
Query Rewriting Using Datalog
for Duplicate Resolution�

Jaffer Gardezi1 and Leopoldo Bertossi2

1 University of Ottawa, SITE,
Ottawa, Canada

2 Carleton University, SCS,
Ottawa, Canada

Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, given the similarities satisfied by
values in a database, what values should be considered duplicates, and have to be
matched. On the basis of a chase-like procedure for MD enforcement, we can ob-
tain clean (duplicate-free) instances; actually possibly several of them. The clean
answers to queries (which we call the resolved answers) are invariant under the re-
sulting class of instances. In this paper, we investigate a query rewriting approach
to obtaining the resolved answers (for certain classes of queries and MDs). The
rewritten queries are specified in stratified Datalognot,s with aggregation. In addi-
tion to the rewriting algorithm, we discuss the semantics of the rewritten queries,
and how they could be implemented by means of a DBMS.

1 Introduction

For various reasons, databases may contain different coexisting representations of the
same external, real world entity. This can occur, for example, because of errors or be-
cause the data comes from different sources using different formats. Those “duplicates”
can be entire tuples or values within them. To obtain accurate information, in particu-
lar, query answers from the data, those tuples or values should be merged into a single
representation.

Identifying and merging duplicates is a process called entity (or duplicate) resolu-
tion (ER) [15, 9]. Matching dependencies (MDs) are a recent proposal for declarative
duplicate resolution [20, 21]. An MD expresses, in the form of a rule, that if the values
of certain attributes in a pair of tuples are similar, then the values of other attributes in
those tuples should be matched (or merged) into a common value.

For example, the MD R1[X1] ≈ R2[X2] → R1[Y1]
.
= R2[Y2] is a symbolic ex-

pression saying that, if an R1-tuple and R2-tuple have similar values for their attributes
X1, X2, then their values for attributes Y1, Y2 should be made equal. This is a dynamic
dependency, in the sense that its satisfaction is checked against a pair of instances: the
first one where the antecedent holds, and the second one where the identification of
values takes place. This semantics of MDs was sketched in [21].

In this paper we use a refinement of that original semantics that was put forth in [25]
(cf. also [26]). It improves wrt the latter in that it disallows changes that are irrelevant to

� Research supported by the NSERC Strategic Network on Business Intelligence (BIN ADC05)
and NSERC/IBM CRDPJ/371084-2008.

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 86–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Query Rewriting Using Datalog for Duplicate Resolution 87

the duplicate resolution process. Actually, [25] goes on to define the clean versions of
the original database instance D0 that contains duplicates. They are called the resolved
instances (RIs) of D0 wrt the given set M of matching dependencies. A resolved in-
stance is obtained as the fixed point of a chase-like procedure that starts from D0 and
iteratively applies or enforces the MDs from M . Each step of this chase generates a new
instance by making equal values that are identified as duplicates by the MDs.

In [25] it was shown that resolved instances always exist, and that they have certain
desirable properties. For example, the set of allowed changes is just restrictive enough
to prevent irrelevant changes, while still guaranteeing existence of resolved instances.
The resolved instances that minimize the overall number of attribute value changes
(associated to a same tuple identifier) wrt the original instance are called minimally
resolved instances (MRIs). On this basis, given a queryQ posed to a database instance
D0 that may contain duplicates, we define the resolved answers wrt Σ as the query
answers that are true of all the minimally resolved instances [25].

The concept of resolved query answer has similarities to that of consistent query an-
swer (CQA) in a database that fails to satisfy a set of integrity constraints [4, 11]. The
consistent answers are invariant under the repairs of the original instance. However,
data cleaning and CQA are different problems. For the former, we want to compute a
clean instance, determined by MDs; for the latter, the goal is obtaining semantically
correct query answers. MDs are not (static) ICs. In principle, we could see clean in-
stances as repairs, treating MDs similarly to static FDs. However, the existing repair
semantics do not capture the matchings as dictated by MDs (cf. [25, 26] for a more
detailed discussion).

In this paper, we investigate the problem of computing the resolved answers, simply
called resolved answer problem (RAP). The motivation for addressing this problem is
that even in a database instance containing duplicates, much or most of the data may be
duplicate-free. One can therefore obtain useful information from the instance without
having to perform data cleaning on the instance. This would be convenient if the user
does not want, or cannot afford, to go through a data cleaning process. In other situations
the user may not have write access to the data being queried, or any access to the data
sources, as in virtual data integration systems.

In [27] we identified classes of MDs and conjunctive queries for which RAP can
be solved in polynomial time in data complexity. Furthermore, a recursively-defined
predicate was introduced for identifying the sets of duplicate values within a database
instance. This predicate can be combined with a query, opening the ground for a query
rewriting approach to RAP.

In this paper we present a query rewriting methodology for the RAP problem (for the
identified classes of MDs and queries). It can be used to rewrite the original query Q
into a new queryQ′, in such a way that the latter, posed as usual to the original instance
D0, returns the resolved answers to the original query.

More precisely, we show that queries Q (in a restricted but broad class of con-
junctive queries) that expect to obtain resolved answers from a given dirty database D
can be rewritten into a (non-disjunctive) recursive Datalognot,s queryQ′ with stratified
negation and aggregation.Q′ posed to D returns the answers to Q. As expected, such
a query can be computed in polynomial time in the size of the initial database. The

88 J. Gardezi and L. Bertossi

recursion arises from the fact that identifying duplicate values requires computing the
transitive closure of binary similarity operators. Transitivity is not assumed for similar-
ity operators, and in fact, common similarity relations used in practice, such as those
based on the edit distance and related string similarity metrics, are not transitive. Ag-
gregation is needed to enforce the minimality constraint, since this involves finding the
frequency of occurrence of values within a set of duplicates.

To the best of our knowledge, this is the first result on query rewriting in the context
of MD-based entity resolution. Furthermore, our rewritings into Datalog are non-trivial,
in the sense that they are not the result of translations into Datalog of first-order rewrit-
ings. Our rewriting uses in an essential manner the elements of the resulting Datalog
queries, namely recursion and aggregation. It is worth mentioning that the polynomial-
time rewritings for conjunctive queries proposed for consistent query answering have
been all been first-order (FO) [4, 18, 24, 31].

On the other hand, the general answer set programs that have been proposed as re-
pair programs [5, 7, 29, 19, 17], that specify database repairs and can be used for highly
expressive query rewritings, have a higher expressive power and complexity than Dat-
alog programs with stratified negation and aggregation.1 The attempts in [10] to obtain
lower complexity programs for CQA from repair programs for some tractable classes
of queries and constraints led back to FO rewritings. Thus classical, i.e. non-disjunctive
and stratified, Datalog was missed as an “intermediate” language for CQA.

This paper is organized as follows. In Section 2 we introduce basic concepts and
notation on MDs. In Section 3, we define the important concepts used in this paper, in
particular, (minimally) resolved instances and resolved answers to queries. Section 4
contains the main results of this paper, that includes a query rewriting algorithm for a
special case of the resolved query answer problem. Section 5 concludes the paper and
discusses related and future work. Proofs of results can be found in [27].

2 Preliminaries

We consider a relational schema S that includes an enumerable, possibly infinite do-
main U , and a finite set R of database predicates. Elements of U are represented by
lower case letters near the beginning of the alphabet. S determines a first-order (FO)
language L(S). An instance D for S is a finite set of ground atoms of the form R(ā),
with R ∈ R, say of arity n, and ā ∈ Un. R(D) denotes the extension of R in D.
Every predicate R ∈ S has a set of attribute, denoted attr(R). As usual, we sometimes
refer to attribute A of R by R[A]. We assume that all the attributes of a predicate are
different, and that we can identify attributes with positions in predicates, e.g. R[i], with
1 ≤ i ≤ n. If the ith attribute of predicate R is A, for a tuple t = (c1, . . . , cn) ∈ R(D),
tDR [A] (usually, simply tR[A] or t[A] if the instance is understood) denotes the value ci.
For a sequence Ā of attributes in attr(R), t[Ā] denotes the tuple whose entries are the
values of the attributes in Ā. Attributes have and may share subdomains of U .

In the rest of this section, we summarize some of the assumptions, definitions, nota-
tion, and results from two previous papers, [25] and [27], that we will need.

1 Under the common assumption that the polynomial hierarchy does not collapse.

Query Rewriting Using Datalog for Duplicate Resolution 89

We will assume that every relation in an instance has an auxiliary attribute, a surro-
gate key, holding values that act as tuple identifiers. Tuple identifiers are never created,
destroyed or changed during the duplicate resolution process. They do not appear in
MDs, and are used to identify different versions of the same original tuple that result
from the matching process. We usually leave them implicit; and “tuple identifier at-
tributes” are commonly left out when specifying a database schema. However, when
explicitly represented, they will be the “first” attribute of the relation. For example, if
R ∈ R is n-ary, R(t, c1, . . . , cn) is a tuple with id t, and is usually written as R(t, c̄).
We usually use the same symbol for a tuple’s identifier as for the tuple itself. Tuple
identifiers are unique over the entire instance. Two instances over the same schema
that share the same tuple identifiers are said to be correlated, and they can be unam-
biguously compared tuple by tuple.

As expected, some of the attribute domains, say A, have a built-in binary similarity
relation ≈A ⊆ Dom(A) × Dom(A) that is reflexive and symmetric. Such a relation
can be extended to finite lists of attributes (or domains therefor), componentwise. For
single attributes or lists thereof, the similarity relation is is generically denoted with ≈.

A matching dependency (MD) [20] is an expression of the form

m : R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē], (1)

with Ā = (A1, ..., Ak), C̄ = (C1, ..., Ck′) lists of (different) attributes from attr(R);
and B̄ = (B1, ..., Bk), Ē = (E1, ..., Ek′) lists of attributes from attr(S).2

The set of attributes on the left-hand-side (LHS) of the arrow in m is denoted with
LHS(m). Similarly for the right-hand-side (RHS). In relation to (1), the attributes in a
corresponding pair (Ai, Bi) or (Ci, Ei) are assumed to share a common domain; and
in particular, a similarity relation ≈i. In consequence, the condition on the LHS of (1)
means that, for a pair of tuples t1 in R and t2 in S, t1[Ai] ≈i t2[Bi], 1 ≤ i ≤ k.
Similarly, the expression on the RHS means t1[Ai]

.
= t2[Bi], 1 ≤ i ≤ k′. Here,

.
=

means that the values should be updated to the same value.
Accordingly, the intended semantics of the MD in (1) is that, for an instance D, if

any pair of tuples, t1 ∈ R(D) and t2 ∈ S(D), satisfy the similarity conditions on the
LHS, then for the same tuples (or tuple ids), the attributes on the RHS have to take the
same values [21], possibly through updates that may lead to a new version of D.

We assume that all sets M of MDs are in standard form, i.e. for no two different
MDs m1,m2 ∈ M , LHS (m1) = LHS (m2). All sets of MDs can be put in this form.
MDs in a set M can interact in the sense that a matching enforced by one of them may
create new similarities that lead to the enforcement of another MD in M . This intuition
is captured through the MD-graph.

Definition 1. [26] Let M be a set of MDs in standard form. The MD-graph of M ,
denoted MDG(M), is a directed graph with a vertex m for each m ∈ M , and an edge
from m to m′ iff RHS(m)∩LHS (m′) �= ∅.3 If MDG(M) contains edges, M is called
interacting. Otherwise, it is called non-interacting (NI). �

2 We assume that the MDs are defined in terms of the same schema S .
3 That is, they share at least one corresponding pair of attributes.

90 J. Gardezi and L. Bertossi

3 Matching Dependencies and Resolved Answers

Updates as prescribed by an MD m are not arbitrary. The updates based on m have to
be justified by m, as captured through the notion of modifiable value in an instance.

Definition 2. Let D be an instance, M a set of MDs, and P be a set of pairs (t, G),
where t is a tuple of D and G is an attribute of t. (a) For a tuple tR ∈ R(D) and C an
attribute of R, the value tDR [C] is modifiable wrt P if there exist S ∈ R, tS ∈ S(D), an
m ∈M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē], and a corresponding pair (C,E)

of (C̄, Ē) in m, such that (tS , E) ∈ P and one of the following holds:

1. tR[Ā] ≈ tS [B̄], but tR[C] �= tS [E].
2. tR[Ā] ≈ tS [B̄] and tS [E] is modifiable wrt P � {(tS , E)}.

(b) The value tDR [C] is modifiable if it is modifiable wrt V � {(tR, C)}, where V is the
set of all pairs (t, G) with t a tuple of D and G an attribute of t. �

Definition 2 is recursive. The base case occurs when either case 1 applies (with any
P) or when there is no tuple/attribute pair in P that can satisfy part (a). Notice that
recursion must terminate eventually, since the latter condition must be satisfied when P
is empty, and each recursive call reduces the size of P .

Example 1. Consider m : R[A] ≈ R[A] → R[B]
.
= R[B] on schema R[A,B], and

the following instance. Assume that the
only non-trivial similarities are a1 ≈ a2 ≈
a3 and b1 ≈ b2. Since a2 ≈ a3 and
c1 �= c3, t2[B] and t3[B] are modifiable
(base case). With case 2 of Definition 2,
since a1 ≈ a2, and t2[B] is modifiable,
we obtain that t1[B] is modifiable.

R(D) A B
t1 a1 c1
t2 a2 c1
t3 a3 c3
t4 b1 c3
t5 b2 c3

For t5[B] to be modifiable, it must be modifiable wrt {(ti, B) | 1 ≤ i ≤ 4}, and
via t4. According to case 2 of Definition 2, this requires t4[B] to be modifiable wrt
{(ti, B) | 1 ≤ i ≤ 3}. However, this is not the case since there is no ti, 1 ≤ i ≤ 3, such
that t4[A] ≈ ti[A]. Therefore t5[B] is not modifiable. A symmetric argument shows
that t4[B] is not modifiable. �

Definition 3. [25] Let D, D′ be correlated instances, and M a set of MDs. (D,D′)
satisfies M , denoted (D,D′) � M , iff: 1. For any pair of tuples tR ∈ R(D), tS ∈
S(D), if there exists an m ∈ M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē] and

tR[Ā] ≈ tS [B̄], then for the corresponding tuples (i.e. with same ids) t′R ∈ R(D′) and
t′S ∈ S(D′), it holds t′R[C̄] = t′S [Ē]. 2. For any tuple tR ∈ R(D) and any attribute G
of R, if tR[G] is non-modifiable, then t′R[G] = tR[G]. �

Intuitively, D′ in Definition 3 is a new version of D that is produced after a single
update. Since the update involves matching values (i.e. making them equal), it may pro-
duce “duplicate” tuples, i.e. that only differ in their tuple ids. They would possibly be
merged into a single tuple in the a data cleaning process. However, we keep the two

Query Rewriting Using Datalog for Duplicate Resolution 91

versions. In particular, D and D′ have the same number of tuples. Keeping or eliminat-
ing duplicates will not make any important difference in the sense that, given that tuple
ids are never updated, two duplicates will evolve in exactly the same way as subsequent
updates are performed. Duplicate tuples will never be subsequently “unmerged”.

This definition of MD satisfaction departs from [21], which requires that updates
preserve similarities. Similarity preservation may force undesirable changes [25]. The
existence of the updated instance D′ for D is guaranteed [25]. Furthermore, wrt [21],
our definition does not allow unnecessary changes from D to D′. Definitions 2 and 3
imply that only values of attributes that appear to the right of the arrow in some MD are
subject to updates. Hence, they are called changeable attributes.4

Definition 3 allows us to define a clean instance wrt M as the result of a chase-like
procedure, each step being satisfaction preserving.

Definition 4. [25] (a) A resolved instance (RI) for D wrt M is an instance D′, such
that there are instances D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,..., (Dn−1,
Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . We say D′ is stable. (b) D′ is a mini-
mally resolved instance (MRI) for D wrt M if it is a resolved instance that minimizes
the overall number of attribute value changes wrt D and in relation with the same tuple
ids. (c) MRI (D,M) denotes the class of MRIs of D wrt M . �

Example 2. Consider the MD R[A] ≈ R[A] → R[B]
.
= R[B] on predicate R, and the

instance D. It has several resolved instances, among them, four that

R(D) A B
t1 a1 c1
t2 a1 c2
t3 b1 c3
t4 b1 c4

R(D1) A B
t1 a1 c1
t2 a1 c1
t3 b1 c3
t4 b1 c3

R(D2) A B
t1 a1 c1
t2 a1 c1
t3 b1 c1
t4 b1 c1

minimize the number of changes. One of them is D1. A resolved instance that is not
minimal in this sense is D2. �

In this work, as in [25, 26], we are investigating what we could call “the pure case” of
MD-based entity resolution. It adheres to the original semantics outlined in [21], which
does not specify how the matchings are to be done, but only which values must be made
equal. That is, the MDs have implicit existential quantifiers (for the values in common).
The semantics we just introduced formally captures this pure case. We find situations
like this in other areas of data management, e.g. with referential integrity constraints,
tuple-generating dependencies in general [1], schema mappings in data exchange [8],
etc. It can be shown that an RI exists for any instance [25]. It follows immediately that
every instance has an MRI. A non-pure case that uses matching functions to realize the
matchings as prescribed by MDs is investigated in [13, 14, 6].

Definition 5. [25] Let Q(x̄) be a query expressed in the FO language L(S). A tuple
of constants ā from U is a resolved answer to Q(x̄) wrt the set M of MDs, denoted
D |=M Q[ā], iff D′ |= Q[ā], for every D′ ∈ MRI (D,M). ResAn(D,Q,M) is the set
of resolved answers to Q from D wrt M . �

4 Not to be confused with “modifiability”, that applies to tuples.

92 J. Gardezi and L. Bertossi

Example 3. (example 1 cont.) Since the only MRI for the original instance D is R(D′)
= {〈t1, a1, c1〉, 〈t2, a2, c1〉, 〈t3, a3, c1〉, 〈t4, b1, c3〉, 〈t5, b2, c3〉}, the resolved answers
to the queryQ(x, y) : R(x, y) are {〈a1, c1〉, 〈a2, c1〉, 〈a3, c1〉, 〈b1, c3〉, 〈b2, c3〉}. �

4 Query Rewriting for Resolved Answers

In this section, we present a query rewriting method for retrieving the resolved answers
for certain classes of queries and sets of MDs. We provide an intuitive and informal
presentation of the rewritten queries. For details and a proof of correctness, see [27].

It has been shown in previous work that the problem of deciding resolved answers
(the resolved answer decision problem) is generally intractable in data [25, 26, 27].
However, there are tractable cases of this decision problem that are practically relevant
[27]. Two of those cases are considered here: that of non-interacting (NI) sets of MDs
(cf. Definition 1), and that of hit-set-cyclic (HSC) sets of MDs, that we now define.

Definition 6. A set M of MDs is hit-simple-cyclic iff the following hold: (a) In all
MDs in M and in all their corresponding pairs, the two attributes (and predicates) are
the same. (b) In all MDs m ∈M , at most one attribute in LHS(m) is changeable. (c)
Each vertex v1 in MDG(M) is on at least one cycle, or there is a vertex v2 on a cycle
with at least two vertices such that there is an edge from v1 to v2. �

Example 4. For schema R[A,C, F,G], consider the following set M of MDs:

m1 : R[A] ≈ R[A] → R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C] → R[A,F,G]
.
= R[A,F,G].

Set M obviously satisfies (a) and (b) of Definition 6. Also, MDG(M) consists of a
single cycle through the two vertices, so M satisfies (c). M is then HSC.

Predicate R subject to the given M has two “keys”, R[A] and R[C]. Such relations
are common in practice. For example, R may be used in a database about people: R[A]
could be used for the person’s name, R[C] the address, and R[F] and R[G] for non-
distinguishing information, e.g. gender and age. �

HSC sets have properties similar to those of NI sets wrt the resolved answer problem
[27]. For both classes, the value positions identified as duplicates are the same for all
MRIs, and they are characterized via equivalence classes of the tuple-attribute closure.

Definition 7. [27] Let M = {mi | i = 1, . . . , n} be a set of MDs, with mi : Ri[Āi] ≈i

Si[B̄i] → Ri[C̄i]
.
= Si[Ēi]. (a) The previous set of mi, denoted PS(mi), is the set

of all MDs mj ∈ M with a path in MDG(M) from mj to mi. (b) For an instance
D, and tuples ids t1, t2 for R,S, resp. (i.e. ids for tuples t1 ∈ R(D), t2 ∈ S(D)):
(t1, Ci) ≈′ (t2, Ei) :⇐⇒ t1[Āj] ≈j t2[B̄j], where (Ci, Ei) is a corresponding pair of
(C̄i, Ēi) in mi and mj ∈ PS (mi). (c) The tuple-attribute closure (TA closure) of M
wrt D, denoted TAM,D, is the reflexive, symmetric, and transitive closure of ≈′. �

Example 5. (example 4 continued) In this case, PS (m1) = PS (m2) = {m1,m2}.
Consider the instance D, where the only similarities are: ai ≈ aj , bi ≈ bj , di ≈ dj ,

Query Rewriting Using Datalog for Duplicate Resolution 93

R(D) A B
t1 a1 d1
t2 a2 e2
t3 b1 e1
t4 b2 d2

ei ≈ ej , with i, j ∈ {1, 2}. The relations
(timod4+1, A) ≈′ (t(i+1)mod4+1, A) and
(timod4+1, B) ≈′ (t(i+1)mod4+1, B), 0 ≤
i ≤ 3, hold. The TA closure is given by
{TA(ti, x, tj , x) | 1 ≤ i, j ≤ 4, x ∈

{A,B}}. Notice that this relation involves just tuple ids and attributes. However, it
depends on D through the similarity conditions in (b) in the definition. �

For the set of MDs as in Definition 7, the TA closure can be specified by Datalog rules.
The database predicates in them have a first argument (attribute) to explicitly represent
the tuple id. More precisely, for 1 ≤ i ≤ n, for each corresponding pair (C,E) of
(C̄i, Ēi), and for each mj ∈ PS(mi), we have the rule:5

(t1, Ri[C]) ≈′ (t2, Si[E]) ← Ri(t1, x̄), Si(t2, ȳ), t1[Āj] ≈j t2[B̄j].

Additionally, for all attributes A of Ri and ids t of tuples in Ri, we have

TA(t, A, t, A)← Ri(t, x̄); (2)

similarly for Si. For arbitrary tuple ids t1, t2, and t3, and attributes A, B, and C,

TA(t1, A, t2, B) ← TA(t2, B, t1, A), (3)

TA(t1, A, t2, B) ← (t1, A) ≈′ (t2, B), (4)

TA(t1, A, t3, C) ← TA(t1, A, t2, B), (t2, B) ≈′ (t3, C). (5)

Rules (4) and (5) express that TA is the transitive closure of relation ≈′. Rules (2) and
(3), that TA is reflexive and symmetric. A related concept is the attribute closure.

Definition 8. [26] Let M be a set of MDs on schema S. (a) The symmetric binary
relation

.
=r relates attributes R[A], S[B] of S whenever there is an MD m in M where

R[A]
.
= S[B] appears in RHS(m). (b) The attribute closure of M is the reflexive,

symmetric, transitive closure of
.
=r. (c) ER[A] denotes the equivalence class of attribute

R[A] in the attribute closure of M . �

Example 6. Let M be the set of MDs: R[A] ≈1 S[B] → R[C]
.
= S[D], S[E] ≈2

T [F] ∧ S[G] ≈ T [H] → S[D,K]
.
= T [J, L], T [F] ≈3 T [H] → T [L,N]

.
= T [M,P].

The equivalence classes of Tat are ER[C] = {R[C], S[D], T [J]}, ES[K] = {S[K],
T [L], T [M]}, and ET [N] = {T [N], T [P]}. �

It is easy to show that if (u1, A), (u2, B) are in the same equivalence class of tuple-
attribute closure, then A and B are in the same equivalence class of attribute closure.

Definition 9. Let M be a set of MDs and D and instance and a a data value. For an
equivalence class E of TAM,D, the frequency of a in E is the quantity freqD(a,E) :=
|{(t, A) | (t, A) ∈ E, t[A] = a in D}|. �

Proposition 1. [27] For M an NI or HSC set of MDs, and D an instance, each MRI for
D wrt M is obtained by setting, for each equivalence class E of TAM,D, all the values
for t[A], with (t, A) ∈ E, to a value a that maximizes freqD(a,E). �

5 Remember that the first argument in Ri, Si stands for the tuple id.

94 J. Gardezi and L. Bertossi

Example 7. (example 5 continued) The two equivalence classes of TA closure are E1 =
{(ti, A) | 1 ≤ i ≤ 4} and E2 = {(ti, B) | 1 ≤ i ≤ 4}. All values in the A (B) column
of the table have frequency 1 in E1 (E2). Thus, there are 16 MRIs, obtained by setting
all values in each column to a common value chosen from those in the column. �

Proposition 1 tells us that the minimally resolved instances for an instance D can be
obtained by identifying most frequently occurring values. Thus, resolved query answers
from D can be computed by imposing this requirement on the original query. As a
consequence, the rewritten queries will become aggregate queries.

In Datalog notation, aggregate queries take the form P (ā, x̄,Agg(ū)) ← B(ȳ),
where P is answer collecting predicate, the body B(ȳ) represents a conjunction of
literals all of whose variables are among those in ȳ, ā is a list of constants, x̄∪ū ⊆ ȳ, and
Agg is an aggregate operator such as Count or Sum. The variables x̄ are the “group-by”
variables. That is, for each fixed value b̄ for x̄, aggregation is performed over all tuples
that make B x̄

b̄
, the instantiation of B on b̄ for x̄, true. Count(ū) counts the number of

distinct values of ū, while Sum(ū) sums over all ū, whether distinct or not.
Our query rewriting methodology for computing resolved answers will be applicable

to a certain class of conjunctive queries, the called UJCQ queries defined below. In [27]
a counterexample for the general applicability to all conjunctive queries is given.

Definition 10. [27] For a set M of MDs, a conjunctive query Q without built-ins is
an unchangeable join conjunctive query (UJCQ query) if there are no existentially
quantified variables in a join in Q in the position of a changeable attribute. For fixed,
M , UJCQ denotes this class of queries. �

In the rest of this paper we assume that the we have a fixed and finite set M of MDs
that satisfies the hypothesis of Proposition 1. The queries posed to the initial, possibly
non-resolved instance belong to UJCQ .

The rewritten queries will be in Datalognot,s [1], i.e. Datalog queries with stratified
negation and aggregation, and the built-ins �= and≤. For simplicity, the rewriting makes
use of tuple identifiers only. In the absence of such a surrogate key, whole tuples could
be used instead of identifiers.

Given a UJCQ queryQ, with answer predicate Q:

Q(x̄) ← R1(v̄1), R2(v̄2), ..., Rn(v̄n), (6)

the rewritten query Q′ is the conjunction of the rewritings Qi of each of the Ri, to be
given in (8) below, i.e.

Q′(x̄) ← Q1(v̄1), Q2(v̄2), ..., Qn(v̄n). (7)

Now, for a fixed atom Ri(v̄i) in (6), let C be the set of changeable attributes corre-
sponding to a free variable in v̄i, i.e. also appearing in Q(x̄). We denote the list of such
variables by v̄C .

If C is empty, then its rewriting becomes Qi(v̄i) ← Ri(v̄i). Intuitively, this is
because, by Definition 10, only attributes corresponding to free variables can participate
in joins, so changes to values of attributes corresponding to bound variables cannot
affect satisfaction of the body in (6).

Suppose C is non-empty, and consider Ri[A] ∈ C. From Proposition 1, deciding
whether or not all MRIs have the same value v for Ri[A] for a given tuple id t will

Query Rewriting Using Datalog for Duplicate Resolution 95

involve finding the frequency of v in E for the equivalence class E of the TA closure to
which (t, Ri[A]) belongs. We introduce aggregation operators to express this count, of
values for attributes in ERi[A] (cf. the remark following Example 6).

We introduce a predicate CRi[A], with an attribute at the start of its attribute list
whose value is the attribute in ERi[A] over whose values aggregation is performed. For
an attribute A and list of variables v̄, we denote with vA the variable holding the value
for A. For each S[B] ∈ ERi[A], we have the rule

CRi[A](S[B], t1, vS[B],Count(t2)) ← TA(t1, Ri[A], t2, S[B]), Ri(t1, ū), S(t2, v̄),

in which all predicate arguments are variables except for the attribute labels S[B] and
Ri[A], that are constants.

In each tuple in the head predicate of the above expression, the value of the Count
expression is |{t | (t, S[B]) ∈ E, t[S[B]] = vS[B]}|, where E is the equivalence class
of the TA closure to which (t1, Ri[A]) belongs.

To find the frequency of the value of vS[B] in E, this count must be extended to all

attributes in ERi[A]. We introduce the predicate TotalRi[A] for this purpose:

TotalR[Ai](t, v,Sum(z)) ← CRi[A](x, t, v, z).

Tuples in TotalRi[A] specify in their last argument the frequency of v in the equivalence
class of the TA-closure to which (u,R[Ai]) belongs.

To compare these aggregate quantities for different values of v, we use the Compare
predicate:

CompareR[Ai](t, v) ← TotalRi[A](t, v, z1),Total
Ri[A](t, v′, z2), z1 ≤ z2, v

′ �= v.

Tuples in CompareRi[A] consist of a tuple identifier t in Ri and a value v for attribute
Ri[A]. For such a pair (t, v) there is another value v′ whose frequency in the equivalence
class of the TA closure to which (t, Ri[A]) belongs is at least as large as that of v.

In order for a value to be a “certain” for a given attribute Ri[A] in a given tuple,
the tuple and value must not occur as a tuple in CompareRi[A]. Let v̄′i be v̄i with all
variables in v̄C replaced with new variables. Then,

Qi(v̄i)← Ri(t, v̄
′
i),

∧

Ri[A]∈C

not CompareRi[A](t, vRi[A]),Total
Ri[A](t, vRi[A], z). (8)

Example 8. Consider the schemaR[ABC], S[EFG], U [HI]with non-interacting MDs:
R[A] ≈ S[E]→ R[B]

.
= S[F], S[E] ≈ U [H]→ S[F]

.
= U [I], and the UJCQ query:

Q(x, y, z) ← R(x, y, z), S(u, v, z), U(p, q). Since the S and U atoms have no free
variables holding the values of changeable attributes, they remain unchanged. There-
fore, the rewritten queryQ′ has the form

Q′ ← R′(x, y, z), S(u, v, z), U(p, q), (9)

where R′ is the rewritten form of R. The only free variable holding the value of a
changeable attribute is y. This variable corresponds to attribute R[B], which belongs to
the equivalence class ER[B] = {R[B], S[F], U [I]}. Therefore, we have the rules:

96 J. Gardezi and L. Bertossi

CR[B](R[B], t1, y,Count(t2))← TA(t1, R[B], t2, R[B]), R(t1, x
′, y′, z′), R(t2, x, y, z).

CR[B](S[F], t1, y,Count(t2))← TA(t1, R[B], t2, S[F]), R(t1, x
′, y′, z′), S(t2, x, y, z).

CR[B](U [I], t1, y,Count(t2))← TA(t1, R[B], t2, U [I]), R(t1, x
′, y′, z′), U(t2, x, y).

TotalR[B](t, y,Sum(u)) ← CR[B](x, t, y, u).

CompareR[B](t, y) ← TotalR[B](t, y, z1),Total
R[B](t, y′′, z2), z1 ≤ z2, y

′′ �= y.

The rewriting of R becomes

R′(x, y, z)← R(t, x, y′, z), not CompareR[B](t, y),TotalR[B](t, y, w). (10)

Thus, the rewriting of the original query is the stratified Datalog program [1] with ag-
gregation consisting of rules (9), (10), plus the five rules preceding (10). �

In order to obtain the resolved answers to a query on a possibly non-resolved instance
D, the resulting Datalog program can be run on D in polynomial time in the size of D.
Remarks on implementation and an example are included in an extended version [28].

5 Conclusions

This paper considered a novel approach based on query rewriting to the duplicate res-
olution problem within the framework of matching dependencies. The transformed
queries return the resolved answers to the original query, which are the answers that
are true in all minimally resolved instances.

We used minimal resolved instances (MRIs) as our model of a clean database. An-
other possibility is to use arbitrary, not necessarily minimal, resolved instances (RIs).
While MRIs have the advantage of being “closer” to the original instance than RIs, they
have the downside of being overly restrictive.

In practice, update values are typically chosen by applying a merging function to the
sets of duplicates [9, 13, 14], rather than by imposing a minimal change constraint. RIs
are more flexible in that they take into account all ways of choosing the update values
that lead to a clean database. We are currently investigating query answering over RIs,
identifying tractable cases of the problem that are not tractable for MRIs.

Matching dependencies first appeared in [20], and their semantics is given in [21].
The original semantics was refined in [13, 14], including the use of matching functions
(MFs) for matching two attribute values. The approach in [13, 14] uses a chase to define
clean instances. The MDs are applied one at a time to pairs of tuples, rather than all at
once to all tuples as in the present paper. Another important difference is that here we
do not use MFs to do a mathcing, but implicit existential quantifiers for the values in
common. When the update values are determined by the matching functions there is
no uncertainty arising from different possible choices for update values. Rather, the
different clean instances are produced by applying the MDs in different orders. Clean
answers are obtained by taking a glb (or lub) over the clean instances wrt a partial
ordering that is based on semantic domination of one value by another.

The alternative refinement of the semantics used in this paper was first introduced in
[25, 26]. A thorough complexity analysis, as well as the derivation of a query rewriting
algorithm for the resolved answer problem was done in [27].

Query Rewriting Using Datalog for Duplicate Resolution 97

Our work in some ways resembles work on query answering over ontologies [16].
As in our duplicate resolution setting, a chase is applied repeatedly to an initial instance,
terminating in a “repaired” instance which is a fixed point of the chase rules. The set of
chase rules can include tuple generating dependencies (TGDs) and equality generating
dependencies (EGDs). Despite these similarities, our chase differs from those based on
EGDs and TGDs in that it does not generate new tuples, but modifies values in existing
tuples. Also, despite the fact that MDs are similar to EGDs, issues arise as a result of
the non-transitivity of similarity operators that do not occur in the case of EGDs.

In [3], Datalog is used for identifying groups of tuples that could be merged. How-
ever, they do not do the merging (a main contribution in our approach) or base their
approach on MDs. Actually, that work could be considered as complimentary to ours,
in the sense that, in essence, the authors address the problem of identifying similarities.
This is the starting point for the actual matchings that we address in this paper.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.Addison-Wesley (1995)
[2] Afrati, F., Kolaitis, P.: Repair checking in inconsistent databases: Algorithms and complex-

ity. In: Proc. ICDT (2009)
[3] Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedupalog.

In: Proc. ICDE (2009)
[4] Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases.

In: Proc. PODS (1999)
[5] Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in in-

consistent databases. Theory and Practice of Logic Programming 3(4-5), 393–424 (2003)
[6] Bahmani, Z., Bertossi, L., Kolahi, S., Lakshmanan, L.: Declarative Entity Resolution via

Matching Dependencies and Answer Set Programs. In: Proc. KR 2012 (2012)
[7] Barceló, P., Bertossi, L., Bravo, L.: Characterizing and Computing Semantically Correct

Answers from Databases with Annotated Logic and Answer Sets. In: Bertossi, L., Katona,
G.O.H., Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases. LNCS, vol. 2582, pp.
7–33. Springer, Heidelberg (2003)

[8] Barcelo, P.: Logical foundations of relational data exchange. SIGMOD Record 38(1), 49–
58 (2009)

[9] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Euijong Whang, S., Widom, J.:
Swoosh: A generic approach to entity resolution. VLDB Journal 18(1), 255–276 (2009)

[10] Bertossi, L.: From database repair programs to consistent query answering in classical
logic. In: Proc. AMW. CEUR-WS, vol. 450 (2009)

[11] Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lectures on
Data Management. Morgan & Claypool (2011)

[12] Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approximation
of fixing numerical attributes in databases under integrity constraints. Information Sys-
tems 33(4), 407–434 (2008)

[13] Bertossi, L., Kolahi, S., Lakshmanan, L.: Data cleaning and query answering with matching
dependencies and matching functions. In: Proc. ICDT (2011)

[14] Bertossi, L., Kolahi, S., Lakshmanan, L.: Data cleaning and query answering with
matching dependencies and matching functions. Theory of Computing Systems (2012),
doi:10.1007/s00224-012-9402-7

[15] Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys 41(1), 1–41 (2008)

98 J. Gardezi and L. Bertossi

[16] Cali, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: A logical toolbox for ontological reason-
ing. ACM Sigmod Record 40(3), 5–14 (2011)

[17] Caniupan, M., Bertossi, L.: The consistency extractor system: answer set programs for
consistent query answering in databases. Data & Know. Eng. 69(6), 545–572 (2010)

[18] Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple dele-
tions. Information and Computation 197(1/2), 90–121 (2005)

[19] Eiter, T., Fink, M., Greco, G., Lembo, D.: Repair localization for query answering from
inconsistent databases. ACM Trans. Database Syst. 33(2) (2008)

[20] Fan, W.: Dependencies revisited for improving data quality. In: Proc. PODS (2008)
[21] Fan, W., Jia, X., Li, J., Ma, S.: Reasoning about record matching rules. In: Proc. VLDB

(2009)
[22] Flesca, S., Furfaro, F., Parisi, F.: Querying and repairing inconsistent numerical databases.

ACM Trans. Database Syst. 35(2) (2010)
[23] Franconi, E., Laureti Palma, A., Leone, N., Perri, S., Scarcello, F.: Census Data Re-

pair: A Challenging Application of Disjunctive Logic Programming. In: Nieuwenhuis,
R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer,
Heidelberg (2001)

[24] Fuxman, A., Miller, R.: First-order query rewriting for inconsistent databases. J. Computer
and System Sciences 73(4), 610–635 (2007)

[25] Gardezi, J., Bertossi, L., Kiringa, I.: Matching dependencies with arbitrary attribute values:
semantics, query answering and integrity constraints. In: Proc. LID (2011)

[26] Gardezi, J., Bertossi, L., Kiringa, I.: Matching dependencies: semantics, query answering
and integrity constraints. Frontiers of Computer Science 6(3), 278–292 (2012)

[27] Gardezi, J., Bertossi, L.: Query answering under matching dependencies for data cleaning:
Complexity and algorithms, arXiv:1112.5908v1

[28] Gardezi, J., Bertossi, L.: Query Rewriting using Datalog for Duplicate Resolution (ex-
tended version), http://people.scs.carleton.ca/˜bertossi/papers/
datalog22Long.pdf

[29] Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing incon-
sistent databases. IEEE Trans. Knowledge and Data Eng. 15(6), 1389–1408 (2003)

[30] Wijsen, J.: Database repairing using updates. ACM Trans. Database Systems 30(3), 722–
768 (2005)

[31] Wijsen, J.: On the first-order expressibility of computing certain answers to conjunctive
queries over uncertain databases. In: Proc. PODS (2010)

http://people.scs.carleton.ca/~bertossi/papers/datalog22Long.pdf
http://people.scs.carleton.ca/~bertossi/papers/datalog22Long.pdf

	Query Rewriting Using Datalogfor Duplicate Resolution
	Introduction
	Preliminaries
	Matching Dependencies and Resolved Answers
	Query Rewriting for Resolved Answers
	Conclusions
	References

