
A Numerical Approach to the Merging
of Argumentation Networks

Dov Gabbay1 and Odinaldo Rodrigues2

1 Bar Ilan University, Israel; Department of Informatics,
King’s College London; and University of Luxembourg

dov.gabbay@kcl.ac.uk
2 Department of Informatics, King’s College London

odinaldo.rodrigues@kcl.ac.uk

Abstract. In this paper, we propose a numerical approach to the problem of
merging of argumentation networks. The idea is to consider an augmented net-
work containing the arguments and attacks of all networks to be merged and then
associate a weight to each of its components based on how they are perceived by
the agents associated with the local networks. The combined weighted network is
then used to define a system of equations from which the overall strength of the
arguments is calculated.

1 Introduction

An argumentation system is a tuple 〈S,R〉, where S is a non-empty set of arguments
and R is a binary relation on S representing attacks between the arguments [12]. One
may argue that the main objective of an argumentation system is to identify sets of
winning arguments in S, based on the interactions represented by R and an appropriate
semantics determining which subsets of S can be taken as a coherent view. Such subsets
are called extensions.

This paper concerns the merging of argumentation systems. We imagine a family of
k agents and a large set of possible arguments. Each agent ai can see a subset Si of
these arguments and in her opinion, the attack relation should be Ri ⊆ S2

i . Agent ai
further adopts a set of winning arguments Ei ⊆ Si. The agents form a community and
a consensus is required. Thus our problem is to merge these k systems 〈Si, Ri, Ei〉 into
a single system.

At first, one may think that the merging process can be done at the meta level, i.e., by
considering only the winning arguments in each local system. However, this not only
will sometimes produce unintuitive results [11], but will also fail to simultaneously
satisfy well-known social choice properties [22]. The reasons have to do with the fact
that attacks known only locally are not represented by the local extensions of winning
arguments, but they may well be relevant during the collective decision as a whole. If
we want to take both the local decisions and the local topologies of the various systems
into account, we need a framework that can take all this information into account.

Our starting point is an augmented argumentation system containing the arguments
and attacks of all individual networks. We approach the merging problem from a voting
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perspective: agents put forward a vote on the components of the augmented system
depending on how they perceive these components locally. However, the votes are not
used as in an usual voting procedure such as majority voting, etc. For us, votes are used
to support the idea of reinforcement: the more a component appears locally, the more
it is represented collectivelly. We aggregate the votes of the components resulting in an
augmented argumentation system in which both arguments and attacks have weights
with values in the interval U = [0, 1]. Thus, we get a network of the form 〈S,R, V 〉,
where 〈S,R〉 is a traditional network and V is a function from S ∪ R into U . Such
augmented systems can be seen a special case of support and attack networks [3]. We
believe that the merging of argumentation systems is a scenario that naturally justifies
the employment of weights in attacks and arguments.

We now have a situation whereby each agent has a traditional argumentation system,
they all vote and get a merged combined numerically weighted argumentation system.
This is a mismatch. So we need to explain how we understand the numerical weights
and then extract/project from the merged system a set of winning arguments. Had we
started working from the outset with numerical weighted systems, we would have more
choice on how to perform the merging because we could use the original weights in the
computation of the overall result, e.g., by constructing a new weighted argumentation
system representing the group as a whole.

Given an augmented argumentation system with weights constructed as described
above, we see the weights of the nodes as the overall initial level of support for the
arguments in the community and the weights of the edges as the intensity with which
the attacks between the arguments are carried out.

It is natural to expect that the overall support for an argument will decrease in pro-
portion to the strength of its attacking arguments and the intensity with which these
attacks are carried out. However, since the attacking arguments may themselves be at-
tacked, we need to find a way to systematically propagate the values in the network
and determine equilibrium values for the nodes based on their interactions, much in the
spirit of an interaction-based valuation [8]. This is akin to finding the extensions in
a traditional network. However, our work has two important differences: 1) we allow
both arguments and attacks to have weights; and 2) we calculate the equilibrium values
using the equational approach of [14,15]: we see the augmented system as a generator
of numerical equations whose solutions correspond to the equilibrium values.

Argumentation systems in which weights are associated to arguments have been
studied before. One of the first approaches was proposed in [4] where the weight of
an argument is used to express its relative strength for a particular audience. Besnard
and Hunter proposed a categoriser function that assigned a value to a tree of arguments
[5]; Cayrol and Lagasquie-Schiex introduced the concept of graduality in the valuation
of arguments in [8]; and other examples of systems using weights in one form or another
include [3,13,2,6,23,19]. The novelty of our approach is in the use of the weights to rep-
resent the support of the community for both arguments and attacks and in the way that
equilibrium values for these components are calculated using a system of equations.

The rest of the paper is structured as follows. In Section 2, we introduce some basic
concepts and the equational approach. In Section 3, we show how the merging process
is done. We then show how to calculate equilibrium values in Section 4 and illustrate
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the idea with some examples in Section 5. Some comparisons with related work are
done in Section 6 and we finish with some discussions and conclusions in Section 7.

2 Background

As mentioned in the previous section, given an argumentation system 〈S,R〉, one is
generally interested in finding the winning arguments in S according to a particular
semantics.

One way of doing this is to look at subsets E ⊆ S that are as large as possible and yet
whose arguments are compatible with each other. Two common notions of compatibility
require E to be conflict-free, i.e., ∀X,Y ∈ E, it is not the case that (X,Y ) ∈ R; and
that all arguments X ∈ E are acceptable, i.e., ∀Y ∈ S, if (Y,X) ∈ R, then ∃Z ∈ E
such that (Z, Y ) ∈ R. If E is conflict-free and only contains acceptable arguments, then
we say that E is admissible. An admissible set E ⊆ S that is also maximal with respect
to set inclusion amongst all admissible sets is called a preferred extension of 〈S,R〉.

A preferred extension can be defined in terms of a complete labelling of the set of
arguments that assigns in to arguments that are accepted; out to those that are rejected;
and undec to those that are neither [7, Theorem 2]. Such labelling is called a Caminada
labelling [7, Definition 5] and has advantages over the extension approach, because the
latter only identifies the set of arguments that are accepted. We will return to this type
of labelling later in the section.

In traditional argumentation systems, there is no notion of weight associated to an
argument or attack. However, there are scenarios in which this association seems natu-
ral. In the case of arguments, the weights may come, for instance, from an underlying
many-valued logic; as the normalised result of a vote put to a community of agents;
or as the result of interactions between the arguments in a network (as in [8]). In the
first case, the values are intrinsic to the arguments whereas in the last two, the values
are conceptually external to the argumentation framework. Mixed approaches are also
possible. We may start with each agent assigning numerical values via considerations
which are conceptually connected to the arguments and their meaning and end up with
merged values obtained during a voting procedure. The application area can dictate the
most appropriate approach.

For similar reasons, an attack between argumentsX and Y may also be given varying
degrees of strength rather than just 0 or 1. Again, the strength may have conceptually
related, internal, argumentation meaning or may be conceptually external to the argu-
ments themselves. For example, it may be obtained from the statistics about the corre-
lation between X and Y ; or calculated from the proportion of members of a community
supporting the attack of X on Y (as in [9]). It may even come from considerations about
the geometry of the network itself.

An even more compelling scenario for the use of extended values is because they
arise naturally in formalisms that are concerned with the problem of merging of ar-
gumentation systems, which we consider here. The concept was introduced by Coste-
Marquis et. al. in [11].

Because of these considerations, it may be wise when presenting a numerical argu-
mentation network to provide not only the numerical values themselves but also to give
their origin, internal or external, etc.
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Now, given the numerical network 〈S,R, V 〉 we need to somehow figure out what
the various values mean. We can regard the values given by V as start-up values that
we may want to adjust depending on how the components interact in the network. The
adjustment corresponds to the valuation step in Cayrol and Lagasquie-Schiex’s termi-
nology [8]. However, in our case we want arguments to be weakened in proportion to
the strength of the attacks and the intensity with which these attacks are carried out.
Ideally, we want to find equilibrium values for all arguments.

One good option to calculate these values is by using the equational approach pro-
posed in [14,15] which sees a numerical network as a generator of equations. Provided
the equations respect the meaning of the weights of the arguments and attacks an “eval-
uation” of the network can be done according to the solutions found for the system of
equations. For an argument X , the equilibrium value 1 means definitely “in”; 0 means
definitely “out”; and any other value inbetween means how close to in (or out) X is. We
may even decide on an appropriate threshold value for the acceptance of arguments.

An example of how such equations can be generated is given by the schema Eqmax

below. The symbol Ve(X) will be used to denote the equilibrium value of a node X .
Now let Att(Y ) denote the set of all arguments attacking Y , i.e., Att(Y ) = {Xi ∈
S | (Xi, Y ) ∈ R}. We can define the equilibrium value of Y through the equation

(Eqmax) Ve(Y ) = 1−maxXi∈Att(Y ){Ve(Xi)}

Note that for a node Y , Ve(Y ) = 1 if and only if Ve(X) = 0 for all X ∈ Att(Y )
and Ve(Y ) = 0 if and only if Ve(X) = 1 for some X ∈ Att(Y ).

Thus, the network of Fig. 1. generates the following system of equations:

Ve(X) = 1
Ve(Z) = 1
Ve(W ) = 1−max{Ve(Z)} (= 0)
Ve(Y ) = 1−max{Ve(X), Ve(W )} (= 0)

If we set the threshold for acceptance of arguments at the value 1, we get that only the
arguments X and Z are accepted as traditionally expected.

Generally speaking, Gabbay has shown that the totality of the solutions of the equa-
tions generated from a network using Eqmax corresponds to the totality of Caminada
labellings of that network [15]. However, note that Eqmax does not take into account a
node’s initial value or the intensity with which the attacks to it have been carried out.
We will consider a more sophisticated equation schema to take these into account in
Section 4.

X W Z

Y

Fig. 1. A simple argumentation system
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3 Merging Argumentation Networks

In this section, we provide some intuitions about our proposed method of merging ar-
gumentation networks. Our first goal is to show how to combine the networks into a
single weighted argumentation network.

As discussed in Section 1, we start by associating each network with an agent who
“votes” for its components. Obviously, in any interesting scenario, the networks being
merged are distinct. Consider the networks in Fig. 2 and the chosen extensions of each
network containing its winning arguments.

〈S1, R1〉 〈S2, R2〉 〈S3, R3〉
X

Y Z

X Y

Z

Y

W

a1, E1 = {X,Z} a2, E2 = ∅ a3, E3 = {W,Z}

Fig. 2. Argumentation networks of three different agents

We immediately notice that the three agents have different sets of arguments, and
even in the case where the arguments coincide, the agents may disagree with respect to
the attack relationships between them. For instance, argumentW is only known to agent
a3, and in her network, Z attacks Y , whereas in the network of agent a1, Y attacks Z .

There are many reasons why agents may have different argument systems. They
may use different knowledge bases; they may have different deductive capabilities; they
may use different inference systems; etc. These may also generate disagreements with
respect to the direction of the attacks between arguments which are arguably akin to
the existence of cycles in a single network. In fact, individual acyclic networks when
combined into a single network may well end up containing cycles.

A simple way of harmonising the differences is to consider expansions to the net-
works. Unlike in [11], we do not expand each network individually, but rather we con-
sider the single augmented network that includes the components of all other networks.

However, the augmented network alone is not sufficient to represent the community,
because some components appear in more networks than others and we would like to
reflect that by using weights. We first introduce the notion of a profile of (traditional)
networks and then we define the notion of an augmented network with weights for a
profile.

Definition 1. A profile of argumentation systems is a tuple P = 〈AN1, . . . , ANk〉
where each ANi = 〈Si, Ri〉 is an argumentation system. We assume each agent ai
has a procedure wi for selecting a subset of Si representing the winning arguments in
Si according to ai’s local semantics and we use Ei to denote this set, i.e., wi(Si) = Ei.
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X W

Y Z

〈∪Si,∪Ri〉

Fig. 3. Augmented network containing all components of 〈S1, R1〉, 〈S2, R2〉 and 〈S3, R3〉

Definition 2. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
let ANi = 〈Si, Ri〉. The weighted augmented network for P is a tuple AWNP =
〈S,R, V0, ξ〉 where

– S = ∪iSi and R = ∪iRi

– V0 : S → [0, 1] represents the initial level of support for an argument X ∈ S
within P , as to be calculated/voted from all the ANi

– ξ : R → [0, 1] represents the intensity of an attack (X,Y ) ∈ R within P , as to be
calculated/voted from all the ANi

Now we need to decide on a policy for representing each agent’s perception of the ar-
guments and attacks in AWNP depending on the agent’s original network. We shall
see that these will later be used to define V0 and ξ. For simplicity, we will refer gener-
ally to the arguments of these functions, i.e., arguments and attacks respectively, as the
“components” of the network.

In agreement with [11] we believe that there is an intrinsic difference between sup-
porting a component; rejecting it and being ignorant about its existence (in which case
a decision for or against it is impossible). In order to distinguish these attitudes, we let
agents vote for components by assigning to them one of the three values below.

0: the agent does not know about the component
1: the agent knows about the component and supports it

−1: the agent knows about the component but does not support it

Definition 3. Let P be a profile. The attitude of an agent ai towards the component c
of AWNP , in symbols vi(c), is represented in the following way.1

vi(X) vi
(
(X,Y )

)

0: if X 
∈ Si 0: if either X 
∈ Si or Y 
∈ Si (or both)
1: if X ∈ Ei 1: if (X,Y ) ∈ Ri

−1: if X ∈ Si − Ei −1: if X,Y ∈ Si, but (X,Y ) 
∈ Ri

That is, the agent ai votes with 0 for argument X , if ai has no knowledge about it;
otherwise ai will vote with 1 or −1 depending on whether X is amongst the winning
arguments of Si. The case of an attack from X to Y is similar but an attack may not
exist because one or both arguments are not known. Hence, the agent ai will vote with
0 if at least one of X and Y is not known (in which case a judicious decision about the

1 To simplify notation we use the same function symbol vi for nodes and edges.
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attack is not possible). Otherwise, if both X and Y are known, the agent will vote with
−1 if (X,Y ) 
∈ Ri and with 1 if (X,Y ) ∈ Ri. Note that the vote 1 depends only on the
existence of the attack in the agent’s local network. Even if Y ∈ Ei and X 
∈ Ei, the
agent ai must still vote with 1 if (X,Y ) ∈ Ri, since she knows about it. The agent’s
choice for Y over X in spite of the attack of X on Y in this case is already taken into
account in the agent’s votes for X and Y .

The above voting strategy only requires that there is a local semantics for deciding
the winning arguments in each network and does not make any assumptions on what it
should be. In fact, the group as a whole may have several different local semantics.

If the local networks are themselves numerical, then a number of alternatives arise.
One could compute each network individually, decide on the winning arguments and
apply the same technique given above; or one could feed the equilibrium values of
each network into the augmented one, normalise the values as appropriate, generate
the equations and then compute the overall equilibrium values as before; or one could
choose a combination of these ideas.

We now need to generate the initial weights for the augmented network based on each
agent’s attitude to its components. Again, because some components are only known to
some agents, the community may take two different approaches when considering the
overall level of support for a component:

– in the credulous approach, the weights are calculated based on the total number of
agents that know about a component

– in the sceptical approach, the weights are calculated taking into account the total
number of agents in the profile P

We will associate the credulous approach with the superscript + and the sceptical one
with the superscript − in the definitions of the initial values V0 and ξ below. Whenever
the distinction is not important we will simply omit the superscripts.

Definition 4. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
AWNP the weighted augmented network for P . Let v+(c) = |{i | vi(c) = 1}| and
v−(c) = |{i | vi(c) = −1}|. We define

V +
0 (X) = v+(X)

v+(X)+v−(X)

ξ+
(
(X,Y )

)
=

v+
(
(X,Y )

)

v+
(
(X,Y )

)
+v−

(
(X,Y )

)

V −
0 (X) = v+(X)

k

ξ−
(
(X,Y )

)
=

v+
(
(X,Y )

)

k

Note that we have purposefully excluded the agents who do not know about a com-
ponent c in the definitions of V +

0 (c) and ξ+(c) above. These agents vote with 0 for c
according to Definition 3 and hence are not counted in either v+(c) or v−(c). V −

0 (c)
and ξ−(c) on the other hand look at the components more sceptically and consider their
representation across all voters.

For the example in Fig. 2 we get the initial weights shown in Fig. 4 for the com-
ponents of the augmented network under each approach. Given these weights, we then
need to calculate equilibrium values for the nodes (this will be done in Section 4).
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credulous sceptical

X W

Y Z

0.5

0

1

1

1 0.5 1

0.5

0.5

X W

Y Z

0

1/3 1/3

2/3 1/3

1/3

1/3

1/3

2/3

Fig. 4. Merged networks of Fig. 2 under the credulous and sceptical approaches

Note in Fig. 4 that under either approach, the initial weight of argument Y is 0. This
is because Y is not a winning argument in any of the initial networks. Analogously,
the initial value of Z is 1 only in the credulous approach. This is because Z is an
winning argument in every network in which it is known, but it is not known in every
network. Similarly, W ’s initial weight is 1 under the credulous approach, but 1/3 under
the sceptical one. This is reasonable, since it is only known by one out of the three
agents, but for that agent (a3) it is one of the winning arguments. The weights for the
attacks follow the same pattern.

Generally speaking, we have the following.

Proposition 1. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems where
each ANi = 〈Si, Ri〉 and Ei identifies the winning arguments in Si. Let AWNP =
〈S,R, V, ξ〉 be the weighted augmented network for P according to Definition 2. The
following hold for all arguments X ∈ S.

1. if X ∈ ∩iEi, then V +
0 (X) = V −

0 (X) = 1

2. if X 
∈ ∪iEi, then V +
0 (X) = V −

0 (X) = 0

3. if X ∈ Ei for all i such that X ∈ Si, then V +
0 (X) = 1

Proof. 1. and 2. follow directly from Definitions 3 and 4. For 3., note that if X ∈ Ei for
all i such that X ∈ Si, then v−(X) = 0, and hence V +

0 (X) = 1.

The situation with attacks is similar, but simpler.

Proposition 2. For all attacks (X,Y ) ∈ R.

1. if (X,Y ) ∈ ∩iRi, then ξ+
(
(X,Y )

)
= 1 and ξ−

(
(X,Y )

)
= 1.

2. if (X,Y ) ∈ ∪iRi, then ξ+
(
(X,Y )

)
> 0 and ξ−

(
(X,Y )

)
> 0

Proof. These follow directly from Definitions 3 and 4.

We now turn to the problem of calculating equilibrium values for the arguments of a
weighted augmented network.
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4 Equilibrium Values in a Weighted Augmented Network

One important aspect in the calculation of the equilibrium values of the arguments in a
weighted augmented network is the decision of how the attacks to an argument should
affect its initial support value.

As in any usual argumentation system, arguments may be attacked by any number of
arguments. Since we work with numerical values, we want to aggregate the strength of
these attacks somehow in order to weaken the weight of the attacked node. The strength
of an attack itself depends on the strength of the attacking node and the intensity with
which the attack is carried out. The attacking nodes may be themselves attacked, so
we need to perform the aggregation systematically. We start by analysing the effect of
attacks in general.

Consider the network in Fig. 5, in which x, y and z are the initial weights of the
arguments X , Y and Z , respectively. Let us for a moment ignore these initial weights.

z : Zx : X y : Y
ξXY ξY Z

Fig. 5. A typical weighted argument network

If we want to mimic the standard behaviour of the attacks in an argumentation system
[12], we need to accept arguments X and Z and reject argument Y . The reasoning is as
follows. Since no arguments attack X , it persists. X then attacks Y , which is defeated,
and hence no persisting arguments attack Z , which then consequently also persists. In
our numerical semantics, persistence is associated with the values [t, 1] (for some t > 0)
and defeat with the value 0. For us, “to be defeated” means to end up with equilibrium
value 0 and “to persist” means to end up with a value equal or higher than a minimum
acceptance level t > 0. If we want to be strict, we can set t = 1. Otherwise, we may
settle for any value greater than 0 (up to 1).

Ideally, we would like to remain close to the basic semantics, taking care of the
arguments’ initial weights (which are all in the unit interval U ) and the intensity with
which the attacks between them are carried out. Hence, our objective is to calculate the
values Ve(X), Ve(Y ) and Ve(Z), based on x, y, z, ξXY and ξY Z . Arguably, since X
is not attacked by any node, its equilibrium value Ve(X) can be calculated directly by
some manipulation on the value x alone. The simplest procedure is to make Ve(X) = x,
its initial value. On the other hand, the value of Ve(Y ) depends both on Ve(X) and
the intensity ξXY with which the attack from X to Y is carried out. Once Ve(Y ) is
calculated, the equilibrium value for Ve(Z) can be calculated using ξY Z in the same
way. If there are cycles, the equations get more complex, but they are solvable, as long
as the functions involved are all continuous.2

If we give initial value 1 to all arguments and consider all attacks being transmitted
with full intensity, then since X has initial value 1 and it is not attacked by any other
argument, its equilibrium value becomes 1. It then attacks Y with full intensity (i.e.,

2 This and some other related issues will be explored in more detail in a forthcoming paper.
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ξXY = 1), which means that the initial value of Y , y = 1, is weakened by 1 and its
equilibrium value becomes 0. Effectively, this annihilates the attack on Z , which then
gets as its equilibrium value the same value as its initial one, i.e., 1. As a result, we
end up with the acceptance of X (because of its equilibrium value 1); the rejection of
Y (because of its equilibrium value 0); and the acceptance of Z (also because of its
equilibrium value 1).

We stress that, in general, we are free to decide on the minimum value we require for
considering an argument as accepted. As we mentioned, we may decide this to be the
value 1 itself, leaving all values 0 < x < 1 to represent undecided arguments; or we
may even do away with the notion of undecidedness altogether and divide the interval
in two halves only: one with the values which we consider accepted and the other with
the ones we consider rejected.

If we want to think in terms of the effect of the attacks on an argument X , our
problem is to determine a factor 0 ≤ π(X) ≤ 1 representing the combined strength of
these attacks. The equilibrium value for X can be calculated by multiplying X’s initial
value by this factor, i.e., Ve(X) = V0(X) · π(X).

When there are multiple attacks to an argument X , π must aggregate the value of
these attacks. In order to remain close to the standard argumentation semantics, we want
π to satisfy at least the three conditions below.

(SSC1) π(X) = 1, if maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y )} = 0

(SSC2) π(X) = 0, if maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y )} = 1

(SSC3) π is continuous

(SSC1) says that if all arguments attacking X are fully defeated or transmitted with
null intensity, then X retains its initial value fully. (SSC2) says that if any argument
that attacks X has full strength and the attack is carried out with full intensity, then X
is fully defeated. (SSC3) ensures that the considerations about the interactions between
the nodes are robust, i.e., that small changes in the initial values do not cause sudden
variations in the equilibrium ones.

So the idea is that the stronger an attack is, the closer the attack gets to the value 1
and hence the closer we want π to get to 0 so that the equilibrium value of the attacked
argument decreases proportionally (since its initial value is multiplied by π). In the case
of a single attack of strength u to node X with transmission factor κ, one possibility
is to make π(X) = 1 − κu. In the network of Fig. 5 above, this would make π(Y ) =
1− ξ

(
(Y,X)

)
Ve(X) and hence Y ’s equilibrium value would be Ve(Y ) = V (Y ) · (1−

Ve(X)) = 1 · 0 = 0, as expected.
Besnard and Hunter’s categoriser [5] is an example of a function satisfying (SSC1)–

(SSC3) (more on this in Section 6).
But what can we say about π(X) when X is attacked by multiple arguments?
As usual, attacking arguments combine via multiplication, which is compatible with

the behaviour of conjunction in Boolean logic and in probability. The equations for the
equilibrium values of the nodes of a weighted augmented network are defined below.

Definition 5. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
AWNP = 〈S,R, V, ξ〉 the weighted augmented network for P as defined before. The
equation for the equilibrium value of an argument X ∈ S is defined as
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(Eqinv) Ve(X) = V0(X) ·∏Yi∈Att(X)(1− ξ
(
(Yi, X)

)
Ve(Yi))

One can choose V +
0 and ξ+ or V −

0 and ξ− depending on whether a credulous or scepti-
cal approach is desired (this will be explored further in Section 5). Note that the highest
possible intensity of the attack by an argument Y is V0(Y ) itself. This happens when
the attack is carried out with full intensity and Y is not itself attacked by any node — in
this case it retains its initial value fully, i.e., Ve(Y ) = V0(Y ). Because we take the com-
plement of this attack to 1, in such circumstances the equilibrium value of the attacked
argument would be 0.

Eqmax decreases the initial support value of an argument according to the value of
the strongest attack. Eqinv on the other hand is cumulative: it aggregates the strength of
the attacking nodes. The intuition is that each challenge to an argument contributes to
decrease the argument’s overall credibility.

Henceforth, we formally set the value π(X) to
∏

Yi∈Att(X)(1− ξ
(
(Yi, X)

)
Ve(Yi)).

Proposition 3. π satisfies (SSC1)–(SSC3).

Proof. If maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y )} = 0, then by Definition 5,

∏
Yi∈Att(X)(1−

ξ
(
(Yi, X)

)
Ve(Yi)) = 1. Therefore, (SSC1) is satisfied. If maxY ∈Att(X){ξ

(
(Y,X)

)

Ve(Y )} = 1, then by Definition 5, for some Y ′ ∈ Att(X), 1− ξ
(
(Y ′, X)

)
Ve(Y

′) = 0,
and then

∏
Yi∈Att(X)(1 − ξ

(
(Yi, X)

)
Ve(Yi)) = 0. Hence (SSC2) is also satisfied.

(SSC3) is trivially satisfied.

Combining attacks in this way was initially proposed in [3].
It is easy to see that when all attacks are carried out with full intensity, π(X) can be

written simply as
∏

Y ∈Att(X)

(
1− Ve(Y )

)

which is equivalent to

1− �Y ∈Att(X)Ve(Y ) (1)

where a�b = a+b−a.b and for Δ = {a1, . . . , ak}, �Δ = ((a1�a2)� . . .�ak). The
expression in (1) is the complement of the probabilistic sum t-conorm used by Leite and
Martins in [19]. In probability theory, the probabilistic sum expresses the probability of
the occurrence of independent events. Since we want to weaken the value of the attacked
node, we take the complement of this sum to 1.

It is worth emphasizing that the equilibrium value of a node can never be higher than
its initial support value.

Proposition 4. For arguments X , Ve(X) ≤ V0(X).

Proof. Straightforward. Note that Ve(X) = V0(X) · π(X). By Definition 4, for all
arguments Y , 0 ≤ V0(Y ) ≤ 1. By Definition 5, 0 ≤ π(X) ≤ 1 and hence Ve(X) ≤
V0(X).

Proposition 5 (Unanimity of acceptance). Let P = 〈AN1, . . . , ANk〉 be a profile of
argumentation systems where each ANi = 〈Si, Ri〉 and let AWNP = 〈S,R, V, ξ〉 be
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the weighted augmented network for P . If each Ei is conflict-free and X ∈ ∩iEi, then
Ve(X) = 1.

Proof. By Proposition 1, if X ∈ ∩iEi, then V +
0 (X) = V −

0 (X) = 1. Suppose (Y,X) ∈
Ri, for some argumentation framework ANi. Since each Ei is conflict-free, then Y 
∈
Ei and hence Y 
∈ ∪iEi. By Proposition 4, V +

0 (Y ) = V −
0 (Y ) = 0 and by Proposi-

tion 4, Ve(Y ) = 0. It follows that π(X) = 1 and hence Ve(X) = 1.

If each Ei is conflict-free and Ve(X) = 1, then X ∈ ∩iEi only if Ve is calculated
under the sceptical approach. The credulous approach is more lenient, because it gives
initial support value 1 to an argument as long as it wins in every argumentation system
in which it is known and this may be sufficient to make the argument’s equilibrium
value 1 too as long as the sets of winning arguments are conflict-free (see Example 2.
in Section 5). It is worth emphasizing that the flip side of this is that attacks are treated
in the same way and as a consequence the value of an argument may also decrease as a
result. This is illustrated in Example 1. of Section 5, where the equilibrium value of the
argument Y is lower in the credulous approach than in the sceptical one as the result of
credulously accepting X which attacks Y .

Thresholds for Acceptance

The equilibrium values simply represent how the initial overall level of support for a
component is affected by the interactions with the other components in the network.
If one wants to make a decision on what arguments to accept overall, an appropriate
threshold for acceptance for the network at hand must be decided. The value 1 repre-
sents the strongest possible level of acceptance, but setting this as the minimum accep-
tance level could prove too strict even under the credulous approach. One could base
the minimum acceptance level on the maximum or minimum of the equilibrium val-
ues or simply take the average and accept the arguments whose equilibrium values are
above it. Another possibility is to accept arguments with equilibrium value above 0.5.
Although this may seem arbitrary, in fact values above 0.5 can be associated with the
concept of majority, because acceptance of an argument by clear majority produces a
initial support value strictly greater than 0.5.

However, in the examples that follow, we will simply use the average of the equilib-
rium values calculated. In more realistic scenarios an appropriate threshold value can
be determined through a more sophisticated analysis of the networks in the profile in a
similar way to how it is done in [2] (which is itself based on the notion of the “inconsis-
tency degree” of a knowledge base). This investigation itself is quite complex and left
for future work.

5 Worked Examples

We now illustrate our technique with a few examples. In each example, we show the
networks to be merged on the left and the augmented (merged) network in the middle
with its components annotated with the initial weights in the form “credulous : scepti-
cal”. The equilibrium values obtained are given on the right and the accepted arguments
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indicated with a shadowed box. Due to space limitations we cannot include the equa-
tions here, but they can be easily obtained using Definition 5.

1.

a2: E(a1) = {Y }
Y

X Y

X Y

a1: E(a1) = {X}

1 : 1/2 1/2 : 1/2

1 : 1/2

credulous Ve(X) = 1
Ve(Y ) = 0
avg = 0.5

sceptical Ve(X) = 0.5
Ve(Y ) = 0.375
avg = 0.4375

Under the credulous approach V0(X) = 1 and hence Ve(X) = 1. Its attack on Y is
transmitted with full intensity. V0(Y ) = 0.5. Therefore,Ve(Y ) = 0.5×(1−1) = 0.
Under the sceptical approachV0(X) = 0.5 and hence Ve(X) = 0.5. Its attack on Y
is transmitted with intensity 0.5. Therefore,Ve(Y ) = 0.5×(1−0.5×0.5) = 0.375.
Note that the sceptical approach produces a higher equilibrium value for Y because
under the credulous approach X is fully accepted and its attack on Y fully defeats
it. The only argument with equilibrium value above the average of the values is X
in both approaches.

2.

X

Y Z

W

W Y Z

X

Y ZX

a2: E(a1) = {X,Z}

1 : 1

1 : 1/2

1/2 : 1/2

a1: E(a1) = {X,W, Y }
1/2 : 1/2

1/2 : 1/2

1/2 : 1/2

credulous Ve(X) = 1
Ve(W ) = 1
Ve(Y ) = 0.4
Ve(Z) = 0.4
avg = 0.7

sceptical Ve(X) = 1
Ve(W ) = 0.5
Ve(Y ) = 0.4
Ve(Z) = 0.4
avg = 0.575

In this example both agents accept argument X and there are no attacks on it in
any network. Thus, regardless of the approach, the equilibrium value of X is 1. In
spite of there not being any attacks on W , it is only known by agent a2. Under the
credulous approach Ve(W ) = 1, but under the sceptical approach Ve(W ) = 0.5,
since it is accepted by only half of the community. Y and Z are also accepted by
half of the community, but in each case, the other half supports a complementary
attack of one on the other. As a result, their equilibrium values are both reduced
from 0.5 to 0.4. X and W have equilibrium values above the average under the
credulous approach and are hence accepted, but under the sceptical approach only
X is accepted.
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3.

WX

Y

X

Y Z

E(a1) = {X,Z}
Y

W Z

E(a3) = {W,Z}

YX

Z

a1

a2

1/2 : 1/3

1 : 2/3

1/2 : 1/3

0 : 0

1 : 2/3
1 : 1/3

1 : 1/3

1/2 : 1/3

1/2 : 1/3

a3

E(a2) = ∅

credulous Ve(X) = 0.5
Ve(W ) = 1
Ve(Y ) = 0
Ve(Z) = 1
avg = 0.625

sceptical Ve(X) = 1/3
Ve(W ) = 1/3
Ve(Y ) = 0
Ve(Z) = 2/3
avg = 1/3

This is the example appearing in Fig. 2. Y does not feature in any of the agents’
winning arguments. Its initial support value is 0 and hence its equilibrium value
is also 0. This leaves X’s initial support values unchanged. Under the credulous
approach both W and Z get value 1. Under the sceptical approach Z’s equilibrium
value is the highest, because it is accepted by 2/3 of the agents (as opposed to X
and W which are accepted by only 1/3 of them). Both W and Z have equilibrium
values above the average under the credulous approach and are hence accepted,
but only Z is accepted under the sceptical one (note that it is the only argument
accepted by the majority of the agents).

6 Comparisons with other Work

As mentioned in Section 1, many frameworks consider extensions to Dung’s argumen-
tation systems that are capable of representing in one way or another the notion of the
strength of arguments or attacks. In this section, we discuss the relationship between
some of these approaches and ours.

In terms of numerical merging, the formalism that most resembles ours is the one
proposed in [9], which uses a weighted argumentation system. The idea is also based
on the combination of all networks into a single augmented one in which attacks are
assigned weights that correspond to ours under the credulous approach. However, the
similarities stop there. In particular, there is no notion of sceptical support; no mecha-
nism to associate weights to arguments; and the concept of acceptance is based on the
notion of “various-strength” defence: an argument X defends an argument Y against
argument Z , if the weight of the attack of X on Z is greater than the weight of the
attack of Z on Y . This is then used in the definition of admissibility. We believe that
once we are prepared to evaluate the strength of the attacks based on the opinions of the
agents, we should also be prepared to take these opinions into account in the evaluation
of the support for the arguments as well.

Bistarelli and Santini also consider a numerical approach but, as in the above, their
formalism only assigns weights to attacks [6]. Amgoud and Kaci take a different ap-
proach to merging by considering the merging of knowledge bases whose underlying
formalism is a possibilitic logic [2]. This allows for the calculation of the inconsistency
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degree of a base, which in turn can be used to determine its “plausible” consequences.
This notion of a degree of inconsistency is something we would like to investigate fur-
ther to provide a more robust definition for the threshold of acceptance of arguments.

Other formalisms for merging not based on numerical approaches include [11,22].
If we have an adequate meaning for the initial weights, we can use the equational

approach for a single weighted network independently of the merging process. Leaving
considerations about merging aside, it is possible to compare our formalism with other
weighted argumentation systems. In [5], the equilibrium value of an argument is cal-
culated by a so-called categoriser function, an example of which is the h-categoriser
h, which defined for an argument X as h(X) = 1, if Att(Y ) = ∅; and h(X) =
1/(1 +

∑

Y ∈Att(X)

h(Y )), otherwise.

Let us now analyse what happens in a sequence of attacks like the one below. For
comparison, we assume that all nodes have the same initial values v and consider the
intensity with which all attacks are carried out to be 1.

...v : X1 v : X2 v : Xk

Assuming initial value v = 1 in the example above, we would have that h(X1) = 1;
h(X2) = 0.5; h(X3) = 0.66; and so forth. This obviously does not agree with Dung’s
semantics. Using the equational approach, we get that Ve(X1) = v, Ve(X2) = v(1−v),
Ve(X3) = v(1−(v(1−v))), . . . . If v = 1, then Ve(X1) = 1, Ve(X2) = 0, Ve(X3) = 1,
and so forth, agreeing with Dung’s semantics as expected. If v = 0, then Ve(Ai) = 0 for
all i. This is as expected, since in this case no arguments have any initial support. In fact,
for all nodes X , Ve(X) ≤ V (X), since π(X) =

∏
Y ∈Att(X)(1 − ξ

(
(Y,X)

)
Ve(Y )) ≤

1. If v = 0.5, we get Ve(X1) = 0.5, Ve(X2) = 0.25, Ve(X3) = 0.375, . . . .3

Leite and Martins proposed social abstract argumentation frameworks (SAAFs)
which can be seen as an extension of Dung’s abstract argumentation frameworks to
allow the representation of information about votes to arguments. The motivation of
these networks is to provide a means to calculate the result of the interaction between
arguments using approval and disapproval ratings from users of news forums. The idea
is that when a user sees an argument, she may approve it, disapprove it, or simply ab-
stain from expressing an opinion. The ‘weights’ associated with the arguments in this
case can also be seen as being generated by how the agents perceive the arguments.
However, the initial support level for an argument is calculated differently in their for-
malism and there is no notion of strength of attack, even though, as in our case attacks
are aggregated using the probabilistic sum t-conorm.

7 Conclusions and Future Work

In this paper, we showed how a profile of argumentation systems can be merged through
the use of an augmented argumentation network provided with weights for the argu-
ments and the attacks between them. The initial weights are calculated based on how

3 We can think of an infinite sequence of this kind as a node with an attack on itself. In the limit
k → ∞, for V0(X1) = 0.5, Ve(Xk) =

1
3

.
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representative each component features in the profile and are independent of the local
semantics of each network. We proposed credulous and sceptical approaches for calcu-
lating the weights. The credulous approach calculates the overall representation based
on how many agents “know” about a component whereas the sceptical approach looks
at the total number of networks in the profile.

Weighted argumentation networks have been proposed before. Sometimes weights
have been assigned to the arguments (e.g., as in [2,3,5,8,19]) and sometimes they have
been assigned to the attacks (e.g., as in [3,6,13,23]). In our approach, both arguments
and attacks have weights and the network is seen as a generator for equations. The
idea is to calculate equilibrium values for the arguments based on their initial support
value within the profile and the interactions with other arguments through the attack
relation. These values can be calculated by solving a system of equations generated
by the augmented network, following [14]. Once calculated, the notion of acceptance
can be defined in terms of a threshold value for the equilibrium values, for which a
strict interpretation is the value 1. However, the framework is flexible in the sense that
a particular application is free to associate segments of the unit interval in different
ways. For instance, one could associate 0 with rejection; 1 with acceptance and consider
anything else inbetween as undecided.

We can see the initial values in our augmented network as coming from an extended
form of approval voting in which voters can also express ignorance and rejection for
some components. There are variations on this idea that are worth investigating, includ-
ing giving varying degrees of preference to the components depending on the expertise
level of the agents supporting them. Furthermore, there are interesting connections with
several other areas of research. From the aggregation perspective, it is worth exploring
similarities with other procedures for voting and formalisms for merging of knowledge
bases as in [10,16,17,18]. Some similarities also appear in the spirit of the calculation
of the interactions with the areas of network flows [1], belief propagation and Bayesian
networks [20]. We will explore these issues in more detail in future work.

The merging of argumentation systems is an application that leads naturally to the
employment of weights in a network. However, one need not restrict its use to such sce-
narios only. All that is required is a suitable interpretation for the weights; an adequate
schema for generating the equations; and an interpretation for the equilibrium values.
This paper paves the way for a new type of research in argumentation networks not
only because its approach is numerical, but also because it is an initial study of vector
evaluations. We can see this work as a preliminary investigation on how to aggregate
many-dimensional values of the components of a network and propagate them through
the network taking its attack relation into account.

To realise the potential, consider the very well developed area of many-dimensional
temporal logics. In these logics, a formula is evaluated at several indices. As a complex
formula is evaluated in the model we move from one set of indices to another. The
analogous movement in the case of argumentation is that of an attack. One can move
from one node to another evaluating and propagating the values.

The equational approach can also be used in a more general context. For instance, if
the underlying representation is itself based on a fuzzy or possibilitic logic, the initial
weights can be obtained from the computations in the logic themselves, in the spirit
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of Prakken [21] or Amgoud-Kaci’s “force of an argument” [2]. The weights can then
subsequently be combined taking the topology of the network into account as done here.
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