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Abstract. Classifying data is a key process for extracting relevant information
out of a database. A relevant classification problem is classifying the condition
of a transformer based on its chromatography data. It is a useful problem formu-
lation as its solution makes it possible to repair the transformer with less expen-
diture given that a correct classification of the equipment status is available. In
this paper, we propose a Differential Evolution algorithm that evolves Perceptron
Decision Trees to classify transformers from their chromatography data. Our ap-
proach shows that it is possible to evolve classifiers to identify failure in power
transformers with results comparable to the ones available in the literature.

1 Introduction

Classification problems can aid the process of decision making in many real world
applications. Among those is the extraction of relevant characteristics about clients or
preventing failure in equipments. As an example of a classification problem, the compo-
sition of gases present in a transformer can indicate its condition of operation (Section
2.1). By obtaining the classification rules we can then infer information on classes from
the data related to the problem.

In this paper we describe an approach to generate classification rules with Differ-
ential Evolution (DE) algorithms. DE is a metaheuristic that iteratively searches high
quality solutions (Section 2.2). Each candidate solution used by our DE algorithm is
a Perceptron Decision Tree (PDT), which are decision trees that consider all the at-
tributes of the data in each of its nodes (Section 2.3). This paper introduces the following
contributions:

• An algorithm based on Differential Evolution for evolving Perceptron Decision
Trees (Section 3)

• An approach for representation and manipulation of PDT in the context of DE
solutions (Section 3.1-3.2)

• A strategy for replacing solutions (Section 3.3), in which the worst classifiers give
place to new ones

• A method for controlling the legitimacy of the evaluation (Section 3.4) that makes
evaluation more legitimate when it seems to be necessary

V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 143–152.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



144 A.R.R. Freitas, R.C. Pedrosa Silva, and F.G. Guimarães

The results of our final algorithm for different databases are compared (Section 4).
Those results are also compared to works with similar databases (Section 5). We con-
clude that even though a more extensive study is needed, the proposed algorithm is
efficient for solving the problem with chromatography database (Section 6).

2 Background

2.1 Dissolved Gas Analysis in Power Transformers

Dissolved Gas Analysis (DGA) is a usual method for detecting faults in power trans-
formers as it allows diagnosis without de-energizing the transformer [23]. For the exper-
iments of this work we have used three databases of chromatography related to power
transformers. In order to find potential failure in transformers, we can analyze the gases
produced in the equipment oil as it is exposed to heat [15]. The problem consists in
diagnosing the fault from the data describing the gases generated under that condition.
Thus, the problem of analyzing dissolved gases consists in finding rules that can iden-
tify failures in the transformers. The possible classifications of a transformer are (i)
normal, (ii) electrical failure, and (iii) thermal failure.

2.2 Differential Evolution

Differential Evolution [14,22] is an algorithm developed to improve the quality of a
solution over many iterations. A population of candidate solutions is kept and new so-
lutions are generated and tested from a simple combination of preexistent solutions.
The best solutions are then kept. DE is an algorithm employed for real valued functions
but it does not use the gradient of the function to be optimized. Many books have been
published approaching theoretical aspects of DE, see for instance [9,11].

The basic iterative process of DE is described below:

• Generate many solutions x with random positions in the search space.
• Initialize the crossover probability CR and differential weight F
• Until a halting criterion is not met, the following steps are repeated:

– For each solution x:
· Choose other three solutions a, b and c from the population that are differ-

ent from x.
· Choose a random index R between 1 and the population size.
· In order to generate a new solution y, for each position i of the solution:

· Generate a real valued number r between 0 and 1 with uniform distri-
bution

· If r <CR, yi = ai +F(bi − ci), else yi = xi

· If y is better than x, x is replaced by y
• Return the best solution found

The values F , CR and the population size must be chosen by the person using the
algorithm. Given a suitable formulation of a problem of data classification, DE can then
evolve classification rules for the test database.
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2.3 Perceptron Decision Trees

A common approach for classifiers is to employ binary classification trees. In those
trees, the condition of one of the attributes is tested according to a threshold. The dif-
ference between the attribute value and the threshold defines the next tree node to be
considered. This process repeats until a leaf node is reached. In those nodes, there is
information on the class that should correctly classify the data.

In this work, we propose a different approach for defining each tree node. With the
equation wx + θ = z, where w as weight scalars, x are the data attributes and θ is
a constant, we can linearly divide the search space into areas where z > 0 and areas
where z < 0. With this approach, we define a PDT.

Many authors have employed similar concepts of aggregating linear classifiers or
perceptrons in a tree under different names [4,5,6,7], including PDT [3].

3 Methodology

In this section we describe how DE was used for evolving PDT. The problem presents
many possible parameters and a brief study of those is presented.

The database employed in this work consists in chromatography data of transform-
ers. The data has 5 attributes, representing the quantity of each of the following gases:
(i) Hydrogen, (ii) Methane, (iii) Acetylene, (iv) Ethane, and (v) Ethylene. Besides the
value of each of those attributes, there is also the classification of the transformer into
3 possible classes: Normal (Class 1), Electrical Failure (Class 2), and Thermal Failure
(Class 3).

Three different unbalanced databases were used for the tests. A brief description of
the databases is shown on Table 1. We can notice that most samples belong to class 1
and that is mostly due to the unbalancing of the database 3.

Table 1. Databases

Database Number of samples Class 1 Class 2 Class 3

DB 1 52 30,77% 42,31% 26,92%
DB 2 232 39,22% 26,29% 34,48%
DB 3 224 81,70% 5,80% 12,50%

Total 508 57,09% 18,90% 24,02%

The information was split into two sets. The first set, with 70% of the samples, con-
tains the training set for the generation of the classifier while the second dataset, with
30% of the samples, contains the validation data, for testing the generalization capacity
of the classifier.
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3.1 Representation of a Classifier

As seen in Section 2.3, each PDT contains many linear classifiers, being each of those
defined by a vector of weights w of size n and a constant θ , being n the number of
attributes of the classification problem. The number of classifiers in a PDT is 2(h−1)−1,
being h a variable defined as the depth of the PDT.

Besides the classifiers, each PDT contains 2(h−1) leaf nodes, which contain a possible
classification for a sample. Those nodes are defined in the discrete space. A complete
PDT can be defined by the matrices of size n×2h−1−2 for the weights, 1×2h−1−1 for
the constants and 1×2h−1 for the leaf nodes. This is the size of each solution employed
by the DE.

Each of the 2h−1 − 1 columns of the classifier matrices defines a classifier. After
using the linear classifier at position i of n, the classifier at position 2i is used if the
output of the classifier is < 0 or the classifier 2i+ 1 is used otherwise.

As the total error will be the standard of comparison between the algorithms, the
objective function value of each of the solutions is defined as the number of misclassifi-
cations, including false positives and false negatives. This objective function, naturally,
must be minimized by the DE.

Three initial values for h were tested. While the individual size is O(2h−1 − 1), the
evaluation cost is still O(h) because only one possible path is searched through the PDT.
The values h of 3, 5 and 7 were tested for evolving PDT. The PDT had representation
size 3, 15 and 63, respectively. Where h= 3, 333 generations were executed, with h= 5,
200 generations, and with h = 7, 142 generations. That was meant to keep at least
the evaluation cost similar throughout the generations. Ten executions using all the
databases with h = 5 achieved an initial average training error of 17.65%, with h = 3
had 18.57% and with h = 7 had 20.01%.

3.2 Operators

Simple operators, as shown in Section 2.2 were employed for the generation of new
solutions. Values of F and CR are defined as random values between 0.4 and 1 and
between 0.9 and 1, respectively [22]. Those values are altered at each iteration of a
generation.

As for the leaf nodes, a discrete approach must be used for the crossover of solutions
[17]. The approach used is inspired in the idea that DE uses a vector of differences to
alter the solution, however now this vector represents swap movements between two
possible positions. In doing so, the movement described as bi − ci is only performed if
ai = bi. If ai = ci, the movement ci−bi is applied. In a third possible case, where ai �= bi

and ai �= ci, no movement is performed. The value F is used to define if the operation
should happen. The operation occurs if a randomly generated number is less than F .

3.3 Replacement of Individuals

As the replacement of individuals is made one by one, it may happen that some solu-
tions are stagnant in bad points of the search space. In order to avoid this problem, a
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new individual survival operator was developed to keep always new candidates in the
population.

At each generation, new random individuals are generated to replace the x% worst
individuals. Moreover, the individuals with an error rate greater than 1/nclasses are also
replaced.

Tests with 3 levels for x were performed. When the value of x was 0%, the response in
200 generations had an average error of 19.01%, when x = 10% the final classifier had
16.34% and when x = 20% the answer had error 18.11%. The individual replacement
value was then adjusted to x = 10%.

3.4 Legitimacy

In the initial generations, where all the individuals are still very random, not many com-
parisons are needed to perceive that some are better than the others. In most cases, with
the employment of classifiers in less than 10 samples it is possible to define clearly how
some PDT are better than the others. The same does not apply after many generations,
when most solutions classify the samples with a low error rate. Having this in mind,
and the high cost of evaluating solutions, which may take as much as 10 seconds per
generation, we propose an approach to reduce the time spent to evaluate solutions in the
first generations.

The key idea is that initial solutions do not need to be evaluated with the same legiti-
macy as the solutions in the last generations, where a more refined analysis is necessary
to distinguish good solutions. The value l defines the legitimacy utilized in the evalua-
tion of individuals. At a generation with legitimacy l, only l samples are tested in the
evaluation of each solution.

The initial value of this parameter was defined as twice as the number of attributes of
each samples. After each generation, the value l is updated accordingly to the equation
l = �min(N, l ∗α)� where N is the number of available samples for test and α is the
rate of increase of the legitimacy for each generation.

The parameter α was defined as 1+ δ/σ , where δ is the speed of legimitization,
defined as 10−2, and σ is the standard deviation of the objective function value of the
solutions. Thus, when the solutions are still very diverse, the parameter α is smaller.

Some individuals can occasionally have an objective function value smaller than it
is due in cases where the legitimization is low. For this reason, whenever the objective
function value is calculated, the legitimacy value used to obtain the objective function
value is also stored. Thus, if the individual is not replaced by a new one after t genera-
tions and the legitimacy value has already increased, the individual is reevaluated with
the new legitimacy value l. The value of t was defined as 10.

In Figure 1, we have the relation between execution time and those legitimacy values.
In this plot, the dashed line represents the legitimacy l divided by N and the continuous
line represents the best objective function value found so far in a given generation. The
time spent by each generation is directly linked to the legitimacy of that generation. We
can perceive the direct relation between the evaluation legitimacy and the time spent
per generation by comparing the graphs.
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Fig. 1. Relation between evaluation legitimacy, objective function and time

The best objective function value known also varies much before the legitimacy value
reaches its maximum value. That happens because some solutions can obtain good ob-
jective function values which are not so appropriate and this is corrected only after t
generations. After full legitimacy has been reached, there is no other referential to eval-
uate the individuals because all the database is already being used. Therefore the best
objective function value will only decrease after this.

4 Results

In computational tests, the average time for executing a DE with 200 generations for
a joint database with all the samples was 17 minutes. Having the number of factors
in mind, we performed 3 experiments in each of the 3 databases. That was defined as
experiment 1, where the number of generations is 200.

In Table 2 we have the results of the tests with 200 generations. In the Table, we
have the average time spent, the average and minimum error obtained for the training
set, and the average and minimum error obtained for the validation set.

The algorithm is using the replacement operator and it does not present final con-
vergence after 200 iterations. For this reason, in order to have a reference in relation
to the capacities of the algorithm in a real situation of search for a good classifier, we
performed a second experiment. In this new test, we performed 15 independent exe-
cutions of the algorithm for each database with 2000 generations. Thus, we have an
idea of the capabilities of the algorithm with more generations. This test was defined as
experiment 2.



Differential Evolution and Perceptron Decision Trees for Fault Detection 149

Table 2. Results of tests with 200 generations

Database Time (s) Training Minimum Validation Minimum
Error Error Error Error

DB1 59 1,85% 0% 20,83% 6,25%
DB2 224 26,13% 25,31% 38,57% 34,29%
DB3 218 11,46% 8,92% 17,91% 14,93%

Table 3 shows the results of this test. The figures show the minimum, average and
maximum error of the 15 executions in the validation set. For comparison, we also
present the error in the validation set of other well known classifiers, such as: J48 [18],
BFTree [21], RandomTree [12], IB1 [1], MLPs [19] and Naive Bayes [25]. The results
of these methods were obtained from the use of the Weka Framework1 [12]. A Kruskal-
Wallis significance test was performed on the results and no significant difference (p <
0.05) was found. Thus, it can be observed that the results achieved by the proposed
approach were competitive, in addition, looking through the best results of the method
(Min.) its potential in generating good classifiers could be verified.

Table 3. Results of the test with 2000 generations

Database PDT PDT PDT j48 BFTree RandTree NaiveBayes IB1 MLP
Min. Avg. Max.

DB1 0% 13.33% 31.25% 31.25% 18.75% 25% 25% 6.25% 18.75%
DB2 22.86% 34.29% 40% 22.39% 23.88% 23.88% 41.79% 26.86% 35.82%
DB3 11.94% 19.60% 28% 18.57% 18.57% 21.42% 24.28% 24.28% 21.42%

5 Discussion

Some works have been done to diagnose failure in transformers including Artificial
Neural Networks [26], Neural Networks with expert systems [24], decision trees [8]
and genetic algorithms with niches [16].

In other databases for the same problem, Pereira and Vasconcelos [16] obtain a right
classification rate of 91%, comparable to many cases of this algorithm. In a profound
analysis of the problem, he defines many important criteria for classification. In his
work, an approach based in niches leads to different solutions that value correct classi-
fication in each of the classes.

A deeper study with benchmark databases is needed to have more general con-
clusions on the behavior of the proposed algorithm. Although other works have used
other databases, if we assume similar complexity of the data to be classified, the results
obtained in this work are satisfactory.

1 Available in http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Castanheira [8] presents also good results for the problem with the use of neural
networks and decision trees, having the last ones obtained better results. The modeling
of the problem through PDT have the capacity to classify data in many situations and
it has clear advantages in relation to classification power when compared to simple
decision trees. The properties of the PDT with DE still need to be deeply studied such
that better results can be obtained.

Despite the classification power of PDT, the computational time spent with the op-
erators in the case of a large tree grows exponentially and therefore it must be carefully
adjusted.

6 Conclusion and Future Work

The halting criterion of 200 generations was decided in regard to the computational
time used for each experiment, with the intention that many tests should be possible.
However, it is likely that a greater number of generations is more suitable for the algo-
rithm to have time to converge almost completely. When the tests were performed with
2000 generations, the validation error of the algorithm kept falling for the databases,
indicating that the algorithm was not yet presenting overfitting problems. Recognizing
the number of generations needed for the validation error to begin to rise is important
because from this point on, new classifiers that model only noise of the training set are
being generated.

The algorithm certainly is suitable for solving the problem. Nevertheless, for a com-
parison with the algorithms in the literature, it would be important to have an analysis
with other benchmark databases.

All the parameters of the algorithm were adjusted separately, considering that there
are no interaction between the factors. Of course, this adjustment has led to a condi-
tion of execution of the algorithm which is better than the initial one. However, before
implementing new features in the algorithm, it would be important to adjust the param-
eters with factorial experiments where it is possible to better understand the interaction
between the parameters. As each iteration takes much time, this experiment would have
to be very well planned.

In the evolution of the classifiers, only the training error was used. In spite of the fact
that we can not use the validation set throughout the evolution, a strategy of objective
function that maximizes the separation margin of the data can be used to broaden the
capacity of generalization of the classifiers, alike the way Support Vector Machines
work [2,10]. A boosting strategy can be applied to increase the margin by including a
rise in the probability of classifying the most difficult samples [20,13].

Another important issue in the definition of the objective function is to define the
costs involved in the process. A low error rate may not simply represent good solutions
for practical applications because they do not represent the specific errors of each class
and the most important: the cost involved in each sort of error.

In any of the problems mentions here, however, the approach based on DE and PDT
has been shown to be useful for the solution of the problem.
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