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Abstract. Numerical Weather Prediction (NWP) systems are state-of-the-art 
atmospheric models that can provide forecasts of various weather attributes. 
These forecasts are used in many applications as critical inputs for planning and 
decision making. However, NWP systems cannot supply any information about 
the uncertainty of the forecasts as their immediate outputs. In this paper, we in-
vestigate the application of Fuzzy C-means clustering as a powerful soft com-
puting technique to discover classes of weather situations that follow similar 
forecast uncertainty patterns. These patterns are then utilized by distribution fit-
ting methods to obtain Prediction Intervals (PIs) that can express the expected 
accuracy of the NWP system outputs. Three years of weather forecast records 
were used in a set of experiments to empirically evaluate the applicability of the 
proposed approach and the accuracy of the computed PIs. Results confirm that 
the PIs generated by the proposed post-processing procedure have a higher skill 
compared to baseline methods. 

1   Introduction     

Although the deterministic interactions of physical simulations in Numerical weather 
prediction (NWP) models yield the expected values of different weather attributes in 
the mid-range future, such forecasts are uncertain due to the inaccuracy of initial con-
ditions, low spatial resolution, and various simplifying assumptions [12][13]. Yet, 
such uncertainty information is not available in the immediate outputs of the system. 
In many applications, it is desirable that forecasts be accompanied by the correspond-
ing uncertainties. Information about forecast uncertainty can have important role in 
the planning and decision making processes that utilize the forecasts [2][8]. For in-
stance, the expected accuracy of NWP temperature and wind speed forecasts can have 
crucial impact on the optimized operational planning and management of power grids 
using Dynamic Thermal Rating (DTR) systems which is the motivation of this study 
[6] [10]. The uncertainty of a forecast is typically presented using prediction intervals 
(PIs) that are accompanied by a percentage expressing the level of confidence, or ex-
pected nominal coverage rate (e.g., T = [2°C, 14°C] conf = 95%) [2] [5].  
A major common method to assess the uncertainty of weather forecasts is ensemble 
modeling. However, running multiple ensemble members to analyze the forecast ac-
curacy can be very costly thus infeasible in many cases. 
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As an alternative, statistical post-processing methods can be applied on a result of 
an individual forecast. It is a well-known fact that the extent of forecast uncertainty 
varies with its context: the weather situation [13]. For example, low pressure systems 
are known to be less predictable than the more stable high pressure systems.  

Soft computing techniques are increasingly applied in problems with large amount 
of data and uncertainty [3][14]. Lange et al. [9] used clustering over a historical per-
formance data set of wind speed predictions and demonstrated a relationship between 
the forecast uncertainty and different meteorological situations. However, this analy-
sis was not practically employed as a method of obtaining PIs for wind speed  
forecasts. 

A practical application of weather classification to obtain PIs was proposed by Pin-
son et al. [17][18]. The authors used two predicted values of wind speed and wind 
power to categorize the historical forecast situations into four manually defined 
classes, each with different error distribution. The distribution of a new forecast case 
was then expected to follow the distribution of these classes based on an expert-based 
fuzzy membership definition. However, this method suffers from a major shortcom-
ing of the manual grouping of predictions. 

In this contribution, we use unsupervised learning over the historical performance 
of the NWP model to learn the patterns of forecast accuracy. To discover groups of 
forecast records that follow a similar prediction error distribution, Fuzzy C-means 
clustering algorithms is applied on a data set of past prediction accuracy records. Such 
objective-driven discovery of forecast situations is expected to find better groups 
compared to the manual definition of weather situations [15]. In addition, fuzzy asso-
ciation of forecast records with the discovered weather situations appears to be a more 
natural choice. 

The process of evaluating of PIs forecasts, and probabilistic forecasts in general, is 
more complex compared to point forecasts. To empirically test the proposed ap-
proach, we apply the developed PI models to a large, real-world data set. We also de-
velop a comprehensive PI evaluation framework. It not only covers all major meas-
ures from the PI evaluation literature, but also brings new insights to the PI 
verification process, leading to more accurate judgments. 

The rest of this paper is organized as follows. Section 2 reviews the basic concepts 
and definitions of prediction intervals and forecast uncertainty modeling. Section 3 
presents the proposed fuzzy clustering approach to discover forecast uncertainty pat-
terns. The verification measures are described and analyzed in section 4. Experimen-
tal setup and results are provided in section 5. The final section 6 outlines main con-
clusions and indicates possible directions for future work. 

2   Forecast Uncertainty and Prediction Intervals 

The relation between the forecast ݕො௧ and its observation ݕ௧ can be described as:  ݕ௧ ൌ ො௧ݕ ൅ ݁௧,                                                              (1) 

i.e., each observation can be decomposed to the predicted value ݕො௧ for time t, and an 
error term ݁௧ for the specific forecast instance. 
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Based on a probabilistic forecast, the cumulative distribution function (cdf) ܨ௬೟ is ex-
plicitly available. The prediction interval ܫ௧ఈ is defined as (1 െ  confidence interval-(ߙ
into which observation ݕ௧  is expected to fall with probability 1 െ  Therefore, it can .ߙ
be described as a range satisfying [5][15][17]: ܲሺݕ௧ א ௧ఈሻܫ ൌ ܲሺݕ௧ א ሾܮ௧ఈ, ௧ܷఈሿሻ ൌ 1 െ  (2)                                ,ߙ

where ܮ௧ఈ  and ௧ܷఈ are, respectively, the lower and upper bound of prediction interval ܫ௧ఈ defined by the corresponding distribution quantiles as: ܮ௧ఈ ൌ ௬೟ఈ೗ୀሺఈݍ ଶ⁄ ሻ ൌ ߙ௬೟ିଵሺܨ 2⁄ ሻ,   ௧ܷఈ ൌ ௬೟ఈೠୀሺଵିఈݍ ଶ⁄ ሻ ൌ ௬೟ିଵሺ1ܨ  െ ߙ 2⁄ ሻ.        (3) 

For instance, with ߙ ൌ 0.05, the interval has a 95% confidence level bounded by 
quantiles ܮ௧଴.଴ହ ൌ ௬೟଴.଴ଶହ and ௧ܷ଴.଴ହݍ ൌ ௟ߙ ௬೟଴.ଽ଻ହ, asݍ ൌ 0.025 and ߙ௨ ൌ 0.975.  
Systematic characterization of forecast error can lead to modeling of forecast uncer-
tainty for the target variable. This can be achieved by considering ݁௧ in (1) as an in-
stance of the random variable e, and associating ܨ௧௘ (or its estimate ܨ෠௧௘) as its cumula-
tive distribution function,  The corresponding estimated quantiles for the predictive 
distributions would hence be ܮ෠௧ఈ  and ෡ܷ௧ఈ ෠௧ఈܮ :[21][22][15]  ൌ ො௧ݕ ൅ ො௘,௧ሺఈݍ ଶ⁄ ሻ ,   ݍො௘,௧ሺఈ ଶ⁄ ሻ ൌ ߙ෠௧௘ିଵሺܨ 2⁄ ሻ, (4) ෡ܷ௧ఈ ൌ ො௧ݕ ൅ ො௘,௧ሺଵିఈݍ ଶ⁄ ሻ,   ݍො௘,௧ሺଵିఈ ଶ⁄ ሻ ൌ ෠௧௘ିଵሺ1ܨ െ ߙ 2⁄ ሻ, (5) 

where ݍො௘,௧ሺఈሻ is the estimated ߙ quantile of “error” based on the estimated forecast error 

distribution መ݂௧௘. The distribution of ݕ௧ , and hence the desired quantiles, are not expli-
citly known. Therefore, to find the ܫመ௧ఈ prediction interval of ݕ௧ , the quantiles of ݁ (i.e., 
the error associated with the forecast) are estimated and added to the predicted value ݕො௧ to obtain the lower and upper bounds for the original variable [17]. Thus, by find-
ing quantiles over the forecast error distribution, one can find the quantiles over the 
forecast value that is expected to enclose the target observation. 

3   Fuzzy C-means for Prediction Interval Modeling 

A fine grouping of forecast situations can lead to clusters of predictions with a similar 
error behavior [13]. Such groupings can be found by clustering all available cases us-
ing the relative influential prediction variables as the features. Subsequently, each 
cluster can be independently analyzed by the method described in the previous sec-
tion. This way, rather than considering all past errors together as a single set, the cha-
racteristics of error distribution within each cluster determines the prediction interval 
of that particular cluster.  

In this study, we apply two different clustering algorithms to find optimal group-
ings of the NWP past forecasts: K-means [20] and Fuzzy C-means (FCM) clustering. 
K-means is a simple yet powerful clustering algorithm that has been used in many ap-
plications [19]. Consider a dataset ܦ ൌ ሼxଵ, xଶ, … , xேሽ, where each data point x௝ ൌ ൛ݔ௝ଵ, ,௝ଶݔ … ,  ,௝ௗൟ represents d influential features (such as predicted temperatureݔ
wind speed and wind direction, precipitation, location, elevation, etc.), and N is the  
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total number of available forecast cases. The algorithm finds the set of k cluster cen-
ters ܥ ൌ ሼܿଵ, ܿଶ, … , ܿ௞ሽ, and assigns a subset of points ܦ௜ א  to each cluster i. Each ܦ
case j also has a forecast error ௝݁௬ associated with the predictand y. Hence, each clus-

ter has its own set of forecast errors for target y in the set ܧ௜௬ such that: ܧ௜௬ ൌ ൛ ௝݁௬|ݔ௝ א ,௜ܦ ݆ ൌ 1. . ݊௜ൟ , ݅ ൌ 1. . ݇,                                (6) where ݊௜ is the number of sample points in cluster i.  
In the second stage of the process, a probability distribution (ܨ෠௜,௧௘ ) is fitted over 

each set of errors ܧ௜௬, ݅ ൌ 1. . ݇ to represent the forecast error characteristics of each 
cluster. We consider three fitting schemes: Gaussian distribution, Kernel Density 
Smoothing (using a Gaussian kernel) and Empirical distribution. 

For instance, based on the Gaussian fitting method, each cluster ݅ of forecast errors 
has its own estimated probability distribution described by its mean ̂ߤ௘௜  and standard 
deviation ߪො௘௜. When a new forecast ݔ௡௘௪  is made, the cluster to which it belongs can 
be identified by the nearest cluster center and boundaries of the corresponding predic-
tion interval can be estimated using ܨ෠௜,௧௘  instead of ܨ෠௧௘ in equations (4) and (5) which 
would provide ܮ෠௜ఈ  and ෡ܷ௜ఈ  for each cluster independently.   

Using K-means, each forecast case is assigned into a single cluster only. In a more 
natural approach, the forecast cases could be associated with various situations up to 
different degrees. This can be achieved using Fuzzy C-means algorithm that finds 
cluster patters based on fuzzy membership assumption of points over clusters [20]. 
The objective function of the clustering process is [1]: ܬ ൌ ஼݊݅݉݃ݎܽ ∑ ∑ ௜௝௠ฮx௜ݑ െ ௝ܿฮଶ௞௝ୀଵே௜ୀଵ ,                               (7) 

where ݑ௜௝ (∑ ௜௟ݑ ൌ 1௞௟ୀଵ ) represents the degree of membership of the point x୧ in clus-
ter j, and ݉ ൐ 1 is the fuzzification. The objective function can be minimized using 
gradient descent in an iterative process where the membership matrix and cluster cen-
ters are updated as follows: ݑ௜௝ ൌ 1 ∑ ൬ฮ୶೔ି௖ೕฮԡ୶೔ି௖೗ԡ൰ଶ ௠ିଵൗ௞௟ୀଵൗ                                           (8) 

As a result, a forecast case can simultaneously belong to more than one forecast situa-
tions. Many situations, such as transitions between different types of weather, can be 
better captured using this approach.  Similarly to K-means, these fuzzy patterns of 
historical forecasts can be used to model forecast errors by fitting appropriate distri-
butions. However, ܧ௜௬ is now a fuzzy set defined by membership of each error sample 
to the ith cluster (i.e. ݑ௟௜,, ݈ ൌ 1. . ܰ). Subsequently, the fitting methods must consider 
these membership values as the vector of sample weights in the process. Thus, error 
samples that have higher levels of association with a cluster have more impact on the 
corresponding error distribution. 

In addition, any new forecast case x୬ୣ୵ is now associated with all k clusters, but 
with different degrees of membership, ݑ௡௘௪,௝, ݆ ൌ 1. . ݇. Hence, we need to devise a 
method to combine the error characteristics of different clusters, based on the new 
samples membership values. For this purpose, we apply a weighted opinion pool to 
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consolidate the forecast error characteristics among the clusters. Because ∑ ௡௘௪,௝௞௝ୀଵݑ ൌ 1, the weighted sum of the computed quantiles in each cluster based on 
the new forecast’s levels of membership provides an intuitive method to obtain the fi-
nal upper and lower quantiles: ܮ෠௡௘௪ఈ ൌ ∑ ௡௘௪,௝௞௝ୀଵݑ .  ෠௝ఈ,                                            (9)ܮ

where ܮ෠௝ఈ  represents the lower quantile of the prediction interval in the jth fuzzy clus-
ter. The same method is used to compute the upper quantile. 

4   Prediction Interval Verification 

It is expected that, in a test setting, prediction interval forecasts will have empirical 
coverage of the observations as close as possible to their confidence level. This pri-
mary property of a PI forecaster M, called “reliability,” is denoted Relெ஑ ҧெூഀߦ :[17] . ൌ ଵ் ∑ ௜ூഀ௜்ୀଵߦ ,   where ߦ௜ூ ൌ ቊ1         ݂݅ ܮ෠௬ො೟ఈ ൑ ௧ݕ ൑ ෡ܷ௬ො೟ఈ0                      empirical , (10) 

where T is the number of PIs in the evaluation data set, and ߦ௜ூ is an indicator of hit. ߦ௜ூ 
evaluates to one when the observation falls within the PI boundaries, otherwise it is 
set to zero, expressing a miss. Hence, ܴ݈݁ெఈ  simply accounts for the difference be-
tween average hit of the forecasts (coverage rate) and the required nominal coverage 
defined for the PI.  
A forecaster providing PIs with less vagueness, corresponding to the width of the PI, 
is clearly preferred. This leads to the second major measure of PI forecast quality 
called “sharpness” [11][17]: ݄ܵ݌ெఈ ൌ ܹଓ݄݀ݐതതതതതതതതതெఈ ൌ ଵ் ∑ ௜ఈ௜்ୀଵ݄ݐܹ݀݅                                  (11) 

where ܹ݄݅݀ݐ௜ఈ ൌ ෡ܷ௬ො೔ఈ െ ෠௬ො೔ఈܮ  is the width of the ith prediction interval. Another impor-
tant quality aspect of a PI computation method is its ability to provide intervals of va-
riable width, depending on the forecast situation. A method with high “resolution” 
 ,is capable of distinguishing forecasts with different amounts of uncertainty (ఈ்ݏܴ݁)
and assign wider (high uncertainty) or narrower (low uncertainty) intervals according-
ly. The standard deviation of PI widths is a natural choice to measure the method’s 
resolution [15]: ܴ݁ݏఈ் ൌ ቂ ଵ்ିଵ ∑ ൫ ෡ܷ௝ఈ െ ෠௝ఈܮ ൅ ெఈ݌݄ܵ ൯ଶ௝்ୀଵ ቃభమ

                                  (12) 

Having access to a single scalar summary measure of forecast quality is always attrac-
tive and useful for objective comparison of various methods. The most common  
prediction interval skill score is the Winkler’s score [7], widely used as a conclusive 
objective evaluation measure for PI forecasting methods [11], [15], [18]. A compre-
hensive study performed by Gneiting and Raftery [4] prove that this score is “strictly 
proper” and would hence give the maximum score to a forecast that is actually the 
true belief of the forecaster and cannot be “hedged”.   
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Using the notations defined above and the overall miss rate ሺ1 െ  ҧெூഀሻ, the total scoreߦ
gained by a PI forecasting method M over the T cases in the test set can be expressed 
as: ܵܵܿ݁ݎ݋ெ ൌ ܶ ቀെ ఈଶ ܹଓ݄݀ݐതതതതതതതതതெఈ െ ሺ1 െ ҧெఈߜҧெூഀሻߦ ቁ ൌ െܶ ቀఈଶ ܹଓ݄݀ݐതതതതതതതതതெఈ ൅ Δഥெఈ ቁ, (13) 

where ߜҧெఈ  is the average distance of an observation from the PI boundaries among the 
missed cases, and Δഥெఈ  is the average of this distance among all test cases owing to the 
fact that ߂௜ is equal to zero for hit cases and ߜ௜ for misses. 
Due to availability of limited number of test cases in each cluster, the ܵܵܿ݁ݎ݋௜  mea-
surements incur some uncertainty as well. The width component of this score is  
constant in each cluster. However, the ߂ҧெఈ,௝ measure’s uncertainty (where j=1..K) de-
creases when evaluated by more test cases or when its sample values are closer to 
each other cluster j. To analyze the uncertainty of SScore෣ M, the one-sided confidence 
interval of the ߂ҧெఈ,௝ measure with a specific confidence level is used to compute the 
skill score. After using this upper limit for all clusters, a lower limit on the ܵܵܿ݁ݎ݋ெ with the desired confidence level can be determined: ܲ ቀ∆തெఈ,௝൏ ∆തெఈ,௝ఉቁ ൌ ߚ ֜ ܲ൫ܵܵܿ݁ݎ݋ெ ൐ ெఉ݁ݎ݋ܿܵܵ ൯ ൌ  (14) ߚ

where ߚ is the desired confidence level over the measure as a percentage. Because ߂ҧெఈ,௝ is a mean statistic, the Central Limit Theorem [21] can be used and hence its 
sampling distribution is essentially Gaussian. This leads to the following relation to 
obtain the one-sided confidence interval:  ߂ҧெఈ,௝ఉ ൌ ҧெఈ,௝߂ ൅ ,ߚ൫ݐ ห ௝ܶห െ 1൯ ௦೩ಾഀ,ೕටห்ೕห                                            (15) 

where ߂ҧெఈ,௝ is the measured sample mean over the available sample test set, and ݏ௱ಾഀ,ೕ 

is the sample standard deviation of individual ߂௜ఈ,௝values in cluster j. Hence, we can 

find the lower limit of the true ΔഥM஑,୨ measure. 

5   Experimental Evaluation 

A hindcast data set of hourly predictions has been coupled with the respective obser-
vations of weather stations from the National Center for Atmospheric Research 
(NCAR) data repository. The WRF v3 simulations were run in three nested grids with 
resolutions of 10.8 km, 3.6 km and 1.2 km. The data set covers three years (2007, 
2008 and 2009) of forecasts for two stations in BC. This data set contains about 
51,000 records of historical performance of forecasts. There are total of 35 features 
available in this data set. The observations are used to derive the forecast error for 
temperature forecasts, and the described PI computation methods are applied to obtain 
prediction intervals for the forecasted temperature. 
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To investigate the role of influential variables and to select the optimal feature set 
in PI forecasts, 14 different subsets of the 25 available features were defined. These 
feature sets are combinations of BF1 (10 basic weather attributes), BF2 (a more com-
plex feature set including attributes at different geopotential levels) and PG (derived 
features that represent the temporal gradient of surface pressure). The feature sets 
with letters PCx were obtained using Principal Component Analysis to decrease the 
dimensionality of the data to x. The results are based on three-fold cross-validation in 
which two years of data are used to train the PI model and the third year is set aside 
just to evaluate the trained model and calculate the quality measures of the resulting 
interval forecasts. 

To compare the various proposed methods with baseline methods, some basic ap-
proaches are considered. The first baseline method is the climatological approach that 
considers all past error samples together (i.e. K=1) and computes the PI based on the 
fitted distribution. The second baseline method applies a manual grouping of the fore-
cast situations based on the forecast month. In the evaluated approaches, the number 
of clusters was set in the range of 2 to 100, and the fuzzification parameter (m) in 
FCM was set to 1.2. Table 1 lists the PI quality details of the best performing setups 
for each algorithm. The results show that clustering methods considerably improve 
the skill of the PIs compared to the baseline methods and that FCM has a better per-
formance compared to K-means. 

Table 1. Top 4 setups from C-means and K-means along with baseline methods and detailed 
measures for temperature PIs based on Sscore଴.ଽହ in 3-fold (yearly) cross validations 

Algorithm K Features Fit 
Sharp-
ness 

Cov-
erage

Cover-
age0.95 

Reso-
lution

RMS
E 

SScore 
SScore0.

95 Rank 

FCM 45 BF2 Kernel 10.62 94.89 92.77 1.59 2.77 0.3220 0.3432 1 

FCM 30 BF2PG Kernel 10.91 94.93 93.26 1.65 2.86 0.3285 0.3452 2 

FCM 50 BF2PG Kernel 10.67 94.78 92.49 1.79 2.81 0.3231 0.3459 3 

FCM 80 BF2PG Kernel 10.25 94.58 91.53 1.74 2.71 0.3150 0.3460 4 

K-means 50 BF2 Kernel 10.78 94.96 92.74 1.87 2.80 0.3254 0.3485 13 

K-means 45 BF2 Kernel 10.86 94.89 92.78 1.87 2.83 0.3273 0.3492 15 

K-means 40 BF2 Kernel 10.89 94.82 92.85 1.84 2.83 0.3303 0.3499 16 

K-means 50 BF2PG Kernel 10.94 94.87 92.60 2.20 2.87 0.3281 0.3506 18 

Base-
Month 

12 Month Kernel 12.21 95.12 94.10 1.91 3.12 0.3601 0.3704 943 

Base-Clim. 1 - Normal 12.17 94.78 94.49 0.00 3.11 0.3740 0.3774 1492 
 

 
In Figure 1.a, a sample forecast error distribution is shown and the corresponding 

fitted kernel density distribution is also plotted. In the first stage of experiments the 
K-means algorithm was run with the different feature sets and fitting methods. Fig-
ures 1.b and 2.b show the box plots of the SScore0.95 measure for these alternative 
choices. As can be seen, the Kernel fitting method and the BF2 feature sets can obtain 
PIs with higher skill. It must be noted here that when the measured SScore (and not its 
confidence bound) is used for evaluations, very large number of clusters (e.g. 200) 
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would always achieve the best results. However, this is due to the fact that with such 
large values of K there would be very few test cases available to have a reliable mea-
surement of the ߂ҧெఈ,௝ statistic in individual clusters. 

 
 

(a) 

 

(b) 

Fig. 1. (a) Forecast error distribution in 2009 and kernel fitted distribution (b) SScore0.95 of the 
fourteen different feature sets using K-means in 3-fold (yearly) cross validations 

 

 

Fig. 2. (a) The trend of SScore0.95 with increasing number of clusters (b) skill score of the four 
different fitting methods 

Figure 2.a shows the trend of PI forecast skills for the best setups of K-means and 
FCM as the number of clusters is increasing. The curves also show the better perfor-
mance of the Fuzzy C-means algorithm around K=45. 



 Modeling Forecast Uncertainty Using Fuzzy Clustering 295 

6   Conclusions 

A new method is presented that can model forecast uncertainty from the historical 
performance of the NWP system and provide prediction intervals for new point fore-
casts. This is achieved using fuzzy clustering and density fitting methods over the 
prediction error records. The performance of this method was investigated through an 
experimental study employing an accurate evaluation framework. The availability of 
forecast uncertainty in the obtained PIs and their demonstrated higher skill compared 
to baseline methods suggests the effectiveness of this method. Due to the temporal na-
ture of the weather attribute forecasts and their associated errors, application of time 
series analysis techniques in the PI forecasting methods can potentially improve the 
skill of the predictions in future work. 
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