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Abstract These notes present and discuss various aspects of the recent theory
for time-dependent difference equations giving rise to nonautonomous dynamical
systems on general metric spaces:
First, basic concepts of autonomous difference equations and discrete-time (semi-)
dynamical systems are reviewed for later contrast in the nonautonomous case. Then
time-dependent difference equations or discrete-time nonautonomous dynamical
systems are formulated as processes and as skew products. Their attractors including
invariants sets, entire solutions, as well as the concepts of pullback attraction and
pullback absorbing sets are introduced for both formulations. In particular, the
limitations of pullback attractors for processes is highlighted. Beyond that Lyapunov
functions for pullback attractors are discussed.
Two bifurcation concepts for nonautonomous difference equations will be intro-
duced, namely attractor and solution bifurcations.
Finally, random difference equations and discrete-time random dynamical systems
are investigated using random attractors and invariant measures.
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1 Introduction

The qualitative theory of dynamical systems has seen an enormous development
since the groundbreaking contributions of Poincaré and Lyapunov over a century
ago. Meanwhile it provides a successful framework to describe and understand a
large variety of phenomena in areas as diverse as physics, life science, engineering
or sociology.

Such a success benefits, in part, from the fact that the law of evolution in
various problems from the above areas is static and does not change with time (or
chance). Thus a description with autonomous evolutionary equations is appropriate.
Nevertheless, many real world problems involve time-dependent parameters and,
furthermore, one wants to understand control, modulation or other effects. In
doing so, periodically or almost periodically driven systems are special cases,
but, in principle, a theory for arbitrary time-dependence is desirable. This led to
the observation that many of the meanwhile well-established concepts, methods
and results for autonomous systems are not applicable and require an appropriate
extension—the theory of nonautonomous dynamical systems.

The goal of these notes is to give a solid foundation to describe the long-
term behaviour of nonautonomous evolutionary equations. Here we restrict to the
discrete-time case in form of nonautonomous difference equations. This has the
didactical advantage to feature many aspects of infinite-dimensional continuous-
time problems (namely nonexistence and uniqueness of backward solutions) with-
out an involved theory to guarantee the existence of a semiflow. Moreover, even in
low dimensions, discrete dynamics can be quite complex.

Beyond that a time-discrete theory is strongly motivated from applications e.g.,
in population biology. In addition, it serves as a basic tool to understand numerical
temporal discretization and is often essential for the analysis of continuous-time
problems thorough concepts like time-1- or Poincaré mappings.

The focus of our presentation is on two formulations of time-discrete non-
autonomous dynamical systems, namely processes (two-parameter semigroups) and
skew-product systems. For both we construct, discuss and compare the so-called
pullback attractor in Chaps. 4–6. A pullback attractor serves as nonautonomous
counterpart to the global attractor, i.e., the object capturing the essential dynamics of
a system. Furthermore, in Chap. 7 we sketch two approaches to a bifurcation theory
for time-dependent problems to illuminate a current field of research. The final
Chap. 8 on random dynamical systems emphasises similarities to the corresponding
nonautonomous theory and provides results on random Markov chains and the
approximation of invariant measures.

To conclude this introduction we point out that a significantly more compre-
hensive approach is given in the up-coming monograph [25] (see also the lecture
notes [38, 44]). In particular, we neglect various contributions to the discrete-
time nonautonomous theory: An appropriate spectral notion for linear difference
equations (cf. [6, 35, 46, 47]) substitutes the dynamical role of eigenvalues from the
autonomous special case. Gaps in this spectrum enable to construct nonautonomous
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invariant manifolds (so-called invariant fiber bundles, see [5, 42]). As special case
they include centre fiber bundles and therefore allow one to deduce a time-dependent
version of Pliss’s reduction principle [33, 41]. The pullback attractors constructed
in these notes are, generally, only upper semi-continuous in parameters. Thus,
for approximation purposes it might be advantageous to embed them into a more
robust dynamical object, namely a discrete counterpart to an inertial manifold
[34]. Topological linearization of nonautonomous difference equations has been
addressed in [7, 8], while a smooth linearization theory via normal forms was
developed in [50].

2 Autonomous Difference Equations

A difference equation of the form

xnC1 D f .xn/ ; (1)

where f W R
d ! R

d , is called a first-order autonomous difference equation
on the state space R

d . There is no loss of generality in the restriction to first-
order difference equations (1), since higher-order difference equations can be
reformulated as (1) by the use of an appropriate higher dimensional state space.

Successive iteration of an autonomous difference equation (1) generates the
forwards solution mapping � W ZC � R

d ! R
d defined by

xn D �.n; x0/ D f n .x0/ WD f ı f ı � � � ı f
„ ƒ‚ …

n times

.x0/;

which satisfies the initial condition �.0; x0/ D x0 and the semigroup property

�.n; �.m; x0// D f n .�.m; x0// D f n ı f m .x0/ D f nCm .x0/

D �.nCm; x0/ for all n;m 2 Z
C; x0 2 R

d :
(2)

Here, and later,

Z
C WD f0; 1; 2; 3; : : :g; Z

� WD f: : : ;�3;�2;�1; 0g

denote the nonnegative and nonpositive integers, respectively, and a discrete interval
is the intersection of a real interval with the set of integers Z.

Property (2) says that the solution mapping � forms a semigroup under com-
position; it is typically only a semigroup rather than a group since the mapping f
need not be invertible. It will be assumed here that the mapping f in the difference
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π(n, x0)
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Fig. 1 Semigroup property
(ii) of a discrete-time
semidynamical system
� W ZC �X ! X

equation (1) is at least continuous, from which it follows that the mappings �.n; �/
are continuous for every n 2 Z

C. The solution mapping � then generates a discrete-
time semidynamical system on R

d .
More generally, the state space could be a metric space .X; d/.

Definition 2.1. A mapping � W ZC �X ! X satisfying

(i) �.0; x0/ D x0 for all x0 2 X ,
(ii) �.mC n; x0/ D �.m; �.n; x0// for all m, n 2 Z

C and x0 2 X ,
(iii) The mapping x0 7! �.n; x0/ is continuous for each n 2 Z

C,

is called a (discrete-time) autonomous semidynamical system or a semigroup on the
state space X .

The semigroup property (ii) is illustrated in Fig. 1 below. Note that such an
autonomous semidynamical system � onX is equivalent to a first-order autonomous
difference equation onX with the right-hand side f defined by f .x/ WD �.1; x/ for
all x 2 X .

If Z
C in Definition 2.1 is replaced by Z, then � is called a (discrete-time)

autonomous dynamical system or group on the state space X . See [10, 49]
Autonomous dynamical systems need not be generated by autonomous differ-

ence equations as above.

Example 2.2. Consider the space X D f1; � � � ; rgZ of bi-infinite sequences x D
fkngn2Z with kn 2 f1; � � � ; rg w.r.t. the group of left shift operators �n WD �n for
n 2 Z, where the mapping � W X ! X is defined by �.fkngn2Z/ D fknC1gn2Z. This
forms an autonomous dynamical system on X , which is a compact metric space
with the metric

d
�

x; x0� D
X

n2Z
.r C 1/�jnj ˇ

ˇkn � k0
n

ˇ

ˇ :

The proximity and convergence of sets is given in terms of the Hausdorff
separation distX.A;B/ of nonempty compact subsets A;B � X as

distX.A;B/ WD max
a2A dist.a; B/ D max

a2A min
b2B d.a; b/

and the Hausdorff metric HX.A;B/ D max fdistX.A;B/; distX.B;A/g on the
space H .X/ of nonempty compact subsets of X . In absence of possible confusion
we simply write dist or H for the Hausdorff separation resp. metric.
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2.1 Autonomous Semidynamical Systems

The dynamical behaviour of a semidynamical system � on a state space X is
characterised by its invariant sets and what happens in neighbourhoods of such sets.
A nonempty subset A of X is called invariant under � , or �-invariant, if

�.n;A/ D A for all n 2 Z
C (3)

or, equivalently, if f .A/ D �.1;A/ D A.
Simple examples are equilibria (steady state solutions) and periodic solutions;

in the first case A consists of a single point, which must thus be a fixed point of
the mapping f , whereas for a solution with period r it consists of a finite set of r
distinct points fp1; : : : ; prg which are fixed point of the composite mapping f r (but
not for an f j with j smaller than r).

Invariant sets can also be much more complicated, for example fractal sets. Many
are the !-limit sets of some trajectory, i.e., defined by

!C.x0/ D ˚

y 2 X W 9nj ! 1; �.nj ; x0/ ! y
�

;

which is nonempty, compact and �-invariant when the forwards trajectory
f�.n; x0/I n 2 Z

Cg is a precompact subset of X and the metric space .X; d/
is complete. However, !.x0/ needs not to be connected.

The asymptotic behaviour of a semidynamical system is characterised by its
!-limit sets, in general, and by its attractors and their associated absorbing sets,
in particular. An attractor is a nonempty �-invariant compact set A� that attracts
all trajectories starting in some neighbourhood U of A�, that is with !C.x0/ � A�
for all x0 2 U or, equivalently, with

lim
n!1 dist

�

�.n; x0/; A
�� D 0 for all x0 2 U :

A� is called a maximal or global attractor when U is the entire state spaceX . Note
that a global attractor, if it exists, must be unique. For later comparison the formal
definition follow.

Definition 2.3. A nonempty compact subset A� of X is a global attractor of the
semidynamical system � on X if it is �-invariant and attracts bounded sets, i.e.,

lim
n!1 dist

�

� .n;D/ ;A�� D 0 for any bounded subset D � X: (4)

As simple example consider the autonomous difference equation (1) on X D R

with the map f .x/ WD maxf0; 4x.1� x/g for x 2 R. Then A� D Œ0; 1� is invariant
and f .x0/ 2 A� for all x0 2 R, so A� is the maximal attractor. The dynamics are
very simple outside of the attractor, but chaotic within it.

The existence and approximate location of a global attractor follow from that of
more easily found absorbing sets, which typically have a convenient simpler shape
such as a ball or ellipsoid.
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Definition 2.4. A nonempty compact subset B of X is called an absorbing set of
a semidynamical system � on X if for every bounded subset D of X there exists a
ND 2 Z

C such that �.n;D/ � B for all n � ND in Z
C.

Absorbing sets are often called attracting sets when they are also positively
invariant in the sense that �.n;B/ � B holds for all n 2 Z

C, i.e., if one has the
inclusion f .B/ D �.1; B/ � B . Attractors differ from attracting sets in that
they consist entirely of limit points of the system and are thus strictly invariant in
the sense of (3).

Theorem 2.5 (Existence of global attractors). Suppose that a semidynamical
system � on X has an absorbing set B . Then � has a unique global attractor A� �
B given by

A� D
\

m�0

[

n�m
�.n;B/; (5)

or simply by A� D T

m�0 �.n; B/ when B is positively invariant.

For a proof we refer to the more general situation of Theorem 4.11.
Similar results hold if the absorbing set is assumed to be only closed and bounded

and the mapping � to be compact or asymptotically compact.
For later comparison note that, in view of the invariance of A�, the attraction (4)

can be written equivalently as the forwards convergence

dist
�

� .n;D/ ; �
�

n;A��� ! 0 as n ! 1: (6)

A global attractor is, in fact, uniformly Lyapunov asymptotically stable. The
asymptotic stability of attractors and that of attracting sets in general can be
characterised by Lyapunov functions. Such Lyapunov functions can be used to
establish the existence of an absorbing set and hence that of a nearby global attractor
in a perturbed system.

2.2 Lyapunov Functions for Autonomous Attractors

Consider an autonomous semidynamical system � on a compact metric space
.X; d/ which is generated by an autonomous difference equation

xnC1 D f .xn/ ; (7)

where f W X ! X is globally Lipschitz continuous with Lipschitz constant L > 0,
i.e.,

d.f .x/; f .y// � Ld.x; y/; for all x; y 2 X :
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Definition 2.6. A nonempty compact subset A ¨ X is called globally uniformly
asymptotically stable if it is both

(i) Lyapunov stable, i.e., for all � > 0, there exists a ı D ı.�/ > 0 with

dist.x; A/ < ı ) dist.f n.x/; A/ < � for all n 2 Z
C ; (8)

(ii) Globally uniformly attracting, i.e., for all � > 0, there exists an integer N D
N.�/ > 1 such that

dist.f n.x/; A/ < � for all x 2 X; n � N : (9)

Note that such a set A is the global attractor for the semidynamical system
generated by an autonomous difference equation (7). In particular, it is invariant,
i.e., f .A/DA.

Global uniform asymptotical stability is characterized in terms of a Lyapunov
function by the following necessary and sufficient conditions. The following
theorem is taken from Diamond and Kloeden [13]. See also [53].

Theorem 2.7. Let f W X ! X be globally Lipschitz continuous, and let A be a
nonempty compact subset of X . Then A is globally uniformly asymptotically stable
w.r.t. the dynamical system generated by (7) if and only if there exist

(i) A Lyapunov function V W X ! R
C,

(ii) Monotone increasing continuous functions ˛, ˇ W R
C ! R

C with ˛.0/ D
ˇ.0/ D 0 and 0 < ˛.r/ < ˇ.r/ for all r > 0, and

(iii) ConstantsK > 0, 0 � q < 1 such that for all x; y 2 X , it holds that

1. jV.x/ � V.y/j � Kd.x; y/,
2. ˛.dist.x; A// � V.x/ � ˇ.dist.x; A// and
3. V.f .x// � qV.x/.

Proof. Sufficiency. Let V be a Lyapunov function as described in the theorem.
Choose � > 0 arbitrarily and define ı WD ˇ�1.˛.�/=q/, which means that ˛.�/ D
qˇ.ı/. This implies that

˛.dist.f n.x/; A// � V.f n.x// � qnV.x/ � qV.x/ � qˇ.dist.x; A// ;

so that

dist.f n.x/; A/ � ˛�1 .qˇ.dist.x; A/// � ˛�1.˛.�// � � for all n 2 N;

when dist.x; A/ < ı. Thus, A is Lyapunov stable. Now define

N WD max

�

1; 1C
�

ln .˛.�/=V0/

ln q

��

;
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where V0 WD maxx2X V.x/ is finite by continuity of V and compactness of X . For
n � N , one has qn � qN , since 0 � q < 1. Since, from above,

˛.dist.f n.x/; A// � qnV.x/ � qnV0 � qNV0 � ˛.�/ for all n � N;

one has dist.f n.x/; A/ < � for n � N , x 2 X . This means that A is globally
uniformly attracting and hence globally uniformly asymptotically stable.
Necessity. This will just be sketched here; the details can be found in [13]. Let A be
globally uniformly asymptotically stable, i.e., for given � > 0, there exists ı D ı.�/

such that (8) holds, and for given � > 0, there exists N D N.�/ such that (9) holds.
Define Gk W RC

0 ! R
C
0 for k 2 N by

Gk.r/ WD
8

<

:

r � 1
k

W r � 1
k
;

0 W 0 � r < 1
k
;

for all r � 0 :

Then
jGk.r/ �Gk.s/j � jr � sj for all r; s � 0 :

Now choose q so that 0 < q < minf1;Lg, where L is the Lipschitz constant of the
mapping f , and define

gk WD
	 q

L


N.1=k/

for all k 2 N

and
Vk.x/ D gk sup

n2ZC

q�nGk.dist.f n.x/; A// for all k 2 N :

Then

(i) Vk.x/ D 0 if and only if dist.x; A/ < ı.1=k/, due to Lyapunov stability.
(ii) Since jdist.x; A/ � dist.y; A/j � d.x; y/ and

d.f n.x/; f n.y// � Ld
�

f n�1.x/; f n�1.y/
� � � � � � Lnd.x; y/ ;

it follows that

jVk.x/ � Vk.y/j
� gk sup

n�0
q�n jGk.dist.f n.x/; A// �Gk.dist.f n.y/; A//j

� gk sup
0�n�N.1=k/

q�n jGk.dist.f n.x/; A// �Gk.dist.f n.y/; A//j

� gk sup
0�n�N.1=k/

q�nd .f n.x/; f n.y//

� gk sup
0�n�N.1=k/

q�nLnd.x; y/ D d.x; y/ :
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(iii) From above, it holds that Vk.x/ � Vk.y/Cd.x; y/. For all y 2 A, one obtains
that Vk.y/ D 0 and Vk.x/ � d.x; y/, and since A is compact, the minimum
over all y 2 A is attained and Vk.x/ � dist.x; A/.

(iv) Vk.f .x// � qVk.x/, since

Vk.f .x// � gk sup
n�0

q�nGk.dist.f n.f .x//; A//

D qgk sup
n�0

q�n�1Gk.dist.f nC1.x/; A//

D qgk sup
n�1

q�nGk.dist.f n.x/; A//

� qgk sup
n�0

q�nGk.dist.f n.x/; A// D qVk.x/

Finally, define

V.x/ D
1

X

kD1
2�kVk.x/:

The main difficulty is to show the existence of the lower bound function ˛. This is
systematically built up via the component functions Vk , which vanish successively
on a closed 1

k
-neighbourhood of the set A. ut

Remarks. For a more comprehensive introduction to discrete dynamical systems
and their attractors we refer to e.g. [32, 51]. In particular, for the case of infinite-
dimensional state spaces see [14] and [48, Chap. 2], where also connectedness issues
of attractors or compactness properties for the semigroup � are addressed.

3 Nonautonomous Difference Equations

Difference equations on R
d of the form

xnC1 D fn .xn/ ; (�)

in which continuous mappings fn W Rd ! R
d on the right-hand side are allowed to

vary with the time n, are called nonautonomous difference equations.
Such nonautonomous difference equations arise quite naturally in many different

ways. The mappings fn in (�) may of course vary completely arbitrarily, but often
there is some relationship between them or some regularity in the way in which they
are given.

For example, the mappings may all be the same as in the very special autonomous
subcase (1) or they may vary periodically within, or be chosen irregularly from, a
finite family fg1; � � � ; gr g, in which case (�) can be rewritten as

xnC1 D gkn .xn/ ; (10)

with the kn 2 f1; : : : ; rg and fn D gkn .
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As another example, the difference equation (�) may represent a variable time-
step discretization method for a differential equation Px D f .x/, the simplest of
which being the Euler method with a variable time-step hn > 0,

xnC1 D xn C hnf .xn/ ; (11)

in which case fn.x/ D x C hnf .x/. More generally, a difference equation may
involve a parameter � 2 � which varies in time by choice or randomly, giving rise
to the nonautonomous difference equation

xnC1 D g.xn; �n/; (12)

so fn.x/ D g.x; �n/ here for the prescribed choice of �n 2 �.
The nonautonomous difference equation (�) generates a solution mapping 	 W

Z
2� � R

d ! R
d , where

Z
2� WD f.n; n0/ 2 Z

2 W n � n0g;

through iteration, i.e.,

	.n0; n0; x0/ WD x0; 	.n; n0; x0/ WD fn�1 ı � � � ı fn0.x0/ for all n > n0 ;

n0 2 Z, and each x0 2 R
d . This solution mapping satisfies the two-parameter

semigroup property

	.m; n0; x0/ D 	.m; n; 	.n; n0; x0//

for all .n; n0/ 2 Z
2�, .m; n/ 2 Z

2� and x0 2 R
d . In this sense, 	 is called general

solution of (�). In particular, as composition of continuous functions the mapping
x0 7! 	.n; n0; x0/ is continuous for .n; n0/ 2 Z

2�.
The general nonautonomous case differs crucially from the autonomous in

that the starting time n0 is just as important as the time that has elapsed since
starting, i.e., n � n0, and hence many of the concepts that have been developed
and extensively investigated for autonomous dynamical systems in general and
autonomous difference equations in particular are either too restrictive or no longer
valid or meaningful.

3.1 Processes

Solution mappings of nonautonomous difference equations (�) are one of the main
motivations for the process formulation of an abstract nonautonomous dynamical
system on a metric state space .X; d/ and time set Z.
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Z

x0

(n1,n0, x0)
(n2,n1, (n1,n0, x0))

X

(n2,n0, ·)

n0 n1 n2

f

f
f f

Fig. 2 Property (ii) of a discrete-time process 	 W Z2� �X ! X

The following definition originates from Dafermos [12] and Hale [14].

Definition 3.1. A (discrete-time) process on a state spaceX is a mapping 	 W Z2� �
X ! X , which satisfies the initial value, two-parameter evolution and continuity
properties:

(i) 	.n0; n0; x0/ D x0 for all n0 2 Z and x0 2 X ,
(ii) 	.n2; n0; x0/ D 	 .n2; n1; 	.n1; n0; x0// for all n0 � n1 � n2 in Z and x0 2 X ,

(iii) the mapping x0 7! 	.n; n0; x0/ of X into itself is continuous for all n0 � n

in Z.

The evolution property (ii) is illustrated in Fig. 2. Given a process 	 on X there
is an associated nonautonomous difference equation like (�) on X with mappings
defined by fn.x/ WD 	.nC 1; n; x/ for all x 2 X and n 2 Z.

A process is often called a two-parameter semigroup on X in contrast with the
one-parameter semigroup of an autonomous semidynamical system since it depends
on both the initial time n0 and the actual time n rather than just the elapsed time
n � n0. This abstract formalism of a nonautonomous dynamical system is a natural
and intuitive generalization of autonomous systems to nonautonomous systems.

3.2 Skew-Product Systems

The skew-product formalism of a nonautonomous dynamical system is somewhat
less intuitive than the process formalism. It represents the nonautonomous system
as an autonomous system on the cartesian product of the original state space and
some other space such as a function or sequence space on which an autonomous
dynamical system called the driving system acts. This driving system is the source
of nonautonomity in the dynamics on the original state space.

Let .P; dP / be a metric space with metric dP and let � D f�n W n 2 Zg be a
group of continuous mappings from P onto itself. Essentially, � is an autonomous
dynamical system on P that models the driving mechanism for the change in
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the mappings fn on the right-hand side of a nonautonomous difference equation
like (�), that will now be written as

xnC1 D f .�n.p/; xn/ (13)

for n 2 Z
C, where f W P � R

d ! R
d is continuous. The corresponding solution

mapping ' W ZC � P � R
d ! R

d is now defined by

'.0; p; x/ WD x; '.n; p; x/ WD f .�n�1.p/; �/ ı � � � ı f .p; x/ for all n 2 N

and p 2 P , x 2 R
d . The mapping ' satisfies the cocycle property w.r.t. the driving

system � on P , i.e.,

'.0; p; x/ WD x; '.mC n; p; x/ WD ' .m; �n.p/; ' .n; p; x// (14)

for all m, n 2 Z
C, p 2 P and x 2 R

d .

3.2.1 Definition

Consider now a state space X instead of R
d , where .X; d/ is a metric space

with metric d . The above considerations lead to the following definition of a
skew-product system, which is an alternative abstract formulation of a discrete
nonautonomous dynamical system on the state space X .

Definition 3.2. A (discrete-time) skew-product system .�; 	/ is defined in terms
of a cocycle mapping ' on a state space X , driven by an autonomous dynamical
system � acting on a base space P .

Specifically, the driving system � on P is a group of homeomorphisms
f�n W n 2 Zg under composition on P with the properties

(i) �0.p/ D p for all p 2 P ,
(ii) �mCn.p/ D �m.�n.p// for all m, n 2 Z and p 2 P ,

(iii) The mapping p 7! �n.p/ is continuous for each n 2 Z,

and the cocycle mapping 	 W ZC � P �X ! X satisfies

(I) '.0; p; x/ D x for all p 2 P and x 2 X ,
(II) '.mC n; p; x/ D '.m; �n.p/; '.n; p; x// for all m; n 2 Z

C, p 2 P , x 2 X ,
(III) The mapping .p; x/ 7! 	.n; p; x/ is continuous for each n 2 Z.

For an illustration we refer to the subsequent Fig. 3. A difference equation of the
form (13) can be obtained from a skew-product system by defining f .p; x/ WD
'.1; p; x/ for all p 2 P and x 2 X .

A process 	 admits a formulation as a skew-product system with P D Z, the
time shift �n.n0/ WD nC n0 and the cocycle mapping

'.n; n0; x/ WD 	.nC n0; n0; x/ for all n 2 Z
C; x 2 X:
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P

p

n p

n+m p

{p}×X

{ n p}×X

{ n+m p}×X

(n, p, ·)
(m, n+m p, ·)

(n+m, p, ·)

j
j

j

q

q

q

q

q

Fig. 3 A discrete-time
skew-product system .�; '/

over the base space P

The real advantage of the somewhat more complicated skew-product system
formulation of nonautonomous dynamical systems occurs when P is compact. This
never happens for a process reformulated as a skew-product system as above since
the parameter space P then is Z, which is only locally compact and not compact.

3.2.2 Examples

The examples above can be reformulated as skew-product systems with appropriate
choices of parameter space P and the driving system � .

Example 3.3. A nonautonomous difference equation (�) with continuous right-
hand sides fn W R

d ! R
d generates a cocycle mapping ' over the parameter

set P D Z w.r.t. the group of left shift mappings �j WD �j for j 2 Z, where
�.n/ WD nC 1 for n 2 Z. Here ' is defined by

'.0; n; x/ WD x and '.j; n; x/ WD fnCj�1 ı � � � ı fn.x/ for all j 2 N

and n 2 Z, x 2 R
d . The mappings '.j; n; �/ W Rd ! R

d are all continuous.

Example 3.4. Let f W Rd ! R
d be a continuous mapping used in an autonomous

difference equation (1). The solution mapping ' defined by

'.0; x/ WD x and '.j; x/ D f j .x/ WD f ı � � � ı f
„ ƒ‚ …

j times

.x/ for all j 2 N

and x 2 R
d generates a semigroup onRd . It can be considered as a cocycle mapping

w.r.t. a singleton parameter set P D fp0g and the singleton group consisting only
of identity mapping � WD idP on P . Since the driving system just sits at p0, the
dependence on the parameter in ' can be suppressed.
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While the integers Z appears to be the natural choice for the parameter set in
Example 3.3 and the choice is trivial in the autonomous case of Example 3.4, in
the remaining examples the use of sequence spaces is more advantageous because
such spaces are often compact.

Example 3.5. The nonautonomous difference equation (10) with continuous map-
pings gk W R

d ! R
d for k 2 f1; � � � ; rg generates a cocycle mapping over

the parameter set P D f1; � � � ; rgZ of bi-infinite sequences p D fkngn2Z with
kn 2 f1; � � � ; rg w.r.t. the group of left shift operators �n WD �n for n 2 Z, where
�.fkngn2Z/ D fknC1gn2Z. The mapping ' is defined by

'.0; p; x/ WD x and '.j; p; x/ WD gkj�1 ı � � � ı gk0.x/ for all j 2 N

and x 2 R
d , where p D fkngn2Z, is a cocycle mapping. Note that the parameter

space f1; � � � ; rgZ here is a compact metric space with the metric

d
�

p; p0� D
X

n2Z
.r C 1/�jnj ˇ

ˇkn � k0
n

ˇ

ˇ :

In addition, �n W P ! P and '.j; �; �/ W P � R
d ! R

d are all continuous.

We omit a reformulation of the numerical scheme (11) as it is similar to the next
example, but with a bi-infinite sequence p D fhngn2Z of stepsizes satisfying a
constraint such as 1

2
ı � hn � ı for n 2 Z with appropriate ı > 0.

Example 3.6. As an example of a parametrically perturbed difference equation (12),
consider the mapping g W R1 � �

1
2
; 1

� 7! R
1 defined by

g.x; �/ D jxj C �2

1C �
;

which is continuous in x 2 R
1 and � 2 �

1
2
; 1

�

. Let P D �

1
2
; 1

�Z

be the space of bi-
infinite sequences p D f�ngn2Z taking values in

�

1
2
; 1

�

, which is a compact metric
space with the metric

d
�

p; p0� D
X

n2Z
2�jnj ˇ

ˇ�n � �0
n

ˇ

ˇ ;

and let f�n; n 2 Zg be the group generated by the left shift operator � on this
sequence space (analogously to Example 3.5). The mapping ' is defined by

'.0; p; x/ WD x and '.j; p; x/ WD g.qj�1; �/ ı � � � ı g.q0; x/ for all j 2 N

and x 2 R
1, where p D f�ngn2Z, is a cocycle mapping on R

1 with parameter

space
�

1
2
; 1

�Z

and the above shift operators �n. The mappings �n W P ! P and
'.j; �; �/ W P � R

d ! R
d are all continuous here.
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3.2.3 Skew-Product Systems as Autonomous Semidynamical Systems

A skew-product system .�; '/ can be reformulated as autonomous semidynamical
system on the extended state space X WD P �X . Define a mapping � W ZC � X !
X by

� .n; .p; x0// WD �

�n.p/; 	.n; p; x0/
�

for all n 2 Z
C; .p; x0/ 2 X :

Note that the variable n in � .n; .p; x0// is the time that has elapsed since starting
at state .p; x0/.

Theorem 3.7. � is an autonomous semidynamical system on X.

Proof. It is obvious that �.n; �/ is continuous in its variables .p; x0/ for every n 2
Z

C and satisfies the initial condition

�.0; .p; x0// D .p; '.0; p; x0// D .p; x0/ for all p 2 P; x0 2 X:

It also satisfies the one-parameter semigroup property

�.mC n; .p; x0// D � .m; �.n; .p; x0/// for all m; n 2 Z
C; p 2 P; x0 2 X

since, by the group property of the driving system and the cocycle property of the
skew-product,

�.mC n; .p; x0// D .�mCn.p/; '.mC n; p; x0//

D �

�m .�n.p// ; '.m; �n.p/; '.n; p; x0//
�

D �
�

m; .�n.p/; '.n; p; x0//
� D �

�

m;�.n; .p; x0//
�

:

ut
As seen in Example 3.3, a process 	 on the state space X is also a skew-

product on X with the shift operator � on P WD Z and thus generates an
autonomous semidynamical system � on the extended state space X WD Z � X .
This semidynamical system has some unusual properties. In particular, � has no
nonempty !-limit sets and, indeed, no compact subset of X can be �-invariant. This
is a direct consequence of the fact that the initial time is a component of the extended
state space.

Remarks. An early reference to the description of nonautonomous discrete dynam-
ics via processes or skew-product flows, is given in [32, pp. 45–56, Chap. 4].
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4 Nonautonomous Invariant Sets and Attractors of Processes

Invariant sets and attractors are important regions of state space that characterize the
long-term behaviour of a dynamical system.

Let 	 W Z2��X !X be a process on a metric state space .X; d/. This generates a
solution xn D 	.n; n0; x0/ to (�) that depends on the starting time n0 as well as the
current time n and not just on the time n�n0 that has elapsed since starting as in an
autonomous system. This has some profound consequences in terms of definitions
and the interpretation of dynamical behaviour. As pointed out above, many concepts
and results from the autonomous case are no longer valid or are too restrictive and
exclude many interesting types of possible behaviour.

For example, it is too great a restriction of generality to consider a single subset
A of X to be invariant under 	 in the sense that

	.n; n0; A/ D A for all n � n0; n0 2 Z;

which is equivalent to fn.A/ D A for every n 2 Z, where the fn are mappings in the
corresponding nonautonomous difference equation (�). Then, in general, neither the
trajectory f
�

n W n 2 Zg of a solution 
� that exists on all of Z nor a nonautonomous
!-limit set defined by

!C .n0; x0/ D ˚

y 2 X W 9nj ! 1; 	
�

nj ; n0; x0
� ! y

�

;

will be invariant in such a sense.
Moreover, such nonautonomous!-limit sets exist in the infinite future in absolute

time rather than in current time like autonomous!-limit sets, so it is not so clear how
useful or even meaningful dynamically they are. Hence, the appropriate formulation
of asymptotic behaviour of a nonautonomous dynamical system needs some careful
consideration. Lyapunov asymptotical stability of a solution of a nonautonomous
system provides a clue. This requires the definition of an entire solution.

Definition 4.1. An entire solution of a process 	 on X is a sequence f
k W k 2 Zg
in X such that

	.n; n0; 
n0 / D 
n for all n � n0 and all n0 2 Z;

or equivalently, 
nC1 D fn.
n/ for all n 2 Z in terms of the nonautonomous
difference equation (�) corresponding to the process 	.

Definition 4.2. An entire solution 
� of a process 	 on X is said to be (globally)
Lyapunov asymptotically stable if it is Lyapunov stable, i.e., for every � > 0 and
n0 2 Z there exists a ı D ı.�; n0/ > 0 such that

d
�

	.n; n0; x0/; 

�
n

�

< � for all n � n0 whenever d
�

x0; 

�
n0

�

< ı;
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and attracting in the sense that

d
�

	 .n; n0; x0/ ; 

�
n

� ! 0 as n ! 1 (15)

for all x0 2 X and n0 2 Z.

Note, in particular, that the limiting “target” 
�
n exists for all time and is, in

general, also changing in time as the limit is taken.

4.1 Nonautonomous Invariant Sets

Let 
� be an entire solution of a process 	 on a metric space .X; d/ and consider
the family A D fAn W n 2 Zg of singleton subsets An WD f
�

ng of X . Then by the
definition of an entire solution it follows that

	 .n; n0; An0/ D An for all n � n0; n0 2 Z :

This suggests the following generalization of invariance for nonautonomous
dynamical systems.

Definition 4.3. A family A D fAn W n 2 Zg of nonempty subsets ofX is invariant
under a process 	 on X , or 	-invariant, if

	 .n; n0; An0/ D An for all n � n0 and all n0 2 Z;

or, equivalently, if fn.An/ D AnC1 for all n 2 Z in terms of the corresponding
nonautonomous difference equation (�).

A 	-invariant family consists of entire solutions. This is essentially due to have
in fact a process is onto between the component subsets. The backward solutions,
however, need not to be uniquely determined, since the mappings fn are usually not
assumed to be one-to-one.

Proposition 4.4 (Characterization of invariant sets). A family A D fAn W n 2
Zg is 	-invariant if and only if for every pair n0 2 Z and x0 2 An0 there exists an
entire solution 
 such that 
n0 D x0 and 
n 2 An for all n 2 Z.

Moreover, the entire solution 
 is uniquely determined provided the mapping
fn.�/ WD 	.nC 1; n; �/ W X ! X is one-to-one for every n 2 Z.

Proof. Sufficiency. Let A be 	-invariant and pick an arbitrary x0 2 An0 . For n
� n0 define the sequence 
n WD 	.n; n0; x0/. Then the 	-invariance of A yields

n 2 An. On the other hand, An0 D 	.n0; n; An/ for n � n0, so there exists a
sequence xn 2 An with x0 D 	.n0; n; xn/ and xn D 	.n; n � 1; xn�1/ for all n <
n0. Hence define 
n WD xn for n < n0 and 
 becomes an entire solution with the
desired properties. If the mappings fn are all one-to-one, then the sequence fxng is
uniquely determined.
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Z

X

n0

χ∗

(·,n0,x0)f

Fig. 4 Forward convergence
n ! 1

Necessity. Suppose for an arbitrary n0 2 Z and x0 2 An0 that there is an entire
solution 
 with 
n0 D x0 and 
n 2 An for all n 2 Z. Hence 	.n; n0; x0/ D
	.n; n0; 
n0 / D 
n 2 An for n � n0. From this it follows that fn.An/ � AnC1. The
remaining inclusion fn.An/ 	 AnC1 follows from the fact that x0 D 	.n0; n; 
n/ 2
	.n0; n; An/ for n � n0. ut

4.2 Forwards and Pullback Convergence

The convergence

d
�

	 .n; n0; x0/ ; 

�
n

� ! 0 as n ! 1 .n0 fixed/

in the attraction property (15) in the definition of a Lyapunov asymptotically stable
entire solution 
� of a process 	 will be called forwards convergence (cf. Fig. 4)
to distinguish it from another kind of convergence that is useful for nonautonomous
systems.

Forwards convergence does not, however, provide convergence to a particular
point
�

n� for a fixed n� 2 Z, which is important in many practical situations because
the actual solution 
� may not be known and thus needs to be determined. To obtain
such convergence one has to start progressively earlier. This leads to the concept of
pullback convergence, defined by

d
�

	 .n; n0; x0/ ; 

�
n

� ! 0 as n0 ! �1 .n fixed/

and illustrated in Fig. 5.
In terms of the elapsed time j , forwards convergence can be rewritten as

d
	

	 .n0 C j; n0; x0/ ; 

�
n0Cj




! 0 as j ! 1 (16)

for all x0 2 X and n0 2 Z, while pullback convergence becomes

d
�

	 .n; n � j; x0/ ; 

�
n

� ! 0 as j ! 1
for all x0 2 X and n 2 Z.
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Z

X

n0n0n0n0 n

∗x x0

Fig. 5 Pullback convergence
n0 ! �1

Example 4.5. The nonautonomous difference equation xnC1 D 1
2
xn C gn on R has

the solution mapping 	.j C n0; n0; x0/ D 2�j x0 C Pj

kD0 2�jCkgn0Cn, for which
pullback convergence gives

	.n0; n0 � j; x0/ D 2�j x0 C
j

X

kD0
2�kgn0�k !

1
X

kD0
2�kgn0�k as j ! 1;

provided the infinite series here converges. The limiting solution 
� is given
by 
�

n0
WD P1

kD0 2�kgn0�k for each n0 2 Z. It is an entire solution of the
nonautonomous difference equation.

Pullback convergence makes use of information about the nonautonomous
dynamical system from the past, while forwards convergence uses information about
the future.

In autonomous dynamical systems, forwards and pullback convergence are
equivalent since the elapsed time n � n0 ! 1 if either n ! 1 with n0
fixed or n0 ! �1 with n fixed. In nonautonomous dynamical systems pullback
convergence and forwards convergence do not necessarily imply each other.

Example 4.6. Consider the process 	 on R generated fn D g1 for n � 0 and fn D
g2 for n � 1 where the mappings g1, g2 W R ! R are given by g1.x/ WD 1

2
x and

g2.x/ WD maxf0; 4x.1 � x/g for all x 2 R. Then 	 is pullback convergent to the
entire solution 
� defined by 
�

n 
 0 for n 2 Z, but is not forwards convergent to

�. In particular, 
� is not Lyapunov stable.

4.3 Forwards and Pullback Attractors

Forwards and pullback convergence can be used to define two distinct types of
nonautonomous attractors for a process 	 on a state space X . Instead of a family
A D fAn W n 2 Zg of singleton subsets An WD f
�

ng for an entire solution 
� of the
process consider a 	-invariant family of A D fAn W n 2 Zg of nonempty subsets
An of X .
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In this context forwards convergence generalizes to

dist
�

	.n0 C j; n0; x0/; An0Cj
� ! 0 as j ! 1 .n0 fixed/ (17)

and pullback convergence to

dist .	.n; n � j; x0/; An/ ! 0 as j ! 1 .n fixed/: (18)

More generally, A is said to forwards (resp. pullback) attract bounded subsets of X
if x0 is replaced by an arbitrary bounded subset D of X in (17) (resp. (18)).

Definition 4.7. A 	–invariant family A D fAn W n 2 Zg of nonempty compact
subsets of X is called a forward attractor if it forward attracts bounded subsets of
X and a pullback attractor if it pullback attracts bounded subsets of X .

As a 	-invariant family A of nonempty compact subsets of X , by Proposi-
tion 4.4, both pullback and forwards attractors consist of entire solutions.

In fact when the component subsets of a pullback attractor are uniformly
bounded, i.e., if there exists a bounded subset B of X such that An � B for all
n 2 Z, then pullback attractors are characterized by the bounded entire solutions of
the process.

Proposition 4.8 (Dynamical characterization of pullback attractors). A uni-
formly bounded pullback attractor A D fAn W n 2 Zg admits the dynamical
characterization: for each n0 2 Z

x0 2 An0 , there exists a bounded entire solution 
 with 
n0 D x0:

Such a pullback attractor is therefore uniquely determined.

Proof. Sufficiency. Pick n0 2 Z and x0 2 An0 arbitrarily. Then, due to the
	-invariance of the pullback attractor A , by Proposition 4.4 there exists an entire
solution 
 with 
n0 D x0 and 
n 2 An for each n 2 Z. Moreover, 
 is bounded
since the component sets of the pullback attractor are uniformly bounded.
Necessity. If there exists a bounded entire solution 
 of the process 	, then the set
of points D
 WD f
n W n 2 Zg is bounded in X . Since A pullback attracts bounded
subsets of X , for each n 2 Z,

0 � dist .
n; An/ � lim
j!1 dist

�

	.n; n � j;D
/; An
� D 0;

so 
n 2 An. ut

4.4 Existence of Pullback Attractors

Absorbing sets can also be defined for pullback attraction. Wider applicability can
be attained if they are also allowed to depend on time.
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Definition 4.9. A family B D fBn W n 2 Zg of nonempty compact subsets of X
is called a pullback absorbing family for a process 	 on X if for each n 2 Z and
every bounded subset D of X there exists an Nn;D 2 Z

C such that

	 .n; n � j;D/ � Bn for all j � Nn;D; n 2 Z:

The existence of a pullback attractor follows from that of a pullback absorbing
family in the following generalization of Theorem 2.5 for autonomous global
attractors. The proof is simpler if the pullback absorbing family is assumed to be
	-positive invariant.

Definition 4.10. A family B D fBn W n 2 Zg of nonempty compact subsets of X
is said to be 	-positive invariant if

	 .n; n0; Bn0/ � Bn for all n � n0:

Theorem 4.11 (Existence of pullback attractors). Suppose that a process 	 on a
complete metric space .X; d/ has a 	-positive invariant pullback absorbing family
B D fBn W n 2 Zg. Then there exists a global pullback attractor A D fAn W n 2
Zg with component sets determined by

An D
\

j�0
	

�

n; n � j; Bn�j
�

for all n 2 Z: (19)

Moreover, if A is uniformly bounded then it is unique.

Proof. Let B be a pullback absorbing family and let An be defined as in (19).
Clearly An � Bn for each n 2 Z.

(i) First, it will be shown for any n 2 Z that

lim
j!1 dist

�

	.n; n� j; Bn�j /; An
� D 0 : (20)

Assume to the contrary that there exist sequences xjk 2 	�

n; n� jk; Bn�jk
� �

Bn and jk ! 1 such that dist.xjk ; An/ > � for all k 2 N. The set fxjk W
k 2 Ng � Bn is relatively compact, so there is a point x0 2 Bn and an index
subsequence k0 ! 1 such that xjk0 ! x0. Now

xjk0 2 	 �

n; n � jk0 ; Bn�jk0

� � 	 .n; n � k;Bn�k/

for all kj 0 � k and each k � 0 . This implies that

x0 2 	 .n; n � k;Bn�k/ for all k � 0 :

Hence, x0 2 An, which is a contradiction. This proves the assertion (20).
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(ii) By (20), for every � > 0, n 2 Z, there exists an N D N�;n � 0 such that

dist .	.n; n �N;Bn�N /; An/ < � :

Let D be a bounded subset of X . The fact that B is a pullback absorbing
family implies that 	 .n; n � j;D/ � Bn for all sufficiently large j . Hence, by
the cocycle property,

	 .n; n �N � j;D/ D 	 .n; n �N; 	.n�N; n�N � j;D//

� 	 .n; n �N;Bn�N / :

(iii) The 	-invariance of the family A will now be shown. By (19), the set
Fm.n/ WD 	 .n; n �m;Bn�m/ is contained in Bn for every m � 0, and by
definition, An�j D T

m�0 Fm .n � j /. First, it will be shown that

	

0

@n; n � j;
\

m�0
Fm.n� j /

1

A D
\

m�0
	 .n; n � j; Fm.n � j // : (21)

One sees directly that “�” holds. To prove “�”, let x be contained in the set
on the right side. Then for any n � 0, there exists an xm 2 Fm.n� j / � Bn�j
such that x D 	 .n; n � j; xm/. Since the sets Fm.n � j / are compact and
monotonically decreasing with increasing m, the set fxm W m � 0g has a limit
point Ox 2 T

m�0 Fm.n�j / . By the continuity of 	 .n; n � j; �/, it follows that
x D 	 .n; n � j; Ox/. Thus,

x 2 	
0

@n; n � j;
\

m�0
Fm.n � j /

1

A D 	
�

n; n � j; An�j
�

:

Hence, equation (21), the compactness of Fm.n � j / and the continuity of
	 .n; n � j; �/ imply that

	
�

n; n � j; An�j
� D

\

m�0
	 .n; n � j; Fm.n� j //

D
\

m�0
	

�

n; n � j; 	 �

n � j; n � j �m;Bn�j�m
��

D
\

m�0
	

�

n; n � j �m;Bn�j�m
�

D
\

m�j
	 .n; n �m;Bn�m/ ;

� An
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which means that

An � 	
�

n; n � j; An�j
�

; j 2 Z
C for all n 2 Z : (22)

Replacing n bym �m in (22) and using the cocycle property gives

	 .n; n �m;An�m/ � 	
�

n; n �m;	 �

m � n; n �m � j; An�m�j
��

D 	
�

n; n � j; 	 �

n � j; n �m � j; An�m�j
��

� 	
�

n; n � j; 	.n � j; n �m � j; Bn�m�j /
�

� 	
�

n; n � j; Bn�j
� � U�.An/

for all �-neighborhoods U�.An/ of An, where � > 0, provided that j D J.�/

is sufficiently large. Hence, 	 .n; n �m;An�m/ � An For all m 2 Z
C, n 2 Z.

With m replaced by j , this yields with (22) the 	-invariance of the family
fAn W n 2 Zg.

(iv) It remains to observe that if the sets in A D fAn W n 2 Zg are uniformly
bounded, then the pullback attractor A is unique by Proposition 4.8. ut

Remark 4.12. There is no counterpart of Theorem 4.11 for nonautonomous for-
wards attractors.

If the pullback absorbing family B is not 	-positive invariant, then the proof is
somewhat more complicated and the component subsets of the pullback attractor of
A are given by

An D
\

k�0

[

j�k
	

�

n; n � j; Bn�j
�

:

However, the assumption in Theorem 4.11 that 	-positively invariant pullback
absorbing systems is not a serious restriction.

Proposition 4.13. If B D fBn W n 2 Zg is a pullback absorbing system for a
process 	 fulfilling Bn � C for n 2 Z, where C is a bounded subset of X , then
there exists a 	-positively invariant pullback absorbing system bB D fbBn W n 2 Zg
containing B D fBn W n 2 Zg component set-wise.

Proof. For each n 2 Z define

bBn WD
[

j�0
	.n; n � j; Bn�j /:

Obviously Bn � bBn for every n 2 Z.
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To show positive invariance, the cocycle property is used in what follows.

	.nC 1; n;bBn/ D
[

j�0
	.nC 1; n; 	.n; n� j; Bn�j //

D
[

j�0
	.nC 1; n� j; Bn�j /

D
[

i�1
	.nC 1; nC 1 � i; BnC1�i /

�
[

i�0
	.nC 1; nC 1 � i; BnC1�i / D bBnC1;

so 	.nC 1; n;bBn/ � bBnC1. By this and the cocycle property again

	.nC 2; n;bBn/ D 	
	

nC 2; nC 1; 	.nC 1; n;bBn/



� 	.nC 2; nC 1;bBnC1/ � bBnC2:

The general positive invariance assertion then follows by induction.
Now by the continuity of 	.n; n � j; �/ and the compactness of Bn�j , the set

	.n; n � j; Bn�j / is compact for each j � 0 and n 2 Z. Moreover, Bn�j � C for
each j � 0 and n 2 Z, so by the pullback absorbing property of B there exists an
N D Nn;C 2 N such that

	.n; n � j; Bn�j / � 	.n; n� j; C / � Bn

for all j � N . Hence

bBn D
[

j�0
	.n; n� j; Bn�j /

� Bn [
[

0�j<N
	.n; n� j; Bn�j /

D
[

0�j<N
	.n; n� j; Bn�j /;

which is compact as a finite union of compact sets, so bBn is compact.
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To see that bB so constructed is pullback absorbing, let D be a bounded subset of
X and fix n 2 Z. Since B is pullback absorbing, there exists an Nn;D 2 N such that
	.n; n � j;D/ � Bn for all j � Nn;D. But Bn � bBn, so

	.n; n � j;D/ � bBn for all j � Nn;D:

Hence bB is pullback absorbing as required. ut

4.5 Limitations of Pullback Attractors

Pullback attractors are based on the behaviour of a nonautonomous system in the
past and may not capture the complete dynamics of a system when it is formulated in
terms of a process. This was already indicated by Example 4.6 and will be illustrated
here through some simpler examples. See [29].

First consider the autonomous scalar difference equation

xnC1 D �xn

1C jxnj (23)

depending on a real parameter � > 0. Its zero solution x� D 0 exhibits a pitchfork
bifurcation at � D 1. Its global dynamical behavior can be summarized as follows
(see Fig. 6):

• If � � 1, then x� D 0 is the only constant solution and is globally asymptotically
stable. Thus f0g is the global attractor of the autonomous dynamical system
generated by the difference equation (23).

• If � > 1, then there exist two additional nontrivial constant solutions given by
x˙ WD ˙.� � 1/. The zero solution x� D 0 is an unstable steady state solution
and the symmetric interval A D Œx�; xC� is the global attractor.

These constant solutions are the fixed points of the mapping f .x/ D �x
1Cjxj .

Piecewise autonomous difference equation: Consider now the piecewise
autonomous equation

xnC1 D �nxn

1C jxnj ; �n WD
(

�; n � 0;

��1; n < 0
(24)

for some � > 1, which corresponds to a switch between the two autonomous
problems (23) at n D 0.

The zero solution of the resulting nonautonomous system is the only bounded
entire solution, so by Proposition 4.8 the pullback attractor A has component sets
An 
 f0g for all n 2 Z. Note that the zero solution seems to be “asymptotically
stable” for n < 0 and then “unstable” for n � 0. Moreover the interval Œx�; xC� is
like a global attractor for the whole equation on Z, but it is not really one since it is
not invariant or minimal for n < 0.
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Fig. 6 Trajectories of the autonomous difference equation (23) with � D 0:5 (left) and � D 1:5

(right)

Fig. 7 Trajectories of the piecewise autonomous equation (24) with � D 1:5 (left) and the
asymptotically autonomous equation (25) with �k D 1C 0:9k

1Cjkj
(right)

The nonautonomous difference equation (24) is asymptotically autonomous in
both directions, but the pullback attractor does not reflect the full limiting dynamics
(see Fig. 7 (left)), in particular in the forwards time direction.

Fully nonautonomous equation: If the parameters �n do not switch from one
constant to another as above, but increase monotonically, e.g., such as �n D 1 C
0:9n
1Cjnj , then the dynamics is similar, although the limiting dynamics is not so obvious
from the equation. See Fig. 7 (left).

Let f�ngn2Z be a monotonically increasing sequence with limk!˙1 �n D N�˙1
for N� > 1. The nonautonomous problem

xnC1 D fn.xn/ WD �nxn

1C jxnj : (25)

is asymptotically autonomous in both directions with the limiting autonomous
systems given above.
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Its pullback attractor A has component sets An 
 f0g for all n 2 Z correspond-
ing to the zero entire solution, which is the only bounded entire solution. As above,
the zero solution x� D 0 seems to be “asymptotically stable” for n < 0 and then
“unstable” for n � 0. However, the forward limit points for nonzero solutions are
˙. N� � 1/, neither of which is a solution at all. In particular, they are not entire
solutions, so cannot belong to an attractor, forward or pullback, since these consist
of entire solutions. See Fig. 7 (right).

Remark 4.14. Pullback attraction alone does not characterize fully the bounded
limiting behaviour of a nonautonomous system formulated as a process. Something
in addition like nonautonomous limit sets [25, 38], limiting equations [18] or
asymptotically invariant sets [19] and eventual asymptotic stability [20] or a mixture
of these ideas is needed to complete the picture. However, this varies from example
to example and is somewhat ad hoc. In contrast, this information is built into the
skew-product system formulation of a nonautonomous dynamical system, especially
when the state space P of the driving system is compact. Essentially, the skew-
product system already includes the limiting dynamics and no further ad hoc
methods are needed to determine it.

Remarks. Pullback attractors for nonautonomous difference equations were intro-
duced in [23,24] and a comparison between different attractor types is given in [11]
(see also Sect. 5.2).

Without the assumption of being uniformly bounded, pullback attractors of
processes need not be unique (see [38, p. 18, Example 1.3.5]). In applications,
absorbing sets are frequently not compact and one has to assume ambient compact-
ness properties of a process in order to establish the existence of a pullback attractor
(see [38, pp. 12ff]).

5 Nonautonomous Invariant Sets and Attractors:
Skew-Product Systems

5.1 Existence of Pullback Attractors

Consider a discrete-time skew-product system .�; '/ on P � X , where .P; dP /
and .X; d/ are metric spaces. There are counterparts for skew-product systems of
the concepts of invariance, forwards and pullback convergence and forwards and
pullback attractors considered in the previous section for discrete-time processes.

Definition 5.1. A family A D fAp W p 2 P g of nonempty subsets of X is called
'-invariant for a skew-product system .�; '/ on P �X if

'.n; p;Ap/ D A�n.p/ for all n 2 Z
C; p 2 P:
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It is called '-positively invariant if

'.n; p;Ap/ � A�n.p/ for all n 2 Z
C; p 2 P:

Definition 5.2. A family A D fAp W p 2 P g of nonempty compact subsets of X
is called pullback attractor of a skew-product system .�; '/ on P � X if it is
'-invariant and pullback attracts bounded sets, i.e.,

dist
�

'.j; ��j .p/;D/;Ap
� ! 0 for j ! 1 (26)

for all p 2 P and all bounded subsets D of X . It is called a forwards attractor if it
is '-invariant and forward attracts bounded sets, i.e.,

dist
�

'.j; p;D/;A�j .p/
� ! 0 for j ! 1: (27)

As with processes, the existence of a pullback attractor for skew-product systems is
ensured by that of a pullback absorbing system.

Definition 5.3. A family B D fBp W p 2 P g of nonempty compact subsets of X
is called a pullback absorbing family for a skew-product system .�; '/ on P �X if
for each p 2 P and every bounded subset D of X there exists an Np;D 2 Z

C such
that

'
�

j; ��j .p/;D
� � Bp for all j � Np;D; p 2 P:

The following result generalizes Theorem 2.5 for autonomous semidynamical
systems and the first half is the counterpart of Theorem 4.11 for processes. The
proof is similar in the latter case, essentially with j and ��j .p/ changed to n0 and
n0 � j , respectively, but additional complications due to the fact that the pullback
absorbing family is no longer assumed to be '-positively invariant. See [26] for
details.

Theorem 5.4 (Existence of pullback attractors). Let .X; d/ and .P; dP / be
complete metric spaces and suppose that a skew-product system .�; '/ has a
pullback absorbing set family B D fBp W p 2 P g. Then there exists a pullback
attractor A D fAp W p 2 P g with component sets determined by

Ap D
\

n�0

[

j�n
'

�

j; ��j .p/; B��j .p/

�I (28)

it is unique if its component sets are uniformly bounded.

The pullback attractor of a skew-product system .�; '/ has some nice properties
when its component subsets are contained in a common compact subset or if the
state space P of the driving system is compact.

Proposition 5.5 (Upper semi-continuity of pullback attractors). Suppose that
A.P / WD S

p2P Ap is compact for a pullback attractor A D fAp W p 2 P g.
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Then the set-valued mapping p 7! Ap is upper semi-continuous in the sense that

dist
�

Aq;Ap
� ! 0 as q ! p:

On the other hand, if P is compact and the set-valued mapping p 7! Ap is upper
semi-continuous, then A.P / is compact.

Proof. First note that, since A.P / is compact, the pullback attractor is uniformly
bounded by a compact set and hence is uniquely determined.

Assume that the set-valued mapping p 7! Ap is not upper semi-continuous.
Then there exist an �0 > 0 and a sequence pn ! p0 in P such that dist

�

Apn ; Ap0
�

� 3�0 for all n 2 N. Since the sets Apn are compact, there exists an an 2 Apn such
that

dist
�

an; Ap0
� D dist

�

Apn; Ap0
� � 3�0 for each n 2 N : (29)

By pullback attraction, dist
�

' .m; ��m.p0/; B/ ; Ap0
� � �0 for m � MB;�0 for any

bounded subset B ofX ; in particular, belowA.P / will be used for the set B . By the
'-invariance of the pullback attractor, there exist bn 2 A��m.pn/ � A.P / for n 2 N

such that ' .m; ��m.pn/; bn/ D an. Since A.P / is compact, there is a convergent
subsequence bn0 ! Nb 2 A.P /. Finally, by the continuity of ��m.�/ and of the
cocycle mapping '.n; �; �/,

d
�

'.m; ��m.pn0/; bn0/; '.m; ��m.p0/; Nb/� � �0 for n0 large enough.

Thus,

dist
�

an0 ; Ap0
� D dist

�

'.m; ��m.pn0/; bn0/; Ap0
�

� d
�

'.m; ��m.pn0/; bn0/; '.m; ��m.p0/; Nb/�

Cdist
�

'.m; ��m.p0/; Nb/; Ap0
� � 2�0 ;

which contradicts (29). Hence, p 7! Ap must be upper semi-continuous.
The remaining assertion follows since the image of a compact subset under an

upper semi-continuous compact set-valued mapping is compact (cf. [4]). ut
Pullback attractors are in general not forwards attractors. When, however, the

state space P of the driving system is compact, then one has the following partial
forwards convergence result for the pullback attractor.

Theorem 5.6. In addition to the assumptions of Theorem 5.4, suppose that P is
compact and suppose that the pullback absorbing family B is uniformly bounded
by a compact subset C of X . Then

lim
n!1 sup

p2P
dist .'.n; p;D/;A.P // D 0 (30)

for every bounded subset D of X , where A.P / WD S

p2P Ap .
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Proof. First note that A.P / is compact since the component subsets Ap are all
contained in the common compact set C . This means also that the pullback attractor
is unique.

Suppose to the contrary that the convergence (30) does not hold. Then there exist
an �0 > 0 and sequences nj ! 1, Opj 2 P and xj 2 C such that

dist
�

'.nj ; Opj ; xj /; A.P /
�

> �0 : (31)

Set pj D �nj . Opj /. By the compactness of P , there exists a convergent subsequence
pj 0 ! p0 2 P . From the pullback attraction, there exists an n > 0 such that

dist
�

'.n; ��n.p0/; C /; Ap0
�

<
�0

2
:

The cocycle property then gives

'
�

nj ; ��nj .pj /; xj
� D '

�

n; ��n.pj /; '
�

nj � n; ��nj .pj /; xj
��

for any nj > n. By the pullback absorption of B, it follows that

'
�

nj � n; ��nj .pj /; xj
� � B��n.pj / � C ;

and since C is compact, there is a further index subsequence j 00 of j 0 (depending
on n) such that

znj 00 WD '
	

nj 00 � n; ��nj 00 .pj 00/; xj 00




! z0 2 C:

The continuity of the skew-product mappings in the p and x variables implies

dist
	

'.n; ��n.pj 00/; znj 00 /; '.n; ��n.p0/; z0/



<
�0

2
; when nj 00 > n.�0/ :

Therefore,

�0 > dist
	

'.nj 00 ; ��nj 00 .p0/; xj 00/; Ap0




D dist
�

'
�

nj 00 ; Opj 00 ; xj 00

�

; Ap0
� � dist

�

'
�

nj 00 ; Opj 00 ; xj 00

�

; A.P /
�

;

which contradicts (31). Thus, the asserted convergence (30) must hold. ut

5.2 Comparison of Nonautonomous Attractors

Recall from Theorem 3.7 that the mapping � W ZC � X ! X defined by

�.n; .p; x// WD .�n.p/; '.n; p; x//
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for all j 2 Z
C and .p; x/ 2 X WD P � X forms an autonomous semidynamical

system on the extended state space X with the metric

distX ..p1; x1/; .p2; x2// D dP .p1; p2/C d.x1; x2/:

Proposition 5.7 (Uniform and global attractors). Suppose that A is a uniform
attractor (i.e., uniformly attracting in both the forward and pullback senses) of a
skew-product system .�; '/ and that

S

p2P Ap is precompact in X . Then the union
A WD S

p2P fpg � Ap is the global attractor of the autonomous semidynamical
system � .

Proof. The �-invariance of A follows from the '-invariance of A , and the
�-invariance of P via

�.n;A/ D
[

p2P
f�n.p/g �'.n; p;Ap/ D

[

p2P
f�n.p/g �A�n.p/ D

[

q2P
fqg �Aq D A :

Since A is also a pullback attractor and
S

p2P Ap is precompact in X (and P is
compact too), the set-valued mapping p 7! Ap is upper semi-continuous, which
means that p 7! F.p/ WD fpg � Ap is also upper semi-continuous. Hence,
F.P / D A is a compact subset of X. Moreover, the definition of the metric distX on
X implies that

distX .�.n; .p; x//;A/ D distX ..�n.p/; '.n; p; x// ;A/

� distX
�

.�n.p/; '.n; p; x// ; f�n.p/g � A�n.p/
�

D distP .�n.p/; �n.p//C dist
�

'.n; p; x/; A�n.p/
�

D dist
�

'.n; p; x/; A�n.p/
�

;

where �.n; .p; x// D .�n.p/; '.n; p; x//. The desired attraction to A w.r.t. � then
follows from the forward attraction of A w.r.t. '. ut

Without uniform attraction as in Proposition 5.7 a pullback attractor need not
give a global attractor, but the following result does hold.

Proposition 5.8. If A is a pullback attractor for a skew-product system .�; '/ and
S

p2P Ap is precompact in X , then A WD S

p2P fpg � Ap is the maximal invariant
compact set of the autonomous semidynamical system � .

Proof. The compactness and �-invariance of A are proved in the same way as in
first part of the proof of Proposition 5.7. To prove that the compact invariant set A is
maximal, let C be any other compact invariant set of the autonomous semidynamical
system � . Then A is a compact and '-invariant family of compact sets, and by
pullback attraction,

dist
�

'
�

n; ��n.p/; C��n.p/

�

; Ap
� � dist

�

' .n; ��n.p/;K/ ; Ap
� ! 0
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as n ! 1, whereK WD S

p2P Cp is compact. Hence, Cp � Ap for all p 2 P , i.e.,
C WD S

p2P fpg � Cp � A, which finally means that A is a maximal �-invariant
set. ut

The set A here need not be the global attractor of � . In the opposite direction, the
global attractor of the associated autonomous semidynamical system always forms
a pullback attractor of the skew-product system.

Proposition 5.9 (Global and pullback attractors). If an autonomous semidynam-
ical system � has a global attractor

A D
[

p2P
fpg �Ap;

then A D fAp W p 2 P g is a pullback attractor for the skew-product system .�; '/.

Proof. The sets P and K WD S

p2P Ap are compact by the compactness of A.
Moreover, A � P �K , which is a compact set. Now

dist .'.n; p; x/;K/ D distP .�n.p/; P /C dist .'.n; p; x/;K/

D distX ..�n.p/; '.n; p; x//; P �K/

� distX .�.n; .p; x//; P �K/

� distX .�.n; P �D/;A/ ! 0 as n ! 1

for all .p; x/ 2 P � D and every arbitrary bounded subset D of X , since A is the
global attractor of � .

Hence, replacing p by ��n.p/ implies

lim
n!1 dist .'.n; ��n.p/;D/;K/ D 0 :

Then the system is pullback asymptotic compact (see the definition in Chapter 12 of
[25]) and by Theorem 12.12 in [25] this is a sufficient condition for the existence of a
pullback attractor A 0 D fA0

p W p 2 P g with
S

p2P A0
p � K . From Proposition 5.8,

A
0 WD S

p2P fpg � A0
p is the maximal �-invariant subset of X, but so is the global

attractor A. This means that A0 D A. Thus, A is a pullback attractor of the skew-
product system .�; '/. ut

5.3 Limitations of Pullback Attractors Revisited

The limitations of pullback attraction for processes were illustrated in Sect. 4.5
through the scalar nonautonomous difference equation
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xnC1 D fn.xn/ WD �nxn

1C jxnj ; (32)

where f�ngn2Z is an increasing sequence with limn!˙1 �n D N�˙1 for N� > 1.
The pullback attractor A of the corresponding process has component sets

An 
 f0g for all n 2 Z corresponding to the zero entire solution, which is the only
bounded entire solution. The zero solution x� D 0 seems to be “asymptotically
stable” for n < 0 and then “unstable” for n � 0. However the forward limit points
for nonzero solutions are ˙. N��1/, which both are not solutions at all. In particular,
they are not entire solutions.

An elegant way to resolve the problem is to consider the skew-product system
formulation of a nonautonomous dynamical system. This includes an autonomous
dynamical system as a driving mechanism, which is responsible for the temporal
change in the dynamics of the nonautonomous difference equation. It also includes
the dynamics of the asymptotically autonomous difference equations above and their
limiting autonomous systems.

The nonautonomous difference equation (32) can be formulated as a skew-
product system with the diving system defined in terms of the shift operator � on
the space of bi-infinite sequences

�L D f� D f�ngn2Z W �n 2 Œ0; L� ; n 2 Zg

for some L > N� > 1. It yields a compact metric space with the metric

d�L
�

�; �0� WD
X

n2Z
.LC 1/�jnj ˇ

ˇ�n � �0
n

ˇ

ˇ :

This is coupled with a cocycle mapping with values xn D '.n; �; x0/ on R

generated by the difference equation (32) with a given coefficient sequence �.
For the sequence � from (32), the limit of the shifted sequences �n.�/ in the

above metric as n ! 1 is the constant sequence ��C equal to N�, while the limit as
n ! �1 is the sequence ��� with all components equal to N��1.

The pullback attractor of the corresponding skew-product system .�; '/ on��R

consists of compact subsetsA� of R for each � 2 �L. It is easy to see thatA� D f0g
for any � with components �n < 1 for n � 0, which includes the constant sequence
��� as well as the switched sequence in (32). On the other hand, A��

C
D Œ�N�; N��.

Here [�2�LA� is precompact, so contains all future limiting dynamics.
The pullback attractor of the skew-product system includes that of the process

for a given bi-infinite coefficient sequence, but also includes its forward asymptotic
limits and much more. The coefficient sequence set �L includes all possibilities, in
fact, far more than may be of interest in particular situation.

If one is interested in the dynamics of a process corresponding to a specific
O� 2 �L, then it would suffice to consider the skew-product system w.r.t. the
driving system on the smaller space �O� defined as the hull of this sequence,
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i.e., the set of accumulation points of the set f�n. O�/ W n 2 Zg in the metric
space .�L; d�L/. In particular, if O� is the specific sequence in (32), then the union
[�2�O�

A� DA��
C

D Œ�N�; N�� contains all future limiting dynamics, i.e.,

lim
n!1 dist

�

'.n; �; x/; Œ�N�; N��� D 0 for all x 2 R:

The example described by nonautonomous difference equation (32) is asymptot-
ically autonomous with �� D f��̇ g [ f�n.�/ W n 2 Zg. The forward limit points
˙. N� � 1/ of the process generated by (25), which were not steady states of the
process, are now locally asymptotic steady states of the skew product flow with
base space P D N� consisting of the single constant sequence �k 
 N�, when the
skew product system is interpreted as an autonomous semidynamical system on the
product space P � X . More generally, unlike the process formulation, the skew-
product system formulation and its pullback attractor include the forwards limiting
dynamics.

5.4 Local Pullback Attractors

Less uniform behaviour such as parameter dependent domains of definition and
local pullback attractors can be handled by introducing the concept of a basin of
attraction system.

Let Domp � X be the domain of definition of f .p; �/ in the nonautonomous
equation (13), which requires f .p;Domp/ � Dom�.p/. Then the corresponding
cocycle mapping ' has the domain of definition Z

C � S

p2P
�fpg � Domp

�

.
Consequently one needs to restrict the admissible families of bounded sets in the
pullback convergence to subsets of Domp for each p 2 P .

Definition 5.10. An ensemble Dad of families D D fDp W p 2 P g of nonempty
subsets X is called admissible if

(i) Dp is bounded andDp � Domp for each p 2 P and every D D fDp W p 2 P g
2 Dad ; and

(ii) bD.1/ D fD.1/
p W p 2 P g 2 Dad whenever bD.2/ D fD.2/

p W p 2 P g 2 Dad and

D
.1/
p � D

.2/
p for all p 2 P .

Further restrictions will allow one to consider local or otherwise restricted form
of pullback attraction.

Definition 5.11. A '-invariant family A D fAp W p 2 P g of nonempty compact
subsets of X with Ap � Domp for each p 2 P is called a pullback attractor w.r.t.
the basin of attraction system Dat t if Dat t is an admissible ensemble of families of
subsets such that

lim
j!1 dist

�

'.j; ��j .p/;D��j .p//; Ap
� D 0 (33)

for every D D fDp W p 2 P g 2 Dat t .
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In this case a pullback absorbing set system B D fBp W p 2 P g should also
satisfy B 2 Dat t and the pullback absorbing property should be modified to

'
�

j; ��j .p/;D��j .p//
� � Bp

for all j � Np;D , p 2 P and D D fDpI p 2 P g 2 Dat t .
A counterpart of Theorem 5.4 then holds here. In this case the pullback attractor

is unique within the basin of attraction system, but the skew-product system may
have other pullback attractors within other basin of attraction systems, which may
be either disjoint from or a proper sub-ensemble of the original basin of attraction
system.

Example 5.12. Consider the scalar nonautonomous difference equation

xnC1 D fn .xn/ WD xn C �nxn
�

1 � x2n
�

(34)

for given parameters �n > 0, n 2 Z.
First let �n 
 N� for all n 2 Z, so the system is autonomous. It has the attractor

A� D Œ�1; 1� for the maximal basin of attraction
��1 � N��1; 1C N��1�, but if one

restricts attention further to the basin of attraction
�

0; 1C N��1� then the attractor is
only A�� D f1g.

Now let �n be variable with �n 2 �

1
2

N�; N��

for each n 2 Z, so the system is now
nonautonomous and representable as a skew-product on the state space X D Z � R

with the parameter set P D Z. Then A � D fA�
n W n 2 Zg with A�

n D Œ�1; 1� for
all n 2 Z is the pullback attractor for the basin of attraction system Dat t consisting
of all families D D fDn W n 2 Zg satisfying Dn � ��1 � N��1; 1C N��1�, whereas
A �� D fA��

n W n 2 Zg with A��
n D f1g for all n 2 Z is the pullback attractor for the

basin of attraction system Dat t consisting of all families D D fDn W n 2 Zg with
Dn � �

0; 1C N��1�.

6 Lyapunov Functions for Pullback Attractors

A Lyapunov function characterizing pullback attraction and pullback attractors for
a discrete-time process in R

d will be constructed here. Consider a nonautonomous
difference equation

xnC1 D fn.xn/ (�)

on R
d , where the fn W Rd ! R

d are Lipschitz continuous mappings. This generates
a process 	 W Z2� � R

d ! R
d through iteration by

	.n; n0; x0/ D fn�1 ı � � � ı fn0.x0/ for all n � n0

and each x0 2 R
d , which in particular satisfies the continuity property

x0 7! 	.n; n0; x0/ is Lipschitz continuous for all n � n0:
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The pullback attraction is taken w.r.t. a basin of attraction system, which is
defined as follows for a process.

Definition 6.1. A basin of attraction system Dat t consists of families D D fDn W
n 2 Zg of nonempty bounded subsets of Rd with the property that D .1/ D fD.1/

n W
n 2 Zg 2 Dat t if D .2/ D fD.2/

n W n 2 Zg 2 Dat t and D.1/
n � D

.2/
n for all n 2 Z.

Although somewhat complicated, the use of such a basin of attraction system allows
both nonuniform and local attraction regions, which are typical in nonautonomous
systems, to be handled.

Definition 6.2. A 	-invariant family of nonempty compact subsets A D fAn W
n 2 Zg is called a pullback attractor w.r.t. a basin of attraction system Dat t if it is
pullback attracting

lim
j!1 dist

�

	.n; n � j;Dn�j /; An
� D 0 (35)

for all n 2 Z and all D D fDn W n 2 Zg 2 Dat t .

Obviously A 2 Dat t .
The construction of the Lyapunov function requires the existence of a pullback

absorbing neighbourhood family.

6.1 Existence of a Pullback Absorbing Neighbourhood System

The following lemma shows that there always exists such a pullback absorbing
neighbourhood system for any given pullback attractor. This will be required for
the construction of the Lyapunov function for the proof of Theorem 6.4. The proof
is very similar to that of Proposition 4.13.

Lemma 6.3. If A is a pullback attractor with a basin of attraction system Dat t

for a process 	, then there exists a pullback absorbing neighbourhood system B �
Dat t of A w.r.t. 	. Moreover, B is 	-positive invariant.

Proof. For each n0 2 Z pick ın0 > 0 such that

BŒAn0 I ın0 � WD fx 2 R
d W dist.x; An0/ � ın0g

satisfies fBŒAn0 I ın0 � W n0 2 Zg 2 Dat t and define

Bn0 WD
[

j�0
	.n0; n0 � j; BŒAn0�j I ın0�j �/:

Obviously An0 � intBŒAn0 I ın0� � Bn0 . To show positive invariance the two-
parameter semigroup property will be used in what follows.
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	.n0 C 1; n0; Bn0/ D
[

j�0
	.n0 C 1; n0; 	.n0; n0 � j; BŒAn0�j I ın0�j �//

D
[

j�0
	.n0 C 1; n0 � j; BŒAn0�j I ın0�j �/

D
[

i�1
	.n0 C 1; n0 C 1 � i; BŒAn0C1�i I ın0C1�i �/

�
[

i�0
	.n0 C 1; n0 C 1 � i; BŒAn0C1�i I ın0C1�i �/ D Bn0C1;

so 	.n0 C 1; n0; Bn0/ � Bn0C1. This and the two-parameter semigroup property
again gives

	.n0 C 2; n0; Bn0/ D 	.n0 C 2; n0 C 1; 	.n0 C 1; n0; Bn0/

� 	.n0 C 2; n0 C 1; Bn0C1/ � Bn0C2:

The general positive invariance assertion then follows by induction.
Now referring to the continuity of 	.n0; n0 � j; �/ and the compactness of

BŒAn0�j I ın0�j �, the set 	.n0; n0 � j; BŒAn0�j I ın0�j �/ is compact for each j � 0

and n0 2 Z. Moreover, by pullback convergence, there exists an N D N.n0; ın0/ 2
N such that

	.n0; n0 � j; BŒAn0�j I ın0�j �/ � BŒAn0 I ın0 � � Bn0

for all j � N . Hence

Bn0 D
[

j�0
	.n0; n0 � j; BŒAn0�j I ın0�j �/

� BŒAn0 I ın0�
[ [

0�j<N
	.n0; n0 � j; BŒAn0�j I ın0�j �/

D
[

0�j<N
	.n0; n0 � j; BŒAn0�j I ın0�j �/;

which is compact, so Bn0 is compact.
To see that B so constructed is pullback absorbing w.r.t. Dat t , let D 2 Dat t . Fix

n0 2 Z. Since A is pullback attracting, there exists an N.D ; ın0; n0/ 2 N such that
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dist
�

	.n0; n0 � j;Dn0�j /; An0
�

< ın0

for all j � N.D ; ın0; n0/. But .	.n0; n0 � j;Dn0�j / � intBŒAn0 I ın0 � and
BŒAn0 I ın0� � Bn0 , so

	.n0; n0 � j;Dn0�j / � intBn0

for all j � N.D ; ın0; n0/. Hence B is pullback absorbing as required. ut

6.2 Necessary and Sufficient Conditions

The main result is the construction of a Lyapunov function that characterizes this
pullback attraction. See [21, 22].

Theorem 6.4. Let the fn be uniformly Lipschitz continuous on R
d for each n 2 Z

and let 	 be the process that they generate. In addition, let A be a 	-invariant
family of nonempty compact sets that is pullback attracting with respect to 	 with
a basin of attraction system Dat t . Then there exists a Lipschitz continuous function
V W Z � R

d ! R such that

Property 1 (upper bound). For all n0 2 Z and x0 2 R
d

V .n0; x0/ � dist.x0; An0/I (36)

Property 2 (lower bound). For each n0 2 Z there exists a function a.n0; �/ W R
C

! R
C with a.n0; 0/ D 0 and a.n0; r/ > 0 for all r > 0 which is monotonically

increasing in r such that

a.n0; dist.x0; An0// � V.n0; x0/ for all x0 2 R
d I (37)

Property 3 (Lipschitz condition). For all n0 2 Z and x0, y0 2 R
d

jV.n0; x0/� V.n0; y0/j � kx0 � y0kI (38)

Property 4 (pullback convergence). For all n0 2 Z and any D 2 Dat t

limsupn!1 sup
zn0�n2Dn0�n

V .n0; 	.n0; n0 � n; zn0�n// D 0: (39)

In addition,

Property 5 (forwards convergence). There exists N 2 Dat t . which is positively
invariant under 	 and consists of nonempty compact sets Nn0 with An0 � intNn0
for each n0 2 Z such that
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V.n0 C 1; 	.n0 C 1; n0; x0// � e�1V .n0; x0/ (40)

for all x0 2 Nn0 and hence

V.n0 C j; 	.j; n0; x0// � e�j V .n0; x0/ for all x0 2 Nn0; j 2 N: (41)

Proof. The aim is to construct a Lyapunov function V.n0; x0/ that characterizes a
pullback attractor A and satisfies properties 1–5 of Theorem 6.4. For this define

V.n0; x0/ WD sup
n2N

e�Tn0;ndist .x0; 	.n0; n0 � n;Bn0�n//

for all n0 2 Z and x0 2 R
d , where

Tn0;n D nC
n

X

jD1
˛C
n0�j

with Tn0;0 D 0. Here ˛n D logLn, where Ln is the uniform Lipschitz constant of
fn on R

d , and aC D .a C jaj/=2, i.e., the positive part of a real number a.
Note 4: Tn0;n � n and Tn0;nCm D Tn0;n C Tn0�n;m for n, m 2 N, n0 2 Z.

Proof of property 1

Since e�Tn0;n � 1 for all n 2 N and dist .x0; 	.n0; n0 � n;Bn0�n// is monotonically
increasing from 0 � dist .x0; 	.n0; n0; Bn0// at n D 0 to dist .x0; An0/ as n ! 1,

V.n0; x0/ D sup
n2N

e�Tn0;ndist .x0; 	.n0; n0 � n;Bn0�n// � 1 � dist .x0; An0/ :

Proof of property 2

If x0 2 An0 , then V.n0; x0/ D 0 by Property 1, so assume that x0 2 R
d n An0 .

Now in
V.n0; x0/ D sup

n�0
e�Tn0;ndist .x0; 	.n0; n0 � n;Bn0�n//

the supremum involves the product of an exponentially decreasing quantity bounded
below by zero and a bounded increasing function, since the sets 	.n0; n0�n;Bn0�n/
are a nested family of compact sets decreasing to An0with increasing n. In particular,

dist .x0; An0/ � dist .x0; 	.n0; n0 � n;Bn0�n// for all n 2 N:

Hence there exists an N � D N �.n0; x0/ 2 N such that
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1

2
dist.x0; An0/ � dist .x0; 	.no; n0 � n;Bn0�n// � dist.x0; An0/

for all n � N �, but not for n D N � � 1. Then, from above,

V.n0; x0/ � e�Tn0;N� dist
�

x0; 	.n0; n0 �N �; Bn0�N� /
�

� 1

2
e�Tn0;N� dist .x0; An0/ :

Define
N �.n0; r/ WD supfN �.n0; x0/ W dist .x0; An0/ D rg

Now N �.n0; r/ < 1 for x0 … An0 with dist .x0; An0/ D r and N �.n0; r/ is
nondecreasing with r ! 0. To see this note that by the triangle rule

dist.x0; An0/ � dist.x0; 	.n0; n0 � n;Bn0�n//C dist.	.n0; n0 � n;Bn0�n/; An0/:

Also by pullback convergence there exists an N.n0; r=2/ such that

dist.	.n0; n0 � n;Bn0�n/; An0/ <
1

2
r

for all n � N.n0; r=2/. Hence for dist.x0; An0/ D r and n � N.n0; r=2/,

r � dist.x0; 	.n0; n0 � n;Bn0�n//C 1

2
r;

that is
1

2
r � dist.x0; 	.n0; n0 � n;Bn0�n//:

ObviouslyN �.n0; r/ � N �.n0; r=2/.
Finally, define

a.n0; r/ WD 1

2
r e�Tn0;N�.n0;r/ : (42)

Note that there is no guarantee here (without further assumptions) that a.n0; r/ does
not converge to 0 for fixed r ¤ 0 as n0 ! 1.

Proof of property 3

jV.n0; x0/� V.n0; y0/j

D
ˇ

ˇ

ˇ

ˇ
sup
n2N

e�Tn0;ndist .x0; 	.n0; n0 � n;Bn0�n//

� sup
n2N

e�Tn0;ndist .y0; 	.n0; n0 � n;Bn0�n//
ˇ

ˇ

ˇ

ˇ
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� sup
n2N

e�Tn0;n jdist .x0; 	.n0; n0 � n;Bn0�n//� dist .y0; 	.n0; n0 � n;Bn0�n//j

� sup
n2N

e�Tn0;nkx0 � y0k � kx0 � y0k

since
jdist .x0; C /� dist .y0; C /j � kx0 � y0k

for any x0, y0 2 R
d and nonempty compact subset C of Rd .

Proof of property 4

Assume the opposite. Then there exists an "0 > 0, a sequence nj ! 1 in N and
points xj 2 	.n0; n0 � nj ;Dn0�nj / such that V.n0; xj / � "0 for all j 2 N. Since
D 2 Dat t and B is pullback absorbing, there exists an N D N.D ; n0/ 2 N such
that

	.n0; n0 � nj ;Dn0�nj / � Bn0 for all nj � N:

Hence, for all j such that nj � N , it holds xj 2 Bn0 , which is a compact set, so
there exists a convergent subsequence xj 0 ! x� 2 Bn0 . But also

xj 0 2
[

n�nj 0

	.n0; n0 � n;Dn0�n/

and
\

nj 0

[

n�nj 0

	.n0; n0 � n;Dn0�n/ � An0

by the definition of a pullback attractor. Hence x� 2 An0 and V.n0; x�/ D 0. But V
is Lipschitz continuous in its second variable by property 3, so

"0 � V.n0; xj 0/ D kV.n0; xj 0/� V.n0; x
�/k � kxj 0 � x�k;

which contradicts the convergence xj 0 ! x�. Hence property 4 must hold.

Proof of property 5

Define
Nn0 WD fx0 2 BŒBn0 I 1� W 	.n0 C 1; n0; x0/ 2 Bn0C1g ;

where BŒBn0 I 1� D fx0 W dist.x0; Bn0/ � 1g is bounded because Bn0 is compact
and R

d is locally compact, soNn0 is bounded. It is also closed, hence compact, since
	.n0 C 1; n0; �/ is continuous and Bn0C1 is compact. Now An0 � intBn0 and Bn0 �
Nn0 , so An0 � intNn0 . In addition,
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	.n0 C 1; n0;Nn0/ � Bn0C1 � Nn0C1;

so N is positive invariant.
It remains to establish the exponential decay inequality (40). This needs the

following Lipschitz condition on 	.n0 C 1; n0; �/
 fn0.�/:

k	.n0 C 1; n0; x0/ � 	.n0 C 1; n0; y0/k � e˛n0kx0 � y0k

for all x0, y0 2 Dn0 . It follows from this that

dist.	.n0 C 1; n0; x0/; 	.n0 C 1; n0; Cn0// � e˛n0dist.x0; Cn0/

for any compact subset Cn0 � R
d . From the definition of V ,

V.n0 C 1; 	.n0 C 1; n0; x0//

D sup
n�0

e�Tn0C1;ndist.	.n0 C 1; n0; x0/; 	.n0; n0 � n;Bn0�n//

D sup
n�1

e�Tn0C1;ndist.	.n0 C 1; n0; x0/; 	.n0; n0 � n;Bn0�n//

since 	.n0 C 1; n0; x0/ 2 Bn0C1 when x0 2 Nn0 . Hence re-indexing and then using
the two-parameter semigroup property and the Lipschitz condition on 	.1; n0; �/

V .n0 C 1; 	.n0 C 1; n0; x0//

D sup
j�0

e�Tn0C1;jC1dist.	.n0 C 1; n0; x0/; 	.n0; n0 � j � 1; Bn0�j�1//

D sup
j�0

e�Tn0C1;jC1dist.	.n0 C 1; n0; x0/; 	.n0 C 1; n0; 	.n0; n0 � j; Bn0�j ///

� sup
j�0

e�Tn0C1;jC1e˛n0dist.x0; 	.n0; n0 � j; Bn0�j //

Now Tn0C1;jC1 D Tn0;j C 1 � ˛C
n0

, so

V.n0 C 1; 	.n0 C 1; n0; x0//

� sup
j�0

e�Tn0C1;jC1C˛n0dist.x0; 	.n0 C j; n0 � j; Bn0�j //

D sup
j�0

e�Tn0;j�1�˛C
n0C˛n0dist.x0; 	.n0; n0 � j; Bn0�j //

� e�1 sup
j�0

e�Tn0;j dist.x0; 	.n0; n0 � j; Bn0�j // � e�1V .n0; x0/;
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which is the desired inequality. Moreover, since 	.1; n0; x0/ 2 Bn0C1 � Nn0C1, the
proof continues inductively to give

V.n0 C j; 	.n0 C j; n0; x0// � e�j V .n0; x0/ for all j 2 N:

This completes the proof of Theorem 6.4. ut

6.2.1 Comments on Theorem 6.4

Note 1: It would be nice to use 	.n0; n0 � n; x0/ for a fixed x0 in the pullback
convergence property (39), but this may not always be possible due to nonuniformity
of the attraction region, i.e., there may not be a D 2 Dat t with x0 2 Dn0�n for all
n 2 N.
Note 2: The forwards convergence inequality (41) does not imply forwards
Lyapunov stability or Lyapunov asymptotical stability. Although

a.n0 C j; dist.	.n0 C j; n0; x0/; An0Cj // � e�j V .n0; x0/

there is no guarantee (without additional assumptions) that

inf
j�0 a.n0 C j; r/ > 0

for r > 0, so dist.	.n0 C j; n0; x0/; An0Cj / need not become small as j ! 1.
As a counterexample consider Example 4.6 of the process 	 on R generated

by (�) with fn D g1 for n � 0 and fn D g2 for n � 1 where the mappings
g1; g2 W R ! R are given by g1.x/ WD 1

2
x and g2.x/ WD maxf0; 4x.1 � x/g for

all x 2 R. Then A with An0 D f0g for all n0 2 Z is pullback attracting for 	
but is not forwards Lyapunov asymptotically stable. (Note one can restrict g1; g2 to
Œ�R;R� ! Œ�R;R� for any fixed R > 1 to ensure the required uniform Lipschitz
continuity of the fn).
Note 3: The forwards convergence inequality (41) can be rewritten as

V.n0; 	.n0; n0 � j; xn0�j // � e�j V .n0 � j; xn0�j / � e�j dist.xn0�j ; An0�j /

for all xn0�j 2 Nn0�j and j 2 N.

Definition 6.6. A family D 2 Dat t is called past–tempered w.r.t. A if

lim
j!1

1

j
logC dist.Dn0�j ; An0�j / D 0 for all n0 2 Z ;

or equivalently if

lim
j!1 e��jdist.Dn0�j ; An0�j / D 0 for all n0 2 Z; � > 0:
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This says that there is at most subexponential growth backwards in time of the
starting sets. It is reasonable to restrict attention to such sets.

For a past-tempered family D � N it follows that

V.n0; 	.n0; n0 � j; xn0�j // � e�jdist.Dn0�j ; An0�j / �! 0

as j ! 1. Hence

a
�

n0; dist.	.n0; n0 � j; xn0�j /; An0/
� � e�jdist.Dn0�j ; An0�j / �! 0

as j ! 1. Since n0 is fixed in the lower expression, this implies the pullback
convergence

lim
j!1 dist.	.n0; n0 � j;Dn0�j /; An0/ D 0:

A rate of pullback convergence for more general sets D 2 Dat t will be considered
in the next subsection.

6.2.2 Rate of Pullback Convergence

Since B is a pullback absorbing neighbourhood system, then for every n0 2 Z,
n 2 N and D 2 Dat t there exists an N.D ; n0; n/ 2 N such that

	.n0 � n; n0 � n �m;Dn0�n�m/ � Bn0�n for all m � N:

Hence, by the two-parameter semigroup property,

	.n0; n0 � n �m;Dn0�n�m/

D 	.n0; n0 � n; 	.n0 � n; n0 � n �m;Dn0�n�m//

� 	.n0; n0 � n;Bn0�n/

D 	.n0; n0 � i; 	.n0 � i; n0 � n;Bn0�n//

� 	.n0; n0 � i; Bn0�i / for all m � N; 0 � i � n;

where the positive invariance of B was used in the last line. Hence

	.n0; n0 � n �m;Dn0�n�m/ � 	.n0; n0 � i; Bn0�i /

for all m � N.D ; n0; n/ and 0 � i � n, or equivalently

	.n0; n0 �m;Dn0�m/ � 	.n0; n0 � i; Bn0�i / for all m � nCN.D ; n0; n/
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and 0 � i � n. This means that for any zn0�m 2 Dn0�m the supremum in

V.n0; 	.n0; n0 �m; zn0�m//

D sup
i�0

e�Tn0;idist .	.n0; n0 �m; zn0�m/; 	.n0; n0 � i; Bn0�i //

need only be considered over i � n. Hence

V.n0; 	.n0; n0 �m; zn0�m//
D sup

i�n
e�Tn0;idist .	.n0; n0 �m; zn0�m/; 	.n0; n0 � i; Bn0�i //

� e�Tn0;n sup
j�0

e�Tn0�n;j dist
�

	.n0; n0 �m; zn0�m/; 	.n0; n0 � n � j; Bn0�n�j /
�

� e�Tn0;ndist .	.n0; n0 �m; zn0�m/; An0/

� e�Tn0;ndist .Bn0 ; An0/

since An0 � 	.n0; n0 � n � j; Bn0�n�j / and 	.n0; n0 �m; zn0�m/ 2 Bn0 . Thus

V.n0; 	.n0; n0 �m; zn0�m// � e�Tn0;ndist .Bn0 ; An0/

for all zn0�m 2 Dn0�m, m � n C N.D ; n0; n/ and n � 0.
It can be assumed that the mapping n 7! n C N.D ; n0; n/ is monotonic

increasing in n (by taking a largerN.D ; n0; n/ if necessary), and is hence invertible.
Let the inverse of m D n C N.D ; n0; n/ be n D M.m/ D M.D ; n0;m/. Then

V.n0; 	.n0; n0 �m; zn0�m// � e�Tn0;M.m/dist .Bn0 ; An0/

for all m � N.D ; n0; 0/ � 0. Usually N.D ; n0; 0/ > 0. This expression can be
modified to hold for all m � 0 by replacingM.m/ byM �.m/ defined for all m � 0

and introducing a constant KD ;n0 � 1 to account for the behaviour over the finite
time set 0 � m < N.D ; n0; 0/. For all m � 0 this gives

V.n0; 	.n0; n0 �m; zn0�m// � KD ;n0e
�Tn0;M�.m/dist .Bn0 ; An0/ :

7 Bifurcations

The classical theory of dynamical bifurcation focusses on autonomous difference
equations

xnC1 D g.xn; �/ (43)
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with a right-hand side g W Rd � � ! R
d depending on a parameter � from some

parameter space �, which is typically a subset of R
n (cf., e.g., [30] or [17]). A

central question is how stability and multiplicity of invariant sets for (43) changes
when the parameter � is varied. In the simplest, and most often considered situation,
these invariant sets are fixed points or periodic solutions to (43).

Given some parameter value ��, a fixed point x� D g.x�; ��/ of (43) is called
hyperbolic, if the derivative D1g.x

�; ��/ has no eigenvalue on the complex unit
circle S

1. Then it is an easy consequence of the implicit function theorem (cf. [31,
p. 365, Theorem 2.1]) that x� allows a unique continuation x.�/ 
 g.x.�/; �/ in a
neighborhood of ��. In particular, hyperbolicity rules out bifurcations understood as
topological changes in the set fx 2 R

d W g.x; �/ D xg near .x�; ��/ or a stability
change of x�.

On the other hand, eigenvalues on the complex unit circle give rise to various
well-understood autonomous bifurcation scenarios. Examples include fold, trans-
critical or pitchfork bifurcations (eigenvalue 1), flip bifurcations (eigenvalue �1)
or the Sacker–Neimark bifurcation (a pair of complex conjugate eigenvalues for
d � 2).

7.1 Hyperbolicity and Simple Examples

Even in the autonomous set-up of (43) one easily encounters intrinsically
nonautonomous problems, where the classical methods of, for instance, [17, 30]
do not apply:

1. Investigate the behaviour of (43) along an entire reference solution .
n/n2Z,
which is not constant or periodic. This is typically done using the (obviously
nonautonomous) equation of perturbed motion

xnC1 D g.xn C 
n; �/� g.
n; �/:

2. Replace the constant parameter � in (43) by a sequence .�n/n2Z in �, which
varies in time. Also the resulting parametrically perturbed equation

xnC1 D g.xn; �n/

becomes nonautonomous. This situation is highly relevant from an applied point
of view, since parameters in real world problems are typically subject to random
perturbations or an intrinsic background noise.

Both the above problems fit into the framework of general nonautonomous differ-
ence equations

xnC1 D fn.xn; �/ (��)

with a sufficiently smooth right-hand side fn W Rd �� ! R
d , n 2 Z. In addition,

suppose that fn and its derivatives map bounded subsets of Rd � � into bounded
sets uniformly in n 2 Z.
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Generically, nonautonomous equations (��) do not have constant solutions, and
the fixed point sequences x�

n D fn.x
�
n ; �

�/ are usually not solutions to (��). This
gives rise to the following question:

If there are no equilibria, what should bifurcate in a nonautonomous set-up?

Before suggesting an answer, a criterion to exclude bifurcations is proposed. For
motivational purposes consider again the autonomous case (43) and the problem of
parametric perturbations.

Example 7.1. The autonomous difference equation xnC1 D 1
2
xn C� has the unique

fixed point x�.�/ D 2� for all � 2 R. Replace � by a bounded sequence .�n/n2Z
and observe as in Example 4.5 that the nonautonomous counterpart

xnC1 D 1
2
xn C �n

has a unique bounded entire solution 
�
n WD Pn�1

kD�1
�

1
2

�n�k�1
�k. For the special

case �n 
 �, this solution reduces to the known fixed point 
�
n 
 2�.

This simple example yields the conjecture that equilibria of autonomous equa-
tions persist as bounded entire solutions under parametric perturbations. It will
be shown below in Theorem 7.5 (or in [37, Theorem 3.4]) that this conjecture is
generically true in the sense that the fixed point of (43) has to be hyperbolic in order
to persist under parametric perturbations.

Example 7.2. The linear difference equation xnC1 D xn C �n has the forward
solution xn D x0 C Pn�1

kD0 �n, whose boundedness requires the assumption that
the real sequence .�n/n�0 is summable. Thus, the nonhyperbolic equilibria x� of
xnC1 D xn do not necessarily persist as bounded entire solutions under arbitrary
bounded parametric perturbations.

Typical examples of nonautonomous equations having an equilibrium, given by
the trivial solution are equations of perturbed motion. Their variational equation
along .
n/n2Z is given by xnC1 D D1g.
n; �/xn and investigating the behaviour
of its trivial solution under variation of � requires an appropriate nonautonomous
notion of hyperbolicity.

Suppose that An 2 R
d�d , n 2 Z, is a sequence of invertible matrices, and

consider a linear difference equation

xnC1 D Anxn (44)

with the transition matrix

˚.n; l/ WD

8

ˆ
ˆ
<

ˆ
ˆ
:

An�1 � � �Al; l < n;

I; n D l;

A�1
n � � �A�1

l�1; n < l:
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Let I be a discrete interval and define I
0 WD fk 2 I W k C 1 2 Ig. An invariant

projector for (44) is a sequence Pn 2 R
d�d , n 2 I, of projections Pn D P2

n

such that
AnC1Pn D PnAn for all n 2 I

0:

Definition 7.3. A linear difference equation (44) is said to admit an exponential
dichotomy on I, if there exist an invariant projector Pn and real numbers K � 0,
˛ 2 .0; 1/ such that for all n; l 2 I one has

k˚.n; l/Plk � K˛n�l if l � n;

k˚.n; l/Œid � Pl�k � K˛l�n if n � l:

Remark 7.4. An autonomous difference equation xnC1 D Axn has an exponential
dichotomy, if and only if the coefficient matrix A 2 R

d�d has no eigenvalues on the
complex unit circle.

In terms of this terminology an entire solution .
n/n2Z of (��) is called
hyperbolic, if the variational equation

xnC1 D D1fn.
n; �/xn (V�)

has an exponential dichotomy on Z.
Let `1 denote the space of bounded sequences in R

d .

Theorem 7.5 (Continuation of bounded entire solutions). If 
� D .
�
n/n2Z is

an entire bounded and hyperbolic solution of .���/, then there exists an open
neighborhood�0 � � of �� and a unique function 
 W �0 ! `1 such that

(i) 
.��/ D 
�,
(ii) Each 
.�/ is a bounded entire and hyperbolic solution of (��),

(iii) 
 W �0 ! `1 is as smooth as the functions fn.

Proof. The proof is based on the idea to formulate a nonautonomous difference
equation (��) as an abstract equation F.
; �/ D 0 in the space `1. This is solved
using the implicit mapping theorem, where the invertibility of the Fréchet derivative
D1F.


�; ��/ is characterised by the hyperbolicity assumption on 
�. For details,
see [40, Theorem 2.11]. ut

Consequently, in order to deduce sufficient conditions for bifurcations, one must
violate the hyperbolicity of 
�. For this purpose, the following characterisation of
an exponential dichotomy is useful.

Theorem 7.6 (Characterization of exponential dichotomies). A variational
equation (V�) has an exponential dichotomy on Z, if and only if the following
conditions are fulfilled:

(i) (V�) has an exponential dichotomy on Z
C with projector PC

n , as well as an
exponential dichotomy on Z

� with projector P�
n ,
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(ii) R.PC
0 /˚N.P�

0 / D R
d .

Proof. See [9, Lemma 2.4]. ut
The subsequent examples illustrate various scenarios that can arise, if a condition

stated in Theorem 7.6 is violated.

Example 7.7 (Pitchfork bifurcation). Consider the difference equation

xnC1 D fn.xn; �/; fn.x; �/ WD �x

1C jxj
from Sect. 4.5. It is a prototypical example of a supercritical autonomous pitchfork
bifurcation (cf., e.g. [30, pp. 119ff, Sect. 4.4]), where the unique asymptotically
stable equilibrium x� D 0 for � 2 .0; 1/ bifurcates into two asymptotically stable
equilibria x˙ WD ˙.� � 1/ for � > 1.

Along the trivial solution the variational equation xnC1 D �xn becomes
nonhyperbolic for � D 1. Indeed, criterion (i) of Theorem 7.6 is violated, since
the variational equation does not admit a dichotomy on Z

C or on Z
�. This loss of

hyperbolicity causes an attractor bifurcation, since for

• � 2 .0; 1/, the set x� D 0 is the global attractor
• � > 1, the trivial equilibrium x� D 0 becomes unstable and the symmetric

interval A D Œx�; xC� is the global attractor.

Bifurcations of pullback attractors can be observed as nonautonomous versions
of pitchfork bifurcations.

Example 7.8 (Pullback attractor bifurcation). Consider for parameter values � > 0
the difference equation

xnC1 D �xn �
8

<

:

min
˚

anx
3
n;

�
2
xn

�

; xn � 0;

max
˚

anx
3
n;

�
2
xn

�

; xn < 0;

where .an/n2Z is a sequence which is both bounded and bounded away from zero.
Note that in a neighborhood U of 0, the difference equation is given by xnC1 D
�xn�anx3n, and outside of a set V � U , the difference equation is given by xnC1 D
�
2
xn. Both U and V here can be chosen independently of � near � D 1. Moreover,

for fixed n 2 Z, the right-hand side of this equation lies between the functions
x 7! �

2
x and x 7! �x.

It is clear that for � 2 .0; 1/, the global pullback attractor is given by the trivial
solution, which follows from the fact that points are contracted at each time step by
the factor �. For � > 1, the trivial solution is no longer attractive, but there exists
a (nontrivial) pullback attractor for � 2 .1; 2/. This follows from Theorem 5.4,
because the family B D fV W n 2 Zg is pullback absorbing (the right-hand is given
by x 7! �

2
x outside of V ).
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At the parameter value � D 1, the global pullback attractor changes its
dimension. Thus, this difference equation provides an example of a nonautonomous
pitchfork bifurcation, which will be treated below in Sect. 7.2.

While these two examples show how (autonomous) bifurcations can be
understood as attractor bifurcations, the following scenario is intrinsically
nonautonomous (see [36] for a deeper analysis).

Example 7.9 (Shovel bifurcation). Consider a scalar difference equation

xnC1 D an.�/xn; an.�/ WD
(

1
2

C �; n < 0;

�; n � 0;
(45)

with parameters � > 0. In order to understand the dynamics of (45), distinguish
three cases:

(i) � 2 .0; 1
2
/: The equation (45) has an exponential dichotomy on Z with

projector Pn 
 1. The uniquely determined bounded entire solution is the
trivial one, which is uniformly asymptotically stable.

(ii) � > 1: The equation (45) has an exponential dichotomy on Z with projector
Pk 
 0. Again, 0 is the unique bounded entire solution, but is now unstable.

(iii) � 2 . 1
2
; 1/: In this situation, (45) has an exponential dichotomy on Z

C
with projector PC

n 
 1, as well as an exponential dichotomy on Z
� with

projector P�
n D 0. Thus condition (ii) in Theorem 7.6 is violated and

0 is a nonhyperbolic solution. For this parameter regime, every solution
of (45) is bounded. Moreover, (45) is asymptotically stable, but not uniformly
asymptotically stable on the whole time axis Z.

The parameter values � 2 f 1
2
; 1g are critical. In both situations, the number of

bounded entire solutions to the linear difference equation (45) changes drastically.
Furthermore, there is a loss of stability in two steps: From uniformly asymptotically
stable to asymptotically stable, and finally to unstable, as � increases through the
values 1

2
and 1. Hence, both values can be considered as bifurcation values, since

the number of bounded entire solutions changes as well as their stability properties.

The next example requires the state space to be at least two-dimensional.

Example 7.10 (Fold solution bifurcation). Consider the planar equation

xnC1 D fn.xn; �/ WD


bn 0

0 cn

�

xn C


0

.x1n/
2

�

� �



0

1

�

(46)

with components xn D .x1n; x
2
n/, depending on a parameter � 2 R and asymptoti-

cally constant sequences

bn WD
(

2; n < 0;
1
2
; n � 0;

cn WD
(

1
2
; n < 0;

2; n � 0:
(47)
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Fig. 8 Left (supercritical fold): Initial values � 2 R
2 yielding a bounded solution 	�.�; 0; �/ of (46)

for different parameter values �.
Right (cusp): Initial values � 2 R

2 yielding a bounded solution 	�.�; 0; �/ of (49) for different
parameter values �

The variational equation for (46) corresponding to the trivial solution and the
parameter �� D 0 reads as

xnC1 D D1fn.0; 0/xn WD


bn 0

0 cn

�

xn:

It admits an exponential dichotomy on Z
C, as well as on Z

� with corresponding
invariant projectors PC

n 
 �

1 0
0 0

�

and P�
n 
 �

0 0
0 1

�

. This yields

R.PC
0 /\N.P�

0 / D R



1

0

�

; R.PC
0 /CN.P�

0 / D R



1

0

�

and therefore condition (ii) of Theorem 7.6 is violated. Hence, the trivial solution
to (46) for � D 0 is not hyperbolic.

Let 	�.�; 0; �/ be the general solution to (46). Its first component 	1� is

	1�.n; 0; �/ D 2�jnj�1 for all n 2 Z; (48)

while the variation of constants formula (cf. [1, p. 59]) can be used to deduce the
asymptotic representation

	2�.n; 0; �/ D
8

<

:

2n
�

�2 C 4
7
�21 � �� CO.1/; n ! 1;

1
2n

�

�2 � 1
2
�21 C 2�

� CO.1/; n ! �1:

Therefore, the sequence 	�.�; 0; �/ is bounded if and only if �2 D � 4
7
�21 C � and

�2 D 1
2
�21 � 2� holds, i.e., �21 D 7

2
�, �2 D ��. From the first relation, one sees that

there exist two bounded solutions if � > 0, the trivial solution is the unique bounded
solution for � D 0 and there are no bounded solutions for � < 0; see Fig. 8 (left)
for an illustration. For this reason, � D 0 can be interpreted as bifurcation value,
since the number of bounded entire solutions increases from 0 to 2 as � increases
through 0.
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The method of explicit solutions can also be applied to the nonlinear equation

xnC1 D fn.xn; �/ WD


bn 0

0 cn

�

xn C


0

.x1n/
3

�

� �



0

1

�

: (49)

However, using the variation of constants formula (cf. [1, p. 59]), it is possible to
show that the crucial second component of the general solution 	�.�; 0; �/ for (49)
fulfills

	2�.n; 0; �/ D
8

<

:

2n
�

�2 C 8
15
�31 � �

� CO.1/; n ! 1;

1
2n

�

�2 � 2
15
�31 C 2�

� CO.1/; n ! �1:

Since the first component is given in (48), 	�.�; 0; �/ is bounded if and only if �2 D
� 8
15
�31 C � and �2 D 2

15
�31 � 2�, which in turn is equivalent to

�1 D 3

r

9

2
�; �2 D �7

5
�:

Hence, these particular initial values � 2 R
2 given by the cusp shaped curve depicted

in Fig. 8 (right) lead to bounded entire solutions of (49).

7.2 Attractor Bifurcation

An easy example for a bifurcation of a pullback attractor was discussed already
in Example 7.8. Now a general bifurcation pattern will be derived, which ensures,
under certain conditions on Taylor coefficients, that a pullback attractor changes
qualitatively under variation of the parameter. This generalizes the autonomous
pitchfork bifurcation pattern. Although the pullback attractor discussed in Exam-
ple 7.8 is a global attractor, the pitchfork bifurcation only yields results for a local
pullback attractor.

Definition 7.11. Consider a process 	 on a metric state space X . A 	-invariant
family A D fAn W n 2 Zg of nonempty compact subsets of X is called a local
pullback attractor if there exists an � > 0 such that

lim
k!1 dist

�

	.n; n � k;B�.An�k//; An
� D 0 for all n 2 Z :

A local pullback attractor is a special case of a pullback attractor w.r.t. a certain
basin of attraction, which was introduced in Definition 5.11. Here, the basin of
attraction has to be chosen as a neighborhood of the local pullback attractor.

Suppose now that (��) is a scalar equation (d D 1) with the trivial solution for
all parameters � from an interval� � R. The transition matrix of the corresponding
variational equation

xnC1 D D1fn.0; �/xn

is denoted by ˚�.n; l/ 2 R.
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The hyperbolicity condition (i) in Theorem 7.6 will be violated when dealing
with attractor bifurcations. This yields a nonautonomous counterpart to the classical
pitchfork bifurcation pattern.

Theorem 7.12 (Nonautonomous pitchfork bifurcation). Suppose that fn.�; �/ W
R ! R is invertible and of class C4 with

D2
1fn.0; �/ D 0 for all n 2 Z and � 2 �:

Suppose there exists a �� 2 R such that the following hypotheses hold.

• Hypothesis on linear part: There exists a K � 1 and functions ˇ1; ˇ2 W � !
.0;1/ which are either both increasing or decreasing with lim�!�� b1.�/ D
lim�!�� b2.�/ D 1 and

˚�.n; l/ � Kˇ1.�/
n�l for all l � n;

˚�.n; l/ � Kˇ2.�/
n�l for all n � l

and all � 2 �.
• Hypothesis on nonlinearity: Assume that if the functions ˇ1 and ˇ2 are increas-

ing, then

�1 < lim inf
�!��

inf
n2ZD

3
1fn.0; �/ � lim sup

�!��

sup
n2Z

D3
1fn.0; �/ < 0;

and otherwise (i.e., if the functions ˇ1 and ˇ2 are decreasing), then

0 < lim inf
�!��

inf
n2ZD

3
1fn.0; �/ � lim sup

�!��

sup
n2Z

D3
1fn.0; �/ < 1:

In addition, suppose that the remainder satisfies

lim
x!0

sup
�2.���x2;��Cx2/

sup
n�0

x

Z 1

0

.1 � t/3D4fn.tx; �/ dt D 0;

lim sup
�!��

lim sup
x!0

sup
n�0

Kx3

1 � minfˇ1.�/; ˇ2.�/�1g
Z 1

0

.1 � t/3D4fn.tx; �/ dt < 3:

Then there exist �� < �� < �C so that the following statements hold:

1. If the functions ˇ1; ˇ2 are increasing, the trivial solution is a local pullback
attractor for � 2 .��; ��/, which bifurcates to a nontrivial local pullback
attractor fA�n W n 2 Zg, � 2 .��; �C/, satisfying the limit

lim
�!��

sup
n�0

dist.A�n; f0g/ D 0:
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2. If the functions ˇ1; ˇ2 are decreasing, the trivial solution is a local pullback
attractor for � 2 .��; �C/, which bifurcates to a nontrivial local pullback
attractor fA�n W n 2 Zg, � 2 .��; ��/, satisfying the limit

lim
�!��

sup
n�0

dist.A�n; f0g/ D 0:

For a proof of this theorem and extensions (to both different time domains and
repellers), see [43, 45].

The next example, taken from [15], illustrates the above theorem.

Example 7.13. Consider the nonautonomous difference equation

xnC1 D �xn

1C bnq

�
x
q
n

; (50)

where q 2 N and the sequence .bn/n2N is positive and both bounded and bounded
away from zero. For q D 1, this difference equation can be transformed into the
well-known Beverton–Holt equation, which describes the density of a population
in a fluctuating environment. It was shown in [15] that in this case, the system
admits a nonautonomous transcritical bifurcation (the bifurcation pattern of which
was derived in [43]).

For q D 2, a nonautonomous pitchfork bifurcation occurs. The above theorem
can be applied, because the Taylor expansion of the right-hand side of (50) reads
as �xn C bnx

qC1
n C O.x2qC1/, and the remainder fulfills the conditions of the

theorem (see [15] for details). This means that for � 2 .0; 1/, the trivial solution is a
local pullback attractor, which undergoes a transition to a nontrivial local pullback
attractor when � > 1. Note that the extreme solutions of the nontrivial local pullback
attractor for � > 1 are also local pullback attractors, which gives the interpretation
of this bifurcation as a bifurcation of locally pullback attractive solutions.

7.3 Solution Bifurcation

In the previous section on attractor bifurcations, the first hyperbolicity condition
(i) in Theorem 7.6, given by exponential dichotomies on both semiaxes, was
violated.

The present concept of solution bifurcation is based on the assumption that
merely condition (ii) of Theorem 7.6 does not hold. This requires the variational
difference equation (V�) to be intrinsically nonautonomous. Indeed, if (V�) is almost
periodic, then an exponential dichotomy on a semiaxis extends to the whole integer
axis (cf. [52, Theorem 2]) and the reference solution 
 D .
n/n2Z becomes
hyperbolic. For this reason the following bifurcation scenarios cannot occur for
periodic or autonomous difference equations.
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φ ∗ + W +
λ

φ∗ + W −
λ

φ1

φ2
R

d

ZSλ

k = 0

Fig. 9 Intersection S� � R
d of the stable fiber bundle 	� C W C

� � Z
C � R

d with the unstable
fiber bundle 	� C W �

� � Z
� � R

d at time k D 0 yields two bounded entire solutions 	1; 	2
to (��) indicated as dotted dashed lines

The crucial and standing assumption is the following:

Hypothesis: The variational equation (V�) admits an ED both on Z
C (with

projectorPC
n ) and on Z

� (with projector P�
n ) such that there exists nonzero vectors

1 2 R
d ,  0

1 2 R
d satisfying

R.PC
0 / \N.P�

0 / D R1; .R.PC
0 /CN.P�

0 //
? D R 0

1: (51)

Then a solution bifurcation is understood as follows: Suppose that for a fixed
parameter �� 2 �, the difference equation .���/ has an entire bounded reference
solution 
� D 
.��/. One says that (��) undergoes a bifurcation at � D �� along

�, or 
� bifurcates at ��, if there exists a convergent parameter sequence .�n/n2N
in�with limit �� so that .��n/ has two distinct entire solutions 
1�n ; 


2
�n

2 `1 both
satisfying

lim
n!1
1�n D lim

n!1
2�n D 
�:

The above Hypothesis allows a geometrical insight into the following abstract
bifurcation results using invariant fiber bundles, i.e., nonautonomous counterparts
to invariant manifolds: Because (V�) has an exponential dichotomy on Z

C, there
exists a stable fiber bundle 
� CW C

� consisting of all solutions to (��) approaching

� in forward time. Here, W C

� is locally a graph over the stable vector bundle
fR.PC

n / W n 2 Z
Cg. Analogously, the dichotomy on Z

� guarantees an unstable
fiber bundle 
� C W �

� consisting of solutions decaying to 
� in backward time (cf.
[40, Corollary 2.23]). Then the bounded entire solutions to (��) are contained in the
intersection .
� C W C

� /\ .
� C W �
� /. In particular, the intersection of the fibers

S� WD
	


�
0 C W C

�;0




\ �


�
0 C W �

�;0

� � R
d

yields initial values for bounded entire solutions (see Fig. 9).
It can be assumed without loss of generality, using the equation of perturbed

motion, that 
� D 0. In addition suppose that

fn.0; �/ 
 0 on Z;
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which means that (��) has the trivial solution for all � 2 �. The corresponding
variational equation is

xnC1 D D1fn.0; �/xn

with transition matrix ˚�.n; l/ 2 R
d�d .

Theorem 7.14 (Bifurcation from known solutions). Let � � R and suppose fn
is of class Cm, m � 2. If the transversality condition

g11 WD
X

n2Z
h˚��.0; nC 1/0 0

1;D1D2fn.0; �
�/˚��.n; 0/1i ¤ 0 (52)

is satisfied, then the trivial solution of a difference equation (��) bifurcates at ��.
In particular, there exists a � > 0, open convex neighborhoods U � `1.˝/ of 0,
�0 � � of �� and Cm�1-functions  W .��; �/ ! U , � W .��; �/ ! �0 with

1.  .0/ D 0, �.0/ D �� and P .0/ D ˚�� .�; 0/1,
2. Each  .s/ is a nontrivial solution of .�/�.s/ homoclinic to 0, i.e.,

lim
n!˙1 .s/n D 0:

Proof. See [39, Theorem 2.14]. ut
Corollary 7.15 (Transcritical bifurcation). Under the additional assumption

g20 WD
X

n2Z
h˚��.0; nC 1/0 0

1;D
2
1fn.0; �

�/Œ˚�� .n; 0/1�
2i ¤ 0

one has P�.0/ D � g20
2g11

and the following holds locally in U � �0: The difference
equation (��) has a unique nontrivial entire bounded solution  .�/ for � ¤ ��
and 0 is the unique entire bounded solution of .�/�� ; moreover, .�/ is homoclinic
to 0.

Proof. See [39, Corollary 2.16]. ut
Example 7.16. Consider the nonlinear difference equation

xnC1 D fn.xn; �/ WD


bn 0

� cn

�

xn C


0

.x1n/
2

�

(53)

depending on a bifurcation parameter � 2 R and sequences bn; cn defined in (47).
As in Example 7.10, the assumptions hold with �� D 0 and

g11 D 4

3
¤ 0; g20 D 12

7
¤ 0:
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Fig. 10 Left (transcritical): Initial values � 2 R
2 yielding a homoclinic solution 	�.�; 0; �/ of (53)

for different parameter values �.
Right (supercritical pitchfork): Initial values � 2 R

2 yielding a homoclinic solution 	�.�; 0; �/
of (54) for different parameter values �

Hence, Corollary 7.15 can be applied in order to see that the trivial solution of (53)
has a transcritical bifurcation at � D 0. Again, this bifurcation will be described
quantitatively. While the first component of the general solution 	�.�; 0; �/ given
by (48) is homoclinic, the second component satisfies

	2�.n; 0; �/ D
8

<

:

2n
�

�2 C 4
7
�21 C 2�

3
�1

� C o.1/; n ! 1;

2�n �

�2 � 2
7
�21 � 2�

3
�1

� C o.1/; n ! �1:

In conclusion, one sees that 	�.�; 0; �/ is bounded if and only if � D .0; 0/ or

�1 D �14
9
�; �2 D 28

81
�2:

Hence, besides the zero solution, there is a unique nontrivial entire solution passing
through the initial point � D .�1; �2/ at time n D 0 for � ¤ 0. This means the
solution bifurcation pattern sketched in Fig. 10 (left) holds.

Corollary 7.17 (Pitchfork bifurcation). For m � 3 and under the additional
assumptions

X

n2Z
h˚��.0; nC 1/0 0

1;D
2
1fn.0; �

�/Œ˚�� .n; 0/1�
2i D 0;

g30 WD
X

n2Z
h˚��.0; nC 1/0 0

1;D
3
1fn.0; �

�/Œ˚�� .n; 0/1�
3i ¤ 0

one has P�.0/ D 0, R�.0/ D � g30
3g11

and the following holds locally in U ��0:

3. Subcritical case: If g30=g11 > 0, then the unique entire bounded solution
of (��) is the trivial one for � � �� and (��) has exactly two nontrivial entire
solutions for � < ��; both are homoclinic to 0.
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4. Supercritical case: If g30=g11 < 0, then the unique entire bounded solution
of (��) is the trivial one for � � �� and (��) has exactly two nontrivial entire
solutions for � > ��; both are homoclinic to 0.

Proof. See [39, Corollary 2.16]. ut
Example 7.18. Let ı be a fixed nonzero real number and consider the nonlinear
difference equation

xnC1 D fn.xn; �/ WD


bn 0

� cn

�

xn C ı



0

.x1n/
3

�

(54)

depending on a bifurcation parameter � 2 R and the bn; cn defined in (47). As in our
above Example 7.16, the assumptions of Corollary 7.17 are fulfilled with �� D 0.
The transversality condition here reads g11 D 4

3
¤ 0. Moreover, D2

1fn.0; 0/ 
 0

on Z implies g20 D 0, whereas the relation D3
1fn.0; 0/�

3 D � 0
6ı�31

�

for all n 2 Z,

� 2 R
2 leads to g30 D 4ı ¤ 0. This gives the crucial quotient g30

g11
D 3ı. By

Corollary 7.17, the trivial solution to (54) undergoes a subcritical (supercritical)
pitchfork bifurcation at � D 0 provided ı > 0 (resp. ı < 0). As before one can
illustrate this result using the general solution 	�.�; 0; �/ to (54). The first component
is given by (48) and helps to show for the second component that

	2�.n; 0; �/ D
8

<

:

2n
�

�2 C 8ı
15
�31 C 2�

3
�1

� C o.1/; n ! 1;

2�n �

�2 � 2ı
15
�31 � 4�

3
�1

� C o.1/; n ! �1:

This asymptotic representation shows that 	�.�; 0; �/ is homoclinic to 0 if and only
if � D 0 or �21 D � 2

ı
� and �2 D 4

15

.5ıC16�/
ı2

�2. Hence, there is a correspondence to
the pitchfork solution bifurcation from in Corollary 7.17. See Fig. 10 (right) for an
illustration.

Remarks. In [43, Theorem 5.1] one finds a nonautonomous generalization for
transcritical bifurcations.

8 Random Dynamical Systems

Random dynamical systems on a state space X are nonautonomous by the very
nature of the driving noise. They can be formulated as skew-product systems with
the driving system acting a probability sample space ˝ rather than on a topological
or metric parameter space P . A major difference is that only measurability and
not continuity w.r.t. the parameter can be assumed, which changes the types of
results that can be proved. In particular, the skew-product system does not form
an autonomous semidynamical system on the product space ˝ � X . Nevertheless,
there are many interesting parallels with the theory of deterministic nonautonomous
dynamical systems.
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For further details see Arnold [2] and, for example, also [27], where the temporal
discretization of random differential equations is also considered.

8.1 Random Difference Equations

Let .˝;F ;P/ be a probability space and let fn; n 2 Zg be a discrete-time
stochastic process taking values in some space � , i.e., a sequence of random
variables or, equivalently, F -measurable mappings n W ˝ ! � for n 2 Z. Let
.X; d/ be a complete metric space and consider a mapping g W � �X ! X .

Then
xnC1.!/ D g .n.!/; xn.!// for all n 2 Z; ! 2 ˝; (55)

is a random difference equation on X driven by the stochastic process n.
Greater generality can be achieved by representing the driving noise process by

a metrical (i.e., measure theoretic) dynamical system � on some canonical sample
space ˝ , i.e., the group of F -measurable mappings f�n; n 2 Zg under composition
formed by iterating a measurable mapping � W ˝ ! ˝ and its measurable inverse
mapping ��1 W ˝ !˝ , i.e., with �0 D id˝ and

�nC1 WD � ı �n; ��n�1 WD ��1 ı ��n for all n 2 N;

where ��1 WD ��1. It is usually assumed that � generates an ergodic process on ˝ .
Let f W ˝ �X ! X be an F �B.X/-measurable mapping, where B.X/ is the

Borel �-algebra on X . Then, in this context, a random difference equation has the
form

xnC1.!/ D f .�n.!/; xn.!// for all n 2 Z; ! 2 ˝: (56)

Define recursively a solution mapping ' W Z
C � ˝� X ! X for the random

difference equation (56) by '.!; 0; x/ WD x and

'.!; nC 1; x/ D f .�n.!/; 	.�n.!/; n; x// for all n 2 N; x 2 X

and ! 2 ˝ . Then, ' satisfies the discrete-time cocycle property w.r.t. � , i.e.,

'.nCm;!; x/ D ' .n; �m.!/; '.m; !; x0// for all m; n 2 Z
C;

x 2 X and ! 2 ˝ . The mapping ' is called a cocycle mapping.
In terms of Arnold [2], the random difference equation (56) generates a discrete-

time random dynamical system .�; 	/ on˝�X with the metric dynamical system �

on the probability space .˝;F ;P/ and the cocycle mapping ' on the state spaceX .

Definition 8.1. A (discrete-time) random dynamical system .�; '/ on ˝ � X

consists of a metrical dynamical system � on˝ , i.e., a group of measure preserving
mappings �n W ˝ !˝ , n 2 Z, such that
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(i) �0 D id˝ and �n ı �m D �nCm for all n, m 2 Z,
(ii) The map ! 7! �n.!/ is measurable and invariant w.r.t. P in the sense that

�n.P/ D P for each n 2 Z,

and a cocycle mapping ' W ZC �˝ �X ! X such that

(a) '.0; !; x0/ D x0 for all x0 2 X and ! 2 ˝ ,
(b) '.n C m;!; x0/ D ' .n; �m.!/; '.m; !; x0// for all n,m 2 Z

C, x0 2 X and
! 2 ˝ ,

(c) x0 7! '.n; !; x0/ is continuous for each .n; !/ 2 Z
C �˝ ,

(d) ! 7! '.n; !; x0/ is F -measurable for all .n; x0/ 2 Z
C �X .

The notation �n.P/ D P for the measure preserving property of �n w.r.t. P is just
a compact way of writing

P.�n.A// D P.A/ for all n 2 Z; A 2 F :

A systematic treatment of the random dynamical system theory, both continuous
and discrete time, is propounded in Arnold [2]. Note that � D .�; 	/ has a skew-
product structure on ˝ � X , but it is not an autonomous semidynamical system on
˝ �X since no topological structure is assumed on˝ .

8.2 Random Attractors

Unlike a deterministic skew-product system, a random dynamical system .�; '/ on
˝ � X is not an autonomous semidynamical system on ˝ � X . Nevertheless,
skew-product deterministic systems and random dynamical systems have many
analogous properties, and concepts and results for one can often be used with
appropriate modifications for the other. The most significant modification concerns
measurability and the nonautonomous sets under consideration are random sets.

Let .X; d/ be a complete and separable metric space (i.e., a Polish space)

Definition 8.2. A family D D fD!;! 2 ˝g of nonempty subsets of X is called
a random set if the mapping ! 7! dist.x;D!/ is F -measurable for all x 2 X . A
random set D is called a random closed set if D! is closed for each ! 2 ˝ and is
called a random compact set if D! is compact for each ! 2 ˝ .

Random sets are called tempered if their growth w.r.t. the driving system � is
sub-exponential (cf. Definition 6.6).

Definition 8.3. A random set D D fD!;! 2 ˝g in X is said to be tempered if
there exists a x0 2 X such that

D! � fx 2 X W d.x; x0/ � r.!/g for all ! 2 ˝ ;

where the random variable r.!/ > 0 is tempered, i.e.,
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sup
n2Z

fr.�n.!//e�� jnjg < 1 for all ! 2 ˝; � > 0:

The collection of all tempered random sets in X will be denoted by D.

A random attractor of a random dynamical system is a random set which is
a pullback attractor in the pathwise sense w.r.t. the attracting basin of tempered
random sets.

Definition 8.4. A random compact set A D .A!/!2˝ from D is called a random
attractor of a random dynamical system .�; '/ on˝�X in D if A is a '-invariant
set, i.e.,

'.n; !;A!/ D A�n.!/ for all n 2 Z
C; ! 2 ˝ ;

and pathwise pullback attracting in D, i.e.,

lim
n!1 dist

�

'
�

n; ��n.!/;D.��n.!//
�

; A!
� D 0 for all ! 2 ˝; D 2 D:

If the random attractor consists of singleton sets, i.e., A! D fZ�.!/g for some
random variable Z� with Z�.!/ 2 X , then NZn.!/ WD Z�.�n.!// is a stationary
stochastic process on X .

The existence of a random attractor is ensured by that of a pullback absorbing
set. The tempered random set B D fB!; ! 2 ˝g in the following theorem is called
a pullback absorbing random set.

Theorem 8.5 (Existence of random attractors). Let .�; '/ be a random dynami-
cal system on ˝ �X such that '.n; !; �/ W X ! X is a compact operator for each
fixed n > 0 and ! 2 ˝ . If there exist a tempered random set B D fB!; ! 2 ˝g
with closed and bounded component sets and an ND ;! � 0 such that

'
�

n; ��n.!/;D.��n.!//
� � B! for all n � ND ;!; (57)

and every tempered random set D D fD!;! 2 ˝g, then the random dynamical
system .�; '/ possesses a random pullback attractor A D fA! W ! 2 ˝g with
component sets defined by

A! D
\

m>0

[

n�m
'.n; ��n.!/; B.��n.!// for all ! 2 ˝: (58)

The proof of Theorem 8.5 is essentially the same as its counterparts for
deterministic skew-product systems. The only new feature is that of measurability,
i.e., to show that A D fA!/; ! 2 ˝g is a random set. This follows from the fact that
the set-valued mappings ! 7! '

�

n; ��n.!/; B.��n.!//
�

are measurable for each
n 2 Z

C.
Arnold and Schmalfuß [3] showed that a random attractor is also a forward

attractor in the weaker sense of convergence in probability, i.e.,
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lim
n!1

Z

˝

dist
�

'.n; !;D!/; A�n.!/
�

P.d!/ D 0

for all D 2 D. This allows individual sample paths to have large deviations from
the attractor, but for all to converge in this probabilistic sense.

8.3 Random Markov Chains

Discrete-time finite state Markov chains with a tridiagonal structure are common in
biological applications. They have a transition matrix ŒIN C�Q�, where IN is the
N �N identity matrix andQ is the tridiagonalN �N -matrix

Q D

2

6

6

6

6

6

4

�q1 q2 �
q1 �.q2 C q3/ q4

: : :
: : :

: : :
: : :

: : :

q2N�5 �.q2N�4 C q2N�3/ q2N�2
� q2N�3 �q2N�2

3

7

7

7

7

7

5

(59)

where the qj are positive constants.
Such a Markov chain is a first order linear difference equation

p.nC1/ D ŒIN C�Q�p.n/ (60)

on the probability simplex˙N in R
N defined by

˙N D ˚

p D .p1; � � � ; pN /T W
N

X

jD1
pj D 1; p1; : : : ; pN 2 Œ0; 1��:

The Perron-Frobenius theorem applies to the matrix L� WD IN C �Q when �
> 0 is chosen sufficiently small. In particular, it has eigenvalue � D 1 and there
is a positive eigenvector Nx, which can be normalized (in the k � k1 norm) to give a
probability vector Np, i.e., ŒIN C�Q� Np D Np, soQ Np D 0. Specifically, the probability
vector

Np1 D 1

kNxk1 ; NpjC1 D 1

kNxk1
j

Y

iD1

q2i�1
q2i

for all j D 1; : : : ; N � 1;

where

kNxk1 D
N

X

jD1
Nxj D 1C

N�1
X

jD1

j
Y

iD1

q2i�1
q2i

:
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The following result is well known.

Theorem 8.6. The probability eigenvector Np is an asymptotically stable steady
state of the difference equation (60) on the simplex ˙N .

In a random environment, e.g., with randomly varying food supply, the transition
probabilities may be random, i.e., the band entries qi of the matric Q may depend
on the sample space parameter ! 2 ˝ . Thus, qi D qi .!/ for i D 1, 2, : : :, 2N � 2,
and these may vary in turn according to some metric dynamical system � on the
probability space .˝;F ;P/. The following basic assumption will be used.

Assumption 1. There exist numbers 0 < ˛ � ˇ < 1 such that the uniform
estimates hold

˛ � qi .!/ � ˇ for all ! 2 ˝; i D 1; 2; : : : ; 2N � 2: (61)

Let L be a set of linear operatorsL! W RN ! R
N parametrized by the parameter

! taking values in some set ˝ and let f�n; n 2 Zg be a group of maps of ˝ onto
itself. The maps L!x serve as the generator of a linear cocycle FL .n; !/. Then
.�; FL / is a random dynamical system on ˝ �˙N .

Theorem 8.7. Let FL .n; !/x be the linear cocycle

FL .n; !/x D L�n�1! � � �L�1!L�0!x:

with matrices L! WD IN C �Q.!/, where the tridiagonal matrices Q.!/ are of
the form (59) with the entries qi D qi .!/ satisfying the uniform estimates (61) in
Assumption 1. In addition, suppose that 0 < � < 1

2ˇ
.

Then, the simplex ˙N is positively invariant under FL .n; !/, i.e.,

FL .n; !/˙N � ˙N for all ! 2 ˝:

Moreover, for n large enough, the restriction of FL .n; !/x to the set ˙N is a
uniformly dissipative and uniformly contractive cocycle (w.r.t. the Hilbert metric),
which has a random attractor A D fA!; ! 2 ˝g such that each set A! , ! 2 ˝ ,
consists of a single point.

The proof can be found in [28]. It involves positive matrices and the Hilbert
projective metric on positive cones in R

N .
Henceforth write A! D fa!g for the singleton component subsets of the random

attractor A . Then the random attractor is an entire random sequence fa�n!; n 2 Zg
in ˙N .�/ � ı

˙N , where

˙N.�/ D
�

x D .x1; x2; : : : ; xN / W
N

X

iD1
xi D 1; x1; x2; : : : ; xN � �N�1

�

:
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with � WD minf�˛; 1 � 2�ˇg > 0: It attracts other iterates of the random Markov
chain in the pullback sense. Pullback convergence involves starting at earlier initial
times with a fixed end time. It is, generally, not the same as forward convergence
in the sense usually understood in dynamical systems, but in this case it is the same
due to the uniform boundedness of the contractive rate w.r.t. !.

Corollary 8.8. For any norm k � k on R
N , p.0/ 2 ˙N and ! 2 ˝

�

�p.n/.!/� a�n!
�

� ! 0 as n ! 1:

The random attractor is, in fact, asymptotically Lyapunov stable in the conventional
forward sense.

8.4 Approximating Invariant Measures

Consider now a compact metric space .X; d/. A random difference equation (56) on
X driven by the noise process � generates a random dynamical system .�; '/. It can
be reformulated as a difference equation with a triangular or skew-product structure

.!; x/ 7! F.!; x/ WD


�.!/

f .!; x/

�

An invariant measure � of F D .�; '/ on ˝ � X defined by � D F �� (which is
shorthand for an integral expression) can be decomposed as

�.!;B/ D �!.B/P.d!/ for all B 2 B.X/;

where the measures �! on X are �-invariant w.r.t. f , i.e.,

��.!/.B/ D �!
�

f �1.!;B/
�

for all B 2 B.X/; ! 2 ˝:

This decomposition is very important since only the state space X , but not the
sample space ˝ , can be discretized.

To compute a given invariant measure� consider a sequence of finite subsetsXN
of X given by

XN D fx.N/1 ; � � � ; x.N/N g � X;

for N 2 N with maximal step size

hN D sup
x2X

dist.x;XN /

such that hN ! 0 as N ! 1.
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Then the invariant measure � will be approximated by a sequence of invariant
stochastic vectors associated with random Markov chains describing transitions
between the states of the discretized state spacesXN . These involve randomN �N
matrices, i.e., measurable mappings

PN W ˝ ! SN ;

where SN denotes the set ofN �N (nonrandom) stochastic matrices, satisfying the
property

Pn
N .�

m.!//Pm
N .!/ D PmCn

N .!/ for all m; n 2 ZC: (62)

Recall that a stochastic matrix has non-negative entries with the columns summing
to 1.

Consider a random Markov chain fPN .!/; ! 2 ˝g and a random probability
vector fpN .!/; ! 2 ˝g on the deterministic grid XN . Then

pN;nC1.�nC1.!// D pN;n.�
n.!//PN .�

n.!//

and an equilibrium probability vector is defined by

NpN .�.!// D NpN .!/PN .!/ for all ! 2 ˝:

It can be represented trivially as a random measure �N;! on X .
The distance between random probability measures will be given with the

Prokhorov metric � and the distance of a random Markov chain P W ˝ ! SN

and the generating mapping f of the random dynamical system is defined by

D.P.!/; f / D
N

X

i;jD1

	

pi;j .!/ distX�X..x.N/i ; x
.N/
j /;Grf .!; �/




; (63)

where the distance to the random graph is given by

distX�X..x; y/;Grf .!; �// D inf
z2X maxfd.x; z/; d.y; f .!; z//g for all x; y 2 X:

The following necessary and sufficient result holds if �-semi-invariant rather than
�-invariant families of decomposed probability measures are used.

Definition 8.9. A family of probability measures �! on X is called
�-semi-invariant w.r.t. f , if

��.!/.B/ � �!
�

f �1.!;B/
�

for all B 2 B.X/; ! 2 ˝:

Such �-semi-invariant families are, in fact, �-invariant when the mappings x 7!
f .!; x/ are continuous.
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Theorem 8.10. A random probability measure f�!; ! 2 ˝g is �-semi-invariant
w.r.t. f onX if and only if it is randomly stochastically approachable, i.e., for each
N there exist

(i) A grid XN with fineness hN ! 0 as N ! 1
(ii) A random Markov chain fPN .!/; ! 2 ˝g on XN

(iii) Random probability measure f�N;! ; ! 2 ˝g onX corresponding to a random
equilibrium probability vector f NpN.!/; ! 2 ˝g of fPN .!/; ! 2 ˝g on XN

with the expected convergences

ED .PN .!/; f .!; �// ! 0; E� .�N;! ; �!/ ! 0 as n ! 1:

Proof. See Imkeller and Kloeden [16]. ut
The double terminology “random stochastic” seems to be an overkill, but just think
of a Markov chain for which the transition probabilities are not fixed, but can vary
randomly in time.
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