
Genetic Programming of Augmenting Topologies
for Hypercube-Based Indirect Encoding of Artificial

Neural Networks

Jan Drchal and Miroslav Šnorek

Department of Computer Science and Engineering,
FEE CTU, Karlovo náměstı́ 13, 121 35, Praha 2, Czech Republic

{drchajan,snorek}@fel.cvut.cz

Abstract. In this paper we present a novel algorithm called GPAT (Genetic Pro-
gramming of Augmenting Topologies) which evolves Genetic Programming (GP)
trees in a similar way as a well-established neuro-evolutionary algorithm NEAT
(NeuroEvolution of Augmenting Topologies) does. The evolution starts from a
minimal form and gradually adds structure as needed. A niching evolutionary
algorithm is used to protect individuals of a variable complexity in a single popu-
lation. Although GPAT is a general approach we employ it mainly to evolve artifi-
cial neural networks by means of Hypercube-based indirect encoding which is an
approach allowing for evolution of large-scale neural networks having theoreti-
cally unlimited size. We perform also experiments for directly encoded problems.
The results show that GPAT outperforms both GP and NEAT taking the best of
both.

1 Introduction

Recently, there has been a growing interest in the techniques which evolve large-
scale artificial neural networks (ANNs). Classical training algorithms (such as back-
propagation, second order optimization and evolutionary computation) suffer from poor
convergence caused by the large dimension of the optimized synaptic weights (or other
parameters). This problem was already successfully addressed by neuro-evolutionary
approaches [1,2,3] which employ indirect encoding of ANNs. The idea of the indirect
encoding is inspired by the Nature, where relatively short genomes encode highly com-
plex structures. This immense compression of information is, among others, facilitated
by regularities found at all scales of magnification.

This paper deals with a related state-of-the-art approach called HyperNEAT [4]
which employes the so-called Hypercube-based indirect encoding and a well-
established neuro-evolutionary algorithm NEAT. HyperNEAT works in a following
way: at first, one have to decide for the structure of a final network (number and
types of neurons and possible connections), also each neuron is assigned coordinates.
Such template is called the substrate. Second, NEAT algorithm is used to evolve the
CPPNs (Compositional and Pattern Producing Networks). The CPPN in HyperNEAT
has a form of a common neural network, with an exception of using nodes with special
transfer functions which are either symmetric, periodic or of a different type to reflect

V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 63–72.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



64 J. Drchal and M. Šnorek

the above mentioned regularities found in living creatures. Third, the final network is
constructed according to the substrate. The CPPN is then used to determine synaptic
weights of all possible connections found in the substrate (coordinates of all pairs of
neurons are fed to inputs). Fourth, the final network is evaluated on a problem domain
to get the fitness value and provide a feedback to NEAT. HyperNEAT was successfully
used to evolve networks having almost 8 millions of connections [4].

In [5] Buk et al. presented a modification of HyperNEAT, where NEAT was replaced
by Genetic Programming (GP), as the base algorithm evolving CPPNs. It was shown
to be superior in a speed of convergence to NEAT on a simulated robotic task. Here,
we combine advantages of both GP and NEAT and propose a novel algorithm called
Genetic Programming of Augmenting Topologies (GPAT). We compare all three base
algorithms on problems having both directly and indirectly encoded genomes. GPAT in
combination with Hypercube-based encoding will be denoted as HyperGPAT.

The paper1 is organized as follows. Section 2 describes the theoretical background.
Section 3 introduces GPAT algorithm. Section 4 describes the test problems and the
experimental setup. Section 5 discusses the results. Final section concludes the paper.

2 Background

In this section, we briefly describe NEAT and GP base algorithms.

NEAT. NeuroEvolution of Augmenting Topologies (NEAT) [6] is an algorithm orig-
inally developed for evolution of both parameters (weights) and topology of artificial
neural networks. It was later enhanced to produce the CPPNs with heterogenous nodes
for the HyperNEAT algorithm instead of producing the neural networks directly. It
works with genomes of variable size. NEAT introduced a concept of innovation num-
bers, which are gene labels allowing effective genome alignment in order to facilitate
crossover-like operations. Moreover, innovation numbers are used for computation of a
genotypical distance between two individuals. The distance measure is needed by nich-
ing evolutionary algorithm, which is a core of NEAT. Because NEAT evolves networks
of different complexity (sizes) niching was found to be necessary for protection of new
topology innovations. An important NEAT property is the complexification – it starts
with simple networks and gradually adds new neurons and connections.

The niching algorithm used in NEAT is Explicit Fitness Sharing [7] (EFS) as it uses
a genotypical distance measure. Fitness sharing reduces the fitness of an individual
given the number of similar individuals (similar individuals form a niche) in the popu-
lation. The version used in NEAT divides the population into mutually exclusive niche
(species). When a new individual is to be assigned to a species it goes through a list of
the already existing species and is always compared with the individual designated as
the species’ representative. The comparison is done via evaluation of a distance mea-
sure. If the two individuals are similar enough (their distance is below a predefined
speciation threshold δ ) the new individual is assigned to the species, otherwise, it tries
the next one in the list. If no species is compatible enough, a new one is created and the
individual becomes its representative.

1 Note, the the source codes and detailed experimental settings can be found at:
http://neuron.felk.cvut.cz/˜drchaj1/.

http://neuron.felk.cvut.cz/~drchaj1/


GPAT for Hypercube-Based Indirect Encoding 65

GP. Genetic Programming [8] is a well-known evolutionary approach which evolves
syntactic trees (or forests of trees). In this paper, we use a slightly simplified version
of GP as a base algorithm, omitting a commonly used crossover operator as it was not
found beneficial by Buk [5] for Hypercube-based domain. More specifically, to create
a new generation, we employ a tournament selection (tournament of size 2) to select N
(the population size) parents. Each selected parent then produces a single offspring. Al-
gorithm continues by sorting all 2N individuals by their fitness and successively reduces
their number back to N, keeping only the fittest.

The initial population is created using the grow method [8]. The depth of trees is
limited to avoid bloating. We use two types of mutations: a structural mutation selects
a random node in a tree and replaces it by a random subtree again using the grow method
or replaces the node by a random node of the same arity. A parametric mutation selects
a random constant node (if exists) and applies a Cauchy mutation [9] to it. A newly
created random constant node is initialized by a random value from a selected interval.

3 Our Approach

In this section we describe GPAT algorithm. The algorithm works exactly as NEAT with
an exception of genome representation, genetic operators and distance measure. Un-
like in NEAT, where genomes encode neural networks, GPAT genomes represent trees
(more specifically forests of trees, to facilitate multiple outputs). GPAT uses nodes of
variable arity starting with zero children. Moreover, each children of a node is assigned
a constant which has a similar function as a synaptic weight in ANN. The constants are
therefore associated with links contrary to constants represented only by terminal nodes
in GP.

For a detailed description of NEAT, especially speciation and selection, see [6]. In
our implementation, we use an adaptive speciation threshold δ : it is doubled when a
number of species exceeds the target number of species nS, otherwise it is divided by 2.

GPAT Nodes. We use the following non-terminals for GPAT: +
(
∑C

i=1 cixi
)
,

*
(
∏C

i=1 xi
)
, A

(
arctan

(
∑C

i=1 xi
))

, S
(
sin

(
∑C

i=1 xi
))

and G
(

e∑C
i=1 xi

)
for all experiments

in this paper. The output of each node is given in parentheses, C stands for the node ar-
ity, ci is the i-th child’s constant and xi is the i-th child’s output. For C = 0 the output is
defined as 0 for all node types. Note, that constants are used only by the + node, they are
stored but not used for other types of nodes. The given set is optimized for Hypercube-
based indirect encoding, it contains symmetric, periodic and other functions. The set of
terminals is composed of a problem-specific number of inputs and a fixed constant 1.

Similarly to NEAT, GPAT starts with a population of simplest forests possible. In our
case this means a forests with all trees having a + terminal as the root with zero children
(such trees always output zero).

Genetic Operators. A new individual is created by the following structural and para-
metric mutations which can be applied with a given probability for each tree of the
forest:



66 J. Drchal and M. Šnorek

Add Link Mutation. With a probability pAL generate a random terminal t and connect it
to a random tree non-terminal node. This mutation closely resembles add link mutation
as found in NEAT, except, links always connect terminals to non-terminals.

Add Node Mutation. With a probability pAN choose a random link l and replace it by the
structure l1 → n → l2, where l1 and l2 are new links and n a new non-terminal random
node. This mutation was again inspired by its NEAT counterpart.

Insert Root Mutation. Create a new random root node and assign the original root as
its only child with a probability pIR.

Switch Node Mutation. Chose a random non-terminal or terminal node and change its
type randomly with a probability pSN .

Cauchy Parametric Mutation. Apply a Cauchy mutation as described in GP section to
each constant of the tree with a probability pCM.

Replace Constant Parametric Mutation. With a probability pRC for each constant of
the tree reset its value to a random number from a given interval [−aR,aR].

Currently we do not employ any crossover-like operator, which would require to
implement innovation number mechanism (see [6]). To limit bloating no structural mu-
tation was allowed for genotypes large enough (here the limit was: depth > 5, number
of constants > 10 and the number of nodes > 12).

Distance Measure. Unlike in NEAT we have decided to use a simpler distance measure
not based on innovation numbers. This is facilitated by the fact that we employ trees
instead of networks2.

Our approach called the generalized distance measure, covers many already pub-
lished approaches for GP trees, it is mostly inspired by [10], although we do not take
constant values into account. It allows to change behavior according to parameters. At
first, all node types are partitioned to sets A0, A1, A2, . . ., where A0 = {NIL} contains
only a special NIL node and A1 is reserved for constants. Then we define an auxiliary
function to compute the distance between two node types x ∈ Ai and y ∈ A j:

d′(x,y) =
{

0 if x = y (note, this implies i = j),
1 otherwise.

The generalized measure is defined as d(p,q) = d′(p,q), if neither p, nor q
have descendants, d(p(s1, . . . ,sn),q(t1, . . . , tm)) = d(q(t1, . . . , tm), p(s1, . . . ,sn))), for
m < n and d(p(s1, . . . ,sn),q(t1, . . . , tm)) = d′(p,q) + max(α,δpq)

1
K

(
∑n

i=1 d(si, ti) +
+β ∑m

j=n+1 d(NIL, t j)
)

for n ≤ m. The meaning of constants is as follows:

– α ∈ {0,1} decides whether to descend into subtrees, when nodes have different
types (descends when α = 1),

2 We have also experimented with NEAT-like distance measure, the preliminary results show,
that both approaches are comparable.



GPAT for Hypercube-Based Indirect Encoding 67

– β ∈ {0,1} decides whether to include information concerning the missing subtree
in one of the trees (includes when β = 1),

– δpq is the Kronecker delta,
– K > 0 controls the influence of a node depth in the tree (for K = 1 the node depth

does not matter).

Along with the generalized distance measure we have also used the random distance as
a control treatment, where the distance between two trees is defined as a random number
from interval [0,1) using uniform distribution. GPAT with the random measure will be
denoted as GPAT-R. Note, that although this section dealt with tree distance measures,
in fact we evolve forests with GPAT to allow multiple outputs. The distance between
two forests is computed as an average of distances between corresponding trees.

4 Experimental Setup

In this section, we present both directly (Symbolic Regression and Maze Navigation)
and indirectly encoded problems used to compare the base algorithms (NEAT, GP,
GPAT and GPAT-R). Such experiments will be helpful to show, whether there is a differ-
ence in a choice of the right distance measure for direct and indirect encoding domains.

Symbolic Regression. The first, most straightforward problem is Symbolic Regres-
sion, the test functions are in Tab. 1. The equations are divided into four groups accord-
ing to their dimensionality (the number of inputs). They were selected from a larger
set, of which they presented the most diverse behaviors. Note, that the equation 4D-V
was obtained by solving a Visual Discrimination problem (see below). The 1D, 2D and
3D functions were sampled in a hypercube having minimum and maximum coordinates
−10 and 10, 4D used boundaries of −1 and 1. We have used 20 equidistant samples in
each dimension for 1D, 7 for 2D and 3D and 5 for 4D. The fitness is computed using
Mean Squared Error as 1/(1+MSE) which lies in (0,1]. The problem was considered
to be solved, when target fitness 0.95 was reached. Note, neither testing nor validation
sets were used.

Table 1. Symbolic Regression functions

ID Function ID Function

1D-F 1.5x3
1 +2.3x2

1 −1.1x1 +3.7 3D-K x1x2
2x3 −x1x2 +x2x3

1D-H 0.1x2
1 +0.2sin(x) 4D-C 1.5x1x2x3x4

2D-I 1.5x1x2
2 +2.3x1x2 −1.1x2

2 4D-F 1.5x1x2x3 +2.3x1 −1.1x2 −1.1x4
2D-K x1x2

2 +x1x2 −x2
2 4D-G 1.5x1x3x4x2

2 −1.1x2 +2.3x1

3D-E 1.5x1x2 +2.3x1 +x2x3 −1.1x3 4D-V e−ax2
2 x1

(
be−x2

3 −csin (1−x1)
)

3D-H 1.5x1x2
2x3 +2.3x1x2x3 −1.1x2 +5.3 (a,b,c) = (1.36709,2.43454,0.393788)



68 J. Drchal and M. Šnorek

Maze Navigation. Maze navigation (see Fig. 1) presents a deceptive task to show
abilities to overcome local extremes. The problem is a simple target approach, where a
simulated robot tries to navigate through a maze from a starting position to a target one.
Fitness is derived from the Manhattan distance between the robot and the target after
150 steps. We have used not only two different maps, but for each map also different
types of sensors. For MAZE-1 the sensors were: distance to target, binary wall sensors
(1 step ahead, ahead-left, ahead-right) and binary target detection (ahead, left, right
and behind). For MAZE-2 we have used four wall range finders instead of three wall
detection sensors. The controller has a single output: for output values less than −0.5
the robot turns left and advances, for values greater than 0.5 it turns right and advances,
otherwise it makes only a step forward. The problem was considered to be solved if and
only if the robot reaches the target. Both tasks are deceptive as there are local extremes
in a proximity of the global one.

Fig. 1. MAZE-1 (left), MAZE-2 (middle) maps, Mobile Robot Navigation arena (right). MAZE-
2 shows a possible solution. Mobile Robot Navigation map shows roads (fast) and grass (slow)
surfaces. Two white squares determine starting positions.

Bit Permutation. Bit permutation is a set of three problems which are similar to the
Bit Mirroring in [11]. All possible combinations of inputs (0s and 1s) were tested. In
this paper we did experiments with n = 6 inputs/outputs (64 possibilities). The fitness
is computed as a number of all correct output bits over all test patterns (in contrary
to [11].) The problem was considered to be solved when all input patterns generated
correct output patterns. The substrate is composed of two layers of neurons (input and
output). Nodes in each layer are placed equidistant (with a distance 1). A bias neuron
(having coordinate 0) is connected to all output neurons. The CPPN has therefore 2
outputs. The three problems are:

Bit Reverse. Bits 1,2, . . .n labeled from the LSB to the MSB: o j = in− j+1, for j ∈
{1,2, . . . ,n}.

Bit Shift. Logical shift to the right: on = 0, o j = i j+1, for j ∈ {1, . . . ,n− 1}.

Bit Rotate. Circular shift to the right: o j = i j+1 mod n, for j ∈ {1, . . . ,n}.



GPAT for Hypercube-Based Indirect Encoding 69

Parity Problem. In this experiment we evolve a network computing odd parity. The
function has n inputs (in our case 4) and a single output. The substrate is similar to the
previous one, although we added a biased hidden layer (CPPN with 4 outputs). A final
network must give correct answers for all 16 test cases.

Visual Discrimination. As presented in [4], the task is to detect the larger object of
two objects, projected on a two-dimensional array of input neurons. Unlike in origi-
nal experiment, we employed a smaller input resolution of 5× 5 and the problem was
considered to be solved only for success in all test cases.

Mobile Robot Navigation. In the last experiment, we have employed ViVAE (Visual
Vector Agent Environment) [5,12]. The task was to evolve robotic controller to drive
two robots on a map (See Figure 4) at a maximum possible speed. The best strategy is
to drive on a side of a road to avoid collisions. The problem was considered to be solved
when a fitness reached 0.797 (value found experimentally).

Parameter Settings. The size of population was set to 100, the maximum number of
generations was 1000 (for Mobile Robot Navigation they were set to 100 and 50) for all
algorithms (GP, GPEFS and NEAT). All experiments were repeated for 200 times with
an exception of the Mobile Robot Navigation, which was repeated for 20 times, only.

We have used the same node types for all experiments. In the case of NEAT they
were: Bipolar Sigmoid, Sin, Linear and Gaussian. For GP: Add, Multiply, ArcTan, Sin
and Gaussian, see [5]. GPAT nodes were described above. Along with inputs, GP uses
a fixed constant of −1. Note, that other parameter settings, e.g., mutation rates are
available at the paper support page (see above).

To test the properties of the generalized distance measure, we did experiments for
all 8 combinations of K ∈ {1,2}, α ∈ {0,1} and β ∈ {0,1}, we will write these config-
urations as tuples, e.g., (2,0,1), in the following text.

5 Results

The results of all experiments are summarized in Fig. 2 showing success rates for both
direct and indirect problems. One can see that NEAT performs the worst of all algo-
rithms with an exception of Visual Discrimination where it is comparable with GPAT-R
and MAZE-2 where it significantly3 outperforms GP. Note, that NEAT never outper-
forms GP on indirect encoding problems: this supports the results in [5].

GP is a significant winner on three symbolic regression problems (2D-K, 3D-K and
4D-V) and a nonsignificant winner on Parity. Interestingly 2D-K and 3D-K are equa-
tions with a minimum number of constants (zero and one), while 4D-V is a solution of
the Visual Discrimination evolved by GP (GP is most probably biased to evolve such
solutions).

3 We use Fisher’s Exact test (two-tailed, significance level 5%) to compare the numbers of suc-
cessful experiments.



70 J. Drchal and M. Šnorek

6. 4.
5 14

.5
9.

5 21
.5

5.
5

23
.

9.
27

.
10

.

2.
60

.5
50

.
76

.
69

.5
69

.5
52

.5 69
.

71
.5 78

.
82

.

24
.5

3.
39

.
24

.5
11

.5
7.

21
.

9.
19

.
6.

54
.5

0.
5 15

.5
6. 7. 2.

11
.5

5. 7. 0.
5

1D�F

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

1D�H

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

2D�I

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

2D�K

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

31
.

1.
5

24
.

19
. 27

.5

8.

50
.

22
.

43
.

19
.

9.
5

1.
5 9. 6. 10

.

2.
5 16

.5

5.

18
.5

3.

17
.5

2. 3. 1.
5

3.
5

0.
5

1. 2.
5

0.
5

3D�E

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

3D�H

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

3D�K

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

96
.

84
.5

1.
10

0.
1.

10
0.

0.
5

10
0.

10
0.

24
.5

24
.5

12
. 18

.5
1.

27
.

49
.

9.
5 13

. 24
.5

0.
5

55
.

46
.

27
.

6.
5

42
.5 57

.
18

.
21

.

1.
74

.5
2.

5
3.

5
0.

5
0.

5

18
.

17
.5

3. 3.
5

4D�C

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

4D�F

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

4D�G

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

4D�V

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

28
.5 34
.

74
.

96
.5

86
.

89
.5

58
.

87
.

83
.

81
.

82
.5

33
.

20
.

48
.

17
. 23

.

15
.5

35
.

28
.5 44

.5

16
.5

44
.

MAZE�1

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

MAZE�2

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

3.
5

76
.

72
.5

94
.5 10
0.

41
.5

10
0.

37
.5

82
.5

29
.5

90
.

0.
5

26
.5

28
.5

85
.5 10

0.

43
.

99
.

25
.5

75
.5

16
.5

70
.

2. 2. 3. 4. 5.
5

0.
5

0.
5

0.
5

0.
5

Bit Reverse

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

Bit Shift

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

Bit Rotate

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

2.
5

63
.

44
.

31
. 44

.5

34
.

62
.

42
.5 59

.5

29
. 38

.5

32
.5

64
.5

31
.5

91
.

84
.5

70
.5

15
.5

72
.

59
. 74

.5

69
.5

45
.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

Parity

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

Visual Discrimination

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

Mobile Robot Navigation

N G R A
1.
0
0

A
1.
1
0

A
2.
0
0

A
2.
1
0

A
1.
0
1

A
1.
1
1

A
2.
0
1

A
2.
1
1

20

40

60

80

100
SUCCESS �

Algorithm
K
Α
Β

Fig. 2. Experiment results for all test problems. The success rate over 200 experiments (20 for
Mobile Robot Navigation) is shown above bars. NEAT is labeled as N, GP as G, GPAT as A and
GPAT-R as R. The values of distance measure constants K, α and β are shown.



GPAT for Hypercube-Based Indirect Encoding 71

GPAT-R, the control treatment, performed significantly better than NEAT in most
cases. On the other hand it performed worse than GP on all with an exception of both
maze tasks (significantly better) and Bit Shift (non-significantly better).

Finally, with a proper choice of the parameters K, α and β , GPAT is a significant win-
ner on all problems with an exception of the before mentioned 2D-K, 3D-K, and 4D-V
dominated by GP and MAZE-2 and Parity where GPAT is non-significantly worse than
GPAT-R and GP. Even without selecting the best configuration for each problem and
having them fixed either to (1,0,0) or (1,1,1), GPAT is a winner (at least non signif-
icantly worse than the best of NEAT, GP or GPAT-R) for 8 out of 13 direct problems
and 5 out of 6 indirect problems.

As one can see, GPAT success rate shows a noticeable dependence on distance mea-
sure parameters. The cases where GPAT-R outperforms GPAT clearly indicates where
inappropriate parameter settings were chosen. The choice of K = 2 (for K > 1 the deeper
the node is in a tree the smaller influence it has on a distance) seems to rather harm the
performance when compared to K = 1 (with few exceptions, e.g., Parity) which contra-
dicts results in [13]. The choice of α (enables/disables a comparison of subtrees with
different root node types) and β (take or not the size and shape of subtrees missing in
one of the trees into account) parameters is highly problem-dependent. However, for all
indirect encoding problems with an exception of Visual Discrimination, setting α = 1
improves the performance. For 4D-C (direct encoding) the difference even makes up
to 100%. Setting β = 1 most often leads to a reduced performance. On the other hand,
when α = 1, setting β = 1 led to improvement (see Visual Discrimination, Parity, 4D-F,
4D-G, 4D-V and maze tasks). This influence of α and β should be further examined.

6 Conclusions

In this paper, we have proposed a novel algorithm called GPAT which is inspired by the
well-known NEAT and GP algorithms. It takes the complexification property and the
niching evolutionary algorithm from NEAT while operating on tree-structures known
from GP. The use of trees allowed for a simpler distance measure and one such the
generalized measure was proposed and tested. Although the choice of node types for
GPAT was optimized for Hypercube-based indirect encoding tasks, the algorithm is
general and can be simply adapted to any task where GP is applicable.

GPAT outperformed both NEAT and GP on most benchmarks. For all indirect encod-
ing problems GP was superior to NEAT which supports results in [5]. Our estimation is,
that this is caused by a larger search-space for NEAT as it has to optimize more random
constants than a comparable tree. Also, some of the tested problems demanded high
accuracy (e.g., Symbolic Regression) which might be disadvantageous for NEAT. This
has to be, however, further examined.

In the future we plan to experiment with innovation number based distance measure
resembling the one used in NEAT and compare it to the proposed generalized mea-
sure. The use of innovation numbers will also allow to implement crossover (mating)
operator efficiently. The generalized measure can be further extended to take values of
constants into account similalrly as in [10]. Moreover, there is a possibility to employ
other measures, i.e., edit-distance based measures [14].



72 J. Drchal and M. Šnorek

Acknowledgement. This research has been supported by the Ministry of Educa-
tion,Youth and Sports of the Czech Republic as a part of the institutional development
support at the CTU in Prague.

References

1. Eggenberger-Hotz, P.: Creation of Neural Networks Based on Developmental and Evolution-
ary Principles. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 337–342. Springer, Heidelberg (1997)

2. Gruau, F.: Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm.
PhD thesis, Ecole Normale Supirieure de Lyon, France (1994)

3. Koutnik, J., Gomez, F., Schmidhuber, J.: Evolving Neural Networks in Compressed Weight
Space. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Compu-
tation - GECCO 2010, p. 619. ACM Press, New York (2010)

4. Gauci, J., Stanley, K.O.: Generating Large-Scale Neural Networks Through Discovering Ge-
ometric Regularities. In: Proceedings of the 9th Annual Conference on Genetic and Evolu-
tionary Computation - GECCO 2007, pp. 997–1004. ACM Press, New York (2007)

5. Buk, Z., Koutnı́k, J., Šnorek, M.: NEAT in HyperNEAT Substituted with Genetic Program-
ming. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS,
vol. 5495, pp. 243–252. Springer, Heidelberg (2009)

6. Stanley, K.O.: Efficient Evolution of Neural Networks through Complexification. PhD thesis,
The University of Texas at Austin (2004)

7. Mahfoud, S.W.: A Comparison of Parallel and Sequential Niching Methods. In: Proceedings
of the Sixth International Conference on Genetic Algorithms, pp. 136–143. Morgan Kauf-
mann (1995)

8. Poli, R., Langdon, W.B., Mcphee, N.F.: A Field Guide to Genetic Programming (March
2008), Published via http://lulu.com

9. Yao, X., Yong, L., Guangming, L.: Evolutionary Programming Made Faster. IEEE Transac-
tions on Evolutionary Computation 3, 82–102 (1999)

10. Ekárt, A., Németh, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In: Poli, R.,
Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS,
vol. 1802, pp. 259–270. Springer, Heidelberg (2000)

11. Clune, J., Stanley, K.O., Pennock, R.T., Ofria, C.: On the Performance of Indirect Encoding
Across the Continuum of Regularity. IEEE Transaction on Evolutionary Computation 15(3),
346–367 (2011)

12. Drchal, J., Koutnik, J., Snorek, M.: HyperNEAT Controlled Robots Learn How to Drive on
Roads in Simulated Environment. In: CEC 2009 Proceedings of the Eleventh Conference on
Congress on Evolutionary Computation, Trondheim, pp. 1087–1092. IEEE Press (2009)

13. Igel, C., Chellapilla, K.: Investigating the Influence of Depth and Degree of Genotypic
Change on Fitness in Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference, Orlando, FL, USA, pp. 1061–1068. Morgan Kaufmann (1999)

14. Nguyen, T.H., Nguyen, X.H.: A Brief Overview of Population Diversity Measures in Genetic
Programming. In: Proceedings of the Third Asian Pacific Workshop on Genetic Program-
ming, pp. 128–139 (2006)

http://lulu.com

	Genetic Programming of Augmenting Topologies for Hypercube-Based Indirect Encoding of Artificial Neural Networks
	Introduction
	Background
	Our Approach
	Experimental Setup
	Results
	Conclusions
	References




