active-reliable coloring it is guaranteed that S ∩ T /∈ Δ so S ∩ T
contains at least one honest party). Each Pk privately sends its share ak (resp.
bk) to each party in A (resp. B), and then the parties in A (resp. B) check by
doing pairwise comparisons that they all hold the same value of ak (resp. bk)
for all k. If an inconsistency is detected, the value of ak (resp. bk) is broadcast
by Pk to all parties. This doesn’t violate privacy because it only happens when
some party who received or sent ak (resp. bk) was corrupted. In the second phase
(lines 12 to 26), the parties in A and B check that the sharings (ak, bk) define
the same secret for all values of k, i.e. ak · bk = a1 · b1 for all k. This check is
equivalent to checking that a−1

k · a1 = bk · b−1
1 for all k and the latter check is

done (in lines 12-16) by a pairwise comparison between every pair of parties,
one from A (who holds a−1

k · a1) and one from B (who holds bkb−1
1 ). If the tests

pass then a1, b1 is taken to be the protocol output sharing, which is known to be
correct, since one of the ak, bk have been correctly shared by the honest party
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in S ∩ T , and ak · bk = a1 · b1 (and privacy is preserved since the parties only
receive values they already have). Otherwise, if the test fails for some k, the
players in A (resp. B) broadcast the values of a−1

k · a1 (resp. bkb−1
1 ) and the

values broadcast by the honest parties in A (resp. B) are compared. The values
Honk

A (resp. Honk
B) broadcast by the honest parties can be deduced uniquely

by the assumption that A (resp.B) cannot be covered by a union of two subsets
in Δ (which in turn follows from the Δ-active-reliable property of coloring C). If
they are equal, the test failure complaint was made falsely by a corrupted party,
so it is ignored. Otherwise, if they are not equal, one of the parties Pk in S ∩ T
must be corrupted. In this case, the corrupted parties already know both s and
t so there is no privacy requirement, and the protocol backtracks : the parties in
S (resp. T ) broadcast the value of s (resp. t) to all parties, and output shares
are defined to be s · t and 1, respectively, using the values of s and t broadcast
by honest parties in S (resp. T ).

Protocol 3 Shared 2-Product Protocol
∏

S(Ggrid(	), C)
Input: For j = 1, . . . , �, parties Pi with i ∈ Ox(j) hold jth share sx(j) ∈ G of

x and jth share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(�)) and sy =

(sy(1), sy(2), . . . , sy(�)) denote �-of-� sharing of x
def
= sx(1) · sx(2) · · · sx(�) and y

def
=

sy(1) · sy(2) · · · sy(�), respectively. (We assume that C is a symmetric Δ-active-
reliable n-coloring of Ggrid(�), and define Ox(j)

def
= C(1, j, V ) = C(�+1−j, 1, H) =

C(� + 1, j, V )).
1: Define input edge labels v(� +1− j, 1, H) = sx(j) and v(1, j, V ) = sy(j) for j ∈ [�].

2:
3: for i = 1 to � do
4:
5: for j = 1 to � do
6: Run protocol NodeMult with input share s = v(i, j, H) held by party set

S = C(i, j, H) and input share t = v(i, j, V ) held by party set T = C(i, j, V ),
and output party sets A = C(i + 1, j, V ) and B = C(i, j + 1, H) if j < � or
B = A if j = �. The protocol ends with output share a held by party set A
and output share b held by party set B, with a · b = s · t.

7: Define labels v(i + 1, j, V )
def
= a for edge (i + 1, j, V ) (or v(i + 1, j, V ) = a · b if

j = �) and, if j < �, label v(i, j + 1, H)
def
= b for edge (i, j + 1, H).

8: end for
9: end for

Output: For j = 1, . . . , �, parties Pi with i ∈ Ox(j) hold jth share sz(j)
def
= v(� +

1, j, V ) ∈ G of z = x · y.

Lemma 2. Assume that S ∩ T /∈ Δ and none of S, T, A, B are equal to the
union of two sets from Δ. Then protocol NodeMult(s, t, S, T, A, B) satisfies
the following properties, for all protocol inputs s, t, all I ∈ Δ and every active
adversary A corrupting parties Pi for i ∈ I:

– Correctness: If, at the beginning of the protocol, all honest parties Pi with
i ∈ S (resp. i ∈ T ) hold the same share s (resp. t), then at the end of the
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protocol, all honest parties Pi with i ∈ A (resp. i ∈ B) hold the same share
a (resp. b), with a · b = s · t.

– Security: Let inI
A ⊆ {s, t} denote the protocol inputs given to A, i.e. s ∈ inI

A
(resp. t ∈ inI

A) if S ∩ I 
= ∅ (resp. if T ∩ I 
= ∅). Similarly, let outIA ⊆ {a, b}
denote the protocol outputs given to A, i.e. a ∈ outIA (resp. b ∈ outIA) if
A ∩ I 
= ∅ (resp. if B ∩ I 
= ∅). Let A(s,t)(inI

A, zaux) denote the output state
of A on input (inI

A, zaux) at the end of a run of NodeMult(s, t, S, T, A, B)
(here zaux is an auxiliary input representing the adversary’s input state).
Then, if |outIA| ≤ 1, there exists a probabilistic simulator algorithm S such
that the random variables REAL

def= 〈A(s,t)(inI
A, zaux), outIA〉 (representing

the output state of A and protocol output given to A) and SIM
def= S(inI

A, zaux)
(representing the simulated output state of A and protocol output given to
A) are identically distributed.

3.3 Construction of a Δ-Active-Reliable Coloring of Graph Ggrid(�)

To complete our protocol construction, it remains to describe a Δ-active-reliable
coloring of the graph Ggrid(	). Our deterministic construction of such a coloring
is given in Algorithm 5. It may be viewed as an adaptation of the deterministic
t-reliable coloring of Ggrid(	) from [9].

Lemma 3. If Δ is Q3, the coloring C returned by DetCol is a Δ-active-reliable
n-coloring for Ggrid(	).

Proof. First, notice that C(i, j, H) ∩C(i, j, V ) = [n] \ (I�+1−i ∪ Ij) cannot be in
Δ for any i, j since otherwise, it would imply that [n] is the union of three sets
I�+1−i, Ij , [n] \ (I�+1−i ∪ Ij) from Δ, contradicting the Q3 property. Similarly,
we must have C(i, j, d) cannot be a union of two sets from Δ, otherwise again it
would contradict the Q3 property. For each i ∈ [	], observe that the edges along
the (	+1−i)th row and ith column of Ggrid(	) are Ii-avoiding under the coloring
C. The path PATHy for Ii is formed by the i’th column, while the path PATHx

is formed by the portion of the (	 + 1 − i)th row to the left of its intersection
with PATHy, with the rest of PATHx being the part of PATHy below the ith
row. Finally, notice that C(1, j, V ) = C(	 + 1 − j, 1, H) = C(	 + 1, j, V ) for all
j ∈ [	] so C is a symmetric Δ-active-reliable n-coloring, as claimed. �

Putting together the results of Lemma 1, Theorem 2 and Lemma 3, we get our
main result.

Corollary 1. If Δ is Q3, there exists a Shared 2-Product black box Protocol for
G satisfying active-correctness and strong Δ-security and with communication
complexity O(M(Δ)2poly(n)) group elements, a black box Δ-secure protocol for
any G-circuit C with communication complexity O(|C| ·M(Δ)2 · poly(n)) group
elements.
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Protocol 4 NodeMult(s, t, S, T, A, B)
Input: Parties Pi with i ∈ S hold share s ∈ G, Parties Pi with i ∈ T hold share t ∈ G.

1: Let c = |S ∩ T |. Without loss of generality, assume S ∩ T = {1, . . . , c}.
2: for k = 1 to c do
3: Party Pk computes u = s · t (since k ∈ S ∩ T , Pk holds both s and t).
4: Party Pk chooses uniformly random ak, bk ∈ G such that ak · bk = u.
5: Party Pk sends ak to each party Pi with i ∈ A.
6: Every pair of parties Pi,Pj with i, j ∈ A send to each other the values ak,i,ak,j of

ak that Pi (resp. Pj) received from Pk. If either Pi or Pj detects an inconsistency
(i.e. ak,i �= ak,j), it broadcasts a complaint against Pk.

7: If a complaint was broadcast in previous step against Pk, party Pk broadcasts
ak to all n parties, and all parties accept this value as the correct value of ak.

8: Party Pk sends bk to each party Pi with i ∈ B.
9: Every pair of parties Pi,Pj with i, j ∈ B send to each other the values bk,i,bk,j of

bk that Pi (resp. Pj) received from Pk. If either Pi or Pj detects an inconsistency
(i.e. bk,i �= bk,j), it broadcasts a complaint against Pk.

10: If a complaint was broadcast in previous step against Pk, party Pk broadcasts
bk to all n parties, and all parties accept this value as the correct value of bk.

11: end for
12: for k = 2 to c do
13: for all i ∈ A and j ∈ B do
14: Party Pi sends to Pj the value a−1

k · a1, and Pj sends to Pi the value bk · b−1
1 .

15: If either Pi or Pj detects an inconsistency (i.e. a−1
k ·a1 �= bk ·b−1

1 ), it broadcasts
a complaint k.

16: end for
17: if a complaint k was broadcast in previous step then
18: All parties Pi with i ∈ A broadcast a−1

k ·a1 to all n parties. Let Honk
A denote

the value v such that all parties Pi with i ∈ A \J broadcasted the value v, for
some J ∈ Δ. (such v exists and is unique, see proof of Lemma 2).

19: All parties Pi with i ∈ B broadcast bk · b−1
1 to all n parties. Let Honk

B denote
the value v such that all parties Pi with i ∈ B \ J broadcasted the value v,
for some J ∈ Δ. (such v exists and is unique, see proof of Lemma 2).

20: if Honk
A �= Honk

B then
21: Each party Pi with i ∈ S broadcasts s to all n parties. Let Hons denote

the value v such that all parties Pi with i ∈ S \ J broadcasted the value v,
for some J ∈ Δ. (such v exists and is unique, see proof of Lemma 2).

22: Each party Pi with i ∈ T broadcasts t to all n parties. Let Hont denote
the value v such that all parties Pi with i ∈ S \ J broadcasted the value v,
for some J ∈ Δ. (such v exists and is unique, see proof of Lemma 2).

23: return with each party Pi with i ∈ A holding output share a = Hons ·
Hont, and each party Pi with i ∈ B holding output share b = 1.

24: end if
25: end if
26: end for
27: return with each party Pi with i ∈ A holding output share a = a1, and each

party Pi with i ∈ B holding output share b = b1.
Output: Parties Pi with i ∈ A hold share a ∈ G, Parties Pi with i ∈ B hold share

b ∈ G, with a · b = s · t.
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Algorithm 5 Algorithm DetCol
Input: Graph Ggrid(�) (see Fig. 1), where � = M(Δ).

Let I1, . . . , I� denote the sequence of all maximal sets Δ (in some ordering).
For (i, j) ∈ [� + 1]× [�], C(i, j, V )

def
= [n] \ Ij and, if i ≤ �, C(i, j, H)

def
= [n] \ I�+1−i.

Output: A Δ-active-reliable coloring C of Graph Ggrid(�).

3.4 Application to Active-Secure General Multiparty Computation

In this Section, we explain how to apply our protocol for black-box groups to
obtain a new approach for constructing actively-secure multiparty computation
protocols for arbitrary Boolean circuits.

We begin by recalling a result of Barrington [1] that was used in the passive
attack setting of [8] to reduce multiparty computation of arbitrary Boolean cir-
cuits to an S5-circuit. Let C denote a G-circuit and let fC : Gm → G be the
function computed by C. Let 1G denote the identity element of G. For some
fixed σ ∈ G \ {1G}, let φσ : {0, 1} → G denote the encoding function mapping
0 to 1G and 1 to σ. We say that a G-circuit C computes a Boolean function g
if there exists σ ∈ G such that g(x1, . . . , xn) = φ−1

σ (fC(φσ(x1), . . . , φσ(xn))) for
all (x1, . . . , xn) ∈ {0, 1}n. Barrington’s result can be stated as follows (see [8]).

Theorem 3 (Adapted from [1]). Let C be a Boolean circuit consisting of NA

2-input AND gates, NN NOT gates, and depth d. Then there exists an S5-circuit
C′ which computes the Boolean function computed by C. The circuit C′ contains
N ′

M = 3NA Mult gates and N ′
CM = 4NA+NN CMult gates, and has depth d′ ≤ 4d.

The S5-circuit C′ constructed in the proof of Theorem 3 computes the Boolean
circuit C using the encoding function φσ : {0, 1} → S5 mapping 0 to 1S5 and 1
to the 5-cycle σ = (1, 2, 3, 4, 5). In the passive attack setting of [8], all parties
are assumed to honestly follow the protocol and correctly encode their Boolean
inputs into the set {1S5 , σ}, which are then used as input to the protocol for
computing the S5-circuit C′. However, in the active attack setting we study in
this paper, one cannot directly apply our G-circuit protocol from the previous
section to C′, since the corrupted parties may choose as their inputs to circuit
C′ elements outside the set {1S5, σ} in order to corrupt the protocol output.
To fix this problem, we modify our protocol from the previous section for this
application, by adding an additional input verification step. This verification step
allows the parties to interactively check that the VSS’ed input elements of all
parties are in the set {1S5 , σ}, without revealing anything else about the shared
inputs when they are indeed in the set {1S5, σ}. If a shared input is found by the
check to be outside the set {1S5 , σ}, the party who shared the input is declared
corrupted, and the corresponding shared input is redefined to be a VSS sharing
of the default value 1S5 . The correctness of the test in Protocol 6 is shown by
Lemma 4. It uses elementary properties of the group S5, and its proof can be
found in the full version of the paper.
Lemma 4. For each i ∈ [m], the tests y1 = 1S5 and y2 = 1S5 are both verified
if and only if xi ∈ {1S5, σ}.
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Protocol 6 Verification Step (inserted into Protocol
∏

a(C,
∏

S).
Input: For i ∈ [m], the parties hold a VSS sharing sxi = (sxi(1), . . . , sxi(�)) of input

xi ∈ S5 shared by party Pj(i), where, for each j ∈ [�], share sxi(j) is held by players
in set Ox(j) = [n] \ Ij .
for i = 1 to m do

1. The parties jointly compute, using G-circuit protocol from Sec. 3.1 on the
VSS’ed input xi ∈ S5, the value y1 = E1(xi), where E1(x) = x · σ · x−1 · σ−1.
2. The parties jointly compute, using G-circuit protocol from Sec. 3.1 on the
VSS’ed input xi ∈ S5, the value y2 = E2(xi), where E2(x) = x · g1 · x2 · g2 · x3 ·
(g1 · g2)

−1, g1 = (1)(2, 3)(4)(5) and g2 = (1, 2, 5, 4, 3).
3. If y1 = 1S5 and y2 = 1S5 , the parties conclude that xi ∈ {1S5 , σ}. Else, the
parties conclude that xi /∈ {1S5 , σ}, declare party Pj(i) as corrupted, and set
xi = 1S5 , with all VSS shares sxi(j) = 1S5 for j ∈ [�].

end for
Output: For i ∈ [m], the parties hold a VSS sharing sxi = (sxi(1), . . . , sxi(�)) of input

xi ∈ S5 with xi ∈ {1S5 , σ} and for j ∈ [�], share sxi(j) is held by set Ox(j) = [n]\Ij .

By adding the verification Protocol 6 to our protocol in Sec. 3.1 and applying it to
the S5-circuit C′ produced by Theorem 3, we obtain an active-secure protocol
for computing any Boolean function. The correctness follows from Lemma 4
and the correctness of our G-circuit protocol, and the security follows from the
simulatability of our G-circuit protocol. The proof follows by a straightforward
modification of the proof of Lemma 1 and is omitted.
Corollary 2. If Δ is Q3, the above protocol is a Δ-secure protocol for any
Boolean circuit C, with communication complexity O(|C| ·M(Δ)2 · poly(n)) bits.
Our protocol works quite differently from previous approaches to general secure
multiparty computation that work over a field. The latter can achieve a similar
communication complexity of O(M(Δ)2) bits [20]. Because our protocol only
runs the full VSS sharing protocol at the beginning but not at each intermediate
graph node, its communication complexity is only O(	2 ·poly(n)) group elements
for multiplying two VSSed group elements whereas the complexity of the field-
based protocol of Maurer [19], which is also based on Maurer’s VSS, is O(	3 ·
poly(n)) field elements for multiplying two VSSed field elements where 	 =
M(Δ), i.e. our protocol saves a factor of order Ω(	) (ignoring the dependance
on n) in communication complexity over Maurer’s protocol when applied to
computing the same Boolean circuit C (with Maurer’s protocol over GF (2) and
our protocol over S5).
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Abstract. A (k, l) hash-function combiner for property P is a construc-
tion that, given access to l hash functions, yields a single cryptographic
hash function which has property P as long as at least k out of the l
hash functions have that property. Hash function combiners are used to
hedge against the failure of one or more of the individual components.
One example of the application of hash function combiners are the pre-
vious versions of the TLS and SSL protocols [7,6].

The concatenation combiner which simply concatenates the outputs
of all hash functions is an example of a robust combiner for collision
resistance. However, its output length is, naturally, significantly longer
than each individual hash-function output, while the security bounds are
not necessarily stronger than that of the strongest input hash-function.
In 2006 Boneh and Boyen asked whether a robust black-box combiner
for collision resistance can exist that has an output length which is sig-
nificantly less than that of the concatenation combiner [2]. Regrettably,
this question has since been answered in the negative for fully black-box
constructions (where hash function and adversary access is being treated
as black-box), that is, combiners (in this setting) for collision resistance
roughly need at least the length of the concatenation combiner to be
robust [2,3,11,12].

In this paper we examine weaker notions of collision resistance, namely:
second pre-image resistance and target collision resistance [15] and pre-
image resistance. As a generic brute-force attack against any of these
would take roughly 2n queries to an n-bit hash function, in contrast to
only 2n/2 queries it would take to break collision resistance (due to the
birthday bound), this might indicate that combiners for weaker notions
of collision resistance can exist which have a significantly shorter out-
put than the concatenation combiner (which is, naturally, also robust
for these properties). Regrettably, this is not the case.
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1 Introduction

In theory, hash functions are usually treated as ideal objects, that is, they are
assumed to be random oracles or to hold certain properties such as collision
resistance (it is difficult to find two messages that hash to the same value)
or pre-image resistance (it is difficult, given an image, to find any pre-image).
Assuming that these properties hold, this then allows us to prove protocols or
constructions to be secure when instantiated with such a function. However,
finding functions that provably hold any of the properties usually demanded
of good hash functions is a difficult problem. Consequently, in practice, hash
functions are heuristics that come only with a very limited number of guarantees.
Thus it is not surprising that with time, attacks against practical hash functions
are usually found that drastically lower the bounds assumed in theory. Many
attacks have been presented for MD5 [20,18,16], and also for SHA-1 first attacks
have been published [19,5,1,4]. This, in turn, led NIST to hold a competition to
find a successor to the SHA-1 and SHA-2 families.

Combiners. Hash function combiners can be used to hedge against the failure
of one (or more) of the components. A (k, l)-combiner is a construction that
given access to l primitives implements the same primitive while guaranteeing
that a certain property or multiple properties hold as long as a these are held by
k out of the l input primitives. If the combiner ensures this for some property
then it is said to be robust for that property.

Combiners are usually considered as black-box combiners, that is, the com-
biner only gets black-box access to its input hash functions. This is due to that i)
this allows us the use the combiner with any hash functions; and ii) we are (so far)
ignorant as to properly modeling white-box access. Consider, for example, the
somewhat “pathological” combiner CH1,H2 with two input hash functions which
on input M returns H1(M) if H1 is collision resistant and H2(M) otherwise.
Naturally, this combiner does all we want from a combiner for hash functions,
but we have no idea, of how such a combiner could be implemented. In this
paper, we limit our investigation to black-box combiners and speak henceforth
only of combiner.

For hash functions the classical combiner robust for collision resistance is
the concatenation combiner, i.e., C||(M) = H1(M)||H2(M) is a robust (1, 2)-
combiner for collision resistance as naturally any two messages (M,M ′) that
collide under C|| also collide under both hash functions (i.e., Hb(M) = Hb(M

′)
for b = {1, 2}).

However, when simply concatenating the outputs of several hash functions, the
output length grows significantly, while the security guarantee of the combined
hash function does not necessarily increase. That is, we expect an adversary to
find collisions for a hash function with output length n after roughly 2n/2 queries
to the function (due to the generic birthday attack), a bound which can only
be met by the concatenation combiner if all input functions were “ideal” hash
functions to begin with (for which naturally a combiner would not be needed
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in the first place). Thus, Boneh and Boyen asked whether robust combiners for
collision resistance exist that have a significantly shorter output length than the
concatenation combiner [2]. This question has since been answered negatively
[2,3,11,12].

Weaker Than Collision Resistance. In practice, “full” collision resistance
is not always required, i.e., for many applications a suitable level of security can
be achieved with weaker notions such as second pre-image or target collision
resistance. Here an adversary has to find a collision for a specific message. Think
for example of checksums for programs. If an adversary wants to maliciously
change the program then it has to make sure not to change the checksum in the
process. Thus, the first part of the collision is fixed. Another example of a weaker
property is pre-image resistance where given an image the best strategy for an
adversary of finding a corresponding pre-image should be exhaustive search.
Think password storage, for an application where pre-image resistance yields
sufficient security.

For these variants of collision resistance the concatenation combiner is, nat-
urally, also robust. While the generic birthday attack gives us an estimate of
2n/2 queries an adversary has to perform to find a (random) collision for an
ideal function, an adversary would have to search the entire domain to break
any of the properties second pre-image-, target collision- or pre-image resistance
when considering ideal functions. It is thus interesting to study the question
of finding combiners with short output that are robust for any of these weaker
properties. A promising indication is also that short output combiners exist for
the related (but privately-keyed) properties message authentication codes and
pseudo-randomness. Regrettably, we will show that, as for the collision resis-
tance case, such combiners cannot exist.

Impossibility Results. For our definitions and proofs we closely follow Pietr-
zak’s elegant proof for the collision resistance case [12,10]. We will define com-
biners in the style of [2] as a pair of algorithms (C,P ) where C implements
the combiner logic and P provides a reduction from attacks on the combiner
to attacks on the input functions. To prove the non-existence of a black-box
combiner C with short output we will design an attack oracle B (that we will
call breaking oracle) which breaks the investigated property (e.g., second pre-
image resistance) for the combiner with noticeable probability but which does
not help the security reduction P too much in breaking the property for the
necessary number of input hash functions (2 in the case of a (1, 2)-combiner).
The intuition is, that if the combiner compresses too much, than collisions ap-
pear on the combiner due to the compression and not due to collisions on the
input hash functions. If we can guarantee that the breaking oracle only outputs
such collisions, then the reduction P has to find collisions without the aid of the
breaking oracle. However, if the combiner was indeed robust then the reduction
P must, also with access to this specific breaking oracle, be able to break the
property (e.g., find second pre-images) for all input hash functions (in case of a
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(1, 2)-combiner). Such a reduction P , on the other hand, allows us to compress
a uniformly chosen random function R : {0, 1}w → {0, 1}v to below 2wv bits. As
this violates a corollary of Shannon’s source coding theorem [17] we can argue
that such combiners cannot exist.

The main contribution of our paper is to extend Theorem 1 given by Pietrzak [12]
for the properties second pre-image resistance, target collision resistance and pre-
image resistance. That is, randomized combiners robust for collision resistance,
second pre-image resistance, target collision resistance or pre-image resistance
have to have long output. We give an informal version of our main theorem for
the case of deterministic combiners for two hash functions:

Theorem 1 (informal). For some n,m, v, w ∈ N assume C : {0, 1}m →
{0, 1}n is an efficient black-box-combiner for two hash functions of the form
H : {0, 1}w → {0, 1}v that is robust for collision resistance, second pre-image re-
sistance, target collision resistance or pre-image resistance. Then the combiner’s
output length n is bounded by:

n ≥ 2v −O(ω) (1)

where ω is logarithmic in the number of hash function queries by the combiner.

Note that the bound roughly corresponds to the concatenation combiner’s output
length of 2v. As Canetti et al. showed in [3], it is however possible to chop off
a logarithmic number of bits (logarithmic in the number of oracle calls by the
combiner) of the concatenation combiner while staying robust. As their combiner
achieves the bound given in equation (1) the bound is tight.

Further note that we will prove the result for finite domain hash functions.
However, as this is an impossibility result, proving it for a finite domain actually
makes the result stronger, as every secure hash function that takes arbitrary
length messages also has to be secure when considering the subset of only fixed
length input messages.

Related Work. Combiners for the properties second pre-image resistance and
pre-image resistance with short output length have been studied by Rjasko [14]
who gives an impossibility result for a special case of deterministic combiners
where the reduction can query the breaking oracle only once. As shown in [12]
this simplification allows for a much simpler proof than the general case for
probabilistic combiners where the reduction can query the adversary (or breaking
oracle in our terminology) multiple times.

2 Preliminaries

2.1 Notation

Unless stated otherwise, lower-case letters such as n ∈ N represent natural num-
bers. With 1n we denote the unary representation of n and with 〈n〉b its binary
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representation padded with zeros to length b. Upper-case letters in standard
typeface like M stand for bit strings. We denote with {0, 1}n the set of all bit
strings M of length |M | = n, while {0, 1}∗ denotes the set of all bit strings. For
bit strings X,Y ∈ {0, 1}∗ we denote with X ||Y the concatenation. If X is a set
then by |X | we denote its cardinality. By M ← X we mean that M is chosen
uniformly from X , if X is a distribution then M ← X denotes that M is chosen
accordingly. The logarithm log is always to base 2.

PTM stands for Polynomial time Turing Machine and PPTM for Probabilistic
Polynomial time Turing Machine. Upper-case letters in calligraphy likeA usually
denote a PPTM. We will often simply call them adversary or algorithm and we
write A(M) if M is initially written on the Turing Machine’s input tape (i.e.,
the algorithm runs with input M). By X ← A we denote that X is output by
algorithm A. If the Turing Machine has black-box access to one or more oracles
O1, ...,Oz (these will usually be hash functions), we denote this by adding the
oracles in superscript: AO1,...,Oz .1

By qryOi(AO1,...,Oz(M)) we denote the set of all of A’s queries to oracle Oi

when algorithm A runs on input M .
If X and Z are random variables then Pr[X = y] denotes the probability

that X takes on the value of y. By Pr[X = y|Z] we denote the conditional
probability of X = y given Z. If pre is a predicate or event then Pr[pre]
denotes the probability that the predicate is true (the event occurs)

We write Pr[step1; ...; stepi : condition] which describes a random experiment
and which should be read as: the probability that the condition holds after the
steps were executed in consecutive order.

If A is an event then by ¬A we denote the complementary event, that is,
Pr[¬A] = 1−Pr[A]. By ∧ (resp. ∨) we denote the conjunction (resp. disjunction)
of events: if A and B are events then Pr[A∧B] is the probability that both events
A and B occur and Pr[A ∨B] is the probability that at least one of the events
A or B does occur.

2.2 Hash Functions and Their Properties

Formally hash functions are defined as a family of functions together with a key
generation algorithm HKGen that picks one of the functions to be used. That
is, A hash function (family) is a pair of efficient algorithms H = (HKGen, H)
where HKGen(1n) is a probabilistic algorithm that takes as input the security
parameter 1n and outputs a key K (note that the security parameter is implicit
in K) and H(K,M) := HK(M) is a deterministic algorithm that takes a key K
and message M ∈ {0, 1}∗ as input and outputs a hash value HK(M) ∈ {0, 1}n.
We will drop the subscript and write H(M) if it is clear from context which key
the function gets.

We require different properties from hash functions depending on the applica-
tion. The properties that we are interested in in this paper are collision resistance

1 In this case the Turing Machine has extra oracle tapes (one per oracle). A can write
query X on oracle tape i and gets the oracle’s answer Oi in the next step written on
the tape.
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(CR, it should be difficult to find two messages that hash to the same value),
second pre-image resistance (SPR, it should be difficult given a message to find
a second message that hashes to the same value) its variant target collision re-
sistance2 (TCR) and pre-image resistance (OW, given an image it should be
difficult to find a corresponding pre-image).

In this extended abstract we will give the necessary definitions and proofs for
the case of second pre-image resistance. Please refer to the full version [8] for
the cases target collision resistance and pre-image resistance.

Definition 1 (Second Pre-image Resistance). We call a hash function H =
(HKGen,H) second pre-image resistant (SPR) with respect to distribution M,
if the advantage for every efficient adversary A in the following experiment is
negligible in n:

AdvsprA (n) = Pr

[
K ← HKGen(1n);M ←M(1n);

M ′ ← A(K,M)
:

M �=M ′∧
HK(M) = HK(M ′)

]
≈ 0

The probability is over the selection of K ← HKGen(1n), the choice of M ←M
and A’s internal coin tosses.

2.3 Predicates Capturing Events

In the upcoming proofs and in our definition of a robust combiner we need
to formalize the event that an adversary finds second pre-images. For this we
examine a random experiment AH1,...,Hl where an adversary plays against hash
functionsH1, . . . , Hl. For this, we define predicate spr to be true if and only if the
adversary in the course of the experiment finds a second pre-image. By finding
we mean that the adversary actually performs one query to a hash function
Hi which yields the second pre-image in respect to some target message. The
definitions are closely related to Pietrzak’s definition for collision resistance [12].

Definition 2. The predicate sprHi(Xi)(AH1,...,Hl) is defined for the random ex-
periment AH1,...,Hl and target message Xi and holds if A finds a second pre-
image for Xi for function Hi; that is, in the course of the computation of
AH1,...,Hl an oracle call to Hi is made with messages (Xspr) for which Hi(Xi) =
Hi(Xspr) and Xi �= Xspr. Formally:

sprHi(Xi)(AH1,...,Hl) ⇐⇒
∃Xspr ∈ qryHi(AH1,...,Hl) : Xi = Xspr ∧Hi(Xi) = Hi(Xspr)

For subset H ⊆ {H1, ..., Hl} and target messages X1, ..., Xl we define the predicate
sprHX1,...,Xl

(AH1,...,Hl) to hold if second pre-images are found for all hash functions in
H (for corresponding target message Xi):

sprHX1,...,Xl
(AH1,...,Hl) ⇐⇒ ∀Hi ∈ H : sprHi(Xi)(AH1,...,Hl)

2 Target collision resistant hash functions are often also referred to as universal one-
way hash functions [9].
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For 1 ≤ n ≤ l we define the predicate sprn,X1,...,Xl
(AH1,...,Hl) to hold if a second

pre-image is found for n of the l hash oracles:

sprn,X1,...,Xl
(AH1,...,Hl) ⇐⇒ ∃H ⊆ {H1, ..., Hl}, |H| ≥ n : sprHX1,...,Xl

(AH1,...,Hl)

2.4 Randomized Black-Box Combiners for Cryptographic Hash
Functions

As usual for impossibility results we want to be as general as possible about
the capabilities of the considered combiners. We consider randomized black-box
combiners after Pietrzak [12] in the non-uniform setting. This means that the
combiners get as additional input their randomness R which can be regarded as
some sort of public key. The (k, l) combiner is formalized as a pair of algorithms
(C,P ) where C is a non-uniform circuit implementing the logic of the combiner
and P provides a security reduction. For this C gets access to the l hash functions
H1, . . . , Hl and P gets access to a breaking oracle3 B which can produce second
pre-images with a certain success probability ρ. If security reduction PB,H1,...,Hl

finds second pre-images for l− k+1 of the input hash functions with noticeable
probability (with respect to the breaking oracle’s success rate ρ), we call the
combiner ρ-robust for second pre-image resistance. Thus a combiner is ρ-robust
if and only if such a breaking oracle cannot exist if at least k out of the l input
hash functions hold the property.

Definition 3. A randomized (k, l)-combiner for hash functions H1, ..., Hl of the
forms {0, 1}w → {0, 1}v is a pair of efficient algorithms (C,P ) where C : R ×
{0, 1}m → {0, 1}n is an oracle circuit and P is an oPPTM4 providing the security
reduction for C.

Let 0 ≤ ρ ≤ 1. Oracle Bspr ρ-breaks CH1,...,Hl (for SPR) if it outputs a second
pre-image to input message M ← {0, 1}m for CH1,...,Hl(R,M) with probability
ρ (over the choice of message and randomness). If no second pre-image is found
it outputs ⊥.

The combiner is called ρ-robust for SPR if for some non-negligible 0 < ε ≤ 1
and any choice of functions H1, ..., Hl and for any breaking oracle Bspr that ρ-
breaks CH1,...,Hl, the random experiment PBspr,H1,...,Hl on input (M1, ...,Ml) with
Mi ← {0, 1}m (for i = 1, ..., l) finds second pre-images for l − k + 1 input hash
functions with probability:

Pr[sprl−k+1,M1,...,Ml
(PBspr,H1,...,Hl(M1, ...,Ml))] ≥ ε (2)

The combiner is called robust for SPR if it is efficient and ρ-robust for every
non negligible ρ(v).

Note that the breaking oracle’s success probability ρ can be a function of v ∈ N,
i.e., the hash functions’ output length. Further note, that we could have fixed the
reduction’s success probability ε to a constant value, due to the fact that we are

3 Think of the breaking oracle as the best known adversary against the combiner.
4 See [12] for how to treat non-uniform reductions.
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considering randomized combiners. Given some combiner (C,P ) that satisfies
equation (2) for some non-negligible ε, we can easily construct a new combiner
C,P ∗ that satisfies equation (2) with probability ε∗ > ε by simply repeatedly
calling P with renewed random coins. We will later fix ε to 2/3 (an arbitrary
choice) to simplify notation.

Definition 4 (Efficiency). Let qC be the number of oracle queries performed
by C and qP an upper bound for the number of oracle calls made by P , then the
combiner (C,P ) is called efficient if both qP and qC are polynomial in v.

Remark 1 (On efficiency definition). Note that it is sufficient to only count suc-
cessful calls to the breaking oracle, that is, we do not need to count queries to B
where the answer is ⊥. By not counting unsuccessful calls to the breaking oracle
we actually make the impossibility result stronger as even then, as we will see
the reduction P will have to make exponentially many calls to the hash function
oracle to succeed. This can be done as, unsuccessful even the successful queries
to B will not help P (too much) in its task and unsuccessful queries cannot be
used by P to hide hash function calls.

Further note that throughout this paper we assume that qC , q
H
P and qBP are at

least one. This can be safely assumed as the contrary would be rather uninterest-
ing: consider for example a combiner which does not use its hash functions. It is
trivially non-robust as collisions for the combiner cannot be reduced to collisions
on any of the input functions.

3 Robust Combiners Have Long Output

In this section we will give the formal definition of Theorem 1 together with its
proof for the case of second pre-image resistance. Please refer to the full version
of this extended abstract [8] for the necessary adaptations for the cases of target
collision resistance and pre-image resistance:

Theorem 2. For some n,m, v, w ∈ N assume (C,P ) is an efficient (k, l)-black-
box-combiner for hash functions of the form {0, 1}w → {0, 1}v. Let C : R ×
{0, 1}m → {0, 1}n be robust for collision resistance, second pre-image resistance,
target collision resistance or pre-image resistance. Then the combiner’s output
length n is bounded by:

n ≥ (l − k + 1)v −O(log qC) (3)

where qC is the number of hash function queries performed by C.

3.1 Additional Definitions

For the upcoming proof of our main theorem we need a notion of second pre-
images that are safe for the combiner. “Safe for the combiner” means that the
evaluation of the message pair (M,M ′) on a specific combiner C does not yield
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a trivial second pre-image for hash function H and target message X .Trivial in
the sense that during the evaluation combiner C on messagesM andM ′ queries
hash function H on a message Xspr for which X �= Xspr and H(X) = H(Xspr):

Definition 5 (Safe Second Pre-Image). Let H : {0, 1}w → {0, 1}v be a hash
function and C : {0, 1}m → {0, 1}n some oPPTM. Let Xtarget ∈ {0, 1}w. We
say that the message Mspr ∈ {0, 1}m is a safe second pre-image with respect to
message M ∈ {0, 1}m and function H (with respect to CH and Xtarget) if

1. CH(M) = CH(Mspr) (but not necessarily M �= Mspr, that is, (M,Mspr)
may be a pseudocollision)

2. the evaluation of CH(·) on inputs M and Mspr does not involve a call to
H(X) with X �= Xtarget and H(X) = H(Xtarget):

∀X ∈ qryH(CH(M)) ∪ qryH(CH(Mspr)) : X = Xtarget ∨H(X) �= H(Xtarget)

We define the predicate safeSprC
H

H,X(M,Mspr) iff (M,Mspr) is a safe second
pre-image for hash function H and target message X.

For k ∈ N we denote with safeSprC
H1,...,Hl

k,X1,...,Xl
(M,Mspr) that (M,Mspr) is a

safe second pre-image for messages X1, .., Xl for k out of C’s l oracles Hi (i =
1, ..., l). Here Xi is the target message for function Hi (i = 1, ..., l).

Compressibility. The main idea in the upcoming proof is to show that if a
robust combiner with short output exists then we can compress a uniformly
random function H : {0, 1}w → {0, 1}v below 2wv bits. This, however, is not
possible due to a result proved by Shannon (which we will present in Proposi-
tion 2) and hence such a combiner cannot exist. To express this we need a notion
of compressibility:

Definition 6 (Compressibility)
A random variable H can be compressed to s bits, if two functions com and
dec (for compression, resp. decompression) exist such that on average the size
of com(H̃) (where H̃ is an instantiation of the random variable) is less or equal
to s bits and that the probability of dec(com(H̃)) is exactly 1; that is dec(·) is
always able to completely restore H̃:

E[|com(H̃)|] ≤ s and Pr[dec(com(H̃)) = H̃] = 1

3.2 Proof of Theorem 2

We will now present the proof of our main theorem for the case of second-
preimage resistance. Our argument follows Pietrzak’s in [12,10] where he proves
the theorem for collision resistance. We are going to prove Theorem 2 indirectly
by proving a proposition which informally says that if the output length of a
combiner (C,P ) is short, then it cannot be efficient, as P will have to make
exponentially many queries to its hash oracle for (C,P ) to be robust:
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Proposition 1. For some n,m,w, v, l, k ∈ N Let C : R× {0, 1}m → {0, 1}n be
an oracle circuit with input domain m := l ·(v+1), with qC oracle gates for every
hash function Hi : {0, 1}w → {0, 1}v (for i = 1, ..., l) and with output range

n := (l − k + 1) · (v − log qC)− t (t > 0) (4)

Let ρ := (1 − 2−t+l+2)/
(
l
k

)
. If (C,P ) is a ρ-robust (for SPR, TCR or OW)

(k, l)-combiner where reduction P has success probability at least 2/3, making
qBP queries to the breaking oracle and qHP queries to its hash functions then

v ≤ log qHP + 2 + log l (5)

or equivalently

2v ≤ qHP · 4 · l (6)

Before we prove the proposition, let us show how it implies Theorem 2:

Proof (of Theorem 2). Proposition 1 states that if a (k, l) combiner (C,P ) is
ρ-robust with ρ = (1−2−t+l+2)/

(
l
k

)
and the combiner has domainm := l ·(v+1)

and range n := (l − k + 1) · (v − log qC) − t for some t > 0, then it needs to
make exponentially many calls to its oracles as qHP ≥ 2v−2−l. That is, P is not

efficient. As every robust combiner is also ρ-robust for ρ = (1 − 2−t+l+2)/
(
l
k

)
this proves Theorem 2 for the special case where the combiner is shrinking by
m − n = l · (v + 1) − (l − k + 1) · (v − log qC) + t as the combiner is either
not efficient or not robust. However, as a combiner for arbitrary length hash
functions necessarily has to work for fixed length functions as well the result
presented here directly applies for arbitrary and infinite domain combiners. ��

3.3 An Outline

To prove Proposition 1 we have to find oracles H1, . . . , Hl and B such that the
breaking oracle B finds second pre-images for combiner CH1,...,Hl : {0, 1}m →
{0, 1}n with range n < (l−k+1)v−O(log qC) while k out of the l hash functions
stay second pre-image resistant in relation to PB,H1,...,Hl ; that is, PB,H1,...,Hl is
not able to find second pre-images for more than l − k + 1 hash functions even
with access to the powerful breaking oracle B.

For this we are going to use hash functions chosen uniformly at random from
the space of all functions of the form {0, 1}w → {0, 1}v. For the breaking oracle
B we are going to carefully design a function which outputs only safe second
pre-images (cf. Definition 5) with respect to the target messages X1, . . . , Xl ∈
{0, 1}w (denoted by BX1,...,Xl) given to the security reduction P ; that is, P
cannot simply use the breaking oracle to get all the necessary second pre-images.

After proving that such a breaking oracle initialized to message X1, . . . , Xl ∈
{0, 1}w does indeed break the security of any (k, l)-combiner with high prob-
ability it remains to prove that the reduction PB,H1,...,Hl with access to our
breaking oracle and the (uniformly random) hash functions makes a poor job in
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finding second pre-images. For this we will use a corollary from Claude E. Shan-
non’s source coding theorem (see any good introduction to information theory
or Shannon’s original [17]):

Proposition 2. A uniformly random function H : {0, 1}w → {0, 1}v (with
prefix-free domain5) cannot be compressed to less than 2wv bits.

What we will show is that if PB,H1,...,Hl is able to find enough (i.e., more than
l− k) second pre-images for H1, . . . , Hl with noticeable probability, then we are
able to compress H1, . . . , Hl to less than l2wv bits. That is, we are going to
design a custom compression (com) and decompression (dec) algorithm that
given H1, . . . , Hl, P and B uses P to compress the hash functions H1, . . . , Hl.
As these are uniformly random, this forms a contradiction to Proposition 2 and
hence such a P cannot exist. What is left to show is that in our case com and
dec can initialize the breaking oracle with the target messages given to P before
P is given access to the breaking oracle (remember that our breaking oracle
BX1,...,Xl outputs only second pre-images that are safe for the specific messages
X1, . . . , Xl). We will see that this is in fact the case and that thus B will not be
of too much use for P .

3.4 The Proof

The Oracles. To prove Proposition 1 we begin by defining the l + 1 oracles
H1, ..., Hl and B. The hash functions Hi (i = 1, ..., l) are each sampled uniformly
at random from the set of all functions of the form {0, 1}w → {0, 1}v. The
breaking oracle B will be defined by a function φ : {0, 1}∗ → {0, 1}m which is also
sampled uniformly at random from all functions of the form {0, 1}∗ → {0, 1}m.
Function φ defines for a messageM ∈ {0, 1}m and randomness R ∈ R a pseudo-
second pre-imageMspr for CH1,...,Hl(R,M) as Mspr := φ(R||〈i〉), where i is the
smallest integer such that CH1,...,Hl(R,M) = CH1,...,Hl(R,Mspr).

Our goal is to make sure that the breaking oracle outputs only safe second
pre-images (with respect to some target messages X1, . . . , Xl) where by safe we
mean that the oracle’s output second pre-images should be safe for k out of

the l hash functions (i.e., safeSprC
H1,...Hl

k,X1,...,Xl
(M,Mspr), compare Definition 5).

Furthermore, each second pre-image output by B has to be safe for exactly the
same k hash functions.

Let us assume that BX1,...,Xl was initialized with target messages X1, ..., Xl.
As abbreviation we will simply write B when we mean a breaking oracle that
was initialized with fixed but random target messages. We now introduce sets
Si (for i = 1, ..., l) that comprise all safe message, randomness pairs for hash
function Hi. If Mspr is defined through φ as described above then we can define
sets Si as:

Si := {(R,M) ∈ R× {0, 1}m : safeSpr
CH1,...,Hl

Hi,Xi
(M,Mspr)} for i ∈ {1, ..., l}

5 Note that all functions {0, 1}w → {0, 1}v have a prefix-free domain and range, as all
elements in either set have the same length.
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We now define the intersection of k out of the l sets Si such as to maximize the
number of elements in the intersection. Let therefor

Γmax := argmax
Γ⊆{1,...,l}

|Γ |=k

∣∣∣∣∣⋂
i∈Γ
Si

∣∣∣∣∣ .

With Γmax we can define the maximal intersection

RΓ :=
⋂

i∈Γmax

Si

which allows us to formalize the breaking oracle B as:

BX1,...,Xl(R,M) :=

{
Mspr if (R,M) ∈ RΓ

⊥ otherwise

Thus, on input (R,M) our breaking oracle BX1,...,Xl will output a second pre-
imageMspr such that CH1,...,Hl(R,M) = CH1,...,Hl(R,Mspr) only if it is safe for
at least k of the l hash functions in regard to the target messages X1, ..., Xl. Also
note that two second pre-images for inputs (R,M) and (R′,M ′) will be safe for
(at least) the same k hash functions.

The Breaking Oracle B is ρ-Robust for All (k, l)-Combiners. We will
now show that our breaking oracle ρ-breaks every (k, l)-combiner with some
noticeable ρ. Note that, by definition, the breaking oracle ρ-breaks CH1,...,Hl

with

ρ =
|RΓ |

|R| · 2m

This we will prove using the following lemma stating informally that sampled
second pre-images will be safe for at least k out of l hash functions for (k, l)-
combiners most of the time.6 (See the full version [8] for a proof for Lemma 1.).

Lemma 1. Let C : {0, 1}m → {0, 1}n be any oracle machine with qC or-
acle gates per hash function Hi : {0, 1}w → {0, 1}v (with i = 1, .., l). Let
X1, ..., Xl ∈ {0, 1}w be target messages for functions H1, ..., Hl. For messages
M,Mspr sampled as M ← {0, 1}m and Mspr ← (CH1,...,Hl)−1(M) we have:

Pr[safeSpr
CH1,...,Hl (·)
k,X1,...,Xl

(M,Mspr)] ≥ 1− ql−k+1
C ·

(
l

l − k + 1

)
· 2n−(v+1)(l−k+1)

6 Note that this lemma is essentially the only place where we need that the combiner’s
output length is significantly less than that of the concatenation combiner, n =
(l − k + 1)(v − log(qC)− t (see equation(4)).
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From Lemma 1 we will now deduce a lower bound for ρ. Let IR,M := 1 if (R,M)
is safe for at least k of the l hash functions Hi and IR,M = 0 otherwise. Formally:

IR,M :=

{
1 if safeSpr

CH1,...,Hl (R,·)
k,X1,...,Xl

(M,Mspr)

0 otherwise

Lemma 1 gives us a lower bound on the probability for event IR,M = 1 as our
breaking oracle samples random second pre-images. Using an upper bound of 2l

on the binomial coefficient we have that

Pr[IR,M = 1] ≥ 1− ql−k+1
C · 2n−(v+1)(l−k+1)+l

Now with n := (l − k + 1) · (v − log qC)− t (see equation 4) we get

Pr[IR,M = 1] ≥ 1− ql−k+1
C · 2n−(v+1)(l−k+1)+l

≥ 1− ql−k+1
C · 2(l−k+1)·(v−log qC)−t−(v+1)(l−k+1)+l

= 1− ql−k+1
C · 2log q

−(l−k+1)
C · 2−(l−k+1) · 2−t+l

≥ 1− 2−t+l

Remember that, by definition, the breaking oracle B has an inherent set RΓ

and only outputs second pre-images if the input (R,M) is an element of RΓ .
With Γ we have fixed the set of k hash functions Hi (i ∈ Γmax) such that RΓ is
maximized. The indicator IR,M equals 1, if we have a safe second pre-image for
k hash functions but not necessarily for the k hash functions specified by Γmax.
We can however safely assume that ρ is greater than the probability of a safe
second pre-image (Pr[IR,M = 1]) divided by the possibilities of choosing k out
of l elements (as Γmax) was designed to maximize this probability). Thus, with
the expectation value for event IR,M (note that E[IR,M ] = Pr[IR,M = 1]) we

can lowerbound ρ ≥ E[IR,M ]/
(
l
k

)
.

Setting ẽ := 1−E[IR,M ] and applying the reverse Markov inequality, we have
that:

Pr[E[IR,M ] < 1− γ2−t+l] = Pr[ẽ ≥ γ2−t+l]

≤ 1− E[IR,M ]

1− 1 + γ2−t+l

≤ 1− 1 + 2−t+l

1− 1 + γ2−t+l
=

1

γ

Setting γ := 4 yields: Pr[E[IR,M ] < 1 − 2−t+l+2] ≤ 1
4 . Using the estimate

ρ ≥ E[IR,M ]/
(
l
k

)
we thus have:

Pr

[
ρ < (1− 2−t+l+2)/

(
l

k

)]
≤ Pr

[
E[IR,M ]/

(
l

k

)
< (1− 2−t+l+2)/

(
l

k

)]
≤ 1

4
(7)

We proved that with probability of at least 0.75, our breaking oracle ρ-breaks a
(k, l)-combiner with ρ = (1− 2−t+l+2)/

(
l
k

)
.
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3.5 B Does Not Help P

We will now present the lemma that allows us to prove Proposition 1. Informally
this lemma states that if the range of the combiner is as in the proposition
and the reduction PB,H1,...,Hl finds second pre-images with some probability
then we can use this to compress the combined function table of hash functions
H1, ..., Hl below l2

wv bits. This can then be used to prove Proposition 1 as the
Hi (i = 1, ..., l) were chosen uniformly at random and therefore, by Proposition 2,
cannot be compressed below l2wv bits.

Lemma 2. Let (C,P) be as in Proposition 1 with

v > log qHP + log l + 2 (8)

Also let for any set of target messages X1, ..., Xl ∈ {0, 1}w

Pr[sprl−k+1,X1,...,Xl
(PBX1,...,Xl ,H1,...,Hl(X1, ..., Xl))] ≥ 0.5 (9)

Then H1, ..., Hl can be compressed below l2wv bits.

Let us show how we can now prove our main proposition, Proposition 1:

Proof (of Proposition 1). Let Δ denote the event that B ρ-breaks CH with
ρ ≥ (1−2−t+3)/

(
l
k

)
(note that Pr[Δ] ≥ 0.75). With equation (7) and the bound

on P from the definition of robust second-pre-image combiners (see Proposition 1
and the discussion following Definition 3), we can derive the following bound for
any collection X l of input messages:

∀X l ∈
l times︷ ︸︸ ︷

{0, 1}w × ...× {0, 1}w :

Pr[sprl−k+1,Xl(PB,H1,...,Hl(X l))] = Pr[Δ] · Pr[sprl−k+1,Xl(PB,H1,...,Hl(X l))|Δ]

≥ 3

4
· 2
3
= 0.5

Assume the H1, ..., Hl are uniformly random, then by Lemma 2 the combined
function table for H1, ..., Hl can be compressed below l2wv bits. This contradicts
Proposition 2 and hence equation (8) must be wrong. Thus:

v ≤ log qHP + 2 + log l

which concludes the proof. ��

Compressing H1, ...,Hl with Second Pre-images by PB,H1,...,Hl

We will here only present a proof sketch for Lemma 2 (please refer to the full
version [8] for a detailed proof).

Let us first take a closer look at the second pre-images sampled by the breaking
oracle. By definition B(R,M) will only output a (pseudo) second pre-image if
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it is a safe one. Let’s assume that PB,H1,...,Hl was given the target messages
X1, ..., Xl and that the breaking oracle BX1,...,Xl was initialized with exactly
these. For now think of P as being a fair player who honestly is telling B its
target values (we will later see why this can be assumed).

The breaking oracle BX1,...,Xl now only outputs safe second pre-images that

are safe for k of the l hash functions. For the reduction PBXl
,Hl

(for notational

simplicity we write PBXl
,Hl

instead of PBX1,...,Xl ,H1,...,Hl) to be successful it
has for its input (X1, ..., Xl) to find second pre-images for l − k + 1 of the l
hash functions where Xi is the first part of the collision for hash function Hi

(i = 1, ..., l). This, however, directly implies that if PBXl
,Hl

(X1, ..., Xl) succeeds
and outputs l − k + 1 second-pre-images then at least for one of the l − k + 1
hash functions the second pre-image was not generated by the breaking oracle
directly.

Let s denote the index of the hash function Hs (s ∈ {1, ..., l}) for which the

second pre-image output by PBXl
,Hl

was not trivially created via the breaking

oracle BXl

. Let Xs
spr be the second pre-image for hash function Hs for message

Xs, i.e., Hs(Xs) = Hs(Xspr) and Xs �= Xspr. What we now know is that the
oracle query Hs(X

s
spr) which resulted in this second pre-image is made by P

directly and not by the breaking oracle BXl

. Hence, Xs
spr is not present in any

of the queries to Hs resulting from calls to the the breaking oracle. Let us by

qryHi

BXl (R,M)
= qryHi(CHl

(R,M)) ∪ qryHi(CHl

(R,MB
spr)) (10)

denote all the queries to hash function Hi that occur in the evaluation of a BXl

query on input (R,M), i.e. the queries resulting from evaluating the combiner

CHl

(·) with input (R,M) (the request to the breaking oracle) and (R,MB
spr) (the

oracle’s answer). Then we can rephrase the above statement about the second

pre-image Xs
spr found by PBXl

,Hl

for hash function Hs:

Xs
spr /∈ qryHs

BXl (MB)
∀ MB ∈ qryB(PBXl

,Hl

(M)) (11)

This could again be rephrased as: PBXl
,Hl

(M1, ...,Ml) cannot find trivial second-

pre-images for all l− k+1 hash functions; PBXl
,Hl

cannot simply let BXl

do all
the work.

Now how does this help in compressing the function table of H1, . . . , Hl? The
idea is to design a compression algorithm com together with a corresponding
decompression algorithm dec. Both algorithms com and dec share a common,
combined target message Xτ = (X1, ..., Xl) with (Xi ∈ {0, 1}w for i = 1, ..., l).
The algorithms make use of the security reduction P and provide P with the
input Xτ and the oracles that P expects: a breaking oracle B and hash functions
H1, . . . , Hl.

If P succeeds in generating a second-preimage Xspr, the compression algo-
rithm com reduces the combined function table of H1, . . . , Hl by Xτ . It further
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removes all the calls from P and B to any of the hash functions Hi (note that
as com provided P and B with the hash functions it can easily track all those
queries). The compression algorithm com then prepends the reduced function
table with the hash values that P and B request during the execution of P . The
new function table now contains one hash value less (the one from the second
pre-image for one of the target messages in Xτ ) than the original function table
and we have thus compressed the function table by v bits. For decompression
we can simply again simulate P (with the same random coins) and if we can
identify the query with the second pre-image we can reconstruct the function
table.

The difficulty will be to identify the call Xs
spr from P to hash function Hs

which yields the second pre-image as it may not be P ’s last call. As we have
said, com and dec can track which query goes to which hash function. Thus if
we store the index of the call to Hs which yielded the second pre-image relative
to the number of calls made by P (we know that this is bound by qP , compare
Definition 4).

Finally we have to make sure that the breaking oracle B given to P is ini-
tialized with the correct messages (X1, . . . , Xl) = Xτ . Again, as com and dec
provide the breaking oracle to P they can simply initialize the breaking oracle
before “handing it over”. ♦
With this we have completed the proof of Theorem 2 for the case of second pre-
images. We refer to the full version of this extended abstract [8] for the omitted
proofs as well as for the analyses for the properties target collision resistance
and pre-image resistance.

4 Conclusion and Outlook

We have given a strong indication that combiners with short output robust for
second pre-image resistance, target collision resistance or pre-image resistance
do not exist. By this, we have extended Pietrzak’s Theorem where he gave the
result for the case of plain collision resistance [12]. Note that our work, as well
as Pietrzak’s only applies to fully black-box reductions in the terminology of
Reingold et al. [13]. One possibility of bypassing such an impossibility result, is
to consider white-box access to the hash functions (resp. the breaking oracle).
A different approach would be to consider combiners only for a specific class of
hash functions (e.g., efficiently implementable functions) instead of combiners
that need to be robust for any choice of functions. Ideally, this class of hash
functions should contain functions used in practice, such as the SHA familiy.
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Abstract. Perfectly secure message transmission (PSMT) schemes have
been studied in the field of cryptography for nearly 20 years.

In this paper we introduce a new aspect to PSMT. We consider the
case when the hardware/software used by the receiver might be corrupted
by the adversary. To address this, we replace the receiver by a human
(the dual of this is when the sender is a human). Because of this, any
proposed protocols should be computationally efficient for a human to
carry out. Additionally, they should be as simple as possible, requiring
minimal amount of thought and effort for someone to use them correctly.

Taking the above into consideration, we propose two different con-
structions of such protocols. These have been designed to be secure and
to be usable - so as to be easy and accurate when human parties use
them.

Experiments were carried out with human participants to evaluate
what humans can compute.

Keywords: PSMT, Secret Sharing, Information Theoretic Security, Pri-
vacy, Combinatorics.

1 Introduction

Perfectly secure message transmission (PSMT) schemes were introduced in [13].
In such protocols, a sender is connected to a receiver over an underlying net-
work through a number of node disjoint network paths, otherwise known as
wires. Since their introduction, PSMT protocols have been the focus of much re-
search [7,11,15,20] where protocols have been made more efficient with regards
to computational and communication complexity [9,21,26]. Protocols have also
been considered in various network models [12,14,19] and different adversary
models have been considered [24,29].

Nearly all of these protocols consider the sender and receiver of a commu-
nication to be a Turing machine capable of complex mathematical operations
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such as Lagrange interpolation for the reconstruction of shared secrets [27], Reed
Solomon error correction techniques [5] amongst others.

But what if one of these two parties is not capable of such operations? What
if the receiver of the communication is a human who cannot execute such com-
putationally intensive and hard (for humans) operations? This could arise when
a computational device is not available or indeed cannot be trusted.

A computational device may not be trusted when perhaps it is infected with
some form of malware. As seen in [4], when computer systems were infected by
malware, key facilities had to be taken offline to prevent any problems that could
arise from this. When such a situation arises, it is important that operations of
a plant still continue. To allow for this, it is important that human operatives
continue with key required operations in a correct and precise manner. Alterna-
tively, computational devices may not be trusted as a result of malfunctions.

Another motivation behind this aspect of PSMT could also be electronic code
voting. Code voting was proposed by Chaum in [6] and in such a voting scheme
each voter receives a unique PIN per candidate by postal mail. By making the
PINs, considered over all different voters and all different candidates, unique,
the PIN can be used to vote. To vote, the voter just enters the PIN received
corresponding to the candidate of his/her choice. The breakthrough of Chaum’s
approach is that one can use a possibly hacked computer to perform a secure
operation. Furthermore, it has been shown to be user friendly [3]. But what if
contrary to Chaum’s assumptions the postal mail cannot be trusted? If that is
the case, adversarial collaborations can violate key election properties such as
identifying a voter’s vote, ballot stuffing, amongst others. In such a case, to make
electronic code voting secure, human voters would have to receive shares of their
voting codes from a number of possibly corrupt (by malware) computational
devices. Reconstruction of the voting codes in such a scenario would have to be
carried out by the human voters themselves as their devices are not necessarily
trusted. For this to occur correctly, schemes used would have be simple and easy
enough for humans to carry out the required computations with a very high
percentage of accuracy.

Taking the above into consideration, we propose two different constructions
of such protocols. These have been designed to be secure and usable - so as to
be easy and accurate when human parties use them. One of these constructions
is based on mod10 arithmetic whilst the other is based on using permutations
to perform such modulo addition.

We base our constructions on experiments with human participants.

2 Background and Preliminary Results

2.1 Adversary Model and Security Definition

We now give a general outline of the security model which will be considered
throughout the text.

The adversary is assumed to be present in the underlying network which con-
nects the sender and the receiver of amessage transmissionprotocol.The adversary
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is assumed to know the complete protocol specification, message spaceM and the
complete structure of the network graph. Throughout the text, a static t-threshold
bounded, computationally unlimited adversary will be considered. Both passive
and active adversaries will be considered. The adversary is assumed to be able to
corrupt up to t number of nodes of the underlying network connecting the sender
and receiver and thus the adversary is capable of corrupting up to t node disjoint
paths (otherwise known as wires) which connect the sender and receiver.

Throughout the text we want to achieve perfect security, i.e. information
theoretic security. We want the communication between a sender and a receiver
to be achieved with probability 1. The message a receiver accepts is denoted
by MR and should always be the same value as the message transmitted by a
sender, denoted by MS .

2.2 Secret Sharing Friendly to Humans

In this section we describe the secret sharing scheme that will be used in two of
the protocols to be presented.

An n-out-of-n secret sharing scheme allows for a secret message M to be
distributed as a selection of n number of shares {s1, . . . , sn} so that the following
properties are achieved:

– From the collection of n shares one is able to reconstruct M .
– Any subset of (n− 1) or less shares reveals no information about M .

Various secret sharing schemes exist in the literature such as those presented
in [18,27]. These schemes though require computation which is difficult for a
human receiver (as we consider in this text) to carry out. Any secret sharing
schemes that will be used should thus be easy for humans to use. In Section 3,
secret sharing mod10 will be the only computation that will be used. We now
describe this scheme.

In secret sharing mod10, when a secret (quantified by a number composed
of a number of digits) is shared to a number of shares (each of which is also a
number of equal length to the secret), the sum of all respective digits from all
shares mod10 will be equal to the respective digit of the original shared secret.

Human friendly secret sharing mod10 can be explained by the following:

∀i ∈ {1, . . . , k} : Di(s) =
n∑

j=1

Di(sj) mod 10

Where s denotes the secret, sj denotes one of the n shares (1 ≤ j ≤ n), k denotes
the length in digits of the secret s (and subsequently the length in digits of all
shares both of which are elements of (Z10)

k), and Di denotes digit i (1 ≤ i ≤ k)
of the secret or share (D2 would thus identify the second digit of the secret or
share). The above can be read as “For every i, the sum of digit i over all shares,
mod10, results in the same value as digit i of the secret”.

It is easy to see that the described scheme is a secret sharing scheme. With-
out knowing all n shares one cannot reconstruct a shared secret. Additionally,
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knowledge of a lower number of shares (than what are required to reconstruct
a secret) does not reveal any information of the shared secret. This is due to
Shannon’s proof of the one time pad [28]. Because of this, all messages in M are
possible when less than n shares are known. This is equivalent to information
theoretic secrecy as defined in [28]. Reconstruction of a secret can be carried out
in a simple to use manner - as described in Appendix A.

2.3 Set Systems

In this section we overview set systems which are the key combinatorial struc-
tures used in the construction of PSMT protocols with a human receiver to be
presented in Section 3.

In [10], Desmedt-Kurosawa defined the following:

Definition 1 ([25]). A set system is a pair (X,B), where X � {1, 2, . . . , n}
and B is a collection of blocks Bi ⊂ X with i = 1, 2, . . . , b.

In the above definition the symbol � means “is equal to by definition”.

Definition 2 ([10]). We label (X,B) as an (n, b, t)-verifiers set system if:

1. |X | = n,
2. |Bi| = t+ 1 for i = 1, 2, . . . , b, and
3. For any subset F ⊂ X with |F | ≤ t, ∃ Bi ∈ B such that F ∩Bi = ∅.

We generalize the definition of (n, b, t)-verifiers set systems as follows:

Definition 3. We say that (X,B) is a generalized (n, b, t′, t)-verifiers set system
if the following conditions are satisfied:

1. |X | = n,
2. |Bi| = t′ + 1 for i = 1, 2, . . . , b, and
3. For any subset F ⊂ X with |F | ≤ t, ∃ Bi ∈ B such that F ∩Bi = ∅.

The definitions of both verifiers set systems and generalized verifiers set systems
ensure the key property that for a set of blocks (each block of size (t + 1) or
(t′ + 1) respectively), at least one block does not contain any elements of any
(at most) t sized subset of elements.

The generalized (n, b, t′, t)-verifiers set system will be important in the con-
struction of our PSMT protocols with a human receiver. We will assume X
represents the set of wires connecting the sender to the human receiver and
B will be different subsets of these wires. As the adversary is t-bounded, this
ensures that at least one block will be free from any adversary presence.

Generalized Verifier Set Systems and Covering Designs. We now explain
the connection between generalized verifier set systems and covering designs.

Definition 4. A collection C of k-subsets of {1, . . . , n} called blocks is an (n, k, t)-
cover design if every t-subset of {1, . . . , n} is contained in at least one block.



544 S. Erotokritou and Y. Desmedt

The definitions of generalized verifier set systems and covering designs identify
them to essentially be equivalent by taking complements. In other words, one can
use cover designs to construct generalized verifier set systems (and vice versa).
The following lemma from [10] shows this - the proof of which is clear.

Lemma 1. (X,B) is a (v, b, t)-verifiers set system if and only if the set system
(X,Bc) is a (v, v − t− 1, t)-covering, where Bc � {X\Bi | Bi ∈ B}.

Corollary 1. Similarly, (X,B) is a generalized (n, b, t′, t)-verifiers set system
if and only if the set system (X,Bc) is a (v, v − t′ − 1, t)-covering, where Bc �
{X\Bi | Bi ∈ B}.

Constructing Set Systems. We now describe the simplest construction of a
generalized verifier sets which will be used as a reference for protocols to be pre-
sented in Section 3. We will refer to this construction as “Disjoint Set System”.
Further constructions result from the extensive work in covering designs such as
those of [1,2,16,17,23,25] amongst others.

Lemma 2. When n = b× (t′+1) and b ≥ t+1, a generalized (n, b, t′, t)-verifier
set system (X,B) can be constructed when each block is disjoint to all others.

Proof. From [23, p. 221], as B is composed of (t+1) disjoint (t′+1)-sized blocks,
it is easy to see that a t-threshold bounded adversary can be present in at most
t blocks - satisfying the properties of generalized verifier sets. �

Similarly, the following is a construction for an (n, b, t)-verifiers set system.

Lemma 3. When n = b× (t+ 1) and b = t+ 1, an (n, b, t)-verifiers set system
(X,B) can be constructed when each block is disjoint to all others.

The proof of this is similar to that of Lemma 2.
We refer to verifiers and generalized verifier set systems constructed as in

Lemma 2 and Lemma 3 as Disjoint Set Systems.

2.4 t + 1-out-of-n Human Friendly Secret Sharing

A link between covering designs (and due to Lemma 1 verifiers set systems) and
secret sharing was made in [25] (see also [22] for a special case). We now briefly
survey this link.

Assume (X,B) is an (n, b, t)-verifiers set system. We now explain how to use
it as a t + 1-out-of-n secret sharing scheme. First, we let X = P , the set of
participants. LetM be the secret. We first use a b-out-of-b secret sharing scheme
as explained in Section 2.2. This provides us with shares si (1 ≤ i ≤ b). For each
i (1 ≤ i ≤ b) we give share si to the participants that belong to block Bi.

As any t+1 parties are present in all b blocks, they can reconstruct the secret
by pooling together the shares they received.

In essence, we prove the above claim formally in the proof of Theorem 1.
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Generalization of Secret Sharing Scheme. The secret sharing scheme pre-
sented in this section can be generalized using an Abelian group. It should be
noted that a quasigroup suffices. Care though is needed when using a quasigroup
to take into account the potential lack of associativity and commutativity.

In such a case, the sharing of a secret from the group will be explained by the
following:

∀i ∈ {1, . . . , k} : Di(s) =

n∑
j=1

Di(sj) mod |A|

For the above, the definitions of s, sj , n, k and Di are similar to those of when
human friendly secret sharing mod10 was explained in Section 2.2.

When A = {0, 1}, the generalization of the secret sharing scheme describes
XOR-sharing. In this paper, we assume the case of when A = {0, . . . , 9} as it
has the favorable property of being easy to evaluate when used by humans.

3 Mod 10 Human PSMT Protocols against Active
Adversary

In this section we present two human PSMT protocols based on mod10 arith-
metic. We consider an active adversary and present a one phase (non-interactive)
and two phase (interactive) protocol. We denote with n the number of wires used
to connect the sender and the receiver.

3.1 One-Phase Mod 10 PSMT with a Human Receiver

In the one phase protocol the human receiver cannot communicate with the
sender. Transmission of data only occurs from the sender to the receiver. The
protocol we present is based on the concept of generalized (n, b, t′, t)-verifier set
systems and mod10 arithmetic (see Section 2.4). As shown in [13] one phase
PSMT can only occur when n ≥ 3t + 1 wires are used. We assume that wires
connecting the sender and the receiver correspond to points in a generalized
(n, b, 2t+ 1, t)-verifier set system to be used.

The main idea of the protocol is as follows. The secret message will be secret
shared in a similar manner as described in Section 2.4 - but instead a b-out-of-b
secret sharing scheme will be used (where b denotes the number of blocks to be
be used). Each shares will then be transmitted over a block of wires with each
share transmitted over one block only. Each block will be of size at least (2t+1)
so a majority can always be received correctly by the receiver. By sending shares
over blocks of wires which chosen so that the adversary is not present in at least
one of these blocks, the correctness of the protocol will be achieved.

The protocol is formally presented as follows - denoting with MS the secret
of the communication.

Protocol 1. One-Phase Transmission Protocol with a Human.
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Protocol Setup. Selection of b number of blocks B1, . . . , Bb of size |Bi| ≥ 2t+1
and which satisfy the key property that for any (at most) t sized subset F
of elements, there exists at least one block Bi such that Bi ∩ F = ∅.

Phase 1. The sender generates secret shares of MS using a b-out-of-b secret
sharing scheme as outlined in Section 2.4 and sends share si (1 ≤ i ≤ b) over
all wires which correspond to points for block Bi.

End of Phase 1. The receiver obtains the secret messageMS by using all cor-
rect shares and using the reconstruction process outlined in Section 2.4. By
summing the digits over all correct shares mod10 the receiver will recon-
struct the secret. The receiver identifies correct shares using a majority vote
- correct shares are received at least (t+ 1) times.

Theorem 1. The One-Phase mod10 Transmission Protocol with a human re-
ceiver is a PSMT protocol.

Proof. The protocol achieves perfect privacy as due to Condition 3 of gener-
alized verifier set systems, there will exist at least one block of wires free of
the t-bounded adversary. In this way, the adversary lacks at least one share
transmitted by the sender and perfect privacy is achieved. Perfect reliability is
achieved as the protocol uses blocks of size at least (2t + 1). As the adversary
is t-bounded, this ensures that the human receiver accepts a majority of the
correct share transmitted by the sender for all blocks. The human receiver thus
correctly accepts the secret by reconstructing the secret using majority received
shares. Furthermore, as a majority is used to confirm the correctness of a share
and as this is always achieved, the adversary cannot cause the protocol to fail
in any way. The protocol thus achieves perfectly secure message transmission.�

One-Phase PSMT with a Human Using a Disjoint Set System. We may
assume the case of when all blocks are truly disjoint between them - as described
by Lemma 2, as this construction is the simplest and easiest construction for a
human party to use. Using this construction, the parameters of the protocol are
as follows - there are b = t + 1 blocks with the size of each block |Bi| ≥ 2t + 1
(although |Bi| = 2t+ 1 suffices).

Assuming the use of the construction described in Lemma 2, the sender’s
computational complexity is O(t2). This is because the sender has to transmit
a field element in (Z10)

k on each of the O(t2) wires connecting sender and re-
ceiver.The computational complexity of the receiver is O(t2 log t), because the
receiver at the end of Phase 1 accepts O(t2) field elements in (Z10)

k and because
the correctness of these elements needs to be checked to identify the correct t+1
shares of the secret. It is easy to see that the communication complexity of the
protocol is also O(t2) - as the sender transmit a single field element in (Z10)

k

over each of the O(t2) wires1.

1 It is important to note that using any of the known set systems constructions will
always result in the same communication and computational complexities - as all
state of the art constructions will require O(t2) wires connecting sender and receiver.
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Optimally Connected One-Phase PSMT with a Human. As shown in [13]
the optimal number of wires for one-phase PSMT is n = 3t + 1. Using this

number, there exist a trivial generalized (3t+ 1,

(
3t+ 1

2t+ 1

)
, 2t+ 1, t)-verifier set.

A protocol initiated with these parameters is identical to a protocol presented
in [12] when using a threshold adversary structure. In such a protocol, all possible
(2t+ 1) subsets of wires from (3t+ 1) wires are used as blocks. Such a protocol
though is impractical for use when a human party is involved as the number of
required blocks increases greatly as the value of t increases.

It should be noted that for small values of t (say t = 1 , 2) the number of
subsets of wires which will be used as blocks will be relatively low, allowing for
such a protocol to be simple and practically feasible for a human party to use.
This secret sharing scheme was first presented by Liu in 1968 [22].

3.2 Two-Phase Mod 10 PSMT with a Human Receiver

For two phase PSMT protocols, the receiver and sender are able to interact over
a network with a lower number of wires n ≥ 2t+ 1 connecting the two parties -
when compared to the n ≥ 3t+1 number of wires required for one phase PSMT
protocols. The solution we present is based on the concept of (n, b, t)-verifier
sets. We assume that wires connecting the sender and receiver correspond to
points in the (n, b, t)-verifier set system to be used.

The main idea of the protocol is as follows. The protocol is initiated by the
receiver who transmits different random values to the sender upon different sets
of wires of size at least (t+1) - transmitting the same value over wires in the same
set. This ensures that if the adversary is active, the sender is able to identify
sets of wires for which different values are received. Such sets are blacklisted.
The sender uses the values received from non-blacklisted sets to privately send
the secret of the communication. The protocol is formally presented as follows -
denoting with MS the secret of the communication.

Protocol 2. Two-Phase Transmission Protocol with a Human.

Protocol Setup. An (n, b, t)-verifier set system with b number of blocksB1, . . . ,
Bb all of which are of size |Bi| ≥ t+1 = t′ and which satisfy the key property
that at least one block does not contain elements of any (at most) t sized
subset of elements will have to constructed. B will be used to denote the set
of all blocks used.

Step 1. For each block B1, . . . , Bb, the receiver chooses a uniformly random
field element ri from (Z10)

k. When Bi = {xi1 , xi2 , . . . xit′ }, the sender sends
the value of ri on wire xij (for all xij in Bi where 1 ≤ j ≤ t′).

Step 2. If the received values that should correspond to ri on wires Bi =
{xi1 , xi2 , . . . xit′ } are different, the sender black lists Bi (and checks this
for all 1 ≤ i ≤ b). The sender broadcasts the complete black list of such Bi
to the receiver. We call this list B′.
The sender then computes B′′ = B \ B′. The sender adds the random values
ri corresponding with the blocks in B′′. So, if B′′ = {Bj1 , Bj2 , . . . , Bjl}, the



548 S. Erotokritou and Y. Desmedt

sender computes r = rj1+rj2+· · ·+rjl and sends to the receiver V = r+MS

using broadcast. (The addition of the random values to calculate r occurs
using mod10 arithmetic for each digit and likewise for the evaluation of V .)

Step 3 The receiver is able to decode MS in a similar manner to the actions of
the sender in Step 2. B′′ will first be found using the received broadcast value
of B′ and then the value of r will be calculated. MS can then be decoded
as MS = V − r. (The addition of the random values to calculate r occurs
using mod10 arithmetic and likewise for the subtraction which occurs for
the evaluation of MS.)

Note: One should note that the broadcast which occurs in Step 2 does not have
to be carried out by transmitting the information to broadcast over all wires
connecting the sender and the receiver. Instead, this information can be sent on
any 2t+1 wires. As there are at most t faulty wires, this ensures that the correct
information will be correctly received by the receiver at the end of Step 2.

Theorem 2. The Two-Phase mod10 Transmission Protocol with a human re-
ceiver is a PSMT protocol.

Proof. The protocol achieves perfect privacy as due to Condition 3 of verifier set
systems, there exists at least one block with wires free of the adversary. As this
block is free of the adversary, a single value will be received from it which will
be used in the calculation of r and since the adversary does not learn it, perfect
privacy is achieved. Perfect reliability is achieved as the sender only considers
blocks from which a single value was received. As blocks are of size (t + 1), a
t-bounded adversary cannot make the sender consider a value the receiver did
not send. This in addition to the broadcast of the list of blacklisted blocks B′,
allows for perfect reliability to be achieved and for perfectly secure message
transmission also. �

Two-Phase PSMT with a Human Using a Disjoint Set System. We
may assume the case of when all these sets are truly disjoint between them -
as shown in the construction of Lemma 3, as this construction is the simplest
and easiest construction for a human party to use. Using this construction, the
parameters of the protocol are as follows - there are b = t + 1 blocks with the
size of each block |Bi| ≥ t+ 1 (although |Bi| = t+ 1 suffices).

Assuming the use of the construction described in Lemma 3, the receiver’s
computational complexity is O(t2). This is because the receiver has to transmit
a field element in (Z10)

k on each of the O(t2) wires connecting the two parties
in the first phase2. In the second phase of the protocol, the receiver may have to
accept O(t2) field elements in (Z10)

k - from the broadcast of the black list B′ of
‘faulty’ blocks which can be of maximum size t. The computational complexity of
the sender is O(t2), for the same reasons. The sender accepts O(t2) field elements
in (Z10)

k at the end of the first step and has to evaluate and broadcast black

2 The receiver also has to select t+ 1 random elements and evaluate B′′.
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list B′. The communication complexity of the protocol is O(t2) because of the
broadcast of the O(t) sized set of black-listed blocks over any O(2t+ 1) wires.

Optimally Connected Two-Phase PSMT with a Human. As shown
in [13] the optimal number of wires for two-phase PSMT is n = 2t+ 1. Similar
to one phase transmission protocols with a human, there also exists a trivial

(2t+1,

(
2t+ 1

t+ 1

)
, t)-verifier set. In such a protocol, all possible (t+1) subsets of

wires from (2t+ 1) wires are used as blocks. Such a protocol though is imprac-
tical for use when a human party is involved as the number of required blocks
increases greatly as the value of t increases.

It should be noted that for small values of t (say t = 1 , 2, 3) the number of
subsets of wires which will be used as blocks will be relatively low, allowing for
such a protocol to be simple and practically feasible for a human party to use.

3.3 Practically Feasible Protocols for Small Values of t

A slight weakness of the one and two phase protocols presented is the rather
sub-optimal number of wires required to tolerate a t-bounded adversary. In this
section we identify parameters that could be used for natural practical use case
scenarios where the value of t is relatively small - up to t = 3.

For both the one and two phase protocols we identified an alternative set
system comprised of all (2t+ 1) and (t+ 1) subset of wires from the respective
optimal number of wires. We now comment on the set systems which could be
used for these alternative protocols for small values of t.

For the one phase case, n = 3t + 1 number of wires will be required. The
generalized verifier set system to be used will consist of all possible (2t+1) sized
subsets. For t = 1 and n = 4 the number of blocks will be C(4, 3) = 4. For
t = 2 and n = 7 the number of blocks will be C(7, 5) = 21. Beyond t = 2 the
number of blocks for the human receiver to use becomes impractical (for t = 3
C(10, 7) = 120).

Similarly, for the two phase case, n = 2t+1 number of wires will be required.
The verifier set system to be used will consist of all possible (t+1) sized subsets.
For t = 1 and n = 3 the number of blocks will be C(3, 2) = 3. For t = 2 and
n = 5 the number of blocks will be C(5, 3) = 10 and for t = 3 and n = 7 the
number of blocks will be C(7, 4) = 35. Beyond t = 3 the number of blocks for
the human receiver to use becomes impractical (for t = 4 C(9, 5) = 126).

Further to the above, we also present examples of practically feasible set
systems for small values of t which could be used by the protocols presented in
the earlier two sections. We identify the number of required blocks and the size
of set X of the set system. For the one phase protocol, we require the blocks to
be of size at least 2t+1. Similarly, for the two phase protocol, blocks size must be
at least t+1. Specifics on how such set systems can be constructed follow from
the source of the data which is the La Jolla Covering Repository [1] (please note
that other similar examples found in the repository could also be used).
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Table 1. Examples of various generalized verifier sets which could be used in the
one-phase protocol for small values of t using Corollary 1

Value of t Size of Blocks Number of Required Blocks |X | = n n = 3t+ 1
1 3 4 4 Yes
2 5 11 8 No
2 5 21 7 Yes
3 7 21 13 No

Table 2. Examples of various verifier sets which could be used in the two-phase protocol
for small values of t using Lemma 1

Value of t Size of Blocks Number of Required Blocks |X | = n n = 2t+ 1
1 2 3 3 Yes
2 3 6 6 No
2 3 10 5 Yes
3 4 12 9 No
3 4 35 7 Yes

4 Human Friendly Addition Mod 10

The protocols presented in Section 3 required the human receiver to execute some
computation. Despite the computational and seemingly mathematical simplicity,
some users may find these operations confusing and difficult to execute correctly.

In this section we present an alternative PSMT protocol with a human re-
ceiver. The protocol is more user friendly and easier for human receivers to use
as no apparent form of mathematical operations need to be carried out. Instead,
all receivers have to do is to follow a path traced by joined lines over some figures
- as will be detailed in Section 4.2. This alternative protocol represents addition
mod10 using permutations to make the addition mod10 operation friendlier to
humans. We regard Z10(+) as a subgroup of the symmetric group S10.

4.1 Addition Mod 10 Using Permutations

Suppose that one wants to carry out the addition mod10 of x + s (where 0 ≤
s, x,≤ 9). Furthermore, lets assume that this addition should use secret sharing -
as s is a secret that should not be transmitted over a single channel. This in effect
means that when carrying out addition mod10 and provided that s1+s2+s3 =
s, x+ s ≡ x+ s1 + s2 + s3.

In effect, shares s1, s2 and s3 denote how x should progressively shift (up-
wards due to addition mod10). We now describe how this can be represented as
permutations and (importantly to achieve user friendliness) pictures of shifts.

Suppose that the value of x = 6 and that the value of s = 5. This means that
after the addition mod10 of x + s, the result should be (6 + 5) mod 10 = 1. A
picture of the shift should thus point from 6 to 5.
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Furthermore, lets assume that s is secret shared to s1 = 8, s2 = 4 and
s3 = 3. This means that the value of x should shift from its original value of 6
to ((6 + 8) mod 10 =)4 when added mod10 with s1. When this result is added
mod10 to s2 it should then shift to ((4 + 4) mod 10 =)8 and when this second
result is added mod10 to s3 is should result to ((8 + 3) mod 10 =)1.

4.2 Human PSMT Permutation Protocol against a Passive
Adversary

We now present the more user friendly PSMT protocol with a human receiver
considering a t-threshold bounded passive adversary. In the background the
scheme uses permutations to add modulo a number as described in Section 4.1.
Despite this, all human receivers have to execute is the simple task of tracing a
line amongst other lines in a diagram.

For the protocol to be presented the number of wires n required to connect
the sender and a human receiver equal n = t+ 1. In Section 4.3 we outline how
such protocols can be used against an active adversary.

Protocol 3. Human Permutation Protocol.

Protocol Setup. The sender constructs a random permutation π and shares
this permutation over n other random permutations - π1, . . . , πn, such that
these permutation placed in order reconstruct π. Each πi (1 ≤ i ≤ n) will
be a diagram which is part of π.

Phase 1. The sender transmits πi ∈R Sc over wire wi (1 ≤ i ≤ n).
End of Phase 1. The human receiver receives shares of a permutation - each

of which is a diagram. The human receiver brings all diagrams (all the shares
of a permutation) together in their right order (π1 first, π2 second, . . ., πn
last), and is able to view the complete permutation.

Theorem 3. The Human Permutation Protocol is a PSMT protocol.

Proof. Perfect privacy is achieved as the adversary will not learn the permutation
transmitted on the wire which the adversary does not control. As these permu-
tations are randomly constructed, perfect privacy is achieved. Perfect reliability
is achieved as a passive adversary is considered. �

For clarity, we also present and explain the protocol through the use of diagrams.
We assume the value of t = 1 and that the secret to be transmitted from the
sender to the receiver is a single digit.

The human receiver starts of with the same initial handout of instructions
similar to that shown in Figure 1. Such a handout could be made readily available
before any such protocol execution is required.
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We assume that the two diagrams that will be transmitted by the sender will
be those shown in Figure 2.

The human receiver will receive the first diagram from one of the two wires
which connect the sender to the receiver. This will be placed in the position
indicated by the handout as shown in Figure 3.
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Fig. 3. The human receiver will place the
first diagram in the appropriate position

0

1

2

3

4

5

6

7

8

9

Put this edge 

against Arrow 

Sheet 2 

Put this edge 

against "Trace 

the Line" edge 

Sheet 1 

Put against 

"Secret Bullets" 

Put against 

Sheet 1 

Secret Bullets
Trace the Line 

• Dummy 1 

• Dummy 2 

• Dummy 3 

• Dummy 4 

• Dummy 5 

• x 

• Dummy 6 

• Dummy 7 

• Dummy 8 

• Dummy 9 Sheet 2 

Fig. 4. The receiver traces the radio but-
ton corresponding to the start of the line

Similarly, the human receiver will receive the second diagram from the second
wire and place it in the position indicated by the handout. The digit secret will
then be identified by tracing the line over the two permutation sheets to the
radio button number corresponding to the start of the traced line (the human
receiver will begin tracing from the radio button marked with “x”). The radio
button number will correspond to the digit secret. This is shown in Figure 4 (for
the example, the secret digit is 2).

Once the human receiver identifies the radio button corresponding to the
start of the traced line, they accept the secret digit of the communication as the
number which corresponds to the final radio button.

From the description, this protocol seems easy for a human receiver to use
without errors. In Section 5 we assess the way human participants used a variant
of this protocol by discussing the results of experimental evaluation carried out.

The protocol is a PSMT protocol as a t-bounded passive adversary can learn
at most t of the diagrams sent to the human receiver. Given that the generation
of these diagrams are carried out in a random manner by the sender, then by



Human Perfectly Secure Message Transmission Protocols 553

not knowing one of these t + 1 in number diagrams, it is easy to see that the
adversary cannot know the value of the secret.

Note: If a secret to be sent to a human receiver is a number with more than
one digit, the above process will have to be carried out in independent executions
for each of the digits corresponding to the secret.

4.3 Active Adversary Human PSMT Permutation Protocols

It is easy to see that the constructions used for the protocols of Section 3 can
also be used for human PSMT permutation protocols against an active adversary.
The only way in which the protocols will differ, is that instead of transmission
of shares, transmission of diagrams will occur.

For the one phase active adversary protocol the changes are very apparent
(transmit diagrams in the place of shares). For the two phase case, the changes
would be very similar but some extra steps will be required3.

5 Experimental Evaluation of Human Friendly Addition

To assess the usability of the proposed human PSMT protocols we carried out
experiments with participants. It should be noted that these experiments were
carried out in the context of another paper [8]. However, the focus of the paper
was how humans interact with electronic voting protocols. The experiments are
the only form of overlap between the two papers.

Although our original experiments were directed to check how user friendly
our alternatives [8] to Chaum’s code voting [6] are, the same experiments allow
us to compare the classical approach used to add integers mod10, versus our
alternative. Due to space reasons, and since the original focus of the experiment
is different, details of the experiments and the experimental evaluation that was
carried out can be found in Section 5 of [8].

5.1 Relativity of Experiments to PSMT Protocols and Discussion
of Results

In this section we explain how the experiments were carried out, although in the
context of another paper [8], they are also valid in the context of this paper.

It is easy to see that the experiments carried out in the context of the mod
10 voting schemes are very relative to the protocols presented in Section 3.
This because both the mod10 voting scheme and the protocols presented in
Section 3 use the same secret sharing scheme as described in Section 2.4. In
the experiments that were carried out, each participant had to reconstruct two
different secrets - based on the instructions which can be found in Appendix A.

3 This will include ordering non blacklisted diagrams in some order and possibly send-
ing a correction deviance value to precisely define the secret digit. All of this infor-
mation can be sent via broadcast. As set systems are used and as the adversary will
not know at least one diagram the security of the protocols will be achieved.
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The experiments carried out showed that human participants were able to use
the secret sharing scheme correctly with a 95% success rate.

To be more precise, only five people (out of one hundred) made errors. Two
of these got both experimental instances (secret reconstruction) wrong whereas
the other three only got one wrong. Considering there were 200 experimental
instances, one can say that the success rate of the experiments was 96.5%.

This indicates that human receivers will also use the protocols presented in
Section 3 correctly. Identifying a majority was not tested in the experiments
that were carried out. But this seems a relatively easy operation that humans
can carry out. So with confidence we can state that human receivers will be able
to use protocols similar to those presented in Section 3 with high accuracy.

The relationship between the experiments referred to as permutation voting
schemes with the PSMT protocol with a human presented in Section 4 is also
clear. In the experiments carried out, participants were asked to identify bullets
corresponding to four different identified candidates - in a similar way as the
description of the protocol presented in Section 4.2. One can consider that 400
experimental instances were carried out of which only a single error occurred.

Based on the very high 99.75% accuracy of correctness for the experiments,
this suggests that human receivers will use the protocol presented in Section 4
correctly in most cases also.

When comparing the two techniques between them, it is apparent from the
results of the experiments that the human participants had a greater success
rate with the permutation based mod10 addition than with the regular addi-
tion mod10. In fact, it was a common comment from the participants that the
permutation based mod10 addition was extremely easy - whereas the other ex-
periment was rather challenging for some people.

6 Conclusions and Future Work

In this text we have presented a new concept to perfectly secure message trans-
mission protocols. For various applications and purposes, it may be required
that one of the communicating parties be a human. This brings about the need
for PSMT protocols with a human receiver. For humans to be able to use such
protocols, it is important that they be computationally efficient and simple to
be executed correctly with high accuracy of success by the human parties.

We have presented two different constructions of such protocols and com-
mented on the high accuracy with which human participants have correctly car-
ried out experiments which are based on similar concepts used by the protocols
presented. This suggests that human parties will be able to use the proposed
protocols with a high accuracy of correctness.

Protocols based on the construction of using permutations to add modulo a
number were used with a very high accuracy by human participants compared to
when using the classical mod10 arithmetic construction. This suggests that hu-
mans can add numbers (which can denote secrets) correctly using such construc-
tions - especially our permutation construction. This high accuracy identifies
these constructions as good tools for designing PSMT protocols with humans.
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However, the protocols that were presented might still be improved. The con-
structions of Section 3 are based on set systems. When choosing the values given
as parameters for the proposed protocols, the complexity on the number of wires
required (size of X) without requiring many blocks is O(t2). As future work, the
protocols presented could be made more efficient regarding communication and
computational complexities - where less data need to be sent and less computa-
tion needs to be carried out by the communicating parties. To achieve this, more
efficient constructions of set systems - which require a lower than O(t2) complex-
ity on the number of wires required (size of X), whilst still achieving secure and
polynomial time protocols, is an interesting question to solve. This is important
to study further as currently all known constructions have a complexity of O(t2).

Further work could be done concerning the testing of the proposed protocols.
This could include a greater proportion of the population. Even though we had
100 participants, their ages did not surpass 65. Thus further experiments of the
proposed protocols should include older participants to assess accurately how
older human receivers could use the proposed human PSMT protocols.
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A Reconstruction of Mod 10 Secret Shared Secrets

We provide the instructions and their associated diagrammatic interpretation
given to participants on how to reconstruct a Mod 10 shared secret.
Instructions: We explain how to reconstruct a secret through an example.
Supposing the five 4-digit shares are the following:

7291 1658 9202 7484 8172

To reconstruct the secret you have to:

– Add all digits corresponding to units for the five numbers. In the example,
these are all emphasized digits. Please note down the digit corresponding to
the sum’s number of units. 1 + 8 + 2 + 4 + 2 = 17. Here we note down 7

– Add all digits corresponding to tens for the five numbers. In the example,
these are all underlined digits. Please note down the digit corresponding to
the sum’s number of units. 9 + 5 + 0 + 8 + 7 = 29. Here we note down 9

– Add all digits corresponding to hundreds for the five numbers. In the exam-
ple, these are all bold digits. Please note down the digit corresponding to
the sum’s number of units. 2 + 6 + 2 + 4 + 1 = 15. Here we note down 5

2597 
Your Secret is: 

Please re-write your secret:  
2 5 9 7 
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Fig. 5. Detailed instructions on how to reconstruct a mod10 secret shared secret in
figure format (colors and size modified to satisfy the requirements of the publisher)
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– Add all digits corresponding to thousands for the five numbers. In the ex-
ample, these are all digits with no styling. Please note down the digit corre-
sponding to the sum’s number of units. 7 + 1 + 9 + 7 + 8 = 32. Here we
note down 2

The secret is reconstructed by correctly ordering the noted numbers. For the
example, we would reconstruct the secret to be equal to 2597.
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Abstract. The notion of oblivious transfer with hidden access control
policies (HACOT) was recently proposed by Camenisch et al. (Public-
Key Cryptography 2011). This primitive allows a user to anonymously
query a database where each record is protected by a hidden attribute-
based access control policy. At each query, the user either learns the value
of a single record if the attributes in his key satisfy the policy, or the
mere fact that his attributes do not satisfy the policy. The database, even
when colluding with the key issuer, learns nothing about the identity of
the user, the index or the access policy of the record, or whether access
was granted or denied. At the same time, the database can keep an eye
on the overall access frequency to prevent the data from being “crawled”.

In this paper, we present a new HACOT scheme which is more effi-
cient and offers more expressive policies than the scheme presented by
Camenisch et al. We construct our HACOT protocol based on a hid-
den ciphertext-policy attribute-based encryption (HP-ABE) scheme by
Nishide et al.: users are issued HACOT decryption keys based on HP-
ABE attributes and HACOT records are encrypted under HP-ABE poli-
cies. However, as we will see, this simple approach does not work and
we need to extend the Nishide et al. scheme as follows. First, we add
protocols that allows users to verify that the public key of the issuer
and ciphertexts are correctly formed. Second, we reserve one attribute
and give the corresponding decryption key only to the database. Thereby
users can no longer decrypt records by themselves but require the help
of the database. Third, we provide a joint decryption protocol between
the user and the database, so that the database does not learn which
ciphertext is decrypted. The latter will also allow one to optionally add
revocation of the users’ access. We prove our construction secure by a
reduction to the security of Nishide et al.’s scheme, the Symmetric Ex-
ternal Diffie-Hellman (SXDH) and Simultaneous Flexible Pairing (SFP)
assumptions.
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1 Introduction

Consider a medical database containing patients’ medical records. Clearly, proper
encryption and access control mechanisms need to be in place to protect such
sensitive data. Different access control policies may apply to different records,
ensuring for example that only relevant specialists and the treating medical staff
have access to a patient’s record. Given the frequent changes in medical per-
sonnel at hospitals, a role-based or attribute-based approach seems a natural
solution.

Mere access control may not be enough, however. First, the access control
policy by itself may leak sensitive information about a patient’s illness. For
example, the nature of a patient’s health problem is pretty clear if an oncologist,
a psychiatrist, or a plastic surgeon has access to his or her record. The treating
medical staff may also have an interest in hiding the access control policies, e.g.,
to avoid being approached by the press when treating celebrities. Second, the
query pattern for a particular record may reveal considerable information about
the seriousness of the patient’s condition or the phase of treatment. It is therefore
desirable that the database can be queried anonymously, so that the database
administrator remains oblivious as to who accesses which record at which time.
Third, the database owner may want to prevent its users from abusing their
anonymity to “crawl” the database and re-create a copy outside the owner’s
control. The database must therefore be able to detect unusual query activity to
throttle requests, e.g., by inserting time delays or by presenting CAPTCHAs.

Narayan et al. [21] proposed a privacy-preserving Electronic Health Records
(EHR) system that allows one to share patient data among healthcare providers
in the cloud, using attribute-based encryption. However, the cloud provider still
learns which files get downloaded (the scheme does not provide oblivious access
to the data), the access control policy of records is not hidden, and revocation
only works when all data is deleted from the user’s device after each query.

A full-fledged solution is given by Camenisch et al. [8], who combine adaptive
oblivious transfer (OT), anonymous credentials, and zero-knowledge proofs to
build a primitive called Oblivious Transfer with Hidden Access Control Policies
(HACOT).

As observed by Camenisch et al. [8], attribute-based encryption with hidden
ciphertext policies (HP-ABE) [17,23,18] is a similar primitive: a user’s decryption
key is associated with a list of attributes, while a ciphertext is associated with a
hidden access control policy so that it can only be decrypted by users whose at-
tributes satisfy the policy. Thus one could attempt to apply an HP-ABE scheme
in the scenario above: issuing decryption keys to the medical personnel, encrypt-
ing each patient’s record under the appropriate policy, and sending all ciphertexts
to all users, all mentioned security requirements are met. However, this approach
does not offer all the necessary security features, as we will discuss in detail in this
paper. For example, it allows users to crawl the database and “bulk-decrypt” all
records to which they have access offline. Also, it is not possible to revoke access,
an indispensable feature in a changing environment such as a hospital’s workforce.
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Revocation is notoriously difficult to implement in identity-based and attribute-
based encryption systems, with most practical solutions requiring a painful trade-
off to be made between security and frequency of key updates and database
re-encryptions. Finally, as we will explain in more detail later, a HP-ABE scheme
does not exclude that a single ciphertext decrypts to different plaintexts for dif-
ferent users, leading to anonymity problems. So, a plain application of HP-ABE
is not satisfactory and, indeed, the construction of an HACOT scheme based on
HP-ABE was left as an open problem by Camenisch et al. [8].

Our Contributions. In this paper, we extend the HP-ABE scheme by Nishide
et al. [23,22] as follows into an HACOT scheme to bring it to the same level of
functionality as the HACOT protocol of [8]. First, we add protocols that allow
users to verify that the public key of the issuer and ciphertexts are correctly
formed. Second, we reserve one attribute and give the corresponding decryp-
tion key only to the database so that users can no longer decrypt records by
themselves but require the help of the database. Instead, we provide a joint de-
cryption protocol between the user and the database, so that users can again
decrypt records under the control of the database but with the database not
learning which particular ciphertext is decrypted. The latter will also allow to
optionally add revocation of the users’ access. Thus, when using our functional-
ity/scheme with an authenticated encryption scheme [3], one indeed obtains the
required solution.

We also address a deficiency in the definition and protocol by Camenisch et
al. [8]: in their ideal functionality, users are returned ⊥ if they do not have the
necessary access rights, but in their protocol, they receive a random message
in this case. We address this as follows: we define the ideal functionality 1) to
handle only encryption keys that can then be used to derive keys for a symmetric
encryption scheme and 2) in case a user has no access, the functionality will
return a random key to the user.

Our construction relies on interactive zero-knowledge proofs of knowledge [13],
Groth-Sahai non-interactive proofs [16], the privacy-friendly signature scheme by
Abe et al. [1] and an HP-ABE scheme that allows transformations described in
Section 4. Our HACOT protocol offers several advantages over that of Camenisch
et al. [8]. First, access control policies in our protocol are specified as vectors
of subsets of polynomial-size attribute universes, which is more expressive than
the boolean attributes of their scheme. Communication and computation by the
database in the decryption protocol is independent of the number of attributes in
our scheme, versus linear in theirs. Indeed, already for 3 attributes all operations
are more efficient in our scheme except the key generation where ours is costly
(using realistic security parameters for both schemes).

We prove our construction secure in the common reference string (CRS) model
under the Symmetric eXternal Diffie-Hellman (SXDH) assumption, the Simulta-
neous Flexible Pairing (SFP) [1] assumption, and the security of the underlying
HP-ABE scheme (in the case of Nishide et al.’s scheme: generic bilinear group
model). We also implemented a prototype of our protocol and provide a the-
oretical efficiency analysis and experimental performance results. Notice that
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database updates are also supported in our scheme, and records can be added
to the database without having to re-encrypt the whole database. The database
provider just distributes an update containing the ciphertexts of the new records.

Related Work. All attribute-based [28,4,23,18] and predicate [17,18] encryp-
tion schemes allow for offline decryption, and can therefore not be used as such
for the scenario we envisage. Some of these schemes [17,23,18] are policy-hiding,
meaning that users cannot deduce anything about the policy of a ciphertext
except whether their key satisfies it. The schemes of Katz et al. and Lewko
et al. [17,18] allow for conjunctions and disjunctions in the policy, but require
composite-order bilinear groups. The scheme of Nishide et al. [23] allows for
slightly less powerful policies but works in a prime-order group setting. The
scheme of Lewko et al. [18] and the second construction of Nishide et al. [23] are
fully secure in the generic group model [22], whereas the other schemes are only
selectively secure.

There is an extensive body of literature on the subject of oblivious trans-
fer [27]. In this paper we use the adaptive k-out-of-n variant [20,9], where a user
may query for up to k records from a database of n records. The user does not
learn anything about the (n − k) records he did not query, while the database
does not learn which records were queried. The goal is to “amortize” communica-
tion costs so that the encrypted database of size linear in n is transmitted once,
but each transfer afterwards has communication cost independent of n. Several
extensions to adaptive k-out-of-n OT have been proposed, including pricing [7]
and access control with known [6,12] and hidden [8] policies. Our protocol is an
alternative instantiation of the latter primitive.

Zhang et al. [29] have proposed a scheme that combines the OT protocol
of Camenisch el al. [9] with the attribute based encryption scheme of Lewko et
al. [18] and achieves oblivious transfer with access control functionality, but their
scheme does not cover the hidden policy case and does not provide revocation
of users. We also show in Section 4 that this scheme cannot be extended to a
hidden policy while preserving our HACOT security properties.

Green et al. [15] propose a way to outsource the main computation for de-
crypting ABE ciphertexts to a (possibly passively malicious) proxy, however
their approach does not fit well with our real-world/ideal-world security notions
since it is not clear what guarantees the user has if the proxy maliciously deviates
from its specifications.

2 Definitions

An oblivious transfer protocol with hidden access control policies (HACOT) is
run between an issuer, who sets up the system, and generates keys of users; one
or more databases, who publish records and control users’ access rights to the
database by setting access policies; and users, who anonymously fetch records
that they are entitled to access. Let I denote the issuer, DB the set of all
databases, DB the database with index &, U the set of all users, Uϕ the user
with index ϕ.
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2.1 Syntax and Basic Terminology

By N we denote the set of natural numbers, by Nn the set of all natural numbers
between 0 and (n− 1). By Zp we denote the ring of integers modulo p. We use
N∗
n and Z∗

p to denote Nn \ {0} and Zp \ {0}, respectively. By e: G1 ×G2 �→ GT

we denote a bilinear map. If κ ∈ N, then 1κ denotes the string consisting of κ
ones.

If A is a set, then a
$← A means we set a to a random element of that set. If

A is a Probabilistic Polynomial-Time (PPT) algorithm or interactive machine,

then y
$← A(x) means we assign y to the output of A when run with fresh

random coins on input x. If A and B are two interactive machines, then let
(InA||InB) → (OutA||OutB) denote the sets of inputs and outputs of A and B
during the interaction between these two machines.

2.2 Record Policies and User Attributes

Our HACOT scheme uses the same policy framework as the HP-ABE scheme by
Nishide et al. [23]. We recall the notation below for convenience.

All records in the database are encrypted. The database DB can specify an
access policy for an encrypted record C ,ψ , which is called a ciphertext policy
(W ,ψ). The issuer gives Uϕ a secret decryption key corresponding to the set of
access attributes (Lϕ) granted to the user.

We denote languages for the attributes and policies as LL and LW respectively.
We write L |= W to mean that W is satisfied by L, and L �|= W if not (i.e., a
user key corresponding to L, respectively can and cannot decrypt a ciphertext
with policy W ).

We now describe the structure of attributes and policies in more detail. The
keys issued to users are associated with a list of attributes L = (L1, . . . , Ln)
from n different categories. Let ni ∈ N be the (finite and polynomial) number
of possible attribute values in the i-th category. Without loss of generality, we
can encode the ni attributes of category i as elements of Nni , so that Li ∈ Nni .
For example, in a hospital scenario, the n = 3 categories could be (Job Title,
Department, Gender), where Job Title can take any of the n1 = 5 attributes
{student, nurse, doctor, surgeon, administration}, Department can take any of
the n2 = 4 attributes {cardiology, maternity, neurology, oncology}, and Gender
can be any of the n3 = 2 attributes {male, female}.

Each record in the database has an access control policy associated with it. A
policy W = (W1, . . . ,Wn) is expressed as a list of n subsets of attributes Wi ⊆
Nni . A key endowed with the attribute list L is authorized to access a record if
and only if all attributes in the key are also in the ciphertext policy, i.e., L |=
W ⇔ ∀i ∈ N∗

n+1 : Li ∈Wi. For example, Alice may be a surgeon in the oncology
department, so that her key is associated with (surgeon, oncology, female), while
Bob, who is an administrative assistant in the maternity department, has key
(administration, maternity, male). If a patient’s medical record is protected by
a policy W =({doctor, surgeon}, {cardiology, oncology}, {male, female}), then
Alice can access the record, but Bob cannot.
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One could view the ciphertext policy as implementing a limited version of
conjunctive normal form: within a category, the policy specifies an OR condition
on the attribute the user key has for that category; and all attributes of the key
have to be in the access structure, basically an AND condition. Note that the
access structure is hidden from the user, meaning that he cannot recover it from
the ciphertext alone.

2.3 Definition of HACOT without Revocation

A HACOT scheme is a tuple of the following eight PPT algorithms and protocols:

• IssuerSetup(LL,LW )
$→ (pkI , skI). This algorithm generates the system-

wide issuer public key pkI and corresponding secret key skI . The input to this
algorithm is a description of the set of attributes LL that keys can be endowed
with, and a description of the set of ciphertext policies LW .

• VerifyIssuerKey
(
(pkI)||(pkI , skI)

) $→ (b||ε). Upon receiving the public key
of the issuer, each user and each database runs this protocol with the issuer, so
that the latter can prove that the issuer keys are correctly formed. The common
input is the issuer’s public key, the issuer’s private input is his secret key. The
output is a bit b indicating whether the user or database accepts the issuer’s key.

• DBSetup(pkI)
$→ (pkDB , skDB ). The database with index & runs this

algorithm to generate its public key pkDB and corresponding private key skDB .
• VerifyDBKey

(
(pkI , pkDB )||(pkI , pkDB , skDB )

) $→ (b||ε). Upon receiv-
ing the public key of DB , each user runs this protocol with the database DB ,
so that the latter can prove in zero-knowledge that it knows the secret key cor-
responding to its public key. The common input consists of the issuer’s and the
database’s public keys. The database’s private input is its secret key. The output
is a bit b indicating whether the public key pkDB is accepted.

• IssueRecord(pkI , pkDB , skDB ,K ,ψ,W ,ψ)
$→ C ,ψ. The databaseDB runs

this algorithm to publish a new record with index ψ. The input are the database’s
key pair, the issuer’s public key, the plaintext K ,ψ ∈ GT, and the ciphertext
policy W ,ψ ∈ LW . The output is the ciphertext C ,ψ .

• CheckRecord(pkI , pkDB ,C ,ψ)
$→ b. Upon receiving a ciphertext C ,ψ ,

each user performs a check to test whether it is correctly formed. The output
bit b indicates the result of that check.
• Escrow(skI , pkI , pkDB ,C ,ψ)

$→ (K ,ψ,W ,ψ). With this algorithm, I
can efficiently recover the plaintext and the policy of the ciphertext C ,ψ with-
out interacting with DB . This algorithm models the fact that in most HP-ABE
systems, the issuer can recover a great deal of information from all ciphertexts
by using his private key.

• IssueUserKey
(
(pkI , ϕ,Lϕ)||(pkI , skI , ϕ,Lϕ)

) $→ (skUϕ||ε). The user with
index ϕ and the issuer run this interactive protocol to generate a new secret key
skUϕ for Uϕ. We assume that the protocol is run over an authenticated channel.
Common inputs are ϕ, attributes Lϕ ∈ LL, and the public key of the issuer. The
issuer has his secret key as private input. Only the user receives output from
this protocol, namely his secret key skUϕ.
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• Query
(
(skUϕ, pkI , pkDB ,C ,ψ)||(pkI , pkDB , skDB )

) $→ (K ′||ε). The user
Uϕ queries database DB to attempt to decrypt record ψ. The common input
contains the public keys of the issuer and database. The user’s private input is
his secret key and the ciphertext C ,ψ . (A more general definition would include
the entire encrypted database in the user’s input, but the most efficient schemes
should not need this.) The database’s secret input is its private key. Only the
user receives output from this protocol, namely the recovered plaintext K ′. If
decryption was successful, then K ′ = K ,ψ, otherwise K

′ is a random element
of GT. Queries take place over anonymous channels so that the database does
not know with which user it interacts.

We assume that the CRS and system parameters are generated according to the
appropriate distributions and are made available to all participants.

This definition is similar to the definition of HACOT in [8]. The differences are
as follows: 1) our definition allows for more expressive policies; 2) records can
be added individually instead of setting them up all at once at system startup;
3) our system allows for multiple independent databases; and 4) we explicitly
model the level of access that the issuer has in our system though the Escrow
functionality. With respect to the last point, our scheme is at a disadvantage
compared to [8]: while the issuer in [8] can always generate for himself a user
key that decrypts all records, he must interact with the database to recover the
plaintext of a record; to recover the policy, one interaction with the database
per attribute is necessary.

2.4 Security Definitions

To define the security of our protocol we take an approach from [9,8] which is
inspired by universal composability [11] and reactive systems [25,26]. Namely, we
prove aHACOT protocol secure through an indistinguishability argument between
the instantiation ofHACOT in the real worldRHACOT, where players run the set of
cryptographic protocols, and an ideal world functionality FHACOT, which applies
the functionality the cryptographic protocols are supposed to realize.

In the real world after receiving a message from the environment E all par-
ties run the corresponding cryptographic algorithms or engage in the protocols
described in Section 2.3.

We briefly describe the FHACOT functionality below and provide a formal
ideal world definition in the full version [5]. We note that the interfaces between
the environment E and RHACOT and between E and FHACOT are identical.

Ideal World (sketch). In the ideal world, FHACOT performs all actions only
after relaying all received messages to the simulator S and getting an approval
from S. After receiving a first message from the issuer, FHACOT fixes the set
of possible attributes and policies. It further relays all messages between users,
databases and issuer during the Issuer and Database Setup phases and creates
a list of all databases and users. Note that after Setup is completed, it is not
possible to add users or databases. Later, during Record Issuance,FHACOT stores
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records and their policies upon request from the database. This can be repeated
any number of times, meaning that the records can be added at any time. When
receiving a key request from a user, FHACOT stores an entry with the set of
attributes for that user’s key. Finally, during a Query, FHACOT removes the user
and record identifier from the user’s request before forwarding it to S and to the
corresponding database. After the database replies with a bit b, FHACOT checks
whether the set of user’s attributes satisfies the policy of the requested record; if
b = 0, then it sends ⊥ to the user; if b = 1 and the policy is satisfied, it sends the
stored record back to the user, otherwise, it sends back a random group element.

Discussion of Security Properties. Informally, the specification of the ideal
functionality FHACOT is such that the following security properties are trivially
satisfied. Hence, any real-world implementation of the scheme must satisfy the
same properties.

Database security. Users need to contact the database for each record that they
want to access, so the database can keep an eye on the overall access frequency
and throttle too-frequent requests. Users cannot determine whether their key
satisfies the access policy of the record before the interaction. They cannot de-
duce anything about the contents of a record if they did not query it with a valid
key that satisfies the policy. After a successful interaction, users cannot deduce
anything about the policy except whether their key satisfies it or not. Cheat-
ing and colluding users cannot query any records that one of them could not
have queried individually. In particular, they cannot “combine” or “rearrange”
attributes in their keys.

User security. The only information that the database sees during a query is the
mere fact that a query takes place. In particular, it cannot determine which user
queries which record, which policy is associated to the record, which attributes
the user has, and whether access to the record was granted or not. User security is
valid even if the database colludes with the issuer and other users. If the query
protocol completes successfully, honest users are guaranteed that 1) if access
was granted, then their key satisfies the policy of the record and 2) if access was
denied, then their key does not satisfy the policy of the record.

3 Preliminaries

In this section we describe the security assumptions and building blocks used in
our scheme.

3.1 Assumptions

Decisional Diffie-Hellman (DDH) Assumption. Let G be either G1, G2

or GT (and let g be the corresponding generator of the group, viz. g1, g2, gT).

Let a, b, z
$← Zp. DDH is hard in G if for every PPT algorithm A:

AdvDDH
G

def=
∣∣∣Pr [A(g, ga, gb, gab)

$?
= 1
]
− Pr

[
A(g, ga, gb, gz)

$?
= 1
]∣∣∣ = negl. (1)
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Symmetric External Diffie-Hellman (SXDH) Assumption. We say that
the SXDH assumption holds if DDH holds in G1, G2 and GT. This assumption
holds only for type-3 [14] bilinear maps: this means there exists no efficiently
computable homomorphism from G1 to G2 or vice-versa. It is believed SXDH
holds in certain subgroups of MNT elliptic curves.

	-Simultaneous Flexible Pairing (SFP) Assumption. Let A,B
$← G1,

Ã, B̃
$← G2 and gZ , fZ , gR, fU

$← G∗
1. For j ∈ N∗


+1 let Pj
def=
(
Zj , Rj , Sj, Tj ,

Uj , Vj ,Wj

)
that satisfies:

e(A, Ã) = e(gZ , Zj) e(gR, Rj) e(Sj , Tj) ∧
e(B, B̃) = e(fZ , Zj) e(fU , Uj) e(Vj ,Wj) .

(2)

We say that the -SFP assumptions holds in G1 if for all PPT algorithms A (3)
is satisfied [1,2], where P
+1 satisfies (2) and Z
+1 �= 1 ∧ ∀i ∈ N∗


+1 : Z
+1 �= Zi.

Adv
−SFP
G1

def= Pr
[
A
(
gZ , fZ , gR, fU , A,B, Ã, B̃,

(
Pj
)

j=1

)
$?
= P
+1

]
= negl. (3)

We define -SFP in G2 analogously by exchanging the groups G1 and G2 above.
This assumption is parameterized by  (unlike the other assumptions which

are static), where a larger  means a stronger assumption. This assumption
was proven to hold in the generic bilinear group model [2], as long as  � √

p
(quadratic bound).

3.2 Zero-Knowledge Proofs

ZKPK denotes an interactive zero-knowledge proof (or argument) of knowledge
[13], while NIZK denotes a non-interactive zero-knowledge proof [16]. We will use
the Camenisch-Stadler notation [10] to describe what is being proven, for exam-
ple:
ZKPK{(α, β) : y = gα ∧ z = gβhα}. Variables in parenthesis denote the ele-
ments knowledge is proven about, such that the formula after the colon is true.

3.3 Hidden-Policy Attribute-Based Encryption

A HP-ABE scheme is a tuple of the following four PPT algorithms:

• IssuerSetup(1κ,LL,LW )
$→ (pkhI , skhI). Using LL, LW , and a security

parameter as input, this algorithm outputs the public and secret keys of I.
• IssueUserKey(skhI , pkhI , L)

$→ skhU . Given a permissible set of attributes
L ∈ LL and the issuer’s key pair, this generates a new user key skhU endowed
with L.

• Encrypt(pkhI ,K,W )
$→ C. Given a plaintext K ∈ GT, a permissible ci-

phertext policy W ∈ LW , and the issuer’s public key pkhI , this algorithm gen-
erates a corresponding ciphertext C.
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• Decrypt(skhU , pkhI ,C) → K ′. Given a ciphertext C, the user’s secret key
skhU , and the issuer’s public key pkhI , this algorithm decrypts the ciphertext
with the user’s secret key. If the key satisfies the policy (L |= W ), then the
correct plaintext is recovered (K ′ = K). If the key does not satisfy the policy
then K ′ �= K with overwhelming probability.

Security of HP-ABE. Informally, an HP-ABE scheme is secure if an adversary,
who can adaptively get as many keys issued as he wants, cannot tell if a given
challenge ciphertext decrypts to some plaintext M0 under policy W0 or to some
other plaintextM1 underW1 of his choosing (modulo the trivial cases). A precise
definition is given in the full version [5]. Note that some HP-ABE schemes are
only selectively secure (meaning the adversary must fix the challenge plaintexts
and policies before he receives the issuer’s key), but this is not sufficient for our
scheme.

We use the second construction of Nishide et al.’s HP-ABE [23] scheme. It
is proven secure in the generic bilinear group setting [22], and requires Type-3
pairings. It allows the issuer to add attributes and categories after system setup.
In their scheme the issuer is assumed to be trusted, unlike our HACOT scheme.

3.4 Structure-Preserving Signatures

To hide the record index during a query, but at the same time make sure that
the user is asking to decrypt a correct ciphertext, we need a signature scheme
that allows for zero-knowledge proof-of-possession. As the ciphertext is a set of
group elements, we use the basic signature scheme by Abe et al. [1] for signing
group elements. This scheme does not require the signer to know the discrete
logarithm of the group elements he is signing. It is existentially unforgeable
against adaptive chosen message attacks if the Simultaneous Flexible Pairing
assumption [1] holds.

This signature scheme Sig allows the user to re-randomize (blind) the signa-
ture and prove in zero-knowledge that this is still a correct signature. The user’s
anonymity is thus preserved, and the database has the guarantee that it is not
helping the user to decrypt invalid ciphertexts. The scheme consists of a key
generation algorithm Sig.KeyGen; a signing algorithm Sig.Sign; a verification al-
gorithm Sig.Verify; a re-randomization algorithm Sig.Rerand, that takes as input
a signature σ of a messagem and outputs a re-randomized signature σ′, which is
also a valid signature on m; and two algorithms Sig.KeyProve and Sig.Prove for
proving in zero-knowledge the validity of the key and the signature respectively.

4 Achieving HACOT from HP-ABE

Let us give some intuition and a high-level description of our scheme, in particu-
lar how to extend a HP-ABE scheme into an oblivious access control system with
hidden policies. In our protocol we use a concrete HP-ABE scheme by Nishide et
al. [23], but one can apply a similar trick to other HP-ABE schemes. Recall that
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in HP-ABE, a user’s decryption key is associated with a list of attributes, while
a ciphertext is associated with a hidden access control policy. A user can de-
crypt a ciphertext offline only if the attributes from his key satisfy the cipertext
policy. Assume a database would just employ an HP-ABE scheme to encrypt all
records and then publish these encryptions. Users would be issued the HP-ABE
decryption keys corresponding to their attributes. In this approach, the access
control policies would indeed be hidden and also users would only be able to
access the records for which their attributes match the access control policies.
Unfortunately, this solution does not provide all the properties that HACOT
requires:

• First, somewhat counterintuitively, anonymity of the users is not guaranteed:
in case the database and the issuer are malicious, they could deviate from the key
issuance and encryption procedures so that if two users with the same attributes
decrypt a record their result will still be different; hence, the scheme would not
satisfy our ideal world definition. In a higher-level protocol, the two users might
be distinguishable.

• Second, users can immediately decrypt all the records for which they have
the necessary attributes. This will allow colluding users to derive information
about the policies. Furthermore, the database has no control over the access
frequency of records and cannot revoke access rights.

To address the first issue, we make the operations by the issuer and the database
verifiable. We add an additional protocol (VerifyIssuerKey) in which the issuer
proves that its keys were generated correctly, we turn the IssueUserKey algorithm
that generates users’ decryption keys into a two-party computation between the
issuer and the user, and we provide a protocol VerifyEncryption allowing users to
check that the ciphertexts are correctly formed.

Addressing the second issue is a bit trickier. A first idea to ensure that users
cannot decrypt without the help of the database could be to combine a standard
OT protocol to encrypt records twice, first under the OT protocol and then
under the appropriate policies using the HP-ABE scheme. (Zhang et al. [29]
used a similar approach to obtain an OT protocol with public access control
policies.) This does not suffice, however, as users can perform the outer HP-ABE
decryption step without interacting with the database and learn information
about the access policies by observing whether decryption succeeds. Encrypting
first under the HP-ABE scheme does not work either, since colluding users could
start by doing a single OT query, and then attempt decrypting the inner HP-ABE
ciphertext without oversight. Besides violating our ideal world definition, such a
scheme excludes any interactive revocation scheme.

On a high level, our approach is the following. We create a dedicated “ze-
roth” attribute category of the HP-ABE scheme so that the issuer only issues
decryption keys for one particular attribute WI in this zeroth category, but
each database encrypts records under policies that require a different attribute
WDB�

for the zeroth category. The database has a “transformation key” that
allows it to convert a ciphertext encrypted for WDB�

into one for WI . When the
user wants to decrypt a record, she blinds the ciphertext and engages in a joint
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decryption protocol with the database to obtain a transformed ciphertext for
WI . To make sure that the user blinded a ciphertext that was previously pub-
lished by the database, the database signs all of its ciphertexts. During the de-
cryption protocol, the user proves knowledge of a valid signature for her blinded
ciphertext—without revealing the signature, of course.

Now that the database is involved in the decryption process of the user, it
becomes much easier to add revocation. Users are issued an anonymous creden-
tial and the database will only run the joint decryption protocol if the user’s
credential has not been revoked. There are a number of possible schemes to em-
ploy here and we will follow the choice by Camenisch et al. for their HACOT
scheme [8].

5 Our Construction without Revocation

In this section we describe in detail how to construct our HACOT protocol
(without the optional revocation mechanism) when instantiated with the second
HP-ABE scheme by Nishide et al. [23]. The description of the construction will
be followed by a discussion about asymptotic complexity. The changes needed
to handle revocation are described in the full version [5].

5.1 Detailed Construction

We now present the realizations of all algorithms and protocols of our scheme
listed in Section 2.3 in detail.

System Parameters. We assume that the following parameters are generated
by a trusted third party (or alternatively generated jointly via a multiparty
computation) and are an extra (implicit) input to all algorithms and proto-
cols. Concretely, all primitives we use require a common bilinear map setting:
(p,G1,G2,GT, g1 ∈ G1, g2 ∈ G2, e)←Gen(1κ). We denote gT

def= e(g1, g2). For
the Groth-Sahai proofs we also need a common reference string CRS←{U1,2

←ga2 ,U2,1←gt2,U2,2←gat2 }, where a, t
$← Z∗

p.

Issuer Key Generation and Verification. In addition to the n regular cate-
gories, the issuer creates an additional zeroth category, and creates one attribute
WI in that category. Let A0,0 = g

a0,0

1 be the public key component associated to
that attribute (a0,0 is the private key component). All the users’ keys he issues
will contain this WI attribute (that is L0 = 0). The key generation algorithm
IssuerSetup is depicted in Figure 1, and takes as input the number of categories
n and the number of attributes possible per category {ni}ni=1; n0 = 1.

Each party who receives the issuer’s public key checks that the latter’s key
was generated correctly by running the VerifyIssuerKey protocol, which consists
of checking that Y �= 1, B �= 1, Ai,t �= 1, and running the following proof

of knowledge with the issuer: ZKPK1
def= ZKPK

{(
sgkI , w, β, {{ai,t}}

)
: Y =

gwT ∧B = gβ1 ∧
∧n

i=0(
∧ni−1

t=0 (Ai,t = g
ai,t

1 )) ∧ Sig.KeyProve(sgkI , vkI)
}
.
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1. Generate HP-ABE key:

w, β
$← Z∗

p ; Y←gwT ; B←gβ1 ;

{{ai,t $← Z∗
p ; Ai,t←g

ai,t

1 }ni−1
t=0 }ni=0 ;

skhI←
(
{ai,t}, w, β

)
;

pkhI←
(
{Ai,t}, Y, B

)
.

2. Generate signing keys:

(sgkI , vkI)
$← Sig.KeyGen(1κ) ;

Output skI←(skhI , sgkI) ;
pkI←(pkhI , vkI).

Fig. 1. IssuerSetup algorithm

1. Generate HP-ABE keys for the
DB-specific attribute:

k 
$← Zp ;

A0, ←Ak�

0,0 = g
a0,0k�

1 ;
skhDB ←k ; pkhDB ←A0, .

2. Generate signing keys:

(sgkDB , vkDB )
$← Sig.KeyGen(1κ) ;

Output skDB ←(skhDB , sgkDB ) ;
pkDB ←(pkhDB , vkDB ).

Fig. 2. DBSetup algorithm

Database Key Generation and Verification. Recall that & is the implicit
database identifier. Each database DB that joins the system extends the zeroth
category with a new attribute, WDB� . The public key component associated to

that attribute is A0, = A
k�

0,0, where k is part of the database’s private key. The

value A0, = g
a0,0k�

1 can be considered as part of the public key of the “related”
HP-ABE scheme, i.e., the secret key component corresponding to WDB� thereby
implicitly becomes a0, = a0,0k (mod p).

The database setup consists of an algorithm DBSetup shown in Figure 2 to
generate the database’s key pair.

Each user receiving pkDB checks that the database’s public was generated
correctly with the protocol VerifyDBKey, which consists of first checking that
A0, �= 1, and then running the following proof of knowledge with the database:

ZKPK2
def= ZKPK

{(
sgkDB , k 

)
: A0, = A

k�

0,0 ∧ Sig.KeyProve(sgkDB , vkDB )
}
.

Verifiable Encryption of Records. To encrypt a record with (implicit) index
ψ, containing the plaintext K ∈ GT and the hidden ciphertext policy W ,ψ =
[W0, . . . ,Wn], where ∀i : Wi ⊆ Nni , the database runs IssueRecord as shown in
Figure 3. If one wants to use messages M ∈ {0, 1}∗ instead, one can use an
authenticated encryption [3] algorithm AuthEnc that uses elements from GT as
symmetric keys to encrypt M using the key K.

For the zeroth category, only the ciphertext component C0, ,2 for the WDB�

attribute is published and not C0,0,2 for the WI attribute. For the latter the
users will have the decryption key but not for the former. However, as C0,0,2 =

(C0, ,2)
k−1
� , users can decrypt a record if (and only if) the database helps them.

Users need to verify all ciphertexts by running CheckRecord, which for each
record verifies correctness of the GS proof π and the signature σ′ on C0, ,2.

Issuing Decryption Keys to Users. Let (L1, . . . , Ln), Li ∈ Nni , be the
attributes of the user. We add to these L0 = 0 (corresponding to WI) and set
Lϕ = (L0, L1, . . . Ln). The protocol depicted in Figure 4 ensures that the keys are
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1. Encrypt the record with respect to the policy with the HP-ABE scheme:(
Ĉ, C0, C0,1, C0,�,2, {{Ci,t}ni−1

t=0 }ni=1

) $← Encrypt(pkhI , K�,ψ,W�,ψ), that is:

Choose {ri $← Z∗
p}ni=0 ; {εi,t $← Z∗

p for all t ∈ (Nni \Wi)}ni=1.

Set r =
∑n

i=0 ri mod p ; {εi,t←0 for all t ∈ Wi}ni=1 ; Ĉ←KY r ;

C0←Br ; C0,�,2←Ar0
0,� ; {Ci,1←gri1 }ni=0 ; {{Ci,t,2←Ari

i,tg
εi,t
1 }ni−1

t=0 }ni=1.

2. Generate a Groth-Sahai proof π = NIZK3 to assert correctness of the encryption:

π def= NIZK{({ri}ni=0) :
∧n

i=0 (Ci,1 = gri1 ) ∧ C0 =
∏n

i=0 B
ri ∧ C0,�,2 = Ar0

0,�}.
3. Sign the ciphertext component C0,�,2 : σ′ $← Sig.SignsgkDB�

(C0,�,2).

Output C�,ψ←
(
π, σ′, Ĉ, C0, C0,1, C0,�,2, {{Ci,t}ni−1

t=0 }ni=1

)
.

Fig. 3. IssueRecord algorithm

generated in an honest way, i.e., that the Di,j ’s are computed correctly with re-
spect to Li and contain a random λi. To this end, the user chooses an ephemeral

ElGamal key pair and a random λ′′i and sends the issuer encryptions of g
λ′′
i

2 .
As discussed in Section 4, this will ensure the anonymity for the user during
decryption. The issuer then chooses his own values of λ′i and then computes the
encryptions of the HP-ABE keys by modifying the received encryptions so that
λi ≡ λ′i+λ′′i (mod p) will hold. For this to work, the user and the issuer have to
prove to each other that they did their computation correctly with the following
two proof protocols. With the first protocol ZKPK4

def= ZKPK{(x, {λ′′i , ri}ni=1) :

X = gx2 ∧ (
∧n

i=1(Ei = g
λ′′
i

2 X
ri ∧ Fi = gri2 ))} the user proves to the issuer that

(Ei, Fi) is a valid encryption of the value g
λ′′
i

2 . With the second proof of knowl-

edge ZKPK5
def= ZKPK{(w, β, s, {λ′i, ãi}ni=0, {r̃i}ni=1) : Y = gwT ∧ B = gβ1 ∧ 1 =

gw2 g
s
2(D

−1
0 )β∧D0,2 = g

λ′′
0

2 g
λ′
0

2 ∧ D0,1 = g
s
2D

ã0
0,2∧(

∧n
i=0(Ai,Li = g

ãi
1 ))∧(

∧n
i=1(Ẽi =

g
λ′
i

2 Ei ∧ Êi = gs2Ẽãi

i X
r̃i ∧ F̂i = F ãi

i g
r5,i
2 ))} the issuer proves to the user that the

encryptions he sent 1) were computed correctly and were based on the values he
received from the user; 2) indeed encode the correct attributes, i.e., those defined
by the Ai,Li ’s contained in the issuer’s public key. Finally, the issuer signs the
value D0,2 using the Abe et al. signature scheme, such that the user can prove
to the database that he uses the correct input in the Query protocol.

Decryption of a Record. Assume a user wants to decrypt a record; HP-ABE
decryption would work as in Equation 4 assuming the user’s key satisfies the
ciphertext policy (cf. [23]).

K ′← Ĉ
∏n

i=0 e(Ci,1, Di,1)

e(C0, D0)
∏n

i=0 e(Ci,Li,2, Di,2)
(4)

Intuitively, each key componentDi,2 allows the user to decrypt a ciphertext com-
ponent Ci,Li,2 ifDi,2 corresponds to attribute Li. However, in our scheme, even if
the attributes (L1, . . . Ln) in the user’s key all satisfy the policy, he could by con-
struction not decrypt the ciphertext component C0, ,2, because all users lack the
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User ϕ (pkI , ϕ, Lϕ): Authenticated channel Issuer (pkI , skI , ϕ, Lϕ):

(λ′′
0 , x)

$← (Z∗
p)

2 ; X←gx2 ;

{λ′′
i , ri

$← (Zp)
2}ni=1 ;

{(Ei, Fi)←(g
λ′′
i

2 Xri , gri2 )}ni=1.

s
$← Z∗

p ;

{ãi
def= ai,Li ; r̃i

$← Zp}ni=1 ;

{λ′
i

$← Zp}ni=0 .X, λ′′
0 ,

{Ei, Fi}ni=1,ZKPK4�
{Ẽi←g

λ′
i

2 Ei}ni=1 ; D0,2←g
λ′
0+λ′′

0
2 ;

{Êi←gs2Ẽ
ãi
i X r̃i ; F̂i←F ãi

i gr̃i2 }ni=1 ;

σ′′←Sig.SignsgkI(D0,2) ;

D0←g2
w+s
β ; D0,1←gs2D

a0,0

0,2 .D0, D0,1, D0,2, σ
′′,{

Ẽi, Êi, F̂i}ni=1,ZKPK5�{Di,1←ÊiF̂
−x
i }ni=1 ;

{Di,2←ẼiF
−x
i }ni=1.

Return skUϕ←(Lϕ, σ
′′, D0, {Di,1, Di,2}ni=0). Return ε.

Fig. 4. Interactive issuing of a user’s decryption keys. The proofs ZKPK4 and ZKPK5

are defined in the text.

key component for this zeroth attribute. Indeed, the key for this would be D
k−1
�

0,2 ,
where k is the database’s secret. Thus, to decrypt, the user has to run the Query

protocol with the database to compute P def= e(C0, ,2, D
k−1
�

0,2 ) = e(C0, ,2, D0,2)
k−1
�

and then run the HP-ABE decryption. This protocol is given in Figure 5. It is
of course important that 1) the database cannot learn C0, ,2 nor D0,2 because
otherwise it would learn which record a user attempts to decrypt and 2) the
database is nevertheless ensured that the user indeed wants to compute this
expression on valid inputs. The latter is achieved by having the user prove that
he knows signatures on C0, ,2 and D0,2 from the database and the issuer, and
the former is ensured by proper blinding of these two inputs. Note that if the
user does not possess the necessary decryption keys, decryption will result in a
random symmetric key K ′ to be recovered (which will make the authenticated
decryption algorithm AuthDec return ⊥).

The user provespossessionof signatures onC0, ,2 andD0,2, specific to the record

ψ anduserϕ respectively, by the proof protocolZKPK6
def= ZKPK{(k−1

c , k
−1
d , σ̃

′, σ̃′′) :

Sig.Prove(vkDB , C′k−1
c , σ̃′) ∧ Sig.Prove(vkI , D′′k−1

d , σ̃′′)}. By the proof protocol

ZKPK7
def= ZKPK{(k ) : (P ′)k� = e(C′, D′′) ∧ A0, = A

k�

0,0} the database proves
to the user that P ′ is indeed correctly computed with respect to its secret key
k that is defined by A0, .

Real-World Escrow. The issuer can recover the plaintext from a given cipher-
text C with the help of skI :K ′←Ĉ e(C0, g2)

−wβ−1

= KgwrT e(gβr1 , g2)
−wβ−1

= K.
The issuer now checks if the authenticated ciphertext can be decrypted with
AuthDec with key K. If AuthDec succeeded, the issuer can recover the cipher-
text policy thus: {Wi←{t ∈ Nni |C

ai,t

i,1 = Ci,t,2}}ni=1. For i = 0, the perfect
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User ϕ (skUϕ, pkI , pkDB�, C�,ψ):Anonymous channel Database � (pkI , pkDB�, skDB�) :

Blind C0,�,2 of record ψ and D0,2
of user ϕ :

kc, kd
$← Z∗

p ;

C′←Ckc
0,�,2 ; D

′′←Dkd
0,2.

Re-randomize sigantures:

σ̃′ $← Sig.Rerand(σ′) ;
σ̃′′ $← Sig.Rerand(σ′′). C′, D′′,ZKPK6�

Transform input: P ′← e(C′, D′′)k
−1
� .P ′,ZKPK7�

Unblind P ′: P←P ′k−1
c k−1

d .

Return K′← Ĉ
∏n

i=0 e(Ci,1,Di,1)

P e(C0,D0)
∏n

i=1 e(Ci,Li,2
,Di,2)

. Return ε.

Fig. 5. The Query protocol. The proofs ZKPK6 and ZKPK7 are defined in the text.

soundness of the NIZK3 proof guarantees that C0, ,2 is well-formed and that
r =

∑
ri, therefore W0←{&}. If AuthDec failed, the issuer simply sets W1 = ∅

(the message can never be decrypted).

5.2 Protocol Complexity

A significant amount of work is done during setup and record issuing phases.
Let Nusers, Nrecords, and V denote the number of users, records, and attributes
respectively. The players have to perform computations in time linear either
to Nusers · V , or to Nrecords · V , but never linear to the product of the three
Nusers ·Nrecords · V , similarly to [8].

For each query, the user has to do work linear in n (number of categories),
while the database has to do only a constant1 amount of work (in contrast, in
[8] both the user and the database have to do work linear in n). In the worst
case, each user will query each ciphertext, so it is very important to ensure a
fast query protocol for the database, which has to bear most of the work.

Adding revocation does not have a big influence on the complexity analysis:
the complexity of the query phase remains the same. The public key of the issuer
however will increase linearly in size to Nusers.

6 Security Analysis

Theorem 1. If the HP-ABE scheme by Nishide et al. is secure, the SXDH as-
sumption holds, and the max(Nusers, Nrecords)-SFP assumption holds in the cho-
sen bilinear group, then our scheme presented in Section 5.1 securely implements
the HACOT functionality described in Section 2.

Corollary 2. Our HACOT scheme is secure in the generic bilinear group model.

1 Constant assuming we fix the security parameter κ. If κ varies, then the run time is
O(κ3).
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The corollary trivially follows from security of the Nishide et al. scheme in the
generic group model [22]. We prove the theorem by demonstrating indistinguisha-
bility between adversarial actions in the real protocol and the ideal world for
static corruptions: for every real-world adversary A, we show how to construct
an ideal-world adversary S, such that for every environment E : E cannot distin-
guish whether it is interacting with A in the real world or with S in the ideal
world, i.e.,

∀A : ∃S : ∀E : AdvHACOT
E,A

def=∣∣∣Pr [Exec(E ,A,RHACOT)
$?
= 1
]
− Pr

[
Exec(E ,S,FHACOT)

$?
= 1
]∣∣∣ = negl. ,

(5)

where Exec(E ,A,RHACOT) denotes the binary random variable given by the out-
put of E when interacting with A andRHACOT in the real world; and analogously
for Exec(E ,S,FHACOT) in the ideal world.

Proof Sketch. Due to space constraints we only sketch the proof here; de-
tails are given in the full version [5]. In case all parties are honest, the real and
ideal worlds are indistinguishable by construction. To handle the case where
some parties misbehave, we need to show how to construct a simulator S. The
construction of S is mostly straightforward: S extracts the witnesses from all
interactive zero-knowledge proofs so that S can extract blinding factors and
signature forgeries from A in the query protocol. S also simulates all interac-
tive zero-knowledge proofs and GS proofs, which gives it the “wiggle room” to
encrypt bogus plaintexts instead of the real records, and later manipulate the
query protocol so that honest users still recover the correct record. We show that
dishonest users cannot detect the deception based on the security of the HP-ABE
scheme plus the SXDH assumption, where the latter is needed because of our
tweaks in the “zeroth category” of the HP-ABE scheme. Another delicate point
in the proof is that a dishonest issuer should not be able to issue to an honest
user a malformed key that permits correct decryption even if access should be
denied. We prove that the joint randomness in the issuance protocol prevents
this under the SXDH assumption.

7 Implementation

We implemented the scheme presented in Section 5 in C++ using the PBC
Library [19]. Our implementation uses “D”-type curves [19], on which the SDXH
assumption is believed to hold. Keys and records are stored as files on disk.
Records can be files of arbitrary size. We use the NIST standard AES-256-CGM
as the authenticated encryption scheme.

Our program currently does not support revocation.
We have observed run times of around 0.5–3 seconds for most algorithms/

protocols when run with groups of order ≈ 2158 and 5 categories and 22 at-
tributes, except the IssueUserKey protocol, which took around 11.5 seconds.
Overall, the measured run times confirm our theoretical predictions.
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8 Comparison with HACOT by Camenisch et al. at PKC
2011

In this section, we will compare the scheme presented by Camenisch et al. at
PKC 2011 [8] (CDNZ) with our scheme (without revocation). We first show that
the class of expressible policies in both schemes is the same, and that there is an
efficient transformation from CDNZ-policies to our policies (the transformation
from our policies to CDNZ-polices is inefficient, as it may require an exponential
number of categories. We omit it due to space constraints). We then compare
the communications and runtime costs of both schemes in “steady state” (after
setup) when they are used with CDNZ-policies, and show that our scheme is
faster and needs less bandwidth.

Explanation of CDNZ-Policies. In CDNZ, the keys issued to users are as-
sociated with a list of bits of length : d = (d0, . . . , d
−1) and di ∈ N2. Each
record in the database has an access control policy associated with it. A policy
c = (c0, . . . , c
−1) is also expressed as a list of  bits (ci ∈ N2). The index of a
bit in that list is called its “category”. A key is authorized to access a record if
and only if

∑
−1
i=0 cidi =

∑
−1
i=0 ci.

Expressing CDNZ Policies in our Scheme. It is easy to emulate CDNZ-
policies in our scheme: simply set the same number of categories (n←), and
create two attributes per category ∀i ∈ N∗

n+1 : ni = 2. Users’ keys are en-
dowed with the following attributes, and policies are formed thus: ∀i ∈ N∗

n+1 :
Li←di ; if ci = 0 :Wi←{0, 1} ; else Wi←{1}.We will use this transformation as
the basis for comparing the two schemes.

Efficiency Comparison. The scheme presented in this paper has lower com-
munication and computation costs than CDNZ in “steady state” (after setup).
Detailed results are given in the full version [5]. Assuming we use our scheme
to express CDNZ-policies (n = , V = 2), our records are (asymptotically)
1.6 times smaller, the database can generate them (asympotically) 1.8 times
faster, and users can check them (asymptotically) twice as fast. The communi-
cation costs in the query protocol are constant in our scheme, versus linear in
CDNZ. The user’s computational costs during the query protocol are (asymp-
totically) five times lower in our scheme; and the database’s computational costs
are constant-time in our scheme (versus linear in CDNZ).

Our scheme becomes faster and requires less bandwidth than CDNZ when
there are three categories or more.

It must be said however, that our scheme trades more efficient “steady state”
communication, storage, and computational costs with more expensive setup
costs: for example, it takes about 18 seconds (for n = 10) to issue a user’s key
in our scheme, while this operation is nearly instantaneous in CDNZ.
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9 Conclusions and Future Work

We created a scheme that allows a database to publish records that are protected
by a hidden access control policy, and that users can access without revealing
their identity or choice of record. Extensions to our scheme allow the key issuer to
revoke the user’s keys. We have proved our scheme secure in the generic bilinear
group model.

Our construction uses attribute-based encryption and, in comparison to the
prior work based on anonymous credentials, offers more expressive policies and
improved efficiency. Finally, we have implemented our scheme. Timing results
of a prototype implementation show that the scheme is scalable and sufficiently
performant to be used in practical settings.

Recently, Okamoto and Takashima [24] have proposed an HP-ABE scheme
that is secure under the decision linear assumption. It seems that one could
extend their scheme into a HACOT scheme similarly as we have done it for the
Nishide el al. scheme, i.e., by splitting the attribute keys between the database
and the users. As this approach does not use the HP-ABE scheme as a block
box, the security of such an extension of the Okamoto and Takashima scheme
will have to be proven from scratch. We leave this as future work.

Other future work is investigating how to remove the unfettered access the
issuer has over the published records.
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