
Datalog Development Tools
(Extended Abstract)

Onofrio Febbraro1, Giovanni Grasso2, Nicola Leone3,
Kristian Reale3, and Francesco Ricca3

1 DLVSystem s.r.l. - P.zza Vermicelli, Polo Tecnologico, 87036 Rende, Italy
febbraro@dlvsystem.com

2 Oxford University, Department of Computer Science - , Oxford, UK
giovanni.grasso@cs.ox.ac.uk

3 Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{leone,reale,ricca}@mat.unical.it

1 Introduction

The recent successful application of Datalog in a number of advanced projects, has
renewed the interest in Datalog-based systems for developing real-world applications.
Indeed, in the last few years Datalog has been successifully applied in many different ar-
eas of computer science, including: Artificial Intelligence, Data Extraction, Information
Integration and Knowledge Management. Interestingly, besides the scientific applica-
tions, Datalog-based systems were also applied for developing some industrial systems.
Nonetheless, in order to boost the adoption of Datalog-based technologies in the scien-
tific community and especially in industry, it is important to provide effective program-
ming tools, which support the activities of researchers and implementors and simplify
users’ interactions with Datalog systems. Indeed, development frameworks and tools
provide indispensable means for assisting and simplifying application development.
For this reason, the most popular programming languages and also commercial off-
of-the-shelf software products (e.g., DBMSs) are always complemented by Integrated
Development Environments (IDE) and Software Development Kits (SDK).

We have dealt with this issue, and we designed development tools for the Datalog-
based system DLV [1]. The language of DLV is an extension of Datalog allowing dis-
junction in rule heads, aggregate atoms, and both weak and strong constraints in rule
bodies [1]. DLV is widely considered a state-of-the-art implementation of Disjunctive
Datalog under the stable models semantics [2,3] (also called Answer Set Programming
(ASP) [4]), and it is undergoing an industrialization process [5] conducted by a spin-off
company named DLVSYSTEM s.r.l..

The development tools described in this paper are born from our experience in de-
veloping Datalog real-world applications (see. e.g., [6,7]) with DLV. In particular, while
implementing Datalog-based applications, we recognized two basic needs: (i) the avail-
ability of an IDE supporting Datalog program development (as it is customary for lan-
guages like C++ or Java); and (ii) the strong need of integrating Datalog programs
and solvers in the well-assessed software-development processes and platforms, which
are tailored for imperative/object-oriented programming languages. Indeed, complex
business-logic features can be developed with Datalog-based technologies at a lower
(implementation) price than in traditional imperative languages, and there are several

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 81–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



82 O. Febbraro et al.

additional advantages from a Software Engineering viewpoint, in flexibility, readabil-
ity, extensibility, ease of maintenance, etc. However, since Datalog is not a full general-
purpose language, logic programs must be embedded, at some point, in systems compo-
nents that are usually built by employing imperative/object-oriented programming lan-
guages, e.g., for developing visual user-interfaces. To respond to the above mentioned
needs, we have developed two tools:

1. ASPIDE [8]: a complete IDE for disjunctive Datalog programs, which integrates
a cutting-edge editing tool (featuring dynamic syntax highlighting, on-line syntax
correction, autocompletion, code-templates, quick-fixes, refactoring, etc.) with a
collection of user-friendly graphical tools for program composition, debugging,
profiling, database access, solver execution configuration and output-handling; and

2. JDLV [9]: a plug-in for the Eclipse platform that implements JASP , a hybrid lan-
guage that transparently supports a bilateral interaction between disjunctive Dat-
alog and Java. The Datalog program can access Java variables, and the results of
the evaluation are automatically stored in Java objects, possibly populating Java
collections, transparently. A key ingredient of JASP is the mapping between (col-
lections of) Java objects and Datalog facts, which can be customized by following
widely-adopted standards for Object-Relational Mapping (ORM).

These tools speed-up and empower the development of Datalog-based solutions and
their integration in the well-assessed development processes and platforms, which are
tailored for imperative/object-oriented programming languages.

2 ASPIDE

ASPIDE [8] supports the entire life-cycle of the development of Datalog-based applica-
tions, from (assisted) programs editing to application deployment. In the following we
overview the main features that make ASPIDE one of the most comprehensive devel-
opment environment for logic programming.1

Workspace organization. The system allows for organizing logic programs in projects
à la Eclipse, which are collected in a special directory (called workspace). ASPIDE
allows to manage logic programs in DLV syntax [1] and ASPCore [10]; other file types
can be added by providing input plugins (see below).

Advanced text editor. ASPIDE features an editor tailored for logic programs that of-
fers, besides the basic functionalities also text coloring, automatic completion, and pro-
gram refactorings.

Outline navigation. ASPIDE creates an outline view which graphically represents pro-
gram elements. Each item in the outline can be used to quickly access the corresponding
line of code (a very useful feature when dealing with long files).

Visual editor. The users can draw logic programs by exploiting a full graphical envi-
ronment that offers a QBE-like tool for building logic rules. The user can switch from
the text editor to the visual one (and vice-versa) thanks to a reverse-rengineering mech-
anism from text to graphical format.

1 For an exhaustive comparison among the available tools for logic programming see [8].



Datalog Development Tools 83

Dependency graph. The system provides a graphical representation of several variants
of the (non-ground) dependency graphs associated with the project.

Dynamic code checking and errors highlighting. Programs are parsed while writing,
and both errors or possible warnings are immediately outlined.

Quick fixes and Code templates. The system suggests quick fixes to reported errors or
warnings, and provides support for assisted writing of rule patterns (guessing patterns,
etc.) by means of code templates that can be instantiated while writing.

Debugger and Profiler. ASPIDE embeds the debugging tool spock and the DLV Pro-
filer [11].

Unit Testing. The testing feature consists on a unit testing framework for logic pro-
grams in the style of JUnit. For an exhaustive description the testing language and the
graphical testing tool of ASPIDE we refer the reader to [12].

Annotation Management. ASPIDE supports annotations for indicating meta informa-
tion of programs like rule names, predicate name, arity, etc. Meta-information given
through annotations is exploited for auto-completion, test case composition, etc.

Schema Management and Interaction with Databases. ASPIDE simplifies access to
external databases by a graphical tool connecting to DBMSs via JDBC. The database
management of ASPIDE supports both DLV with ODBC interface and DLVDB [13].

Configuration of the execution and Presentation of the Results. The RunConfigura-
tion Dialog allows one to setup a DLV invocation; whereas the results are presented to
the user in a comfortable tabular representation and they can be also saved in text files
for subsequent analysis.

User-defined Plugins. ASPIDE can be extended with user defined plugins for handling:
(i) new input formats, (ii) program rewritings, and even (iii) customizing the visual-
ization/format of results. An input plugin can take care of input files that appear in
ASPIDE as a logic program, and an output plugin can handle the external conversion of
the computed results. A rewriting plugin may encode a procedure that can be applied to
rules in the editor.

Availability. ASPIDE is available for all the major operating systems, including Linux,
Mac OS and Windows, and can be downloaded from the system website
http://www.mat.unical.it/ricca/aspide.

3 JDLV

We overview in the following a new programming framework blending logic program-
ming with Java and its implementation as plug-in for the Eclipse platform [14], called
JDLV. JDLV is based on JASP [9], a hybrid language that transparently supports a bi-
lateral interaction between (disjunctive) Datalog and Java. A key ingredient ofJASP is
the mapping between (collections of) Java objects and ASP facts. JASP shares with
Object-Relational Mapping (ORM) frameworks, such as Hibernate and TopLink, the
structural issues of the impedance mismatch [15,16] problem. InJASP , Java Objects are
mapped to logic facts (and vice versa) by adopting a structural mapping strategy similar
to the one employed by ORM tools for retrieving/saving persistent objects from/to rela-
tional databases. JASP supports both a default mapping strategy, which fits the most

http://www.mat.unical.it/ricca/aspide


84 O. Febbraro et al.

common programmers’ requirements, and custom ORM specifications, which comply
with the Java Persistence API (JPA) [17], to perfectly suit enterprise application devel-
opment standards. In this section, we presentJASP by exploiting an example. We refer
the reader to [9] for a complete description of the language and its semantics.

Integrating Disjunctive Datalog with Java. The JASP code is very natural and in-
tuitive for a programmer skilled in both Disjunctive Datalog and Java; we introduce it
by exploiting an example program, in which a monolithic block of plain Datalog code
(called module) is embedded in a Java class, which is executed "in-place", i.e., the solv-
ing process is triggered at the end of the module specification. Consider the following
JASP code:

1 class GraphUtil {
public static Set<Colored> compute3Coloring(Set<Arc> arcs,

3 Set<String> nodes ){
Set<Colored> res = new HashSet<Colored>();

5 <# in=arcs::arc, nodes::node out=res::col
col(X,red) v col(X,green) v col(X,blue) :– node(X).

7 :– col(X,C), col(Y,C), arc(X,Y). #>
if_no_answerset { res = null; }

9 return res; }}

GraphUtil defines the method compute3Coloring(), that encompass a JASP-module to
computes a 3-coloring of the given graph. The parameters arcs and nodes are mapped
to corresponding predicates (Line 5) arc and node, respectively, whereas the local
variable res is mapped as output variable to the predicate col (Line 5). Intuitively,
when compute3Coloring() is invoked, Java objects are transformed into logic facts, by
applying a default ORM strategy. In this example, each string x in nodes is transformed
in unary facts node(x); similarly, each instance of Arc in the variable arcs produces a
binary fact, e.g., arc(from,to). These facts are input of the logic program, which is
evaluated "in-place". If no 3-coloring exists, the variable res is set to null (Line 8); else,
when the first result (called answer set [4]) is computed, for each fact col contained in
the solution a new object of the class Colored is created and added to res, which, in turn,
is returned by the method. Syntactically, JASP directly extends the syntax of Java by
few new keywords (e.g.,« <# »,« #> » ), in such a way that JASP module statements
are allowed in Java block statements. Concerning the syntax allowed within modules,
JASP is compliant with the language of DLV. The JASP’s default ORM strategy uses
compound keys, i.e., keys made of all basic attributes, and embedded values, for one to
one associations. This choice naturally fits the usual way of representing information in
Datalog, e.g., in the example, one fact models one node. Such mapping can be inverted
to obtain Java objects from logic facts. Although, this strategy poses (a few) restrictions
to Java specifications (e.g., such as non-recursive type definition, bean-like structure),
based on our experience, it is sufficient to handle common use cases.

In the example above we have employed the basic syntax of JASP . The language
supports also other advanced features conceived for easing the development of complex
applications, including: syntactic enhancements (e.g., named non-positional notation),
incremental programs (to enable building programs throughout the application), ac-
cess to Java variables (for accessign the Java environment), database table mappings



Datalog Development Tools 85

(to directly access data stored in a DBMS), and complex mappings with JPA [17] an-
notations (for complex ORM). Indeed, JASP spouses the work done in the field ORM
and supports the standard JPA Java annotations for defining how Java classes map to
relations (logic predicates).

Acknowledgments. This work has been partially supported by the Calabrian Region
under PIA (Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del
06/05/2009. Giovanni Grasso has received funding from the European Research Coun-
cil under the European Community’s Seventh Framework Programme (FP7/2007–2013)
/ ERC grant agreement DIADEM, no. 246858.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)
3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

NGC 9, 365–385 (1991)
4. Lifschitz, V.: Answer Set Planning. In: ICLP 1999, pp. 23–37 (1999)
5. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at Work: Spin-off and Applications of the

DLV System. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Represen-
tation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 432–451. Springer, Heidelberg
(2011)

6. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the gioia-tauro seaport. TPLP 12(3), 361–381 (2012)

7. Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone, N.: A Logic-
Based System for e-Tourism. FI 105(1–2), 35–55 (2010)

8. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated Development Environment for An-
swer Set Programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645,
pp. 317–330. Springer, Heidelberg (2011)

9. Febbraro, O., Grasso, G., Leone, N., Ricca, F.: JASP: a framework for integrating Answer
Set Programming with Java. In: Proc. of KR 2012. AAAI Press (2012)

10. Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro,
M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer Set Programming Compe-
tition: Preliminary Report of the System Competition Track. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS, vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

11. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A Visual Tracer for DLV. In: Proc. of SEA 2009,
Potsdam, Germany (2009)

12. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in aspide. CoRR abs/1108.5434
(2011)

13. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. TPLP 8, 129–165 (2008)

14. Eclipse: Eclipse (2001), http://www.eclipse.org/
15. Maier, D.: Representing database programs as objects. In: Advances in Database Program-

ming Languages, pp. 377–386. ACM Press (1990)
16. Keller, A.M., Jensen, R., Agrawal, S.: Persistence software: Bridging object-oriented pro-

gramming and relational databases. In: Proc. of ACM SIGMOD 1993, pp. 523–528. ACM
Press (1993)

17. Oracle: JSR 317: JavaTM Persistence 2.0 (2009),
http://jcp.org/en/jsr/detail?id=317

http://www.eclipse.org/
http://jcp.org/en/jsr/detail?id=317

	Datalog Development Tools
	Introduction
	ASPIDE
	JDLV 
	References




