
V. Snasel et al. (Eds.): SOCO Models in Industrial & Environmental Appl., AISC 188, pp. 1–12.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

A Hybrid Discrete Differential Evolution Algorithm
for Economic Lot Scheduling Problem with Time Variant

Lot Sizing

Srinjoy Ganguly1, Arkabandhu Chowdhury1, Swahum Mukherjee1, P.N. Suganthan2,
Swagatam Das3, and Tay Jin Chua4

1 Dept. of Electronic & Telecommunication Engineering, Jadavpur University, Kolkata, India
2 School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore 639798
epnsugan@ntu.edu.sg

3 Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India
swagatam.das@isical.ac.in

4 Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive,
Singapore 638075

tjchua@SIMTech.a-star.edu.sg

Abstract. This article presents an efficient Hybrid Discrete Differential
Evolution (HDDE) model to solve the Economic Lot Scheduling Problem
(ELSP) using a time variant lot sizing approach. This proposed method
introduces a novel Greedy Reordering Local Search (GRLS) operator as well as
a novel Discrete DE scheme for solving the problem. The economic lot-
scheduling problem (ELSP) is an important production scheduling problem that
has been intensively studied. In this problem, several products compete for the
use of a single machine, which is very similar to the real-life industrial scenario,
in particular in the field of remanufacturing. The experimental results indicate
that the proposed algorithm outperforms several previously used heuristic
algorithms under the time-varying lot sizing approach.

Keywords: Lot scheduling, time-varying lot-sizes approach, discrete
differential evolution, cyclic crossover, simple inversion mutation, greedy
reordering local search, remanufacturing.

1 Introduction

It is a common practice in industries to produce several products on a single machine
due to economic considerations. Typically, these facilities may produce only a single
product at a time and have to be set-up (stopped and prepared) at the cost of time and
money, before the start of the production run of a new product. A production
scheduling problem arises due to the need to co-ordinate the set-up and production of
a large number of different items. The main aim of the Economic Lot Scheduling
Problem (ELSP) [1] is to find the best lot sizes and production schedule that does not
allow any shortages for the items to be produced in the above described environment.
Typical examples of such problems are:

2 S. Ganguly et al.

• Metal forming and plastics production lines (press lines, and plastic and
metal extrusion machines), where each product requires a different die that
needs to be set up on the concerned machinery.

• Assembly lines which produce several products and different product models
(electric goods, vehicles, etc.).

• Blending and mixing facilities (for paints, beverages, etc.), in which different
products are poured into different containers for processing.

Typically, in an industrial scenario, a single machine of very high efficiency is
purchased instead of several machines of lesser efficiency. This situation leads to the
question of how one should schedule production on this high speed machine. The
issue is one of selecting both a sequence, in which the products will be manufactured,
and a batch size for each item run. The issue of batching arises because the system
usually incurs a set-up cost and/or a set-up time when the machine switches from one
product to a different product. Set-up times imply an idle-time during which the
machine does nothing, which, in turn, implies a need to carry a large scale production
facility. This problem has attracted the attention of many researchers over 40 years,
partly because it is a representation of many frequently encountered scheduling
problems, and simply because it appears to be unconquerable. In fact, many
researchers also take into consideration another interesting variant of the problem
wherein they allow the phenomenon of re-manufacture [2] to occur, i.e. items that
have been returned by the consumers are re-manufactured and made as fresh as new.
Ouyang and Zhu extended the classical ELSP to schedule the manufacturing and
remanufacturing on the same single product line [19]. They assumed that the demand
rate and return rate are constant and the product line has limited capacity of
manufacturing and remanufacturing.

Typically, we may assume that the demand rates are known before-hand and are
product-dependent while the set-up cost and set-up time are product-dependent but
sequence-independent. Also, the majority of the research in ELSP literature focuses
on cyclic production schedules, i.e. the schedule is repeated periodically. As the ELSP
is an NP-hard problem, many heuristics have been devised that may solve this
problem to near optimality. The three types of approaches generally taken are:

I. Common cycle approach: This restricts all the products’ cycle times to
equal time (an item’s cycle time is the duration between the starts of two
consecutive runs of that item). This approach has the advantage of always
generating a feasible schedule despite the use of a very simple procedure.
This procedure, however, gives solutions far from the lower bound in some
cases [3].

II. Basic period approach: This allows different cycle times for different
products, but restricts each product’s cycle time to be an integer multiple k of
a time period called a basic period. This approach, in general, gives better
solutions than the common cycle approach. However, its main drawback is
the difficulty of ensuring that the production sequence is feasible [4].

III. Time-varying lot size approach: This allows different lot sizes for any
given product during a cyclic schedule. It explicitly handles the difficulties
caused by set-up times and always gives a feasible schedule as proved by
Dobson [5]. It has been found to give fitter solutions in comparison to the
previous two approaches.

 A Hybrid Discrete Differential Evolution Algorithm 3

The research on ELSP under the different policies discussed above mainly comprises
of different algorithmic solutions since the restricted versions of the problem are also
very difficult. Till date, most researchers have relied on genetic algorithms to solve
the problem. There are only two studies in the literature that consider exact
algorithms: Grznar and Riggle [6] for BP policy, and Sun et al. [7] for EBP policy.
However, the exact algorithms are not very time-efficient especially when the
utilization factor is high. The purpose of the current research is to develop a Hybrid
Discrete Differential Evolution (HDDE) algorithm to solve the ELSP. Our HDDE is
based on the time-varying lot sizes approach. In this paper, we present the ELSP
formulation and proposed HDDE in Section 2 and the results and discussions in
Section 3.

2 ELSP Problem Formulation and Algorithm

The following assumptions are normally used in the formulation of the ELSP:

• Several items compete for the use of a single production facility.
• Demand-rates, production-rates, set-up times and set-up costs are known

before-hand and are constant.
• Backorders are not allowed.
• Inventory costs are directly proportional to inventory levels.

The following notations have been adopted:

• Item Index: Mi ,...,2,1=

• Position Index: Nj ,...,2,1=

• Constant Production Rate(Units per day): ip ; Mi ,...,2,1=

• Constant Demand Rate(Units per day): id ; Mi ,...,2,1=

• Inventory Holding Cost(Price per unit per day): ih ; Mi ,...,2,1=

• Set-up Cost(Currency): ia ; Mi ,...,2,1=

• Set-up Time(days): is ; Mi ,...,2,1=

• Item produced at position : jI ; Nj ,...,2,1=

• Production-time for item produced at position : jt ; Nj ,...,2,1=

• Idle-time for the item produced at position : jx ; Nj ,...,2,1=

• Cycle Length(days):

The ELSP in a nutshell is the situation where there is a single facility on which
different products have to be produced. We try to find a cycle length and a

production sequence I=(NIII ,...,, 21) where),...,2,1(MI j ∈ , production time

durations t=),...,,(21 Nttt and idle-times u=),...,,(21 Nuuu so that the given

production cycle can be finished within the given cycle. This cycle has to be repeated

4 S. Ganguly et al.

over and over again, while at the same time, inventory and set-up costs have to be
minimized. We may define µ as:


=

−=
m

i i

i

p

d

1

1μ

We must note that µ represents the long-run proportion of time available for set-ups.
For infinite horizon problems, µ > 0 is absolutely necessary for the existence of a
feasible solution. It can be shown that any production sequence can be converted into
a feasible one if µ > 0.

Let F represent the set of all the feasible finite sequences of the products and

iJ denote the positions in the schedule where the product having the index i is

produced. Let kY denote all the jobs in a given sequence starting from k up till that

position in the given sequence where the item kI is produced again. Then, the
complete formulation of the ELSP is:

)))()((
2

1
(

1
mininf

1

2

1
;0;0;0 

==
≥≥≥∈ +−

N

j

jj
j

j
jjj

N

j
TxtFj at

d

p
dph

T
 (1)

Subject to the following boundary conditions:

• MiTdpt ijJj

j
i ,...,2,1; == ∈

 (2)

• Nkt
d

p
xst k

k

k
jj

Yj

j

k
,...,2,1; ==++ ∈

 (3)

• Txst jj
N

j

j =++
=

)(
1

 (4)

The condition (2) ensures that enough space is allocated to each product so that it may
meet its own demand during one complete cycle. Condition (3) ensures that we
produce that much quantity of each product so that its demand is met till the time it is
produced again. Condition(4) ensures that the total time taken for the complete cycle
is numerically equal to the sum of the production time, setup time and idle time of the
various items.

2.1 The Proposed HDDE Algorithm

The HDDE may be categorized into the following steps:

Step 1 The production frequencies are obtained by solving the lower bound (LB)
model [8] as stated below. This lower bound is tighter than that obtained by using the
so-called independent solution in which each product is taken in isolation by
calculating its economic production quantity. The constraint here is that enough time
must be available for set-ups. As stated previously, µ represents the average

 A Hybrid Discrete Differential Evolution Algorithm 5

proportion of time available for set-up. iT refers to the cycle length for the product i .

However, the synchronization constant that states that no two items may be produced
simultaneously is ignored. Hence, this results in a lower total daily cost for the ELSP.
This scheme was initially proposed by Bomberger [9].

LB model:

)1)(
2

()(min
1

,...,1

i

iiii
M

i i

i

TmT p

dTdh

T

a −+
=

Given that, μ≤
=

m

i i

i

T

s

1

 ; ;0≥iT Mi ,...,2,1= (5)

The objective function and the convex set in the above constraint model are convex

in sTi ' . Therefore, the optimal points of the LB model are those points that satisfy the

KKT conditions as follows:

i

i

ii T
H

Rsa =+ for all i . (6)

0≥R with complementary slackness μ≤
=

m

i i

i

T

s

1

 , where
2

1
i

i

i

p

d

H

−
= . The

procedure that is adopted to find the optimal iT ’s is described below.

Algorithm for the Lower Bound

1. The condition R=0 is checked for an optimal solution. The iT ’s are found as per

the formula
i

i

H

a for all . If 
=

m

i i

i

T

s

1

 < µ , then the iT ’s are proven to be an

optimal solution. Else, the algorithm explained in step 2 is adopted.

2. R is taken at an arbitrary value greater than 0. The iT ’s are computed as per

i
i

ii T
H

Rsa =+ . If 
=

m

i i

i

T

s

1

 < µ , R is reduced and the afore-mentioned process is

repeated. If 
=

m

i i

i

T

s

1

> µ , R is increased and the afore-mentioned process is

repeated. If 
=

m

i i

i

T

s

1

= µ , the iterations stop and the set of iT ’s obtained are

optimal.

If the optimal cycle length for an item is '
iT , then the production frequency (if) of

that item may be obtained as per the following formula: '

')max(

i

i
i T

T
f = .

Step 2 The production frequencies obtained in Step 1, are rounded off to the nearest
integers.

6 S. Ganguly et al.

Step 3 Using the frequencies obtained in the previous step, an efficient production
sequence is obtained using the DE algorithm. This algorithm is discussed later in
details.
Step 4 If we assume the approximation that there is no idle time (which works well
for highly loaded facilities), we can easily solve for the set of production times using
equation (3). This method is referred to as the Quick and Dirty heuristic [10].
Otherwise, we may adopt Zipkin’s [11] parametric algorithm.

2.2 Discrete Differential Evolution

The key components of the proposed DDE are:

1) Representation of the Schedule (Chromosome): The proper representation of
a solution plays an important role in any evolutionary algorithm. In our paper, a string
of positive integers (chromosome) is used to represent a solution. The length of the
chromosome is the sum of the production frequencies obtained at the end of step 2.
As standard operations such as cross-over and mutation are difficult using such a
representation, we use an additional chromosome that possesses the absolute locations
of each of the genes in the afore-mentioned chromosome. Suppose the problem at
hand is a 4-product ELSP and it is observed at the end of step 2 that their frequencies
are 1,2,2,1 respectively. We may represent this situation using two chromosomes A
and B. The representation is as follows:

 Chromosome A (1 2 2 3 3 4)
 Chromosome B (1 2 3 4 5 6)

Here, Chromosome A represents the item numbers simply, while Chromosome B
represents their respective locations. All the operations shall be performed using
chromosomes of the form of Chromosome B.
2) The objective and fitness function. The fitness value for any chromosome may
be computed as the inverse of Equation (1), which serves as the fitness function. Our
objective is to minimize this function (Eq. 1) and therefore maximize the fitness, i.e.
our aim is to find the string with the maximum fitness. For any chromosome
(representing the production schedule) the production times of the different items may
be computed as per step 4 of the main algorithm. After this, we obtain the value of the
fitness function using Equation No. (1). The fitness function is represented by

)(Vfelsp for chromosomeV .

3) The Cross-Over operator. The Cyclic Crossover Operator [12] is of immense
importance in the proposed HDDE because this operation is carried out at several
points in the algorithm. This operator is unique one since it preserves characteristics
of both the parents in the offspring. The crossover mechanism may be envisaged via
the following example: Let us consider two flow sequences A and B, where A= (1 3
5 6 4 2) and B= (5 6 1 2 3 4). Let the first offspring begin with 1(the starting
operation of parent A). Selection of ‘1’ from A implies that ‘5’ should be selected
from B, because we want each operation to be derived from one of the two parents.
Hence, C= 1 _ 5 _ _ _. This process continues on till after the selection and
subsequent insertion of an operation from one of the two parents, the operation in the

 A Hybrid Discrete Differential Evolution Algorithm 7

corresponding position in the other parent is already present in the offspring. After
this, the remaining operations are filled in, as per their orders respective to one
another in the other string. As can be seen in case of C, insertion of ’5’ implies that
‘1’ should be inserted in the list, but as ‘1’ is already present in the list (i.e. the
starting operation), the cycle stops (hence, the name Cyclic Crossover) and the
remaining operations are filled in from B. Hence, C = (1 6 5 2 3 4). Similarly,
considering ‘5’ as the starting operation, another offspring D can be obtained in a
similar fashion. Hence, D= (5 3 1 6 4 2) .As our algorithm imposes a restriction
that the result of each crossover operation results in only a single offspring, the fitter
progeny is selected.
4) Perturbation Operator. In our paper, we have adopted the Simple Inversion
Mutation [13] as our perturbation operator. Two random cut-points are selected in the
chromosome and that part of the chromosome between these two cut-points is
inverted and placed in the original chromosome. For example, let us consider the
chromosome represented by (ABDEGCFJIH). Suppose the first cut-point is between
D and E and the second cut-point is between F and J .

 Then the part of the chromosome between the two cut-points is reversed and then
placed in the original chromosome to obtain (ABDFCGEJIH).

Fig. 1. Simple Inversion Mutation

DE [14] is one of the recent evolutionary optimization algorithms. Like other
algorithms of the same class, DE is population-based and serves as a stochastic global
optimizer. In the classic DE, candidate solutions are represented by a vector of
floating point solutions. The mutation process entails the addition of the weighted
difference of two members of the population to another third member of the same
population to generate a mutated solution. Then, a cross-over operation occurs so as
to generate a trial solution that is in turn compared with the target solution using a
selection operator, which determines which of the two shall survive for the next
generation. It is obvious that traditional DE equations shall not hold in this regard as
they had been developed for continuous numerical optimization. As per the novel
DDE algorithm proposed by Pan et. al. [15], the target individual is represented by a
chromosome of type B (permutation of numbers). The mutant individual is obtained
by perturbing the previous generation best solution in the target population. Hence,
we achieve the difference variations by applying a perturbation (mutation) operator on
the best solution present in the previous generation of the target population. These

8 S. Ganguly et al.

perturbations are achieved by applying the Simple Inversion Mutation operator on the
best solution of the previous generation. Since these perturbations are stochastically
different, each result is expected to be distinct from the other. To obtain the mutant,
the following equation may be used:











 ≤

=
−

−

otherwiseX

mutationrifXF
V

t
g

prob
t
gt

i
..

..)..(
1

1

 (7)

where, 1−t
gX represents the best solution of the previous generation of the target

population. ()F denotes the perturbation operator(Simple Inversion Mutation).

Hence, a random number)1,0(∈r is generated and if it is less than
probmutation , then

the trial solution is obtained by applying the perturbation operator on 1−t
gX else, the

mutant is set to 1−t
gX . After this, we enter the recombination (cross-over) phase. In

this, i
tV is crossed over with t

iX to obtain the trial solution t
iU if)1,0(∈v [generated

randomly] is greater than
probcrossover . Else, t

iU is taken to be equal to t
iV . The

pseudo-code representation for the afore-said is:











 >

=
−

otherwiseV

crossovervifVXCR
U

t
i

prob
t

i
t
it

i
..

....,(1

 (8)

Hence, if t
iU is fitter than 1−t

iX , then t
iX = t

iU . Else, t
iX = 1−t

iX . Over here, ()CR

refers to the cross-over operator. As discussed earlier, the Cyclic Cross-Over operator
has been used in the HDDE. As it is pretty ostensible, our basic aim is to take
advantage of the best solution obtained from the previous generation during the entire
search process. Unlike its continuous counterpart, the differential evolution is
achieved by the stochastic re-ordering of the previous generation’s best fit solution in
the target population.

Greedy Reordering Local Search (GRLS). In this paper, we propose a novel local
search operator which restructures a chromosome iteratively on a probabilistic basis
to search for fitter solutions. This re-ordering process goes on till the solutions which
are obtained from reordering is better in comparison to the parent solution. The GRLS
algorithm for a chromosome p is given in Fig. 2.

3 Results and Discussion

In our tests on ELSP, the proposed HDDE algorithm is coded in MATLAB and the
experiments are executed on a Pentium P-IV 3.0 GHz PC with 512MB memory. We

 A Hybrid Discrete Differential Evolution Algorithm 9

have compared the results that our algorithm provided when tested on Mallya’s 5-
item problem [17] and the famous Bomberger’s 10-item problem (for the µ=0.01
case) [8] with the hybrid GA proposed by Moon et. al.[10] , Khouza’s GA [17],
Dobson’s heuristic [18] and the Common Cycle Solution [3] approach. In each of the
runs, the number of iterations (generations) have been taken to be 80 and the
population size has been taken as 100, the value of

probmutation has been taken to be

0.77, and the value of
probcrossover has been taken to be 0.96 in all the runs. The

value of
probmutation has been decided empirically by taking several runs of the

proposed algorithm. The value of probcrossover has been intentionally kept high to

ensure that most members of the target population undergo recombination because
this not only facilitates increased convergence to the optimal solution but also ensures
that diversity is improved. The results are as follows:

Fig. 2. The pseudo-code for the GRLS

FOR nii ≤= ;1

 Search for i in the parent chromosome;

 ;_ igenecurrent =

 FOR ;;1 njj ≤=

 Search for);(jxright)(// jxright
 is the first element to the right of j which has not

occurred in the list.

 Search for);(jxleft)(// jxleft
 is the first element to the left of j which has not occurred in

the list.
])1,0[(∈Rp and])1,0[(∈Lp are generated randomly.

 IF
LR pp >

)(jxright
is inserted immediately after j ;

);(_ jxgenecurrent right=

 ELSE

)(jxleft is inserted immediately after j ;

);(_ jxgenecurrent left=

 END IF
 END FOR
END FOR

Out of the n chromosomes generated, let 'p

represent the fittest one.

IF)()(' pfpf ≥

 p is replaced by p’.
 CONTINUE GRLS
ELSE
 ABORT GRLS
END IF

10 S. Ganguly et al.

Fig. 3. The pseudo-code for the Hybrid Discrete Differential Evolution(HDDE)

Table 1. Mallya’s 5-item problem (Average Daily Cost)

HDDE Hybrid GA proposed by
Moon et al.[10]

Dobson’s Heuristic[18]

59.87 60.91 61.83

Optimal Production sequence for Mallya’s 5-item problem (as per the HDDE):

 (4 , 5 , 3 , 1 , 3 , 2 , 3 , 4 , 3 , 1 , 2)

Table 2. Bomberger’s 10-item Problem (Average Daily Cost)

HDDE Hybrid GA
proposed by

Moon et al.[10]

Dobson’s
Heuristic[18]

Common Cycle
Solution[3]

Khouza’s GA

[17]

125.28 126.12 128.43 231.44 196.14

Optimal Production sequence for Bomberger’s 10-item problem (as per the HDDE):

(8 , 9 , 6 , 8 , 3 , 8 , 4 , 2 , 4 , 8 , 9 , 3 , 8 , 10 , 5 , 10 , 8 , 4 , 3 , 2 , 8 , 5 , 9 , 8 , 5 , 8 , 4
, 1 , 8 , 6 , 2 , 8 , 5 , 2 , 7 , 8 , 9 , 4 , 3 , 4 , 5 , 4)

In this paper, we have compared the HDDE that we proposed, with other algorithms
that belong to the time varying lot sizes approach in the literature. We have used the
data for Mallya’s 5-item problem and Bomberger’s 10-item problem (for the μ =0.01

case which represents a highly loaded facility). As it can be clearly seen, our
algorithm clearly outperforms the hybrid GA proposed by Moon et al. by 1.7% and
0.66%, in case of Mallya’s 5-item and Bomberger’s 10-item problem, respectively.

procedure Hybrid Discrete Differential Evolution(HDDE)
initialize parameters
initialize target population
evaluate target population
apply local search(Greedy Reordering Operator)
generation=0;
/* G is defined by the user */
while (generation<G)
obtain the mutant population
obtain the trial population
evaluate the trial population
Select the chromosomes that may progress to the next generation
Apply Local Search(GRLS operator)
generation=generation+1;
end while
Return the best found solution
end HDDE

 A Hybrid Discrete Differential Evolution Algorithm 11

4 Conclusions and Further Work

This paper has proposed a new type of Hybrid Discrete Differential Evolution
algorithm that employs a novel Greedy Reordering operator for local search. We have
compared our algorithm with those proposed by Dobson, Khouza and Moon on the
Mallya’s 5-item and Bomberger’s 10-item problems (for the µ=0.01 case) and it can
be clearly seen that our algorithms clearly outperforms the rest. Since the ELSP is a
very complex combinatorial optimization algorithm, most researchers have developed
heuristics that may solve this algorithm efficiently. We have used a heuristics to
generate the frequencies and a HDDE (coupled with a local search operator) to find
the fittest ELSP sequence which is feasible. Hence, using this algorithm we have
increased the speed and accuracy of the search process. Furthermore, this algorithm
may be modified accordingly to solve the ELSP with remanufacturing model.

References

1. Hsu, W.: On the general feasibility test of scheduling lot sizes for several products on one
machine. Management Science 29, 93–105 (1983)

2. Zanoni, S., Segerstedt, A., Tang, O., Mazzoldi, L.: Multi-product economic lot scheduling
problem with manufacturing and remanufacturing using a basic policy period. Computers
and Industrial Engineering 62, 1025–1033 (2012)

3. Hanssmann, F.: Operations Research in Production and Inventory. Wiley, New York
(1962)

4. Tasgeterin, M.F., Bulut, O., Fadiloglu, M.M.: A discrete artificial bee colony for the
economic lot scheduling problem. In: IEEE Congress on Evolutionary Computing (CEC),
New Orleans, USA, pp. 347–353 (2012)

5. Dobson, G.: The economic lot scheduling problem: achieving feasibility using time-
varying lot sizes. Operations Research 35, 764–771 (1987)

6. Grznar, J., Riggle, C.: An optimal algorithm for the basic period approach to the economic
lot schedule problem. Omega 25, 355–364 (1997)

7. Sun, H., Huang, H., Jaruphongsa, W.: The economic lot scheduling problem under
extended basic period and power-of-two policy. Optimization Letters 4, 157–172 (2010)

8. Maxwell, W.: The scheduling of economic lot sizes. Naval Research Logistics
Quarterly 11, 89–124 (1964)

9. Bomberger, E.: A dynamic programming approach to a lot size scheduling problem.
Management Science 12, 778–784 (1966)

10. Moon, I., Silver, E.A., Choi, S.: Hybrid Genetic Algorithm for the Economic Lot
Scheduling Problem. International Journal of Production Research 40(4), 809–824 (2002)

11. Zipkin, P.H.: Computing optimal lot sizes in the economic lot scheduling problem.
Operations Research 39(1), 56–63 (1991)

12. Dagli, C., Sittisathanchai, S.: Genetic neuro-scheduler for job shop scheduling.
International Journal of Production Economics 41(1-3), 135–145 (1993)

13. Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In:
Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan
Kaufmann, Los Altos (1987)

14. Das, S., Suganthan, P.N.: Differential evolution: a strategy of the state of the art. IEEE
Transactions on Evolutionary Computation 15(1), 4–31 (2011)

12 S. Ganguly et al.

15. Pan, Q.K., Tasgetiren, M.F., Liang, Y.: A discrete differential evolution algorithm for the
discrete flow-shop scheduling problem. Computers and Industrial Engineering 55, 795–
816 (2007)

16. Mallya, R.: Multi-product scheduling on a single machine: a case study. Omega 20, 529–
534 (1992)

17. Khouza, M., Michalewicz, Z., Wilmot, M.: The use of genetic algorithms to solve the
economic lot size scheduling problem. European Journal of Operational Research 110,
509–524 (1998)

18. Dobson, G.: The cyclic lot scheduling problem with sequence-dependent setups.
Operations Research 40, 736–749 (1992)

19. Ouyang, H., Zhu, X.: An economic lot scheduling problem for manufacturing and
remanufacturing. In: IEEE Conference on Cybernetics and Intelligent Systems, Chengdu,
pp. 1171–1175 (2008)

	A Hybrid Discrete Differential Evolution Algorithm for Economic Lot Scheduling Problem with Time Variant Lot Sizing
	Introduction
	ELSP Problem Formulation and Algorithm
	The Proposed HDDE Algorithm
	Discrete Differential Evolution

	Results and Discussion
	Conclusions and Further Work
	References

