
Using Evolution Graphs for Describing

Topology-Aware Prediction Models
in Large Clusters

Matei Popovici

POLITEHNICA University of Bucharest
Splaiul Independentei nr. 313, Bucharest, Romania, Postal Code 060042

matei.popovici@cs.pub.ro

Abstract. We present and formally investigate a modelling method
suitable for describing events and time-dependent properties and for per-
forming possibly complex reasoning tasks regarding the evolution of dy-
namic domains. Our proposal consists of a distinguished data structure
called evolution graph, and a logical language (LH) used for identifying
temporal patterns in evolution graphs. First, we define and study the
complexity of the model checking problem for our language. We then
investigate the relation between our language and the well-known Com-
putation Tree Logic (CTL), both in terms of complexity and expressive
power. Finally, we apply our method for solving a well-known problem
from High Performance Computing (HPC): the extraction of topology
information from event logs produced by supercomputers.

Keywords: temporal knowledge representation, temporal logic,
high-performance computing.

1 Introduction

The world of high performance computing (HPC) is preparing for the exas-
cale era, and according to recent studies [10,16], 20% or more of the computing
capacity in a large system is wasted due to failures and recoveries. An alter-
native approach to classical fault tolerance that might optimize this process is
failure avoidance, where the occurrence of a fault is predicted and preventive
measures are taken. For this, monitoring systems require a reliable prediction
method to give information on what will be generated by the system and at
what location. To the best of our knowledge, all other log analysis methods in
the literature [23,14,18,11,12] propose theoretical models and algorithms for de-
tecting, predicting or characterizing events, without studying the impact of their
methods on large-scale HPC systems such as Blue Gene.

In order to develop a sound and robust prediction system and to fully char-
acterize its performance, a suitable modelling method is required. The success
of such a method relies on: (i) the ability to describe events and time-dependent
properties of systems with possibly non-deterministic behaviour, and (ii) to per-
form complex reasoning tasks about the temporal relations between such events
and properties.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 94–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topology-Aware predictions in HPC Systems Using Evolution Graphs 95

In this paper, we introduce a new modelling method for reasoning about
time-dependent properties. Based on it, we extract the topology of large-scale
machines after investigating the log files generated by such systems. In our ap-
proach, a domain’s history is recorded by a distinguished structure called evolu-
tion graph. It consists of: (i) action nodes which model instantaneous stimuli
that occur at fixed moments of time, and affect the current state of the domain,
(ii) hypernodes which capture (discrete) moments of time. The set of hypern-
odes can be seen as a partitioning of the set of action nodes such that all action
nodes belonging to the same hypernode are simultaneous; (iii) quality edges
which model time-dependent properties which span action nodes. For a given
quality edge q = (a, b), we interpret the action node a as the stimulus responsi-
ble for creating (or introducing) the quality q. Similarly, b is seen as the action
node that ceases (destroys) q.

Evolution graphs capture the dynamics of a given domain. In order to provide
with a domain-dependent semantics, action nodes and quality edges are labelled
with first-order predicates. For a more detailed description of evolution graphs,
as well an extended set of examples, we direct the reader to [20].

An example of an evolution graph, capturing the behaviour of (a small part
of) a HPC system, can be seen in Figure 1. For simplicity, we have omitted
labelling action nodes. Here, two nodes n and m sharing the same rack, expe-
rience network failures at different moments of time. This is modelled by the
qualities Net fail(n) and Net fail(m). In the time-slot when both these qualities
do not exist, a network communication binary quality describes the successful
communication between network nodes n and m.

HPC systems consist of a high number of nodes that are usually placed in a
hierarchical architecture. For example, in BlueGene systems, nodes are gathered
into midplanes and multiple midplanes form a rack. Certain errors in the system,
such as networking faults, affect multiple nodes depending on their relative po-
sition within the architecture. In another study [11], it has been observed that
propagation paths for different error types follow closely the way components
are connected in the system. For example if a fan breaks, all nodes sharing the
same rack will be affected. The topology of a system is usually not known in ad-
vance. This forces failure prediction algorithms to rely on heuristics for tracking
the locations of the failure’s effects in the system. In our experiments, we use
the logs generated by the Blue Gene/L system. This system is one of the few
large-scale machines that offer a detailed view of its topology. This information
is useful in having a better understanding of the prediction topologies we obtain
with our method. Also, the Blue Gene systems are widely used machines in HPC
and are representative for today’s large-scale systems. For more details on the
system-architecture see [1].

In this paper, we focus on the computational properties of the language LH,
used for reasoning about evolution graphs, and on the implementation of a topol-
ogy extraction system. In Section 2, we formally introduce evolution graphs, and
in Section 3 we describe the language LH and its semantics. In Section 4 we in-
troduce the CTL language, and use it for proving some complexity results as

96 M. Popovici

a1

a7

a1

a7

h1

a2

a3

a2

a3

h2

a5

a4

a5

a4

h3

a6

a8

a6

a8

h4

Net fail(n)

Net comm(n,m)

Net fail(m)

Sharing rack(n,m)

Fig. 1. A simple evolution graph

well as for gaining a better understanding on why LH is more suitable for topol-
ogy extraction. In Section 6 we further explore the relationship between LH and
temporal logics in general, as well as look at other similar approaches. Finally,
in Section 5, we use a fragment of LH for the implementation of a topology ex-
traction system for fault propagation in HPC large-scale systems, that optimizes
the prediction model presented in [2].

2 The Evolution Graph

Definition 1 (evolution graph). An evolution graph is defined as a structure
H = 〈H,A, T , E〉, where:

– H is a set of hypernodes, and A is a set of nodes;
– T : A→ H is an onto (surjective) function, sending each node to the hyper-

node it belongs to;
– E ⊆ A2 is a directed edge relation with the following restrictions: (i) for any
a ∈ A, there is at most one b ∈ A such that (a, b) ∈ E or (b, a) ∈ E. (i.e.
any node creates or destroys a unique edge) and (ii) (a, b) ∈ E =⇒ T (a) �=
T (b);

Let σ = {R1, . . . , Rn} be a vocabulary. The elements Ri are relation symbols
each having a certain arity designated by arity(Ri). In general, we require that
σ contains two types of relation symbols: quality labels and action labels
(σ = σQ ∪ σA).

Definition 2 (Label structure). A labeling structure is a σQ ∪ σA-structure
A = 〈I, RI

1, . . . , R
I
n〉, where:

– I is a set of individuals (the structure’s universe);
– for each Rk ∈ σQ and i ∈ RI

k, the pair 〈Rk, i〉 is a quality label;
– for each Rk ∈ σA and i ∈ RI

k, the pair 〈Rk, i〉 is an action label;

We designate a quality or an action label by RI
k(i), with Rk from the appropriate

vocabulary. We make a slight abuse of notation and use RI to designate the

Topology-Aware predictions in HPC Systems Using Evolution Graphs 97

appropriate set of quality or action labels, viewed as pairs 〈R, i〉, instead of a set
of tuples i.

A path in an evolution graph H is a finite sequence λ = a1, a2, . . . , an of
nodes from H such that, for any two consecutive nodes ai and ai+1, either of
the following is true: (i) E(ai, ai+1) (there is an edge between ai and ai+1) or
(ii) T (ai) = T (ai+1) (there exists a hypernode that contains both ai and ai+1).
Intuitively, each path is a temporally ordered sequence of events and properties.
An example can be seen in Fig. 1, where λ = a1, a2, a3, a4, a5, a6 is such a path.
An evolution graph H is cycle-free, if there is no pair of nodes a, b ∈ A, having a
path from a to b, and one from b to a i.e. H contains no cycles. In the following,
we discuss cycle-free evolution graphs only.

Definition 3 (labelled evolution graph). An A-labelled evolution graph is
a structure HA = 〈H,LA,LQ〉 consisting of a evolution graph and two total
labelling functions:

– LQ : E → ∪R∈σQR
I ; LQ maps each edge to a quality label;

– LA : A→ ∪R∈σAR
I maps each node to an action label;

We refer to labeled edges and nodes as quality edges and action nodes,
respectively.

3 The Language LH

LH is defined over a labelling structure A and expresses temporal relations be-
tween quality edges and action nodes from A-labelled evolution graphs. LH con-
tains two types of formulae: Q-formulae and A-formulae. The former evaluate
to quality edges, and the latter to action nodes. Each action node a and quality
edge (a, b) designates a moment of time T (a) and an interval [T (a), T (b)], re-
spectively. Given two quality edges q = (a, b), q′ = (a′, b′), and action nodes c, d
we introduce the following temporal operators, which abbreviate the traditional
interval relationships introduced by Allen [22].

– (before): q b q′ iff b occurs before a′;
– (just before): q jb q′ iff a occurs before a′ but b does not occur before a′;
– (starts same): q s q′ iff a coincides with a′;
– (ends same): q e q′ iff b coincides with b′;
– (meets): q m q′ iff b coincides with a′;
– (included): q i q′ iff a occurs after a′ and b occurs before b′;
– c
 d iff c occurs before d;
– c ≡ d iff c and d share the same hypernode;
– (creates/created by): c cA q and q cQ c iff c = a;
– (destroys/destroyed by): c dA q and q dQ c iff c = b;

For instance q b q′ is true if q’s interval occurs before q′’s, and they do not
overlap. An example of this relation can be found in Fig. 1, between qualities
Net fail(n) and Net fail(m). q jb q′ is true if q’s interval occurs before q′’s and

98 M. Popovici

they overlap. We say q is just before q′. In the same figure Sharing rack(n,m)
occurs just before Net fail(m). s and e abbreviate starts at the same time
with and ends at the same time with, respectively. m abbreviates meets, thus
designating qualities that end at the same time other qualities start. i abbre-
viates inclusion. c and d refer to the creation and destruction of qualities,
respectively. The inverse relations are defined in a similar manner. Notice that

 is only a partial order over action nodes, since if, for instance, H contains dis-
connected components, one could say nothing about the temporal order between
elements from distinct components.

Let Vars be a set of variables, A be a labelling structure over vocabulary
σ = σQ ∪ σA, and HA be a A-labelled evolution graph. We designate by ∝ any
connective for qualities in CQ = { b , jb , s , e , m , i }, by � any connective
for actions in CA = {
,≡}.

Definition 4 (LH syntax). Let Vars be a set of variables, A be a σQ ∪ σA-
structure and HA be a A-labelled evolution graph. Also, let X ∈ {Q,A}, and
†Q ∈ CQ and †A ∈ CA.

The syntax of a X-formula is recursively defined with respect to A, as follows:

1. if R ∈ σX with arity(R) = n and x ∈ Varsn, then R(x) is an atomic
X-formula (or an atom).

2. if φ is a X-formula then (φ) is also a X-formula;
3. if φ, ψ are X-formulae then φ †X ψ and φ¬ †X ψ are also X-formulae. We

call †X a positive connective and ¬†X a negative/negated connective.
4. Let R ∈ σX , φ, ψ, ω be X-formulae and †X designate either a positive or

negated connective. If φ has any of the following forms: (i) φ = R(x), (ii)
φ = R(x) †X ψ or (iii) φ = (R(x) † ω) †X ψ, then it is R-compatible.
Moreover, if φ and ψ are both R-compatible, then φ ∧ ψ and φ ∨ ψ are X-
formulae, and R-compatible as well.

Negation in LH has a restricted use. For instance:

(a) Net fail(x) ¬b Net comm(x,y) (b)¬Net fail(x) (1)

the formula from Equation 1 (a) is well-formed, however Equation 1 (b) is not
well-formed. The intuition is the following: we are interested in identifying classes
of properties of a certain type (i.e. being labelled with a quality label of a distinct
relational symbol in σQ). For instance, Equation 1 (a) characterizes the set of
properties of the type Net fail, such that they do not occur before some qualities
of the type Net comm. If we choose to interpret ¬Net fail(x) as the complement
of the edge relation E from H, with respect to all edges labelled Net fail(i) (with
i ∈ I), then LH-formulae could characterize edges with arbitrary labels.

The restrictions for the usage of the traditional connectives ∧ and ∨ have the
same motivation as in the case of negation, i.e. to preserve property types.
LH formulae are evaluated over paths from labelled evolution graphs H. We

assume there is no prior information regarding the temporal order of hypern-
odes. In the absence of such information, a partial ordering of hypernodes can be

Topology-Aware predictions in HPC Systems Using Evolution Graphs 99

inferred only by inspecting sequences of quality edges. We lift this assumption in
Section 5, where we consider evolution graphs with temporally ordered hypern-
odes. The evaluation of LH-formulae is defined by the mappings ‖·‖QH : LH → 2E

and ‖ · ‖AH : LH → 2A. If φ is a Q or A formula, then ‖φ‖QH and ‖ψ‖AH are the
set of quality edges or action nodes satisfying φ and ψ, respectively. Each tem-
poral connective ∝∈ CQ requires the existence (or absence) of paths between
nodes belonging to the corresponding qualities. For instance, in Fig. 1, given
q = (a1, a2) and q′ = (a5, a6), for q b q′ to be true, there must be (at least) one
path between a2 and a5. Such a path exists: λ = a2, a3, a4, a5. Inclusion (i)
requires two paths. In the same figure (a3, a4) i (a7, a8) is true because there is
a path from a1 to a3, and one from a4 to a6. We further note that the temporal
ordering of hypernodes (e.g. h1, . . . h4) is not generally known in advance, but
can be deduced based on the existing quality edges (in our example, the Net fail
and Net comm quality edges).

Given two quality edges q, q′ and a temporal connective ∝, we write λ∝(q, q′)
to refer to the path conditions required by ∝ between q and q′. These are straight-
forward from the introduction of temporal operators from Section 3. We use a
similar notation (λ � (a, a′)), for path conditions between actions.

Definition 5 (Semantics). The semantics of Q and A-formulae are defined
as follows. Let i be a set of individuals from the universe of a labelling structure
A, a, a′ denote action nodes, and q, q′ denote quality edges from a A-labelled
evolution graph HA. The tuple α and X ∈ {Q,A} are used in the following
way: whenever X = Q, α designates a quality edge, and whenever X = A, α
designates an action node. Finally, by φ[x\i], we refer to the formula obtained

from φ by replacing all variables from x with individuals from i.

1. ‖φ(x)‖XH =
⋃

i{α ∈ ‖φ[x\i]‖XH};
2. ‖R(i)‖XH = {α : LX(α) = R(i)};
3. ‖(φ) ∝ ψ‖QH = {q ∈ ‖φ‖QH : ∃q′ ∈ ‖ψ‖QH and λ∝(q, q′)}
4. ‖(φ) � ψ‖AH = {a ∈ ‖φ‖AH : ∃a′ ∈ ‖ψ‖AH and λ � (a, a′)}
5. ‖φ ¬† ψ‖XH = ‖φ‖XH \ ‖φ † ψ‖XH;
6. ‖φ † (ψ)‖XH = ‖φ † ψ‖XH
7. ‖R(i) † ψ‖XH = ‖(R(i)) † ψ‖XH;
8. ‖φ ∨ ψ‖XH = ‖φ‖XH ∪ ‖ψ‖XH;
9. ‖φ ∧ ψ‖XH = ‖φ‖XH ∩ ‖ψ‖XH;

10. ‖φ cQ ψ‖QH = {(a, b) ∈ ‖φ‖QH : a ∈ ‖ψ‖AH}
11. ‖φ dQ ψ‖QH = {(a, b) ∈ ‖φ‖QH : b ∈ ‖ψ‖AH}
12. ‖φ cA ψ‖AH = {a ∈ ‖φ‖AH : ∃(a, b) ∈ ‖ψ‖QH}
13. ‖φ dA ψ‖AH = {b ∈ ‖φ‖AH : ∃(a, b) ∈ ‖ψ‖QH}

Rule 1 states that evaluating a formula with parameters reduces to the evaluation
of formulae obtained by all possible substitutions of variables from Vars with
individuals from the labelling structure universe, I. Notice that in rules 2 to 9
the evaluation order of formulae matters. The parentheses and negation enforce
the evaluation of the left-side formula. In the absence of parentheses, formulae

100 M. Popovici

evaluate from right to left. For instance, in the evolution graph from Fig. 1, let us
designate Q1 = Net fail(n), Q2 = Net comm(n,m) and Q3 = Net fail(m). Then,

we have that ‖(Q1 b Q2) m Q3‖QH = {(a, b)} while ‖Q1 b Q2 m Q3‖QH = ∅.
Also, negation should not be seen as interpreting inverse relations. Consider

the evolution graph from Fig. 1, but with the quality edge (a1, a2) removed.

Then, ‖Q3 ¬b Q1‖QH = {(a5, a6)}, whereas Q3 after Q1 would evaluate to the
empty set. The main difference is that negation requires the absence of a rela-
tion, whereas an inverse relation requires the presence of an opposite relation.

Definition 6 (Model checking). Let H be a A-labelled evolution graph, and
φ an X-formula in LH (X ∈ {Q,A}). We write H, α |=X φ iff α ∈ ‖φ‖XH. The
problem whether H, α |=X φ is the X-model checking problem for LH.

4 LH and Computation Tree Logic

The path conditions described in the semantics of LH can also be expressed in
the well-known temporal logic CTL (Computation Tree Logic). CTL is strictly
less expressive than LH, since it doesn’t allow first-order predicates. Neverthe-
less, the language L∗

H, obtained by restricting the labelling structure from LH
to propositional symbols, can be embedded into CTL, over a particular type
of labelled transition systems. This result has a twofold utility: (i) it provides
a means of comparing the efficiency of L∗

H and CTL, and (ii) it is useful for
obtaining complexity results for both L∗

H and the full LH.
In the following, we give a brief introduction to the syntax and semantics of

CTL. For a detailed description see [24].
Let P be a set of propositional symbols and L be a finite set of labels. Given

p ∈ P , a ∈ L, the language CTL consists of formulae generated by the following
grammar:

ϕ ::= p | ¬ϕ |E〈a〉ϕ |ϕ ∧ ϕ |E(ϕ U ϕ) (2)

The other traditional connectives are introduced as abbreviations. For instance:
ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), E〈a〉ϕ ≡ ¬E〈a〉¬ϕ.

Traditionally, CTL formulae are interpreted over Kripke structures. Here, we
shall use labelled transition systems (LTS) instead. For details on evaluating CTL
formulae over LTSs, see [8].

A LTS is a structure M = 〈S, (Ri)i∈L, π〉 here S is a set of states, each
Ri ⊆ S × S is an i-labelled transition relation, one for each label i ∈ L, and
π : S → 2P is an interpretation function associating for each state s a set
π(s) consisting of the propositional symbols that hold in s. The size of a LTS
M is the sum of the state-space and the number of transitions of each type:
|M| =

∑
s∈S |π(s)| +

∑
i∈L |Ri|.

A path in a LTS is a possibly infinite sequence θ = s1, s2, . . . sn, . . . of states
such that, for any si, si+1 there is some transition from si to si+1. We use θ[i]
to denote the i-th state in the sequence θ and θ[i,∞] to denote the subpath of
θ starting from i: θ[i]θ[i + 1] For a state s ∈ S in some LTS M, we write
ΘM(s) to designate the set of paths in M that start in s.

Topology-Aware predictions in HPC Systems Using Evolution Graphs 101

Given a LTS M = 〈S, (Ri)i∈L, π〉, a state s ∈ S, and an interpretation func-
tion π, the semantics for CTL is defined as follows:

– M, s |=CTL p iff q ∈ π(s);
– M, s |=CTL ¬ϕ iff M, s � |=CTLϕ;
– M, s |=CTL ϕ2 ∧ ϕ2 iff M, s |=CTL ϕ1 and M, s |=CTL ϕ2

– M, s |=CTL E〈a〉ϕ iff there is a path θ ∈ ΘM(s) such that Ra(θ[0], θ[1]) and
M, θ[1] |=CTL ϕ;

– M, s |=CTL E(ϕ1 U ϕ2) iff there is a path θ ∈ ΘM(s) such that M, θ[i] |=CTL

ϕ2, for some i ≥ 0 and M, θ[j] |=CTL ϕ1 for all j such that 0 ≤ j < i;

We also introduce some ad-hoc notations. Given a set of labels L:

– E〈L〉φ ≡
∨

i∈L E〈i〉φ;
– E(ϕ1 UL ϕ2) ≡ E((ϕ1 ∧ 〈L〉�) U (ϕ1 ∧ 〈L〉ϕ2));

For instance E〈a, b〉p is true in those states s that have access to states s′ where
p is true, via either a or b-transitions, and (¬q) U{a,b} p is true if there is a path
consisting of either a or b transitions on which q is false in each state (at least)
until p becomes true.

Proposition 1 (CTL model checking [7]). Given a LTS M, a state s and
a CTL formula ϕ, checking whether M, s |=CTL ϕ is PTIME-complete.

4.1 The Language L∗
H and CTL

In this section, we describe a fragment of LH having as labels propositional
symbols only, and show that this fragment can be embedded in CTL. Let A∗ =
〈I, RI

1, . . . , R
I
n〉 be any labelling structure over a vocabulary with unary relation

symbols, where I = {i1, i2, . . . , in} and for each 1 ≤ k ≤ n we have RI
k = {ik}.

Under these restrictions, A∗ becomes nothing more than a set of propositional
symbols: A∗ = {pk ≡ RI

k(ik) : 1 ≤ k ≤ n}. Let L∗
H denote the subset of the

language LH, that is built over A∗, and whose formulae contain no variables.
Starting from an A∗-labelled evolution graph H we build a LTS MH in

the following way: (i) the set of labels is L = {h, c, d, c−1, d−1}, the set of
propositional symbols is P = A∗ (ii) for each action node a ∈ A and for
each quality edge q ∈ E, we build states sa and sq, respectively. The inter-
pretation function π is built as follows: if LQ(q) = pk, then pk ∈ π(sq) and if
LA(a) = pk, then pk ∈ π(sa). Thus, quality edges and action nodes are trans-
formed into states, and their labels become propositional symbols that hold in
these states. (iii) transitions are built in the following way: for any two simul-
taneous action nodes (T (a) = T (b)), we build a h-transition between the corre-
sponding states: Rh(sa, sb). By this construction simultaneous action nodes form
h-labelled cliques in MH. For any quality edge q = (a, b) ∈ E, we build
Rc(sa, sq), Rc−1(sq, sa), Rd(sq, sb) and Rd−1(sb, sq). Thus, c-labelled transitions
bind action states to the quality states they introduce, and d-labelled transitions
bind quality states to the action states that destroy them. c−1 and d−1-labelled
transitions make the inverse bindings. The entire construction of MH can be
done in deterministic polynomial time, with respect to the size of H.

102 M. Popovici

Definition 7 (Embedding L∗
H in CTL). Let φ, ψ be formulae in L∗

H. We
build equivalent CTL formulae, by applying a transformation procedure T : L∗

H →
CTL, recursively defined as follows:

1. for pk ∈ L∗
H, T(pk) = pk;

2. T(φ b ψ) = T(φ) ∧ E(� U{c,h,d} T(ψ));
3. T(φ s ψ) = T(φ) ∧ E〈c−1〉E〈h〉E〈c〉T(ψ);
4. T(φ cQ ψ) = T(φ) ∧ E〈c〉T(ψ);
5. T(φ¬ † ψ) = T(φ) ∧ ¬T(φ † ψ);
6. T((φ †1 φ′) †2 ψ) = T(φ †1 φ′) ∧ T(φ †2 ψ);
7. T(φ ∧ ψ) = T(φ) ∧ T(ψ);
8. T(φ ∨ ψ) = T(φ) ∨ T(ψ);

The relation between action states and quality states can be expressed in CTL
using modalities. For instance E〈c〉pk is true in all action states that create a
quality state labelled pk. E〈h〉pk is true in all action states which are simultaneous
with an action state labelled pk. The transformation rule 2 gives us a formula
that is true in a state where T(φ) is true, and there is a path consisting of c,h
or d-labelled edges on which T(ψ) will eventually become true.

Intuitively, all local relations such as starts same or meets are described using
the in the next state operators 〈a〉 (and other boolean connectives), and those
expressing non-local relations (i.e. arbitrary path conditions) such as before or
includes are described using the CTL U (Until).

The translations for other temporal connectives for Q-formulae: e , jb , m ,
i and d Q and those for A-formulae:
, ≺, ≡ and d A are purely technical,

and follow the same intuition. Due to limited space, we omit these definitions.

Proposition 2. Let H be a A∗-labelled evolution graph, φ ∈ L∗
H, q ∈ E and

a ∈ A. Then H, q |=Q φ iff MH, sq |=CTL T(φ) and H, a |=A φ iff MH, sa |=CTL

T(φ).

Proof (Sketch): In the following, we discuss Q-formulae only. The case for A-
formulae is analogous. The property we prove is:

H, (a, b) |=Q φ ⇐⇒ MH, s(a,b) |=CTL T(φ)

The proof is done by structural induction over the construction of formulae φ.
The basis case is for φ = pk. Since T(pk) = pk, H, q |=Q pk ⇐⇒ MH, sq |=CTL

pk trivially holds, from the construction of MH. For each of the semantic rules
3. . . 13 described in Definition 5, an induction step is required. Here, we will
confine ourselves to rule 2, where ∝= b . The remaining cases can be treated
in a similar way.

Assume H, (a, b) |=Q pk b ψ, for some pk ∈ A∗. Therefore: (i) H, (a, b) |=Q pk
and (ii) there is a quality edge (a′, b′) ∈ ‖ψ‖QH and (iii) a path λ, such that λ
connects action nodes b and a′: λ = c1, c2, . . . , cn, where c1 = b and cn = a′.
From (i), (ii) and the induction hypotheses, it follows that MH, s(a,b) |=CTL pk
and MH, s(a′,b′) |=CTL T(φ). For each ci, ci+1 in λ, we have either E(ci, ci+1)

Topology-Aware predictions in HPC Systems Using Evolution Graphs 103

or T (ci) = T (ci+1). Therefore, in MH, between sci and sci+1 there is ei-
ther a quality state sq such that Rc(sci , sq) and Rd(sq, sci+1) or there is a h-
transition: Rh(ci, ci+1). It immediately follows that, in MH, there is a path θ
from sb to sa′ , consisting of c, d, or h-transitions. Since H, s(a,b) |=CTL pk and
H, s(a′,b′) |=CTL T(ψ), the existence of θ between sb to sa′ makes H, s(a,b) |=CTL

pk ∧ E(� U{c,h,d} T(φ)) true. Therefore H, s(a,b) |=CTL T(pk b ψ). The second
part of the implication is shown similarly. �

Proposition 3 (L∗
H-model checking). The Q and A-model checking problems

for L∗
H are in PTIME.

Proof (Sketch): Given a evolution graph H, a Q (or A) formula φ ∈ L∗
H, and

α ∈ E (or α ∈ A), we build a LTS MH, and the transformed formula T(φ). The
total construction is done in deterministic polynomial time. Finally, we solve
MH, sα |=CTL T(φ). Proposition 2 guarantees that the answer to the above
problem is also an answer for the problem H, α |=X φ. �

Proposition 3 does not imply completeness for PTIME, nor does it provide with
an efficient mechanism for L∗

H model checking. Indeed, the transformation from
Section 4.1 provides a solution for L∗

H model checking via CTL model checking,
but this approach is not necessarily optimal, since the CTL formulae we model
check, might depend in size to the size of the LTS. As we will further see, a more
precise bound on L∗

H is unnecessary as the model checking problem for the full
LH is much harder. In order to obtain a hardness result, we use a reduction to
the conjunctive query satisfaction problem. For details on conjunctive queries,
see [15].

Definition 8 (Conjunctive sentences). Let σ be an arbitrary vocabulary. A

sentence ϕ over σ is conjunctive if it has the following form: ϕ = ∃x
∧k

i=1 Ck(yk)
where each Ck is in σ and each yk is a tuple consisting of variables from x and
constant symbols from σ.

Proposition 4 (Solving conjunctive queries [6]). Given a σ-structure S
and a conjunctive sentence ϕ, the decision problem S |= ϕ is NP-complete.

Proposition 5 (Model checking the full LH). The Q and A-model checking
problems for the full LH are NP-complete.

Proof (Sketch): Let H be a A-labelled evolution graph, α be an edge (or action)
from H, and φ(x) be a LH formula.

Membership: Membership is established by the following procedure: non-
deterministically choose a tuple i, and then solve the problem H, α |=X φ(i),
in the following way: replace each occurrence of any Ck(ik) in A with a symbol
pCk(ik)

. Thus, we get a labelling structure A∗ consisting of propositional symbols

only. By operating the same replacement in H and φ(i), we get H∗ and φ∗, and
our problem reduces to the model checking problem for L∗

H, which is in PTIME.
Hardness : Hardness is shown for Q-formulae. Let σ be a vocabulary, S be a σ-

structure, and ϕ = ∃x
∧n

k=1 Ck(yk) be a conjunctive sentence over σ. We build

104 M. Popovici

σQ = σ and σA = {N} with arity(N) = 1. The set of individuals I consists
of all elements from the universe of S, and two distinguished elements {s, e}.
The labelling structure A, with the universe I is 〈S, N I〉 where N I = {s, e}.
The evolution graph is built as follows. First, we create an (initial) hypernode
h0. Assume we have m predicate symbols in S. For each 1 ≤ k ≤ m, we do
the following: (i) create a new hypernode hk; (ii) for each tuple c ∈ CI

k , we
create two action nodes akc and bkc , as well as a quality edge (akc , b

k
c). All action

nodes akc and bkc are in hypernodes hk−1 and hk, respectively (T (akc) = hk−1

and T (bkc) = hk). They are labeled as follows: LA(akc) = N(s), LA(bkc) = N(e)
and LQ(akc , b

k
c) = Ck(c). The evolution graph obtained this way is a multi-link

chain, where all qualities labelled by the same Ck span the same time intervals.
Let q be some arbitrary quality edge labelled with a predicate symbol C1. Now,
build a LH-formula φ = C1(y1) b C2(y2) . . . b Cn(yn). It is straightforward that
H, q |=Q φ iff S |= ϕ. Hardness for A formulae is shown using a similar chain
construction. �

Proposition 5 shows us that, in terms of computational complexity, LH pays
much more for allowing first-order predicates than for exploring the temporal
structure it is defined on. Restricting the arity of our predicates also brings
no improvement. The proof of Proposition 4 makes this obvious since, even for
predicates with arity 2, model checking a conjunctive sentence is NP-complete.
It would seem unjustified to explore other fragments of LH that do allow first-
order predicate. As it turns out, there are practical cases where such fragments
are interesting.

5 LH in HPC Systems

In the following, we consider evolution graphs where the set of hypernodes has
a total order: 〈H,<〉. This is motivated by the fact that, in practical applica-
tions such as ours, the moment when an action occurs is known in advance.
The restriction has no impact on the model checking complexity, since, as seen
previously, the source of complexity is in the usage of first-order predicates as
labels.

In order to deploy LH for the extraction of topology information in large-scale
systems, we use evolution graphs as a means for the storage of events and event-
related properties generated by such systems. For each event recorded in the
HPC system log, the following information is given: the moment of occurrence
(given as a Unix timestamp), the event type (e.g. network interface card error,
memory error, etc.), and the machine that generated the message. An example
can be seen in Fig. 2 a. We model the occurrence of an event as an action
node, and use the node labelling to encode all event-dependent information. For
instance, the record shown in Fig. 2 a, is described by an action node a, such
that LA(a) = Event(1244192545, abem5, 1130), where 1244192545 indicates the
timestamp, abem5 indicates the device where the event was signalled and 1130
encodes the event type.

Topology-Aware predictions in HPC Systems Using Evolution Graphs 105

1244192545 abem5 1130 1004 1045 20

a b

Fig. 2. Log entries and correlations

Hypernodes are built by considering a certain interval δi as time unit. For
practical reasons, the δi value used in our experiments was 5 seconds. The entire
duration covered by the log is split into intervals of size δi, and a hypernode is
created for each such interval. All action nodes having a timestamp falling in
some interval of size δi is associated to the corresponding hypernode.

Based on the analysis model presented in [2], a list of correlated event types is
built. An example of a simplified correlation record is shown in Fig. 2 b. We model
a correlation between two actual events a and b as a quality edge (a, b) labelled
Correlation(1004, 1045, 20), where 1004 and 1045 are the correlated event types,
and 20 indicates the approximate delay between events.

After the evolution graph is built in the manner described above, LH-model
checking is used for extracting correlation patterns and statistical information
about the system. An interpreter for LH was implemented in Java and Jess.
The Jess engine was responsible for storing the evolution graph as a knowledge
base, and for the pattern matching process involved in LH-model checking. We
use LH to express correlations between events, and the locations where they
occur. For instance, the formula from Fig. 3 identifies correlated error events
between machines m1 and m2. If the set of quality edges satisfying the formula
has a considerable size, then it can be assumed that the error event et1 from
m1 will propagate as et2 on m2. By looking at the most frequent occurrences of
correlated locations, a set of propagation paths for faults can be built. We call
this structure a propagation topology and we further use it to get some insight
of the behaviour of faults in large HPC systems.

Our results highlighted previous observations regarding error propagation and
brought new insights. Firstly, our experiments show that, for fault messages, 98%
of the correlations are between locations in the same midplane and rack, the 2%
representing unknown locations. For informational messages the percentage is
a little lower, around 90%. However, this still confirms our initial finding that
messages tend to propagate following the architecture topology of the system.
This is an important result since it highlights a possible optimization for the
prediction method by distributing its execution independently on each rack.

Secondly, we found that only around 20% of the nodes in the system appear
in the extracted topology. This was surprising and it shows that the propagation
topology does not follow the exact architecture but only a subset of it. As a result,

Correlation(et1, et2, x) cQ Event(t,m1, et1) ∧
Correlation(et1, et2, x) dQ Event(t,m2, et2)

Fig. 3. Inferring correlated locations

106 M. Popovici

whenever attempting to predict failures, it is not always necessary to explore the
entire system architecture. Another observation is that informational messages
propagate less than faults and on a smaller number of locations. Therefore, these
two types tend to behave differently and any prediction system needs to analyse
them separately.

We have also investigated the distribution of identified correlations on dif-
ferent locations in the system, depending on how much of the log is analysed.
We observed a logarithmic growth of the number of correlations found when
analysing different number of months. After 6 months the number of correla-
tions is almost identical with what we found after analysing the entire lifespan
of the system, the difference being of only 0.71%. Therefore, 6 months of log
data prove sufficient for building accurate prediction topologies.

An application running on a HPC machine usually uses only a subset of
computing nodes, so not all node crashes influence its execution. It is important
that prediction includes not only the time, but also the location of the next failure
in order for current fault tolerance mechanisms to be able to take proactive
measures. By extracting topology information, our implementation is able to
identify the set of nodes that are potential threats to the application execution.

6 Related Work

Current knowledge representation methods have limitations with respect to mod-
elling dynamic domains. They focus more on providing a static description of
a modelled universe and less on capturing time and change. Approaches such
as DL (Description Logics) [4] are suitable for describing snapshots of an ap-
plication domain, but fail in describing its evolution. Although, in many cases,
temporal concepts can be embedded, either as modelling primitives (Temporal
Extensions of Description Logics (TEDL) [3]), or as pre-defined concepts (see
OWLTime [17]), this approach is rather impractical since many TEDL’s are
either undecidable or have very high complexity bounds.

Temporal logics such as Linear Temporal Logics (LTL) [19], Computation Tree
Logic (CTL and CTL∗)[7] and the Mu Calculus [9] would seem appropriate for
this task. Indeed, the model checking problem is in PTIME for interesting frag-
ments of these logics. However, there is an important difference between Kripke
Structures and evolution graphs. The first are computational structures [24] that
encode all possible states of a deterministic system. Temporal reasoning (i.e.
model checking) relies on unfolding the computational structure, and establish-
ing whether certain properties hold. Unlike Kripke Structures, evolution graphs
are models of behaviour, and thus can be compared to paths or computation
trees. An evolution graph encodes an unique evolution of a system which is
not necessarily deterministic. This means that there is no structure able to en-
code all possible configurations of a system, and which unfolded, can produce
an evolution graph. This is the case for error message generation in HPC com-
puting. Also, any system in which actions can occur arbitrarily (but which have
foreseeable effects, i.e. the introduction or ceasing of qualities), fall in the same

Topology-Aware predictions in HPC Systems Using Evolution Graphs 107

category. As a result, unlike temporal logics, �LH can only be used to look into
the past. Based on the domain’s history, one can make assumptions about the
future evolution of the system, as is the case in HPC error message prediction.

As shown in Section 4.1, the information captured by evolution graphs could
be embedded in Kripke Structures, and CTL-model checking could be used to
verify temporal relations. However, there is a scalability issue. Computational
structures are expected to have limited size. However, the logs used in our anal-
ysis had a number of 1,969,710 messages, and future systems are expected to
produce much larger logs. Even with symbolic model checking, using such large
Kripke Structures can become unfeasible.

Also, using Kripke Structures for storing temporal information in a way dif-
ferent from that shown in Section 4.1 may be inefficient. Conventionally, if a
property p holds over a number of n states, all n states must be labelled with
p. If there are two such properties in the system, then this will result in 2n
labelings, whereas in evolution graphs (and in the particular type of Kripke
Structures discussed in Section 4.1), such a property is represented as an edge
(or a quality state), irrespective of it’s lifespan. An exponential growth in the
number of states can also be found in other approaches for encoding temporal
intervals such as the one presented in [8].

Finally, evolution graphs and LH provide with more expressiveness in describ-
ing the possible properties of the system. This is achieved by using relations for
labelling, instead of just sets of propositional symbols.

7 Conclusions

Evolution graphs and LH provide a straightforward way for representing and
reasoning about domains that are constantly changing. While model checking is
not as fast as in temporal logics, LH provides an acceptable trade-off between
efficiency and an increased flexibility in describing domain-dependent properties.
The LH connectives offer a simple way for expressing temporal patterns. The
same task is not always as easy in temporal logics such as CTL. Also, evolu-
tion graphs and LH prove useful. The LH model checking mechanism provides
with an accurate analysis method for HPC logs that highlights a couple of opti-
mization solutions for fault prediction systems: (i) prediction algorithms can be
parallelised, since errors propagate only locally (ii) the entire system architecture
is not always relevant for fault prediction and (iii) for the building of a precise
propagation topology, 6 months of logs suffice.

Also, we would like to note that the usage of LH is not limited to the HPC
setting. The implementation of our LH-model checker can be naturally extended
to a language that allows the specification of time-dependent behaviour in Multi-
Agent Systems. Rule-based languages such as Jason [5], SOAR [13], and even
CLIPS [21], do not incorporate primitives for expressing temporal relations be-
tween entities in an application-dependent domain. As shown in our previous
work [20], a language equipped with temporal primitives allows for more flexi-
bility in describing time-dependent domains. Therefore, a temporally-flat knowl-
edge base of an agent can be replaced by an evolution graph. Thus, LH can

108 M. Popovici

be used to add a temporal dimension to the reasoning process in Multi-Agent
Systems.

Acknowledgements. The work has been funded by Project 264207, ERRIC-
Empowering Romanian Research on Intelligent Information Technologies/FP7-
REGPOT-2010-1 and by the Sectoral Operational Programme Human Resources
Development 2007-2013 of the Romanian Ministry of Labour, Family and Social
Protection through the Financial Agreement POSDRU/88/1.5/S/61178.

References

1. Almási, G.S., Bellofatto, R., Brunheroto, J.R., Caşcaval, C., Castaños, J.G., Ceze,
L., Crumley, P., Erway, C.C., Gagliano, J., Lieber, D., Martorell, X., Moreira,
J.E., Sanomiya, A., Strauss, K.: An Overview of the Blue Gene/L System Software
Organization. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 543–555. Springer, Heidelberg (2003)

2. Gainaru, A., Franck Cappello, W.K.: Taming of the shrew: Modeling the normal
and faulty behavior of large-scale hpc systems. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 24–35 (to appear,
2012)

3. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30, 171–210 (2001)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

5. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries
in relational data bases. In: Proceedings of the Ninth Annual ACM Sympo-
sium on Theory of Computing, STOC 1977, pp. 77–90. ACM, New York (1977),
http://doi.acm.org/10.1145/800105.803397

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Proceedings of the LITP Spring School on Theoretical Computer Science
on Semantics of Systems of Concurrent Processes, pp. 407–419. Springer-Verlag
New York, Inc., New York (1990),
http://dl.acm.org/citation.cfm?id=111693.111710

9. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity
and Finite Models, pp. 185–214 (1996)

10. Capello, F., Geist, A., Gropp, B., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience. International Journal of High Performance Computing Applications 23
(2009)

11. Gainaru, A., Cappello, F., Trausan-Matu, S., Kramer, B.: Event Log Mining Tool
for Large Scale HPC Systems. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-
Par 2011, Part I. LNCS, vol. 6852, pp. 52–64. Springer, Heidelberg (2011)

http://doi.acm.org/10.1145/800105.803397
http://dl.acm.org/citation.cfm?id=111693.111710

Topology-Aware predictions in HPC Systems Using Evolution Graphs 109

12. Gallet, M., Yigitbasi, N., Javadi, B., Kondo, D., Iosup, A., Epema, D.: A Model
for Space-Correlated Failures in Large-Scale Distributed Systems. In: D’Ambra,
P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp.
88–100. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1887695.1887707

13. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelli-
gence. Artif. Intell. 33(1), 1–64 (1987),
http://dx.doi.org/10.1016/0004-3702(87)90050-6

14. Lan, Z., Zheng, Z., Li, Y.: Toward automated anomaly identification in large-scale
systems. IEEE Trans. on Parallel and Distributed Systems 21(2), 174–187 (2010)

15. Libkin, L.: Elements Of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An Eatcs Series. Springer (2004)

16. Oldfield, R.A., Arunagiri, S., Teller, P.J., Seelam, S., Varela, M.R., Riesen, R.,
Roth, P.C.: Modeling the impact of checkpoints on next-generation systems. In:
Proceedings of the 24th IEEE Conference on Mass Storage Systems and Technolo-
gies, MSST 2007, pp. 30–46. IEEE Computer Society, Washington, DC (2007)

17. Pan, F.: An Ontology of Time: Representing Complex Temporal Phenomena for
the Semantic Web and Natural Language. VDM Verlag, Saarbrucken (2009)

18. Park, Geist, A.: System log pre-processing to improve failure prediction. In: DSN
2009, pp. 572–577 (June 2009)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

20. Popovici, M., Muraru, M., Agache, A., Giumale, C., Negreanu, L., Dobre, C.: A
Modeling Method and Declarative Language for Temporal Reasoning Based on
Fluid Qualities. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-
ConceptStruct 2011. LNCS, vol. 6828, pp. 215–228. Springer, Heidelberg (2011)

21. Riley, G.: NASA Clips: A Tool for Building Expert Systems (June 2006),
http://www.ghg.net/clips/CLIPS.html

22. Roşu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic – Translation to
LTL and Monitor Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 263–277. Springer, Heidelberg (2006)

23. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. 42(3), 10:1–10:42 (2010)

24. Schnoebelen, P.: The complexity of temporal logic model checking. In: Proceedings
of Advances in Modal Logics AiML 2002. World Scientific (2003)

http://dl.acm.org/citation.cfm?id=1887695.1887707
http://dx.doi.org/10.1016/0004-3702(87)90050-6
http://www.ghg.net/clips/CLIPS.html

	Using Evolution Graphs for Describing
Topology-Aware Prediction Models in Large Clusters
	Introduction
	The Evolution Graph
	The Language LH
	LH and Computation Tree Logic
	The Language LH* and CTL

	LH in HPC Systems
	Related Work
	Conclusions
	References

