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Abstract. The energy consumption of each wireless sensor node is one of criti-
cal issues that require careful management in order to maximize the lifetime of 
the sensor network since the node is battery powered. The main energy  
consumer in each node is the communication module that requires energy to 
transmit and receive data over the air. Data compression is one of possible 
techniques that can reduce the amount of data exchanged between wireless sen-
sor nodes. In this paper, we proposed a simple lossless data compression  
algorithm that uses multiple Huffman coding tables to compress WSNs data 
adaptively. We demonstrate the merits of our proposed algorithm in comparison 
with recently proposed LEC algorithm using various real-world sensor datasets. 
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1   Introduction 

Wireless sensor networks (WSNs) are very large scale deployments of tiny smart 
wireless sensor devices working together to monitor a region and to collect data about 
the environment. Sensor nodes are generally self-organized and they communicate 
with each other wirelessly to perform a common task. The nodes are deployed in large 
quantities (from tens to thousands) and scattered randomly in an ad-hoc manner in the 
sensor field (a large geographic area). Through advanced mesh networking protocols, 
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these sensor nodes form a wide area of connectivity that extends the reach of cyber-
space out into the physical world. Data collected by each sensor node is transferred 
wirelessly to the sink either directly or through multi-hop communication. 

Wireless sensor nodes have limited power source since they are powered by small 
batteries. In addition, the replacement of batteries for sensor nodes is virtually  
impossible for most applications since the nodes are often deployed in large numbers 
into harsh and inaccessible environments. Thus, the lifetime of WSN depends strong-
ly on battery lifetime. It is therefore important to carefully manage the energy con-
sumption of each sensor node subunit in order to maximize the network lifetime of 
WSN. For this reason, energy-efficient operation should be the most important factor 
to be considered in the design of WSNs. Thus, several approaches are followed in the 
literature to address such power limitations. Some of these approaches include adap-
tive sampling [1], energy-efficient MAC protocols [2], energy-aware routing [3] and 
in-network processing (aggregation and compression) [4]. Furthermore, wireless  
sensor nodes are also constrained in terms of processing and memory. Therefore, 
software designed for use in WSNs should be lightweight and the computational  
requirements of the algorithms should be low for efficient operation in WSNs. 

Sensor nodes in WSN consume energy during sensing, processing and transmis-
sion. But typically, the energy spent by a sensing node in the communication module 
for data transmission and reception is more than the energy for processing [5–7]. One 
significant approach to conserve energy and maximize network lifetime in WSN is 
through the use of efficient data compression schemes [8]. Data compression schemes 
reduce data size before transmitting in the wireless medium which translates to reduce 
total power consumption. This savings due to compression directly translate into life-
time extension for the network nodes. Both the local single node that compresses the 
data as well as the intermediate routing nodes benefits from handling less data [9]. 

Two data compression approaches have been followed in the literature: a distri-
buted data compression approach [10], [11] and a local data compression approach 
[5], [9], [12–15]. In this paper, our focus is on lossless and reliable data gathering in 
WSN using a local data compression scheme which has been shown to significantly 
improve WSN energy savings in real-world deployments [9]. After a careful study of 
local lossless data compression algorithms (such as Sensor LZW (S-LZW) [9], Loss-
less Entropy Compression (LEC) algorithm [5], Median Predictor based Data Com-
pression (MPDC) [13] and two-modal Generalized Predictive Coding (GPC) [15])  
recently proposed in the literature for WSNs, we found that most of the algorithms 
cannot adapt to changes in the source data statistics. As a result, the compression per-
formance obtained by these algorithms is not optimal. We therefore propose in this 
paper a simple lossless data compression algorithm for WSN. The proposed algorithm 
is adaptive. The algorithm adapts to changes in the source data statistics to maximize 
performance. 

To verify the effectiveness of our proposed algorithm, we compare its compression 
performance with LEC performance. To the best of our knowledge, till date, LEC al-
gorithm is the best lossless data compression algorithm designed specifically for use  
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in WSNs. However, the LEC algorithm cannot adapt to changing correlation in sensor 
measured data. Hence, the compression ratio obtained and by extension the energy 
saving obtainable is not optimal. This therefore gives room for improvement. 

The rest of this article is organized as follows. Section 2 presents our proposed data 
compression algorithm. In section 3, the proposed algorithm is evaluated and com-
pared with the LEC algorithm using real-world WSN data. Finally, we conclude the 
paper in section 4. 

2   The Compression Algorithm 

Our proposed data compression algorithm adopts the followings from the LEC algo-
rithm: (a) to increase the compressibility of the sensed data, we adopt a differential 
compression scheme to reduce the dynamic range of the source symbols. (b) The ba-
sic alphabets of residues are divided into groups whose sizes increase exponentially. 
The groups are then entropy coded and not unary coded as in the original version of 
exponential-Golomb code. Thus, the dictionaries used in our proposed scheme are 
called prefix-free-tables. (c) We also adopt the LEC encoding function because of its 
simplicity and efficiency. Fig. 1 shows the functional block diagram of our proposed 
simple data compression algorithm. The algorithm is a two-stage process. In the first 
stage, a simple unit-delay predictor is used to preprocess the sensed data to generate 
the residues. That is, for every new acquisition mi, the difference di = xi − xi−1 is com-
puted. While xi is current sensor reading(s), xi−1 is the immediate past sensor read-
ing(s). The difference di serves as input to the entropy encoders. In the second stage, 
two types of entropy encoders are used to better capture the underlying temporal cor-
relation in the sensed data. The entropy encoders are 1-Table Static Entropy Encoder 
and 2-Table Adaptive Entropy Encoder.  

1-Table Static Entropy Encoder 

The 1-Table Static Entropy Encoder is essentially the entropy encoder in LEC with its 
coding table optimized for WSNs sensed data. The encoder performs compression 
losslessly by encoding differences di more compactly based on their statistical charac-
teristics in accordance with the pseudo-code described in Fig. 2. Each di is represented 
as a bit sequence ci composed of two parts hi and li (that is ci=hi*li).  

li = (Index)|bi                                                                  (1)   

where 
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Equation (3) returns the index position of each di within its group. (Index)|bi denotes 
the binary representation of Index over bi bits. bi is the category (group number) of di. 

It is also the number of lower order bits needed to encode the value of di. Note that if 
di = 0, li is not represented. Thus, at that instance, ci = hi. Once ci is generated, it is ap-
pended to the bit stream which forms the compressed version of the sequence of 
measures mi.  

 

Fig. 1. The functional block scheme of our proposed data compression algorithm 

 

Fig. 2. The pseudo-code of the encode algorithm  

2-Table Adaptive Entropy Encoder  

High compression ratio performance yields high energy saving since fewer numbers 
of bits will be transmitted by the communication module of the sensor node thereby 
saving lots of energy. Adaptive encoding can enable us to achieve maximal compres-
sion ratio and by extension maximal energy saving. Hence, to enjoy the benefits of  
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adaptive coding without incurring higher energy cost, we resorted to the use of  
multiple static Huffman coding tables. Thus, we propose to implement a 2-Table 
adaptive entropy encoder that compresses blocks of sampled data at a time using two 
static Huffman coding tables adaptively. Each static Huffman coding table is designed 
to give nearly optimal compression performance for a particular geometrically distri-
buted source. By using two Huffman coding tables adaptively and sending the table 
identifier, the 2-Table adaptive entropy encoder can adapt to many source data with 
different statistics. The proposed 2-Table adaptive entropy encoder operates in one 
pass and can be applied to multiple data types. Thus, our proposed algorithm can be 
used in continuous monitoring systems with varied latency requirements by changing 
the block size n to suit each application. The pseudo-code of our proposed simple data 
compression algorithm is given in Fig. 3.  

3   Simulations and Analysis 

The performance of our proposed data compression algorithm is computed by using 
the compression ratio defined as:  

        %
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The compressed_size is the number of bits obtained after compression and the origi-
nal_size is the uncompressed data size. Each uncompressed sample data is 
represented by 16-bit unsigned integers. Publicly accessible real-world environmental 
monitoring datasets are used in our simulations. We used temperature and relative 
humidity measurements from one SensorScope [16] deployments: LUCE Deployment 
with Node ID of 84 for the time interval of 23 November 2006 to 17 December 2006. 
We also used the six set of soil temperature measurements from [17], collected from 
01 January 2006 to 02 October 2006. For simplicity, the flags of missing data in the 
soil temperature measurements which are quite rare were replaced by the value of the 
preceding sample in that soil temperature dataset. To simulate real-world sensor 
communications with fidelity, the temperature and relative humidity measurements 
are converted to sensor readings using the inverted versions of the conversion func-
tions in [18] with the assumption of the A/D conversion precision being 14 bits and 
12 bits for temperature and relative humidity datasets respectively. In addition, we al-
so used a seismic dataset collected by the OhioSeis Digital Seismographic Station lo-
cated in Bowling Green, Ohio, for the time interval of 2:00 PM to 3:00 PM on 21 
September 1999 (UT) [19].  
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Fig. 3 The pseudo-code of our proposed simple data compression algorithm 

For this simulation, the optimized table in Table 1 is used by the 1-Table static en-
tropy encoder and Tables 2 and 3 were used by the 2-Table adaptive entropy encoder. 
The Huffman coding table in Table 2 was designed to handle data sets with high and 
medial correlation while the Huffman coding table in Table 3 was designed to handle 
data sets with medial and low correlation. The combination of these two coding tables 
handles effectively the changing correlation in the sensed data as it is being read 
block by block with each block consisting of n-samples. The Huffman table that gives 
the best compression is then selected. The encoded bitstream generated by that table 
is then appended to a 1-bit table identifier (ID) and thereafter sent to the sink. The de-
coder uses the ID to identify the Huffman coding table used in encoding the block of 
n-residues. Since only two static Huffman coding tables are in use by the 2-Table 
adaptive entropy encoder, the table ID is either ‘0’ or ‘1’. The performance compari-
son between LEC, 1-Table static entropy encoder and 2-Table adaptive entropy en-
coder is given in Table 4. For block size of 1 (i.e. n=1), our proposed algorithm using 
the 1-Table static entropy encoder with the optimized coding table givens better per-
formance than the LEC algorithm. For block size greater than 1 (i.e. n>1), our  
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proposed algorithm using the 2-Table adaptive entropy encoder gives better perfor-
mance than the LEC algorithm. Thus, the combination of the 1-Table static entropy 
encoder with the 2-Table adaptive entropy encoder ensures that the performance of 
our proposed data compression algorithm is better than that of LEC for all value of n. 

Table 1. Huffman Coding Table1 

bi hi d
i

0 100 0
1 110 −1,+1
2 00 −3,−2,+2,+3
3 111 −7, . . . ,−4,+4, . . .,+7
4 101 −15, . . . ,−8,+8, . . .,+15
5 010 −31, . . . ,−16,+16, . . .,+31
6 0111 −63, . . . ,−32,+32, . . .,+63
7 01101 −127, . . . ,−64,+64, . . .,+127
8 011001 −255, . . . ,−128,+128, . . .,+255
9 0110001 −511, . . . ,−256,+256, . . .,+511
10 01100001 −1023, . . . ,−512,+512, . . .,+1023
11 011000001 −2047, . . . ,−1024,+1024, . . .,+2047
12 01100000000 −4095, . . . ,−2048,+2048, . . .,+4095
13 01100000001 −8191, . . . ,−4096,+4096, . . .,+8191
14 01100000010 −16383, . . . ,−8192,+8192, . . .,+16383

Table 2. Huffman Coding Table2 

bi hi d
i

0 00 0
1 01 −1,+1
2 11 −3,−2,+2,+3
3 101 −7, . . . ,−4,+4, . . .,+7
4 1001 −15, . . . ,−8,+8, . . .,+15
5 10001 −31, . . . ,−16,+16, . . .,+31
6 100001 −63, . . . ,−32,+32, . . .,+63
7 1000001 −127, . . . ,−64,+64, . . .,+127
8 10000001 −255, . . . ,−128,+128, . . .,+255
9 1000000000 −511, . . . ,−256,+256, . . .,+511
10 10000000010 −1023, . . . ,−512,+512, . . .,+1023
11 10000000011 −2047, . . . ,−1024,+1024, . . .,+2047
12 10000000100 −4095, . . . ,−2048,+2048, . . .,+4095
13 10000000101 −8191, . . . ,−4096,+4096, . . .,+8191
14 10000000110 −16383, . . . ,−8192,+8192, . . .,+16383

 
Fig. 4 shows the compression ratios achieved by our proposed simple data  

compression algorithm for different values of the block size n for the nine real-world 
datasets. As evident from Fig. 4, the compression ratio performance achieved by our 
proposed data compression algorithm for each of the nine datasets increases with re-
spect to the increase in the block size. Also, for values of n as small as 3 (i.e. n=3), the 
compression ratio performance of our proposed simple data compression  algorithm is 
good (better than LEC performance) for all the nine datasets and the performance  
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improves thereafter as n is increased beyond 3 to 256 as evident from the plots in  
Fig. 4. The best performance of our proposed compression algorithm is recorded in 
the last column of Table 4 which clearly shows that our proposed simple data com-
pressed algorithm outperforms the LEC algorithm. In terms of algorithm complexity, 
our proposed algorithm is simple and lightweight. When compared to the LEC algo-
rithm, our proposed algorithm requires only slightly more memory. Energy is  
conserved since only fewer numbers of bits are transmitted by the communication 
module of the sensor node. 

Table 3. Huffman Coding Table3  

bi hi d
i

0 1101111 0
1 11010 −1,+1
2 1100 −3,−2,+2,+3
3 011 −7, . . . ,−4,+4, . . .,+7
4 111 −15, . . . ,−8,+8, . . .,+15
5 10 −31, . . . ,−16,+16, . . .,+31
6 00 −63, . . . ,−32,+32, . . .,+63
7 010 −127, . . . ,−64,+64, . . .,+127
8 110110 −255, . . . ,−128,+128, . . .,+255
9 110111011 −511, . . . ,−256,+256, . . .,+511
10 110111001 −1023, . . . ,−512,+512, . . .,+1023
11 1101110101 −2047, . . . ,−1024,+1024, . . .,+2047
12 1101110100 −4095, . . . ,−2048,+2048, . . .,+4095
13 1101110000 −8191, . . . ,−4096,+4096, . . .,+8191
14 11011100011 −16383, . . . ,−8192,+8192, . . .,+16383

 

Table 4. Performance comparison between the 2-Table adaptive entropy encoder with LEC and 
1-Table static entropy encoder  

DATASET 

Compression Ratio (CR) % 

LEC single 
Table per-
formance 

Our Opti-
mized sin-
gle Table 
performance 

2-Table Adaptive Entropy 
Encoder performance 

2-Table 
Adaptive 
Entropy En-
coder Best 
performance n=1 n=2 n=3 

LU84 Temp 70.81 71.69 68.01 70.87 71.77 73.48 

LU84 Rh 62.86 63.46 60.50 62.92 63.62 64.75 

SEISMIC Data 69.72 71.24 67.00 70.12 71.16 72.98 

Ts_0 Temp 52.05 52.25 50.92 53.19 54.07 55.76 

Ts_5cm Temp 54.55 54.80 52.38 54.70 55.60 57.05 

Ts_10cmTemp 54.96 55.21 52.50 55.09 56.00 57.68 

Ts_20cm Temp 55.10 55.35 52.51 55.24 56.17 57.97 

Ts_50cm Temp 55.04 55.32 52.44 55.22 56.16 57.97 

Ts_1m Temp 54.97 55.24 52.40 55.16 56.09 57.88 
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Fig. 4 Compression ratios vs. block size achieved by our proposed data compression algorithm 
for the nine real-world datasets 

4   Conclusion 

In this paper, we have introduced a simple lossless adaptive compression algorithm 
for WSNs. The proposed algorithm is simple and efficient, and is particularly suitable 
for resource-constrained wireless sensor nodes. The algorithm adapts to changing cor-
relation in the sensed data to effectively compress data using two Huffman coding 
tables. Our proposed algorithm reduce the data amount for transmission which contri-
butes to the energy saving. We have obtained compression ratios of 73.48%, 64.75% 
and 72.98% for temperature, relative humidity and seismic datasets respectively. The 
evaluation of our proposed algorithm with LEC using real-world datasets shows that 
our proposed algorithm's compression performance is better. Our algorithm can be 
used for both real-time and delay-tolerant transmission. 
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