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Abstract. This contribution deals with a new algorithm – the Self-Organizing 
Migrating Algorithm (SOMA). The SOMA algorithm was used for static opti-
mization of a given chemical reactor with 5 inputs and 5 outputs. SOMA was 
used on this reactor for static optimization because the reactor, which was set 
by an expert, shows poor performance behaviour. Participation consists of 
simulation results, which shows how expertly set reactor behaves. Also set of 
static optimization simulations of given reactor is presented here including re-
sults and conclusions. 
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1   Introduction 

Nowadays, there exist a broad class of algorithms that can be, and are, used for opti-
mization. This special class of algorithms is made up of so-called evolutionary algo-
rithms (EA) similar to genetic algorithms or differential evolution algorithms [1]. 
Both algorithms work with so-called populations that are evolved in “generations” (or 
“Migration Loops” in the case of SOMA [2], [3], [4], [5], [1]), in which only the best-
suited individuals survive. 

This contribution presents a new algorithm, which can be labelled an "evolution-
ary" algorithm - despite the fact that during its activity, no new generations are cre-
ated (in a general sense). Development of this algorithm was inspired by the behav-
iour patterns of groups of wild animals in the wild. It has been termed “the Self-
Organizing Migrating Algorithm” – or SOMA for short (for complete description, 
source codes etc. please see [5]). 

SOMA, and generally speaking any evolutionary algorithm, can be used in regards 
to any optimization problem. Surprisingly, many problems can be defined as optimi-
zation problems, e.g. the optimal trajectory of robot arms; the optimal thickness of 
steel in pressure vessels; the optimal set of parameters for controllers; optimal rela-
tions or fuzzy sets in fuzzy models; and so on. Solutions to such problems are usually 
more or less hard to arrive at, their parameters usually including variables of different 
types, such as real or integer variables. Evolutionary algorithms are quite popular be-
cause they allow the solution of almost any problem in a simplified manner, because 
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they are able to handle optimizing tasks with mixed variables - including the appro-
priate constraints, as and when required. 

This contribution explains SOMA’s use on static optimization of given chemical 
reactor. A large part of the research dealing with wastes of the leather industry, except 
for USDA publications, does not go into particulars about how to cope with chrome 
sludge after dechromation of tanned wastes. As if chrome sludge so formed was 
automatically assumed to be simply used for producing recycled tanning salt. Even 
though the balance of chromium in chrome-tanned wastes and of necessary tanning 
salt is very favorable for recycling in the tanning industry, the actual situation is  
different. 

Although we quite correctly feel and hope that the issue of recycling chromium 
into the tanning industry should be worked on or at least supported by manufacturers 
of chromic chemicals in the first place, we studied both the drawbacks of such recy-
cling and applications in other fields. Part of this research is focused on reactor inside 
which class of mentioned chemical reactions could be done. Main aim of SOMA use 
was for reactor static optimization. 

2   Reactor Description 

Model of the reactor (see Figure 1) inside which can be realized above mentioned re-
actions was given by 5 nonlinear partial differential equations. Expert parameters 
were used for original setting. They comes from experiences obtained during visit in 
laboratory „Resine and Composite for Forest Products“ in Sainte-Foy, Canada. This 
set of parameters consisted of two kind of parameters i.e. parameters of chemical ma-
terials and physical parameters of reactor under consideration. An initial conditions 
(aAP0, aBP0, aP0, TP0, TX0,) used in following simulations. This set of parameters was 
used for initial simulations. Both graphs show that reactor under expert parameters 
produce unsatisfactory behaviour. Reactor production stabilizes itself after 27 Hrs. on 
15 % concentration of output chemical. From that point of view above-mentioned pa-
rameters were regarded like unsatisfactory. Because of these reasons a few static op-
timizations by SOMA algorithm were consequently done.  

 

Fig. 1. Optimized reactor 
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They were done in following steps: 

1. Optimization without restrictions - Fig. 2 a) and b) 
2. Optimization with restrictions applied exactly in given time  
3. Optimization with penalty applied during time interval  
4. Optimization with penalty applied during time interval and sub optimization 

of cooling surface  
 

 

a) mass fraction of a chemical product 
in the output stream 

 

b) Cost value history in SOMA optimi-
zation 

Fig. 2. a) reactor static optimization without penalty and restrictions, b) cost value history in 
SOMA optimization  

The last static optimization is important one. The first three are mentioned here too 
only for complete overview, what optimizations were done by means of SOMA. Each 
of four optimization cases was 10 times repeated. From all 10 simulations was finally 
chosen the best reactor. According to this table a global extreme was found in 13-ti 
dimensional configuration space. Last 13th dimension was cost value of cost function. 
In case of the last optimization (optimization with penalty applied during time interval 
and sub-optimization of cooling surface) searching for global extreme had run in 11th

 

dimensional space because of relations among some parameters. 

3   Optimization without Restrictions 

Main aim of this optimization was focused on parameter reactor optimizing in such 
way that aAP =0.6 was desired. Others parameters like aBP, aBP, TP, TX was not re-
stricted. The total number of simulation done here was 10. He maximum of aAP was 
aAP = 0.5, which can be regarded, like a good result. In all following simulations was 
not reached better result probably thanks to physical and chemical reasons. Despite 
this result a wrong behaviour can be observed on Fig. 2. One of no acceptable behav-
iour shows temperature that is very high (6000 K, -900 K, etc.). Such physical behav-
iour is not acceptable and also not realizable. Explanation of such wild behaviour 
stems from obvious fact that our model does not exactly follow reality. Cost function 
used in this simulation was given by 

(1) 1200)(6.0cos =−= twheretaf Pt
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Optimization was focused of such behaviour searching which should satisfy in time t 
= 1200 second minimal difference between desired value in this time and reactor out-
put response in this time. 

4   Optimization with Restrictions Applied Exactly in Given Time 

In this simulation previous cost function was enlarged for set of operands. Difference 
between them was such that were penalized parameters aAP, aBP, aP, TP, TX. It was ex-
pected that described cost function modification will delete unacceptable tempera-
tures. Despite this fact some unacceptable temperatures were observed there, so this 
kind of optimization was still non-successful. These results were probably caused 
thanks to weak penalization applied only in time τ= 100. Parameters aBP, aBP in are 
multiplied by 100 because of its support in final penalization. Without it parameters 
aBP, aBP would influent final cost function only a little bit because of its range aBP, aBP ∈ [0, 1]. Because this optimization still generated wrong solutions, following simula-
tion was designed. 

5   Optimization with Penalty Applied during Time Interval 

In this simulation was minimized difference (surface) between desired and observed 
reactor response. It was expected from this simulation that high or low temperatures 
would not be observed here. Minimization of it should satisfy this. Parameters aBP, aBP 

in are multiplied by 100 because of the same reasons like in previous step. From re-
sults it is clear that this set of 10 simulations produce more reasonable behaviour than 
in previous cases. However, some error-behaviour is there too. For example a cooling 
medium temperature lower than 0 Co can be observed there. This non-acceptable be-
haviour is probably caused by fact that between model and real reactor there is no 
100% equivalency. Also some simplifications in computer model partly caused it. 

For example physical relations between cooling surface and surface of reactor  
was not taken under consideration, etc. This was solved in the last and successful  
optimization. 

6   Optimization with Penalty Applied during Time Interval and 
Suboptimization of Cooling Surface 

This optimization was focused on optimal parameter searching in such way that some 
of these parameters were related among themselves. These parameters were mA, mB, 
mP, m a S. Relation between mA, mB, a mP was given by 

(2)  

This equation simply says that output is equal to sums of inputs. Next relation was be-
tween m a S (cooling only in the wall of reactor and on its bottom) and was described 
like 

BAP mmm +=
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(3)  

(4) 

 
A simple presumption that "r" is equal to height "h" was done for simplification. Thus 
only "r" instead of "S" and "m" was used. Graphs based on 10 times repeated static 
optimizations are depicted on Fig. 6 a-d). There is visible that the best reactor produce 
not only reasonable behaviour (temperatures TP ≈ 380 K a TX≈ 340 K) but also output 
chemical product aP = 0.5 i.e. 50%, which represents quality increase for 35% (aPopti-

mal= aPoptimized - aPexpert = 0.5 - 0.15 = 0.35). Fact that this behavior is stabilized after 8-
10 minutes (in comparison with 27 Hrs (!!!) in case of expertly set reactor). 

7   Conclusion 

The methods of optimization mentioned here (detail at [5]) are relatively simple, easy 
to implement and easy to use. Despite that, it is capable of optimizing all integer, dis-
crete and continuous variables and capable of handling non-linear objective functions 
with multiple non-trivial constraints. 

A soft-constraint (penalty) approach is applied for the handling of constraint func-
tions. Some optimization methods require a feasible initial solution as a starting point 
for a search. Preferably, this solution should be rather close to a global optimum to 
ensure convergence to it instead of a local optimum. If non-trivial constraints are im-
posed, it may be difficult or impossible to provide a feasible initial solution. The effi-
ciency, effectiveness and robustness of many methods are often highly dependent on 
the quality of the starting point. The combination of the SOMA algorithm with the 
soft-constraint approach does not require any initial solution, but it can still take ad-
vantage of a high quality initial solution if one is available. 

For example, this initial solution can be used for initialization of the population in 
order to establish an initial population that is biased towards a feasible region of the 
search space. If there are no feasible solutions in the search space, as is the case for 
totally conflicting constraints, SOMA algorithm with the soft-constraint approach are 
still able to find the nearest feasible solution. This is important in practical engineer-
ing optimization because often, many non-trivial constraints are involved. The  
approach described above was targeted to fill the gap in the field of mixed discrete-
integer-continuous optimization, where no one single really satisfactory method  
appeared to be available. Despite being in its infancy, the described approach has 
great potential to become a widely used, multipurpose optimization tool for solving a 
broad range of practical engineering optimization problems. 

These algorithms are undoubtedly one of the most promising and novel methods 
for non-linear optimization that can be applied generally, and they work with mini-
mum assumptions with respect to the objective function. 

The algorithm requires only the value of objective function for guidance of it’s 
seeking the optimum. No derivatives or other auxiliary information are desired. In-
cluding the algorithm extensions discussed in this article, the SOMA algorithms can 

222 rrS ππ +=

33 1100 −== kgmwhererm ςςπ
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be applied to a wide range of optimization problems, which practitioners in the field 
of modern prediction would like to solve. 

In the past, SOMA had been successfully used on hard optimization problems with 
good results (see [5]) During these tests, 9500 optimization simulations were carried 
out, which represent approximately 22x106 cost function evaluations. The quality of 
the results, and the fact that the conclusions derived from them could be proven to be 
true, have demonstrated that SOMA has the capability of finding optimal near-
optimal solution with a very high reliability. 

We have also mentioned the possibility of chemical reactor optimization by SOMA 
algorithm. Inside this reactor can be realized certain class of chemical reactions like 
enzymatic dechromation technology, etc. The advantage of the enzymatic reaction is 
the production of protein hydrolyzates of relatively good quality and chrome sludge. 
Using organic bases to form alkaline reaction mixture increases the quality of both is 
products. A partial regeneration of organic base when diluted protein hydrolyzates 
undergo concentration cuts the operating costs of enzymatic hydrolysis. In commer-
cial application, the greatest volume of protein hydrolyzate is channeled into agricul-
ture. Hydrolyzate, as an organic nitrogenous fertilizer, not only equals the combined 
ureaammonium nitrate fertilizer in crop yield, but also surpasses it manifolds in the 
foodstuff value of consumer's greens. The content of nitrates is as much as 200 times 
lower on average. Hydrolyzate is also used in the manufacture of biodegradable foil, 
especially for producing sowing tape.  The main obstacle for the utilization of the 
chrome sludge is a relatively high content of proteins in the dry substance of cake. In 
closing, it may be said that enzymatic hydrolysis has a place in the treatment of chro-
mium containing tannery waste and the funds expended on this field of research have 
brought satisfactory results. 
 
Acknowledgments. This work was supported by the European Regional Development 
Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and 
by the Development of human resources in research and development of latest soft 
computing methods and their application in practice project, reg. no. 
CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competi-
tiveness, co-financed by ESF and state budget of the Czech Republic. 

References 

[1] Zelinka, I., Snasel, V., Abraham, A. (eds.): Handbook of Optimization. In: Intelligent Sys-
tems. Springer (2012)  

[2] Ivan, Z., Jouni, L.: SOMA - Self- Organizing Migrating Algorithm Mendel. In: 6th Inter-
national Conference on Soft Computing, Brno, Czech Republic (2000) ISBN 80-214-
1609-2  

[3] Ivan, Z.: SOMA - Self-Organizing Migrating Algorithm Nostrdamus. In: 3rd International 
Conference on Prediction and Nonlinear Dynamic, Zlín, Czech Republic (2000)  

[4] Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. 
(eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York 
(2004) ISBN 3-540-20167X  

[5] Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic 
Systems. 550s, Springer, Germany (2010)  


	Investigation on Evolutionary Control and Optimization of Chemical Reactor
	Introduction
	Reactor Description
	Optimization without Restrictions
	Optimization with Restrictions Applied Exactly in Given Time
	Optimization with Penalty Applied during Time Interval
	Optimization with Penalty Applied during Time Interval and Suboptimization of Cooling Surface
	Conclusion
	References




