
V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 173–182.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Self-organizing Migration Algorithm
on GPU with CUDA

Michal Pavlech

Tomas Bata University in Zlin, Faculty of Applied Informatics
nám. T.G.Masaryka 5555, 760 01 Zlín

Czech Republic
pavlech@fai.utb.cz

Abstract. A modification of Self-organizing migration algorithm for general-
purpose computing on graphics processing units is proposed in this paper. The
algorithm is implemented in C++ with its core parts in c-CUDA. Its implemen-
tation details and performance are evaluated and compared to previous, pure
C++ version of algorithm. 6 commonly used artificial test functions are used to
test the performance. The test results clearly show significant speed gains
without a compromise in convergence quality.

Keywords: SOMA, CUDA, GPGPU, evolutionary algorithm.

1 Introduction

Modern graphics cards (GPUs) are capable of much more than processing and
displaying of visual data. Their multiprocessor architecture is suitable for parallel
algorithms which can benefit from the SIMD architecture. GPUs have generally lower
clock frequency than modern processors but rely on parallel execution of instructions
over large blocks of data.

Evolutionary algorithms (EAs) are in their very essence parallel processes and as
such are suitable for implementation on such multiprocessor devices with little or no
modifications to their functionality. First attempts on utilizing the processing power
of GPUs for EAs were done before the release of general purpose computing APIs.
Researchers had to modify algorithms to fit them into specialized GPU processing
units – the shaders and data structures had to be translated into textures. An example
of this approach is the work of Wong , Wong and Fok who used GPU to increase the
performance of genetic algorithm and reported speedup of up to 4.42 times [1, 2].

With the emergence of general purpose computing frameworks for GPUs, like
Compute Unified Device Architecture (CUDA), Open Computing Language
(OpenCL) and DirectCompute, new possibilities have risen and general purpose
computing on graphics processing units (GPGPUs) became available to a broader
audience.

A large number of evolutionary algorithms has been ported to GPUs, with CUDA
being arguably the most common API used. Some of these algorithms include:
genetic algorithm [3, 4], genetic programming [5], differential evolution [6], ant
colony optimization [7] and particle swarm optimization [8, 9].

174 M. Pavlech

Self-organizing migration algorithm (SOMA) was chosen for a subset of its
characteristics which are not common in other EAs and make it suitable for parallel
architecture with limited communication between processing units.

The paper is divided as follows: first part describes SOMA, modifications and
steps necessary for its implementation using CUDA. Next part describes methodology
used in testing the algorithms performance followed by results of the tests and
conclusion.

2 Methods

2.1 SOMA

SOMA was first introduced by Zelinka [10]. It is modeled after behavior of intelligent
individuals working cooperatively to achieve common goal, for example pack of
animals working together to find food source. This behavior is mimicked by
individuals moving towards another individual, known as the leader, which generally
has the best fitness value. Efficiency and convergence ability of SOMA was proved in
numerous applications [11, 12].

SOMA uses slightly different nomenclature in comparison to other evolutionary
algorithms, one round of the algorithm is called migration. There is a set of three
control parameters which control the algorithm’s behavior and significantly affect its
performance:
• PathLength ∈ [1; 5]: Specifies how far from the leader will the active individual

stop its movement.
• Step ∈ [0.11; PathLength]: Defines the size of discreet steps in solution space.
• PRT ∈ [0; 1]: Perturbation controls creation of perturbation vectors which

influence the movement of active individual.

The movement of individuals through error space is altered by a random perturbation.
In order to perturb movement of individuals, boolean vector PRTVector is generated
according to equation:

otherwise0

)1,0(randif1 j

=
<= PRTjPRTVector

 (1)

where j = 0,1,..., Dimension-1. The PRTVector is generated before movement of
active individual, and is generated for each individual separately. Value 0 in
PRTVEctor means, that corresponding dimension of individual is locked – individual
cannot change its value during this migration. If all elements of PRTVector are set to
1, individual moves straight towards the leader.

Creation of new individuals for next population is implemented using vector
operations. Active individual moves towards the leader according to equation:

() j
ML

startji
ML

jL
ML

startji
ML

tji t PRTVectorxxxx ..,,,,,
1

,, −+=+

 (2)

 Self-organizing Migration Algorithm on GPU with CUDA 175

where ML is the number of current migration round, xML
i,j,start is position of active

individual at beginning of current migration, xML
L,j is the position of the leader, t ∈ [0;

pathLength], t = 0, Step, 2*Step,...
This equation is applied to all individuals except the leader, which does not move.

For each step in solution space (denoted by t) newly created individual is evaluated.
At the end of migration (individual made all steps lower than PathLength) individual
is set to a position which had the best fitness value during the current migration.
Therefore the fitness value of an individual cannot deteriorate.

2.2 cuSOMA

The aim of this work was to create the fastest possible implementation of SOMA
using the CUDA toolkit without compromising its functionality and convergence
ability. This algorithm was named cuSOMA. cuSOMA is implemented as a C++ class
with its core components in c-CUDA.

CUDA C extends C by allowing the programmer to define C functions, called
kernels, that, when called, are executed N times in parallel by N different CUDA
threads. The CUDA threads execute on a physically separate device that operates as a
coprocessor to the host running the C program, the host and the device maintain their
own separate memory spaces in DRAM, referred to as host memory and device
memory, respectively [13].

Early implementations of EAs for GPUs reported problems with generation of
random numbers which was time consuming on GPU hardware [6]. More recent
nVidia CUDA SDK features a library called CURAND which deals with efficient
pseudorandom generators on GPUs [14]. CURAND random generators need to
preserve their states using a data structure curandState in order to avoid generating
the same number sequences for each thread and for each kernel call. Separate states
for each thread are stored in an array and have to be copied from host to device prior
to kernel calls. Initialization of states is done only once during the class initialization
and uses standard C++ random generator. After a seed is generated a kernel is
launched, which initializes random generators for each thread in parallel.

Population of candidate solutions for cuSOMA is stored in one dimensional array
on the device. To minimize the impact of memory transfers on algorithm performance
the population and states are copied from device only after a user definable amount of
migrations finished. The migration of individuals requires 2 additional arrays to store
intermediary positions and the best position discovered during the migration. Both
arrays for temporary values have the same structure as the original population. The
fitness values of each individual are stored inside a population after the phenotype.
The scheme of population is depicted in Fig 1.

Fig. 1. Scheme of population stored on device

176 M. Pavlech

One possible bottle neck of this solution is the transfer of data between device and
host. To quantify this problem a test was conducted which identified the amount of
time needed for data transfers and time for actual computation on device. The data
transfer time should be proportional to a size of copied data and there are two
parameters which influence this amount: population size and dimension of a solution.
Data transfer times include: allocation of arrays on device, copying of population and
states to and from device and freeing of allocated memory. Two tests were conducted
to explore the influence of these two parameters with all the time measurements
conducted with CUDA events. First test was run with dimension locked at 50 and
population size growing steadily from 100 to 2,500 with a step of 100 and with
population size from 5,000 to 25,000 with step of 5,000. All attempts were run for
100 migration rounds. Second test was run with population size and migration rounds
locked to 1,000 and 100 respectively and with dimension of the test functions
growing from 25 to 250 with step of 25 and additionally from 500 to 2,500 with step
of 500. All tests were repeated for 10 times and averaged in order to avoid random
glitches. The share of data transfer times on total run time can be seen in Fig. 2 and
Fig. 3 where it is displayed as a percentage of total runtime with x axis displayed in
logarithmic scale for better readability.

It can be seen that data transfer times are smaller than 1% of the overall
computation time for all test cases. Increase in dimension resulted in longer
computation times and thus the influence of data transfers decreases. Increase in
population size lead to opposite results up to 2,500 individuals where data transfer
share rose steadily up to 0.36% for De Jong function. For larger population sizes, on
the contrary, this share declined. Results show that computational time rose faster
than data transfer time for a number of individuals which was significantly larger than
number of thread processors on GPU and thus the share of data transfer time
decreased.

Fig. 2. Share of data transfer time on algorithms runtime with relation to dimension of cost
function

 Self-organizing Migration Algorithm on GPU with CUDA 177

Fig. 3. Share of data transfer time on algorithms runtime with relation to population size

For larger populations it is not possible to execute all the operations using only one
CUDA block because the thread per block limit is set to 1024 (512 for devices with
compute capacity lower than 2). Large populations require use of several separate
blocks. Number of blocks is decided using equation:

blockperthreads

blockperthreadssizepopulation
blocks

__

)1___(−+=

(3)

During the computation each thread calculates the index of an individual which it
should migrate according to equation:

() idthreadblockperthreadsidblockindex ____ +×= (4)

where block_id is the index of current block in a grid and thread_id is thread index in
current block.

The influence of threads per block on performance of cuSOMA was investigated in
three tests which had population size set to 1,000, 3,000 and 5,000, in order to
simulate spawning of more blocks, dimension set to 50 and number of migrations
to 100.

Table 1 shows the best performing number of threads per block for 3 different
population sizes. The number of threads has considerable impact on cuSOMA
performance. The test showed that 16 threads per block was the setting with the most
consistent performance across population sizes and cost functions and therefore was
used in further tests.

Table 1. Number of threads with fastest execution with relation to population size and test
function

Population Griewangk Michalewicz Rastrigin Rosenbrock Schwefel De Jong

1,000 16 16 16 16 16 16

3,000 32 32 32 16 32 16

5,000 16 256 16 16 16 16

178 M. Pavlech

The population is stored in global device memory during computation but this
memory is the slowest type of memory available on device. Therefore it is desirable
to move as much data as possible from global to either shared memory or registers.
Both, registers and shared memory, are too small to contain whole population so it
was decided to move only the leader for each migration, which is common for all
individuals, into shared memory. The contents of shared memory are accessible by all
threads from one block so it is sufficient if only first thread from the block copies the
leader while other threads in the block are idle, waiting for this operation to finish.

Possible performance gains of using shared memory may be hindered by time
needed to copy the leader from population (global memory) hence a test was
conducted to find if shared leader technique brings performance improvements. The
test was run with two algorithm variants, one which was using leader in shared
memory and one which was accessing leader from global memory. The population
size was set to 3,000, dimension to 50 and number of migrations to 100, number of
threads per block was changed in powers of 2. Fig. 4 shows the difference in time
between the two algorithm’s versions. All values above zero mean that version with
shared leader was faster for a given number of threads per block.

The leader in shared memory turned out to be a questionable improvement. There
are certainly performance benefits for all test functions, but they are in range of
milliseconds. For 16 threads the highest improvement was 3.25ms (Griewangk
function) and the highest performance loss was 7.19ms (Michalewicz function).
Overall results of shared leader test can be summed as follows: algorithm with shared
leader was faster in 33 cases but slower in 15. Although it adds only minor speed
improvements the shared leader was left intact as a part of cuSOMA.

Fig. 4. Performance gains from leader in shared memory with relation to threads per block

In order to determine which individual will be the leader for next migration round
it is necessary to search the whole population for individual with the best fitness.
Because the population during migrations stays in the global memory of GPU it is
possible to perform parallel search for the best individual. cuSOMA uses the parallel
reduction to find the index of the leader and store it in the global memory where the
threads performing migration can access it.

 Self-organizing Migration Algorithm on GPU with CUDA 179

2.3 Performance Tests

The most important reason for implementing SOMA on GPU is the promise of
possible speedup when compared to running the algorithm on CPU. To test these
possible gains two types of tests were conducted with 6 different artificial test
functions. Both tests were conducted on the same hardware: nVidia Tesla C2075, 448
thread processors at 1150 MHz and Intel Xeon E5607, at 2.26 GHz.

All the test cases were run for 100 migration rounds, repeated 10 times and their
results averaged. The measured parameter was the speedup of cuSOMA when
compared to CPU implementation.

First test was aimed at how well the cuSOMA scales to increase in population size.
Second test used constant population size and the dimension of the test functions

was increasing. The purpose of this test was to decide if cuSOMA is suitable for
functions which require higher computational power for evaluation.

In addition to speedup tests a simple test to determine if the convergence ability of
SOMA was not compromised was conducted with all 6 test functions set to 25
dimensions, population size to 1,000 and number of migrations to 100.

Detailed setup of all tests is in Table 2.

Table 2. details of performance tests

Test Population size dimension

1 100-25,000 50

2 1,000 25-2500

3 1,000 25

3 Results

Fig. 5 shows that cuSOMA scales extremely well to the size of population in values
from 100 to 2500. Each increase of population size enlarged the performance gap
between CPU and GPU implementation of SOMA. Further increase in population size
showed that the initial steady growth of speedup is much less significant for higher
volumes of individuals. However no test function showed substantial decrease in
speedup and cuSOMA stayed superior to CPU implementation.

The highest recorded speedup was 126.9 for Michalewicz function and 25,000
individuals. cuSOMA seems to be more suitable for more computationally demanding
functions as can be seen from comparison of results for De Jong and Michalewicz
functions. This effect is probably caused by higher clock speed of CPU in comparison
to thread processor clock speed of GPU, with this difference becoming more obvious
for less demanding functions.

180 M. Pavlech

Fig. 5. Speedup measured with relation to population size

Fig. 6 shows that cuSOMA does not scale very well to increase in cost function
dimension, which can be also viewed as an increase in computational complexity of
cost function evaluation. The GPU implementation is considerably faster than its CPU
counterpart with speedups ranging from 13 (De Jong function) to 56 (Michalewicz
function). Results from higher dimensions show that the value of speedup remained
almost constant witch exception of Michalewicz function which constantly showed
improvements with each dimension increase.

Fig. 6. Speedup measured with relation to test function’s dimension

As shown in Table 3, cuSOMA was able to find known global minima [15] for 5
test functions with Rosenbrock’s function being an exception. Further test runs with
more migration rounds were able to find global optimum even for this function. Value
of global extreme of Michalewicz’s function for 25 dimensions is not known.

Table 3. The best found values in 10 test runs

 Griewangk Michalewicz Rastrigin Rosenbrock Schwefel De Jong
Best value 0 -24.633 0 0.0114101 -10474.6 1.66679E-13

Best
known
value

0 Not known 0 0 -10474.6 0

 Self-organizing Migration Algorithm on GPU with CUDA 181

4 Conclusion

An implementation of self-organizing migration algorithm for GPUs using nVidia
CUDA was presented. This new version was named cuSOMA and provides
significant improvements in computation time. The test with artificial test functions
showed high speedups in comparison to CPU implementation of SOMA with highest
recorded speedup of 126.9. cuSOMA scales very well to large population sizes and
therefore it should be especially suitable for functions where finding global minimum
requires a high number of individuals in order to satisfactory search the solution
space. On the other hand, increase in computational complexity of test functions did
not produce further speedup gains in comparison to CPU version but nevertheless it
was still considerably faster.

The influence of block size on algorithm performance was investigated and it can
be seen, that it can have significant impact on runtime but it is also dependent on the
nature of optimized function. Also the share of data transfer times on overall runtime
was investigated and tests showed that for large populations this time grows slower
that actual computational time.

Further research will focus on fine tuning cuSOMA and finding other optimization
algorithms which could be even better suited for general computing on graphical
processing units.

Acknowledgments. This paper was created as a part of internal grant agency project
number IGA/FAI/2012/033 at Tomas Bata University in Zlin, Faculty of Applied
Informatics and of the European Regional Development Fund under project CEBIA-
Tech No. CZ.1.05/2.1.00/03.0089.

References

1. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics
processing unit. In: Proc. IEEE Congress Evolutionary Computation, vol. 3, pp. 2286–
2293 (2005)

2. Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary Computing on Consumer Graphics
Hardware. IEEE_M_IS 22, 69–78 (2007)

3. Pospichal, P., Jaros, J., Schwarz, J.: Parallel Genetic Algorithm on the CUDA Architec-
ture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I.,
Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.)
EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010)

4. Zhang, S., He, Z.: Implementation of Parallel Genetic Algorithm Based on CUDA. In: Cai,
Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 24–30. Springer,
Heidelberg (2009)

5. Langdon, W.B.: Large Scale Bioinformatics Data Mining with Parallel Genetic Program-
ming on Graphics Processing Units. In: de Vega, F.F., Cantú-Paz, E. (eds.) Parallel and
Distributed Computational Intelligence. SCI, vol. 269, pp. 113–141. Springer, Heidelberg
(2010)

6. de Veronese, L.P., Krohling, R.A.: Differential evolution algorithm on the GPU with C-
CUDA. In: Proc. IEEE Congress Evolutionary Computation (CEC), pp. 1–7 (2010)

182 M. Pavlech

7. Fu, J., Lei, L., Zhou, G.: A parallel Ant Colony Optimization algorithm with GPU-
acceleration based on All-In-Roulette selection. In: 2010 Third International Workshop on
Advanced Computational Intelligence (IWACI), pp. 260–264 (2010)

8. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proc. IEEE Con-
gress Evolutionary Computation CEC 2009, pp. 1493–1500 (2009)

9. de Veronese, L.P., Krohling, R.A.: Swarm’s flight: Accelerating the particles using C-
CUDA. In: Proc. IEEE Congress Evolutionary Computation CEC 2009, pp. 3264–3270
(2009)

10. Zelinka, I.: SOMA—self organizing migrating algorithm. In: Onwubolu, G.C., Babu, B.V.
(eds.) New Optimization Techniques in Engineering. Springer, Berlin (2004)

11. Senkerik, R., Zelinka, I., Oplatkova, Z.: Comparison of Differential Evolution and SOMA
in the Task of Chaos Control Optimization - Extended study. In: Complex Target cf 2009
IEEE Congress on Evolutionary Computation, vols. 1-5, pp. 2825–2832. IEEE (2009)

12. Tupy, J., Zelinka, I., Tjoa, A., Wagner, R.: Evolutionary algorithms in aircraft trim optimi-
zation. In: Dexa 2008: 19th International Conference on Database and Expert Systems Ap-
plications, Proceedings, pp. 524–530. IEEE Computer Soc. (2008)

13. NVIDIA CUDA C Programming Guide. NVIDIA Developer Zone,
http://developer.download.nvidia.com/compute/DevZone/docs/
html/C/doc/CUDA_C_Programming_Guide.pdf (accessed March 13, 2012)

14. CUDA Toolkit 4.1 CURAND Guide. NVIDIA Developer Zone,
http://developer.download.nvidia.com/compute/DevZone/docs/
html/CUDALibraries/doc/CURAND_Library.pdf (accessed March 13, 2012)

15. Molga, M., Smutnicki, C.: Test functions for optimization needs (2005),
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
(accessed March 13, 2012)

	Self-organizing Migration Algorithm on GPU with CUDA
	Introduction
	Methods
	SOMA
	cuSOMA
	Performance Tests

	Results
	Conclusion
	References

