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Abstract. Differential evolution algorithm with composite trial vector genera-
tion strategies and control parameters has been proposed recently. The perfor-
mance of this algorithm is claimed to be better or competitive in comparison
with the state-of-the-art variants of differential evolution. When we attempted to
implement the algorithm according to the published description, several modi-
fied variants appear to follow the description of the algorithm. These variants
of the algorithm were compared experimentally in benchmark problems. One of
newly proposed variants outperforms the other variants significantly, including
the variant used by the authors of the algorithm in their published experimental
comparison.

1 Introduction

Differential evolution (DE) was proposed by Storn and Price [9] as a global optimizer
for unconstrained continuous optimization problems with a real-value objective func-
tion. The search space (domain) S is specified by lower (a j) and upper (b j) limits of
each component j, S = ∏D

j=1[a j,b j], a j < b j, j = 1,2, . . . ,D , D is the dimension of the
problem. The global minimum point x∗, satisfying condition f (x∗)≤ f (x) for ∀x ∈ S is
the solution of the problem.

DE algorithm has become one of the evolutionary algorithms most frequently used
for solving the continuous global optimization problems in recent years [7]. Compre-
hensive summarizations of the up-to date results in DE are presented by Neri and Tir-
ronen [5] and by Das and Suganthan [3].

Algorithm of DE works with a population of individuals (NP points in domain S)
that are considered as candidates of solution. Parameter NP is called the size of the
population. The population is developed iteratively by using evolutionary operators of
selection, mutation, and crossover. Each iteration corresponds to an evolutionary gen-
eration. Let us denote two subsequent generations by P and Q. Applications of evolu-
tionary operators in the old generation P create a new generation Q. After completing
the new generation Q, the Q becomes the old generation for next iteration. The basic
structure of DE algorithm is shown in Algorithm 1.

The trial vector y is generated (line 5 in Algorithm 1) by crossover of two parent
vectors, the current (target) vector xi and a mutant vector v. The mutant vector v is
obtained by a mutation. Several kinds of mutation have been proposed in last years.
Three kinds of mutation used in algorithms compared in this study are described below.
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Algorithm 1. Differential evolution
1: generate an initial population P = (x1,x2, . . . ,xNP), xi ∈ S distributed uniformly
2: evaluate f (xi), i = 1,2, . . . ,NP
3: while stopping condition not reached do
4: for i = 1 to NP do
5: generate a trial vector y
6: evaluate f (y)
7: if f (y)≤ f (xi) then
8: insert y into new generation Q
9: else

10: insert xi into new generation Q
11: end if
12: end for
13: P := Q
14: end while

Symbols r1, r2, r3, r4, and r5 denote mutually distinct points taken randomly from the
current generation P, not coinciding with the target point xi, F > 0 is an input control
parameter, and U is uniformly distributed random value between 0 and 1.

• rand/1
v = r1 +F (r2 − r3) . (1)

• rand/2.
v = r1 +F (r2 − r3)+F (r4 − r5) . (2)

• current-to-rand/1
y = xi +U (r1 − xi)+F (r2 − r3). (3)

The current-to-rand/1/ mutation generates directly a trial point y because it includes so
called arithmetic crossover represented by the second term on the right side of (3).

The crossover operator constructs the trial vector y from current individual xi and the
mutant vector v. Two types of crossover were proposed in [9]. One of them is binomial
crossover which generates a new trial vector y by using the following rule

y j =

{
v j if Uj ≤ CR or j = l
xi j if Uj > CR and j �= l ,

(4)

where l is a randomly chosen integer from {1,2, . . . ,D}, and U1,U2, . . . ,UD are indepen-
dent random variables uniformly distributed in [0, 1). CR ∈ [0,1] is a control parameter
influencing the number of elements to be exchanged by the crossover. Eq. (4) ensures
that at least one element of xi is changed, even if CR = 0.

Mutation according to (1), (2), or (3) could cause that a new trial point y moves out
of the domain S. In such a case, the values of y j �∈ [a j, b j] is turned over into S by using
transformation y j = 2× a j − y j or y j = 2× b j − y j for the violated component.



Modifications of DE with Composite Trial Vector Generation Strategies 115

2 DE with Composite Trial Vector Generation Strategies

DE algorithm with composite trial vector generation strategies and control parameters,
in abbreviation composite DE, was presented by Wang et al. [12] and compared with the
state-of-the-art DE variants considered best performing, namely jDE [1], EPSDE [4],
SaDE [8], and JADE [13]. From the results In benchmark tests [10], composite DE out-
performed all of these algorithms except EPSDE. In comparison with EPSDE,
composite DE was competitive.

The composite DE combines three well-studied trial-vector strategies with three con-
trol parameter settings in a random way to generate trial vectors. The strategies are:
rand/1/bin, rand/2/bin, and current-to-rand/1/. All the strategies are carried out with a
pair of F and CR values randomly chosen from a parameter pool. It results in having
three candidates to a trial vector in each iteration step (line 5 in Algoritmus 1) that
compete by tournament. Thus, three function evaluations are needed in each step. The
vector with the least function value of those three candidates is then used as a trial vec-
tor. The parameter pool used in [12] contains the following pairs of control parameters:
[F = 1.0, CR = 0.1], [F = 1.0, CR = 0.9], and [F = 0.8, CR = 0.2].

After the first reading of the paper [12], the composite DE algorithm was imple-
mented as described above. This variant of the algorithm is labeled by CoDE hereafter.

However, the following part of the paper [12] induced doubts about the right form of
the algorithm (the symbols in the text within quotation marks are changed to be compat-
ible with the symbols used in this paper): “After mutation, the current-to-rand/1 strategy
uses the rotation-invariant arithmetic crossover rather than the binomial crossover, to
generate the trial vector [2,6]. As a result, this strategy is rotation-invariant and suit-
able for rotated problems. The arithmetic crossover in this strategy linearly combines
the mutant vector with the target vector as follows:

y = xi +U (v− xi) (5)

where U is a uniformly distributed random number between 0 and 1. Note that for the
arithmetic crossover the crossover control parameter CR is not needed”. It is not quite
clear if this text is meant only as an explanation how the current-to-rand/1 works or
if the current-to-rand/1 defined in (3) is used for generation of a mutant vector v and
then followed by the arithmetic crossover according to (5). If we decide for the latter
explanation and substitute y from (3) instead of v into (5), it results in generating the
trial vector according to

y = xi +U1U2 (r1 − xi)+U2 F (r2 − r3), (6)

where U1 and U2 are independent random variables uniformly distributed in [0, 1], U1

corresponding to (1) and U2 corresponding to (5). However, the expected value of the
multiplicative coefficient at (r1−xi) is E(U1 U2) = E(U1)E(U2) = 1/4 and the distribu-
tion of U1 U2 has positive skewness, which means that smaller values of the multiplica-
tive coefficient are more frequent. It results in generating the trial point y preferably in
smaller distance from xi compared to (3). This version of composite DE is denoted by
CoDE0 hereafter.
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The uncertainty about the correct form of composite DE algorithm was consulted via
e-mail with Y. Wang, the first author of [12]. From his response follows that no other
crossover in current-to-rand/1 strategy is applied and the (5) is just to explain why the
current-to-rand/1 strategy is rotation-invariant. He also wrote, that the current-to-rand/1
strategy can be considered as two-step procedure:

1) generation of the mutant vector v by rand/1 mutation (1),
2) arithmetic crossover according to (5).

However, then we obtain the rule for generating the trial point as it follows:

y = xi +U (r1 − xi)+U F (r2 − r3). (7)

It is obvious that such explanation of the current-to-rand/1 strategy is not quite cor-
rect, (7) differs from (3) in the multiplicative coefficient at the second difference of
the vectors. Meanwhile after a very careful reading of [12], a short passage hidden in
the text was found in the paper [12]: “In order to further improve the search ability
of the rand/2/bin strategy, the first scaling factor F in the rand/2 mutation operator is
randomly chosen from 0 to 1 in this paper”. It means that version of composite DE
algorithm described in the paper [12] uses the rand/2 mutation in the form as follows:

v = r1 +U (r2 − r3)+F (r4 − r5) , (8)

and the current-to-rand/1 strategy generates the trial vector just according to (3). This
“classic” version of composite DE which follows the description in [12] is labeled by
CoDE1 hereafter.

Through the inspection of Matlab source text of the composite DE algorithm and
comments therein downloaded from Q. Zhang’s home page1 it was found that the
current-to-rand/1 strategy is implemented in a slightly different way in the compos-
ite DE algorithm which is tested in the paper [12]. The points r1, r2, and r3 for the
mutation are chosen as a sample with replications and the current point xi is not ex-
cluded from the sampling. They need not be mutually distinct. This approach seems to
be strange, but the comment in the source code explains the reason: “We found that
using the following mechanism to choose the indices for mutation can improve the
performance to certain degree”. This variant using rand/2 according to (8) and mod-
ified current-to-rand/1 strategy with replications described above is marked by CoDE2
hereafter.

The last variant of composite DE for experimental comparison. labeled by CoDE3
hereafter, was implemented with the improved rand/2 strategy according to (8) and the
current-to-rand/1 strategy according to

y = xi +U1 (r1 − xi)+U2 F (r2 − r3), (9)

where U1 and U2 are independent random variables uniformly distributed in [0, 1]. Com-
paring with the current-to-rand/1 strategy (6) used in efficient CoDE1 variant, the first
scaling coefficient is again randomly distributed but uniformly with E(U1) = 1/2 and
the second scaling coefficient is randomized in the same way as in (6).

1 http://dces.essex.ac.uk/staff/qzhang/

http://dces.essex.ac.uk/staff/qzhang/
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3 Experiments

Six well-known scalable test functions [7,9] were used as a benchmark, namely first De-
Jong (sphere model), Ackley, Griewank, Rastrigin, Rosenbrock, and Schwefel function.
The first four of the test functions in their non-shifted form have the global minimum
point in the center of domain S, x∗ = (0,0, . . . ,0), which makes the search of the solu-
tion easier for many stochastic algorithms. That is why they were used in their shifted
version. The shifted function is evaluated at the point z = x−o, o ∈ S, o �= (0,0, . . . ,0).
The shift o is generated randomly from uniform D-dimensional distribution before each
run. The solution of the global minimization problem is then x∗ = o for all the shifted
functions. The definition of the test functions and the range of search domains are pre-
sented in [11]. The test functions names or their self-explaining abbreviations are used
as labels when reporting the results.

The six functions with the problem dimension of D = 30 were used as a benchmark
in experimental comparison of tested DE variants. One hundred of independent runs
was executed for each test problem and each composite DE variant in comparison.
Population size was set to NP = 30 for all the problems, i.e. the same as in [12].

The minimum function value ( fmin) in the final population and the number of ob-
jective function evaluations (nfe) needed for the search was recorded in each run. The
run is terminated if the difference of function values in the current population is very
small or if the number of objective function evaluations was over the given limit. Small
difference of function values in the current population indicates that the points of the
population are aggregated in a very small part of the search space and the population
lost the ability to change its place considerably. The given maximum allowed num-
ber of objective function evaluations expresses our willingness to wait for the results.
Such form of stopping condition is appropriate either for the benchmark tests or for the
real-world applications. The run is finished if the following condition is reached:

fmax − fmin < 1× 10−6 OR nfe ≥ 2× 104×D, (10)

where fmax and fmin are maximum and minimum function values in the current genera-
tion, respectively. The same stopping condition is used in all the experiments.

The solution of the problem found by a DE variant was considered acceptable if
fmin − f (x∗) < 1× 10−4. If an acceptable solution is found in a run, the number of
objective function evaluations needed for its finding was also returned from the run.
This number of the function evaluations is denoted by nfe near in results.

The reliability rate R of the search is assessed by the count of acceptable solutions
obtained in 100 runs. The number of objective function evaluations (nfe) and the relia-
bility rate R are fundamental experimental characteristics of the efficiency of the search.

4 Results

Two basic characteristics are needed to assess algorithm’s performance. The first one
is the number of function evaluations (nfe) needed for the termination of the search.
The second one is the reliability rate of the search (R) expressed by the number of runs
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giving an acceptable solution out of total 100 runs. The values of these characteristics
are shown in Table 1 for all the tested composite DE variants and benchmark problems.
The algorithms except CoDE3 perform with high reliability, R ≥ 98. The reliability of
CoDE3 is much lower in three benchmark problems, even no acceptable solution was
found in Rosenbrock problem. The least values of nfe for each problem are underlined,
only the the variants with R ≥ 98 are taken into account into this nfe comparison.

Table 1. Average number of function evaluations and values of reliability rate of composite DE
variants for all the benchmark problems in experimental tests

Ackley DeJong1 Griewank Rastrigin Rosenbrock Schwefel
Alg nfe R nfe R nfe R nfe R nfe R nfe R

CoDE 189764 100 98703 100 152818 100 207422 100 507140 100 165572 100
CoDE0 46002 100 23920 100 35018 100 131766 100 259676 98 73691 100
CoDE1 162412 100 85365 100 132715 100 198209 100 467466 100 144816 100
CoDE2 122313 100 65035 100 100560 100 169936 100 322318 100 117908 100
CoDE3 27113 23 20296 100 26779 57 121764 99 594310 0 62238 100

Computational costs of the algorithms (expressed by nfe) are also compared visually
using the boxplots in Figure 1. The same scale of vertical axis is used for all the prob-
lems in order to make inter-problem comparison easier. It is evident from the Figure 1
that the variants differ in their computational costs substantially. It was also confirmed
statistically by one-way analysis of variance (ANOVA) carried out for the variants with
almost full reliability of the search, i.e. CoDE3 was excluded from ANOVA as the vari-
ant with low reliability in three out of six benchmark problems. ANOVA tests rejected
the null hypotheses on the equivalence of expected nfe values in all the test problems.
Tukey-Kramer multiple comparison reveals the significant differences among the vari-
ants. In all the problems, the increasing sequence of variants with respect to nfe is the
same:

CoDE0 ≺ CoDE2 ≺ CoDE1 ≺ CoDE

with significant difference between each consequent pairs of variants at 5 % signifi-
cance level.

Another simple characteristic of the search process is the success rate. The success
rate is defined as the percentage of iterations, when the trial point is better than current
point of the population (condition in Line 7 in Algorithm 1 is satisfied) with respect to
the total number of function evaluations nfe. The values of the success rate are shown
in Table 2. Higher success rate means that the results of previous process are more
exploited. However, too high success rate causes the suppression of exploration, which
can result in premature convergence. High success rate of CoDE3 likely causes its bad
reliability in solving Rosenbrock problem.

The average number of the function evaluations necessary to find an acceptable so-
lution gives us a view to the convergence of algorithms in the early and the last stage
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Fig. 1. Comparison of computational costs expressed by nfe

of the search. The average values given as the percentage of nfe are shown in Table 3.
The number of function evaluations needed to find an acceptable solution is specific
rather to the problem than variant.

Statistical comparison of the success rates of the DE strategies used in the search
process is helpful for the explanation of the different performance of various compos-
ite DE variants in the experimental tests. The success of a given strategy means that
the strategy generates the trial vector with the minimum function value among three
strategies and simultaneously the function value of the trial point is less than f (xi).
The counts of the success found by each strategy were recorded in the experiments, the
values of counts in 5 by 3 contingency tables are evaluated cumulatively in 100 runs
for each benchmark problem separately. The contingency tables were analyzed by the
χ2 tests. Null hypotheses (independence of composite DE variant and kind of strat-
egy) were rejected in all the problems at significance level of α = 0.001. The sources
of dependence were assessed by standardized residuals. The standardized residuals are
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Table 2. Values of success rate of composite DE variants in all the benchmark problems

Success Rate (% of nfe)
ack dej gri ras ros schw Avg

CoDE 5.4 6.0 5.3 3.6 3.3 4.8 4.7
CoDE0 16.1 18.5 16.7 4.7 18.5 8.2 13.8
CoDE1 6.2 6.9 6.0 3.8 3.7 5.4 5.3
CoDE2 7.0 7.7 6.8 3.9 5.5 5.8 6.1
CoDE3 20.0 22.2 21.6 4.7 22.4 9.4 16.7

Table 3. Average number of the function evaluations needed to find an acceptable solution as
percentage of nfe

nfe near (% of nfe)
ack dej gri ras ros schw

CoDE 77 72 82 87 89 83
CoDE0 79 75 82 95 95 92
CoDE1 77 72 82 88 88 84
CoDE2 77 72 82 89 92 85
CoDE3 80 78 84 96 − 93

Average 78 74 82 91 91 87

asymptotically normally distributed, N(0,1). The patterns of sources of dependence
are shown in Table 4 for each problem. The significance of the standardized residual
is marked schematically by sign symbols in the appropriate cell of contingency table.
The symbol “+++” denotes significantly positive value of the standardized residual
(i.e. this strategy is successful more frequently than expected under independence),
the symbol “−−−” denotes significantly lower frequency of success at the level of
significance α = 0.001, the symbol “++” means significant positive value at α = 0.01,
If the value of the standardized residual is not significant, the cell is empty.

Table 4 shows almost the same patterns of strategy’s success for CoDE0 and CoDE3
variants. In the both variants, rand/2 strategy has significantly higher success than the
other strategies in all the test problems. Notice, the rand/2 strategy in CoDE0 differs
from the rand/2 strategy applied in CoDE3. CoDE0 and CoDE3 were the most effi-
cient variants in all the test problems except Rosenbrock, see Figure 1. The patterns of
CoDE0 and CoDE3 are different from the patterns of the other variants. Despite the
similarity of success patterns, there is a big difference in the performance of CoDE0
and CoDE3 variants. While the reliability rate of CoDE0 is almost 100, the reliability
of CoDE3 is much less in three test problems. It seems that CoDE3 is too greedy, likely
due to the using the version of current-to-rand/1 according to (9).
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Table 4. Comparison of success rate of strategies – significance of standardized residuals

rand1 rand2 currtorand rand1 rand2 currtorand

ackley dejong1
CoDE +++ −−− +++ +++ −−− +++
CoDE0 −−− +++ −−− −−− +++ −−−
CoDE1 +++ −−− +++ +++ −−− +++
CoDE2 ++ −−− +++ ++ −−− ++
CoDE3 −−− +++ −−− −−− +++ −−−

griewank rosenbrock
CoDE +++ −−− ++ +++ −−− +++
CoDE0 −−− +++ −−− −−− +++ −−−
CoDE1 +++ −−− +++ +++ −−− +++
CoDE2 +++ −−− +++ +++ −−− +++
CoDE3 −−− +++ −−− −−− +++ −−−

rastrigin schwefel
CoDE +++ −−− +++ +++ −−− +++
CoDE0 −−− +++ −−− −−− +++ −−−
CoDE1 +++ −−− +++ +++ −−− +++
CoDE2 −−− ++ ++ −−− ++
CoDE3 −−− +++ −−− −−− +++ −−−

5 Conclusion

The experimental comparison of composite DE variants verifies significantly differ-
ent performance. The results impeaches the role of rationality in the design of well-
performing stochastic global optimizers. Best performing CoDE0 variant was proposed
due to misunderstanding of composite DE description in [12]. Second best CoDE2 vari-
ant uses a strange modification of the current-to-rand/1 strategy (random points are
sampled with replications) described only in the source code of the algorithm. Any ra-
tional explanation of using the sampling with replications in this strategy can be hardly
found. However, this variant is significantly more efficient than the classic CoDE1 vari-
ant corresponding to the description of algorithm in [12]. The worst performing variant
CoDE3 was designed taking into account all the previous results with a rational effort to
increase the algorithm’s efficiency. This variant is very efficient in some problems but
also appears unreliable in some other problems. However, the best performing CoDE0
variant is a promising modification of composite DE algorithm and it should be tested
in hard benchmark problems, e.g. those defined in [10] in order to verify its superiority
in more thorough and convincing way. The current-to-rand/1 strategy and the choice
of distribution in randomizing its multiplicative coefficients is another topic for next
research.
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