
Competitive Differential Evolution Algorithm
in Comparison with Other Adaptive Variants

Radka Poláková and Josef Tvrdı́k

Centre of Excellence IT4Innovations division of University of Ostrava
Institute for Research and Applications of Fuzzy Modeling

{radka.polakova,josef.tvrdik}@osu.cz

Abstract. The differential evolution algorithm using competitive adaptation was
compared experimentally with the state-of-the-art adaptive versions of differen-
tial evolution on CEC2005 benchmark functions. The results of experiments show
that the performance of the algorithm with competitive adaptation is comparable
with the state-of-the-art algorithms, outperformed only by CoDE and JADE al-
gorithms in this test. A modification of competitive differential evolution prefer-
ring successful strategy for a longer period of search was also investigated. Such
modification brings no improvement and the standard setting of the competition
recommended in previous papers is suitable for applications.

1 Introduction

Differential evolution (DE) is simple population-based algorithm for the global opti-
mization introduced by Storn and Price [8]. DE has become one of the evolutionary
algorithms most frequently used for solving the global optimization problems in re-
cent years [6]. Compared with other evolutionary algorithms, DE has a very small
number of control parameters. However, it is commonly known that the performance
of DE algorithm is strongly dependent on the values of these parameters. Tuning the
proper values of control parameters for solving a particular optimization problem by
trial-and-error can take a lot of time. Because of this fact many adaptive approaches in
DE have appeared in literature. Four of them, namely jDE [1], SADE [7], JADE [16],
and EPSDE [4] are usually considered as the state-of-the-art adaptive variants of DE
algorithm. DE algorithm with composite trial vector generation strategies and control
parameters (CoDE) has appeared recently and its performance was found comparable
with the state-of-the-art algorithms [13].

The main goal of the study is to compare the performance of recently proposed
variant of competitive differential evolution (CDE) [12] with the other well-performing
adaptive DE algorithms on the hard benchmark test functions [9]. Another goal is to
study the influence of small changes in competitive mechanism on the performance.

2 Differential Evolution

DE works with two alternating generations of population, P and Q. The points of pop-
ulation are considered as candidates of solution. At the beginning, the generation P is

V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 133–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

134 R. Poláková and J. Tvrdı́k

initialized randomly in the search domain S, S = ∏D
j=1[a j,b j], a j < b j, j = 1,2, . . . ,D .

A new point y (trial point) is produced by mutation and crossover operations for each
point xi ∈ P, i ∈ {1,2, . . . ,NP}, where NP is the size of population. Assuming mini-
mization, the point y is inserted into new generation Q if f (y) ≤ f (xi), otherwise the
point xi enters into Q. After completing the new generation, Q becomes the old gener-
ation P and the whole process continues until the stopping condition is satisfied. The
basic scheme of DE is shown in a pseudo-code in Algorithm 1.

Algorithm 1. Differential evolution
generate an initial population P = (x1,x2, . . . ,xNP), xi ∈ S distributed uniformly
while stopping condition not reached do

for i = 1 to NP do
generate a trial vector y
if f (y)≤ f (xi) then

insert y into new generation Q
else

insert xi into new generation Q
end if

end for
P := Q

end while

The trial vector y is generated by crossover of two parent vectors, the current (target)
vector xi and a mutant vector v. The mutant vector v is obtained by a kind of mutation.
Many kinds of mutation have been proposed, see e.g. [2,5,6,8], we mention those used
in algorithms compared in this study. Suppose that r1, r2, r3, r4, and r5 are five mutu-
ally distinct points taken randomly from population P, not coinciding with the current
xi, F > 0 is an input control parameter, and rand(0,1) is a random number uniformly
distributed between 0 and 1. The mutant vector v can be generated as follows:

• rand/1
v = r1 +F (r2 − r3) , (1)

• rand/2
v = r1 +F (r2 − r3)+F (r4 − r5) , (2)

• best/2
v = xbest +F (r1 − r2)+F (r3 − r4) , (3)

where xbest is the point with the minimum function value in the current population.
• rand-to-best/2

v = r1 +F (xbest − r1)+F (r2 − r3)+F (r4 − r5) , (4)

• current-to-rand/1

y = xi + rand(0,1)× (r1 − xi)+F (r2 − r3) . (5)

Note that the current-to-rand/1 mutation generates a trial point y directly, because
(5) includes so called arithmetic crossover.

CDE Algorithm in Comparison with Other Adaptive Variants 135

• randrl/1

v = rx
1 +F (r2 − r3) , (6)

where the point rx
1 is not chosen randomly like in rand/1, but tournament best among

r1, r2, and r3, i.e. rx
1 = argmini∈{1,2,3} f (ri), as proposed in [3].

• current-to-pbest/1 [16]

v = xi +F (xpbest − xi)+F (r1 − r2) , (7)

where xpbest is randomly chosen from 100 p % best individuals with input parameter
p ∈ (0,1], value of p ∈ [0.05,0.20] is recommended. The vector r1 �= xi is randomly
selected from P, r2 is randomly selected from the union P

⋃
A of the current popu-

lation P and the archive A.

The crossover operator constructs the trial vector y from current individual xi and the
mutant vector v. Two types of crossover were proposed by Storn and Price in [8]. Bino-
mial crossover replaces the elements of vector xi using the following rule

y j =

{
v j if Uj ≤ CR or j = l
xi j if Uj > CR and j �= l ,

(8)

where l is a randomly chosen integer from {1,2, . . . ,D}, and U1,U2, . . . ,UD are indepen-
dent random variables uniformly distributed in [0, 1). CR ∈ [0,1] is a control parameter
influencing the number of elements to be exchanged by crossover. Eq. (8) ensures that
at least one element of xi is changed, even if CR = 0.

In exponential crossover, the starting position of crossover is also chosen randomly
from 1, . . . ,D, but L consecutive elements (counted in circular manner) are taken from
the mutant vector v. Probability of replacing the kth element in the sequence 1,2, . . . ,L,
L ≤ D, decreases exponentially with increasing k. L adjacent elements are changed in
exponential variant, in binomial one the changed coordinates are dispersed randomly
over the coordinates 1,2, . . . ,D. While the relation between the probability of muta-
tion and the CR is linear in binomial crossover, in the exponential crossover this rela-
tion is nonlinear and the deviation from linearity enlarges with increasing dimension
of problem. Probability of mutation (pm) controls the number of exchanged elements
in crossover, pm ×D is the expected number of mutant elements used in producing
offsprings. Zaharie [14,15] derived the relation between pm and CR for exponential
crossover. Her result can be rewritten in the form of polynomial equation

CRD − D pm CR+ D pm − 1 = 0 . (9)

The value of CR for given value of pm ∈ (1/D,1) can be evaluated as the root of the
equation (9).

The combination of mutation and crossover is called DE strategy, usually abbreviated
by DE/m/n/c, where m stands for a kind of mutation, n for the number of differences
of randomly selected points in mutation, and c for the type of crossover.

136 R. Poláková and J. Tvrdı́k

3 Competitive Differential Evolution

Adaptive mechanism for DE algorithm based on the competition of different strategies
or different settings of [F,CR] was introduced in [10]. Let us have H strategies or dif-
ferent [F,CR] settings in a pool. For simplicity, we speak on H strategies in the pool.
Any of H strategies can be chosen for the generation of a new trial point y. A strat-
egy is selected randomly with probability qh, h = 1,2, . . . ,H. At the start the values of
probability are set uniformly, qh = 1/H, and they are modified according to their suc-
cess rates in the preceding steps of the search process. The hth strategy is considered
successful if it generates such a trial vector y satisfying f (y) ≤ f (xi). Probability qh is
evaluated as the relative frequency according to

qh =
nh + n0

∑H
j=1(n j + n0)

, (10)

where nh is the current count of the hth strategy successes, and n0 > 0 is an input
parameter. The setting of n0 > 1 prevents from a dramatic change in qh by one random
successful use of the hth strategy. To avoid degeneration of the search process, the
current values of qh are reset to their starting values if any probability qh decreases
below some given limit δ , δ > 0.

Several variants of competitive DE differing both in the pool of DE strategies and
in the set of control-parameters values were tested [11]. A variant of competitive DE
appeared well-performing and robust in different benchmark tests in [12]. In this vari-
ant, denoted b6e6rl hereafter, 12 strategies are in competition (H = 12), six of them
with the binomial crossover and six ones with the exponential crossover. The randrl/1
mutation (6) is applied in all the strategies. Two different values of control parameter F
(F = 0.5 and F = 0.8) are combined with three values of CR, which gives six different
setting for each crossover. The binomial crossover uses the values of CR ∈ {0,0.5,1}.
The values of CR for exponential crossover are evaluated as the roots of the equation
(9), corresponding three values of probability pm are set up equidistantly in the interval
(1/D,1). The input parameters controlling competition are standardly set up to n0 = 2
and δ = 1/(5×H).

4 Experiments and Results

The adaptive DE algorithms experimentally compared in this study including the basic
features of their adaptive mechanism are briefly summarized in Table 1.

Two modifications of b6e6rl algorithm are tested. In the first one, hereafter called
b6e6rl60, the parameter δ controlling the competition was set to conventional value,
i.e. δ = 1/(5∗H) = 1/60. In the second one, hereafter called b6e6rl480, the parameter
δ is set to a much less value, δ = 1/(40 ∗H) = 1/480, in order to find out how the
preference of successful strategies for a longer period influences the performance of the
algorithm.

These two modifications of b6e6rl algorithm were applied to twenty five test func-
tions defined for CEC2005 competition [9]. Tests were carried out for the D = 30
dimension of the problems under the experimental conditions specified in [13], 25

CDE Algorithm in Comparison with Other Adaptive Variants 137

Table 1. Adaptive DE variants in experimental comparison

Algorithm Strategy Adaptive mechanism
type

jDE [1] 1 rand/1/bin evolutionary self-adaptation of F and CR with
respect to their success

JADE [16] 1 curr-to-pbest/1/bin adaptation of F and CR with respect to their
success in the current generation

SADE [7] 4 rand/1/bin
rand/2/bin
rand-to-best/2/bin
curr-to-rand/1

competition of strategies, F random without
adaptation, CR – median of successful values in
last LP generations

EPSDE [4] 3 rand/1/bin
best/2/bin
curr-to-rand/1

competition of strategies, evolutionary selection
of successful strategy and control parameters,
mutation by random selection from the pool of
strategies and the pools of F and CR fixed val-
ues

CoDE [13] 3 rand/1/bin
rand/2/bin
curr-to-rand/1

F and CR selected at random from three pairs
of fixed values, tournament selection among
strategies

b6e6rl [12] 2 randrl/1/bin
randrl/1/exp

competition of strategies with assigned fixed
values of F and CR, probability of strategy se-
lection proportional to its success, resetting the
values of probability if any of probability values
is too small

independent runs for each benchmark function were carried out, each run was stopped
if the number of function evaluations FES = 3× 105 was achieved.

A comparison of b6e6rl algorithm modifications with other algorithms is presented
in Tables 2 and 3. The average and standard deviation of the function error values are
given here. The function error value in a run is computed as f (xmin)− f (x∗), where xmin

is the best solution found by the algorithm in a run and x∗ is the global minimum of the
function. The results of the other algorithms are taken from [13]. The minimum average
error values for each function are printed in bold, all the error values less than 1×10−10

are considered equal. The numbers of wins are given in the last rows of the tables.
With respect to the number of wins, the best algorithms are CoDE, JADE, and

b6e6rl60 in this order, followed by the medium-performing algorithms (b6e6rl480,
EPSDE, and jDE), SADE appeared the worst performing.

A summarized comparison of the algorithms on 25 benchmark functions is shown in
Table 4. The rank of the algorithm with respect to average function error was assigned
to each algorithm for each function. All the error values less than 1× 10−10 are again
considered equal and were assigned by their average rank. The algorithms are presented
in the ascending order of their average rank. We can see that best performing algorithms

138 R. Poláková and J. Tvrdı́k

are CoDE and JADE while other algorithms differ only very little and there is almost
no difference in the performance of b6e6rl modifications.

Similar summarized comparison on the subset of easier test functions (F1 to F14) is
depicted in Table 5. The order of the algorithms differs a little from the comparison on
the whole set of functions. CoDE and JADE are again best performing but b6e6rl480
modification is the third best algorithm followed by b6e6rl60 with almost equal average
rank. The other algorithms have their average rank greater by more than one.

The modifications of b6e6rl algorithm were also compared in the second set of exper-
iments in order to investigate the ability of the algorithm to find an acceptable solution
of the problem. The experiments were carried out on the easier subset of test functions
(F1–F14), 25 runs were performed for each function. The higher maximum number of
FES was allowed but a run was stopped if the solution found in the run was near to the
correct solution of the problem. The stopping condition was set as follows:

(f (xmin)− f (x∗))< ε OR FES > 3× 106

Table 2. Results of b6e6rl60, b6e6rl480, JADE, and jDE, D = 30, FES = 300000

b6e6rl60 b6e6rl480 JADE jDE
F mean std mean std mean std mean std

F1 0.00E+00 0.0E+00 0.00E+00 0.0E+00 0.00E+00 0.0E+00 0.00E+00 0.0E+00
F2 1.18E-13 6.3E-14 2.98E-13 1.5E-13 1.07E-28 1.0E-28 1.11E-06 2.0E-06
F3 9.09E+04 5.3E+04 3.79E+05 2.2E+05 8.42E+03 7.3E+03 1.98E+05 1.1E+05
F4 1.11E-13 7.2E-14 5.77E-07 2.0E-06 1.73E-16 5.4E-16 4.40E-02 1.3E-01
F5 5.44E+02 5.4E+02 1.14E+03 6.7E+02 8.59E-08 5.2E-07 5.11E+02 4.4E+02
F6 3.41E-14 2.8E-14 3.41E-14 2.8E-14 1.02E+01 3.0E+01 2.35E+01 2.5E+01
F7 6.30E-03 7.7E-03 7.09E-03 8.6E-03 8.07E-03 7.4E-03 1.18E-02 7.8E-03
F8 2.10E+01 5.7E-02 2.09E+01 7.1E-02 2.09E+01 1.7E-01 2.09E+01 4.9E-02
F9 0.00E+00 0.0E+00 0.00E+00 0.0E+00 0.00E+00 0.0E+00 0.00E+00 0.0E+00

F10 6.38E+01 1.0E+01 4.79E+01 9.0E+00 2.41E+01 4.6E+00 5.54E+01 8.5E+00
F11 2.66E+01 2.1E+00 2.75E+01 1.6E+00 2.53E+01 1.7E+00 2.79E+01 1.6E+00
F12 1.48E+04 6.3E+03 1.16E+04 4.6E+03 6.15E+03 4.8E+03 8.63E+03 8.3E+03
F13 1.42E+00 1.2E-01 1.25E+00 8.3E-02 1.49E+00 1.1E-01 1.66E+00 1.4E-01
F14 1.26E+01 2.3E-01 1.25E+01 3.0E-01 1.23E+01 3.1E-01 1.30E+01 2.0E-01
F15 3.64E+02 1.2E+02 3.88E+02 8.3E+01 3.51E+02 1.3E+02 3.77E+02 8.0E+01
F16 1.32E+02 1.0E+02 9.46E+01 7.0E+01 1.01E+02 1.2E+02 7.94E+01 3.0E+01
F17 1.61E+02 7.1E+01 1.15E+02 2.6E+01 1.47E+02 1.3E+02 1.37E+02 3.8E+01
F18 9.05E+02 1.2E+00 9.06E+02 1.5E+00 9.04E+02 1.0E+00 9.04E+02 1.1E+01
F19 9.06E+02 1.7E+00 9.06E+02 2.0E+00 9.04E+02 8.4E-01 9.04E+02 1.1E+00
F20 9.05E+02 1.0E+00 9.06E+02 2.8E+00 9.04E+02 8.5E-01 9.04E+02 1.1E+00
F21 5.00E+02 1.2E-13 5.00E+02 1.2E-13 5.00E+02 4.7E-13 5.00E+02 4.8E-13
F22 8.82E+02 1.9E+01 8.88E+02 2.9E+01 8.66E+02 1.9E+01 8.75E+02 1.9E+01
F23 5.34E+02 3.6E-04 5.34E+02 3.9E-04 5.50E+02 8.1E+01 5.34E+02 2.8E-04
F24 2.00E+02 6.0E-13 2.00E+02 6.0E-13 2.00E+02 2.9E-14 2.00E+02 2.9E-14
F25 2.11E+02 1.1E+00 2.12E+02 1.1E+00 2.11E+02 7.9E-01 2.11E+02 7.3E-01

#wins 10 8 11 6

CDE Algorithm in Comparison with Other Adaptive Variants 139

Table 3. Results of SADE, EPSDE, and CoDE, D = 30, FES = 300000

SADE EPSDE CoDE
F mean std mean std mean std

F1 0.00E+00 0.0E+00 0.00E+00 0.0E+00 0.00E+00 0.0E+00
F2 8.26E-06 1.7E-05 4.23E-26 4.1E-26 1.69E-15 4.0E-15
F3 4.27E+05 2.1E+05 8.74E+05 3.3E+06 1.05E+05 6.3E+04
F4 1.77E+02 2.7E+02 3.49E+02 2.2E+03 5.81E-03 1.4E-02
F5 3.25E+03 5.9E+02 1.40E+03 7.1E+02 3.31E+02 3.4E+02
F6 5.31E+01 3.3E+01 6.38E-01 1.5E+00 1.60E-01 7.9E-01
F7 1.57E-02 1.4E-02 1.77E-02 1.3E-02 7.46E-03 8.6E-03
F8 2.09E+01 5.0E-02 2.09E+01 5.8E-02 2.01E+01 1.4E-01
F9 2.39E-01 4.3E-01 3.98E-02 2.0E-01 0.00E+00 0.0E+00

F10 4.72E+01 1.0E+01 5.36E+01 3.0E+01 4.15E+01 1.2E+01
F11 1.65E+01 2.4E+00 3.56E+01 3.9E+00 1.18E+01 3.4E+00
F12 3.02E+03 2.3E+03 3.58E+04 7.1E+03 3.05E+03 3.8E+03
F13 3.94E+00 2.8E-01 1.94E+00 1.5E-01 1.57E+00 3.3E-01
F14 1.26E+01 2.8E-01 1.35E+01 2.1E-01 1.23E+01 4.8E-01
F15 3.76E+02 7.8E+01 2.12E+02 2.0E+01 3.88E+02 6.9E+01
F16 8.57E+01 6.9E+01 1.22E+02 9.2E+01 7.37E+01 5.1E+01
F17 7.83E+01 3.8E+01 1.69E+02 1.0E+02 6.67E+01 2.1E+01
F18 8.68E+02 6.2E+01 8.20E+02 3.4E+00 9.04E+02 1.0E+00
F19 8.74E+02 6.2E+01 8.21E+02 3.4E+00 9.04E+02 9.4E-01
F20 8.78E+02 6.0E+01 8.22E+02 4.2E+00 9.04E+02 9.0E-01
F21 5.52E+02 1.8E+02 8.33E+02 1.0E+02 5.00E+02 4.9E-13
F22 9.36E+02 1.8E+01 5.07E+02 7.3E+00 8.63E+02 2.4E+01
F23 5.34E+02 3.6E-03 8.58E+02 6.8E+01 5.34E+02 4.1E-04
F24 2.00E+02 6.2E-13 2.13E+02 1.5E+00 2.00E+02 2.9E-14
F25 2.14E+02 2.0E+00 2.13E+02 2.6E+00 2.11E+02 9.0E-01

#wins 4 7 12

Table 4. Comparison of algorithms performance according to their average rank on 25 benchmark
functions

Algorithm Average rank

CoDE 2.74
JADE 3.12
jDE 4.12
b6e6rl60 4.24
b6e6rl480 4.36
SaDE 4.44
EPSDE 4.98

140 R. Poláková and J. Tvrdı́k

Table 5. Comparison of algorithms performance according to their average rank on functions F1
to F14

Algorithm Average rank

CoDE 2.61
JADE 2.68
b6e6rl480 3.61
b6e6rl60 3.64
jDE 4.75
SaDE 5.04
EPSDE 5.68

Table 6. Required accuracy ε for the benchmark functions

Functions ε

F1 – F5 1×10−6

F6 – F14 1×10−2

Table 7. Reliability and average FES in successful runs for b6e6rl modifications on the easier
subset of test functions

b6e6rl60 b6e6rl480
Function R Av. FES R Av. FES

F1 100 48682 100 44174
F2 100 69984 100 87403
F4 100 129533 100 229982
F6 100 140374 100 163003
F7 84 57483 72 59480
F9 100 53794 100 45209

F12 12 862940 4 1835400

where xmin is the best solution found in a run, x∗ is the global minimum of the function,
ε is the required accuracy prescribed in [9], and FES is the current number of function
evolutions. The values of ε used in the experiments are given in Table 6. The results of
this comparison obtained on the F1–F14 subset of test functions are shown in Table 7,
the reliability of the search is given in the column R, which is the percentage of the runs
that found a solution satisfying the condition (f (xmin)− f (x∗)) < ε . Only functions
with R > 0 are presented in the table, in the other test problems no acceptable solution
was found in 3×106 function evaluations. The results show if the b6e6rl algorithm can
find an acceptable solution, it is able to find it faster than in 3× 105 FES in most test
problems. However, in 7 out of 14 problems the algorithm is not able to find any good
solution even in 3× 106 FES.

CDE Algorithm in Comparison with Other Adaptive Variants 141

It is seen from the table that the preference of successful strategies for a longer pe-
riod in b6e6rl480 does not bring better efficiency of the search. The average FES of
b6e6rl480 is higher in 5 out of 7 functions. As it was expected, the preference of suc-
cessful strategies for a longer period decreased the reliability (in 2 out of 7 functions).

5 Conclusion

The performance of b6e6rl variant of competitive DE appeared to be comparable with
the state-of-the-art adaptive versions of differential evolution algorithm when applied to
the hard benchmark problems [9]. With respect the number of wins, it was outperformed
by CoDE and JADE only. The average ranks of both b6e6rl modifications are in the
middle of the algorithms in the experimental comparison. In the subset of easier test
functions, the performance of b6e6rl modifications is even better in their average ranks,
outperformed only by CoDE and JADE.

The preference of successful strategies for a longer period by setting the control
parameter of competition to δ = 1/480 does not bring better efficiency of the search
compared to its former recommended value δ = 1/60. The recommended values of the
parameters controlling the competitive adaptation should be used when considering the
application of b6e6rl algorithm.

Acknowledgement. This work was supported by the European Regional Development
Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and
partly supported by University of Ostrava, the project SGS13/PřF/2012.

References

1. Brest, J., Greiner, S., Boškovič, B., Mernik, M., Žumer, V.: Self-adapting control parame-
ters in differential evolution: A comparative study on numerical benchmark problems. IEEE
Transactions on Evolutionary Computation 10, 646–657 (2006)

2. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans-
actions on Evolutionary Computation 15, 27–54 (2011)

3. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms.
European J. Operational Research 169, 1176–1184 (2006)

4. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm
with ensemble of parameters and mutation strategies. Applied Soft Computing 11, 1679–
1696 (2011)

5. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental
analysis. Artificial Intelligence Review 33, 61–106 (2010)

6. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Springer (2005)

7. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Transactions on Evolutionary Compu-
tation 13, 398–417 (2009)

8. Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Global Optimization 11, 341–359 (1997)

142 R. Poláková and J. Tvrdı́k

9. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization (2005), http://www.ntu.edu.sg/home/epnsugan/

10. Tvrdı́k, J.: Competitive differential evolution. In: Matoušek, R., Ošmera, P. (eds.) MENDEL
2006, 12th International Conference on Soft Computing, pp. 7–12. University of Technology,
Brno (2006)

11. Tvrdı́k, J.: Adaptation in differential evolution: A numerical comparison. Applied Soft Com-
puting 9, 1149–1155 (2009)

12. Tvrdı́k, J.: Self-adaptive variants of differential evolution with exponential crossover.
Analele of West University Timisoara, Series Mathematics-Informatics 47, 151–168 (2009),
http://www1.osu.cz/˜tvrdik/down/global_optimization.html

13. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–
66 (2011)

14. Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In:
Markowska-Kaczmar, U., Kwasnicka, H. (eds.) Proceedings of IMCSIT 2007, pp. 171–181.
PTI, Wisla (2007)

15. Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Ap-
plied Soft Computing 9, 1126–1138 (2009)

16. Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional external
archive. IEEE Transactions on Evolutionary Computation 13, 945–958 (2009)

http://www.ntu.edu.sg/home/epnsugan/
http://www1.osu.cz/~tvrdik/down/global_optimization.html

	Competitive Differential Evolution Algorithm in Comparison with Other Adaptive Variants
	Introduction
	Differential Evolution
	Competitive Differential Evolution
	Experiments and Results
	Conclusion
	References

