
A Soft Computing Approach to Knowledge Flow
Synthesis and Optimization

Tomas Rehorek and Pavel Kordik

Faculty of Information Technology, Czech Technical University in Prague, Thakurova 9, Prague,
16000, Czech Republic

{tomas.rehorek,kordikp}@fit.cvut.cz

Abstract. In the areas of Data Mining (DM) and Knowledge Discovery (KD),
large variety of algorithms has been developed in the past decades, and the re-
search is still ongoing. Data mining expertise is usually needed to deploy the
algorithms available. Specifically, a process of interconnected actions referred to
as knowledge flow (KF) needs to be assembled when the algorithms are to be ap-
plied to given data. In this paper, we propose an innovative evolutionary approach
to automated KF synthesis and optimization. We demonstrate the evolutionary
KF synthesis on the problem of classifier construction. Both preprocessing and
machine learning actions are selected and configured by means of evolution to
produce a model that fits very well for a given dataset.

1 Introduction

Several research attempts have been made in order to automate the construction of the
KD process. In [1], an ontology of knowledge is modeled and the knowledge flow
is constructed through the use of automated planning. In our opinion, an exhaustive
enumeration is too limiting. There are thousands of different knowledge flows available
online, some of which are highly specialized for a given problem. The KD ontology
should be constructed in manner rather inductive than deductive.

A framework for an automated DM system using autonomous intelligent agents is
proposed in [2]. In the FAKE GAME project [3], Evolutionary Computation (EC)
was used to automate certain steps of the KD process. In FAKE GAME, genetic algo-
rithm (GA) is used to evolve neural networks. In this paper, we further extend this work
to automate the knowledge flow synthesis, this time by means of genetic programming
(GP).

There are several motivations for process-oriented view of DM and KD. Wide range
of algorithms for automated extraction of information from data has been developed in
the last decades. These algorithms, however, are of specialized roles in the context of
the whole KD procedure. While some of these algorithms focus on data preprocessing,
others are designed to learning and model building, and yet others are able to visual-
ize data and models in various forms. Only when orchestriated, these algorithms are
able to deliver useful results. We believe that viewing KD tasks as problems of finding
appropriate knowledge flows is the right approach to KD automation.

V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 23–32.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

24 T. Rehorek and P. Kordik

2 Knowledge Flows

The composition of KD processes can be expressed in form of oriented graphs called the
knowledge flows (or workflows in general). These knowledge flows became standard
way of representing interconnected actions that need to be executed in order to obtain
useful knowledge [1].

In our context, knowledge flow (KF) is understood as directed acyclic graph (DAG)
consisting of labeled nodes and edges. The nodes are called actions and can be thought
as general transformations. The edges serve as transition channels between the actions.
A general process is shown in Fig. 1.

Fig. 1. A dynamic view of a general knowledge flow

Fig. 2. A general nesting of knowledge flows

There is a special kind of actions that require not only connection of input ports,
but also a specification of some inner processes. This is typical for meta-learning ap-
proaches that combine, for example, multiple machine learning methods to produce
ensembles of models [4]. This is why we further extend our definition of KF with nest-
ing, i.e. allowing a node to contain an inner process and thus creating DAG hierarchy.
Hierarchical DAGs seem to be approach suitable enough to capture vast majority of
thinkable KD processes. A general nesting is shown in Fig. 2.

A Soft Computing Approach to Knowledge Flow Synthesis and Optimization 25

3 Related Evolutionary Computation Methods

Evolutionary Computation (EC) is an area of optimization using population of candi-
date solutions that are optimized in parallel. These solutions interact with each other
by means of principles inspired by biological evolution, such as selection, crossover,
reproduction, and mutation [5].

There are many branches in EC, some of which arose independently on each other.
The most prominent are the Genetic Algorithm (GA), Genetic Programming (GP), Evo-
lutionary Programming (EP), and Evolution Strategies (ES). Several attempts have been
done to adapt EC techniques for evolving DAGs as summarized below.

3.1 Approaches to Evolution of Graphs

In 1995, Parallel Algorithm Discovery and Orchestration (PADO) was introduced, aim-
ing at automating the process of signal processing [6,?]. In its early version [6], it used
GP to evolve tree-structured programs for classification task. In later version [7], trees
were replaced by general graph structures.

A more systematic and general approach to DAG evolution is the Cartesian Ge-
netic Programming (CGP) [8]. Nodes are placed into grid of fixed width and height,
and a genome of inter-node connections and functions to be placed into the nodes is
evolved. Although CGP may be used for various domains, it especially targets evolu-
tion of Boolean circuits.

In [9], evolution of analog electrical circuits using Strongly Typed GP (STGP) is
introduced by J.R. Koza. The principle of cellular encoding proposed in [10] for evolu-
tion of neural networks is further extended and generalized. The algorithm starts with
minimal embryonic circuit, changes to which are expressed as a GP tree. Non-terminals
of the tree code topology operations such as splitting a wire into two parallel wires,
whilst terminal code placing electrical components onto the wire. The principle is very
general and allows us to design the GP grammar that suits best for a given problem.

Besides the aforementioned general approaches to graph evolution, a lot of atten-
tion has been paid to evolution of Artificial Neural Networks (ANNs). Research in this
area, which is also known as neuroevolution, produced large variety of algorithms for
both the optimization of synaptic weights and the topology. From our point of view,
the only interesting are topology-evolving algorithms, sometimes called as Topology
and Weight Evolving Neural Networks (TWEANNs) [11]. Generalized Acquisition of
Recurrent Links (GNARL) evolves recurrent ANNs of arbitrary shape and size through
the use of Evolutionary programming. Symbiotic, Adaptive Neuro-Evolution (SANE)
evolves feed-forward networks of single hidden layer. There are two populations: the
first one evolves neurons, and the second one evolves final networks connecting neurons
together. In 2002, one of the most successful neuroevolution algorithms, NeuroEvolu-
tion of Augmenting Topologies (NEAT) [11] was introduced. Similarly to STGP em-
bryonic evolution of circuits, it starts with minimal topology which grows during the
evolution. It uses GA-like genome to evolve population of edges, and employs several
sophisticated mechanisms such as niching and informed crossover.

From all the mentioned algorithms, the most suitable for evolution of KFs seem to
be CGP, NEAT, and Embryonic STGP. CGP has two limitations: it bounds the maximal

26 T. Rehorek and P. Kordik

size of the graph and does not use strong typing as the actions in KF do. NEAT puts no
limits on the size of the graph, but does not respect arities and I/O types of the actions.
The most promising seems to be the Embryonic STGP proposed in [9] as it allows us
to evolve KFs of arbitrary sizes and is able to respect both the I/O arities and types of
the actions. That is why we decided to further investigate Embryonic STGP.

3.2 Embryonic Strongly Typed Genetic Programming (STGP)

Based on Frédéric Gruau’s cellular encoding (CE) for neuroevolution [10], J. R. Koza
introduced GP-based algorithm for automated design for both the topology and sizing
of analog electrical circuits [9]. In CE, the program tree codes a plan for developing a
complete neural network from some simple, initial topology. Similarly to CE, Koza’s
algorithm starts from trivial circuit, which is called the embryonic circuit.

In the embryonic circuit, there are several components (such as capacitors, inductors,
etc.) fixed, and there are two wires that writing heads are pointing to. Accordingly, the
root of the GP tree being evolved contains exactly two subtrees, each subtree expressing
the development of one of these wires. The nodes are strongly typed, allowing us to
evolve different aspects of the circuit. For the purposes of GP tree construction, there
are several categories of nodes available:

1. Circuit-constructing functions and terminals that create the topology of the cir-
cuit. These include parallel and serial split of a wire, and polarity flip.

2. Component-setting functions that convert wires within the circuit into compo-
nents, such as capacitors, resistors, and inductors.

3. Arithmetic-performing functions and numerical terminals that together specify
the numerical value (sizing) of each component in the circuit.

This allows the resulting circuit to be fully specified within single GP tree. The results
of the algorithm seems very promising. In [12], the algorithm is applied to other types
of analog electrical circuits, and is reported as human-competitive as it was able to find
circuits very similar to those that have been previously patented.

4 Evolution of Knowledge Flows

We will demonstrate our approach on particular subproblems of the knowledge discov-
ery process: data preprocessing and algorithm selection tasks for supervised classifi-
cation problems.

Generally, if the task is well-defined, there is usually some template for the KF that
can be used to solve the task. In such a template, some of the blocks are fixed, while
others may vary. The fixed parts of the template reflect the semantics of the task. The
variable parts may be modified in order to adapt the template so it maximizes the perfor-
mance on specific dataset. This exactly matches the presumptions of STGP approach to
circuit evolution proposed by J. R. Koza in [9]. Given such an embryonic template and
a dataset, our algorithm will evolve the variable parts to fit the final KF to the dataset as
well as possible.

A Soft Computing Approach to Knowledge Flow Synthesis and Optimization 27

Specifically, for our exemplary problem of classifier construction, we are given
a dataset, and a set of preprocessing and learning actions that can be integrated into
the classifier template shown on Fig. 3. The algorithm then automatically constructs a
classifier KF based on this template.

Fig. 3. A template of the Classifier selection process: Variable parts are to be evolved

The actions available may be used to complete/fine-tune the process. As shown in
Fig. 3, our task is to find a combination of preprocessing steps (e.g. preprocessing
model) and a learning algorithm that is able to learn from preprocessed data with high
classification accuracy. The accuracy is estimated using 20-fold cross-validation.

Traditionally, there is human assistance needed in order to complete such a template.
Furthermore, even the human expert often selects appropriate methods in trial-and-error
manner. There is a large number of degrees of freedom, making it a difficult optimiza-
tion problem. Moreover, dozens of parameters often need to be configured to fine-tune
the classifier. Our task is to design an evolutionary algorithm that would, for a given
dataset, construct the classification process automatically.

4.1 Our Approach

Based on problem analysis, we propose to adapt embryonic STGP according to [9] to
construct the KF from a template. The method of encoding the topology of the graph,
along with the parameters, into a single STGP program tree, is very flexible. In fact,
the KF construction problem can be addressed easily by only slight modification of
the algorithm. All the actions and their parameters (both numerical and categorical)
can easily be embodied into the genotype through the use of type-specific subtrees.
Moreover, nested processes can easily be encoded through the use of subtrees, as well.

In order to adapt the embryonic STGP algorithm to the evolution of KD processes,
a problem-specific grammar needs to be designed. Hence the grammar is further
investigated in this section.

28 T. Rehorek and P. Kordik

4.2 Cross-Validation Process Grammar

In accordance with Fig. 3, there are two top-level points where the expansion of the
process should be started. Basically, two crucial substructures are to be evolved: the se-
quence of configured preprocessing actions, and the configured learning action. For that
reason, we propose the root of GP tree to be non-terminal strongly typed as Workflow.
A node of this type will have exactly two descendants. The first descendant will be of
type Preprocessing and will encode the chain of processing actions. The second
descendant will encode the configured learner action and will be of type Learner.
Learners can be nested as shown in Fig. 4.

Fig. 4. Bagging Meta-Learner Grammar and Its Semantics

This can be expressed using Backus-Naur Form as:

<Workflow> ::= KF(<Preprocessing,Learner>)
<Preprocessing> ::= <AttributeSelection> | <PCA> |

PreprocessTerminal
<Learner> ::= <kNN> | <NaiveBayes> |

<DecisionTree> |
<MajorityVote> | <Bagging>

As can be seen, the structure can be constructed in hierarchical manner, making GP
approach very flexible. Because our hierarchy of non-terminals is very large, we will
further demonstrate the principle only briefly, showing the power and universality of GP
approach. Further decomposition of <AttributeSelection> moving down until
the level of integers follows:

A Soft Computing Approach to Knowledge Flow Synthesis and Optimization 29

<AttributeSelection> ::= AS(attrs=<SetOfIntegers>,
invert=<BooleanConstant>,
next=<Preprocessing>)

<SetOfIntegers> ::= SetMember(<SetOfIntegers>,<Integer>) |
SetTerminal

<Integer> ::= IntegerPlus(<Integer>,<Integer>) |
IntegerMultiply(<Integer>,<Integer>) |
IntegerDivide(<Integer>,<Integer>) |
1 | 2 | ... | 10

Design of the rest of the grammar is completely analogous and can be designed easily
for various knowledge flows solving different tasks. Very complex information can be
encoded into the tree, allowing us to move downwards in the hierarchy and design
actions that are appropriate for given layers of abstraction. We further investigate only
the case study of classifier KF.

5 Experiments

The algorithm proposed in the previous section has been tested on several datasets with
very promising results. Fig. 5 shows average accuracy over first 30 generations based on
10 runs of the algorithm on Ecoli dataset from the UCI Machine Learning Repository
[13]. Many interesting solutions have been found for different datasets. An example GP
tree, found for Ecoli dataset, is shown in Fig. 6.

Fig. 5. Evaluation of the Evolutionary Classifier Process Construction on the Ecoli dataset

30 T. Rehorek and P. Kordik

Fig. 6. A sample tree evolved on Ecoli dataset

Despite the very limited number of available preprocessing and learning actions, the
algorithm managed to find a satisfactory solution for most of the datasets. In most cases,
a good solution was in the first generation within the randomly generated individuals.
Indeed, this is because the limited set of learners. In the RapidMiner learning envi-
ronment, for example, there are dozens of preprocessing and learning operators avail-
able. If included into the set actions used by our algorithm, the results could be further
improved.

Even though the classification accuracy is improved only by units of percents during
the evolution, in the field of DM, this is not insignificant. In fact, it is a very difficult
task to improve the results at the point where the learning algorithms reach their lim-
its. However, in many areas such as e-commerce, improvement of a single percent in
accuracy may result in considerable economic benefits.

To improve the accuracy for hard datasets, complex ensemble of models often needs
to be built. This is shown of Fig. 7, where a very complex tree evolved in order to maxi-
mize classification accuracy on Vehicle dataset from UCI Machine Learning Repository

Fig. 7. A very complex tree evolved on Vehicle dataset

A Soft Computing Approach to Knowledge Flow Synthesis and Optimization 31

[13] is shown. As can be seen, it uses a majority vote on the top of 14 inner learners.
This is consistent with the results obtained by a different strategy [14], where complex
ensemble of models was also obtained for the Vehicle data.

6 Conclusion

In this paper an efficient algorithm for automated construction of KD process was in-
troduced. Given list of appropriate preprocessing, modeling and parameter-tuning node
types, the algorithm constructs a classifier that minimizes classification error on a given
dataset. As it is based on universal concepts of GP and embryonic graph construction,
it is reasonable to expect the algorithm to be suitable for many similar problems. Given
a well-defined task and a set of appropriate actions, the algorithm constructs process of
near-optimal behavior.

We have also presented promising preliminary results of the KD process evolution.
Our approach futher extends capabilities of the SpecGEN algorithm [4] by incorporat-
ing data preprocessing operators. As a future work, we plan to benchmark the presented
approach on bigger collection of problems and evaluate the effect of each improvement.

References

1. Žáková, M., Křemen, P., Železný, F., Lavrač, N.: Automatic knowledge discovery workflow
composition through ontology-based planning. IEEE Transactions on Automation Science
and Engineering 8(2), 253–264 (2011)

2. Rajan, J., Saravanan, V.: A framework of an automated data mining system using autonomous
intelligent agents. In: ICCSIT 2008, pp. 700–704. IEEE Computer Society, Washington, DC
(2008)

3. Kordı́k, P.: Fully Automated Knowledge Extraction using Group of Adaptive Models Evo-
lution. PhD thesis, Czech Technical University in Prague, FEE, Dep. of Comp. Sci. and
Computers, FEE, CTU Prague, Czech Republic (September 2006)

4. Černý, J.: Methods for combining models and classifiers. Master’s thesis, FEE, CTU Prague,
Czech Republic (2010)

5. Luke, S.: Essentials of Metaheuristics. Lulu (2009),
http://cs.gmu.edu/˜sean/book/metaheuristics/

6. Teller, A., Veloso, M.: PADO: Learning tree structured algorithms for orchestration into an
object recognition system. Technical Report CMU-CS-95-101, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, USA (1995)

7. Teller, A., Veloso, M.M.: Program evolution for data mining. International Journal of Expert
Systems 8(3), 213–236 (1995)

8. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Lang-
don, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp.
121–132. Springer, Heidelberg (2000)

9. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated synthesis of ana-
log electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary
Computation 1(2), 109–128 (1997)

10. Gruau, F.: Cellular encoding of genetic neural networks. Technical Report RR-92-21, Ecole
Normale Superieure de Lyon, Institut IMAG, Lyon, France (1992)

http://cs.gmu.edu/~sean/book/metaheuristics/

32 T. Rehorek and P. Kordik

11. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evolutionary Computation 10(2), 99–127 (2002)

12. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Four problems for which a computer
program evolved by genetic programming is competitive with human performance. In: Inter-
national Conference on Evolutionary Computation, pp. 1–10 (1996)

13. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
14. Kordı́k, P., Černý, J.: Self-organization of Supervised Models. In: Jankowski, N., Duch, W.,

Gra̧bczewski, K. (eds.) Meta-Learning in Computational Intelligence. SCI, vol. 358, pp. 179–
223. Springer, Heidelberg (2011)

	A Soft Computing Approach to Knowledge Flow Synthesis and Optimization
	Introduction
	Knowledge Flows
	Related Evolutionary Computation Methods
	Approaches to Evolution of Graphs
	Embryonic Strongly Typed Genetic Programming (STGP)

	Evolution of Knowledge Flows
	Our Approach
	Cross-Validation Process Grammar

	Experiments
	Conclusion
	References

