

Lecture Notes in Artificial Intelligence 7486

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Michael Fisher Leon van der Torre
Mehdi Dastani Guido Governatori (Eds.)

Computational Logic
in Multi-Agent Systems

13th International Workshop, CLIMA XIII
Montpellier, France, August 27-28, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Michael Fisher
University of Liverpool, UK
E-mail: mfisher@liverpool.ac.uk

Leon van der Torre
University of Luxembourg
E-mail: leon.vandertorre@uni.lu

Mehdi Dastani
Utrecht University, The Netherlands
E-mail: m.m.dastani@uu.nl

Guido Governatori
NICTA, Queensland Research Laboratory
St. Lucia, QLD, Australia
E-mail: guido@governatori.net

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32896-1 e-ISBN 978-3-642-32897-8
DOI 10.1007/978-3-642-32897-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012945036

CR Subject Classification (1998): I.2.11, F.4.1, D.2, D.3.1-2, I.2.4, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the 13th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA-XIII), held during August 27–28, 2012
in Montpelier, co-located with ECAI.

The CLIMA workshops provide a forum for discussing techniques, based
on computational logic, for representing, programming, and reasoning about
agents and multi-agent systems in a formal way. CLIMA has been successful
over a number of years, and further details of previous events can be found at
http://centria.di.fct.unl.pt/∼clima.

Multi-Agent Systems contain autonomous computational entities perceiving
their environment and acting upon it in order to achieve their goals. They inte-
grate many technologies and concepts from Artificial Intelligence and Computer
Science, as well as from other disciplines. The agent paradigm has been used
for several domains in which it is crucial to be able to describe, concisely and
clearly, the precise behaviours of the agents involved, such as search engines,
autonomous vehicles, recommendation systems, educational support, robotics,
e-procurement, simulation and routing, electronic commerce and trade.

Computational Logic provides a well-defined, general, and rigorous frame-
work for studying the syntax, semantics, and procedures for the various tasks in
individual agents, as well as the interactions between, and integration among,
agents in multi-agent systems. It also provides tools, techniques, and standards
for implementations and environments, for linking specifications to implemen-
tations, and for the verification of properties of individual agents, multi-agent
systems, and their implementations.

Thus, it is this combination of computational logic approaches to multi-agent
systems that is the primary focus of the CLIMA workshop series. This particular
edition was held as a workshop associated with the European Conference on
Artificial Intelligence in Montpelier, France, during August 2012.

We received 27 submissions, each of which was then reviewed by three Pro-
gram Committee members. These proceedings comprise the 11 regular papers
selected, as well as contributions from the three invited speakers:

– Dov Gabbay — “Bipolar Argumentation Frames and Contrary to Duty Obli-
gations, Preliminary Report” (full paper)

– Gerhard Lakemeyer — “Multi-agent Only-Knowing” (abstract only)
– Emiliano Lorini — “Logics for Reasoning About Agents’ Attitudes in Strate-

gic Contexts” (abstract only)

The contribution of Isaac Pinyol, entitled “A Time-Situated Meta-Logic for
Characterizing Goal-Processing Bounded Agents,” provides a logical framework
for characterising the reasoning of goal-processing bounded agents, based on a
“time-situated meta-logic,” in which goals and beliefs are primitive attitudes
evaluated at specific moments in time.

VI Preface

In “Distributed Defeasible Speculative Reasoning in Ambient Environment,”
Ho-Pun Lam, Guido Governatori, Ken Satoh, and Hiroshi Hosobe describe how
“speculative computation” can allow agents to postulate solutions in unknown
environments and provide a formal semantics for such an approach. This is
particularly useful in complex, open, and error-prone environments where com-
munications delay, or even failure, is common.

In their paper “A Formal Semantics for Agent (Re)Organization,” Frank
Dignum and Virginia Dignum tackle the complex problem of large-scale agent
interactions. Agent organizations are multi-agent systems that are adaptbale and
dynamic, and that can place restrictions on the agents involved through social
order mechanisms. This work provides a “Logic for Agent Organization” that
can be used to reason about a range of properties within such systems.

Work by Dimitar Guelev and Catalin Dima, described in “Epistemic ATL
with Perfect Recall, Past and Strategy Contexts,” involves an extension to epis-
temic ATL with perfect recall, past, and distributed knowledge by strategy con-
texts and demonstrate the strong completeness of a Hilbert-style proof system
for a fragment.

Matei Popovici describes a new modeling method in “Using Evolution Graphs
for Describing Topology-Aware Prediction Models in Large Clusters.” The au-
thor defines and studies the complexity of the model checking problem for the
language, and the relation between the language and Computation Tree Logic.

The contribution of Isabelle Mirbel and Serena Villata, with title “Enhancing
Goal-Based Requirements Consistency: An Argumentation-Based Approach,”
proposes an approach to detecting consistent sets of goal-based requirements
and to maintaining their consistency over time. Their approach relies on meta-
argumentation, allowing one to detect the conflicts among elements called argu-
ments.

In “A Game Theoretic Approach for Optimal Network Topologies in Oppor-
tunistic Networks,” Nils Bulling, Michael Koester, and Matei Popovici introduce
a formal description of an opportunistic network and of optimal communication
topologies. They determine the complexity of associated verification and synthe-
sis problems of network topologies.

The work of Martin Homola, Matthias Knorr, Joao Leite, and Martin Slota,
described in “MKNF Knowledge Bases in Multi-Context Systems,” investigates
the relationship between Multi-Context Systems and Hybrid MKNF Knowledge
Bases. It is shown that Hybrid MKNF Knowledge Bases can be used as particular
contexts in Multi-Context Systems, and transformations from the former into
the latter are provided.

The contribution of Ben Wright, Enrico Pontelli, and Tran Cao Son, enti-
tled “Implementing Reversible Processes in Multi-agent Action Languages Using
Answer Set Planning,” presents an implementation of an action language in an-
swer set programming. Processes are used to execute delayed effects for actions,
and processes can be reversed or canceled.

Preface VII

In “Full Hybrid mu-Calculus, Its Bisimulation Invariance and Application to
Argumentation,” Cristian Gratie, Adina Magda Florea, and John-Jules Meyer
show that full hybrid mu-calculus cannot describe the preferred argumentation
semantics.

Finally, in “A Numerical Approach to the Merging of Argumentation Net-
works,” Dov Gabbay and Odinaldo Rodrigues consider an augmented network
containing the arguments and attacks of all networks to be merged. The com-
bined weighted network is then used to define a system of equations from which
the overall strength of the arguments is calculated.

We thank all the authors of submissions for CLIMA-XIII for sending their
papers and the authors of accepted papers for revising their contributions to
be included in these proceedings. We are very grateful to the members of the
CLIMA-XIII Program Committee and the additional reviewers. Their service
ensured the high quality of the accepted papers.

June 2012 Michael Fisher
Leon van der Torre

Mehdi Dastani
Guido Governatori

Organization

Program Committee

Natasha Alechina University of Nottingham
Jose Julio Alferes Universidade Nova de Lisboa
Alexander Artikis NCSR “Demokritos”
Lacramioara Astefanoaei CWI
Francesco Belardinelli Imperial College London
Antonis Bikakis University College London
Guido Boella University of Turin
Rafael H. Bordini Federal University of Rio Grande do Sul
Gerhard Brewka Leipzig University
Nils Bulling Clausthal University of Technology
Stefania Costantini Università di L’Aquila
Mehdi Dastani Utrecht University
Marina De Vos University of Bath
Louise Dennis University of Liverpool
Juergen Dix Clausthal University of Technology
Jenny Eriksson Lundström Uppsala University
Michael Fisher University of Liverpool
Chiara Ghidini FBK-irst
Aditya Ghose University of Wollongong
Guido Governatori NICTA
Davide Grossi University of Liverpool
Hisashi Hayashi Toshiba
Koen Hindriks Delft University of Technology
Katsumi Inoue NII
Wojtek Jamroga University of Luxembourg
Jérôme Lang LAMSADE
Joao Leite Universidade Nova de Lisboa
Brian Logan University of Nottingham
Emiliano Lorini IRIT
Viviana Mascardi Università degli Studi di Genova
John-Jules Meyer Utrecht University
Jan Odelstad University of Gävle
Mehmet Orgun Macquarie University
Maurice Pagnucco The University of New South Wales
Gabriella Pigozzi Université Paris-Dauphine
Enrico Pontelli New Mexico State University
R. Ramanujam Institute of Mathematical Sciences, Chennai

X Organization

Antonino Rotolo CIRSFID, University of Bologna
Fariba Sadri Imperial College London
Chiaki Sakama Wakayama University
Ken Satoh National Institute of Informatics and Sokendai
Tran Cao Son New Mexico State University
Bas Steunebrink IDSIA
Michael Thielscher The University of New South Wales
Nicolas Troquard Laboratory of Applied Ontology
Paolo Turrini University of Luxembourg
Wiebe van der Hoek University of Liverpool
Leon van der Torre University of Luxembourg
M. Birna Van Riemsdijk TU Delft
Wamberto Vasconcelos University of Aberdeen
Srdjan Vesic University of Luxembourg
Emil Weydert University of Luxembourg
Thomas Ågotnes University of Bergen

Additional Reviewers

Banerjee, Mohua
Hjelmblom, Magnus
Li, Tingting

Sano, Katsuhiko
Shams, Zohreh

Table of Contents

Bipolar Argumentation Frames and Contrary to Duty Obligations,
Preliminary Report . 1

Dov Gabbay

Multi-agent Only-Knowing . 25
Gerhard Lakemeyer

Logics for Reasoning about Agents’ Attitudes in Strategic Contexts 26
Emiliano Lorini

A Time-Situated Meta-logic for Characterizing Goal-Processing
Bounded Agents . 27

Isaac Pinyol

Distributed Defeasible Speculative Reasoning in Ambient
Environment . 43

Ho-Pun Lam, Guido Governatori, Ken Satoh, and Hiroshi Hosobe

A Formal Semantics for Agent (Re)Organization . 61
Frank Dignum and Virginia Dignum

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 77
Dimitar P. Guelev and Catalin Dima

Using Evolution Graphs for Describing Topology-Aware Prediction
Models in Large Clusters . 94

Matei Popovici

Enhancing Goal-Based Requirements Consistency: An Argumentation-
Based Approach . 110

Isabelle Mirbel and Serena Villata

A Game Theoretic Approach for Optimal Network Topologies in
Opportunistic Networks . 128

Nils Bulling, Michael Köster, and Matei Popovici

MKNF Knowledge Bases in Multi-Context Systems 146
Martin Homola, Matthias Knorr, João Leite, and Martin Slota

Implementing Reversible Processes in Multi-agent Action Languages
Using Answer Set Planning . 163

Ben Wright, Enrico Pontelli, and Tran Cao Son

XII Table of Contents

Full Hybrid µ-Calculus, Its Bisimulation Invariance and Application to
Argumentation . 181

Cristian Gratie, Adina Magda Florea, and John-Jules Ch. Meyer

A Numerical Approach to the Merging of Argumentation Networks 195
Dov Gabbay and Odinaldo Rodrigues

Author Index . 213

Bipolar Argumentation Frames and Contrary to Duty
Obligations, Preliminary Report�

Dov Gabbay1,2,3

1 Bar Ilan Univ., Israel
2 King’s College London

3 Univ. Luxembourg
dov.gabbay@kcl.ac.uk

Abstract. In my papers [2,7], I modelled the Chisholm paradox and generally
Chisholm like sequences of contrary to duty obligations by using Reactive Kripke
models [4]. Reactive Kripke frames have two types of arrows: ordinary single
arrows x → y indicating accessibility relations and double arrows of the form
(u → v) � (x → y), indicating reactive connections. In the frames where the
ordering is a tree, as it is in the models for contrary to duty obligations, the double
arrow (u → v) � (x → y) can be uniquely represented by v � y. We thus get
a bipolar network where we interpret → as support and � as attack. Of course
the same reactive graph can be manipulated in the Deontic way [2], when we
read it as modelling contrary to duty obligations and it can be manipulated in the
argumentation way [1,3], when viewed as a bipolar network. The question arises,
can we find a family of tree like graphs, (which do not sacrifice generality neither
in the contrary to duty area nor in the bipolar argumentation area) for which the
Deontic and the argumentation manipulations are the same. This paper shows that
this is possible, and thus establishes a connection between the contrary to duty
area and the bipolar argumentation area. Note the following:

1. This connection with bipolar argumentation frames is made possible because
of the modelling of contrary to duty obligation using reactive Kripke models.
The connection between Reactivity and Bipolarity is more easy to see.

2. The way the game is played in each area is different. So we have here a
wide scope for interaction and exchange of ideas between argumentation
and normative reasoning. These include:
(a) Deontic like modelling and axiomatisations for bipolar argumentation
(b) argumentation semantics for contrary to duty paradoxes which can es-

pecially handle contrary to duty loops (a subject hardly mentioned in
the contrary to duty literature)1

(c) The equational approach to contrary to duty, imported from the equa-
tional approach to argumentation [8]

� I am grateful to M. Caminada, L. van der Torre and S. Villata for valuable comments. Research
done under THE ISRAEL SCIENCE FOUNDATION Grant No 1321/10: Integrating Logic
and Network reasoning.

1 There is however the Moebius Example of Makinson [15]. The example is formulated in the
context of input -output logic but would give rise to the following contrary to duty loop:

a → Ox;x → Oy; y → O¬a.

See Example 6 below.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 1–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 D. Gabbay

(d) The fact that bipolar frames can be instantiated as contrary to duty obli-
gation might shed some light on the polarised debate in the argumenta-
tion community on how to instantiate argumentation networks, see [5].

(e) Settle quesions of how to model (what is) support in argumentation
3. Doing Modal Logic in Bipolar Argumentation Theory (compare with [6]).

This paper shows a connection between deontic contrary to duty obligations [2,7] and
bipolar argumentation networks [1,3]. We need to give a short introduction to each area.

1 Cayrol and Lagasquie-Schiex’s Bipolar Argumentation
Framework

In this section we summarize the definitions of bipolar argumentation frameworks with
the terminology used by Cayrol and Lagasquie-Schiex [3].

Definition 1 (Bipolar argumentation framework BAF). A bipolar argumentation
framework (A,→,�) consists of a finite set A called arguments and two binary re-
lations on A called attack and support respectively.

Definition 2 (Conflict free). Given an argumentation framework AF =
(A,�) a set C ⊆ A is conflict free, denoted as cf(C), iff there do not exists α, β ∈ C
such that α� β.

The union of elementary coalitions in [3] is defined as follows:

Definition 3 (Elementary coalitions). An elementary coalition of BAF is a subset
EC = {a1, . . . , an} of A such that

1. there exists a permutation {i1, . . . , in} of {1, . . . , n} such that the sequence of
support ai → ai1 → ain holds;

2. cf (EC);
3. EC is maximal (with respect to ⊆) among the subsets of A satisfying (1) and (2).

EC denotes the set of elementary coalitions ofBAF andECAF = (EC(A), c-attacks)
is the elementary coaltion framework associated with BAF . Cayrol and Lagasqie-
Schiex define a conflict relation on EC(A) as follows:

Definition 4 (c-attacks relation). Let EC1 and EC2 be two elementary coalitions of
BAF . EC1 c-attacks EC2 if and only if there exists an argument a1 in EC1 and an
argument a2 in EC2 such that a1 � a2.

Remark 1. Extensions can now be defined in the Dung traditional manner on ECAF.
We get sets of coalitions on A. Our interest stops at this point. However [3] continued
to the next definition 5.

Definition 5 (Acceptability semantics).

– S is a ecp-extention ofBAF if and only if there exists {EC1, . . . , ECp} a preferred
extension of ECAF such that S = EC1 ∪ . . . ∪ECp.

Bipolar Argumentation Frames and Contrary to Duty Obligations 3

y2

∞

o

yx

x1 x2 y1

Fig. 1.

– S is an ecs-extension of BAF if and only if there exists {EC1, . . . , ECp} a stable
extension of ECAF such that S = EC1 ∪ . . . ∪ECp.

– S is a ecg-extension ofBAF if and only if there exists {EC1, . . . , ECp} a grounded
extension of ECAF such that S = EC1 ∪ . . . ∪ECp.

Example 1. Consider the bipolar network of Figure 1. We shall see later that Figure 1
arises from the modelling of the Chisholm paradox and so we have good reason for
choosing it here.

x y

Fig. 2.

Note that we allow nodes to both attack and support other nodes at the same time. This
is allowed in [3].2

2 If the reader is uncomfortable with this we can add auxiliary points and the problem disappears.
We can replace any occurrence of Figure 2 by Figure 3.

Since the bipolar semantics deals with coalitions, and Wx,y is between x and y, it will
appear in any coalition containing x and y and there will be no technical consequences to
using Figure 2 instead of Figure 3.

4 D. Gabbay

x yWx,y

Fig. 3.

The maximal support paths of Figure 1are

β = (∞,o, y, y2)

α = (∞,o, y, y1)

δ = (∞,o, x, x2)

γ = (∞,o, x, x1)

The maximal coalitions according to Definition 3 are

{∞,o, x, x1}, {y, y2}.

The attack relation among coalitions is Figure 4.

γ = {∞,o, x, x1} β′ = {y, y2}

Fig. 4.

Thus the extension is {γ, β′} since they don’t attack each other.
If we want to proceed according to Definition 5, we get the extension for 1 to be

γ ∪ β = {∞,o, x, x1, y, y2}.
Note that if we compute the extensions for 1 directly, we get the same set,

{∞,o, x, x1, y, y2}.
Note that the reason we cannot take the maximal paths α, β, γ, δ as our “coalition”

network elements is that α, β and δ are not conflict free, and Definition 3 requires
conflict freeness. If we ignore the conflict free restriction we can consider the network
with α, β, γ, δ.

The attack relation among the paths is as in Figure 5.

Example 2. Another example from [1] is Figure 6
The coalitions are as in Figure 7. The extension of Figure 7 is {(d), (e)}. and accord-

ing to Definition 5, this yields the extension {d, e} for Figure 6. The {d, e} extension is
not correct according to Dung. Paper [1] offers a remedy.3 We are not interested in that
in the current paper. For the purpose of comparison with contrary to duty obligations it
is sufficient for us to stop at the step where we got extensions for Figure 7.

Note that we prefer to take a modified form of Figure 6. Namely, Figure 8. We add a
new node∞ and add∞→ x, to any x such that there is no y with y → x, i.e. to all→
minimal xs.

3 In [1] we extend the notion of attack. If a supports b and c attacks b we consider a as being
under attack as well. See Remark 3 below.

Bipolar Argumentation Frames and Contrary to Duty Obligations 5

δ : (∞,o, x, x2)

α = (∞,o, y, y1)

γ = (∞,o, x, x1)

β = (∞,o, y, y2)

Fig. 5.

d

a b

c e

Fig. 6.

(a, b, c) (d)(e)

Fig. 7.

∞

a b

c e

d

Fig. 8.

6 D. Gabbay

This helps the bipolar network to be similar to models of contrary to duty obligations.

Definition 6. Let (S,→,�) be a bipolar network. Let ∞ be a new point. Define S′ =
S ∪ {∞} and extend→ on S′ as follows.

For any x ∈ S such that for no y ∈ S do we have that y → x holds, let ∞ → x be
added.

We call (S′,→,�) the deontic friendly extension of (S,→,�).

Proposition 1. The mapping

(∞, x1, . . . , xn)↔ (x1, . . . , xn)

between the coalitions in S′ to coalitions in S is an isomorphism of the coalition graph
of S (as in Definition 4) and the coalition graph of S′.

Proof. Obvious.

2 Reactive Semantics for Contrary to Duty Obligations

We now very quickly present the problems of contrary to duty paradoxes and outline
our reactive models for their solution.

Consider the following set of obligations, known as the Chisholm set. Notation: p =
go, q = tell.

1. It is obligatory to go and help your friend.
2. If you go, you ought to tell him you are coming.
3. If you do not go, you ought to tell him you are not going.
4. Fact: you do not go.

A proper modelling of these clauses requires that these clauses be indepedent and con-
sistent. Standard deontic logic SDL cannot do the job and in our papers [2,7] we offer
a reactive variant of SDL. SDL is the modal logic K with the operator O and the ad-
ditional axiom ¬O⊥. The English statements (1)–(4) are formalised (at best) as (1a),
(2b), (3a), (4a) below. If read as wffs of SDL they are still problematic, but if modelled
by reactive frames like Figure 9, we avoid difficulties and have a solution, see [2,7].

Let us take the translation into SDL (1a), (2b), (3a), (4a).

(1a) Op
(2b) p→ Oq
(3a) ¬p→ O¬q
(4a) ¬p

The problem with this translation when taken as wffs of SDL is that (4a) implies logi-
cally (2b). We lose independence.

Let us look at Figure 9, which gives a graphical representation of the linguistic
clauses (1a), (2b), (3a), and (4a).

Figure 9 expresses exactly the same as the lingusitic clauses. However, it is clear that
this is a different representation and we can see from the figure at which node each of
these clauses is associated with.

Bipolar Argumentation Frames and Contrary to Duty Obligations 7

o

∞

y : ¬px : p

x1 : q x2 : ¬q y1 : q y2 : ¬q

Fig. 9. Representation of the Chisholm set

(1a) is associated with node o
(2b) is associated with node x
(3a) is associated with node y
(4a) is associated with node y

Before we explain how we understand Figure 9, let us compare it, purely as a graph,
with Figure 1. First note that since the → part of this figure is a tree, we can represent
the double arrows

(∞→ o) � (o→ y)

(o→ y) � (y → y1)

(o→ x) � (x→ x2)

respectively by

o � y

y � y1

x� x2

This can be done because each point in the tree (except∞) has a unique→ predecessor,
and so we can identify any u→ v by v alone.

If we do this indentification we see that Figure 9 becomes Figure 1.
This is good, however, in bipolar argumentation we read and do extensions with

the figure while in deontic logic we read contrary to duty obligations from the figure.
Are these two “readings” related?4 Let me tell you first the deontic reading and then we
compare the way we read the figure. Our deontic reading is as follows.∞ is our starting

4 Note that this is a key question. If what we do with the basic figure is different then there is no
relation between the approaches. This point will arise also in Remark 2 when we compare our
approach with other papers, for example with paper [12].

8 D. Gabbay

point. We go to node o (say office), where our obligations begin. Obligation 1 says we
ought to go and help.

This means we need to travel to node x. This is why we have the double arrow from
(∞→ o) to (o→ y). Double arrows in the reactive semantics post a warning sign

“Do not pass through this arc”

If we indeed go through o→ x, we need to continue to point x1 and so another double
arrow (o → x) � (x → x2) tells our traveller not to go through x → x2. Similarly if
we ignore the warning sign on the arc o→ y and go across it to y, then the contrary to
duty says do not go to y1, do go to y2. It put a warning sign on y → y1. This is done by
the double arrow (o→ y) � (y → y1).

Our deontic perception of Figure 9 and its equivalent (as a graph only) Figure 1 is
that we walk along maximal paths following the arrows.

So let us ask ourselves, what are the possible paths? These are

β = (∞,o, y, y2)

α = (∞,o, y, y1)

δ = (∞,o, x, x2)

γ = (∞,o, x, x1)

The facts in the contrary to duty set, is information about the path we actually took.
The full information is a maximal path, and partial information is a family of (possible)
paths. In our example the fact is that he went to node y but we do not know whether he
continued to y1 or to y2. So the possible paths are α and β.

The� are the attacks. We can perceive them as attacks in the contrary to duty deontic
case because they represent instructions to block some paths. This is their function.5

Now we ask, if we walk according to all obligations and obey all double arrows
(obey all signs which say do not pass), which paths are Kosher and OK?

By looking at the figure, we see it is

(∞,o, x, x1)

Here we obey all our obligations. We are really good.
It can also be (y, y2) if we obey the contrary to duty. Having violated the Ox and

gone to y, we no longer commit violations and obey y → Oy2.
Now we ask, doing the bipolar extensions according to [3], as in Definition 5, what

do we get? The answer is {∞,o, x, x1}, and {y, y2}.
So we are getting all the paths in which we are somewhat obedient.
We now get a suggested correspondence as follows:

5 The idea of nodes or arrows attacking other arrows was introduced in [4] and gave rise to the
notion of Reactive Kripke Semantics, which was widely applied. In our papers [11] and its
expanded version [10], these ideas were used in argumentation. See also [9] for details and
discussions. [19,24] independently considered this idea. See also [1]. In our paper [2] we used
reactive arrows to model contrary to duty obligations, and this use allows for the connection
between argumentation and normative systems. A detailed general overview and priorities on
second and higher levels attacks can be found in my forthcoming book [25].

Bipolar Argumentation Frames and Contrary to Duty Obligations 9

Support = possible path connection
Attack = Obligation
Extensions = sets of maximal paths without violation

We shall see later in Example 5, that we recommend to change the notion of attack in
bipolar argumentation and take paths instead of sets as our elements. This would be our
message to [3].6

Example 3. Let us look at Figure 8 from the deontic contrary to duty point of view. First
we comment that the family of examples (paradoxes) of contrary to duty sets is limited
and this graph (given in [1] as an example to discuss the adequacy of [3]) does not fit
any known deontic example. However, we do have an interpretation for it. We have in
Figure 8 several options for paths beginning at∞ and we would like to offer a maximal
package of paths for the righteous people to follow, without any risk of violations.
Looked at the figure in this way we want extensions in the sense of Definition 5 for
paths. The answer is

{(∞, d), (∞, e)}
Note that is is meaningless for the deontic case to look at {d, e} as suggested in Defini-
tion 5, as an extension of the points graph. We want only coalition extensions.

3 New Ideas Arising from the Connection between Argumentation
and Deontic Logic

The previous two sections presented the connections between bipolar networks and
contrary to duty obligations. This section will describe new ideas arising from these
connections. We discuss

1. Bipolar argumentation semantics for contrary to duty (looping) obligations
2. The equational approach to contrary to duty
3. New path semantics for bipolar argumentation networks

We now know how to turn every reactive tree frame into a bipolar system, and hence
get argumentation semantics for contrary to duty sets. Let us get some mileage out of
this correspondence. In [7] there is a loop example whose semantics was left as an open
problem. Can we make use of our new insight?

Example 4 (Loop). Consider the following 3-loop.

1. ¬x→ Obligatory y
2. ¬y → Obligatory z
3. ¬z → Obligatory x.

We cannot build a tree graph for it. We have a loop.

6 The reader familiar with Abstract Dialectical frameworks of Brewka and Woltran [23] will
recall that they claim in their paper, that they do better analysis of support than [3]. Our aim
here is not to do better than [3] but to show the interaction of BAF with Deontic reasoning.
By the way, we use in Remark 3 the notion of disjunctive attacks, introduced in [17], to model
multiple support. The logical machinery of Abstract Dialectical Framework is implicit in [17],
as recognised by Brewka and Woltran in their paper. This means that they are also capable of
doing what we are doing in Remark 3.

10 D. Gabbay

¬zz

y

x

a

∞

¬x

¬y

Fig. 10. 3-level loop

The coalitions in this case are

{∞, a, x}

{∞, a,¬x, y}

These are the only conflict free coalitions in Figure 10 and are therefore the bipolar
extensions according to Definition 4 and Remark 1.7

We now check the maximal path point of view for Figure 10.

7 The perceptive reader will note that Figure 10 is not a kosher figure of bipolar network as
defined by Cayrol and Lagasquie-Schiex’s in Definition 1. The attack arrows do not emanate
from nodes but from arcs. Such attacks were never considered in the argumentation networks,
except in [11] and [10]. The attacks arrows also terminate in arcs. The idea of attacking arcs
was also first introduced in [11] and was followed up, sometimes independently, in the litera-
ture. Note that Figure 10 is not a tree and so we cannot convert it to an equivalent figure with
double arrows emanating from nodes and terminating at nodes. We can and should, however,
generalise the notion of bipolar argumentation networks by saying that attacks should emanate
from support arrows, and terminate at other support arrows, using the rationale that when we
support an argument , part of our support strategy is to initiate attacks on other arguments and
their supports. We shall later develop these concepts. Meanwhile let us execute the obvious
steps for Figure 10.

Bipolar Argumentation Frames and Contrary to Duty Obligations 11

The finite paths are as follows:

α = (∞, a, x)

β = (∞, a,¬x, y)

γ = (∞, a,¬x,¬y)

δ = (∞, a,¬x,¬y,¬z, x)

w = (¬y,¬z,¬x)

Then we loop into the infinite number of sequences

ζn = α(w)n(y)

ηn = α(w)n(¬y, z)

ρn = α(w)n(¬y,¬z, x).

n = 1, 2, 3, . . .

The path attack relation is as follows:

1. α attacks nobody
2. β � all except α, β
3. All nodes except α, β attack each other.

Clearly the extension there for the path network is: {α, β}.
These are also the righteous paths with no violations, and they correspond to the

bipolar extensions.

Example 5 (Gabbay’s first proposal for the concept of bipolar network). This example
imports concepts from contrary to duty oblgations into bipolar argumentation. Consider
the network of Figure 11. This represents the contrary to duty

1. You ought to either work or rest
2. If you work you ought to rest
3. If you rest you ought to work.

What these rules say is that you ought to start working or get yourself ready by resting,
and then alternate between work and rest.

The paths here are

Π1 = (∞,o,W,R,W,R, . . .)

Π2 = (∞,o, R,W,R,W, . . .)

According to the bipolar definitions, Definitions 3 and 4 we take subsets as maximal
conflict free coalitions and the attack relation is done element-wise. So there is only
one coalition {∞,o}. This does not mean much in our context.

12 D. Gabbay

R

o

∞

W

Fig. 11.

This example shows a sharp difference between the path approach and the coalition
bipolar approach. We did have good correspondence between the two approaches when
the graphs were trees (Examples 1 and 2 and the analysis of Figure 9).

The correspondence still worked even in the looping example 4, but not for Figure 11.
We need now to recommend changes in the abstract machinery of Definitions 1–4.
This is our message of change to C. Cayrol and M. C. Lagasquie-Schiex’s bipolar

concept.
The following table, Table 1 outlines the differences, which is then followed by a

discussion.
We assume in this table that we have as given a bipolar graph (S,→,�).

Table 1.

Concept Cayrol and Lagasquie-Schiex Gabbay

Path A sequence (x1, . . . , xn) such that x1 →
x2 → . . . → xn holds

same

conflict
free path

For no x, y,∈ {x1, . . . , xn} do we have
x � y

For no 1 ≤ i ≤ n − 1 do we
have xi � xi+1

Attack be-
tween paths

(x1, . . . , xn) attacks (y1, . . . , yk) if for
some xi and yj we have xi � yj

(x1, . . . , xn) attacks
(y1, . . . , yk) if for some
r < min(k, n) we have
xr � yr+1.

Coalition Maximal conflict free set which is a path
(Definition 3)

Maximal Gabbay conflict free
path.

Bipolar Argumentation Frames and Contrary to Duty Obligations 13

According to Gabbay’s path semantics, the paths Π1 and Π2 are conflict free each
and do not attack each other. They are the two violation free courses of action for the
contrary to duty Figure 11. So we get the right result here.8

Example 6 (Makinson Moebius example). Consider the loop

1. a→ Ox
2. x→ Oy
3. y → O¬a

Figure 12 draws this set

¬y

∞

¬a a

¬xx

y

Fig. 12.

The only coalition or path coalition which is not self attacking in Figure 12 is
(∞, a, x, ,¬a). Neither Cayrol and Lagasquie-Schiex (Definition 4) nor Gabbay (Ex-
ample 7) is bothered by the fact that we have both a and ¬a in this coalition because
there is no formal attack a� ¬a or ¬a� a n the Figure. One must not criticise Cayrol
and Lagasquie-Schiex for not requiring that a � ¬a an ¬a � a because “¬” is not
assumed in the language.

In the case of Gabbay the definition is in terms of paths and although we pass through
node a we do follow instructions and end up at ¬a. So Gabbay would not need to
stipulate a� ¬a and ¬a� a.

Example 7 (The equational approach to contrary to duty obligations). We can import
more from argumentation to deontic logic. We can import the equational approach. See
[8].

Consider Figure 13.

8 Note that sequences can be proofs and so we may be able to deliver an abstract bipolar network
in between the abstract Dung networks and the fully instantiated ASPIC networks.

14 D. Gabbay

x

eme1 . . . u1 uk. . .

Fig. 13.

x is attacked by u1, . . . , uk and is supporting e1, . . . , em. The equations are:

Eqmax : x = 1−max{u1, . . . , uk, 1− e1, . . . , 1− em}
Eqinverse : x = e1 × . . .×m× (1− u1)× . . .× (1− uk).

Let us check the equations for the Chisholm paradox in Figure 1.
Note that the figure has the node o to distinguish it from the numeral 0. We use

Eqmax:

1. ∞ = o
2. o = 1−max{1− y, 1− x}
3. y = 1−max{1− y2,o, 1− y1}
4. x = 1−max{1− x1, 1− x2}
5. x1 = y2 = 1
6. y1 = 1− y
7. x2 = 1− x

Solving the equations we get:
From (6) and (3) we get

8. y = 1−max{y,o, 1− y2}

From (7), (5) and (4) we get

9. x = 1− x = 1
2

From (7) and (9) we get

10. x2 = x = 1
2

From (8), (5), (9) and (2) we get

11. y = 1−max{y, 1− y} and hence y = 1
2

We compare with equation 2 and get that the solution is

y = o =
1

2

This will solve the equations.

Bipolar Argumentation Frames and Contrary to Duty Obligations 15

We get

∞ = o = x = y = x2 = y1 =
1

2

and
x1 = y2 = 1.

The result we got is not yet satisfactory. We hope for a solution

∞ = o = x = x1 = 1

which gives the correct
(∞,o, x, x1)

path (no violations on this path) and all the other paths have 0 in them. Instead we got
a lot of 1

2 values. However, we can still continue, because 1
2 means undecided.

Indeed, in Figure 1 we have three loops with 1
2 = undecided values. These are (the

loop is that a node both supports and attacks the other node).

L1 = {x, x2}, L2 = {o, y} and L3 = {y, y1}

We can use loop busting methods to break these loops, see [9] and get

x = 1, x2 = 0, for L1

o = 1, y = 0, for L2

y1 = 1, y = 0, for L3

We now have the solution we want!
Let us use the equational approach for this example in a different way and compare.

Let us look at Figure 5. This is the coalitions attack figure used to compute the bipolar
extension. The winning extension was {(∞,o, x, x1)}.

Let us give values 1 to all nodes in this winning extension and 0 to all other nodes.
Did we get the same result as before? The answer is yes.

We can follow this method in general. Start with a bipolar argumentation network.
Obtain the extensions as in Remark 1 and then form the set S as in Definition 5.

Now give numerical value 1 to members of S and 0 to other nodes.

We now want to define a bipolar argumentation network associated with a general arbi-
trary set of contrary to duty obligations. Such obligations have the form x→Obligatory
y, which we can also write as (x, y) or the form Obligatory z, which we can also write
as (, z).

We look at all the atomic letters x, y, z, . . . and their negations ¬x,¬y,¬z, . . . and
take these as our nodes in the bipolar argumentation network, together with the addi-
tional node∞.

We let x → y and x → ¬y be support arrows in the network whenever (x, y) is in
the contrary to duty set. We also let the attack x � ¬y be in the network if (x, y) is in
the set and x � y be in the network if (x,¬y) is in the contrary to duty set. If x is 	
we use∞ instead of x. This is basically the idea. We now give the definition.

16 D. Gabbay

Definition 7 (Bipolar argumentation semantics for a general contrary to duty set)

1. Let Q be a set of atomic letters and let

Q± = Q ∪ {−x|x ∈ Q} ∪ {	}.

A set C of pairs of the form (x, y) where x, y ∈ Q± and y
= 	 is called a con-
trary to duty obligations set. We can write (x, y) ∈ C in a linguistic semi-formal
language as x→ Obligatory y. If x = 	, we can write Obligatory y.

2. Let C be a contrary to duty obligations set. We define a bipolar arugmentation
network (S,→,�) as follows. Let Q0 be the set of all y ∈ Q such that y or ¬y
appear in C.
Let

S = Q0 ∪ {¬y|y ∈ Q0} ∪ {∞}.

We define→ and � on S as follows

(a) Let ∞ → x and ∞ → −x hold whenever (, x) or (,¬x) are in C for
x ∈ Q0.

(b) Let∞→ x hold whenever (x, y) is in C and there is no z such that (z, x) is in
C.

(c) Let x → y and x → −y hold, whenever either (x, y) or (x,−y) are in C for
y ∈ Q0.

(d) Let x � y hold whenever (x,−y) is in C for y ∈ Q0, and let x � −y hold
whenever (x, y) is in C for y ∈ Q0.9

3. A complete fact is a maximal path of the form (∞, x1, . . . , xn, . . .), such that∞→
x1 holds and for all i, xi → xi+1 holds. A fact is a set of complete facts.

4. The path semantics outlined in Definition 5 would give us bipolar path argumenta-
tion semantics for contrary to duty obligations.10

Example 8 (Chisolm set). Let us use Definition 7 on the Chisholm set

1. 	 → Obligatory g
2. g → Obligatory t
3. ¬g → Obligatory ¬t
4. ¬g

Figure 14 describes this set, according to Definition 7.
Figure 14 should be compared with Figure 9. They are essentially the same. The lat-

ter is the unfolding of the former, with an additional intermediary point o. The complete
facts are paths in Figure 14. These are:

(∞, g, t), (∞, g,¬t), (∞,¬g, t), (∞,¬g,¬t).

The fact g corresponds to the set of two paths

{(∞, g, t), (∞, g,¬t)}.

Bipolar Argumentation Frames and Contrary to Duty Obligations 17

t

∞

g ¬g

¬t

Fig. 14.

(∞, g,¬t)(∞, g, t)

(∞,¬g, t) (∞,¬g,¬t)

Fig. 15.

Figure 15 shows the path coalitions and the attacks among them.
Obviously there is exactly one winning coalition, namely (∞, g, t).

Remark 2 (Comparison with [12]). We take this opportunity to compare our analysis
of the Chisholm set in Example 8, with example 6 of [12]. In [12], Tosatto, Boella,
Torre and Villata use input-output logic to model abstract normative systems. Example
6 and Figure 6 in their paper addesses the Chisholm set. Our Figure 16 reproduces their
Figure 6.

The arrows are input-output connections.
In Figure 6 of [12] they use a for our g and 	 for our ∞. Their representation of

facts (i.e. ¬g) is a set A of nodes. Their choice is A = {∞,¬g}. They apply a variety
of input-output operations to A (called deontic operations) to obtain families of sets
�iA, where�i is one of twelve possible operations.

9 Note that we defined attacks from node to node and not from arc to arc, as remarked in footnote
7. We adopt the view that the contrary to duty obligation x → Oy actually means that once
you are at x you should continue to y and this obligation is independent of how (by what route)
you got to x.

10 This definition should be compared with Definition 2 of [12].

18 D. Gabbay

¬tt

g

∞

¬g

Fig. 16.

Let us consider their operation �3. We have

�3({∞,¬g}) = {¬t}.

My understanding of this in terms of our representation is that �3 says if you go down
the path (∞,¬g) it is recommended by the norms that you continue to {¬t}.

So in general for a set of nodes A, the operations �i(A) are various recommenda-
tions of where else to “continue”. The approach in [12] is essentially proof theoretic
whereas our approach is essentially semantic. The two approaches of course can be
combined and benefit one another to obtain better tools for modelling. We shall pursue
this in the expanded version of this paper. We note in passing that the Chisholm set
has a temporal aspect to it, the tell comes before go. Our approach can represent the
temporal order by using Figure 17 instead of Figure 14.11 The approach of [12] cannot
be modified so easily.

We need to systematically compare the two approaches, and this we shall do in the
full expanded version of this paper.

Definition 8 (Gabbay’s second proposal for the concept of bipolar network)

1. Let A = (A,→,�) be a bipolar network as in Definition 1. We define the notion
of tree coalitions as follows:
A subset TC of A is a tree coalition iff the following holds
(a) TC is conflict free
(b) If x ∈ TC and y → x holds then y ∈ TC
(c) Let→∗ be the transitive closure of→. Then if x, y ∈ TC then for some z, y →∗

z and x→∗ z hold.

11 See paper [2], where temporal sequences are addressed. Note that we would need to change the
notion of attack as defined in Table 1. We would need to adopt Cayrol and Lagasquie-Schiex’s
definition and let:

(x1, . . . , xn) attacks (y1, . . . , yk) if for some r, j we have that xr � yj .

Bipolar Argumentation Frames and Contrary to Duty Obligations 19

¬tg

¬t

∞

t

Fig. 17.

2. Let S be the set of all tree coalitions. Define a notion of attack on S by letting
TC1 � TC2 iff for some x ∈ TC1 and y ∈ TC2 we have x � y holds. Then
T A = (S,�) is a traditional Dung argumentation network. It is the derived net-
work of A.

Example 9 (Proof theory example). We can give a proof theory interpretation to the
concepts defined in Definition 8.

Let Q be a set of atoms q and their negations ¬q. Construct formulas of the form ϕ,
where

ϕ = (α1 ⇒ (α2 ⇒ . . .⇒ (αn ⇒ β) . . .))

where⇒ is logical implication, and αi, β ∈ Q.
Let A be the set of all such formulas. Define→ (support) on A by letting

ϕ1 → ϕ, ψ → ϕ

where ψ is
ψ = (α2 ⇒ (α3 ⇒ . . . (αn ⇒ β) . . .))

and ϕ is as above.
Define x� y, for x, y ∈ A iff x and y are inconsistent together, i.e. can prove in the

logic ¬q and q.
Consider A = (A,→,�) and consider T A. The latter is an abstract argumentation

network which can be instantiated in the ASPIC [16] sense. In fact it was built that way.
Thus in fact we can offer a notion of abstract instantiation which is still abstract and

is an intermediate concept between the Dung and the ASPIC concepts.
A tree bipolar argumentation network A is an instantiation of an argumentation net-

work B if we have B = T A.

Remark 3. Note that Figures 6 and 7 fall under Definition 8 and the problem that {d, e}
is not a valid extension of the network of Figure 6 still exists. We need to offer a solution.

Our solution is similar to the solution of [1]. We need to consider the situation in
Figure 18.

20 D. Gabbay

z

x1 xn, . . . ,

y

Fig. 18.

If we understand x1, . . . , xn as the essential assumptions for proving y then a suc-
cessful attack of z on y must reflect an attack on at least one of the supportive xi,
because we understand the support illustrated in Figure 18 as

∧
i xi y.

This is a disjunctive attack of z on {x1, . . . , xn}.
Disjunctive attacks were considered in [17], where we used the notation of Figure 19.

, . . . ,

z

x1 xn

Fig. 19.

Disjunctive attacks can be realised in ordinary argumentation networks by adding
new variables and replacing the structure of Figure 19 by the structure of Figure 20.

Thus the original A = (A,→,�) can be reduced to a (B,�) with additional new
nodes. See [17].

Example 10 (Support only). We illustrate our methods by applying them to an example
given to us by Martin Caminada. Let x = rent an appartment and thus have an address,
z = open a bank account.

It is the case that you need x to achieve z and you need z to achieve x. We thus have
the mutual support situation of Figure 21.

According to our theory in Remark 3, Figure 21 is equivalent to Figure 22, which
contains auxiliary points

Bipolar Argumentation Frames and Contrary to Duty Obligations 21

xn

z

z̄

e

x̄1 x̄n

x1 , . . . ,

Fig. 20.

x z

Fig. 21.

x̄

e

e′

x z

z̄

z′x′

Fig. 22.

22 D. Gabbay

We can also write directly equations for Figure 21, as proposed in Example 7:

x = 1−max(1− z) = z

z = 1−max(1− x) = x.

Note the following:

1. Common sense requires a solution of two extensions, either both x and z are in or
both x and z are out.

2. the equational approach, as well as the situation in Figure 22, do give such two
solutions: φ and {x, z}. The coalition approach of Caryol and Lagasquie-Schiex
(Definition 5) give only one extension, namely {x, z}.

Example 11. Consider Figure 23

y

x

z

Fig. 23.

Here, any two nodes support the third. The equations are as follows:

x = 1−max(1− y, y − z)

y = 1−max(1− x, 1 − z)

z = 1−max(1− x, 1− y)

There are two solutions: x = y = z = 1 and x = y = z = 0. So there are two
extensions {x, y, z} and φ. As it should be!

4 Conclusion

In this position paper, we took the concept of bipolar abstract argumentation network
and modified it a bit. This change enabled us to connect to contrary to duty obligations
and give them argumentation semantics (using Gabbay’s reactive modelling of contrary
to duty). We were also able to extend our equational approach to bipolar argumentation

Bipolar Argumentation Frames and Contrary to Duty Obligations 23

as well as offer instantiations for abstract argumentation in the ASPIC spirit, by using
a proof theoretic interpretation of support.

The connection with input-output logic allows us to give argumentation semantics
for input-output logic, and more interestingly, equational semantics.

We shall address the above in the full version of this paper.

References

1. Boella, G., Gabbay, D., van der Torre, L., Villata, S.: Support in abstract argumentation. In:
Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Computational models of Argument,
COMMA 2010, pp. 111–122. IOS Press (2010); Expanded version of this paper is to appear
in special issue, AMAI (2012)

2. Gabbay, D.: Temporal Deontic Logic for the Generalised Chisholm Set of Contrary to Duty
Obligations. In: Broersen, J. (ed.) DEON 2012. LNCS (LNAI), vol. 7393, pp. 91–107.
Springer, Heidelberg (2012)

3. Cayrol, C., Lagasquie-Schiex, M.-C.: Coalitions of arguments: A tool for handling bipolar
argumentation frameworks. Int. J. Intell. Syst. 25(1), 83–109 (2010)

4. Gabbay, D.M.: Introducing Reactive Kripke Semantics and Arc Accessibility. In: Avron,
A., Dershowitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS, vol. 4800, pp.
292–341. Springer, Berlin (2008); Earlier version published in Proceeding of CombLog04
(http://www.cs.math.ist.utl.pt/comblog04/); Carnielli, W., Dionesio, F.M.,
Mateus, P. (eds.) Centre of Logic and Computation University of Lisbon, pp 7–20 (2004),
ftp://logica.cle.unicamp.br/pub/e-prints/comblog04/gabbay.pdf;
Also published as a book report, by CLC: Centre for Logic and Computation, Instituto
Superior Technico, Lisbon 1 (2004) ISBN 972-99289-0-8

5. Modgil, S., Prakken, H.: A General Account of Argumentation with Preferences,
http://www.dcs.kcl.ac.uk/staff/smodgil/GAP.pdf

6. Grossi, D.: Doing Argumentation Theory in Modal Logic,
http://www.illc.uva.nl/Research/Reports/PP-2009-24.text.pdf

7. Gabbay, D.: Reactive Kripke Models and Contrary-to-duty Obligations Expanded version.
original version (2008); Revised 2012 into two parts: Part A Semantics, to appear in Journal
of Applied Logic; Part B Proof Theory, to be submitted to Journal of Applied Logic

8. Gabbay, D.: The equational approach to argumentation. Argumentation and Computation
3(2-3) (to appear in special issue 2012)

9. Gabbay, D.: The equational approach to CF2 semantics. In: Proceedings of COMMA 2012.
IOS press (short version to appear 2012)

10. Barringer, H., Gabbay, D., Woods, J.: Temporal, Numerical and Metalevel Dynamics in Ar-
gumentation Networks. Argumentation and Computation 3(2-3) (to appear, 2012)

11. Barringer, H., Gabbay, D.M., Woods, J.: Temporal Dynamics of Support and Attack Net-
works: From Argumentation to Zoology. In: Hutter, D., Stephan, W. (eds.) Mechanizing
Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 59–98. Springer, Heidelberg (2005)

12. Tosatto, S.C., Boella, G., van der Torre, L., Villata, S.: Abstract Normative Systems: Seman-
tics and Proof Theory. In: KR 2012 (2012)

13. Makinson, D., van der Torre, L.: Constrains for input/output logics. Journal of Philosophical
Logic 30, 155–185 (2001)

14. Bochman, A.: Explanatory Nonmonotonic Reasoning. Advances in Logic. World Scientific
(2005)

15. Makinson, D.: On a fundamental problem of deontic logic. In: McNamara, P., Prakken, H.
(eds.) Norms, Logics and Information Systems, pp. 29–54. IOS Press (1999)

http://www.cs.math.ist.utl.pt/comblog04/
ftp://logica.cle.unicamp.br/pub/e-prints/comblog04/gabbay.pdf
http://www.dcs.kcl.ac.uk/staff/smodgil/GAP.pdf
http://www.illc.uva.nl/Research/Reports/PP-2009-24.text.pdf

24 D. Gabbay

16. Prakken, H.: An abstract framework for argumentation with structured arguments. Argue-
ment and Computation 1(2), 93–124 (2010)

17. Gabbay, D.: Fibring argumentation frames. Studia Logica 93(2-3), 231–295 (2009)
18. Gabbay, D.: Semantics for higher level attacks in extended argumentation frames Part 1:

Overview. Studia Logica 93, 355–379 (2009)
19. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: Encompassing Attacks to Attacks in Abstract

Argumentation Frameworks. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS,
vol. 5590, pp. 83–94. Springer, Heidelberg (2009)

20. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-argumentation modelling I:
Methodology and techniques. Studia Logica 93(2-3), 297–355 (2009)

21. Boella, G., van der Torre, L., Villata, S.: Social Viewpoints for Arguing about Coalitions.
In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 66–77.
Springer, Heidelberg (2008)

22. Boella, G., van der Torre, L., Villata, S.: On the acceptability of meta-arguments. In: Proc. of
the 2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT
2009, pp. 259–262. IEEE (2009)

23. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proc. of the 20th International
Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), pp.
102–111 (2010)

24. Modgil, S., Bench-Capon, T.J.M.: Integrating object and meta-level value based argumenta-
tion. In: Besnard, P., Doutre, S., Hunter, A. (eds.) COMMA. Frontiers in Artificial Intelli-
gence and Applications, vol. 172, pp. 240–251. IOS Press (2008)

25. Gabbay, D.: Meta-Logical Investigations in Argumentation Networks. Research Monograph.
Springer (forthcoming 2012)

Multi-agent Only-Knowing

Gerhard Lakemeyer

Department of Computer Science V
Aachen University of Technology

D-52056 Aachen, Germany
gerhard@informatik.rwth-aachen.de

Abstract. Levesque introduced the notion of only-knowing to precisely capture
the beliefs of a knowledge base. He also showed how only-knowing can be used
to formalize non-monotonic reasoning within a monotonic logic. Despite its ap-
peal, all attempts to extend only-knowing to the many-agent case have undesir-
able properties. A belief model by Halpern and Lakemeyer, for instance, appeals
to proof-theoretic constructs in the semantics and needs to axiomatize validity as
part of the logic. It is also not clear how to generalize their ideas to the first-order
case. In this talk, I present a new account of multi-agent only-knowing which,
for the first time, has a natural possible-world semantics for a quantified lan-
guage with equality. An axiom system for the propositional fragment will also be
discussed.

This is joint work with Vaishak Belle.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, p. 25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Logics for Reasoning about Agents’
Attitudes in Strategic Contexts

Emiliano Lorini

IRIT, LILaC Team, Université Paul Sabatier
31062 Toulouse Cedex 9, France
Emiliano.Lorini@irit.fr

Abstract. Logics, especially modal logics, have been widely used in the past
to model the properties of autonomous agents and multi-agent systems (MAS).
Different variants of epistemic logics, dynamic epistemic logics, logics of prefer-
ences and intention have been proposed whose aim is to describe both the static
and the dynamic properties of agents’ mental attitudes. Furthermore, there are
logics of collective attitudes including common knowledge and common belief,
joint intention and collective acceptance. Finally, several logical systems for rea-
soning about actions and capabilities of agents and groups of agents have been
proposed such as Coalition Logic, STIT logic and ATL. The concepts formal-
ized in these logics are mainly inspired by game theory and social choice the-
ory. In this talk I will present some recent works on the logical formalization of
agents’ attitudes, both individual and collective, in strategic contexts. The logics
I will present support reasoning about different concepts such as group prefer-
ence, graded belief, disposition to believe, certain belief, robust belief, common
certainty and common robust belief. I will show how these logics can be ap-
plied to game theory by providing a formal analysis of the epistemic conditions
of different solution concepts such as Nash equilibrium, iterated strong domi-
nance, iterated weak dominance and social-welfare equilibrium. In the last part
of my talk (time permitting) I may discuss some open issues and challenges in
the area of logical modelling of agents’ attitudes such as the issue of representing
strategic emotions (e.g., regret and guilt), as well as the problem of relaxing the
assumption of logical omniscience in order to represent both the static and the
dynamic properties of explicit beliefs and explicit common beliefs and in order
to distinguish them from implicit beliefs and implicit common beliefs.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, p. 26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Time-Situated Meta-logic for Characterizing
Goal-Processing Bounded Agents

Isaac Pinyol

ASCAMM, Tehcnology Center, PlastiaSite S.A.
Cerdanyola del Valles, Barcelona, Spain

ipinyol@ascamm.com

Abstract. In this paper, we present a logical framework to characterize the rea-
soning of goal-processing bounded agents. This reasoning is characterized by the
particular role of beliefs in goal activation and maintenance. The logical frame-
work is defined as a time-situated meta-logic, where only goals and beliefs ex-
ist as primitive attitudes and hold for a given instant of time. The meta-logic is
composed of a hierarchy of three many-sorted first-order languages, and a set of
axioms and axioms schemata that compile a first-order theory, describing the rea-
soning of the agent, i.e., the interplay between beliefs, goals and belief-supporting
sets. We also show how the time-situated nature of the logic provides protection
against inconsistencies, proving that the meta-logic is consistent for all underly-
ing languages.

1 Introduction

A future trend for the formalization of rational agents is the development of logical
frameworks for analyzing and predicting the internal reasoning process of the agents.
The work presented here represents a step in this direction.

Our formalism is inspired by the work of Castelfranchi and Paglieri [1] regarding
the role of beliefs in goal dynamics. They point out that goals are the only necessary
motivational attitudes for modeling cognitive agents, and that goals are not static but
follow an on-going process of stages that goes from the mere activation of goals to
an executive stage, which is necessary for present-directed intentions. Moreover, the
authors argue that each stage of the goal processing is supported by a concrete set of
beliefs that must hold to keep the goal at the current stage (so called belief-supporting
sets).

These beliefs and goals dynamics differ considerably from the classical Belief-Desire-
Intention (BDI) formalism, where motivational attitudes are modeled by a set of desires
and intentions, and where semantics are usually given by a Kripke possible-worlds
structure. Also, the transition between desires and intentions is usually not clear, and
the role of beliefs in this interplay is not deeply considered. In contrast, Castelfranchi
and Paglieri’s conceptualization proposes that desires and intentions are, in fact, the
same attitude (goal) at different stages, and each stage requires the proper activation of
beliefs or goals.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 27–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

28 I. Pinyol

In order to explore the reasoning of these kind of cognitive agents (BG agents from
now on) we develop a logical framework to model the evolution of beliefs and goals
through time. Beliefs and goals evolve depending on new observations, and each can
be falsified (or deactivated) if their supporting set of beliefs is invalid. We define it as
a meta-logic built over a hierarchy of many-sorted first-order languages where time is
present explicitly in all predicates at a meta-level. Several features arise in our logical
formalization:

1. Only goals and beliefs are considered as primitive attitudes of the agents. This is in
tune with the descriptive model of intentional agents by Castelfranchi and Paglieri
[1], Cohen and Levesque [2] and many other researchers who consider that inten-
tions are, in fact, a mental state composed of other simpler mental attitudes. See for
instance some recent work by computational argumentation theorists [3,4]. How-
ever, it does contradict other research which considers intentions as primitive atti-
tudes, like Bratman [5], Rao and Georgeff [6,7] and in general, all BDI formalisms.

2. Belief and goal revision (or change thereof) is treated as part of the normal reason-
ing process of agents. The time situated formalism permits that beliefs and goals
need not to hold forever.

3. Belief-supporting sets are explicitly represented for both beliefs and goals. Even
when they are not primitive attitudes of the agents, we consider special predicates
at the meta-level to control the validity of belief-supporting sets.

4. The meta-theory defined to describe the reasoning process is always consistent.
This is important since even when at the agent level, agents can fall into incon-
sistencies, at the meta-level the time-situated nature of the logic offers protection
against inconsistencies.

In the following section we define the logic, in section 3 we discuss the basic semantics.
In section 5 we place an example, and finally, in section 6 we state the current state-of-
the-art and conclude the analysis in section 7.

2 Logic Definition

In this section we define the meta-logic that designers of agents will use to charac-
terize the reasoning process of goal-processing bounded agents. Firstly, we define the
language LBG to express beliefs and goals of the agents, and later, the axioms and ax-
ioms schemata to define a theory over LBG. This theory describes the exact reasoning
process of the agents.

In general, agents observe and interact with the environment, activating and deac-
tivating goals accordingly. We leave for future work the incorporation of third-party
communications as a source for belief creation. We consider the reasoning of the agents
as an on-going process. This idea captures the notion of goal-processing that several
authors have pointed out (for instance [1]).

To define LBG, we use the approach described in [8,9] where first-order languages
are structured as a hierarchy. A different approach that also uses hierarchies of lan-
guages is the one taken by [10], that could be used alternatively. These works suggest
that first-order logic is enough to define consistent theories of propositional attitudes

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 29

for rational agents. In these papers, formulas ϕ from a certain propositional languageA
can be embedded into another languageB as constants for the language, usually written
as �ϕ�. For instance, we can have a language that describes possible weather events in
cities: Rain(Barcelona), Sunny(Rome) ∧ Sunny(Berlin), and another language
can talk about these events in terms of date/time:

Forecast(10/11/2010, �Rain(Barcelona)�)

2.1 The Syntax of LBG

We define three languages: The first one, denoted by Lbasic, is the object language,
a classical propositional language that contains the symbols needed by the agents for
writing statements about the application domain1. It is not time-situated. The second
language, denoted by LAg, is the language of the agents and is a first-order many-sorted
language. It contains the necessary symbols to write sentences about the knowledge and
current goals of the agents regarding the application domain captured by Lbasic in a
given instant of time. Finally, LBG, is the language that designers of the system may
use to write sentences about the reasoning process of the agents. It is also a first-order
many-sorted language and includes the necessary symbols to characterize the reasoning
process of the agents. Formally:

Definition 1. Lbasic is a non-sorted propositional language that talks about the ap-
plication domain. It is constructed with the standard syntax of propositional logic and
includes the symbols ¬, ∧, ∨ and→. F(Lbasic) is the set of valid formulas from Lbasic.

Definition 2. LAg is a first-order many-sorted language and contains the following
sorts:

– ST : the sort representing time instants.
– SF : the sort representing formulas from Lbasic and from LAg itself.

We use different letters for variables of different sorts:

– t, t1, t2, . . . for variables of sort ST

– x, x1, x2, . . . for variables of sort SF

F(LAg) is the set of syntactically valid formulas of LAg, which contains F(Lbasic)
and the formulas obtained by the standard syntax of first-order logic, that includes the
predicate symbols and constants that will be defined below. Constants and predicate
symbols of LAg are identified by their sorts. The sort ST is defined as in [8], and
contains the constant 0 (starting time), the unary predicateNow(ST) and the successor
unary function symbol + : ST → ST . The application of n ∈ IN times the operator +
over the constant 0 will be written as n. For instance, 3 will stand for 0 + ++.

The sort SF represents the formulas that can participate in the predicates. It includes
the entire set F(LAg) minus the quantified formulas. Only those that can be inside a

1 Alternatively, Lbasic could be a first-order language. This would imply though a more com-
plex notation for LBG, that is outside the objective of this paper. We refer to [8] for such
development.

30 I. Pinyol

first-order predicate will be present in SF . Also, SF includes a corresponding set of
constant symbols CAg that is constructed simultaneously and recursively. The set CAg

contains constants of the form �σ�, where σ ∈ FAg. It is important to remark that the
symbols x, x1, x2, . . . are for variables of sort SF in general, while the symbols �ϕ� are
constants of the sort SF that denote formulas of F(LAg).

Now we specify the predicate symbols corresponding to various sorts. In the notation
introduced below, the predicate symbol B, for instance, is written B(ST , SF). This
means that B is a predicate symbol of arity 2, with first argument in ST and second
argument in SF . The language LAg contains the following predicate symbols:

– B(ST , SF) - Belief predicate: It represents the knowledge of the agent at a given
time. For instance,

B(3, �rain(Barcelona)�)
indicates intuitively that the agent believes at time 3 that it rains in Barcelona.

– G(ST , SF) - Goal predicate: It represents a goal of the agent at a given time. For
instance,

G(5, �run away(home)�)
indicates that at time 5, the agent holds a goal to run away from home.

Definition 3. LBG is a first-order many-sorted language that contains the same sorts,
constant symbols and predicate symbols as LAg, and includes two new predicate
symbols:

– Fb(ST , SF , SF) - Belief-supporting belief: It represents a supporting set of beliefs
that hold in a given time. For instance,

Fb(3, �live(Paris)�, �live(France)�)
indicates that at time 3, the formula live(France) holds because live(Paris) also
holds. This predicate is at a meta-level for the agents because it is used to control
possible inconsistencies at the agent level. Also, it indicates that the former is a
sufficient condition for the latter formula.

– Fg(ST , SF , SF) - Belief supporting goal: It represents a belief that supports the
existence of a goal. For instance,

Fg(3, �fire(home)�, �run away(home)�)
indicates that at time 3, the goal of run away(home) is supported by the belief
that fire(home).

Also, LBG contains various function symbols that allow us to deal with parts of the
agents’ formulas and to express the reasoning of the agents. The functions applied to
the sort SF are one unary function neg : SF → SF for the negation of formulas, and
the binary functions con : SF ×SF → SF for conjunctions and imp : SF ×SF → SF

for implications.
For instance, if �ϕ�, �φ� ∈ CAg then imp(�ϕ�, �φ�) is interpreted as �ϕ → φ�,

con(�ϕ�, �φ�) as �ϕ ∧ φ�, and neg(�φ�) as �¬φ�. The expression or(x, y) stands for
¬(con(¬(x),¬(y))). At first sight, all these functions can be regarded as purely syntac-
tic transformations, but they are important in our construction because they allow us to
write sentences that talk about parts of the formulas.

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 31

2.2 Axioms of LBG

The semantics ofLBG is the usual for a first-order many-sorted language. In this section
we have presented only a few definitions and notation. A detailed introduction to the
syntax and semantics of first-order many-sorted logics can be found in [11].

Here we define a theory Γ over LBG, i.e., the axioms that agents use to reason.
The theory contains the minimal formulas to describe the behavior of the predicates
introduced above. Remark that we are not giving an axiomatization of the logic, but
only a set of axioms for a theory (a set of sentences in this first-order language closed
under the logical consequence relation). For that reason we do not need to introduce
inference rules. We assume that the deductive system is given (for instance, as defined
in [11]).

A1 - Time Knowledge: The agent is always aware of the current time.

∀tB(t, now(t))

A2 - Modus Ponens: Agents use modus ponens to deduce formulas in the belief con-
text. We assume that implication is in fact, default implications.

∀tx1x2B(t, imp(x1, x2)) ∧B(t, x1)
∧¬∃x3(B(t, x3) ∧ x2 = neg(x3))
→ B(t+, x2) ∧ Fb(t+, x1, x2)

∧Fb(t+, imp(x1, x2), x2)

A3 - Conjunction: Agents use conjunction rules for beliefs, but not for goals.

∀tx1x2B(t, x1) ∧B(t, x2)
→ B(t+, con(x1, x2)) ∧ Fb(t+, x1, con(x1, x2))

∧Fb(t+, x2, con(x1, x2))

A4a, A4b, A4c, A4d - Detachment: Agents use detachment when reasoning about
beliefs and goals

A4a- ∀tx1x2B(t, con(x1, x2))
→ B(t+, x1) ∧B(t+, x2)

A4b - ∀tx1x2G(t, con(x1, x2))
→ G(t+, x1) ∧G(t+, x2)

A4c - ∀tx1x2Fb(t, x3, con(x1, x2))
→ Fb(t+, x3, x1) ∧ Fb(t+, x3, x2)

A4d - ∀tx1x2Fg(t, x3, con(x1, x2))
→ Fg(t+, x3, x1) ∧ Fg(t+, x3, x2)

A5a, A5b - Inheritance of Beliefs and Goals: These axioms describe the inheri-
tance rules of predicates B and G. Beliefs are inherited only when they do not present

32 I. Pinyol

contradictions. Goals are only inherited when their belief-supporting set holds. Axiom
A5a states that a belief will be inherited to the next time step only if there exists a sup-
porting belief and all of the beliefs hold. We include the condition x2
= now(t2) to
deal with beliefs that come directly from observations (see axiom A8). Due to space
limitation, we are only placing the case of quantified positive atoms, although it should
be an axiom for each possible combination of positive and negative quantified atoms.
For instance, axiom A5a considers for both x1 and x2, only the formulas that do not
start with a negation (neg(·)), but we should include an axiom for the case where only
x1 starts with neg, another where only x2 starts with neg and a last one where both x1
and x2 start with neg. We must do this because in our logic, an agent might believe a
but not necessary neg(neg(a)). This situation is the same for the axiom A5b.

A5a - ∀tx1B(t, x1) ∧ ¬∃x2t2((Fb(t, x2, x1)
∧x2
= now(t2) ∧ (¬B(t, x2) ∨B(t, neg(x2))))

∧∃x4(Fb(t, x4, x1)) ∧ ¬B(t, neg(x4))
∧∀x3(x1
= neg(x3) ∧ x2
= neg(x3)))

→ B(t+, x1)

A5b - ∀tx1G(t, x1) ∧ ¬∃x2((Fg(t, x2, x1)
∧(¬B(t, x2) ∨B(t, neg(x2))))

∧∀x3(x1
= neg(x3) ∧ x2
= neg(x3)))
→ G(t+, x1)

A6a, A6b, A6c - Inheritance of Belief-Supporting Sets of Beliefs: The inheritance of
predicates Fb ensures the inheritance of supporting sets that do not present contradic-
tions. We consider the special case of beliefs that are supported directly by observations
(A6a and A6b): The intuitive idea says that if at time t the observation A is acquired,
and at instant time q (where t < q. We assume that the operator < is defined as a first-
order predicate) the observation¬A is acquired, the latter will be the valid one, meaning
that the former will not be inherited to the next time unit. In this case, A6a deals with
positive atoms while A6b with negative. Regarding axiom A6c, we only place the case
for positive atoms but like for axiom A5a, each combination should have a different
axiom.

A6a- ∀t1t2x1Fb(t1, now(t2), x1)
∧¬∃t3Fb(t1, now(t3), neg(x1))
∧t1 < t3 ∧ ∀x3x1
= neg(x3)

→ Fb(t1+, not(t2), x1)

A6b- ∀t1t2x1Fb(t1, now(t2), neg(x1))
∧¬∃t3Fb(t1, now(t3), x1)

∧t1 < t3 ∧ ∀x3x1
= neg(x3)
→ Fb(t1+, now(t2), neg(x1))

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 33

A6c- ∀tx1x2Fb(t, x2, x1) ∧ ¬B(t, neg(x2))
∧¬B(t, neg(x1)) ∧ ∀x3x2
= now(x3)

→ Fb(t+, x2, x1)

A7 - Inheritance of Belief-Supporting Sets of Goals: As well, the inheritance of pred-
icates Fg ensures the inheritance of supporting sets that do not present contradictions
while the goal is still active. Again, we only place the axiom for positive x1 and x2 but
all the combinations should be placed in different axioms (see axiom A5a).

∀tx1x2Fg(t, x2, x1) ∧ ¬B(t, neg(x2)) ∧G(t, x1)
∧∀x3(x1
= neg(x3) ∧ x2
= neg(x3))

→ Fg(t+, x2, x1)

A8 - Observation to Knowledge: This axiom states that agents will know in one time
step what they observe. The predicate Fb that we include in the consequent serves to
control possible inconsistencies.

∀txObs(t, x)→ B(t+, x) ∧ Fb(t+, now(t), x)

A9 - Goal Activation: This set of axioms describe the activation of goals from beliefs.
Of course, they are domain dependent, but should follow the below structure. Both �α�
and �β� cannot contain variables nor quantifiers since they belong to SF . Thus, the set
of axioms A9 determine the link between the belief �α� and the goal �β�.

∀tB(t, �α�)→ G(t+, �β�) ∧ Fg(t+, �α�, �β�)

A10 - Observations: The observations that the agent has at each time. For each i ∈ ST ,
the agent can have j ∈ IN different observations:

Obs(i, �αij�)

AEQ - Equality Predicates: We must introduce equality predicates for terms: For all
formulas ϕ, φ ∈ F(LAg) and t ∈ St the theory contains the following: neg(�ϕ�) =
�¬ϕ�, imp(�ϕ�, �φ�) = �ϕ→ φ�, con(�ϕ�, �φ�) = �ϕ∧φ� and now(t) = �Now(t)�.

Notice that AEQ defines equality predicates, not the predicates themselves. We omit
the axiom for sort St regarding time treatment, they should be a variation of Peano’s
axioms for natural numbers.

3 Consistency

In this section we show that the set of axioms presented above defines a first-order the-
ory (say Γ) that is consistent. We do it by showing that the theory has, at least, a model
that contains a set of positive atoms that exist in the model. Such model represents the

34 I. Pinyol

reasoning process that the agent follows to deduce belief predicates. Following the same
approach as used in [9] and [8], we consider only models that contain ground terms of
the language, i.e. Herbrand models.

Theorem 1. The theory Γ has a minimal modelM for any underlying language LBG.

Proof. To prove it, we constructM by induction following a stratification construction
of the model. The main idea is to add the minimal number of atoms that accomplish
the axioms, starting from the atoms that must be present in all the models at time 0,
i.e. equality predicates, observations at time ’0’ (Obs(0, �α�)), the knowledge of time 0
(B(0, now(0))) and any special relevant axiom, and continuing by induction over time.
Similar to the construction of models used in logical programming, the strata k (k ≥ 1)
of the model will include all the generated atoms that require at least k time steps to be
created. In the induction step we assume that M already contains the atoms until the
time k. The generation of the atoms of time k+1 is done by applying any relevant axiom
to the atoms already in M, following a simple priority relationship between atoms in
the Herbrand Universe: we give priority to atoms whose time parameter is higher.

The application of axioms in the induction step implies to add the minimal num-
ber of atoms that satisfy each axiom. We do not show the details on how each axiom
creates and adds new atoms. However, we illustrate it with the axiom A5b (inheritance
of goals). Let us assume that the following atom is already in the model in the strata
k: G(k, �α�) but there does not exist any x such that Fg(k, x, �α�) and B(k, neg(x)).
Then, to preserve the consistency and accomplish the axiom we could either add to the
model the atom G(k+, �α�), or invent an x to add the respective Fg and B predicates.
However, since according to our priority relation, the former formulas has priority over
the latter formulas, the atom G(k+, �α�) would belong toM. The construction is pos-
sible because all axioms are atoms, quantified atoms, or implications where consequent
formulas have higher time components than antecedent formulas.

This result is important because it establishes that the theory Γ is always consistent
for any underlaying language LBG. The reason relies on the fact that we are defining a
meta-theory that has protection over possible inconsistencies found at the agent level.
Surely through observations, agents can fall into inconsistencies. However, our meta-
logic offers a stratified time where not all formulas are available at the same time,
providing still a useful theory even when inconsistencies occur. For instance, formulas
B(t, x) and B(t, neg(x)) can coexists in the meta-theory, but they will not appear at
time t+.

Another important consequence of Theorem 1 is that the construction of the minimal
model M illustrates the reasoning process of the agent. Hence, adding a set of obser-
vations and the relevant axioms for goal activation, we can build a model one period at
a time and determine at a given time k, the active goals, the beliefs of the agent and the
current structure of belief-supporting sets, both for beliefs and goals.

4 Comments on Complexity Issues

Regarding complexity issues, we must recall that our theory is a first-order theory,
and therefore, semi-decidable. This means that we cannot guarantee for any arbitrary

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 35

formula φ that we have an answer for the question can the formula φ be deduced from
the theory Γ defined in Section 2? (Γ φ?). We cannot guarantee in general any lower
degree of complexity.

Nevertheless, we are dealing with bounded agents under a time-situated formalism,
which allows for new properties. We start with a simple definition regarding the predi-
cates generated until a given instant of time:

Definition 4. Let Γ be a first-order theory as defined in section 2, and a time t ∈ ST

we define G(Γ, t) as the set of all predicates of the form B(·), Fb(·), Fg(·) or G(·) that
hold at time t.

The following proposition holds:

Proposition 1. Given a predicate ϕ ∈ F(LBG) of the form B(·), Fb(·), Fg(·) or G(·)
without free variables, and a time t ∈ ST , determining whether ϕ ∈ G(Γ, t) is decid-
able.

Proof. The proof is obvious, since as shown in section 3 we can construct all atoms
that belong to the minimal model at each time step. Then it is a matter of generating
all possible predicates following the construction of section 3, stopping at time t and
checking whether φ is present in the resulting set.

In general, dealing with first-order logic restricts us to provide complexities lower than
NP-complete in the case of the proposition above. However, this is not a critical issue in
our analysis, since the purpose of our framework is for offline simulations and analysis
for agent systems’ architects instead of online execution of agents.

We acknowledge that this is a very preliminary analysis and that further development
is needed.

5 An Example

5.1 Initial Knowledge

We want to illustrate the reasoning process of a BG agent with a simple example. The
scenario we propose is a simplification of the reasoning that winery farmers used to
perform years ago to deal with the dilemma of harvesting the grapes later to obtain a
higher sugar yield, or earlier to avoid the heavy rain that often hits the middle and south
of Europe during the last weeks of summer and beginning of autumn.

Experienced farmers would observe the sky at sunset and the way birds were flying.
When the sunset was orange/red and the birds were flying low, the farmers’ experience
led them to forecast heavy rains during the week. In that case, they would organize a
group of people to harvest grapes as soon as possible. To model the situation, we use
the following pieces of information:

36 I. Pinyol

Proposition Acronym
�pick grapes on time� pgot
�pick grapes right now� pgrn
�birds fly down� bfd
�red sky� rs
�prevision rain week� prw
�rain� rain

The activation of goals is performed by axiom A9. In this example we define two
possible goals. On one hand, the farmer will have the goal of picking the grapes as soon
as possible when he believes that it will rain during the week, and it is not yet raining.
On the other hand, if there is no such prevision, the farmer will wait until the grapes are
completely right:

A9a - ∀tB(t, con(prw, neg(rain)))
→ G(t+, pgrn)

∧Fg(t+, con(prw, neg(rain)), pgrn)

A9b - ∀tB(t, con(neg(prw), neg(rain)))
→ G(t+, pgot)

∧Fg(t+, con(neg(prw), neg(rain)), pgot)
The knowledge at time 0 corresponds to

observations regarding the state of the world, including known implications that belong
to Lbasic language. In our example, we have the following statements (Axiom A10):

(1)Obs(0, imp(con(bfl, rs), prw))
(2)Obs(0, imp(neg(bfl), neg(prw)))
(3)Obs(0, imp(neg(rs), neg(prw)))
(4)Obs(0, bf l)
(5)Obs(0, rs)
(6)Obs(0, neg(rain))

For instance, observation 1 indicates that when birds fly low and a red sky is observed
at sunset, heavy rain is expected during the week. Observations 2 and 3 say that if this
is not the case, there is not such prediction. Observations 4 to 6 represent the current
state of affairs that are observed at the starting point of the reasoning.

5.2 Goal Activation

We follow the normal reasoning process and show only the relevant generated predi-
cates. By axiom A8, all observations become beliefs in one unit of time. For instance,
from observations 4, 5 and 6, we obtain the following predicates:

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 37

(7)B(1, bf l)
(8)Fb(1, now(0), bf l)
(9)B(1, rs)
(10)Fb(1, now(0), rs)
(11)B(1, neg(rain))
(12)Fb(1, now(0), neg(rain))

At time 2, all the previous predicates are inherited, and new beliefs appear. In particular,
by axiom A3 (conjunction) and considering beliefs 7 and 9, we obtain:

(13)B(2, con(bfl, rs))
(14)Fb(2, bf l, con(bfl, rs))
(15)Fb(2, rs, con(bfl, rs))

At time 3, all previous predicates are inherited, and new beliefs are generated through
axiom A2 (modus ponens). The previous belief in combination with the implication
from observation 1, we obtain:

(16)B(3, prw)
(17)Fb(3, con(bfl, rs), prw)

Again, at time 4, the previous predicates are inherited, and through axiom A3 (conjunc-
tion) with beliefs 16 and 11, we obtain:

(18)B(4, con(prw, neg(rain)))
(19)Fb(4, prw, con(prw, neg(rain)))
(20)Fb(4, neg(rain), con(prw, neg(rain)))

It is not until time 5 that the first goal is activated. Again, since no observation is in-
cluded and no inconsistencies produced, all previous predicated are inherited to time 5.
Also, through axiom A9a (goal activation) and from belief 18 the following formulas
are generated:

(21)G(5, pgrn)
(22)Fg(5, con(prw, neg(rain)), pgrn)

At this point, all generated predicates have been inherited to time 5. We remark here that
at this time not only the goal holds, but also a whole structure of beliefs supporting the
activation of the goal. Following Fg and Fb predicates we could reconstruct the entire
reasoning tree of the agent.

5.3 Goal Deactivation

Keeping this structure is important because it allows us to react in consequence when
some belief does not hold anymore. Imagine that also at time 5, the agent observes that
it is raining:

38 I. Pinyol

(23)Obs(5, rain)

Thus, at time 6 the agents knows it. Note that at this instant of time the following
predicates coexist:

(24)B(6, rain)
(25)Fb(6, now(5), rain)
(26)B(6, neg(rain))
(27)Fb(6, now(0), neg(rain))

Predicates 26 and 27 have been inherited from time 1 (predicates 11 and 12). The key
point at this time is that the inheritance axiom A6a of Fb predicates prevents predicate
27 to pass at the next time step. At time 7, the following predicates are still active:

(28)B(7, rain)
(29)Fb(7, now(5), rain)
(30)B(7, neg(rain))

Note that at time 7 the belief that it is not raining is still present, since at time 6 the
belief still had a belief supporting it. Under these conditions, the inheritance axiom for
beliefs prevents to pass predicate 30 to time 8. At this time, the following predicates are
still active (we only show the ones relevant for the next inference):

(31)B(8, con(prw, neg(rain)))
(32)Fb(8, prw, con(prw, neg(rain)))
(33)Fb(8, neg(rain), con(prw, neg(rain)))

At time 8, the belief that it is not raining does not hold anymore. Then, inheritance
axiom A5a of beliefs prevents to inherit belief 31 to the next time unit, because it exists
a predicate Fb that says that the belief

B(8, neg(rain))

should hold to support the belief 31, but it does not hold at time 8. Then, belief 31 in not
passed to time 9. Then at time 9 we have the following active predicates among others:

(34)G(9, pgrn)
(35)Fg(9, con(prw, neg(rain)), pgrn)

However, by the inheritance axiom of goals A5b, the goal 34 does not pass to time 10,
because it exists a predicate Fg that says that to support such a goal, the belief

B(9, con(prw, neg(rain)))

should hold, and this is not the case because it has not been inherited from time 8.

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 39

6 Related Work and Discussion

Several topics are related to the work developed in this paper. We start with the in-
tended meaning of this research, the development of a formal framework for charac-
terizing agents’ reasoning. The most well-known formal model of agency follows BDI
formalisms, popularized among others, by Bratman [5] and Rao and Georgeff [6,7].
Most BDI approaches use Kripke possible world semantics [12] using the classical
KD45 axioms of modal logic for beliefs (or alternatively modal system S5), and a vari-
ation of KD systems for both desires and intentions (e.g [13,14,15]). In particular, Rao
and Georgeff’s BDI model [6] uses branching time structures to model belief-desire-
intention accessible worlds. All these models suffer from the logical omniscience for
beliefs; thus, they are closed under consequence relationship. Also, the relationship
between desires and intentions is not clearly defined, specially how desires become in-
tentions. The main reason is that BDI theorists try to model a snapshot of the mental
state, not considering evolution through time.

Our formalism does not use modal logic. Instead, we use a syntactic approach to deal
with the equivalent notion of modalities. This is possible because we intend to model
bounded agents, and avoid the problem of logical omniscience. Also, we concentrate on
the evolution of beliefs and goals through time. Different from BDI formalisms which
cannot express time, our framework uses many-sorted first-order logic where time is
considered a special sort and appears in the formulas.

Another important difference with BDI formalisms is that we do not consider nei-
ther desires nor intentions, but rather use the notion of goal as primitive attitude, as
suggested by Castelfranchi and Paglieri [1]. We agree that both desires and intentions
are in fact goals at different stages of processing. Our framework allows for such pro-
cessing because of the time situated nature of the logic.

It is worth mentioning the work of Casali et al. [16,17] and Pinyol et al. [9]. Both
works use BDI formalisms to describe their models of agency with multi-context logic
[10]. The former’s objective is to model graded attitudes, while the latter’s is to include
reputation information in the reasoning process. Despite that both use the primitive
attitude of intention with the corresponding axiomatization (a KD system), intentions
are generated from desires and beliefs in both cases. This means that intentions could
be described in terms of desires and beliefs 2 and that beliefs play a crucial role in the
processing transition between desires and intentions, which is reflected in our formalism
and pointed out by [1].

Besides BDI formalisms, our work is closely related to the work developed by Grant
et al. in [8]. We follow their basic development to build our logic as a many-sorted
first-order logic. Their focus is on the evolution of knowledge through time, and pay
a lot of attention to the formalism, since they consider that the object language (the
equivalent of our Lbasic) is a first-order language that includes variables, predicates
and quantifiers. Because of that, the development of their logic becomes much more
complex. In contrast, we introduce goals as a motivational attitude, and manage belief-

2 We completely agree that intentions, as a mental state of cognitive agents, have emerging
properties attached exclusively to them, for instance, the idea of commitment. However, we
believe that this does not contradict of not considering them as primitive.

40 I. Pinyol

supporting sets. Because of that, our approach handles much better the inconsistencies
at the agent level: When two beliefs are contradictory, the newest one remains, and the
beliefs and goals that depend on the falsified beliefs drop progressively through time.
Instead, Grant et al. approach eliminates the formulas that present contradictions.

Our logic is in fact a meta-logic and therefore, it performs meta-reasoning and non-
monotonic reasoning. Regarding this aspect, the artificial intelligence and logic field
has developed a large literature (e.g. [18,19]). In this aspect, our work has similarities to
computational argumentation. This field aims at managing inconsistencies by analyzing
how formulas are justified. This is similar to our notion of belief-supporting sets. For
instance, work done by Amgoud et al. [4,3] uses argumentation techniques to model
practical reasoning. In this work, the authors define intentions as the set of desires of
the agent that are not contradictory by themselves, and that the way to achieve them
is also not contradictory. This idea is similar to our concept of active goals that are
supported by a set of beliefs. The difference is that we consider this process as an on-
going process, while Amgoud et al. consider the reasoning in a single instant of time.
However, it would be interesting to adapt our approach to an internal argumentation
process in phases. This can be considered as future work.

Another field that deals with a special kind of non-monotonic reasoning is the field of
belief revision. In our logic, belief revision is treated in the same reasoning process, as
a belief change rather than theory change. For instance, the classical AGM approaches
[20] consider the set of beliefs as part of the theory of the agents, while in our approach
the theory remains stable and beliefs and goals are formulas that belong to the model.
The main objective of AGM is to eliminate the minimum elements of the theory in order
to maintain its consistency. In our approach, we do not eliminate inconsistencies, but
adapt the model to them.

7 Conclusions and Future Work

In this paper, we have introduced a new logical framework to characterize goal-
processing bounded agents. Its purpose is to provide an analytical tool for agent systems
designers for determining when and under which conditions goals and beliefs are ac-
tivated. The framework is defined as a meta-logic and is built on top of a hierarchy of
three languages:Lbasic is a propositional language to describe the domain of the agents.
LAg is a many-sorted first-order that contains Lbasic and is the language that agents use
to reason about beliefs and goals. Finally, LBG is also a many-sorted first-order lan-
guage that contains LAg and is the language that designers of the agents system would
use to reason about the reasoning process of the agent.

We provide a set of axioms and axiom schemata to build a theoryΓ over the language
LBG, and prove that the theory is always consistent because it has a model. This model
represents the exact reasoning process of the agents.

We consider the reasoning of the agents as an on-going process through time. Then,
time is considered a sort in the logic and appears in the formulas. Not all formulas hold
all the time. Together with belief-supporting predicates, it permits the implementation
of a belief revision procedure (or belief change) that is implicit in the same reasoning
process of the agent. The time-situated nature of the framework also provides protection
against inconsistencies.

A Time-Situated Meta-logic for Characterizing Goal-Processing Bounded Agents 41

As mentioned in the paper, this formalism is inspired by the work of Castelfranchi
and Paglieri [1] where the authors describe a taxonomy of beliefs that participate in the
goal processing of cognitive agents. Their main thesis (that we share) is that desires
and intentions from the BDI point of view are in fact the same attitude (goals) but at
different stages of processing. Our formalism is prepared to handle such processing.
However, we have not considered all types of beliefs that Castelfranchi and Paglieri
use. We only consider triggering and conditional beliefs (axiom A9) and implement the
lack of self-realization beliefs and satisfaction beliefs in the inheritance of goals and
belief-supporting structures (axioms A5b and A7). As a future work we plan to include
the most relevant types of belief that participate in the goal processing of the agents, for
instance, cost beliefs, preference beliefs and means-end beliefs.

We have not dealt with intentions in any form. As we mention though, we believe that
intentions are a mental state of the agent composed of a set of goals in an executive stage
and set of belief supporting them. We plan to investigate this further, in particular, the
notion of commitment and how this affects the dropping of belief-supporting structures.

Also, in a more technical fashion, we want to investigate the relationship between
our approach and computational argumentation techniques. In particular, those based on
Dung’s argumentation framework [21,22] where the internal structure of arguments is
not considered, and those based on inference rules, like [23], where the internal structure
is as important as the conclusion itself.

In the future extended version of the paper we also plan to consider Lbasic as a
first-order language instead of a propositional language. This will entail the addition
of new axioms in the theory to deal with quantified formulas, variables and predicates.
An example of such development can be found at [8]. In this case, we expect a much
complex formalism, but more expressiveness. Moreover, we envisage changes neither
in the consistency of the meta-theory nor the computational complexity.

Acknowledgments. This work was plartially supported by the European project
Mold4ProdE (FP7-NMP2-SE-2010-246450), and the Spanish National CENIT project
cvREMOD (CEN20091044). Also, we would like to thank the anonymous referees for
their valuable suggestions and detailed corrections on the original manuscript.

References

1. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: Prolegomena to a con-
structive theory of intentions. Synthese 155, 237–263 (2007)

2. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261
(1990)

3. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: AA-
MAS 2006: Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 347–354. ACM, New York (2006)

4. Amgoud, L., Devred, C., Lagasquie-Schiex, M.: Generating possible intentions with con-
strained argumentation systems. International Journal of Approximate Reasoning (2011) (in
press)

5. Bratman, M.: Intentions, Plans and Practical Reasoning. Harvard University Press,
Cambridge (1987)

42 I. Pinyol

6. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J.,
Fikes, R., Sandewall, E. (eds.) Proc. of KR 1991, pp. 473–484. Morgan Kaufmann publishers
Inc., San Mateo (1991)

7. Rao, A., Georgeff, M.: Bdi agents: From theory to practice. In: Proc. of the First International
Conference on Multi-Agent Systems, San Francisco, USA (1995)

8. Grant, J., Kraus, S., Perlis, D.: A logic for characterizing multiple bounded agents. Au-
tonomous Agents and Multi-Agent Systems 3, 351–387 (2000)

9. Pinyol, I., Sabater-Mir, J., Dellunde, P., Paolucci, M.: Reputation-based decisions for logic-
based cognitive agents. In: Autonomous Agents and Multi-Agent Systems, vol. 24, pp. 1–42
(2010)

10. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logic (or: How we can do without
modal logics). Journal of AI 65, 29–70 (1994)

11. Enderton, H.B.: A mathematical introduction to logic. Academic Press, New York (1972)
12. Kripke, S.: Semantical analysis of modal logic i: Normal modal propositional calculi. In:

Zeitschrift fr Mathematische Logik und Grundlagen der Mathematik, vol. 9, pp. 67–96
(1963)

13. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial Intelligence 54, 275–317 (1992)

14. Halpern, J.Y.: The relationship between knowledge, belief, and certainty. Annals of Mathe-
matics and Artificial Intelligence 4(3-4), 301–322 (1991)

15. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367
(1994)

16. Casali, A., Godo, L., Sierra, C.: Graded BDI Models for Agent Architectures. In: Leite, J.,
Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 126–143. Springer, Heidelberg
(2005)

17. Casali, A., Godo, L., Sierra, C.: A logical framework to represent and reason about graded
preferences and intentions. In: Proc. of KR 2008, Sydney, Australia (2008)

18. Horvitz, E., Klein, A.: Reasoning, metareasoning, and mathematical truth: Studies of theo-
rem proving under limited resources. In: Proc. of the 11th Conference on Uncertainty and in
Artificial Intelligence, pp. 306–314 (1995)

19. Brogi, A., Turini, F.: Metalogic for knowledge representation. In: Proc. of Knowledge Rep-
resentation and Reasoning, KR 1991, pp. 61–69 (1991)

20. Alchourrn, C.E., Grdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. The Journal of Symbolic Logic 50(2), 510–530 (1985)

21. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. AI 77(2), 321–358 (1995)

22. Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency tolerance in
weighted argument systems. In: Proc. of the AAMAS 2009, Budapest, Hungary, pp. 851–858
(2009)

23. Chesevar, C., Simari, G.: Modelling inference in argumentation through labeled deduction:
Formalization and logical properties. Logica Universalis 1, 93–124 (2007)

Distributed Defeasible Speculative Reasoning
in Ambient Environment

Ho-Pun Lam1,2, Guido Governatori2, Ken Satoh3, and Hiroshi Hosobe3

1 School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia

2 NICTA�, Queensland Research Laboratory, Brisbane, Australia
3 National Institute of Informatics, Tokyo, Japan

Abstract. Speculative Computation is an effective means for solving problems
with incomplete information in an open and distributed environment, such as
peer-to-peer environment. It allows such a system to compute tentative (and pos-
sibly final) solutions using default knowledge about the current environment, or
the agent’s perception, even if the communications between peers are delayed
or broken. However, previous work in speculative reasoning assumed that agents
are hierarchically structured, which may not be the case in reality. We propose
a more general multi-agents system with no centralized control. Agents in the
framework have equivalent functionalities and can collaborate with each other
to achieve their common goals. We characterize the framework using the argu-
mentation semantics of defeasible logic, which provides support of speculative
reasoning in the presence of conflicting information. We provide an operational
model for the framework and present a prototype implementation of the model.

1 Introduction

The study on ambient intelligence and pervasive computing has introduced lots of re-
search challenges in the field of distributed artificial intelligence during the past few
years. These are mainly caused by the dynamic and imperfect nature of the environ-
ment, and the special characteristics of the entities that process and share the context
information available [1].

However, in practice, it is often difficult to guarantee efficient and reliable com-
munications between agents. For example, if an agent was deployed on an unreliable
network, such as the Internet, or if an agent requires human interaction, then commu-
nications might be largely delayed or even fail. Besides, due to the dynamic (open and
restricted) nature of the environment, agents may not know a priori which other enti-
ties will be present at a specific time frame nor whether they are able to, or willing to,
provide the information requested.

Besides, accoriding to [2], most of the ambient intelligence systems are following
the classical reasoning approaches and lacking of a reasoning model that can handle
cases of uncertain (or in some cases missing) or ambiguous context information.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 43–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

44 H.-P. Lam et al.

To rectify these shortcomings, in this paper, we propose a totally distributed ap-
proach for ambient intelligence through Distributed Defeasible Speculative Reasoning
(DDSR). We model an ambient environment as a Multi-Context System [3,4,5] and am-
bient agents as autonomous logic-based entities. Knowledge possessed by an agent is
formalized as a local context theory and associations between the knowledge possessed
by other ambient agents using askable literals. Inconsistencies and ambiguities in local
context theory are handled by the semantics of Defeasible Logic (DL); while uncertain-
ties or missing context information, on the other hand, will first be substituted by the
default values used in the speculative computation process [6] and will be replaced by
the “real” information when they are available.

This paper is organized as follows. Background information about defeasible logic
and speculative computation will be presented in Section 2. Section 3 is devoted to
the presentation of the DDSR framework that we propose. Section 4 and 5 present the
argumentation semantics and operational model of DDSR respectively, followed by a
conclusion.

2 Background

2.1 An Informal Introduction to Defeasible Logic

Defeasible logic (DL) [7] is a simple rule-based skeptical approach to non-monotonic
reasoning. It is based on a logic programming-like language and is a simple, efficient but
flexible formalism capable of dealing with many intuitions of non-monotonic reasoning
in a natural and meaningful way [8].

A defeasible theory D is a triple (F,R,>) where F and R are finite sets of facts
and rules respectively, and > is an acyclic superiority relation on R. Facts are logical
statements describing indisputable facts, represented by (atomic) propositions (i.e. lit-
erals). A rule r describes the relation between a set of literals (the antecedent A(r),
which can be empty) and a literal (the consequence C(r)). DL supports three kinds of
rules: strict rules (r : A(r)→ C(r)), defeasible rules (r : A(r)⇒ C(r)) and defeaters
(r : A(r) � C(r)). Strict rules are rules in the classical sense, the conclusion follows
every time the antecedent holds; a defeasible rule is allowed to assert its conclusion if
there is no contrary evidence to it. Defeaters cannot support conclusions but can pro-
vide contrary evidence to them. The superiority relation describes the relative strength
of rules, and is used to obtain a conclusion where there are applicable conflicting rules.

DL is able to distinguish positive conclusions from negative conclusions, that is,
literals that can be proved or literals that are refuted. In addition, it is able to determine
the strength of conclusions, i.e., whether something is concluded using only strict rules
and facts, or whether we have a defeasible conclusion, a conclusion that can be retracted
if more evidence is provided. Accordingly, for a literal q we have the following four
types of conclusions, called tagged literals: +Δq (q is definitely provable), −Δq (q is
definitely rejected), +∂q (q is defeasibly provable), and −∂q (q is defeasibly rejected).

A proof (or derivation) in DL is a finite sequence P = (P (1), . . . , P (n)) of tagged
literals satisfying the proof theory. For example, to prove +∂q1:

1 We denote the set of all strict rules by Rs and the set of all strict and defeasible rules by Rsd;
and name R[q] the rule set in R with head q.

Distributed Defeasible Speculative Reasoning 45

+∂) If P (n+ 1) = +∂q then either
(1) +Δq ∈ P (1..n); or
(2) (2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+∂a ∈ P (1..n), and

(2.2)−Δ∼q ∈ P (1..n), and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s),−∂a ∈ P (1..n); or
(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t),+∂a ∈ P (1..n) and t > s.

The above structure enables us to define several variants of DL, such as ambiguity
blocking, ambiguity propagation and well-founded semantics [9]. In [10], Governatori
et al. describe DL and its variants in argumentation theoretic terms, on which this paper
is based.

2.2 Speculative Computation

Speculative computation is an implementation technique that aims at speeding up the
execution of programs, by computing piece of information in advance, without being
sure whether these computations are actually needed [11]. It is an eager computational
approach that can yield improvements over conventional approaches to parallel com-
puting by providing: (i) a means to favor the most promising computation; and (ii) a
means to abort computation and reclaim computation resources [6,12].

Speculative computation was first used in master-slave multi-agent system (MAS)
in [13], which can be realized by exploiting abduction. Their aims are to resolve the
incompleteness problem in query answering between agents by using a default as tenta-
tive answer (which are somehow most likely to be the answers according to the current
context), and continues the computation speculatively without much waiting for the
response [14].

If the revised information is different from the default or the values that are currently
used, the current process will be suspended/preempted and an alternate line of com-
putation will be started. It features the possibility of reusing parts of the computation
already done during the phases when answers arrive and answer revision is required, as
the partially computed suspend process may become active again and resume its com-
putation. Since then the framework has been extended to support more general MAS
that are hierarchically structured [14,15,16,17].

3 Defeasible Speculative Reasoning Framework

In this section, we give a formal definition of an MCS (Multi-Context System) which
handles Distributed Defeasible Speculative Reasoning (DDSR) with multi-agent belief
revision using conventional concepts and notation from logic programming. It is based
on the argumentation semantics of DL presented in Governatori et al. [10] with the
notion of askable literals and preference among system contexts.

Definition 1. An MCS P = {P1, . . . , Pn} is a set of peers where each peer Pi ∈ P is
defined as a tuple Pi = (idi, grpi, Ci, Ψi, Ti), where:

46 H.-P. Lam et al.

– idi is a unique symbol that identifies the agent Pi within the context, called the
agent identifier of Pi,

– grpi is the context groups that Pi is associated with in P ,
– Ci = (Vi, Ri) is the context (local) defeasible theory (or the knowldege base) in Pi

where Vi is the vocabulary used by Pi and Ri is the set of rules defined in Ci,
– Ψi is the set of default hypotheses assumed by Pi,
– Ti is a reputation score table on P .

Vi is a finite set of positive and negative (modalised) literals. A literal is either of the
form p(t) (called local or non-askable literal) or p(t)@S (called askable or foreign
literal in belief), where p is its predicate (name), t is a shorthand for its arguments as a
vector of terms t1, . . . , tn(n ≥ 0) and S is a context group identifier. We assume that
each peer uses a distinct vocabulary.
Ri is a set of rules of the form:

rij : a
i
1, a

i
2, . . . , a

i
n ↪→ ain+1

where ↪→∈ {→,⇒}, ain+1 is a local literal, and each of ai1, . . . , a
i
n is a literal.

Rules that do not contain any askable literals in their bodies are called local rules
and are interpreted in the classical sense. That is, whenever the literals of the body of
the rule are consequences of the local theory, so is the literal in the head of the rule.
Local rules with empty body denote factual knowledge.

Rules that contain askable literals in their bodies are called mapping rules and are
used to express uncertainty that may appear in the environment. They are used to as-
sociate local literals with literals from external contexts (foreign literals). An askable
literal q@S in a mapping rule has two functions:

– It represents a question/query to agents in the context of group S;
– An askable literal in Ψi represents a belief of truth value of the literal.

• If p(t)@S ∈ Ψi, the agent assumes that p(t)@S is true or defeasibly provable.
• If ∼p(t)@S ∈ Ψi, the agent assumes that p(t)@S is false or not defeasibly

provable.
• Otherwise, the agent will assume that information about the askable literal
p(t)@S does not exist and will continue the inference process using the un-
derlying semantics.

Ψi is the set the default hypotheses (for askable literals) assumed by Pi, which can be
obtained based on the Pi’s partial knowledge or as specified by the agent’s users, and
can be considered as a heuristics used for prioritizing parallel computation by the agent,
which may have impact on the performance of the speculative computation [17].

Finally, each peer Pi defines a reputation score table Ti = [ρj , ρk, . . . , ρn] on P
and each ρj is a name-value pairs (Cm, v) where Cm ∈ P (m
= i) is a context that
appears in P and v, a numerical value between 0 and 1, is the reputation score of
Cm w.r.t. Ci, denoted RepCi(Cm). It is a quantitative measure of agents’ reputation in
the environment and can be used to express the confidence in the knowledge that an
agent imports from other agents. Besides, it also provides a way to resolve potential
conflicts that may arise from the interaction of contexts through their mapping rules.
Accordingly, for two agents Pj , Pk ∈ P , Pj is preferred by Pk if vj > vk, and are
equally trustable if vj = vk.

Distributed Defeasible Speculative Reasoning 47

Definition 2 (Query message). A query is a triple Q = (id,GS, hist) where id is the
agent identifier of the querying agent, GS is a finite set of askable literals, and hist is
a sequence of askable literals.

Given a query, the ambient agents collaboratively compute the answers using their re-
spective knowledge and assumptions on the environment. Each query contains a finite
set of askable literals GS to be proven (the goal set) and a history hist which is initial-
ized to the empty sequence. A history is a sequence of askable literals [ln, ln−1, . . . , l0]
represents a branch of reasoning initiated by the goal set of the initial query. It is used
to avoid cyclic dependencies among askable literals. AID is the agent identifier of the
querying agent and is used to return the results back to the agent after computations.

Definition 3 (Reply message). A reply from an agent for an askable literal L@CG is
defined as Msg = (Sender,Receiver, L@CG,CT), where Sender and Receiver are the
unique identifiers of the agents that send and receive the message respectively, L@CG
is an askable literal, CT ∈ {+∂,−∂, cycle, undefined} is a conclusion tag where +∂
and −∂ are as defined in DL, undefined if the agent Sender has no information about
L and cycle if the literals that L relies on depend on each other and form a cycle.

Definition 4 (Message update). Let CurrRep = {Msg1, . . . ,Msgn} be the set of
replies received by an agent and Msg = (Sender,Receiver, L@CG,CT) be a mes-
sage just received by an agent. Then a message update in CurrRep of the receiving
agent is defined as:

CurrRep \ {(Sender,Receiver, L@CG,CT)} ∪ {(Sender,Receiver, L@CG,CT)}

where +∂ = −∂ and −∂ = +∂, and cycle and undefined will be handled separately
using the underlying reasoning formalism.

The above definition specifies the message update process that appears in the agents.
Here, CurrRep contains the set of most updated replies received from external contexts
and will distinguish them according to the context identifier and the context group of
the foreign literals. It is used to replace an outdated contextual information with an
updated one sent from the same agent.

Definition 5 (Literal score). LetMsg = (aidj , aidi, L@CG,CT) be a message reply
sent from an ambient agentPj to another agentPi. The literal score of the literalL w.r.t.
context Ci, RepCi(L,Cj), is equal to the value of RepCi(Cj).

The above definition states that, given a message received by an agent Pi, the literal
score of a foreign literal is equal to the reputation score of the context (in Ti) that sent
the message.

Example 1 (Context aware mobile phone). Consider the following scenario. Professor
A is now having a meeting with his colleagues and has configured his mobile phone to
decide whether it should ring according to his preferences and context. He has the fol-
lowing preferences: While receiving an incoming call (call), the mobile phone should
ring if it is operating in normal mode (mode normal). If, however, he is in the mid-
dle of a meeting (meeting) or giving a lecture (give lecture), then the mobile phone

48 H.-P. Lam et al.

should not ring unless the call is received from an emergency agencies (such as police,
ambulance, etc) (isEmergency). The local knowledge of Professor A’s mobile phone,
C1 is encoded in the following rules:

r11 : call1,mode normal1 ⇒ ring1
r12 : meeting1 ⇒ ¬ring1
r13 : give lecture1 ⇒ ¬ring1
r14 : isEmergency1 ⇒ ring1

and

r12 > r11 r13 > r11 r14 > r12 r14 > r13

In case the mobile phone cannot reach a decision using its local knowledge, it imports
knowledge from other ambient agents. For example, to determine whether Professor A
is giving a lecture, the mobile phone needs to import knowledge from the university
registry service agent, as well as the localization services agents; while to determine
whether Profess A is in the middle of a meeting, the mobile phone needs to import
knowledge from the room manager.

However, as is commonly appeared in our daily environment, communications be-
tween agents may be largely delayed, and in some cases cannot be established. Under
these situations, when external information cannot be acquired, in order to avoid any
mis-interruption from the mobile phone, Profess A can configure the mobile phone fur-
ther by assuming that he is in the middle of a meeting (or giving a lecture) while waiting
for the replies from external entities.

This example characterizes the types of application in which each ambient agent is
aware of the type of knowledge that it receives externally and how to reason when the
required external information is missing.

4 Semantics of DDSR

Similar to the construct in [1], the DDSR semantics use arguments of local range, in
which conclusions are derived from a single context. Arguments made by external con-
texts are, at least conceptually, linked by bridges (Definition 6) through mapping rules.
It is intended to provide an argumentative characterization of DL with notions of dis-
tributed information and preference among system context.

Definition 6. Let P = {P1, . . . , Pn} be an MCS where each peer Pi =
(idi, grpi, Ci, Ψi, Ti) and Ci = (Vi, Ri). The Bridges (ΦP) of P is the set of tuples
of the form (pi, Ci, Ψi, PTpi), where pi ∈ Vi and PTpi is the proof tree for literal pi
based on the set of local and mapping rules of Ci and the set of default hypotheses Ψi.

Definition 7 (Proof Tree). Let P = {P1, . . . , Pm} be an MCS where each peer Pi =
(idi, grpi, Ci, Ψi, Ti). A proof tree PTp of P is a tree with nodes labeled by literals
such that the root is labeled by p and for every node q:

Distributed Defeasible Speculative Reasoning 49

– If q ∈ Vi and a1, . . . , an label the children of q then
• If ∀ai ∈ {a1, . . . , an} : ai ∈ Vi and the set {a1, . . . , an} contains no askable

literals, then there is a local rule r ∈ Ci with body a1, . . . , an and head q.
• If ∃aj ∈ {a1, . . . , an} such that aj
∈ Vi or is askable, then there is a mapping

rule r ∈ Ci with body a1, . . . , an, . . . , an and head q.
– If q ∈ Vj
= Vi then this is a leaf node of the tree and there is a tuple of the form
(pi, Ci, Ψi, PTpi) in ΦP .

– the arcs in a proof tree are labeled by the rules used to obtained them.

and ∀q ∈ Ψi, q is an askable literal in Vi.

Definition 8. An argument for a literal pi is a tuple (pi, Ci, Ψi, PTpi) in ΦP .

Definition 9. Given an MCS P = {P1, . . . , Pn}, the set of arguments that can be gen-
erated from P is denoted by ArgsP , while the set of arguments that can be generated
from each peer context Ci is denoted by ArgsCi . Consequently, ArgsP =

⋃
ArgsCi .

Any literal labeling a node of an argumentA of a proof tree PTpi is called a conclusion
of A. However, when we refer to the conclusion of an argument, we refer to the literal
labeling the root of the argument (i.e., pi).

Definition 10. A (proper) subargument of an argument A is a (proper) subtree of the
proof tree associated to A.

Based on the literals used in the proof tree, an argument can be classified into two
different types: local argument and mapping argument.

Definition 11. A local argument of context Ci is an argument with a proof tree that
contains only local literal of Ci. If a local argument contains only strict rules, then it is
a strict local argument; otherwise it is a defeasible local argument.

Definition 12. A mapping argument of context Ci is an argument with proof tree that
contains at least one foreign literal of Ci.

The derivation of local logical consequences of a context relies only on their local argu-
ments. Actually, the conclusions of all local arguments are just the same as the logical
consequences of Ci. However, the derivation of distributed logical consequences is dif-
ferent. It relies on the combination of both the local arguments in ArgsCi and mapping
arguments in ArgsP . In this case, we have to consider conflicts that may arise when
mapping arguments from external contexts attack each other.

As mentioned before, we can resolve the conflicts among mapping arguments by
ranking them according to the agents’ reputations score in Ti, and select the one with
the highest value. That is, given three conflicting arguments A1, A2, A3 received from
contexts C1, C2, C3 respectively: If Rep(C1) < Rep(C2) and Rep(C2) < Rep(C3),
we should concludeA3 and falsify bothA1 andA2. This is equivalent to the preference
ordering approach employed in [18] such that that context with the highest reputation
value dominates the results being concluded.

However, in a collaborative and dynamic environment, justifying mapping arguments
based on the preference ordering may not be good enough. Ambient agents in the envi-
ronment may not have enough knowledge to justify whether a particular context has a

50 H.-P. Lam et al.

stronger evidence for the correctness of her answers, nor do they have enough knowl-
edge about the environment. Besides, we also have to consider situations where the
same foreign literals may receive positive and negative support by mapping arguments
coming from multiple contexts.

Here the role of docility is worth citing. According to Herbert Simon, humans are
docile in the sense that their fitness is enhanced by “. . . the tendency to depend on sug-
gestions, recommendations, persuasion, and information obtained through social chan-
nels as a major basis for choice” [19]. In other words, human beings support their lim-
ited decision-making capabilities through receiving inputs, data, perceptions from the
social environment [20]. It is the social context that gives human beings the main data
filter to increase their individual fitness.

Put it into our context, due to its limited capabilities, an ambient agent should en-
hance its fitness in the ambient environment by learning or receiving information from
those that surround it. Ambient agents should have their own knowledge and percep-
tions about the environment, but should also be able to adapt to the norms of the context
in such a way that group collaboration between agents can evolve adaptively. This is
where belief revision can be expected to help. It ensures that the information that an
ambient agent received remains applicable and can be constantly updated when more
information becomes accessible.

Definition 13 (Argument rank). Let CurrRep = {Msg1, . . . ,Msgn} be the set of
most updated messages received by an agent Pi.The argument rank of pi w.r.t. the con-
text Ci is equal to the sum of all literal scores RepCi(pi, Cj) (i
= j) of messages that
appear in CurrRep concerning pi, denoted by ΣCi(pi).

It is worth mentioning that numerous mechanisms have been proposed in literature
to evaluate agents’ opinion or agents’ trust management under distributed environ-
ment [21,22,23,24]. The definition above states that in order to leverage individual
agent’s reputation as well as the majority of agents’ belief within a particular context,
in our framework, we will evaluate an askable literal using the sum of reputation scores
of the agents that support the literal.

4.1 Conflicting Arguments: Attack and Undercut

It is important to note that the definitions of attack and defeat apply only for local
defeasible and mapping arguments.

Definition 14. An argumentA attacks a defeasible local or mapping argumentB at pi
if pi is a conclusion of B and ∼pi is a conclusion of A, and the subargument ofB with
conclusion pi is not a local argument.

Definition 15. An argument A defeats a defeasible local or mapping argument B if A
attacksB at pi, and for the subargument of A, A′ with conclusions pi and the subargu-
ment of B, B′ with conclusion∼pi, ΣCi(pi) ≥ ΣCi(∼pi).

To links arguments to the mapping rules that they contain, we introduce the notion of
argumentation line, as follow.

Distributed Defeasible Speculative Reasoning 51

Definition 16. For a literal pi in context Ci, an argumentation line ALCi(pi) is a se-
quence of arguments in ArgsP , constructed using the following steps:

– In the first step add to ALCi(pi) an argument for pi.
– In each next step, for each distinct literal qj labeling a leaf node of the proof tree

of the arguments added in the previous step, add one argument with conclusion qj
from ΠCi(pi) which satisfy the following restriction.

– An argument B with conclusion qj can be added in ALCi(pi) only if ALCi(pi)
does not already contain a different argumentD with conclusion qj .

For an argument pi in context Ci with argumentation line ALCi(pi), pi is called the
head argument of ALCi(pi) and its conclusion pi is also the conclusion of ALCi(pi).
If the number of steps required to build an argumentation line is finite, then ALCi(pi)
is also finite. An infinite argumentation line implies that some mapping arguments that
pi relies on in ArgsC depend on each other forming a loop. An argument in an infinite
argumentation line can participate in attacks against counter-arguments but may not be
used to support the conclusions of their argumentation line.

Definition 17 (Tentative belief state). Let CRi be a subset of the askable literals. The
tentative belief state of Pi w.r.t. Ci and Ψi is a set:

{L|L ∈ CRi and ∼L ∈ Ψi} ∪ {L|L ∈ Ψi and ∼L
∈ CRi}

and is denotedΠCi(CRi, Ψi).

In an ambient environment, tentative replies from different agents may frequently arrive
at the querying agent. The notion of belief state for an ambient agent provides a means
to (1) substitute mapping arguments which have not yet been confirmed with default
hypotheses and start the inferencing process while waiting for the pending replies from
external contexts. This is particularly important in our framework as proactive infer-
encing is the key of success for speculative computation. (2) it helps in handling the
possibly conflicting mapping arguments that the agent may receive from multiple ex-
ternal contexts. Hence, in the definition above, CRi can be regarded as the current set
of beliefs derived based on the latest replies (CurrRep) received from the external con-
texts. In the case where mapping arguments from different contexts attack each other, it
is then possible to justify them according to their argument rank (ΣCi). Therefore, for
every foreign literal that appears in Ci, its tentative belief state, ΠCi(CRi, Ψi), will be
assigned first according to values available in CRi, or otherwise the values that appear
in default hypotheses Ψi.

Definition 18. An argument A is supported by a set of arguments S if

– every proper subargument of A is in S ∪ΠCi(CRi, Ψi), and
– there is a finite argumentation line ALCi(A) with head A such that every argu-

ments in ALCi(pi) \ {A} is in ALCi(A).

Despite the similarity of name, this concept is not directly related to support in de-
feasible logic, nor to supportive arguments/proof trees. It is meant to indicate when
an argument may have an active role in proving or preventing the derivation of a
conclusion.

52 H.-P. Lam et al.

Definition 19. An argument A is undercut by a set of arguments S if for every argu-
mentation lineALCi(A) with headA: there is an argumentB, such thatB is supported
by S, and B defeats a proper argument of A or an argument in ALCi(A) \A.

4.2 The Status of Arguments

The heart of an argumentation semantics is the notion of acceptable argument. Based
on this concept it is possible to define justified arguments and justified conclusions –
conclusions that may be drawn even taking conflicts into account.

Definition 20. An argument A is acceptable by a set of arguments S if:

1. A is a strict local argument; or
2. (a) A is supported by S, and

(b) every arguments that defeat A in ArgsP is undercut by S.

Intuitively, an argumentA is acceptable w.r.t. a set of arguments S if, once we accept S
as valid arguments, we feel compelled to accept A as valid.

Based on this concept we proceed to define justified arguments and justified literals.

Definition 21. Let P be a multi-context system. We define JP
i as follows: JP

0 = ∅ and
JP
i+1 = {a ∈ ArgsP | a is acceptable w.r.t. JP

i }.
The set of justified arguments in an MCS P is JArgsP =

⋃∞
i=1 J

P
i . A literal p is

justified in P if it is the conclusion of a supportive argument in JArgsP . That is, an
argument A is justified means that it resists every reasonable refutation; while a literal
is justified if it is a logical consequence of P , from the perspective of Pi.

Finally, we proceed to define the notion of rejected arguments and rejected literals
for the characterization of conclusions that are not derivable in P . Roughly speaking,
an argument is rejected by a sets of arguments S and T (defined below) if it has a
rejected subargument or it cannot overcome an attack from another argument, which
can be thought of as the set of justified arguments from P .

Definition 22. An argument A is rejected by a sets of argument S, T if:

1. A is not a local strict argument; and
2. (a) a proper subargument of A is in T , or

(b) A is defeated by an argument supported by S, or
(c) for every argumentation line ALP (A) with head A there exists an argument
A′ ∈ ALP (A) \ A s.t. either a subargument of A′ is in S; or A′ is defeated by an
argument supported by T ,

where S, T are the sets of arguments supported and rejected by P respectively.

Based on this we then proceed to define rejected arguments and rejected literals.

Definition 23. Let P be a multi-context system and JArgsP be the set of justi-
fied arguments in P . We define RP

i as follows: RP
0 = ∅ and RP

i+1 = {a ∈
ArgsP | a is rejected by RP

i , JArgs
P }.

The set of rejected arguments in an MCS P is RArgsP =
⋃∞

i=1 R
P
i . A literal p is

rejected in P if there is no argument in ArgsP \ RArgsP with conclusion p. That a

Distributed Defeasible Speculative Reasoning 53

literal is rejected means that we are able prove that it is not a logical consequence of P ,
from the perspective of Pi.

5 Operational Model

Proactive reasoning is the key of success for speculative computation. With an external
query an agent will compute all answers with a local inference procedure, which is
based on two phases: a process reduction phase and an answer arrival phase [12]2. The
former is a normal inference process executed within an ambient agent and is basically
the iff reduction proposed in [25]. It is a process that determines the set of conclusions
to the query received, which are abducible, based on agent’s current (tentative) belief
state (Definition 17), and new queries are sent out to other ambient agents (according
to their agent groups) when askable literals are reduced. After completing the inference
process, the (tentative but possibly final) conclusions derived will then return to the
querying agent for further processing.

Whenever an answer (either new or revised) arrives, the process reduction phase is
interrupted and the answer arrival phase takes over to revises the current computation
accordingly. Instead of discarding any completed but outdated computation, i.e., con-
clusions that are derived using the default hypotheses or an old answer being revised,
the revision process is designed based on the principle of reusing it as much as possi-
ble [17], which is the major novelty of speculative reasoning. The algorithms present in
the following sections are based on a demand-driven approach and a top-down proce-
dure is employed for speculative computation.

5.1 Preliminary Definitions

Definition 24 (Speculative process). A process is a tuple P = (pid, ps,GS,Π,Θ)
where

– pid is the unique process identifier,
– ps is state of this process,
– GS is a set of (askable or non-askable) literals to be proven, or called the goal set

of the process,
– Π is the set of foreign literals, corresponding to the tentative belief state of the

agent ΠCi(CRi, Ψi) as defined in Definition 17, and
– Θ is a set of conclusions derived w.r.t. Π .

Each process in an agent represents an alternative way of computation w.r.t. the set
of belief state Π . It is created when a new choice point is encountered, such as case
splitting and new/revised answers arrival. There are two kinds of process (ps): active
and suspended. A process is active when its belief state is consistent with the set of
agent’s current belief state; while a suspended process is a process using a belief state
which is (partially) contradictory with the current belief state.

2 In [12] the authors are using the term fact arrival phase instead of answer arrival phase.

54 H.-P. Lam et al.

For each ambient agent Pi ∈ P , we have the following definition.

Definition 25. A current belief stateΠCi(CRi, Ψi), which contains a subset of askable
literals in Ci w.r.t. the set of beliefs CRi derived based on the latest replies (CurrRep)
received from other ambient agents and the default hypotheses Ψi.

To facilitate our discuss on process reduction phase, we have the following definition.

Definition 26. – A set of already asked queries AAQ is a set of queries that have
been sent by the agent.

– A set of already sent answersASA is a set of askable literals and their conclusions.
– An active process set APS is a set of active processes.
– A suspended process set SPS is a set of suspended processes.

In the algorithm, AAQ is used to avoid asking redundant questions to other agents.
ASA is used to accumulate the set of previously computed answers. It is used to
avoid sending redundant same answers to querying agents and calculating the same
answer redundantly when the same questions already asked by other agents. APS
and SPS is used to store the set of active and suspended processes respectively. All
AAQ,ASA,APS and SPS are initialized to empty set when an ambient agent starts
its operations.

5.2 Process Reduction Phase

The inference procedure is triggered by the reception of a query message Q =
(Sender, GS, hist) sent by an agent Sender to agents in the context group. Agents in
the context group process the literals in GS and return the results of each literal to
Sender. This process is performed only by agents that share with the sender literals in
GS. Accordingly, for a literal L the returned result can has one of the following val-
ues: (1) +∂; indicates that L is justified in the local context; (2) −∂; indicates that L
is rejected locally; (3) undefined; indicates the queried agent has no information about
L; and (4) cycle; indicates that L appears in a cycle under the current environment and
cannot be concluded.

In the algorithm we let the local agent be Pi with agent identifier “Self ” and its
associated context group be S; and “Sender” be the agent identifier of the agent who
issues the query.

The inference procedure proceeds in two steps. In the first step, when a new query
arrives, NewQueryArrival (Algorithm 1) it determines if any conclusions from the
previously computed answers match the goal set (GS). If conclusions are found, then
the agent will reply to the Sender with the conclusions available; or a new process will
be created according to GS and the agent’s current belief state ΠCi(CRi, Ψi).

In the second step, ProcessReduction (Algorithm 2) will iterate on the set of active
processes that are consistent with the current agent belief state. If a process is found and
the required literals appear in the conclusions set, the conclusions will then be retrieved
from the process and return it to the Sender directly. (Lines 1 to 3).

Otherwise, the procedure will select a process that is consistent with the agent’s
current belief set and continues the reduction process iteratively (Lines 5 to 23). For
a non-askable literal L, ProcessReduction proceeds by determining whether L or its

Distributed Defeasible Speculative Reasoning 55

Algorithm 1. Process reduction phase: New query arrival
Algorithm: NewQueryArrival(Πi ,Q)

Data: Πi: current belief state of the agent corresponding to ΠCi(CRi, Ψi)
Data: Q = (Sender, GS, hist): query received from agent Sender

1 if GS = ∅ then
2 sendReply message(Self , Sender, ∅, ∅)
3 else if there is a conclusion substitution Θ s.t. GS ·Θ ∈ ASAa then
4 sendReply message(Self , Sender, GS,GS · Θ)
5 else
6 APS ← APS ∪ {(pidnew , active,GS,Πi, ε)}b

a GS ·Θ is the result of applying assignments of Θ to {GS,GS} where GS is the point-
wise complement of each literals in GS.

b ε is an empty substitution.

negation L are consequences of the local rules (Lines 10 to 15). If it is the case, the
process continues by adding the set of body literals for rules with conclusion L to the
GS. Otherwise a reply indicating that the literal L is undefined in the local context will
be sent to the agent Sender.

Note that, by the answer arrival phase defined below, ΠCi(CRi, Ψi) is always con-
sistent. The condition defined in line 17 is used to handle cases when cyclic literals
dependencies occur in the external context. That is, when foreign literals in the contexts
depend on each other and form a loop, no further query for the same foreign literal (in
the same query) will be sent. Instead, the default hypotheses will be used as the ambi-
ent agent, in that situation, does not have the ability to determine the true value of the
foreign literals under the current environment, which follows the idea used in handling
literal-dependencies in the well-founded semantics. However, instead of falsifying the
literals using the failure-by-looping strategy, here we will use the default hypotheses as
the agent’s belief state in the computations. Otherwise, the agent will issue a query to
agents in context group S′, as is indicated by the literal (Lines 19 to 22).

5.3 Answer Arrival Phase

The answer arrival phase is triggered by the reception of a reply message Q =
(Sender,Receiver, L@S,CT) sent by the peer Sender to peer Receiver which executes
the procedure: it processes the conclusion CT sent back by Sender for the literal L,
updates its belief state of the environment w.r.t.ΠCi(CRi, Ψi) and consequently adapts
its behavior according to the conclusions derived based on its local theory.

AnswerArrival (Algorithm 3) ensures that if a returned answer confirms the agent’s
current belief, then the computation continue (Lines 5 to 10). If, on the other hand, the
revised answer contradicts the agent’s current belief, then processes that are inconsistent
with the revised answer will be set to the suspended mode and will temporary removed
from the active process set; while processes that are consistent with the current belief
will be set to the active mode and will be added to the active process set for further
process (Lines 11 to 22).

56 H.-P. Lam et al.

Algorithm 2. Process reduction phase: Iterative step
Algorithm: ProcessReduction(Ci ,Πi ,Q)

Data: Ci = (Vi, Ri): local context theory
Data: Πi: current belief state of the agent corresponding to ΠCi(CRi, Ψi)
Data: Q = (Sender, GS, hist): query received from agent Sender

1 if ∃P = (, active, ,Πi, Θ) ∈ APA s.t. L ·Θ
∈ ASA then
2 ASA ← ASA ∪ {L ·Θ}
3 sendReply message(Self , Sender, L, L ·Θ)

4 else
5 select an active process P = (, active,GS,Πi, Θ) from APS
6 APS ′ = APS \ {P}
7 Select a literal L from GS
8 GS′ = GS \ {L}
9 AL = the set of askable literals in GS

10 if L is a non-askable literal then
11 if Ri[L] = null and Ri[L] = null then
12 sendReply message(Self , sender,L, undefined)
13 else
14 APS ← APS ′∪{(pidnew , active, (body(R)∪GS ′)θ,Πi, Θ◦θΘ) | ∃R ∈ Ri

15 and ∃ most general unifier (mgr) θ s.t. head(R)θ = {L,L}θ}a

16 else /* L is an askable literal */
17 if L ∈ hist then
18 sendReply message(Self , Sender, L, cycle)

19 else if L
∈ AAQ and L
∈ AAQ then
20 Q = message(Self , L, hist ∪ {AL})
21 sendQuery Q
22 AAQ ← AAQ ∪Q
23 APS ← APS ′ ∪ {(pidnew , active,GS′, Πi, Θ)}

a θΘ is an assignment for variable in the query and ◦ is a composition operator of assign-
ments.

5.4 Correctness

The following propositions summarize the main properties of the DDSR framework3.

Proposition 1. For a multi-context system P = {P1, . . . , Pn} where each Pi =
(idi, grpi, Ci, Δi, Ti) is a peer in P , the inference process is guaranteed to terminate
in finite time returning one of the values: true, false and undefined as an answer for the
queried literal.

Proposition 2. For a multi-context system P = {P1, . . . , Pn} where each Pi =
(idi, grpi, Ci, Δi, Ti) is a peer in P , and a literal pi ∈ Ci, the operational model

3 Due to the limited space the proof of the above proposition can be found in:
http://spin.nicta.org.au/spindle/docs/
defeasibleSpeculativeReasoningProof.pdf

http://spin.nicta.org.au/spindle/docs/defeasibleSpeculativeReasoningProof.pdf
http://spin.nicta.org.au/spindle/docs/defeasibleSpeculativeReasoningProof.pdf

Distributed Defeasible Speculative Reasoning 57

Algorithm 3. Answer Arrival Phase
Algorithm: AnswerArrival(CurrRep,ΠCi (CRi ,Ψi),Msg)

Data: CurrRep: the set of updated reply messages received from external agents
Data: ΠCi(CRi, Ψi): the current belief state of the agent
Data: Msg = (Sender, Self , Q@CG,CT): the message received from an external agent

1 update CurrRep w.r.t. the Msg received
2 update CRi w.r.t. CurrRep
3 Π = ΠCi(CRi, Ψi)
4 update ΠCi(CRi, Ψi) w.r.t. CRi and Ψi

5 if Q ∈ ΠCi(CRi, Ψi) and ∼Q
∈ Π then
6 L = Q

7 else if ∼Q ∈ ΠCi(CRi, Ψi) and Q ∈ Π then
8 L = ∼Q
9 else

10 L = null

11 if L
= null then /* execute only when a change of literal value
appears */

12 Ξ = {(, active, ,Π,) ∈ APS | L ∈ Π}
13 Λ = {(, suspended, ,Π,) ∈ SPS | L ∈ Π}
14 if Λ = null then /* create a new process if no process in the

suspended set are consistent with ΠCi(CRi, Ψi) */
15 Λ = {(pidnew, active, (body(R) ∪GS ′)θ,ΠCi(CRi, Ψi), Θ ◦ θΘ) | ∃R ∈ Ri

16 and ∃ most general unifier (mgr) θ s.t. head(R)θ = {L, L}θ}
17 APS ← APS \Ξ
18 SPS ← SPS \ Λ
19 change all process state of processes in Ξ to “suspended” and
20 all process state of processes in Λ to “active”.
21 APS ← APS ∪ Λ
22 SPS ← SPS ∪Ξ

returns: (a) CTpi = +∂ iff pi is justified in P . (b) CTpi = −∂ iff pi is rejected in P .
(c) CTpi = cycle iff pi appears in a cycle such that literals in the cycles are depending
on each other. (d) CTpi = undefined iff pi is neither justified or rejected in P .

5.5 Implementation

A system prototype, called Conspire, has been developed using the operational model
proposed in the previous section to support our research in defeasible speculative rea-
soning. It is built on top of JADE [26] such that agents can run on different host and
can exchange information through ACL messages. Agents in the framework maintain
their own sets of beliefs, information about the environment and the default hypotheses,
and has embedded a defeasible reasoning engine executing the inference procedures.
The implementation also covers the distributed reasoning approach described in [27].
We have run the “Context-Aware Mobile Phone” example described in [18]. In general,
it takes about 90ms for a querying agent to receive the first reply using DDSR; while

58 H.-P. Lam et al.

120ms or more is needed if distributed reasoning is used (assuming that there is no
delay due to communication).

6 Discussion and Conclusions

The idea of speculative computation has been employed in several areas of computer
science, from optimistic transaction in database to execution of functional programming
and computer architecture. In multi-agent systems, agents in the environment have no
idea on whether or when an answer will arrive. Even though we may risk wasted work
in the speculative computation, if we allow the agents to sit idle while waiting for the
replies and no default were used, then the computation time of the agents are wasted. In
either case, the main overhead is the extra computation required to decide, during an-
swer arrival phase, whether the revised answers are consistent with the existing one [17].
Besides, as pointed out in [6], some computations may be more promising than others.
As resources of ambient agents are always limited, it is important to use them effi-
ciently. So, speculative reasoning is a compromise approach that prevents agents from
idling or expending agents’ computation power doing unnecessary computation while
waiting for the answers.

Petersen [28] has proposed to solve the reasoning problem in ambient intelligence
through case-based reasoning, and has shown how different concepts for reasoning and
modeling can be combined. However, as pointed out in [29] his approach may suffer
from maintaining the potentially very large case base, which is a risk when running in
an on-line manner. Besides, it may not be feasible for an ambient device to store a very
high number of cases.

On the other hand, [30] has extended the speculative computation framework with
deadline (and resources negotiation), and has shown that their approach can improve the
accuracy of speculative computation and reduce the risk of the result. While most of the
previous work in speculative computation [14,15,16,17] required agents to be arranged
in a hierarchical order such that queries can only be sent from agents in the higher
level of the hierarchy to the one in the lower level, our approach does not have this
requirement. Agents in the ambient environment can continuously gather and update
their beliefs with acquired new information and responses to the external environment.
This type of approach is related to the reactive behavior of intelligent agents, which have
been studied by Kowalski and Sadri [31] and Dell’Acqua et al. [32,33] intensively.

In conclusion, the DDSR framework presented here allows agents in ambient en-
vironment to efficiently handle inconsistent, incomplete and revisable information re-
turned by other agents. Thanks to the formalism supported by defeasible logic, our
model supports (foreign) literals without negation as failure, and hence can be applied
in solving many real-life problems.

References

1. Bikakis, A., Antoniou, G.: Contextual Argumentation in Ambient Intelligence. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 30–43. Springer, Heidelberg
(2009)

Distributed Defeasible Speculative Reasoning 59

2. Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A Survey of Semantics-Based Ap-
proaches for Context Reasoning in Ambient Intelligence. In: Constructing Ambient Intelli-
gence - AmI 2007 Workshops, CCIS 11, pp. 14–23. Springer (2008)

3. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)

4. Giunchiglia, F., Weyhrauch, R.: A Multi-Context Monotonic Axiomatizations of Inessential
Non-Monotonicity. In: Nardi, D., Maes, P. (eds.) Meta-level Architectures and Reflection.
North-Holland (1988)

5. Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics, or: How we can do without
modal logics. Articical Intelligence 65(1), 29–70 (1994)

6. Osborne, R.B.: Speculative Computation in Multilisp. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP 1990, pp. 198–208. ACM, New
York (1990)

7. Nute, D.: Defeasible Iogic: Theory, Implementation and Applications. In: Bartenstein, O.,
Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp.
151–169. Springer, Heidelberg (2003)

8. Antoniou, G.: A Discussion of Some Intuitions of Defeasible Reasoning. In: Vouros, G.A.,
Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 311–320. Springer,
Heidelberg (2004)

9. Antoniou, G., Billington, D., Governatori, G., Maher, M., Rock, A.: A Family of Defeasible
Reasoning Logics and its Implementation. In: Proceedings of the European Conference on
Artifical Intelligence, ECAI 2000, pp. 459–463 (2000)

10. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation Semantics for
Defeasible Logics. Journal of Logic and Computation 14(5), 675–702 (2004)

11. Boudol, G., Petri, G.: A Theory of Speculative Computation. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 165–184. Springer, Heidelberg (2010)

12. Satoh, K., Yamamoto, K.: Speculative Computation with Multi-agent Belief Revision. In:
Proceedings of the First International Joint Conference on Autonomous Agents and Multia-
gent Systems: Part 2, AAMAS 2002, pp. 897–904. ACM, New York (2002)

13. Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative Computation by Abduction un-
der Incomplete Communication Environments. In: Proceedings of the Fourth International
Conference on Multi-Agent Systems, pp. 263–270 (2000)

14. Inoue, K., Iwanuma, K.: Speculative Computation Through Consequence-Finding in Multi-
Agent Environments. Annals of Mathematics and Artificial Intelligence 42, 255–291 (2004)

15. Ceberio, M., Hosobe, H., Satoh, K.: Speculative Constraint Processing with Iterative Revi-
sion for Disjunctive Answers. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 340–357. Springer, Heidelberg (2006)

16. Hosobe, H., Satoh, K., Ma, J., Russo, A., Broda, K.: Speculative constraint processing for
hierarchical agents. AI Commun. 23, 373–388 (2010)

17. Ma, J., Broda, K., Goebel, R., Hosobe, H., Russo, A., Satoh, K.: Speculative Abductive
Reasoning for Hierarchical Agent Systems. In: Dix, J., Leite, J., Governatori, G., Jamroga,
W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 49–64. Springer, Heidelberg (2010)

18. Bikakis, A., Antoniou, G.: Contextual Defeasible Logic and Its Application to Ambient In-
telligence. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans 41(4), 705–716 (2011)

19. Simon, H.A.: Altruism and Economics. American Economic Review 83(2), 157–161 (1993)
20. Secchi, D.: A Theory of Docile Society: The Role of Altruism in Human Behavior. Journal

of Academy of Business and Economics 7(2), 146–160 (2007)
21. Pusey, B., Maitland, C., Tapia, A., Yen, J.: A Survey of Trust Models in Agent Applications.

In: Proceedings of the North American Association for Computational Social and Organiza-
tional Sciences (NAACSOS), Atlanta, Georgia, June 7-9 (2007)

60 H.-P. Lam et al.

22. Wang, Y., Vassileva, J.: Toward trust and reputation based web service selection: A survey.
International Transactions on Systems Science and Applications 3(2), 118–132 (2007)

23. Sherwood, R., Lee, S., Bhattacharjee, B.: Cooperative peer groups in NICE. Computer Net-
works 50(4), 523–544 (2006); Management in Peer-to-Peer Systems

24. Xiong, L., Liu, L.: Building Trust in Decentralized Peer-to-Peer Electronic Communities. In:
Proc. 5th Int’l Conf. Electronic Commerce Research, ICECR-5 (2002)

25. Kowalski, R.A., Toni, F., Wetzel, G.: Executing suspended logic programs. Fundamenta In-
formaticae - Special issue on Foundations of Constraint Programming 34, 203–224 (1998)

26. JADE: Java Agent Development Framework (2003), http://jade.tilab.com/
27. Adjiman, P., Chatalic, P., Goasdouè, F., Rousset, M.C., Simon, L.: Distributed Reasoning in

a Peer-to-Peer Setting: Application to the Semantic Web. Journal of Artificial Intelligence
Research 25, 269–314 (2006)

28. Kofod-Petersen, A., Aamodt, A.: Contextualised Ambient Intelligence Through Case-Based
Reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS (LNAI), vol. 4106, pp. 211–225. Springer, Heidelberg (2006)

29. Kofod-Petersen, A.: Challenges in case-based reasoning for context awareness in ambient
intelligent systems. In: Minor, M. (ed.) 8th European Conference on Case-Based Reasoning,
Workshop Proceedings, pp. 287–299 (2006)

30. Wang, L., Huang, H., Chai, Y.: Speculative Computation with Deadline and Its Resource
Negotiation under Time Constraints. In: Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT 2004, pp. 353–356. IEEE Computer Soci-
ety, Washington, DC (2004)

31. Kowalski, R., Sadri, F.: From logic programming towards multiagent systems. Annals of
Mathematics and Artificial Intelligence 25, 391–419 (1999)

32. Dell’Acqua, P., Sadri, F., Toni, F.: Combining Introspection and Communication with Ratio-
nality and Reactivity in Agents. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA
1998. LNCS (LNAI), vol. 1489, pp. 17–32. Springer, Heidelberg (1998)

33. Dell’Acqua, P., Moniz Pereira, L.: Enabling Agents to Update their Knowledge and to Prefer.
In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 183–190.
Springer, Heidelberg (2001)

http://jade.tilab.com/

A Formal Semantics for Agent (Re)Organization

Frank Dignum1 and Virginia Dignum2

1 Utrecht University - Dept of Information and Computing Sciences,
The Netherlands

F.P.M.Dignum@uu.nl
2 Delft University of Technology - Dept. Technology, Policy and Management,

The Netherlands
m.v.dignum@tudelft.nl

Abstract. Agent organizations can be seen as a set of entities regulated
by mechanisms of social order and created by more or less autonomous
actors to achieve common goals. Just like agents, organizations should
also be able to adapt themselves to changing environments. In order to
develop a theory on how this reorganization should be performed we
need a formal framework in which organizations, organizational perfor-
mance and the reorganization itself can be described. In this paper, we
present a formal description of reorganization actions in LAO (Logic for
Agent Organization). We show how this formalization can support the
preservation of some nice properties of organizations while it can also
be used to reason about which reorganization is needed to achieve some
basic organizational properties.

1 Introduction

Multi-Agent System (MAS) researchers increasingly realize that the specifica-
tion of an organization for a MAS helps coordinating the agents’ autonomous
behavior [13]. Often, concepts and ideas from Organization Theory (OT) are
used to better understand agent organizations and to design more efficient and
flexible distributed systems [19,5,9]. However, OT concepts tend to be not very
formal in a computational perspective, which makes it difficult when moving
from using OT as a paradigm towards the definition of precise organizational
concepts for the formalization of MAS organizations. Furthermore, even within
the area of OT, definitions, views and classifications are not always commonly
accepted. This has lead to several attempts by MAS researchers to formalize
(parts of) aspects of organizations using several types of modal logics. We base
our work in this paper on one of those, the multi-modal logic LAO for agent
organizations [7].

Give the dynamics of environments, agent organizations might become unable
to achieve their goals when the environment changes too much. Thus models for
agent organizations must also be able to describe how organizations can adapt
to their changing environments. We therefore aim to extend LAO to support the
specification of a formal model for the study of reorganizations. In this paper,

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 61–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 F. Dignum and V. Dignum

we are especially interested how we can make sure that reorganizations preserve
some properties of organizations. E.g. when agents leave, will the organization
still have all capabilities minimally needed to achieve its objectives? In order to
answer this type of questions the specification of the reorganization itself also
needs to be formal such that we can reason very precise about the changes and
the differences in the organization before and after the reorganization.

Of course it is also important to reason about when an organization should re-
organize and what is the most optimal reorganization for each situation. Because
answering these questions properly would need much more space than available
here we will suffice with a short discussion at the end of the paper about these
aspects.

This paper is organized as follows. In section 2 we describe the main properties
of organizations that we would like to preserve or re-establish when reorganizing.
It also serves as a very short and informal introduction of LAO. In section 3
formalisms for handling change of organizations are incorporated and we sketch
some proof that the reorganization operators preserve some basic organizational
properties. Section 4 discusses the issue of deciding on reorganization. Related
work is presented in section 5. Finally, section 6 presents our conclusions and
directions for future work.

2 Modeling Organizations

The multi-modal logic LAO has been proposed to formally describe agent orga-
nizations in [7]. This section provides a short overview of the elements of LAO
that are needed to formally describe reorganization. Due to lack of space, this
is not a complete account of LAO, but is meant to give a background for the
reorganization operators in the next section. We refer to [7] for all details and
full semantics of LAO.

2.1 LAO Logic

The semantics of LAO is a conservative extension of ATL (Alternating-time
Temporal Logic) as used for instance in [21] to describe cooperative actions
between agents. It is given by a Kripke structure which is extended with a
semantic description of organizational structures. An organization is a tuple Oi =
(Asi, Ri, reai,≤i, Di, Obji,Ki), whereAsi is the set of agents in the organization,
Ri is the set of roles of the organization, reai indicates which agents play which
role, ≤i indicates the power structure of the organization, Di indicates which is
the desired state of the organization, Obji indicates which role needs to realize a
certain objective of the organization and Ki indicates the knowledge present in
the organization. An organization is well-defined iff Di(w) ⊆

⋃
r∈Ri

Obji(r, w),
i.e. for all desired objectives of the organization there is a role in charge of
reaching that objective.

Central to the LAO logic is the notion of action for agents, groups of ag-
ents and agents playing roles. Most logics of action start by defining the modal

A Formal Semantics for Agent (Re)Organization 63

operator E for direct, successful action, and introduce the other operators, for
capability, ability, attempt or indirect action, based on the definition of E. This
results in axioms such as Eaϕ → Caϕ, informally meaning that if a sees to it
that ϕ then a is (cap)able of ϕ. From a realistic perspective, such a definition is
pretty uninteresting. The interesting issue is, given one’s capabilities, to deter-
mine under which circumstances one can reach a certain state of affairs. That
is, to determine in which situations it can be said that Caϕ leads to Eaϕ. For
instance, if agent a is capable of achieving ϕ and also responsible and no other
agent is interfering then agent a will actually achieve ϕ.

Our approach is thus to start with the definition of agent capability and use
this definition to progressively introduce the definitions for ability, attempt and
activity. We furthermore use a semantic definition of the modal operators instead
of the usual axiomatic definition.

Intuitively, the ability of an agent to realize a state of affairs ϕ in a world w,
depends not only on the capabilities of the agent but also on the status of that
world. Therefore, we define the ability of a, Gaϕ to represent the case in which
the agent has not only the potential capability to establish ϕ but is currently in
a state in which it has influence over some of the possible transitions that lead
to a state where ϕ holds. Thus the agent also has an actual possibility to use
its capability. The attempt by agent a to realize ϕ is represented by Haϕ. We
say that an agent attempts to realize ϕ if ϕ holds after all states that can be
reached by a transition that is influenced by a. In our definition of attempt, an
attempt only fails in case another agent interferes and tries achieve something
which prevents ϕ to be achieved. So, we do not consider that the environment
might just prevent ϕ to be achieved with some probability. We also assume an
agent only attempts to achieve things it is capable of achieving (which does not
necessarily mean the agent knows it is capable of achieving them). In the special
case in which all next possible states from a given state are influenced by an agent
a, we say that a is in-control in w, represented by ICa. Finally, the stit operator,
Eaϕ (‘agent a sees to it that ϕ) represents the result of successful action (that
is, ϕ holds in all worlds following the current one). This notion of agent activity
is based on that introduced by Pörn [17] to represent the externally ‘observable’
consequences of an action instead of the action itself, and as such abstracts from
internal motivations of the agents. Stit can be seen as an abstract representation
of the family of all possible actions that result in ϕ.

Formally, the language LO for LAO is an extension of the language L describ-
ing CTL* (Computation Tree Logic with quantifiers over paths and temporal
operators). This language is extended with operators for capabilities (C), abil-
ities (G), attempts (H) and successful attempts (E) for (groups of) agents as
well as for (groups of) agents playing roles in an organization. Again, we refer
to [7] for the description of the semantics, which would take to much space to
incorporate in this paper.

Besides these core operators, LAO includes an operator, Ir, indicating which
role in the organization has the initiative to achieve an objective of that or-
ganization (and thus is responsible that this objective is achieved). Finally,

64 F. Dignum and V. Dignum

the predicates member(a, oi), role(r, oi), play(a, r, oi), dep(oi, r, q), know(oi, q),
incharge(oi, r, q), desire(oi, q) are used self-reflexively in the language to de-
scribe organizational aspects. Here oi is a constant that is interpreted in the
semantics as the identifier of an organization tuple (indicated by Oi). In a sim-
ilar way, we will use a (indicating an agent) and r (indicating a role) both in
the syntax and semantics. Formally they are two different constants connected
by the interpretation function. However, since this mapping is trivial and would
lead to even more convoluted formulas we opted to use the same notation for
both and thus indicate the mapping of the constants through their notation.

Definition 1. Given an organization Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki):

1. ϕ ∈ L ⇒ ϕ ∈ LO
2. a ∈ Asi, ϕ ∈ LO ⇒ Caϕ,Gaϕ,Haϕ,Eaϕ,∈ LO
3. Z ⊆ Asi, ϕ ∈ LO ⇒ CZϕ,GZϕ,HZϕ,EZϕ ∈ LO
4. a ∈ Asi, r ∈ Ri, ϕ ∈ LO ⇒ Carϕ,Garϕ,Harϕ,Earϕ ∈ LO
5. a ∈ Asi, r, q ∈ Ri, ϕ ∈ LO ⇒ member(a, oi), role(r, oi), play(a, r, oi),
dep(oi, r, q), incharge(oi, r, q), know(oi, ϕ), desire(oi, ϕ) ∈ LO

6. r ∈ Ri, Z ⊆ Ri, ϕ ∈ LO ⇒ Irϕ, IZϕ ∈ LO

In this definition ar indicates role enactment, e.g., Carϕ stands for the fact that
ϕ is part of the capabilities of role r enacted by agent a. One might argue that
the above modalities could be defined in terms of agents acting and playing a
role. E.g. Earϕ ≡ Eaϕ ∧ play(a, r, oi). However, agents can play more than one
role at the same time and sometimes it is important to determine that an agent
performs an action enacting a particular role, which would be impossible using
the equivalence just given. Organizational knowledge is seen merely as a label
marking facts that are explicitly known by the organization. That is, LAO does
not provide epistemic capabilities in order to reason about knowledge, rather
than asserting the fact that something is known. This is done to keep the logic
as simple as possible and to avoid combinations of the epistemic modality with
other modalities (for the moment).

An organization is said to be capable of achieving ϕ if there is a subset of
agents in that organization that has the capability to achieve ϕ. Formally:

Definition 2 (Organization Capability). Given a model MO, a world w ∈
W and organization Oi organizational capability Coi is defined as:
MO, w |= Coiϕ iff ∃Z ⊆ Asi(w) :MO, w |= CZϕ

Of course, whether an organization actually is able to achieve ϕ also depends
on whether the task of achieving this goal arrives at the agents that are capable
of achieving it. It is thus required to describe that the initiative to achieve ϕ
lays with a certain role in the organization and that there are agents playing
that role that have the capabilities to achieve ϕ or that they have the capability
to delegate the achievement to agents that have the capability. I.e. if a role is
responsible for some activity then the agents playing that role have to initiate
some action towards that activity. On the other hand, the organization assumes

A Formal Semantics for Agent (Re)Organization 65

that the agents playing the role will eventually do something about the activity
that the role is responsible for.

The predicate incharge represents the organizational fact that a certain role
is in charge (has the initiative) of accomplishing a certain state and the operator,
Ir, such that Irϕ indicates that r has the initiative to achieve ϕ. This means
that an agent playing r should perform some action to achieve ϕ. The following
relation between incharge and Ir is assumed:

|= incharge(oi, r, ϕ)→ Irϕ (1)

Delegation of tasks is defined as the capability to put an agent, or group, in
charge for that task (through the roles they play). In an organization, the power
of delegation is associated with structural dependencies, through which some
agents are capable of delegating their tasks to other agents.

Definition 3 (Power of delegation). Given an organization Oi in a model
MO, Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki), the power of delegation for ϕ between
two roles r, q ∈ Ri(w) is defined as the following constraint in the model:
if MO, w |= dep(oi, r, q) ∧ incharge(oi, r, ϕ) ∧ play(a, r, oi)
then MO, w |= Carincharge(oi, q, ϕ)

Note that, in LAO, agents are taken to be autonomous and free to decide on
whether or not to comply to organizational expectations based on their own
reasons. As such, the above considerations can be seen as a kind of necessary
conditions for organizational behavior.

2.2 Organization Properties

Given the above definitions, a number of properties for organizational structures
are defined. For all of these properties it should be borne in mind that the actual
realization of objectives of an organization depend on the actions of the agents
populating the organization at a given moment. The properties that are defined
in this section pertain to the organizational structures only. They indicate that
if the structure has some property in potential the agents populating the orga-
nization could always achieve some desired state. Whether the organization will
actually achieve this state depends on the autonomous decisions of the agents.
Since we do not assume anything about the agents internal mechanism we can
also not guarantee a certain outcome except that if an agent is responsible to
achieve a certain state and is capable to achieve it, it will eventually attempt to
achieve the state.

A well-defined organization is one where there is someone in charge for each
of the organizational objectives.

Definition 4 (Well-Defined Organization). Oi = (Asi, Ri, reai,≤i, Di,
Obji,Ki), in a model MO, is a well-defined organization (indicated as WD(oi))
if it satisfies the following requirement:

MO, w |=WD(oi) iff
MO, w |= desire(oi, ϕ)→ ∃r : (role(r, oi) ∧ Irϕ)

(2)

66 F. Dignum and V. Dignum

An organization is (potentially) successful if the organization also has the capa-
bilities to achieve each objective. This does not mean that an organization will
always achieve all it’s objectives. Rather it means that the organization does
contain enough capabilities to reach the objectives and that there is some role in
charge (responsible) to reach each objective. Thus the organization potentially
can reach it’s objectives if the attempts of the agents trying to achieve them
succeed. Formally,

Definition 5 (Successful Organization). Oi = (Asi, Ri, reai,≤i, Di,
Obji,Ki), in a model MO, is a successful organization (denoted by SU(oi)) if it
satisfies the following requirement:

MO, w |= SU(oi) iff
MO, w |= desire(oi, ϕ)→ Coiϕ ∧ ∃r : (role(r, oi) ∧ Irϕ)

(3)

A good organization is such that if the organization has the capability to achieve
ϕ and there is a group of roles in the organization responsible for realizing it,
then the roles having the initiative to realize ϕ have a chain of delegation to
roles that are played by agents in Asi that are actually capable of achieving it.
Note that it is possible that Z = U . Formally:

Definition 6 (Good Organization). Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki), in
a model MO, is a good organization (denoted by GO(oi)) if it satisfies the fol-
lowing requirement:

MO, w |= GO(oi) iff
if MO, w |= (Coiϕ ∧ IZϕ) then (∃U ⊆ Ri(w)
and MO, w |= dep(oi, Z, U) ∧ CV ϕ)

(4)

where Z,U ⊆ Ri(w) represent a group of roles in Oi and V is defined as the set
of agents playing one of the roles of the set U .

From this definition, it immediately follows that in Good organizations if there
is a role in charge of a given state of affairs, then eventually the state will
be attempted (of course, the success of such attempt is dependent on possible
external interferences). I.e.:

Irϕ→ ♦Hoiϕ (5)

Definition 7 (Effective Organization). Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki),
in a model MO, is an effective organization (denoted by EF (oi)) if it satisfies
the following requirement:

MO, w |= EF (oi) iff
MO, w |= (Irϕ ∧ (¬Crϕ) ∧ dep(oi, r, Q)∧
∃b, q : q ∈ Q ∧ play(b, q, oi) ∧ know(oi, Cbqϕ))→
(∃a : play(a, r, oi) ∧ Earincharge(oi, q

′, ϕ) ∧ q′ ∈ Q∧
∃b′ : play(b′, q′, oi) ∧ know(oi, Cb′q′ϕ))

(6)

A Formal Semantics for Agent (Re)Organization 67

This states that if a role r has the initiative to achieve ϕ but none of the agents
playing role r is capable, but it is known that there is at least one agent b
playing a subordinate role q that has the capability to achieve ϕ then some
agent a playing role r will delegate the responsibility to a subordinate role q′

that has an agent capable of achieving ϕ. Thus a hands responsibility of tasks
to those agents of which it is known that they can achieve them (if it cannot
achieve them itself). (Note that the complex formula is needed, because there
might be several agents capable of achieving ϕ and it is delegated to only one
of them.) So, in an effective organization the structure has means of delegating
each achievable objective to the roles that are capable of achieving it.

Related to the notion of a good organization is the idea that agents should
supervise each other’s work. I.e. if role r is in charge that agent b attempts to
achieve a certain objective then role r becomes responsible for that objective
again if b fails in his attempt. For instance, when a project leader delegates the
task of implementing a module of the system to a certain person and that person
fails to implement the module (maybe because he becomes ill) then the project
leader should take back the task and give it to someone else (or do it himself).

Definition 8 (Responsible Organization). Given Oi = (Asi, Ri, reai,≤i

, Di, Obji,Ki), in a model MO, and group of roles Z ⊆ Ri(w), and a group
of agents V ⊆ Asi(w) playing the role r ∈ Ri(w) and r ≤ Z, Oi is an responsi-
ble organization (denoted by RES(oi)) if it satisfies the following requirement:

MO, w |= RES(oi) iff
MO, w |= EZ incharge(oi, r, ϕ) ∧X(HV rϕ→ X(ϕ ∨ IZϕ).

(7)

The definition states that if Z has delegated ϕ to agents playing role r and the
set of agents V attempt to realize ϕ then either they manage to realize ϕ become
true, or the roles Z get back the initiative to realize ϕ again. I.e. the set of roles
Z stay responsible to realize ϕ after delegation and failure by the role(s) to which
they delegate the objective to.

3 Organizational Change

Changes in the environment lead to alterations in the effectiveness of the or-
ganization and therefore to consider the consequences of that change to the
organization’s effectiveness and efficiency. On the other hand, organizations are
active entities, capable not only of adapting to the environment but also of
changing that environment. This means that, to a certain degree, organizations
are able of altering environment conditions to meet their aims and requirements.
As such, reorganization requires an (explicit) action resulting in the modification
of some organizational characteristics. In terms of the formal model of organiza-
tions introduced in the previous section, changes are represented as (temporal)
transitions between two different worlds.

Organizations will try to identify the optimal design with respect to their en-
vironment, and will choose a change strategy that they believe will improve their

68 F. Dignum and V. Dignum

current situation. Intuitively, reorganization activities aim at aligning the set of
desires Di with the scope of control of the agents in the organization Coi , such
that Diϕ → Coiϕ . Reorganization requires both the ability to represent and
evaluate organizational performance, and the ability to represent reorganization
activities. This section focuses on the ability to represent reorganization activi-
ties. In section 4 we discuss the representation and evaluation of the performance
of an organization.

In human organizations, internal reorganization strategies take different forms,
such as hiring new personnel, downsizing, training or reassigning tasks or per-
sonnel [3]. Organizations can also decide to modify their mission or objectives1.
Because organizations aim at making certain states of affairs to be the case, and
only agents can bring affairs to be, it is important for the organization to make
sure it ‘employs’ and organizes an adequate set of agents such that the combined
action of those agents has the potentiality to bring about the desired state of
affairs Di. The dependency relation ≤i between roles must allow for the desired
states to be achieved, that is, dependencies must be sufficient for initiative to
be passed to the appropriate agents, that is, the agents that have the necessary
capabilities. If that is not the case, the organization should take the steps needed
to decide and implement reorganization, such that the resulting organization O′

i

is indeed able to realize its objectives D′
i. In practice, reorganization activities

can be classified in six groups2:

– Staffing (staff+, staff−): Changes on the set of agents: adding new agents,
or deleting agents from the set. Corresponding to personnel activities in
human organizations (hiring, firing and training).

– Restaffing (enact,deact,move): Assigning agents to different roles within
the organization. This can be promotions, demotions or reorganizations in
human organizations.

– Structuring (position+,position−, struct+, struct−): Changes on the
organization structure. These can be changing roles and/or dependencies
between the roles. Corresponding to changes in composition of departments
or positions in human organizations.

– Strategy (strateg+, strateg−): Changes on the objectives of the organiza-
tion: adding or deleting desired states. Corresponding to strategic (or second-
order) changes in human organizations: modifications on the organization
mission, vision, or charter.

– Duty (duty+,duty−): Changes the initiatives in the organization: adding
or deleting incharge relations. Corresponds to duty assignment in human
relations.

– Learn (learn+, learn−): Changes the knowledge of the organization: adding
or deleting know predicates. Corresponds to the change of experiences, knowl-
edge and learning in human organizations.

1 External types of reorganization, such as mergers and takeovers are outside the scope
of this paper.

2 This is an abstraction from types of reorganization used in management science [1].

A Formal Semantics for Agent (Re)Organization 69

The formal definition of these reorganization activities is as follows:

Definition 9 (Reorganization Operations). Given an organization Oi =
(Asi, Ri, reai,≤i, Di, Obji,Ki), in a model MO, the reorganization operations
over Oi in MO are:

1. w |= staff+(oi, a, U) iff w |= ¬member(a, oi) ∧ X (member(a, oi) ∧
∀r ∈ U : play(a, r, oi) ∧ ∀ϕ : Carϕ→ know(oi, Carϕ)), where U ⊆ Ri(w)

2. w |= staff−(oi, a) iff
w |= member(a, oi) ∧ X (¬member(a, oi) ∧ ¬∃r ∈ Ri : play(a, r, oi)),

3. w |= enact(oi, a, r) iff w |= ¬play(a, r, oi) ∧ X (member(oi, a) ∧ play(a, r, oi))
4. w |= deact(oi, a, r) iff w |= play(a, r, oi) ∧ X¬play(a, r, oi),
5. w |= move(oi, a, r, q) iff
w |= play(a, r, oi) ∧ ¬play(a, q, oi) ∧ X (play(a, q, oi) ∧ ¬play(a, r, oi))

6. w |= position+(oi, r) iff w |= ¬role(r, oi) ∧ X role(r, oi)
7. w |= position−(oi, r) iff w |= role(r, oi) ∧ ¬∃a ∈ Asi : play(a, r, oi) ∧
¬∃q ∈ Ri : (dep(q, r, oi) ∨ dep(r, q, oi)) ∧ X¬role(r, oi),

8. w |= struct+(oi, (r ≤ q)) iff w |= role(r, oi) ∧ role(q, oi) ∧ Xdep(oi, r, q),
9. w |= struct−(oi, (r ≤ q)) iff w |= role(r, oi) ∧ role(q, oi) ∧ X¬dep(oi, r, q),

10. For d : ¬(d ∧D)→⊥, w |= strateg+(oi, d) iff w |= Xdesire(oi, d)
11. w |= strateg−(oi, d) iff w |= X¬desire(oi, d)
12. w |= duty+(oi, r, ϕ) iff w |= X incharge(oi, r, ϕ)
13. w |= duty−(oi, r, ϕ) iff w |= X¬incharge(oi, r, ϕ)
14. w |= learn+(oi, ϕ) iff w |= X know(oi, ϕ)
15. w |= learn−(oi, ϕ) iff w |= X¬know(oi, ϕ)

This definition gives a very simple description of the updates. The only operation
having some extensive checking is the removal of a role from the organization.
This can only be done if no agent plays that role and the role is not dependent
on or from any other role. The consequence of this precondition is that before
removing a role an organization first has to let all agents deact that role and
remove the dependencies between the role and other roles. Similar treatment
must be further developed for other types of organization update, in particular
for strategic reorganization operations.

The above updates do not guarantee the conservation of properties of organi-
zations as described in section 2.2. E.g. if an agent is fired from the organization,
the organization might loose some essential capability and change from a suc-
cessful organization into an unsuccessful organization. In order to prevent these
unwanted consequences of reorganization, a number of properties must be de-
fined that make a reorganization update safe (i.e. property preserving).

Definition 10 (Safe Reorganization). For a semantic model MO, given an
organization Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki), the reorganization operations
over Oi in MO are safe if the following properties hold:

1. |= Irϕ ∧ staff−(oi, a)→ X Irϕ
2. |= CZϕ ∧ staff−(oi, a)→ XCZϕ

70 F. Dignum and V. Dignum

3. |= (Irϕ ∧ (∀a : play(a, r, oi)→ ¬Carϕ) ∧ staff−(Oi, a))→ ¬Earincharge
(oi, q, ϕ)

4. |= Irϕ ∧ deact(oi, a, r)→ X Irϕ
5. |= CZϕ ∧ deact(oi, a, r)→ XCZϕ
6. |= (Irϕ ∧ (∀a : play(a, r, oi)→ ¬Carϕ) ∧ deact(oi, a, r))→ ¬Earincharge

(oi, q, ϕ)
7. |= Irϕ ∧move(oi, a, r, q)→ X (Irϕ ∨ Iq)
8. |= CZϕ ∧move(oi, a, r, q)→ XCZϕ
9. |= (Irϕ ∧ (∀a : play(a, r, oi)→ ¬Carϕ) ∧move(oi, a, r, q))→ ¬Earincharge

(oi, t, ϕ)
10. |= (Coiϕ ∧ Irϕ ∧ struct−(oi, (r ≤ q)) ∧ ∃U ⊆ Ri(w) :

(dep(oi, r, U) ∧ CUϕ)→ X (∃W ⊆ Ri(w) : (dep(oi, r,W) ∧ CWϕ))
11. |= strateg+(oi, ϕ)→ X (Coiϕ ∧ ∃r : (role(r, oi) ∧ Irϕ))
12. |= Coiϕ ∧ duty+(oi, r, ϕ)→ X∃U ⊆ Ri(w) : (dep(oi, r, U) ∧ CUϕ)
13. |= (duty+(oi, r, ϕ)∧(∀a : play(a, r, oi)→ ¬Carϕ)∧dep(oi, r, q)∧play(b, q, oi)∧

know(Cbqϕ))→ X (∃a : play(a, r, oi) ∧ Earincharge(oi, q, ϕ))
14. |= desire(oi, ϕ)→ ∃r : (role(r, oi) ∧ Irϕ) ∧ duty−(oi, t, ψ)

→ X (desire(oi, ϕ)→ ∃r : (role(r, oi) ∧ Irϕ))
15. |= Ir∧(∀a : play(a, r, oi)→ ¬Carϕ)∧dep(oi, r, q)∧play(b, q, oi)∧learn+(oi, ϕ))

→ X (∃a : play(a, r, oi) ∧ Earincharge(oi, q, ϕ))

The first 9 properties all make sure that when an agent leaves a role, the agents
that remain playing that role are still having enough capabilities, etc. and the
agent leaving was not the one that was needed to delegate the achievement of a
desire of the organization. The properties for agents moving between roles are
a bit conservative. It might be that an agent fulfilling a different role has the
same (or more) capabilities in its new role. However, this is not guaranteed. So,
we assume it is not the case and defined the properties against this worst case
scenario.

One might assume that some restrictions are needed on the removal of roles,
because they function in many definitions. However, because roles can only be
removed when no agent is playing the role anymore and it is not linked to other
roles, none of the definitions is affected. (When a role r can be removed we have
that for all ϕ w |= ¬Irϕ). Whenever a dependency between roles is removed
we make sure that alternative dependency paths exist along which tasks can be
delegated if needed.

When duties or desires are added we have to make sure that these new duties
and desires can be handled in the same way by the organization as existing
ones. This is exactly what is ensured by the restrictions on the duty+ and the
strateg+ operators. When duties are discharged we have to make sure that all
desires of the organization are still being pursued by the roles. And finally if
the organization knows about a new capability of an agent fulfilling a role, this
knowledge is used to ensure an effective delegation.

Most of the properties above ensure that when a reorganization operator takes
out an element of the organization, what is left of the organization still complies
to the definition of a well-defined, successful, good and effective organization.

A Formal Semantics for Agent (Re)Organization 71

Given the above definitions of safe reorganization operators it is now actually
possible to prove that an organization that is well-defined, good, successful or
effective remains so after applying a safe reorganization operator:

Theorem 1. Given Oi = (Asi, Ri, reai,≤i, Di, Obji,Ki) and a semantic model
MO, a safe reorganization Reorg, is such that:

MO, w |=WD(oi) ∧Reorg → XWD(oi)
MO, w |= SU(oi) ∧Reorg → XSU(oi)
MO, w |= GO(oi) ∧Reorg → XGO(oi)
MO, w |= EF (oi) ∧Reorg → XEF (oi)
MO, w |= RES(oi) ∧Reorg → XRES(oi)

Proof
For a formal proof we would have to show that for each combination of organi-
zation type and safe reorganization operator the above holds. However, because
the properties of the safe reorganization operators are defined in order to pre-
serve the properties the proofs are rather trivial and we will just sketch the proof
for the first combination. I.e. MO, w |=WD(oi) ∧ staff−(oi, a)→ XWD(oi).

In order to proof this we thus have to show that: MO, w |= (desire(oi, ϕ) →
∃r : (role(r, oi)∧Irϕ))∧ staff−(oi, a)→ X (desire(oi, ϕ)→ ∃r : (role(r, oi)∧Irϕ))
Because staff−(oi, a) does not change anything on the desires or the roles of
the organization, the only thing that could invalidate the above formula is that:
MO, w |= Irϕ∧¬X (Irϕ). But because staff

−(oi, a) is safe we have that:MO, w |=
Irϕ→ X (Irϕ) and thus: MO, w |=WD(oi) ∧ staff−(oi, a)→ XWD(oi)
All other cases can be proven in similar ways and more or less follow directly
from the defined properties for safe reorganization operators. �

4 Deciding about Change

In this paper, reorganization refers both to endogenous reorganization, that is,
the reorganization is a result of an activity by the agents themselves (run-time),
and to exogenous reorganization, in which reorganization is achieved by activity
outside of the system, for example by the designer (off-line). Given that reorga-
nization operations are just propositions in the language LO, in the endogenous
case, agents or groups can control these propositions (i.e. see to it that a certain
reorganization issue is the case). That is, agent or group x is such that Cxρ
where ρ is one of the reorganization results specified above. For example, the
fact that agent a is able to hire agent b for the organization is represented by
Castaff

+(oi, b). Thus in that case:

staff+(oi, a, U) ≡ ∃x : member(oi, x)∧
∀r ∈ U : Ex(member(oi, a) ∧ play(a, r, oi))

(8)

The other reorganization operations could be tied to individual agents or roles
in a similar way. Using these properties we can recursively indicate e.g. that a
certain role is responsible for adding a new agent to the organization and which

72 F. Dignum and V. Dignum

agents might be capable of firing agents from the organization. Thus we could
also formally reorganize on these properties and in the other hand should make
sure that these properties are preserved (e.g. the only agent that can fire agents
from the organization should not be able to fire itself).

An explicit, planned, reorganization strategy must take into account the cur-
rent performance and determine which characteristics of the organization should
be modified in order to achieve a better performance. The idea behind reorgani-
zation strategies, is that one should be able to evaluate the utility of the current
state of affairs (that is, what happens if nothing changes), and the utility of
future states of affairs that can be obtained by performing reorganization ac-
tions. The choice is then to choose the future with the highest utility. However,
this utility should not be measured over one future state but over a whole inter-
val, because the organization is meant to provide some stability in a changing
world an only should reorganize occasionally and not with every small change
in the environment. Instruments are needed to determine the current and future
performance of the organization over time, and also calculate the cost of reorga-
nization. In the following section we show through an example how this can be
done and how LAO is used in this case.

4.1 Case Study

In this section, we present a simple case study to demonstrate the applicability of
LAO to a realistic domain. We have chosen to use the RoboSoccer [14] example
previously described by another research group using a different framework to
discuss the applicability of LAO to the formalization and analysis of different
systems.

Based on [14], we consider a RoboSoccer team of 5 robots, together with agents
representing the coach that can change the composition of the team, the monitor
that determines which is the (next) objective of the team based on observation
of the environment, and (re)organization designers that are able to determine
which team composition is appropriate to achieve a given objective. We further-
more assume that each soccer player can have 3 different behaviors: keep, attack
or defend. For our study, we define five generalist soccer player robots pi, which
have 3 different capabilities, ∀i = 1, ..., 5 : Cpiattack ∧ Cpidefend ∧ Cpikeep, and
a coach agent c with the capability of defining playing strategies, Ccstrategy.
We also define a specialist attacker robot, pele, with capability Cpeleattack. The
initial RoboSoccer organization Os is then represented in LAO by:

O0
s = (As0s, R

0
s, rea

0
s,≤0

s, D
0
s , Obj

0
s ,K

0
s), where

1. As0s = {c, pele, p1, p2, p3, p4, p5}, with capabilities as above.
2. R0

s = {coach, keeper, defender, attacker}, such that
Ccoachstrategy, and Ckeeperkeep, Cdefenderdefend, Cattackerattack.

3. rea0s = {(c, coach)}
4. ≤0

s= {coach ≤Os keeper, coach ≤Os defender, coach ≤Os attacker}
5. D0

s = {not− loose}

A Formal Semantics for Agent (Re)Organization 73

6. Obj0s (coach) = {not-loose}
7. K0

s ⊇ {k0s1, k0s2, k0s3, k0s4, k0s5, k0s6, k0s7, k0s8, k0s9}, where
k0s1 = know(O0

s , (not-loose← (win ∨ draw))),
k0s2 = know(O0

s , (win← (score ∧ defense))),
k0s3 = know(O0

s , (draw← (defense))),
k0s4 = know(O0

s , ((goalsfor ≥ goalsagainst)→ defense)),
k0s5 = know(O0

s , ((goalsfor < goalsagainst)→ score)),
k0s6 = know(O0

s , (goalsfor = goalsagainst = 0)),
k0s7 = know(O0

s , (score← (#attacker ≥ 3 ∧#defender = 1 ∧#keeper = 1)),
k0s8 = know(O0

s , (defend← #defender ≥ 2 ∧#keeper = 1))
k0s9 = know(O0

s , (∀i = 1, ..., 5 : Cpiattack ∧Cpidefend ∧ Cpikeeper))
k0s10 = know(O0

s , (Cpeleattack))

Note that the capabilities of roles indicated above specify the requirements
needed for agents enacting those roles. E.g. only agents with capability attack
can play the attacker role. Furthermore, we take large liberty in the specification
of knowledge, where e.g. (#attacker = 3) means |{a|plays(a, attacker, Os)}| = 3.
I.e. that three agents enact the attacker role. In this organizational setting, the
coach is in charge of achieving the organization’s objective, not-loose. For sim-
plicity sake, we also omit from the specification above utility-related knowledge,
including the fact that a win is better than a draw, but on the other hand, a draw
can be achieved with the generalist agents, while the chances of scoring increase
if the forward specialist is used, who is more costly than the other agents.

For the organizationO0
s we have thatMO, w0 |=WD(O0

s)∧GO(O0
s)∧SU(O0

s).
I.e. it is well-defined, good and successful, which can be easily checked from the
definitions 4, 6, 5. Moreover, it can be proven thatMO, w0 |= EF (O0

s). I.e. O
0
s is

efficient (see definition 7) as it has knowledge about the capabilities of its agents.
A possible strategy for the coach is then to start the game with the generalist

agents, that can play both attacker and defender reasonably well, and later on,
if the team is loosing, change the organization to include the specialist forward
player. The initial instantiation is thus:

s1a : Ecoachdesire(O
1
s , score)

s1b : Ecoach(enact(O
1
s , p1, attacker))

s1c : Ecoach(enact(O
1
s , p1, defender))

s1b : Ecoach(enact(O
1
s , p2, attacker))

s1d : Ecoach(enact(O
1
s , p2, defender))

s1b : Ecoach(enact(O
1
s , p3, attacker))

s1b : Ecoach(enact(O
1
s , p3, defender))

s1e : Ecoach(enact(O
1
s , p4, defender))

s1f : Ecoach(enact(O
1
s , p5, keeper))

This organization is in state of playing both not-loose strategies known to
the organization. However, it has lower performance than an organization where
pele is enacting the role of attacker. This is because intuitively generalists (hav-
ing many capabilities) have lower performance than specialists (mastering one

74 F. Dignum and V. Dignum

capability very well). So, if the team is loosing, the coach may decide to bring
pele into the team. This is formally described as follows:

sta : learn
−(Ot

s, k
0
s6)

stb : learn
+(Ot

s, (goalsfor < goalsagainst))
stc : Ecoach(deact(O

1
s , p1, attacker

stc : Ecoach(deact(O
1
s , p1, defender

std : Ecoach(enact(O
1
s , pele, attacker))

Of course, the above example is extremely simplified. However, it shows that
many organizational aspects can be modeled, that we can now prove a number
of interesting properties about the organizations and also how reorganizations
can be described.

5 Related Work

Several approaches have already been presented to investigate the complexity
of reasoning and analysis of multi-agent systems. Formal methods for MAS
have a logical basis, typically based on dynamic, temporal and/or deontic logics
[21,18,10]. However, their treatment of organizational concepts is in most cases
very basic. The approach that comes most close to the one described in this
paper is based on ATL. In these logics an operator is defined that expresses that
a coalition of agents controls a formula. I.e. � C � φ means that the coalition
C can achieve φ no matter what the agents outside C do. It is a kind of en-
sured achievement. However, in order to be able to ensure this in a consistent
way [21] assume a complete division of agent capabilities and total control over
the domain. This means that all basic propositions can be controlled by exactly
one agent. Although this provides a nice logical system it is not very realistic
as usually a proposition can be controlled by more than one agent. Given that
LAO is a conservative extension of these logics, it allows to express the possible
interference of the agents starting with basic propositions. The work presented
by Santos et.al. in [18] also uses attempts to achieve situations and therefore is,
in this respect, closer to LAO than ATL. However, their work lacks temporal
issues. Therefore it is not possible to reason about the difference that an action
makes on the world. E.g. LAO, ¬φ ∧Eaφ states that φ is false, but agent a will
make it true. In a stit logic without temporal aspects it holds that Eaφ→ φ and
thus the formula above would be inconsistent.

Besides the formal, logical approaches towards organizational description and
analysis there are also engineering frameworks. Such approaches provide sound
representation languages that include many realistic organizational concepts, but
have often a limited formal semantic basis, which makes analysis and comparison
difficult [13,16,20].

6 Conclusions

Dynamic reorganization of agent systems is needed in order to enable systems
to enforce or adapt to changes in the environment. This issue has been discussed

A Formal Semantics for Agent (Re)Organization 75

by many researchers and several domain-oriented solutions have been proposed.
However, such solutions often lack a formal basis. This prohibited the develop-
ment of theories about reorganization and it prevented comparison or adaptation
to other domains or situations. In this paper we presented an attempt at a formal
model for reorganization concepts based on LAO, [7]. Although the language it-
self seems very rich, it actually is only a relative small extension to that of CTL*.
This addition allows LAO to express not only abilities and achievements of (role
enacting) agents, but also their attempts to achieve a state. Thus LAO provides a
uniform framework in which these different concepts can be expressed and com-
bined. We have described a number of desirable properties of organizations and
how these can be expressed in the LAO formalism. Subsequently we have shown
how our reorganization operators preserve these properties of organizations. The
current model is based on the notions of controllability, stit, attempt and ini-
tiative. In the language presented in this paper we did distinguish between the
role (or position) in an organization and the actual agent performing that role.
However, we assumed that agents playing a role will always attempt to fulfill the
objectives of that role. In reality agents might make different choices depending
on their other commitments and preferences. This could be reflected through
the incorporation of the theory presented in [6] in the current framework. This
also allows for the introduction of mental notions such as knowledge and belief
in the framework.
We already did work and will extend this in future work on the reorganization
mechanism itself and decision making. The operations described in this paper
enable the description of the reorganization of an agent organization. However,
this does not answer the issue of deciding about when, what, who and how to
reorganize. How do organizations reach the decision to reorganize? What should
then be reorganized? When should one reorganize? Is there one agent or role
responsible to make the decision or is it a democratic process? We refer to
[8,12,4,15] for some related work on this topic.
Finally, we will extend the model to include deontic concepts based on work on
norms in organizations given in [11,2]. This will be important in order to ensure
that organizations can (and will) fulfill certain norms after reorganization.

References

1. http://www.eurofound.europa.eu/areas/industrialrelations/dictionary/

definitions/RESTRUCTURING.htm

2. Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. SIKS Dissertation Series 2007-10. Utrecht University, PhD Thesis
(2007)

3. Carley, K., Svoboda, D.: Modeling organizational adaptation as a simulated an-
nealing process. Sociological Methods & Research 25(1), 138–168 (1996)

4. Cholvy, L., Garion, C., Saurel, C.: Ability in a multi-agent context: A model in the
situation calculus. In: Toni, F., Torroni, P. (eds.) CLIMA VI 2005. LNCS (LNAI),
vol. 3900, pp. 23–36. Springer, Heidelberg (2006)

http://www.eurofound.europa.eu/areas/industrialrelations/dictionary/definitions/RESTRUCTURING.htm
http://www.eurofound.europa.eu/areas/industrialrelations/dictionary/definitions/RESTRUCTURING.htm

76 F. Dignum and V. Dignum

5. Cohen, M.: Artificial intelligence and the dynamic performance of organization
designs. In: March, J., Weissinger-Baylon, R. (eds.) Ambiguity and Command: Or-
ganizational Perspectives on Military Decision Making, Pitman, pp. 53–71 (1986)

6. Dastani, M., Dignum, V., Dignum, F.: Role assignment in open agent societies. In:
AAMAS 2003. ACM Press (July 2003)

7. Dignum, V., Dignum, F.: A logic of agent organizations. Logic Journal of the
IGPL 20(1), 283–316 (2012)

8. Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic organization of agent
societies. In: Vouros, G. (ed.) Workshop on Coordination in Emergent Agent So-
cieties, ECAI 2004, pp. 70–78 (2004)

9. Fox, M.: An organizational view of distributed systems. Transactions on Systems,
Man, and Cybernetics 11(1), 70–80 (1981)

10. Governatori, G., Gelati, J., Rotolo, A., Sartor, G.: Actions, institutions, pow-
ers. preliminary notes. In: Lindemann, G., et al. (eds.) RASTA 2002. Mitteilung,
vol. 318, pp. 131–147. Fachbereich Informatik, Universitt Hamburg (2002)

11. Grossi, D.: Designing Invisible Handcuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems. SIKS Dissertation Series 2007-16. Utrecht
University, PhD Thesis (2007)

12. Grossi, D., Royakkers, L., Dignum, F.: Organizational structure and responsibility,
an analysis in a dynamic logic of organized collective agency. Journal of AI and
Law 15, 223–249 (2007)

13. Hübner, J., Sichman, J., Boissier, O.: S-moise+: A middleware for developing or-
ganised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann,
G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM
2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg
(2006)

14. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the Moise+ for a Cooperative
Framework of MAS Reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA
2004. LNCS (LNAI), vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

15. Matson, E., DeLoach, S.A.: Formal transition in agent organizations. In: IEEE In-
ternational Conference on Knowledge Intensive Multiagent Systems, KIMAS 2005
(2005)

16. McCallum, M., Vasconcelos, W., Norman, T.: Verification and Analysis of Organi-
sational Change. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson,
E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and
OOOP 2005. LNCS (LNAI), vol. 3913, pp. 48–63. Springer, Heidelberg (2006)

17. Pörn, I.: Some basic concepts of action. In: Stenlund, S. (ed.) Logical Theory and
Semantical Analisys. Reidel (1974)

18. Santos, F., Jones, A., Carmo, J.: Action concepts for describing organised interac-
tion. In: Sprague Jr., R.A. (ed.) Proc. HICCS, vol. V, pp. 373–382. IEEE Computer
Society Press (1997)

19. So, Y., Durfee, E.: Designing organizations for computational agents. In: Carley,
K., Pritula, M.J., Gasser, L. (eds.) Simulating Organizations, pp. 47–64 (1998)

20. van den Broek, E., Jonker, C., Sharpanskykh, A., Treur, J., Yolum, P.: Formal
Modeling and Analysis of Organizations. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 18–34. Springer,
Heidelberg (2006)

21. Wooldridge, M., van der Hoek, W.: On the logic of cooperation and propositional
control. Artificial Intelligence 24(1-2), 81–119 (2005)

Epistemic ATL with Perfect Recall,

Past and Strategy Contexts

Dimitar P. Guelev1 and Catalin Dima2

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
gelevdp@math.bas.bg

2 Laboratory of Algorithms, Complexity and Logic, Université Paris Est-Créteil
France

dima@univ-paris12.fr

Abstract. We propose an extension to epistemic ATL with perfect re-
call, past, and distributed knowledge by strategy contexts and demon-
strate the strong completeness of a Hilbert-style proof system for its
(.U.)-free subset.

Introduction

Alternating time temporal logic (ATL, [2,3]) was introduced as a reasoning tool
for the analysis of strategic abilities of coalitions in extensive multiplayer games
with temporal winning conditions. Systems of ATL in the literature vary on their
restrictions on the players’ information on the game state, which may be either
complete or incomplete (imperfect), and the players’ ability to keep full record of
the past, which is known as perfect recall [11,17].

The informal reading of the basic game-theoretic (cooperation) construct
〈〈Γ 〉〉ϕ of ATL is the members of coalition Γ can cooperate to enforce tempo-
ral condition ϕ regardless of the actions of the rest of the players. Every player
is either committed to the objective ϕ, or free to obstruct it. This restiction
is overcome in Strategy Logic (SL, [6]), where propositional LTL language is
combined with a predicate language interpreted over a domain of strategies to
enable flexible quantification over strategies. LTL formulas are evaluated at the
unique paths which are determined by dedicated parameter lists of strategies.
For instance, assuming just two players 1 and 2, 〈〈1〉〉(pUq) translates into the
SL formula ∃x∀y(pUq)(x, y), where (x, y) indicates evaluating (pUq) at the path
determined by 1 and 2 following strategies x and y, respectively. This transla-
tion is not invertible in general and ATL is not expressively complete wrt SL.
Some practically interesting properties which cannot be written in ATL for this
reason are given in [5]. To enable the expression of such properties, ATL was
extended by strategy contexts in various ways [20,5,15,21]. Strategy contexts are
assignments of strategies to some of the players which the rest of the players
can safely assume to be followed. All of the works [20,15,21] are about strat-
egy contexts in ATL with complete information. To facilitate reasoning about
games with incomplete information, ATL was extended with epistemic opera-
tors [18,11]. Such combinations can be viewed as extending temporal logics of

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 77–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 D.P. Guelev and C. Dima

knowledge (cf. e.g [7]) in the way ATL extends computational tree logic CTL.
A study of the system of epistemic linear- and branching-time temporal logics
(without the game-theoretic modalities) which arise from the various possible
choices can be found in [19,10].

In this work we embark on the study of an extension of epistemic ATL with
perfect recall and past by strategy contexts. Our extension to the language of
ATL is different from those in [15,21] but brings the same expressive power for
the case of complete information. The language extension we chose has facilitated
upgrading our axiomatic system for epistemic ATL with perfect recall from [9] to
include strategy contexts by making only the obvious changes. Following [9], the
semantics in this paper is based on the variant from [13,14] of interpreted systems,
which are known from the study of knowledge-based programs [7]. The main
result in the paper is the completeness of our proof system for the ”basic” subset
of epistemic ATL with past, perfect recall and strategy contexts. This subset
excludes the iterative constructs 〈〈Γ 〉〉(.U.), 〈〈Γ 〉〉� and 〈〈Γ 〉〉�, but includes the
past operators� and (.S.), and following [9] again, the operator DΓ of distributed
knowledge. The future subset of the system can be viewed as an extension of
Coalition Logic [16] as well. The system is compact. This enabled us to prove
strong completeness, i.e., that an arbitrary consistent set of formulas is also
satisfiable. The proof system includes axioms for temporal logic (cf. e.g. [12]),
epistemic modal logic with distributed knowledge (cf. e.g. [7]), appropriately
revised ATL-specific axioms and rules from the axiomatization of ATL with
complete information in [8] and from the extension of ATL by strategy contexts
proposed in [20], and some axioms from our previous work [9].

Structure of the Paper. After preliminaries on interpreted systems we in-
troduce our logic. We briefly review the related logics from [20,15,21] and give
a satisfaction preserving translation between our proposed logic and that from
[15]. In the subsequent sections we present our proof system for the basic subset
of the logic and demonstrate its completeness.

1 Preliminaries

In this paper we define ATLDPC
iR on interpreted systems. An interpreted system is

defined with respect to some given finite set Σ = {1, . . . , N} of players, and a set
of propositional variables (atomic propositions) AP . There is also an environment
e
∈ Σ. In the sequel we write Σe for Σ ∪ {e}.

Definition 1 (interpreted systems). An interpreted system for Σ and AP
is a tuple of the form 〈〈Li : i ∈ Σe〉, I, 〈Act i : i ∈ Σe〉, t, V 〉 where:
Li, i ∈ Σe, are nonempty sets of local states; LΓ stands for

∏
i∈Γ

Li, Γ ⊆ Σe;

I ⊆ LΣe is a nonempty set of initial global states;
Act i, i ∈ Σe, are nonempty sets of actions; ActΓ stands for

∏
i∈Γ

Act i;

t : LΣe ×ActΣe → LΣe is a transition function;
V ⊆ LΣe ×AP is a valuation of the atomic propositions.

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 79

The elements of LΣe are called global states. For every i ∈ Σe and l′, l′′ ∈ LΣe

such that l′i = l′′i and l′e = l′′e the function t is required to satisfy (t(l′, a))i =
(t(l′′, a))i.

In the literature, interpreted systems also have a protocol Pi : Li → P(Act i) for
every i ∈ Σe. Pi(l) is the set of actions which are available to i at local state
l. We assume the same sets of actions to be available to agents at all states for
the sake of simplicity. For the rest of the paper in our working definitions we
assume the considered interpreted system IS to be clear from the context and
its components to be named as above.

Definition 2 (global runs). Given an n ≤ ω, r = l0a0l1a1 . . . ∈ LΣe

(ActΣeLΣe)
n is a run of length |r| = n, if l0 ∈ I and lj+1 = t(lj , aj) for

all j < n. We denote the set of all runs of length n by Rn(IS). We denote⋃
k<n

Rk(IS) and
⋃

k≤n

Rn(IS) by R<n(IS) and R≤n(IS), respectively. We write

Rfin(IS) and R(IS) for R<ω(IS) and R≤ω(IS), respectively.
Given m, k < ω such that m ≤ k ≤ |r|, we write r[m..k] for lmam . . . ak−1lk.

We write R[m..k] for {r[m..k] : r ∈ R} in case the lengths of the runs in R ⊂
R(IS) are at least k.

Runs of length n < ω are indeed sequences of 2n+ 1 states and actions.

Definition 3 (local states, local runs and indiscernibility of runs). Given
an l ∈ L and Γ ⊆ Σe, we write lΓ for 〈li : i ∈ Γ 〉; aΓ ∈ ActΓ is defined similarly
for a ∈ ActΣe, and indeed for a ∈ ActΔ with arbitrary Δ such that Γ ⊆ Δ ⊆ Σe.
Sometimes we write lΓ (aΓ) just in order to emphasize that the index set of l
(a) is Γ . Given r = l0a0 . . . ∈ R(IS), we write rΓ = l0Γa

0
Γ . . . for the correspond-

ing local run of Γ . Given r′, r′′ ∈ R(IS) and n ≤ |r′|, |r′′|, we write r′ ∼n
Γ r

′′ if
r′Γ [0..n] = r′′Γ [0..n] and r

′ ∼Γ r
′′ for the conjunction of r′ ∼|r′|

Γ r′′ and |r′| = |r′′|.

Obviously ∼n
Γ and ∼Γ are equivalence relations on R(IS). We denote {r′ ∈

R(IS) : r′ ∼Γ r} by [r]Γ . Sequences of the form r∅ consist of 〈〉s and [r]∅ is the
class of all runs of length |r|.

Definition 4 (joins of vectors of actions). Given two vectors ai = 〈ai,j :
j ∈ Γi〉, i = 1, 2, such that Γ1, Γ2 ⊆ Σe and Γ1 ∩ Γ2 = ∅, we write a1 ∪ a2 for
the vector indexed by Γ1 ∪ Γ2 with action (a1 ∪ a2)j being either a1,j or a2,j,
depending on whether j ∈ Γ1 or j ∈ Γ2.

Definition 5 (strategies and outcomes). A strategy for i ∈ Σe is a function
of type {ri : r ∈ Rfin(IS)} → Act i. We write S(Γ) for the set of the vectors
of strategies with one strategy for every member of Γ in them. We apply the
notation introduced for vectors of actions in Definitions 3 and 4 to vectors of
strategies as well. Given s ∈ S(Γ) and r ∈ Rfin(IS), we write out(r, s) for the
set

{r′ = l0a0 . . . ∈ Rω(IS) : r′[0..|r|] = r, aji = si(r{i}[0..j]) for all i ∈ Γ, j ≥ |r|}

80 D.P. Guelev and C. Dima

of the possible outcomes of r when Γ follow s from time |r| on. Given an X ⊂
Rfin(IS), we write out(X, s) for

⋃
r∈X

out(r, s).

Definition 6 (indiscernibility of strategy vector sequences). Given s′,
s′′ ∈ S(Σe), we write s′ ∼Γ s

′′ if s′Γ = s′′Γ . Given two sequences s′ = s′0 . . . s′n,
s′′ = s′′0 . . . s′′n ∈ (S(Σe))

n+1, we write s′ ∼Γ s
′′ if s′k ∼Γ s

′′k for k = 0, . . . , n.

Definition 7 (strategy revision). Given Γ ⊆ Σe, s
′, s′′ ∈ S(Γ), and an n <

ω, we write s′"ns′′ for the vector of strategies which is defined by the case
distinction:

(s′"ns′′)i(r) =
{
s′i(r{i}), if |r| < n;
s′′i (r{i}), if |r| ≥ n.

Definition 8 (consistency of strategy vector sequences). A sequence s =
s0, . . . , sn ∈ S(Σe)

n+1 is consistent, if sk(r) = sk+1(r) for all r ∈ R<k(IS) and
all k < n.

In words, s is consistent, if, for k > 0, sk+1 returns the same vectors of actions
as sk for runs of length up to k − 1. The reason to require sk−1(r) = sk(r) only
if |r| ≤ k − 1 is that, according to the definition of |= in ATLDPC

iR below, for
|r| ≥ k, the values of sk(r) represent the context strategies to be followed from
step k on and these strategies are subject to revision.

2 Epistemic ATL with Perfect Recall, Past and Strategy
Contexts (ATLDPC

iR)

ATLDPC
iR has an additional parameter Δ to its game-theoretic operator to des-

ignate the set of the players whose behaviour is assumed to be as described in
the strategy context. As it becomes clear below, having a cooperation modality
with such a parameter facilitates the use of appropriate variants of the axioms
and rules for ATLDP

iR from [9]. In Section 3 we explain that this form of the co-
operation modality has the same expressive power as (an appropriately defined
incomplete-information variant of) the cooperation modalities from [15].

Definition 9 (syntax). Here follows a BNF for the syntax of formulas in

ATLDPC
iR and the intended informal reading of the connectives:

ϕ, ψ ::= ⊥ | p | (ϕ ⇒ ψ) | logical falsehood, atomic proposition, implication
�ϕ | ϕ one step ago
(ϕSψ) | ψ either now, or some time ago

and ϕ has been true ever since ψ held last;
DΓϕ | Γ know ϕ;
〈〈Γ | Δ〉〉 ◦ ϕ | Γ can enforce ϕ in one step, provided that

Δ follow their current strategies;
〈〈Γ | Δ〉〉(ϕUψ) | Γ can enforce reaching a ψ-state along a path of ϕ-states,

provided that Δ follow their current strategies;
[[Γ | Δ]](ϕUψ) | Γ cannot prevent reaching a ψ-state along a path of

ϕ-states, unless Δ give up their current strategies.

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 81

〈〈Γ | Δ〉〉 and [[Γ | Δ]] are well-formed only if Γ ∩Δ = ∅. We write Var(ϕ) for
the set of the atomic propositions which occur in ϕ.

Note that we do not introduce dedicated notation for individual knowledge.
Below it becomes clear that Ki can be written as D{i}.

Definition 10 (modelling relation of ATLDPC
iR). The relation IS, s, r |= ϕ is

defined for r ∈ Rfin(IS), a consistent strategy vector sequence s = s0, . . . , s|r| ∈
S(Σe)

|r|+1, and formulas ϕ, by the clauses:

IS, s, r
|= ⊥;

IS, s, l0a0 . . . an−1ln |= p iff V (ln, p) for atomic propositions p;

IS, s, r |= ϕ ⇒ ψ iff either IS, s, r
|= ϕ or IS, s, r |= ψ;

IS, s, r |= DΓϕ iff (∀r′ ∈ [r]Γ)(s
′ ∈ S(Σe))(s

′ ∼Γ s implies IS, s′, r′ |= ϕ);

IS, s, r |= 〈〈Γ | Δ〉〉θ iff

(∃s′ ∈ S(Γ))(∀s′′ ∈ S(Σe \ (Γ ∪Δ)))(∀s′′′ ∈ S(Σe)
|r|)(∀r′ ∈ out([r]Γ∪Δ, s′ ∪ s

|r|
Δ))

(s′′′ ∼Γ∪Δ s implies IS, s′′′ · (s′′′|r|�|r|(s′ ∪ s
|r|
Δ ∪ s′′)), r′, |r| |= θ);

IS, s, r |= [[Γ | Δ]]θ iff IS, s, r
|= 〈〈Γ | Δ〉〉¬θ;

IS, s, r |= �ϕ iff |r| > 0 and IS, s[0..|r| − 1], r[0..|r| − 1] |= ϕ;

IS, s, r |= (ϕSψ) iff (∃k ≤ |r|)
(
IS, s[0..n− k], r[0..n− k] |= ψ and
(∀u < k)IS, s[0..n− u], r[0..n− u] |= ϕ

)
.

In the clauses for 〈〈Γ | Δ〉〉θ and [[Γ | Δ]]θ above, θ stands for a possibly negated
◦ϕ or (ϕUψ). We use an auxiliary form of |= to define the satisfaction of θ,
which, being an LTL formula, takes an infinite run and a position in it to inter-
pret. Given an r ∈ Rω(IS) and a k < ω,

IS, s, r, k |= ◦ϕ iff IS, s, r[0..k + 1] |= ϕ;

IS, s, r, k |= (ϕUψ) iff (∃m)

(
IS, s, r[0..k +m] |= ψ and
(∀n < m)IS, s, r[0..k + n] |= ϕ

)
;

IS, s, r, k |= ¬θ iff IS, s, r, k
|= θ.

Validity of formulas in an entire interpreted system and on the class of all in-
terpreted systems, that is, in the logic ATLDPC

iR , is defined as satisfaction at all
0-length runs in the considered interpreted system, and at all the 0-length runs
in all interpreted systems, respectively.

In the definition of |=, we use sequences of strategy vectors and not simply strat-
egy vectors as the strategy context, in order to enable the interpretation of the
past operators � and (.S.). This complication of the form of |= is inevitable be-
cause the interpretation of 〈〈Γ | Δ〉〉◦ allows the strategy context to be revised,
and it is necessary to be able to revert to contexts from before such revisions
for the correct interpretation of the past operators. The semantics of the fu-
ture subset of ATLDPC

iR can be defined with s being just a vector of strategies in

82 D.P. Guelev and C. Dima

|=. Then the satisfaction condition for IS, s, r |= 〈〈Γ | Δ〉〉θ can be given the
following simpler form:

(∃s′ ∈ S(Γ))(∀s′′ ∈ S(Σe \ (Γ ∪Δ)))(∀s′′′ ∈ S(Σe))(∀r′ ∈ out([r]Γ∪Δ, s
′ ∪ sΔ))

(s′′′ ∼Γ∪Δ s implies IS, s′′′"|r|(s′ ∪ sΔ ∪ s′′), r′, |r| |= θ)

Abbreviations. 	, ¬, ∨, ∧ and⇔ are used to abbreviate formulas written with
⊥ and ⇒ in the common way. The abbreviations below are specific to ATL and
other temporal and epistemic logics:

I � ¬�	
�−ϕ� (Sϕ)

�ϕ� ¬�−¬ϕ
PΓϕ� ¬DΓ¬ϕ

[[Γ | Δ]] ◦ ϕ� ¬〈〈Γ | Δ〉〉 ◦ ¬ϕ.

3 Related Work

Next we give a brief account of the systems ATLsc, BSIL and ATLES from
[15,21,20], respectively. An extension of ATL∗ by strategy contexts can be found
in [1] too, where the authors focus mainly on modelling issues, and not tech-
nical results. We show that ATLsc from [15] admits a satisfaction preserving
translation into ATLDPC

iR . ATLsc , BSIL and ATLES were originally introduced
for alternating transition systems and concurrent game structures. To assert the
semantical compatibility with ATLDPC

iR and, for the sake of brevity, we spell
out their semantics on interpreted systems. Unlike ATLDPC

iR , all these systems
have complete information semantics. However, complete information can be
straightforwardly modelled in interpreted systems by assigning the same local
state space L1 = . . . = LN = Le to each i ∈ Σe and restricting the reachable
states to be in the diagonal of L1 × . . .× LN × Le.

ATL with strategy contexts (ATLsc, [15]) has state formulas ϕ and path
formulas ψ. Their syntax can be given by the BNFs

ϕ ::= ⊥ | p | (ϕ⇒ ϕ) | 〈·Γ ·〉ψ | ·〉Γ 〈·ϕ and ψ ::= ¬ψ | ◦ϕ | (ϕUϕ)

Satisfaction has the form IS, ρ, r |= ϕ with r ∈ Rfin(IS) for state formulas and
IS, ρ, r |= ψ with r ∈ Rω(IS) for path formulas. In both cases Δ ⊆ Σ and
ρ ∈ S(Δ). The clauses about |= for the ATLsc-specific operators are as follows:

IS, ρ, r |= 〈·Γ ·〉ψ iff (∃s ∈ S(Γ))(∀r′ ∈ out(r, ρdomρ\Γ ∪ s))IS, ρdomρ\Γ ∪ s, r′ |= ϕ;

IS, ρ, r |= ·〉Γ 〈·ϕ iff IS, ρdomρ\Γ , r |= ϕ.

Thanks to the presence of strategy contexts and the possibility to combine 〈·.·〉
with ¬ in ATLsc , ATLsc and ATL∗

sc , where path formulas can have arbitrary
combinations of boolean connectives, have the same expressive power.

The translation tΔ below, maps from ATLsc state formulas to ATLDPC
iR for-

mulas. The auxiliary parameter Δ ⊆ Σ is the domain of the reference context.

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 83

For the sake of brevity (·.·) stands for either [·.·] or 〈·.·〉 in the translation clauses.
The meaning of ((.)) is similar, wrt 〈〈.|.〉〉.

tΔ(⊥) � ⊥, tΔ(p) � p, tΔ(ϕ1 ⇒ ϕ2) � tΔ(ϕ1)⇒ tΔ(ϕ2)
tΔ(〈·Γ ·〉¬ψ) � ¬tΔ([·Γ ·]ψ), tΔ([·Γ ·]¬ψ) � ¬tΔ(〈·Γ ·〉ψ)
tΔ((·Γ ·) ◦ ϕ) � ((Γ | Δ \ Γ)) ◦ tΓ∪Δ(ϕ)
tΔ((·Γ ·)(ϕ1Uϕ2)) � ((Γ | Δ \ Γ))(tΓ∪Δ(ϕ1)UtΓ∪Δ(ϕ2))
tΔ(·〉Γ 〈·ϕ | Δ) � tΔ\Γ (ϕ)

An induction on the construction of formulas shows that, for any ATLsc state
formula ϕ, IS, ρ, r |=ATLsc ϕ is equivalent to IS, s, r |=ATLDPC

iR
tdomρ(ϕ) where s

stands for any sequence of strategy vectors that is consistent with r and features
ρ as the strategy assignment to the members of domρ in its last member. The
translation can be inverted on the future subset of ATLDPC

iR :

t−1(〈〈Γ | Δ〉〉ϕ) � ·〉Σ \Δ〈· 〈·Γ ·〉t−1(ϕ).

Basic strategy-interaction logic (BSIL, [21]) language includes state for-
mulas ϕ, path formulas ψ and tree formulas θ:

ϕ ::= ⊥ | p | (ϕ⇒ ϕ) | 〈Γ 〉θ | 〈Γ 〉ψ
θ ::= ⊥ | (θ ⇒ θ) | 〈+Γ 〉θ | 〈+Γ 〉ψ
ψ ::= ◦ϕ | (ϕUϕ) | (ϕWϕ)

The modelling relation has the form IS, ρ, l |= ϕ for state and tree ϕ, and
IS, ρ, r |= ψ for path ψ, where l is a (global) state, r ∈ Rω(IS), and ρ is a
strategic context. The clauses for 〈Γ 〉 and 〈+Γ 〉 with a path argument formula
ψ are as follows:

IS, ρ, l |= 〈Γ 〉ψ iff (∃s ∈ S(Γ))(∀r ∈ out(l, s))IS, s, r |= ψ;
IS, ρ, l |= 〈+Γ 〉ψ iff (∃s ∈ S(Γ))(∀r ∈ out(l, ρdomρ\Γ ∪ s))IS, ρdomρ\Γ ∪ s, r |= ψ

The clauses for tree argument formulas are similar. BSIL admits a translation
into an appropriate ∗-extension of ATLDPC

iR .

ATL with explicit strategies (ATLES , [20]) extends the syntax of 〈〈.〉〉 by
subscripting it with mappings ρ of subsets of Σ to finite syntactical descriptions
of strategies called strategy terms. In our notation, ρ denote elements of S(domρ)
and the clause about |= for 〈〈Γ 〉〉ρ◦ is:

IS, r |= 〈〈Γ 〉〉ρ ◦ϕ iff (∃s ∈ S(Γ \domρ))(∀r′ ∈ out(r, s∪ρ))IS, r′[0..|r|+1] |= ϕ.

The clauses for 〈〈Γ 〉〉ρ(ϕUψ) and 〈〈Γ 〉〉ρ�ϕ follow the same pattern. Unlike ATLsc ,

BSIL and ATLDPC
iR , an ATLES formula may have several (freely occurring) fixed

strategy context terms for each player. There appears to be no obvious way to
reconcile this with the semantics of the other systems.

84 D.P. Guelev and C. Dima

4 A Proof System for Basic ATLDPC
iR

Basic ATLDPC
iR is the subset of ATLDPC

iR without 〈〈. | .〉〉(.U.) and [[. | .]](.U.):

ϕ, ψ ::= ⊥ | p | (ϕ⇒ ψ) | �ϕ | (ϕSψ) | DΓϕ | 〈〈Γ | Δ〉〉 ◦ ϕ

Along with all propositional tautologies and the rule Modus Ponens (MP), our
system includes the following axioms and rules:

The epistemic operator D.

(KD) DΓ (ϕ ⇒ ψ) ⇒ (DΓϕ ⇒ DΓψ) (TD) DΓψ ⇒ ψ

(4D) DΓψ ⇒ DΓDΓψ (5D) ¬DΓψ ⇒ DΓ¬DΓψ

(MonoD) DΓψ ⇒ DΓ∪Δψ (ND)
ϕ

DΓϕ

(INTD)
(DΓ\Δ(p ⇒ ϕ) ∧ DΔ(¬p ⇒ ϕ)) ⇒ ψ

DΓ∪Δϕ ⇒ ψ

The past modalities � and (.S.)

(K�) �(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ) (�⊥) ¬�⊥

(FP(.S.)) (ϕSψ) ⇔ ψ ∨ (ϕ ∧ �(ϕSψ)) (Fun�) �¬ϕ ⇒ ¬�ϕ

(Mono�)
ϕ ⇒ ψ

�ϕ ⇒ �ψ
(N�)

ϕ

�ϕ

General ATL axioms and rules

(〈〈. | .〉〉 ◦ ⊥) ¬〈〈Γ | Δ〉〉 ◦ ⊥

(〈〈. | .〉〉 ◦ �) 〈〈Γ | Δ〉〉 ◦ �

(S) 〈〈Γ ′ \ Γ ′′ | Δ′〉〉 ◦ ϕ ∧ 〈〈Γ ′′ | Δ′′〉〉 ◦ ψ ⇒ 〈〈Γ ′ ∪ Γ ′′ | Δ′ ∪Δ′′〉〉 ◦ (ϕ ∧ ψ)

(INT 〈〈.|.〉〉◦)
〈〈Γ ′ \ Γ ′′ | Δ′〉〉 ◦ (p ⇒ ϕ) ∧ 〈〈Γ ′′ | Δ′′〉〉 ◦ (¬p ⇒ ϕ) ⇒ ψ

〈〈Γ ′ ∪ Γ ′′ | Δ′ ∪Δ′′〉〉 ◦ ϕ ⇒ ψ

(Mono〈〈.|.〉〉◦)
ϕ ⇒ ψ

〈〈Γ | Δ〉〉 ◦ ϕ ⇒ 〈〈Γ | Δ〉〉 ◦ ψ

Committed versus neutral players (See Lemma 1 from [20].)

(WHW) 〈〈Γ | Ψ ∪Δ〉〉 ◦ ϕ ⇒ 〈〈Γ ∪ Ψ | Δ〉〉 ◦ ϕ
Interactions between �, (.S.), 〈〈. | .〉〉◦ and D.

(D◦) 〈〈Γ | Δ〉〉 ◦ ϕ⇔ DΓ∪Δ〈〈Γ | Δ〉〉 ◦ ϕ
〈〈Γ | Δ〉〉 ◦ ϕ⇔ 〈〈Γ | Δ〉〉 ◦ DΓ∪Δϕ

(PR) �DΓϕ⇒ DΓ�ϕ
(〈〈. | .〉〉 ◦ �) 〈〈Γ | Δ〉〉 ◦ (�ϕ ∧ ψ)⇔ DΓ∪Δϕ ∧ 〈〈Γ | Δ〉〉 ◦ ψ

�〈〈∅ | Δ〉〉 ◦ ϕ⇒ 〈〈∅ | Δ〉〉 ◦ �ϕ
(DI) DΓ I ∨ DΓ¬I

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 85

The rules INT 〈〈.|.〉〉◦ and INTD require p
∈ Var(ϕ)∪Var(ψ). Note that instances
of S are well-formed only if (Γ ′ ∪ Γ ′′) ∩ (Δ′ ∪Δ′′) = ∅.

5 Completeness of the Proof System

We fix the vocabulary AP for the rest of this section and denote the set of all the
basic ATLDPC

iR formulas built using variables from AP by L. We write Φ MP ϕ
for the derivability of ϕ from the premises Φ, the theorems of ATLDPC

iR andMP
as the only proof rule.

Auxiliary Propositional Variables and Formulas. Given Γ ⊆ Σ and i ∈ Σ,
we write Γ<i for the set Γ ∩ {1, . . . , i − 1}. Given the formulas DΓψ and 〈〈Γ |
Δ〉〉◦ψ, we introduce the auxiliary variables qi,DΓψ, i ∈ Γ<maxΓ , and qi,〈〈Γ |Δ〉〉◦ψ,
i ∈ (Γ ∪Δ)<max(Γ∪Δ) and use them to construct the formulas

pi,DΓ ψ � qi,DΓ ψ ∧
∧

j∈Γ<i

¬qj,DΓ ψ, i ∈ Γ<maxΓ , and pmaxΓ,DΓ ψ �
∧

j∈Γ<maxΓ

¬qj,DΓ ψ.

Obviously these formulas satisfy
∨
i∈Γ

pi,DΓψ and ¬(pi,DΓψ ∧ pj,DΓψ) for i
= j.

We put pmaxΓ,DΓψ � 	 in case |Γ ∪ Δ| = 1. We use pi,DΓψ to construct the
formulas

Di,Γψ � Di(pi,DΓψ ⇒ ψ), i ∈ Γ.
The formulas pi,〈〈Γ |Δ〉〉◦ψ, i ∈ Γ∪Δ, are written similarly in terms of the variables

qi,〈〈Γ |Δ〉〉◦ψ, i ∈ (Γ ∪Δ)<max(Γ∪Δ). We use pi,〈〈Γ |Δ〉〉◦ψ to construct the formulas

〈〈i, Γ | Δ〉〉 ◦ ψ �
{
〈〈i | ∅〉〉 ◦ (pi,〈〈Γ |Δ〉〉◦ψ ⇒ ψ), for i ∈ Γ ;
〈〈∅ | i〉〉 ◦ (pi,〈〈Γ |Δ〉〉◦ψ ⇒ ψ), for i ∈ Δ.

Given a set of formulas x written in AP , we write x for the set

x ∪ {Di,Γψ : i ∈ Γ,DΓψ ∈ x} ∪ {〈〈i, Γ | Δ〉〉 ◦ ψ : 〈〈Γ | Δ〉〉 ◦ ψ ∈ x, i ∈ Γ ∪Δ}.

Lemma 1. Let x be a consistent set of formulas written in AP . Then x is
consistent too.

The proof of this lemma is similar to that of Lemma 12 from [9] and involves
the rules INTD and INT 〈〈.|.〉〉◦.

Lemma 2 (customized Lindenbaum lemma). Let ≺ be a well-ordering of
L and let x be a consistent subset of L. Then there exists a consistent set x′ ⊇ x
which is maximal in L and is such that for any initial interval Φ ⊂ L of 〈L,≺〉
the consistency of x ∪ Φ entails Φ ⊆ x′.
Proof. We construct the ascending (transfinite) sequence xϕ, ϕ ∈ L, of consistent
subsets of L indexed by the elements of L by induction on the well-ordering ≺.
Let ϕ0 be the least element of L. Then xϕ0 is x ∪ {ϕ0} in case x ∪ {ϕ0} is
consistent; otherwise it is just x. Similarly, for all non-limit ϕ, given that ϕ′ is
the successor of ϕ in ≺, xϕ′ is xϕ ∪ {ϕ′} in case xϕ ∪ {ϕ′} is consistent and xϕ
otherwise. For limit ϕ, xϕ =

⋃
ψ≺ϕ

ϕψ. A direct check shows that x′ =
⋃

ϕ∈L

has

the desired property.

86 D.P. Guelev and C. Dima

In the sequel, given x and a well-ordering a of L, we denote a fixed maximal
consistent set (MCS) with the above property by x+ a.

Next we build a interpreted system IS = 〈〈Li : i ∈ Σe〉, I, 〈Act i ∈ Σe〉, t, V 〉
for basic ATLDPC

iR which is canonical in the sense adopted in modal logic.

Definition 11 (global states, local states). Let W to be the set of all the
maximal consistent sets of formulas in the vocabulary AP . Given w ∈ W and
Γ ⊆ Σ, we put

DΓ (w) = {ϕ : DΓϕ ∈ w}, Li = {D{i}(w) : w ∈W} for i ∈ Σ, and Le =W.

Given w ∈ W , we write lw for the state 〈D{1}(w), . . . , D{N}(w), w〉. Below it
becomes clear that all reachable states in IS have this form. We work with the
MCS w instead of the respective tuples lw wherever this is more convenient.
Note that the environment component of lw is w itself.

Definition 12 (valuation and initial states). We put V (w, p)↔ p ∈ w and
I = {lw : w ∈W, I ∈ w}.

Definition 13 (indiscernibility of states in terms of MCS). Given Γ ⊆
Σe, two states w, v ∈W are Γ -similar, written w ∼Γ v, if DΓ (w) = DΓ (v).

The following lemma shows that w ∼Γ v is equivalent to lw ∼Γ lv in the sense
of Definition 3.

Lemma 3 (Γ -similarity in terms of Γ ’s distributed knowledge). Let
w, v ∈W , Γ ⊆ Σ. Then w ∼Γ v iff D{i}(w) = D{i}(v) for all i ∈ Γ .

Proof. (←): Let w ∼Γ v and DΓϕ ∈ DΓ (w). Then Di,Γϕ ∈ w for every i ∈ Γ .
Then, by 4D and MonoD, DΓDi,Γϕ ∈ v for every i ∈ Γ too. Now S5 reasoning
and

∨
i∈Γ

pi,DΓϕ entail
∧
i∈Γ

Di,Γ ⇒ DΓϕ. Hence DΓϕ ∈ DΓ (v).

(→): Let Diϕ ∈ w. Then, by S5 reasoning, w MP DΓDiϕ, whence, by DΓ (w) =
DΓ (v), v MP DΓDiϕ and, finally Diϕ ∈ v. Hence D{i}(w) ⊆ D{i}(v).

The symmetrical inclusions are proved similarly.

Definition 14 (actions). An action for player i ∈ Σ is either the symbol d or
a tuple of the form 〈Φ, Γ,Δ〉 such that Γ,Δ ⊆ Σ are disjoint, i ∈ Γ , and Φ is a
consistent set of formulas. An environment action is a well-ordering of L.

Player action 〈Φ, Γ,Δ〉 is represents the player’s contribution to achieving all
the objectives from Φ simultaneously as a member of Γ , provided that Δ act as
described in the context. Action d indicates choosing to follow the strategy from
the context. Allowing infinite sets Φ of objectives in actions is necessary because
MCS may contain infinitely many formulas of the form 〈〈∅ | Δ〉〉 ◦ ϕ.

Definition 15 (the past of a state). Given a w ∈ W , we write Θw for the
set {�θ : θ ∈ w}.

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 87

The formulas from Θw hold at states which can be reached from lw in one step.
Environment actions complement the construction of successor states. Let x
consist of the formulas to be satisfied due to the player actions performed at
state lw. Then environment action ae comlements x∪Θw to an MCS description
of the successor state (x∪Θw)+ae. Lemma 2 entails that any MCS x′ ⊇ x∪Θw

has the form (x ∪Θw) + ae for some appropriate ae.

Definition 16 (effectiveness of coalitions). Let a ∈ ActΣe and w ∈W . We
write Δa for the set {i ∈ Σ : ai = d}. Coalition Γ ⊆ Σ is effective in a wrt w, if

(1) Γ ⊆ Σ \Δa, Δ ⊆ Δa;
assuming that ai = 〈Φi, Γi, Δi〉, i ∈ Γ ,

(2) Γ = Γi for all i ∈ Γ ;
(3) 〈〈Γi | Δi〉〉 ◦

∧
Φ′ ∈ w for all finite Φ′ ⊆ Φi;

(4) Δi = Δj for all i, j ∈ Γ .

Coalition Γ is effective in state w, iff its objectives are achievable in w. Different
coalitions which are effective in the same state cannot overlap.

Definition 17 (aw). Let the coalitions which are effective in a ∈ ActΣe wrt
w ∈ W be Γ1, . . . , Γk. Let Υ = Γ1 ∪ . . . ∪ Γk. We define aw ∈ ActΣe by the
clause

aw,i =

⎧⎪⎪⎨
⎪⎪⎩

ae, if i = e;
〈Φi, Γi, Δi〉, if i ∈ Υ ;
〈{ψ : 〈〈∅ | i〉〉 ◦ ψ ∈ w}, {i}, ∅〉, if i ∈ Δa;
〈∅, {i}, ∅〉, otherwise.

The vector of actions aw is a revision of a according to the plausibility of the
actions from a in w. In aw, players i who participate in effective coalitions
are described as acting to achieve the common objective of their coalitions;
players who follow their respective strategies from the context are described as
acting to achieve whatever consequences these actions have according to w, and
players who neither participate in effective coalitions, nor follow the context
strategies, are described as acting in singleton coalitions {i} to achieve nothing.
Consequently, all the coalitions in aw are effective wrt w:

Lemma 4 (effectiveness of coalitions in aw). Assuming the notation from
Definition 17, if i ∈ Σ and aw,i = 〈Φ, Γ,Δ〉, then 〈〈Γ | Δ〉〉 ◦

∧
Φ′ ∈ w for all

finite Φ′ ⊂ Φ.

Proof. The lemma follows immediately for i ∈ Υ and i ∈ Σ \ (Υ ∪Δa). Players
i ∈ Δa appear in the singleton coalitions {i} in aw, and we have 〈〈∅ | i〉〉◦

∧
Φ′ ∈ w

for all finite Φ′ ⊂ Φ. By Axiom WHW this entails 〈〈i | ∅〉〉 ◦
∧
Φ′ ∈ w.

As it becomes clear below, a and aw cause the same transitions from w. The no-
tation aw is introduced to avoid lengthy explanations about treating the various
sorts of actions separately.

Definition 18 (transition function). Let w ∈ W , a ∈ ActΣe and aw =

〈〈Φi, Γi, Δi〉 : i ∈ Σ〉 ∪ 〈ae〉. Then t(lw, a) = lv where v =

(⋃
i∈Σ

Φi ∪Θw

)
+ ae,

88 D.P. Guelev and C. Dima

i.e., v is the extension of the set of all the objectives which can be simultaneously
achieved by the coalitions which are effective in a wrt w and the formulas which
describe lw’s past, to an MCS by ae, as in Lemma 2.

The definition of t above relies on the fact that
⋃
i∈Σ

Φi ∪ Θw is consistent. To

realise that, assume the contrary. Then there exist some finite Φ′ ⊆
⋃
i∈Σ

Φi and

Θ′ ⊂ w such that
∧
Φ′ ⇒ �¬

∧
Θ′. By the monotonicity of 〈〈Σ | ∅〉〉◦ and

Axiom 〈〈. | .〉〉 ◦ �, this entails 〈〈Σ | ∅〉〉 ◦
∧
Φ′ ⇒ DΣ¬

∧
Θ′. By Axioms S

and WHW ,
∧
i∈Σ

〈〈Γi | Δi〉〉 ◦
∧
(Φi ∩ Φ′) ⇒ 〈〈Σ | ∅〉〉 ◦

∧
Φ′. Hence

∧
i∈Σ

〈〈Γi |

Δi〉〉 ◦
∧
(Φi ∩Φ′)⇒ DΣ¬

∧
Θ′, which is a contradiction because Θ′ ⊂ w and, by

Lemma 4, 〈〈Γi | Δi〉〉 ◦
∧
(Φi ∩Φ′) ∈ w for all i ∈ Σ. We define t only on states of

the form lw. The set of these states contains I and is closed under t. Hence the
definition of t on other states is irrelevant.

Definitions 11, 12, 14 and 18 give a complete description of the interpreted
system IS. Below we prove that if r ∈ Rfin(IS) and s ∈ S(Σe)

n+1 is consistent
with s, then, for any ϕ ∈ L, IS, s, r |= ϕ iff ϕ ∈ w where lw is the last state of r.

Definition 19 (extracting strategic context from MCS). Given a w ∈
R0(IS), we define aw ∈ ActΣ by putting aw,i = 〈{ϕ : 〈〈∅|i〉〉 ◦ ϕ ∈ w}, {i}, ∅〉.
We define the vector of strategies sIS ∈ S(Σ) by putting, given an arbitrary
r = w0a0 . . . a|r|−1w|r| ∈ Rfin(IS), sIS(r) = aw|r| .

The strategies sIS are built according to the working of the transition func-
tion along runs in which the players act as described in the context. They are
memoryless, i.e., determined by the last state of the argument run. Note that
we extract strategic context from w, which contains the explicit descriptions
〈〈i, Γ | Δ〉〉 ◦ ψ of the contribution of individual coalition members i ∈ Γ to the
achievement of goals of their respective coalitions Γ . According to our definition,
local runs are sequences of the form

ri = D{i}(w0)a0iD{i}(w1)a1i . . . a
k−1
i D{i}(wk)

To realise that the strategies sIS,i are determined from the local run of player
i, note that 〈〈∅|{i}〉〉 ◦ ϕ ∈ w is equivalent to 〈〈∅|{i}〉〉 ◦ ϕ ∈ v for v such that
D{i}(v) = D{i}(w) due to the Axioms D◦.

Definition 20 (consistency between runs and strategy vector
sequences). Let n < ω. Run r = w0a0 . . . an−1wn ∈ Rn(IS) and strategy
vector sequence s = s0, . . . , sn ∈ (S(Σe))

n+1 are consistent, if s is consistent (in
the sense of Definition 8) and ak = sn(r[0..k]), k = 0, . . . , n− 1.

Note that the restrictions on sk which follow from the consistency between r and
s for k < n are implied by the consistency of s as a sequence of strategy vectors.

The following lemma states that if w ∈W and DΓ (w) is consistent with some
arbitrary formula ϕ, then indeed DΓ (w) MP PΓϕ.

Lemma 5. Let Γ ⊆ Σ, w ∈ W , ϕ ∈ L and let w be consistent with ϕ. Then
DΓ (w) MP PΓϕ.

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 89

Proof. Since w is maximal consistent, either PΓϕ ∈ w or DΓ¬ϕ ∈ w. The latter
is impossible as it would entail DΓ (w) MP ¬ϕ. By S5 reasoning, PΓϕ ∈ w
entails DΓPΓϕ ∈ w. The latter formula appears in DΓ (w) as well. Hence, by S5
reasoning again, DΓ (w) MP PΓϕ.

Lemma 6. Let w, v ∈ W , Γ ⊆ Σ and DΓ (w) ⊆ DΓ (v). Then DΓ (w) = DΓ (v).

Proof. Let ϕ ∈ L be such that DΓϕ
∈ w. Then DΓPΓ¬ϕ ∈ w by Lemma 5 and
S5 reasoning. By DΓ (w) ⊆ DΓ (v), this entails PΓ¬ϕ ∈ v. Hence DΓϕ
∈ v.

The following lemmata are the parts of the inductive proof of the Truth Lemma
below (Theorem 1) about the various ATLDPC

iR modalities.

Lemma 7 (PΓ). Let n < ω, r = w0a0 . . . an−1wn ∈ Rn(IS), let s = s0, . . . , sn ∈
(S(Σe))

n+1 be consistent with r. Let Φ be a set of formulas such that PΓ

∧
Φ′ ∈

wn for all finite Φ′ ⊆ Φ. Then there exist an r′ = v0b0 . . . bn−1vn ∈ Rfin(IS)
and a sequence s′ = s′0, . . . , s′n ∈ (S(Σe))

n+1 such that s′ is consistent with r′,
r′ ∼Γ r, s

′ ∼Γ s, and Φ ⊆ vn.

Proof. Induction on n. If r ∈ R0(IS), then I ∈ w0 and, by S5 reasoning and
DI, PΓ (I ∧

∧
Φ′) ∈ w0 for all finite Φ′ ⊆ Φ. By S5 reasoning this entails that

Φ ∪ {I} ∪ {DΓψ : DΓψ ∈ w0} is consistent. Now Lemma 6 entails that we can
choose v0 to be any MCS which contains the latter set and put s′0 = sIS .

Next we prove the lemma for |r| = n+1 assuming that it holds for |r| = n. Let
Θ = {θ : DΓ (w

n+1) ∪ Φ MP �θ}. Assume that DΓ (w
n) ∪Θ is inconsistent for

the sake of contradiction. Then there exist some finite D′ ⊂ DΓ (w
n) and Θ′ ⊂ Θ

such that DΓ�
∧
D′ ⇒ �¬

∧
Θ′. By Axiom PR, DΓ�

∧
D′ ∈ DΓ (w

n+1).
Hence ¬

∧
Θ′ ∈ Θ, which entails that DΓ (w

n+1)∪Φ is inconsistent. This means
that there exists a finite Φ′ ⊆ Φ such that DΓ (w

n+1) MP DΓ¬
∧
Φ′, which is

a contradiction. Hence DΓ (w
n) ∪ Θ is consistent, and consequently, because of

the closedness of Θ under conjunction, {PΓ

∧
Θ′ : Θ′ ⊂fin Θ} ⊂ wn.

By the inductive hypothesis, there exist an r′′ = v0b0 . . . bn−1vn ∈ Rfin(IS)
and a sequence s′′ = s′′0, . . . , s′′n ∈ (S(Σe))

n+1 such that s′′ is consistent with
r′′, r′′ ∼Γ r[0..n], s′′ ∼Γ s[0..n], and Θ ⊆ vn. Next we define s′ns′n+1 ∈ S(Σe)
so that s′ = s′′[0..n−1] ·s′n, s′n+1 is consistent with r′ = r′′ bn vn+1 ∈ Rn+1(IS)
where bn = s′n(r′′), vn+1 = t(vn, bn), s′ ∼Γ s, DΓ (v

n+1) = DΓ (w
n+1) and

Φ ⊆ vn+1. Given g ∈ Rfin(IS), we put

s′i
n(g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s′i
n−1(g), if |g| < n, for all i ∈ Σe,

sni (g) if |g| = n, and i ∈ Γ,
〈i, ∅, {i}, ∅〉 if |g| = n, and i ∈ Σ \ Γ,
any well-ordering of L in which
DΓ (w

n+1) ∪ Φ forms an initial interval, if |g| = n, and i = e,
sIS,i(g), if |g| ≥ n.

For s′n+1 we put s′n+1(g) =

{
s′′n(g), if |g| < n+ 1,
sIS(g), if |g| ≥ n+ 1.

90 D.P. Guelev and C. Dima

By construction, s′ is consistent (as a sequence of strategy vectors), s′ ∼Γ s,
and s′ is consistent with r′′. We need to prove that DΓ (v

n+1) = DΓ (w
n+1) and

Φ ⊆ vn+1. Note that, by S5-reasoning, DΓ (w
n+1) ⊂ vn+1n entails DΓ (w

n+1) =
DΓ (v

n+1). This is so, because wn+1 is a MCS, whence, if DΓψ ∈ vn+1 \ wn+1,
then, DΓ¬DΓψ ∈ wn+1 follows by negative introspection from ¬DΓψ ∈ wn+1.
The latter entails DΓ¬DΓψ ∈ vn+1, which, by T, entails ¬DΓψ ∈ vn+1, and
this would contradict the consistency of vn+1. Hence we only need to prove that
Φ ⊆ vn+1. By the definition of the transition function t, this would follow from
the consistency of

⋃
i∈Γ

Φi ∪ {�θ : θ ∈ vn} ∪DΓ (w
n+1) ∪ Φ where Φi are the sets

of formulas occurring in b
n

vn,Γ . This boils down to the consistency of {�θ : θ ∈
vn} ∪ DΓ (w

n+1) ∪ Φ, because vn ∼Γ wn entails that an has the same effective
Γi ⊆ Γ wrt w as bn wrt vn, and therefore Φi, i ∈ Γ , are the same in anwn,Γ .

Hence, by the definition of wn+1 = t(wn, an) and D◦, ψ ∈
⋃
i∈Γ

Φi is equivalent

to DΓψ ∈ DΓ (w
n+1). Now let us assume that {�θ : θ ∈ vn} ∪DΓ (w

n+1) ∪ Φ is
inconsistent for the sake of contradiction. Then there exist some finitely many
θ1, . . . , θk ∈ vn such that DΓ (w

n+1)∪Φ MP ◦¬(θ1∧ . . .∧θk). This is impossible
by the choice of vn to be a superset of Θ = {θ : DΓ (w

n+1) ∪ Φ MP �θ}.

Lemma 8 (DΓ). Let n < ω, r, r′ ∈ Rn(IS). Let r = w0a0 . . . an−1wn and
r′ = v0b0 . . . bn−1vn. Then r′ ∼Γ r implies ϕ ∈ vn.

Proof. By the definition of r′ ∼Γ r, DΓϕ ∈ DΓ (w
n) = DΓ (v

n) ⊆ vn, whence
ϕ ∈ vn follows by TD.

Lemma 9 (〈〈. | .〉〉◦). Let w ∈ W , Ψ ⊂ L and 〈〈Γ | Δ〉〉 ◦
∧
Ψ ′ ∈ w for all

finite Ψ ′ ⊆ Ψ . Let a′Γ = 〈〈{pi,〈〈Γ |Δ〉〉◦Ψ ′ ⇒
∧
Ψ ′ : Ψ ′ ⊆fin Ψ}, {i}, ∅〉 : i ∈ Γ 〉

Then Ψ ⊆ t(w, a′Γ ∪ aw,Δ ∪ a′′Σe\(Γ∪Δ)), where aw,Δ is the restriction of aw as

introduced in Definition 19, for all a′′Σe\(Γ∪Δ) ∈ ActΣe\(Γ∪Δ).

Proof. Obviously Γ is effective in a′Γ ∪ aw,Δ ∪ a′′Σ\(Γ∪Δ) wrt w.

Lemma 10 ([[. | .]]◦). Let n < ω, r = w0a0 . . . an−1wn ∈ Rn(IS), Γ,Δ ⊆ Σ,
Γ ∩Δ = ∅. Let s = s0, . . . , sn ∈ (S(Σe))

n+1 be consistent with r. Let gΓ ∈ ActΓ
be such that ψ ∈ t(vn, gΓ ∪ s′n(vn)Δ ∪ g′Σe\(Γ∪Δ)) for all r′ = v0b0 . . . bn−1vn ∈
Rn(IS) such that r′ ∼Γ∪Δ r, all s′ ∈ (S(Σe))

n+1 which are consistent with r′ and
satisfy s′ ∼Γ∪Δ s, and all g′Σe\(Γ∪Δ) ∈ ActΣe\(Γ∪Δ). Then 〈〈Γ | Δ〉〉 ◦ ψ ∈ wn.

Proof. Consider an r′ as in the lemma. Let g′i = 〈∅, {i}, ∅〉 for i ∈ Σ\(Γ ∪Δ), Let
a = gΓ ∪ s′n(vn)Δ ∪ g′Σ\(Γ∪Δ) ∪ g′e. Let Φ be the union of all the sets of formulas
in awn , i.e., the actions of the coalitions which are effective in a wrt wn and,
consequently, wrt any vn which is Γ ∪Δ-similar to wn. Then, by the definition
of t, t(vn, a) = (Φ∪Θvn) + g′e. Assume that the least element of g′e is ¬ψ. Then,
since ψ ∈ t(vn, a) and by the construction of (Φ∪Θvn)+ g′e, Φ∪Θvn MP ψ. By
compactness, there exists a finite Θ′

vn ⊂ Θvn such that Φ MP

∧
Θvn ⇒ ψ. Let

Θ′
vn = {�θ1, . . . ,�θk}. Then

∧
Θ′

vn is equivalent to �(θ1 ∧ . . . ∧ θk). The latter

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 91

formula is in Θvn . Hence, for every vn which is the last state of an r′ as described
in the lemma, there exists a ξ ∈ L such that �ξ ∈ Θn

v and Φ MP �ξ ⇒ ψ. Let

Ξn = {ξ ∈ L : Φ MP �ξ ⇒ ψ, �ξ ∈ Θvn for some vn ∈W such that
there exists an r′ ∈ R(IS), r′ ∼Γ∪Δ r with vn as its last state}.

A direct check shows that Ξn is closed under disjunction. Assume that {¬ξ : ξ ∈
Ξn}∪DΓ∪Δ(wn) is consistent for the sake of contradiction. Then, by Lemma 5,
DΓ∪Δ(w

n) MP PΓ∪Δ¬ξ for every ξ ∈ Ξn.
Since Ξn is closed under disjunction, we can conclude that DΓ∪Δ(wn) MP

PΓ∪Δ

∧
ξ∈Ξn′

¬ξ for any finite Ξn′ ⊂ Ξn. By Lemma 7, this entails that there

exist an r′ ∼Γ∪Δ r and an s′ ∼Γ∪Δ s such that s′ is consistent with r′ and
{¬ξ : ξ ∈ Ξn} ⊆ vn where vn is the last state of r′. This contradicts the
consistency of vn since, as we established above, for every vn with the specified
properties, there exists a ξ ∈ Ξn such that ξ ∈ vn as well. Hence {¬ξ : ξ ∈
Ξn′} ∪DΓ∪Δ(wn) is inconsistent. By compactness, this entails that there exists
DΓ∪Δ(w

n) MP

∨
Ξn′ for some finite Ξn′ ⊂ Ξn. Now, having in mind that

Φ MP �ξ ⇒ ψ for each of the ξs in Ξn′, we can conclude that Φ ∪ {�δ : δ ∈
DΓ∪Δ(w

n)} MP ψ. Hence there exist some finite Φ′ ⊆ Φ and D′ ⊂ DΓ∪Δ(w
n)

such that
∧
Φ′ ∧ �

∧
D′ ⇒ ψ. By the monotonicity of 〈〈Γ | Δ〉〉◦, 〈〈Γ |

Δ〉〉◦(
∧
Φ′∧�

∧
D′)⇒ 〈〈Γ | Δ〉〉◦ψ. Now, by Axiom 〈〈. | .〉〉◦�, the latter entails

 〈〈Γ | Δ〉〉◦ (
∧
Φ′)∧DΓ∪Δ

∧
D′ ⇒ 〈〈Γ | Δ〉〉◦ψ. For any vn as in the lemma, the

definition of Φ entails 〈〈Γ | Δ〉〉 ◦ (
∧
Φ′) ∈ vn, and D′ ⊂ DΓ∪Δ(w

n) = DΓ∪Δ(vn)
entails

∧
D′ ∈ vn. Hence, finally, 〈〈Γ | Δ〉〉 ◦ ψ ∈ vn as well.

Lemma 11 (� and (.S.)). Let n, r ∈ Rn(IS) and s ∈ (S(Σe))
n+1 be as in

the previous lemmata. Then, ◦nI ∈ wn and, for any two formulas ϕ, ψ ∈ L,
�ϕ ∈ wn iff n > 0 and ϕ ∈ wn−1, and (ϕSψ) ∈ wn iff there exists a k ≤ n such
that ψ ∈ wk and ϕ ∈ wk+1, . . . , wn.

We omit the proof of this lemma as it contains nothing specific to ATLDPC
iR . We

only note that the fact ◦nI ∈ wn guarantees that the presence of (.S.) does not
affect the compactness of the system, despite that (.S.) is an iterative operator.

Theorem 1 (truth lemma). Let n < ω, r ∈ Rn(IS), r = w0a0 . . . an−1wn,
and let s ∈ S(Σe)

n+1 be consistent with r. Then IS, r |= ϕ iff ϕ ∈ wn.

Proof. Induction on the construction of ϕ. The cases of ϕ being ⊥, an atomic
proposition, or an implication, are trivial, and we skip them. For ϕ of the forms
DΓψ, 〈〈Γ | Δ〉〉 ◦ψ and �ψ and (ψSχ) the theorem follows from Lemmata 8 and
7, 9 and 10 and Lemma 11, respectively.

Corollary 1 (strong completeness for basic ATLDPC
iR). Let x be a consis-

tent subset of L and let I ∈ x. Then there exists an initial state l ∈ I and a
vector of strategies s ∈ S(Σe) such that IS, s, l |= ϕ for all ϕ ∈ x.

Proof. Let w be any MCS such that x ⊆ w. Then Theorem 1 entails that
IS, sIS , lw |= ϕ for all ϕ ∈ w.

92 D.P. Guelev and C. Dima

Concluding Remarks and Future Work

We have shown that extending the game-theoretic operator 〈〈.〉〉 of ATLDP
iR by a

second coalition parameter to denote players who act according to the strategic
context, we obtain a language for epistemic ATL with strategic contexts which
admits an axiom system that is a straightforward revision of the system for
ATLDP

iR from our work [9]. So far we have established the completeness of that
system for a subset of ATLDP

iR with strategy contexts which lacks the combina-
tions of 〈〈.〉〉 with the iterative future temporal operator (.U.) and its derivatives
� and �. Taking advantage of the compactness of this subset, we have obtained
a strong completeness theorem. We have established the semantical compatibil-
ity between our proposed system and the systems of ATL with strategy contexts
and complete information from the literature, especially [5,15]. We intend to
further investigate the axiomatizability of ATLDPC

iR , seeking to establish weak
completeness theorems and the decidability of validity of bigger subsets.

Akcnowledgements. Dimitar P. Guelev did part of the work on this paper
while visiting LACL, Université Paris Est-Créteil, in January 2012 and was sup-
ported by the EQINOCS research project ANR ANR 11 BS02 004 03 [4] and
Bulgarian National Science Fund Grant DID02/32/2009.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Strategic Commitment and Release in
Logics for Multi-Agent Systems (Extended Abstract). Technical report IfI-08-01,
TU Clausthal (May 2008); Ågotnes, T., Goranko, V., Jamroga, W.: Strategic Com-
mitment and Release in Logics for Multi-Agent Systems (Extended Abstract). In:
Bonanno, G., Löwe, B., van der Hoek, W. (eds.) Logic and the Foundations of
Game and Decision Theory. LNCS, vol. 6006, Springer, Heidelberg (2010)

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time Temporal Logic. In:
Proceedings of FCS 1997, pp. 100–109 (1997)

3. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 1–42 (2002)

4. Asarin, E.: EQINOCS Research Project ANR 11 BS02 004 03,
http://www.liafa.univ-paris-diderot.fr/~eqinocs/

5. Brihaye, T., Da Costa, A., Laroussinie, F., Markey, N.: ATL with Strategy Contexts
and Bounded Memory. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS,
vol. 5407, pp. 92–106. Springer, Heidelberg (2008)

6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Information and
Computation 208(6), 677–693 (2010)

7. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press (1995)

8. Goranko, V., van Drimmelen, G.: Decidability and Complete Axiomatization of the
Alternating-time Temporal Logic. Theoretical Computer Science 353(1-3), 93–117
(2006)

9. Guelev, D.P., Dima, C., Enea, C.: An Alternating-time Temporal Logic with
Knowledge, Perfect Recall and Past: Axiomatisation and Model-checking. Jour-
nal of Applied Non-Classical Logics 21(1), 93–131 (2011)

http://www.liafa.univ-paris-diderot.fr/~eqinocs/

Epistemic ATL with Perfect Recall, Past and Strategy Contexts 93

10. Halpern, J., van der Meyden, R., Vardi, M.: Complete Axiomatizations for Rea-
soning about Knowledge and Time. SIAM Journal on Computing 33(3), 674–703
(2004)

11. Jamroga, W., van der Hoek, W.: Agents That Know How to Play. Fundamenta
Informaticae 63(2-3), 185–219 (2004)

12. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and com-
pleteness. Logic Journal of the IGPL 8(1), 55–85 (2000)

13. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in
multi-agent systems. In: Proceedings of AAMAS 2006, pp. 161–168. ACM Press
(2006)

14. Lomuscio, A., Raimondi, F.: The Complexity of Model Checking Concurrent Pro-
grams Against CTLK Specifications. In: Baldoni, M., Endriss, U. (eds.) DALT
2006. LNCS (LNAI), vol. 4327, pp. 29–42. Springer, Heidelberg (2006)

15. Lopes, A.D.C., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expres-
siveness and model checking. In: FSTTCS. LIPIcs, vol. 8, pp. 120–132 (2010)

16. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002)

17. Schobbens, P.Y.: Alternating-time logic with imperfect recall. ENTCS 85(2), 82–93
(2004); Proceedings of LCMAS 2003

18. van der Hoek, W., Wooldridge, M.: Cooperation, Knowledge and Time:
Alternating-time Temporal Epistemic Logic and Its Applications. Studia Logica 75,
125–157 (2003)

19. van der Meyden, R., Wong, K.-S.: Complete Axiomatizations for Reasoning about
Knowledge and Branching Time. Studia Logica 75(1), 93–123 (2003)

20. Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time Temporal Logic
with Explicit Strategies. In: Samet, D. (ed.) TARK, pp. 269–278. ACM Press (2007)

21. Wang, F., Huang, C.-H., Yu, F.: A Temporal Logic for the Interaction of Strategies.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS,
vol. 6901, pp. 466–481. Springer, Heidelberg (2011)

Using Evolution Graphs for Describing

Topology-Aware Prediction Models
in Large Clusters

Matei Popovici

POLITEHNICA University of Bucharest
Splaiul Independentei nr. 313, Bucharest, Romania, Postal Code 060042

matei.popovici@cs.pub.ro

Abstract. We present and formally investigate a modelling method
suitable for describing events and time-dependent properties and for per-
forming possibly complex reasoning tasks regarding the evolution of dy-
namic domains. Our proposal consists of a distinguished data structure
called evolution graph, and a logical language (LH) used for identifying
temporal patterns in evolution graphs. First, we define and study the
complexity of the model checking problem for our language. We then
investigate the relation between our language and the well-known Com-
putation Tree Logic (CTL), both in terms of complexity and expressive
power. Finally, we apply our method for solving a well-known problem
from High Performance Computing (HPC): the extraction of topology
information from event logs produced by supercomputers.

Keywords: temporal knowledge representation, temporal logic,
high-performance computing.

1 Introduction

The world of high performance computing (HPC) is preparing for the exas-
cale era, and according to recent studies [10,16], 20% or more of the computing
capacity in a large system is wasted due to failures and recoveries. An alter-
native approach to classical fault tolerance that might optimize this process is
failure avoidance, where the occurrence of a fault is predicted and preventive
measures are taken. For this, monitoring systems require a reliable prediction
method to give information on what will be generated by the system and at
what location. To the best of our knowledge, all other log analysis methods in
the literature [23,14,18,11,12] propose theoretical models and algorithms for de-
tecting, predicting or characterizing events, without studying the impact of their
methods on large-scale HPC systems such as Blue Gene.

In order to develop a sound and robust prediction system and to fully char-
acterize its performance, a suitable modelling method is required. The success
of such a method relies on: (i) the ability to describe events and time-dependent
properties of systems with possibly non-deterministic behaviour, and (ii) to per-
form complex reasoning tasks about the temporal relations between such events
and properties.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 94–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topology-Aware predictions in HPC Systems Using Evolution Graphs 95

In this paper, we introduce a new modelling method for reasoning about
time-dependent properties. Based on it, we extract the topology of large-scale
machines after investigating the log files generated by such systems. In our ap-
proach, a domain’s history is recorded by a distinguished structure called evolu-
tion graph. It consists of: (i) action nodes which model instantaneous stimuli
that occur at fixed moments of time, and affect the current state of the domain,
(ii) hypernodes which capture (discrete) moments of time. The set of hypern-
odes can be seen as a partitioning of the set of action nodes such that all action
nodes belonging to the same hypernode are simultaneous; (iii) quality edges
which model time-dependent properties which span action nodes. For a given
quality edge q = (a, b), we interpret the action node a as the stimulus responsi-
ble for creating (or introducing) the quality q. Similarly, b is seen as the action
node that ceases (destroys) q.

Evolution graphs capture the dynamics of a given domain. In order to provide
with a domain-dependent semantics, action nodes and quality edges are labelled
with first-order predicates. For a more detailed description of evolution graphs,
as well an extended set of examples, we direct the reader to [20].

An example of an evolution graph, capturing the behaviour of (a small part
of) a HPC system, can be seen in Figure 1. For simplicity, we have omitted
labelling action nodes. Here, two nodes n and m sharing the same rack, expe-
rience network failures at different moments of time. This is modelled by the
qualities Net fail(n) and Net fail(m). In the time-slot when both these qualities
do not exist, a network communication binary quality describes the successful
communication between network nodes n and m.

HPC systems consist of a high number of nodes that are usually placed in a
hierarchical architecture. For example, in BlueGene systems, nodes are gathered
into midplanes and multiple midplanes form a rack. Certain errors in the system,
such as networking faults, affect multiple nodes depending on their relative po-
sition within the architecture. In another study [11], it has been observed that
propagation paths for different error types follow closely the way components
are connected in the system. For example if a fan breaks, all nodes sharing the
same rack will be affected. The topology of a system is usually not known in ad-
vance. This forces failure prediction algorithms to rely on heuristics for tracking
the locations of the failure’s effects in the system. In our experiments, we use
the logs generated by the Blue Gene/L system. This system is one of the few
large-scale machines that offer a detailed view of its topology. This information
is useful in having a better understanding of the prediction topologies we obtain
with our method. Also, the Blue Gene systems are widely used machines in HPC
and are representative for today’s large-scale systems. For more details on the
system-architecture see [1].

In this paper, we focus on the computational properties of the language LH,
used for reasoning about evolution graphs, and on the implementation of a topol-
ogy extraction system. In Section 2, we formally introduce evolution graphs, and
in Section 3 we describe the language LH and its semantics. In Section 4 we in-
troduce the CTL language, and use it for proving some complexity results as

96 M. Popovici

a1

a7

a1

a7

h1

a2

a3

a2

a3

h2

a5

a4

a5

a4

h3

a6

a8

a6

a8

h4

Net fail(n)

Net comm(n,m)

Net fail(m)

Sharing rack(n,m)

Fig. 1. A simple evolution graph

well as for gaining a better understanding on why LH is more suitable for topol-
ogy extraction. In Section 6 we further explore the relationship between LH and
temporal logics in general, as well as look at other similar approaches. Finally,
in Section 5, we use a fragment of LH for the implementation of a topology ex-
traction system for fault propagation in HPC large-scale systems, that optimizes
the prediction model presented in [2].

2 The Evolution Graph

Definition 1 (evolution graph). An evolution graph is defined as a structure
H = 〈H,A, T , E〉, where:

– H is a set of hypernodes, and A is a set of nodes;
– T : A→ H is an onto (surjective) function, sending each node to the hyper-

node it belongs to;
– E ⊆ A2 is a directed edge relation with the following restrictions: (i) for any
a ∈ A, there is at most one b ∈ A such that (a, b) ∈ E or (b, a) ∈ E. (i.e.
any node creates or destroys a unique edge) and (ii) (a, b) ∈ E =⇒ T (a)
=
T (b);

Let σ = {R1, . . . , Rn} be a vocabulary. The elements Ri are relation symbols
each having a certain arity designated by arity(Ri). In general, we require that
σ contains two types of relation symbols: quality labels and action labels
(σ = σQ ∪ σA).

Definition 2 (Label structure). A labeling structure is a σQ ∪ σA-structure
A = 〈I, RI

1, . . . , R
I
n〉, where:

– I is a set of individuals (the structure’s universe);
– for each Rk ∈ σQ and i ∈ RI

k, the pair 〈Rk, i〉 is a quality label;
– for each Rk ∈ σA and i ∈ RI

k, the pair 〈Rk, i〉 is an action label;

We designate a quality or an action label by RI
k(i), with Rk from the appropriate

vocabulary. We make a slight abuse of notation and use RI to designate the

Topology-Aware predictions in HPC Systems Using Evolution Graphs 97

appropriate set of quality or action labels, viewed as pairs 〈R, i〉, instead of a set
of tuples i.

A path in an evolution graph H is a finite sequence λ = a1, a2, . . . , an of
nodes from H such that, for any two consecutive nodes ai and ai+1, either of
the following is true: (i) E(ai, ai+1) (there is an edge between ai and ai+1) or
(ii) T (ai) = T (ai+1) (there exists a hypernode that contains both ai and ai+1).
Intuitively, each path is a temporally ordered sequence of events and properties.
An example can be seen in Fig. 1, where λ = a1, a2, a3, a4, a5, a6 is such a path.
An evolution graph H is cycle-free, if there is no pair of nodes a, b ∈ A, having a
path from a to b, and one from b to a i.e. H contains no cycles. In the following,
we discuss cycle-free evolution graphs only.

Definition 3 (labelled evolution graph). An A-labelled evolution graph is
a structure HA = 〈H,LA,LQ〉 consisting of a evolution graph and two total
labelling functions:

– LQ : E → ∪R∈σQR
I ; LQ maps each edge to a quality label;

– LA : A→ ∪R∈σAR
I maps each node to an action label;

We refer to labeled edges and nodes as quality edges and action nodes,
respectively.

3 The Language LH

LH is defined over a labelling structure A and expresses temporal relations be-
tween quality edges and action nodes from A-labelled evolution graphs. LH con-
tains two types of formulae: Q-formulae and A-formulae. The former evaluate
to quality edges, and the latter to action nodes. Each action node a and quality
edge (a, b) designates a moment of time T (a) and an interval [T (a), T (b)], re-
spectively. Given two quality edges q = (a, b), q′ = (a′, b′), and action nodes c, d
we introduce the following temporal operators, which abbreviate the traditional
interval relationships introduced by Allen [22].

– (before): q b q′ iff b occurs before a′;
– (just before): q jb q′ iff a occurs before a′ but b does not occur before a′;
– (starts same): q s q′ iff a coincides with a′;
– (ends same): q e q′ iff b coincides with b′;
– (meets): q m q′ iff b coincides with a′;
– (included): q i q′ iff a occurs after a′ and b occurs before b′;
– c & d iff c occurs before d;
– c ≡ d iff c and d share the same hypernode;
– (creates/created by): c cA q and q cQ c iff c = a;
– (destroys/destroyed by): c dA q and q dQ c iff c = b;

For instance q b q′ is true if q’s interval occurs before q′’s, and they do not
overlap. An example of this relation can be found in Fig. 1, between qualities
Net fail(n) and Net fail(m). q jb q′ is true if q’s interval occurs before q′’s and

98 M. Popovici

they overlap. We say q is just before q′. In the same figure Sharing rack(n,m)
occurs just before Net fail(m). s and e abbreviate starts at the same time
with and ends at the same time with, respectively. m abbreviates meets, thus
designating qualities that end at the same time other qualities start. i abbre-
viates inclusion. c and d refer to the creation and destruction of qualities,
respectively. The inverse relations are defined in a similar manner. Notice that
& is only a partial order over action nodes, since if, for instance, H contains dis-
connected components, one could say nothing about the temporal order between
elements from distinct components.

Let Vars be a set of variables, A be a labelling structure over vocabulary
σ = σQ ∪ σA, and HA be a A-labelled evolution graph. We designate by ∝ any
connective for qualities in CQ = { b , jb , s , e , m , i }, by � any connective
for actions in CA = {&,≡}.

Definition 4 (LH syntax). Let Vars be a set of variables, A be a σQ ∪ σA-
structure and HA be a A-labelled evolution graph. Also, let X ∈ {Q,A}, and
†Q ∈ CQ and †A ∈ CA.

The syntax of a X-formula is recursively defined with respect to A, as follows:

1. if R ∈ σX with arity(R) = n and x ∈ Varsn, then R(x) is an atomic
X-formula (or an atom).

2. if φ is a X-formula then (φ) is also a X-formula;
3. if φ, ψ are X-formulae then φ †X ψ and φ¬ †X ψ are also X-formulae. We

call †X a positive connective and ¬†X a negative/negated connective.
4. Let R ∈ σX , φ, ψ, ω be X-formulae and †X designate either a positive or

negated connective. If φ has any of the following forms: (i) φ = R(x), (ii)
φ = R(x) †X ψ or (iii) φ = (R(x) † ω) †X ψ, then it is R-compatible.
Moreover, if φ and ψ are both R-compatible, then φ ∧ ψ and φ ∨ ψ are X-
formulae, and R-compatible as well.

Negation in LH has a restricted use. For instance:

(a)Net fail(x) ¬b Net comm(x,y) (b)¬Net fail(x) (1)

the formula from Equation 1 (a) is well-formed, however Equation 1 (b) is not
well-formed. The intuition is the following: we are interested in identifying classes
of properties of a certain type (i.e. being labelled with a quality label of a distinct
relational symbol in σQ). For instance, Equation 1 (a) characterizes the set of
properties of the type Net fail, such that they do not occur before some qualities
of the type Net comm. If we choose to interpret ¬Net fail(x) as the complement
of the edge relation E from H, with respect to all edges labelled Net fail(i) (with
i ∈ I), then LH-formulae could characterize edges with arbitrary labels.

The restrictions for the usage of the traditional connectives ∧ and ∨ have the
same motivation as in the case of negation, i.e. to preserve property types.
LH formulae are evaluated over paths from labelled evolution graphs H. We

assume there is no prior information regarding the temporal order of hypern-
odes. In the absence of such information, a partial ordering of hypernodes can be

Topology-Aware predictions in HPC Systems Using Evolution Graphs 99

inferred only by inspecting sequences of quality edges. We lift this assumption in
Section 5, where we consider evolution graphs with temporally ordered hypern-
odes. The evaluation of LH-formulae is defined by the mappings ‖·‖QH : LH → 2E

and ‖ · ‖AH : LH → 2A. If φ is a Q or A formula, then ‖φ‖QH and ‖ψ‖AH are the
set of quality edges or action nodes satisfying φ and ψ, respectively. Each tem-
poral connective ∝∈ CQ requires the existence (or absence) of paths between
nodes belonging to the corresponding qualities. For instance, in Fig. 1, given
q = (a1, a2) and q

′ = (a5, a6), for q b q
′ to be true, there must be (at least) one

path between a2 and a5. Such a path exists: λ = a2, a3, a4, a5. Inclusion (i)
requires two paths. In the same figure (a3, a4) i (a7, a8) is true because there is
a path from a1 to a3, and one from a4 to a6. We further note that the temporal
ordering of hypernodes (e.g. h1, . . . h4) is not generally known in advance, but
can be deduced based on the existing quality edges (in our example, the Net fail
and Net comm quality edges).

Given two quality edges q, q′ and a temporal connective ∝, we write λ∝(q, q′)
to refer to the path conditions required by ∝ between q and q′. These are straight-
forward from the introduction of temporal operators from Section 3. We use a
similar notation (λ (a, a′)), for path conditions between actions.

Definition 5 (Semantics). The semantics of Q and A-formulae are defined
as follows. Let i be a set of individuals from the universe of a labelling structure
A, a, a′ denote action nodes, and q, q′ denote quality edges from a A-labelled
evolution graph HA. The tuple α and X ∈ {Q,A} are used in the following
way: whenever X = Q, α designates a quality edge, and whenever X = A, α
designates an action node. Finally, by φ[x\i], we refer to the formula obtained

from φ by replacing all variables from x with individuals from i.

1. ‖φ(x)‖XH =
⋃

i{α ∈ ‖φ[x\i]‖XH};
2. ‖R(i)‖XH = {α : LX(α) = R(i)};
3. ‖(φ) ∝ ψ‖QH = {q ∈ ‖φ‖QH : ∃q′ ∈ ‖ψ‖QH and λ∝(q, q′)}
4. ‖(φ) � ψ‖AH = {a ∈ ‖φ‖AH : ∃a′ ∈ ‖ψ‖AH and λ (a, a′)}
5. ‖φ ¬† ψ‖XH = ‖φ‖XH \ ‖φ † ψ‖XH;
6. ‖φ † (ψ)‖XH = ‖φ † ψ‖XH
7. ‖R(i) † ψ‖XH = ‖(R(i)) † ψ‖XH;
8. ‖φ ∨ ψ‖XH = ‖φ‖XH ∪ ‖ψ‖XH;
9. ‖φ ∧ ψ‖XH = ‖φ‖XH ∩ ‖ψ‖XH;

10. ‖φ cQ ψ‖QH = {(a, b) ∈ ‖φ‖QH : a ∈ ‖ψ‖AH}
11. ‖φ dQ ψ‖QH = {(a, b) ∈ ‖φ‖QH : b ∈ ‖ψ‖AH}
12. ‖φ cA ψ‖AH = {a ∈ ‖φ‖AH : ∃(a, b) ∈ ‖ψ‖QH}
13. ‖φ dA ψ‖AH = {b ∈ ‖φ‖AH : ∃(a, b) ∈ ‖ψ‖QH}

Rule 1 states that evaluating a formula with parameters reduces to the evaluation
of formulae obtained by all possible substitutions of variables from Vars with
individuals from the labelling structure universe, I. Notice that in rules 2 to 9
the evaluation order of formulae matters. The parentheses and negation enforce
the evaluation of the left-side formula. In the absence of parentheses, formulae

100 M. Popovici

evaluate from right to left. For instance, in the evolution graph from Fig. 1, let us
designate Q1 = Net fail(n), Q2 = Net comm(n,m) and Q3 = Net fail(m). Then,

we have that ‖(Q1 b Q2) m Q3‖QH = {(a, b)} while ‖Q1 b Q2 m Q3‖QH = ∅.
Also, negation should not be seen as interpreting inverse relations. Consider

the evolution graph from Fig. 1, but with the quality edge (a1, a2) removed.

Then, ‖Q3 ¬b Q1‖QH = {(a5, a6)}, whereas Q3 after Q1 would evaluate to the
empty set. The main difference is that negation requires the absence of a rela-
tion, whereas an inverse relation requires the presence of an opposite relation.

Definition 6 (Model checking). Let H be a A-labelled evolution graph, and
φ an X-formula in LH (X ∈ {Q,A}). We write H, α |=X φ iff α ∈ ‖φ‖XH. The
problem whether H, α |=X φ is the X-model checking problem for LH.

4 LH and Computation Tree Logic

The path conditions described in the semantics of LH can also be expressed in
the well-known temporal logic CTL (Computation Tree Logic). CTL is strictly
less expressive than LH, since it doesn’t allow first-order predicates. Neverthe-
less, the language L∗

H, obtained by restricting the labelling structure from LH
to propositional symbols, can be embedded into CTL, over a particular type
of labelled transition systems. This result has a twofold utility: (i) it provides
a means of comparing the efficiency of L∗

H and CTL, and (ii) it is useful for
obtaining complexity results for both L∗

H and the full LH.
In the following, we give a brief introduction to the syntax and semantics of

CTL. For a detailed description see [24].
Let P be a set of propositional symbols and L be a finite set of labels. Given

p ∈ P , a ∈ L, the language CTL consists of formulae generated by the following
grammar:

ϕ ::= p | ¬ϕ |E〈a〉ϕ |ϕ ∧ ϕ |E(ϕ U ϕ) (2)

The other traditional connectives are introduced as abbreviations. For instance:
ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), E〈a〉ϕ ≡ ¬E〈a〉¬ϕ.

Traditionally, CTL formulae are interpreted over Kripke structures. Here, we
shall use labelled transition systems (LTS) instead. For details on evaluating CTL
formulae over LTSs, see [8].

A LTS is a structure M = 〈S, (Ri)i∈L, π〉 here S is a set of states, each
Ri ⊆ S × S is an i-labelled transition relation, one for each label i ∈ L, and
π : S → 2P is an interpretation function associating for each state s a set
π(s) consisting of the propositional symbols that hold in s. The size of a LTS
M is the sum of the state-space and the number of transitions of each type:
|M| =

∑
s∈S |π(s)|+

∑
i∈L |Ri|.

A path in a LTS is a possibly infinite sequence θ = s1, s2, . . . sn, . . . of states
such that, for any si, si+1 there is some transition from si to si+1. We use θ[i]
to denote the i-th state in the sequence θ and θ[i,∞] to denote the subpath of
θ starting from i: θ[i]θ[i + 1] For a state s ∈ S in some LTS M, we write
ΘM(s) to designate the set of paths in M that start in s.

Topology-Aware predictions in HPC Systems Using Evolution Graphs 101

Given a LTS M = 〈S, (Ri)i∈L, π〉, a state s ∈ S, and an interpretation func-
tion π, the semantics for CTL is defined as follows:

– M, s |=CTL p iff q ∈ π(s);
– M, s |=CTL ¬ϕ iff M, s
 |=CTLϕ;
– M, s |=CTL ϕ2 ∧ ϕ2 iff M, s |=CTL ϕ1 and M, s |=CTL ϕ2

– M, s |=CTL E〈a〉ϕ iff there is a path θ ∈ ΘM(s) such that Ra(θ[0], θ[1]) and
M, θ[1] |=CTL ϕ;

– M, s |=CTL E(ϕ1 U ϕ2) iff there is a path θ ∈ ΘM(s) such thatM, θ[i] |=CTL

ϕ2, for some i ≥ 0 and M, θ[j] |=CTL ϕ1 for all j such that 0 ≤ j < i;

We also introduce some ad-hoc notations. Given a set of labels L:

– E〈L〉φ ≡
∨

i∈L E〈i〉φ;
– E(ϕ1 UL ϕ2) ≡ E((ϕ1 ∧ 〈L〉) U (ϕ1 ∧ 〈L〉ϕ2));

For instance E〈a, b〉p is true in those states s that have access to states s′ where
p is true, via either a or b-transitions, and (¬q) U{a,b} p is true if there is a path
consisting of either a or b transitions on which q is false in each state (at least)
until p becomes true.

Proposition 1 (CTL model checking [7]). Given a LTS M, a state s and
a CTL formula ϕ, checking whether M, s |=CTL ϕ is PTIME-complete.

4.1 The Language L∗
H and CTL

In this section, we describe a fragment of LH having as labels propositional
symbols only, and show that this fragment can be embedded in CTL. Let A∗ =
〈I, RI

1, . . . , R
I
n〉 be any labelling structure over a vocabulary with unary relation

symbols, where I = {i1, i2, . . . , in} and for each 1 ≤ k ≤ n we have RI
k = {ik}.

Under these restrictions, A∗ becomes nothing more than a set of propositional
symbols: A∗ = {pk ≡ RI

k(ik) : 1 ≤ k ≤ n}. Let L∗
H denote the subset of the

language LH, that is built over A∗, and whose formulae contain no variables.
Starting from an A∗-labelled evolution graph H we build a LTS MH in

the following way: (i) the set of labels is L = {h, c, d, c−1, d−1}, the set of
propositional symbols is P = A∗ (ii) for each action node a ∈ A and for
each quality edge q ∈ E, we build states sa and sq, respectively. The inter-
pretation function π is built as follows: if LQ(q) = pk, then pk ∈ π(sq) and if
LA(a) = pk, then pk ∈ π(sa). Thus, quality edges and action nodes are trans-
formed into states, and their labels become propositional symbols that hold in
these states. (iii) transitions are built in the following way: for any two simul-
taneous action nodes (T (a) = T (b)), we build a h-transition between the corre-
sponding states: Rh(sa, sb). By this construction simultaneous action nodes form
h-labelled cliques in MH. For any quality edge q = (a, b) ∈ E, we build
Rc(sa, sq), Rc−1(sq, sa), Rd(sq, sb) and Rd−1(sb, sq). Thus, c-labelled transitions
bind action states to the quality states they introduce, and d-labelled transitions
bind quality states to the action states that destroy them. c−1 and d−1-labelled
transitions make the inverse bindings. The entire construction of MH can be
done in deterministic polynomial time, with respect to the size of H.

102 M. Popovici

Definition 7 (Embedding L∗
H in CTL). Let φ, ψ be formulae in L∗

H. We
build equivalent CTL formulae, by applying a transformation procedure T : L∗

H →
CTL, recursively defined as follows:

1. for pk ∈ L∗
H, T(pk) = pk;

2. T(φ b ψ) = T(φ) ∧ E(U{c,h,d} T(ψ));
3. T(φ s ψ) = T(φ) ∧ E〈c−1〉E〈h〉E〈c〉T(ψ);
4. T(φ cQ ψ) = T(φ) ∧ E〈c〉T(ψ);
5. T(φ¬ † ψ) = T(φ) ∧ ¬T(φ † ψ);
6. T((φ †1 φ′) †2 ψ) = T(φ †1 φ′) ∧ T(φ †2 ψ);
7. T(φ ∧ ψ) = T(φ) ∧ T(ψ);
8. T(φ ∨ ψ) = T(φ) ∨ T(ψ);

The relation between action states and quality states can be expressed in CTL
using modalities. For instance E〈c〉pk is true in all action states that create a
quality state labelled pk. E〈h〉pk is true in all action states which are simultaneous
with an action state labelled pk. The transformation rule 2 gives us a formula
that is true in a state where T(φ) is true, and there is a path consisting of c,h
or d-labelled edges on which T(ψ) will eventually become true.

Intuitively, all local relations such as starts same or meets are described using
the in the next state operators 〈a〉 (and other boolean connectives), and those
expressing non-local relations (i.e. arbitrary path conditions) such as before or
includes are described using the CTL U (Until).

The translations for other temporal connectives for Q-formulae: e , jb , m ,
i and d Q and those for A-formulae: &, ≺, ≡ and d A are purely technical,
and follow the same intuition. Due to limited space, we omit these definitions.

Proposition 2. Let H be a A∗-labelled evolution graph, φ ∈ L∗
H, q ∈ E and

a ∈ A. Then H, q |=Q φ iffMH, sq |=CTL T(φ) and H, a |=A φ iffMH, sa |=CTL

T(φ).

Proof (Sketch): In the following, we discuss Q-formulae only. The case for A-
formulae is analogous. The property we prove is:

H, (a, b) |=Q φ ⇐⇒ MH, s(a,b) |=CTL T(φ)

The proof is done by structural induction over the construction of formulae φ.
The basis case is for φ = pk. Since T(pk) = pk, H, q |=Q pk ⇐⇒ MH, sq |=CTL

pk trivially holds, from the construction of MH. For each of the semantic rules
3. . . 13 described in Definition 5, an induction step is required. Here, we will
confine ourselves to rule 2, where ∝= b . The remaining cases can be treated
in a similar way.

Assume H, (a, b) |=Q pk b ψ, for some pk ∈ A∗. Therefore: (i) H, (a, b) |=Q pk
and (ii) there is a quality edge (a′, b′) ∈ ‖ψ‖QH and (iii) a path λ, such that λ
connects action nodes b and a′: λ = c1, c2, . . . , cn, where c1 = b and cn = a′.
From (i), (ii) and the induction hypotheses, it follows that MH, s(a,b) |=CTL pk
and MH, s(a′,b′) |=CTL T(φ). For each ci, ci+1 in λ, we have either E(ci, ci+1)

Topology-Aware predictions in HPC Systems Using Evolution Graphs 103

or T (ci) = T (ci+1). Therefore, in MH, between sci and sci+1 there is ei-
ther a quality state sq such that Rc(sci , sq) and Rd(sq, sci+1) or there is a h-
transition: Rh(ci, ci+1). It immediately follows that, in MH, there is a path θ
from sb to sa′ , consisting of c, d, or h-transitions. Since H, s(a,b) |=CTL pk and
H, s(a′,b′) |=CTL T(ψ), the existence of θ between sb to sa′ makes H, s(a,b) |=CTL

pk ∧ E(U{c,h,d} T(φ)) true. Therefore H, s(a,b) |=CTL T(pk b ψ). The second
part of the implication is shown similarly. �

Proposition 3 (L∗
H-model checking). The Q and A-model checking problems

for L∗
H are in PTIME.

Proof (Sketch): Given a evolution graph H, a Q (or A) formula φ ∈ L∗
H, and

α ∈ E (or α ∈ A), we build a LTSMH, and the transformed formula T(φ). The
total construction is done in deterministic polynomial time. Finally, we solve
MH, sα |=CTL T(φ). Proposition 2 guarantees that the answer to the above
problem is also an answer for the problem H, α |=X φ. �

Proposition 3 does not imply completeness for PTIME, nor does it provide with
an efficient mechanism for L∗

H model checking. Indeed, the transformation from
Section 4.1 provides a solution for L∗

H model checking via CTL model checking,
but this approach is not necessarily optimal, since the CTL formulae we model
check, might depend in size to the size of the LTS. As we will further see, a more
precise bound on L∗

H is unnecessary as the model checking problem for the full
LH is much harder. In order to obtain a hardness result, we use a reduction to
the conjunctive query satisfaction problem. For details on conjunctive queries,
see [15].

Definition 8 (Conjunctive sentences). Let σ be an arbitrary vocabulary. A

sentence ϕ over σ is conjunctive if it has the following form: ϕ = ∃x
∧k

i=1 Ck(yk)
where each Ck is in σ and each yk is a tuple consisting of variables from x and
constant symbols from σ.

Proposition 4 (Solving conjunctive queries [6]). Given a σ-structure S
and a conjunctive sentence ϕ, the decision problem S |= ϕ is NP-complete.

Proposition 5 (Model checking the full LH). The Q and A-model checking
problems for the full LH are NP-complete.

Proof (Sketch): Let H be a A-labelled evolution graph, α be an edge (or action)
from H, and φ(x) be a LH formula.

Membership: Membership is established by the following procedure: non-
deterministically choose a tuple i, and then solve the problem H, α |=X φ(i),
in the following way: replace each occurrence of any Ck(ik) in A with a symbol
pCk(ik)

. Thus, we get a labelling structure A∗ consisting of propositional symbols

only. By operating the same replacement in H and φ(i), we get H∗ and φ∗, and
our problem reduces to the model checking problem for L∗

H, which is in PTIME.
Hardness : Hardness is shown for Q-formulae. Let σ be a vocabulary, S be a σ-

structure, and ϕ = ∃x
∧n

k=1 Ck(yk) be a conjunctive sentence over σ. We build

104 M. Popovici

σQ = σ and σA = {N} with arity(N) = 1. The set of individuals I consists
of all elements from the universe of S, and two distinguished elements {s, e}.
The labelling structure A, with the universe I is 〈S, N I〉 where N I = {s, e}.
The evolution graph is built as follows. First, we create an (initial) hypernode
h0. Assume we have m predicate symbols in S. For each 1 ≤ k ≤ m, we do
the following: (i) create a new hypernode hk; (ii) for each tuple c ∈ CI

k , we
create two action nodes akc and bkc , as well as a quality edge (akc , b

k
c). All action

nodes akc and bkc are in hypernodes hk−1 and hk, respectively (T (akc) = hk−1

and T (bkc) = hk). They are labeled as follows: LA(a
k
c) = N(s), LA(b

k
c) = N(e)

and LQ(a
k
c , b

k
c) = Ck(c). The evolution graph obtained this way is a multi-link

chain, where all qualities labelled by the same Ck span the same time intervals.
Let q be some arbitrary quality edge labelled with a predicate symbol C1. Now,
build a LH-formula φ = C1(y1) b C2(y2) . . . b Cn(yn). It is straightforward that
H, q |=Q φ iff S |= ϕ. Hardness for A formulae is shown using a similar chain
construction. �

Proposition 5 shows us that, in terms of computational complexity, LH pays
much more for allowing first-order predicates than for exploring the temporal
structure it is defined on. Restricting the arity of our predicates also brings
no improvement. The proof of Proposition 4 makes this obvious since, even for
predicates with arity 2, model checking a conjunctive sentence is NP-complete.
It would seem unjustified to explore other fragments of LH that do allow first-
order predicate. As it turns out, there are practical cases where such fragments
are interesting.

5 LH in HPC Systems

In the following, we consider evolution graphs where the set of hypernodes has
a total order: 〈H,<〉. This is motivated by the fact that, in practical applica-
tions such as ours, the moment when an action occurs is known in advance.
The restriction has no impact on the model checking complexity, since, as seen
previously, the source of complexity is in the usage of first-order predicates as
labels.

In order to deploy LH for the extraction of topology information in large-scale
systems, we use evolution graphs as a means for the storage of events and event-
related properties generated by such systems. For each event recorded in the
HPC system log, the following information is given: the moment of occurrence
(given as a Unix timestamp), the event type (e.g. network interface card error,
memory error, etc.), and the machine that generated the message. An example
can be seen in Fig. 2 a. We model the occurrence of an event as an action
node, and use the node labelling to encode all event-dependent information. For
instance, the record shown in Fig. 2 a, is described by an action node a, such
that LA(a) = Event(1244192545, abem5, 1130), where 1244192545 indicates the
timestamp, abem5 indicates the device where the event was signalled and 1130
encodes the event type.

Topology-Aware predictions in HPC Systems Using Evolution Graphs 105

1244192545 abem5 1130 1004 1045 20

a b

Fig. 2. Log entries and correlations

Hypernodes are built by considering a certain interval δi as time unit. For
practical reasons, the δi value used in our experiments was 5 seconds. The entire
duration covered by the log is split into intervals of size δi, and a hypernode is
created for each such interval. All action nodes having a timestamp falling in
some interval of size δi is associated to the corresponding hypernode.

Based on the analysis model presented in [2], a list of correlated event types is
built. An example of a simplified correlation record is shown in Fig. 2 b. We model
a correlation between two actual events a and b as a quality edge (a, b) labelled
Correlation(1004, 1045, 20), where 1004 and 1045 are the correlated event types,
and 20 indicates the approximate delay between events.

After the evolution graph is built in the manner described above, LH-model
checking is used for extracting correlation patterns and statistical information
about the system. An interpreter for LH was implemented in Java and Jess.
The Jess engine was responsible for storing the evolution graph as a knowledge
base, and for the pattern matching process involved in LH-model checking. We
use LH to express correlations between events, and the locations where they
occur. For instance, the formula from Fig. 3 identifies correlated error events
between machines m1 and m2. If the set of quality edges satisfying the formula
has a considerable size, then it can be assumed that the error event et1 from
m1 will propagate as et2 on m2. By looking at the most frequent occurrences of
correlated locations, a set of propagation paths for faults can be built. We call
this structure a propagation topology and we further use it to get some insight
of the behaviour of faults in large HPC systems.

Our results highlighted previous observations regarding error propagation and
brought new insights. Firstly, our experiments show that, for fault messages, 98%
of the correlations are between locations in the same midplane and rack, the 2%
representing unknown locations. For informational messages the percentage is
a little lower, around 90%. However, this still confirms our initial finding that
messages tend to propagate following the architecture topology of the system.
This is an important result since it highlights a possible optimization for the
prediction method by distributing its execution independently on each rack.

Secondly, we found that only around 20% of the nodes in the system appear
in the extracted topology. This was surprising and it shows that the propagation
topology does not follow the exact architecture but only a subset of it. As a result,

Correlation(et1, et2, x) cQ Event(t,m1, et1) ∧
Correlation(et1, et2, x) dQ Event(t,m2, et2)

Fig. 3. Inferring correlated locations

106 M. Popovici

whenever attempting to predict failures, it is not always necessary to explore the
entire system architecture. Another observation is that informational messages
propagate less than faults and on a smaller number of locations. Therefore, these
two types tend to behave differently and any prediction system needs to analyse
them separately.

We have also investigated the distribution of identified correlations on dif-
ferent locations in the system, depending on how much of the log is analysed.
We observed a logarithmic growth of the number of correlations found when
analysing different number of months. After 6 months the number of correla-
tions is almost identical with what we found after analysing the entire lifespan
of the system, the difference being of only 0.71%. Therefore, 6 months of log
data prove sufficient for building accurate prediction topologies.

An application running on a HPC machine usually uses only a subset of
computing nodes, so not all node crashes influence its execution. It is important
that prediction includes not only the time, but also the location of the next failure
in order for current fault tolerance mechanisms to be able to take proactive
measures. By extracting topology information, our implementation is able to
identify the set of nodes that are potential threats to the application execution.

6 Related Work

Current knowledge representation methods have limitations with respect to mod-
elling dynamic domains. They focus more on providing a static description of
a modelled universe and less on capturing time and change. Approaches such
as DL (Description Logics) [4] are suitable for describing snapshots of an ap-
plication domain, but fail in describing its evolution. Although, in many cases,
temporal concepts can be embedded, either as modelling primitives (Temporal
Extensions of Description Logics (TEDL) [3]), or as pre-defined concepts (see
OWLTime [17]), this approach is rather impractical since many TEDL’s are
either undecidable or have very high complexity bounds.

Temporal logics such as Linear Temporal Logics (LTL) [19], Computation Tree
Logic (CTL and CTL∗)[7] and the Mu Calculus [9] would seem appropriate for
this task. Indeed, the model checking problem is in PTIME for interesting frag-
ments of these logics. However, there is an important difference between Kripke
Structures and evolution graphs. The first are computational structures [24] that
encode all possible states of a deterministic system. Temporal reasoning (i.e.
model checking) relies on unfolding the computational structure, and establish-
ing whether certain properties hold. Unlike Kripke Structures, evolution graphs
are models of behaviour, and thus can be compared to paths or computation
trees. An evolution graph encodes an unique evolution of a system which is
not necessarily deterministic. This means that there is no structure able to en-
code all possible configurations of a system, and which unfolded, can produce
an evolution graph. This is the case for error message generation in HPC com-
puting. Also, any system in which actions can occur arbitrarily (but which have
foreseeable effects, i.e. the introduction or ceasing of qualities), fall in the same

Topology-Aware predictions in HPC Systems Using Evolution Graphs 107

category. As a result, unlike temporal logics, �LH can only be used to look into
the past. Based on the domain’s history, one can make assumptions about the
future evolution of the system, as is the case in HPC error message prediction.

As shown in Section 4.1, the information captured by evolution graphs could
be embedded in Kripke Structures, and CTL-model checking could be used to
verify temporal relations. However, there is a scalability issue. Computational
structures are expected to have limited size. However, the logs used in our anal-
ysis had a number of 1,969,710 messages, and future systems are expected to
produce much larger logs. Even with symbolic model checking, using such large
Kripke Structures can become unfeasible.

Also, using Kripke Structures for storing temporal information in a way dif-
ferent from that shown in Section 4.1 may be inefficient. Conventionally, if a
property p holds over a number of n states, all n states must be labelled with
p. If there are two such properties in the system, then this will result in 2n
labelings, whereas in evolution graphs (and in the particular type of Kripke
Structures discussed in Section 4.1), such a property is represented as an edge
(or a quality state), irrespective of it’s lifespan. An exponential growth in the
number of states can also be found in other approaches for encoding temporal
intervals such as the one presented in [8].

Finally, evolution graphs and LH provide with more expressiveness in describ-
ing the possible properties of the system. This is achieved by using relations for
labelling, instead of just sets of propositional symbols.

7 Conclusions

Evolution graphs and LH provide a straightforward way for representing and
reasoning about domains that are constantly changing. While model checking is
not as fast as in temporal logics, LH provides an acceptable trade-off between
efficiency and an increased flexibility in describing domain-dependent properties.
The LH connectives offer a simple way for expressing temporal patterns. The
same task is not always as easy in temporal logics such as CTL. Also, evolu-
tion graphs and LH prove useful. The LH model checking mechanism provides
with an accurate analysis method for HPC logs that highlights a couple of opti-
mization solutions for fault prediction systems: (i) prediction algorithms can be
parallelised, since errors propagate only locally (ii) the entire system architecture
is not always relevant for fault prediction and (iii) for the building of a precise
propagation topology, 6 months of logs suffice.

Also, we would like to note that the usage of LH is not limited to the HPC
setting. The implementation of our LH-model checker can be naturally extended
to a language that allows the specification of time-dependent behaviour in Multi-
Agent Systems. Rule-based languages such as Jason [5], SOAR [13], and even
CLIPS [21], do not incorporate primitives for expressing temporal relations be-
tween entities in an application-dependent domain. As shown in our previous
work [20], a language equipped with temporal primitives allows for more flexi-
bility in describing time-dependent domains. Therefore, a temporally-flat knowl-
edge base of an agent can be replaced by an evolution graph. Thus, LH can

108 M. Popovici

be used to add a temporal dimension to the reasoning process in Multi-Agent
Systems.

Acknowledgements. The work has been funded by Project 264207, ERRIC-
Empowering Romanian Research on Intelligent Information Technologies/FP7-
REGPOT-2010-1 and by the Sectoral Operational ProgrammeHuman Resources
Development 2007-2013 of the Romanian Ministry of Labour, Family and Social
Protection through the Financial Agreement POSDRU/88/1.5/S/61178.

References

1. Almási, G.S., Bellofatto, R., Brunheroto, J.R., Caşcaval, C., Castaños, J.G., Ceze,
L., Crumley, P., Erway, C.C., Gagliano, J., Lieber, D., Martorell, X., Moreira,
J.E., Sanomiya, A., Strauss, K.: An Overview of the Blue Gene/L System Software
Organization. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 543–555. Springer, Heidelberg (2003)

2. Gainaru, A., Franck Cappello, W.K.: Taming of the shrew: Modeling the normal
and faulty behavior of large-scale hpc systems. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 24–35 (to appear,
2012)

3. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30, 171–210 (2001)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

5. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries
in relational data bases. In: Proceedings of the Ninth Annual ACM Sympo-
sium on Theory of Computing, STOC 1977, pp. 77–90. ACM, New York (1977),
http://doi.acm.org/10.1145/800105.803397

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Proceedings of the LITP Spring School on Theoretical Computer Science
on Semantics of Systems of Concurrent Processes, pp. 407–419. Springer-Verlag
New York, Inc., New York (1990),
http://dl.acm.org/citation.cfm?id=111693.111710

9. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity
and Finite Models, pp. 185–214 (1996)

10. Capello, F., Geist, A., Gropp, B., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience. International Journal of High Performance Computing Applications 23
(2009)

11. Gainaru, A., Cappello, F., Trausan-Matu, S., Kramer, B.: Event Log Mining Tool
for Large Scale HPC Systems. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-
Par 2011, Part I. LNCS, vol. 6852, pp. 52–64. Springer, Heidelberg (2011)

http://doi.acm.org/10.1145/800105.803397
http://dl.acm.org/citation.cfm?id=111693.111710

Topology-Aware predictions in HPC Systems Using Evolution Graphs 109

12. Gallet, M., Yigitbasi, N., Javadi, B., Kondo, D., Iosup, A., Epema, D.: A Model
for Space-Correlated Failures in Large-Scale Distributed Systems. In: D’Ambra,
P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp.
88–100. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1887695.1887707

13. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelli-
gence. Artif. Intell. 33(1), 1–64 (1987),
http://dx.doi.org/10.1016/0004-3702(87)90050-6

14. Lan, Z., Zheng, Z., Li, Y.: Toward automated anomaly identification in large-scale
systems. IEEE Trans. on Parallel and Distributed Systems 21(2), 174–187 (2010)

15. Libkin, L.: Elements Of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An Eatcs Series. Springer (2004)

16. Oldfield, R.A., Arunagiri, S., Teller, P.J., Seelam, S., Varela, M.R., Riesen, R.,
Roth, P.C.: Modeling the impact of checkpoints on next-generation systems. In:
Proceedings of the 24th IEEE Conference on Mass Storage Systems and Technolo-
gies, MSST 2007, pp. 30–46. IEEE Computer Society, Washington, DC (2007)

17. Pan, F.: An Ontology of Time: Representing Complex Temporal Phenomena for
the Semantic Web and Natural Language. VDM Verlag, Saarbrucken (2009)

18. Park, Geist, A.: System log pre-processing to improve failure prediction. In: DSN
2009, pp. 572–577 (June 2009)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

20. Popovici, M., Muraru, M., Agache, A., Giumale, C., Negreanu, L., Dobre, C.: A
Modeling Method and Declarative Language for Temporal Reasoning Based on
Fluid Qualities. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-
ConceptStruct 2011. LNCS, vol. 6828, pp. 215–228. Springer, Heidelberg (2011)

21. Riley, G.: NASA Clips: A Tool for Building Expert Systems (June 2006),
http://www.ghg.net/clips/CLIPS.html

22. Roşu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic – Translation to
LTL and Monitor Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 263–277. Springer, Heidelberg (2006)

23. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. 42(3), 10:1–10:42 (2010)

24. Schnoebelen, P.: The complexity of temporal logic model checking. In: Proceedings
of Advances in Modal Logics AiML 2002. World Scientific (2003)

http://dl.acm.org/citation.cfm?id=1887695.1887707
http://dx.doi.org/10.1016/0004-3702(87)90050-6
http://www.ghg.net/clips/CLIPS.html

Enhancing Goal-Based Requirements

Consistency: An Argumentation-Based Approach

Isabelle Mirbel1 and Serena Villata2

1 Université de Nice Sophia Antipolis
Isabelle.Mirbel@unice.fr
2 INRIA Sophia Antipolis
serena.villata@inria.fr

Abstract. Requirements engineering research has for long recognized
the leading role of goals as requirement artifacts during the requirements
engineering specification processes. Given the large number of artifacts
created during the requirements specification and the continuous evolu-
tion of these artifacts, reasoning about them remains a challenging task.
Moreover, the rising complexity of the target domain under considera-
tion during the requirements engineering process as well as the growth of
geographically distributed projects explain why the number of collected
requirements as well as their complexity also increase. In this context,
providing support to stakeholders in achieving a common understanding
of a set of goal-based requirements, in consolidating them and keeping
them consistent over time is another challenging task. In this paper,
we propose an approach to detect consistent sets of goal-based require-
ments and maintain their consistency over time. Our approach relies on
argumentation theory which allows to detect the conflicts among ele-
ments called arguments. In particular, we rely on meta-argumentation,
which instantiates abstract argumentation frameworks, where require-
ments are represented as arguments and the standard Dung-like ar-
gumentation framework is extended with additional relations between
goal-based requirements.

1 Introduction

Requirements engineering (RE) research has for long recognized the leading
role of goals during the requirements engineering processes. Several goal-oriented
requirements engineering approaches have been proposed in the literature
[26,10,2,23]. Goals have shown to be useful for achieving requirements complete-
ness, avoiding irrelevant requirements, explaining requirements to stakeholders,
structuring complex requirements documents through goal refinement, support-
ing decision making through alternative goal refinements, managing conflicts
among multiple viewpoints, separating stable from more volatile information
and driving requirements identification [19].

As it has been highlighted in Pohl [22], given the large number of artifacts
created during the requirements engineering process and the continuous evo-
lution of these artifacts, managing and organizing requirements artifacts is a

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 110–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhancing Goal-Based Requirements Consistency 111

challenging task. The rising complexity of the target domain under considera-
tion during the requirements engineering process also increases the number of
collected requirements as well as their inter-dependencies and it makes this task
much more challenging. Dedicated tools are required to support stakeholders in
achieving a common understanding of a set of requirements, in consolidating it
and in keeping it consistent over the whole project life cycle. As it has been
highlighted in the literature [19], even if inconsistencies may be desirable, for in-
stance to allow further elicitation of requirements that would have been missed
otherwise, their resolution is necessary at some point. Tools are required to high-
light inconsistencies and to support stakeholders who will handle the resolution
process. Requirements are usually provided by different groups of stakeholders.
This means that we cannot just consider a set of requirements as correct or not.
When a requirement is suitable for a group of stakeholders, this leads to the
removal of other requirements in order to keep the full requirements set con-
sistent. If this requirement is discovered as not so important for another group
of stakeholders, it is therefore removed from the full requirements set to insure
consistency from their point of view.

Different kinds of relationships hold between goals [22]. For instance, goal
decomposition relationships are distinguished from goal dependencies, i.e., two
kinds of decomposition are possible depending on the fact that all subgoals
are required to satisfy a super-goal (AND-decomposition) or at least one sub-
goal (OR-decomposition). The following dependencies have been identified [22]:
equivalence, conflict, and require.

This paper focuses on the modeling of goal-based requirements with the aim
to support the stakeholders, i.e., the agents, in detecting inconsistent sets of
requirements and solving these inconsistencies. We propose to use well-known
Dung-like abstract argumentation [13] to reason about the consistency of a set of
goal-oriented requirements. Dung-like abstract argumentation models the infor-
mation as abstract elements called arguments. The arguments are linked to each
others by an attack relation. Therefore, we present a way to model additional
goal-based relations, to detect the inconsistencies among goals, and provide a
decision support system for their resolution.

Following the idea proposed by Bagheri and Ensan [3], we propose an approach
in which consistent subsets of requirements are provided to the stakeholders to
allow them to understand the different units of consistent requirements. As it
has been highlighted in Bagheri and Ensan [3], the use of abstract argumentation
is reasonable because it does not need the requirements to be formally defined
and only needs the relationships between the requirements to be defined. With
respect to the work of Bagheri and Ensan [3], which concentrates on the conflict
relation, in our approach we take into consideration all the relations required to
organize goals, i.e., AND/OR-decomposition, conflict, require and equivalence
dependencies. Therefore, we rely on meta-argumentation [7,8] which has been
proposed as a general methodology to handle the introduction of new relations
among the arguments by reusing Dung’s theory and results.

112 I. Mirbel and S. Villata

Alternative approaches to argumentation theory are for instance Answer Set
Programming, and first-order logic [15]. As underlined by Bagheri and Ensan [3],
a drawback of pure logical formalisms for dealing with inconsistency in require-
ment specifications is that they identify and solve the inconsistency in pure
syntactic form without taking into account the semantical information required
to solve inconsistency. The advantage of using argumentation theory is twofold:
first, argumentation theory provides a formal but intuitive technique to reason
over inconsistency allowing the detection of the implicit relationships among
the arguments and their inconsistencies, and second it allows the stakeholders
to choose among different sets of consistent requirements using acceptability se-
mantics [13] with the possibility of specifying whether the choice of the consistent
set of requirements has to be guided by skeptical or credulous semantics.

The paper is organized as follows. In Section 2, we discuss why and how
argumentation is helpful to check the consistency in requirements engineering.
In Section 3, we detail how the different goals decomposition relationships and
goals dependencies are modeled in our framework. In Section 4, we illustrate
our proposal with an example. Section 5 compares the proposed approach to the
related work. Finally, we conclude and give some perspectives.

2 Meta-argumentation: Overview

We provide the basic concepts of Dung’s abstract argumentation [13]. A Dung-
style argumentation framework [13] aims at representing conflicts among ele-
ments called arguments. It allows to reason about these conflicts in order to
detect, starting by a set of arguments and the conflicts among them, which are
the accepted arguments. The accepted arguments are those arguments which
are considered as believable by an external evaluator, who has a full knowledge
of the argumentation framework. A Dung-style framework is based on a binary
attack relation among arguments, whose role is determined only by their rela-
tion to other arguments. Dung [13] presents several acceptability semantics that
produce zero, one, or several sets of accepted arguments. The set of accepted
arguments of an argumentation framework consists of a set of arguments that
does not contain an argument attacking another argument in the set. Roughly,
an argument is accepted if all the arguments attacking it are rejected and it is
rejected if it has at least an argument attacking it which is accepted. The (possi-
bly multiple) set of accepted arguments computed using one of the acceptability
semantics are called extensions.

Definition 1 (Argumentation framework AF). An argumentation frame-
work is a tuple 〈A,→〉 where A is a finite set of elements called arguments and
→ is a binary relation called attack defined on A.

A semantics of an argumentation theory consists of a conflict free set of argu-
ments cf(S), i.e., a set of arguments that does not contain an argument attacking
another argument in the set. Like Baroni and Giacomin [4], we use a function E
called acceptance function mapping an argumentation framework 〈A,→〉 to its
set of extensions, i.e., to a set of sets of arguments.

Enhancing Goal-Based Requirements Consistency 113

Definition 2 (Acceptance function). Let U be the universe of arguments.

An acceptance function E : 2U × 2U×U → 22
U

is a partial function which is
defined for each argumentation framework 〈A,→〉 with finite A ⊆ U and →⊆
A × A, and maps an argumentation framework 〈A,→〉 to sets of subsets of A:
E(〈A,→〉) ⊆ 2A.

The following definition summarizes the most widely used acceptability seman-
tics of arguments [13].

Definition 3 (Acceptability semantics). Let AF = 〈A,→〉 be an argumen-
tation framework. Let S ⊆ A. S defends a if ∀b ∈ A such that b → a, ∃c ∈ S
such that c → b. Let D(S) = {a | S defends a}.

– S ∈ Eadmiss(AF) iff cf(S) and S ⊆ D(S).
– S ∈ Ecompl(AF) iff cf(S) and S = D(S).
– S ∈ Eground(AF) iff S is smallest in Ecompl(AF).

– S ∈ Epref(AF) iff S is maximal in Eadmiss(AF).

– S ∈ Estable(AF) iff cf(S) and ∀b ∈ A\S
∃a ∈ S : a→ b.

2.1 Meta-argumentation

Meta-level argumentation has been proposed in several works [17,5,11,21] and
further developed with different goals. Boella and colleagues [7,8], in particu-
lar, proposed the meta-argumentation methodology where extended argumen-
tation frameworks are instantiated with meta-arguments, and reasoning in the
meta-level is allowed without the need to extend Dung-like abstract framework.
Meta-argumentation instantiates Dung’s theory with meta-arguments, such that
Dung’s theory is used to reason about itself [8,21]. Meta-argumentation is a par-
ticular way to define mappings from argumentation frameworks to extended
argumentation frameworks: arguments are interpreted as meta-arguments, of
which some are mapped to “argument a is accepted”, acc(a), where a is an ab-
stract argument from the extended argumentation framework EAF . Moreover,
auxiliary arguments are introduced to represent, for example, attacks, so that,
by being arguments themselves, they can be attacked or attack other arguments.

The function f assigns to each argument a in the EAF , a meta-argument
“argument a is accepted” in the basic argumentation framework. The func-
tion f−1 instantiates an AF with an EAF . We use Dung’s acceptance func-
tions E to find functions E ′ between EAF s and the acceptable arguments AA′

they return. The accepted arguments of the meta-argumentation framework are
a function of the EAF AA′ = E ′(EAF). The transformation function con-
sists of two parts: the function f−1, transforming an AF to an EAF , and a
function g which transforms the acceptable arguments of the AF into accept-
able arguments of the EAF . Summarizing E ′ = {(f−1(a), g(b)) | (a, b) ∈ E} and
AA′ = E ′(EAF) = g(AA) = g(E(AF)) = g(E(f(EAF))).

The first step of the meta-argumentation approach is to define the set of
EAF s. The second step consists of defining flattening algorithms as a function

114 I. Mirbel and S. Villata

from this set of EAF s to the set of all basic AF : f : EAF → AF . The inverse
of the flattening is the instantiation of the AF . See [8] for further details.

Definition 4. An extended argumentation framework EAF is a tuple 〈A,→〉
where A ⊆ U is a set of arguments, and → is a binary attack relation on A. The
universe of meta-arguments is MU = {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈ U},
where Xa,b, Ya,b are the meta-arguments corresponding to the attack a→ b. The
flattening function f is given by f(EAF) = 〈MA, *−→〉, where MA is the set
of meta-arguments and *−→ is the meta-attack relation. For a set of arguments
B ⊆ MU , the unflattening function g is given by g(B) = {a | acc(a) ∈ B}, and
for sets of subsets of arguments AA ⊆ 2MU , it is given by g(AA) = {g(B) | B ∈
AA}.

Given an acceptance function E for an AF , the extensions of accepted argu-
ments of an EAF are given by E ′(EAF) = g(E(f(EAF))). The derived accep-
tance function E ′ of the EAF is thus E ′ = {(f−1(a), g(b)) | (a, b) ∈ E}.
Definition 5 presents the instantiation of a basic AF using meta-argumentation.

Definition 5. Given an EAF = 〈A,→〉 where A ⊆ U is a set of arguments,
and →⊆ A × A. MA ⊆ MU is {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈ U}, and
*−→⊆MA×MA is a binary relation onMA such that: acc(a) *−→ Xa,b, Xa,b *−→
Ya,b, Ya,b *−→ acc(b) if and only if a, b ∈ A and a→ b ∈→.

Intuitively, the Xa,b auxiliary argument means that the attack a → b is “inac-
tive”, and the Ya,b auxiliary argument means that the attack is “active”. An
argument of an EAF is accepted iff it is accepted in the flattened AF .

In our approach, we propose to model decomposition relationships and de-
pendencies as a meta-argumentation framework dedicated to goal-based require-
ments engineering. Goals are modeled as meta-arguments and decomposition re-
lationships and dependencies as relations among them. Thanks to the semantics
assigned to each of the decomposition relationships and dependencies introduced,
mappings to the argumentation framework are possible as well as reasoning to
find consistent subsets of goals, i.e., extensions of the argumentation framework.
In the next sections, we illustrate our proposal with the help of an example
extracted from Pohl [22].

3 Goal Decomposition and Dependencies

Requirements engineering is generally viewed as a process consisting of four core
activities: elicitation, analysis, negotiation and validation. Each activity produces
information which must be made persistent by documenting it in the right way. In
order to facilitate communication, to support negotiation or to provide basis for a
contract, for deriving manuals or for project planning for instance, requirements
are traditionally defined in a requirement document or database. Requirements
artifacts can be documented using natural language or a conceptual modeling lan-
guage. Goals [19] are proposed for this purpose. Goals aim at capturing the ra-
tionale of the software systems and document agents’ intentions. Regardless of the
chosenmeans to document requirements, they appear closely related to each other.

Enhancing Goal-Based Requirements Consistency 115

According to the literature review presented in Pohl [22], different kinds of
relationships hold between goals. Goal decomposition relationships are distin-
guished from goal dependencies. Two kinds of decomposition are possible de-
pending on the fact that all subgoals are required to satisfy a super-goal (AND-
decomposition) or at least one sub-goal (OR-decomposition). With regards to de-
pendencies, equivalence, conflict, obstruction, support and require relationships
have been identified. Obstruction and support aim at eliciting partial dependen-
cies between goals. Therefore we do not take them into account in our current
framework in which we only reason on crisp acceptance, and not on partial ac-
ceptance. This is left as future work.

In our approach, we rely on the meta-argumentation methodology to formally
model the requirements and these main relationships among them. We choose
the meta-argumentation methodology because it allows to model extended ar-
gumentation frameworks, i.e., argumentation frameworks where additional re-
lations among the arguments are introduced, as Dung-like abstract frameworks
in order to reuse Dung’s properties and theorems. We define an extended argu-
mentation framework for reasoning about requirements as follows:

Definition 6 (Requirement-based EAF). A requirement-based extended ar-
gumentation framework REAF is a tuple 〈A,→, CF,RQ,AND-dec,OR-dec, EQ〉
where A ⊆ U is a set of requirements, →⊆ A×A, CF is a binary conflict rela-
tion on A (CF ⊆ A×A), RQ is a binary requires relation on A (RQ ⊆ A×A),
AND− dec is a AND-decomposable relation on 2A×A (AND− dec ⊆ 2A×A),
OR − dec is a OR-decomposable relation on 2A × A (OR − dec ⊆ 2A × A),
and EQ is a binary equivalence relation on A (EQ ⊆ A × A). The universe of
meta-requirements is MU = {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈ U} ∪ {Za,b |
a, b ∈ U} ∪ {Ra,b | a, b ∈ U} ∪ {Ta,b | a, b ∈ U}, where Xa,b, Ya,b are the meta-
requirements corresponding to the conflict relation (a CF b), Za,b is the meta-
requirement corresponding to the requires relation (a RQ b), Ra,b is the meta-
requirement corresponding to the OR-decomposable relation (a OR− dec b), and
Ta,b is the meta-requirement corresponding to the AND-decomposable relation
(a AND − dec b). The flattening function f is given by f(EAF) = 〈MA, *−→〉,
where MA is the set of meta-requirements and *−→ is the meta-conflict rela-
tion. For a set of requirements B ⊆MU , the unflattening function g is given by
g(B) = {a | acc(a) ∈ B}, and for sets of subsets of requirements AA ⊆ 2MU , it
is given by g(AA) = {g(B) | B ∈ AA}.

Roughly, the extensions of the REAF contain the set of requirements that do
not conflict with each other and that satisfy the constraints posed by the other
relations.

3.1 Goal Decomposition

Two kinds of goal decomposition have been identified in the literature [22]. In the
following we explain how we model them in our meta-argumentation framework.

116 I. Mirbel and S. Villata

AND-Decomposition. Pohl [22] defines the AND-decomposition in the fol-
lowing way: The decomposition of a super-goal into a set of sub-goals is an
AND-decomposition if and only if all sub-goals must be satisfied in order to
satisfy the super-goal.

We model the AND-decomposition relationship in meta-argumentation as fol-
lows: a super-goal to be accepted has to have all its sub-goals accepted. The idea
is that all the sub-goals are represented as meta-requirements in the meta-level.
They attack meta-requirement T which attacks the meta-requirement represent-
ing the super-goal. Meta-requirement T is not connected to a real requirement
in the object level, but as previously noticed for X and Y , it is just used to
reason in the meta-level. The formalization of the AND-decomposition relation
is presented in Definition 7.

Definition 7. Given a REAF = 〈A,→, CF,RQ,AND − dec,OR − dec, EQ〉,
the set of meta-arguments MA ⊆ MU is {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈
U}∪ {Za,b | a, b ∈ U}∪{Ra,b | a, b ∈ U}∪ {Ta,b | a, b ∈ U} and *−→⊆MA×MA
is a binary relation on MA such that:

– acc(r1) *−→ Tr1,a iff a AND − dec r1, . . . , rn, and
– . . .
– acc(rn) *−→ Trn,a iff a AND − dec r1, . . . , rn, and
– Tr1,a *−→ acc(a) iff a AND − dec r1, . . . , rn, and
– . . .
– Trn,a *−→ acc(a) iff a AND − dec r1, . . . , rn.

This is similar to the representation of a conjunctive pattern of arguments, as dis-
cussed by Villata et al. [24]. In this way, we have that the goal G is accepted only
if all the sub-goals are accepted too. If one (or more) sub-goal is not accepted,
then the respective meta-requirement Ti is accepted, and given the attack of this
meta-requirement against the super-goal, the super-goal is made unacceptable.
An example of AND-decomposition is shown in Figure 1, where both goals G1
and G2 need to be accepted to have goal G3 accepted.

Proposition 1 (Semantics of AND-dec). Given a REAF , if it holds that
a1, . . . , anAND−dec b and all goals a1, . . . , an are accepted then goal b is accepted
too.

Proof. We prove the contrapositive. If it holds that a1, . . . , anAND− dec b and
goal b is rejected, then goals a1, . . . , an are rejected too. Assume a1, . . . , anAND−
dec b and assume that meta-requirement acc(b) is rejected, then there exists at
least one meta-requirement Ta1 , . . . , Tan that is accepted. Consequently, at least
one meta-requirement acc(a1), . . . , acc(an) is rejected.

OR-Decomposition. Pohl [22] defines the OR-decomposition in the follow-
ing way: The decomposition of a super-goal into a set of sub-goals is an OR-
decomposition if and only if satisfying one of the sub-goals is sufficient for sat-
isfying the super-goal.

Enhancing Goal-Based Requirements Consistency 117

Fig. 1. Example of AND-decomposition. Accepted meta-requirements are represented
in grey and rejected meta-requirements in white.

We model the OR-decomposition relationship in meta-argumentation as fol-
lows: a super-goal to be accepted needs to have at least one of its sub-goals
accepted. The idea is that all the sub-goals in the meta-level attack the same
meta-requirement R which attacks the meta-requirement representing the super-
goal. In this way, we have that the goalG is accepted when at least one of its sub-
goals is accepted too. If no sub-goal is accepted, then the meta-requirement R is
accepted, and given the attack of this meta-requirement against the super-goal,
the super-goal is made unacceptable. The formalization of the OR-decomposition
relation is presented in Definition 8.

Definition 8. Given a REAF = 〈A,→, CF,RQ,AND − dec,OR − dec, EQ〉,
the set of meta-arguments MA ⊆ MU is {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈
U}∪ {Za,b | a, b ∈ U}∪{Ra,b | a, b ∈ U}∪ {Ta,b | a, b ∈ U} and *−→⊆MA×MA
is a binary relation on MA such that:

– acc(r1) *−→ Rr,a iff a OR − dec r1, . . . , rn, and
– . . .

– acc(rn) *−→ Rr,a iff a OR − dec r1, . . . , rn, and
– Rr,a *−→ acc(a) iff a OR − dec r1, . . . , rn.

An example of OR-decomposition is shown in Figure 2, where either goal G1 or
goal G2 need to be accepted to have goal G3 accepted.

3.2 Goal Dependencies

Different kinds of dependencies between goals have been identified in the liter-
ature [22]. In the following, we explain how we model the conflict, requires and
equivalence dependencies in our extended argumentation framework.

118 I. Mirbel and S. Villata

Fig. 2. Example of OR-decomposition

Conflict Dependency. Pohl [22] defines the conflict dependency in the follow-
ing way: a conflict dependency exists between two goals if the satisfaction of one
goal entirely excludes the satisfaction of the other goal, and vice versa.

In Definition 9, we present how to model the conflicts among requirements.

Definition 9. Given a requirement-based extended argumentation framework
REAF = 〈A,→, CF,RQ,AND − dec,OR − dec, EQ〉, the set of meta-
requirements MA ⊆ MU is {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈ U} ∪ {Za,b |
a, b ∈ U} ∪ {Ra,b | a, b ∈ U} ∪ {Ta,b | a, b ∈ U} and *−→⊆MA×MA is a binary
relation on MA such that:

– acc(a) *−→ Xa,b iff a CF b and
– Xa,b *−→ Ya,b iff a CF b and
– Ya,b *−→ acc(b) iff a CF b and
– acc(b) *−→ Xb,a iff a CF b and
– Xb,a *−→ Yb,a iff a CF b and
– Yb,a *−→ acc(a) iff a CF b.

The two meta-requirements X and Y are used to model the conflict relation
in the meta-level as well as the attack relation. The semantics of the conflict
dependency is similar to the semantics of the attack relation in Dung-style ab-
stract argumentation. The difference is that the attack relation is directed from
an argument to another argument while the conflict dependency leads to a cycle
of attacks, i.e., the two arguments attack each other. An example of conflict
dependency is shown in Figure 3, where goal G1 cannot be accepted if goal G2
is accepted and vice versa. In particular, the three extensions using complete
semantics are {G1}, {G2}, and ∅.

Require Dependency. Pohl [22] defines the require dependency in the fol-
lowing way: a goal G1 is related to a goal G2 by a requires dependency if the
satisfaction of the goal G2 is a prerequisite for satisfying goal G1.

Enhancing Goal-Based Requirements Consistency 119

Fig. 3. Example of conflict dependency where the extension {G1} is shown

We model the requires relation as a relation such that, given that G1 requires
G2, G1 is accepted only if G2 is accepted too. This means that if G2 is not
accepted, then G1 is not accepted either. We formalize the requires relation
using meta-argumentation in Definition 10.

Definition 10. Given a REAF = 〈A,→, CF,RQ,AND− dec,OR− dec, EQ〉,
the set of meta-arguments MA ⊆ MU is {acc(a) | a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈
U}∪ {Za,b | a, b ∈ U}∪{Ra,b | a, b ∈ U}∪ {Ta,b | a, b ∈ U} and *−→⊆MA×MA
is a binary relation on MA such that:

– acc(b) *−→ Za,b iff a RQ b, and
– Za,b *−→ acc(a) iff a RQ b.

Definition 10 highlights that goals cannot only conflict with each other but can
also require the acceptability of other goals to be themselves accepted. The
requires relation is defined following the example of the modeling in meta-
argumentation of the support relation [9]. An example of requires dependency
is shown in Figure 4, where the goal G1 needs goal G2 accepted to be accepted
too.

Fig. 4. Example of requires dependency

Proposition 2 (Semantics of requires). Given a REAF , if it holds that
a RQ b and goal a is accepted, then goal b is accepted too.

120 I. Mirbel and S. Villata

Proof. We prove the contrapositive. If it holds that a RQ b and goal b is not
accepted, then goal a is not accepted. Assume that a RQ b and assume that
meta-requirement acc(b) is not accepted, then meta-requirement Za,b is accepted.
Consequently, meta-requirement acc(a) is not accepted.

Proposition 3. Given a REAF with goals a, b and c, if there is an attack
such that a→ c if a RQ b and b→ c, then the extensions do not change, using
our meta-argumentation model and one of Dung’s semantics.

Proof. We use reasoning by cases. Case 1: acc(a) is accepted, then also acc(b)
is accepted following Proposition 2, and given b → c, a → c can be deleted
without changing the extension. Case 2: acc(a) is not accepted, then a→ c can
be deleted.

Our representation of the requires relation is based on the fact that a requires
b is modeled by the flattening function with a path from acc(b) to acc(a), i.e.
acc(a) is accepted only if acc(b) is accepted. Notice that, given a RQ b, in meta-
argumentation we condense all the attacks which are both on b and thus on a
(both from b and thus from a) using only meta-requirement Za,b, as we show in
Proposition 4.

Proposition 4. Given a REAF , if there is an attack such that c→ a if a RQ b
and c → b, then the extensions do not change, using our meta-argumentation
model and one of Dung’s semantics.

Proof. We use reasoning by cases. Case 1: acc(c) is accepted, then acc(a) is not
accepted, follows from Proposition 2, and given c → b, c → a can be deleted
without changing the extension. Case 2: acc(c) is not accepted, then acc(a) is
accepted, and the attack relation c→ a can be avoided.

Goal Equivalence. Pohl [22] defines the goal equivalence in the following way:
An equivalence dependency exists between two goals if the satisfaction of one goal
implies the satisfaction of the other goal. We model the equivalence dependency
in the following way: given that G1 is equivalent to G2 then if G1 is in conflict
with other goals, then G2 is in conflict with these other goals too, and if goal
G2 is in conflict with other goals, then goal G1 conflicts with these goals too.
In order to maintain the semantics of the equivalence dependency, we have to
consider how to manage the conflicts addressed against goal B when goal A is
equivalent to B. In this case, we want to model the situation such that every
time goal B is in conflict with another goal, then this new goal is in conflict
also with A and vice-versa. We achieve it by introducing an additional kind of
conflict among the goals called equivalence attacks.

An example of equivalence dependency is shown in Figure 5. In this example,
G1 is conflicting with G3 then G3 is also conflicting with G2 as it is shown by
the dashed lines. And if a conflict involving G2 would exist, then G1 would also
be in conflict with this goal. We do not include this case in the figure for clarity
purpose.

Enhancing Goal-Based Requirements Consistency 121

Fig. 5. Example of equivalence

In the following section, we introduce an example including the different kinds
of decomposition and dependency relationships previously discussed to show the
effectiveness of our approach.

4 Example

To show how the translations of the different relationships existing between goals
are combined into our extended argumentation framework, an example of goal-
oriented requirements modeling is presented in Figure 6.

Fig. 6. Example of goal oriented requirement modeling

122 I. Mirbel and S. Villata

In this example, there is a conflict between G6 and G11. Therefore the map-
ping to our meta-argumentation framework leads to 2 extensions in complete
semantics: the former in which G6 is accepted and G11 not accepted; and the
latter in which G11 is accepted and G6 is not accepted1.

Figure 7 shows the representation in the meta-level of the example from Fig-
ure 6. In this framework, we show the first extension, where G6 is accepted and
G11 is rejected. For clarity of the figure, we duplicated the meta-requirement
acc[G11]. The set of goals in grey corresponds to a coherent set of goals. No goal
represented in white can be added to this set without making it inconsistent.
Note that only meta-requirements representing the goals are requirements in
the object level. Figure 8 shows the set of accepted goals on the goal hierarchy
corresponding to this first extension.

Fig. 7. The meta-argumentation framework and the extension where goal G6 is
accepted

The second extension starting from the goal-oriented requirement modeling
of Figure 6 is shown in Figure 9. In this extension, G11 is accepted and G6 is not
accepted. Again, meta-requirement acc[G11] is duplicated for clarity reasons. No
goal represented in white can be added to the set without making it inconsistent.
Figure 10 shows the set of accepted goals on the goal hierarchy corresponding
to the second extension.

As it is shown by this running example, we propose an approach in which
consistent subsets of an initial goals set are provided to the stakeholders to

1 We do not consider here the third extension ∅ because we want to provide the
stakeholders with alternatives where the two conflicting goals are included.

Enhancing Goal-Based Requirements Consistency 123

Fig. 8. The object level of the example with the goals accepted in the first extension

Fig. 9. The meta-argumentation framework and the extension where goal G11 is
accepted

allow them to understand the different units of consistent goals. This is partic-
ularly useful when the number of collected requirements as well as the number
of inter-dependencies are big. In this context, our approach aims at support-
ing stakeholders in achieving a common understanding of a set of goal-based

124 I. Mirbel and S. Villata

Fig. 10. The object level of the example with the goals accepted in the second extension

requirements and at providing them a decision support system for inconsisten-
cies resolution.

5 Related Work

Frameworks to reason about goals have already proven to be useful to support
goal-based requirements management. In van Lamsweerde et al. [20], for in-
stance, goals are specified in a formal way to support reasoning on their content.
In Giorgini et al. [14], an approach is proposed to analyze goal hierarchies in order
to establish goals satisfiability (full, partial or none). The idea is to show the im-
pact of the adoption of some goals on the other goals of the system. Approaches
relaying on argumentation have already been proposed to check the consistency
of a requirement set [6,3]. Our approach relies on meta-argumentation while
the proposal of Bagheri and Ensan [3] adopts an extension of Dung’s frame-
work with preferences over the arguments. Jureta et al. [18] present a formal
model to analyze the discussions between the stakeholders about the validity of
the requirements engineering artifacts using argumentation theory. In particu-
lar, they introduce the Acceptability Evaluation framework (ACE) which is a
propositional reasoning framework. In this framework, an acceptability condition
is proposed on an artifact such that if the condition holds then it means that
the relative validity for the artifact is verified. They use argumentation theory to
model the discussions among stakeholders where inference, attack and preference
relationships are used. There are several points which distinguish our approach
from the work of Jureta et al. [18]: first, we rely on abstract argumentation theory
and on its notion of acceptability semantics to assess which are the acceptable

Enhancing Goal-Based Requirements Consistency 125

requirements, instead of introducing a new framework; second, we reason at the
pure abstract level as done by Bagheri and Ensan [3] starting from the set of goal-
based requirements and their relationships, we are not interested in modeling the
discussions of the stakeholders to verify the validity of an artifact using a propo-
sitional language; third, we do not consider only the conflict and the preference
relationships among the requirements, but we consider goal-based requirements
and their additional relationships (AND/OR-decomposition, and require, con-
flict and equivalence goal dependencies) provided by the stakeholders to detect
the (possibly multiple) consistent sets of requirements, showing in addition how
the inconsistencies may be resolved. Ingolfo et al. [16] use the ACE framework
to deal with the compliance of software requirements. In Goknil et al. [15], a
meta model is proposed to reason about requirements consistency. In their ap-
proach, some well-known relationships between requirements are formalized by
relying on first-order logic. Thanks to this meta model, implicit relations and
inconsistencies are detected. We propose to address this issue by using abstract
argumentation theory in order to put in evidence consistent sets of requirements.

6 Conclusion

In this paper we present an approach to support consistency checking in goal-
based requirements engineering. Our approach aims at detecting implicit rela-
tionships between the requirements and checking the possible inconsistencies
among them.

Our proposal uses argumentation theory to formalize the requirement and
their relationships, and to detect the inconsistencies. We represent requirements
as abstract arguments and the conflicts among the requirements are the con-
flicts among the arguments. In particular, we rely on the meta-argumentation
methodology to formally model the decomposition and dependencies which may
exist between goals. We choose the meta-argumentation methodology because
it allows to model argumentation frameworks with additional relations among
the arguments as Dung-like abstract frameworks thus reusing Dung’s properties
and algorithms.

Several open challenges will be addressed as future works. First, we are de-
veloping a tool which asks the stakeholders to enter the set of requirements and
the relationships among them, and it returns a graphical visualization of the
requirements, as shown in Figure 6 and 7. The tool highlights the set of consis-
tent requirements, and provides the stakeholder with the possible alternatives.
These alternatives depend on the chosen acceptability semantics. Second, we
plan to introduce into the framework also the relationships between agents and
the requirements they propose. This has to be done to be able to reason about
trust, allowing the expression of different evaluations of the acceptability of the
arguments depending on the stakeholder who is proposing them [25]. Third, we
plan to use fuzzy values expressing the degree of acceptability of the arguments
to take into account partially satisfied goals [12], as it is necessary to model the
obstruction and support relationships. Moreover, we plan to address dynamical

126 I. Mirbel and S. Villata

issues such as changes in the set of requirements and goals, which are common
in most engineering projects. Finally, we will investigate the cost associated with
argumentation-based approaches to software engineering.

References

1. Ab Aziz, R., Zowghi, D., McBride, T.: Towards a Classification of Requirements Re-
lationships. In: 21st International Conference on Software Engineering and Knowl-
edge Engineering, pp. 26–32 (2009)

2. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years,
The Next Ten Years. Journal of Software 6(5), 747–768 (2011)

3. Bagheri, E., Ensan, F.: Consolidating multiple requirement specifications through
argumentation. In: 26th Symposium on Applied Computing, pp. 659–666 (2011)

4. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argu-
mentation semantics. Artif. Intell. 171(10-15), 675–700 (2007)

5. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: Afra: Argumentation framework
with recursive attacks. Int. J. Approx. Reasoning 52(1), 19–37 (2011)

6. Besnard, P., Hunter, A.: Elements of argumentation. MIT Press (2008)

7. Boella, G., van der Torre, L., Villata, S.: On the Acceptability of Meta-arguments.
In: International Conference on Intelligent Agent Technology, pp. 259–262 (2009)

8. Boella, G., Gabbay, D.-M., van der Torre, L., Villata, S.: Meta-Argumentation
Modelling I: Methodology and Techniques. Studia Logica 93(2-3), 297–355 (2009)

9. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Support in abstract argu-
mentation. In: 3rd International Conference Computational Models of Argument,
pp. 40–51. IOS Press (2010)

10. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Modeling
Early Requirements in Tropos: A Transformation Based Approach. In: Wooldridge,
M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 151–168.
Springer, Heidelberg (2002)

11. Cayrol, C., Lagasquie-Schiex, M.-C.: Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. Int. J. Intell. Syst. 25(1), 83–109 (2010)

12. da Costa Pereira, C., Tettamanzi, A., Villata, S.: Changing ones mind: Erase or
rewind? In: 22nd International Joint Conference Artificial Intelligence, pp. 164–171
(2011)

13. Dung, P.-M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

14. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the Tropos methodology. In: Agent-oriented Software Develop-
ment, vol. 18(2), pp. 159–171 (2005)

15. Goknil, A., Kurtev, I., van den Berg, K., Veldhuis, J.-W.: Semantics of trace re-
lations in requirements models for consistency checking and inferencing. Software
and System Modeling 10(1), 31–54 (2011)

16. Ingolfo, S., Siena, A., Mylopoulos, J.: Establishing Regulatory Compliance for Soft-
ware Requirements. In: 30th IEEE International Requirements Engineering Con-
ference, pp. 47–61 (2011)

17. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. J.
Log. Comput. 9(2), 215–261 (1999)

Enhancing Goal-Based Requirements Consistency 127

18. Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of Multi-Party Agreement in
Requirements Validation. In: 17th IEEE International Requirements Engineering
Conference, pp. 57–66 (2009)

19. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: Fifth IEEE International Symposium on Requirements Engineering, vol. 249
(2001)

20. van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering 24(11), 908–
926 (1998)

21. Modgil, S., Bench-Capon, T.J.M.: Metalevel argumentation. J. Log. Com-
put. 21(6), 959–1003 (2011)

22. Pohl, K.: Requirements Engineering. Fundamentals, Principles, and Techniques.
Springer (2010)

23. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling.
Requirement Engineering 4(4), 169–187 (1999)

24. Villata, S., Boella, G., van der Torre, L.: Argumentation Patterns. In: 8th Interna-
tional Workshop on Argumentation in Multi-Agent Systems, pp. 133–150 (2011)

25. Villata, S., Boella, G., Gabbay, D.M., van der Torre, L.: Arguing about the Trust-
worthiness of the Information Sources. In: Liu, W. (ed.) ECSQARU 2011. LNCS,
vol. 6717, pp. 74–85. Springer, Heidelberg (2011)

26. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: 3rd IEEE Int. Symp. on Requirements Engineering, pp. 226–235
(1997)

A Game Theoretic Approach for Optimal Network
Topologies in Opportunistic Networks

Nils Bulling1, Michael Köster1, and Matei Popovici2

1 Clausthal University of Technology
Institute for Informatics, Clausthal-Zellerfeld, Germany

bulling@in.tu-clausthal.de, michael.koester@tu-clausthal.de
2 POLITEHNICA University of Bucharest

Splaiul Independentei nr. 313, Bucharest, Romania, Postal Code 060042
matei.popovici@cs.pub.ro

Abstract. Opportunistic networks (ON) are particular types of delay-tolerant
networks in which users/network entities participate in order to propagate infor-
mation. Besides the advantages of these networks (e.g. decentralization, indepen-
dence of communication infrastructure) they raise new problems regarding for
example effectiveness, message routing, message delivery, security issues, and
trust. In this paper we introduce a formal description of an ON and of optimal
communication topologies, for the non-cooperative and cooperative settings. We
follow a game theoretic approach and allow users to express properties about
how their messages should be handled in the network by means of a logical lan-
guage (for instance, message privacy may be achieved by requiring that network
nodes with internet access should be avoided on the communication path). We
determine the complexity of associated verification and synthesis problems of
network topologies.

1 Introduction

The ever increasing use of online social networking services together with the pop-
ularity of new generation smartphones and of other smart mobile devices are causing
mobile networks to be overloaded. In order to solve this problem, novel communication
methods and new types of network architectures, such as delay-tolerant [3] and oppor-
tunistic networks [12,10] have emerged. Traditionally, delays are seen as networking
problems caused by connectivity interruptions. In the conventional setting they are the
exception. However, in delay-tolerant networks they are the rule: messages are (delib-
erately) delayed, and offloaded to alternative communication routes, in order to relieve
wireless and mobile networks of data traffic [7,9].

An opportunistic network is a particular type of delay-tolerant network in which
participants are mobile and able to communicate at limited range (e.g. humans carry-
ing wireless communication devices). It is assumed that: (i) global Internet access is
not available, (ii) end-to-end connectivity between any two participants is not generally
possible and (iii) the entire network might be disconnected, i.e. certain groups of par-
ticipants might be outside the communication range of other groups from the network.
In this setting, communication occurs opportunistically: whenever two devices are in

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 128–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimal Network Topologies in Opportunistic Networks 129

proximity, they will consider this as an opportunity to exchange messages. Moreover,
the participants’ mobility is exploited in order to transmit messages between discon-
nected groups of users. According to this store-carry-and-forward mechanism [1], a
message is stored in user A’s buffer and is carried around until A is in communication
range with another user B. When this happens, the message is forwarded to user B and
the process is repeated until the final destination is reached, or the message is outdated.

One of the main advantages of opportunistic networks is the fact that they are: (i) de-
centralized, (ii) independent of any communication infrastructure and (iii) inexpensive.
Opportunistic networks also raise new problems regarding for example effectiveness,
message routing in such a dynamic environment, maximizing message delivery, se-
curity issues, and trust. Moreover, not all network topologies are desirable nor stable
because (i) users may wish to avoid specific routes/users and (ii) users lack incentives
to provide services (e.g. message forwarding) to other users.

In this paper we address these two problems and propose a game-theoretic commu-
nication model for opportunistic networks, in which each user (or each group of users)
has certain communication preferences which express the users’ goals and also restric-
tions on the network. Instead of using rankings or other community-dependent metrics,
we use the temporal logic CTL for expressing these preferences. The advantage of this
approach is that it allows a flexible description of various preferences like reachability
or avoidance properties.

The contributions of this paper are a game-theoretic analysis of optimal network
topologies for message forwarding and related complexity results. The optimal topol-
ogy should minimize communication costs, while satisfying the players’ goals. We
model a network topology as the outcome of a strategic game in which the actions of
each player consist of establishing communication channels. Then, optimal topologies
correspond to game theoretic solution concepts. In this paper, we consider individual
and group rationality, each leading to a different notion of optimality and stability.

We consider both a cooperative and a non-cooperative setting. Often cooperation is
required as players are usually not able to achieve their goals by themselves. Apart from
the game theoretic modelling approach, the complexity results regarding verification
and synthesis problems of optimal topologies form the main technical results of this
paper. Finally, we would like to note that a lot of work in this area has focused on game
theoretic methods for package forwarding and routing strategies. Our work should not
only be understood as yet another analysis but in particular as a pre-processing step.
We propose a way for finding an optimal network topology and once it has been found
existing methods for package routing and forwarding can be applied on top of it.

The paper is structured as follows: In Section 2 we introduce the basic ingredients
of an opportunistic network (ON), motivate our game theoretic approach, define the
opportunistic network game, and put game theoretic solution concepts in the context
of optimal topologies. In Section 3 we propose a computational setting based on the
temporal logic CTL. In Section 4 we analyze the complexity of verification and syn-
thesis problems. Finally, in Section 5 and 6 we discuss related work and conclude,
respectively.

130 N. Bulling, M. Köster, and M. Popovici

2 Optimal Opportunistic Networks

In this section we introduce an opportunistic network (ON), motivate our game the-
oretic approach, define the opportunistic network game which is used to determine
optimal topologies. The concept of optimality depends on the specific solution con-
cept at hand and reflects different stability conditions of a topology. An ON is defined
over an opportunistic network frame (ONF) which models the participants of an ON (to
which will henceforth also refer as players), the locations they can reach, the possible
connections (or channels) they can establish, and a cost for each such channel. Play-
ers have the intention to send messages to one or several locations, but are interested
in enforcing restrictions on the way messages are delivered. These restrictions include
prohibiting specific players (or rather characteristics of players) on the message deliv-
ery path, requiring the existence of several paths towards destination, or restricting the
path’s length.

2.1 Opportunistic Networks

An opportunistic network frame (ONF) essentially defines a set of players P and their
abilities to communicate with each other. We use a neighborhood functionN : P → 2P

to model the players to whom a (communication) channel can be established; that is,
N(i) is the possibly empty set of players with whom i can set up a channel. We require
that i
∈ N(i). The establishment of a channel from player i to player j has cost c(i, j).
The cost function c can aggregate a number of internal and external factors related to
players such as bandwidth consumption, trust level, resource usage etc. Finally, each
player i attempts to satisfy a certain goal φi. Goals give players the ability to enforce
restrictions on how messages are forwarded. One such restriction could be that any path
to destination must not include certain players (or group of players).

The value function v quantifies the value of a player’s goal. The values are subjective
to the agents and can be of various origin. In this paper, we do not discuss this issue in
more detail.

Definition 1 (Opportunistic Network Frame). An opportunistic network frame (ONF)
is given by F = (P,N,Props , c, I, (φi)i∈P , v) where

– P is a finite set of players;
– N : P → 2P is a neighborhood function. N(i) is the set of neighbors with which
i can establish channels. We require that i
∈ N(i), i.e. players cannot establish
channels with themselves.

– Props is a set of propositional symbols that represent different user properties.
– I : P → 2Props is a valuation function assigning, for each player i, a set of

propositions which are true for player i.
– A partial cost function c : P × P → R≥0. c(i, j) is the cost for player i of estab-

lishing a channel with player j. The value c(i, j) ≥ 0 must be defined for any two
players i
= j provided that j ∈ N(i). Moreover, c(i, i) = 0 for all players i.

– φi is the goal for player i.
– A value function v : P → R models the value of a player’s goal when the goal

becomes satisfied.

Optimal Network Topologies in Opportunistic Networks 131

A proposition p ∈ Props can for instance represent certain real world locations or a
communication channel (e.g. a wifi hotspot, a mobile connection, etc.) which a player
can access. A possible goal of a player could be the following: Player 1 wants to ac-
cess a specific communication channel. In particular, goals can also be understood as
restrictions on communication paths and network topologies.

Remark 1 (Player goals). In ONF each player has a single goal. It is rather straight
forward to extend the setting to a set of goals, one for each player, and to assign different
values to each goal. However, for a clearer presentation, we do only consider the single
goal setting in this paper.

In our particular setting, goals are expressed using the language of computation tree
logic (CTL). CTL is, in our opinion, a natural choice since model checking CTL-
formulae can be done in polynomial time. Thus, it brings no significant overhead to the
computational complexity of our solution concepts, described in Section 4. However,
the general framework is not dependent on CTL and can be used with other suitable
languages for specifying goals. For this reason, we defer the introduction of CTL and
the formal definition of goal satisfaction to Section 3.

1

Net1

2

Net1,Net2

3

Net1,Net2, Internet

4

Net2,VPN

3

3
41

1

1

1

1

1

0

Fig. 1. A simple opportunistic network frame

Example 1 (Simple ONF). Consider the ON with 4 players shown in Figure 1. The
scenario describes two partially disconnected networks modeled by the propositions
Net1 and Net2, respectively. Player 1, which is a member of Net1 is unable to com-
municate directly with player 4, which is a member of Net2. Players 2 and 3 are
members of both Net1 and Net2 and thus can communicate with any other player.
Player 3 has access to Internet, and player 4 to a virtual private network, denoted
as VPN. We model this scenario as a ONF where the set of propositions Props =
{Net1,VPN,Net2, Internet} describes all existing networks and the valuation function
defined as I(1) = {Net1}, I(2) = {Net1,Net2}, I(3) = {Net1,Net2, Internet} and
I(4) = {Net2,VPN} describes what networks are accessible for each player.

The dashed arrows describe all possible communication channels which can be es-
tablished, and they are labeled with their corresponding costs. Therefore: N(1) =

132 N. Bulling, M. Köster, and M. Popovici

N(4) = {2, 3}, N(2) = {1, 3, 4} and N(3) = {1, 2, 4}. The costs are c(1, 2) =
c(2, 1) = 3, c(1, 3) = c(2, 4) = c(3, 1) = c(3, 4) = c(4, 2) = c(3, 2) = 1, c(4, 3) = 0
and c(2, 3) = 4.

Let us assume that player 1 wants to send a message to the VPN. In order to do so,
one possible path is (1, 3, 4), i.e. to send the message from player 1 over player 3 to
player 4. However, let us moreover assume that player 1 requires that its message must
not pass through any node which has access to Internet. We will refer to this goal as
φ1. The single path that obeys this restriction is (1, 2, 4).

Similarly, player 2 has the goal–to which we refer to as φ2–of sending a message
to the Internet. Players 3 and 4 have no communication goals. The goal values for the
players are, v(1) = 10, v(2) = 5 and v(3) = 0, v(4) = 0, respectively.

As seen in Example 1, the optimality of a certain network topology dependents on sev-
eral issues. We may, for instance, call a topology optimal if all the players’ goals are
satisfied, or if the costs are minimal and the goal of a particular player is satisfied. We
discuss optimality in more detail in Section 2.2. In what follows, we describe topologies
as structures which depend on a certain ONF. We assume players have the intention of
sending messages to one or several other players. Furthermore, we expect that destina-
tions are not (always) directly reachable, and that messages must be routed via inter-
mediate players. Whenever this is the case, a message will cross a sequence of players,

from source to destination. A transition i
k−→ j in a topology represents a directed com-

munication channel in which player i forwards one (or several) messages generated by
or on behalf of player k, to player j. j is the next-hop (as in relay networks) on the
message delivery path. It might be the case that i = k, if j is the first hop on the mes-
sage path. The cost of setting a channel is captured by c(i, j), and it has to be put up by
the sender, i.e. player i in this very case. Since we assume players are self-interested,
setting up communication links and relaying messages for other players requires some
kind of incentive, as we will further see.

Each player’s goal expresses one (or several) destinations that should be reached,
or can also enforce certain restrictions on how these destinations are reached. The ex-
pressiveness of the goals depends on the concrete goal language used. Possible restric-
tions/goals include, for example, channel P should be accessible via at most two hops
or channel P should be accessible via a path that doesn’t pass through node/player i
(i.e. player i should not be able to receive the message sent), etc. We note however that
a player k can only formulate goals that involve forwarding its own messages, i.e. it can

only express preferences regarding edges of the form i
k−→ j in the topology.

In the remainder of this paper we assume that F = (P,N,Props , c, I, (φi)i∈P , v) is
an opportunistic network frame, as described by Definition 1.

Definition 2 (F -topology, Tops(F)). An F -topology is a labeled transition system
TF = (P ,−→,Props , I) where P is the set of nodes and −→⊆ P × P × P where we
require that (i, i, i) ∈→ for all i ∈ P and that c ∈ N(a) if (a, b, c) ∈→ and a
= c. The

elements Props and I are taken from F . We write a
b−→ c for (a, b, c) ∈−→. The relation

a
b−→ c models a b-labeled transition from a to c.
The set of all F -topologies is denoted Tops(F). We write T instead of TF if F is

clear from context.

Optimal Network Topologies in Opportunistic Networks 133

The reflexive loops i
i−→ i are due to technical reasons. They model a player’s possibility

to do nothing.

Remark 2 (F -topologies and labeled transition systems). Labeled transition system are
often used to describe the states of a certain system, and labeled transitions represent
possible actions which can be taken, in order to reach some state from another. We
would like to emphasize that in our setting, nodes in a F -topologies represent players
and their properties. Edges correspond to the possible communication channels they
can establish.

Proposition 1. We have |Tops(F)| ≤ 2|P|3 .

Definition 3 (Opportunistic Network). An opportunistic network (ON) is a tuple
O = (F , T) consisting of an opportunistic network frame F and an F -topology
T ∈ Tops(F).

Intuitively, an opportunistic network O is obtained by taking one possible instanti-
ation of the opportunistic frame F . Such an instantiation consists of labeled transi-
tions between players. The label stands for the player on whose behalf the message is
forwarded.

Example 2. (Simple ON) We continue Example 1. Figure 2 shows an ON in which the
goal φ1 (we recall that φ1 expresses the goal of reaching VPN without ever visiting a
node in which Internet holds) of player 1 is violated. The violation is caused by the

labeled transition 1
1−→ 3 which causes player 1’s messages to be forwarded to player

3 who has access to Internet. Also, we would like to emphasize that player 1 sets two
channels to player 3: one for itself and one on behalf of player 2.

1

Net1

2

Net1,Net2

3

Net1,Net2, Internet

4

Net2,VPN

2

1

2

1

Fig. 2. A simple opportunistic network. The reflexive edges (i.e. i
i−→ i for all players i) are

omitted to improve the readability.

In the usual cases we are interested in economical networks. For this purpose, we need
to introduce the cost of a network. We define it as the sum of all established channel
costs.

Definition 4 (Cost). Let O = (F , T) be an ON. The cost of player i in O is defined as
the costs of all outgoing edges from player i, i.e. cost i(T) =

∑
(i,k,j)∈→ c(i, j) where

i is fixed. The total cost of ON O is defined as cost(O) =
∑

i∈P cost i(T).

134 N. Bulling, M. Köster, and M. Popovici

Given this definition we can ask what is the best ON? Is it the one with the minimal
costs? This depends on the behavior of the players, e.g. whether they are social, strictly
self-interested, cooperative, or non-cooperative. Notice that a player may not uncon-
ditionally follow the satisfaction of its goal. If the player’s costs exceed the value of
its goal the player may be better off not establishing a link at all. Players often reason
strategically. In particular, this is the case if costs are involved and network nodes be-
long to different organizations, which often is a realistic scenario in opportunistic nets
and relay networks.

Example 3 (Cost of an ON). In our example (Figure 2), the individual costs cost i(O)
and the overall costs cost(O) are given as follows: cost1(O) = 2, cost2(O) = 3,
cost3(O) = 1, cost4(O) = 0 and cost(O) = 5. The channel costs are included in the
definition of the ONF shown in Figure 1.

2.2 How Does an Optimal Solution Look?

In this section we informally discuss properties of optimal ONs. It is straightforward
that optimality is highly affected by: (i) the goal fulfillment of each player, (ii) the
goal value, and (iii) the players’ costs. Given a player i which participates in creating a
topology T by setting up channels, we require a measure of its profit in T , i.e. a utility
value, which takes into account the properties (i), (ii) and (iii).

Rational players usually prefer topologies in which they get higher utility over those
in which they get less utility. However, they can only set up a channel with their (directly
accessible) neighbours and thus depend on the other players’ actions in most of the
cases. Therefore, it might be the case that achieving an optimal topology requires the
contribution of other players and a certain deal of compromise. For instance, players
might be required to accept higher costs, in order for their goals to become satisfied at
all. As a result, finding optimal topologies amounts to finding the optimal compromises,
the ones that are acceptable by each player. In other words, players act in a highly
strategic manner.

Game theory offers a framework for analysing such strategic interactions. There-
fore, one natural solution is to make use of game theoretic solution concepts for non-
cooperative and cooperative games to analyse and to determine optimal topologies. This
approach has already been followed by many researchers. We compare their work with
ours in Section 5.

In the non-cooperative setting we model strictly selfish players which always prefer
the topology awarding them the greatest utility. The first solution concept we study, the
Nash equilibrium, describes ON optimality in terms of individual stability. The question
we ask is whether a player will accept setting (some of) its channels given the set of
channels set by all the other players.

We then turn to a stronger solution concept, the strong Nash equilibrium, to address
group deviations. In contrast to the Nash equilibrium solution concept we ask whether a
group can deviate to increase its payoff. The intuition is that players can partly commu-
nicate to find solutions in which each of the deviating group members is better off. This
is quite a strong assumption and is relaxed by the last optimality concept we consider:
the core.

Optimal Network Topologies in Opportunistic Networks 135

The core, which is rather a cooperative concept, is used to examine group deviations
which allows for the transfer of utility between players. In our opinion, this concept
is more sensible than the strong Nash equilibrium: if players are already assumed to
jointly deviate, why should they not be able to agree on a payoff division which is
beneficial for all members? We would like to note that we are not concerned with the
actual payoff distribution here. An ON which does not satisfy the requirements of the
core describes an unstable network. The instability is caused by a group of (deviating)
players which can achieve a strictly higher group utility than the sum of the utilities
of each individual member in the ON. In this paper we are only considering whether
such a group utility can be achieved and do not discuss the construction of a fair payoff
distribution.

2.3 The Opportunistic Network Game

In Section 2.2 we motivated the use of game theory to give a characterisation of optimal
ONs, that is, optimal topologies for an ONF. If we assume no cooperation between
players, in particular no payoff distribution, the utility of a player is given by the value
of its goal, if satisfied, minus the costs of the channels established by this very player.
Formally, we have:

Definition 5 (Utility ui(O)). The utility of player i in the ON O is defined as

ui(O) =
{
v(i)− cost i(O) if φi is satisfied in O,
−cost i(O) otherwise.

We say that a player i (strictly) prefers O over O′ iff ui(O) > ui(O′); then, we write
O &i O′. Analogously, we define +i with respect to ≥. (We would like to note that
in Section 4 we will be concrete about what “satisfaction” means wrt. to a specific
language to express goals.)

The costs of a player depend on the channels it creates. From a game theoretic per-
spective these are the actions of the player, i.e. an action of a player is a set of transi-
tion/channels.

Definition 6 (Actions). The F -actions of player i in an ONF F are given by:

Actionsi = 2{i
j−→ k | j ∈ P and k ∈ N(i)}. We define Actions = ×i∈PActionsi.

An element a ∈ Actions is called F -action profile. We omit F if clear from context.

It is easy to see that each action tuple gives rise to an F -topology and thus to an ON.

Definition 7 (F(a)). Given an F -action profile a = (a1, . . . , a|P|) we use F(a) to

refer to the ON (F , T) where T = (P , (
⋃

i∈P ai) ∪ {i
i−→ i | i ∈ P},Props, I).

Now it is easy to see that for each ON O = (F , T) there is an F -action a such that
O = F(a) and vice versa. Hence, we define the utility for player i for an F -action
profile a as the utility of i in F(a):

(�) ui(a) := ui(F(a)).

We are ready to associate an ONF with a strategic game:

136 N. Bulling, M. Köster, and M. Popovici

Definition 8 (Opportunistic Network Game). Let F be an ONF. The F -opportunistic
network game (ONG), is given by the tuple GF = (F ,Actions , u) where:

– Actions is the set of F -action profiles defined in Def. 6 and
– u : P ×Actions → R is the payoff function defined in (�).

We do also lift the preference relations & from Definition 5 to action profiles: a &F
i a′

iff F(a) &i F(a′). Relation +F
i is defined analogously.

Example 4 (Simple ONG). The scenario from Example 1 formulated as an ONG GF =
(F ,Actions , u) looks as follows:

– F is defined as in Example 1,

– Actions1 = 2{1
j−→2,1

j−→3|j∈P}, Actions2 = 2{2
j−→1,2

j−→3,2
j−→4|j∈P}, Actions3 =

2{3
j−→1,3

j−→2,3
j−→4|j∈P}, Actions4 = 2{4

j−→2,4
j−→3|j∈P}.

– The following action profile a ∈ Actions results in the ON from Fig. 2:

a = ({1 1−→ 3, 1
2−→ 3}, {2 2−→ 1}, {3 1−→ 4}). The utility of this action profile is

given by: u(1, a) = −2, u(2, a) = 2, u(3, a) = −1 and u(4, a) = 0.

In the following section we discuss how we can use ONGs to find optimal ONs.

2.4 Optimal Solutions for Non-cooperative Players

In this section we discuss classic solution concepts of non-cooperative game theory.
That is, players chose their actions independently from each other and no payoff divi-
sion takes place.

Definition 9 (Nash equilibrium). A Nash equilibrium of an ONG G is an action profile
a∗ ∈ Actions such that, for each player i ∈ P and all actions ai ∈ Actionsi we have
that (a∗−i, a

∗
i) +i (a

∗
−i, ai).

Intuitively, a Nash equilibrium is a stable action profile, i.e., given the actions of the
other players, no player can deviate and increase its payoff.

Example 5 (Nash solution). We continue Example 4. First of all, notice that for Player
4 the cost of setting any channel to Player 3 is zero, therefore Player 4 has no incentive
to deviate from the choice of setting (or not setting) such a channel, no matter what
other players do. Additionally, Player 4 will not establish a channel to Player 2 because
it would decrease its utility. Thus, we have two distinct scenarios: (i) Player 4’s action

contains 4
2−→ 3 (which is convenient for Player 2) or (ii) Player 4’s action is an arbitrary

member of O = 2{4
i−→3|i∈{1,3,4}}.

The Nash equilibria of our example are given by S1 ∪ {NE2} ∪ S3 where: S1 =

{(∅, {2 2−→ 3}, ∅, X) | X ∈ O}, NE2 = (∅, {2 2−→ 4}, ∅, {4 2−→ 3}), and S3 = {({1 1−→
2, 1

2−→ 3}, {2 2−→ 1, 2
1−→ 4}, ∅, X) | X ∈ O}. Let us refer to ({1 1−→ 2, 1

2−→ 3}, {2 2−→
1, 2

1−→ 4)}, ∅, ∅) as NE3. Figure 3 shows NE2 and NE3. To increase readability, we
have omitted all propositions except Internet and VPN. If Player 4’s choice is to set the

Optimal Network Topologies in Opportunistic Networks 137

channel 4
2−→ 3, then Player 2 would prefer to set 2

2−→ 4 thus satisfying its goal with
utility 4 (which is maximal). This scenario emerging from NE2 leaves Player 1 with its
goal unsatisfied, however the player has no better alternative, given the actions of the
other players.

In any Nash Equilibrium from S1 and S3, Player 4 takes no action helping player 2

to satisfy its goal. As a result, it may be the case that Player 2 sets the channel 2
2−→ 3 to

player 3, and thus satisfies its goal with utility 1 (as is the case with all Nash Equilibria
from S1), or that Players 2 and 3 set channels one on behalf of each other (S3).

We note that ({1 1−→ 2}, {2 1−→ 4, 2
2−→ 4}, {4 2−→ 3}) is not a Nash equilibrium but

it offers a higher utility than any Nash equilibrium. In Example 8 we will see that this
profile is contained in the core of the same game.

1

2

3

Internet

4

VPN

2

2
1

2

3

Internet

4

VPN

2

1

2

1

(a) (b)

Fig. 3. Figure (a) shows Nash Equilibrium NE2; and Figure (b) the Nash equilibrium NE3. Again,
we omit the reflexive edges in the interpretation as ON, cf. Definition 7.

It is easy to see that players may not behave very cooperative in the case of Nash
equilibria. If a player’s goal cannot be satisfied, the player has no incentive to establish
any non-cost free channels:

Proposition 2. Suppose a∗ is a Nash equilibrium such that player i’s goal is not satis-

fied in F(a∗); then for all communication channels i
j−→ k ∈ a∗i the following is true:

c(i, k) = 0.

Proposition 2 captures the intuition that players are not expected to exhibit altruism. If

it was the case that c(i, k) > 0, for some channel i
j−→ k, then player i would be better

of by not setting such a channel, and therefore a∗ is not a Nash equilibrium.

Definition 10 (Strong Nash equilibrium). A strong Nash equilibrium of an ONG G is
an action profile a∗ ∈ Actions such that, for each coalition C ⊆ P and all actions
aC ∈ ×i∈CActionsi we have that (a∗−C , a

∗
C) +i (a

∗
−C , aC) for all i ∈ C.

The strong Nash equilibrium a∗ is a Nash equilibrium where no coalition can be formed
that can cooperatively deviate from the action profile such that all of the members of
the coalition get a payoff at least as high as in a∗ and at least one deviating player gets
a strictly better payoff. The difference between a Nash and a strong Nash equilibrium
is that in order to ensure the property, in the latter case we have to take all possible
coalition deviations into account while for the former only single player deviations have

138 N. Bulling, M. Köster, and M. Popovici

to be considered. This means that strong Nash equilibria are more stable then Nash
equilibria but also more restrictive. Concerning the ONG a drawback of the (strong)
Nash equilibrium is that as soon as a player’s goal is not satisfied it only executes actions
without negative costs, i.e., the player becomes passive. This is a direct consequence of
Proposition 2.

Example 6 (Strong Nash equilibrium). There is a unique strong Nash Equilibrium in

the previous example: NE2 = (∅, {2 2−→ 3}, ∅, {4 2−→ 3}). The Nash Equilibria from
S1 and S3 are not strong, since the coalition C = {2, 4} will always prefer the action

profile (∅, {2 2−→ 3}, ∅, {4 2−→ 3}).

2.5 Optimal Solutions for Cooperative Players

From Proposition 2 we know that a player does not establish channels with costs greater
than 0 if its goal is not satisfied (given the other players’ actions). What if players
cooperate and are allowed to transfer utility, to set up side payments? We define the
utility of a group as follows (without explaining how the payoff is actually divided).

Definition 11 (Group utility). Let X ⊆ P be a group of players andO be an ON. We
define uX(O) =

∑
i∈X ui(O). As before we define the group utility of action profiles

a ∈ Actions as uX(a) = uX(F(a)). Similarly, we also lift the preference relations &i

+i to groups of players, &X and +X , respectively.

Example 7 (Group utility). The group utility of the ON shown in Fig. 3(b) is: u(O) =
u(1, a) + u(2, a) + u(3, a) + u(4, a) = (10 − 4) + (5 − 4) + 0 + 0 = 7 where

a = ({1 1−→ 2, 1
2−→ 3}, {2 2−→ 1, 2

1−→ 4}, ∅, ∅). Similarly, the group utility of the ON
shown in Fig. 3(a) is 4.

Finally, we lift the strong Nash equilibrium concept to the setting in which players can
transfer payoff. Now, a player may establish channels even if its goal is not satisfied.

Definition 12 (Core). The core of an ONG consists of the set of all action profiles a
such that there is no coalition X ⊆ P and no action profile a′ which agrees with a for
all players P\X such that a′ &X a.

Example 8 (Core). We continue Example 7. The action profile ({1 1−→ 2}, {2 1−→ 4, 2
2−→

4}, {4 2−→ 3}) yields a utility of 11 = (10 − 3) + (5 − 1) + 0 and is the only member
of the core.

Intuitively, the core provides the best topology T in Tops(G) regarding the (social)
payoff of all players.

3 Computational Setting

In the following, we introduce the temporal logic CTL for expressing players’goals in
an ON.

Optimal Network Topologies in Opportunistic Networks 139

3.1 Preferences as Temporal Formulae

In this section we define a goal of an player to be expressed as a CTL-formula. In the
following, we review the syntax and semantics of the logic.

The language of CTL [2] is given by all formulae generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E(ϕ U ϕ) | E �ϕ | E�ϕ.

where p ∈ Props is a proposition. The Boolean connectives are given by their usual
abbreviations. The basic temporal operators are U (until) and � (in the next state).
The path quantifier E (there is a path) allows to existentially quantify over possible sys-
tem behaviors; that is, in our case, over communication paths. The dual universal path
quantifier A (for all paths) and the additional temporal operators � (eventually) and �

(always from now on) can be defined as macros: �ϕ ≡ 	 U ϕ, A �ϕ ≡ ¬E �¬ϕ,
A�ϕ ≡ ¬E�¬ϕ, and Aϕ U ψ ≡ ¬E((¬ψ) U (¬ϕ ∧ ¬ψ)) ∧ ¬E�¬ψ.

Example 9 (Goals). The goals of Example 1 can be expressed as CTL-formulae as
follows: φ1 = E(¬Internet U (VPN ∧ A�¬Internet)), φ2 = E�Internet, and φ3 =
φ4 = 	. We would like to note that one could imagine other formalizations capturing
the informal (and ambiguous) description of goal φ1. Here, we actually express that
no node with internet access is visited until VPN is true and then, that on all possible
extensions it is not possible to visit a node with internet access via a channel established
on behalf of player 1.

The standard semantics of CTL is defined over Kripke structures. Given a F -topology
T we simply ignore the labels and interpret the resulting structure as Kripke structure.
This is done by adjusting the definition of a path.

Definition 13 (Communication path). A communication path λ = i0, i1, · · · ∈ Pω in
T is an infinite sequence of players/nodes that are interconnected by channels; that is,
for all j = 0, 1, 2, . . . , there exists some k ∈ P (not necessary the same, for all j) such

that ij
k−→ ij+1. We use λ[j] to denote the jth player (ij) on path λ (starting from j = 0)

and λ[j,∞] to denote the subpath of λ starting from j (i.e. λ[j,∞] = λ[j]λ[j +1] . . .).
We write Λ(i) to refer to the set of all paths that start with player i.

Let T be a F -topology and i ∈ P be a player/node in T . The semantics of CTL-
formulae is given by the satisfaction relation |=CTL defined below:

T , i |=CTL p iff p ∈ I(i) and p ∈ Props ;
T , i |=CTL ¬ϕ iff T , i
|=CTL ϕ;
T , i |=CTL ϕ ∧ ψ iff T , i |=CTL ϕ and T , i |=CTL ψ;
T , i |=CTL E �ϕ iff there is a path λ ∈ Λ(i) such that T , λ[1] |=CTL ϕ;
T , i |=CTL E�ϕ iff there is a path λ ∈ Λ(i) such that T , λ[j] |=CTL ϕ for every
j ≥ 0;

T , i |=CTL Eϕ U ψ iff there is a path λ ∈ Λ(i) such that T , λ[j] |=CTL ψ for some
j ≥ 0, and T , λ[k,∞] |=CTL ϕ for all 0 ≤ k < j.

Finally, we define the satisfaction of goals in an ON. The idea is that player i’s goal is
satisfied if the underlying topology in which only channels intended for i are considered

140 N. Bulling, M. Köster, and M. Popovici

satisfies its goal. We also note that the goal formula is interpreted in a communication
path starting from player i. (Note that the definition of satisfaction is also used within
an ONG.)

Definition 14 (Satisfaction in ON). Let O = (F , T) be an ON. For a player i ∈ P
we write T |i to refer to the F -topology in which each transition (k, l,m) ∈→ with
l
= i is removed. The goal φi of player i is satisfied in O, denoted by O |= φi, iff
T |i, i |=CTL φi.

In the following we give some examples to illustrate the usefulness of CTL for ex-
pressing goals. Subsequently, in Section 4 we show that CTL has good computational
properties regarding ONs, cf. Proposition 3.

Example 10. Notice that goals φ1 and φ2 described in Example 9 are both satisfied in
the topology T from Fig. 3 (b). T |1, 1 |=CTL φ1 since there exists the communication
path λ = 1, 2, 4, 4, . . . on which Internet is not true until (i) VPN is true and (ii)
Internet can never be true (on any path) further on. Similarly, the communication path
λ = 2, 1, 3, 3, . . . is a witness for T |2, 2 |=CTL φ2. For illustration we consider a few
other goals:

– A�VPN requires that on all paths (set for player 1) VPN must be accessible. This

is not true in Fig. 3(b), but is true if the channel 3
1−→ 4 would have been established.

– E�(VPN ∨ E �Internet) expresses that on all paths from player 1 and at each
hop-node, VPN is true or Internet is accessible via a direct neighbour. This goal is
satisfied in T |1 if the path λ = 1, 2, . . . would exist in T |1.

4 Complexity of Finding Optimal Solutions

In the following we analyze the complexity of finding optimal opportunistic networks.
Throughout this section we assume that we are given the ONF F = (P , N,Props , c, I,
(φi)i∈P , v) with goals given as CTL-formulae, theF -topology T and thatO = (F , T)
is an ON. Moreover, we use GF to refer to the F -opportunistic network game.

Complexity results are always with respect to the size of the input. As input we take
an ON or an ONF. We measure the size of both objects in terms of the number of players
and the sum of the lengths of the goal formulae.

Definition 15 (Size). We use |φi| to denote the length of the formula. The size ofO and
of F is defined as |P|+

∑
i∈P |φi| (i.e. the sizes are given by the number of players and

the sum of the lengths of all goal formulae).

We note that the number of transitions in T is polynomial in the number of players
(more precisely, ≤ |P|3, also cf. Proposition 1). This justifies that we base the size of
the input solely on the number of players and lengths of the formulae.

Definition 16 (Optimal opportunistic networks). Given an ON O = (F , T) we say
that O is Nash-optimal (resp. strong Nash-optimal, core-optimal) if the action profile
a ∈ Actions with F(a) = T is a Nash equilibrium (resp. a strong Nash equilibrium,
in the core) of the F -opportunistic network game GF .

Optimal Network Topologies in Opportunistic Networks 141

4.1 Verification of Optimal Solutions

The following result follows immediately from [2]:

Proposition 3 ([2]). For any player i ∈ P , checking whether O |= φi is P -complete
with respect to the size of O.

Now we turn to checking whether a given opportunistic network is Nash-optimal.

Proposition 4 (Checking Nash optimality). Checking whether O is Nash-optimal is
coNP-complete.

Proof. Membership: We show that the complement is in NP. Let O be the given ON
and let a be the action profile with F(a) = O. We guess a player and an action ai of
i, i.e. a set of channels. Let a′ be the action profile a with ith action replaced by ai.
We then check whether F(a′) is preferred by the current player to O. If so, O is not
Nash-optimal. By Proposition 3 the latter can be done in deterministic polynomial time.

Hardness: We reduce the Minimum Cover Problem1 to the complement of our prob-
lem. Given a set S, the subsets S1, . . . Sn ⊆ S, and a value m ≤ n, we introduce a
propositional symbol pu ∈ Props exactly for each element u ∈ S. We note that Props
is finite as S is finite. For each subset Sk, we introduce a player ik such that pu ∈ I(ik)
iff u ∈ Sk. These players all have the same goal: 	. We define a special player i∗

having as goal φ∗ = ∧p∈PropsE �p (this is a finite conjunction because Props is fi-
nite). The player can establish a channel with all other players. v(i∗) has value m + 1
and c(i∗, i) = 1, for all i
= i∗. All other costs and values are set to zero. We denote
by a the action profile in which each player sets no edge, and by O the resulting ON.
Then, there is a covering of the universe U with m subsets from S1, . . . Sn iff O is not
Nash-optimal. Now we have: there is a covering of S iff i∗ can satisfy its goal with
positive utility (by setting channels to all players/elements in the covering) iff O is not
Nash-optimal. ,-

The proof for the next proposition is done in the very same way with the only difference
that one guesses a set of players and their actions (instead of a player and an action).

Proposition 5 (Checking strong Nash optimality). Checking whether O is strong
Nash-optimal is coNP-complete.

Proposition 6 (Checking core optimality). Checking whether O is core-optimal is
coNP-complete.

Proof. Membership: We show that non-membership is in NP. We guess a tuple (C, a′C)
where C ⊆ P is a set of players and a′C ∈ ×i∈CActionsi an action profile of C. Let
a be the action profile with F(a) = O and let a′′ be a with C’s actions replaced by
a′C , i.e. a′′ = (a−C , a

′
C). Now, we can constructF(a′′) and check whether a′′ &F

C a in
deterministic polynomial time. So, we have shown that the problem of core-optimality
is in coNP. Hardness: The same construction as in the proof of Proposition 4 works. ,-

1 Minimum cover [5] takes as input a finite set S and subsets S1, . . . Sn of S as well as an
integer m ≤ n. The question is wether there are Si1 , . . . , Sim such that

⋃
j=1,...m Sij = S.

This is an NP-complete problem. Note that Sij and Sik may be equal for some 1 ≤ j, k ≤ m.

142 N. Bulling, M. Köster, and M. Popovici

4.2 Synthesis of Optimal Solutions

In the last section, we have shown that the verification problems are all coNP-complete.
The synthesis problem refers to the problem of constructing an optimal solution and not
to just checking wether we are given one. Formally, we are given an ONF F , one of the
three optimality concepts C (i.e. Nash, strong Nash, core) and would like to construct a
F -topology T such that O = (F , T) is C-optimal.

Firstly, we introduce the associated decision problem to each of the three synthesis
problems: Does there exist a F -topology such that O = (F , T) is C-optimal?

It is easy to see that the synthesis problem is at least as hard as the associated decision
problem. Formally, we have the following result:

Theorem 1 (Synthesis problems). Let F be an ONF. The decision problem whether
there is a F -topology T such that (F , T) is Nash-optimal (resp. strong Nash-optimal,
core-optimal) is in ΣP

2 .
Moreover, if such a F -topology T exists it can be synthesized by a non-deterministic

Turing machine which runs in polynomial time and which has access to a NP-oracle.

Proof. We show that all decision problems are in ΣP
2 : We guess a F -topology in non-

deterministic polynomial time and check whether it is optimal wrt. one of the three
optimality notions (cf. Propositions 3-5). This shows that the problem is in NPcoNP =
NPNP = ΣP

2 . Now it is also obvious that the synthesis problem can be implemented
by a non-deterministic Turing machine which runs in polynomial time and which has
access to an NP-oracle. ,-

Finally, we also claim hardness for the decision problems:

Claim. : The decision problem whether there is a F -topology T such that (F , T) is
Nash-optimal (resp. strong Nash-optimal, core-optimal) is ΣP

2 -complete.

Remark 3 (Discussion on the complexity). The complexity results justify our choice of
CTL to express goals. The verification problem is only P -complete and the expressive-
ness of the language is still sufficient to express interesting properties. Richer languages
like CTL∗ and LTL do already have a PSPACE-complete model checking problem.
Also the complexities of the optimality checks and decision problems are in line with
complexity results for finding Nash equilibria etc. in strategic games and one cannot
hope for better worst-case complexity results [6]. (Note that in our setting the number
of actions is exponential in the size of an opportunistic network frame F .)

5 Related Work

In this section we discuss related work. In [13] routing and forwarding protocols in
wireless ad-hoc networks are considered. Similar to our approach, strategic games are
used as models. The authors show that there is no forwarding-dominant protocol and
propose cooperation-optimal protocols as solution for non-cooperative selfish players.
Similarly, the authors in [4] analyze Nash equilibria of packet forwarding strategies in
a fixed network topology. Unlike other existing game-theoretic approaches, which are

Optimal Network Topologies in Opportunistic Networks 143

aimed at describing how communication can be established in ad-hoc (or opportunistic)
networks, our work is not focused on defining routing schemes or forwarding strategies.
We consider such information to be known: the neighbourhood function N describes
all possible channels, and the cost function may encapsulate measurable channel pa-
rameters such as throughput, required emitting power, etc.

Our method is focused on taking player preferences into account, when establishing
routes in any particular type of ad-hoc network. As already seen, using languages such
as CTL, players have the ability to enforce certain restrictions on how messages should
be forwarded. Depending on the particular network at hand, our framework can be used
as a standalone tool for establishing a communication network, or as a complement
to existing routing and forwarding strategies which can now be defined on top of our
established (optimal) topologies.

The impact of offloading mobile data traffic from 3G networks is discussed in [7] and
efficient algorithms are proposed. Next, in [9] the routing problem in a delay-tolerant
network with path failures is considered. The authors introduce a framework for study-
ing the effectiveness of sending the same message over different paths in order to max-
imise the delivery rate. In this approach, the expected failure of a path is governed by
a certain probability distribution. The work from [8] extends this setting. Path failures
are replaced by a mobility model, which takes into account the players’ social rela-
tionships, and assigns metrics such as popularity ranking or centrality (the importance
of a node in a metric). Using this mobility model, routing performance and efficiency
are improved [8]. An alternative approach, based on a Markovian model of mobility, is
discussed in [1].

Quality of service (QoS) is considered in [11], from the perspective of individual
selfishness: players may often be reluctant to participate in an opportunistic network,
either for personal security issues, or for avoiding the consumption of battery power
or computational resources. The model from [11] uses competitive markets in order to
enforce optimal player QoS in an opportunistic network.

The results from [8,11,7] show that the behaviour of an opportunistic network is
heavily dependent on the human factor. The algorithms from [8] exploit social structures
within a community, whereas [11] exploits the idea of a self-interested player which
is willing to compromise, in order to achieve some benefit (QoS). It is expected that
humans’ involvement in the way communication occurs in an opportunistic network
will increase, and the player’s choice in the way messages are routed will be equally
important as other performance factors.

Differently to [8,1], our modeling approach does not attempt to build a mobility
model. We rather assume that the set of locations which are reachable by a player are
known. As a result, our setting relies on existing methods such as [1,9], for detecting
these locations (or selecting the most likely reachable ones).

6 Conclusions

As opportunistic networks become more popular, players would like to have more con-
trol over the way their messages are delivered to the destination. As a result, rout-
ing methods that maximise delivery should also be complemented by preference-based

144 N. Bulling, M. Köster, and M. Popovici

routing mechanisms. Our approach exploits the expressiveness of CTL for formulat-
ing routing preferences, and uses standard game-theoretic tools in order to characterize
stable/optimal topologies. The solution concepts we study explore different sides of sta-
bility: against individual deviation and group deviation. For the latter, we also consider
the case when groups might decide to exchange payoff.

Future work: A distinctive feature of our setting, is that it captures a snapshot of
the evolution of an opportunistic network: the number of players, and the way they
can communicate is fixed. It would be interesting to see how a dynamically changing
set of players affect the stability, and also whether computing new equilibria/network
topologies can make use of previously computed ones. Currently, goals are evaluated
with respect to the player’s position and can only express properties of the player’s mes-
sage deliver path. It would be interesting to explore games in which this restriction is
removed, and thus giving players the ability to specify properties of other player’s mes-
sage delivery paths; that is, a player’s preferences can take into account other players’
communication. Finally, it is important to consider the implementation of our solution
concepts, and to assess the impact they have, both in terms of computational complexity
and practical use.

Acknowledgements. The work has been funded by the Sectoral Operational Pro-
gramme Human Resources Development 2007-2013 of the Romanian Ministry
of Labour, Family and Social Protection through the Financial Agreement POS-
DRU/88/1.5/S/61178 and by the NTH Focused Research School for IT Ecosystems.
NTH (Niedersächsische Technische Hochschule) is a joint university consisting of
Technische Universität Braunschweig, Technische Universität Clausthal, and Leibniz
Universität Hannover.

References

1. Becchetti, L., Clementi, A.E.F., Pasquale, F., Resta, G., Santi, P., Silvestri, R.: Information
spreading in opportunistic networks is fast. CoRR abs/1107.5241 (2011)

2. Clarke, E., Emerson, E.: Design and Synthesis of Synchronization Skeletons Using Branch-
ing Time Temporal Logic. In: Engeler, E. (ed.) Logic of Programs 1979. LNCS, vol. 125, pp.
52–71. Springer, Heidelberg (1981)

3. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceed-
ings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM 2003, pp. 27–34. ACM, New York (2003),
http://doi.acm.org/10.1145/863955.863960

4. Felegyhazi, M., Hubaux, J.P., Buttyan, L.: Nash equilibria of packet forwarding strategies in
wireless ad hoc networks. IEEE Transactions on Mobile Computing 5(5), 463–476 (2006),
http://dx.doi.org/10.1109/TMC.2006.68

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman, San Francisco (1979)

6. Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: hard and easy games. Journal of
Artificial Intelligence Research, 215–230 (2003)

7. Han, B., Hui, P., Kumar, V.A., Marathe, M.V., Shao, J., Srinivasan, A.: Mobile data offload-
ing through opportunistic communications and social participation. IEEE Transactions on
Mobile Computing 99 (PrePrints) (2011)

http://doi.acm.org/10.1145/863955.863960
http://dx.doi.org/10.1109/TMC.2006.68

Optimal Network Topologies in Opportunistic Networks 145

8. Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: social-based forwarding in delay toler-
ant networks. In: Proceedings of the 9th ACM International Symposium on Mobile ad
Hoc Networking and Computing, MobiHoc 2008, pp. 241–250. ACM, New York (2008),
http://doi.acm.org/10.1145/1374618.1374652

9. Jain, S., Demmer, M., Patra, R., Fall, K.: Using redundancy to cope with failures in a delay
tolerant network. SIGCOMM Comput. Commun. Rev. 35, 109–120 (2005),
http://doi.acm.org/10.1145/1090191.1080106

10. Lilien, L., Kamal, Z., Bhuse, V., Gupta, A.: The concept of opportunistic networks and their
research challenges in privacy and security. In: Makki, S., Reiher, P., Makki, K., Pissinou, N.,
Makki, S. (eds.) Mobile and Wireless Network Security and Privacy, pp. 85–117. Springer
US (2007), http://dx.doi.org/10.1007/978-0-387-71058-7_5

11. Pal, R., Kosta, S., Hui, P.: Settling for less – a qos compromise mechanism for opportunistic
mobile networks. In: Proceeding of the Thirteenth Workshop on MAthematical Performance
Modeling and Analysis, MAMA (2011)

12. Pelusi, L., Passarella, A., Conti, M.: Opportunistic Networking: Data Forwarding in Discon-
nected Mobile Ad Hoc Networks. IEEE Communications Magazine 44(11), 134–141 (2006),
http://dx.doi.org/10.1109/MCOM.2006.248176

13. Zhong, S., Li, L.E., Liu, Y.G., Yang, Y.R.: On designing incentive-compatible rout-
ing and forwarding protocols in wireless ad-hoc networks: an integrated approach us-
ing game theoretic and cryptographic techniques. Wirel. Netw. 13(6), 799–816 (2007),
http://dx.doi.org/10.1007/s11276-006-9855-1

http://doi.acm.org/10.1145/1374618.1374652
http://doi.acm.org/10.1145/1090191.1080106
http://dx.doi.org/10.1007/978-0-387-71058-7_5
http://dx.doi.org/10.1109/MCOM.2006.248176
http://dx.doi.org/10.1007/s11276-006-9855-1

MKNF Knowledge Bases in Multi-Context Systems

Martin Homola1, Matthias Knorr2, João Leite2, and Martin Slota2

1 Faculty of Mathematics, Physics and Informatics, Comenius University
2 CENTRIA & Departamento de Informática, Universidade Nova de Lisboa

Abstract. In this paper we investigate the relationship between Multi-Context
Systems and Hybrid MKNF Knowledge Bases. Multi-Context Systems provide
an effective and modular way to integrate knowledge from different heteroge-
neous sources (contexts) through so-called bridge rules. Hybrid MKNF Knowl-
edge Bases, based on the logic of minimal knowledge and negation as failure
(MKNF), allow for a seamless combination of description logic ontology lan-
guages with non-monotonic logic programming rules. In this paper, we not only
show that Hybrid MKNF Knowledge Bases can be used as particular contexts
in Multi-Context Systems, but we also provide transformations from the former
into the latter, without the need for an explicit Hybrid MKNF context, hence
providing a way for agents to reason with Hybrid MKNF Knowledge Bases
within Multi-Context Systems without the need for specialized Hybrid MKNF
reasoners.

1 Introduction

In Open Multi-Agent Systems, interaction and cooperation is increasingly being gov-
erned by institutions that regulate agents’ behaviour and promote desirable properties.
In such systems, it is crucial for agents and institutions to make sense of knowledge
obtained from different sources, not only to increase the chance of individually making
the right choice, but also to potentiate the chance of agreement in negotiations.

These sources of knowledge include the increasing number of available ontologies
and rule sets, to a large extent developed within initiatives such as Semantic Web and
Linked Open Data, as well as the norms and policies published by the institutions,
the information communicated by other agents, to name only a few. With such diverse
sources of knowledge to deal with, agent developers have turned their attention to Multi-
Context Systems (MCS) [7,8,4,5,16,17]. Within MCSs, knowledge is modularly com-
posed of contexts, each of which possibly encapsulating a source of knowledge of a
different type, while bridge rules provide effective means for integration [12,11]. With
the equilibria semantics of Brewka and Eiter [6], MCSs provide an effective and mod-
ular way to integrate knowledge from different heterogeneous sources, for example,
different ontologies written in some Description Logic based ontology language, such
as OWL, a rule set written in Answer-Set Programming representing some business
policies, or some facts written in propositional logic representing the agent’s model of
some other agent, to name only a few. MCSs are simple enough to allow this heteroge-
neous knowledge to be bridged and integrated, while keeping their distinct provenance.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 146–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MKNF Knowledge Bases in Multi-Context Systems 147

Norms

Product
Ontology

Agent
model N

Agent
model 1

My agent

Business
Policies

Fig. 1. Schematic depiction of a MCS representing agent’s view of the system

For example, consider an open multi-agent system in which agents participate in
online trading. In such a system, an agent may need to represent knowledge and rea-
son about an ontology of products that can be purchased, models of the other exist-
ing agents (e.g. their perceived intentions based on communicated information and
observed behaviour), its own business policies as well as those of the system in which
it is integrated, together with existing norms. Such a system can be modelled as MCS,
as depicted in Fig. 1. In such an MCS, ontologies can be modelled with DL contexts,
the business policies and norms could be modelled with rule-based contexts, e.g., us-
ing logic programs, and other agents with separate contexts using propositional facts
or additional rules in a more complex case. To propagate logical consequences across
contexts, contexts are connected with bridge rules, illustrated by arrows in Fig. 1.

Recently, it has been shown in [2,1] that realistic norms and policies that mimic the
real world require a more complex knowledge representation formalism, such as Hy-
brid MKNF [15] – based on the Logic of Minimal Knowledge and Negation as Failure
(MKNF) [14] – that tightly combines Logic Programming (LP) and Description Logic
(DL). In such scenarios, the Closed-World Assumption provided by LP rules is used
e.g. to deal with defeasible knowledge, such as exceptions, while the Open-World As-
sumption provided by DL axioms is employed e.g. to deal with ontological knowledge
and features such as reasoning with unknown individuals.

If norms and policies are to be published in such a language, it is crucial to relate
them to MCSs, so that agent’s imbued with the ability to deal with MCSs can also
reason with them.

To this purpose, in this technical paper we investigate the relationship between MCSs
and Hybrid MKNF. Taking the two-valued semantics of Hybrid MKNF [15], which is
based on the Stable Model Semantics [9], we provide transformations from Hybrid
MKNF into MCSs without the need for an explicit Hybrid MKNF context. This pro-
vides a way for agents to reason with Knowledge Bases written in Hybrid MKNF within
MCSs, with additional contexts and bridge rules, without the need for specialized Hy-
brid MKNF reasoners.

The main contributions of this paper are three distinct ways to deal with MKNF
Knowledge bases within MCSs, namely by:

– using Hybrid MKNF in the form of an MKNF context, which can then be bridged
to other contexts;

148 M. Homola et al.

– translating each Hybrid MKNF context into a First-Order context together with
additional non-monotonic bridge rules;

– translating each Hybrid MKNF context into two contexts, a DL context and a fact
base context, together with non-monotonic bridge rules.

The remainder of this paper is structured as follows: in Sect. 2, we review Descrip-
tion Logics, Logic Programs, Multi-Context Systems, and MKNF Knowledge Bases.
In Sect. 3, we introduce MKNF contexts, present the two transformations into other
kinds of contexts, and illustrate their use with fragments of the running example. We
conclude in Sect. 4 and point to future directions.

2 Preliminaries

2.1 Description Logics

We first briefly summarise the syntax and semantics of standard function-free first-
order logic with equality which forms the basis for representing both ontological and
rule-based knowledge.

We assume the standard syntax of first-order atoms, formulas and sentences, defined
inductively over disjoint sets of constant and predicate symbols C and P. A first-order
formula is ground if it contains no variables. The set of all first-order sentences is de-
noted by Φ. A first-order theory is a set of first-order sentences.

The satisfaction of a first-order sentence φ in a standard first-order interpretation I is
denoted by I |= φ; we also say that I is a model of φ if I |= φ.

Description Logics (DLs) [3] are fragments of first-order logic whose reasoning tasks
are usually decidable. Throughout the paper we assume that some first-order fragment
is used to describe an ontology, i.e. to specify a shared conceptualisation of a domain
of interest. Unless stated otherwise, we do not constrain ourselves to a specific DL
for representing ontologies. The only assumption taken in the theoretical developments
is that the ontology language is a syntactic variant of a fragment of first-order logic,
covering also cases when this fragment would normally not be considered a DL. We
assume that for any ontology axiom φ and ontology O, κ(φ) and κ(O) denote a first-
order sentence that semantically correspond to φ andO, respectively. Such translations
are known for most DLs [3]. Given a first-order sentence φ, we say that an ontologyO
entails φ, denoted by O |= φ, if and only if every first-order model of κ(O) is also a
first-order model of φ.

2.2 Logic Programs

Like Description Logics, Logic Programming has its roots in classical first-order logic.
However, logic programs diverge from first-order semantics by adopting the Closed
World Assumption and allowing for non-monotonic inferences. In what follows, we
introduce the syntax of extended normal logic programs and define the stable models
[9] for such programs.

Syntactically, logic programs are built from atoms consisting of first-order atoms
without equality. An objective literal is an atom p or its (strong) negation¬p. We denote

MKNF Knowledge Bases in Multi-Context Systems 149

the set of all objective literals by L and the set of ground objective literals by LG.
A default literal is an objective literal preceded by ∼ denoting default negation. A
literal is either an objective literal or a default literal. Given a set of literals S, we
introduce the following notation: S+ = { l ∈ L | l ∈ S }, S− = { l ∈ L | ∼l ∈ S },
∼S = { ∼L | L ∈ S }.

A rule is a pair π = (H(π), B(π)) where H(π) is an objective literal, referred to as
head of π andB(π) is a set of literals, referred to as body of π. Usually, for convenience,
we write π as (H(π)← B(π)+,∼B(π)−.) We also say thatB(π)+ is the positive body
of π and B(π)− the negative body of π. A rule is called ground if it does not contain
variables and definite if it does not contain any default literal. The grounding of a rule π
is the set of rules gr(π) obtained by replacing in π all variables with constant symbols
from C in all possible ways. A program is a set of rules. A program is ground if all its
rules are ground; definite if all its rules are definite. The grounding of a program P is
defined as gr(P) =

⋃
π∈P gr(π).

The stable models of a program are determined by considering its first-order models
in which all constant symbols are interpreted by themselves, and every ground atom p
is interpreted separately of (though still consistently with) its strong negation ¬p. An
interpretation thus corresponds to a subset of LG that does not contain both p and ¬p for
any ground atom p and models of programs are determined by treating rules as classical
implications. A stable model is then a model of the program that can be fully derived
using rules of the program assuming that literals not present in it are false by default.1

Definition 1 (Stable Model). Let P be a ground program. An interpretation J is a
stable model of P if and only if J is a subset-minimal model of the reduct of P relative
to J: PJ = {H(π)← B(π)+. | π ∈ P ∧ J |= ∼B(π)− }.

The stable models of a non-ground program P are the stable models of gr(P). The
set of all stable models of a program P is denoted by [[P]]

SM
.

2.3 Multi-Context Systems

Syntax of Multi-Context Systems. Following [6], a multi-context system consists of
a collection of components, each of which contains knowledge represented in some
logic. Abstractly, a logic is a triple L = (KB,BS,ACC) where KB is the set of
well-formed knowledge bases of L , BS is the set of possible belief sets2 and ACC :
KB→ 2BS is a function describing the semantics ofL by assigning to each knowledge
base a set of acceptable belief sets.

In addition to the knowledge base in each component, bridge rules are used to in-
terconnect the components, specifying what knowledge to assert in one component
given certain beliefs held in the other components. Formally, for a collection of log-
ics L = 〈L1, . . . , Ln〉, an Li-bridge rule σ over L, 1 ≤ i ≤ n, is of the form
(H(σ) ← B(σ).), where B(σ) is a set of bridge literals of the forms (r : p) and
not (r : p) where 1 ≤ r ≤ n and p is an element of some belief set of Lr, and for each
kb ∈ KBi : kb ∪ {H(σ) } ∈ KBi.

1 Note that, unlike in [10], we do not allow a program without a model to have a stable model.
2 We assume that each element of KB and BS is a set.

150 M. Homola et al.

Thus, putting these concepts together, a multi-context system (MCS) is a collection
of contexts M = 〈C1, . . . , Cn〉 where Ci = (Li, kbi, br i), Li = (KBi,BSi,ACCi)
is a logic, kbi ∈ KBi a knowledge base, and br i is a set of Li-bridge rules over
〈L1, . . . , Ln〉.

In the following we present the grounded equilibria semantics [6], which is moti-
vated by the stable models semantics for logic programs.

Grounded Equilibria. Given an MCS M = 〈C1, . . . , Cn〉, a belief state of M is a
sequence S = 〈S1, . . . , Sn〉 such that each Si is an element of BSi. For every bridge
literal (r : p) we write S |= (r : p) if p ∈ Sr and S |= not (r : p) if p /∈ Sr; for a set
of bridge literals S, S |= S if S |= L for every L ∈ S.

A belief state S = 〈S1, . . . , Sn〉 of M is an equilibrium if, for all i with 1 ≤ i ≤ n,
the following condition holds:

Si ∈ ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) }) .

We say that an equilibrium S is minimal if there is no equilibrium S′ = 〈S′
1, . . . , S

′
n〉

such that S′
i ⊆ Si for all i with 1 ≤ i ≤ n and S′

j � Sj for some j with 1 ≤ j ≤ n.
Now we formalise the conditions under which the minimal equilibrium is unique, in

which case we assign it as the grounded equilibrium of the MCS. This can be guaranteed
if the contexts can be reduced, using a reduction function, to monotonic ones. Formally,
a logic L = (KB,BS,ACC) is monotonic if

1. ACC(kb) is a singleton set for each kb ∈ KB, and

2. S ⊆ S′ whenever kb ⊆ kb′, ACC(kb) = {S } and ACC(kb′) = {S′ }.
Furthermore, L = (KB,BS,ACC) is reducible if

1. there is KB∗ ⊆ KB such that the restriction of L to KB∗ is monotonic,

2. there is a reduction function red : KB×BS→ KB∗ such that for each kb ∈ KB
and S, S′ ∈ BS:

– red(kb, S) = kb whenever kb ∈ KB∗,

– red is antimonotone in the second argument, that is red(kb, S) ⊆ red(kb, S′)
whenever S′ ⊆ S,

– S ∈ ACC(kb) if and only if ACC(red(kb, S)) = {S }.
A context C = (L, kb, br) is reducible if its logic L is reducible and, for all H ⊆
{H(σ) | σ ∈ br } and all belief sets S, red(kb ∪H,S) = red(kb, S) ∪H .

An MCS is reducible if all of its contexts are. Note that a context is reducible when-
ever its logic L is monotonic. In this case KB∗ coincides with KB and red is identity
with respect to the first argument. A reducible MCS M = 〈C1, . . . , Cn〉 is definite if

1. none of the bridge rules in any context contains not ,

2. for all i and all S ∈ BSi, kbi = red i(kbi, S).

In a definite MCS bridge rules are monotonic, and knowledge bases are already in
reduced form. Inference is thus monotonic and a unique minimal equilibrium exists.
We take this equilibrium to be the grounded equilibrium:

MKNF Knowledge Bases in Multi-Context Systems 151

Definition 2 (Grounded Equilibrium of a Definite MCS). Let M = 〈C1, . . . , Cn〉
be a definite MCS. S = 〈S1, . . . , Sn〉 is the grounded equilibrium of M , denoted by
GE(M), if S is the unique minimal equilibrium of M .

Grounded equilibria for general MCSs are defined based on a reduct which generalises
the Gelfond-Lifschitz reduct to the multi-context case:

Definition 3 (Reduct of a Reducible MCS). Let M = 〈C1, . . . , Cn〉 be a reducible
MCS and S = 〈S1, . . . , Sn〉 a belief state of M . The S-reduct of M is

MS = 〈CS
1 , . . . , C

S
n 〉

where, for each Ci = (Li, kbi, br i), we define CS
i = (Li, red i(kbi, Si), br

S
i). Here

brSi results from br i by deleting

1. every rule with some not (r : p) in the body such that S |= (r : p), and

2. all not literals from the bodies of remaining rules.

For each MCS M and each belief set S, we have that the S-reduct ofM is definite. We
can thus check whether S is a grounded equilibrium in the usual manner:

Definition 4 (Grounded Equilibrium). Let M = 〈C1, . . . , Cn〉 be a reducible MCS
and S = 〈S1, . . . , Sn〉 a belief state ofM . S is a grounded equilibrium ofM if S is the
grounded equilibrium of MS , that is S = GE(MS).

For example, let us model a multi-agent system in which the agent b1 aims to purchase
product item i1. For simplicity assume that there are only two agents, s1 and s2, offering
products for sale. Agent s1 readily offers i1 for 30 credits and agent s2 also currently
offers i1, but for 35 credits. Agent b1 may model this by the following two contexts:

s1 : available(i1) ← .

price(i1, 30) ← .

s2 : available(i1) ← .

price(i1, 35) ← .

Agent b1 represents its business rules as context b1. First, it imports information from
s1 and s2 using bridge rules:3

b1 : offers(A, I, P) ← A : available(I),A : price(I, P).

best price(I,X) ← s1 : price(I,X), s2 : price(I, Y), X ≤ Y.

best price(I, Y) ← s1 : price(I,X), s2 : price(I, Y), X > Y.

Finally, agent b1 uses additional rules to implement its own business logic. For instance,
it can be a good strategy to go for the best price unless there is a very good reason to
buy from some other agent. This is implemented by adding the rule into b1:

purchase(I,A) ← offers(A, I, P),best price(I, P),∼worth buy(B). (1)

3 A bridge rule with a variable (A) in place of the context identifier stands for the set of ground
instances obtained by replacing A with context identifiers in all possible ways. The predicates
<,≤ and the function + (meaning less, less or equal relations and addition on numeric do-
mains) can be formalized in logic programming and we abstract from this for space reasons.
Also, due to space reasons the computation of best price is slightly simplified given the case
of two selling agents, which can be easily extended in case of multiple agents.

152 M. Homola et al.

Indeed, sometimes it might be worth not to buy for the best price in the long term. If
b1 has long standing business relations with some supplier, it may be worth purchasing
some items even for a slightly higher price assuming that later on it may be rewarded
with a discount or other value. Hence assuming that s2 is the valuable supplier we add
the following rules into b1:

worth buy(A) ← best price(I, P), offers(A, I,Q), good supplier(A),Q ≤ P + 5. (2)

purchase(I,A) ← offers(A, I, P),worth buy(A). (3)

good supplier(s2) ← . (4)

The MCS M = 〈b1, s1, s2〉 has a single grounded equilibrium S = 〈B1, S1, S2〉 such
that purchase(i1, s2) ∈ B1 and purchase(i1, s1) /∈ B1. So the agent actually reasons
according to the business strategy that we described.

2.4 MKNF Knowledge Bases

MKNF Knowledge Bases [15] are based on the logic of Minimal Knowledge and Nega-
tion as Failure (MKNF) [14], an extension of first-order logic with two modal opera-
tors: K and not. We use the variant of this logic introduced in [15]. MKNF sentences
and theories are defined by extending function-free first-order syntax by the mentioned
modal operators in a natural way.

As in [15], we assume that the set of constant symbols C is infinite and consider
only Herbrand interpretations that interpret the equality predicate ≈ as a congruence
relation on C. The set of all such interpretations is denoted by I. An MKNF structure is
a triple (I,M,N) where I ∈ I andM,N ⊆ I.4 Intuitively, the first component is used
to interpret the first-order parts of an MKNF sentence while the other two components
interpret the K and not modalities, respectively. By φ[a/x] we denote the formula
obtained from φ by replacing every unbound occurrence of variable x with the constant
symbol a. The satisfaction of an MKNF sentence and an MKNF theory T in an MKNF
structure (I,M,N) is defined as follows:

(I,M,N) |= p iff I |= p

(I,M,N) |= ¬φ iff (I,M,N)
|= φ

(I,M,N) |= φ1 ∧ φ2 iff (I,M,N) |= φ1 and (I,M,N) |= φ2

(I,M,N) |= ∃x : φ iff (I,M,N) |= φ[a/x] for some a ∈ C

(I,M,N) |= Kφ iff (J,M,N) |= φ for all J ∈ M
(I,M,N) |= notφ iff (J,M,N)
|= φ for some J ∈ N
(I,M,N) |= T iff (I,M,N) |= φ for all φ ∈ T

The symbols 	, ⊥, ∨, ∀ and ⊃ are interpreted accordingly. Also, for any M ⊆ I we
write M |= T if (I,M,M) |= T for all I ∈ M. An MKNF interpretation M is a

4 Differently from [15], we allow for empty M, N in this definition as later on it will be useful
to have satisfaction defined for this marginal case.

MKNF Knowledge Bases in Multi-Context Systems 153

non-empty subset of I.5 By M = 2I we denote the set of all MKNF interpretations
together with the empty set. The semantics of MKNF theories is defined as follows:

Definition 5 (MKNF Semantics). Let T be an MKNF theory. We say that an MKNF
interpretationM is

– an S5 model of T ifM |= T ;

– an MKNF model of T ifM is an S5 model of T and for every MKNF interpretation
M′ �M there is some I ′ ∈ M′ such that (I ′,M′,M)
|= T .

MKNF knowledge bases [15] consist of two components – an ontology O and a pro-
gram P – and their semantics is given by translation to an MKNF theory. In the fol-
lowing we introduce the syntax and semantics of MKNF knowledge bases in which we
constrain the program component to a normal logic program.6

An MKNF knowledge base is a set K = O ∪ P where O is an ontology and P
is a logic program. An MKNF knowledge base is ground if P is ground; definite if
P is definite. The grounding of an MKNF knowledge base K is defined as gr(K) =
O ∪ gr(P).

The translation function κ is defined for all literals l, default literals∼l, sets of literals
S, rules π with vector of free variables x, programs P and MKNF knowledge bases
K = O ∪ P as follows: κ(l) = K l, κ(∼l) = not l, κ(S) =

∧
{ κ(L) | L ∈ S },

κ(π) = (κ(B(π)) ⊃ κ(H(π))), κ(P) = { κ(π) | π ∈ P }, κ(K) = { κ(O) } ∪ κ(P).
The semantics of MKNF knowledge bases is thus defined as follows:

Definition 6 (Semantics of MKNF Knowledge Bases). LetK be an MKNF knowledge
base. We say that an MKNF interpretationM is an S5 model ofK ifM is an S5 model
of κ(K). Similarly,M is an MKNF model of K ifM is an MKNF model of κ(K).

In the normative part of our running example, DL axioms could be used to classify
different products depending on their availability on the market into available and un-
available, but also into products that can be directly purchased and special products for
which licitation is required. Then, rules will be used to evaluate if a particular product
can be purchased by some agent or not (e.g., normally the product can be purchased
whenever it is available, but in the exceptional case when licitation is required addi-
tional conditions must be satisfied). Note that while DL axioms are required to encode
the classification, non-monotonic rules are required to express exceptions. This can be
encoded in the MKNF knowledge base n composed of the ontology On and the rule
set Pn:

5 Notice that if M is empty, then it vacuously holds that M |= φ for all sentences φ. For this
reason, and in accordance with [15], ∅ is not considered an MKNF interpretation.

6 Note that we do not directly include the K and not modalities in rules of the MKNF knowl-
edge base; instead, they are introduced by the translation function κ (denoted by π in [15])
upon translation to an MKNF theory. Also, unlike in [15], κ is overridden to accept atoms,
literals and sets of literals and produces an MKNF theory instead of an MKNF sentence. Thus
we do not need to assume that the program is finite and can deal with infinite ground programs
that result from grounding a finite but non-ground program (the same is actually done in [15]
from Section 4 onwards).

154 M. Homola et al.

On : �0 offered by.supplier � unavailable product

=1 offered by.supplier � purchasable product

�2 offered by.supplier � licitable product

Pn : purchase allowed(I,A) ← offered by(I,A),∼licitable product(I)

purchase allowed(I,A). ← licitable product(I), offered by(I,A), best price(I,A).

3 Reducing an MKNF Context

MKNF knowledge bases can be used within Multi-Context Systems by specifying an
MKNF context that uses the MKNF logic. We formalise these notions below. Subse-
quently, we show that every MKNF context can be transformed into a first-order con-
text. The transformed MCS has the same grounded equilibria as the original one, show-
ing that instead of a specialised MKNF reasoner, a first-order reasoner can be used to
obtain equivalent results. Subsequently, we show that this result can be strengthened
even further, resulting in a multi-context system that requires only a DL reasoner in-
stead of an MKNF reasoner provided all bridge literals referring to that context are
expressible in the DL in consideration. In this case, a DL reasoner is basically all that
is necessary to handle reasoning with MKNF contexts within a multi-context system.

3.1 MKNF Contexts and First-Order Contexts

We start by formalising what an MKNF context actually is. The MKNF logic is the logic
LMKNF = (KBMKNF ,BSMKNF ,ACCMKNF) where

– KBMKNF is the set of MKNF knowledge bases,

– BSMKNF is the set of deductively closed sets of first-order sentences,

– ACCMKNF(K) contains {φ ∈ Φ | M |= φ } for every MKNF model M of K and
also the inconsistent belief set Φ in case K′, obtained from K by removing all rules
with default negation, has no MKNF model.

The latter condition is required to adhere to the formal framework of multi-context
systems. An MKNF context can now be established as follows:

Definition 7 (MKNF Context). A context C = (L, kb, br) is an MKNF context if
L = LMKNF , kb is an MKNF knowledge base, and, for every σ ∈ br , H(σ) is either an
ontology axiom or a definite rule. We also say that such σ is an MKNF bridge rule.

An MKNF context C = (LMKNF ,K, br) is ground if K is ground and all rules in
heads of MKNF bridge rules from br are ground; finite if both K and br are finite.

In order to talk about grounded equilibria of multi-context systems with MKNF con-
texts, their reducibility must be guaranteed. Given our definition above, this is indeed
the case:

Proposition 8. Every MKNF context is reducible.

MKNF Knowledge Bases in Multi-Context Systems 155

We are now able to plug the normative MKNF KB n into our example MCS using the
bridge rule set brn:

brn : supplier(A) ← A : available(I).

offered by(I,A) ← A : available(I).

best price(I, s1) ← s1 : price(I,X), s2 : price(I, Y), X ≤ Y.

best price(I, s2) ← s1 : price(I,X), s2 : price(I, Y), X > Y.

Agent b1 is now required to reason with the norms. To implement this, the following
bridge rule is added to b1:

allowed(I,A) ← n : purchase allowed(I,A).

Additionally, the business rules (1) and (3) need to be altered (in the respective order):

purchase(I,A) ← offers(A, I, P), allowed(I,A),best price(I, P),∼worth buy(B). (5)

purchase(I,A) ← offers(A, I, P), allowed(I,A),worth buy(A). (6)

The agent will now take the norms into account during reasoning. The updated MCS
Mn = 〈b1, s1, s2, n〉 has a single grounded equilibriumSn = 〈Bn

1 , S
n
1 , S

n
2 , N

n〉, how-
ever, neither purchase(i1, s1) nor purchase(i1, s2) belong to Bn

1 . Indeed the agent’s
business strategy is now in conflict with the norms, it cannot favour the valuable sup-
plier any longer if there is a better momentary offer.

To fully accommodate the norms while keeping the agent operational, we would
have to drop ∼worth buy(B) from the rule (5) and completely drop the rule (6) which
is now obsolete, it represents an invalid strategy. Or if in turn we chose to ignore the
norms (and bear eventual consequences) we might drop allowed(I, A) from both rules
and return to the previous purchasing strategy.

To reduce an MKNF context to a simpler one, we define first-order contexts. The
first-order logic is the logic LFO = (KBFO,BSFO,ACCFO) where

– KBFO is the set of first-order theories,

– BSFO is the set of deductively closed sets of first-order sentences,

– ACCFO(T) = {φ ∈ Φ | T |= φ }.
A first-order context is henceforth defined as follows:

Definition 9 (First-Order Context). A context C = (L, kb, br) is a first-order context
if L = LFO , kb is a first-order theory, and, for every σ ∈ br , H(σ) is a first-order
sentence. We also say that such σ is a first-order bridge rule.

The first-order logic is monotonic, so every first-order context is reducible.

Proposition 10. Every first-order context is reducible.

3.2 Reduction to a First-Order Context

We are now ready to introduce a transformation of an MKNF context to a correspond-
ing first-order context. This transformation is based on transforming the rules from

156 M. Homola et al.

the MKNF knowledge base to bridge rules, leaving us with only the ontology compo-
nent which can already be handled by a first-order context. For example, if the MKNF
knowledge base in the MKNF context Cj contains the rule

p← q,∼r.

the corresponding first-order bridge rule is of the form

p← (j : q),not (j : r).

Furthermore, since bridge rules in an MKNF context may have definite rules in their
heads, we also need to transform them in some way so that the resulting bridge rules
are compatible with the first-order context. This is done by moving the body of the
definite rule π in the head of a bridge rule σ to the body of σ. For example, if the
MKNF context Cj contains the MKNF bridge rule

(p← q.)← (i1 : q),not (i2 : r).

then the transformed first-order bridge rule will be

p← (j : q), (i1 : q),not (i2 : r).

In case of MKNF bridge rules that have an ontology axiom φ in their head, this axiom
needs to be translated to its first-order counterpart κ(φ). For all ground rules these
transformations can be formalised as follows:

Definition 11 (Transformation to First-Order Bridge Rules). Let j be an integer.
We introduce the following notation for every l ∈ LG and S ⊆ LG: βj(l) = (j : l),
βj(∼l) = not (j : l), βj(S) = { βj(L) | L ∈ S }.

Let C = (LMKNF ,O ∪ P , br) be a ground MKNF context. For every rule π ∈ P ,
βj(π) denotes the first-order bridge rule

H(π)← βj(B(π)).

Furthermore, for every MKNF bridge rule σ ∈ br of the form (π ← B(σ).), where π
is a definite rule, βj(σ) denotes the first-order bridge rule

H(π)← βj(B(π)) ∪B(σ).

and for every MKNF bridge rule σ ∈ br of the form (φ ← B(σ).), where φ is an
ontology axiom, βj(σ) denotes the first-order bridge rule

κ(φ)← B(σ).

Also, for any set of rules or MKNF bridge rules S, βj(S) = { βj(π) | π ∈ S }.

The definition of the first-order context that corresponds to an MKNF context is now
straightforward – it suffices to apply the above transformation βj to all rules and MKNF
bridge rules of the MKNF context:

MKNF Knowledge Bases in Multi-Context Systems 157

Definition 12 (First-Order Context Corresponding to MKNF Context). Let Cj =
(LMKNF ,O∪P , brj) be a ground MKNF context. The first-order context corresponding
to Cj is CFO

j = (LFO, { κ(O) } , βj(br j) ∪ βj(P)).

Due to the properties of the MKNF semantics, when we consider a finite ground MKNF
context, which is usually the most interesting case in applications, we find that it can
be substituted by the corresponding first-order context without affecting the grounded
equilibria of the multi-context system. Formally:

Theorem 13 (Reduction Into First-Order Context). Let M = 〈C1, . . . , Cn〉 be a
multi-context system such that for some j with 1 ≤ j ≤ n, Cj is a finite ground MKNF
context and put

M ′ = 〈C1, . . . , Cj−1, C
FO
j , Cj+1, . . . , Cn〉 .

The grounded equilibria of M and M ′ coincide.

This transformation can be repeated for all MKNF contexts in the multi-context system,
yielding an equivalent system that does not require to use the MKNF logic. Formally:

Corollary 14. For every multi-context system M with some finite ground MKNF con-
texts there exists a multi-context systemM ′ such that the grounded equilibria ofM and
M ′ coincide andM ′ uses first-order contexts instead of the original MKNF contexts.

Revisiting our running example, the MCS Mn is reduced into Mn′ = 〈b1, s1, s2, nFO〉
where nFO = (LFO, { κ(On) } , βn(brn) ∪ βn(Pn)):

κ(On) : ∀X∀Y ¬offered by(X,Y) ∨ ¬supplier(Y) =⇒ unavailable product(X)

∀X∃Y offered by(X,Y) ∧ supplier(Y) ∧ (∀Z(Z = Y) ∨ ¬offered by(X,Z)

∨ ¬supplier(Z)) =⇒ purchasable product(X)

∀X∃Y ∃Z(Y
= Z) ∧ offered by(X,Y) ∧ supplier(Y) ∧ offered by(X,Z)

∧ supplier(Z) =⇒ licitable product(X)

βn(Pn) : purchase allowed(I,A) ← n : offered by(I,A),not (n : licitable product(I)).

purchase allowed(I,A) ← n : licitable product(I), n : offered by(I,A),

n : best price(I,A).

and βn(brn) = brn.

3.3 Translation Into Two Contexts

To be able to translate an MKNF context into a DL context we need to define DL
contexts first. The DL logic is the logic LDL = (KBDL,BSDL,ACCDL) where

– KBDL is the set of all ontologies;

– BSDL is the set of all deductively closed sets of first-order sentences;

– ACCDL(O) returns the set of first-order sentences φ such that O |= φ.

158 M. Homola et al.

A DL context is obtained as follows:

Definition 15 (DL Context). A context C = (L, kb, br) is a DL context if L = LDL,
kb is an ontologyO, and, for every σ ∈ br , H(σ) is a DL-axiom. We also say that such
σ is a DL bridge rule.

DLs as fragments of first-order logic are monotonic, so DL contexts are reducible.

Proposition 16. Every DL context is reducible.

Since DLs only make use of unary and binary predicates, and an MKNF context is not
limited to these due to the presence of atoms over predicates whose arity is greater than
2, we need an additional context here that serves as a means to store and retrieve facts.
For simplicity, we introduce an abstract fact base context and its associated logic. The
fact base logic is the logic LFB = (KBFB ,BSFB,ACCFB) where

– KBFB is the set of subsets of LG;

– BSFB is the set of subsets of LG;

– ACCFB(kb) is the identity function.

A fact base context is established as follows:

Definition 17 (Fact Base Context). A context C = (L, kb, br) is a fact base context if
L = LFB, kb is a subset of LG, and, for every σ ∈ br , H(σ) is l ∈ LG. We also say that
such σ is a fact base bridge rule.

A fact base context is obviously reducible.

Proposition 18. Every fact base context is reducible.

Essentially, the idea is to translate an MKNF context Cj into a pair of contexts, namely
a DL context and a fact base context, which is possible under certain restrictions as
specified below. This can be achieved by first considering the reduction into a first-
order context, which contains only bridge rules and κ(O). The bridge rules can be
divided between the two contexts depending on whether the literal in the head appears
only in the rules or not. In the former case such a head can never be used for reasoning
in the DL context, hence, all these rules are added to the fact base context, while in the
latter case, they are added to the DL context. Additionally, in all bridge literals that do
not appear in O, the pointer is changed to the fact base context.

We formalize this, by first defining this division of literals appearing in the MKNF
context, i.e. in the corresponding MKNF KB. Given an MKNF knowledge base K =
O∪P , we define that l ∈ LG is a DL-literal if the predicate of l appears inO. Otherwise,
l is a non-DL literal.

Now we can define an abstract function that can be used to transform the bridge
literals in a given first-order context, with the intention that bridge rules with a non-DL-
atom in the head point to a different context k.

Definition 19 (Transformation to Two-Context Bridge Rules). Let j and k be inte-
gers and S a set of bridge rules. We define βk

j (S) = { βk
j (π) | π ∈ S }. For every π ∈ S

βj(π) denotes the bridge rule H(π)← βk
j (B(π)). We define for sets of bridge literals

S that βk
j (S) = { βk

j (L) | L ∈ S }. Moreover, we define for single bridge literals (j : l)
and not (j : l):

MKNF Knowledge Bases in Multi-Context Systems 159

– βk
j ((j : l)) = (k : l) and βk

j (not (j : l)) = not (k : l) if l is a non-DL-atom;

– βk
j ((j : l)) = (j : l) and βk

j (not (j : l)) = not (j : l) otherwise.

Finally, βk
j ((i : l)) = (i : l) and βk

j ((i : l)) = (i : l) for 1 ≤ i
= j ≤ n.

Note that the second case not only handles DL-atoms, but also arbitrary first-order sen-
tences, which also covers translations of DL axioms.

We define the two-context DL MCS corresponding to an MKNF context.

Definition 20 (Two-Context DL MCS Corresponding to an MKNF Context). Let
Cj = (LMKNF ,O ∪ P , brj) be a ground MKNF context.The two-context DL MCS cor-
responding to Cj , 〈CDL

j , C
FB
k 〉, is defined as follows:

– CDL
j = (LDL,O, br j);

– br j = {H(π) ← βk
j (B(π)) | π ∈ (βj(br j) ∪ βj(P)) ∧ H(π) is a DL-atom

fact} ∪ {φ← βk
j (B(π)) | π ∈ br j ∧H(π) is an ontology axiom φ};

– CFB
k = (LFB, ∅, brk);

– brk = {H(π) ← βk
j (B(π)) | π ∈ (βj(br j) ∪ βj(P)) ∧ H(π) is a non-DL-atom

fact}.
Bridge rules in (βj(br j) ∪ βj(P)) are divided between the two contexts as outlined.
The only exception are bridge rules in br j with an ontology axiom in the head. These
are added to the DL context. Note that the index k for the fact base context allows us to
add CFB

k to an MCS with n contexts at a position of choice, which is n+ 1.
Given a belief set S, S∗ denotes the deductive closure of S. We can substitute a

finite, ground MKNF context with a two-context MCS without affecting the grounded
equilibria provided that certain conditions hold.

Theorem 21 (Translation Two-Context DL MCS). Let M = 〈C1, . . . , Cn〉 be a re-
ducible multi-context system such that, for some j with 1 ≤ j ≤ n, Cj is a finite ground
MKNF context, and, for all i with 1 ≤ i ≤ n, all π ∈ br i, and each (j : l) ∈ π and
not (j : l) ∈ π, l is an objective literal. Let k be n+ 1, and set

M ′ = 〈C′
1, . . . , C

′
j−1, C

DL
j , C

′
j+1, . . . , C

′
n, C

FB
n+1〉

where, for all i with 1 ≤ j
= i ≤ n, C′
i results from Ci by applying βn+1

j to br i.
The grounded equilibria ofM andM ′ are equivalent, i.e., for all i with 1 ≤ i
= j ≤

n, Si = S′
i, and Sj = (SDL

j ∪ SFB
n+1)

∗.

The restriction on bridge literals in MCS given in Theorem 21 could be seen as being
too severe, i.e. it is possible to come up with a less restrictive result that only limits
these bridge literals to a degree such that they are not arbitrary first-order sentences, but
either non-DL atoms or formulas that are in the belief set of the DL in consideration.
We claim that these more restrictive conditions are sufficient here, in particular in light
of the kind of rules we allow in MKNF knowledge bases, and leave lifting the result to
more expressive MKNF knowledge bases (and more expressive bridge rules) for future
work.

Again, this transformation can be repeated for all MKNF contexts in the multi-
context system, yielding an equivalent system that does not require to use the MKNF
logic if the bridge literals to the MKNF context are appropriately restricted. Formally:

160 M. Homola et al.

Corollary 22. For every multi-context system M with some finite ground MKNF con-
texts such that all bridge literals to these contexts are objective literals, there exists a
multi-context systemM ′ such that the grounded equilibria ofM andM ′ are equivalent
(in the sense of Theorem 21) and M ′ uses pairs of DL contexts and fact base contexts
instead of the original MKNF contexts.

Turning again to our running example, if we choose the two-context translation instead
of the previous one, Translating Mn is reduced into Mn′′ = 〈b1, s1, s2, nDL,mFB〉
where nDL = (LDL,On, brn) and mFB = (LFB , ∅, brm) where On is as defined above
and brn and brm are as follows:

brn : supplier(A) ← A : available(I).

offered by(I,A) ← A : available(I).

brm : best price(I, s1) ← s1 : price(I,X), s2 : price(I, Y), X ≤ Y.

best price(I, s2) ← s1 : price(I,X), s2 : price(I, Y), X > Y.

purchase allowed(I,A) ← n : offered by(I,A),not (n : licitable product(I)).

purchase allowed(I,A) ← n : licitable product(I), n : offered by(I,A),

m : best price(I,A).

4 Conclusions

Open multi agent systems can be modelled in MCSs, and we have considered MKNF
knowledge bases as one such context, which allows the usage of a highly expressive
knowledge representation and reasoning formalism in such MCSs. One immediate re-
sult of our work is that the Hybrid MKNF [15] can indeed be used in MCSs, namely in
the form of MKNF contexts, which can then be interlinked with other contexts in the
MCS.

Since not all agents may necessarily be able to reason with such a context, we inves-
tigated the possibility of using the expressiveness of MKNF knowledge bases without
having to use an actual MKNF context. We showed that an MKNF context can be re-
duced to an associated first-order context without any effects on the semantics, i.e. the
grounded equilibria of the considered MCS. Hence, a first order reasoner can be used
instead. Moreover, restricting the form of bridge literals to objective literals, we have
shown that we can even use a combination of a DL reasoner and a simple store for (rule)
facts to achieve the same result. In the former case, the resulting MCS is more general,
while in the latter case we are enabled to use a decidable and faster reasoner.

Future work includes loosening the restriction in Theorem 21 such that bridge liter-
als may contain more expressive formulas w.r.t. the DL context. In line with this lies
the extension of the results to more general MKNF KBs, i.e. where objective literals
in MKNF rules may not just be atoms and their (classical) negations. Another line of
work would be to consider substituting an MKNF context with two contexts where one
context is a DL-context and the other one in ASP. In this case, contrary to our transla-
tion into two contexts, the treatment of non-monotonic rules would be literally hidden
in the context and it would be interesting to compare these different two-context trans-
lations. In [6], also a well-founded semantics is defined for MCSs and considering this

MKNF Knowledge Bases in Multi-Context Systems 161

semantics and investigating its correlation with the well-founded semantics for Hybrid
MKNF [13] would also be interesting possibly enabling us to use a semantics in MCSs
that is, due to its nature, of a lower computational complexity.

Acknowledgments. Matthias Knorr, João Leite and Martin Slota were partially sup-
ported by Fundação para a Ciência e a Tecnologia under project “ERRO – Efficient
Reasoning with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010). Martin Ho-
mola was partially supported by the Slovak national project VEGA no. 1/1333/12.
The collaboration between the co-authors resulted from the Slovak–Portuguese bilat-
eral project “ReDIK – Reasoning with Dynamic Inconsistent Knowledge”, supported
by the APVV agency under SK-PT0-0028-10 and by Fundação para a Ciência e a Tec-
nologia (FCT/2487/3/6/2011/S).

References

1. Alberti, M., Gomes, A.S., Gonçalves, R., Knorr, M., Leite, J., Slota, M.: Normative sys-
tems require hybrid knowledge bases (extended abstract). In: Conitzer, V., Winikoff, M.,
Padgham, L., van der Hoek, W. (eds.) Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), June 4-8. IFAAMAS, Valen-
cia, Spain (2012)

2. Alberti, M., Gomes, A.S., Gonçalves, R., Leite, J., Slota, M.: Normative Systems Repre-
sented as Hybrid Knowledge Bases. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van
der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 330–346. Springer, Heidelberg
(2011)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge
University Press (2007)

4. Benerecetti, M., Cimatti, A., Giunchiglia, E., Giunchiglia, F., Serafini, L.: Formal Specifi-
cation of Beliefs in Multi-Agent Systems. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P.
(eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 117–130. Springer, Heidelberg
(1997)

5. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems. Journal of
Logic and Computation 8(3), 401–423 (1998)

6. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems.
In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, July 22-26, pp.
385–390. AAAI Press, Vancouver (2007)

7. Casali, A., Godo, L., Sierra, C.: Graded BDI Models for Agent Architectures. In: Leite, J.,
Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 126–143. Springer, Heidelberg
(2005)

8. Cimatti, A., Serafini, L.: Multi-Agent Reasoning with Belief Contexts: The Approach and a
Case Study. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS,
vol. 890, pp. 71–85. Springer, Heidelberg (1995)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Conference and Symposium
on Logic Programming (ICLP/SLP 1988), August 15-19, pp. 1070–1080. MIT Press, Seattle
(1988)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–385 (1991)

162 M. Homola et al.

11. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)

12. Giunchiglia, F.: Contextual reasoning. Epistemologia - Special Issue on I Linguaggi e le
Macchine XVI, 345–364 (1993)

13. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics
under the well-founded semantics. Artificial Intelligence 175(9-10), 1528–1554 (2011)

14. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J., Reiter,
R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI 1991), pp. 381–386. Morgan Kaufmann, Sydney, Australia (1991)

15. Motik, B., Rosati, R.: Reconciling description logics and rules. Journal of the ACM 57(5),
93–154 (2010)

16. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Journal
of Logic and Computation 8(3), 261–292 (1998)

17. Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering executable agents using multi-
context systems. Journal of Logic and Computation 12(3), 413–442 (2002)

Implementing Reversible Processes

in Multi-agent Action Languages Using Answer
Set Planning

Ben Wright�, Enrico Pontelli, and Tran Cao Son

New Mexico State University,
Department of Computer Science,
Las Cruces, New Mexico, USA

{bwright,epontell,tson}@cs.nmsu.edu

Abstract. This paper presents an implementation of the action lan-
guage Lmt in answer set programming. The novelty of this language
comes from the use of processes to execute delayed effects for actions.
In addition, the ability to reverse, or cancel, the processes is available.
A simple example is introduced to show when reversing actions are use-
able - even by other agents in the domain. These processes are the base
foundation for future implementation of commitments in planning for
multi-agent domains.

Keywords: Knowledge Representation, Action Languages, Multi-agent
systems, Answer Set Programming.

1 Introduction

In the study of representing actions and change, actions with delayed effects
have been considered for some time [7,19]. The ability to reason about actions
that have a non-deterministic endpoint is quite fascinating. However, to fully
represent this idea, one should also consider the idea that the agent (or other
agents) may potentially want to stop the effect before it has time to occur.

This idea can be seen in many examples. For instance, take the following
scenario,“It is the end of a tied soccer match and the game is down to the final
penalty kick. The player kicks the ball towards the goal. Before it arrives, the
goalkeeper has the ability to stop the incoming ball from reaching the goal”.
Another example could be, “A consumer just purchased some goods from a
merchant by putting the check in the mail. However, when he inspected the
goods he found them to be of low quality and wished to cancel his check prior
to it arriving.”

In order to study these types of actions, we developed an implementation in
Answer Set Programming of the language Lmt first presented in [26]. To show

� This research has been partially supported by NSF grants DGE-0947465 and
IIS-0812267.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 163–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 B. Wright, E. Pontelli, and T.C. Son

the utility of the language and implementation we use two examples, Penalty
Kick and Merchant/Consumer.

The rest of this paper is structured as follows. In the rest of this section
we give some background information about action languages and answer set
programming as well as mention some related works. In Section 2 we define the
action language Lmt and provide two examples using the action language. In
Section 3 we actually define the translation of the action language into ASP
rules. Following this, we evaluate our results in Section 4 and then discuss some
of the issues we noticed in Section 5. Finally, we conclude and offer some future
directions in Section 6.

1.1 Action Languages and Answer Set Programming

Action languages, like A, B, and C [18], use transition function based semantics
and English like syntax to approach the area of representing and reasoning about
actions and change. Recently, there have been several attempts at developing
action languages for multi-agent environments [25,26,5].

The transition-function based semantics offer straight forward semantics that
can be viewed as directed graphs and can easily be extended for various addi-
tional features desired for the action language. By using english-like syntax, the
language provides a clear and declarative syntax that avoids ambiguity or com-
plicated functions. With these semantics and syntax, action languages provide
a quick, simple, and efficient way to reason and represent actions and change.

Answer set programming (ASP) is a logic programming paradigm built on
the concept of stable model semantics [17]. These stable models, or answer sets,
are generated from a list of rules and constraints given as a logic program. For
instance simple rules such as, “Penguins are birds.” can be represented by:

penguin(P)← bird(P). (1)

Additionally, we can represent constraints like, “Two nodes that share an edge
should not be the same color” by:

← node(X), node(Y), edge(X,Y), color(C,X), color(C, Y). (2)

A logic program is said to have a stable model if one of the conditions below
holds:

1. The program does not contain any ‘negation as failure’ literals (naf-literal).
A naf-literal is a literal of the form: not a, where a is an atom. Without any
naf-literals, the set of atoms given is the smallest set that satisfy the rules
from the program. That is, it is already a reduced answer set.

2. If naf-literals are present, then this is an answer set if the reduction of this
program with respect to a set of ground atoms is also an answer set. That
is, if we remove all of the naf-literals we can still reach a stable model.

If a stable model results, then that is a ‘valid’ or satisfiable model. In addition,
the program is said to be consistent, while a program without a stable model is
inconsistent.

Implementing Reversible Processes in MAS Using ASP 165

An interest in ASP has been seen by some in the planning community by some
researchers [21,22,27]. In Answer Set Planning, logics of answer sets are mapped
to planning problems such that plans, or sequences of actions, arise from stable
models.

1.2 Related Work

There is a great deal of previous work in the area of encoding action theo-
ries and multi-agent action languages. Other action languages have dealt with
delayed and continuous effects [7]. However, this was the theory and not the
implementation. There have been other action languages that have looked into
temporal actions as well [19]. In addition, these action languages only dealt with
single agents, while we focus on the multi-agent aspect of delayed effects.

Many encodings of Action Languages in ASP exist: [12] encodes ε, [11] en-
codes CCALC, [13,14] encode versions of B, [10] applies Definite Agent Logic
Programs (definite ALPs) to answer sets, and [16] offers a compiler for many
Action Languages into ASP. Other implementations of multi-agent action lan-
guages exist [25,5]. However, they do not use the concept of processes or address
delayed or continuous effects.

In addition to action languages, another large body of related work is that of
the planning language PDDL 2.1 and its various successors [15]. While PDDL 2.1
does provide a system for durative actions, it does not use a transition function
base for its semantics. In addition, PDDL 2.1 does not focus on ir/reversible
processes or multiple agents. MAPL [9], is an extension of PDDL 2.1 that does
take into account multiple agents. However, it also does not use a transition
function base semantics or focus on ir/reversible processes.

Other agent languages exist for multi-agent systems (MAS) as well. One in
particular is AgentSpeak [23], which has been implemented in the interpreter JA-
SON [8], using Java. JASON provides a good implementation for logical singular
agent encoding with AgentSpeak and also for setting up dynamic environments
easily in Java. However, this set up has a more “online” feel to its planning
procedures and would also require more coordination to encode actions between
agents. [3] presents an action language, Dylog, and [2] further shows how to use
this as a means to program many web agents. [4] also shows an implementation
of an agent language based on logics and actions. [20] defines the agent language
LPS based on Abductive Logic Programming which provides both operational
and model-theoretic semantics.

2 Representing Delayed Effects in Action Languages

The delayed effects implemented in this paper are one part of the action language
Lmt. Other parts of the language include situational reasoning for narratives,
temporal fluents, and the use of commitments to form complex protocols [26].
Lmt is first fully defined in [26] and sets up delayed effects as the basis for

future work reasoning about narratives and commitments. The language is built

166 B. Wright, E. Pontelli, and T.C. Son

up from the language L defined in [6]. We do not go in depth in covering
the actions from that language, we only focus on the extensions implemented
for Lmt.

2.1 Syntax of Lmt

The syntax of action languages are very simple. Action theories are tuples (ID,
D) where ID is the initial world of the domain D and D is the domain of the
problem which holds the fluents, actions, agents, and processes of the problem.
Fluents, F , are propositional variables and all the agents in the domain are in
AG. The list of action names is given by A. Additionally, sometimes fluents and
actions are partitioned to the scope of one agent. When this occurs, they are
defined by Fa and Aa respectively when a ∈ AG.

The above definitions have been used in previous multi-agent action theories
[5,25]. Additionally, as actions occur, more than one action can occur at a time
as long as each agent only performs one action. To view this idea, the concept
of action snapshots, denoted by α, is used. An action snapshot contains a set
of actions performed by all agents in one time step. It is also assumed that all
agents have the ability to perform the action noop which does not cause any
effects and does not have any preconditions.

A plan would then consist of a sequence of action snapshots such that some
fluent formula would hold after those actions occurred. This is expressed by the
following rule, which is further defined in [26,5]:

ϕ after Plan (3)

From this, the formula ϕ is referred to as the goal and Plan is the sequence of
action snapshots α that should be taken from the initial world ID to allow ϕ to
hold.

[26] introduced one last concept as well, that of an annotated fluent. An an-
notated fluent appears like, f t, where f ∈ F and t is a time step. Then this
annotated fluent f is said to have its effect produced in t time steps.

In order to use delayed effects as actions, processes are used and a list of the
processes, P , is given to the domain D. By itself, the idea of delayed effects is
rather simple to grasp and the following action rules set them up:

action starts process irrev irreversible fluent effect in x to y (4)

action starts process rev reversible fluent effect in x to y (5)

Where action ∈ A, process irrev, process rev ∈ P , fluent effect ∈ F , and x,y are
time steps. The action is the trigger to the process starting which will attempt
to make the fluent fluent effect true in x to y time steps.
Canceling effects is rather straight forward as well:

stopAction stops process rev (6)

Implementing Reversible Processes in MAS Using ASP 167

impossible stopAction if fluent effect (7)

Here stopAction ∈ A, process rev ∈ P , and fluent effect ∈ F . The stopAction
wishes to undo the process, process rev, before the fluent the process is attempt-
ing completes. Therefore there is an executability rule stating not to perform a
stop action if the process has already made the fluent hold.

2.2 Semantics of Lmt

The transition functions are changed slightly in order to correctly work with
delayed effects. In order to effectively keep track of processes, [26] introduces the
idea of an extended state. This extended state is a triple (s, IR,RE) where s is a
state, or a possible world of the fluent literals in F from the domain D, and IR
and RE are a set of pairs (x : lt) where x is a process name and lt an annotated
fluent. Ideally, s is the current state and IR and RE hold the active irreversible
and reversible processes respectively.

Using these extended states, how do we transition to a new extended state?
With the addition of delayed effects, states can now change even if an action
has not occurred in the previous time step. For instance, in a new time step the
annotated fluent p2 would go to p1. Then on the following time step, p would
then hold in the extended state (s\{¬p} ∪ {p}). However, if an action were to
occur in addition, causing let us say q to hold as well then the state transition
would be s\{¬p,¬q} ∪ {p, q}.

In order to find the future extended states, an update function was created.
This functions as the first part above where we are not dealing with any new
action occurrences. The update function works by ‘ticking off’ time steps on
annotated fluents and actualizing fluents that have been reduced to time 0, as
they can no longer be delayed.

For the new extended state, ŝ, the update function needs to keep track of
both the annotated fluents time steps in IR and RE as well as updating the
state if any fluents have actualized. Given this clarification, the following is used
to minimize the number of literals to use in updating ŝ:

τ(ŝ) = {l | (x : l1) ∈ IR} ∪ {l | (x : l1) ∈ RE such that �(z : l̄1) ∈ IR} (8)

Using τ(ŝ), then we only look at the literals l that have 1 time step left. As you
can see in (8), priority is taken on the irreversible processes. Now that we know
what fluents might affect our updated state ŝ, we need to look at the processes
in IR and RE as well. These function in about the same way, except that we
also have to keep track of stopped processes. So let IR1(s) = {(process id : lt̂) |
there exists a law of the form (4)} be the set of irreversible processes started
in s. A difference in the presentation of the laws (4,5,6) from [26] has slightly
altered this equation, however it remains the same semantically (the above rules
would be assumed to have ‘if true’ on the end). Likewise, RE1(s) can be defined
with law (5). However, let us define P2(s) as the set of stopped processes, which
can be formed as well using the same ideas with law (6).

168 B. Wright, E. Pontelli, and T.C. Son

Using these formulas, we can come to the formulation of the update function
for ŝ:

update(ŝ) = {(s′, I(IR, s′), R(ER, s′)|s′ = ClD(τ(ŝ)∪ (s∩ s′)) and s′ is a state}
(9)

where, I(IR, s′) = (IR−1)∪IR1(s
′) andR(ER, s′) = ((RE−1)∪RE1(s

′))\P2(s
′).

s′ is intuitively a state where the effects are satisfied one step from now. (IR−1)
reduces the annotated fluents time by one step in IR and ClD is the closure in
domain D of equivalent states.

With the idea of future effects handled, let us look back at the overall transi-
tion function. For an action snapshot, α = {ai}i∈AG, there are only two possible
types: the direct effect from a basic action and the processes that are created
by the action. The direct effects must be satisfied in the next step, however the
effects of the processes are different.

Let us define the effects of the processes started by α in s, denoted by
procsα(s) as a set of pairs (IR′, RE′) where:

– For each law (4) in D, with ai ∈ α we have that IR′ contains (pid : lt) for
some t s.t. t1 ≤ t ≤ t2.

– For each law (5) in D, with ai ∈ α we have that RE′ contains (pid : lt) for
some t s.t. t1 ≤ t ≤ t2.

In addition to this though, we need to pay attention to the stopped processes.
The stopped processes by α are denoted by stopα(s) and contains the names
of the processes stopped by law (6). Now we have (IR′, RE′) which encodes a
possible set of effects that α can create and stopα(s) which lists the processes
needed to stop. Now we can begin to organize our transition function. One
additional notation is needed. We use 	 as a special process name and for a set
of literals L we define the following: ⊕(L) = {(: l1)|l ∈ L}.

The transition function φtD(α, ŝ) is defined as follows:

φtD(α, ŝ) =
⋃

(I,R)∈procsα(s)

update((s, IR∪I∪⊕(eα(s), (RE∪R)\stopα(s))) (10)

2.3 Example Domains

In order to model the delayed and reversible effects we used two different ex-
amples. One was taken from the original paper describing Lmt - the Merchant/
Consumer example. However, when developing and implementing this example,
it was found to be overly intricate with multiple processes running. A second,
simpler, example was created - the penalty kick example. Both are described
below.

Penalty Kick. In this example, there are two agents: a kicker and a goalie. The
objective is for the kicker to kick the ball into the goal and the goalie then has
the option to block the ball before it arrives in the goal. We can define a rather
simple domain, Dgoal, for this example in the following manner.

Implementing Reversible Processes in MAS Using ASP 169

– Agents = {kicker, goalie}.
– Fluents = {ball in goal}
– Actionskicker = {kick ball}
– Actionsgoalie = {block ball}
– Processesrev = {ball in air}
– Actions for the kicker:

kick ball starts ball in air reversible ball in goal in 3 to 5 (11)

– Actions for the goalie:

block ball stops ball in air (12)

impossible block ball if ball in goal (13)

Where the goal formulae can be either ball in goal or ¬ball in goal ∧
pcomp(ball in air). Which stands for a) the ball getting into the goal and b)
the ball not going in the goal, but still being kicked. pcomp(), which stands for
‘process completed’, is defined below in Section 3.3.

The executability rule for block ball is used to specify that you can not ‘stop’
the process of ball in air if it has already completed its effect. Let the above
rules be the domain, Dgoal, and the following to be the initial world, Igoal:
{¬ball in goal}.

Now we can walk through the transition function:

– The initial state s0 = {¬ball in air} and with the extended state as ŝ0 =
(s0, ∅, ∅)

– Let α1 = {kick ball, noop}.
– φtDgoal

(α1, ŝ0) = {update((s0, ∅, {ball in air : ball in goali}))|i = 3, 4, 5}

From here, we can see that the fluent annotation for ball in goal will become
true in at most 5 time steps, assuming that block ball is not added to the action
snapshot in future time steps.

Merchant / Consumer. This example was used in the originating paper,
but further defined in [24]. In this example, the merchant and consumer try to
sell/buy some goods from each other. As the negotiation continues, the consumer
has the option to cancel his payment before it arrives. The following exchange
between a consumer and a merchant is supposed to work as follows:

– A consumer requests a quote from a merchant pertaining to a good it sells.
– The merchant sends the quote to the consumer.
– After receiving the quote, the consumer may accept the quote for the goods.
– Upon receiving confirmation of acceptance, the merchant sends the goods to

the consumer.
– After the goods arrive for the consumer, payment is sent.
– With payment received, the merchant sends confirmation with a receipt.

170 B. Wright, E. Pontelli, and T.C. Son

This example uses two different delayed actions, sendQuote and sendPayment.
sendQuote is an irreversible action. That is, it can not be interrupted by a stop
action. On the other hand, sendPayment is a reversible action and does have an
action that can reverse it. Here is the domain, Dpayment, for the example:

– Agents = {merchant, consumer}.
– Fluents = {request, pay, goods, receipt, quote, accept}.
– Actionsm = {sendQuote, sendGoods, sendReceipt}.
– Actionsc = {sendRequest, sendAccept, sendPayment, cancelPayment}.
– Processesirrev = {quote process}.
– Processesrev = {payment process}.
– Actions for the merchant:

sendQuote starts quote process irreversible quote in 2 to 2 (14)

impossible sendQuote if ¬request (15)

sendGoods causes goods (16)

impossible sendGoods if ¬accept (17)

sendReceipt causes receipt (18)

impossible sendReceipt if ¬pay (19)

– Actions for consumer:

sendRequest causes request (20)

sendAccept causes accept (21)

impossible sendAccept if ¬quote (22)

sendPayment starts payment process reversible pay in 3 to 5 (23)

cancelPayment stops payment process. (24)

impossible cancelPayment if pay (25)

Let the above rules be the domain, Dpayment, and the following to be the initial
world Ipayment : {¬request,¬pay,¬goods,¬receipt,¬quote,¬accept}.

Where the goal formulae would be either pay ∧ receipt or
pcomp(payment process) ∧ ¬payment.

Implementing Reversible Processes in MAS Using ASP 171

3 Implementation

3.1 Design Concept

For the most part, a lot of ideas are taken from the traditional planning tech-
niques used in ASP already. To that end, some of the assumptions taken is that
there is a defined goal state, or goal formulae, which the agents are attempting
to attain and there is also a defined initial state where the fluents used are de-
fined. We leave further talk about goal states until the discussion in Section 5.
In addition, the type of planner we will use in ASP works on an iterative step.
So, as part of the input for each run, there will be a known finite horizon of a
plan to check for. As such, there will be a variable known as length in the code
which will function as the end point for time steps.

On its own, delayed effects can actually be implemented using a regression
type method to anchor the effect in time, and then work backwards to find when
the action occurred. However, this method proved difficult to use when including
the ability to cancel the effect of the action.

From that original idea however, the concept of ‘anchoring’ the resulting effect
stayed, and that has become the foundation of setting up the rest of the delayed
action in this implementation.

3.2 ASP Representation of Basic Features

The backbone of this ASP representation takes its ideas from planning tech-
niques. Therefore, all domains should have a well defined initial state along with
a definable goal to achieve.

As goals are currently static in this implementation, the model is either trying
to cancel the process or complete it. It is possible to have returned models that
have both canceled or completed processes. This was not pursued heavily in our
examples as we were looking for specific deterministic outcomes.

Basic actions use the traditional causal rule in ASP such as for the rule “action
causes f if g”:

holds(f, T + 1)← holds(g, T), occ(action, T, agent) (26)

where T is a time step between 0 and the finite horizon which is generally set
at runtime.

In addition, the ASP program works by finding correct models which satisfy
the following choice rule:

1{occ(A, T,Ag) : action(A,Ag)}1← agent(Ag), time(T), T < length. (27)

Which states that “Each agent executes one action per time step”. Here the
occ/3 variable stands for ‘occurs’ so it can be read as ‘Action A is performed by
agent Ag at time T’.

172 B. Wright, E. Pontelli, and T.C. Son

3.3 ASP Representation of Delayed Effects

The method used to implement delayed effects makes use of the choice rule in
ASP to decide one time in the window of the timeframe to complete the process.
Once this timeframe is chosen, everything else is built around it using basic ideas
from traditional approaches to planning in ASP.

As an example, we will show the implementation of the Penalty Kick scenario.
As defined above, the Penalty Kick example has one process: ball in air (bna).
This process is started by the action kick ball (kb), the agent kicker (k), and has
a time window to complete of 3 to 5 time steps. Given this, however, we know
that the process will only complete once in this time frame. This idea serves as
the main idea for our rule:

1{pcomp(bna,B +W) : time(B) : pwin(bna,W)}1← occ(kb,B, k). (28)

The predicate pcomp(), or process completes, serves as the main idea as men-
tioned above. The above choice rule states that the process (bna in this case)
completes at time step B +W where B is the originating time-step where the
action starting the process occurred and W is the point in the process window
which is chosen. W is chosen from options of the following rule:

pwin(bna,W). (29)

pwin(), or process window, is defined for each process and for each possible time
delay. For instance, in the above rule where the process completes in 3 to 5, there
will be a rule where W is equal to each time delay 3,4, and 5.

While finding the source of the process is good, it does not actually map
the intended ‘effect’ into the state space yet. Since the action does not directly
cause the effect, as it is delayed for a period of time steps, we use the time of
the process completing from pcomp() to anchor the effect of the overall process
and action. Which we show below:

h(bng, T)← time(T), pcomp(bna, T). (30)

In addition to the above rules, some house-keeping constraints were also intro-
duced. These included:

← pcomp(Pid, T 1), pcomp(Pid, T 2), T 1! = T 2. (31)

Which states that processes only occur once in a run. This was needed for keep-
ing the process together with the cancelled process (defined below) as well as
removing any ‘zombie processes’.

← occ(kb, T, k), occ(kb,BT, k), h(neg(bng), T), pcomp(bna,GT), GT > T > BT.
(32)

This is a particularly helpful constraint which would be for each delayed action
which states that while the time step is less than when the process completes
and the effect of the process is not true do not try and do the action again. This
was the source of much aggravation in testing.

Implementing Reversible Processes in MAS Using ASP 173

3.4 ASP Representation of Cancellation

Stopping a delayed effect is rather easy. We introduced a special fluent for each
reversible process. This fluent serves as a flag or toggle for when the effect should
or should not happen. For example in the Penalty Kick example, this fluent could
be proc reverse ball in air (abbreviated to prevbna). In order to function later
on, we set the fluent to false in the initial world (time step 0) as the process has
not been reversed yet.

fluent(prevbna). (33)

holds(neg(prevbna), 0) (34)

This fluent will then serve as a flag which shows whether or not the process
was actually reversed. In addition to adding the fluent, we should specify in the
initial world that the flag is not triggered. We can then add our new fluent into
the checks for our action effects. Below is the continued example for the kick ball
reversible action.

h(bng, T)← pcomp(bna, T), h(neg(prevbna), T). (35)

h(neg(bng), T)← pcomp(bna, T), h(prevbna, T). (36)

The first one holds when the process behaves as normal and performs its intended
action. The second is to show that “nothing” happens, even though an action
of kicking the ball did occur. One should note that in both cases, the process
still completes. This is used later as a way to check that the originating action
occurred.

The next step however, is to actually figure out when the flag fluent is trig-
gered. This is with the stop action. Such as with the Penalty Kick example
action: block ball (abbrv. bb).

h(prevbna, T + 1)← occ(bb, T, g). (37)

Here we can see that this stop action actually performs just like any standard
action - just on the special flag fluent. As you might have noticed, one odd
side effect of this setup is the fact that you can give a goal for “reversing” the
action or “not reversing” the action, however allowing for both to happen in the
same action sequence can not occur. That feature is not currently implemented,
although could be if in addition to “starting” processes, the delayed effect action
also “reset” the flag fluent.

Along with these rules, a few constraint rules are needed as well. While in the
domain, an executability rule is defined for the action - saying do not stop an
action if it has already performed its effect. We need to also ‘attach’ the stop
action to the process started from the originating action. We give the example
using the Penalty Kick domain as follows:

← occ(bb, T, g), occ(kb,AT, kicker), AT > T. (38)

Which simply states “Do not let block ball occur before kick ball”.

174 B. Wright, E. Pontelli, and T.C. Son

4 Evaluation

4.1 Implementation versus Theory

While the encoding for ASP above is given with examples, generalizing these
actions to other uses would be simple following the same action rules defined
above. Replacement of the actions and annotated fluents are simple as long as
they follow the rules 4, 5, and 6.

There are two main issues that need to be shown when comparing the im-
plementation to the theory, and that is that the irreversible processes and non-
reversed processes complete as they should in the correct extended state of the
transition function (defined in Section 2.2) and that the reversed processes be-
have similarly in their respective extended state.

Proposition 1. Let (ID, D) be a complete and consistent action theory of Lmt

and Π to be a consistent program. For every answer set Ω of Π we will show
that there is an equivalent extended state ŝ.

Base Case: There are no processes in Ω, in this case this follows previous works
encoding Action Theories and ASP and the extended state ŝ is only the state s.

Completed Process: In the case of irreversible processes and completed re-
versible processes, we will have to use extended states. Let s be the state of the
extended state and s′ and ŝ′ be a previous state and extended state respectively.
Let the process in question be p ∈ P , its effect be f ∈ F , a ∈ A the originating
action, and its time window be between x and y:

– Ω will contain occ(a, t), proc comp(p, t1), holds(f, t1), holds(neg(proc rev p,
t1). t1 will be between times t+ x and t+ y

– ŝ′ will contain (p : f t) ∈ IR or (p : f t) ∈ RE depending on which type of
process completed where x <= t <= y.

– ŝ is an update() of ŝ′ or a successor of φtD(α, ŝ′) for some sequence of actions
α.

– ŝ will contain f ∈ s and (p : f) /∈ IR ∪RE.

As the process p completes only once in Ω and in ŝ and is started only by the
action a we can see that there is an equivalent beginning and ending state for
both the encoding and the theory.

Reversed Process: For reserving processes we use most of the setup from the
Completed Process case above, but we introduce a few new things as well. Let s
be the state of the extended state and s′ and ŝ′ be a previous state and extended
state respectively. Additionally, there will be an extended state ŝ′′ in between ŝ′
and ŝ such that φtD(b, ŝ′) = ŝ′′. Let the process in question be p ∈ P , its effect
be f ∈ F , a ∈ A the originating action, b ∈ A be the canceling action, and the
process time window be between x and y:

Implementing Reversible Processes in MAS Using ASP 175

– Ω will contain occ(a, t), occ(b, t1), proc comp(p, t2), holds(neg(f), t2),
holds(proc rev p, t2) where t+ x <= t1 < t2 <= t+ y

– ŝ′ will contain (p : f t) ∈ RE where x <= t <= y
– ŝ′′ will contain (p : f t) ∈ RE and p ∈ stops′′
– ŝ will contain ¬f ∈ s and (p : f) /∈ RE and p /∈ stops

As the process is created, both Ω and the extended states behave the same as
they did in the previous case. The difference comes with ŝ′′ and the occurrence
of the cancel process action b. This is reflected in the additional extended state
making use of the stop set in the transition function and Ω containing the
occurrence of the stop action b and having the flag fluent ‘flipped’ for the process.
At the end, we can see that both have finished the process, Ω with proc comp()
and ŝ with p /∈ RE and ¬f holding for both. We can now see that the beginning
and end points of both Ω and the extended states are equivalent as both change
due to the originating and reversing actions.

From the original theory laid down in [26] to the implementation just shown,
a few differences are apparent. One of these differences is how the implemen-
tation executes the direct effect actions. While the transition function creates
a default irreversible process of 1 time step to perform the transition, the im-
plementation just treats them as basic direct effects and does not do anything
additional. Another big difference is the idea behind the stop action law. In
the implementation above, this functions very similar to the idea of an interrupt
from basic process / OS management. The transition function uses it more as a
barrier or wall to ensure that the process completed.

A smaller issue that is different is the idea of ‘annotated fluents’. As the
action language is using simple English statements, it is hard to superscript
time variables onto any kind of literal. Therefore, in the implementation the
timed steps are only given as part of the action — rather than as part of the
fluent input.

4.2 Quality of Models

The quality of the solutions given the goal of reversing the reversible process are
fairly good, resulting in only differences in the permutations of when the process
can start and finish. By quality, we refer to the resulting atoms in the answer set
describing the desired goal. There are some repeats in model actions however,
for instance given the Merchant/Consumer example and the payment process
window of 3 to 5 time steps. Let us say three of the models decide the process
completes on the third, fourth, and fifth time step respectfully. Now we have 3
‘different’ models, however if all three have the process stopped on the 3rd time
step — they are effectively the same model even though they will show in the
results as different.

4.3 Resulting Models

The actual ASP code was run using clasp [1]. Both of the examples defined above
were tested and the goals for both examples were to cancel all reversible actions.

176 B. Wright, E. Pontelli, and T.C. Son

Fig. 1. Various times the ball kicked could arrive at the goal. The times signify the
options available for the action ’kick ball’. Either 1, 1 or 2, or 1, 2 or 3 time steps.

Figure 1 shows some simple results from the Penalty Kick example. In this
example, the ball in air process was allowed to be active for either 1, 1 or 2, or
1, 2 or 3 time steps. The path lengths tested were between 1 and 9 time steps.

Figure 2 shows some of the more interesting results from the Merchant/ Con-
sumer example. In this example, the action sendQuote was an irreversible action
that took one time step to finish. The reversible action sendPayment could have
optionally taken 1 or 2 time steps, 1,2 or 3 time steps, 2,3, or 4 time steps, or
3,4,or 5 time steps (which was the original time window given in the example
from [26]). The horizontal line on the chart shows how long the plan length was
that we tested, which we tested plan lengths ranging from 6 to 18 time steps.

5 Discussion

During our testing, one thing became clear. The goal specification for canceling
actions is odd. How does one ‘plan’ to cancel an action half way through reaching
a goal? It seems to be very awkward to use as a goal ‘complete the process but do
not let its effect hold’, which is the type of goals used to perform the cancellation.
Finding an example domain that used such explicit cancellation in its plan could
not be found, however we are optimistic that one may be found.

On the other hand, if we were only concerned with the possibility of what
might happen when a reversible process completes this implementation works

Implementing Reversible Processes in MAS Using ASP 177

Fig. 2. Various options for delayed actions for the Merchant/Consumer example. The
different options show the different options in the delayed actions. The labeling is based
on [Quote Times] - [Payment Times] so the option ‘1-123’ stands for the instance where
the ‘sendQuote’ process competes in 1 time step and ‘sendPayment’ completes in 1,2,
or 3 time steps.

well. If the goal was changed to only having the process complete, rather than
also wanting the effect to hold, then models would show up where the pro-
cess is both reversed and where it is not reversed. This has more of the non-
deterministic feel for computing models. This was not pursued much above in
Section 4 as we were interested in testing cases when the action stop always
occurred.

Another large area that has a great impact on our evaluations in Section 4 is
the scope of our fluents. Everything done was used with all agents having full
knowledge of all fluents. While this feature is nice and allows for the ability for
non-originating agents to cancel processes, such as the goalie blocking the ball
before it reaches the goal, it can lead to an overabundance of fluent options to
take care of and variances in the fluents which may not actually matter to the
overall model’s goal.

While our tests were only with two agents, if there were examples with more
agents it is our belief these models would increase even more drastically as the
options for processes increases at each time. For instance, let us take the penalty
kick domain. What would happen if we increased that to a full sized soccer match
and gave the goal to be “One team should win by two goals”? The amount of
variance would be enormous!

178 B. Wright, E. Pontelli, and T.C. Son

This example leads to another issue that has been mentioned in previous
sections, and that is the current implementation does not allow for an action
process to be run multiple times. That is, there is no reset mechanism to undo
the proc comp() rule. For that reason, the above suggestion could not be tested
to see how many models were possible.

One thing to note is that these implemented delayed processes model an
existential temporal operator quite well. In the sense that the delayed process
complies with the following temporal notion,“There is a point of time between
3 and 5 steps from now in which pay becomes true”. That being said, we do not
attempt a similar version for a universal temporal operator. However, we think
this can be easily done through the use of static causal laws and other constraints
for the temporal notion of,“For all time between 3 and 5 steps from now, pay
holds”. Also, the concept of scenarios described in the originating paper [26]
may address this idea as well.

Along with the same concept as the universal temporal operator, is the idea
of having an un-timed window for the process. This idea might prove rather
difficult to implement. As we saw in Section 4 the number of returned models
increases dramatically the more time steps the process runs. So ideas like, “Any-
time between now and the end of the plan pay will become true” would be quite
difficult to model in this implementation.

6 Conclusion and Future Direction

In this paper, we introduced a simple example of reversible processes using
Lmt with the Penalty Kick example and gave an encoding for it and the Mer-
chant/Consumer example in Answer Set Programming.

This is the first stage in implementing fully functional narratives and complex
commitments in a declarative fashion like ASP. As the originating paper for Lmt

alluded to, implementing more complex examples of negotiation protocols and
ways to facilitate maintenance of commitments (that is identifying violated or
breached commitments) will be pursued in addition to using planning techniques
to find ways to satisfy possibly violated or breached commitments.

Besides encoding more complicated extensions of Lmt, we will also pursue
adding in belief or epistemic states to this implementation. This will eventually
lead to the pursuit of epistemic commitments that agents may have which may
be very similar to belief revision in MAS.

While not mentioned in the original description of Lmt, the idea of ‘stopping a
process’ poses an interesting question for exogenous actions. While we currently
have it used as a pseudo-interrupt, an investigation into its use as a way to
model failed actions in a similar fashion to some contingency planning may prove
fruitful.

One last avenue of possible future direction is to pursue implementing this in
a more ‘on-line’ fashion. As the current implementation works entirely off-line
and in an iterative fashion (one checks each possible plan length at a time).

Implementing Reversible Processes in MAS Using ASP 179

References

1. Potassco - the potsdam answer set solving collection,
http://potassco.sourceforge.net/

2. Baldoni, M., Baroglio, C., Chiarotto, A., Patti, V.: Programming Goal-Driven Web
Sites Using an Agent Logic Language. In: Ramakrishnan, I.V. (ed.) PADL 2001.
LNCS, vol. 1990, pp. 60–75. Springer, Heidelberg (2001),
http://www.springerlink.com/index/labcg2d7yjdcjrjc.pdf

3. Baldoni, M., Giordano, L., Martelli, A., Patti, V.: Modeling Agents in a Logic
Action Language. In: Proc. of Workshop on Practical Reasoning Agents, FAPR
2000 (2000)

4. Baldoni, M., Martelli, A., Patti, V., Giordano, L.: Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence 41(2-4),
207–257 (2004),
http://www.springerlink.com/openurl.asp?

id=doi:10.1023/B:AMAI.0000031196.24935.b5

5. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: Logic programming for finding
models in the logics of knowledge and its applications: A case study. TPLP 10(4-
6), 675–690 (2010)

6. Baral, C., Gelfond, M., Provetti, A.: Representing actions: Laws, observations and
hypotheses. J. Log. Program. 31(1-3), 201–243 (1997)

7. Baral, C., Son, T.C., Tuan, L.C.: A transition function based characterization of
actions with delayed and continuous effects. In: Proceedings of the Eighth Interna-
tional Conference on Principles of Knowledge and Representation and Reasoning
(KR 2000), pp. 291–302 (2002)

8. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

9. Brenner, M.: A Multiagent Planning Language. In: Proc. of ICAPS 2003 Workshop
on PDDL (2003)

10. Brewka, G., Strass, H., Thielscher, M.: Declarative strategies for agents with incom-
plete knowledge. In: NMR 2012: 14th International Workshop on Non-Monotonic
Reasoning (2012)

11. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer
set programming. In: Gallagher, J.P., Gelfond, M. (eds.) ICLP (Technical Com-
munications). LIPIcs, vol. 11, pp. 51–61. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2011)

12. Dimopoulos, Y., Kakas, A.C., Michael, L.: Reasoning About Actions and
Change in Answer Set Programming. In: Lifschitz, V., Niemelä, I. (eds.) LP-
NMR 2004. LNCS (LNAI), vol. 2923, pp. 61–73. Springer, Heidelberg (2003),
http://dblp.uni-trier.de/db/conf/lpnmr/lpnmr2004.html#DimopoulosKM04

13. Dovier, A., Formisano, A., Pontelli, E.: Planning with action languages: Perspec-
tives using clp(fd) and asp. In: CILC 2006: Convegno Italiano di Logica Com-
putazionale (2006)

14. Dovier, A., Formisano, A., Pontelli, E.: Perspectives on Logic-Based Approaches
for Reasoning About Actions and Change. In: Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning, pp. 259–279. Springer, Heidelberg
(2011), http://dl.acm.org/citation.cfm?id=2001078.2001096

15. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

http://potassco.sourceforge.net/
http://www.springerlink.com/index/labcg2d7yjdcjrjc.pdf
http://www.springerlink.com/openurl.asp?id=doi:10.1023/B:AMAI.0000031196.24935.b5
http://www.springerlink.com/openurl.asp?id=doi:10.1023/B:AMAI.0000031196.24935.b5
http://dblp.uni-trier.de/db/conf/lpnmr/lpnmr2004.html#DimopoulosKM04
http://dl.acm.org/citation.cfm?id=2001078.2001096

180 B. Wright, E. Pontelli, and T.C. Son

16. Gebser, M., Grote, T., Schaub, T.: Coala: A Compiler from Action Languages
to ASP. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp.
360–364. Springer, Heidelberg (2010)

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming, pp.
1070–1080. MIT Press (1988)

18. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3 (1998)
19. Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the

situation calculus. In: Working Notes of the IJCAI 1999 Workshop on Nonmono-
tonic Reasoning, Action, and Change (1999),
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.25.2280&rep=rep1&type=pdf

20. Kowalski, R., Sadri, F.: An Agent Language with Destructive Assignment and
Model-Theoretic Semantics. In: Dix, J., Leite, J., Governatori, G., Jamroga, W.
(eds.) CLIMA XI. LNCS, vol. 6245, pp. 200–218. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1893859.1893877

21. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Program-
ming Paradigm: a 25-Year Perspective, pp. 357–373. Springer (1999)

22. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1-2),
39–54 (2002), http://dx.doi.org/10.1016/S0004-3702(02)00186-8

23. Rao, A.: Agentspeak(l): Bdi Agents Speak Out in a Logical Computable Language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996), http://dx.doi.org/10.1007/BFb0031845

24. Sirbu, M.: Credits and debits on the internet. In: Huhns, M., Singh, M.P. (eds.)
Readings in Agents, pp. 299–305. Morgan Kaufmann (1998)

25. Son, T.C., Pontelli, E., Nguyen, N.-H.: Planning for Multiagent Using ASP-Prolog.
In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol. 6214, pp. 1–21.
Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16867-3_1, 10.1007, doi:10.1007/978-3-
642-16867-3 1

26. Son, T.C., Pontelli, E., Sakama, C.: Formalizing Commitments Using Action Lan-
guages. In: Sakama, C., Sardina, S., Vasconcelos, W., Winikoff, M. (eds.) DALT
2011. LNCS, vol. 7169, pp. 67–83. Springer, Heidelberg (2012)

27. Subrahmanian, V.S., Zaniolo, C.: Relating stable models and ai planning domains.
In: Proc. ICLP 1995, pp. 233–247. MIT Press (1995)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.2280&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.2280&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1893859.1893877
http://dx.doi.org/10.1016/S0004-3702(02)00186-8
http://dx.doi.org/10.1007/BFb0031845
http://dx.doi.org/10.1007/978-3-642-16867-3_1

Full Hybrid μ-Calculus, Its Bisimulation

Invariance and Application to Argumentation

Cristian Gratie1, Adina Magda Florea1, and John-Jules Ch. Meyer2

1 AI-MAS Laboratory, Computer Science Department
University “Politehnica” of Bucharest, Romania

cristian.gratie@cs.pub.ro, adina.florea@cs.pub.ro
2 Intelligent Systems Group, Computer Science Department

Utrecht University, The Netherlands
J.J.C.Meyer@uu.nl

Abstract. Previous research has shown that argumentation semantics
can be described with Monadic Second Order Logic. While certain less
expressive, modal, logics can also capture some of the semantics, the
general issue of finding minimal modal logics that are able to describe
certain argumentation semantics has not received a lot of attention in
the literature so far. In this paper we show that full hybrid μ-calculus
cannot describe the preferred semantics, thus providing a negative answer
to an open question. We show that the same holds for the skeptical and
credulous versions of the preferred semantics. Our result relies on the
invariance of full hybrid μ-calculus with respect to a suitable notion of
bisimulation. We provide a complete proof of this invariance in the paper.

Keywords: full hybrid mu-calculus, argumentation, bisimulation.

1 Introduction

Modal logic was first used for describing argumentation semantics by Grossi in
[1]. He also showed in [2] that many argumentation semantics can be described
using Monadic Second Order Logic (MSOL). However, for most semantics, it is
still not known whether the full expressive power of MSOL is indeed required.

In this paper we focus on full hybrid μ-calculus [3,4], a modal logic combining
hybrid logics [5], μ-calculus [6], global modality and the converse operator. We
define a suitable notion of bisimilarity for this logic and prove an invariance result
with respect to it. The proof is not very intricate, but it avoids a second induction
on fixpoint approximants, the approach suggested in [6], where bisimulation
invariance of μ-calculus is discussed.

We use the invariance result in order to anwer an open question in [1] concern-
ing the use of hybrid logics in addition to fixpoint operators in order to describe
the preferred semantics of abstract argumentation frameworks [7]. We show that
this logic is not expressive enough for this task, not even if the preferred exten-
sions are aggregated by taking their intersection or their union.

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 181–194, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 C. Gratie, A.M. Florea, and J.-J.C. Meyer

The paper also discusses the standard translation of full hybrid μ-calculus
(Lμ(E,@,−)) into Monadic Second Order Logic (MSOL). We leave the problem
of whether Lμ(E,@,−) is the full hybrid bisimulation invariant fragment of
MSOL open, but point out that Janin and Walukiewicz’s proof for the case
of μ-calculus [8] is not applicable without significant changes because of the fact
that Lμ(E,@,−) does not have the tree model property.

We introduce full hybrid mu-calculus and the corresponding bisimulation in
Section 2, where we also prove the invariance result. The standard translation
to MSOL is covered in Section 3. The application of our result to argumen-
tation is presented in Section 4, together with a basic background on abstract
argumentation. The paper ends with conclusions and ideas for future work in
Section 5.

2 Full Hybrid μ-Calculus and Its Bisimulation

We start by introducing full hybrid μ-calculus, which will also be denoted by
Lμ(E,@,−). For more details, the reader may see [3,4]. The notations that we
use are more in the spirit of Blackburn et al [9].

Definition 1. Let Prop be a set of atomic propositions, Rel a set of relation
names, Nom a set of nominals and Var a set of proposition variables. A
full hybrid μ-calculus formula is recursively defined as follows:

(a) ⊥ is a formula
(b) any atomic proposition p ∈ Prop is a formula
(c) any nominal i ∈ Nom is a formula
(d) any variable X ∈ Var is a formula
(e) if φ is a formula, then ¬φ is a formula – negation
(f) if φ and ψ are formulas, then φ ∨ ψ is a formula – disjunction
(g) if φ is a formula and r ∈ Rel is a relation, then 〈r〉φ is a formula – diamond
(h) if φ is a formula and r ∈ Rel is a relation, then 〈r−〉φ is a formula –

(diamond of the) converse of a relation
(i) if φ is a formula then Eφ is a formula – global diamond (existential modality)
(j) if φ is a formula and i ∈ Nom is a nominal, then @iφ is a formula –

satisfaction (formula true at a nominal)
(k) if X ∈ Var is a variable and φ(X) is a formula where all free occurrences

of X are positive (within the scope of an even number of negations), then
νX.φ(X) is a formula – maximal fixpoint

Note that we have not included the dual operators in the definition, in order to
simplify both the proofs and the definitions that follow. These operators can be
defined as follows:

– conjunction: φ ∧ ψ := ¬(¬φ ∨ ¬ψ)
– box: [r]φ := ¬〈r〉¬φ
– global box (universal modality): Aφ := ¬E¬φ

Full Hybrid μ-Calculus, Its Bisimulation Invariance 183

– minimal fixpoint: μX.φ := ¬νX.¬φ(¬X); note that we need three negations
in order to ensure that the free occurrences of X are still under the scope of
an even number of negations.

Note also that the @ operator can be defined with the help of the global modal-
ities as either @iφ := E(i ∧ φ) or @iφ := A(¬i ∨ φ). Note that the two formulas
are not equivalent in general, but only when the valuation of i is a single world,
which does hold for nominals. We chose to include @ in the definition because
the satisfaction operator can also be part of modal logics that do not have the
global modalities.

In fact, the whole definition might have been written in a more compact form,
but we wanted to make explicit reference to individual items so that the logics
that are subsumed by full hybrid μ-calculus can be easily described. Indeed, let
us note that propositional logic PL is defined by items (a), (b), (e) and (f).
Basic modal logicML (with multiple modalities) can be obtained by adding (g)
to PL, while for the global modal logic ML(E) we also need to add the global
modality, item (i).

The simple μ-calculus Lμ is defined by ML plus (d) and (k), whereas the
hybrid modal logic H(@) is defined by ML plus (c) and (j). The full hybrid
μ-calculus Lμ(E,@,−) subsumes all the aforementioned logics and contains, in
addition, the converse operator for relations, item (h) of Definition 1.

Satisfiability of modal formulas is generally defined with respect to Kripke
models. In what follows we will assume that the sets Prop, Rel, Nom and Var
are fixed and we will define the elements of a model with respect to them.

Definition 2. A Kripke model is defined as a tuple M = (W,R, V), where W
is a set of worlds (or states), R : Rel→W ×W is a function that returns, for
each relation symbol r ∈ Rel, an accessibility relation R(r) ⊆ W ×W , and
V : Prop∪Nom∪Var → P(W) is a valuation function that returns the set of
worlds for which a certain proposition, nominal or variable holds. The valuation
function V must satisfy |V (i)| = 1 for all nominals i ∈ Nom i. e. exactly one
world is designated by a nominal.

Examples of such models can be seen in Figure 1 and Figure 2. Note that we
have drawn the model as a labeled transition system, with the names of the cor-
responding relations on the arrows. For the valuation, we have put the atomic
propositions and nominals next to each world where they hold. Note that nom-
inals act as names for certain worlds, since there is exactly one world in the
valuation of each nominal.

w1

p, i

w2

p, q

r

Fig. 1. Simple Kripke model

184 C. Gratie, A.M. Florea, and J.-J.C. Meyer

w′
1p, i w′

2
p, q

w′
3

p, q

r

r

Fig. 2. Kripke model that is bisimilar to the one in Figure 1

The valuation function gives us the worlds where atomic formulas (proposi-
tions, nominals or variables) are true. We can use this information in order to
decide whether more complex formulas are true at a given world in a model. This
leads to the definition of modal satisfaction. We will use and instead of ∧ and
or instead of ∨ in the meta-language, so that there is a clear distinction with
respect to the object language. Furthermore, implication (⇒) and equivalence
(⇔), as well as the existential (∃) and the universal (∀) quantifiers, are only part
of the meta-language.

Definition 3. Let M = (W,R, V) be a Kripke model. Modal satisfaction of
a Lμ(E,@,−) formula is recursively defined as follows:

– M, w
	 ⊥
– M, w 	 t⇔ w ∈ V (t), for all t ∈ Prop ∪ Nom ∪ Var
– M, w 	 ¬φ⇔M, w
	 φ
– M, w 	 φ ∨ ψ ⇔M, w 	 φ or M, w 	 ψ
– M, w 	 〈r〉φ⇔ ∃v.(w, v) ∈ R(r) and M, v 	 φ
– M, w 	 〈r−〉φ⇔ ∃v.(v, w) ∈ R(r) and M, v 	 φ
– M, w 	 Eφ⇔ ∃v.M, v 	 φ
– M, w 	 @iφ⇔ ∀v.V (i) = {v} ⇒M, v 	 φ
– M, w 	 νX.φ(X) ⇔ ∃T.T ⊆ W and T ⊆ {v ∈ W | M[X:=T], v 	 φ(X)}
and w ∈ T , where M[X:=T] stands for the model that keeps all elements of
the original model, excpet for the valuation of variable X, which is changed
to T .

It is easy to see for example that M1, w1 	 p and M1, w1 	 [r]q, where M1

is the model in Figure 1. We can see that we also have that M2, w
′
1 	 p and

M2, w
′
1 	 [r]q for the model M2 from Figure 2. In fact, no formula from ML

can distinguish M1, w1 from M2, w
′
1. This happens because the two models are

alike in some sense, more precisely they are bisimilar. We introduce full hybrid
bisimulation below, then discuss its meaning.

Definition 4. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be two models. A
relation Z ⊆ W1 ×W2 is said to be a full hybrid bisimulation iff it satisfies the
following constraints:

(i) if (w1, w2) ∈ Z then w1 ∈ V1(t) ⇔ w2 ∈ V2(t), for any t ∈ Prop ∪
Nom∪Var (agreement on atomic propositions, nominals and proposition
variables)

Full Hybrid μ-Calculus, Its Bisimulation Invariance 185

(ii) for any nominal i ∈ Nom, if V1(i) = {w1}andV2(i) = {w2} then (w1, w2) ∈
Z (nominals)

(iii) for any w1, w
′
1 ∈ W1 and w2 ∈ W2, if (w1, w2) ∈ Z and (w1, w

′
1) ∈ R1(r)

for some r ∈ Rel then there is a world w′
2 ∈W2 such that (w2, w

′
2) ∈ R2(r)

and (w′
1, w

′
2) ∈ Z (zig for relations)

(iv) for any w1 ∈ W1 and w2, w
′
2 ∈ W2, if (w1, w2) ∈ Z and (w2, w

′
2) ∈ R2(r)

for some r ∈ Rel then there is a world w′
1 ∈W1 such that (w1, w

′
1) ∈ R1(r)

and (w′
1, w

′
2) ∈ Z (zag for relations)

(v) for any w1, w
′
1 ∈ W1 and w′

2 ∈ W2, if (w
′
1, w

′
2) ∈ Z and (w1, w

′
1) ∈ R1(r)

for some r ∈ Rel then there is a world w2 ∈W2 such that (w2, w
′
2) ∈ R2(r)

and (w1, w2) ∈ Z (zig for converse)
(vi) for any w′

1 ∈ W1 and w2, w
′
2 ∈ W2, if (w

′
1, w

′
2) ∈ Z and (w2, w

′
2) ∈ R2(r)

for some r ∈ Rel then there is a world w1 ∈W1 such that (w1, w
′
1) ∈ R1(r)

and (w1, w2) ∈ Z (zag for converse)
(vii) for any world w1 ∈ W1 there is a world w2 ∈ W2 such that (w1, w2) ∈ Z

(zig for the global modality)
(viii) for any world w2 ∈ W2 there is a world w1 ∈ W1 such that (w1, w2) ∈ Z

(zag for the global modality)

If there is a full hybrid bisimulation Z between two models M1 and M2 we say
that the models are full hybrid bisimilar and write this as M1↔fhM2. If w1 is
a world in M1 and w2 is a world in M2 such that (w1, w2) ∈ Z, we say that the
two worlds are full hybrid bisimilar and we write this as M1, w1↔fhM2, w2.

Note that we have subscripted the bisimulation relation with its type (full hy-
brid) in order to distinguish it from the usual bisimulation relation↔, which only
requires conditions (i), (iii) and (iv). It is a known result that ML formulas can-
not distinguish between bisimilar models, in the sense that, if M1, w1↔M2, w2

then for any modal formula φ ∈ ML we have that M1, w1 	 φ ⇔ M2, w2 	 φ.
For more information about bisimulations see [9].

The original notion of bisimulation can be extended for other modal log-
ics. Total bisimulation, for example, adds the zig-zag constraints for the global
modalities, items (vii) and (viii) from Definition 4. It also holds that anyML(E)
formula is invariant under total bisimulations. Hybrid bisimulation [5] adds the
rule for nominals, item (ii), and it has been shown that hybrid formulas in H(@)
are invariant under hybrid bisimulations.

In what follows, we will show that full hybrid μ-calculus formulas
φ ∈ Lμ(E,@,−) are invariant under full hybrid bisimulations.

Theorem 1. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be two full hybrid
bisimilar models and let w1 ∈W1 and w2 ∈W2 be two bisimilar worlds. In other
words, we have M1, w1↔fhM2, w2. Then, for any formula φ ∈ Lμ(E,@,−), we
have that:

M1, w1 	 φ⇔M2, w2 	 φ

Proof. First, let us denote by Z ⊆ W1 ×W2 a full hybrid bisimulation between
M1, w1 and M2, w2.

186 C. Gratie, A.M. Florea, and J.-J.C. Meyer

The base cases consist in ⊥ and the atomic formulas t ∈ Prop ∪Nom ∪ Var.
The ⊥ case is trivial (since no model satisfies it) while for the atomic formulas
the claim follows from constraint (i) of full hybrid bisimulation.

For the negation we have that M1, w1 	 ¬φ ⇔ M1, w1
	 φ, which, by the
induction hypothesis, is equivalent to M2, w2
	 φ⇔M2, w2 	 ¬φ.

For disjunction we have: M1, w1 	 φ ∨ ψ ⇔ M1, w1 	 φ or M1, w1 	 ψ ⇔
M2, w2 	 φ or M2, w2 	 ψ ⇔M2, w2 	 φ∨ψ, where we have used the induction
hypothesis for φ and ψ.

For the modal operators we have M1, w1 	 〈r〉φ⇔ ∃w′
1.(w1, w

′
1) ∈ R1(r) and

M1, w
′
1 	 φ ⇔ ∃w′

2.(w2, w
′
2) ∈ R2(r) and M2, w

′
2 	 φ ⇔ M2, w2 	 〈r〉φ, where

we have used the induction hypothesis for φ and also the zig-zag constraints for
relations.

For the converse operator and the global modality we use the same approach,
but based on the corresponding zig-zag constraints.

For the satisfaction operator, we have: M1, w1 	 @iφ⇔ ∀w′
1.V1(i) = {w′

1} ⇒
M1, w

′
1 	 φ ⇔ ∀w′

2.V2(i) = {w′
2} ⇒ M2, w

′
2 	 φ ⇔ M2, w2 	 @iφ. Here, we

relied on the fact that the nominals constraint of full hybrid bisimulations ensures
that the worlds named by the same nominal in the two models are bisimilar and
we have also used the induction hypothesis.

The last remaining operator is the fixpoint ν. We have M1, w1 	 νX.φ(X)⇔
∃T.(T ⊆ W1 and T ⊆ {w′

1 ∈ W1 | M1[X:=T], w
′
1 	 φ(X)} and w1 ∈ T). Let

us consider the following relation ρ ⊆ W1 ×W1, given by (u, v) ∈ ρ ⇔ ∃x.x ∈
W2 and (u, x) ∈ Z and (v, x) ∈ Z. Clearly, we have M1, u 	 φ ⇔ M2, x 	
φ⇔M1, v 	 φ, using the induction hypothesis. Let us denote by ≈ the reflexive
and transitive closure of ρ. It is easy to see that ≈ is an equivalence relation.
Furthermore, we have that if u ≈ v then M1, u 	 φ⇔M1, v 	 φ. Clearly, we can
define a similar equivalence relation for M2 as well. We will not use a different
notation, since the worlds from the two models cannot be mixed anyway, so there
is no possibility for confusion.

Now, let us take T1 = {w ∈ W1 | ∃w′.w′ ∈ T and w ≈ w′}. Clearly we have
T ⊆ T1 and, thus, w1 ∈ T1. Since all occurrences of X in φ(X) are positive, we
have that φ(X) is upward monotone, which means that {w ∈W1 |M1[X:=T], w 	
φ(X)} ⊆ {w ∈ W1 | M1[X:=T1], w 	 φ(X)}. So we also have T ⊆ {w ∈ W1 |
M1[X:=T1], w 	 φ(X)}. Now, let us take an arbitrary world u ∈ T1. Then there
is a world v ∈ T such that u ≈ v. Since v ∈ T , we have that v ∈ {w ∈ W1 |
M1[X:=T1], w 	 φ(X)}. But then, since u ≈ v, we have M1, u 	 φ(X)⇔M1, v 	
φ(X), which leads to u ∈ {w ∈ W1 |M1[X:=T1], w 	 φ(X)}. Thus, we have shown
that T1 ⊆ {w ∈ W1 |M1[X:=T1], w 	 φ(X)}.

Let us now show that for this T1 we can find a corresponding T2 ⊆ W2 such
that M1[X:=T1]↔fhM2[X:=T2]. We take T2 = {w ∈ W2 | ∃x.x ∈ T1 and (x,w) ∈
Z}. Since the only change to the original models is the valuation of X , the only
constraint that might be violated by Z is (i). From the choice of T2 we clearly
have u1 ∈ T1 ⇒ u2 ∈ T2 for all (u1, u2) ∈ Z. Let us show that the converse holds
as well. Indeed, take u2 ∈ T2. Then there is x ∈ T1 such that (x, u2) ∈ Z. Since

Full Hybrid μ-Calculus, Its Bisimulation Invariance 187

we also have (u1, u2) ∈ Z, it follows that u1 ≈ x, so u1 ∈ T1, which concludes
our proof.

Based on the considerations above, this also concludes the proof for the fix-
point operator and ends the induction proof of the theorem. ,-

To see the intuition behind the ρ relation used in the proof, suppose we can find
T ′ ⊆ W2 such that M1[X:=T]↔Z

fhM2[X:=T ′]. Then, for any v2 ∈ T ′, from con-
straint (viii) of the bisimulation (zag for the global modality) we have
∃v1.(v1, v2) ∈ Z, which, coupled with constraint (i) leads to v1 ∈ T (because
T = V1(X) and T ′ = V2(X)). But then M1[X:=T], v1 	 φ(X)⇔M2[X:=T ′], v2 	
φ(X), using the choice of T ′ and the induction hypothesis. But this means that
T ′ ⊆ {w′

2 ∈ W2 | M2[X:=T ′], w
′
2 	 φ(X)}. Since we have used the same bisim-

ulation Z, we also have w1 bisimilar with w2, so we must have w2 ∈ T ′, which
would complete the proof for the fixpoint operator.

However, it might be impossible to find an appropriate T ′ in order to maintain
bisimilarity. To see why, consider two worlds u1, u

′
1 ∈W1 that are both bisimilar

with a world u2 ∈ W2 and also satisfy u1 ∈ T and u′1
∈ T . Since u1 and u2
are bisimilar, we must have u2 ∈ T ′. But then, u′1 and u2 being bisimilar as
well, we should also have u′1 ∈ T , which contradicts the hypothesis. Of course,
we might be able to add u′1 to T and be lucky to have the new T satisfy the
same properties required for the fixpoint operator, but other changes might be
necessary based on other pairs of worlds in one model that are bisimilar to the
same world in the other model. The ρ relation helps to overcome this problems.

Note that the proof for the fixpoint case is different from the one suggested
(but not included) in [6], which would need a second induction on the approxi-
mants of the fixpoint operator.

We end this section with a few words about what makes Lμ(E,@,−) particu-
larly interesting for us. First of all, it is easy to see that full hybrid μ-calculus has
an impressive set of operators, which means a high expressivity. Furthermore, it
is shown in [4] that it is decidable.

There are other operators that are missing, but whose addition would lead
to undecidable logics. Graded modalities can be added to μ-calculus instead of
nominals or the converse in order to get other powerful decidable logics [4].

Other important operators are the complement and the intersection of rela-
tions, but these two lead to undecidability rather quickly: add one of them and
the global modalities to ML and the obtained logic is already undecidable [9].

A very strong operator from hybrid logics is the down arrow binder ↓, which
allows one to talk about “here and now” in modal logic. However, in the presence
of both nominals and the global modality, this operator provides full first-order
expressive power, so it implicitly leads to undecidable logics.

This particular enrichment of Lμ is interesting for us because it features ap-
pealing operators from an argumentation perspective. More precisely, μ-calculus
has already been used in [1] for describing the grounded semantics and the global
modality has been used for describing several others. The converse can also have
an important use in argumentation for determining mutual conflict, whereas

188 C. Gratie, A.M. Florea, and J.-J.C. Meyer

graded modalities seem unrelated to the notions used in argumentation. We will
see more about the argumentation applications of Theorem 1 in Section 4.

3 Considerations about Expressivity with Respect
to MSOL

It is well known that modal logic formulas can be translated into first-order
logic formulas with a single free variable (and many bound variables). Atomic
propositions are translated into unary (monadic) predicates, whereas the usual
modalities (boxes and diamonds – unary operators) translate into binary rela-
tions. If modalities of arity n are allowed, as in [9], then the translation language
will contain predicates of arity n + 1. It is shown in [9] that it is even possible
to translate ML to a first order language with only two variables.

Whenever such a translation goes both ways, in the sense that any formula
from the translation language (possibly satisfying some constraints) is equiva-
lent to the translation of some modal formula, it is said that the corresponding
modal logic is the fragment of the translation language that satisfies the given
constraints. For example, it is known that the basic modal logic is the bisimula-
tion invariant fragment of first order logic.

A similar translation is possible for hybrid logics as well, by providing con-
stants and equality in the translation language. It is shown in [5] that the hybrid
logic H(@) is the hybrid bisimulation invariant fragment of first order logic.

The fixpoint operators, on the other hand, go beyond first order logic. How-
ever, they can be translated into second order formulas. It was shown in [6] that
μ-calculus is the bisimulation invariant fragment of Monadic Second Order Logic
(MSOL), where second order quantification is only allowed for subsets of the do-
main. The proof of this fact, due to Janin and Walukiewicz [8], is rather intricate
and uses alternating automatons that accept infinite trees. While we feel that a
similar result should hold for full hybrid μ-calculus as well, we acknowledge that
their proof cannot be directly applied for this language. The main reason for this
is the fact that full hybrid μ-calculus does not have the tree model property.

Indeed, a key element of Janin and Walukiewicz’s proof relies on unraveling
models of μ-calculus into bisimilar (possibly infinite) trees. However, the nomi-
nals make such an unraveling sometimes impossible. Let us consider for example
the formula φ = i ∧ 〈r〉(j ∧ 〈r〉i), satisfied by the model in Figure 3. It is ob-
vious that this formula cannot be satisfied by any tree model, since it actually
describes a cycle of length 2. Thus, one should either work with automatons

w1

i

w2

j
r

r

Fig. 3. A model satisfying a hybrid formula that cannot be satisfied by tree models

Full Hybrid μ-Calculus, Its Bisimulation Invariance 189

that accept cyclic graphs as well, or devise a completely different proof. The
forest model property discussed in [3] may also be useful. We leave this part for
future work, but we continue this paper with an application of the bisimulation
invariance of Lμ(E,@,−) to abstract argumentation.

4 Application for the Preferred Argumentation Semantics

Argumentation frameworks are defined as directed graphs where the edges con-
vey the attack relation between arguments. It is natural to establish a link be-
tween argumentation frameworks and the models of modal logic and this has
already been done by Grossi [1]. We start with a basic argumentation back-
ground, based on [7], but with slightly different notations.

Definition 5. An argumentation framework is a pair F = (A,R), where A
is a set of arguments and R ⊆ A×A is an attack relation on A. We say that an
argument a attacks an argument b and we write this as a→ b iff (a, b) ∈ R. In
this case, we say that a is an attacker of b. A set of arguments S (set-)attacks
an argument a iff S contains an attacker of a. A set S defends an argument a
iff S attacks all the attackers of a.

Given such an argumentation framework, there are several methods for selecting
arguments that are acceptable together. Such methods are known in the argu-
mentation literature as semantics. We will only introduce here the ones that are
needed for a good understanding of the rest of the paper. The definitions are
adapted from [7].

Definition 6. Let F = (A,R) be an argumentation framework.

(a) A set of arguments S is said to be conflict-free iff there are no arguments
a, b ∈ S such that a → b. The set of all conflict-free sets of F is denoted by
ECF(F).

(b) A conflict-free set of arguments S is said to be admissible iff S defends all
the arguments it contains. The set of all admissible sets of F is denoted by
EAS(F).

(c) An admissible set of arguments S is said to be a complete extension of F iff
it contains all the arguments it defends. The set of all complete extensions
of F is denoted by ECO(F).

(d) The grounded extension of F is defined as the minimal (with respect to set
inclusion) complete extension. We will use GR(F) to denote the grounded
extension of F , but also we will write EGR(F) = {GR(F)}, for uniformity.

(e) A preferred extension of F is a maximal (with respect to set inclusion)
complete extension. The set of all preferred extensions of F is denoted by
EPR(F).

Note that several other argumentation semantics exist, but they are not very
relevant for this work. The interested reader may see [10] for a survey.

190 C. Gratie, A.M. Florea, and J.-J.C. Meyer

We will ilustrate the argumentation semantics with an example. The argu-
mentation framework in Figure 4, call it F , is given by F = (A,R) with
A = {a, b, c, d} and R = {(a, b), (b, a), (a, c), (b, c), (c, d)}. For this framework,
we have:

ECF(F) = {∅, {a}, {b}, {c}, {d}, {a, d}, {b, d}}
EAS(F) = {∅, {a}, {b}, {a, d}, {b, d}}
ECO(F) = {∅, {a, d}, {b, d}}
EGR(F) = {∅}
EPR(F) = {{a, d}, {b, d}}

(1)

a

b

c d

Fig. 4. A simple argumentation framework

It is not difficult to see that, at least from the representation point of view,
argumentation frameworks are rather similar to Kripke models, all that they are
missing is the valuation function. The link between the two domains was estab-
lished by Grossi in [1], where it was shown that several argumentation semantics
can be described using modal formulas. In order to give a good intuition of this
link, we discuss several of Grossi’s results. First, let us consider the following
formulas, taken from [1] and adapted to our notation:

CF(x) = A(x→ ¬〈r−〉x)
AS(x) = A(x→ ([r−]¬x ∧ [r−]〈r−〉x))
CO(x) = A((x→ [r−]¬x) ∧ (x↔ [r−]〈r−〉x))

(2)

We will use the following extended valuation function:

V ∗(φ) = {w ∈W |M, w 	 φ} (3)

If we read r as an attack relation and worlds as arguments, the first formula
states that, for any argument a, if a is in V ∗(x), then a is not attacked by an
argument that is also in V ∗(x). In other words, V ∗(x) is a conflict-free set. The
other formulas describe in a similar manner the corresponding extensions from
argumentation:

M, w 	 Sem(φ)⇔ V ∗(φ) ∈ ESem(W,R(r)) (4)

where Sem stands for the name of the argumentation semantics.

Full Hybrid μ-Calculus, Its Bisimulation Invariance 191

The following formula is provided in [1] for the grounded semantics:

GR = μZ.[r−]〈r−〉Z (5)

We can also write this formula in a form that is similar to those in (2) and also
follows the general intuition captured in (4):

GR(x) = A(x↔ μZ.[r−]〈r−〉Z) (6)

As far as the preferred semantics is concerned, Grossi states in [1] that it cannot
be described within μ-calculus, because preferred extensions are not bisimula-
tion invariant. The example he provides relies on a model with a self-attacking
argument and the unraveling of that model into an infinite chain of attacks. We
will provide a different example.

Indeed, suppose that there exists aML formula PR(x) that tests preferred ex-
tensions. Consider the models in Figure 5, call the one on the left M = (W,R, V)
and the one on the right M′ = (W ′, R′, V ′). For model M1 we have that
EPR(W,R(r)) = {∅}, so M, w 	 PR(⊥) for any w, whereas for M′ we have
EPR(W ′, R′(r)) = {{w′

1}, {w′
2}}, so M′, w′
	 PR(⊥), for all w′ ∈W ′.

w1p

w2

p
w3

p

w′
1

p

w′
2

pr

r

r
r

r

Fig. 5. Bisimilar models with different preferred extensions. Dashed lines show the full
hybrid bisimulation between them.

So we have seen that PR(⊥) can distinguish the two models. However, note
that the relation depicted in Figure 5 with dashed lines is a (simple) bisimulation,
so a μ-calculus formula should not be able to distinguish the two models. We
have reached our contradiction, so there is no μ-calculus formula for the preferred
semantics. We prefer this example to that provided in [1] because it is not based
on elements that are rather uncommon in argumentation (infinite frameworks,
self-attacking arguments). Instead, it is a consequence of the fact that odd and
even length cycles are handled differently by the preferred semantics, an aspect
that has been discussed in the argumentation literature. Several counter-intuitive
behaviors of the preferred semantics that are related to the odd vs even length
cycles are presented in [11].

Furthermore, one can see that the relation from Figure 5 is in fact a full
hybrid bisimulation, so we can use the same example and reasoning to get the

192 C. Gratie, A.M. Florea, and J.-J.C. Meyer

stronger result that the added power of nominals, satisfaction operator, global
modalities and converse is not enough for describing the preferred semantics.
This provides a partial answer to the open question regarding the possibility of
describing the preferred semantics with a combination of μ-calculus and hybrid
logics [1]. The answer is just partial because Lμ(E,@,−) does not contain the
powerful down arrow binder ↓ pertaining to hybrid logics. Adding ↓ to μ-calculus
(even without nominals) leads to an undecidable logic [5], because ↓ gives full
first order expressive power. Whether ↓ is expressive enough for describing the
preferred semantics remains an interesting open problem.

w1p

w2p

w0p w3

q, i

w4

q, j

w′
1

p

w′
2

p

w′
3

q, i

w′
4

q, j

r

r

r

r

r

r

r

rr

r

r

r

Fig. 6. Bisimilar models distinguished by the intersection of their preferred extensions.
Dashed line shows the full hybrid bisimulation between them.

Let us see whether a weaker description of the preferred semantics is available
within Lμ(E,@,−). What we are looking for is a formula similar to (5). For this,
we would have to aggregate the information contained within preferred exten-
sions into a single set. We can do this by either intersection (skeptical approach)
or union (credulous approach). We will show that full hybrid μ-calculus is still
not expressive enough.

Let us assume that there exist PR∪ and PR∩ in Lμ(E,@,−) such that, for
any model M = (W,R, V), we have:

M, w 	 PR∪ ⇔ w ∈
⋃
EPR(W,R(r))

M, w 	 PR∩ ⇔ w ∈
⋂
EPR(W,R(r))

(7)

We will use the models from Figure 6. Assume that M = (W,R, V) is the model
at the top and M′ = (W ′, R′, V ′) is the one at the bottom. We have that the
two models are bisimilar using the full hybrid bisimulation depicted in the figure.

Full Hybrid μ-Calculus, Its Bisimulation Invariance 193

Furthermore, let us see that their preferred extensions with respect to relation
symbol r are EPR(W,R(r)) = {∅} and EPR(W ′, R′(r)) = {{w′

1, w
′
4}, {w′

2, w
′
4}}.

Thus, for the skeptical approach we get that
⋂
EPR(W,R(r)) = ∅ and⋂

EPR(W ′, R′(r)) = {w′
4}. But then M, w4
	 PR∩ and M′, w′

4 	 PR∩, al-
though w4 and w′

4 are bisimilar. This contradicts the invariance of full hybrid
μ-calculus with respect to full hybrid bisimulation. For the credulous approach
we have

⋃
EPR(W,R(r)) = ∅ and

⋃
EPR(W ′, R′(r)) = {w′

1, w
′
2, w

′
4}. But then

M, w4
	 PR∪ and M′, w′
4 	 PR∪, so again a contradiction. This shows that

full hybrid μ-calculus is not expressive enough to describe PR∩ or PR∪.
Note that the example from Figure 5 hides an implicit requirement that the

set of nominals is empty. Indeed, should there exist any nominal, the bisimula-
tion depicted in the figure would violate condition (ii) of Definition 4 and, even
more, it would be impossible to find a full hybrid bisimulation between the two
models. The example from Figure 6, on the other hand, contains nominals and
the preferred semantics distinguishes those two models as well, so our result does
not rely on the assumption that there are no nominals.

5 Conclusions and Future Work

In this paper we proved that full hybrid μ-calculus is invariant with respect to
full hybrid bisimulation. The definitions of both the logic and the corresponding
bisimulation were presented in such a way as to emphasize the subsumed con-
cepts. Our proof follows a different approach for the fixpoint operators than the
one suggested in the literature for the simple μ-calculus.

Furthermore, we showed that the invariance result for the full hybrid μ-
calculus helps answer an open question in the argumentation literature, namely
whether a hybrid approach in addition to fixpoint operators is enough for cap-
turing the preferred semantics. We provided a negative answer to this question
and strengthened the result by showing that the intersection and the union of
all preferred extensions corresponding to a model cannot be described either.

It may seem that there is no use for the converse operator in argumentation,
in the sense that one can simply use the converse of the attack relation as
an accessibility relation for the modal formulas and eliminate the need for the
actual operator in the language. There are, however, argumentation concepts
that require both the attack and its converse.1

We also discussed the standard translation of hybrid μ-calculus and showed
that, while the translation to Monadic Second Order Logic follows easily from
existing results in the literature, the reverse translation cannot benefit directly
from the proof for μ-calculus because the logic does not have the tree model prop-
erty, which is a key ingredient of that proof. Future work will focus on deciding
whether full hybrid mu-calculus is indeed the fragment of MSOL invariant to
full hybrid bisimulations.

1 For example, the CF-reinstatement principle [12] requires that an extension E con-
tains every argument a that is defended by E and is not in conflict with E (i.e. a
does not attack E and E does not attack a). This principle can be formulated in full
hybrid μ-calculus as A([r−]〈r−〉x ∧ ¬〈r−〉x ∧ ¬〈r〉x → x).

194 C. Gratie, A.M. Florea, and J.-J.C. Meyer

Furthermore, it is interesting to note that writing the formal definition of the
preferred semantics leads to a MSOL formula. We have seen in this paper that
full hybrid μ-calculus, which translates to a fragment ofMSOL, is not expressive
enough to describe the preferred semantics. On the other hand, it is not obvious
whether the missing expressive power is of first order nature (and can be met
by adding ↓ or possibly a weaker operator) or of second order nature. We will
approach this open question in future work.

Acknowledgement. This work has been funded by the Sectoral Operational
ProgrammeHuman Resources Development 2007-2013 of the RomanianMinistry
of Labour, Family and Social Protection through the Financial Agreement POS-
DRU/88/1.5/S/61178 and by project ERRIC (Empowering Romanian Research
on Intelligent Information Technologies), number 264207/FP7-REGPOT-2010-1.

References

1. Grossi, D.: On the logic of argumentation theory. In: van der Hoek, W., Kaminka,
G., Lesperance, Y., Luck, M., Sandip, S. (eds.) Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp.
409–416. IFAAMAS (2010)

2. Grossi, D.: An Application of Model Checking Games to Abstract Argumentation.
In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953,
pp. 74–86. Springer, Heidelberg (2011)

3. Sattler, U., Vardi, M.Y.: The Hybrid μ-Calculus. In: Goré, R.P., Leitsch, A., Nip-
kow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 76–91. Springer, Heidel-
berg (2001)

4. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched
μ-calculi. Logical Methods in Computer Science 4(3:11), 1–27 (2008)

5. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3, pp. 821–868. Elsevier (2007)

6. Bradfield, J., Stirling, C.: Modal μ-calculi. In: Handbook of Modal Logic. Studies
in Logic and Practical Reasoning, vol. 3, pp. 721–756. El (2007)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

8. Janin, D., Walukiewicz, I.: On the Expressive Completeness of the Propositional μ-
Calculus with Respect to Monadic Second Order Logic. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg
(1996)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, vol. 27. Cambridge University Press (2001)

10. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan,
I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 24–44. Springer
(2009)

11. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

12. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argu-
mentation semantics. Artificial Intelligence 171(10-15), 675–700 (2007)

A Numerical Approach to the Merging
of Argumentation Networks

Dov Gabbay1 and Odinaldo Rodrigues2

1 Bar Ilan University, Israel; Department of Informatics,
King’s College London; and University of Luxembourg

dov.gabbay@kcl.ac.uk
2 Department of Informatics, King’s College London

odinaldo.rodrigues@kcl.ac.uk

Abstract. In this paper, we propose a numerical approach to the problem of
merging of argumentation networks. The idea is to consider an augmented net-
work containing the arguments and attacks of all networks to be merged and then
associate a weight to each of its components based on how they are perceived by
the agents associated with the local networks. The combined weighted network is
then used to define a system of equations from which the overall strength of the
arguments is calculated.

1 Introduction

An argumentation system is a tuple 〈S,R〉, where S is a non-empty set of arguments
and R is a binary relation on S representing attacks between the arguments [12]. One
may argue that the main objective of an argumentation system is to identify sets of
winning arguments in S, based on the interactions represented by R and an appropriate
semantics determining which subsets of S can be taken as a coherent view. Such subsets
are called extensions.

This paper concerns the merging of argumentation systems. We imagine a family of
k agents and a large set of possible arguments. Each agent ai can see a subset Si of
these arguments and in her opinion, the attack relation should be Ri ⊆ S2

i . Agent ai
further adopts a set of winning arguments Ei ⊆ Si. The agents form a community and
a consensus is required. Thus our problem is to merge these k systems 〈Si, Ri, Ei〉 into
a single system.

At first, one may think that the merging process can be done at the meta level, i.e., by
considering only the winning arguments in each local system. However, this not only
will sometimes produce unintuitive results [11], but will also fail to simultaneously
satisfy well-known social choice properties [22]. The reasons have to do with the fact
that attacks known only locally are not represented by the local extensions of winning
arguments, but they may well be relevant during the collective decision as a whole. If
we want to take both the local decisions and the local topologies of the various systems
into account, we need a framework that can take all this information into account.

Our starting point is an augmented argumentation system containing the arguments
and attacks of all individual networks. We approach the merging problem from a voting

M. Fisher et al. (Eds.): CLIMA XIII 2012, LNAI 7486, pp. 195–212, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

196 D. Gabbay and O. Rodrigues

perspective: agents put forward a vote on the components of the augmented system
depending on how they perceive these components locally. However, the votes are not
used as in an usual voting procedure such as majority voting, etc. For us, votes are used
to support the idea of reinforcement: the more a component appears locally, the more
it is represented collectivelly. We aggregate the votes of the components resulting in an
augmented argumentation system in which both arguments and attacks have weights
with values in the interval U = [0, 1]. Thus, we get a network of the form 〈S,R, V 〉,
where 〈S,R〉 is a traditional network and V is a function from S ∪ R into U . Such
augmented systems can be seen a special case of support and attack networks [3]. We
believe that the merging of argumentation systems is a scenario that naturally justifies
the employment of weights in attacks and arguments.

We now have a situation whereby each agent has a traditional argumentation system,
they all vote and get a merged combined numerically weighted argumentation system.
This is a mismatch. So we need to explain how we understand the numerical weights
and then extract/project from the merged system a set of winning arguments. Had we
started working from the outset with numerical weighted systems, we would have more
choice on how to perform the merging because we could use the original weights in the
computation of the overall result, e.g., by constructing a new weighted argumentation
system representing the group as a whole.

Given an augmented argumentation system with weights constructed as described
above, we see the weights of the nodes as the overall initial level of support for the
arguments in the community and the weights of the edges as the intensity with which
the attacks between the arguments are carried out.

It is natural to expect that the overall support for an argument will decrease in pro-
portion to the strength of its attacking arguments and the intensity with which these
attacks are carried out. However, since the attacking arguments may themselves be at-
tacked, we need to find a way to systematically propagate the values in the network
and determine equilibrium values for the nodes based on their interactions, much in the
spirit of an interaction-based valuation [8]. This is akin to finding the extensions in
a traditional network. However, our work has two important differences: 1) we allow
both arguments and attacks to have weights; and 2) we calculate the equilibrium values
using the equational approach of [14,15]: we see the augmented system as a generator
of numerical equations whose solutions correspond to the equilibrium values.

Argumentation systems in which weights are associated to arguments have been
studied before. One of the first approaches was proposed in [4] where the weight of
an argument is used to express its relative strength for a particular audience. Besnard
and Hunter proposed a categoriser function that assigned a value to a tree of arguments
[5]; Cayrol and Lagasquie-Schiex introduced the concept of graduality in the valuation
of arguments in [8]; and other examples of systems using weights in one form or another
include [3,13,2,6,23,19]. The novelty of our approach is in the use of the weights to rep-
resent the support of the community for both arguments and attacks and in the way that
equilibrium values for these components are calculated using a system of equations.

The rest of the paper is structured as follows. In Section 2, we introduce some basic
concepts and the equational approach. In Section 3, we show how the merging process
is done. We then show how to calculate equilibrium values in Section 4 and illustrate

A Numerical Approach to the Merging of Argumentation Networks 197

the idea with some examples in Section 5. Some comparisons with related work are
done in Section 6 and we finish with some discussions and conclusions in Section 7.

2 Background

As mentioned in the previous section, given an argumentation system 〈S,R〉, one is
generally interested in finding the winning arguments in S according to a particular
semantics.

One way of doing this is to look at subsetsE ⊆ S that are as large as possible and yet
whose arguments are compatible with each other. Two common notions of compatibility
require E to be conflict-free, i.e., ∀X,Y ∈ E, it is not the case that (X,Y) ∈ R; and
that all arguments X ∈ E are acceptable, i.e., ∀Y ∈ S, if (Y,X) ∈ R, then ∃Z ∈ E
such that (Z, Y) ∈ R. IfE is conflict-free and only contains acceptable arguments, then
we say that E is admissible. An admissible set E ⊆ S that is also maximal with respect
to set inclusion amongst all admissible sets is called a preferred extension of 〈S,R〉.

A preferred extension can be defined in terms of a complete labelling of the set of
arguments that assigns in to arguments that are accepted; out to those that are rejected;
and undec to those that are neither [7, Theorem 2]. Such labelling is called a Caminada
labelling [7, Definition 5] and has advantages over the extension approach, because the
latter only identifies the set of arguments that are accepted. We will return to this type
of labelling later in the section.

In traditional argumentation systems, there is no notion of weight associated to an
argument or attack. However, there are scenarios in which this association seems natu-
ral. In the case of arguments, the weights may come, for instance, from an underlying
many-valued logic; as the normalised result of a vote put to a community of agents;
or as the result of interactions between the arguments in a network (as in [8]). In the
first case, the values are intrinsic to the arguments whereas in the last two, the values
are conceptually external to the argumentation framework. Mixed approaches are also
possible. We may start with each agent assigning numerical values via considerations
which are conceptually connected to the arguments and their meaning and end up with
merged values obtained during a voting procedure. The application area can dictate the
most appropriate approach.

For similar reasons, an attack between argumentsX and Y may also be given varying
degrees of strength rather than just 0 or 1. Again, the strength may have conceptually
related, internal, argumentation meaning or may be conceptually external to the argu-
ments themselves. For example, it may be obtained from the statistics about the corre-
lation betweenX and Y ; or calculated from the proportion of members of a community
supporting the attack ofX on Y (as in [9]). It may even come from considerations about
the geometry of the network itself.

An even more compelling scenario for the use of extended values is because they
arise naturally in formalisms that are concerned with the problem of merging of ar-
gumentation systems, which we consider here. The concept was introduced by Coste-
Marquis et. al. in [11].

Because of these considerations, it may be wise when presenting a numerical argu-
mentation network to provide not only the numerical values themselves but also to give
their origin, internal or external, etc.

198 D. Gabbay and O. Rodrigues

Now, given the numerical network 〈S,R, V 〉 we need to somehow figure out what
the various values mean. We can regard the values given by V as start-up values that
we may want to adjust depending on how the components interact in the network. The
adjustment corresponds to the valuation step in Cayrol and Lagasquie-Schiex’s termi-
nology [8]. However, in our case we want arguments to be weakened in proportion to
the strength of the attacks and the intensity with which these attacks are carried out.
Ideally, we want to find equilibrium values for all arguments.

One good option to calculate these values is by using the equational approach pro-
posed in [14,15] which sees a numerical network as a generator of equations. Provided
the equations respect the meaning of the weights of the arguments and attacks an “eval-
uation” of the network can be done according to the solutions found for the system of
equations. For an argument X , the equilibrium value 1 means definitely “in”; 0 means
definitely “out”; and any other value inbetween means how close to in (or out)X is. We
may even decide on an appropriate threshold value for the acceptance of arguments.

An example of how such equations can be generated is given by the schema Eqmax

below. The symbol Ve(X) will be used to denote the equilibrium value of a node X .
Now let Att(Y) denote the set of all arguments attacking Y , i.e., Att(Y) = {Xi ∈
S | (Xi, Y) ∈ R}. We can define the equilibrium value of Y through the equation

(Eqmax) Ve(Y) = 1−maxXi∈Att(Y){Ve(Xi)}

Note that for a node Y , Ve(Y) = 1 if and only if Ve(X) = 0 for all X ∈ Att(Y)
and Ve(Y) = 0 if and only if Ve(X) = 1 for some X ∈ Att(Y).

Thus, the network of Fig. 1. generates the following system of equations:

Ve(X) = 1
Ve(Z) = 1
Ve(W) = 1−max{Ve(Z)} (= 0)
Ve(Y) = 1−max{Ve(X), Ve(W)} (= 0)

If we set the threshold for acceptance of arguments at the value 1, we get that only the
argumentsX and Z are accepted as traditionally expected.

Generally speaking, Gabbay has shown that the totality of the solutions of the equa-
tions generated from a network using Eqmax corresponds to the totality of Caminada
labellings of that network [15]. However, note that Eqmax does not take into account a
node’s initial value or the intensity with which the attacks to it have been carried out.
We will consider a more sophisticated equation schema to take these into account in
Section 4.

X W Z

Y

Fig. 1. A simple argumentation system

A Numerical Approach to the Merging of Argumentation Networks 199

3 Merging Argumentation Networks

In this section, we provide some intuitions about our proposed method of merging ar-
gumentation networks. Our first goal is to show how to combine the networks into a
single weighted argumentation network.

As discussed in Section 1, we start by associating each network with an agent who
“votes” for its components. Obviously, in any interesting scenario, the networks being
merged are distinct. Consider the networks in Fig. 2 and the chosen extensions of each
network containing its winning arguments.

〈S1, R1〉 〈S2, R2〉 〈S3, R3〉

X

Y Z

X Y

Z

Y

W

a1, E1 = {X,Z} a2, E2 = ∅ a3, E3 = {W,Z}

Fig. 2. Argumentation networks of three different agents

We immediately notice that the three agents have different sets of arguments, and
even in the case where the arguments coincide, the agents may disagree with respect to
the attack relationships between them. For instance, argumentW is only known to agent
a3, and in her network, Z attacks Y , whereas in the network of agent a1, Y attacks Z .

There are many reasons why agents may have different argument systems. They
may use different knowledge bases; they may have different deductive capabilities; they
may use different inference systems; etc. These may also generate disagreements with
respect to the direction of the attacks between arguments which are arguably akin to
the existence of cycles in a single network. In fact, individual acyclic networks when
combined into a single network may well end up containing cycles.

A simple way of harmonising the differences is to consider expansions to the net-
works. Unlike in [11], we do not expand each network individually, but rather we con-
sider the single augmented network that includes the components of all other networks.

However, the augmented network alone is not sufficient to represent the community,
because some components appear in more networks than others and we would like to
reflect that by using weights. We first introduce the notion of a profile of (traditional)
networks and then we define the notion of an augmented network with weights for a
profile.

Definition 1. A profile of argumentation systems is a tuple P = 〈AN1, . . . , ANk〉
where each ANi = 〈Si, Ri〉 is an argumentation system. We assume each agent ai
has a procedure wi for selecting a subset of Si representing the winning arguments in
Si according to ai’s local semantics and we useEi to denote this set, i.e.,wi(Si) = Ei.

200 D. Gabbay and O. Rodrigues

X W

Y Z

〈∪Si,∪Ri〉

Fig. 3. Augmented network containing all components of 〈S1, R1〉, 〈S2, R2〉 and 〈S3, R3〉

Definition 2. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
let ANi = 〈Si, Ri〉. The weighted augmented network for P is a tuple AWNP =
〈S,R, V0, ξ〉 where

– S = ∪iSi and R = ∪iRi

– V0 : S → [0, 1] represents the initial level of support for an argument X ∈ S
within P , as to be calculated/voted from all the ANi

– ξ : R → [0, 1] represents the intensity of an attack (X,Y) ∈ R within P , as to be
calculated/voted from all the ANi

Now we need to decide on a policy for representing each agent’s perception of the ar-
guments and attacks in AWNP depending on the agent’s original network. We shall
see that these will later be used to define V0 and ξ. For simplicity, we will refer gener-
ally to the arguments of these functions, i.e., arguments and attacks respectively, as the
“components” of the network.

In agreement with [11] we believe that there is an intrinsic difference between sup-
porting a component; rejecting it and being ignorant about its existence (in which case
a decision for or against it is impossible). In order to distinguish these attitudes, we let
agents vote for components by assigning to them one of the three values below.

0: the agent does not know about the component
1: the agent knows about the component and supports it

−1: the agent knows about the component but does not support it

Definition 3. Let P be a profile. The attitude of an agent ai towards the component c
of AWNP , in symbols vi(c), is represented in the following way.1

vi(X) vi
(
(X,Y)

)
0: if X
∈ Si 0: if either X
∈ Si or Y
∈ Si (or both)
1: if X ∈ Ei 1: if (X,Y) ∈ Ri

−1: if X ∈ Si − Ei −1: if X,Y ∈ Si, but (X,Y)
∈ Ri

That is, the agent ai votes with 0 for argument X , if ai has no knowledge about it;
otherwise ai will vote with 1 or −1 depending on whether X is amongst the winning
arguments of Si. The case of an attack from X to Y is similar but an attack may not
exist because one or both arguments are not known. Hence, the agent ai will vote with
0 if at least one of X and Y is not known (in which case a judicious decision about the

1 To simplify notation we use the same function symbol vi for nodes and edges.

A Numerical Approach to the Merging of Argumentation Networks 201

attack is not possible). Otherwise, if both X and Y are known, the agent will vote with
−1 if (X,Y)
∈ Ri and with 1 if (X,Y) ∈ Ri. Note that the vote 1 depends only on the
existence of the attack in the agent’s local network. Even if Y ∈ Ei and X
∈ Ei, the
agent ai must still vote with 1 if (X,Y) ∈ Ri, since she knows about it. The agent’s
choice for Y over X in spite of the attack of X on Y in this case is already taken into
account in the agent’s votes forX and Y .

The above voting strategy only requires that there is a local semantics for deciding
the winning arguments in each network and does not make any assumptions on what it
should be. In fact, the group as a whole may have several different local semantics.

If the local networks are themselves numerical, then a number of alternatives arise.
One could compute each network individually, decide on the winning arguments and
apply the same technique given above; or one could feed the equilibrium values of
each network into the augmented one, normalise the values as appropriate, generate
the equations and then compute the overall equilibrium values as before; or one could
choose a combination of these ideas.

We now need to generate the initial weights for the augmented network based on each
agent’s attitude to its components. Again, because some components are only known to
some agents, the community may take two different approaches when considering the
overall level of support for a component:

– in the credulous approach, the weights are calculated based on the total number of
agents that know about a component

– in the sceptical approach, the weights are calculated taking into account the total
number of agents in the profile P

We will associate the credulous approach with the superscript + and the sceptical one
with the superscript − in the definitions of the initial values V0 and ξ below. Whenever
the distinction is not important we will simply omit the superscripts.

Definition 4. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
AWNP the weighted augmented network for P . Let v+(c) = |{i | vi(c) = 1}| and
v−(c) = |{i | vi(c) = −1}|. We define

V +
0 (X) = v+(X)

v+(X)+v−(X)

ξ+
(
(X,Y)

)
=

v+
(
(X,Y)

)
v+
(
(X,Y)

)
+v−

(
(X,Y)

)
V −
0 (X) = v+(X)

k

ξ−
(
(X,Y)

)
=

v+
(
(X,Y)

)
k

Note that we have purposefully excluded the agents who do not know about a com-
ponent c in the definitions of V +

0 (c) and ξ+(c) above. These agents vote with 0 for c
according to Definition 3 and hence are not counted in either v+(c) or v−(c). V −

0 (c)
and ξ−(c) on the other hand look at the components more sceptically and consider their
representation across all voters.

For the example in Fig. 2 we get the initial weights shown in Fig. 4 for the com-
ponents of the augmented network under each approach. Given these weights, we then
need to calculate equilibrium values for the nodes (this will be done in Section 4).

202 D. Gabbay and O. Rodrigues

credulous sceptical

X W

Y Z

0.5

0

1

1

1 0.5 1

0.5

0.5

X W

Y Z

0

1/3 1/3

2/3 1/3

1/3

1/3

1/3

2/3

Fig. 4. Merged networks of Fig. 2 under the credulous and sceptical approaches

Note in Fig. 4 that under either approach, the initial weight of argument Y is 0. This
is because Y is not a winning argument in any of the initial networks. Analogously,
the initial value of Z is 1 only in the credulous approach. This is because Z is an
winning argument in every network in which it is known, but it is not known in every
network. Similarly,W ’s initial weight is 1 under the credulous approach, but 1/3 under
the sceptical one. This is reasonable, since it is only known by one out of the three
agents, but for that agent (a3) it is one of the winning arguments. The weights for the
attacks follow the same pattern.

Generally speaking, we have the following.

Proposition 1. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems where
each ANi = 〈Si, Ri〉 and Ei identifies the winning arguments in Si. Let AWNP =
〈S,R, V, ξ〉 be the weighted augmented network for P according to Definition 2. The
following hold for all argumentsX ∈ S.

1. if X ∈ ∩iEi, then V +
0 (X) = V −

0 (X) = 1

2. if X
∈ ∪iEi, then V +
0 (X) = V −

0 (X) = 0

3. if X ∈ Ei for all i such that X ∈ Si, then V +
0 (X) = 1

Proof. 1. and 2. follow directly from Definitions 3 and 4. For 3., note that ifX ∈ Ei for
all i such that X ∈ Si, then v−(X) = 0, and hence V +

0 (X) = 1.

The situation with attacks is similar, but simpler.

Proposition 2. For all attacks (X,Y) ∈ R.

1. if (X,Y) ∈ ∩iRi, then ξ+
(
(X,Y)

)
= 1 and ξ−

(
(X,Y)

)
= 1.

2. if (X,Y) ∈ ∪iRi, then ξ+
(
(X,Y)

)
> 0 and ξ−

(
(X,Y)

)
> 0

Proof. These follow directly from Definitions 3 and 4.

We now turn to the problem of calculating equilibrium values for the arguments of a
weighted augmented network.

A Numerical Approach to the Merging of Argumentation Networks 203

4 Equilibrium Values in a Weighted Augmented Network

One important aspect in the calculation of the equilibrium values of the arguments in a
weighted augmented network is the decision of how the attacks to an argument should
affect its initial support value.

As in any usual argumentation system, arguments may be attacked by any number of
arguments. Since we work with numerical values, we want to aggregate the strength of
these attacks somehow in order to weaken the weight of the attacked node. The strength
of an attack itself depends on the strength of the attacking node and the intensity with
which the attack is carried out. The attacking nodes may be themselves attacked, so
we need to perform the aggregation systematically. We start by analysing the effect of
attacks in general.

Consider the network in Fig. 5, in which x, y and z are the initial weights of the
argumentsX , Y and Z , respectively. Let us for a moment ignore these initial weights.

z : Zx : X y : Y
ξXY ξY Z

Fig. 5. A typical weighted argument network

If we want to mimic the standard behaviour of the attacks in an argumentation system
[12], we need to accept argumentsX and Z and reject argument Y . The reasoning is as
follows. Since no arguments attack X , it persists. X then attacks Y , which is defeated,
and hence no persisting arguments attack Z , which then consequently also persists. In
our numerical semantics, persistence is associated with the values [t, 1] (for some t > 0)
and defeat with the value 0. For us, “to be defeated” means to end up with equilibrium
value 0 and “to persist” means to end up with a value equal or higher than a minimum
acceptance level t > 0. If we want to be strict, we can set t = 1. Otherwise, we may
settle for any value greater than 0 (up to 1).

Ideally, we would like to remain close to the basic semantics, taking care of the
arguments’ initial weights (which are all in the unit interval U) and the intensity with
which the attacks between them are carried out. Hence, our objective is to calculate the
values Ve(X), Ve(Y) and Ve(Z), based on x, y, z, ξXY and ξY Z . Arguably, since X
is not attacked by any node, its equilibrium value Ve(X) can be calculated directly by
some manipulation on the value x alone. The simplest procedure is to make Ve(X) = x,
its initial value. On the other hand, the value of Ve(Y) depends both on Ve(X) and
the intensity ξXY with which the attack from X to Y is carried out. Once Ve(Y) is
calculated, the equilibrium value for Ve(Z) can be calculated using ξY Z in the same
way. If there are cycles, the equations get more complex, but they are solvable, as long
as the functions involved are all continuous.2

If we give initial value 1 to all arguments and consider all attacks being transmitted
with full intensity, then since X has initial value 1 and it is not attacked by any other
argument, its equilibrium value becomes 1. It then attacks Y with full intensity (i.e.,

2 This and some other related issues will be explored in more detail in a forthcoming paper.

204 D. Gabbay and O. Rodrigues

ξXY = 1), which means that the initial value of Y , y = 1, is weakened by 1 and its
equilibrium value becomes 0. Effectively, this annihilates the attack on Z , which then
gets as its equilibrium value the same value as its initial one, i.e., 1. As a result, we
end up with the acceptance of X (because of its equilibrium value 1); the rejection of
Y (because of its equilibrium value 0); and the acceptance of Z (also because of its
equilibrium value 1).

We stress that, in general, we are free to decide on the minimum value we require for
considering an argument as accepted. As we mentioned, we may decide this to be the
value 1 itself, leaving all values 0 < x < 1 to represent undecided arguments; or we
may even do away with the notion of undecidedness altogether and divide the interval
in two halves only: one with the values which we consider accepted and the other with
the ones we consider rejected.

If we want to think in terms of the effect of the attacks on an argument X , our
problem is to determine a factor 0 ≤ π(X) ≤ 1 representing the combined strength of
these attacks. The equilibrium value for X can be calculated by multiplyingX’s initial
value by this factor, i.e., Ve(X) = V0(X) · π(X).

When there are multiple attacks to an argument X , π must aggregate the value of
these attacks. In order to remain close to the standard argumentation semantics, we want
π to satisfy at least the three conditions below.

(SSC1) π(X) = 1, if maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y)} = 0

(SSC2) π(X) = 0, if maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y)} = 1

(SSC3) π is continuous

(SSC1) says that if all arguments attacking X are fully defeated or transmitted with
null intensity, then X retains its initial value fully. (SSC2) says that if any argument
that attacks X has full strength and the attack is carried out with full intensity, then X
is fully defeated. (SSC3) ensures that the considerations about the interactions between
the nodes are robust, i.e., that small changes in the initial values do not cause sudden
variations in the equilibrium ones.

So the idea is that the stronger an attack is, the closer the attack gets to the value 1
and hence the closer we want π to get to 0 so that the equilibrium value of the attacked
argument decreases proportionally (since its initial value is multiplied by π). In the case
of a single attack of strength u to node X with transmission factor κ, one possibility
is to make π(X) = 1 − κu. In the network of Fig. 5 above, this would make π(Y) =
1− ξ

(
(Y,X)

)
Ve(X) and hence Y ’s equilibrium value would be Ve(Y) = V (Y) · (1−

Ve(X)) = 1 · 0 = 0, as expected.
Besnard and Hunter’s categoriser [5] is an example of a function satisfying (SSC1)–

(SSC3) (more on this in Section 6).
But what can we say about π(X) when X is attacked by multiple arguments?
As usual, attacking arguments combine via multiplication, which is compatible with

the behaviour of conjunction in Boolean logic and in probability. The equations for the
equilibrium values of the nodes of a weighted augmented network are defined below.

Definition 5. Let P = 〈AN1, . . . , ANk〉 be a profile of argumentation systems and
AWNP = 〈S,R, V, ξ〉 the weighted augmented network for P as defined before. The
equation for the equilibrium value of an argumentX ∈ S is defined as

A Numerical Approach to the Merging of Argumentation Networks 205

(Eqinv) Ve(X) = V0(X) ·
∏

Yi∈Att(X)(1− ξ
(
(Yi, X)

)
Ve(Yi))

One can choose V +
0 and ξ+ or V −

0 and ξ− depending on whether a credulous or scepti-
cal approach is desired (this will be explored further in Section 5). Note that the highest
possible intensity of the attack by an argument Y is V0(Y) itself. This happens when
the attack is carried out with full intensity and Y is not itself attacked by any node — in
this case it retains its initial value fully, i.e., Ve(Y) = V0(Y). Because we take the com-
plement of this attack to 1, in such circumstances the equilibrium value of the attacked
argument would be 0.
Eqmax decreases the initial support value of an argument according to the value of

the strongest attack. Eqinv on the other hand is cumulative: it aggregates the strength of
the attacking nodes. The intuition is that each challenge to an argument contributes to
decrease the argument’s overall credibility.

Henceforth, we formally set the value π(X) to
∏

Yi∈Att(X)(1− ξ
(
(Yi, X)

)
Ve(Yi)).

Proposition 3. π satisfies (SSC1)–(SSC3).

Proof. If maxY ∈Att(X){ξ
(
(Y,X)

)
Ve(Y)} = 0, then by Definition 5,

∏
Yi∈Att(X)(1−

ξ
(
(Yi, X)

)
Ve(Yi)) = 1. Therefore, (SSC1) is satisfied. If maxY ∈Att(X){ξ

(
(Y,X)

)
Ve(Y)} = 1, then by Definition 5, for some Y ′ ∈ Att(X), 1− ξ

(
(Y ′, X)

)
Ve(Y

′) = 0,
and then

∏
Yi∈Att(X)(1 − ξ

(
(Yi, X)

)
Ve(Yi)) = 0. Hence (SSC2) is also satisfied.

(SSC3) is trivially satisfied.

Combining attacks in this way was initially proposed in [3].
It is easy to see that when all attacks are carried out with full intensity, π(X) can be

written simply as ∏
Y ∈Att(X)

(
1− Ve(Y)

)

which is equivalent to

1−
Y ∈Att(X)Ve(Y) (1)

where a
b = a+b−a.b and forΔ = {a1, . . . , ak},
Δ = ((a1
a2)
 . . .
ak). The
expression in (1) is the complement of the probabilistic sum t-conorm used by Leite and
Martins in [19]. In probability theory, the probabilistic sum expresses the probability of
the occurrence of independent events. Since we want to weaken the value of the attacked
node, we take the complement of this sum to 1.

It is worth emphasizing that the equilibrium value of a node can never be higher than
its initial support value.

Proposition 4. For argumentsX , Ve(X) ≤ V0(X).

Proof. Straightforward. Note that Ve(X) = V0(X) · π(X). By Definition 4, for all
arguments Y , 0 ≤ V0(Y) ≤ 1. By Definition 5, 0 ≤ π(X) ≤ 1 and hence Ve(X) ≤
V0(X).

Proposition 5 (Unanimity of acceptance). Let P = 〈AN1, . . . , ANk〉 be a profile of
argumentation systems where each ANi = 〈Si, Ri〉 and let AWNP = 〈S,R, V, ξ〉 be

206 D. Gabbay and O. Rodrigues

the weighted augmented network for P . If each Ei is conflict-free andX ∈ ∩iEi, then
Ve(X) = 1.

Proof. By Proposition 1, ifX ∈ ∩iEi, then V +
0 (X) = V −

0 (X) = 1. Suppose (Y,X) ∈
Ri, for some argumentation framework ANi. Since each Ei is conflict-free, then Y
∈
Ei and hence Y
∈ ∪iEi. By Proposition 4, V +

0 (Y) = V −
0 (Y) = 0 and by Proposi-

tion 4, Ve(Y) = 0. It follows that π(X) = 1 and hence Ve(X) = 1.

If each Ei is conflict-free and Ve(X) = 1, then X ∈ ∩iEi only if Ve is calculated
under the sceptical approach. The credulous approach is more lenient, because it gives
initial support value 1 to an argument as long as it wins in every argumentation system
in which it is known and this may be sufficient to make the argument’s equilibrium
value 1 too as long as the sets of winning arguments are conflict-free (see Example 2.
in Section 5). It is worth emphasizing that the flip side of this is that attacks are treated
in the same way and as a consequence the value of an argument may also decrease as a
result. This is illustrated in Example 1. of Section 5, where the equilibrium value of the
argument Y is lower in the credulous approach than in the sceptical one as the result of
credulously acceptingX which attacks Y .

Thresholds for Acceptance

The equilibrium values simply represent how the initial overall level of support for a
component is affected by the interactions with the other components in the network.
If one wants to make a decision on what arguments to accept overall, an appropriate
threshold for acceptance for the network at hand must be decided. The value 1 repre-
sents the strongest possible level of acceptance, but setting this as the minimum accep-
tance level could prove too strict even under the credulous approach. One could base
the minimum acceptance level on the maximum or minimum of the equilibrium val-
ues or simply take the average and accept the arguments whose equilibrium values are
above it. Another possibility is to accept arguments with equilibrium value above 0.5.
Although this may seem arbitrary, in fact values above 0.5 can be associated with the
concept of majority, because acceptance of an argument by clear majority produces a
initial support value strictly greater than 0.5.

However, in the examples that follow, we will simply use the average of the equilib-
rium values calculated. In more realistic scenarios an appropriate threshold value can
be determined through a more sophisticated analysis of the networks in the profile in a
similar way to how it is done in [2] (which is itself based on the notion of the “inconsis-
tency degree” of a knowledge base). This investigation itself is quite complex and left
for future work.

5 Worked Examples

We now illustrate our technique with a few examples. In each example, we show the
networks to be merged on the left and the augmented (merged) network in the middle
with its components annotated with the initial weights in the form “credulous : scepti-
cal”. The equilibrium values obtained are given on the right and the accepted arguments

A Numerical Approach to the Merging of Argumentation Networks 207

indicated with a shadowed box. Due to space limitations we cannot include the equa-
tions here, but they can be easily obtained using Definition 5.

1.

a2: E(a1) = {Y }
Y

X Y

X Y

a1: E(a1) = {X}

1 : 1/2 1/2 : 1/2

1 : 1/2

credulous Ve(X) = 1
Ve(Y) = 0
avg = 0.5

sceptical Ve(X) = 0.5
Ve(Y) = 0.375
avg = 0.4375

Under the credulous approach V0(X) = 1 and hence Ve(X) = 1. Its attack on Y is
transmitted with full intensity. V0(Y) = 0.5. Therefore,Ve(Y) = 0.5×(1−1) = 0.
Under the sceptical approachV0(X) = 0.5 and hence Ve(X) = 0.5. Its attack on Y
is transmitted with intensity 0.5. Therefore,Ve(Y) = 0.5×(1−0.5×0.5) = 0.375.
Note that the sceptical approach produces a higher equilibrium value for Y because
under the credulous approachX is fully accepted and its attack on Y fully defeats
it. The only argument with equilibrium value above the average of the values is X
in both approaches.

2.

X

Y Z

W

W Y Z

X

Y ZX

a2: E(a1) = {X,Z}

1 : 1

1 : 1/2

1/2 : 1/2

a1: E(a1) = {X,W, Y }
1/2 : 1/2

1/2 : 1/2

1/2 : 1/2

credulous Ve(X) = 1
Ve(W) = 1
Ve(Y) = 0.4
Ve(Z) = 0.4
avg = 0.7

sceptical Ve(X) = 1
Ve(W) = 0.5
Ve(Y) = 0.4
Ve(Z) = 0.4
avg = 0.575

In this example both agents accept argument X and there are no attacks on it in
any network. Thus, regardless of the approach, the equilibrium value of X is 1. In
spite of there not being any attacks on W , it is only known by agent a2. Under the
credulous approach Ve(W) = 1, but under the sceptical approach Ve(W) = 0.5,
since it is accepted by only half of the community. Y and Z are also accepted by
half of the community, but in each case, the other half supports a complementary
attack of one on the other. As a result, their equilibrium values are both reduced
from 0.5 to 0.4. X and W have equilibrium values above the average under the
credulous approach and are hence accepted, but under the sceptical approach only
X is accepted.

208 D. Gabbay and O. Rodrigues

3.

WX

Y

X

Y Z

E(a1) = {X,Z}
Y

W Z

E(a3) = {W,Z}

YX

Z

a1

a2

1/2 : 1/3

1 : 2/3

1/2 : 1/3

0 : 0

1 : 2/3
1 : 1/3

1 : 1/3

1/2 : 1/3

1/2 : 1/3

a3

E(a2) = ∅

credulous Ve(X) = 0.5
Ve(W) = 1
Ve(Y) = 0
Ve(Z) = 1
avg = 0.625

sceptical Ve(X) = 1/3
Ve(W) = 1/3
Ve(Y) = 0
Ve(Z) = 2/3
avg = 1/3

This is the example appearing in Fig. 2. Y does not feature in any of the agents’
winning arguments. Its initial support value is 0 and hence its equilibrium value
is also 0. This leaves X’s initial support values unchanged. Under the credulous
approach bothW and Z get value 1. Under the sceptical approach Z’s equilibrium
value is the highest, because it is accepted by 2/3 of the agents (as opposed to X
and W which are accepted by only 1/3 of them). Both W and Z have equilibrium
values above the average under the credulous approach and are hence accepted,
but only Z is accepted under the sceptical one (note that it is the only argument
accepted by the majority of the agents).

6 Comparisons with other Work

As mentioned in Section 1, many frameworks consider extensions to Dung’s argumen-
tation systems that are capable of representing in one way or another the notion of the
strength of arguments or attacks. In this section, we discuss the relationship between
some of these approaches and ours.

In terms of numerical merging, the formalism that most resembles ours is the one
proposed in [9], which uses a weighted argumentation system. The idea is also based
on the combination of all networks into a single augmented one in which attacks are
assigned weights that correspond to ours under the credulous approach. However, the
similarities stop there. In particular, there is no notion of sceptical support; no mecha-
nism to associate weights to arguments; and the concept of acceptance is based on the
notion of “various-strength” defence: an argument X defends an argument Y against
argument Z , if the weight of the attack of X on Z is greater than the weight of the
attack of Z on Y . This is then used in the definition of admissibility. We believe that
once we are prepared to evaluate the strength of the attacks based on the opinions of the
agents, we should also be prepared to take these opinions into account in the evaluation
of the support for the arguments as well.

Bistarelli and Santini also consider a numerical approach but, as in the above, their
formalism only assigns weights to attacks [6]. Amgoud and Kaci take a different ap-
proach to merging by considering the merging of knowledge bases whose underlying
formalism is a possibilitic logic [2]. This allows for the calculation of the inconsistency

A Numerical Approach to the Merging of Argumentation Networks 209

degree of a base, which in turn can be used to determine its “plausible” consequences.
This notion of a degree of inconsistency is something we would like to investigate fur-
ther to provide a more robust definition for the threshold of acceptance of arguments.

Other formalisms for merging not based on numerical approaches include [11,22].
If we have an adequate meaning for the initial weights, we can use the equational

approach for a single weighted network independently of the merging process. Leaving
considerations about merging aside, it is possible to compare our formalism with other
weighted argumentation systems. In [5], the equilibrium value of an argument is cal-
culated by a so-called categoriser function, an example of which is the h-categoriser
h, which defined for an argument X as h(X) = 1, if Att(Y) = ∅; and h(X) =
1/(1 +

∑
Y ∈Att(X)

h(Y)), otherwise.

Let us now analyse what happens in a sequence of attacks like the one below. For
comparison, we assume that all nodes have the same initial values v and consider the
intensity with which all attacks are carried out to be 1.

...v : X1 v : X2 v : Xk

Assuming initial value v = 1 in the example above, we would have that h(X1) = 1;
h(X2) = 0.5; h(X3) = 0.66; and so forth. This obviously does not agree with Dung’s
semantics. Using the equational approach, we get that Ve(X1) = v, Ve(X2) = v(1−v),
Ve(X3) = v(1−(v(1−v))), If v = 1, then Ve(X1) = 1, Ve(X2) = 0, Ve(X3) = 1,
and so forth, agreeing with Dung’s semantics as expected. If v = 0, then Ve(Ai) = 0 for
all i. This is as expected, since in this case no arguments have any initial support. In fact,
for all nodes X , Ve(X) ≤ V (X), since π(X) =

∏
Y ∈Att(X)(1 − ξ

(
(Y,X)

)
Ve(Y)) ≤

1. If v = 0.5, we get Ve(X1) = 0.5, Ve(X2) = 0.25, Ve(X3) = 0.375,3

Leite and Martins proposed social abstract argumentation frameworks (SAAFs)
which can be seen as an extension of Dung’s abstract argumentation frameworks to
allow the representation of information about votes to arguments. The motivation of
these networks is to provide a means to calculate the result of the interaction between
arguments using approval and disapproval ratings from users of news forums. The idea
is that when a user sees an argument, she may approve it, disapprove it, or simply ab-
stain from expressing an opinion. The ‘weights’ associated with the arguments in this
case can also be seen as being generated by how the agents perceive the arguments.
However, the initial support level for an argument is calculated differently in their for-
malism and there is no notion of strength of attack, even though, as in our case attacks
are aggregated using the probabilistic sum t-conorm.

7 Conclusions and Future Work

In this paper, we showed how a profile of argumentation systems can be merged through
the use of an augmented argumentation network provided with weights for the argu-
ments and the attacks between them. The initial weights are calculated based on how

3 We can think of an infinite sequence of this kind as a node with an attack on itself. In the limit
k → ∞, for V0(X1) = 0.5, Ve(Xk) =

1
3

.

210 D. Gabbay and O. Rodrigues

representative each component features in the profile and are independent of the local
semantics of each network. We proposed credulous and sceptical approaches for calcu-
lating the weights. The credulous approach calculates the overall representation based
on how many agents “know” about a component whereas the sceptical approach looks
at the total number of networks in the profile.

Weighted argumentation networks have been proposed before. Sometimes weights
have been assigned to the arguments (e.g., as in [2,3,5,8,19]) and sometimes they have
been assigned to the attacks (e.g., as in [3,6,13,23]). In our approach, both arguments
and attacks have weights and the network is seen as a generator for equations. The
idea is to calculate equilibrium values for the arguments based on their initial support
value within the profile and the interactions with other arguments through the attack
relation. These values can be calculated by solving a system of equations generated
by the augmented network, following [14]. Once calculated, the notion of acceptance
can be defined in terms of a threshold value for the equilibrium values, for which a
strict interpretation is the value 1. However, the framework is flexible in the sense that
a particular application is free to associate segments of the unit interval in different
ways. For instance, one could associate 0 with rejection; 1 with acceptance and consider
anything else inbetween as undecided.

We can see the initial values in our augmented network as coming from an extended
form of approval voting in which voters can also express ignorance and rejection for
some components. There are variations on this idea that are worth investigating, includ-
ing giving varying degrees of preference to the components depending on the expertise
level of the agents supporting them. Furthermore, there are interesting connections with
several other areas of research. From the aggregation perspective, it is worth exploring
similarities with other procedures for voting and formalisms for merging of knowledge
bases as in [10,16,17,18]. Some similarities also appear in the spirit of the calculation
of the interactions with the areas of network flows [1], belief propagation and Bayesian
networks [20]. We will explore these issues in more detail in future work.

The merging of argumentation systems is an application that leads naturally to the
employment of weights in a network. However, one need not restrict its use to such sce-
narios only. All that is required is a suitable interpretation for the weights; an adequate
schema for generating the equations; and an interpretation for the equilibrium values.
This paper paves the way for a new type of research in argumentation networks not
only because its approach is numerical, but also because it is an initial study of vector
evaluations. We can see this work as a preliminary investigation on how to aggregate
many-dimensional values of the components of a network and propagate them through
the network taking its attack relation into account.

To realise the potential, consider the very well developed area of many-dimensional
temporal logics. In these logics, a formula is evaluated at several indices. As a complex
formula is evaluated in the model we move from one set of indices to another. The
analogous movement in the case of argumentation is that of an attack. One can move
from one node to another evaluating and propagating the values.

The equational approach can also be used in a more general context. For instance, if
the underlying representation is itself based on a fuzzy or possibilitic logic, the initial
weights can be obtained from the computations in the logic themselves, in the spirit

A Numerical Approach to the Merging of Argumentation Networks 211

of Prakken [21] or Amgoud-Kaci’s “force of an argument” [2]. The weights can then
subsequently be combined taking the topology of the network into account as done here.

Acknowledgements. The authors would like to thank Sanjay Modgil and the referees
for useful comments and suggestions to this paper. D. M. Gabbay was partially sup-
ported by the Israel Science Foundation Project 1321/10: Integrating logic and
networks.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows – Theory, algorithms and applica-
tions. Prentice-Hall (1993)

2. Amgoud, L., Kaci, S.: An argumentation framework for merging conflicting knowledge
bases. Journal of Approximate Reasoning 45, 321–340 (2007)

3. Barringer, H., Gabbay, D.M., Woods, J.: Temporal Dynamics of Support and Attack Net-
works: From Argumentation to Zoology. In: Hutter, D., Stephan, W. (eds.) Mechanizing
Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 59–98. Springer, Heidelberg (2005)

4. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

5. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelli-
gence 128(1-2), 203–235 (2001)

6. Bistarelli, S., Santini, F.: A common computational framework for semiring-based argumen-
tation systems. In: Proceedings of the 2010 conference on ECAI 2010: 19th European Con-
ference on Artificial Intelligence, pp. 131–136. IOS Press, Amsterdam (2010)

7. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Log-
ica 93(2-3), 109–145 (2009)

8. Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in argumentation. Journal of Artificial In-
telligence Research 23, 245–297 (2005)

9. Cayrol, C., Lagasquie-Schiex, M.-C.: Merging argumentation systems with weighted argu-
mentation systems: a preliminary study. Technical Report RR 2011-18 FR, IRIT (2011)

10. Chopra, S., Ghose, A., Meyer, T.: Social choice theory, belief merging, and strategy-
proofness. Information Fusion 7(1), 61–79 (2006)

11. Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.-C., Marquis, P.: On the
merging of Dung’s argumentation systems. Artificial Intelligence 171, 730–753 (2007)

12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

13. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument
systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence 175(2),
457–486 (2011)

14. Gabbay, D.M.: Introducing Equational Semantics for Argumentation Networks. In: Liu, W.
(ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 19–35. Springer, Heidelberg (2011)

15. Gabbay, D.M.: An equational approach to argumentation networks. Argumentation and
Computation 3 (2012)

16. Gabbay, D.M., Pigozzi, G., Rodrigues, O.: Belief revision, belief merging and voting. In:
Proceedings of the Seventh Conference on Logic and the Foundations of Games and Decision
Theory (LOFT 2006), pp. 71–78. University of Liverpool (2006)

17. Konieczny, S., Pino-Pérez, R.: On the logic of merging. In: Proceedings of KR 1998, pp.
488–498. Morgan Kaufmann (1998)

212 D. Gabbay and O. Rodrigues

18. Konieczny, S., Pino-Pérez, R.: Logic based merging. Journal of Philosophical Logic 40(2),
239–270 (2011)

19. Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pp. 2287–2292 (2011)

20. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial Intelligence 29(3),
241–288 (1986)

21. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
and Computation 1, 93–124 (2010)

22. Rahwan, I., Tohmé, F.: Collective argument evaluation as judgement aggregation. In: Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2010, vol. 1, pp. 417–424. International Foundation for Autonomous Agents
and Multiagent Systems, Richland (2010)

23. Wang, J., Luo, G., Wang, B.: Argumentation framework with weighted argument struc-
ture. In: 10th IEEE International Conference on Cognitive Informatics Cognitive Computing
(ICCI*CC), pp. 385–391 (2011)

Author Index

Bulling, Nils 128

Dignum, Frank 61
Dignum, Virginia 61
Dima, Catalin 77

Florea, Adina Magda 181

Gabbay, Dov 1, 195
Governatori, Guido 43
Gratie, Cristian 181
Guelev, Dimitar P. 77

Homola, Martin 146
Hosobe, Hiroshi 43

Knorr, Matthias 146
Köster, Michael 128

Lakemeyer, Gerhard 25
Lam, Ho-Pun 43

Leite, João 146
Lorini, Emiliano 26

Meyer, John-Jules Ch. 181
Mirbel, Isabelle 110

Pinyol, Isaac 27
Pontelli, Enrico 163
Popovici, Matei 94, 128

Rodrigues, Odinaldo 195

Satoh, Ken 43
Slota, Martin 146
Son, Tran Cao 163

Villata, Serena 110

Wright, Ben 163

	Title
	Preface
	Organization
	Table of Contents
	Bipolar Argumentation Frames and Contrary to DutyObligations, Preliminary Report
	Cayrol and Lagasquie-Schiex's Bipolar Argumentation Framework
	Reactive Semantics for Contrary to Duty Obligations
	New Ideas Arising from the Connection between Argumentation and Deontic Logic
	Conclusion
	References

	Multi-agent Only-Knowing
	Logics for Reasoning about Agents’Attitudes in Strategic Contexts
	A Time-Situated Meta-logic for CharacterizingGoal-Processing Bounded Agents
	Introduction
	Logic Definition
	The Syntax of LBG
	Axioms of LBG

	Consistency
	Comments on Complexity Issues
	An Example
	Initial Knowledge
	Goal Activation
	Goal Deactivation

	Related Work and Discussion
	Conclusions and Future Work
	References

	Distributed Defeasible Speculative Reasoningin Ambient Environment
	Introduction
	Background
	An Informal Introduction to Defeasible Logic
	Speculative Computation

	Defeasible Speculative Reasoning Framework
	Semantics of DDSR
	Conflicting Arguments: Attack and Undercut
	The Status of Arguments

	Operational Model
	Preliminary Definitions
	Process Reduction Phase
	Answer Arrival Phase
	Correctness
	Implementation

	Discussion and Conclusions
	References

	A Formal Semantics for Agent (Re)Organization
	Introduction
	Modeling Organizations
	LAO Logic
	Organization Properties

	Organizational Change
	Deciding about Change
	Case Study

	Related Work
	Conclusions
	References

	Epistemic ATL with Perfect Recall,Past and Strategy Contexts
	Preliminaries
	Epistemic ATL with Perfect Recall, Past and Strategy Contexts (ATLDPCiR)
	Related Work
	A Proof System for Basic ATLDPCiR
	Completeness of the Proof System
	References

	Using Evolution Graphs for DescribingTopology-Aware Prediction Models in Large Clusters
	Introduction
	The Evolution Graph
	The Language LH
	LH and Computation Tree Logic
	The Language LH* and CTL

	LH in HPC Systems
	Related Work
	Conclusions
	References

	Enhancing Goal-Based RequirementsConsistency: An Argumentation-Based Approach
	Introduction
	Meta-argumentation: Overview
	Meta-argumentation

	Goal Decomposition and Dependencies
	Goal Decomposition
	Goal Dependencies

	Example
	Related Work
	Conclusion
	References

	A Game Theoretic Approach for Optimal NetworkTopologies in Opportunistic Networks
	Introduction
	Optimal Opportunistic Networks
	Opportunistic Networks
	How Does an Optimal Solution Look?
	The Opportunistic Network Game
	Optimal Solutions for Non-cooperative Players
	Optimal Solutions for Cooperative Players

	Computational Setting
	Preferences as Temporal Formulae

	Complexity of Finding Optimal Solutions
	Verification of Optimal Solutions
	Synthesis of Optimal Solutions

	Related Work
	Conclusions
	References

	MKNF Knowledge Bases in Multi-Context Systems
	Introduction
	Preliminaries
	Description Logics
	Logic Programs
	Multi-Context Systems
	MKNF Knowledge Bases

	Reducing an MKNF Context
	MKNF Contexts and First-Order Contexts
	Reduction to a First-Order Context
	Translation Into Two Contexts

	Conclusions
	References

	Implementing Reversible Processesin Multi-agent Action Languages Using Answer Set Planning
	Introduction
	Action Languages and Answer Set Programming
	Related Work

	Representing Delayed Effects in Action Languages
	Syntax of Lmt
	Semantics of Lmt
	Example Domains
	Penalty Kick.
	Merchant / Consumer.

	Implementation
	Design Concept
	ASP Representation of Basic Features
	ASP Representation of Delayed Effects
	ASP Representation of Cancellation

	Evaluation
	Implementation versus Theory
	Base Case:
	Completed Process:
	Reversed Process:

	Quality of Models
	Resulting Models

	Discussion
	Conclusion and Future Direction
	References

	Full Hybrid μ-Calculus, Its BisimulationInvariance and Application to Argumentation
	Introduction
	Full Hybrid -Calculus and Its Bisimulation
	Considerations about Expressivity with Respect to MSOL
	Application for the Preferred Argumentation Semantics
	Conclusions and Future Work
	References

	A Numerical Approach to the Mergingof Argumentation Networks
	Introduction
	Background
	Merging Argumentation Networks
	Equilibrium Values in a Weighted Augmented Network
	Worked Examples
	Comparisons with other Work
	Conclusions and Future Work
	References

	Author Index

