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Abstract. This article presents an efficient Hybrid Discrete Differential 
Evolution (HDDE) model to solve the Economic Lot Scheduling Problem 
(ELSP) using a time variant lot sizing approach. This proposed method 
introduces a novel Greedy Reordering Local Search (GRLS) operator as well as 
a novel Discrete DE scheme for solving the problem. The economic lot-
scheduling problem (ELSP) is an important production scheduling problem that 
has been intensively studied. In this problem, several products compete for the 
use of a single machine, which is very similar to the real-life industrial scenario, 
in particular in the field of remanufacturing. The experimental results indicate 
that the proposed algorithm outperforms several previously used heuristic 
algorithms under the time-varying lot sizing approach. 
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1   Introduction 

It is a common practice in industries to produce several products on a single machine 
due to economic considerations. Typically, these facilities may produce only a single 
product at a time and have to be set-up (stopped and prepared) at the cost of time and 
money, before the start of the production run of a new product. A production 
scheduling problem arises due to the need to co-ordinate the set-up and production of 
a large number of different items. The main aim of the Economic Lot Scheduling 
Problem (ELSP) [1] is to find the best lot sizes and production schedule that does not 
allow any shortages for the items to be produced in the above described environment. 
Typical examples of such problems are: 
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• Metal forming and plastics production lines (press lines, and plastic and 
metal extrusion machines), where each product requires a different die that 
needs to be set up on the concerned machinery. 

• Assembly lines which produce several products and different product models 
(electric goods, vehicles, etc.). 

• Blending and mixing facilities (for paints, beverages, etc.), in which different 
products are poured into different containers for processing. 

Typically, in an industrial scenario, a single machine of very high efficiency is 
purchased instead of several machines of lesser efficiency. This situation leads to the 
question of how one should schedule production on this high speed machine. The 
issue is one of selecting both a sequence, in which the products will be manufactured, 
and a batch size for each item run. The issue of batching arises because the system 
usually incurs a set-up cost and/or a set-up time when the machine switches from one 
product to a different product. Set-up times imply an idle-time during which the 
machine does nothing, which, in turn, implies a need to carry a large scale production 
facility. This problem has attracted the attention of many researchers over 40 years, 
partly because it is a representation of many frequently encountered scheduling 
problems, and simply because it appears to be unconquerable. In fact, many 
researchers also take into consideration another interesting variant of the problem 
wherein they allow the phenomenon of re-manufacture [2] to occur, i.e. items that 
have been returned by the consumers are re-manufactured and made as fresh as new. 
Ouyang and Zhu extended the classical ELSP to schedule the manufacturing and 
remanufacturing on the same single product line [19]. They assumed that the demand 
rate and return rate are constant and the product line has limited capacity of 
manufacturing and remanufacturing. 

Typically, we may assume that the demand rates are known before-hand and are 
product-dependent while the set-up cost and set-up time are product-dependent but 
sequence-independent. Also, the majority of the research in ELSP literature focuses 
on cyclic production schedules, i.e. the schedule is repeated periodically. As the ELSP 
is an NP-hard problem, many heuristics have been devised that may solve this 
problem to near optimality. The three types of approaches generally taken are: 

I. Common cycle approach: This restricts all the products’ cycle times to 
equal time (an item’s cycle time is the duration between the starts of two 
consecutive runs of that item). This approach has the advantage of always 
generating a feasible schedule despite the use of a very simple procedure. 
This procedure, however, gives solutions far from the lower bound in some 
cases [3]. 

II. Basic period approach: This allows different cycle times for different 
products, but restricts each product’s cycle time to be an integer multiple k of 
a time period called a basic period. This approach, in general, gives better 
solutions than the common cycle approach. However, its main drawback is 
the difficulty of ensuring that the production sequence is feasible [4]. 

III. Time-varying lot size approach: This allows different lot sizes for any 
given product during a cyclic schedule. It explicitly handles the difficulties 
caused by set-up times and always gives a feasible schedule as proved by 
Dobson [5]. It has been found to give fitter solutions in comparison to the 
previous two approaches. 
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The research on ELSP under the different policies discussed above mainly comprises 
of different algorithmic solutions since the restricted versions of the problem are also 
very difficult. Till date, most researchers have relied on genetic algorithms to solve 
the problem. There are only two studies in the literature that consider exact 
algorithms: Grznar and Riggle [6] for BP policy, and Sun et al. [7] for EBP policy. 
However, the exact algorithms are not very time-efficient especially when the 
utilization factor is high. The purpose of the current research is to develop a Hybrid 
Discrete Differential Evolution (HDDE) algorithm to solve the ELSP. Our HDDE is 
based on the time-varying lot sizes approach. In this paper, we present the ELSP 
formulation and proposed HDDE in Section 2 and the results and discussions in 
Section 3. 

2   ELSP Problem Formulation and Algorithm 

The following assumptions are normally used in the formulation of the ELSP: 

• Several items compete for the use of a single production facility. 
• Demand-rates, production-rates, set-up times and set-up costs are known 

before-hand and are constant. 
• Backorders are not allowed. 
• Inventory costs are directly proportional to inventory levels. 

The following notations have been adopted: 

• Item Index: Mi ,...,2,1=  

• Position Index: Nj ,...,2,1=  

• Constant Production Rate(Units per day): ip ;  Mi ,...,2,1=  

• Constant Demand Rate(Units per day): id  ;  Mi ,...,2,1=  

• Inventory Holding Cost(Price per unit per day): ih  ;  Mi ,...,2,1=  

• Set-up Cost(Currency): ia  ; Mi ,...,2,1=  

• Set-up Time(days): is ; Mi ,...,2,1=  

• Item produced at position : jI ;  Nj ,...,2,1=  

• Production-time for item produced at position : jt ; Nj ,...,2,1=  

• Idle-time for the item produced at position : jx ; Nj ,...,2,1=  

• Cycle Length(days):  
 

The ELSP in a nutshell is the situation where there is a single facility on which 
different products have to be produced. We try to find a cycle length and a 

production sequence I=( NIII ,...,, 21 ) where ),...,2,1( MI j ∈ , production time 

durations t= ),...,,( 21 Nttt  and idle-times u= ),...,,( 21 Nuuu so that the given 

production cycle can be finished within the given cycle. This cycle has to be repeated 



4 S. Ganguly et al. 

over and over again, while at the same time, inventory and set-up costs have to be 
minimized. We may define µ  as:                           
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We must note that µ represents the long-run proportion of time available for set-ups. 
For infinite horizon problems, µ > 0 is absolutely necessary for the existence of a 
feasible solution. It can be shown that any production sequence can be converted into 
a feasible one if µ > 0. 

Let F represent the set of all the feasible finite sequences of the products and 

iJ denote the positions in the schedule where the product having the index  i  is 

produced. Let kY denote all the jobs in a given sequence starting from k  up till that 

position in the given sequence where the item kI is produced again. Then, the 
complete formulation of the ELSP is: 
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The condition (2) ensures that enough space is allocated to each product so that it may 
meet its own demand during one complete cycle. Condition (3) ensures that we 
produce that much quantity of each product so that its demand is met till the time it is 
produced again. Condition(4) ensures that the total time taken for the complete cycle 
is numerically equal to the sum of the production time, setup time and idle time of the 
various items. 

2.1   The Proposed HDDE Algorithm 

The HDDE may be categorized into the following steps: 

Step 1 The production frequencies are obtained by solving the lower bound (LB) 
model [8] as stated below. This lower bound is tighter than that obtained by using the 
so-called independent solution in which each product is taken in isolation by 
calculating its economic production quantity. The constraint here is that enough time 
must be available for set-ups. As stated previously, µ  represents the average 
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proportion of time available for set-up. iT refers to the cycle length for the product  i . 

However, the synchronization constant that states that no two items may be produced 
simultaneously is ignored. Hence, this results in a lower total daily cost for the ELSP. 
This scheme was initially proposed by Bomberger [9]. 

LB model: 
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The objective function and the convex set in the above constraint model are convex 

in sTi ' . Therefore, the optimal points of the LB model are those points that satisfy the 

KKT conditions as follows: 
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procedure that is adopted to find the optimal iT ’s is described below. 

Algorithm for the Lower Bound 

1. The condition R=0 is checked for an optimal solution. The iT ’s are found as per 

the formula 
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optimal solution. Else, the algorithm explained in step 2 is adopted. 
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If the optimal cycle length for an item is '
iT , then the production frequency ( if ) of 
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Step 2 The production frequencies obtained in Step 1, are rounded off to the nearest 
integers.                                                    
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Step 3 Using the frequencies obtained in the previous step, an efficient production 
sequence is obtained using the DE algorithm. This algorithm is discussed later in 
details. 
Step 4 If we assume the approximation that there is no idle time (which works well 
for highly loaded facilities), we can easily solve for the set of production times using 
equation (3). This method is referred to as the Quick and Dirty heuristic [10]. 
Otherwise, we may adopt Zipkin’s [11] parametric algorithm. 

2.2   Discrete Differential Evolution 

The key components of the proposed DDE are: 

1) Representation of the Schedule (Chromosome): The proper representation of 
a solution plays an important role in any evolutionary algorithm. In our paper, a string 
of positive integers (chromosome) is used to represent a solution. The length of the 
chromosome is the sum of the production frequencies obtained at the end of step 2. 
As standard operations such as cross-over and mutation are difficult using such a 
representation, we use an additional chromosome that possesses the absolute locations 
of each of the genes in the afore-mentioned chromosome. Suppose the problem at 
hand is a 4-product ELSP and it is observed at the end of step 2 that their frequencies 
are 1,2,2,1 respectively. We may represent this situation using two chromosomes A 
and B. The representation is as follows: 

 
             Chromosome A                         (1       2       2       3       3       4)   
             Chromosome B                         (1       2       3        4      5       6) 

Here, Chromosome A represents the item numbers simply, while Chromosome B 
represents their respective locations. All the operations shall be performed using 
chromosomes of the form of Chromosome B. 
2) The objective and fitness function. The fitness value for any chromosome may 
be computed as the inverse of Equation (1), which serves as the fitness function. Our 
objective is to minimize this function (Eq. 1) and therefore maximize the fitness, i.e. 
our aim is to find the string with the maximum fitness. For any chromosome 
(representing the production schedule) the production times of the different items may 
be computed as per step 4 of the main algorithm. After this, we obtain the value of the 
fitness function using Equation No. (1). The fitness function is represented by 

)(Vfelsp   for chromosomeV . 

3) The Cross-Over operator. The Cyclic Crossover Operator [12] is of immense 
importance in the proposed HDDE because this operation is carried out at several 
points in the algorithm. This operator is unique one since it preserves characteristics 
of both the parents in the offspring. The crossover mechanism may be envisaged via 
the following example: Let us consider two flow sequences A and B, where A= (1  3  
5  6  4  2)  and  B= (5  6  1  2  3  4). Let the first offspring begin with 1(the starting 
operation of parent A). Selection of ‘1’ from A implies that ‘5’ should be selected 
from B, because we want each operation to be derived from one of the two parents.  
Hence, C= 1 _ 5 _ _ _. This process continues on till after the selection and 
subsequent insertion of an operation from one of the two parents, the operation in the 
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corresponding position in the other parent is already present in the offspring. After 
this, the remaining operations are filled in, as per their orders respective to one 
another in the other string. As can be seen in case of C, insertion of ’5’ implies that 
‘1’ should be inserted in the list, but as ‘1’ is already present in the list (i.e. the 
starting operation), the cycle stops (hence, the name Cyclic Crossover) and the 
remaining operations are filled in from B. Hence, C = (1   6   5   2   3   4). Similarly, 
considering ‘5’ as the starting operation, another offspring D can be obtained in a 
similar fashion. Hence, D= (5   3   1   6   4    2) .As our algorithm imposes a restriction 
that the result of each crossover operation results in only a single offspring, the fitter 
progeny is selected. 
4) Perturbation Operator. In our paper, we have adopted the Simple Inversion 
Mutation [13] as our perturbation operator. Two random cut-points are selected in the 
chromosome and that part of the chromosome between these two cut-points is 
inverted and placed in the original chromosome. For example, let us consider the 
chromosome represented by (ABDEGCFJIH).  Suppose the first cut-point is between 
D and E  and the second cut-point is between F  and J . 

 Then the part of the chromosome between the two cut-points is reversed and then 
placed in the original chromosome to obtain (ABDFCGEJIH).  

 

 

Fig. 1. Simple Inversion Mutation 

DE [14] is one of the recent evolutionary optimization algorithms. Like other 
algorithms of the same class, DE is population-based and serves as a stochastic global 
optimizer. In the classic DE, candidate solutions are represented by a vector of 
floating point solutions. The mutation process entails the addition of the weighted 
difference of two members of the population to another third member of the same 
population to generate a mutated solution. Then, a cross-over operation occurs so as 
to generate a trial solution that is in turn compared with the target solution using a 
selection operator, which determines which of the two shall survive for the next 
generation. It is obvious that traditional DE equations shall not hold in this regard as 
they had been developed for continuous numerical optimization. As per the novel 
DDE algorithm proposed by Pan et. al. [15], the target individual is represented by a 
chromosome of type B (permutation of numbers). The mutant individual is obtained 
by perturbing the previous generation best solution in the target population. Hence, 
we achieve the difference variations by applying a perturbation (mutation) operator on 
the best solution present in the previous generation of the target population. These 
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perturbations are achieved by applying the Simple Inversion Mutation operator on the 
best solution of the previous generation. Since these perturbations are stochastically 
different, each result is expected to be distinct from the other. To obtain the mutant, 
the following equation may be used: 
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where, 1−t
gX represents the best solution of the previous generation of the target 

population. ()F  denotes the perturbation operator(Simple Inversion Mutation). 

Hence, a random number )1,0(∈r  is generated and if it is less than
probmutation , then 

the trial solution is obtained by applying the perturbation operator on 1−t
gX else, the 

mutant is set to 1−t
gX . After this, we enter the recombination (cross-over) phase. In 

this, i
tV  is crossed over with t

iX  to obtain the trial solution t
iU if )1,0(∈v  [generated 

randomly] is greater than
probcrossover . Else, t

iU  is taken to be equal to t
iV  . The 

pseudo-code representation for the afore-said is: 











 >

=
−

otherwiseV

crossovervifVXCR
U

t
i

prob
t

i
t
it

i
..

....,( 1

                                  (8) 

Hence, if t
iU is fitter than 1−t

iX  , then t
iX  = t

iU  . Else, t
iX = 1−t

iX . Over here, ()CR  

refers to the cross-over operator. As discussed earlier, the Cyclic Cross-Over operator 
has been used in the HDDE. As it is pretty ostensible, our basic aim is to take 
advantage of the best solution obtained from the previous generation during the entire 
search process. Unlike its continuous counterpart, the differential evolution is 
achieved by the stochastic re-ordering of the previous generation’s best fit solution in 
the target population.   

Greedy Reordering Local Search (GRLS). In this paper, we propose a novel local 
search operator which restructures a chromosome iteratively on a probabilistic basis 
to search for fitter solutions. This re-ordering process goes on till the solutions which 
are obtained from reordering is better in comparison to the parent solution. The GRLS 
algorithm for a chromosome p is given in Fig. 2.   

3   Results and Discussion 

In our tests on ELSP, the proposed HDDE algorithm is coded in MATLAB and the 
experiments are executed on a Pentium P-IV 3.0 GHz PC with 512MB memory. We  
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have compared the results that our algorithm provided when tested on Mallya’s 5-
item problem [17] and the famous Bomberger’s 10-item problem (for the µ=0.01 
case) [8] with the hybrid GA proposed by Moon et. al.[10] , Khouza’s GA  [17], 
Dobson’s heuristic [18] and the Common Cycle Solution [3] approach. In each of the 
runs, the number of iterations (generations) have been taken to be 80 and the 
population size has been taken as 100, the value of 

probmutation  has been taken to be 

0.77, and the value of 
probcrossover  has been taken to be 0.96 in all the runs. The 

value of 
probmutation  has been decided empirically by taking several runs of the 

proposed algorithm. The value of probcrossover  has been intentionally kept high to 

ensure that most members of the target population undergo recombination because 
this not only facilitates increased convergence to the optimal solution but also ensures 
that diversity is improved.  The results are as follows: 

 

 

 

 

 

 

 

 

 

 
 
 

                                

Fig. 2. The pseudo-code for the GRLS 

 

FOR  nii ≤= ;1  

       Search for i in the parent chromosome; 

       ;_ igenecurrent =  

       FOR ;;1 njj ≤=  

              Search for );( jxright   )(// jxright
 is the first element to the right of j which has not 

occurred in the list. 

              Search for );( jxleft   )(// jxleft
 is the first element to the left of j which has not occurred in 

the list. 
              ])1,0[(∈Rp  and ])1,0[(∈Lp are generated randomly. 

 IF    
LR pp >  

                       )( jxright
is inserted immediately after j ; 

                      );(_ jxgenecurrent right=  

              ELSE 

                            )( jxleft is inserted immediately after j ; 

                        );(_ jxgenecurrent left=  

              END IF 
      END FOR 
END FOR 

Out of the n chromosomes generated, let 'p
 
represent the fittest one. 

IF  )()( ' pfpf ≥  

        p is replaced by p’. 
          CONTINUE GRLS 
ELSE 
            ABORT GRLS 
END IF 
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Fig. 3. The pseudo-code for the Hybrid Discrete Differential Evolution(HDDE) 

Table 1. Mallya’s 5-item problem (Average Daily Cost) 

HDDE Hybrid GA proposed by 
Moon et al.[10] 

Dobson’s Heuristic[18] 

59.87 60.91 61.83 

 

Optimal Production sequence for Mallya’s 5-item problem (as per the HDDE): 

 (4 , 5 , 3 , 1 , 3 , 2 , 3 , 4 , 3 , 1 , 2) 

Table 2. Bomberger’s 10-item Problem (Average Daily Cost) 

HDDE Hybrid GA 
proposed by 

Moon et al.[10] 

Dobson’s 
Heuristic[18] 

Common Cycle 
Solution[3] 

Khouza’s GA 

[17] 

125.28 126.12 128.43 231.44 196.14 

 
Optimal Production sequence for Bomberger’s 10-item problem (as per the HDDE):  

(8 , 9 , 6 , 8 , 3 , 8 , 4 , 2 , 4 , 8 , 9 , 3 , 8 , 10 , 5 , 10 , 8 , 4 , 3 , 2 , 8 , 5 , 9 , 8 , 5 , 8 , 4 
, 1 , 8 , 6 , 2 , 8 , 5 , 2 , 7 , 8 , 9 , 4 , 3 , 4 , 5 , 4) 

In this paper, we have compared the HDDE that we proposed, with other algorithms 
that belong to the time varying lot sizes approach in the literature. We have used the 
data for Mallya’s 5-item problem and Bomberger’s 10-item problem (for the μ =0.01 

case which represents a highly loaded facility). As it can be clearly seen, our 
algorithm clearly outperforms the hybrid GA proposed by Moon et al. by 1.7% and 
0.66%, in case of Mallya’s 5-item and Bomberger’s 10-item problem, respectively. 

procedure Hybrid Discrete Differential Evolution(HDDE) 
initialize parameters 
initialize target population 
evaluate target population 
apply local search(Greedy Reordering Operator) 
generation=0;      
/* G is defined by the user */ 
while (generation<G) 
obtain the mutant population 
obtain the trial population 
evaluate the trial population 
Select the chromosomes that may progress to the next generation 
Apply Local Search(GRLS operator) 
generation=generation+1; 
end while 
Return  the best found solution 
end  HDDE 
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4   Conclusions and Further Work 

This paper has proposed a new type of Hybrid Discrete Differential Evolution 
algorithm that employs a novel Greedy Reordering operator for local search. We have 
compared our algorithm with those proposed by Dobson, Khouza and Moon on the 
Mallya’s 5-item and Bomberger’s 10-item problems (for the µ=0.01 case) and it can 
be clearly seen that our algorithms clearly outperforms the rest. Since the ELSP is a 
very complex combinatorial optimization algorithm, most researchers have developed 
heuristics that may solve this algorithm efficiently. We have used a heuristics to 
generate the frequencies and a HDDE (coupled with a local search operator) to find 
the fittest ELSP sequence which is feasible. Hence, using this algorithm we have 
increased the speed and accuracy of the search process. Furthermore, this algorithm 
may be modified accordingly to solve the ELSP with remanufacturing model. 
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