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Abstract. In this paper we propose a further generalization of differential evo-
lution based data classification method. The current work extends our earlier dif-
ferential evolution based nearest prototype classifier that includes optimization
of the applied distance measure for the particular data set at hand. Here we pro-
pose a further generalization of the approach so, that instead of optimizing only
a single distance measure for the given data set, now multiple distance measures
are optimized individually for each feature in the data set. Thereby, instead of
applying a single distance measure for all data features, we determine optimal
distance measures individually for each feature. After the optimal class prototype
vectors and optimal distance measures for each feature has been first determined,
together with the optimal parameters related with each distance measure, in actual
classification phase we combine the individually measured distances from each
feature to form an overall distance measure between the class prototype vectors
and sample. Each sample is then classified to the class assigned with the nearest
prototype vector using that overall distance measure. The proposed approach is
demonstrated and initially evaluated with three different data sets.

1 Introduction

Differential evolution algorithm (DE) has lately gained increasing popularity in solving
classification problems. The recent research in the field include e.g. bankruptcy pre-
diction [1], classification rule discovery [2], nearest neighbor prototype search [3] and
feature selection [4]. Since its introduction in 1995 DE have emerged among the most
frequently applied evolutionary computing methods [5]. DE has also been used in many
areas of pattern recognition, i.e. in remote sensing imagery [6] and hybrid evolutionary
learning in pattern recognition systems [7], to mention a few examples.

The focus of this paper is in solving classification problems by extending the earlier
DE based classifier [8],[9], [10] further on with an extension for optimizing the selec-
tion of applied distance measure individually for each feature in the data set to be clas-
sified. In our previous work [10] we generalized our original DE classifier version [8]
by extending the optimization process to cover also the selection of the applied distance
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measure from a predefined pool of alternative distance measures. In [10], however, we
applied the same distance measure for all features in the dataset, while the proposed
approach are optimizing the distance measures individually for each feature of the clas-
sified data. The rationale behind this extension is that in classification, the data set to
be classified is often in a form where each sample consists of several measurements,
and it is not guaranteed that all the measured values from one particular sample obey
the same optimal distance measure. It is clear that an optimal distance measure for a
feature may not be optimal for another feature in the same data set. This is the under-
lying motivation to further generalize our earlier method so, that instead of optimizing
a single vector based distance measure for all features, we concentrate on the problem
at the feature level, and optimize the selection of applied distance measure individually
for each particular feature.

Examples on situations where a considerably improved classification accuracy have
been obtained by applying some other distance measure than a simple euclidean metric
have been reported in several articles i.e. [11], [12], [13]. However, typically in these
types of studies one has simply tested with a few different distance measures for classi-
fying the data set at hand. So far none of them have concentrated on selecting distance
measures optimally at feature level, but on data set level instead.

Thereby, in case of classifying a dataset containing T features using the proposed
approach, we need to determine T different optimal distance measures. In addition we
need to determine also the possible parameters related to each distance measure and the
class prototype vectors representing each class. All these should be optimized so, that
the classification accuracy over the current dataset will be maximized. We apply DE
algorithm for solving the resulted global optimization problem in order to determine all
mentioned values optimally. In particular, if the distance measure applied to a particular
feature has any free parameters, also their values need to be optimized as well.

After the optimal class prototype vectors and distance measures with their related
parameters have been determined by DE algorithm, the actual classification by applying
the determined values takes place. After we have first computed the individual distances
between a sample and the class prototype vectors individually for each feature, then we
compute the overall distance value by normalizing the individual distances first, and
then simply calculate the sum of all feature wisely computed and normalized distances.
Finally, each sample is to be classified into the class represented by the nearest class
prototype vector that is providing the lowest overall distance value.

2 Differential Evolution Based Classifier with Optimized Distances
for the Features in the Data Sets

2.1 Differential Evolution Based Classification

The DE algorithm [15], [5] was introduced by Storn and Price in 1995 and it belongs
to the family of Evolutionary Algorithms (EAs). As a typical EA, DE starts with a ran-
domly generated initial population of candidate solutions for the optimization problem
to be solved that is then improved using selection, mutation and crossover operations.
Several ways exist to determine a stopping criterion for EAs but usually a predefined
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upper limit Gmax for the number of generations to be computed provides an appropriate
stopping condition. Other control parameters for DE are the crossover control parameter
CR, the mutation factor F , and the population size NP.

In each generation G, DE goes through each D dimensional decision vector vi,G of
the population and creates the corresponding trial vector ui,G as follows in the most
common DE version, DE/rand/1/bin [16]:

r1,r2,r3 ∈ {1,2, . . . ,NP} ,(randomly selected,
except mutually different and different from i)

jrand = floor(randi[0,1) ·D)+ 1
for( j = 1; j ≤ D; j = j+ 1)
{

if(rand j[0,1)<CR∨ j = jrand)
u j,i,G = v j,r3,G +F · (v j,r1,G − v j,r2,G

)

else
u j,i,G = v j,i,G

}
In this DE version, NP must be at least four and it remains fixed along CR and F dur-
ing the whole execution of the algorithm. Parameter CR ∈ [0,1], which controls the
crossover operation, represents the probability that an element for the trial vector is
chosen from a linear combination of three randomly chosen vectors and not from the
old vector vi,G. The condition “ j = jrand” is to make sure that at least one element is
different compared to the elements of the old vector. The parameter F is a scaling factor
for mutation and its value is typically (0,1+]1.

After the mutation and crossover operations, the trial vector ui,G is compared to the
old vector vi,G. If the trial vector has an equal or better objective value, then it replaces
the old vector in the next generation. This can be presented as follows (in this paper
minimization of objectives is assumed) [16]:

vi,G+1 =

{
ui,G if f (ui,G)≤ f (vi,G)
vi,G otherwise

.

DE is an elitist method since the best population member is always preserved and the
average objective value of the population will never get worse. As the objective func-
tion, f , to be minimized we applied the number of incorrectly classified learning set
samples. Each population member, vi,G, as well as each new trial solution, ui,G, contains
the class vectors for all classes and the power value p. In other words, DE is seeking the
vector (y(1), ...,y(T ), p) that minimizes the objective function f . After the optimiza-
tion process the final solution, defining the optimized classifier, is the best member of
the last generation’s, Gmax, population, the individual vi,Gmax . The best individual is the
one providing the lowest objective function value and therefore the best classification
performance for the learning set. For control parameter values see [8], [9]. Next into
the actual classification. We suppose that T is the number of different kinds of features
that we can measure from objects. The key idea is to determine for each class the ideal
vector yi, yi = (yi1, . . . ,yiT ) that represents class i as well as possible. Later on we call

1 Notation means that the upper limit is about 1 but not strictly defined.
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these vectors as class vectors. When these class vectors have been determined we have
to make the decision to which class the sample x belongs to according to some crite-
ria. This can be done e.g. by computing the distances di between the class vectors and
the sample which we want to classify. For computing the distance usual way is to use

Minkowsky metric, d(x,y) =

(
T

∑
j=1

|x j − y j|p
)1/p

. After we have the distances between

the samples and class vectors then we can make our classification decision according to
the shortest distance. For x,y ∈ Rn. We decide that x ∈Cm if

d〈x,ym〉= min
i=1,...,N

d〈x,yi〉 (1)

In short the procedure for our algorithm is as follows:

1. Divide data into learning set and testing set
2. Create trial vectors to be optimized which consists of classes and parameter p, vi,G

3. Divide vi,G into class vectors and parameter p.
4. Compute distance between samples in the learning set and class vectors
5. Classify samples according to their minimum distance by using (1)
6. Compute classification accuracy (accuracy= no. of correctly classified samples/total

number of all samples in learning set)
7. Compute the fitness value for objective function using f = 1− accuracy
8. Create new pool of vectors vi,G+1 for the next population using selection, mutation

and crossover operations of differential evolution algorithm, and goto 3. until stop-
ping criteria is reached. (For example maximum number of iterations reached or
100% accuracy reached)

9. Divide optimal vector vi,Gmax into class vectors and parameter p.
10. Repeat steps 4, 5 and 6, but now with optimal class vectors, p parameter and sam-

ples in the testing set.

For more thorough explanation we refer to [8]. The proposed extension to the earlier
DE classifier will be described in detail next.

2.2 The Proposed Extension for Optimizing Distance Measures Individually for
Each Feature in the Data Set

Basically the vector to be optimized consists now of following components:

vi,G = {{class1,class2 · · ·classN},{switch},{parameters}}
where {class1,class2 · · ·classN} are the class vectors which are to be optimized for the
current data set, {switch} is an Integer valued parameter pointing the particular distance
measure to be applied from choices d1 to d8 (see Table 1). In the proposed approach
an individual value of {switch} is assigned for each data feature. In other words our
{switch} is T dimensional vector consisting of integer number within [1,8]. Since DE
algorithm operates internally with floating point representations and {switch} is a vec-
tor of Integer values, the corresponding adaptations are needed. Therefore we use in our
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Algorithm 1. Pseudo code for classification process with optimal parameters from DE.
Require: Data[1, . . . ,T ], classvec1[1, . . . ,T ], classvec2[1, . . . ,T ],...,classvecN[1, . . .,T ], switch, p1[1, . . . ,T ], p2[1, . . . ,T ],

p3[1, . . . ,T ],p4[1, . . . ,T ] center=[classvec1;classvec2; ...classvecN]
for j = 1 to T do

for i = 1 to N do
if switch( j) == 1 then

d(:, i, j) = dist1(data,repmat(center(i, j),T,1), p1( j))
else if switch( j) == 2 then

d(:, i, j) = dist2(data,repmat(center(i, j),T,1), p2( j))
else if switch( j) == 3 then

d(:, i, j) = dist3(data,repmat(center(i, j),T,1), p3( j))
else if switch( j) == 4 then

d(:, i, j) = dist4(data,repmat(center(i, j),T,1))
else if switch( j) == 5 then

d(:, i, j) = dist5(data,repmat(center(i, j),T,1))
else if switch( j) == 6 then

d(:, i, j) = dist6(data,repmat(center(i, j),T,1), p4( j))
else if switch( j) == 7 then

d(:, i, j) = dist7(data,repmat(center(i, j),T,1))
else

d(:, i, j) = dist8(data,repmat(center(i, j),T,1))
end if

end for
end for
D = scale(d)
for i = 1 to T do

dtotal(:, i) = sum(D(:, :, i),2);
end for
for i = 1 to length(dtotal) do

class(:, i) = f ind(dtotal(i, j) == min(dtotal(i, :)));
end for

optimization real numbers that are boundary constrained [0.5, 8.499], and all DE op-
erations are performed in real space. Only when we are applying the {switch} vector to
point the actual distance measures to be applied, we first round the values to the nearest
integer. In addition we have the {parameters} which is a vector of possible parame-
ters from the distance measures. In this case {parameters = {p1,p2,p3,p4}} where all
{p1,p2,p3,p4} are again vectors of T dimensions (i.e. p1 = {p1,1,p1,2, · · · ,p1,T}).

Each component of vector {switch} is referring to a distance measure in the pool
given in Table 1. A goal of the optimization process is to select the distance measures
optimally from this pool individually for each feature in the current data set. A collec-
tion of applicable distance measure is provided in[17], from where also the measures in
Table 1 have been taken.

The pseudocode Algorithm1 is describing the actual classification process after the
optimal class prototype vectors, distance measures and the possible free parameters of
each distance measure have been first determined by DE algorithm.

Next we discuss a bit more in detail the main modifications done to our previous
method. After we had created the pool of distances we needed to find a way to optimize
the selection of distance from the pool of possible choices to the data set at hand. For
this we used the switch operator which was needed to optimize. For the eight distances
in the pool now we had to add vector of parameters of length of T to be optimized in
order to select the suitable distance. By optimizing the integer numbers within [1,8] we
performed the needed optimal selection. In addition to this, as can be noticed from the
pool of distances and from the pseudo code there are different parameter values with
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different distances which needs to be optimized as well. For this we created additional
parameters to be optimized for each of the different parameters in pool of distances.
This part of the vector we call {parameters} which is possible parameters from the
distance measures. In this case {parameters = {p1,p2,p3,p4}}. At this point we are
facing the situation where we can have i.e. situation where optimal distance for feature
one can be d1 and also i.e. optimal distance for feature two can be d1 and clearly the
optimal parameter value can be different. For this reason we made {p1,p2,p3,p4} also
vectors of length T . This results in having several optimized parameter values which
are not used, making the optimization task more challenging, but also makes it possible
that different features with same optimal distance measure can have different optimal
parameter. After the vector vi,G is divided in its corresponding parts we can calculate the
distances between the samples and the class vectors. This results in a vector of distances
for one sample and one class vector. This vector is then normalized properly and after
that we aggregate this vector simply by computing the sum of normalized distances.
This is now stored in dtotal in the pseudo code. This process is repeated for all the
classes and all the samples. This way we end up having a distance matrix consisting
of samples and distances to each particular class. After we have created this distance
matrix the selection of to which class the particular sample belongs is made according
to minimum distance.

Table 1. Distance measures in a pool of distances

d1(x,y) = (|x−y|p1 ) ; p1 ∈ [1,∞) d2(x,y) = |x−y|p2/max{|x|, |y|}; p2 ∈ [1,∞)

d3(x,y) = |x−y|p3/min{1+ |x|, |y|}; p3 ∈ [1,∞) d4(x,y) = |x−y|/max{1+ |x|, |y|};

d5(x,y) = |x−y|/[1+ |x|+ |y|]; d6(x,y) = |x/[1+ |x|]−y/[1+ |y|]|
d7(x,y) = p4(x−y)2/(x+y); p4 ∈ (0,∞) d8(x,y) = |x−y|/(1+ |x|)(1+ |y|)

3 Classification Experiments and Comparisons of the Results

The data sets for experimentation with the proposed approach were taken from UCI
machine learning data repository [14]. Chosen data sets were all such where optimal
distance measure was not euclidean distance. The data sets were subjected to computa-
tion of 1000 generations (Gmax = 1000) of DE algorithm and the data was divided 30
times into random splits of testing sets and learning sets, based on which mean accura-
cies and variances were then computed. The fundamental properties of the data sets are
summarized in Table 2.

Table 2. Properties of the data sets

Name Nb of classes Nb of features Nb of instances
Horse-colic 2 11 368
Hypothyroid 2 25 3772
Balance scale 3 5 625
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The proposed differential evolution classifier with optimal distance measures for
each feature was tested with Hypothyroid, Horsecolic and Balance scale data set. The
mean classification accuracies were recorded as well as the corresponding optimal dis-
tance measure that was found optimal in each individual experiment. In each case 30
repetitions were performed dividing the data randomly into learning and testing tests.
The applied crossvalidation technique was two fold crossvalidation, where samples are
divided randomly into folds 30 times and required statistics was calculated from that
basis. Folds were normalized to achieve efficient and precise numerical computations.
Results from the experiments are reported in Table 3.

As can be observed from the Table 3 for Hypothyroid data set the mean accuracy of
99.57% was reached and using 99% confidence interval (by μ ± t1−αSμ/

√
n) accuracy

was 99.57± 0.63. With Balance scale data we observed the accuracy of 91.30± 0.12,
and with Horsecolic data the classification accuracy of 83.35± 2.23 were observed.

To enable initial comparisons with some of the most frequently applied classifiers
and with the previous DE classifier, we calculated the corresponding classification re-
sults also by using k-NN classifier, Back Propagation Neural Network (BPNN) and DE
classifier [8]. The results and their comparisons are provided in Tables 4.

In Table 4, results from Horsecolic, hypothyroid and Balancescale data are com-
pared between four classifiers. For Hypothyroid data, the proposed method performed
significantly better than k-NN. Also in comparison with BPNN the proposed method
gave significantly higher mean accuracy in 0.999 confidence interval. The original DE
classifier performed here slightly better than the proposed method, but the observed
difference was not found to be statistically significant.

Table 3. Classification results for the three data sets using N = 30 and Gmax = 1000. Mean
classification accuracies, variances and optimal distance found are reported in columns 2 to 6. TS
is referring to test set and LS to the learning set.

Data Mean (TS) Variance (TS) Mean (LS) Variance (LS)

Horsecolic 83.35 24.67 88.59 2.36

Balance scale 91.30 0.075 92.22 0.028

Hypothyroid 99.57 1.98 99.98 0.00092

Table 4. Comparison of the results from the proposed method to other classifiers with Horse-colic
data, Hypothyroid data and Balancescale data.

Horsecolic Hypothyroid Balancescale

Method Mean accuracy Variance Mean accuracy Variance Mean accuracy Variance

KNN 68.53 5.44 98.37 0.006 88.06 1.42

BPNN 80.85 19.27 97.29 0.018 87.90 2.22

DE classifier 71.76 107.78 99.95 0.0061 88.66 4.71

Proposed method 83.35 24.67 99.57 1.98 91.30 0.075
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The results from the comparisons with the Horsecolic data set the proposed method
achieved a clearly higher mean classification accuracy when compared with KNN,
BPNN and DE classifiers. Improvement with mean accuracy compared to original DE
classifier was significant and remarkably high, more than 10%.

In Table 4 also the results with balance scale data set are reported. Here the proposed
method significantly and rather clearly outperformed the other compared classifiers by
reaching the mean accuracy of 91.30%.

4 Discussion

In this paper we proposed an extension for the differential evolution based nearest pro-
totype classifier where the selection of the applied distance measure is optimized in-
dividually for each feature of the classified data set. Earlier a single distance measure
was applied for all data features, and thereby we were able to optimize the selection of
the distance measure in the data set level only. The proposed generalization extends the
optimization of distance measures to the feature level.

To demonstrate the proposed approach, and to enable a preliminary evaluation of
it, we carried out experimentation with three different data sets. In two cases the clas-
sification accuracy of the proposed method outperformed all compared classifiers sig-
nificantly. In the remaining case no statistically significant difference to the earlier DE
classifier version were observed, despite the difference to the other compared classifiers
were again significant and rather clear. The results are suggesting that the proposed gen-
eralization is advantageous from the classification accuracy point of view. However, this
conclusion should be interpreted as a preliminary one due to limited number of data sets
investigated so far.

An important aspect is, that the proposed approach is not limited to DE classifiers
only, and can be applied generally in connection with any other similar type of clas-
sification method that is based on global optimization. However, this is assuming that
an effective enough global optimizer like differential evolution algorithm is applied to
solve the resulting optimization problem.

Despite the current results are promising, they should be considered preliminary and
need to be further confirmed by applying a broader selection of data sets. That includes
into our further research plans. Concerning the possibilities for further developments of
the proposed approach, so far we have applied a simple summation of feature wisely
computed distances to calculate the final overall distance measure. However, in future
also a suitable aggregation method can be used for the purpose. This is also one of our
future directions for further investigations of this method.
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