

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 200–215, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Business Process-Driven Approach
for Requirements Dependency Analysis

Juan Li1, Ross Jeffery2,3, Kam Hay Fung4, Liming Zhu2,3, Qing Wang1,
He Zhang2,3, and Xiwei Xu2

1 Institute of Software, Chinese Academy of Sciences, China
2 National ICT Australia, Australia

3 School of Computer Science and Engineering, The University of New South Wales, Australia
4 School of Information Systems, Technology and Management,

The University of New South Wales, Australia
{lijuan,wq}@itechs.iscas.ac.cn,

{Ross.Jeffery,Liming.Zhu,He.Zhang,Xiwei.Xu}@nicta.com.au,
kamhayfung@ieee.org

Abstract. Dependencies among software artifacts are very useful for various
software development and maintenance activities such as change impact analy-
sis and effort estimation. In the past, the focus on artifact dependencies has been
at the design and code level rather than at the requirements level. This is due to
the difficulties in identifying dependencies in a text-based requirements specifi-
cation. We observed that difficulties reside in the disconnection among itemized
requirements and the lack of a more systematic approach to write text-based re-
quirements. Business process models are an increasingly important part of a re-
quirements specification. In this paper, we present a mapping between
workflow patterns and dependency types to aid dependency identification and
change impact analysis. Our real-world case study results show that some par-
ticipants, with the help of the mapping, discovered more dependencies than
other participants using text-based requirements only. Though many of these
additional dependencies are highly difficult to spot from the text-based re-
quirements, they are however very useful for change impact analysis.

Keywords: Business process modeling, workflow pattern, software develop-
ment and maintenance, requirements dependency.

1 Introduction

In a volatile environment, software systems must evolve to adapt to the rapid changes
of stakeholders’ needs, technologies and the business [1]. A change can impact not
only source code, but also other software artifacts, such as requirements, design and
test cases [2]. To analyze the impact of a proposed software change, one should
determine which parts of the software system may be affected by the change and as-
certain their possible risks [3]. Bohner [3] proposed an impact analysis process that
examines change requests to identify the Starting Impact Set (SIS) of software arti-
facts that could be affected by these requests. The SIS is then analyzed to identify

 A Business Process-Driven Approach for Requirements Dependency Analysis 201

other artifacts to be affected, which are then incorporated into SIS to form the Candi-
date Impact Set (CIS). His process’s goal is to estimate a CIS that is as close as possi-
ble to the set of artifacts that is actually modified after all the changes are made.

A CIS can be determined starting from the requirements specifications affected by
the changes to the source code level [4] through information about traceability [5]. A
traceability link is “any relationship that exists between artifacts involved in the soft-
ware-engineering life cycle” [6]. A link can be between artifacts in different models
(e.g. requirements and code) or between artifacts within a model. Requirements de-
pendency, an example link, characterizes the relationship between requirements with-
in a requirement model and acts as a basis from which a CIS is analyzed. The CIS
include not only requirements to be affected directly by the change requests but also
requirements to change potentially. To improve the accuracy of a CIS, it is useful to
associate semantics with traceability links [3], such as the use of requirement depen-
dency types since they convey important information for change impact analysis.
Requirements dependency discovery tends to require a significant effort especially
when the set of requirements is large. Studies have explored ways to automate the
discovery (e.g. [7]). However, the solutions to date are immature and human experts
are still relied upon for a large set of requirements [8].

Traditionally text is the primary (or even only) means of documenting require-
ments specification. Our previous empirical evaluation [9] found that many depen-
dencies, which are especially useful for change impact analysis, were not spotted
during dependency discovery in text-based requirements alone. An explanation for
this is that even when they were closely related to business processes and rules, they
could not be represented explicitly in text-based requirements.

It is no doubt that a diagram is worth ten thousand words [10] and hence Business
Process Modeling Notation (BPMN) based models [11] combined with text-based
requirements should increase the likelihood of finding more dependencies than the
latter alone in requirements dependency analysis. In this research, however, we are
interested in how BPMN models can help requirements dependency analysis and
change impact analysis in a more concrete fashion. In this spirit, we propose a map-
ping between workflow patterns in BPMN and dependency types to supplement text-
based requirement dependency analysis by systematically and manually deriving de-
pendencies from a typical business process model. We conducted a case study on a
real-world industrial project to evaluate our approach and confirmed that practitioners
using our approach did discover additional dependencies useful to change impact
analysis.

2 Related Work

2.1 Dependency and Change Impact Analysis

Research in traceability is gaining attention in requirements engineering [12]. Correct
traceability is the basis for change propagation analysis [13], important for all aspects
of a software development project. In requirements engineering, requirements rela-
tionships are classified into dependency types based on the structural and semantic

202 J. Li et al.

properties of requirements, to help practitioners identify these relationships (e.g.
[14]). Requirements dependencies also play an important role in change impact analy-
sis. Hassine et al. applied dependency analysis at the use case map level (rather than
between requirements in natural languages) to identify the potential impact of re-
quirement changes on the overall software system [12]. Yan et al. discussed the rip-
ple-effect of requirements evolution based on requirements dependencies [15].

2.2 Business Process Modeling in Requirements Engineering

Business process models (BPMs) are widely used in requirements engineering. To the
best of our knowledge, however, no studies have considered applying BPMs in re-
quirements dependency discovery to facilitate change impact analysis. For instance,
to bridge business process modeling with requirements elicitation and analysis, de la
Vara González and Díaz [16] described a business process-driven requirements engi-
neering approach to derive requirements from organizational models that express
business strategies and from business processes in BPMN. Cardoso et al. [17] used
business process models to derive alternative sets of requirements for a process-
oriented software system. These sets capture different decisions regarding the in-
tended “level of automation” for various activities in a business process. Mathisen et
al. [18] presented an approach for early detection of structural changes that have im-
plications for the software architecture. Their approach hinges on using business
process modeling to increase the level of understanding of the problem domain in
early stages of a project.

3 Requirements Dependency Analysis Based on Business
Process Models

Before delving into the details of our approach, we use a stimulating example to high-
light its use. In Fig. 1, a simple BPM for processing home loan applications consists of
four sequential processes as shown. Let us focus on the middle two processes, viz.
“Check Credit” and “Approve Loan”. The former performs credit checking on loan
applicants and fulfills three requirements (UC1, UC2 and UC3). The latter lets a loan
assessor approves loan applications and involves two requirements (UC4 and UC5).
These two processes form a sequence workflow pattern in that “Check Credit” pre-
cedes “Approve Loan”. The pattern logically connects requirements UC1, UC2 and
UC3 to UC4 and UC5. In the context of dependency, UC1, UC2 and UC3 are regarded
as preconditions for UC4 and UC5. More generally, the power of BPMs connects indi-
vidual text-based requirements into a manageable and well-scoped visual structure.
The connections are often useful guidance for implementation-related dependency
identification. Sometimes it is easy to spot preconditions based on the textual descrip-
tions of the requirements without the help of BPMs. To calculate how much an appli-
cant can borrow (UC5), one first needs to know how much the person owes (UC2) and
his/her income level (UC3). At other times, dependencies are non-trivial from textual
descriptions whence BPMs may provide some hints (e.g. connecting UC1 and UC4).

 A Business Process-Driven Approach for Requirements Dependency Analysis 203

The example just showcased that BPMs can be useful for dependency discovery. Now
we present the formal definitions of the dependency type model plus the mapping
between workflow patterns and dependency types.

Fig. 1. BPM example

3.1 Requirements Dependency Model

Many dependency types have been proposed and they have different levels of abstrac-
tion and different criteria for categorization. Their complexity and diversity gives rise
to a steep learning curve, which contributes to the difficulty in comprehending, using
and evaluating them. Thus, in earlier work [9], we surveyed dependency types from
the literature, consolidated them into a requirements dependency model and empiri-
cally evaluated its applicability in dependency identification and change impact anal-
ysis in a real-world industry project. Here we divide its twenty-three dependency
types into three categories:

• Document-related: This category of dependency types is embedded in the struc-
ture, content and version relationships in the requirements representation. For in-
stance, a requirement can have a “formalizes” dependency on another requirement,
which means the former is defined more formally (using computational logic,
business rules, constraints, etc.) than the latter.

• Value-related: This category is concerned with the relation between the realization
of one requirement to the value that a customer/user perceives the realization of
another requirement will provide [9]. For example, the adoption of a complex user-
interface style can increase the usability of the user interface for a web-based ap-
plication (i.e. “increases_cost_of” dependency type). This category can be useful
for selecting the set of requirements to be fulfilled in release planning.

• Implementation-related: In this category, the realization of a requirement relates to
one or more requirements. For instance, the requirement “withdraw cash” calls for
the requirement “calculate account balance” to be realized to determine the with-
drawal limit for a bank account. Dependency types in this category often indicate
change propagations among low level models such as the detailed design and the
code, which are important for change impact analysis.

204 J. Li et al.

The dependency types in each category are listed in Table 1. In this study, we concen-
trate on the implementation-related dependency types because they are the most use-
ful and relevant to software design and development. Due to space limitations, we do
not elaborate further on other dependency types. Interested readers may refer to [9]
for the in-depth discussions. The implementation-related dependency types are:

• Constraints: A requirement can relate to another by being a constraint to the latter.
For instance, the requirement “cash withdrawal is limited to $2000 daily” is a con-
straint for the requirement “withdraw cash”.

• Refines: One requirement can be a refinement of another requirement, providing
more detailed descriptions for the latter.

• Precondition: Only after one function prescribed by a requirement is finished, or
one condition described by the requirement is satisfied, that another function pre-
scribed by a requirement can be performed. Usually precondition reflects the busi-
ness rules or the sequence relationship between (sub-)processes. For instance, the
requirement “a customer successfully logged in to the application” is a precondi-
tion for “a customer withdraws cash from bank account”.

• Satisfies: This type expresses that if one requirement is implemented in an applica-
tion, the implementation will also satisfy another requirement. For example, the re-
quirement “when a user logs out, all opened documents will be automatically
saved” satisfies the requirement “no unsaved work will be allowed before the edi-
tor terminates”.

• Similar_to: The prescription of one requirement (e.g. “display account balance”) is
similar to or overlapping with one or more requirements (e.g. “display amount
available for withdrawal”).

Table 1. Dependency Type Model [9]

Category Dependency types

Document-related Compares, Contradicts, Conflicts, Example_for, Test_case_for, Purpose,
Comments, Background, Replaces, Based_on, Elaborates, Generation,
Changes_to, Formalizes

Value-related Increase_cost_of, Decreases_cost_of, Increase_value_of, Decreas-
es_value_of

Implementation-related Constraints, Refines, Precondition, Satisfies, Similar_to

3.2 Business Process Driven Dependency Identification

In recent years, BPMs are increasingly used in requirements analysis to define system
goals and requirements. We believe BPMs can also be used to discover missing and
ambiguous requirements in requirements specifications. In our approach, we adopted
BPMN as the business process modeling language because it is a widely used busi-
ness process modeling language and covers most of the workflow patterns compared
to other modeling languages.

A well-known collection of Workflow Patterns was proposed in [19, 20]. This
work provides a comprehensive examination of the various perspectives (control

 A Business Process-Driven Approach for Requirements Dependency Analysis 205

flow, data, resource, and exception handling) of workflows. Each workflow pattern
precisely defines recurring semantics between some process elements. Using the
evaluation of BPMN version 1.0 against the workflow control-flow patterns [21], we
map all relevant workflow patterns supported by BPMN models to all the implemen-
tation-related dependency types. The mapping is an informal one with no mathematic
rigor as it is targeted for business analysts and requirements engineers to identify
informal dependencies. We derived the mappings largely from the expert opinions
and our observation in the previous case study [9]:

• Certain dependency types are often associated with certain workflow patterns. For
example, we observed empirically that Precondition dependency types are often
associated with workflow patterns such as the sequence workflow pattern.

• Some workflow patterns are similar to each other in terms of their associations
with the dependency types. For example, sequence, merge/split-related workflow
patterns are too often pointing to the Precondition dependency type. Thus, we
created more generic definitions for these similar patterns to further reduce the
complexity of the mapping.

The mapping only acts as an informal guidance and is highly indicative. There are
many-to-many relationships between the workflow patterns and the dependency
types. It is up to practitioners to confirm each instance of dependency identification in
a particular project. We acknowledge the limitation and imprecision of the mapping
but consider it helpful in the task as demonstrated by the later evaluation. We also
excluded the workflow patterns on data, resource and exceptional handling in this
study due to the scope. However, we believe they will also be helpful in identifying
requirements dependencies and we plan to investigate them in future work. The map-
ping results are summarized in Table 2.

Table 2. Mapping between workflow patterns and dependency types

Workflow Patterns [19, 20] Relevant Generic
Pattern

Dependencies

sequence, split-related, merge-related, triggers Generic Sequence Precondition

merge-related Generic Merge Similar_to

split-related Generic Split Similar_to

cancelling/termination-related, interleaved routing,
thread merge

Generic Crosscut Constraints

Individual workflow patterns that provide more details
to the decision points logic, sub-process

Generic Detailing Refines, Satisfies

Generic Sequence
A (sub-)process is enabled after the completion of a preceding (sub-)process. For
example, a bank allocates a valuation task to a valuer after a client has submitted the
valuation request. Many workflow patterns, such as split-related, merge-related and
triggers [19, 20], indicate a precedence-successor relationship and are therefore
grouped under it. Due to the large number of workflow patterns involved, we do not

206 J. Li et al.

list all of them here. Although this is one of the most obvious patterns, the textual
descriptions of this pattern’s instances are often scattered around or only implied in
text-based requirements, resulting in the dependencies not being found. This is a basic
pattern which may be included in the other workflow patterns such as split-related and
merge-related patterns. The corresponding dependency type for Generic Sequence is
“Precondition” (e.g. A is a precondition of B in Fig. 2(a)).

Generic Split
This represents the divergence of a (sub-)process into two or more (sub-)processes
(i.e. branches). For example, after a client has proposed property valuation requests,
one or more of the “desktop valuation”, “curbside valuation” or “full valuation” can
be performed. This generic pattern includes all the workflow patterns for choices and
splits, such as parallel split, synchronization, exclusive choice, multi-choice, thread
split [19, 20]. In some of the splitting instances, the branches serve a similar purpose
(Similar_to each other) and only one or more of them are selected. However, the tex-
tual descriptions may look very different and are again scattered within requirements.
Our case study described later on is one such example. Practitioners missed some of
the similar relationship among the text-based requirements but they were easily iden-
tified in the BPMN models. The corresponding dependency type for Generic Split is
“Similar_to” (e.g. B and C are similar to each other in Fig. 2(b)).

Generic Merge
This represents the convergence of two or more (sub-)processes (i.e. branches) into a
single subsequent (sub-)process. For example, “prepare invoice” and “send for ap-
proval” happen simultaneously and join before “send report”. This generic pattern
covers all the workflow patterns for synchronization, merge and join and discrimina-
tors, such as structured synchronizing merge, multi-merge, thread merge [20]. The
rationale behind this pattern is similar to the Generic Split pattern. For example, task
“prepare valuation reports” can be started if and only if all the valuation results are
returned. An example of change request is checking the quality of the reports before
allowing an administrator to print them. This may result in checking all the valuation
results before they are returned. The corresponding dependency type for Generic
Merge is “Similar_to” (e.g. A and B are similar to each other in Fig. 2(c))

Fig. 2. Workflow patterns used in the mapping

Generic Crosscut
The workflow patterns grouped under this category are cancelling, thread merge and
interleaved routing [20]. Cancelling-related workflow patterns (cancelling discrimina-
tor, cancelling partial join, etc.) abort the execution of other (sub-)processes and so

 A Business Process-Driven Approach for Requirements Dependency Analysis 207

crosscut many of these (sub-)processes. BPMs help identifying cross-cutting impacts
of exceptional events such as Canceling. In BPMN models, for example, all the pre-
ceding (sub-)processes of a cancellation point can act as a source of dependency
candidates narrowing down the scope of possibly affected requirements. These de-
pendencies are difficult to identify across text-based requirements. Thread merge and
interleaved routing workflow patterns concern the control of execution threads (i.e.
multiple (sub-)processes) at runtime. The information they specify crosscuts multiple
requirements and is often not captured in text-based requirements. The corresponding
dependency type for Generic Crosscut is “Constraints”.

Generic Detailing
All decision points in BPMN models have precise meanings. For example, a split can
mean running in parallel, an exclusive choice or a multiple choice. In text-based re-
quirements, such precise meanings are often elaborated separately and it is often diffi-
cult to spot the dependency between the elaboration and its original requirements. All
such decision points related patterns also help tremendously in terms of identifying
missing and/or ambiguous requirements. The corresponding dependency types are
“Refines” and “Satisfies”. The sub-process notations in BPMN also have similar
meanings with respect to and are obvious helpers for identifying these two dependen-
cy types.

The same type of dependencies identified in BPMs often has different nature from
those identified in text-based requirements. For example, Similar_to mostly refers to
task similarity in BPMs but data similarity is often identified in text-based require-
ments. In BPMs, Similar_to can exist in the generic merge pattern where several (sub-
)processes join to proceed to the next (sub-)process. These (sub-)processes may have
some similarity in talking to the next activity. But in text-based requirements, Simi-
lar_to can exist between many functional requirements dealing with the same data
information. Another example is Constraints. It indicates constraints that non-
functional requirements, such as security-related non-functional requirements, have
on functional requirements. These new dependencies are usually not identified in text-
based requirements but very useful to impact analysis.

3.3 Usage Guidelines

While the mapping is useful for identifying dependencies in requirements, it is ex-
pected to be used in a larger framework. For instance, one can define a mini-process
for requirements elicitation for business-process oriented applications as below:

1. Develop text-based requirements and supplement them with BPMs. They cover
business-level activities, business goals and business rules.

2. Identify dependencies among requirements. This makes use of our mapping be-
tween workflow patterns and dependency types to help analyze requirements de-
pendencies.

3. Perform coverage checking between BPMs and text-based requirements so that
missing and ambiguous text-based requirements can be discovered and resolved
along with dependency analysis.

208 J. Li et al.

Our work presented in this paper contributes to Step 2 above, relying on availability
of BPMs. Steps 1 and 3 have their own complexities and we do not elaborate them
further because of space limitations. Note that the mapping involves overheads, which
includes learning the dependency types and the mapping, eliciting detailed BPMs and
applying the mapping. However, these can be offset with the productivity gained from
identifying dependencies and a more accurate CIS (since more impacted requirements
are found), both of which exemplified by the case study in the next section.

Note that while the mapping can be useful for identifying the dependencies of and
hence linking text-based requirements, mapping text-based requirements onto BPM
structures and vice versa is an additional problem in itself. For instance, a security
requirement can cross-cut several parts of an application and may be linked to many
parts of a BPM. Due to space limitations, this issue is deemed out of scope.

4 Case Study

4.1 Questions to Evaluate and Case Selection

To evaluate our approach, we undertook a case study to answer these questions:

Q1: Can more dependencies be found by using both BPM and text-based require-
ments than using text-based requirements alone?

Q2: Are additional dependencies found in Question 1 actually useful in change im-
pact analysis and how?

The kinds of data linked to research questions and collected through a questionnaire
are shown in Table 3.

Table 3. Research question and data to collect

Question Data to collect

Q1 Number of dependencies found through BPMs

Number of dependencies found through text-based requirements

Time spent on dependency discovery

Q2 Impacted requirements found through dependencies in BPMs

Impacted requirements found through dependencies in text-based requirements

Dependency types used in change impact analysis

The case we selected is a property valuation system (PVS) developed by NICTA

(National ICT Australia) for a company employing the LIXI (Lending Industry XML
Initiative) standards for the format and exchange of lending-related data using XML.
LIXI is an independent non-profit organization established to remove data exchange
barriers within the Australian lending industry. Through the work of LIXI, member
organizations - including major banks, mortgage originators and brokers, mortgage
insurers, property valuers, settlement agents, trustees and information technology
providers - offer services to customers more efficiently and at lower costs. PVS had
gone through changes with V2 being the latest. It included a “Pocket Valuer”

 A Business Process-Driven Approach for Requirements Dependency Analysis 209

sub-system on Personal Digital Assistant (PDA) for capturing property valuation data
onsite, a desktop sub-system for managing information and a web-based business
process system for managing the valuation workflows. The company planned to mi-
grate all the desktop sub-system functions to a web-based system and implement new
functions for PVS. In this paper, this whole new system is called PVS V3. This study
was conducted as part of the PVS V3 requirements development and system design
project. Our study used requirements in PVS V2 for dependency identification and
change propagation analysis triggered by new requirements in PVS V3.

4.2 Case Study Procedures

Four practitioners, all experienced in requirements engineering, participated in this
case study. They were evenly split into two groups: the Text group and the
BPMN+Text group. The former used only text-based requirements specifications and
the latter used both a BPMN process model and a text-based requirements specifica-
tion. The BPMN+Text group were also familiar with the BPMN language. The case
study was conducted as follows. Participants in the Text group were firstly given:

• thirty three change requests from PVS V3 (e.g. new functions);
• the dependency types and their definitions; and
• the PVS V2 requirements document written in natural language, consisting of 144

requirements organized into nineteen modules. Snippets of example modules “Val-
uation Requests” and “Valuation Bookings” are shown in Table 4:

Table 4. An example of text-based requirements for desktop application specification

Module ID Specification

1 - Valuation Requests R3000 The ability to create valuation requests

….. …..

2 - Valuation Bookings R3200 Requests should be able to be assigned to a valuer and
booked for a specific date and time

….. …..

Participants in the Text group individually learned the dependency types, identified
dependencies from the text-based requirements of PVS V2 and recorded them in a
dependency matrix (example snippet in Fig. 3). Next, they analyzed the requirements
estimated to be changed because of the change requests from PVS V3. Fig. 5(a)
summarizes this procedure.

For the BPMN+Text group, the participants were handed the documentation to the
Text Group plus the BPMN models to accompany PVS V2 and V3 requirements, a set
of workflow patterns and the mapping between these patterns. After learning depen-
dency types, the workflow patterns and the mapping, this group identified dependen-
cies in the PVS V2 text-based requirements and the BPMN model, during which they
identified the workflow patterns in the BPMN model and noted the dependencies in
patterns in the BPMN model. Dependencies were recorded in a dependency matrix

210 J. Li et al.

(e.g. Fig. 3) and annotated on the BPMN model (e.g. Fig. 4). Finally, they were asked
to identify change propagation paths and dependency types used in change impact
analysis and to analyze the requirements estimated to be changed as triggered by
change requests in PVS V3. Fig. 5(b) depicts this procedure.

Fig. 3. An example of the dependency matrix Fig. 4. An example of patterns and depen-
dencies in the BPMN model

Fig. 5. Case study procedures

4.3 Analysis Results

Q1. Can more dependencies be found by using both BPM and text-based re-
quirements than using text-based requirements alone?
The BPMN+Text group found more dependencies with higher efficiency (i.e. higher
number of dependencies found per hour) than the Text group (cf. Table 5). None
found more than ten wrong dependencies because of their familiarity with PVS.

Table 5. Comparison of dependencies found

Category Text Group BPMN+Text
Group

Number of implementation-related dependencies 125 231

Number of document-related and value-related dependencies 95 103

Total number of dependencies 220 334

Efficiency (number of dependencies identified per hour) 55 74.2

 A Business Process-Driven Approach for Requirements Dependency Analysis 211

The numbers of document-related dependency found by two groups are similar, but
there is 85% difference between the numbers of implementation-related dependencies
found by both groups. To explain this difference, we analyzed the data, interviewed
the participants and confirmed that the BPMN model and the mapping helped the
BPMN+Text group to understand the text-based requirements and find more depen-
dencies. This is because some dependencies are missing or not explicitly expressed in
text-based requirements. This group also found twenty three requirements from the
BPMN model that should be but were left out in the text-based requirements. This
could be explained by the ambiguity of text-based requirements and a clearer rela-
tional view of business related requirements as provided by the BPMN model.

The implementation-related dependency distribution is shown in Fig. 6. The
BPMN+Text group identified more instances of Precondition and Constraints depen-
dencies than the Text group. There were many sequence patterns in the BPMN model
corresponding to the Precondition dependency which were not explicitly represented
in text-based requirements. Therefore, it was easier for the BPMN+Text group to
discover Precondition dependencies. Additionally, there were many cancelling-related
workflow patterns in the BPMN model which indicated the Constraints dependency.
However, most of the canceling-related information was missing in text-based re-
quirements as only normal event flows were described. The BPMN model, on the
other hand, captured these exceptional events comprehensively and helped the
BPMN+Text group to find more Constraints dependencies.

Fig. 6. Implementation-related dependency distribution

Q2. Are additional dependencies found in Question Q1 actually useful in change
impact analysis and how?
We grouped thirty three change requests from PVS V3 into nine categories according
to their intent and descriptions and compared the number of requirements impacted by
the nine categories as reported by each of the participant groups. The number of im-
pacted requirements for two request categories was the same for both groups and they
were discarded from further analysis. The numbers of impacted requirements found
for the remaining seven categories are shown in Fig. 7, The BPMN+Text group
scored higher in each of the seven categories than the Text group since they found
more dependencies and potentially more change impacts.

212 J. Li et al.

Although both groups identified all five implementation-related dependency types,
the BPMN+Text group discovered 106 more implementation-related dependencies.
Subsequently, this group used these extra dependencies to find forty seven impacted
requirements, a significant portion of all the impacted requirements found (47%),
suggesting that these dependencies were useful for change impact analysis.

0 5 10 15 20 25 30 35

1

2

3

4

5

6

7

C
h
a
n
g
e

R
e
q
u
e
s
t

C
a
t
e
g
o
r
y

Impacted Requirement

Text Group BPMN+Text Group

Fig. 7. Number of requirements impacted by
change requests

Fig. 8. Change impact strengths of dependency
types

To show how the five dependency types are useful to change impact analysis, we
used the concept of change impact strength – which we define as the average number
of requirements impacted by one change request - to measure the capability of a de-
pendency type to propagate changes between requirements. Fig. 8 shows the change
impact strengths of the dependency types. “Constraints” has the highest change
impact strength because this dependency type indicates that one requirement may
interact with many other requirements to an extent like a crosscutting relation in as-
pect-oriented software development. Please note, from Fig. 8, that the change impact
strengths of dependency types are different, and therefore it is important to pay atten-
tion to dependency types, which tend to have higher change impact strengths. Our
findings provide a sweet spot for practitioners to analyze change impacts.

5 Discussions

Our case study emphasized realism and integrity of commercial confidentiality rather
than the sample size. All our chosen participants were and/or had been involved in the
development of the application at some stage of its lifecycle. However, this recruit-
ment opened potential threats to the credibility of the case study. Thus, we investi-
gated whether or not any relevant factors could lead to the bias of its results. In terms
of the extent of domain knowledge about the application, one particular participant
had been involved in the development of the project since inception. However, the
other participant in the same group who had less experience with the application
found more dependencies. The lack of domain knowledge did not seem to influence
the results. We also observed that having specific knowledge and experience in re-
quirements engineering or development determined greatly on what dependency types
participants could find. One participant in the Text group, who has more requirements
analysis experience, found more document-related dependencies while the other, who

 A Business Process-Driven Approach for Requirements Dependency Analysis 213

has more development experience, found more implementation-related dependencies.
Both found similar numbers of dependencies. That means experience could influence
the dependency types the participants focus on. On the other hand, we do believe that
experience did influence a participant in learning the dependency types and later on
the number of dependencies he/she found but the case study lacks statistical evidence
to support it (i.e. only four participants).

There was no evidence of learning effect in this case study because both groups
discovered dependency in one round. The Text group found dependencies in text-
based requirements and the BPMN+Text group identified dependencies using both
text-based requirements and the BPMN model together at the same time.

For external validity, we have only evaluated our approach on one project and ac-
knowledge it as a limitation. Thus our evaluation results were constrained by the
project. However, PVS appeared to be fairly complex and representative of a real
application. The project offered us an opportunity to conduct an in-depth case analysis
as an initial evaluation for our approach.

With regard to reliability, the participants reported that certain definitions of de-
pendency types were vague when they applied the types. This might result in different
understanding of the dependency types and affect the dependencies found. To assure
the correctness and consistency of dependencies found, we conducted a follow-up
interview with participants, discussed about disputed dependency types and achieved
an agreement on the understanding of those disputed dependency types.

In related work, System Modeling Language (SysML) defines a number of re-
quirement relationships for systems-of-systems and enterprise modeling [22]: derive,
copy, verify, refine, satisfy and trace. The “trace” relationship is an abstract class for
all the other relationships. “Refine” and “satisfy” are equivalent to our “Refines” and
“Satisfies” relationships. The “verify” relationship links a test case to a requirement
and it is not applicable to our dependency model which it is limited to the requirement
stage and BPMN. Being software-centric, our current dependency model does not
consider or explore SysML’s “copy” and “derive” relationships. The former refers to
one requirement’s text property being a read-only copy of another requirement’s for
requirement reuse. The “derive” relationship relates one requirement to its derived
requirements, which are at the next level of the system hierarchy. A future extension
to our model and mapping is to incorporate all of SysML’s requirement relationships
to support systems-of-systems and enterprise architecture.

6 Conclusion and Future Work

From the requirements perspective, change impact analysis can be efficiently sup-
ported by dependency information. To facilitate dependency discovery in business
process oriented applications, we proposed a mapping between a set of frequently
occurring workflow patterns typical in BPMN, and a set of dependency types: Simi-
lar_to, Constraints, Precondition, Satisfies and Refines. Through this mapping, in-
stances of these dependency types can be systematically derived from a typical BPM
by identifying those workflow patterns from the BPMN-based model.

214 J. Li et al.

We conducted a case study in a real-world project to compare BPMN-and-text with
text-only dependency discovery. In the former, case study participants discovered
new dependencies in the requirements that were highly difficult to spot from the text-
based requirements, suggesting an increased scope of change impacts. Through this
case study, we also found the dependency types discovered through the mapping and
BPMs very useful for change impact analysis and the change impact strengths of de-
pendency types were different. These findings suggest that it is important to consider
the nature of dependency during change impact analysis and inspire us in future work
to explore the change impact abilities of different dependency types which may help
improve the accuracy of change impact analysis.

Our study provides insights into applicability of business process modeling in re-
quirement dependency discovery and change impact analysis for both research and
practice. In the future, we will apply our approach to more industrial projects to vali-
date its applicability.

Acknowledgement. This work is supported by National ICT Australia and funded
through the Australian Government's Backing Australia's Ability initiative, in part
through the Australian Research Council. This work is also supported by the Com-
monwealth of Australia under the Australia-China Science and Research Fund, the
National Natural Science Foundation of China under grant No. 60803023, No.
61073044, National Science and Technology Major Project 2010ZX01036-001-002,
2010ZX01037-001-002.

References

1. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and laws
of software evolution-The nineties view. In: Proc. 4th Intl. Software Metrics Symp., pp.
20–32. IEEE Computer Society Press (1997)

2. Arnold, R.S., Bohner, S.A.: Software Change Impact Analysis. Wiley-IEEE Computer So-
ciety (1996)

3. Bohner, S.A.: Software change impacts-an evolving perspective. In: Int. Conf. Softw.
Maintenance (ICSM 2002), pp. 263–272. IEEE Computer Society Press (2002)

4. Fasolino, A.R., Visaggio, G.: Improving software comprehension through an automated
dependency tracer. In: Proc. 7th Int. Wkshp. Program Comprehension, pp. 58–65. IEEE
Computer Society Press (1999)

5. De Lucia, A., Fasano, F., Oliveto, R.: Traceability management for impact analysis. In:
Frontiers of Software Maintenance (FoSM 2008), pp. 21–30. IEEE Press (2008)

6. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

7. Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A feasibility study of au-
tomated natural language requirements analysis in market-driven development. Require-
ments Engineering 7, 20–33 (2002)

8. Pohl, K.: PRO-ART: Enabling requirements pretraceability. In: 2nd Int. Conf. Require-
ments Eng., pp. 76–84. IEEE Computer Society Press (1996)

 A Business Process-Driven Approach for Requirements Dependency Analysis 215

9. Li, J., Zhu, L., Jeffery, R., Liu, Y., Zhang, H., Wang, Q., Li, M.: An initial evaluation of
requirements dependency types in change propagation analysis. In: 16th Int. Conf. Evalua-
tion & Assessment in Softw. Eng., EASE 2012 (2012)

10. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11, 65–100 (1987)

11. Object Management Group: Business Process Modeling Notation Specification v1.2
(2009)

12. Hassine, J., Rilling, J., Hewitt, J., Dssouli, R.: Change impact analysis for requirement
evolution using use case maps. In: 8th Int. Wkshp. Principles of Software Evolution, pp.
81–90. IEEE Computer Society Press (2005)

13. von Knethen, A., Grund, M.: QuaTrace: a tool environment for (semi-) automatic impact
analysis based on traces. In: Int. Conf. Softw. Maintenance (ICSM 2003), pp. 246–255.
IEEE Computer Society Press (2003)

14. Dahlstedt, Å., Persson, A.: Requirements Interdependencies: State of the Art and Future
Challenges. In: Engineering and Managing Software Requirements, pp. 95–116. Springer,
Berlin (2005)

15. Yan, Y.-Q., Li, S.-X., Liu, X.-M.: Quantitative Analysis for Requirements Evolution’s
Ripple-Effect. In: Int. Asia Conference on Informatics in Control, Automation and Robot-
ics (CAR 2009), pp. 423–427. IEEE Computer Society Press (2009)

16. de la Vara González, J.L., Díaz, J.S.: Business process-driven requirements engineering: a
goal-based approach. In: Pernici, B., Gulla, J.A. (eds.) Proc. CAiSE 2006 Workshops (vol.
1) - 8th Wkshp. Business Process Modeling, Development, and Support (BPMDS 2007),
Trondheim, Norway (2007)

17. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G.: Requirements engineering based on busi-
ness process models: A case study. In: 13th Enterprise Distributed Object Computing Con-
ference Workshops (EDOCW 2009), pp. 320–327. IEEE Computer Society Press (2009)

18. Mathisen, E., Ellingsen, K., Fallmyr, T.: Using business process modelling to reduce the
effects of requirements changes in software projects. In: 2nd Int. Conf. Adaptive Science
& Technology (ICAST 2009), pp. 14–19. IEEE Computer Society Press (2009)

19. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and Parallel Databases 14, 5–51 (2003)

20. Wohed, P., Russell, N., ter Hofstede, A.H.M., Andersson, B., van der Aalst, W.M.P.: Pat-
terns-based evaluation of open source BPM systems: The cases of jBPM, OpenWFE, and
Enhydra Shark. Information and Software Technology 51, 1187–1216 (2009)

21. Kous, K.: Comparative analysis versions of BPMN and its support with Control-flow pat-
terns. In: MIPRO, 2010 Proc. 33rd Int. Convention, pp. 315–319. IEEE Computer Society
Press (2010)

22. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM) v1.2
(2011)

	A Business Process-Driven Approach for Requirements Dependency Analysis
	Introduction
	Related Work
	Dependency and Change Impact Analysis
	Business Process Modeling in Requirements Engineering

	Requirements Dependency Analysis Based on Business Process Models
	Requirements Dependency Model
	Business Process Driven Dependency Identification
	Usage Guidelines

	Case Study
	Questions to Evaluate and Case Selection
	Case Study Procedures
	Analysis Results

	Discussions
	Conclusion and Future Work
	References

