
Existential Rules: A Graph-Based View
(Extended Abstract)

Marie-Laure Mugnier

University of Montpellier, France

1 Introduction

We consider rules that allow to assert the existence of new individuals, an ability called
value invention in databases [AHV95]. These rules are of the form body → head,
where the body and the head are function-free conjunctions of atoms, and variables
that occur only in the head are existentially quantified, hence their name ∀∃-rules in
[BLMS09, BLM10] or existential rules in [BMRT11, KR11]. Existential rules have
long been studied in databases as high-level constraints called tuple generating depen-
dencies (TGDs) [BV84]. Recently, there has been renewed interest for these rules in the
context of ontology-based data access (OBDA), a new paradigm that seeks to exploit the
semantics encoded in ontologies while querying data. The deductive database language
Datalog could be seen as a natural candidate for expressing ontological knowledge in
this context, however its limitation is that it does not allow for value invention, since
all variables in a rule head necessarily occur in the rule body. Value invention has been
recognized as a necessary prerequisite in an open-world perspective, where all individ-
uals are not known a priori. It is in particular a feature of description logics (DLs),
well-known languages dedicated to ontological representation and reasoning. This pre-
requisite motivated the recent extension of Datalog to existential rules, which gave rise
to the Datalog +/- formalism [CGK08, CGL09].

Existential rules have indeed some particularly interesting features in the context of
OBDA. On the one hand, they generalize lightweight DLs dedicated to query answering
(DL-Lite [CGL+07] and EL [BBL05] families, and more generally Horn DLs) while
being more powerful and flexible [CGL09, BLM10, BMRT11]. In particular, they have
unrestricted predicate arity (while DLs consider unary and binary predicates only). This
allows for a natural coupling with database schemas, in which relations may have any
arity; moreover, adding pieces of information, for instance to take contextual knowl-
edge into account, is made easier, since these pieces can be added as new predicate
arguments. On the other hand, existential rules cover plain Datalog, while allowing for
incompleteness in the data.

Historically, we studied existential rules as part of another research line that seeks to
develop a knowledge representation and reasoning formalism based on (hyper)graphs.
This formalism is graph-based not only in the sense that all objects are defined as
graphs, while being equipped with a logical semantics, but also in the sense that rea-
soning relies on graph mechanisms, which are sound and complete with respect to
the logical semantics. This framework, presented thoroughly in [CM09], is rooted in
conceptual graphs [Sow84]. The logical translation of the graph rules yield exactly

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 21–26, 2012.
© Springer-Verlag Berlin Heidelberg 2012



22 M.-L. Mugnier

existential rules (and other Datalog+/- constructs, like constraints, have their equivalent
in this framework).

In this talk, we present a graph view of the existential rule framework and some re-
lated results. Generally speaking, seeing formulas as graphs or hypergraphs allows to
focus on their structure: paths, cycles or decompositions are then fundamental notions.
Two examples of results exploiting the graph structure will be detailed: the decidable
class of (greedy) bounded-treewidth sets of rules, which is based on the tree decom-
position of a graph, and a backward chaining mechanism based on subgraphs called
pieces.

2 The Logical Framework

An existential rule is a first-order formula R = ∀x∀y(B[x,y] → (∃zH [y, z])) where
B and H are conjunctions of atoms (without function symbol except constants). A fact
is the existential closure of a conjunction of atoms. Note that we extend the classical
notion of a fact as a ground atom in order to take existential variables produced by
rules into account. Moreover, this allows to cover naturally languages such as RDF/S,
in which a blank node is logically translated into an existentially quantified variable, or
basic conceptual graphs. In this talk, a knowledge base is composed of a set of facts,
seen as a single fact, and of existential rules (other components could be added, see e.g.
[CGL09] [BMRT11]). Query answering consists of computing the set of answers to a
query in the knowledge base. We consider conjunctive queries (CQs), which are the
standard basic queries. Boolean CQs have the same form as facts. The fundamental de-
cision problem associated with query answering can be expressed in several equivalent
ways, in particular as a Boolean CQ entailment problem: is a Boolean CQ logically en-
tailed by a knowledge base ? In the following this problem is refered as the “entailment”
problem.

A fundamental tool for query answering is homomorphism: given two facts/Boolean
queries F and Q seen as sets of atoms, a homomorphism h from Q to F is a substi-
tution of the variables in Q by terms in F such that h(Q) ⊆ F . It is well-known that
F logically entails Q iff there is a homomorphism from Q to F . Sound and complete
mechanisms for entailment with rules are obtained with classical paradigms, namely
forward chaining (also called bottom-up approach, and chase when applied to TGDs)
and backward chaining (also called top-down approach). Forward chaining enriches the
initial fact by applying rules —with rule application being based on homomorphism—
and checks if a fact can be derived to which the query maps by homomorphism. Back-
ward chaining uses the rules to rewrite the query in different ways —with rewriting
being based on unification— with the aim of producing a query that maps to the initial
fact by homomorphism. Note that, due to the existential variables in the rule heads, uni-
fication cannot operate atom by atom as it is classically done for Horn clauses, a more
complex operation is required.

3 The Graph-Based Framework

A set of atoms A can be seen as an ordered labeled hypergraph HA, whose nodes and
ordered hyperedges respectively encode the terms and the atoms from A. One may also



Existential Rules: A Graph-Based View 23

encode A as an undirected bipartite graph which is exactly the incidence graph of HA
(it is a multigraph actually since there may be several edges between two nodes), where
one class of nodes encodes the terms and the other the atoms (see Figure 1): for each
atom p(t1, . . . , tk) in A, instead of a hyperedge, there is an atom node labeled by p and
this node is incident to k edges linking it to the nodes assigned to t1, . . . , tk. Each edge
is labeled by the position of the corresponding term in the atom. Therefore, all objects
of the preceding logical framework can be defined as graphical objects. In particular,
a fact or a query is encoded as a (hyper)graph and an existential rule can be seen as a
pair of (hyper)graphs or equivalently as a bicolored (hyper)graph. Entailment between
facts/queries is computed by a (hyper)graph homomorphism, which corresponds to the
homomorphism notion defined on formulas; entailment using rules relies on homomor-
phism in the same way as in the logical framework.

Example 1. Figure 1 pictures a fact F = siblingOf(a, b), a rule R = siblingOf
(X,Y ) → parentOf(Z,X) ∧ parentOf(Z, Y ) (quantifiers are omitted) with its
body in white and its head in gray, as well as the fact F ′ = sibblingOf(a, b) ∧
parentOf(Z0, a) ∧ parentOf(Z0, b) obtained by applying R to F , where Z0 is the
newly created existential variable. Note that it is not necessary to label nodes represent-
ing variables, the graph structure being sufficient to encode co-occurrences of variables.

Fig. 1. Graph Representation of facts and rules

As mentioned in the introduction, this graph-based framework can be seen as a specific
member of the conceptual graph fragments we have defined and developed. Conceptual
graphs are defined with respect to a vocabulary, which can be seen as a very basic ontol-
ogy. This vocabulary contains two finite (pre)ordered sets of concepts and of relations
with any arity —and it can be further enriched by relation signatures, concept disjoint-
ness assertions, etc. The orders are interpreted as a specialization relation. Concepts
and relations are logically translated into predicates and the specialization orders into
formulas of the form ∀x1 . . . xkp2(x1 . . . xk) → p1(x1 . . . xk) for p2 ≤ p1. A basic
conceptual graph is a bipartite multigraph where so-called concept nodes represent in-
stances of concepts (i.e., terms) and relation nodes represent relations between concept
instances (i.e., atoms). A concept node is labeled by a set of concepts (interpreted as a
conjunction) and a marker (which can be the generic marker �, referring to an unknown
individual, or a constant). A relation node is labeled by a relation. Concept labels are
partially ordered in a lattice obtained from the order on concepts and the order on mark-
ers (� is greater than all constants, which are pairwise incomparable). Homomorphism
takes the orders on labels into account: for all concept or relation node x, one must have
label(x) ≥ label(h(x)). This allows to take the ontology into account in a very efficient



24 M.-L. Mugnier

way as the label comparisons can be compiled then performed in constant time. Note
that the semantic web language RDFS can be encoded in the basic conceptual graph
fragment. Conceptual graph rules are defined as pairs of basic conceptual graphs.

The existential rule framework can thus be seen as a conceptual graph fragment
in which the vocabulary is restricted to a singleton concept set and a flat relation set.
Both have the same expressivity, since the orders on concepts and relations can be
encoded into the graphs —as if the rules translating these orders were applied in forward
chaining.

4 Procedures for Entailement with Existential Rules

The ability to generate existential variables, associated with arbitrarily complex con-
junctions of atoms, makes entailment undecidable in general. Since the birth of TGDs
various conditions of decidability have been exhibited. We focus here on two abstract
properties, which come with finite procedures based on forward and backward chaining
respectively, and for which the graph view is particularly relevant. These properties are
said to be abstract in the sense that they are not recognizable, i.e., deciding if a given
set of rules has the property is undecidable [BLM10]. However, they provide generic
algorithmic schemes that can be further customized for specific recognizable classes of
rules.

A set of rules R is said to have the bounded treewidth set (bts) property if for any
initial fact F , there is an integer b such that the treewidth of any fact derived from F
with R is bounded by b (property essentially introduced in [CGK08]). The treewidth
is defined with respect to a graph (the “primal graph”) associated with the hypergraph
encoding a fact. The decidability proof of entailment with bts rules does not provide
a halting algorithm (at least not directly). A subclass of bts has been defined recently,
namely greedy bts (gbts), which is equipped with a forward-chaining-like halting algo-
rithm [BMRT11, TBMR12]. For this class of rules a bounded width tree decomposition
of any derived fact can be built in a greedy way. The set of all possibly derived facts can
be encoded in such tree, however this tree may be infinite. An appropriate equivalence
relation on the nodes of this tree allows to build only a finite part of it. The gbts class is
very expressive, as it includes plain Datalog, (weakly) guarded rules [CGK08], frontier-
one (fr1) rules [BLMS09], and their generalizations (weakly / jointly) frontier-guarded
rules [BLM10, KR11]. The algorithm provided in [TBMR12] can be customized to run
in the “good” complexity class for these subclasses, which is important since some of
them have polynomial data complexity.

A set of rules is said to have the finite unification set (fus) property if the set of
rewritten queries restricted to its most general elements is finite. This class includes for
instance rules with atomic body (also called linear Datalog+/-), domain-restricted rules
and sticky(-join) rules [BLMS09, CGL09, CGP10a, CGP10b]. We propose a (sound
and complete) backward chaining mechanism which computes such minimal set of
rewritings when the rules are fus. Its originality lies in the rewriting step which is based
on a graph notion, that of a piece. Briefly, a piece is a subgraph (i.e., subset of atoms)
of the query that must be erased as a whole during a rewriting step (see [SM96] for the
first piece-based backward chaining on conceptual graph rules, [BLMS11] for a revised



Existential Rules: A Graph-Based View 25

version dedicated to existential rules and [KLMT12] for an effective implementation).
We point out that the unification operation can take a preorder on predicates into ac-
count, similarly to conceptual graph operations, which can save an exponential number
of rewritings.

5 Conclusion

The existential framework in the context of OBDA is rather young and challenging
issues need to be solved before systems effectively able to deal with large amounts
data can be built. We believe that having a double view —logical and graphical— of
this framework is likely be fruitful. The logical view allows to connect to Datalog,
description logics and other logic-based knowledge representation and reasoning lan-
guages. The graph view allows to connect to studies in graph theory, or in other areas in
which (hyper)graphs structures have been particularly well-studied from an algorithmic
viewpoint, such as constraint programming. It also allows to relate directly to graph
representations of data, such as RDF/S triplestores, and other emerging graph-based
paradigms for data management.

References

[AHV95] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

[BBL05] Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI 2005, pp.
364–369 (2005)

[BLM10] Baget, J.-F., Leclère, M., Mugnier, M.-L.: Walking the decidability line for rules
with existential variables. In: KR 2010, pp. 466–476. AAAI Press (2010)

[BLMS09] Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: Extending decidable cases for
rules with existential variables. In: IJCAI 2009, pp. 677–682 (2009)

[BLMS11] Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence 175(9-10), 1620–1654
(2011)

[BMRT11] Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity
lines for generalized guarded existential rules. In: IJCAI 2011, pp. 712–717 (2011)

[BV84] Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the
ACM 31(4), 718–741 (1984)

[CGK08] Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. In: KR 2008, pp. 70–80 (2008)

[CGL+07] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

[CGL09] Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. In: PODS 2009, pp. 77–86 (2009)

[CGP10a] Calı̀, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries.
PVLDB 3(1), 554–565 (2010)

[CGP10b] Calı̀, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp.
1–17. Springer, Heidelberg (2010)



26 M.-L. Mugnier

[CM09] Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced Infor-
mation and Knowledge Processing. Springer (2009)

[KLMT12] König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: A sound and complete
backward chaining algorithm for existential rules. In: RR 2012 (to appear, 2012)

[KR11] Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclic-
ity and guardedness. In: IJCAI 2011, pp. 963–968 (2011)

[SM96] Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainings
of Graph Rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS
(LNAI), vol. 1115, pp. 248–262. Springer, Heidelberg (1996)

[Sow84] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

[TBMR12] Thomazo, M., Baget, J.-F., Mugnier, M.-L., Rudolph, S.: A generic querying algo-
rithm for greedy sets of existential rules. In: KR 2012 (2012)


	Existential Rules: A Graph-Based View

	Introduction
	The Logical Framework
	The Graph-Based Framework
	Procedures for Entailement with Existential Rules
	Conclusion
	References




