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Abstract. By testing advanced control techniques based on Soft Computing into
industrial platforms is possible to analyse the feasibility and reliability of these
implementations for being subsequently used in real industrial processes. In many
cases, this fact is not taken into account for several reasons concerning with the
complexity of performing hardware implementations. Hence, simulation testing
becomes the last step before showing an implemented solution. The main objec-
tive of this work is to give a step beyond for achieving a more realistic test of the
Intelligent Control techniques. For this reason, a first approximation of a Genetic
Algorithm controller (NSGA-II) is implemented, tested, studied and compared
in the stages of the controller design, and simultaneously in different industrial
platforms. Most relevant results obtained in software simulation and in Hardware
In the Loop (HIL) implementation are finally shown and analysed.

1 Introduction

Since many years, Intelligent Systems area has been presented as a new chance to solve
tricky problems, being particularly relevant in coping with the intricacy and the com-
plexity of the real world industrial process control [1]. As Rudas and Fodor present
in their work Intelligent Systems [1], new fields emerged in this area developing com-
putational solutions for the new approaches based on intelligence, such as Computa-
tional Intelligence [2], Soft Computing [3], and combining techniques from both fields,
Hybrid Systems [4].

In both fields, Computational Intelligence (CI) and Soft Computing (SC), the GAs
have recently appeared in the developed solutions in industrial control applications [5].
These solutions might be classified into two categories: one group for analysing and
off-line design; other group for adapting and on-line controller tuning.There exist a
short number of proposals where GAs directly calculate an on-line and real time con-
trol action, due to: (1) non-reliable computation, (2) high computational cost, and (3)
problems in obtaining convergence and stability, such as discussed works in Fleming et
al. [6] and Valera et al [7].

Currently, there exist lots of studies for solving industrial control problems based on
ANN, as the work presented by Bose in Motor Drives [8], and based on FL, as the one
presented by Precup in a survey on industrial applications of fuzzy control [9]. The prin-
cipal gap of these works is to develop a real implementation in real industrial processes.
Usually, all the performed studies are tested in an experimental stage with industrial
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process models which can include complex dynamics, but they are carried out in a sim-
ulation framework. Although there are multiple proposals based on SC techniques in the
literature, few real developments can be found [8]. All of them are developed with labo-
ratory equipment, without using real industrial platforms, such as industrial computers,
embedded computers or programmable logic controllers. Some works are laboratory
implementations with FPGA/DSP, or with a Host-PC configuration, testing communi-
cation and control issues, but not proving the robustness of a laboratory equipment in
real industrial processes [8].

This work takes a step forward using GAs for intelligent control, providing a frame-
work for the rapid prototyping and testing using industrial and usually used HW
platforms in the Industry. In subsequent sections, promising results with different real
platforms are presented. These results were obtained in several tests for controlling pro-
cesses with complex dynamics and in solving optimization problems based on GAs with
high computational cost requirements. Real tests have been carried out with two differ-
ent industrial platforms; a robust industrial PC controller with Peripheral Component
Interconnect (PCI) bus, and a PAC (Programmable Automation Controller). Beyond us-
ing GAs for solving optimization problems focused on tasks as planning, scheduling,
tracking and calibration, this work introduces first results in intelligent controlling of
processes with complex dynamics. Specifically, this development computes future val-
ues for control actions by an optimization process using GAs. This future values are
computed for a predictive control scheme where, depending on the sample time, the
computational cost could be very demanding.

There exist two fundamental problems on applying Model Predictive Control (MPC)
strategies: (1) the accuracy of the model to approach the process or plant to be con-
trolled, and (2) the control optimization problem to solve (specially for non-linear
model predictive control, NMPC) during each controller sample time. Therefore, GAs
as a part of Evolutionary Algorithms can offer a relevant possibility in high complexity
optimization problem solving when process models with high non linearity are chosen
and the selected cost functions are non-quadratic and non-convex [7].

Moreover, if the used prediction horizon is long, new difficulties appear in NMPC
problem solving which have to be considered in real applications. On the one hand,
the computational cost in solving the control problem with such horizons is high. On
the other hand, this control strategy produces convergence problems in the optimization
process, so in a general control formulation for working out a solution the computational
cost will grow up as well. Furthermore, if it is necessary to control process systems with
faster dynamics, a new problem appears when trying to perform an implementation in
a Real Time (RT) control scheme, because of time requirements to be reached in each
short sample time. This work tries to show how a control algorithm based on GAs can
be executed in RT, on several industrial platforms and in shorter sample times. To this
end, a Hardware In the Loop (HIL) testing configuration was prepared in the laboratory
where controllers were implemented into two different industrial platforms.

In this work we present in section 2 the multiobjective GA approach used in our
NMPC strategy. Subsequently, in order to implement the GA in real time with Mat-
lab/Simulink and xPC-Target tools, several modifications and adjustments have been
carried out and presented in section 3. Section 4 shows in a simulation context, two
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different controlled systems which will be later used in real tests. The two real plat-
forms tested in this work are presented in section 5. Results with both real platforms
in RT tests are showed and explained in section 6. Finally, section 7 contains the last
conclusions and future works.

2 The Genetic Algorithm NSGA-II

The optimization of multiple objectives problems, where any improvement in one of
the objectives makes other objectives worse, has been a extensively explored research
area. The optimal solutions obtained in such problems are denominated non-inferior
solutions and all of them belong to the set of Pareto [10]. There exist several methods
to search for the non-inferior (set of Pareto) solutions in the multi-objective optimiza-
tion context. Among them the ones based on evolutionary algorithms stand out. Some
of these contributions can be found in [11][6] and in [7]. Examples of efficient evo-
lutionary algorithms such as Nondominated Sorting Genetic Algorithm (NSGA) and
Micro-Genetic Algorithm (l-GA) are presented in [12] and in [13] respectively. The
main drawbacks of these techniques are their high computational cost and the need of
a decision maker to select one solution among the Pareto set. Other drawbacks related
to the control context are the difficulty of demonstrating the stability, the convergence
to a near global optimal and the robustness of the final solution

The NSGA-II used in this work is the one proposed by Deb et al. in [14]. The NSGA-
II is the evolution of the NSGA originally proposed by Srinivas and Deb in [12]. This
second version of the algorithm arose to answer the main criticisms (high computational
complexity, lack of elitism and the need for specifying the sharing parameter) the NSGA
received [14].

The possibility to tackle the multi-objective problems in the context of NMPC makes
very interesting the NSGA-II algorithm. The introduction of the elitist mechanisms in
the NSGA-II algorithm that improves the convergence time of the Pareto solutions is
especially useful for control, where there exist specific problems as the time require-
ments (directly linked to the computational complexity of the controller algorithm). In
[15] and [7], the authors takes the multi-objective NMPC scheme approach by using
NSGA-II [12] to search the set of Pareto non-inferior solutions at each sampling time
of the controller. For these applications, the NSGA-II works as the optimization solver
of the NMPC problem at each sampling time.

The NSGA-II flowchart explained briefly starts with the initialization of the popula-
tion (size N), evaluates the objective functions and ranks the population. The next step
consists of a loop that ends when the stopping criteria is met. Inside the loop the fol-
lowing steps are taken in the following order; selection, crossover, mutation, evaluation
of the objective functions, combination of population, ranking and finishes with the se-
lection of N individuals. If the stopping criteria is met the final population is presented.
See [14] for a detailed description of the NSGA-II algorithm.

NSGA-II was proposed as a Multiobjective GA although for this article it has been
used with SISO plants with only one objective. It should be addressed that the scope of
this work has been the preparation of a framework for the rapid prototyping and testing
of intelligent control techniques in industrial control platforms. Future work will lead
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to the implementation of multiobjective control strategies using GAs in RT as other use
cases.

3 RT NSGA-II Programming for Predictive Control

The NSGA-II original code provided by Deb et al. in [14] was written in C. This code
has been rewritten in a new s-function code for implementing in the Matlab/Simulink
development environment. Some code reduction was made in order to minimize the
coding size: e. g. lines related to the binary coding was removed because only real
number coding was required. Also the controller time performance has been improved
by making some modifications to adequate the NSGA-II in order to enhance its exe-
cution in short control sampling times. Finally, it is important to note that a new stop
criteria has been added to include in the control strategy not only the GA iterations, but
also the execution time.

In order to perform the predictive control with the NSGA-II algorithm, the objective
function should be evaluated for the entire prediction horizon. The function evaluation
is related to the error produced in the controlled variable of the control loop. To calculate
this error the algorithm needs a model of the system to be controlled that can be obtained
by mathematical approximation, neural network identification, etc. In this work, the
first RT implementations have been performed by using mathematical models presented
below. Furthermore, some tests have been made with neural network models performing
a satisfactory control as well. Once the GA ends the searching (with a time based or
a limited generation number stopping criteria) the last solution is used as predictive
control action at each controller sampling time.

4 Simulation Results

In this section some simulation results are presented. For these experiments the two
following nonlinear systems have been chosen from different benchmark systems:

System 1 (This is a modification of the system presented in [16]):

yk+1 = 0.8

[
u3

k +
ykyk−1

1+ y2
k

]
(1)

This system has been created for increasing the non-linear dynamics near the origin of
coordinates of the original system.

System 2 (This system is presented in [17]):

yk+1 =
1.5ykyy−1

1+ y2
k + y2

k−1

+ 0.7sin [0.5(yk + yk−1)]cos [0.5(yk + yk−1)]+ 1.2uk (2)

For the simulation stage, the controller has been implemented in Matlab/Simulink. A
batch of 50 simulations have been performed for each system. Figure 2 and Figure
3 show the evolution of the mean value in each batch of simulations. The system 1
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performs with a 25% overshoot (Mp) while the system 2 performs with a 45% Mp. It
is obvious this is not the best possible performance, but the implemented controller is
quite simple and does not include any kind of constraint.

The system 1 output signal shows the following statistical values; Mp Max = 0.3674;
Mp Min = 0.3648; Mp Mean = 0.3661; Mp Variance = 2.537e−7. It should be mentioned
that the control action max. value never exceeds 0.7223.

The system 2 output signal shows the following statistical values; Mp Max = 1.4984;
Mp Min = 1.4941; Mp Mean = 1.4960; Mp Variance = 6.8509e−7. It should be mentioned
that the control action max. value never exceeds 0.8344.

The simulations show that both systems can be controlled with the proposed NSGA-
II predictive controller. The simulation results are very satisfactory despite the imple-
mented controller is quite simple and does not include any kind of restriction.
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Fig. 1. Sample time 0.2 seg, Initial population 70, n generations 100. a) System 1 and
b) System 2

Although the results may not be as satisfactory as they should, the scope of this work
should not be lost. The HIL implementation of this first controller is challenging enough
to continue with this first controller before trying to develop a very accurate one. All in
all, more research has to be done in order to improve the controller and the results that
it provides.

5 Rapid Control Prototyping and HIL Testing

Nowadays, the software development platforms provide accurate simulation results, but
these simulations are not always enough to understand the real behaviour of the system.
The next step to take should be the testing of the development in a real system. But
the risk of a malfunction during the real testing is still there, and sometimes that risk is
simply unacceptable. Hardware In the Loop arises to fill the gap between the software
simulations and the real system implementation. The simulation gives a step towards the
real implementation using the HIL test with the externalization of the signals. The HIL
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can be used to simulate a single component or even the whole system replacing some of
the parts by mathematical models [18]. The benefits of the HIL have been tested in many
different industrial fields as automotive [19], electronics [20], wind energy systems [21],
etc. Therefore, the Intelligent Control Research Group (GICI) of the UPV/EHU has
adopted HIL methodology to test the different controllers under more real situations.

In the case of study of this article, the HIL test implies the externalization of the con-
trol signal u(k) and the system output signal y(k), as shown in Figure 2. The controller
is going to be hosted in one platform and the system to be controlled will be placed in
another platform. The configuration of the platforms and the data acquisition systems
are listed in the table 1.

System 2 (Plant )

y
k+1

=0.8*[u
k
3+y

k
*y

k−1
/(1+y

k
2)]

Step

PXI−6052 E DA

PXI−6052 E
National Instr .
Analog Output

1

PXI−6052 E AD

PXI−6052 E
National Instr .
Analog Input

1

PCI−6281 DA

PCI−6281
National Instr .
Analog Output

1

PCI−6281 AD

PCI−6281
National Instr .
Analog Input

1

Controller

NMPC
based on NSGA −II

u(k) y (k)

Fig. 2. Mathworks Matlab/Simulink block diagram

Table 1. Platform specification

Industrial PC / Kontron
Host Kontron xPC-Target 4.0 NI pxi-6052 (16bits)
Target PC xPC-Target 4.0 NI pci-6281(18bits)

PAC / Beckhoff
Host Beckhoff Xubuntu 8.04 / RTAI 3.8 K-Bus / KL3404 (AI) / KL4034 (AO)

(12bits).
Target PC xPC-Target 4.0 NI pci-6221(16bits)

Both platforms have in common the target configuration for the system to be con-
trolled. This system is composed by a PC with a National Instruments PCI Data Acqui-
sition card described above. All the configurations and the SW/HW installation steps
are explained in the howtos hosted in the GICI webpage.

6 Results (HIL Real Time Simulations)

In this section some results are shown. The HIL experiments have also been performed
with the two systems (System 1 and System 2) in 50 simulations, both running in the
two platforms presented in the previous section: Industrial PC and PAC.
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It should be remarked the difference in the bit resolution of the two platforms. The
industrial PC analog I/O card has a 16bit resolution, whereas the PAC K-Bus analog I/O
cards have a 12bit resolution. Also the NI PCI-6281 DAQ card has a 18bit resolution,
while the NI PCI-6221 DAQ card has 16bit resolution. This difference is one of the
reasons, but not the unique, of the noisier signal of the PAC platform.

Note that the system to be controlled is already running before the controller starts
in all the results shown above.

6.1 Industrial PC (PCI Bus Based On)

The Industrial PC is a very powerfull and robust platform, with a similar core as the
PCs but with an industrial bus (PCI). The results of this platform with the two systems
under testing (1) and (2) can be seen in Figure 3(a) and Figure 3(b).
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Fig. 3. Sample time 0.2 seg, Initial population 70, n generations 100. a) System 1 and
b) System 2

The system 1 output signal shows the following statistical values; Mp Max = 0.3769;
Mp Min = 0.3622; Mp Mean = 0.3649; Mp Variance = 1.3517e−5. It should be mentioned
that the control action max. value never exceeds 0.7229.

The system 2 output signal shows the following statistical values; Mp Max = 1.7932;
Mp Min = 1.4679; Mp Mean = 1.5673; Mp Variance = 0.0163. It should be mentioned that
the control action max. value never exceeds 0.8478.

The results of the Industrial PC are very similar to the ones presented in the simula-
tion section.

6.2 PAC / Beckhoff: K−Bus

The PAC can be described as a less powerfull platform in comparison with the industrial
PC, but the differences between both platforms are becoming less and less significant.
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The PAC has the capability of being programmed with PLCs programming language,
and it can be seen as a bridge between the PLCs and the industrial PCs. The results of
this platform with the two systems can be seen in Figure 4(a) and Figure 4(b).
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Fig. 4. Sample time 0.2 seg, Initial population 70, n generations 100. a) System 1 and
b) System 2

The system 1 output signal shows the following statistical values; Mp Max = 0.4006;
Mp Min = 0.3713; Mp Mean = 0.3829; Mp Variance = 2.7136e−5. It should be mentioned
that the control action max. value never exceeds 0.7223.

The system 2 output signal shows the following statistical values; Mp Max = 1.8117;
Mp Min = 1.5871; Mp Mean = 1.7777; Mp Variance = 0.0020. It should be mentioned that
the control action max. value never exceeds 0.8404.

The results of the PAC are similar to the ones presented in the simulation section.
Compared with the Industrial PC results, it can be seen that the PAC performs with a
noisier signal. All in all, the results of the two platforms and the simulations are very
similar.

The two platforms are capable of performing the 100 generations of the GA in
the required time each sample time. In case of not performing the 100 generations a
stop criteria has been implemented based in the required time to guarantee the RT and
deterministic performance of the controller.

7 Conclusions

In this work the first step to implement Soft Computing techniques in industrial plat-
forms have been taken in a Hardware In the Loop structure. A basic NMPC controller
has been prototiped and tested in real industrial hardware platforms with promising re-
sults. These results demonstrate that present industrial platforms have enough computa-
tional capability to run advanced control strategies using intelligent and Soft Computing
computation techniques. The rapid prototyping and testing framework presented in this
article is very useful to make fast improvements in the algorithms in order to satisfy the
hard real time and computational cost requirements.
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The application of the NSGA-II algorithm in a NMPC strategy has been also pre-
sented as an example of prototyping and testing. Different steps for developing the
control algorithm, from off-line simulations to rapid control prototyping and HiL test-
ing, have been done, laying the basis for the implementation of future intelligent control
strategies over real industrial controllers. All these steps have shown satisfactory results
as the ones presented in this paper.

Future work will lead us to the implementation of multivariable and multiobjec-
tive intelligent-expert controls for highly non-linear and complex controlled plants. The
combination of Neural Networks, Genetic Algorithms and Fuzzy Logic in advanced
strategies is being a promise solution to optimize highly complex control problems.
With the framework presented in this article the hybridization of those techniques is
being investigated, implemented and tested easier.

Another research line will guide us to the implementation of a neural network iden-
tification system. Firstly, the offline identification should be implemented in RT (it has
already been implemented in simulations) and secondly the identification should be
done online. This improvement will help the controller to be less dependant of a math-
ematical model of the system.
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